
M A N N I N G

David A. Black
Joseph Leo III

THIRD EDITION

Praise for the Second Edition

Once again, David Black has written the definitive book on Ruby. A must have for
any Rubyist!

—William Wheeler
TEKsystems

The Well-Grounded Rubyist digs into Ruby’s quirks and provides powerful insights
into how the core artifacts interact. Revelatory.

—Ted Roche
Ted Roche & Associates, LLC

All wheat, no chaff—takes you from Ruby programmer to full-fledged Rubyist.

—Doug Sparling
Andrews McMeel Universal

The best way to learn Ruby fundamentals.
—Derek Sivers

sivers.org

If you have ever read a tutorial on Ruby on Rails and wondered, ‘Okay, it works,
but why and how?’ then this book is for you. A great book to learn Ruby from the
beginning.

—Andrea Tarocchi
Istituto Clinico Città Studi (ICCS)

Any passionate Rubyist can discover plenty of practical treasures inside.
—Marius Butuc

 Influitive

The Well-Grounded
Rubyist
THIRD EDITION

DAVID A. BLACK
JOSEPH LEO III

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Jenny Stout
20 Baldwin Road Technical development editor: Arthur Zubarev
PO Box 761 Review editor: Ivan Martinović
Shelter Island, NY 11964 Production editor: Céline Durassier
 Copyeditor: Andy Carroll

Proofreader: Katie Tennant
Technical proofreader: René van den Berg

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617295218
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

http://www.manning.com

 For David.

 —David

 For Diana, for teaching me how to take it easy.
 I am still a work in progress.

 —Joseph

brief contents
PART 1 RUBY FOUNDATIONS... 1

1 ■ Bootstrapping your Ruby literacy 3
2 ■ Objects, methods, and local variables 35
3 ■ Organizing objects with classes 64
4 ■ Modules and program organization 95
5 ■ The default object (self), scope, and visibility 125
6 ■ Control-flow techniques 159

PART 2 BUILT-IN CLASSES AND MODULES................................... 201
7 ■ Built-in essentials 203
8 ■ Strings, symbols, and other scalar objects 233
9 ■ Collection and container objects 268

10 ■ Collections central: Enumerable and Enumerator 303
11 ■ Regular expressions and regexp-based string operations 351
12 ■ File and I/O operations 385

PART 3 RUBY DYNAMICS ... 413
13 ■ Object individuation 415
14 ■ Callable and runnable objects 445
15 ■ Callbacks, hooks, and runtime introspection 485
16 ■ Ruby and functional programming 515
vii

contents
preface xix
acknowledgments xx
about this book xxii
about the authors xxvii
about the cover illustration xxviii

PART 1 RUBY FOUNDATIONS..1

1 Bootstrapping your Ruby literacy 3
1.1 Basic Ruby language literacy 4

Installing Ruby and using a text editor 4 ■ A Ruby syntax
survival kit 6 ■ The variety of Ruby identifiers 7 ■ Method
calls, messages, and Ruby objects 9 ■ Writing and saving a
simple program 11 ■ Feeding the program to Ruby 12
Keyboard and file I/O 14

1.2 Anatomy of the Ruby installation 17
The Ruby standard library subdirectory (RbConfig::CONFIG
[“rubylibdir”]) 18 ■ The C extensions directory
(RbConfig::CONFIG [“archdir”]) 18 ■ The site_ruby
(RbConfig::CONFIG[“sitedir”]) and vendor_ruby
(RbConfig::CONFIG[“vendordir”]) directories 19
Standard Ruby gems and the gems directory 19

1.3 Ruby extensions and programming libraries 20
Loading external files and extensions 21 ■ “Load”-ing a file
ix

CONTENTSx
in the default load path 22 ■ “Require”-ing a feature 23
require_relative 24

1.4 Out-of-the-box Ruby tools and applications 25
Interpreter command-line switches 25 ■ A closer look at
interactive Ruby interpretation with irb 29 ■ The rake task-
management utility 31 ■ Installing packages with the gem
command 33

2 Objects, methods, and local variables 35
2.1 Talking to objects 36

Ruby and object orientation 36 ■ Creating a generic
object 37 ■ Methods that take arguments 39
The return value of a method 40

2.2 Crafting an object: the behavior of a ticket 41
The ticket object, behavior first 41 ■ Querying the ticket
object 42 ■ Shortening the ticket code via string
interpolation 43 ■ Ticket availability: expressing Boolean
state in a method 44

2.3 The innate behaviors of an object 46
Identifying objects uniquely with the object_id method 47
Querying an object’s abilities with the respond_to? method 48
Sending messages to objects with the send method 48

2.4 A close look at method arguments 50
Required and optional arguments 50 ■ Default values for
arguments 51 ■ Order of parameters and arguments 52
What you can’t do in argument lists 54

2.5 Local variables and variable assignment 56
Variables, objects, and references 57 ■ References in variable
assignment and reassignment 59 ■ References and method
arguments 60 ■ Local variables and the things that look like
them 62

3 Organizing objects with classes 64
3.1 Classes and instances 65

Instance methods 66 ■ Overriding methods 67
Reopening classes 67

3.2 Instance variables and object state 69
Initializing an object with state 71

3.3 Setter methods 72
The equal sign (=) in method names 73 ■ Syntactic sugar for
assignment-like methods 74 ■ Setter methods unleashed 75

CONTENTS xi
3.4 Attributes and the attr_* method family 77
Automating the creation of attributes 78 ■ Summary of attr_*
methods 80

3.5 Inheritance and the Ruby class hierarchy 80
Single inheritance: one to a customer 81 ■ Object ancestry and
the not-so-missing link: the Object class 82 ■ BasicObject 83

3.6 Classes as objects and message receivers 83
Creating class objects 83 ■ How class objects call methods 85
A singleton method by any other name ... 86 ■ When, and why,
to write a class method 87 ■ Class methods vs. instance
methods 88

3.7 Constants up close 89
Basic use of constants 90 ■ Reassigning vs. modifying
constants 91

3.8 Nature vs. nurture in Ruby objects 92

4 Modules and program organization 95
4.1 Basics of module creation and use 96

A module encapsulating “stacklikeness” 97 ■ Mixing a module
into a class 99 ■ Using the module further 101

4.2 Modules, classes, and method lookup 103
Illustrating the basics of method lookup 103 ■ Defining the
same method more than once 106 ■ How prepend works 109
How extend works 110 ■ The rules of method lookup
summarized 111 ■ Going up the method search path with
super 112 ■ Inspecting method hierarchies with method and
super_method 114

4.3 The method_missing method 115
Combining method_missing and super 116

4.4 Class/module design and naming 121
Mix-ins and/or inheritance 121 ■ Nesting modules and
classes 123

5 The default object (self), scope, and visibility 125
5.1 Understanding self, the current/default object 126

Who gets to be self, and where 126 ■ The top-level self object 128
Self inside class, module, and method definitions 129 ■ Self as the
default receiver of messages 132 ■ Resolving instance variables
through self 134

CONTENTSxii
5.2 Determining scope 136
Global scope and global variables 136 ■ Local scope 139
The interaction between local scope and self 141 ■ Scope and
resolution of constants 143 ■ Class variable syntax, scope, and
visibility 145

5.3 Deploying method-access rules 151
Private methods 151 ■ Protected methods 155

5.4 Writing and using top-level methods 156
Defining a top-level method 156 ■ Predefined (built-in)
top-level methods 157

6 Control-flow techniques 159
6.1 Conditional code execution 160

The if keyword and its variants 160 ■ Assignment syntax in
condition bodies and tests 165 ■ case statements 167

6.2 Repeating actions with loops 172
Unconditional looping with the loop method 173 ■ Conditional
looping with the while and until keywords 174 ■ Multiple
assignment in conditional statements 176 ■ Looping based
on a list of values 176

6.3 Iterators and code blocks 177
The ingredients of iteration 177 ■ Iteration, home-style 178
The anatomy of a method call 179 ■ Curly braces vs.
do/end in code block syntax 179 ■ Implementing times 181
The importance of being each 182 ■ From each to map 184
Block parameters and variable scope 185

6.4 Error handling and exceptions 189
Raising and rescuing exceptions 189 ■ The rescue keyword
to the rescue! 190 ■ Debugging with binding.irb 192
Avoiding NoMethodError with the safe navigation operator 194
Raising exceptions explicitly 195 ■ Capturing an exception in a
rescue clause 196 ■ The ensure clause 198 ■ Creating your own
exception classes 198

PART 2 BUILT-IN CLASSES AND MODULES....................201

7 Built-in essentials 203
7.1 Ruby’s literal constructors 205
7.2 Recurrent syntactic sugar 206

Defining operators by defining methods 207 ■ Customizing
unary operators 209

CONTENTS xiii
7.3 Bang (!) methods and “danger” 210
Destructive (receiver-changing) effects as danger 210
Destructiveness and “danger” vary independently 212

7.4 Built-in and custom to_* (conversion) methods 213
String conversion: to_s and other methods defined on
Object 213 ■ Array conversion with to_a and the *
operator 216 ■ Numerical conversion with to_i and
to_f 217 ■ Role-playing to_* methods 219

7.5 Boolean states, Boolean objects, and nil 220
True and false as states 221 ■ true and false as objects 223
The special object nil 224

7.6 Comparing two objects 225
Equality tests 226 ■ Comparisons and the Comparable
module 227

7.7 Inspecting object capabilities 229
Listing an object’s methods 229 ■ Querying class and
module objects 231 ■ Filtered and selected method lists 231

8 Strings, symbols, and other scalar objects 233
8.1 Working with strings 234

String notation 234 ■ Basic string manipulation 239
Querying strings 243 ■ String comparison and
ordering 245 ■ String transformation 246 ■ String
conversions 249 ■ String encoding: a brief introduction 250

8.2 Symbols and their uses 252
Chief characteristics of symbols 253 ■ Symbols and
identifiers 254 ■ Symbols in practice 255 ■ Strings and
symbols in comparison 257

8.3 Numerical objects 258
Numerical classes 259 ■ Performing arithmetic operations 259

8.4 Times and dates 260
Instantiating date/time objects 261 ■ Date/time query
methods 263 ■ Date/time formatting methods 264
Date/time conversion methods 265

9 Collection and container objects 268
9.1 Arrays and hashes in comparison 269
9.2 Collection handling with arrays 270

Creating a new array 271 ■ Inserting, retrieving, and
removing array elements 275 ■ Combining arrays with

CONTENTSxiv
other arrays 279 ■ Array transformations 280
Array querying 281

9.3 Hashes 282
Creating a new hash 283 ■ Inserting, retrieving, and
removing hash pairs 284 ■ Specifying default hash
values and behavior 286 ■ Combining hashes with other
hashes 287 ■ Hash transformations 288 ■ Hash
querying 290 ■ Hashes as final method arguments 291
A detour back to argument syntax: named (keyword)
arguments 292

9.4 Ranges 294
Creating a range 294 ■ Range-inclusion logic 295

9.5 Sets 297
Set creation 298 ■ Manipulating set elements 298
Subsets and supersets 301

10 Collections central: Enumerable and Enumerator 303
10.1 Gaining enumerability through each 305
10.2 Enumerable Boolean queries 307
10.3 Enumerable searching and selecting 309

Getting the first match with find 309 ■ Getting all matches
with find_all (a.k.a. select) and reject 311 ■ Selecting on
threequal matches with grep 311 ■ Organizing selection results
with group_by and partition 312

10.4 Element-wise enumerable operations 314
The first method 314 ■ The take and drop methods 316
The min and max methods 316

10.5 Relatives of each 318
reverse_each 318 ■ The each_with_index method (and
each.with_index) 318 ■ The each_slice and each_cons
methods 319 ■ The slice_ family of methods 320
The cycle method 321 ■ Enumerable reduction with inject 322

10.6 The map method 324
The return value of map 324 ■ In-place mapping with map! 325

10.7 Strings as quasi-enumerables 326
10.8 Sorting enumerables 328

Defining sort-order logic with a block 330 ■ Concise sorting
with sort_by 330 ■ Sorting enumerables and the Comparable
module 331

CONTENTS xv
10.9 Enumerators and the next dimension of
enumerability 332
Creating enumerators with a code block 333 ■ Attaching
enumerators to other objects 335 ■ Implicit creation of
enumerators by blockless iterator calls 336

10.10 Enumerator semantics and uses 337
 How to use an enumerator’s each method 337 ■ Protecting
objects with enumerators 339 ■ Fine-grained iteration with
enumerators 341 ■ Adding enumerability with an
enumerator 341

10.11 Enumerator method chaining 343
 Economizing on intermediate objects 343 ■ Indexing
enumerables with with_index 345 ■ Exclusive-or operations
on strings with enumerators 345

10.12 Lazy enumerators 347
 FizzBuzz with a lazy enumerator 348

11 Regular expressions and regexp-based string operations 351
11.1 What are regular expressions? 352
11.2 Writing regular expressions 352

Seeing patterns 353 ■ Simple matching with literal regular
expressions 353

11.3 Building a pattern in a regular expression 355
Literal characters in patterns 356 ■ The dot wildcard
character (.) 356 ■ Character classes 357

11.4 Matching, substring captures, and MatchData 358
Capturing submatches with parentheses 358 ■ Match success
and failure 360 ■ Two ways of getting the captures 361
Other MatchData information 364

11.5 Fine-tuning regular expressions with quantifiers, anchors,
and modifiers 365
Constraining matches with quantifiers 365 ■ Greedy (and
non-greedy) quantifiers 367 ■ Regular expression anchors and
assertions 369 ■ Modifiers 373

11.6 Converting strings and regular expressions
to each other 374
String-to-regexp idioms 375 ■ Going from a regular expression
to a string 377

CONTENTSxvi
11.7 Common methods that use regular expressions 377
String#scan 377 ■ String#split 379 ■ sub/sub! and
gsub/gsub! 380 ■ Case equality and grep 382

12 File and I/O operations 385
12.1 How Ruby’s I/O system is put together 386

The IO class 386 ■ IO objects as enumerables 387
STDIN, STDOUT, STDERR 388 ■ A little more about
keyboard input 389

12.2 Basic file operations 390
The basics of reading from files 390 ■ Line-based file
reading 391 ■ Byte- and character-based file reading 392
Seeking and querying file position 392 ■ Reading files with
File class methods 393 ■ Writing to files 394 ■ Using blocks
to scope file operations 395 ■ File enumerability 396
File I/O exceptions and errors 397

12.3 Querying IO and File objects 399
Getting information from the File class and the FileTest module 399
Deriving file information with File::Stat 401

12.4 Directory manipulation with the Dir class 401
Reading a directory’s entries 402 ■ Directory manipulation
and querying 404

12.5 File tools from the standard library 405
The FileUtils module 406 ■ The Pathname class 408
The StringIO class 409 ■ The open-uri library 411

PART 3 RUBY DYNAMICS ..413

13 Object individuation 415
13.1 Where the singleton methods are: the singleton class 416

Dual determination through singleton classes 417 ■ Examining
and modifying a singleton class directly 418 ■ Singleton classes on
the method-lookup path 420 ■ The singleton_class method 425
Class methods in (even more) depth 425

13.2 Modifying Ruby’s core classes and modules 427
The risks of changing core functionality 427 ■ Additive
changes 432 ■ Pass-through overrides 433 ■ Per-object
changes with extend 435 ■ Using refinements to affect core
behavior 438

CONTENTS xvii
13.3 BasicObject as ancestor and class 439
Using BasicObject 439 ■ Implementing a subclass of
BasicObject 441

14 Callable and runnable objects 445
14.1 Basic anonymous functions: the Proc class 446

Proc objects 446 ■ Procs and blocks and how they differ 447
Block-proc conversions 448 ■ Using Symbol#to_proc for
conciseness 452 ■ Procs as closures 453 ■ Proc parameters
and arguments 456

14.2 Creating functions with lambda and -> 456
14.3 Methods as objects 458

Capturing Method objects 458 ■ The rationale for methods
as objects 459

14.4 The eval family of methods 461
Executing arbitrary strings as code with eval 461 ■ The
dangers of eval 462 ■ The instance_eval method 463
Using class_eval (a.k.a. module_eval) 465

14.5 Concurrent execution with threads 467
Killing, stopping, and starting threads 469 ■ A threaded
date server 471 ■ Writing a chat server using sockets and
threads 472 ■ Threads and variables 474 ■ Manipulating
thread keys 475

14.6 Issuing system commands from inside Ruby
programs 478
The system and exec methods and backticks 479
Communicating with programs via open and popen3 481

15 Callbacks, hooks, and runtime introspection 485
15.1 Callbacks and hooks 486

Intercepting unrecognized messages with method_missing 486
Trapping include and prepend operations 489 ■ Intercepting
extend 490 ■ Intercepting inheritance with Class#inherited 492
The Module#const_missing method 493 ■ The method_added and
singleton_method_added methods 494

15.2 Interpreting object capability queries 496
Listing an object’s non-private methods 496 ■ Listing private
and protected methods 498 ■ Getting class and module
instance methods 499 ■ Listing objects’ singleton methods 501

CONTENTSxviii
15.3 Introspection of variables and constants 503
Listing local and global variables 503 ■ Listing instance
variables 504

15.4 Tracing execution 505
Examining the stack trace with caller 505 ■ Writing a tool
for parsing stack traces 506

15.5 Callbacks and method inspection in practice 509
MicroTest background: MiniTest 509 ■ Specifying and
implementing MicroTest 511

16 Ruby and functional programming 515
16.1 Understanding pure functions 516

Methods with side effects 517 ■ Pure functions and
referential transparency in Ruby 518 ■ Side effects in
Ruby’s built-in methods 519 ■ Modifying an object’s
state 521

16.2 Immutability 523
Object#freeze and Object#frozen? 524 ■ Frozen string
literals 525

16.3 Higher-order functions 526
Method chaining 527 ■ Kernel#itself and Kernel#yield_self 527
Functions that return functions 529 ■ Currying and partial
function application 529

16.4 Recursion 533
Lazy evaluation 534 ■ Tail-call optimization 536

index 539

preface
In the nearly 10 years since the first edition of The Well-Grounded Rubyist was published,
Ruby has achieved wild popularity and made an indelible mark on the programming
landscape. Once-fledgling startups that used Ruby have become dominant forces in
business and technology. Trade schools and teaching programs have sprung up to
teach Ruby to newcomers from all walks of life. The programming language with a
friendly creator and a warm, inviting community has touched many, many program-
mers and changed their professional lives for the better.

 Ruby is ever changing and evolving. Not only new methods but new programming
techniques have become available. Some long-existing techniques have either gained
in popularity or fallen out of popular use. The Well-Grounded Rubyist attempts to put its
finger on the pulse of the Ruby programming community to teach not only the most
important principles but also those most commonly in use today. This edition targets
Ruby 2.5.

 The Well-Grounded Rubyist has become one of the most popular and trusted texts for
learning Ruby. Much of the teaching in the book is done by example, giving countless
opportunities to follow along with your own code and build on the foundations pro-
vided in the text. Earlier editions established this approach, and this third edition
expands on it, providing more sample code and exercises than ever before.

 We’re excited for you to begin your journey through this edition of The Well-
Grounded Rubyist. Whether you’re reading this book for the first, second, or third time,
we hope you’ll find something new and inspiring, and something that ignites your
love of Ruby and keeps it burning!
xix

acknowledgments
Thanks first of all go to everyone who contributed to the success of the first two edi-
tions. This edition wouldn’t exist if it weren’t for that ensemble of editors, production
personnel, reviewers, publishers, and colleagues.

 For the third edition, our thanks go first and foremost to development editor Jen-
nifer Stout, whose support and inspiration through the most difficult parts of writing
proved invaluable. Technical development editor Arthur Zubarev provided insightful
guidance and thought-provoking questions that made this text better. Technical
proofreader René van den Berg’s critical eye positively impacted both the text and the
code samples throughout the book.

 Copyeditor Andy Carroll contributed greatly to the process of putting an overall
polish on the text. In preproduction, Céline Durassier kept everything on track and
on time. Katie Tennant contributed numerous valuable insights and suggestions and
effectively organized our communication. Dottie Marsico did a wonderful job of mak-
ing everything look good and flow smoothly.

 Along the way, several outside reviewers contributed comments and critiques, all
of which helped greatly in keeping the third edition relevant and compelling to
our audience: Alex Lucas, Brian Daley, Burkhard Nestmann, Chris Schwartz, Chris
Wayman, Dana Robinson, David Bradley Clements, Deshuang Tang, Doug Sparling,
James Dietrich, John Kasiewicz, Jon Riddle, Luis Miguel Cabezas Granado, Matthew
Halverson, Mohamed Lahrech, Omid Kamangar, Pierre-Michel Ansel, Prabhuti
Prakash, Steven Parr, Tamara Fultz, and William E. Wheeler. Thanks go especially to
Michael Dalessio, Mark Simpson, and Paul Ort. Our thanks go to Julia Macalaster and
Katherine Zhao for their support and for making sure this book sees as wide an audi-
ence as possible.
xx

ACKNOWLEDGMENTS xxi
 Once again, we thank Yukihiro “Matz” Matsumoto for creating the wonderful Ruby
language and for setting an example of openness and inquisitive engagement with
Ruby programmers that served as the cornerstone for the thriving, friendly commu-
nity that has formed around the language.

 David: I would like to thank myself—specifically for having had the inspired idea of
inviting Joe Leo to serve as coauthor on the third edition of the book! And (of course)
enormous thanks to Joe for breathing new and timely life into the project. David Wil-
liams gives me a kind of support, in everything I do, that I never knew I needed until I
got it, and now am so grateful for.

 Joe: I would like to thank Diana Leo for her constant support throughout my work
on the third edition. She gave me the encouragement, love, and care I needed to
bring this work to the finish line. My parents, Dorothy and Joe Leo, Jr., gave me a life-
time of love and support to pursue my passions. Erica, Frank, and Katie will always be
my biggest fans and my best friends. Lucy is my sunshine and inspiration.

about this book
Welcome
… to the third edition of The Well-Grounded Rubyist.

 Ruby is a general-purpose, object-oriented, interpreted programming language
designed by Yukihiro “Matz” Matsumoto. Ruby was first announced in 1993. The first
public release appeared in 1995, and the language became very popular in Japan
during the 1990s. It’s known and admired for its expressiveness—its ability to do a lot
with relatively little code—and for the elegance and visual smoothness of its syntax
and style. Ruby has proven useful and productive in a wide variety of programming
contexts, ranging from administrative scripting to device embedding, from web devel-
opment to PDF document processing. Moreover, and at the risk of sounding non-
technical, Ruby programming is fun. It’s designed that way. As Matz has said, Ruby is
optimized for the programmer experience. Indeed, Ruby started as Matz’s pet project
and gained attention and traction because so many other programmers got pleasure
from the same kind of language design that Matz did.

 The first English-language book on Ruby (Programming Ruby by Dave Thomas and
Andy Hunt [Addison-Wesley]) appeared in late 2000 and ushered in a wave of Ruby
enthusiasm outside of Japan. Ruby’s popularity in the West has grown steadily since
the appearance of the “Pickaxe book” (the nickname of the Thomas-Hunt work,
derived from its cover illustration). Four years after the first edition of the Pickaxe, the
introduction of the Ruby on Rails web application development framework by David
Heinemeier Hansson sparked a massive surge in worldwide interest in Ruby. The years
since 2004 have seen exponential growth in the use of Ruby, as well as books about
Ruby, Ruby user groups, and Ruby-related conferences and other events.
xxii

ABOUT THIS BOOK xxiii
 The purpose of The Well-Grounded Rubyist is to give you a broad and deep under-
standing of how Ruby works and a considerable toolkit of Ruby techniques and idioms
that you can use for real programming.

How this book is organized
The Well-Grounded Rubyist, Third Edition consists of 16 chapters and is divided into 3
parts:

 Part 1: Ruby foundations
 Part 2: Built-in classes and modules
 Part 3: Ruby dynamics

Part 1 (chapters 1 through 6) introduces you to the syntax of Ruby and to a number of
the key concepts and semantics on which Ruby programming builds: objects, meth-
ods, classes and modules, identifiers, and more. It also covers the Ruby programming
lifecycle (how to prepare and execute code files, and writing programs that span more
than one file), as well as many of the command-line tools that ship with Ruby and that
Ruby programmers use frequently, including the interactive Ruby interpreter (irb),
the RubyGems package manager (gem), and the Ruby interpreter (ruby).

 Part 2 (chapters 7 through 12) surveys the major built-in classes—including
strings, arrays, hashes, numerics, ranges, dates and times, and regular expressions—
and provides you with insight into what the various built-ins are for, as well as the nuts
and bolts of how to use them. It also builds on your general Ruby literacy with explora-
tion of such topics as Boolean logic in Ruby, built-in methods for converting objects
from one class to another (for example, converting a string to an integer), Ruby’s con-
siderable facilities for engineering collections and their enumeration, and techniques
for comparing objects for identity and equality. You’ll also learn about file and console
I/O as well as issuing system commands from inside Ruby programs.

 Part 3 (chapters 13 through 16) addresses the area of Ruby dynamics. Under this
heading you’ll find a number of subtopics—among them some metaprogramming tech-
niques—including Ruby’s facilities for runtime reflection and object introspection; ways
to endow objects with individualized behaviors; and the handling of functions, threads,
and other runnable and executable objects. This part of the book also introduces you to
techniques for issuing system commands from inside a Ruby program and encompasses
a number of Ruby’s event-triggered runtime hooks and callbacks, such as handlers for
calls to non-existent methods and interception of events like class inheritance and
method definition. We conclude the book with a chapter on functional programming
paradigms and how they can be realized in Ruby.

 Ruby is a system, and presenting any system in a strictly linear way is a challenge.
We meet this challenge by thinking of the learning process as a kind of widening spi-
ral, building on the familiar but always opening out into the unknown. At times, you’ll
be shown enough of a future topic to serve as a placeholder, so that you can learn the
current topic in depth. Later, with the necessary bootstrapping already done, you’ll

ABOUT THIS BOOKxxiv
come back to the placeholder topic and study it in its own right. The Well-Grounded
Rubyist, Third Edition is engineered to expose you to as much material as possible as
efficiently as possible, consistent with its mission of providing you with a solid founda-
tion in Ruby—a real and lasting understanding of how the language works.

Who should read this book
The Well-Grounded Rubyist, Third Edition is optimized for a reader who’s done some pro-
gramming and perhaps even some Ruby and wants to learn more about the Ruby lan-
guage—not only the specific techniques (although the book includes plenty of those),
but also the design principles that make Ruby what it is. We’re great believers in know-
ing what you’re doing. We also believe that knowing what you’re doing doesn’t mean
you have to compose a treatise in your head every time you write a line of code; it
means you know how to make the most out of the language and understand how to
analyze problems when they arise.

 We’ve hedged our bets a little, in terms of targeted readership, in that we’ve
included some introductory remarks about a number of topics and techniques that
are possibly familiar to experienced programmers. We ask the indulgence of those
readers. The remarks in question go by pretty quickly, and we believe that even a brief
explanation of terms here and there can make a surprisingly big difference in how
many people feel at home in, and welcomed by, the book. If you’re a more experi-
enced programmer and see passages where we seem to be spoon-feeding, please bear
with us. It’s for a good cause.

 By the same token, if this is your first foray into programming, be prepared to do a
little extra self-imposed “homework” to get ramped up into the programming pro-
cess—but by all means, give The Well-Grounded Rubyist, Third Edition a go. The book
isn’t specifically an introduction to programming, but it does take you through all the
practicalities, including the creation and running of program files, as well as explain-
ing Ruby from the ground up.

What this book doesn’t include
The Well-Grounded Rubyist, Third Edition is a serious, extensive look at the Ruby lan-
guage, but it isn’t a complete language reference. There are core classes that we say lit-
tle or nothing about, and we discuss only a modest number of standard library
packages. That’s by design. You don’t need us to spell out for you how to use every
standard-library API, and we don’t. What you do need, in all likelihood, is someone to
explain to you exactly what class << self means, or why two instance variables two
lines apart aren’t the same variable, or the distinction between singleton methods and
private methods, or what an enumerator is and how it differs from an iterator. You
need to know these things, and you need to see them in operation and to start using
them. You must, of course, plunge deeply into the standard library in your work with
Ruby, and we encourage you to do so. We’re aiming to impart a particular kind and
degree of understanding in this book.

ABOUT THIS BOOK xxv
A word on Ruby versions
The Well-Grounded Rubyist, Third Edition covers version 2.5 of the Ruby language, the
most recent version at the time of writing. Version 2.6 is around the corner, and we’ve
taken that into consideration by explaining what you can expect in some circum-
stances. By and large, version 2.6 will be a speed optimization release with few changes
to language constructs or methods.

Code conventions, examples, and downloads
In the text, names of Ruby variables and constants are in monospaced font. Names of
classes and modules are in monospaced font where they represent direct references to
existing class or module objects; for example, “Next, we’ll reopen the class definition
block for Person.” In all cases, you’ll be able to tell from the context that a class, mod-
ule, or other Ruby entity is under discussion.

 Source code for all the working examples in this book is available from our GitHub
repository (www.github.com/jleo3/twgr) and from the Manning website (https://
www.manning.com/books/the-well-grounded-rubyist-third-edition). We will continue
to update these examples as we get feedback from our readers.

 Names of programs, such as ruby and rails, are in monospaced font where refer-
ence is made directly to the program executable or to command-line usage; other-
wise, they appear in regular type.

 Italics or an asterisk are used for wildcard expressions; for example, to_* might
indicate the general category of Ruby methods that includes to_i and to_s, whereas
position_match might correspond to post_match or pre_match.

 You can run the standalone code samples in the book either by placing them in a
text file and running the ruby command on them, or by typing them into the interac-
tive Ruby interpreter irb. In chapter 1, you’ll learn these techniques. As the book pro-
gresses, it will be assumed that you can do this on your own and that you’ll make up
names for your sample files if no names are suggested (or if you prefer different
names).

 A considerable number of examples in the book are presented in the form of irb
sessions. What you’ll see on the page are cut-and-pasted lines from a live interactive
session, where the code was entered into irb, and irb responded by running the code.
You’ll come to recognize this format easily (especially if you start using irb yourself).
This mode of presentation is particularly suitable for short code snippets and expres-
sions; and because irb always prints out the results of executing whatever you type in
(rather like a calculator), it lets you see results while economizing on explicit print
commands.

 In other cases, the output from code samples is printed separately after the sam-
ples, printed alongside the code (and clearly labeled as output), or embedded in the
discussion following the appearance of the code.

www.github.com/jleo3/twgr
https://www.manning.com/books/the-well-grounded-rubyist-third-edition
https://www.manning.com/books/the-well-grounded-rubyist-third-edition
https://www.manning.com/books/the-well-grounded-rubyist-third-edition

ABOUT THIS BOOKxxvi
 Some examples are accompanied by numbered cueballs that appear to the side of
the code. These cueballs are linked to specific points in the ensuing discussion and
give you a way to refer back quickly to the line under discussion.

 Command-line program invocations are shown with a dollar-sign ($) prompt, in
the general style of shell prompts in UNIX-like environments. Most of these com-
mands will work on Windows, even though the prompt may be different. (In all envi-
ronments, the availability of the commands depends on the setting of the relevant
path environment variable.)

 The use of web rather than Web to designate the World Wide Web is a Manning in-
house style convention that we have followed here, although in other contexts we fol-
low the W3C’s guideline, which is to use Web.

liveBook discussion forum
Purchase of The Well-Grounded Rubyist, Third Edition includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the author and from other users. To
access the forum, go to https://livebook.manning.com/#!/book/the-well-grounded-
rubyist-third-edition/discussion. You can also learn more about Manning’s forums and
the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

https://livebook.manning.com/#!/book/the-well-grounded-rubyist-third-edition/discussion
https://livebook.manning.com/#!/book/the-well-grounded-rubyist-third-edition/discussion

about the authors

DAVID A. BLACK is an internationally known Ruby developer,
author, trainer, speaker, and event organizer, as well as a
cofounder of Ruby Central.

 JOSEPH LEO III is a Ruby teacher, mentor, and community advo-
cate. He is the lead organizer of the Gotham Ruby Conference
(GoRuCo) and founder of Def Method.
xxvii

about the cover illustration
The figure on the cover of The Well-Grounded Rubyist is a “Noble Française” or a French
noblewoman. The illustration is taken from the 1805 edition of Sylvain Maréchal’s
four-volume compendium of regional dress customs. This book was first published in
Paris in 1788, one year before the French Revolution. Each illustration is colored by
hand.

 The colorful variety of Maréchal’s collection reminds us vividly of how culturally
apart the world’s towns and regions were just 200 years ago. Isolated from one
another, people spoke different dialects and languages. In the streets or in the coun-
tryside, it was easy to identify where they lived and what their trade or station in life
was just by their dress. Dress codes have changed since then and the diversity by
region, so rich at the time, has faded away. Today, it is hard to tell apart the inhabi-
tants of different continents, let alone different towns or regions. Perhaps we have
traded cultural diversity for a more varied personal life—certainly a more varied and
fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxviii

Part 1

Ruby foundations

The goal of this part of the book is to give you a broad but practical founda-
tion layer on which to build, and to which to anchor, the further explorations of
Ruby that follow in parts 2 and 3. We’ll start with a chapter on bootstrapping
your Ruby literacy; after working through that first chapter, you’ll be able to run
Ruby programs comfortably and have a good sense of the layout of a typical
Ruby installation. Starting with chapter 2, we’ll get into the details of the Ruby
language. Ruby is an object-oriented language, and the sooner you dive into how
Ruby handles objects, the better. Accordingly, objects will serve both as a way to
bootstrap the discussion of the language (and your knowledge of it) and as a
golden thread leading us to further topics and techniques.

 Objects are created by classes, and in chapter 3 you’ll learn how classes work.
The discussion of classes is followed by a look at modules in chapter 4. Modules
allow you to fine-tune classes and objects by splitting out some of the object
design into separate, reusable units of code. To understand Ruby programs—
both your own and others’—you need to know about Ruby’s notion of a current
default object, known by the keyword self. Chapter 5 will take you deep into the
concept of self, along with a treatment of Ruby’s handling of variable visibility
and scope.

 In chapter 6, the last in this part of the book, you’ll learn about control flow
in Ruby programs—that is, how to steer the Ruby interpreter through condi-
tional (if) logic, how to loop repeatedly through code, and even how to break
away from normal program execution when an error occurs. By the end of chap-
ter 6, you’ll be thinking along with Ruby as you write and develop your code.

http://www.rubygems.org
http://www.rubygems.org
http://www.rubygems.org
http://www.rubygems.org

2 PART 1 Ruby foundations
 The title of this part is “Ruby foundations,” which obviously suggests that what’s
here is to be built on later. And that’s true. But it doesn’t mean that the material in
part 1 isn’t important in itself. As you’ll see once you read them, these six chapters
present you with real Ruby techniques, real code, and information you’ll use every
time you write or execute a Ruby program. It’s not the “foundations” because you’ll
learn it once and then ignore it, but because there’s so much more about Ruby yet to
follow!

Bootstrapping your
Ruby literacy
This book will give you a foundation in Ruby, and this chapter will give your foun-
dation a foundation. The goal of the chapter is to bootstrap you into the study of
Ruby with enough knowledge and skill to proceed comfortably into what lies
beyond.

 We’ll look at basic Ruby syntax and techniques and at how Ruby works: what you
do when you write a program, how you get Ruby to run your program, and how you
split a program into more than one file. You’ll learn several of the switches that
alter how the Ruby interpreter (the program with the name ruby, to which you feed

This chapter covers
 A Ruby syntax survival kit

 Writing, saving, running, and error-checking
programs

 A tour of the Ruby installation

 The mechanics of Ruby extensions

 Ruby’s command-line tools such as irb and rake
3

4 CHAPTER 1 Bootstrapping your Ruby literacy
your program files for execution) acts, as well as how to use some important auxiliary
tools designed to make your life as a Rubyist easier and more productive.

 The chapter is based on a view of the whole Ruby landscape as being divided into
three fundamental levels:

 Core language: design principles, syntax, and semantics
 Extensions and libraries that ship with Ruby, and the facilities for adding exten-

sions of your own
 Command-line tools that come with Ruby, with which you run the interpreter

and some other important utilities

It’s not always possible to talk about these three levels in isolation—after all, they’re
interlocking parts of a single system—but we’ll discuss them separately as much as pos-
sible in this chapter. You can, in any case, use the three level descriptions as pegs to
hang subtopics on, wherever they’re introduced.

Nor does this first chapter exist solely in the service of later chapters. It has content in
its own right: you’ll learn real Ruby techniques and important points about the design
of the language.

1.1 Basic Ruby language literacy
The goal of this section is to get you going with Ruby. It takes a breadth-first approach:
we’ll walk through the whole cycle of learning some syntax, writing some code, and
running some programs.

1.1.1 Installing Ruby and using a text editor

Though you’re free to install and compile Ruby from source from www.ruby-lang.org, it’s
far more common for Rubyists using macOS or Linux to install versions of Ruby using a
version manager. The most popular version managers are RVM (https://rvm.io), rbenv

Ruby, ruby, and … RUBY?!
Ruby is a programming language. We talk about things like “learning Ruby,” and we
ask questions like, “Do you know Ruby?”

The lowercase version, ruby, is a computer program. Specifically, it’s the Ruby inter-
preter, the program that reads your programs and runs them. You’ll see this name
used in sentences like “I ran ruby on my file, but nothing happened,” or “What’s the
full path to your ruby executable?”

Finally, there’s RUBY—or, more precisely, there isn’t. Ruby isn’t an acronym, and it’s
never correct to spell it in all capital letters. People do this, as they do (also incor-
rectly) with Perl, perhaps because they’re used to seeing language names like BASIC
and COBOL. Ruby isn’t such a language. It’s Ruby for the language, ruby for the
interpreter.

www.ruby-lang.org
https://rvm.io

5Basic Ruby language literacy
(https://github.com/rbenv/rbenv), and chruby (https://github.com/postmodern/
chruby). Windows users are encouraged to use the RubyInstaller (https://rubyinstaller
.org/). All version managers are free and all provide a safe and easy way to download and
run Ruby. This book references Ruby version 2.5.1.

 You’ll also need a text editor (any editor you like, as long as it’s a plain-text editor
and not a word processor) and a directory (a.k.a. a folder) in which to store your Ruby
program files. You might name that directory rubycode or rubysamples—any name is
fine. Keep it separate from other work areas so that you can keep track of your prac-
tice program files.

You can now get Ruby installed and your work area created, if you haven’t already.
Next we’ll continue to bootstrap your Ruby literacy so we have a shared ground on
which to continuing building and exploring. One thing you’ll need is enough expo-
sure to basic Ruby syntax to get you started.

The interactive Ruby console program (irb), your new best friend
The irb utility ships with Ruby and is the most widely used Ruby command-line tool
other than the interpreter itself. After starting irb, you type Ruby code into it, and it
executes the code and prints out the resulting value.

Type irb at the command line and enter sample code as you encounter it in the text.
For example:

>> 100 + 32
=> 132

Having an open irb session means you can test Ruby snippets at any time and in
any quantity. Most Ruby developers find irb indispensable, and you’ll see a few
examples of its use as we proceed through this chapter.

To exit from irb normally, you can type exit. On many systems, Ctrl-D works too.

The irb examples you’ll see in this book use a command-line option that makes irb
output easier to read:

irb --simple-prompt

If you want to see the effect of the --simple-prompt option, try starting irb with
and without it. As you’ll see, the simple prompt keeps your screen a lot clearer. The
default (nonsimple) prompt displays more information, such as a line-number count
for your interactive session; but for the examples we’ll look at, the simple prompt is
sufficient.

Because irb is one of the command-line tools that ship with Ruby, it’s not discussed
in detail until section 1.4.2. Feel free to jump to that section and have a look; it’s
pretty straightforward.

https://github.com/rbenv/rbenv
https://github.com/postmodern/chruby
https://github.com/postmodern/chruby
https://github.com/postmodern/chruby
https://rubyinstaller.org/
https://rubyinstaller.org/
https://rubyinstaller.org/

6 CHAPTER 1 Bootstrapping your Ruby literacy
1.1.2 A Ruby syntax survival kit

The following three tables summarize some Ruby features that you’ll find useful in
understanding the examples in this chapter and in starting to experiment with Ruby.
You don’t have to memorize them, but do look them over and refer back to them later
as needed.

 Table 1.1 contains some of Ruby’s basic operations. Table 1.2 covers retrieving
basic input from the keyboard, sending output to the screen, and basic conditional
statements. Table 1.3 briefly details Ruby’s special objects and syntax for comments.
Try executing these commands in an irb session. Are the results what you expected?

Table 1.1 Basic operations in Ruby

Operation Example(s) Comments

Arithmetic 2 + 3 (addition)
2 – 3 (subtraction)
2 * 3 (multiplication)
2 / 3 (division)
2 / 3.0 (division,
floating-point result)

10.3 + 20.25
103 - 202.5
32.9 * 10
100.0 / 0.23

All these operations work on integers or floating-
point numbers (floats). Mixing integers and floats
together, as some of the examples do, produces a
floating-point result.

Note that you need to write 0.23 rather than .23.

Assignment x = 1
string = "Hello"

This operation binds a local variable (on the left) to
an object (on the right). For now, you can think of
an object as a value represented by the variable.

Compare two values x == y Note the two equal signs (not just one, as in
assignment).

Convert a numeric
string to a number

x = "100".to_i
s = "100"
x = s.to_i

To perform arithmetic, you have to make sure you
have numbers rather than strings of characters.
to_i performs string-to-integer conversion.

Table 1.2 Basic input/output methods and flow control in Ruby

Operation Example(s) Comments

Print something to
the screen

print "Hello"
puts "Hello"
x = "Hello"
puts x
x = "Hello"
print x
x = "Hello"
p x

puts adds a newline to the string it outputs if there
isn’t one at the end already; print doesn’t.
print prints exactly what it’s told to and leaves the
cursor at the end. (Note: On some platforms, an extra
line is automatically output at the end of a program.)
p outputs an inspect string, which may contain extra
information about what it’s printing.

7Basic Ruby language literacy
Next, we’ll take a look at Ruby identifiers and begin to define an object as it applies to
Ruby.

1.1.3 The variety of Ruby identifiers

Ruby has a small number of identifier types that you’ll want to be able to spot and dif-
ferentiate from each other at a glance. The identifier family tree looks like this:

 Variables:
– Local
– Instance
– Class
– Global

Get a line of key-
board input

gets
string = gets

You can assign the input line directly to a variable (the
variable string in the second example). Try gets in
an irb session, and a cursor will wait for you to enter
input.

Conditional
execution

x = 1
y = 1
if x == y
 puts "Yes!"
else
 puts "No!"
end

Conditional statements always end with the word end.
More on these in chapter 6.

Table 1.3 Ruby’s special objects and comments

Operation Example(s) Comments

Special value
objects

true
false
nil

The objects true and false often serve as return val-
ues for conditional expressions. The object nil is a kind
of “nonobject” indicating the absence of a value or
result. false and nil cause a conditional expression
to evaluate as false; all other objects (including true,
of course, but also including 0 and empty strings) cause
it to evaluate to true. More on these in chapter 7.

Default object self The keyword self refers to the default object. Self is a
role that different objects play, depending on the execu-
tion context. Method calls that don’t specify a calling
object are called on self. More on this in chapter 5.

Put comments in
code files

A comment
x = 1 # A comment

Comments are ignored by the interpreter.

Table 1.2 Basic input/output methods and flow control in Ruby (continued)

Operation Example(s) Comments

8 CHAPTER 1 Bootstrapping your Ruby literacy
 Constants
 Keywords
 Method names

It’s a small family and easily learned. We’ll survey them here. Keep in mind that this
section’s purpose is to teach you to recognize the various identifiers. You’ll learn a lot
more throughout the book about when and how to use them. This is just the first les-
son in identifier literacy.

VARIABLES

Local variables start with a lowercase letter or an underscore and consist of letters,
underscores, and/or digits. x, string, abc, var1, start_value, and firstName are all
valid local variable names. Note, however, that the Ruby convention is to use under-
scores rather than camel case when composing local variable names from multiple
words—for example, first_name rather than firstName.

 Instance variables, which serve the purpose of storing information within individual
objects, always start with a single at-sign (@) and consist thereafter of the same charac-
ter set as local variables—for example, @age and @last_name. Although a local vari-
able can’t start with an uppercase letter, an instance variable can have one in the first
position after the at-sign (though it may not have a digit in this position). But usually
the character after the at-sign is a lowercase letter.

 Class variables, which store information per class hierarchy (again, don’t worry
about the semantics at this stage), follow the same rules as instance variables, except
that they start with two at-signs—for example, @@running_total.

 Global variables are recognizable by their leading dollar sign ($)—for example,
$population. The segment after the dollar sign doesn’t follow local-variable naming
conventions; there are global variables called $:, $1, and $/, as well as $stdin and
$LOAD_PATH. As long as it begins with a dollar sign, it’s a global variable. As for the
nonalphanumeric ones, the only such identifiers you’re likely to see are predefined,
so you don’t need to worry about which punctuation marks are legal and which aren’t.

 Table 1.4 summarizes Ruby’s variable naming rules.

Table 1.4 Valid variable names in Ruby by variable type

Type Ruby convention Nonconventional

Local first_name firstName, _firstName, __firstName, name1

Instance @first_name @First_name, @firstName

Class @@first_name @@First_name, @@firstName

Global $FIRST_NAME $first_name, $firstName, $name1

9Basic Ruby language literacy
CONSTANTS

Constants begin with an uppercase letter. A, String, FirstName, and STDIN are all
valid constant names. The Ruby convention is to use either camel case (FirstName) or
underscore-separated all-uppercase words (FIRST_NAME) in composing constant
names from multiple words.

KEYWORDS

Ruby has numerous keywords—predefined, reserved terms associated with specific
programming tasks and contexts. Keywords include def (for method definitions),
class (for class definitions), if (conditional execution), and __FILE__ (the name of
the file currently being executed). There are about 40 of them, and they’re generally
short, single-word (as opposed to underscore-composed) identifiers.

METHOD NAMES

Names of methods in Ruby follow the same rules and conventions as local variables
(except that they can end with ?, !, or =, with significance that you’ll see later). This is
by design: methods don’t call attention to themselves as methods but rather blend
into the texture of a program as expressions that provide a value. In some contexts
you can’t tell just by looking at an expression whether you’re seeing a local variable or
a method name—and that’s intentional.

 Speaking of methods, now that you’ve got a roadmap to Ruby identifiers, let’s get
back to some language semantics—in particular, the all-important role of the object
and its methods.

1.1.4 Method calls, messages, and Ruby objects

Ruby sees all data structures and values—from simple scalar (atomic) values like inte-
gers and strings, to complex data structures like arrays—as objects. Every object is capa-
ble of understanding a certain set of messages. Each message that an object
understands corresponds directly to a method—a named, executable routine whose
execution the object has the ability to trigger.

 Objects are represented either by literal constructors—like quotation marks for
strings—or by variables to which they’ve been bound. Message sending is achieved via
the special dot operator: the message to the right of the dot is sent to the object to the
left of the dot. (There are other, more specialized ways to send messages to objects,
but the dot is the most common and fundamental way.) Consider this example from
table 1.1:

x = "100".to_i

The dot means that the message to_i is being sent to the string "100". The string
"100" is called the receiver of the message. We can also say that the method to_i is
being called on the string "100". The result of the method call—the integer 100—
serves as the right-hand side of the assignment to the variable x.

10 CHAPTER 1 Bootstrapping your Ruby literacy

Methods can take arguments, which are also objects. (Almost everything in Ruby is an
object, although some syntactic structures that help you create and manipulate
objects aren’t themselves objects.) Here’s a method call with an argument:

x = "100".to_i(9)

Calling to_i on 100 with an argument of 9 generates a decimal integer equivalent to
the base-9 number 100: x is now equal to 81 decimal.

 This example also shows the use of parentheses around method arguments. These
parentheses are usually optional, but in more complex cases they may be required to
clear up what may otherwise be ambiguities in the syntax. Many programmers use
parentheses in most or all method calls, just to be safe.

 The whole universe of a Ruby program consists of objects and the messages that
are sent to them. As a Ruby programmer, you spend most of your time either specify-
ing the things you want objects to be able to do (by defining methods) or asking the
objects to do those things (by sending them messages).

 We’ll explore all of this in much greater depth later in the book. Again, this brief
sketch is just part of the process of bootstrapping your Ruby literacy. When you see a
dot in what would otherwise be an inexplicable position, you should interpret it as a
message (on the right) being sent to an object (on the left). Keep in mind, too, that
some method calls take the form of bareword-style invocations, like the call to puts in
this example:

puts "Hello"

Here, despite the lack of a message-sending dot and an explicit receiver for the mes-
sage, we’re sending the message puts with the argument "Hello" to an object: the

Why the double terminology?
Why bother saying both “sending the message to_i” and “calling the method to_i”?
Why have two ways of describing the same operation? Because they aren’t quite the
same.

The more conventional vernacular is “calling the method.” In Ruby, though, it’s more
correct to say you send a message to a receiving object, and the object executes the
corresponding method. But sometimes there’s no corresponding method. You can
put anything to the right of the dot, and there’s no guarantee that the receiver will
have a method that matches the message you send.

If that sounds like chaos, it isn’t, because objects can intercept unknown messages
and try to make sense of them. This is most often achieved using the method_
missing method, covered in chapter 4. The Ruby on Rails web development frame-
work makes heavy use of the technique of sending unknown messages to objects,
intercepting those messages with method_missing, and making sense of them on
the fly based on dynamic conditions.

11Basic Ruby language literacy
default object self. There’s always a self defined when your program is running,
although which object is self changes, according to specific rules. You’ll learn much
more about self in chapter 5. For now, take note of the fact that a bareword like puts
can be a method call.

 The most important concept in Ruby is the concept of the object. Closely related,
and playing an important supporting role, is the concept of the class.

THE ORIGIN OF OBJECTS IN CLASSES

A class defines an object’s functionality, and every object is an instance of exactly one
class. Ruby provides a large number of built-in classes, representing important foun-
dational data types (classes like String, Array, and Integer). Every time you create a
string object, you’ve created an instance of the class String.

 You can also write your own classes. You can even modify existing Ruby classes; if
you don’t like the behavior of strings or arrays, you can change it. It’s almost always a
bad idea to do so, but Ruby allows it. (We’ll look at the pros and cons of making
changes to built-in classes in chapter 13.)

 Although every Ruby object is an instance of a class, the concept of class is less
important than the concept of object. That’s because objects can change, acquiring
methods and behaviors that weren’t defined in their class. The class is responsible for
launching the object into existence, a process known as instantiation, but thereafter
the object has a life of its own.

 The ability of objects to adopt behaviors that their class didn’t give them is one of
the most central defining principles of the design of Ruby as a language. As you can
surmise, we’ll come back to it frequently in a variety of contexts. For now, just be
aware that although every object has a class, the class of an object isn’t the sole deter-
minant of what the object can do.

 Armed with some Ruby literacy (and some material to refer to when in doubt),
let’s walk through the steps involved in running a program.

1.1.5 Writing and saving a simple program

At this point, you can start creating program files in the Ruby sample code directory
you created a little while back. Your first program will be a Celsius-to-Fahrenheit tem-
perature converter.

NOTE A real-world temperature converter would, of course, use floating-
point numbers. We’ll stick to integers in the input and output to keep our
focus on matters of program structure and execution.

We’ll work through this example several times, adding to it and modifying it as we go.
Subsequent iterations will

 Tidy the program’s output
 Accept input via the keyboard from the user
 Read a value in from a file
 Write the result of the program to a file

12 CHAPTER 1 Bootstrapping your Ruby literacy
The first version will be simple; the focus will be on the file-creation and program-
running processes, rather than any elaborate program logic.

CREATING A FIRST PROGRAM FILE

Using a plain-text editor, type the code from the following listing into a text file and
save it under the filename c2f.rb in your sample code directory.

celsius = 100
fahrenheit = (celsius * 9 / 5) + 32
puts "The result is "
puts fahrenheit
puts "."

NOTE Depending on your operating system, you may be able to run Ruby
program files standalone—that is, with just the filename, or with a short name
(like c2f) and no file extension. Keep in mind, though, that the .rb filename
extension is mandatory in some cases, mainly involving programs that occupy
more than one file (which you’ll learn about in detail later) and that need a
way for the files to find each other. In this book, all Ruby program filenames
end in .rb to ensure that the examples work on as many platforms, and with as
few administrative digressions, as possible.

You now have a complete (albeit tiny) Ruby program on your disk, and you can run it.

1.1.6 Feeding the program to Ruby

Running a Ruby program involves passing the program’s source file (or files) to the
Ruby interpreter, which is called ruby. You’ll do that now ... sort of. You’ll feed the
program to ruby, but instead of asking Ruby to run the program, you’ll ask it to check
the program code for syntax errors.

CHECKING FOR SYNTAX ERRORS

If you add 31 instead of 32 in your conversion formula, that’s a programming error.
Ruby will still happily run your program and give you the flawed result. But if you acci-
dentally leave out the closing parenthesis in the second line of the program, that’s a
syntax error, and Ruby won’t run the program:

$ ruby broken_c2f.rb
broken_c2f.rb:5: syntax error, unexpected end-of-input, expecting ')'
puts "."
 ^

The error is reported on line 5—the last line of the program—because Ruby waits
patiently to see whether you’re ever going to close the parenthesis before concluding
that you’re not. On some systems, the last line of output includes a carat indicating
the point at which Ruby declared the syntax error—again, at the very end of the
program.

Listing 1.1 Simple, limited-purpose Celsius-to-Fahrenheit converter (c2f.rb)

13Basic Ruby language literacy
 Conveniently, the Ruby interpreter can check programs for syntax errors without
running the programs. It reads through the file and tells you whether the syntax is
okay. To run a syntax check on your file, do this:

$ ruby -cw c2f.rb

The -cw command-line flag is shorthand for two flags: -c and -w. The -c flag means
check for syntax errors. The -w flag activates a higher level of warning: Ruby will fuss at
you if you’ve done things that are legal Ruby but are questionable on grounds other
than syntax.

 Assuming you’ve typed the file correctly, you should see the message

Syntax OK

printed on your screen.

RUNNING THE PROGRAM

To run the program, pass the file once more to the interpreter, but this time without
the combined -c and -w flags:

$ ruby c2f.rb

If all goes well, you’ll see the output of the calculation:

The result is
212
.

The result of the calculation is correct, but having the output spread over three lines
looks bad.

SECOND CONVERTER ITERATION

The problem can be traced to the difference between the puts command and the
print command. puts adds a newline to the end of the string it prints out, if the
string doesn’t end with one already. print, on the other hand, prints out the string
you ask it to and then stops; it doesn’t automatically jump to the next line.

 To fix the problem, change the first two puts commands to print:

print "The result is "
print fahrenheit
puts "."

(Note the blank space after is, which ensures that a space appears between is and the
number.) Now the output looks like this:

The result is 212.

puts is short for put string. Although put may not intuitively invoke the notion of skip-
ping down to the next line, that’s what puts does: like print, it prints what you tell it
to, but then it also automatically goes to the next line. If you ask puts to print a line
that already ends with a newline, it doesn’t bother adding one.

14 CHAPTER 1 Bootstrapping your Ruby literacy
 If you’re used to print facilities in languages that don’t automatically add a new-
line, such as Perl’s print function, you may find yourself writing code like this in Ruby
when you want to print a value followed by a newline:

print fahrenheit, "\n"

You almost never have to do this, though, because puts adds a newline for you. You’ll
pick up the puts habit, along with other Ruby idioms and conventions, as you go
along.

WARNING On some platforms (Windows, in particular), an extra newline
character is printed out at the end of the run of a program. This means a
print that should really be a puts will be hard to detect, because it will act
like a puts. Being aware of the difference between the two and using the one
you want based on the usual behavior should be sufficient to ensure you get
the desired results.

Having looked a little at screen output, let’s widen the I/O field a bit to include key-
board input and file operations.

1.1.7 Keyboard and file I/O

Ruby offers lots of techniques for reading data during the course of program execu-
tion, both from the keyboard and from disk files. You’ll find uses for them—if not in
the course of writing every application, then almost certainly while writing Ruby code
to maintain, convert, housekeep, or otherwise manipulate the environment in which
you work. We’ll look at some of these input techniques here; an expanded look at I/O
operations can be found in chapter 12.

KEYBOARD INPUT

A program that tells you over and over again that 100° Celsius equals 212° Fahrenheit
has limited value. A more valuable program lets you specify a Celsius temperature and
tells you the Fahrenheit equivalent.

 Modifying the program to allow for this functionality involves adding a couple of
steps and using one method each from tables 1.1 and 1.2: gets (get a line of keyboard
input) and to_i (convert to an integer), one of which you’re familiar with already.
Because this is a new program, not just a correction, you can put the code in the fol-
lowing listing into a new file: c2fi.rb (the i stands for interactive).

print "Hello. Please enter a Celsius value: "
celsius = gets
fahrenheit = (celsius.to_i * 9 / 5) + 32
print "The Fahrenheit equivalent is "
print fahrenheit
puts "."

Listing 1.2 Interactive temperature converter (c2fi.rb)

15Basic Ruby language literacy
A couple of sample runs demonstrate the new program in action:

$ ruby c2fi.rb
Hello. Please enter a Celsius value: 100
The Fahrenheit equivalent is 212.
$ ruby c2fi.rb
Hello. Please enter a Celsius value: 23
The Fahrenheit equivalent is 73.

We now have a generalized, if not terribly nuanced, solution to the problem of con-
verting from Celsius to Fahrenheit. Let’s widen the circle to include file input.

READING FROM A FILE

Reading a file from a Ruby program isn’t much more difficult, at least in many cases,
than reading a line of keyboard input. The next version of our temperature converter
will read one number from a file and convert it from Celsius to Fahrenheit. First, cre-
ate a new file called temp.dat (temperature data), containing one line with one num-
ber on it:

100

Now, create a third program file, called c2fin.rb (in for file input).

puts "Reading Celsius temperature value from data file..."
num = File.read("temp.dat")
celsius = num.to_i
fahrenheit = (celsius * 9 / 5) + 32
puts "The number is " + num
print "Result: "
puts fahrenheit

This time, the sample run and its output look like this:

$ ruby c2fin.rb
Reading Celsius temperature value from data file...
The number is 100
Result: 212

Listing 1.3 Temperature converter using file input (c2fin.rb)

Shortening the code
You can shorten the code in listing 1.2 considerably by consolidating the operations
of input, calculation, and output. A compressed rewrite looks like this:

print "Hello. Please enter a Celsius value: "
print "The Fahrenheit equivalent is ", gets.to_i * 9 / 5 + 32, ".\n"

This version economizes on variables—there aren’t any—but it requires anyone read-
ing it to follow a somewhat denser (but shorter) set of expressions. Any given program
usually has several or many spots where you’ll have to decide between writing longer
(but maybe clearer) and shorter (but perhaps a bit cryptic) code. And sometimes,
shorter can be clearer. It’s all part of developing a Ruby coding style.

16 CHAPTER 1 Bootstrapping your Ruby literacy
Naturally, if you change the number in the file, the result will be different. What about
writing the result of the calculation to a file?

WRITING TO A FILE

The simplest file-writing operation is just a little more elaborate than the simplest file-
reading operation. As you can see in the following listing, the main extra step when
you write to a file is specifying a file mode—in this case, w (for write). Save the version of
the program from this listing to c2fout.rb, and run it.

print "Hello. Please enter a Celsius value: "
celsius = gets.to_i
fahrenheit = (celsius * 9 / 5) + 32
puts "Saving result to output file 'temp.out'"
fh = File.new("temp.out", "w")
fh.puts fahrenheit
fh.close

The method call fh.puts fahrenheit has the effect of printing the value of fahrenheit
to the file for which fh is a write handle. If you inspect the file temp.out, you should see
that it contains the Fahrenheit equivalent of whatever number you typed in.

Listing 1.4 Temperature converter with file output (c2fout.rb)

Exercises
1 Use the code in listings 1.3 and 1.4 to create c2fio.rb, a program that reads a

number from a file and writes the Fahrenheit conversion to a different file. The
resulting program will print the following output, and temp.out will contain the
Fahrenheit equivalent of the value in temp.dat:

Reading Celsius temperature value from data file...
Saving result to output file 'temp.out'

2 Now convert from Fahrenheit to Celsius using the same techniques. Consider
changing the names of your variables (celsius, fahrenheit) to match the new
conversion. You can use the same input and output files (temp.dat and
temp.out). The resulting program will print the following output:

Reading Fahrenheit temperature value from data file...
Saving result to output file 'temp.out'

Try entering the following values into temp.dat and ensure that the corresponding
values are written to temp.out:

temp.dat temp.out

212 100

50 10

5 -15

17Anatomy of the Ruby installation
Now that you understand some basic Ruby syntax, our next stop will be to examine
the Ruby installation. This, in turn, will equip us to look at how Ruby manages exten-
sions and libraries.

1.2 Anatomy of the Ruby installation
Having Ruby installed on your system means having several disk directories’ worth of
Ruby-language libraries and support files. Most of the time, Ruby knows how to find
what it needs without being prompted. But knowing your way around the Ruby instal-
lation is part of a good Ruby grounding.

Ruby can tell you where its installation files are located. To get the information while
in an irb session, you need to preload a Ruby library package called rbconfig into
your irb session. rbconfig is an interface to a lot of compiled-in configuration infor-
mation about your Ruby installation, and you can get irb to load it by using irb’s -r
command-line flag and the name of the package:

$ irb --simple-prompt -r rbconfig

Now you can request information. For example, you can find out where the Ruby exe-
cutable files (including ruby and irb) have been installed:

>> RbConfig::CONFIG["bindir"]

RbConfig::CONFIG is a constant referring to the hash (a kind of data structure) where
Ruby keeps its configuration knowledge. The string "bindir" is a hash key. Querying
the hash with the "bindir" key gives you the corresponding hash value, which is the
name of the binary-file installation directory.

 The rest of the configuration information is made available the same way: as values
inside the configuration data structure that you can access with specific hash keys. To
get additional installation information, you need to replace bindir in the irb com-
mand with other terms. But each time you use the same basic formula: RbConfig::
CONFIG["term"]. Table 1.5 outlines the terms and the directories they refer to.

Looking at the Ruby source code
In addition to the Ruby installation directory tree, you may also have the Ruby source
code tree on your machine; if not, you can download it from the Ruby homepage. The
source code tree contains a lot of Ruby files that end up in the eventual installation
and a lot of C-language files that get compiled into object files that are then installed.
In addition, the source code tree contains informational files like the ChangeLog and
software licenses.

18 CHAPTER 1 Bootstrapping your Ruby literacy

The following subsections offer a rundown of the major installation directories and
what they contain. You don’t have to memorize them, but you should be aware of how
to find them if you need them (or, if you’re curious, to look through them and check
out some examples of Ruby code).

1.2.1 The Ruby standard library subdirectory
(RbConfig::CONFIG[“rubylibdir”])

In rubylibdir you’ll find program files written in Ruby. These files provide standard
library facilities, which you can require from your own programs if you need the func-
tionality they provide.

 Here’s a sampling of the files you’ll find in this directory:

 uri.rb—Tools for uniform handling of URIs
 fileutils.rb—Utilities for manipulating files easily from Ruby programs
 tempfile.rb—A mechanism for automating the creation of temporary files
 benchmark.rb—A library for measuring program performance

Some of the standard libraries, such as the uri library, span more than one file; you’ll
see both a uri.rb file and a whole uri subdirectory containing components of the uri
library.

 Browsing your rubylibdir directory will give you a good (if perhaps initially over-
whelming) sense of the many tasks for which Ruby provides programming facilities.
Most programmers use only a subset of these capabilities, but even a subset of such a
large collection of programming libraries gives you a lot to work with.

1.2.2 The C extensions directory (RbConfig::CONFIG[“archdir”])

Usually located one level down from rubylibdir, archdir contains architecture-specific
extensions and libraries. The files in this directory typically have names ending in .so,
.dll, or .bundle (depending on your hardware and operating system). These files are

Table 1.5 Key RbConfig terms and indicated Ruby directories

Term Directory contents

rubylibdir Ruby standard library

bindir Ruby command-line tools

archdir Architecture-specific extensions and libraries (compiled, binary files)

sitedir Your own or third-party extensions and libraries (written in Ruby)

vendordir Third-party extensions and libraries (written in Ruby)

sitelibdir Your own Ruby language extensions (written in Ruby)

sitearchdir Your own Ruby language extensions (written in C)

19Anatomy of the Ruby installation
C extensions: binary, runtime-loadable files generated from Ruby’s C-language exten-
sion code, compiled into binary form as part of the Ruby installation process.

 Like the Ruby-language program files in rubylibdir, the files in archdir contain
standard library components that you can load into your own programs. (Among oth-
ers, you’ll see the file for the rbconfig extension—the extension you’re using with irb
to uncover the directory names.) These files aren’t human-readable, but the Ruby
interpreter knows how to load them when asked to do so. From the perspective of the
Ruby programmer, all standard libraries are equally usable, whether written in Ruby
or written in C and compiled to binary format.

 The files installed in archdir vary from one installation to another, depending on
which extensions were compiled, which in turn depends on a mixture of what the per-
son doing the compiling asked for and which extensions Ruby was able to compile.

1.2.3 The site_ruby (RbConfig::CONFIG[“sitedir”]) and vendor_ruby
(RbConfig::CONFIG[“vendordir”]) directories

Your Ruby installation includes a subdirectory called site_ruby, where you or your sys-
tem administrator can store third-party extensions and libraries. Some of these may be
code you write, and others will be tools you download from other people’s sites and
archives of Ruby libraries.

 The site_ruby directory parallels the main Ruby installation directory in the sense
that it has its own subdirectories for Ruby-language and C-language extensions
(sitelibdir and sitearchdir, respectively, in RbConfig::CONFIG terms). When you
require an extension, the Ruby interpreter checks for it in these subdirectories of
site_ruby, as well as in both the main rubylibdir and the main archdir.

 Alongside site_ruby you’ll find the directory vendor_ruby with the same subdirec-
tory structure as site_ruby. Some third-party extensions install themselves here.

1.2.4 Standard Ruby gems and the gems directory

The RubyGems utility is the standard way to package and distribute Ruby libraries.
During a Ruby installation, several gems (as the packages are called) are installed for
you:

 did_you_mean
 minitest
 net-telnet
 power_assert
 rake
 rdoc
 test-unit
 xmlrpc

Some of these libraries began as third-party Ruby libraries and have since been incor-
porated into the Ruby language because of their usefulness in the Ruby ecosystem.

20 CHAPTER 1 Bootstrapping your Ruby literacy
When Ruby installation is complete, the code in these gems is immediately available
for use.

 When you install gems, the unbundled library files land in the same gems directory
as the preceding gems. This directory isn’t listed in the config data structure, but it’s
usually at the same level as site_ruby; if you’ve found site_ruby, look for a directory
called “gems” next to it. You’ll learn more about using gems in section 1.4.4.

 Let’s look now at the mechanics and semantics of how Ruby uses its own exten-
sions as well as those you may write or install.

1.3 Ruby extensions and programming libraries
The first major point to understand as you read this section is that this isn’t a Ruby
standard library reference. As explained in the introduction, this book doesn’t aim to
document the Ruby language; it aims to teach you the language and to confer Ruby
citizenship upon you so that you can keep widening your horizons.

 The purpose of this section, accordingly, is to show you how extensions work: how
you get Ruby to run its extensions, the differences among techniques for doing so,
and the extension architecture that lets you write your own extensions and libraries.

 The extensions that ship with Ruby are usually referred to collectively as the stan-
dard library. The standard library includes extensions for a wide variety of projects and
tasks: database management, networking, specialized mathematics, XML processing,
and many more. The exact makeup of the standard library usually changes, at least a

Working with multiple versions of Ruby
The Ruby programming language is regularly updated and maintained. New versions
are released frequently, and developers often want more than one version of Ruby
around, particularly if different projects require different versions. The advent of Ruby
version managers—RVM, rbenv, and chruby are the most popular—has made install-
ing multiple versions of Ruby easy. Bear in mind, however, that installing Ruby multi-
ple times on one machine may affect what’s listed in your gem directory in your Ruby
installation.

This is because Ruby takes advantage of RubyGems mechanics to only install what’s
necessary. The first time Ruby is installed, all the gems listed above will be installed.
When you install the next version of the language, Ruby will check first to see which
of the gems are installed. If, for example, it sees that a minimum acceptable version
of rake is already installed, it won’t proceed to install another rake gem.

The result should be unnoticeable when you’re interacting with Ruby. When inspect-
ing your Ruby installation, however, you may notice differences from what’s described
here. Using rake as an example again, your second Ruby installation may not have
rake listed in the gems directory and may not have the rake utility listed in the bindir
(described in section 1.4). These libraries and tools are still available for your use,
but they may reside in the gem directory or bindir of a different Ruby version on your
machine.

21Ruby extensions and programming libraries
little, with every new release of Ruby. But most of the more widely used libraries tend
to stay, once they’ve proven their worth.

 The key to using extensions and libraries is the require method, along with its
near relation load. These methods allow you to load extensions at runtime, including
extensions you write yourself. We’ll look at them in their own right, and then expand
our scope to take in their use in loading built-in extensions.

1.3.1 Loading external files and extensions

Storing a program in a single file can be handy, but it starts to be a liability rather than
an asset when you’ve got hundreds or thousands—or hundreds of thousands—of lines
of code. Somewhere along the line, breaking your program into separate files starts to
make lots of sense. Ruby facilitates this process with the require and load methods.
We’ll start with load, which is the more simply engineered of the two.

To try the examples that follow, you’ll need a program that’s split over two files. The
first file, loaddemo.rb, should contain the following Ruby code:

puts "This is the first (master) program file."
load "loadee.rb"
puts "And back again to the first file."

When it encounters the load method call, Ruby reads in the second file. That file,
loadee.rb, should look like this:

puts "> This is the second file."

The two files should be in the same directory (presumably your sample code direc-
tory). When you run loaddemo.rb from the command line, you’ll see this output:

This is the first (master) program file.
> This is the second file.
And back again to the first file.

The output gives you a trace of which lines from which files are being executed, and
in what order.

Feature, extension, or library?
Things you load into your program at runtime get called by several different names.
Feature is the most abstract and is rarely heard outside of the specialized usage
“requiring a feature” (that is, with require). Library is more concrete and more com-
mon. It connotes the actual code as well as the basic fact that a set of programming
facilities exists and can be loaded. Extension can refer to any loadable add-on library,
but it’s often used to mean a library for Ruby that’s been written in the C programming
language, rather than in Ruby. If you tell people you’ve written a Ruby extension,
they’ll probably assume you mean that it’s in C.

22 CHAPTER 1 Bootstrapping your Ruby literacy
 The call to load in loaddemo.rb provides a filename, loadee.rb, as its argument:

load "loadee.rb"

If the file you’re loading is in your current working directory, Ruby will be able to find
it by name. If it isn’t, Ruby will look for it in the load path.

1.3.2 “Load”-ing a file in the default load path

The Ruby interpreter’s load path is a list of directories in which it searches for files you
ask it to load. You can see the names of these directories by examining the contents of
the special global variable $: (dollar-colon). What you see depends on what platform
you’re on. A typical load-path inspection on Ubuntu 18 looks like the following (an
example that includes the .rubies directory, where the Ruby version management util-
ity chruby keeps a selection of Ruby versions):

$ ruby -e 'puts $:'
/home/jleo3/.rubies/ruby-2.5.1/lib/ruby/gems/2.5.0/gems/did_you_mean-

1.2.0/lib
/home/jleo3/.rubies/ruby-2.5.1/lib/ruby/site_ruby/2.5.0
/home/jleo3/.rubies/ruby-2.5.1/lib/ruby/site_ruby/2.5.0/x86_64-linux
/home/jleo3/.rubies/ruby-2.5.1/lib/ruby/site_ruby
/home/jleo3/.rubies/ruby-2.5.1/lib/ruby/vendor_ruby/2.5.0
/home/jleo3/.rubies/ruby-2.5.1/lib/ruby/vendor_ruby/2.5.0/x86_64-linux
/home/jleo3/.rubies/ruby-2.5.1/lib/ruby/vendor_ruby
/home/jleo3/.rubies/ruby-2.5.1/lib/ruby/2.5.0
/home/jleo3/.rubies/ruby-2.5.1/lib/ruby/2.5.0/x86_64-linux

On your machine, the part to the left of “ruby-2.5.1” may say something different, like
“/usr/local/lib/,” but the basic pattern of subdirectories will be the same. When you
load a file, Ruby looks for it in each of the listed directories, in order from top to bottom.

NOTE The current working directory, usually represented by a single dot (.),
is actually not included in the load path. The load command acts as if it is,
but that’s a specially engineered case.

You can navigate relative directories in your load commands with the conventional
double-dot “directory up” symbol:

load "../extras.rb"

Note that if you change the current directory during a program run, the relative direc-
tory references will change too.

NOTE Keep in mind that load is a method, and it’s executed at the point
where Ruby encounters it in your file. Ruby doesn’t search the whole file
looking for load directives; it finds them when it finds them. This means you
can load files whose names are determined dynamically during the run of the
program. You can even wrap a load call in a conditional statement, in which
case the call will be executed only if the condition is true.

-e signals that you’re providing an
inline script to the interpreter.

23Ruby extensions and programming libraries
You can also force load to find a file, regardless of the contents of the load path, by
giving it the fully qualified path to the file:

load "/home/users/dblack/book/code/loadee.rb"

A call to load always loads the file you ask for, whether you’ve loaded it already or not.
If a file changes between loadings, anything in the new version of the file that rewrites
or overrides anything in the original version takes priority. This can be useful, espe-
cially if you’re in an irb session and modifying a file in an editor at the same time—
you can examine the effect of your changes immediately.

 The other file-loading method, require, also searches the directories that lie in
the default load path. But require has some features that load doesn’t have.

1.3.3 “Require”-ing a feature

One major difference between load and require is that require, if called more than
once with the same arguments, doesn’t reload files it’s already loaded. Ruby keeps
track of which files you’ve required and doesn’t duplicate the effort.

 require is more abstract than load. Strictly speaking, you don’t require a file ; you
require a feature. And typically, you do so without even specifying the extension on the
filename. To see how this works, change this line in loaddemo.rb,

load "loadee.rb"

to this:

require "./loadee"

When you run loaddemo.rb, you get the same result as before, even though you
haven’t supplied the full name of the file you want loaded.

 By viewing loadee as a “feature” rather than a file, require allows you to treat
extensions written in Ruby the same way you treat extensions written in C—or, to put
it another way, to treat files ending in .rb the same way as files ending in .so, .dll, or
.bundle.

 You can also feed a fully qualified path to require, as you can to load, and it will
pull in the file/feature. You can also mix and match; the following syntax works, for
example, even though it mixes the static path specification with the more abstract syn-
tax of the feature at the end of the path:

require "/home/users/dblack/book/code/loadee"

Although load is useful, particularly when you want to load a file more than once,
require is the day-to-day technique you’ll use to load Ruby extensions and libraries—
standard and otherwise. Loading standard library features isn’t any harder than load-
ing loadee. You just require what you want. After you do, and depending on what the
extension is, you’ll have new classes and methods available to you. Here’s a before-
and-after example in an irb session:

24 CHAPTER 1 Bootstrapping your Ruby literacy
>> "David Black".scanf("%s%s")
Traceback (most recent call last):
 2: from /home/jleo3/.rubyis/ruby-2.5.1/bin/irb:11:in '<main>'
 1: from (irb):1
NoMethodError: undefined method `scanf' for "David Black":String
Did you mean? scan
>> require "scanf"
=> true
>> "David Black".scanf("%s%s")
=> ["David", "Black"]

The first call to scanf fails with an error B. But after the require call C, and with no
further programmer intervention, string objects like "David Black" respond to the
scanf message. (In this example D, we’re asking for two consecutive strings to be
extracted from the original string, with whitespace as an implied separator.)

NOTE The error message here is four lines long, beginning with a traceback.
This represents the stack trace, a series of messages shown when an error is
encountered by Ruby. When executing Ruby programs, the traceback is often
useful for debugging—understanding where things went wrong. In our small
irb examples, it will mostly prove uninformative or redundant, so we’ll typi-
cally shorten it to show just the most useful line or two.

1.3.4 require_relative

There’s a third way to load files: require_relative. This command loads features by
searching relative to the directory in which the file from which it’s called resides.
Thus, in the previous example, you could do this,

require_relative "loadee"

without manipulating the load path to include the current directory. require_relative
is convenient when you want to navigate a local directory hierarchy, like this:

require_relative "lib/music/sonata"

B

C

D

What did_you_mean?
As you saw in section 1.2.4, the did_you_mean gem is installed with Ruby. This
means you get its features without having to make any adjustments or install addi-
tional packages. In the preceding stack trace, you saw did_you_mean at work:

Did you mean? scan

Whenever Ruby encounters NoMethodError, did_you_mean kicks in with one or more
suggestions of a method you might have meant to call instead of the one you did call.
The format is always the same: the words “Did you mean?” followed by a valid Ruby
method. did_you_mean is most frequently helpful when you’ve made a simple typo,
suggesting the correctly spelled method name and potentially saving you some time
digging around for the error.

25Out-of-the-box Ruby tools and applications
We’ll conclude this chapter with an examination of the command-line tools that ship
with Ruby.

1.4 Out-of-the-box Ruby tools and applications
When you install Ruby, you get a handful of important command-line tools, which are
installed in whatever directory is configured as bindir. (You can require "rbconfig"
and examine Rb-Config::CONFIG["bindir"] to check.) These are the tools:

 ruby—The interpreter
 irb—The interactive Ruby interpreter
 rdoc and ri—Ruby documentation tools
 rake—Ruby make, a task-management utility
 gem—A Ruby library and application package-management utility
 erb—A templating system

In this section we’ll look at all of these tools except erb. It’s useful in certain situa-
tions, but it’s not an immediate priority while you’re getting your bearings and
grounding in Ruby.

 You don’t need to memorize all the techniques in this section right away. Rather,
read through it and get a sense of what’s here. You’ll use some of the material soon
and often (especially some of the command-line switches and the ri utility) and some
of it increasingly as you get more deeply into Ruby.

1.4.1 Interpreter command-line switches

When you start the Ruby interpreter from the command line, you can provide not
only the name of a program file, but also one or more command-line switches, as
you’ve already seen. The switches you choose instruct the interpreter to behave in par-
ticular ways or take particular actions.

 Ruby has more than 20 command-line switches. Some of them are used rarely, and
others are used every day by many Ruby programmers. Table 1.6 summarizes the most
commonly used ones.

Table 1.6 Commonly used Ruby command-line switches

Switch Description Example of usage

-c Checks the syntax of a program file
without executing the program

ruby -c c2f.rb

-w Gives warning messages during pro-
gram execution

ruby -w c2f.rb

-e Executes the code provided in quota-
tion marks on the command line

ruby -e 'puts "Code demo!"'

-l Line mode: prints a newline after every
line of output

ruby -le 'print "+ newline!"'

26 CHAPTER 1 Bootstrapping your Ruby literacy
Let’s look at each of these switches in more detail.

CHECK SYNTAX (-c)
The -c switch tells Ruby to check the code in one or more files for syntactical accuracy
without executing the code. It’s usually used in conjunction with the -w flag.

TURN ON WARNINGS (-w)
Running your program with -w causes the interpreter to run in warning mode. This
means you’ll see more warnings printed to the screen than you otherwise would, draw-
ing your attention to places in your program that, although not syntax errors, are sty-
listically or logically suspect. It’s Ruby’s way of saying, “What you’ve done is
syntactically correct, but it’s weird. Are you sure you meant to do that?” Even without
this switch, Ruby issues certain warnings, but fewer than it does in full warning mode.

EXECUTE LITERAL SCRIPT (-e)
The -e switch tells the interpreter that the command line includes Ruby code in quo-
tation marks, and that it should execute that actual code rather than execute the code
contained in a file. This can be handy for quick scripting jobs where entering your
code into a file and running ruby on the file may not be worth the trouble.

 For example, let’s say you want to see your name printed out backward. Here’s how
you can do this quickly in one command-line command, using the execute switch:

$ ruby -e 'puts "David A. Black".reverse'
kcalB .A divaD

What lies inside the single quotation marks is an entire (although short) Ruby pro-
gram. If you want to feed a program with more than one line to the -e switch, you can
use literal line breaks (press Enter) inside the mini-program:

$ ruby -e 'print "Enter a name: "
puts gets.reverse'
Enter a name: David A. Black
kcalB .A divaD

Or you can separate the lines with semicolons:

$ ruby -e 'print "Enter a name: "; print gets.reverse'

-rname Requires the named feature ruby –rprofile

-v Shows Ruby version information and
executes the program in verbose mode

ruby –v

--version Shows Ruby version information ruby –-version

-h Shows information about all command-
line switches for the interpreter

ruby –h

Table 1.6 Commonly used Ruby command-line switches (continued)

Switch Description Example of usage

27Out-of-the-box Ruby tools and applications
NOTE Why is there a blank line between the program code and the output in
the two-line reverse example? Because the line you enter on the keyboard
ends with a newline character, so when you reverse the input, the new string
starts with a newline! Ruby takes you very literally when you ask it to manipu-
late and print data.

RUN IN LINE MODE (-l)
The -l switch causes every string output by the program to be placed on a line of its
own, even if it normally wouldn’t be. Usually this means that lines that are output
using print, rather than puts, and that therefore don’t automatically end with a new-
line character, now end with a newline.

 We made use of the print versus puts distinction to ensure that the temperature-
converter programs didn’t insert extra newlines in the middle of their output (see sec-
tion 1.1.5). You can use the -l switch to reverse the effect; it causes even printed lines
to appear on a line of their own. Here’s the difference:

$ ruby c2f-2.rb
The result is 212.
$ ruby -l c2f-2.rb
The result is
212
.

The result with -l is, in this case, exactly what you don’t want. But this example illus-
trates the effect of the switch.

 If a line ends with a newline character already, running it through -l adds another
newline. In general, the -l switch isn’t commonly used or seen, largely because of the
availability of puts to achieve the “add a newline only if needed” behavior, but it’s
good to know -l is there and to be able to recognize it.

REQUIRE NAMED FILE OR EXTENSION (-rname)
The -r switch calls require on its argument; ruby -rscanf will require scanf when
the interpreter starts up. You can put more than one –r switch on a single command
line.

RUN IN VERBOSE MODE (-v, --verbose)
Running with -v does two things: it prints out information about the version of Ruby
you’re using, and then it turns on the same warning mechanism as the -w flag. The
most common use of -v is to find out the Ruby version number:

$ ruby -v
ruby 2.5.1p57 (2018-03-29 revision 63029) [x86_64-linux]

In this case, we’re using Ruby 2.5.1 (patch level 57), released on March 3, 2018, and
compiled for an i686-based machine running Linux. Because there’s no program or
code to run, Ruby exits as soon as it has printed the version information.

28 CHAPTER 1 Bootstrapping your Ruby literacy
PRINT RUBY VERSION (--version)
The --version flag causes Ruby to print a version information string and then exit. It
doesn’t execute any code, even if you provide code or a filename. You’ll recall that -v
prints version information and then runs your code (if any) in verbose mode. You might
say that -v is slyly standing for both version and verbose, whereas --version is just version.

PRINT SOME HELP INFORMATION (-h, --helP)
The -h and --help switches give you a table listing all the command-line switches
available to you, and summarizing what they do.

COMBINING SWITCHES (-CW)
In addition to using single switches, you can also combine two or more in a single
invocation of Ruby.

 You’ve already seen the -cw combination, which checks the syntax of the file with-
out executing it, while also giving you warnings:

$ ruby -cw filename

Another combination of switches you’ll often see is -v and -e, which shows you the
version of Ruby you’re running and then runs the code provided in quotation marks.
You’ll see this combination a lot in discussions of Ruby, on mailing lists, and else-
where; people use it to demonstrate how the same code might work differently in dif-
ferent versions of Ruby. For example, if you want to show clearly that a string method
called match? wasn’t present in Ruby 2.1.10 but is present in Ruby 2.5.1, you can run a
sample program using first one version of Ruby and then the other:

$ ruby-2.1.10-p492 -ve "puts 'Ruby'.match?(/R.../)"
ruby 2.1.10p492 (2016-04-01 revision 54464) [x86_64-linux]-e:1: undefined

method `match?' for "Ruby":String (NoMethodError)
$ ruby-2.5.1p57 -ve "puts 'Ruby'.match?(/Ruby.../)"
ruby 2.5.1p57 (2018-03-20 revision 63029) [x86_64-linux]
true

(Of course, you must have both versions of Ruby installed on your system.) The
undefined method 'match?' message B on the first run (the one using version
2.1.10) means that you’ve tried to perform a nonexistent named operation. But when
you run the same Ruby snippet using Ruby 2.5.1, it works: Ruby prints true C. This is
a convenient way to share information and formulate questions about changes in
Ruby’s behavior from one release to another.

B

C

Specifying switches
You can feed Ruby the switches separately, like this,

$ ruby -c -w

or this:

$ ruby -v -e "puts 'abc'.start_with?('a')"

But it’s common to type them together, as in the examples in the main text.

29Out-of-the-box Ruby tools and applications
At this point, we’ll go back and look more closely at the interactive Ruby interpreter,
irb. You may have looked at this section already, when it was mentioned near the
beginning of the chapter. If not, you can take this opportunity to learn more about
this exceptionally useful Ruby tool.

1.4.2 A closer look at interactive Ruby interpretation with irb

As you’ve seen, irb is an interactive Ruby interpreter, which means that instead of pro-
cessing a file, it processes what you type during a session. irb is a great tool for testing
Ruby code and a great tool for learning Ruby.

 To start an irb session, you use the command irb. irb prints out its prompt:

$ irb
2.5.1 :001 >

As you’ve seen, you can also use the --simple-prompt option to keep irb’s output
shorter:

$ irb --simple-prompt
>>

Once irb starts, you can enter Ruby commands. You can even run a one-shot version
of the Celsius-to-Fahrenheit conversion program. As you’ll see in this example, irb
behaves like a pocket calculator: it evaluates whatever you type in and prints the result.
You don’t have to use a print or puts command:

>> 100 * 9 / 5 + 32
=> 212

To find out how many minutes there are in a year (if you don’t have the relevant hit
song from the musical Rent handy), type in the appropriate multiplication expression:

>> 365 * 24 * 60
=> 525600

irb will also, of course, process any Ruby instructions you enter. For example, if you
want to assign the day, hour, and minute counts to variables, and then multiply those
variables, you can do that in irb:

>> days = 365
=> 365
>> hours = 24
=> 24
>> minutes = 60
=> 60
>> days * hours * minutes
=> 525600

The last calculation is what you’d expect. But look at the first three lines of entry.
When you type days = 365, irb responds by printing 365. Why?

30 CHAPTER 1 Bootstrapping your Ruby literacy
 The expression days = 365 is an assignment expression: you’re assigning the value
365 to a variable called days. The main business of an assignment expression is to
assign a value to a variable so that you can use the variable later. But the assignment
expression (the entire line days = 365) has a value. The value of an assignment expres-
sion is its right-hand side. When irb sees any expression, it prints out the value of that
expression. So when irb sees days = 365, it prints out 365. This may seem like overzeal-
ous printing, but it comes with the territory; it’s the same behavior that lets you type 2 +
2 into irb and see the result without having to use an explicit print statement.

 Similarly, even a call to the puts method has a return value—namely, nil. If you
type a puts statement in irb, irb will obediently execute it, and it will also print out
the return value of puts:

$ irb --simple-prompt
>> puts "Hello"
Hello
=> nil

There’s a way to get irb not to be quite so talkative: the --noecho flag. Here’s how it
works:

$ irb --simple-prompt --noecho
>> 2 + 2
>> puts "Hi"
Hi

Thanks to --noecho, the addition expression doesn’t report back its result. The puts
command does get executed (so you see "Hi"), but the return value of puts (nil) is
suppressed.

Once you get the hang of irb’s approach to printing out the value of everything, and
how to shut it up if you want to, you’ll find it an immensely useful tool (and toy).

 Next among the Ruby command-line tools is rake.

Interrupting irb
It’s possible to get stuck in a loop in irb, or for the session to feel like it’s not
responding (which often means you’ve typed an opening quotation mark but not a
closing one, or something along those lines). How you get control back is somewhat
system dependent. On most systems, Ctrl-C will do the trick. On others, you may
need to use Ctrl-Z. It’s best to apply whatever general program-interrupting informa-
tion you have about your system directly to irb. Of course, if things get really frozen,
you can go to your process or task-management tools and kill the irb process.

Occasionally, irb may blow up on you (that is, hit a fatal error and terminate itself).
Most of the time, though, it catches its own errors and lets you continue.

31Out-of-the-box Ruby tools and applications
1.4.3 The rake task-management utility

As its name suggests (it comes from “Ruby make”), rake is a make-inspired task-
management utility. It was written by the late Jim Weirich. Like make, rake reads and
executes tasks defined in a file—a Rakefile. Unlike make, however, rake uses Ruby syn-
tax to define its tasks.

 Listing 1.5 shows a Rakefile. Create a file called “Rakefile” and add the code in the
listing. Then issue this command at the command line:

$ rake admin:clean_tmp

rake executes the clean_tmp task defined inside the admin namespace.

namespace :admin do
 desc "Interactively delete all files in /tmp"
 task :clean_tmp do
 Dir["/tmp/*"].each do |f|
 next unless File.file?(f)
 print "Delete #{f}? "
 answer = $stdin.gets
 case answer
 when /^y/
 File.unlink(f)
 when /^q/
 break
 end
 end
 end
end

The rake task defined here uses several Ruby techniques that you haven’t seen yet,
but the basic algorithm is pretty simple:

1 Loop through each file in the /tmp directory B.
2 Skip the current loop iteration unless this entry is a file. Note that hidden files

aren’t deleted either, because the directory-listing operation doesn’t include
them C.

3 Prompt for the deletion of the file using string interpolation D. You’ll learn
more about string interpolation in section 2.2.3.

4 If the user types y (or anything beginning with y), delete the file E.
5 If the user types q, break out of the loop; the task stops F.

The main programming logic comes from looping through the list of directory
entries (see the sidebar “Using each to loop through a collection”) and from the case
statement, a conditional execution structure. You’ll see both of these techniques in
detail in chapter 6.

Listing 1.5 Rakefile defining clean_tmp tasks inside the admin namespace

Declares clean_tmp task
B

C
D

E

F

32 CHAPTER 1 Bootstrapping your Ruby literacy

The desc command above the task definition provides a description of the task. This
comes in handy not only when you’re perusing the file, but also if you want to see all
the tasks that rake can execute at a given time. If you’re in the directory containing
the Rakefile in listing 1.5 and you give this command,

$ rake --tasks

you’ll see a listing of all defined tasks:

$ rake --tasks
rake admin:clean_tmp # Interactively delete all files in /tmp

You can use any names you want for your rake namespaces and tasks. You don’t even
need a namespace; you can define a task at the top-level namespace,

task :clean_tmp do
 # etc.
end

and then invoke it using the simple name:

$ rake clean_tmp

But namespacing your tasks is a good idea, particularly if and when the number of
tasks you define grows significantly. You can namespace to any depth; this structure,
for example, is legitimate:

namespace :admin do
 namespace :clean do
 task :tmp do
 # etc.
 end
 end
end

The task defined here is invoked like this:

$ rake admin:clean:tmp

Using each to loop through a collection
The expression Dir["/tmp/*"].each do |f| is a call to the each method of the
array of directory entry names. The entire block of code starting with do and ending
with end (the end that lines up with Dir in the indentation) gets executed once for
each item in the array. Each time through, the current item is bound to the parameter
f; that’s the significance of the |f| part. You’ll see each several times in the coming
chapters, and we’ll examine it in detail when we look at iterators (methods that auto-
matically traverse collections) in chapter 9.

33Out-of-the-box Ruby tools and applications
As the directory-cleaning example shows, rake tasks don’t have to be confined to
actions related to Ruby programming. With rake, you get the whole Ruby language at
your disposal, for the purpose of writing whatever tasks you need.

 The next tool on our tour is the gem command, which makes installation of third-
party Ruby packages very easy.

1.4.4 Installing packages with the gem command

The RubyGems library and utility collection includes facilities for packaging and
installing Ruby libraries and applications. We’re not going to cover gem creation here,
but we’ll look at gem installation and usage.

 Installing a Ruby gem can be, and usually is, as easy as issuing a simple install
command:

$ gem install prawn

Such a command gives you output something like the following (depending on which
gems you already have installed and which dependencies have to be met by installing
new gems):

Fetching: ttfunk-1.5.1.gem (100%)
Successfully installed ttfunk-1.5.1
Fetching: pdf-core-0.7.0.gem (100%)
Successfully installed pdf-core-0.7.0
Fetching: prawn-2.2.2.gem (100%)
Successfully installed prawn-2.2.2
Parsing documentation for ttfunk-1.5.1

A total of three gems is installed: prawn version 2.2.2 and its two dependencies.
 During the gem installation process, gem downloads gem files as needed from

rubygems.org (https://rubygems.org/). Those files, which are in .gem format, are
saved in the cache subdirectory of your gems directory. You can also install a gem
from a gem file residing locally on your hard disk or other storage medium. Give the
name of the file to the installer:

$ gem install /home/me/mygems/ruport-1.4.0.gem

If you name a gem without the entire filename (for example, ruport), gem looks for it
in the current directory and in the local cache maintained by the RubyGems system.
Local installations still search remotely for dependencies, unless you provide the -l
(local) command-line flag to the gem command—that flag restricts all operations to
the local domain. If you want only remote gems installed, including dependencies,
you can use the -r (remote) flag. In most cases, the simple gem install gemname com-
mand will give you what you need. (To uninstall a gem, use the gem uninstall
gemname command.)

 Once you’ve got a gem installed, you can use it via the require method.

https://rubygems.org/

34 CHAPTER 1 Bootstrapping your Ruby literacy
LOADING AND USING GEMS

You won’t see gems in your initial load path ($:), but you can still “require” them, and
they’ll load. Here’s how you’d require bundler (a utility that helps you manage your
gems), assuming you’ve installed the Bundler gem:

>> require "bundler"
=> true

At this point, the relevant Bundler directory will appear in the load path, as you can
see if you print out the value of $: and grep (select by pattern match) for the pattern
"bundler":

>> puts $:.grep(/bundler/)
/home/jleo3/.gem/ruby/2.1.10/gems/bundler-1.16.4/lib

If you have more than one gem installed for a library and want to force the use of a
gem other than the most recent, you can do so using the gem method. (Note that this
method isn’t the same as the command-line tool called gem.) Here, for example, is
how you’d force the use of a not-quite-current version of Bundler:

>> gem "bundler", "1.14.6"
=> true
>> puts $:.grep(/bundler/)
/home/jleo3/.gem/ruby/2.1.10/gems/bundler-1.14.6/lib

Most of the time, of course, you’ll want to use the most recent gems. But the gem sys-
tem gives you tools for fine-tuning your gem usage, should you need to do so.

Summary
In this chapter, you’ve seen

 The difference between Ruby (the language) and ruby (the Ruby interpreter)
 The typography of Ruby variables (all of which you’ll meet again and study in

more depth)
 Basic Ruby operators and built-in constructs
 Writing, storing, and running a Ruby program file
 Keyboard input and screen output
 Manipulating Ruby libraries with require and load
 The anatomy of the Ruby installation
 The command-line tools shipped with Ruby

You now have a good blueprint of how Ruby works and what tools the Ruby program-
ming environment provides, and you’ve seen and practiced some important Ruby
techniques. You’re now prepared to start exploring Ruby systematically.

No need for require if you
use the gem method

Objects, methods,
and local variables
In this chapter, we’ll begin exploring the details of the Ruby programming lan-
guage. We’ll look first and foremost at the concept of the object, around which
almost every line of Ruby code you’ll write will revolve. What you do with objects,
broadly speaking, is send them messages, most of which correspond to names of
methods that you’re asking objects to execute. We’ll look in considerable detail at
the combined processes of message sending and method calling.

 Ruby objects are often (perhaps most often) handled via variables that repre-
sent them, and in this chapter, we’ll get deeper technically than we have so far into
the nature and behavior of variables in Ruby. Once you’ve worked through
this chapter, you’ll have a firm foothold in the landscape of Ruby objects and their
manipulation.

This chapter covers
 Objects and object orientation

 Innate versus learned object capabilities

 Method parameter, argument, and calling syntax

 Local variable assignment and usage

 Object references
35

36 CHAPTER 2 Objects, methods, and local variables
 As always, you can type the code samples into irb, and/or store them in a file that
you then run using the Ruby interpreter. Whichever approach you lean toward, it’s
not a bad idea to keep an irb session open as you proceed—just in case.

2.1 Talking to objects
In any Ruby program, the bulk of the design, logic, and action revolves around
objects. When you write Ruby programs, your main activities are creating objects,
endowing them with abilities, and asking them to perform actions. Objects are your
handle on the universe of your program. When you want something done—a calcula-
tion, an output operation, a data comparison—you ask an object to do it. Rather than
ask in the abstract whether a equals b, you ask a whether it considers itself equal to b. If
you want to know whether a given student is taking a class from a given teacher, you
ask the student, “Are you a student of this teacher?” Exactly how this kind of querying
plays out, in terms of data structures and syntax, depends on the specifics of your pro-
gram design. But throughout, writing a Ruby program is largely a matter of engineer-
ing your objects so that each object plays a clear role and can perform actions related
to that role.

2.1.1 Ruby and object orientation

Ruby comes to the idea of manipulating data through objects via the program-
language-design principle object orientation. Many extremely popular programming
languages are object oriented (such as Java, C++, and Python, as well as Ruby), and
some languages that aren’t fully object oriented have facilities for writing object-
oriented code (for example, Perl, as described in Object-Oriented Perl by Damian
Conway [Manning, 1999]). In object-oriented programming (OOP), you perform cal-
culations, data manipulation, and input/output operations by creating objects and
asking them to perform actions and provide you with information.

 In most object-oriented languages, including Ruby, every object is an example or
instance of a particular class, and the behavior of individual objects is determined at
least to some extent by the method definitions present in the object’s class. We’ll
explore classes in depth in chapter 3. Here, we’ll focus directly on objects.

The real world
The term real world gets thrown around a lot in discussions of programming. There’s
room for debate (and there is debate) as to whether this or that programming lan-
guage, or even this or that kind of programming language, corresponds more closely
than others to the shape of the real world. A lot depends on how you perceive the
world. Do you perceive it as peopled with things, each of which has tasks to do and
waits for someone to request the task? If so, you may conclude that object-oriented
languages model the world best. Do you see life as a series of to-do items on a check-
list, to be gone through in order? If so, you may see a strictly procedural programming
language as having closer ties to the characteristics of the real world.

37Talking to objects
Designing object-oriented software is largely a matter of figuring out what you want
your objects to be: what they should do, how they’ll interact with each other, how
many of each there should be (for example, many students, one registrar), and other
such questions. As you’ll see, Ruby provides a complete set of tools for naming, creat-
ing, addressing, and manipulating objects—and, through the manipulation of those
objects, the data they operate on.

2.1.2 Creating a generic object

At first, the concept of OOP tends to come across as both simple (you write programs
that have books and bottles and cars and houses, and you orchestrate a kind of con-
versation among those things) and abstract (Object? What does that mean? What do I type
into my program file to create a “house” object?). OOP does have a component of simplicity;
it lets you draw on objects, entities, roles, and behaviors as a source for how you design
your programs, and that can be a help. At the same time, to create and use objects in
your programs, you have to learn how it’s done in a given language.

NOTE Depending on your background and expectations, you may be wonder-
ing why we’re not starting our exploration of objects with a close look at
classes rather than objects. Classes are important in Ruby; they’re a way to
bundle and label behaviors (you can have a Person class, a Task class, and so
on) and to create multiple objects with similar behaviors easily. But—and in
this respect, Ruby differs from some other object-oriented languages—the
real action is with the individual objects: every object has the potential to
“learn” behaviors (methods) that its class didn’t teach it. The class concept
fits on top of the object concept, not the other way around. In fact, a class in
Ruby is itself an object! More later ... but that’s the basics of why we’re starting
with objects.

Seeing a language-specific explanation of OOP can make the abstract parts easier to
grasp. We’ll therefore proceed to some Ruby code. We’ll create a new object. It won’t
represent or model anything specific, like a house or a book or a teacher; it will be a
generic object:

obj = Object.new

Now you have an object and a variable through which you can address it.
 All Ruby objects are created with certain innate abilities—certain methods that

they know how to execute because they’re Ruby objects. Those abilities, although

In short, there’s no one answer to the question of what the real world is—so there’s
no answer to the question of what it means for a programming language to model the
real world. Nor is it necessarily as important an issue as it may seem. The world you
construct in a computer program is at heart an imaginary world, and limiting yourself
to making it seem otherwise can be overly constrictive.

38 CHAPTER 2 Objects, methods, and local variables
important, aren’t that exciting, so we’ll keep them to the side for the moment. More
exciting is what happens when you teach your object how to do the things you want it
to do.

DEFINING AN OBJECT’S BEHAVIOR

Let’s say you’ve created an object and you want it to do something interesting: you
want it to talk. To get it to talk, you have to ask it to talk. But before you ask it to talk,
you have to teach it how to talk.

 Specifically, and more technically, you have to define a method for your object. You
do this using a special term—a keyword—namely, the keyword def.

 Here’s how to define the method talk for the object obj:

def obj.talk
 puts "I am an object."
 puts "(Do you object?)"
end

Figure 2.1 shows an analysis of the preceding method definition. Now obj knows how
to talk, and you can ask it to do so.

SENDING MESSAGES TO OBJECTS

To ask obj to talk, use the message-sending or method-calling syntax you encountered
in chapter 1:

obj.talk

And it talks:

I am an object.
(Do you object?)

The object obj understands, or responds to, the message talk. An object is said to
respond to a message if the object has a method defined whose name corresponds to
the message.

Object to which
method belongs

Start
method

definition

End method
definition

Method
body

Dot
operator

Method name

def obj.talk
 puts "I am an object."
 puts "(Do you object?)"
end

Figure 2.1 Anatomy of a method definition

39Talking to objects
 A few things to consider about the dot-based message-sending syntax:

 The dot (.) is the message-sending operator. The message on the right is sent
to the object (or receiver, as it’s often called in this role) on the left.

 The receiver can be, and often is, represented by a variable that stands in for an
object. But a receiver can also be a literal object construct—for example, a
string in quotation marks.

 In practice, the message being sent is almost always the name of a method (like
talk, the method defined earlier). The object always tries to act on the assump-
tion that the message is the name of a method. If there’s no method by that
name, error-handling measures are taken.

The semantics of method calls let you go further than the relatively one-dimensional
“talk” case, particularly when you start calling methods with arguments.

2.1.3 Methods that take arguments

Methods in Ruby are much like mathematical functions: input goes in, the wheels
turn, and a result comes out. To feed input to a Ruby method, you call the method
with one or more arguments.

 In a method definition, you indicate the arguments by means of a list of variables
in parentheses after the method name. (Arguments can be required or optional. We’ll
look at required arguments here and optional arguments a little later.) When you call
the method, you provide values corresponding to these variables in your method call.
More precisely, the variables listed in the method definition are the method’s formal
parameters, and the values you supply to the method when you call it are the corre-
sponding arguments. (It’s common to use the word arguments, informally, to refer to a
method’s parameters as well as a method call’s arguments, but it’s useful to know the
technical distinction.)

 Let’s say you want your object to function as a Celsius-to-Fahrenheit converter. You
can teach it how to do the conversion by defining a method:

def obj.c2f(c)
 c * 9.0 / 5 + 32
end

(This time 9 has become 9.0 in the conversion formula. That will force the result to be
a float, which is more precise than an integer.) The method obj.c2f has one formal
parameter, which means it takes one argument. When you call the method, you pro-
vide an argument:

puts obj.c2f(100)

The result is

212.0

40 CHAPTER 2 Objects, methods, and local variables
As you can see, there’s a direct correspondence between the syntax of the parameter
list in a method definition and the syntax of the argument list when the method is
called. The parentheses are optional in both cases; you could do this

def obj.c2f c

and this:

obj.c2f 100

They’re not always optional, though, particularly when you’re stringing multiple
method calls together, so it’s good to lean toward using them rather than leaving them
out. You can make an exception for common or conventional cases where parenthe-
ses are usually excluded, like calls to puts. But when in doubt, use parentheses.

 Another notable exception is when a method takes no arguments. It is valid Ruby
syntax to provide empty parentheses in this situation:

def welcome_the_user()
 puts "Hi there!"
end

But it’s far more common to omit them:

def welcome_the_user
 puts "Hi there!"
end

At the other end of the process, every method call hands back—returns—a value.

2.1.4 The return value of a method

Ruby code is made up of expressions, each of which evaluates to a particular value.
Table 2.1 shows some examples of expressions and their values (along with explana-
tory comments).

Table 2.1 Examples of Ruby expressions and the values to which they evaluate

Expression Value Comments

2 + 2 4 Arithmetic expressions evaluate to their results.

"Hello" "Hello" A simple, literal string (in quotation marks) evaluates
to itself.

"Hello" + " there" "Hello there" Strings can be “added” to each other (concatenated)
with the plus sign.

c = 100 100 When you assign to a variable, the whole assignment
evaluates to the value you’ve assigned.

c * 9/5 + 32 212 The usual rules of precedence apply: multiplication
and division bind more tightly than addition and are
performed first.

obj.c2f(100) 212 A method call is an expression.

41Crafting an object: the behavior of a ticket
Look at the last entry in table 2.1: it’s a call to obj.c2f. Every method call is an expres-
sion. When you call a method, the method call evaluates to something. This result of
calling a method is the method’s return value.

 The return value of any method is the same as the value of the last expression eval-
uated during execution of the method. In the case of the temperature-conversion
method, the last expression evaluated is the only line of the method body:

c * 9.0 / 5 + 32

Thus the result of that calculation provides the return value of the method.
 Ruby gives you a keyword for making return values explicit: return. The use of this

keyword is usually optional, but it’s sometimes useful to make explicit what is other-
wise implicit:

def obj.c2f(c)
 return c * 9.0 / 5 + 32
end

This is equivalent to the earlier version of the method, but it’s more expressive about
what it’s doing. On the other hand, it’s wordier. You have to decide, as a matter of
your own style, whether you want to use return. You have to use it if you return multi-
ple values, which will be automatically wrapped up in an array: return a,b,c rather
than just a,b,c (though you can also return multiple values in an explicit array, like
[a,b,c], without return). You also have to use return if you want to return from
somewhere in the middle of a method. But whether you use return or not, something
will be returned from every method call. Even a call to an empty method body, consist-
ing of just the def and end statements, returns nil.

 At this point, the object is doing what we need it to do: listening to messages and
acting on them. That’s a good illustration of how Ruby works, but it’s a scrappy one.
We started with a generic object and taught it to talk and convert temperatures. That
shows you the mechanics of defining and calling methods, but it results in a rather
odd object. Let’s look at an object that models something a little more structured.
We’ll handcraft a generic object so that it understands the behavior and business logic
of a ticket to an event.

2.2 Crafting an object: the behavior of a ticket
A ticket to an event is a familiar object, with a known set of properties and behaviors.
Let’s take a high-level view at what we expect a ticket-like Ruby object to do and to
know about itself.

2.2.1 The ticket object, behavior first

A ticket object should be able to provide data about itself. It should field requests for
information about the event it’s for: when, where, name of event, performer, which
seat, and how much it costs.

42 CHAPTER 2 Objects, methods, and local variables
 When asked, the ticket will provide the following information, based on an imagi-
nary public reading by Mark Twain in 1903:

1903-01-02
Town Hall
Author's reading
Mark Twain
Second Balcony, row J, seat 12
$5.50

The goal is to create an object from which we can easily get all this information.

CREATING THE TICKET OBJECT

A generic object will serve as the basis for the ticket:

ticket = Object.new

Once it exists, we can start to endow the object ticket with properties and data by
defining methods, each returning the appropriate value:

def ticket.date
 "1903-01-02"
end
def ticket.venue
 "Town Hall"
end
def ticket.event
 "Author's reading"
end
def ticket.performer
 "Mark Twain"
end
def ticket.seat
 "Second Balcony, row J, seat 12"
end
def ticket.price
 5.50
end

The majority of the methods defined here return string values. You can see this at a
glance: they hand back a value inside quotation marks. The price method returns a
floating-point number B. Now that the ticket object knows a little about itself, let’s
ask it to share the information.

2.2.2 Querying the ticket object

Rather than produce a raw list of items, let’s generate a reader-friendly summary of
the details of the ticket. The use of print and puts can help get the information into
more or less narrative form:

print "This ticket is for: "
print ticket.event + ", at "
print ticket.venue + ", on "
puts ticket.date + "."

B

Prints event information

43Crafting an object: the behavior of a ticket
print "The performer is "
puts ticket.performer + "."
print "The seat is "
print ticket.seat + ", "
print "and it costs $"
puts "%.2f." % ticket.price

Save all the code, starting with ticket = Object.new, to a file called ticket.rb, and run
it. You’ll see the following:

This ticket is for: Author's reading, at Town Hall, on 1903-01-02.
The performer is Mark Twain.
The seat is Second Balcony, row J, seat 12, and it costs $5.50.

The code for this example consists of a series of calls to the methods defined earlier:
ticket.event, ticket.venue, and so forth. The printing code embeds those calls—in
other words, it embeds the return values of those methods ("Author’s reading",
"Town Hall", and so on)—in a succession of output commands, and adds connectors
(", at", ", on", and so on) to make the text read well and look nice.

 The Twain ticket is a simple example, but it encompasses some vital Ruby proce-
dures and principles. The most important lesson is that the knowledge necessary for the
program to do anything useful resides in the object. The ticket object has the knowledge; you
tap into that knowledge by asking the ticket for it, via method calls. Nothing is more
central to Ruby programming than this. It’s all about asking objects to do things and
tell you things.

 The ticket code works, and it embodies useful lessons; but it’s wordy. Ruby has a
reputation as a powerful, high-level language. You’re supposed to be able to get a lot
done with relatively little code. But the ticket example takes ten lines of print and
puts instructions to generate three lines of output.

 Let’s improve that ratio a bit.

2.2.3 Shortening the ticket code via string interpolation

One of the most useful programming techniques available in Ruby is string interpola-
tion. The string-interpolation operator gives you a way to drop anything into a string: a
variable, for example, or the return value of a method. This can save you a lot of back-
and-forth between print and puts.

 Moreover, strings can be concatenated with the plus sign (+). Here’s how the print-
ing code looks, using string interpolation to insert the values of expressions into the
string and using string addition to consolidate multiple puts calls into one:

puts "This ticket is for: #{ticket.event}, at #{ticket.venue}.\n" +
"The performer is #{ticket.performer}.\n" +
"The seat is #{ticket.seat}, " +
"and it costs $#{"%.2f." % ticket.price}"

Whatever’s inside the interpolation operator #{...} gets calculated separately, and
the results of the calculation are inserted into the string. When you run these lines,

Prints performer information

Prints seat information

Prints floating-point number
to two decimal places

44 CHAPTER 2 Objects, methods, and local variables
you won’t see the #{...} operator on your screen; instead, you’ll see the results of cal-
culating or evaluating what was between the curly braces. Interpolation helped elimi-
nate 6 of 10 lines of code and also made the code look a lot more like the eventual
format of the output, rather than something that works but doesn’t convey much
visual information.

 So far, we’ve been asking the ticket for information in the form of strings and num-
bers. Tickets also have some true/false—Boolean—information about themselves.

2.2.4 Ticket availability: expressing Boolean state in a method

By way of Boolean information, consider the matter of whether a ticket has been sold
or is still available. One way to endow a ticket with knowledge of its own availability sta-
tus is this:

def ticket.availability_status
 "sold"
end

Another way is to ask the ticket whether it’s available and have it report back true or
false:

def ticket.available?
 false
end

false is a special term in Ruby, as is the term true. true and false are objects. Ruby
uses them to represent results of, among other things, comparison operations (like
x > y), and you can use them to represent truth and falsehood in your own methods.
You may have noticed that the method name available? ends with a question mark.
Ruby lets you do this so you can write methods that evaluate to true or false and make
the method calls look like questions:

if ticket.available?
 puts "You're in luck!"
else
 puts "Sorry--that seat has been sold."
end

But there’s more to truth and falsehood than the true and false objects. Every
expression in Ruby evaluates to an object, and every object in Ruby has a truth value.
The truth value of almost every object in Ruby is true. The only objects whose truth
value (or Boolean value) is false are the object false and the special nonentity
object nil. You’ll see Boolean values and nil in more detail in chapter 7. For the
moment, you can think of both false and nil as functionally equivalent indicators of
a negative test outcome.

 Playing around with if expressions in irb is a good way to get a feel for how condi-
tional logic plays out in Ruby. Try some examples like these:

>> if "abc"
>> puts "Strings are 'true' in Ruby!"

45Crafting an object: the behavior of a ticket
>> end
Strings are 'true' in Ruby!
=> nil
>> if 123
>> puts "So are numbers!"
>> end
So are numbers!
=> nil
>> if 0
>> puts "Even 0 is true, which it isn't in some languages."
>> end
Even 0 is true, which it isn't in some languages.
=> nil
>> if 1 == 2
>> puts "One doesn't equal two, so this won't appear."
>> end
=> nil

(The first of these examples, if "abc", will generate a warning about string literals in
conditions. You can ignore the warning for our present purposes.)

 Notice how irb not only obeys the puts method calls B but also, on its own initia-
tive, outputs the value of the entire expression C. In the cases where puts happens,
the whole expression evaluates to nil—because the return value of puts is always nil.
In the last case, where the string isn’t printed (because the condition fails), the value
of the expression is also nil—because an if statement that fails (and has no else
branch to salvage it) also evaluates to nil D.

 Remembering that nil has a Boolean value of false, you can, if you wish, get into
acrobatics with irb. A call to puts returns nil and is therefore false, even though the
string gets printed. If you put puts in an if clause, the clause will be false. But it will
still be evaluated. So,

>> if puts "You'll see this"
>> puts "but not this"
>> end
You'll see this
=> nil

The first puts is executed, but the value it returns, namely nil, isn’t true in the Bool-
ean sense—so the second puts isn’t executed.

 This is a contrived example, but it’s a good idea to get used to the fact that every-
thing in Ruby has a Boolean value, and sometimes it’s not what you might expect. As is often
the case, irb can be a great help in getting a handle on this concept.

 Now that the ticket object has some handcrafted behaviors, let’s circle back and
consider the matter of what behaviors every object in Ruby is endowed with at its
creation.

B
C

B
C

B
C

D

46 CHAPTER 2 Objects, methods, and local variables
2.3 The innate behaviors of an object
Even a newly created object isn’t a blank slate. As soon as an object comes into exis-
tence, it responds to a number of messages. Every object is “born” with certain innate
abilities.

 To see a list of innate methods, you can call the methods method (and throw in a
sort operation, to make it easier to browse visually):

p Object.new.methods.sort

The result is a list of all the messages (methods) this newly minted object comes bun-
dled with. (Warning: The output looks cluttered. This is how Ruby displays arrays—
and the methods method gives you an array of method names. If you want a list of the
methods one per line, use puts instead of p in the command.)

[:!, :!=, :!~, :<=>, :==, :===, :=~, :__id__, :__send__, :class, :clone,
:define_singleton_method, :display, :dup, :enum_for, :eql?, :equal?,
:extend, :freeze, :frozen?, :hash, :inspect, :instance_eval,
:instance_exec, :instance_of?, :instance_variable_defined?,
:instance_variable_get, :instance_variable_set, :instance_variables,
:is_a?, :itself, :kind_of?, :method, :methods, :nil?, :object_id, :pp,
:private_methods, :protected_methods, :public_method, :public_methods,
:public_send, :remove_instance_variable, :respond_to?, :send,
:singleton_class, :singleton_method, :singleton_methods, :taint,
:tainted?, :tap, :to_enum, :to_s, :trust, :untaint, :untrust,
:untrusted?, :yield_self]

Don’t worry if most of these methods make no sense to you right now. You can try
them in irb, if you’re curious to see what they do (and if you’re not afraid of getting
some error messages).

 But a few of these innate methods are common enough—and helpful enough,
even in the early phases of acquaintance with Ruby—that we’ll look at them in detail
here. The following methods fit this description:

 object_id

 respond_to?

 send (synonym: __send__)

Adding these to your Ruby toolbox won’t be amiss, because of what they do and
because they serve as examples of innate methods.

Generic objects vs. basic objects
Asking Ruby to create a new object for you with the Object.new command produces
what we’re calling here, informally, a generic object. Ruby also has basic objects—
and that’s a more formal name. If you call BasicObject.new, you get a kind of proto-
object that can do very little. You can’t even ask a basic object to show you its meth-
ods, because it has no methods method! In fact, it has only eight methods—enough
for the object to exist and be identifiable, and not much more. You’ll learn more about
these basic objects in chapters 3 and 13.

47The innate behaviors of an object
2.3.1 Identifying objects uniquely with the object_id method

Every object in Ruby has a unique ID number associated with it. You can see an
object’s ID by asking the object to show you its object_id, using this or similar code:

obj = Object.new
puts "The id of obj is #{obj.object_id}."
str = "Strings are objects too, and this is a string!"
puts "The id of the string object str is #{str.object_id}."
puts "And the id of the integer 100 is #{100.object_id}."

Having a unique ID number for every object can come in handy when you’re trying to
determine whether two objects are the same as each other. How can two objects be the
same? Well, the integer object 100 is the same as ... the integer object 100. (Ask 100 for
its object ID twice, and the result will be the same.) And here’s another case:

a = Object.new
b = a
puts "a's id is #{a.object_id} and b's id is #{b.object_id}."

Even though the variables a and b are different, the object they both refer to is the
same. (See section 2.5.1 for more on the concept of object references.) The opposite
scenario can happen too: sometimes two objects appear to be the same, but they’re
not. This happens a lot with strings. Consider the following example:

string_1 = "Hello"
string_2 = "Hello"
puts "string_1's id is #{string_1.object_id}."
puts "string_2's id is #{string_2.object_id}."

Even though these two strings contain the same text, they aren’t, technically, the same
object. If you printed them out, you’d see the same result both times ("Hello"). But
the string objects themselves are different. It’s like having two copies of the same
book: they contain the same text, but they aren’t the same thing as each other. You
could destroy one, and the other would be unaffected.

ID NUMBERS AND EQUALITY OF OBJECTS

As in the case of human institutions, one of the points of giving objects ID numbers in
Ruby is to be able to make unique identifications—and, in particular, to be able to
determine when two objects are the same object.

 Ruby provides a variety of ways to compare objects for different types of equality. If
you have two strings, you can test to see whether they contain the same characters. You
can also test to see whether they’re the same object (which, as you’ve just seen, isn’t
necessarily the case, even if they contain the same characters). The same holds true,
with slight variations, for other objects and other types of objects.

 Comparing ID numbers for equality is just one way of measuring object equality.
We’ll get into more detail about these comparisons a little later. Right now, we’ll turn
to the next innate method on our list: respond_to?.

string_1 id: 287090
string_2 id: 279110

48 CHAPTER 2 Objects, methods, and local variables
2.3.2 Querying an object’s abilities with the respond_to? method

Ruby objects respond to messages. At different times during a program run, depending
on the object and what sorts of methods have been defined for it, an object may or may
not respond to a given message. For example, the following code results in an error:

obj = Object.new
obj.talk

Ruby is only too glad to notify you of the problem:

NoMethodError: undefined method `talk' for #<Object:0x00000102836550>

You can determine in advance (before you ask the object to do something) whether
the object knows how to handle the message you want to send it, by using the
respond_to? method. This method exists for all objects; you can ask any object
whether it responds to any message. respond_to? usually appears in connection with
conditional (if) logic:

obj = Object.new
if obj.respond_to?("talk")
 obj.talk
else
 puts "Sorry, the object doesn't understand the 'talk' message."
end

respond_to? is an example of introspection or reflection, two terms that refer to examin-
ing the state of a program while it’s running. Ruby offers a number of facilities for
introspection. Examining an object’s methods with the methods method, as we did
earlier, is another introspective or reflective technique. (You’ll see many more such
techniques in part 3 of the book.)

 Until now, we’ve used the dot operator (.) to send messages to objects. Nothing
wrong with that. But what if you don’t know which message you want to send?

2.3.3 Sending messages to objects with the send method

Suppose you want to let a user get information from the ticket object by entering an
appropriate query term (venue, performer, and so on) at the keyboard. Here’s what
you’d add to the existing program:

print "Information desired: "
request = gets.chomp

The second line of code gets a line of keyboard input, “chomps” off the trailing new-
line character, and saves the resulting string in the variable request.

 At this point, you could test the input for one value after another by using the dou-
ble equal sign comparison operator (==), which compares strings based on their con-
tent, and calling the method whose value provides a match:

if request == "venue"
 puts ticket.venue
elsif request == "performer"

49The innate behaviors of an object
 puts ticket.performer
...

To be thorough, though, you’d have to continue through the whole list of ticket prop-
erties. That’s going to get lengthy.

 There’s an alternative: you can send the word directly to the ticket object. Instead
of the previous code, you’d do the following:

if ticket.respond_to?(request)
 puts ticket.send(request)
else
 puts "No such information available"
end

This version uses the send method as an all-purpose way of getting a message to the
ticket object. It relieves you of having to march through the whole list of possible
requests. Instead, having checked that the ticket object knows what to do B, you
hand the ticket the message and let it do its thing.

Most of the time, you’ll use the dot operator to send messages to objects. But the send
alternative can be useful and powerful—powerful enough, and error-prone enough,
that it almost always merits at least the level of safety-netting represented by a call to
respond_to?. In some cases, respond_to? might even be too broad to be safe; you
might only send a message to an object if the message is included in a predetermined
message “allowlist.” This is especially important when working with user input. Taking
input from a user and using it, unchecked, to call objects in your program can open
you to unexpected behavior or even malicious attacks. The guiding principle is care:
be careful about sending arbitrary messages to objects, especially if those messages are
based on user choice or input.

 Next, we’ll put method argument syntax and semantics under the microscope.

B

Using __send__ or public_send instead of send
Sending is a broad concept: email is sent, data gets sent to I/O sockets, and so
forth. It’s not uncommon for programs to define a method called send that conflicts
with Ruby’s built-in send method. Therefore, Ruby gives you an alternative way to call
send: __send__. By convention, no one ever writes a method with that name, so the
built-in Ruby version is always available and never comes into conflict with newly writ-
ten methods. It looks strange, but it’s safer than the plain send version from the
point of view of method-name clashes.

In addition, there’s a safe—but in a different way—version of send (or __send__)
called public_send. The difference between plain send and public_send is that
send can call an object’s private methods, and public_send can’t. We’ll cover pri-
vate methods later in the book, but in case you’re curious what public_send was
doing in the method list, that’s the gist.

50 CHAPTER 2 Objects, methods, and local variables
2.4 A close look at method arguments
Methods you write in Ruby can take zero or more arguments. They can also allow a
variable number of arguments. We’ll examine argument semantics in several different
ways in this section:

 The difference between required and optional arguments
 How to assign default values to arguments
 The rules governing the order in which you have to arrange the parameters in

the method signature so that Ruby can make sense of argument lists in method
calls and bind the parameters correctly

 What you can’t do with arguments in Ruby

Table 2.2 will summarize these at the end of this section.

NOTE There’s more to argument list semantics than we’ll cover here. Specifi-
cally, there’s such a thing in Ruby as keyword arguments (or named parame-
ters). That feature is strongly connected to the use of hashes as method
arguments—which is why you won’t see a full explanation of it until we’ve
talked about hashes in depth in chapter 9.

2.4.1 Required and optional arguments

When you call a Ruby method, you have to supply the correct number of arguments.
If you don’t, Ruby tells you there’s a problem. For example, calling a one-argument
method with three arguments,

obj = Object.new
def obj.one_arg(x)
 puts "I require one and only one argument!"
end
obj.one_arg(1,2,3)

results in this:

ArgumentError: wrong number of arguments (given 3, expected 1)

It’s possible to write a method that allows any number of arguments. To do this, put a
star (an asterisk, *) in front of a single argument name:

def obj.multi_args(*x)
 puts "I can take zero or more arguments!"
end

The *x notation means that when you call the method, you can supply any number of
arguments (or none). In this case, the variable x is assigned an array of values corre-
sponding to whatever arguments were sent. You can then examine the values one at a
time by traversing the array. (We’ll look more closely at arrays in chapter 9.)

 You can fine-tune the number of arguments by mixing required and non-required
arguments:

51A close look at method arguments
def two_or_more(a,b,*c)
 puts "I require two or more arguments!"
 puts "And sure enough, I got: "
 p a, b, c
end

In this example, a and b are required arguments. The final *c will sponge up any
other arguments that you may send and put them into an array in the variable c. If you
call two_or_more(1,2,3,4,5), you’ll get the following report of what got assigned to
a, b, and c:

I require two or more arguments!
And sure enough, I got:
1
2
[3, 4, 5]

(Using p rather than print or puts results in the array being printed out in array
notation. Otherwise, each array element would appear on a separate line, making it
harder to see that an array is involved at all.)

 You can also make an argument optional by giving it a default value.

2.4.2 Default values for arguments

When you supply a default value for an argument, the result is that if that argument
isn’t supplied, the variable corresponding to the argument receives the default value.

 Default arguments are indicated with an equal sign and a value. Here’s an example:

def default_args(a,b,c=1)
 puts "Values of variables: ",a,b,c
end

If you make a call like this,

default_args(3,2)

you’ll see this result:

Values of variables:
3
2
1

No value was supplied in the method call for c, so c was set to the default value pro-
vided for it in the parameter list: 1. If you do supply a third argument, that value over-
rides the default assignment of 1. The following call,

default_args(4,5,6)

produces this result:

Values of variables:
4
5
6

52 CHAPTER 2 Objects, methods, and local variables
The real fun starts when you mix and match the different elements of argument syn-
tax and have to figure out what order to put everything in.

2.4.3 Order of parameters and arguments

What output would you expect from the following code snippet?

def mixed_args(a,b,*c,d)
 puts "Arguments:"
 p a,b,c,d
end
mixed_args(1,2,3,4,5)

You’ve seen that a starred parameter, like *c, sponges up the remaining arguments—
at least, it did so in the method two_or_more, where *c occurred last in the parameter
list. What happens when another argument follows it?

 Basically, Ruby tries to assign values to as many variables as possible. And the
sponge parameters get the lowest priority: if the method runs out of arguments after
it’s performed the assignments of required arguments, then a catch-all parameter like
*c ends up as an empty array. The required arguments both before *c and after *c get
taken care of before *c does.

 The output of the previous snippet is this:

Arguments:
1
2
[3, 4]
5

The parameters a and b get the first two arguments, 1 and 2. Because the parameter at
the end of the list, d, represents a required argument, it grabs the first available value
from the right-hand end of the argument list—namely, 5. Whatever’s left in the mid-
dle (3, 4) gets sponged up by c.

 If you only give enough arguments to match the required arguments of the
method, then the sponge array will be empty. The method call

mixed_args(1,2,3)

results in this output:

1
2
[]
3

In this example, c is out of luck; there’s nothing left.
 You can get reasonably fancy with parameter syntax. Here’s a method that takes a

required argument; an optional argument that defaults to 1; two more required argu-
ments taken from the right; and, somewhere in the middle, everything else:

53A close look at method arguments
def args_unleashed(a,b=1,*c,d,e)
 p a,b,c,d,e
end

And here’s an irb session that puts this method through its paces. Note that the
return value of the method call, in every case, is an array consisting of all the values.
That’s the return value of the call to p. It’s an array representation of the same values
that you see printed out as individual values on separate lines:

>> args_unleashed(1,2,3,4,5)
1
2
[3]
4
5
=> [1, 2, [3], 4, 5]
>> args_unleashed(1,2,3,4)
1
2
[]
3
4
=> [1, 2, [], 3, 4]
>> args_unleashed(1,2,3)
1
1
[]
2
3
=> [1, 1, [], 2, 3]
>> args_unleashed(1,2,3,4,5,6,7,8)
1
2
[3, 4, 5, 6]
7
8
=> [1, 2, [3, 4, 5, 6], 7, 8]
>> args_unleashed(1,2)
ArgumentError: wrong number of arguments (given 2, expected 3+)

The first call to args_unleashed has five arguments B. That means there are enough
to go around: b gets its default overridden, and the array c gets one element. The sec-
ond call is stingier C, and c loses out: b gets to override its default, leaving c empty
(because the last two arguments are spoken for by the required arguments d and e).

 The third call tightens its belt even further D. This time, there are only enough
arguments to satisfy the basic requirements—that is, something to assign to a, d, and
e. The parameter b falls back on its default, and c is empty.

 The fourth call goes the other way E: this time, there are more arguments than
the method requires and more than enough to populate the optional and default-
valued parameters. It’s a bonanza for c, which does its job of sponging up all the argu-
ments that aren’t needed elsewhere and ends up containing four elements.

B

C

D

E

F

54 CHAPTER 2 Objects, methods, and local variables
 The fifth call, on the other hand, doesn’t send enough arguments to satisfy the
basic requirements F. The variable bindings can’t be made, so you get an argument
error.

 Along with the nuts and bolts of argument syntax, the most important thing to
take away from these examples is the perhaps obvious point that, no matter what you
do, every parameter ends up bound to some value. There’s no such thing as a parame-
ter that just sort of floats away into nothingness. If it’s in the list, it ends up as a local
variable inside the method—even if it’s just bound to an empty array, like c sometimes
is. You may or may not use every such variable, but the bindings are always made.

 Figure 2.2 offers a graphic representation of the basic logic of argument assign-
ment. The listing of assignments in the box shows the order of priority: required argu-
ments are handled first, then the default-valued optional argument, and then the
sponge.

If you have complex argument needs, you must follow the rules carefully—and also
keep in mind what you can’t do.

2.4.4 What you can’t do in argument lists

Parameters have a pecking order. Required ones get priority, whether they occur at
the left or at the right of the list. All the optional ones have to occur in the middle.
The middle may be the middle of nothing:

def all_optional(*args)

And you can have required arguments on the left only or on the right only—or both.
 What you can’t do is put the argument sponge to the left of any default-valued

arguments. If you do this,

def broken_args(x,*y,z=1)
end

it’s a syntax error, because there’s no way it could be correct. Once you’ve given x its
argument and sponged up all the remaining arguments in array y, nothing can ever
be left for z. And if z gets the right-hand argument, leaving the rest for y, it makes no

arg_demo(1,2,3,4,5,6,7,8)

def arg_demo(a,b,c=1,*d,e,f)

1,2

7,8

3

4,5,6

Required arguments a, b
Required arguments e, f
Optional argument c
Argument array d Figure 2.2 Argument assignment

logic in action

Zero left- or right-side required

55A close look at method arguments
sense to describe z as “optional” or “default-valued.” The situation gets even thornier
if you try to do something like the equally illegal (x, *y, z=1, a, b). Fortunately,
Ruby doesn’t allow for more than one sponge argument in a parameter list. Make sure
you order your arguments sensibly and, when possible, keep your argument lists rea-
sonably simple!

 Table 2.2 summarizes what you’ve learned so far about argument syntax and
semantics. You can treat this table more as a reference than as something you need to
commit to memory and quiz yourself on—as long as you follow the basic reasoning of
why each example works as it does.

As you can see from table 2.2, the arguments you send to methods are assigned to vari-
ables—specifically, local variables, visible and usable for the duration of the method.
Assignment of local variables through method argument binding is just one case of
the general process of local variable assignment, a process that we’ll look at in detail
next.

Table 2.2 Sample method signatures with required, optional, and default-valued arguments

Argument type(s) Method signature Sample call(s) Variable assignments

Required (R) def m(a,b,c) m(1,2,3) a = 1, b = 2, c = 3

Optional (O) def m(*a) m(1,2,3) a = [1,2,3]

Default-valued (D) def m(a=1) m
m(2)

a = 1
a = 2

R/O def m(a,*b) m(1) a = 1, b = []

R/D def m(a,b=1) m(2)
m(2,3)

a = 2, b = 1
a = 2, b = 3

D/O def m(a=1,*b) m
m(2)

a = 1, b = []
a = 2, b = []

R/D/O def m(a,b=2,*c) m(1)
m(1,3)
m(1,3,5,7)

a = 1, b = 2, c = []
a = 1, b = 3, c = []
a = 1, b = 3, c = [5,7]

R/D/O/R def m(a,b=2,*c,d m(1,3)
m(1,3,5)
m(1,3,5,7)
m(1,3,5,7,9)

a = 1, b = 2, c = [], d = 3
a = 1, b = 3, c = [], d = 5
a = 1, b = 3, c = [5], d = 7
a = 1, b = 3, c = [5,7], d = 9

56 CHAPTER 2 Objects, methods, and local variables

2.5 Local variables and variable assignment
Local variable names start with a lowercase letter or an underscore and are made up
of alphanumeric characters and underscores. All of these are valid local variable
names, including the lone underscore:

x
_x
name
first_name
plan9
user_ID
_

The local in local variables pertains to the fact that they have limited scope : a local vari-
able is only visible in a limited part of a program, such as a method definition. Local
variable names can be reused in different scopes. You can use, say, the variable name x
in more than one place, and as long as those places have distinct scopes, the two x
variables are treated as completely separate. (Remember that conventional Ruby style
prefers under_score names over camelCase names for local variables.)

 Scope is an important topic in its own right, and we’ll get deeply into it in chap-
ter 5. You can start getting familiar with some key aspects of it now, though, as you
examine how local variables come and go. The classic case of local scope is a method
definition. Watch what happens with x in this example:

def say_goodbye
 x = "Goodbye"
 puts x
end
def start_here
 x = "Hello"
 puts x

Exercise
Let’s revisit our ticket object from section 2.2. Add a method definition that takes
an optional number of arguments:

def ticket.print_details(*x)
 x.each { |detail| puts "This ticket is #{detail}" }
end

Add the ticket details (displayed in bold) to the output:

This ticket is for: Author's reading, at Town Hall, on 1903-01-02.
The performer is Mark Twain.
The seat is Second Balcony, row J, seat 12, and it costs $5.50.
This ticket is non-refundable.
This ticket is non-transferable.
This ticket is in a non-smoking section.

B

C

57Local variables and variable assignment
 say_goodbye
 puts "Let's check whether x remained the same:"
 puts x
end
start_here

The output from this program is as follows:

Hello
Goodbye
Let's check whether x remained the same:
Hello

When you call start_here F, the method start_here is executed. Inside that
method, the string Hello is assigned to x C—that is, to this x, the x in scope inside
the method.

 start_here prints out its x (Hello) and then calls the method say_goodbye D. In
say_goodbye, something similar happens: a string (Goodbye) is assigned to x B. But
this is a different x—as you see when the call to say_goodbye is finished and control
returns to start_here: Ruby prints out this x, and the value is still Hello E. Using x
as a local variable name in the scope of one method didn’t affect its value in the scope
of the other.

 The local variables in this last example are created through explicit assignment.
(Local variables can also come into being, as you’ve seen, through the binding of
method arguments to method parameters.) But what happens when the assignment
or initialization takes place? What exactly is the relation between a variable and the
object that it represents?

2.5.1 Variables, objects, and references

Variable assignments give the appearance, and have the apparent effect, of causing
the variable on the left to be set equal to the object on the right. After this assignment,
for example,

str = "Hello"

statements like puts str will deliver the string "Hello" for printing and processing.
 Now, look at this example:

str = "Hello"
abc = str
puts abc

This, too, prints "Hello". Apparently the variable abc also contains "Hello", thanks to
having had str assigned to it.

 But there’s more to it. The next example involves a method called replace, which
does an in-place replacement of a string’s content with new text:

str = "Hello"
abc = str
str.replace("Goodbye")

D

E

F

58 CHAPTER 2 Objects, methods, and local variables
def say_goodbye
 str = "Hello"
 abc = str
 str.replace("Goodbye")
 puts str
 puts abc
end
say_goodbye

Look closely at the output:

Goodbye
Goodbye

The first "Goodbye" is str; the second is abc. But we only replaced str. How did the
string in abc get replaced?

ENTER REFERENCES

The answer is that variables in Ruby (with a few exceptions, most notably variables
bound to integers) don’t hold object values. str doesn’t contain "Hello". Rather, str
contains a reference to a string object. It’s the string object that has the characteristic
of containing the letters that make up "Hello".

 In an assignment with a variable name on the left and an object on the right, the
variable receives a reference to the object. In an assignment from one variable to
another (abc = str), the variable on the left receives a copy of the reference stored in
the variable on the right, with the result that both variables now contain references to
the same object.

 The fact that variables hold references to objects has implications for operations
that change objects. The string-replace operation

str.replace("Goodbye")

replaces the characters of the string to which str is a reference with the text "Goodbye".
The variable abc contains another reference to the same string object. Even though the
replace message goes to str, it causes a change to the object to which the reference in
abc refers. When you print out abc, you see the result: the contents of the string have
changed.

The un-reference: immediate values
Some objects in Ruby are stored in variables as immediate values. These include
integers, symbols (which look like :this), and the special objects true, false, and
nil. When you assign one of these values to a variable (x = 1), the variable holds
the value itself, rather than a reference to it.

In practical terms, this doesn’t matter (and it will often be left as implied, rather than
spelled out repeatedly, in discussions of references and related topics in this book).
Ruby handles the dereferencing of object references automatically; you don’t have to
do any extra work to send a message to an object that contains, say, a reference to
a string, as opposed to an object that contains an immediate integer value.

59Local variables and variable assignment
For every object in Ruby, there can and must be one or more references to that object.
If there are no references, the object is considered defunct, and its memory space is
released and reused.

 If you have two or more variables containing references to a single object, you can
use any of them, on an equal basis, to send messages to the object. References have a
many-to-one relationship to their objects. But if you assign a completely new object to
a variable that’s already referring to an object, things change.

2.5.2 References in variable assignment and reassignment

Every time you assign to a variable—every time you put a variable name to the left of
an equal sign and something else on the right—you start from scratch: the variable is
wiped clean, and a new assignment is made.

 Here’s a new version of our earlier example, illustrating this point:

str = "Hello"
abc = str
str = "Goodbye"
puts str
puts abc

This time the output is

Goodbye
Hello

The second assignment to str gives str a reference to a different string object. str
and abc part company at that point. abc still refers to the old string (the one whose
contents are "Hello"), but str now refers to a different string (a string whose con-
tents are "Goodbye").

 The first version of the program changed a single string, but the second version
has two separate strings. After it’s reused, the variable str has nothing further to do

But the immediate-value representation rule has a couple of interesting ramifica-
tions, especially when it comes to integers. For one thing, any object that’s repre-
sented as an immediate value is always exactly the same object, no matter how many
variables it’s assigned to. There’s only one object 100, only one object false, and
so on.

The immediate, unique nature of integer-bound variables is behind Ruby’s lack of pre-
and post-increment operators—which is to say, you can’t do this in Ruby:

x = 1
x++ # No such operator

The reason is that due to the immediate presence of 1 in x, x++ would be like 1++,
which means you’d be changing the number 1 to the number 2—and that makes no
sense.

60 CHAPTER 2 Objects, methods, and local variables
with the object it referred to previously. But reusing str has no effect on abc, which
still contains a reference to the original string.

NOTE The examples use local variables to demonstrate what does and
doesn’t happen when you assign to a variable that’s already been assigned to.
But the rules and behaviors you’re seeing here aren’t just for local variables.
Class, global, and instance variables follow the same rules. (So do so-called
constants, which you can assign to more than once, oddly enough!) All of
these categories of identifier are l-values: they can serve as the left-hand side,
or target, of an assignment. (Compare with, say, 100 = 10, which fails because
100 isn’t an l-value.) And they all behave the same with respect to how they
bind to their right-hand side and what happens when you use a given one
more than once.

Ruby variables are often described as labels or names for objects. It’s a useful compar-
ison. Say you have two names for your dog. “I’m taking Fido to the vet” and “I’m tak-
ing Rover to the vet” refer to the same animal. But if you get a new dog and transfer
the name Fido to him, then the name-to-dog bindings have changed. Fido and Rover
no longer refer to the same animal, and the name Fido has no further connection
with the first dog.

 And the new Fido doesn’t even have to be a dog; you could stop calling your dog
Fido and start using the name for your car instead. It’s the same when you do x = 1 fol-
lowed by x = "A string". You’re reusing the identifier x for a completely new class of
object (String rather than Integer). Unlike some languages, Ruby doesn’t have
typed variables. Any variable can be bound to any object of any class at any time.

 The semantics of references and (re)assignment have important implications for
how things play out when you call a method with arguments. What does the method
receive? And what can the method do with it?

2.5.3 References and method arguments

Let’s stick with a string-based example, because strings are easy to change and track.
Here’s a method that takes one argument:

def change_string(str)
 str.replace("New string content!")
end

Next, create a string and send it to change_string:

s = "Original string content!"
change_string(s)

Now, examine s:

puts s

61Local variables and variable assignment
The examination reveals that the contents of the string to which s refers have
changed:

New string content!

This tells you that inside the change_string method, the variable str is assigned a ref-
erence to the string also referred to by s. When you call a method with arguments,
you’re really trafficking in object references. And once the method has hold of a refer-
ence, any changes it makes to the object through the reference are visible when you
examine the object through any of its references.

 Ruby gives you some techniques for protecting objects from being changed,
should you wish or need to do so.

DUPING AND FREEZING OBJECTS

If you want to protect objects from being changed inside methods to which you send
them, you can use the dup method, which duplicates an object:

s = "Original string content!"
change_string(s.dup)
puts s

You can also freeze an object, which prevents it from undergoing further change:

s = "Original string content!"
s.freeze
change_string(s)

Note that there’s no corresponding unfreeze method. Freezing is forever.
 To complete the picture, there’s also a method called clone. It’s a lot like dup. The

difference is that if you clone a frozen object, the clone is also frozen—whereas if you
dup a frozen object, the duplicate isn’t frozen.

 With these tools in hand—dup, clone, and freeze—you can protect your objects
against most rogue change operations. Some dangers still lurk, though. Even if you
freeze an array, it’s still possible to change the objects inside the array (assuming
they’re not frozen):

>> numbers = ["one", "two", "three"]
=> ["one", "two", "three"]
>> numbers.freeze
=> ["one", "two", "three"]
>> numbers[2] = "four"
RuntimeError: can't modify frozen array
>> numbers[2].replace("four")
=> "four"
>> numbers
=> ["one", "two", "four"]

In this example, the fact that the numbers array is frozen means you can’t change the
array B. But the strings inside the array aren’t frozen. If you do a replace operation

Prints “Original string content!”

FrozenError (can’t modify frozen string)

B

C

D

62 CHAPTER 2 Objects, methods, and local variables
on the string "three", mischievously turning it into "four" C, the new contents of
the string are revealed when you reexamine the (still frozen) array D.

 Be careful with references, and remember that a reference to an object inside a
collection isn’t the same as a reference to the collection. (You’ll get a strong feel for
collections as objects in their own right when we look at them in detail in chapter 9.)

 A final point about variables—local variables in particular—involves their physical
resemblance to method calls, and how Ruby figures out what you mean when you
throw a plain, unadorned identifier at it.

2.5.4 Local variables and the things that look like them

When Ruby sees a plain word sitting there—a bareword identifier, like s, ticket,
puts, or user_name—it interprets it as one of three things:

 A local variable
 A keyword
 A method call

Keywords are special reserved words that you can’t use as variable names. def is a key-
word; the only thing you can use it for is to start a method definition. (Strictly speak-
ing, you can trick Ruby into naming a method def. But ... well ... don’t.) if is also a
keyword; lots of Ruby code involves conditional clauses that start with if, so it would
be confusing to also allow the use of if as a variable name. A sequence like if = 3
would be difficult for Ruby to parse.

 Like local variables, method calls can be plain words. You’ve seen several examples,
including puts and print. If the method call includes arguments in parentheses—or
even empty parentheses—then it’s clear that it’s not a local variable. In other cases,
there may be some ambiguity, and Ruby has to figure it out.

 Here’s how Ruby decides what it’s seeing when it encounters a plain identifier:

1 If the identifier is a keyword, it’s a keyword (Ruby has an internal list of these
and recognizes them).

2 If there’s an equal sign (=) to the right of the identifier, it’s a local variable
undergoing an assignment.

3 Otherwise, the identifier is assumed to be a local variable or method call, both
of which are treated the same way by the Ruby interpreter.

Ruby will “call” the presumed local variable or method, which causes the identifier to
be evaluated. If you use an identifier that isn’t any of the three things listed above,
then Ruby will complain and halt execution with a fatal error. The error message you
get when this happens is instructive:

$ ruby -e "x"
-e:1:in `<main>': undefined local variable or method 'x' for main:Object

(NameError)

63Summary
Note that Ruby can’t tell whether you thought x was a variable or a method. It knows
that x isn’t a keyword, but it could be either of the other two. So the error message
includes both.

 At this point, you’ve got a large, growing store of knowledge about objects and vari-
ables and how they’re related. We’ll turn next in chapter 3 to the topic of how to cre-
ate objects in a structured, scalable way with classes.

Summary
We’ve covered a lot of ground in chapter 2. In this chapter, you’ve seen

 How to create a new object and define methods for it
 The basics of the message-sending mechanism by which you send requests to

objects for information or action
 Several of the important built-in methods that every Ruby object comes with:

object_id, respond_to?, and send
 Details of the syntax for method argument lists, including the use of required,

optional, and default-valued arguments
 How local variables and variable assignment work
 Ruby’s use of references to objects and how references play out when multiple

variables refer to the same object

Writing a Ruby program can involve thinking about how you might map elements of a
domain (even a modest one-entity domain like “a ticket to an event”) onto a system of
objects so that those objects can store information and perform tasks. At the same
time, it’s important not to think too rigidly about the relation between objects and the
real world. Object-oriented languages certainly offer a strong component of real-
world modeling; but Ruby, at the same time, is extremely elastic in its modeling facili-
ties—as you can see from how easy it is to enhance a given object’s behavior. The chief
goal in designing a program and the objects inside it is to come up with a system that
works and that has internal consistency.

 And, of course, the language offers lots of facilities for developing program struc-
ture. Creating objects one by one, as we’ve done in this chapter, is little more than the
tip of the iceberg. We’ll expand the discussion exponentially next, by looking at how
to create objects on a multiple, more automated basis using Ruby classes.

Organizing objects
with classes
Creating a new object with Object.new—and equipping that object with its own meth-
ods, one method at a time—is a great way to get a feel for the object-centeredness of
Ruby programming. But this approach doesn’t exactly scale; if you’re running an
online box office and your database has to process records for tickets by the hundreds,
you’ve got to find another way to create and manipulate ticket-like objects in your
Ruby programs.

 Sure enough, Ruby gives you a full suite of programming techniques for creat-
ing objects on a batch basis. You don’t have to define a separate price method for
every ticket. Instead, you can define a ticket class, engineered in such a way that

This chapter covers
 Creating multiple objects with classes

 Setting and reading object state

 Automating creation of attribute read and write
methods

 Class inheritance mechanics

 Syntax and semantics of Ruby constants
64

65Classes and instances
every individual ticket object automatically has the price method. You’ll see examples
in this chapter.

 Defining a class lets you group behaviors (methods) into convenient bundles, so
that you can quickly create many objects that behave essentially the same way. You can
also add methods to individual objects, if that’s appropriate for what you’re trying to
do in your program. But you don’t have to do that with every object if you model your
domain into classes.

 Everything you handle in Ruby is either an object or a construct that evaluates to
an object, and every object is an instance of some class. This fact holds true even
where it might at first seem a little odd. Integers are instances of a class, and classes
themselves are objects. You’ll learn in this chapter how this pervasive aspect of the
design of Ruby operates.

 Talking about classes doesn’t mean you’re not talking about objects; that’s why this
chapter has the title it has, rather than, say, “Ruby classes.” Much of what we’ll look at
here pertains to objects and methods—but that’s because classes are, at heart, a way to
organize objects and methods. We’ll look at the kinds of things you can and will do
inside classes, as well as what classes themselves are.

3.1 Classes and instances
A typical class consists of a collection of method definitions. Classes usually exist for
the purpose of being instantiated—that is, of having objects created that are instances
of the class.

 You’ve already seen instantiation in action. It’s our old signature tune:

obj = Object.new

Object is a built-in Ruby class. When you use the dot notation on a class, you send a
message to the class. Classes can respond to messages, just like objects; in fact, as you’ll
have reason to be aware of in any number of situations, classes are objects. The new
method is a constructor : a method whose purpose is to manufacture and return to you
a new instance of the class, a newly minted object.

 You define a class with the class keyword. Classes are named with constants, a spe-
cial type of identifier recognizable by the fact that it begins with a capital letter. Con-
stants are used to store information and values that don’t change over the course of a
program run.

Be careful with constants
Ruby constants, unlike those in many other languages, can be overwritten after
they’re set. But if you assign a new value to a constant, Ruby prints a warning. Try
this in irb to see for yourself:

>> CONSTANT_A = "A"
=> "A"

66 CHAPTER 3 Organizing objects with classes
Let’s define a Ticket class. Inside the class definition, we define a single, simple
method:

class Ticket
 def event
 "Can't really be specified yet..."
 end
end

Now we can create a new ticket object and ask it (pointlessly, but to see the process)
to describe its event:

ticket = Ticket.new
puts ticket.event

The method call ticket.event results in the execution of our event method and,
consequently, the printing out of the (rather uninformative) string specified inside
that method:

Can't really be specified yet...

The information is vague, but the process is fully operational: we’ve written and exe-
cuted an instance method.

 Meaning what, exactly?

3.1.1 Instance methods

The examples of method definitions in chapter 2 involved defining methods directly
on individual objects:

def ticket.event

The event method in the previous example, however, is defined in a general way,
inside the Ticket class:

def event

That’s because this event method will be shared by all tickets—that is, by all instances
of Ticket. Methods of this kind, defined inside a class and intended for use by all
instances of the class, are called instance methods. They don’t belong only to one object.
Instead, any instance of the class can call them.

(continued)
>> CONSTANT_A = “B”
=> (irb):2: warning: already initialized constant CONSTANT_A
=> (irb):1: warning: previous definition of CONSTANT_A was here
=> "bar"

Avoid assigning new values to constants that you’ve already assigned a value to.
(See section 3.7.2 for more information about reassignment to constants.)

Defines event method
for Ticket class

67Classes and instances
NOTE Methods that you define for one particular object—as in def ticket
.price—are called singleton methods. You’ve already seen examples, and we’ll
look in more depth at how singleton methods work, in chapter 13. An object
that has a price method doesn’t care whether it’s calling a singleton method
or an instance method of its class. But the distinction is important from the
programmer’s perspective.

Once you’ve defined an instance method in a class, nothing stops you from defining it
again—that is, overriding the first definition with a new one.

3.1.2 Overriding methods

Here’s an example of defining the same method twice in one class:

class C
 def m
 puts "First definition of method m"
 end
 def m
 puts "Second definition of method m"
 end
end

Given these two definitions, what happens when we call m on an instance of C? Let’s
ask the object:

C.new.m

The printed result is

Second definition of method m

The second definition has prevailed: we see the output from that definition, not from
the first. When you override a method, the new version takes precedence. (This exam-
ple is deliberately minimalist, because it’s illustrating something that you wouldn’t
normally do in exactly this form. When you override a method, it’s usually because
you’ve written a class that inherits from the original class, and you want it to behave
differently. We’ll look at inheritance soon.)

 You can also add to a class’s methods, or override them, by reopening the class
definition.

3.1.3 Reopening classes

In most cases, when you’re defining a class, you create a single class definition block:

class C
 # class code here
end

But it’s possible to reopen a class and make additions or changes. Here’s an example:

class C
 def x

68 CHAPTER 3 Organizing objects with classes
 end
end
class C
 def y
 end
end

We open the class definition body, add one method (x), and close the definition body.
Then, we reopen the definition body, add a second method (y), and close the defini-
tion body. The result is the same as if we’d done this:

class C
 def x
 end
 def y
 end
end

Here we open the class only once and add both methods. Of course, you’re not going
to break your class definitions into separate blocks just for fun. There has to be a rea-
son—and it should be a good reason, because separating class definitions can make it
harder for people reading or using your code to follow what’s going on.

 One reason to break up class definitions is to spread them across multiple files. If
you require a file that contains a class definition (perhaps you load it from the disk at
runtime from another file), and you also have a partial definition of the same class in
the file from which the second file is required, the two definitions are merged. This
isn’t something you’d do arbitrarily: it must be a case where the program’s design
demands that a class be defined partially in one place and partially in another.

 Here’s a real-life example. Ruby has a Time class. It lets you manipulate times, for-
mat them for timestamp purposes, and so forth. You can use UNIX-style date-format
strings to get the format you want. For example, the command

puts Time.new.strftime("%m-%d-%y")

prints the string "12-25-18", representing the date on which the method call was made.
 In addition to the built-in Time class, Ruby also has a program file called time.rb,

inside of which are various enhancements of, and additions to, the Time class. time.rb
achieves its goal of enhancing the Time class by reopening that class. If you look for
the file time.rb either in the lib subdirectory of the Ruby source tree or in your Ruby
installation, you’ll see this on or near line 89:

class Time

That’s a reopening of the Time class, done for the purpose of adding new methods.
 You can see the effect best by trying it in irb. irb lets you call a nonexistent

method without causing the session to terminate, so you can see the effects of the
require command all in one session:

>> t = Time.new
=> 2018-09-23 09:41:29 -0400

69Instance variables and object state
>> t.xmlschema
Traceback (most recent call last):
 2: from /home/jleo3/.rubies/ruby-2.5.1/bin/irb:11:in `<main>'
 1: from (irb):2
NoMethodError (undefined method 'xmlschema' for 2018-09-23 09:41:29 -

0400:Time)
>> require 'time'
=> true
>> t.xmlschema
=> "2019-12-25T09:41:35-04:00"

Here we send the unrecognized message xmlschema to our Time object, and it doesn’t
work B. Then, we load the time.rb file C and, sure enough, the Time object now has
an xmlschema method. (That method, according to its documentation, “returns a
string that represents the time as dateTime defined by XML Schema.”)

 You can spread code for a single class over multiple files or over multiple locations
in the same file. But be aware that it’s considered better practice not to do so, when
possible. In the case of the Time extensions, people often suggest the possibility of uni-
fication: giving Time objects all of the extension methods in the first place, and not
separating those methods into a separate library. It’s possible that such unification will
take place in a later release of Ruby.

 Ruby is about objects, and objects are instances of classes. We’ll look next at
instance variables, a special language feature designed to allow every instance of every
class in Ruby to set and maintain its own private stash of information.

3.2 Instance variables and object state
When we created individual objects and wrote methods for each action or value we
needed, we hard-coded the value into the object through the methods. With this tech-
nique, if a ticket costs $117.50, then it has a method called price that returns pre-
cisely that amount:

ticket = Object.new
def ticket.price
 117.50
end

But now we’re moving away from one-at-a-time object creation with Object.new and
setting our sights on the practice of designing classes and creating many objects from
them.

 This means we’re changing the rules of the game when it comes to information
like the price of a ticket. If you create a Ticket class, you can’t give it a price method
that returns $117.50, for the simple reason that not every ticket costs $117.50. Simi-
larly, you can’t give every ticket the event-name Benefit Concert, nor can every ticket
think that it’s for Row G, Seat 33.

 Instead of hard-coding values into every object, we need a way to tell different
objects that they have different values. We need to be able to create a new Ticket
object and store with that object the information about the event, price, and other

B

C

70 CHAPTER 3 Organizing objects with classes
properties. When we create another ticket object, we need to store different informa-
tion with that object. And we want to be able to do this without having to handcraft a
method with the property hard-coded into it.

 Information and data associated with a particular object embodies the state of the
object. We need to be able to do the following:

 Set, or reset, the state of an object (say to a ticket, “You cost $11.99.”).
 Read back the state (ask a ticket, “How much do you cost?”).

Conveniently, Ruby objects come with their own storage and retrieval mechanisms for
values: instance variables.

 The instance variable enables individual objects to remember state. Instance vari-
ables work much like other variables: you assign values to them, and you read those
values back; you can add them together, print them out, and so on. But instance vari-
ables have a few differences:

 Instance variable names always start with a single @ (at sign). This enables you to
recognize an instance variable at a glance.

 Instance variables are only visible to the object to which they belong. (Being
“visible to an object” has a technical definition having to do with the default
object self, which you’ll see more about in chapter 5.)

 An instance variable initialized in one method inside a class can be used by any
instance method defined within that class.

The following listing shows a simple example illustrating the way the assigned value of
an instance variable stays alive from one method call to another.

class Person
 def set_name(string)
 puts "Setting person's name..."
 @name = string
 end
 def get_name
 puts "Returning the person's name..."
 @name
 end
end
joe = Person.new
joe.set_name("Joe")
puts joe.get_name

Thanks to the assignment B that happens as a result of the call to set_name C, when
you ask for the person’s name D, you get back what you put in: "Joe". Unlike a local
variable, the instance variable @name retains the value assigned to it even after the
method in which it was initialized has terminated. This property of instance vari-
ables—their survival across method calls—makes them suitable for maintaining state
in an object.

Listing 3.1 An instance variable maintaining its value between method calls

B

C
D

71Instance variables and object state
 You’ll see better, more idiomatic ways to store and retrieve values in objects shortly.
But they’re all based on setting and retrieving the values of instance variables, so it
pays to get a good feel for how instance variables behave.

 The scene is set to do something close to useful with our Ticket class. The missing
step, which we’ll now fill in, is the object initialization process.

3.2.1 Initializing an object with state

When you write a class (like Ticket), you can, if you wish, define a special method
called initialize. If you do so, that method will be executed every time you create a
new instance of the class.

 For example, given an initialize method that prints a message

class Ticket
 def initialize
 puts "Creating a new ticket!"
 end
end

you’ll see the message "Creating a new ticket!" every time you create a new ticket
object by calling Ticket.new.

 You can employ this automatic initialization process to set an object’s state at the
time of the object’s creation. Let’s say we want to give each ticket object a venue and
date when it’s created. We can send the correct values as arguments to Ticket.new,
and those same arguments will be sent to initialize automatically. Inside initial-
ize, we’ll have access to the venue and date information, and can save that informa-
tion by means of instance variables:

class Ticket
 def initialize(venue,date)
 @venue = venue
 @date = date
 end

Before closing the class definition with end, we should add something else: a way to
read back the venue and date. Let’s drop the get_ formula that we used with
get_name (in listing 3.1) and instead name the get methods after the instance vari-
ables whose values they return. Add this code (which includes the end directive for the
class definition) to the previous lines:

 def venue
 @venue
 end
 def date
 @date
 end
end

Each of these methods hands back the value of an instance variable. In each case, that
variable is the last (and only) expression in the method and therefore also serves as
the method’s return value.

72 CHAPTER 3 Organizing objects with classes
NOTE The names of the instance variables, methods, and arguments to ini-
tialize don’t have to match. You could use @v instead of @venue, for exam-
ple, to store the value passed in the argument venue. You could call the
second method event_date and use @date inside it. Still, it’s usually good
practice to match the names to make it clear what goes with what.

Now we’re ready to create some tickets with dynamically set values for venue and date,
rather than the hard-coded values of our earlier examples:

th = Ticket.new("Town Hall", "2013-11-12")
cc = Ticket.new("Convention Center", "2014-12-13")
puts "We've created two tickets."
puts "The first is for a #{th.venue} event on #{th.date}."
puts "The second is for an event on #{cc.date} at #{cc.venue}."

Run this code, along with the previous class definition of Ticket, and you’ll see
the following:

We've created two tickets.
The first is for a Town Hall event on 2013-11-12.
The second is for an event on 2014-12-13 at Convention Center.

The phrase at Convention Center is a bit stilted, but the process of saving and retriev-
ing information for individual objects courtesy of instance variables operates perfectly.
Each ticket has its own state (saved information), thanks to what our initialize
method does; and each ticket lets us query it for the venue and date, thanks to the two
methods with those names.

 This opens up our prospects immensely. We can create, manipulate, compare, and
examine any number of tickets at the same time, without having to write separate
methods for each of them. All the tickets share the resources of the Ticket class. At the
same time, each ticket has its own set of instance variables to store state information.

 So far, we’ve arranged things in such a way that we set the values of the instance
variables at the point where the object is created and can then retrieve those values at
any point during the life of the object. That arrangement is often adequate, but it’s
not symmetrical. What if you want to set the values of instance variables at some point
other than object-creation time? What if you want to change an object’s state after it’s
already been set once?

3.3 Setter methods
When you need to set or change an object’s state at some point in your program other
than the initialize method, the heart of the matter is assigning (or reassigning) val-
ues to instance variables. You can, of course, change any instance variable’s value in
any method. For example, if we wanted tickets to have the ability to discount them-
selves, we could write an instance method like this inside the Ticket class definition:

def discount(percent)
 @price = @price * (100 - percent) / 100.0
end

73Setter methods
But the most common case is the simplest: calling a setter method with an argument
and setting the appropriate instance variable to the argument. That’s what set_name
does in the Person class example:

 def set_name(string)
 puts "Setting person's name..."
 @name = string
 end

The argument string is passed into set_name and assigned to @name. There’s more to
setter methods, though. Ruby has some specialized method-naming conventions that
let you write setter methods in a way that’s more elegant than sticking set_ in front of
a descriptive word like name. We’ll make another pass at Ticket, this time with an eye
on setter methods and the techniques available for streamlining them.

3.3.1 The equal sign (=) in method names

Let’s say we want a way to set the price of a ticket. As a starting point, the price can be
set along with everything else at object-creation time:

class Ticket
 def initialize(venue,date,price)
 @venue = venue
 @date = date
 @price = price
 end
 # etc.
 def price
 @price
 end
 # etc.
end
th = Ticket.new("Town Hall", "2013-11-12", 63.00)

The initialization command is getting awfully long, though, and requires that we
remember what order to put the many arguments in so we don’t end up with a ticket
whose price is "Town Hall". And we still don’t have a way to change a ticket’s price
later.

 Let’s solve the problem, initially, with a set_price method that allows us to set, or
reset, the price of an existing ticket. We’ll also rewrite the initialize method so that
it doesn’t expect a price figure:

class Ticket
 def initialize(venue, date)
 @venue = venue
 @date = date
 end
 def set_price(amount)
 @price = amount
 end
 def price
 @price

74 CHAPTER 3 Organizing objects with classes
 end
end

Here’s some price manipulation in action:

ticket = Ticket.new("Town Hall", "2013-11-12")
ticket.set_price(63.00)
puts "The ticket costs $#{"%.2f" % ticket.price}."
ticket.set_price(72.50)
puts "Whoops -- it just went up. It now costs $#{"%.2f" % ticket.price}."

The output is

The ticket costs $63.00.
Whoops -- it just went up. It now costs $72.50.

This technique works: you can write all the set_property methods you need, and the
instance variable–based retrieval methods to go with them. But there’s a nicer way.

TIP The percent sign technique you saw in the last example allows you to for-
mat data into strings. Possible field type characters (those that accompany the
% inside the pattern string) include %d for decimal numbers, %s for strings, %f
for floats, and %x for hexadecimal numbers.

Ruby allows you to define methods that end with an equal sign (=). Let’s replace
set_price with a method called price= (“price” plus an equal sign):

def price=(amount)
 @price = amount
end

price= does exactly what set_price did. You can call price= like any other method.
Thus you can update ticket.set_price(63.00) and ticket.set_price(72.50) to
ticket.price=(63.00) and ticket.price=(72.50), respectively. The equal sign
gives you that familiar “assigning a value to something” feeling, so you know you’re
dealing with a setter method. It still looks odd, though; but Ruby takes care of that,
too.

3.3.2 Syntactic sugar for assignment-like methods

Programmers use the term syntactic sugar to refer to special rules that let you write
your code in a way that doesn’t correspond to the normal rules but that’s easier to
remember how to do and looks better.

 Ruby gives you some syntactic sugar for calling setter methods. Instead of

ticket.price=(63.00)

you’re allowed to do this:

ticket.price = 63.00

When the interpreter sees this sequence of code, it automatically ignores the space
before the equal sign and reads price = as the single message price= (a call to the

Formats price to two
decimal places

75Setter methods
method whose name is price=, which we’ve defined). As for the right-hand side,
parentheses are optional for method arguments, as long as there’s no ambiguity. So
you can put 63.00 there, and it will be picked up as the argument to the price=
method.

 The intent behind the inclusion of this special syntax is to allow you to write
method calls that look like assignments. If you just saw ticket.price = 63.00 in a pro-
gram, you might assume that ticket.price is some kind of l-value to which the value
63.00 is being assigned. But it isn’t. The whole thing is a method call. The receiver is
ticket, the method is price=, and the single argument is 63.00.

 The more you use this setter style of method, the more you’ll appreciate how
much better the sugared version looks. This kind of attention to appearance is typical
of Ruby.

 Keep in mind that setter methods can do more than simple variable assignment.

3.3.3 Setter methods unleashed

The ability to write your own =-terminated methods and the fact that Ruby provides the
syntactic sugar way of calling those methods open up some interesting possibilities.

 One possibility is abuse. It’s possible to write =-terminated methods that look like
they’re going to do something involving assignment but don’t:

class Silly
 def price=(x)
 puts "The current time is #{Time.now}"
 end
end
s = Silly.new
s.price = 111.22

This example discards the argument it receives (111.22) and prints out an unrelated
message:

The current time is 2018-12-25 09:53:31 -0500

This example is a deliberate caricature. But the point is important: Ruby checks your
syntax but doesn’t police your semantics. You’re allowed to write methods with names
that end with =, and you’ll always get the assignment-syntax sugar. Whether the
method’s name makes any sense in relation to what the method does is in your hands.

 Equal sign methods can also serve as filters or gatekeepers. Let’s say we want to set
the price of a ticket only if the price makes sense as a dollar-and-cents amount. We can
add intelligence to the price= method to ensure the correctness of the data. Here,
we’ll multiply the number by 100, lop off any remaining decimal-place numbers with
the to_i (convert to integer) operation, and compare the result with the original
number multiplied by 100. This should expose any extra decimal digits beyond the
hundredths column:

class Ticket
 def price=(amount)

76 CHAPTER 3 Organizing objects with classes
 if (amount * 100).to_i == amount * 100
 @price = amount
 else
 puts "The price seems to be malformed"
 end
 end
 def price
 @price
 end
end

You can also use this kind of filtering technique to normalize data—that is, to make
sure certain data always takes a certain form. For example, let’s say you have a travel
agent website where the user needs to type in the desired date of departure. You want
to allow both yy-mm-dd and yyyy-mm-dd.

 If you have, say, a Ruby script that’s processing the incoming data, you might nor-
malize the year by writing a setter method like this:

class TravelAgentSession
 def year=(y)
 @year = y.to_i
 if @year < 100
 @year = @year + 2000
 end
 end
end

Then, assuming you have a variable called date in which you’ve stored the date field
from the form, you can get at the components of the date like this:

year, month, day = date.split('-')
self.year = year

The idea is to split the date string into three strings using the dash character (-) as a
divider, courtesy of the built-in split method, and then to store the year value in the
TravelAgentSession object using that object’s year= method.

WARNING Setter methods don’t return what you might think. When you use
the syntactic sugar that lets you make calls to = methods that look like assign-
ments, Ruby takes the assignment semantics seriously. Assignments (like x =
1) evaluate to whatever’s on their right-hand side. Methods usually return the
value of the last expression evaluated during execution. But = method calls
behave like assignments: the value of the expression TravelAgentSes-
sion.new.year=19 is 19, even though the year= method returns 2019. The
idea is to keep the semantics consistent. Under the hood, it’s a method call;
but it looks like an assignment and behaves like an assignment with respect to
its value as an expression.

Handles one- or two-digit number
by adding century to it

77Attributes and the attr_* method family
You’ll write complex getter and setter methods sometimes, but the simple get and set
operations, wrapped around instance variables, are the most common—so common,
in fact, that Ruby gives you some shortcuts for writing them.

3.4 Attributes and the attr_* method family
An attribute is a property of an object whose value can be read and/or written through
the object. In the case of ticket objects, we’d say that each ticket has a price attribute
as well as a date attribute and a venue attribute. Our price= method can be described
as an attribute writer method. date, venue, and price (without the equal sign) are attri-
bute reader methods. (The write/read terminology is equivalent to the set/get termi-
nology used earlier, but write/read is more common in Ruby discussions.)

 The attributes of Ruby objects are implemented as reader and/or writer methods
wrapped around instance variables—or, if you prefer, instance variables wrapped up
in reader and/or writer methods. There’s no separate “attribute” construct at the lan-
guage level. Attribute is a high-level term for a particular configuration of methods and
instance variables. But it’s a useful term, and Ruby does embed the concept of attri-
butes in the language, in the form of shortcuts that help you write the methods that
implement them.

Exercises
1 Create a discount method for the Ticket class like the one defined at the start

of section 3.3. Set a price of $100 for the Town Hall event. Then apply a 15%
discount. Apply proper dollar formatting to the discounted price. Make sure the
following statement produces the accompanying output:

puts "The ticket for #{th.venue} has been discounted 15% to
#{th.discount(15)}."

Output:

The ticket for Town Hall has been discounted 15% to $85.00.

2 Modify the initialize method of your Ticket object so that it only accepts a
venue. Then create a date= method like the price= method explained above.
The date= method should only accept a date in the form yyyy-mm-dd. If this
form isn’t given for the date, print a helpful message. When complete, the fol-
lowing should be true:

ticket = Ticket.new("Town Hall")
ticket.date = "2013-11-12"
=> "2013-11-12"
ticket.date = "13-11-12"
=> Please submit the date in the format 'yyyy-mm-dd'.

78 CHAPTER 3 Organizing objects with classes
3.4.1 Automating the creation of attributes

Consider the following listing’s full picture of what we have, by way of attribute reader
and/or writer methods, in our Ticket class. (There’s nothing new here; the code is
just being pulled together in one place.)

class Ticket
 def initialize(venue, date)
 @venue = venue
 @date = date
 end
 def price=(price)
 @price = price
 end
 def venue
 @venue
 end
 def date
 @date
 end
 def price
 @price
 end
end

There’s one read/write attribute (price) and two read attributes (venue and date). It
works, but the code is repetitive. Three methods look like this:

def something
 @something
end

And there’s repetition on top of repetition: not only are there three such methods,
but each of those three methods repeats its name in the name of the instance variable
it uses.

 Any time you see repetition on that scale, you should try to trim it—not by reduc-
ing what your program does, but by finding a way to express the same thing more con-
cisely. In pursuit of this conciseness, Ruby is one step ahead: it provides a built-in
shortcut that automatically creates a method that reads and returns the value of the
instance variable with the same name as the method (give or take an @). It works like
this:

class Ticket
 attr_reader :venue, :date, :price
end

The elements that start with colons (:venue, and so on) are symbols. Symbols are a
kind of naming or labeling facility. They’re the cousins of strings, although not quite
the same thing. We’ll look at symbols in more depth in chapter 8. For our present pur-
poses, you can think of them as functionally equivalent to strings.

Listing 3.2 Ticket class, with the attribute reader/writer methods spelled out

79Attributes and the attr_* method family

The attr_reader (attribute reader) method automatically writes for you the kind of
method we’ve just been looking at. And there’s an attr_writer method, too:

class Ticket
 attr_writer :price
end

With that single line, we wrote (or, rather, Ruby wrote for us) our price= setter
method. One line takes the place of three. In the case of the reader methods, one line
took the place of nine!

 The whole program now looks like the following listing.

class Ticket
 attr_reader :venue, :date, :price
 attr_writer :price
 def initialize(venue, date)
 @venue = venue
 @date = date
 end
end

Not only is the code in listing 3.3 shorter, it’s also more informative—self-document-
ing, even. You can see at a glance that each ticket object has a venue, date, and price.
The first two are readable attributes, and price can be read or written.

 You can even create reader and writer methods with one command.

CREATING READER/WRITER ATTRIBUTES WITH ATTR_ACCESSOR

In the realm of object attributes, combination reader/writer attributes like price are
common. Ruby provides a single method, attr_accessor, for creating both a reader
and a writer method for an attribute. attr_accessor is the equivalent of attr_reader
plus attr_writer. We can use this combined technique for price, because we want
both operations:

class Ticket
 attr_reader :venue, :date
 attr_accessor :price
 # ... etc.
end

Listing 3.3 Ticket class, with getter and setter methods defined via attr_* calls

self as default receiver
You’re seeing more method calls without an explicit receiver; there’s no left-hand
object and no dot in attr_reader, for example. In the absence of an explicit receiver,
messages go to self, the default object. In the topmost level of a class definition
body, self is the class object itself. So the object receiving the attr_reader mes-
sage is the actual class object Ticket. We’ll go into more depth about classes as
objects and thus as message receivers later in this chapter, and into more depth
about self in chapter 5.

80 CHAPTER 3 Organizing objects with classes
3.4.2 Summary of attr_* methods

The attr_* family of methods is summarized in table 3.1.

In all cases, the attr_ techniques have the effect of writing one or more get and/or
set methods for you. They’re a powerful set of coding shortcuts.

 Let’s zoom back out to a broader view of classes—specifically, to the matter of class
inheritance.

3.5 Inheritance and the Ruby class hierarchy
Inheritance is a kind of downward-chaining relationship between two classes (the super-
class and the subclass), whereby one class “inherits” from another, and the instances
of the subclass acquire the behaviors—the methods—defined in the superclass.

 In this example, Magazine inherits from Publication. Note the syntax in Maga-
zine’s class definition:

class Publication
 attr_accessor :publisher
end
class Magazine < Publication
 attr_accessor :editor
end

The symbol < designates Magazine as a subclass of Publication. Because every publi-
cation object has publisher and publisher= methods (thanks to attr_accessor
:publisher), every magazine object has those methods too. In addition, magazine
objects have editor and editor= methods:

mag = Magazine.new
mag.publisher = "David A. Black"
mag.editor = "Joe Leo"
puts "Mag is published by #{mag.publisher} and edited by #{mag.editor}."

Table 3.1 Summary of the attr_* family of getter/setter creation methods

Method name Effect Example Equivalent code

attr_reader Creates a reader
method

attr_reader :venue def venue
 @venue
end

attr_writer Creates a writer
method

attr_writer :price def price=(price)
 @price = price
end

attr_accessor Creates reader and
writer methods

attr_accessor :price def price=(price)
 @price = price
end

def price
 @price
end

81Inheritance and the Ruby class hierarchy
We can continue the cascade downward:

class Ezine < Magazine
end

Instances of Ezine have both publisher and editor attributes, as defined in the
superclass and super-superclass of Ezine. Note that it’s not mandatory to add new
methods to every subclass. You might want to create an Ezine class just for the sake of
being able to call Ezine.new rather than Magazine.new, to make your code more
expressive.

 Of course it’s not all about attribute accessor methods. Any instance method you
define in a given class can be called by instances of that class, and also by instances of
any subclasses of that class:

class Person
 def species
 "Homo sapiens"
 end
end
class Rubyist < Person
end
david = Rubyist.new
puts david.species

In this example, the Rubyist class descends from Person C. That means a given
Rubyist instance, such as david, can call the species method that was defined in the
Person class B. As always in Ruby, it’s about objects: what a given object can and can’t
do at a given point in the program. Objects get their behaviors from their classes,
from their individual or singleton methods, and from the ancestors (superclass, super-
superclass, and so on) of their classes (and from one or two places we haven’t looked
at yet). All in all, Ruby objects lead interesting and dynamic lives. Inheritance is part
of that picture.

 Inheritance has an important limitation, though.

3.5.1 Single inheritance: one to a customer

In some object-oriented languages, it’s possible for a given class to inherit from more
than one class. You might, for example, have a Teacher class that inherits from a Person
class and also inherits from an Employee class, or a Car class that inherits from Machine,
Powered, and Driveable. Ruby doesn’t allow multiple inheritance; every Ruby class can
have only one superclass, in keeping with the principle of single inheritance.

 Despite what might be your first impression, Ruby’s single inheritance doesn’t
restrict you: Ruby provides modules, which are bundles of programming functionality
similar to classes (except that they don’t have instances), that you can easily graft onto
your class’s family tree to provide as many methods for your objects as you need.
That’s the basis of chapter 4, and you’ll learn that modularization—designing objects
that work with modules—is sometimes preferable to inheritance. There’s no limit to
how richly you can model your objects—it just can’t be done strictly with classes and
inheritance.

B

C

Output: Homo sapiens

82 CHAPTER 3 Organizing objects with classes
 The single-inheritance principle means that you can’t just draw a big tree of enti-
ties and then translate the tree directly into a class hierarchy. Inheritance often func-
tions more as a convenient way to get two or more classes to share method definitions
than as a definitive statement of how real-world objects relate to each other in terms of
generality and specificity. There’s some of that involved; every class in Ruby, for exam-
ple, ultimately descends (as subclass or sub-subclass, and so on) from the Object class,
and obviously Object is a more general class than, say, String or Ticket. But the sin-
gle-inheritance limitation means that you can’t bank on designing a hierarchy of
classes that cascade downward in strict tree-graph fashion.

 Again, modules play a key role here, and they’ll get their due in chapter 4. For
now, though, we’ll follow the thread of inheritance upward, so to speak, and look at
the classes that appear at the top of the inheritance tree of every Ruby object: the
Object and BasicObject classes.

3.5.2 Object ancestry and the not-so-missing link: the Object class

You’ve seen the standard technique for creating a generic object:

obj = Object.new

You’re now in a position to understand more deeply what’s going on in this snippet.
 The class Object is almost at the top of the inheritance chart. Every class is either a

subclass of Object, a sub-subclass of Object, or, at some distance, a direct descendant
of Object:

class C
end
class D < C
end
puts D.superclass
puts D.superclass.superclass

The output is

C
Object

because C is D’s superclass (that’s our doing) and Object is C’s superclass (that’s Ruby’s
doing).

 If you go up the chain far enough from any class, you hit Object. Any instance
method available to a bare instance of Object is available to every object; that is, if you
can do

obj = Object.new
obj.some_method

then you can call some_method on an object instance.

83Classes as objects and message receivers
3.5.3 BasicObject

The BasicObject class comes before Object in the Ruby class family tree. The idea
behind BasicObject is to offer a kind of blank-slate object—an object with almost no
methods. (Indeed, the precedent for BasicObject was a library by Jim Weirich called
BlankSlate.) BasicObjects have so few methods that you’ll run into trouble if you
create a BasicObject instance in irb:

>> BasicObject.new
(Object doesn’t support #inspect)

The object gets created, but irb can’t display the customary string representation of it
because it has no inspect method!

 A newly created BasicObject instance has only 8 instance methods—whereas a
new instance of Object has 58. (These numbers may change a little among different
versions or releases of Ruby, but they’re accurate enough to make the point about
BasicObject having few methods.) You’re not likely to need to instantiate or subclass
BasicObject on a regular basis, if ever. It’s mainly handy for situations where you’re
modeling objects closely to some particular domain, almost to the point of writing a
kind of Ruby dialect, and you don’t want any false positives when you send messages to
those objects. The 58 methods can get in the way, if you have your own ideas about
whether your objects should play dumb when you send them messages like display,
extend, or clone. (There’ll be more to say about this when we take up the topic
thread of BasicObject in chapter 13.)

 Having put inheritance into the mix and looked at some of the key components of
the lineage of Ruby objects, let’s return to the subject of classes—specifically, to one of
the most striking aspects of classes: the fact that they are objects and can therefore
serve as receivers of messages, just like other objects.

3.6 Classes as objects and message receivers
Classes are special objects: they’re the only kind of object that has the power to spawn
new objects (instances). Nonetheless, they’re objects. When you create a class, like
Ticket, you can send messages to it, add methods to it, pass it around to other objects
as a method argument, and generally do anything to it you would to another object.

 Like other objects, classes can be created—indeed, in more than one way.

3.6.1 Creating class objects

Every class—Object, Person, Ticket—is an instance of a class called Class. As you’ve
already seen, you can create a class object with the special class keyword formula:

class Ticket
 # your code here
end

84 CHAPTER 3 Organizing objects with classes
That formula is a special provision by Ruby—a way to make a nice-looking, easily
accessible class-definition block. But you can also create a class the same way you cre-
ate most other objects, by sending the message new to the class object Class:

my_class = Class.new

In this case, the variable my_class is assigned a new class object.
 Class.new corresponds precisely to other constructor calls like Object.new and

Ticket.new. When you instantiate the class Class, you create a class. That class, in
turn, can create instances of its own:

instance_of_my_class = my_class.new

In section 3.1, you saw that class objects are usually represented by constants (like
Ticket or Object). In the preceding scenario, the class object is bound to a regular
local variable (my_class). Calling the new method sends the message new to the class
through that variable.

And yes, there’s a paradox here ...

THE CLASS/OBJECT CHICKEN-OR-EGG PARADOX

Class and Object are both classes. They’re also both objects. Which came first? How
can the class Class be created unless the class Object already exists?

 Ruby must do some of this chicken-or-egg stuff to get the class and object system up
and running. If you want to know in brief how it works, it’s like this: every object has an
internal record of what class it’s an instance of, and the internal record inside the object
Class points back to Class itself. A deeper study is outside the scope of this book and,
more importantly, will not impact your understanding of Ruby. While programming,
you just need to know that classes are objects, instances of the class called Class.

Defining instance methods in connection with Class.new
If you want to create an anonymous class using Class.new, and you also want to add
instance methods at the time you create it, you can do so by appending a code block
after the call to new. A code block is a fragment of code that you supply as part of a
method call, which can be executed from the method. You’ll see much more about
code blocks when we look at iterators in chapter 6. Meanwhile, here’s a small exam-
ple of Class.new with a block:

c = Class.new do
 def say_hello
 puts "Hello!"
 end
end

If you now create an instance of the class (with c.new), you’ll be able to call the
method say_hello on that instance. We’ll look at a more practical application of
anonymous classes later in the book.

85Classes as objects and message receivers
 Classes are objects, and objects receive messages and execute methods. How
exactly does the method-calling process play out in the case of class objects?

3.6.2 How class objects call methods

When you send a message to a class object, it looks like this:

Ticket.some_message

Or, if you’re inside a class-definition body and the class is playing the role of the
default object self, it looks like this:

class Ticket
 some_message

That’s how the class object gets messages. But where do the methods come from to
which the messages correspond?

 To understand where classes get their methods, think about where objects in gen-
eral get their methods (minus modules, which we haven’t explored yet):

 From their class
 From the superclass and earlier ancestors of their class
 From their own store of singleton methods (the “talk” in def obj.talk)

The situation is basically the same for classes. There are some, but very few, special
cases or bells and whistles for class objects. Mostly they behave like other objects.

 Let’s look at the three scenarios for method calling just listed, in the case of class
objects.

 Instance methods of the class Class can call methods that are defined as instance
methods in their class. Ticket, for example, is an instance of Class, and Class defines
an instance method called new. That’s why we can write

Ticket.new

That takes care of scenario 1.
 Now, scenario 2. The superclass of Class is Module. Instances of Class therefore

have access to the instance methods defined in Module; among these are the attr_ac-
cessor family of methods. That’s why we can write

class Ticket
 attr_reader :venue, :date
 attr_accessor :price

attr_reader and attr_accessor go directly to the class object Ticket, which is in the
role of the default object self at the point when the calls are made.

 That leaves just scenario 3: calling a singleton method of a class object.

Such as “attr_accessor”!

86 CHAPTER 3 Organizing objects with classes
3.6.3 A singleton method by any other name ...

Here’s an example. Let’s say we’ve created our Ticket class. At this point, Ticket isn’t
only a class from which objects (ticket instances) can arise. Ticket (the class) is also
an object in its own right. As we’ve done with other objects, let’s add a singleton
method to it. Our method will tell us which ticket, from a list of ticket objects, is the
most expensive. There’s some black-box code here. Don’t worry about the details; the
basic idea is that the max_by operation will find the ticket whose price is highest:

def Ticket.most_expensive(*tickets)
 tickets.max_by(&:price)
end

Now we can use the Ticket.most_expensive method to tell which of several tickets is
the most expensive. (We’ll avoid having two tickets with the same price, because our
method doesn’t deal gracefully with that situation.)

th = Ticket.new("Town Hall","2013-11-12")
cc = Ticket.new("Convention Center","2014-12-13")
fg = Ticket.new("Fairgrounds", "2015-10-11")
th.price = 12.55
cc.price = 10.00
fg.price = 18.00
highest = Ticket.most_expensive(th,cc,fg)
puts "The highest-priced ticket is the one for #{highest.venue}."

The output is

The highest-priced ticket is the one for Fairgrounds.

The method most_expensive is defined directly on the class object Ticket, in singleton-
method style. A singleton method defined on a class object is commonly referred to as a
class method of the class on which it’s defined. The idea of a class method is that you send
a message to the object that’s the class rather than to one of the class’s instances. The
message most_expensive goes to the class Ticket, not to a particular ticket.

 Why would you want to do that? Doesn’t it mess up the underlying order—that is,
the creation of ticket objects and the sending of messages to those objects?

Using the &: shorthand syntax
The syntax &: is an abbreviated way of iterating over each of the elements in the
tickets array and selecting the largest number. &: is often used with the map
method, iterating over each element in an array, hash, or range and applying a
method:

>> ["havoc", "prodigy"].map(&:capitalize)
=> ["Havoc", "Prodigy"]

Under the hood, &: uses the Proc object to simplify an otherwise lengthy expression.
We’ll dive more deeply into the Proc object later in the book.

87Classes as objects and message receivers

3.6.4 When, and why, to write a class method

Class methods serve a purpose. Some operations pertaining to a class can’t be per-
formed by individual instances of that class. The new method is an excellent example.
We call Ticket.new because, until we’ve created an individual ticket, we can’t send it
any messages! Besides, the job of spawning a new object logically belongs to the class.
It doesn’t make sense for instances of Ticket to spawn each other. But it does make
sense for the instance-creation process to be centralized as an activity of the class
Ticket.

 Another similar case is the built-in Ruby method File.open—a method that, as
you saw in chapter 1, opens a file for reading and/or writing. The open operation is a
bit like new; it initiates file input and/or output and returns a File object. It makes
sense for open to be a class method of File: you’re requesting the creation of an indi-
vidual object from the class. The class is acting as a point of departure for the objects it
creates.

 Ticket.most_expensive is a different case, in that it doesn’t create a new object—
but it’s still a method that belongs logically to the class. Finding the most expensive
ticket in a list of tickets can be viewed as an operation from above, something that’s
done collectively with respect to tickets, rather than something that’s done by an indi-
vidual ticket object. Writing most_expensive as a class method of Ticket lets us keep

The term class method: more trouble than it’s worth?
Ruby lets objects have singleton methods, and classes are objects. So when you
write def Ticket.most_expensive, you’re basically creating a singleton method for
Ticket. On the calling side, when you see a method called on a class object—like
Ticket.new—you can’t tell just by looking whether you’re dealing with a singleton
method defined directly on this class (def Ticket.new) or an instance method of the
class Class.

Just to make it even more fun, the class Class has both a class-method version of
new and an instance-method version; the former is called when you write Class.new
and the latter when you write Ticket.new. Unless, of course, you override it by defin-
ing new for Ticket yourself ...

Admittedly, new is a particularly thorny case. But in general, the term class method
isn’t necessarily a great fit for Ruby. It’s a concept shared with other object-oriented
languages, but in those languages there’s a greater difference between class meth-
ods and instance methods. In Ruby, when you send a message to a class object, you
can’t tell where and how the corresponding method was defined.

So class method has a fuzzy meaning and a sharp meaning. Fuzzily, any method that
gets called directly on a Class object is a class method. Sharply, a class method is
defined, not just called, directly on a Class object. You’ll hear it used both ways, and
as long as you’re aware of the underlying engineering and can make the sharp dis-
tinctions when you need to, you’ll be fine.

88 CHAPTER 3 Organizing objects with classes
the method in the ticket family, so to speak, while assigning it to the abstract, supervi-
sory level represented by the class.

 It’s not unheard of to create a class only for the purpose of giving it class methods.
Our earlier temperature-conversion exercises offer an opportunity for using this
approach.

CONVERTING THE CONVERTER

Let’s convert the converter to a converter class, adding class methods for conversion
in both directions:

class Temperature
 def Temperature.c2f(celsius)
 celsius * 9.0 / 5 + 32
 end
 def Temperature.f2c(fahrenheit)
 (fahrenheit - 32) * 5 / 9.0
 end
end

And let’s try it out:

puts Temperature.c2f(100)

The idea is that we have temperature-related utility methods—methods pertaining to
temperature as a concept but not to a specific temperature. The Temperature class is a
good choice of object to own those methods. We could get fancier and have Tempera-
ture instances that knew whether they were Celsius or Fahrenheit and could convert
themselves; but practically speaking, having a Temperature class with class methods to
perform the conversions is adequate and is an acceptable design. (Even better,
because we don’t need instances of Temperature at all, would be to use a module—a
kind of “instanceless” class, which you’ll learn about in detail in chapter 4.)

 Class methods and instance methods aren’t radically different from each other;
they’re all methods, and their execution is always triggered by sending a message to
an object. It’s just that the object getting the message may be a class object. Still, there
are differences and important points to keep in mind as you start writing methods at
various levels.

3.6.5 Class methods vs. instance methods

By defining Ticket.most_expensive, we’ve defined a method that we can access
through the class object Ticket but not through its instances. Individual ticket objects
(instances of the class Ticket) don’t have this method. You can test this easily. Try
adding this to the code from section 3.6.3, where the variable fg referred to a Ticket
object (for an event at the fairgrounds):

puts "Testing the response of a ticket instance...."
wrong = fg.most_expensive

Outputs 212.0

89Constants up close
You get an error message, because fg has no method called most_expensive. The
class of fg, namely Ticket, has such a method. But fg, which is an instance of Ticket,
doesn’t.

 Remember:

 Classes are objects.
 Instances of classes are objects, too.
 A class object (like Ticket) has its own methods, its own state, and its own iden-

tity. It doesn’t share these things with instances of itself. Sending a message to Ticket
isn’t the same thing as sending a message to fg or cc or any other instance of
Ticket.

If you ever get tangled up over what’s a class method and what’s an instance method,
you can usually sort out the confusion by going back to these three principles.

Discussion of classes always entails the use of a lot of constants—and so will the
upcoming discussion of modules in chapter 4. So let’s take a deeper look than we have
so far at what constants are and how they work.

3.7 Constants up close
Many classes consist principally of instance methods and/or class methods. But con-
stants are an important and common third ingredient in many classes. You’ve already
seen constants used as the names of classes. Constants can also be used to set and pre-
serve important data values in classes.

A note on method notation
In writing about and referring to Ruby methods (outside of code, that is), it’s custom-
ary to refer to instance methods by naming the class (or module, as the case may
be) in which they’re defined, followed by a hash mark (#) and the name of the method;
and to refer to class methods with a similar construct but using a period instead of
the hash mark. Sometimes you’ll see a double colon (::) instead of a period in the
class-method case.

Here are some examples of this notation and what they refer to:

 Ticket#price refers to the instance method price in the class Ticket.
 Ticket.most_expensive refers to the class method most_expensive in the

class Ticket. This notation is used when calling the most_expensive
method.

 Ticket::most_expensive also refers to the class method most_expensive in
the class Ticket.

From now on, when you see this notation (in this book or elsewhere), you’ll know what
it means.

90 CHAPTER 3 Organizing objects with classes
 Later, we’ll look at the scope of constants and techniques for nesting them inside
multilevel classes and modules. For now, we’ll focus on the basics of how to use
them—and the question of how constant these constants really are.

3.7.1 Basic use of constants

The name of every constant begins with a capital letter. You assign to constants much
as you do to variables.

 Let’s say we decide to establish a list of predefined venues for the Ticket class—a
list that every ticket object can refer to and select from. We can assign the list to a con-
stant. Constant definitions usually go at or near the top of a class definition:

class Ticket
 VENUES = ["Convention Center", "Fairgrounds", "Town Hall"]

A constant defined in a class can be referred to from inside the class’s instance or class
methods. Let’s say you wanted to make sure that every ticket was for a legitimate
venue. You could rewrite the initialize method like this:

def initialize(venue, date)
 if VENUES.include?(venue)
 @venue = venue
 else
 raise ArgumentError, "Unknown venue #{venue}"
 end
 @date = date
end

It’s also possible to refer to a constant from outside the class definition entirely, using
a special constant lookup notation: a double colon (::). Here’s an example of setting
a constant inside a class and then referring to that constant from outside the class:

class Ticket
 VENUES = ["Convention Center", "Fairgrounds", "Town Hall"]
end
puts "We've closed the class definition."
puts "So we have to use the path notation to reach the constant."
puts "The venues are:"
puts Ticket::VENUES

The double-colon notation pinpoints the constant VENUES inside the class known by
the constant Ticket, and the list of venues is printed out.

 Ruby comes with some predefined constants that you can access this way and that
you may find useful.

RUBY’S PREDEFINED CONSTANTS

Try typing this into irb:

Math::PI

Math is a module (the subject of chapter 4), but the principle is the same as in the case
of a constant defined inside a class: you use the :: connector to do a lookup on the
constant PI defined in the Math module. You can look up E the same way.

Is this one of the
known venues?

Raises an exception (fatal
error—see chapter 6)

Stores venues as
array of strings

91Constants up close
 Many of the predefined constants you can examine when you start up Ruby (or
irb) are the names of the built-in classes: String, Array, Symbol, and so forth. Some
are informational; even without loading the rbconfig package (which you saw in
chapter 1), you can get the interpreter to tell you a fair amount about its settings.
Here are some examples:

>> RUBY_VERSION
=> "2.5.1"
>> RUBY_PATCHLEVEL
=> 57
>> RUBY_RELEASE_DATE
=> "2018-03-29"
>> RUBY_REVISION
=> 63029
>> RUBY_COPYRIGHT
=> "ruby - Copyright (C) 1993-2018 Yukihiro Matsumoto"

As you can see, the information stored in these constants corresponds to the informa-
tion you get with the -v switch:

$ ruby -v
ruby 2.5.1p57 (2018-03-29 revision 63029) [x86_64-darwin12.0]

One peculiarity of Ruby constants is that they aren’t constant. You can change them,
in two senses of the word change—and therein lies an instructive lesson.

3.7.2 Reassigning vs. modifying constants

It’s possible to perform an assignment on a constant to which you’ve already assigned
something—that is, to reassign to the constant. But you get a warning if you do this
(even if you’re not running with the -w command-line switch). Try this in irb:

A = 1
A = 2

You’ll receive the following message:

(irb):2: warning: already initialized constant A
(irb):1: warning: previous definition of A was here

The fact that constant names are reusable while the practice of reusing them is a warn-
able offense represents a compromise. On the one hand, it’s useful for the language
to have a separate category for constants, as a way of storing data that remains visible
over a longer stretch of the program than a regular variable. On the other hand, Ruby
is a dynamic language, in the sense that anything can change during runtime. Engi-
neering constants to be an exception to this would theoretically be possible, but
would introduce an anomaly into the language.

 In addition, because you can reload program files you’ve already loaded, and pro-
gram files can include constant assignments, forbidding reassignment of constants
would mean that many file-reloading operations would fail with a fatal error.

 So you can reassign to a constant, but doing so isn’t considered good practice. If
you want a reusable identifier, you should use a variable.

92 CHAPTER 3 Organizing objects with classes
 The other sense in which it’s possible to “change” a constant is by making changes
to the object to which the constant refers. For example, adding a venue to the Ticket
class’s venue list is easy:

Ticket::VENUES << "High School Gym"

There’s no warning, because there’s no redefinition of a constant. Rather, we’re mod-
ifying an array—and that array has no particular knowledge that it has been assigned
to a constant. It just does what you ask it to.

 The difference between reassigning a constant name and modifying the object ref-
erenced by the constant is important, and it provides a useful lesson in two kinds of
change in Ruby: changing the mapping of identifiers to objects (assignment) and
changing the state or contents of an object. With regular variable names, you aren’t
warned when you do a reassignment; but reassignment is still different from making
changes to an object, for any category of identifier.

 If you put together the topics in this chapter with some of the examples you’ve
seen previously, you start to get a good overall picture of how Ruby objects are engi-
neered: they derive their functionality from the instance methods defined in their
classes and the ancestors of those classes, but they’re also capable of “learning” spe-
cific, individualized behaviors in the form of singleton methods. This is what makes
Ruby so fascinating. The life of a Ruby object is, at least potentially, a mixture of the
circumstances of its “birth” and the traits it acquires across its lifetime. We’ll wrap up
this chapter with some further exploration along these important lines.

3.8 Nature vs. nurture in Ruby objects
The relation between classes and their instances is essentially a relation between the
general and the specific—a familiar pattern from the world at large. We’re used to
seeing the animal kingdom in general/specific terms, and likewise everything from
musical instruments to university departments to library shelving systems to panthe-
ons of gods.

 To the extent that a programming language helps you model the real world (or,
conversely, that the real world supplies you with ways to organize your programs), you
could do worse than to rely heavily on the general-to-specific relationship. As you can
see, inheritance—the superclass-to-subclass relationship—mirrors the general/spe-
cific ratio closely. Moreover, if you hang out in object-oriented circles, you’ll
pick up some shorthand for this relationship: the phrase is a. If, say, Ezine inherits
from Magazine, we say that “an e-zine is a magazine.” Similarly, a Magazine object is a
Publication, if Magazine inherits from Publication.

 Ruby lets you model this way. You can get a lot of mileage out of thinking through
your domain as a cascaded, inheritance-based chart of objects. Ruby even provides an
is_a? method that tells you whether an object has a given class either as its class or as
one of its class’s ancestral classes:

Uses << to add new element
to an existing array

93Nature vs. nurture in Ruby objects
>> mag = Magazine.new
=> #<Magazine:0x36289c>
>> mag.is_a?(Magazine)
=> true
>> mag.is_a?(Publication)
=> true

Organizing classes into family trees of related entities, with each generation a little
more specific than the last, can confer a pleasing sense of order and determinism on
your program’s landscape.

 But Ruby objects (unlike objects in some other object-oriented languages) can be
individually modified. An instance of a given class isn’t stuck with only the behaviors
and traits that its class has conferred upon it. You can always add methods on a per-
object basis, as you’ve seen in numerous examples. Furthermore, classes can change.
It’s possible for an object to gain capabilities—methods—during its lifetime, if its class
or an ancestral class acquires new instance methods.

 In languages where you can’t add methods to individual objects or to classes that
have already been written, an object’s class (and the superclass of that class, and so
forth) tells you everything you need to know about the object. If the object is an
instance of Magazine, and you’re familiar with the methods provided by the class Mag-
azine for the use of its instances, you know exactly how the object behaves.

 But in Ruby the behavior or capabilities of an object can deviate from those sup-
plied by its class. We can make a magazine sprout wings:

mag = Magazine.new
def mag.wings
 puts "Look! I can fly!"
end
mag.wings

This demonstrates that the capabilities the object was born with aren’t necessarily the
whole story.

 Thus the inheritance tree—the upward cascade of class to superclass and super-
superclass—isn’t the only determinant of an object’s behavior. If you want to know
what a brand-new magazine object does, look at the methods in the Magazine class
and its ancestors. If you want to know what a magazine object can do later, you have to
know what’s happened to the object since its creation. (respond_to?—the method
that lets you determine in advance whether an object knows how to handle a particu-
lar method—can come in handy.)

 Ruby objects are tremendously flexible and dynamic. That flexibility translates into
programmer power: you can make magazines fly, make cows tell you who published
them, and all the rest of it. As these silly examples make clear, the power implies
responsibility. When you make changes to an individual object—when you add meth-
ods to that object, and that object alone—you must have a good reason.

 Most Ruby programmers are conservative in this area. You’ll see less adding of
methods to individual objects than you might expect. The most common use case for

Output: Look! I can fly!

94 CHAPTER 3 Organizing objects with classes
adding methods directly to objects is the adding of class methods to class objects. The
vast majority of singleton-style method definitions you’ll see (def some_object
.some_method) will be class-method definitions. Adding methods to other objects
(magazines, tickets, cows, and so on) is also possible—but you have to do it carefully
and selectively, and with the design of the program in mind.

 In most cases, object individuation (the subject of the entirety of chapter 13, by the
way) has to do with dynamically determined conditions at runtime; for example, you
might add accessor methods to objects to match the names of database columns that
you don’t know until the program is running and you’ve queried the database. Or you
might have a library of special methods that you’ve written for string objects, and that
you want only certain strings to have access to. Ruby frees you to do these things,
because an object’s class is only part of the story—its nature, you might say, as opposed
to its nurture.

 And there’s another piece to the puzzle: modules, a Ruby construct you’ve seen
mentioned here several times in passing, which you’ll meet up close and in depth in
the next chapter.

Summary
In this chapter, you learned the basics of Ruby classes:

 How writing a class and then creating instances of that class allows you to share
behaviors among numerous objects.

 How to use setter and getter methods, either written out or automatically cre-
ated with the attr_* family of methods, to create object attributes, which store
an object’s state in instance variables.

 As objects, classes can have methods added to them on a per-object basis—such
methods being commonly known as class methods, and providing general util-
ity functionality connected with the class.

 Ruby constants are a special kind of identifier usually residing inside class (or
module) definitions.

 Inheritance is a class-to-class relationship between a superclass and one or more
subclasses, and all Ruby objects have a common ancestry in the Object and
BasicObject classes.

 The superclass/subclass structure can lend itself to modeling entities in a
strictly hierarchical, taxonomical way, but the dynamic qualities of Ruby objects
(including class objects) can offer less strictly determined ways of thinking
about objects and how their behaviors might unfold over the course of their
lives.

This look at classes gives you a firm foundation for understanding how objects come
into being and relate to each other in Ruby. Next, we’ll build on that foundation by
looking at modules, the other important building block of the object system.

Modules and program
organization
This chapter will introduce you to a Ruby construct that’s closely related to classes:
modules. As their name suggests, modules encourage modular design: program
design that breaks large components into smaller ones and lets you mix and match
object behaviors.

 Like classes, modules are bundles of methods and constants. Unlike classes,
modules don’t have instances; instead, you specify that you want to add the func-
tionality of a particular module to that of a class or of a specific object.

 It’s no accident that modules are similar in many respects to classes: the Class
class is a subclass of the Module class, so every class object is also a module object.

This chapter covers
 Encapsulation of behavior in modules

 Modular extension of classes

 The object method-lookup path

 Handling method-lookup failure

 Establishing namespaces with modules and
nesting
95

96 CHAPTER 4 Modules and program organization
We discussed classes first because Ruby is object-centric and objects are instances of
classes. But you could say that modules are the more basic structure, and classes are
just a specialization. The bottom line is that they’re both part of Ruby, and both are
available to you as you design your programs and model your data.

 Looking at modules takes us further along some paths we partially walked in the
previous chapter:

 You saw that all objects descend from Object; here, you’ll meet the Kernel
module that contains the majority of the methods common to all objects.

 You learned that objects seek their methods in both class and superclass, all the
way up the inheritance tree; in this chapter, we’ll look in considerable detail at
how this method-lookup process works when both classes and modules are
involved.

4.1 Basics of module creation and use
Writing a module is similar to writing a class, except you start your definition with the
module keyword instead of the class keyword:

module MyFirstModule
 def ruby_version
 system("ruby -v")
 end
end

When you write a class, you then create instances of the class. Those instances can exe-
cute the class’s instance methods. In contrast, modules don’t have instances. Instead,
modules get mixed in to classes, using the include method or the prepend method. A
module “mixed in” in this manner is sometimes referred to as a “mix-in.” The result of
mixing in a module is that instances of the class have access to the instance methods
defined in the module.

 For example, using the little module from the previous example, you can go on to
do this:

class ModuleTester
 include MyFirstModule
end
mt = ModuleTester.new
mt.ruby_version

The ModuleTester object calls the appropriate method (ruby_version) and outputs
ruby 2.5.1 (2018-03-29 revision 63029) [x86_64-linux] (or something simi-
lar). Notice that ruby_version isn’t defined in the class of which the object is an
instance. Instead, it’s defined in a module that the class mixes in.

 The mix-in operation in this example is achieved with the call to include. Mixing
in a module bears a strong resemblance to inheriting from a superclass. If, say, class B
inherits from class A, instances of class B can call instance methods of class A. And if,
say, class C mixes in module M, instances of class C can call instance methods of module

97Basics of module creation and use
M. In both cases, the instances of the class at the bottom of the list reap the benefits:
they get to call not only their own class’s instances methods, but also those of (in one
case) a superclass or (in the other case) a mixed-in module.

 The main difference between inheriting from a class and mixing in a module is
that you can mix in more than one module. No class can inherit from more than one
class. In cases where you want numerous extra behaviors for a class’s instances—and
you don’t want to stash them all in the class’s superclass and its ancestral classes—you
can use modules to organize your code in a more granular way. Each module can add
something different to the methods available through the class. (We’ll explore the
mix-in versus inheritance choice further in section 4.4.1.)

 Modules open up lots of possibilities—particularly for sharing code among more
than one class, because any number of classes can mix in the same module. We’ll look
next at some further examples, and you’ll get a sense of the possibilities.

4.1.1 A module encapsulating “stacklikeness”

Modules give you a way to collect and encapsulate behaviors. A typical module con-
tains methods connected to a particular subset of what will be, eventually, the full
capabilities of an object.

 By way of fleshing out this statement, we’ll write a module that encapsulates the
characteristic of being like a stack, or stacklikeness. We’ll then use that module to
impart stacklike behaviors to objects, via the process of mixing the stacklike module
into one or more classes.

 As you may know from previous studies, a stack is a data structure that operates on
the last in, first out (LIFO) principle. The classic example is a (physical) stack of
plates. The first plate to be used is the last one placed on the stack. Stacks are usually
discussed alongside queues, which exhibit first in, first out (FIFO) behavior. Think of
a cafeteria: the plates are in a stack; the customers are in a queue.

 Numerous items behave in a stacklike, LIFO manner. The last sheet of printer
paper you put in the tray is the first one printed on. Double-parked cars have to leave
in an order that’s the opposite of the order of their arrival. The quality of being stack-
like can manifest itself in a wide variety of collections and aggregations of entities.

 That’s where modules come in. When you’re designing a program and you identify
a behavior or set of behaviors that may be exhibited by more than one kind of entity
or object, you’ve found a good candidate for a module. Stacklikeness fits the bill:
more than one entity, and therefore imaginably more than one class, exhibit stacklike
behavior. By creating a module that defines methods that all stacklike objects have in
common, you give yourself a way to summon stacklikeness into any and all classes that
need it.

 The following listing shows a simple implementation of stacklikeness in Ruby module
form. Save this listing to a file called stacklike.rb; you’ll load this file in later examples.

98 CHAPTER 4 Modules and program organization

module Stacklike
 def stack
 @stack ||= []
 end
 def add_to_stack(obj)
 stack.push(obj)
 end
 def take_from_stack
 stack.pop
 end
end

The Stacklike module in this listing uses an array (an ordered collection of objects)
to represent the stack. The array is preserved in the instance variable @stack and
made accessible through the method stack B. That method uses a common tech-
nique for conditionally setting a variable: the ||= (or-equals) operator. The effect of
this operator is to set the variable to the specified value—which in this case is a new,
empty array—if and only if the variable isn’t already set to something other than nil
or false. In practical terms, this means that the first time stack is called, it will set
@stack to an empty array, whereas on subsequent calls it will see that @stack already
has a value and will simply return that value (the array).

When an object is added to the stack C, the operation is handled by pushing the
object onto the @stack array—that is, adding it to the end. (@stack is accessed
through a call to the stack method, which ensures that it will be initialized to an
empty array the first time an object is added.) Removing an object from the stack D
involves popping an element from the array—that is, removing it from the end. (push

Listing 4.1 Stacklike module, encapsulating stacklike structure and behavior

B

C

D

Ruby’s shortcut operators
In addition to or-equals, Ruby has another family of shortcut operators, similar in
appearance to ||= but engineered a little differently. These operators expand to calls
to an underlying method. A common one is the += operator; the expression a += 1 is
equivalent to a = a + 1. Other members of this shortcut family include -=, *=, /=, **=
(raise to a power), &= (bitwise AND), |= (bitwise OR), ^= (bitwise EXCLUSIVE OR), %=
(modulo), and a (rarely used) and-equals operator (&&=) that works similarly to or-
equals. Thus a -= 1 means a = a - 1, a *= 10 means a = a * 10, and so forth.

Each of these method-wrapping operators works with any object that has the relevant
underlying method, including instances of your own classes. If you define a + method,
for example, you can use the x += y syntax on an instance of your class (x), and the
expression will be automatically expanded to x = x + y. And that, in turn, is just syn-
tactic sugar for x = x.+(y), a call to the + method.

You’ll meet these shortcut techniques “officially” in chapter 7. Meanwhile, by all
means try them out in irb.

99Basics of module creation and use
and pop are instance methods of the Array class. You’ll see them again when we look
at container objects, including arrays, in chapter 10.)

 The module Stacklike thus implements stacklikeness by selectively deploying
behaviors that already exist for Array objects: add an element to the end of the array,
take an element off the end. Arrays are more versatile than stacks; a stack can’t do
everything an array can. For example, you can remove elements from an array in any
order, whereas by definition the only element you can remove from a stack is the one
that was added most recently. But an array can do everything a stack can. As long as we
don’t ask it to do anything unstacklike, using an array as a kind of agent or proxy for
the specifically stacklike add/remove actions makes sense.

 We now have a module that implements stacklike behavior: maintaining a list of
items, such that new ones can be added to the end and the most recently added one
can be removed. The next question is, what can we do with this module?

4.1.2 Mixing a module into a class

As you’ve seen, modules don’t have instances, so you can’t do this:

s = Stacklike.new

To create instances (objects), you need a class, and to make those objects stacklike,
you’ll need to mix the Stacklike module into that class. But what class? The most
obviously stacklike thing is probably a Stack. Save the code in the following listing to
stack.rb, in the same directory as stacklike.rb.

require_relative "stacklike"
class Stack
 include Stacklike
end

The business end of the Stack class in this listing is the include statement B, which
has the effect of mixing in the Stacklike module. It ensures that instances of Stack
exhibit the behaviors defined in Stacklike.

Listing 4.2 Mixing the Stacklike module into the Stack class

Wrong! No such method.

B

Syntax of require/load vs. syntax of include
You may have noticed that when you use require or load, you put the name of the
item you’re requiring or loading in quotation marks; but with include, extend, and
prepend, you don’t. That’s because require and load take strings as their argu-
ments, whereas include takes the name of a module in the form of a constant. More
fundamentally, it’s because require and load are locating and loading disk files,
whereas include, extend, and prepend perform a program-space, in-memory oper-
ation that has nothing to do with files. It’s a common sequence to require a file and
then include a module that the feature defines. The two operations thus often go
together, but they’re completely different from each other.

100 CHAPTER 4 Modules and program organization
Notice that our class’s name is a noun, whereas the module’s name is an adjective.
Neither of these practices is mandatory, but they’re both common. Rubyists often use
adjectives for module names to reinforce the notion that the module defines a behav-
ior. What we end up with, expressed in everyday language, is a kind of predicate on
the class: Stack objects are stacklike. That’s English for

class Stack
 include Stacklike
end

To see the whole thing in action, let’s create a Stack object and put it through its
paces. The code in the next listing creates a Stack object and performs some opera-
tions on it; you can enter this code at the end of your stack.rb file.

s = Stack.new
s.add_to_stack("item one")
s.add_to_stack("item two")
s.add_to_stack("item three")
puts "Objects currently on the stack:"
puts s.stack
taken = s.take_from_stack
puts "Removed this object:"
puts taken
puts "Now on stack:"
puts s.stack

This listing starts with the innocent-looking (but powerful) instantiation B of a new
Stack object, which is assigned to the variable s. That Stack object is born with the
knowledge of what to do when we ask it to perform stack-related actions, thanks to the
fact that its class mixed in the Stacklike module. The rest of the code involves asking
it to jump through some stacklike hoops: adding items (strings) to itself C and pop-
ping the last one off itself D. Along the way, we ask the object to report on its state.

 Now, let’s run the program. Here’s an invocation of stack.rb, together with the out-
put from the run:

$ ruby stack.rb
Objects currently on the stack:
item one
item two
item three
Removed this object:
item three
Now on stack:
item one
item two

Sure enough, our little Stack object knows what to do. It is, as advertised, stacklike.
 The Stack class is fine as far as it goes. But it may leave you wondering: why did we

bother writing a module? It would be possible, after all, to pack all the functionality of

Listing 4.3 Creating and using an instance of class Stack

B
C

Calling puts on an array calls puts
on each array element in turn.D

101Basics of module creation and use
the Stacklike module directly in the Stack class without writing a module. The fol-
lowing listing shows what the class would look like.

class Stack
 attr_reader :stack
 def initialize
 @stack = []
 end
 def add_to_stack(obj)
 @stack.push(obj)
 end
 def take_from_stack
 @stack.pop
 end
end

As you’ll see if you add the code in listing 4.3 to listing 4.4 and run it all through Ruby,
it produces the same results as the implementation that uses a module.

 Before you conclude that modules are pointless, remember what the modulariza-
tion buys you: it lets you apply a general concept like stacklikeness to several cases, not
just one. So what else is stacklike?

4.1.3 Using the module further

A few examples came up earlier: plates, printer paper, and so forth. Let’s use a new
one, borrowed from the world of urban legend.

 Lots of people believe that if you’re the first passenger to check in for a flight, your
luggage will be the last off the plane. Real-world experience suggests that it doesn’t
work this way. Still, for stack practice, let’s see what a Ruby model of an urban-
legendly-correct cargo hold would look like.

 To model it reasonably closely, we’ll define the following:

 A barebones Suitcase class: a placeholder (or stub) that lets us create suitcase
objects to fling into the cargo hold.

 A CargoHold class with two methods: load_and_report and unload.
– load_and_report prints a message reporting that it’s adding a suitcase to the

cargo hold, and it gives us the suitcase object’s ID number, which will help us
trace what happens to each suitcase.

– unload calls take_from_stack. We could call take_from_stack directly, but
unload sounds more like a term you might use to describe removing a suit-
case from a cargo hold.

Put the code in the next listing into cargohold.rb, and run it.

Listing 4.4 Nonmodular rewrite of the Stack class

Constructor method: @stack
cannot yet have been initialized, so
it’s set using = rather than ||=.

102 CHAPTER 4 Modules and program organization

require_relative "stacklike"

class Suitcase
end
class CargoHold
 include Stacklike
 def load_and_report(obj)
 print "Loading object "
 puts obj.object_id
 add_to_stack(obj)
 end
 def unload
 take_from_stack
 end
end
ch = CargoHold.new
sc1 = Suitcase.new
sc2 = Suitcase.new
sc3 = Suitcase.new
ch.load_and_report(sc1)
ch.load_and_report(sc2)
ch.load_and_report(sc3)
first_unloaded = ch.unload
print "The first suitcase off the plane is...."
puts first_unloaded.object_id

At its heart, the program in this listing isn’t that different from those in listings 4.2
and 4.3 (which you saved incrementally to stack.rb). It follows much the same proce-
dure: mixing Stacklike into a class B, creating an instance of that class F, and add-
ing items to D and removing them from E that instance (the stacklike thing—the
cargo hold, in this case). It also does some reporting of the current state of the stack

C, as the other program did.
 The output from the cargo-hold program looks like this (remember that suitcases

are referred to by their object ID numbers, which may be different on your system):

Loading object 1001880
Loading object 1001860
Loading object 1001850
The first suitcase off the plane is....1001850

The cargo-hold example shows how you can use an existing module for a new class.
Sometimes it pays to wrap the methods in new methods with better names for the new
domain (like unload instead of take_from_stack), although if you find yourself
changing too much, it may be a sign that the module isn’t a good fit.

 In the next section, we’ll put together several of the pieces we’ve looked at more or
less separately: method calls (message sending), objects and their status as instances of
classes, and the mixing of modules into classes. All these concepts come together in
the process by which an object, upon being sent a message, looks for and finds (or
fails to find) a method to execute whose name matches the message.

Listing 4.5 Using the Stacklike module a second time, for a different class

B
C

D

E

F

103Modules, classes, and method lookup
4.2 Modules, classes, and method lookup
You already know that when an object receives a message, the intended (and usual)
result is the execution of a method with the same name as the message in the object’s
class or that class’s superclass—and onward, up to the Object or even BasicObject
class—or in a module that has been mixed into any of those classes. But how does this
come about? And what happens in ambiguous cases—for example, if a class and a
mixed-in module both define a method with a given name? Which one does the
object choose to execute?

 It pays to answer these questions precisely. Imprecise accounts of what happens are
easy to come by. Sometimes they’re even adequate: if you say, “This object has a push
method,” you may succeed in communicating what you’re trying to communicate,
even though objects don’t “have” methods but, rather, find them by searching classes
and modules.

 But an imprecise account won’t scale. It won’t help you understand what’s going
on in more complex cases, and it won’t support you when you’re designing your own
code. Your best course of action is to learn what really happens when you send mes-
sages to objects. Fortunately, the way it works turns out to be straightforward.

4.2.1 Illustrating the basics of method lookup

In the interest of working toward a clear understanding of how objects find methods,
let’s backpedal on the real-world references and, instead, write some classes and mod-
ules with simple names like C and M. Doing so will help you concentrate on the logic
and mechanics of method lookup without having to think simultaneously about mod-
eling a real-world domain. We’ll also write some methods that don’t do anything

Domain language and object-oriented design
The unload method of our CargoHold class merely calls a method on the Stacklike
module. If that’s the case, why would we go through the trouble of defining a new
method? By now you know that Ruby is an object-oriented language. The practice of
arranging objects that talk to one another in a complete program is called object-
oriented design.

Thus far we’ve explored this concept in terms of how objects communicate with one
another. In this case, we’re designing the CargoHold class so that it communicates
information to the programmer. When designing objects, it’s important to consider
the next programmer to read our programs (even if that programmer is our future
selves). In this case, defining a method named unload makes for a more readable
CargoHold object because it fits with the domain language of a CargoHold. Even in
this relatively simple example, the unload method call communicates more effec-
tively the behavior of the CargoHold and allows the programmer to understand the
purpose of the object without diving into the implementation details.

104 CHAPTER 4 Modules and program organization
except print a message announcing that they’ve been called. This will help track the
order of method lookup.

 Look at the program in the following listing.

module M
 def report
 puts "'report' method in module M"
 end
end
class C
 include M
end
class D < C
end
obj = D.new
obj.report

The instance method report is defined in module M. Module M is mixed into class C.
Class D is a subclass of C, and obj is an instance of D. Through this cascade, the object
(obj) gets access to the report method.

 Still, gets access to a method, like has a method, is a vague way to put it. Let’s try to
get more of a fix on the process by considering an object’s-eye view of it.

AN OBJECT’S-EYE VIEW OF METHOD LOOKUP

You’re the object, and someone sends you a message. You have to figure out how to
respond to it—or whether you even can respond to it. Here’s a bit of object stream-of-
consciousness:

 I’m a Ruby object, and I’ve been sent the message 'report'. I have to try to find a
method called report in my method-lookup path. report, if it exists, resides in a
class or module. I’m an instance of a class called D. Does class D define an instance
method report?
 No.
 Does D mix in any modules?
 No.
 Does D’s superclass, C, define a report instance method?
 No.
 Does C mix in any modules?
 Yes, M.
 Does M define a report method?
 Yes.
 Good! I’ll execute that method.

The search ends when the method being searched for is found, or with an error con-
dition if it isn’t found. The error condition is triggered by a special method called
method_missing, which gets called as a last resort for otherwise unmatched messages.

Listing 4.6 Demonstration of module inclusion and inheritance

105Modules, classes, and method lookup
You can override method_missing (that is, define it anew in one of your own classes or
modules) to define custom behavior for such messages, as you’ll see in detail in sec-
tion 4.3.

 Let’s move now from object stream-of-consciousness to specifics about the method-
lookup scenario, and in particular the question of how far it can go.

HOW FAR DOES THE METHOD SEARCH GO?
Ultimately, every object in Ruby is an instance of some class descended from the big
class in the sky: BasicObject. However many classes and modules it may cross along
the way, the search for a method can always go as far up as BasicObject. But recall
that the whole point of BasicObject is that it has few instance methods. Getting to
know BasicObject doesn’t tell you much about the bulk of the methods that all Ruby
objects share.

 If you want to understand the common behavior and functionality of all Ruby
objects, you have to descend from the clouds and look at Object rather than Basic-
Object. More precisely, you have to look at Kernel, a module that Object mixes in.
It’s in Kernel (as its name suggests) that most of Ruby’s fundamental methods are
defined. And because Object mixes in Kernel, all instances of Object and all descen-
dants of Object have access to the instance methods in Kernel.

 Suppose you’re an object, and you’re trying to find a method to execute based on
a message you’ve received. If you’ve looked all the way up the object chain to Kernel
and BasicObject and you haven’t found it, you’re not going to. (It’s possible to mix
modules into BasicObject, thus providing all objects with a further potential source
of methods. It’s hard to think of a case where you’d do this, though.)

 Figure 4.1 illustrates the method search path from our earlier example (the class D
object) all the way up the ladder. In the example, the search for the method succeeds
at module M; the figure shows how far the object would look if it didn’t find the
method there. When the message x is sent to the object, the method search begins,
hitting the various classes and mix-ins (modules), as shown by the arrows.

 The internal definitions of BasicObject, Object, and Kernel are written in the C
language. But you can get a reasonable handle on how they interact by looking at a
Ruby mockup of their relations:

class BasicObject
 # a scant eight method definitions go here
end
module Kernel
 # about 50 method definitions go here!
end
class Object < BasicObject
 # one or two private methods go here,
 # but the main point is to mix in the Kernel module
 include Kernel
end

106 CHAPTER 4 Modules and program organization
Object is a subclass of BasicObject. Every class that doesn’t have an explicit super-
class is a subclass of Object. You can see evidence of this default in irb:

>> class C
>> end
=> nil
>> C.superclass
=> Object

Every class has Object—and therefore Kernel and BasicObject—among its ances-
tors. Of course, there’s still the paradox that BasicObject is an Object, and Object is
a Class, and Class is an Object. But as you saw earlier, a bit of circularity in the class
model serves to jump-start the hierarchy; and once set in motion, it operates logically
and cleanly.

4.2.2 Defining the same method more than once

You learned in chapter 3 that if you define a method twice inside the same class, the
second definition takes precedence over the first. The same is true of modules. The
rule comes down to this: there can be only one method of a given name per class or
module at any given time. If you have a method called calculate_interest in your
BankAccount class and you write a second method called calculate_interest in the
same class, the class forgets all about the first version of the method.

class Object
 (built-in)
 include Kernel

module Kernel
(built-in)

class D < C
 include M
end

class BasicObject
 (built-in)

class C
end

object = D.new
object.x

module M
 def x
 end
end

Figure 4.1 An instance of class D looks for
method x in its method search path.

107Modules, classes, and method lookup
 That’s how classes and modules keep house. But when we flip to an object’s-eye
view, the question of having access to two or more methods with the same name
becomes more involved.

 An object’s methods can come from any number of classes and modules. True, any
one class or module can have only one calculate_interest method (to use that
name as an example). But an object can have multiple calculate_interest methods
in its method-lookup path, because the method-lookup path passes through multiple
classes or modules.

 Still, the rule for objects is analogous to the rule for classes and modules: an object
can see only one version of a method with a given name at any given time. If the
object’s method-lookup path includes two or more same-named methods, the first
one encountered is the “winner” and is executed.

 The next listing shows a case where two versions of a method lie on an object’s
method-lookup path: one in the object’s class, and one in a module mixed in by that
class.

module InterestBearing
 def calculate_interest
 puts "Placeholder! We're in module InterestBearing."
 end
end
class BankAccount
 include InterestBearing
 def calculate_interest
 puts "Placeholder! We're in class BankAccount."
 puts "And we're overriding the calculate_interest method..."
 puts "which was defined in the InterestBearing module."
 end
end
account = BankAccount.new
account.calculate_interest

When you run this listing, you get the following output:

Placeholder! We're in class BankAccount.
And we're overriding the calculate_interest method...
which was defined in the InterestBearing module.

Two calculate_interest methods lie on the method-lookup path of object account.
But the lookup hits the class BankAccount (account’s class) before it hits the module
InterestBearing (a mix-in of class BankAccount). Therefore, the report method it
executes is the one defined in BankAccount.

 Care should be taken to avoid same-named methods, as shown here, unless neces-
sary. Though it’s possible to construct valid syntax, the resulting program could be
confusing to read. But sometimes the treatment is warranted, as described next.

 An object may have two methods with the same name on its method-lookup path
in another circumstance: when a class mixes in two or more modules and more than

Listing 4.7 Two same-named methods on a single search path

108 CHAPTER 4 Modules and program organization
one implements the method being searched for. In such a case, the modules are
searched in reverse order of inclusion—that is, the most recently mixed-in module is
searched first. If the most recently mixed-in module happens to contain a method
with the same name as a method in a module that was mixed in earlier, the version of
the method in the newly mixed-in module takes precedence, because the newer mod-
ule is closer on the object’s method-lookup path.

 For example, consider a case where two modules, M and N (we’ll keep this example
relatively schematic), both define a report method and are both mixed into a class, C.

module M
 def report
 puts "'report' method in module M"
 end
end
module N
 def report
 puts "'report' method in module N"
 end
end
class C
 include M
 include N
end

What does an instance of this class do when you send it the “report” message and it
walks the lookup path, looking for a matching method? Let’s ask it:

c = C.new
c.report

The answer is "'report' method in module N". The first report method encountered
in c’s method-lookup path is the one in the most recently mixed-in module. In this case,
that means N—so N’s report method wins over M’s method of the same name. To this
should be added the observation that including a module more than once has no
effect.

INCLUDING A MODULE MORE THAN ONCE

Look at this example, which is based on the previous example—but this time we
include M a second time, after N:

class C
 include M
 include N
 include M
end

You might expect that when you run the report method, you’ll get M’s version,
because M was the most recently included module. But reincluding a module doesn’t

Listing 4.8 Mixing in two modules with a same-named method defined

109Modules, classes, and method lookup
do anything. Because M already lies on the search path, the second include M instruc-
tion has no effect. N is still considered the most recently included module:

c = C.new
c.report

In short, you can manipulate the method-lookup paths of your objects, but only up to
a point.

 In all the examples so far, we’ve been using include to mix in modules. It’s time to
bring prepend back into the discussion.

4.2.3 How prepend works

Every time you include a module in a class, you’re affecting what happens when
instances of that class have to resolve messages into method names. The same is true
of prepend. The difference is that if you prepend a module to a class, the object looks
in that module first, before it looks in the class.

 Here’s an example:

module MeFirst
 def report
 puts "Hello from module!"
 end
end
class Person
 prepend MeFirst
 def report
 puts "Hello from class!"
 end
end
p = Person.new
p.report

The output is "Hello from module!" Why? Because we have prepended the MeFirst
module to the class. That means that the instance of the class will look in the module
first when it’s trying to find a method called report. If we’d used include, the class
would be searched before the module and the class’s version of report would “win.”

 You can see the difference between include and prepend reflected both in figure
4.2 (appearing shortly) and in the list of a class’s ancestors—which means all the
classes and modules where an instance of the class will search for methods, listed in
order. Here are the ancestors of the Person class from the last example, in irb:

> Person.ancestors
=> [MeFirst, Person, Object, Kernel, BasicObject]

Now modify the example to use include instead of prepend. Two things happen. First,
the output changes:

Hello from class!

Output: ‘report’ method in module N

110 CHAPTER 4 Modules and program organization
Second, the order of the ancestors changes:

> Person.ancestors
=> [Person, MeFirst, Object, Kernel, BasicObject]

(Of course, the name MeFirst ceases to make sense, but you get the general idea.)
 You can use prepend when you want a module’s version of one or more methods to

take precedence over the versions defined in a given class.

4.2.4 How extend works

extend is yet another way of mixing a module into a class. The difference between
include and extend is in how these keywords make the module’s methods available.
As you’ve seen, include will make a module’s methods available as instance methods.
extend, on the other hand, will make a module’s methods available as class methods.

 Let’s reexamine the Temperature class from chapter 3. You’ll recall we built two
class methods for converting the temperature:

class Temperature
 def Temperature.c2f(celsius)
 celsius * 9.0 / 5 + 32
 end
 def Temperature.f2c(fahrenheit)
 (Fahrenheit - 32) * 5 / 9.0
 end
end

Now imagine a system that uses different types of thermometers to give a temperature
reading. In such a system the Temperature class may work better as a module called
Convertible:

module Convertible
 def c2f(celsius)
 celsius * 9.0 / 5 + 32
 end
 def f2c(fahrenheit)
 (fahrenheit - 32) * 5 / 9.0
 end
end

Notice that we don’t create class methods here. This is achieved by the extend key-
word:

class Thermometer
 extend Convertible
end

We’ve mixed Convertible into our Thermometer class using extend. We can now use
the Convertible methods as class methods rather than instance methods:

> puts Temperature.c2f(100)
=> 212.0
> puts Temperature.f2c(212)
=> 100.0

111Modules, classes, and method lookup
Note that extending Thermometer with the Convertible module doesn’t add it to
Thermometer’s ancestor chain. In this way, extend differs from prepend and include:

> Thermometer.ancestors
=> [Thermometer, Object, Kernel, BasicObject]

Although include is the most popular method for mixing in modules, it’s important
to know and understand the options available to you as you design your own systems.

4.2.5 The rules of method lookup summarized

The basic rules governing method lookup and the ordering of the method search
path in Ruby are illustrated in figure 4.2.

To resolve a message into a method, an object looks for the method in this order:

1 Modules prepended to its class, in reverse order of prepending
2 Its class
3 Modules included in its class, in reverse order of inclusion

class Object
 (built-in)
 include Kernel

module Kernel
(built-in)

class C
 prepend P
 include M
end

class BasicObject
 (built-in)

class D < C
end

object = D.new
object.x

module P
end

module M
end

Figure 4.2 An instance of class D looks for method x in its method search path across both
included and prepended modules.

112 CHAPTER 4 Modules and program organization
4 Modules prepended to its superclass
5 Its class’s superclass
6 Modules included in its superclass

A message is likewise traced up to Object (and its mix-in Kernel) and BasicObject.
 Note in particular the point that modules are searched for methods in reverse

order of prepending or inclusion. That ensures predictable behavior in the event that
a class mixes in two modules that define the same method.

A somewhat specialized but useful and common technique is available for navigating
the lookup path explicitly: the keyword super.

4.2.6 Going up the method search path with super

Inside the body of a method definition, you can use the super keyword to jump up to
the next-highest definition in the method-lookup path of the method you’re currently
executing.

 The following listing shows a basic example (after which we’ll get to the “Why
would you do that?” aspect).

module M
 def report
 puts "'report' method in module M"
 end
end
class C
 include M
 def report
 puts "'report' method in class C"
 puts "About to trigger the next higher-up report method..."
 super
 puts "Back from the 'super' call."
 end
end
c = C.new
c.report

Listing 4.9 Using the super keyword to reach up one level in the lookup path

What about singleton methods?
You’re familiar from chapter 3 with the singleton method—a method defined directly
on an object (def obj.talk)—and you may wonder where in the method-lookup path
singleton methods lie. The answer is that they lie in a special class, created for the
sole purpose of containing them: the object’s singleton class. We’ll look at singleton
classes in detail later in the book, at which point we’ll slot them into the method-
lookup model.

B

C

D

E

113Modules, classes, and method lookup
The output from running listing 4.9 is as follows:

'report' method in class C
About to trigger the next higher-up report method...
'report' method in module M
Back from the 'super' call.

An instance of C (namely, c) receives the 'report' message E. The method-lookup
process starts with c’s class (C)—and, sure enough, there’s a report method C. That
method is executed.

 Inside the method is a call to super D. That means even though the object found
a method corresponding to the message ('report'), it must keep looking and find
the next match. The next match for report, in this case, is the report method
defined in module M B.

 Note that M#report would have been the first match in a search for a report
method if C#report didn’t exist. The super keyword gives you a way to call what would
have been the applicable version of a method in cases where that method has been
overridden later in the lookup path. Why would you want to do this?

 Sometimes, particularly when you’re writing a subclass, a method in an existing
class does almost but not quite what you want. With super, you can have the best of
both worlds by hooking into or wrapping the original method.

class Bicycle
 attr_reader :gears, :wheels, :seats
 def initialize(gears = 1)
 @wheels = 2
 @seats = 1
 @gears = gears
 end
end
class Tandem < Bicycle
 def initialize(gears)
 super
 @seats = 2
 end
end

super provides a clean way to make a tandem almost like a bicycle. We change only
what needs to be changed (the number of seats C), and super triggers the earlier
initialize method B, which sets bicycle-like default values for the other properties
of the tandem.

 When we call super, we don’t explicitly forward the gears argument that’s passed
to initialize. Yet when the original initialize method in Bicycle is called, any
arguments provided to the Tandem version are visible. This is a special behavior of
super. The way super handles arguments is as follows:

Listing 4.10 Using super to wrap a method in a subclass

B

C

114 CHAPTER 4 Modules and program organization
 Called with no argument list (empty or otherwise), super automatically for-
wards the arguments that were passed to the method from which it’s called.

 Called with an empty argument list—super()—super sends no arguments to
the higher-up method, even if arguments were passed to the current method.

 Called with specific arguments—super(a,b,c)—super sends exactly those
arguments.

This unusual treatment of arguments exists because the most common case is the first
one, where you want to bump up to the next-higher method with the same arguments
as those received by the method from which super is being called. That case is given
the simplest syntax—you just type super. (And because super is a keyword rather than
a method, it can be engineered to provide this special behavior.)

4.2.7 Inspecting method hierarchies with method and super_method

We’ve just seen how the super keyword tells an object to search for and execute an
identically named method defined in the object’s namespace. Ruby gives us tools to
inspect this namespace and determine if a super method exists.

 Let’s add a rent method to our Bicycle and Tandem classes.

class Bicycle
 attr_reader :gears, :wheels, :seats
 def initialize(gears = 1)
 @wheels = 2
 @seats = 1
 @gears = gears
 end
 def rent
 puts "Sorry but this model is sold out."
 end
end
class Tandem < Bicycle
 def initialize(gears)
 super
 @seats = 2
 end
 def rent
 puts "This bike is available!"
 end
end

As defined in the Bicycle class, rent prints a message stating that the bicycle is sold
out B. In the Tandem subclass, rent prints a message stating that the bicycle is avail-
able C. We can use the method method to return an instance of the methods:

> t = Tandem.new(1)
=> #<Tandem:0x0000561aa8bca8b8 @wheels=2, @seats=2, @gears=1>
> t.method(:rent)
=> #<Method: Tandem#rent>

Listing 4.11 Additional methods to illustrate method and super_method

B

C

115The method_missing method
In the same manner, super_method will return an instance of the method on the
Bicycle class:

> t.method(:rent).super_method
=> #<Method: Bicycle#rent>

Note the difference: method returns the rent method defined in Tandem, whereas
super_method returns the rent method defined in the superclass, Bicycle. We can
call the respective methods to illustrate the difference:

> t.method(:rent).call
This bike is available!
=> nil
> t.method(:rent).super_method.call
Sorry, this model is sold out.
=> nil

(You’ll learn much more about calling methods in this way in chapter 14.)
 What happens if no super method exists in the method hierarchy? Let’s call

super_method again to find out:

> t.method(:rent).super_method.super_method
=> nil

Ruby lets us know that no rent method has been defined above the Bicycle class. In
this way, we can determine how far up the object hierarchy we can go before running
out of definitions for the rent method.

 Now that you’ve seen how method lookup works, let’s consider what happens
when method lookup fails.

4.3 The method_missing method
The Kernel module provides an instance method called method_missing. This
method is executed whenever an object receives a message that it doesn’t know how to
respond to—that is, a message that doesn’t match a method anywhere in the object’s
method-lookup path:

>> o = Object.new
=> #<Object:0x0000010141bbb0>
>> o.blah
NoMethodError: undefined method `blah' for #<Object:0x0000010141bbb0>

It’s easy to intercept calls to missing methods. You override method_missing, either on
a singleton basis for the object you’re calling the method on, or in the object’s class or
one of that class’s ancestors:

>> def o.method_missing(m, *args)
>> puts "You can't call #{m} on this object; please try again."
>> end
=> :method_missing
>> o.blah
You can't call blah on this object; please try again.

B

116 CHAPTER 4 Modules and program organization
When you override method_missing, you need to imitate the method signature of the
original B. The first argument is the name of the missing method—the message that
you sent the object and that it didn’t understand. The *args parameter sponges up
any remaining arguments. (You can also add a special argument to bind to a code
block, but let’s not worry about that until we’ve looked at code blocks in more detail.)
The first argument comes to you in the form of a symbol object. If you want to exam-
ine or parse it, you need to convert it to a string.

 Even if you override method_missing, the previous definition is still available to
you via super.

4.3.1 Combining method_missing and super

It’s common to want to intercept an unrecognized message and decide, on the spot,
whether to handle it or pass it along to the original method_missing (or possibly an
intermediate version, if another one is defined). You can do this easily by using super.
Here’s an example of the typical pattern:

class Student
 def method_missing(m, *args)
 if m.to_s.start_with?("grade_for_")
 puts "You got an A in #{m.to_s.split("_").last.capitalize}!"
 else
 super
 end
 end
end

Given this code, a call to, say, grade_for_english on an instance of student leads to
the true branch of the if test and the resulting output:

"You got an A in English!"

If the missing-method name doesn’t start with grade_for, the false branch is taken,
resulting in a call to super. That call will take you to whatever the next method_miss-
ing implementation is along the object’s method-lookup path. If you haven’t overrid-
den method_missing anywhere else along the line, super will find Kernel’s
method_missing and execute that.

 Let’s look at a more extensive example of these techniques. We’ll write a Person
class. Let’s start at the top with some code that exemplifies how we want the class to be
used. We’ll then implement the class in such a way that the code works.

 The following listing shows some usage code for the Person class.

j = Person.new("John")
p = Person.new("Paul")
g = Person.new("George")
r = Person.new("Ringo")
j.has_friend(p)

Listing 4.12 Sample usage of the Person class

Converts symbol to string,
with to_s, before testing

117The method_missing method
j.has_friend(g)
g.has_friend(p)
r.has_hobby("rings")
Person.all_with_friends(p).each do |person|
 puts "#{person.name} is friends with #{p.name}"
end
Person.all_with_hobbies("rings").each do |person|
 puts "#{person.name} is into rings"
end

We’d like the output of this code to be

John is friends with Paul
George is friends with Paul
Ringo is into rings

The overall idea is that a person can have friends and/or hobbies. Furthermore, the
Person class lets us look up all people who have a given friend, or all people who have
a given hobby. The searches are accomplished with the all_with_friends and
all_with_hobbies class methods.

 The all_with_* method-name formula looks like a good candidate for handling
via method_missing. Although we’re using only two variants of it (friends and hob-
bies), it’s the kind of pattern that could extend to any number of method names. Let’s
intercept method_missing in the Person class.

 In this case, the method_missing we’re dealing with is the class method: we need to
intercept missing methods called on Person. Somewhere along the line, therefore, we
need a definition like this:

class Person
 def Person.method_missing(m, *args)
 # code here
 end
end

The method name, m, may or may not start with the substring all_with_. If it does, we
want it; if it doesn’t, we toss it back—or up—courtesy of super, and let BasicObject
#method_missing handle it. (Remember: classes are objects, and BasicObject is the
parent class of all objects, including our Person class.)

 Here’s a slightly more elaborate (but still schematic) view of method_missing:

class Person
 def Person.method_missing(m, *args)
 method = m.to_s
 if method.start_with?("all_with_")
 # Handle request here
 else
 super
 end
 end
end

Defines method directly
on the Person class

B
C

D

118 CHAPTER 4 Modules and program organization
The reason for the call to to_s B is that the method name (the message) gets handed
off to method_missing in the form of a symbol. Symbols don’t have a start_with?
method, so we must convert the symbol to a string before testing its contents.

 The conditional logic C branches on whether we’re handling an all_with_* mes-
sage. If we are, we handle it. If not, we punt with super D.

 With at least a blueprint of method_missing in place, let’s develop the rest of the
Person class. A few requirements are clear from the top-level calling code listed
earlier:

 Person objects keep track of their friends and hobbies.
 The Person class keeps track of all existing people.
 Every person has a name.

The second point is implied by the fact that we’ve already been asking the Person
class for lists of people who have certain hobbies and/or certain friends.

 The following listing contains an implementation of the parts of the Person class
that pertain to these requirements.

class Person
 PEOPLE = []
 attr_reader :name, :hobbies, :friends
 def initialize(name)
 @name = name
 @hobbies = []
 @friends = []
 PEOPLE << self
 end
 def has_hobby(hobby)
 @hobbies << hobby
 end
 def has_friend(friend)
 @friends << friend
 end

We stash all existing people in an array, held in the constant PEOPLE B. When a new
person is instantiated, that person is added to the people array, courtesy of the array-
append method << E. Meanwhile, we need some reader attributes: name, hobbies,
and friends C. Providing these attributes lets the outside world see important
aspects of the Person objects; hobbies and friends will also come in handy in the full
implementation of method_missing.

 The initialize method takes a name as its sole argument and saves it to @name. It
also initializes the hobbies and friends arrays D. These arrays come back into play in
the has_hobby and has_friend methods F, which are really just user-friendly wrap-
pers around those arrays.

 We now have enough code to finish the implementation of Person.method_missing.
Listing 4.14 shows what it looks like (including the final end delimiter for the whole

Listing 4.13 Implementation of the main logic of the Person class

B
C

D

E

F

119The method_missing method
class). We use a convenient built-in query method, public_method_defined?, which tells
us whether Person has a method with the same name as the one at the end of the
all_with_ string.

 def Person.method_missing(m, *args)
 method = m.to_s
 if method.start_with?("all_with_")
 attr = method[9..-1]
 if Person.public_method_defined?(attr)
 PEOPLE.find_all do |person|
 person.send(attr).include?(args[0])
 end
 else
 raise ArgumentError, "Can't find #{attr}"
 end
 else
 super
 end
 end
end

If we have an all_with_ message B, we want to ignore that part and capture the rest
of the string, which we can do by taking the substring that lies in the ninth through
last character positions; that’s what indexing the string with 9..-1 achieves C. (This
means starting at the tenth character, because string indexing starts at zero.) Now we
want to know whether the resulting substring corresponds to one of Person’s instance
methods—specifically, hobbies or friends. Rather than hard-code those two names,
we keep things flexible and scalable by checking whether the Person class defines a
method with our substring as its name D.

 What happens next depends on whether the search for the symbol succeeds. To
start with the second branch first, if the requested attribute doesn’t exist, we raise an
error with an appropriate message F. If it does succeed—which it will if the message is
friends or hobbies or any other attribute we added later—we get to the heart of the
matter.

 In addition to the all_with_* method name, the method call includes an argu-
ment containing the thing we’re looking for (the name of a friend or hobby, for
example). That argument is found in args[0], the first element of the argument
“sponge” array designated as *args in the argument list; the business end of this par-
ticular method_missing method is to find all people whose attr includes args[0] E.
That formula translates into, say, all people whose hobbies include music, or all peo-
ple whose friends include some particular friend.

 Note that this version of method_missing includes two conditional structures.
That’s because two things can go wrong: first, we may be handling a message that
doesn’t conform to the all_with_* pattern ("blah", for example); and second, we
may have an all_with_* request where the * part doesn’t correspond to anything that

Listing 4.14 Full implementation of Person.method_missing

B
C

D
E

F

G

120 CHAPTER 4 Modules and program organization
the Person class knows about (all_with_children, for example). We treat the second
as a fatal condition and raise an error F. If the first condition fails, it means this mes-
sage isn’t what this particular method_missing is looking for. We hand control upward
to the next-highest definition of method_missing by calling super G. Called with no
arguments, super automatically gets all the arguments that came to the current
method; thus, the bare call to super is, in this case, equivalent to super(m, *args)
(but shorter and more convenient).

NOTE We’ll look again at method_missing in chapter 15, as part of a broader
look at Ruby’s runtime hooks and callbacks, of which method_missing is only
one. (There’s also one called respond_to_missing?, which as its name
implies, is a sort of hybrid.) It’s worth having introduced method_missing
here, though, because it’s probably the most commonly used member of the
callback family, and one that you’re likely to see and hear discussed sooner
rather than later in your Ruby explorations.

You now have a good grasp of both classes and modules, as well as how individual
objects, on receiving messages, look for a matching method by traversing their
class/module family tree, and how they handle lookup failure. Next, we’ll look at what
you can do with this system—specifically, the kinds of decisions you can and should
make as to the design and naming of your classes and modules, in the interest of writ-
ing clear and comprehensible programs.

Exercise
Test how the Person class’s method_missing method handles all_with_hobbies.
When complete, entering the following code will return the given output:

e = Person.new("Eric B.")
r = Person.new("Rakim")
e.has_friend(r)
e.has_hobbby("cycling")
r.has_hobby("drums")
 #your Person.all_with_hobbies code here

Output:

Eric B. is into cycling.

Or

Rakim is into drums.

121Class/module design and naming
4.4 Class/module design and naming
The fact that Ruby has classes and modules—along with the fact that from an object’s
perspective, all that matters is whether a given method exists, not what class or mod-
ule the method’s definition is in—means you have a lot of choice when it comes to
your programs’ design and structure. This richness of design choice raises some con-
siderations you should be aware of.

 We’ve already looked at one case (the Stack class) where it would have been possi-
ble to put all the necessary method definitions into one class, but it was advantageous
to yank some of them out, put them in a module (Stacklike), and then mix the mod-
ule into the class. There’s no rule for deciding when to do which. It depends on your
present and—to the extent you can predict them—future needs. It’s sometimes
tempting to break everything out into separate modules, because modules you write
for one program may be useful in another (“I just know I’m going to need that Three-
Pronged module again someday!” says the packrat voice in your head). But there’s
such a thing as overmodularization. It depends on the situation. You’ve got a couple
of powerful tools available to you—mix-ins and inheritance—and you need to con-
sider in each case how to balance them.

4.4.1 Mix-ins and/or inheritance

Module mix-ins are closely related to class inheritance. In both cases, one entity (class
or module) is establishing a close connection with another by becoming neighbors on
a method-lookup path. In some cases, you may find that you can design part of your
program either with modules or with inheritance.

 Our CargoHold class is an example. We implemented it by having it mix in the
Stacklike module. But had we gone the route of writing a Stack class instead of a
Stacklike module, we still could have had a CargoHold. It would have been a subclass
of Stack, as illustrated in the next listing.

class Stack
 attr_reader :stack
 def initialize
 @stack = []
 end
 def add_to_stack(obj)
 @stack.push(obj)
 end
 def take_from_stack
 @stack.pop
 end
end
class Suitcase
end
class CargoHold < Stack
 def load_and_report(obj)

Listing 4.15 CargoHold, inheriting from Stack instead of mixing in Stacklike

122 CHAPTER 4 Modules and program organization
 print "Loading object "
 puts obj.object_id
 add_to_stack(obj)
 end
 def unload
 take_from_stack
 end
end

From the point of view of an individual CargoHold object, the process works in this
listing exactly as it worked in the earlier implementation, where CargoHold mixed in
the Stacklike module. The object is concerned with finding and executing methods
that correspond to the messages it receives. It either finds such methods on its
method-lookup path, or it doesn’t. It doesn’t care whether the methods were defined
in a module or a class. It’s like searching a house for a screwdriver: you don’t care
which room you find it in, and which room you find it in makes no difference to what
happens when you subsequently employ the screwdriver for a task.

 There’s nothing wrong with this inheritance-based approach to implementing
CargoHold, except that it eats up the one inheritance opportunity CargoHold has. If
another class might be more suitable than Stack to serve as CargoHold’s superclass
(like, hypothetically, StorageSpace or AirplaneSection), we might end up needing
the flexibility we’d gain by turning at least one of those classes into a module.

 No single rule or formula always results in the right design. But it’s useful to keep a
couple of considerations in mind when you’re making class-versus-module decisions:

 Modules don’t have instances—It follows that entities or things are generally best
modeled in classes, while characteristics, shared behaviors, and properties of
entities or things are best encapsulated in modules. Correspondingly, as noted
in section 4.1.1, class names tend to be nouns, whereas module names are
often, but not always, adjectives (Stack versus Stacklike).

 A class can have only one superclass, but it can mix in as many modules as it wants—If
you’re using inheritance, give priority to creating a sensible superclass/subclass
relationship. Don’t use up a class’s one and only superclass relationship to
endow the class with what might turn out to be just one of several sets of charac-
teristics.

Summing up these rules in one example, here is what you should not do:

module Vehicle
...
class SelfPropelling
...
class Truck < SelfPropelling
 include Vehicle
...

Rather, you should do this:

module SelfPropelling
...

123Class/module design and naming
class Vehicle
 include SelfPropelling
...
class Truck < Vehicle
...

The second version models the entities and properties much more neatly. Truck
descends from Vehicle (which makes sense), whereas SelfPropelling is a character-
istic of vehicles (at least, all those we care about in this model of the world)—a charac-
teristic that’s passed on to trucks by virtue of Truck being a descendant, or specialized
form, of Vehicle.

 Another important consideration in class/module design is the nesting of mod-
ules and/or classes inside each other.

4.4.2 Nesting modules and classes

You can nest a class definition inside a module definition like this:

module Tools
 class Hammer
 end
end

To create an instance of the Hammer class defined inside the Tools module, you use
the double-colon constant lookup token (::) to point the way to the name of the
class:

h = Tools::Hammer.new

Nested module/class chains like Tools::Hammer are sometimes used to create sepa-
rate namespaces for classes, modules, and methods. This technique can help if two
classes have a similar name but aren’t the same class. For example, if you have a
Tools::Hammer class, you can also have a Piano::Hammer class, and the two Hammer
classes won’t conflict with each other because each is nested in its own namespace
(Tools in one case, Piano in the other).

 (An alternative way to achieve this separation would be to have a ToolsHammer class
and a PianoHammer class, without bothering to nest them in modules. But stringing
names together like that can quickly lead to visual clutter, especially when elements
are nested deeper than two levels.)

Class or module?
When you see a construct like Tools::Hammer, you can’t tell solely from that con-
struct what’s a class and what’s a module—nor, for that matter, whether Hammer is
a plain, old constant. (Tools has to be a class or module, because it’s got Hammer
nested inside it.)

124 CHAPTER 4 Modules and program organization
We’ll look further at nested classes, modules, and other constants in the next chapter,
when we talk in more detail about the subject of scope. Meanwhile, note that this abil-
ity to nest modules and classes inside each other (to any depth, in any order) gives you
yet another axis along which you can plan your program’s design and structure.

Summary
Chapter 4 has been both a companion to and a continuation of the previous chapter
on classes. In this chapter, you’ve seen

 Modules, up close and in detail
 Similarities and differences between modules and classes (both can bundle

methods and constants together, but modules can’t be instantiated)
 Examples of how you might use modules to express the design of a program
 An object’s-eye view of the process of finding and executing a method in

response to a message, or handling failure with method_missing in cases where
the message doesn’t match a method

 How to nest classes and modules inside each other, with the benefit of keeping
namespaces separate and clear

It’s particularly important to take on board the way that objects resolve messages into
methods: they go on a search through a succession of classes and modules. Objects
don’t themselves have methods, even though phrasing it that way is sometimes a
handy shortcut. Classes and modules have methods; objects have the ability to traverse
classes and modules in search of methods.

 Now that we’re nesting elements inside each other, the next topic we should and
will examine in detail is scope: what happens to data and variables when your program
moves from one code context to another. We’ll look at scope in conjunction with the
related, often interwoven topic of self, the default object.

(continued)
In many cases, the fact that you can’t tell classes from modules in this kind of con-
text doesn’t matter; what matters is the nesting or chaining of names in a way that
makes sense. That’s just as well, because you can’t tell what’s what without looking
at the source code or the documentation. This is a consequence of the fact that
classes are modules—the class Class is a subclass of the class Module—and in
many respects (with the most notable exception that classes can be instantiated),
their behavior is similar. Of course, normally you’d know what Tools::Hammer rep-
resents, either because you wrote the code or you’ve seen documentation. Alterna-
tively, you may infer it based on the choice of language—Hammer sounds like
something that can be instantiated, whereas Tools, on its own, does not. Still, it
pays to realize that the notation itself doesn’t tell you everything.

The default object (self),
scope, and visibility
In describing and discussing computer programs, we often use spatial and, some-
times, human metaphors. We talk about being “in” a class definition or returning
“from” a method call. We address objects in the second person, as in
obj.respond_to?("x") (that is, “Hey obj, do you respond to 'x'?”). We use these
metaphors to describe the context of the program at any given point. Context is
important when discerning the value of an identifier or the state of an object. As a
program runs, its context constantly shifts. Most words and tokens—most identifi-
ers—can mean different things at different places and times.

 This chapter is about orienting yourself in Ruby code: knowing how the identifi-
ers you’re using are going to resolve, following the shifts in context, and making

This chapter covers
 The role of the current or default self object

 Scoping rules for local, global, and class
variables

 Constant lookup and visibility

 Method-access rules
125

126 CHAPTER 5 The default object (self), scope, and visibility
sense of the use and reuse of identifiers and terms. If you understand what can change
from one context to another, and also what triggers a change in context (for example,
entering a method-definition block), you can always get your bearings in a Ruby pro-
gram. And it’s not just a matter of passive Ruby literacy: you also need to know about
contexts and how they affect the meaning of what you’re doing when you’re writing
Ruby.

 This chapter initially focuses on two topics: self and scope. Self is the “current” or
“default” object, a role typically assigned to many objects in sequence (though only
one at a time) as a program runs. The self object in Ruby is like the first person or I of
the program. As in a book with multiple first-person narrators, the I role can get
passed around. There’s always one self, but what object it is will vary. The rules of
scope govern the visibility of variables (and other elements, but largely variables). It’s
important to know what scope you’re in, so that you can tell what the variables refer to
and not confuse them with variables from different scopes that have the same name,
nor with similarly named methods.

 Between them, self and scope are the master keys to orienting yourself and under-
standing context in a Ruby program. If you know what scope you’re in and know what
object is self, you’ll be able to tell what’s going on, and you’ll be able to analyze errors
quickly.

 The third main topic of this chapter is method access. Ruby provides mechanisms for
making distinctions among access levels of methods. Basically, this refers to rules limit-
ing the calling of methods depending on what self is. Method access is therefore a
meta-topic, grounded in the study of self and scope.

 Finally, we’ll also discuss a topic that pulls together several of these threads: top-level
methods, which are written outside of any class or module definition.

 Let’s start with self.

5.1 Understanding self, the current/default object
One of the cornerstones of Ruby programming—the backbone, in some respects—is
the default object or current object, accessible to you in your program through the
keyword self. At every point when your program is running, there’s one and only one
self. Being self has certain privileges, as you’ll see. In this section, we’ll look at how
Ruby determines which object is self at a given point and what privileges are granted
to the object that is self.

5.1.1 Who gets to be self, and where

There’s always one (and only one) current self object. You can tell which object it is by
following the small set of rules summarized in table 5.1. The table’s contents will be
explained and illustrated as we go along.

127Understanding self, the current/default object

To know which object is self, you need to know what context you’re in. In practice,
there aren’t many contexts to worry about. There’s the top level (before you’ve
entered or after you’ve left any other context, such as a class definition). There are
class-definition blocks, module-definition blocks, and method-definition blocks. Aside
from a few subtleties in the way these contexts interact, that’s about it. As shown in
table 5.1, self is determined by which of these contexts you’re in (class and module
definitions are similar and closely related).

 Figure 5.1 gives you a diagrammatic view of most of the cases in table 5.1. Both
show you that some object is always self, and that which object is self depends on
where you are in the program. (Note that def self.x is equivalent to def C.x. You’ll
learn more about the self.method syntax in the following pages.)

 The most basic program context, and in some respects a unique one, is the
top level: the context of the program before any class or module definition has
been opened, or after they’ve all been closed. We’ll look next at the top level’s ideas
about self.

Table 5.1 How the current self object is determined

Context Example Which object is self?

Top level of
program

Any code outside of other blocks main (built-in top-level default
object)

Class
definition

class C
 self

The class object C

Module
definition

module M
 self

The module object M

Method
definitions

1. Top level (outside any definition block):
def method_name
 self

Whatever object is self when the
method is called; top-level methods
are available as private methods to
all objects

2. Instance-method definition in a class:
class C
 def method_name
 self

An instance of C, responding to
method_name

3. Instance-method definition
in a module:
module M
 def method_name
 self

 Individual object extended with M
 Instance of class that mixes in M

4. Singleton method on a specific object:
def obj.method_name
 self

Obj

128 CHAPTER 5 The default object (self), scope, and visibility
5.1.2 The top-level self object

The term top-level refers to program code written outside of any class- or module-
definition block. If you open a brand-new text file and type

x = 1

you’ve created a top-level local variable x. If you type

def m
end

you’ve created a top-level method. (We’ll look at top-level methods in much more
detail in section 5.4; they’re relevant here just as pointers to the existence of a top-
level self.) A number of our examples, particularly in the early chapters (for example,
those in chapter 2 demonstrating argument semantics) involved top-level code. Once
we started writing class and module definitions, more of our code began to appear
inside those definitions. The way self shifts in class, module, and method definitions is
uniform: the keyword (class, module, or def) marks a switch to a new self. But what’s
self when you haven’t yet entered any definition block?

 The answer is that Ruby provides you with a start-up self at the top level. If you ask
it to identify itself with

ruby -e 'puts self'

puts "Top Level"
puts "self is #{self}"

class C

end

puts "Class definition block:"
puts "self is #{self}"

def self.x

end

def m

end

puts "Class method C.x:"
puts "self is #{self}"

puts "Instance method C#m:"
puts "self is #{self}"

Self inside a
class definition

is the class
object itself.

Self at the top
 level is the

“default default
object,” main.

For an instance
method, that means
an instance of the
class whose instance
method it is.

For a class
method, that
means the
class object.

Self inside any method is
the object to which the
message (the method

call) was sent.

Figure 5.1 The determination of self in different contexts

129Understanding self, the current/default object
it will tell you that it’s called main.
 main is a special term that the default self object uses to refer to itself. You can’t

refer to it as main; Ruby will interpret your use of main as a regular variable or method
name. If you want to grab main for any reason, you need to assign it to a variable at the
top level:

m = self

It’s not likely that you’d need to do this, but that’s how it’s done. More commonly,
you’ll feel the need for a fairly fine-grained sense of what self is in your class, module,
and method definitions, where most of your programming will take place.

5.1.3 Self inside class, module, and method definitions

It pays to keep a close eye on self as you write classes, modules, and methods. There
aren’t that many rules to learn, and they’re applied consistently. But they’re worth
learning well up front, so you’re clear on why the various techniques you use that
depend on the value of self play out the way they do.

 It’s all about self switching from one object to another, which it does when you
enter a class or module definition, an instance-method definition, or a singleton-
method (including class-method) definition.

SELF IN CLASS AND MODULE DEFINITIONS

In a class or module definition, self is the class or module object. This innocent-
sounding rule is important. If you master it, you’ll save yourself from several of the
most common mistakes that people make when they’re learning Ruby.

 You can see what self is at various levels of class and/or module definition by using
puts explicitly, as shown in the following listing.

class C
 puts "Just started class C:"
 puts self
 module M
 puts "Nested module C::M:"
 puts self
 end
 puts "Back in the outer level of C:"
 puts self
end

As soon as you cross a class or module keyword boundary, the class or module whose
definition block you’ve entered—the Class or Module object—becomes self. List-
ing 5.1 shows two cases: entering C, and then entering C::M. When you leave C::M but
are still in C, self is once again C.

Listing 5.1 Examining self via calls to puts in class and module definitions

Output: C

Output: C::M

Output: C

130 CHAPTER 5 The default object (self), scope, and visibility
 Of course, class- and module-definition blocks do more than just begin and end.
They also contain method definitions, which, for both instance methods and class
methods, have rules determining self.

SELF IN INSTANCE-METHOD DEFINITIONS

The notion of self inside an instance-method definition is subtle, for the following rea-
son: when the interpreter encounters a def/end block, it defines the method immedi-
ately. But the code inside the method definition isn’t executed until later, when an
object capable of triggering its execution receives the appropriate message.

 When you’re looking at a method definition on paper or on the screen, you can
only know in principle that, when the method is called, self will be the receiver of the
message. At the time the method gets defined, the most you can say is that self inside
this method will be some future object that calls the method.

 You can rig a method to show you self as it runs:

class C
 def x
 puts "Class C, method x:"
 puts self
 end
end
c = C.new
c.x
puts "That was a call to x from: #{c}"

This snippet outputs

Class C, method x:
#<C:0x00000101b381a0>
That was a call to x by: #<C:0x00000101b381a0>

The weird-looking item in the output (#<C:0x00000101b381a0>) is Ruby’s way of say-
ing “an instance of C.” (The hexadecimal number after the colon is a memory-
location reference. When you run the code on your system, you’ll probably get a dif-
ferent number.) As you can see, the receiver of the “x” message, c, takes on the role of
self during execution of x.

SELF IN SINGLETON-METHOD AND CLASS-METHOD DEFINITIONS

As you might expect, when a singleton method is executed, self is the object that owns
the method, as an object will readily tell you:

obj = Object.new
def obj.show_me
 puts "Inside singleton method show_me of #{self}"
end
obj.show_me
puts "Back from call to show_me by #{obj}"

The output of this example is as follows:

Inside singleton method show_me of #<Object:0x00000101b19840>
Back from call to show_me by #<Object:0x00000101b19840>

131Understanding self, the current/default object
It makes sense that if a method is written to be called by only one object, that object
gets to be self. Moreover, this is a good time to remember class methods—which are,
essentially, singleton methods attached to class objects. The following example reports
on self from inside a class method of C:

class C
 def C.x
 puts "Class method of class C"
 puts "self: #{self}"
 end
end
C.x

Here’s what it reports:

Class method of class C
self: C

Sure enough, self inside a singleton method (a class method, in this case) is the object
whose singleton method it is.

Using self instead of hard-coded class names
By way of a little programming tip, here’s a variation on the last example:

class C
 def self.x
 puts "Class method of class C"
 puts "self: #{self}"
 end
end

Note the use of self.x B rather than C.x. This way of writing a class method takes
advantage of the fact that in the class definition, self is C. So def self.x is the
same as def C.x.

When you’re defining multiple class methods, yet another syntax can be used:

class C
 class << self
 def x
 # definition of x
 end
 def y
 # definition of y
 end
 end
end

class << self instructs the class that the following methods will be class methods.
Notice the end keyword that declares the end of the class-definition grouping.

B

132 CHAPTER 5 The default object (self), scope, and visibility
Being self at a given point in the program comes with some privileges. The chief privi-
lege enjoyed by self is that of serving as the default receiver of messages, as you’ll see
next.

5.1.4 Self as the default receiver of messages

Calling methods (that is, sending messages to objects) usually involves the dot notation:

obj.talk
ticket.venue
"abc".capitalize

That’s the normal, full form of the method-calling syntax in Ruby. But a special rule
governs method calls: if the receiver of the message is self, you can omit the receiver
and the dot. Ruby will use self as the default receiver, meaning the message you send
will be sent to self, as the following equivalencies show:

talk
venue
capitalize

WARNING You can give a method and a local variable the same name, but it’s
rarely if ever a good idea. If both a method and a variable of a given name
exist, and you use the bare identifier (like talk), the variable takes prece-
dence. To force Ruby to see the identifier as a method name, you’d have to
use self.talk or call the method with an empty argument list: talk().
Because variables don’t take arguments, the parentheses establish that you
mean the method rather than the variable. Again, it’s best to avoid these
name clashes if you can.

Let’s see this concept in action by inducing a situation where we know what self is and
then testing the dotless form of method calling. In the top level of a class-definition

(continued)
The self.x version offers a slight advantage: if you ever decide to rename the class,
self.x will adjust automatically to the new name. If you hard-code C.x, you’ll have
to change C to your class’s new name. But you do have to be careful. Remember that
self inside a method is always the object on which the method was called. You can
get into a situation where it feels like self should be one class object, but is actually
another:

class D < C
end
D.x

D gets to call x, because subclasses get to call the class methods of their super-
classes. As you’ll see if you run the code, the method C.x reports self—correctly—
as being D, because it’s D on which the method is called.

Same as self.talk
Same as self.venue

Same as self.capitalize

133Understanding self, the current/default object
block, self is the class object. And we know how to add methods directly to class
objects. So we have the ingredients to do a default receiver demo:

class C
 def C.no_dot
 puts "As long as self is C, you can call this method with no dot"
 end
 no_dot
end
C.no_dot

The first call to no_dot B doesn’t have an explicit receiver; it’s a bareword. When
Ruby sees this (and determines that it’s a method call rather than a variable or key-
word), it figures that you mean it as shorthand for

self.no_dot

and the message gets printed. In the case of our example, self.no_dot would be the
same as C.no_dot, because we’re inside C’s definition block and, therefore, self is C.
The result is that the method C.no_dot is called, and we see the output.

 The second time we call the method C, we’re back outside the class-definition
block, so C is no longer self. Therefore, to call no_dot, we need to specify the receiver:
C. The result is a second call to no_dot (albeit with a dot) and another printing of the
output from that method.

 The most common use of the dotless method call occurs when you’re calling one
instance method from another. Here’s an example:

class C
 def x
 puts "This is method 'x'"
 end
 def y
 puts "This is method 'y', about to call x without a dot."
 x
 end
end
c = C.new
c.y

The output is

This is method 'y', about to call x without a dot.
This is method 'x'.

Upon calling c.y, the method y is executed, with self set to c (which is an instance of
C). Inside y, the bareword reference to x is interpreted as a message to be sent to self.
That, in turn, means the method x is executed.

 There’s one situation where you can’t omit the object-plus-dot part of a method
call: when the method name ends with an equal sign—a setter method, in other words.
You have to do self.venue = "Town Hall" rather than venue = "Town Hall" if you want
to call the method venue= on self. The reason is that Ruby always interprets the

B

C

134 CHAPTER 5 The default object (self), scope, and visibility
sequence identifier = value as an assignment to a local variable. To call the method
venue= on the current object, you need to include the explicit self. Otherwise, you
end up with a variable called venue and no call to the setter method.

 The default to self as receiver for dotless method invocations allows you to stream-
line your code nicely in cases where one method makes use of another. A common
case is composing a whole name from its components: first, optional middle, and last.
The following listing shows a technique for doing this, using attributes for the three
name values and conditional logic to include the middle name, plus a trailing space, if
and only if there’s a middle name. In the following example, bareword method calls
are received by the implicitly defined self.

class Person
 attr_accessor :first_name, :middle_name, :last_name
 def whole_name
 n = first_name + " "
 n << "#{middle_name} " if middle_name
 n << last_name
 end
end
david = Person.new
david.first_name = "David"
david.last_name = "Black"
puts "David's whole name: #{david.whole_name}"
david.middle_name = "Alan"
puts "David's new whole name: #{david.whole_name}"

The output from the calling code in this listing is as follows:

David's whole name: David Black
David's new whole name: David Alan Black

The definition of whole_name depends on the bareword method calls to first_name,
middle_name, and last_name being sent to self—self being the Person instance
(david, in the example). The variable n serves as a string accumulator, with the com-
ponents of the name added to it one by one. The return value of the entire method is
n, because the expression n << last_name B has the effect of appending last_name to
n and returning the result of that operation.

 In addition to serving automatically as the receiver for bareword messages, self also
enjoys the privilege of being the owner of instance variables.

5.1.5 Resolving instance variables through self

A simple rule governs instance variables and their resolution: every instance variable
you’ll ever see in a Ruby program belongs to whatever object is the current object
(self) at that point in the program.

 Here’s a classic case where this knowledge comes in handy. See if you can figure
out what this code will print, before you run it:

Listing 5.2 Composing whole name from values, using method calls on implicit self

B

135Understanding self, the current/default object
class C
 def set_v
 @v = "I am an instance variable and I belong to any instance of C."
 end

 def show_var
 puts @v
 end

 def self.set_v
 @v = "I am an instance variable and I belong to C."
 end
end
C.set_v
c = C.new
c.set_v
c.show_var

The code prints the following:

I am an instance variable and I belong to any instance of C.

The code prints what it does because the @v in the method definition B and the @v in
the class definition C are completely unrelated to each other. They’re both instance
variables, and both are named @v, but they aren’t the same variable. They belong to
different objects. Whose are they?

 The first @v B lies inside the definition block of an instance method of C. That fact
has implications not for a single object, but for instances of C in general: each instance
of C that calls this method will have its own instance variable @v.

 The second @v C is defined in a class method and belongs to the class object C.
This is one of the many occasions where it pays to remember that classes are objects.
Any object may have its own instance variables—its own private stash of information
and object state. Class objects enjoy this privilege as much as any other object.

 Again, the logic required to figure out what object owns a given instance variable is
simple and consistent: every instance variable belongs to whatever object is playing the
role of self at the moment the code containing the instance variable is executed.

 Let’s do a quick rewrite of the example, this time making it a little chattier about
what’s going on.

class C
 puts "Just inside class definition block. Here's self:"
 p self
 @v = "I am an instance variable at the top level of a class body."
 puts "And here's the instance variable @v, belonging to #{self}:"
 p @v
 def show_var
 puts "Inside an instance method definition block. Here's self:"
 p self
 puts "And here's the instance variable @v, belonging to #{self}:"
 p @v

Listing 5.3 Demonstrating the relationship between instance variables and self

B

C

136 CHAPTER 5 The default object (self), scope, and visibility
 end
end
c = C.new
c.show_var

The output from this version is as follows:

Just inside class definition block. Here's self:
C
And here's the instance variable @v, belonging to C:
"I am an instance variable at the top level of a class body."
Inside an instance method definition block. Here's self:
#<C:0x00000101a77338>
And here's the instance variable @v, belonging to #<C:0x00000101a77338>:
nil

Sure enough, each of these two different objects (the class object C and the instance
of C, c) has its own instance variable @v. The fact that the instance’s @v is nil demon-
strates that the assignment to the class’s @v had nothing to do with the instance’s @v.

 Understanding self—both the basic fact that such a role is being played by some
object at every point in a program and knowing how to tell which object is self—is one
of the most vital aspects of understanding Ruby. Another equally vital aspect is under-
standing scope, to which we’ll turn now.

5.2 Determining scope
Scope refers to the reach or visibility of identifiers, specifically variables and constants.
Different types of identifiers have different scoping rules; using, say, the identifier x
for a local variable in each of two method definitions has a different effect than using
the global variable $x in the same two places, because local and global variables differ
as to scope. In this section, we’ll consider three types of variables: global, local, and
class variables. (As you’ve just seen, instance variables are self bound, rather than
scope bound.) We’ll also look at the rules for resolving constants.

 Self and scope are similar in that they both change over the course of a program,
and in that you can deduce what’s going on with them by reading the program as well
as running it. But scope and self aren’t the same thing. You can start a new local scope
without self changing—but sometimes scope and self change together. They have in
common the fact that they’re both necessary to make sense of what your code is going
to do. Like knowing which object self is, knowing what scope you’re in tells you the
significance of the code.

 Let’s start with global variables—not the most commonly used construct, but an
important one to grasp.

5.2.1 Global scope and global variables

Global scope is scope that covers the entire program. Global scope is enjoyed by global
variables, which are recognizable by their initial dollar-sign ($) character. They’re
available everywhere. They walk through walls: even if you start a new class or method
definition, even if the identity of self changes, the global variables you’ve initialized
are still available to you.

137Determining scope
 In other words, global variables never go out of scope. (An exception to this is
“thread-local globals,” which you’ll meet in chapter 14.) In this example, a method
defined inside a class-definition body (two scopes removed from the outer- or top-
level scope of the program) has access to a global variable initialized at the top:

$gvar = "I'm a global!"
class C
 def examine_global
 puts $gvar
 end
end
c = C.new
c.examine_global

You’ll be told by $gvar, in no uncertain terms, “I’m a global!” If you change all the
occurrences of $gvar to a non-global variable, such as local_var, you’ll see that the
top-level local_var isn’t in scope inside the method-definition block.

BUILT-IN GLOBAL VARIABLES

The Ruby interpreter starts up with a fairly large number of global variables already
initialized. These variables store information that’s of potential use anywhere and
everywhere in your program. For example, the global variable $0 contains the name
of the startup file for the currently running program. The global variable $: (dollar
sign followed by a colon) contains the directories that make up the path Ruby
searches when you load an external file. $$ contains the process ID of the Ruby pro-
cess. And there are more.

TIP A good place to see descriptions of all the built-in global variables you’re
likely to need—and then some—is the file English.rb in your Ruby installa-
tion. This file provides less-cryptic names for the notoriously cryptic global
variable set. (Don’t blame Ruby for the names—most of them come from
shell languages and/or Perl and awk.) If you want to use the slightly friendlier
names in your programs, you can do require "English", after which you can
refer to $INPUT_LINE_NUMBER instead of $., $PID instead of $$, and so forth. A
few globals have their English-language names preloaded; you can say
$LOAD_PATH instead of $: even without loading English.rb.

Creating your own global variables can be tempting, especially for beginning pro-
grammers and people learning a new language (not just Ruby, either). But that’s
rarely a good or appropriate choice.

PROS AND CONS OF GLOBAL VARIABLES

Globals appear to solve lots of design problems: you don’t have to worry about scope,
and multiple classes can share information by stashing it in globals rather than design-
ing objects that have to be queried with method calls. Without doubt, global variables
have a certain allure.

 But they’re used very little by experienced programmers. The reasons for avoiding
them are similar to the reasons they’re tempting. Using global variables tends to end
up being a substitute for solid, flexible program design, rather than contributing to it.

Output: “I’m a global!”

138 CHAPTER 5 The default object (self), scope, and visibility
One of the main points of object-oriented programming is that data and actions are
encapsulated in objects. You’re supposed to have to query objects for information and
to request that they perform actions.

 And objects are supposed to have a certain privacy. When you ask an object to do
something, you’re not supposed to care what the object does internally to get the job
done. Even if you yourself wrote the code for the object’s methods, when you send the
object a message, you treat the object as a black box that works behind the scenes and
provides a response.

 Global variables distort the landscape by providing a layer of information shared
by every object in every context. The result is that objects stop talking to each other
and, instead, share information by setting global variables.

 Here’s a small example—a rewrite of our earlier Person class (the one with the
first, optional middle, and last names). This time, instead of attributes on the object,
we’ll generate the whole name from globals:

class Person
 def whole_name
 n = $first_name + " "
 n << "#{$middle_name} " if $middle_name
 n << $last_name
 end
end

To use this class and to get a whole name from an instance of it, you’d have to do this:

david = Person.new
$first_name = "David"
$middle_name = "Alan"
$last_name = "Black"
puts david.whole_name

This version still derives the whole name, from outside, by querying the object. But
the components of the name are handed around over the heads of the objects, so to
speak, in a separate network of global variables. It’s concise and easy, but it’s also dras-
tically limited. What would happen if you had lots of Person objects, or if you wanted
to save a Person object, including its various names, to a database? Your code would
quickly become tangled, to say the least.

 Globally scoped data is fundamentally in conflict with the object-oriented philoso-
phy of endowing objects with abilities and then getting things done by sending
requests to those objects. Some Ruby programmers work for years and never use a sin-
gle global variable (except perhaps a few of the built-in ones). That may or may not
end up being your experience, but it’s not a bad target to aim for.

 Now that we’ve finished with the “try not to do this” part, let’s move on to a
detailed consideration of local scope.

Output: David Alan Black

139Determining scope
5.2.2 Local scope

Local scope is a basic layer of the fabric of every Ruby program. At any given moment,
your program is in a particular local scope. The main thing that changes from one
local scope to another is your supply of local variables. When you leave a local scope—
by returning from a method call, or by doing something that triggers a new local
scope—you get a new supply. Even if you’ve assigned to a local variable x in one scope,
you can assign to a new x in a new scope, and the two x’s won’t interfere with each
other.

 You can tell by looking at a Ruby program where the local scopes begin and end,
based on a few rules:

 The top level (outside of all definition blocks) has its own local scope.
 Every class or module-definition block (class, module) has its own local scope,

even nested class-/module-definition blocks.
 Every method definition (def) has its own local scope; more precisely, every call

to a method generates a new local scope, with all local variables reset to an
undefined state.

Exceptions and additions to these rules exist, but they don’t concern us right now.
 Every time you cross into a class-, module-, or method-definition block—every time

you step over a class, module, or def keyword—you start a new local scope. (Figure
5.2 illustrates the creation of a number of local scopes.) Local variables that lie very
close to each other physically may in fact have nothing whatsoever to do with each
other, as this example shows:

class C
 a = 1
 def local_a
 a = 2
 puts a
 end
 puts a
end
c = C.new
c.local_a

This code produces the following output:

1
2

The variable a that gets initialized in the local scope of the class definition B is in
a different scope than the variable a inside the method definition C. When you get
to the puts a statement after the method definition D, you’re back in the class-
definition local scope; the a that gets printed is the a you initialized back at the top B,
not the a that’s in scope in the method definition C. Meanwhile, the second a isn’t
printed until later, when you’ve created the instance c and sent the message local_a
to it E.

B

C

D

E

140 CHAPTER 5 The default object (self), scope, and visibility
When you nest classes and modules, every crossing into a new definition block creates
a new local scope. The following listing shows some deep nesting of classes and mod-
ules, with a number of variables called a being initialized and printed out along the
way.

a = 0

def t

end

end

a = 1
def self.x

a = 2
puts "C.x; a = #{a}"

end

def M

a = 3
puts "C#m; a = #{a}"

end

puts "Class scope: a = #{a}"

def n

a = 4
puts "C#n; a = #{a}"

puts "Top level method t"

Class-definition
scope

Top level
(outer scope)

Method-definition
scope

class C

end

C.x
c = C.new
c.m
c.n

puts "Top level: a = #{a}"

Figure 5.2 Schematic view of local scopes at the top level, the class-definition level, and the
method-definition level

141Determining scope

class C
 a = 5
 module M
 a = 4
 module N
 a = 3
 class D
 a = 2
 def show_a
 a = 1
 puts a
 end
 puts a
 end
 puts a
 end
 puts a
 end
 puts a
end
d = C::M::N::D.new
d.show_a

Every definition block—whether for a class, a module, or a method—starts a new local
scope—a new local-variable scratchpad—and gets its own variable a. This example
also illustrates the fact that all the code in class- and module-definition blocks gets
executed when it’s first encountered, whereas methods aren’t executed until an object
is sent the appropriate message. That’s why the value of a that’s set inside the show_a
method is displayed last among the five values that the program prints; the other four
are executed as they’re encountered in the class or module definitions, but the last
one isn’t executed until show_a is executed by the object d.

 Local scope changes often, as you can see. So does the identity of self. Sometimes,
but only sometimes, they vary together. Let’s look a little closer at the relationship
between scope and self.

5.2.3 The interaction between local scope and self

When you start a definition block (method, class, module), you start a new local
scope, and you also create a block of code with a particular self. But local scope and
self don’t operate entirely in parallel, not only because they’re not the same thing, but
also because they’re not the same kind of thing.

 Consider the following listing. This program uses recursion : the instance method x
calls itself. The point is to demonstrate that every time a method is called—even if
a previous call to the method is still in the process of running—a new local scope is
generated.

Listing 5.4 Reusing a variable name in nested local scopes

Output: 2

Output: 3

Output: 4

Output: 5

Output: 1

142 CHAPTER 5 The default object (self), scope, and visibility

class C
 def x(value_for_a,recurse=false)
 a = value_for_a
 print "Here's the inspect-string for 'self':"
 p self
 puts "And here's a:"
 puts a
 if recurse
 puts "Calling myself (recursion)..."
 x("Second value for a")
 puts "Back after recursion; here's a:"
 puts a
 end
 end
end
c = C.new
c.x("First value for a", true)

The instance method C#x takes two arguments: a value to assign to the variable a and
a flag telling the method whether to call itself B. (The use of the flag provides a way
to prevent infinite recursion.) The first line of the method initializes a C, and the
next several lines of the method print out the string representation of self and the
value of a D.

 Now comes the decision: to recurse, or not to recurse. It depends on the value of
the recurse variable E. If the recursion happens, it calls x without specifying a value
for the recurse parameter F; that parameter will default to false, and recursion
won’t happen the second time through.

 The recursive call uses a different value for the value_for_a argument; therefore,
different information will be printed out during that call. But upon returning from
the recursive call, we find that the value of a in this run of x hasn’t changed G. In
short, every call to x generates a new local scope, even though self doesn’t change.

 The output from calling x on an instance of C and setting the recurse flag to true

H looks like this:

Here's the inspect-string for 'self': #<C:0x00000101b25be0>
And here's a:
First value for a
Calling myself (recursion)...
Here's the inspect-string for 'self': #<C:0x00000101b25be0>
And here's a:
Second value for a
Back after recursion; here's a:
First value for a

There’s no change to self, but the local variables are reset.

TIP Instead of printing out the default string representation of an object, you
can also use the object_id method to identify the object uniquely. In the pre-
vious example, try changing p self to puts self.object_id, and puts a to
puts a.object_id.

Listing 5.5 Demonstrating the generation of a new local scope per method call

B
C

D

E

F
G

H

143Determining scope
If this listing seems like the long way around to make the point that every method call
has its own local scope, think of it as a template or model for the kinds of demonstra-
tions you might try yourself as you develop an increasingly fine-grained sense of how
scope and self work, separately and together.

NOTE It’s also possible to do the opposite of what listing 5.5 demonstrates—
namely, to change self without entering a new local scope. This is accom-
plished with the instance_eval and instance_exec methods, which we’ll
look at later.

Like variables, constants are governed by rules of scope. We’ll look next at how those
rules work.

5.2.4 Scope and resolution of constants

As you’ve seen, constants can be defined inside class- and method-definition blocks. If
you know the chain of nested definitions, you can access a constant from anywhere.
Consider this nest:

module M
 class C
 class D
 module N
 X = 1
 end
 end
 end
end

You can refer to the module M, the class M::C, and so forth, down to the simple con-
stant M::C::D::N::X (which is equal to 1).

 Constants have a kind of global visibility or reachability: as long as you know the
path to a constant through the classes and/or modules in which it’s nested, you can
get to that constant. Stripped of their nesting, however, constants definitely aren’t glo-
bals. The constant X in one scope isn’t the constant X in another:

module M
 class C
 X = 2
 class D
 module N
 X = 1
 end
 end
 end
end
puts M::C::D::N::X
puts M::C::X

B
C

144 CHAPTER 5 The default object (self), scope, and visibility
As per the nesting, the first puts B gives you 1; the second C gives you 2. A particular
constant identifier (like X) doesn’t have an absolute meaning the way a global variable
(like $x) does.

 Constant lookup—the process of resolving a constant identifier, or finding the right
match for it—bears a close resemblance to searching a file system for a file in a partic-
ular directory. For one thing, constants are identified relative to the point of execu-
tion. Another variant of our example illustrates this:

module M
 class C
 class D
 module N
 X = 1
 end
 end
 puts D::N::X
 end
end

Here the identifier D::N::X is interpreted relative to where it occurs: inside the defini-
tion block of the class M::C. From M::C’s perspective, D is just one level away. There’s
no need to do M::C::D::N::X, when just D::N::X points the way down the path to the
right constant. Sure enough, we get what we want: a printout of the number 1.

FORCING AN ABSOLUTE CONSTANT PATH

Sometimes you don’t want a relative path. Sometimes you really want to start the con-
stant-lookup process at the top level—just as you sometimes need to use an absolute
path for a file.

 This may happen if you create a class or module with a name that’s similar to the
name of a Ruby built-in class or module. For example, Ruby comes with a String
class. But if you create a Violin class, you may also have Strings:

class Violin
 class String
 attr_accessor :pitch
 def initialize(pitch)
 @pitch = pitch
 end
 end
 def initialize
 @e = String.new("E")
 @a = String.new("A")
 ...etc....

The constant String in this context B resolves to Violin::String, as defined. Now
let’s say that elsewhere in the overall Violin class definition, you need to refer to
Ruby’s built-in String class. If you have a plain reference to String, it resolves to
Violin::String. To make sure you’re referring to the built-in, original String class,
you need to put the constant path separator :: (double colon) at the beginning of the
class name:

Output: 1

B

145Determining scope
def history
 ::String.new(maker + ", " + date)
end

This way, you get a Ruby String object instead of a Violin::String object. Like the
slash at the beginning of a pathname, the :: in front of a constant means “start the
search for this at the top level.” (Yes, you could just piece the string together inside
double quotes, using interpolation, and bypass String.new. But then we wouldn’t
have such a vivid name-clash example!)

 In addition to constants and local, instance, and global variables, Ruby also fea-
tures class variables, a category of identifier with some idiosyncratic scoping rules.

5.2.5 Class variable syntax, scope, and visibility

Class variables begin with two at-signs—for example, @@var. Despite their name, class
variables aren’t class scoped. Rather, they’re class-hierarchy scoped, except ... some-
times. Don’t worry; we’ll go through the details. After a look at how class variables
work, we’ll evaluate how well they fill the role of maintaining state for a class.

CLASS VARIABLES ACROSS CLASSES AND INSTANCES

At its simplest, the idea behind a class variable is that it provides a storage mechanism
that’s shared between a class and instances of that class, and that’s not visible to any
other objects. No other entity can fill this role. Local variables don’t survive the scope
change between class definitions and their inner method definitions. Globals do, but
they’re also visible and mutable everywhere else in the program, not just in one class.
Constants likewise: instance methods can see the constants defined in the class in
which they’re defined, but the rest of the program can see those constants, too.
Instance variables, of course, are visible strictly per object. A class isn’t the same object
as any of its instances, and no two of its instances are the same as each other. There-
fore it’s impossible, by definition, for a class to share instance variables with its
instances.

 So class variables have a niche to fill: visibility to a class and its instances, and to no
one else. Typically, this means being visible in class-method definitions and instance-
method definitions, and sometimes at the top level of the class definition.

 Here’s an example: a little tracker for cars. Let’s start with a trial run and the out-
put; then, we’ll look at how the program works (refer to listing 5.6). Let’s say we want
to register the makes (manufacturer names) of cars, which we’ll do using the class
method Car.add_make(make). Once a make has been registered, we can create cars of
that make, using Car.new(make). We’ll register Honda and Ford, and create two Hon-
das and one Ford:

Car.add_make("Honda")
Car.add_make("Ford")
h = Car.new("Honda")
f = Car.new("Ford")
h2 = Car.new("Honda")

146 CHAPTER 5 The default object (self), scope, and visibility
The program tells us which cars are being created:

Creating a new Honda!
Creating a new Ford!
Creating a new Honda!

At this point, we can get back some information. How many cars are there of the same
make as h2? We’ll use the instance method make_mates to find out, interpolating the
result into a string:

puts "Counting cars of same make as h2..."
puts "There are #{h2.make_mates}."

As expected, there are two cars of the same make as h2 (namely, Honda).
 How many cars are there altogether? Knowledge of this kind resides in the class,

not in the individual cars, so we ask the class:

puts "Counting total cars..."
puts "There are #{Car.total_count}."

The output is

Counting total cars...
There are 3.

Finally, we try to create a car of a nonexistent make:

x = Car.new("Brand X")

The program doesn’t like it, and we get a fatal error:

car.rb:21:in `initialize': No such make: Brand X. (RuntimeError)

The main action here is in the creation of cars and the ability of both individual cars
and the Car class to store and return statistics about the cars that have been created.
The next listing shows the program. If you save this listing and then add the previous
sample code to the end of the file, you can run the whole file and see the output of
the code.

class Car
 @@makes = []
 @@cars = {}
 @@total_count = 0
 attr_reader :make
 def self.total_count
 @@total_count
 end
 def self.add_make(make)
 unless @@makes.include?(make)
 @@makes << make
 @@cars[make] = 0
 end

Listing 5.6 Keeping track of car manufacturing statistics with class variables

B

C
D

E

147Determining scope
 end
 def initialize(make)
 if @@makes.include?(make)
 puts "Creating a new #{make}!"
 @make = make
 @@cars[make] += 1
 @@total_count += 1
 else
 raise "No such make: #{make}."
 end
 end
 def make_mates
 @@cars[self.make]
 end
end

The key to the program is the presence of the three class variables defined at the top
of the class definition B. @@makes is an array and stores the names of makes. @@cars is
a hash: a keyed structure whose keys are makes of cars and whose corresponding val-
ues are counts of how many of each make there are. Finally, @@total_count is a run-
ning tally of how many cars have been created overall.

 The Car class also has a make reader attribute C, which enables us to ask every car
what its make is. The value of the make attribute must be set when the car is created.
There’s no writer attribute for makes of cars, because we don’t want code outside the
class changing the makes of cars that already exist.

 To provide access to the @@total_count class variable, the Car class defines a
total_count method D, which returns the current value of the class variable. There’s
also a class method called add_make E; this method takes a single argument and adds
it to the array of known makes of cars, using the << array-append operator. It first
takes the precaution of making sure the array of makes doesn’t already include this
particular make. Assuming all is well, it adds the make and sets the counter for this
make’s car tally to zero. Thus when we register the make Honda, we also establish the
fact that zero Hondas exist.

 Now we get to the initialize method, where new cars are created. Each new car
needs a make. If the make doesn’t exist (that is, if it isn’t in the @@makes array), then
we raise a fatal error H (we’ll discuss exception handling in depth in chapter 6). If the
make does exist, then we set this car’s make attribute to the appropriate value F, incre-
ment by one the number of cars of this make that are recorded in the @@cars hash G,
and also increment by one the total number of existing cars stored in @@total_count.
(You may have surmised that @@total_count represents the total of all the values in
@@cars. Storing the total separately saves us the trouble of adding up all the values
every time we want to see the total.) There’s also an implementation of the instance
method make_mates I, which returns a count of all cars of a given car’s make.

 The initialize method makes heavy use of the class variables defined at the top,
outer level of the class definition—a totally different local scope from the inside of
initialize, but not different for purposes of class-variable visibility. Those class vari-
ables were also used in the class methods Car.total_count and Car.add_make—each

F
G

H

I

148 CHAPTER 5 The default object (self), scope, and visibility
of which also has its own local scope. You can see that class variables follow their own
rules: their visibility and scope don’t line up with those of local variables, and they cut
across multiple values of self. (Remember that at the outer level of a class definition
and inside the class methods, self is the class object—Car—whereas in the instance
methods, self is the instance of Car that’s calling the method.)

 So far, you’ve seen the simplest aspects of class variables. Even at this level, opin-
ions differ as to whether, or at least how often, it’s a good idea to create variables that
cut this path across multiple self objects. Does the fact that a car is an instance of Car
really mean that the car object and the Car class object need to share data? Or should
they be treated throughout like the two separate objects they are?

 There’s no single (or simple) answer. But there’s a little more to how class variables
work; and at the very least, you’ll probably conclude that they should be handled with
care.

CLASS VARIABLES AND THE CLASS HIERARCHY

As noted earlier, class variables aren’t class-scoped variables. They’re class-hierarchy-
scoped variables.

 Here’s an example. What would you expect the following code to print?

class Parent
 @@value = 100
end
class Child < Parent
 @@value = 200
end
class Parent
 puts @@value
end

What gets printed is 200. The Child class is a subclass of Parent, and that means
Parent and Child share the same class variables—not different class variables with the
same names, but the same actual variables. When you assign to @@value in Child,
you’re setting the one and only @@value variable that’s shared throughout the hierar-
chy—that is, by Parent and Child and any other descendant classes of either of them.
The term class variable becomes a bit difficult to reconcile with the fact that two (and
potentially a lot more) classes share exactly the same ones.

 As promised, we’ll end this section with a consideration of the pros and cons of
using class variables as a way to maintain state in a class.

EVALUATING THE PROS AND CONS OF CLASS VARIABLES

The bread-and-butter way to maintain state in an object is the instance variable. Class
variables come in handy because they break down the dam between a class object and
instances of that class. But by so doing, and especially because of their hierarchy-based
scope, they take on a kind of quasi-global quality: a class variable isn’t global, but it
sure is visible to a lot of objects, once you add up all the subclasses and all the
instances of those subclasses.

Sets class variable
in class Parent

Sets class variable in class
Child, a subclass of Parent

Back in Parent class: what’s
the output?

149Determining scope
 The issue at hand is that it’s useful to have a way to maintain state in a class. You
saw this even in the simple Car class example. We wanted somewhere to stash class-
relevant information, like the makes of cars and the total number of cars manufac-
tured. We also wanted to get at that information, both from class methods and from
instance methods. Class variables are popular because they’re the easiest way to dis-
tribute data in that configuration.

 But they’re also leaky. Too many objects can get hold of them. Let’s say we wanted
to create a subclass of Car called Hybrid to keep a count of manufactured (partly)
electric vehicles. We couldn’t do this:

class Hybrid < Car
end
hy = Hybrid.new("Honda")
puts "There are #{Hybrid.total_count} hybrids in existence!"

because Hybrid.total_count is the same method as Car.total_count, and it wraps
the same variable. Class variables aren’t reissued freshly for every subclass, the way
instance variables are for every object.

 To track hybrids separately, we’d have to do something like this:

class Hybrid < Car
 @@total_hybrid_count = 0
 # etc.
end

Although there are ways to abstract and semiautomate this kind of splitting out of
code by class namespace, it’s not the easiest or most transparent technique in the
world. What’s the alternative?

MAINTAINING PER-CLASS STATE WITH INSTANCE VARIABLES OF CLASS OBJECTS

The alternative is to go back to basics. We need a slot where we can put a value (the
total count), and it should be a different slot for every class. In other words, we need
to maintain state on a per-class basis; and because classes are objects, that means on a
per-object basis (for a certain group of objects, namely, class objects). And per-object
state, whether the object in question is a class or something else, suggests instance
variables.

 The following listing shows a rewrite of the Car class in listing 5.6. Two of the class
variables are still there, but @@total_count has been transformed into an instance
variable.

class Car
 @@makes = []
 @@cars = {}
 attr_reader :make
 def self.total_count
 @total_count ||= 0
 end

Listing 5.7 Car with @@total_count replaced by instance variable @total_count

B

150 CHAPTER 5 The default object (self), scope, and visibility
 def self.total_count=(n)
 @total_count = n
 end
 def self.add_make(make)
 unless @@makes.include?(make)
 @@makes << make
 @@cars[make] = 0
 end
 end
 def initialize(make)
 if @@makes.include?(make)
 puts "Creating a new #{make}!"
 @make = make
 @@cars[make] += 1
 self.class.total_count += 1
 else
 raise "No such make: #{make}."
 end
 end
 def make_mates
 @@cars[self.make]
 end
end

The key here is storing the counter in an instance variable belonging to the class
object Car, and wrapping that instance variable in accessor methods—manually writ-
ten ones, but accessor methods nonetheless. The accessor methods are
Car.total_count and Car.total_count=. The first of these performs the task of ini-
tializing @total_count to zero B. It does the initialization conditionally, using the or-
equals operator, so that on the second and subsequent calls to total_count, the value
of the instance variable is simply returned.

 The total_count= method is an attribute-writer method, likewise written as a class
method so that the object whose instance variable is in use is the class object C. With
these methods in place, we can now increment the total count from inside the
instance method initialize by calling self.class.total_count= D.

 The payoff comes when we subclass Car. Let’s have another look at Hybrid and
some sample code that uses it:

class Hybrid < Car
end
h3 = Hybrid.new("Honda")
f2 = Hybrid.new("Ford")
puts "There are #{Hybrid.total_count} hybrids on the road!"

Hybrid is a new class object. It isn’t the same object as Car. Therefore, it has its own
instance variables. When we create a new Hybrid instance, the initialize method
from Car is executed. But this time, the expression

self.class.total_count += 1

has a different meaning. The receiver of the "total_count=" message is Hybrid, not
Car. That means when the total_count= class method is executed, the instance variable

C

D

Output: There
are 2 hybrids
on the road!

151Deploying method-access rules
@total_count belongs to Hybrid. (Instance variables always belong to self.) Adding to
Hybrid’s total count, therefore, won’t affect Car’s total count.

 We’ve made it so that a subclass of Car can maintain its own state, because we’ve
shifted from a class variable to an instance variable. Every time total_count or
total_count= is called, the @total_count to which it refers is the one belonging to
self at that point in execution. Once again, we’re back in business using instance vari-
ables to maintain state per object (class objects, in this case).

 The biggest obstacle to understanding these examples is understanding the fact
that classes are objects—and that every object, whether it’s a car, a person, or a class,
gets to have its own stash of instance variables. Car and Hybrid can keep track of man-
ufacturing numbers separately, thanks to the way instance variables are quarantined
per object.

 We’ve reached the limit of our identifier scope journey. You’ve seen much of what
variables and constants can do (and what they can’t do) and how these abilities are
pegged to the rules governing scope and self. In the interest of fulfilling the chapter’s
goal of showing you how to orient yourself regarding who gets to do what, and where, in
Ruby code, we’ll look at one more major subtopic: Ruby’s system of method-access rules.

5.3 Deploying method-access rules
As you’ve seen, the main business of a Ruby program is to send messages to objects.
And the main business of an object is to respond to messages. Sometimes, an object
wants to be able to send itself messages that it doesn’t want anyone else to be able to
send it. For this scenario, Ruby provides the ability to make a method private.

 There are two access levels other than private: protected, which is a slight variation
on private, and public. Public is the default access level; if you don’t specify that a
method is protected or private, it’s public. Public instance methods are the common
currency of Ruby programming. Most of the messages you send to objects are calling
public methods.

 We’ll focus here on methods that aren’t public, starting with private methods.

5.3.1 Private methods

Think of an object as someone you ask to perform a task for you. Let’s say you ask
someone to bake you a cake. In the course of baking you a cake, the baker will presum-
ably perform a lot of small tasks: measure sugar, crack an egg, stir batter, and so forth.

 The baker does all these things, but not all of them have equal status when it
comes to what the baker is willing to do in response to requests from other people. It

Exercise
As you’ve seen, class variables have drawbacks and should be handled with care.
Try to modify the Car class so that it no longer uses class variables. Note that this
may lead you to creating class methods, which are preferable to class variables.

152 CHAPTER 5 The default object (self), scope, and visibility
would be weird if you called a baker and said, “Please stir some batter” or “Please
crack an egg.” What you say is “Please bake me a cake,” and you let the baker deal with
the details.

 Let’s model the baking scenario. We’ll use minimal, placeholder classes for some
of the objects in our domain, but we’ll develop the Baker class in more detail. Save the
code in the following listing to a file called baker.rb.

class Cake
 def initialize(batter)
 @batter = batter
 @baked = true
 end
end
class Egg
end
class Flour
end
class Baker
 def bake_cake
 @batter = []
 pour_flour
 add_egg
 stir_batter
 return Cake.new(@batter)
 end

 private

 def pour_flour
 @batter.push(Flour.new)
 end
 def add_egg
 @batter.push(Egg.new)
 end
 def stir_batter
 end
end

There’s something new in this code: the private method B, which acts like an
on switch: all the instance methods you define below it will be private. You can call
public or protected to reverse the effect. private can also take as arguments a list
of the methods you want to make private:

private :pour_flour, :add_egg, :stir_batter

It’s more common to see private methods identified as they are in listing 5.8, but you
should understand that both mechanisms exist and are equally valid syntax.

 Private means that the method can’t be called with an explicit receiver. You can’t say

b = Baker.new
b.add_egg

Listing 5.8 Baker and other baking-domain classes

Implements @batter as
array of objects (ingredients)

Returns new Cake object

B
Adds element (ingredient)
to @batter

153Deploying method-access rules
As you’ll see if you try it, calling add_egg this way results in a fatal error:

`<main>': private method `add_egg' called for #<Baker:0x00000002aeae50>
(NoMethodError)

add_egg is a private method, but you’ve specified the receiving object, b, explicitly.
That’s not allowed.

 Okay; let’s go along with the rules. We won’t specify a receiver. We’ll just say

add_egg

But wait. Can we call add_egg in isolation? Where will the message go? How can a
method be called if there’s no object handling the message? A little detective work will
answer this question.

 If you don’t use an explicit receiver for a method call, Ruby assumes that you want
to send the message to the current object, self. Thinking logically, you can conclude
that the message add_egg has an object to go to only if self is an object that responds
to add_egg. In other words, you can only call the add_egg instance method of Baker
when self is an instance of Baker.

 And when is self an instance of Baker?
 When any instance method of Baker is being executed. Inside the definition of

bake_cake, for example, you can call add_egg, and Ruby will know what to do. When-
ever Ruby hits that call to add_egg inside that method definition, it sends the message
add_egg to self, and self is a Baker object.

It comes down to this: by tagging add_egg as private, you’re saying the Baker object
gets to send this message to itself (the baker can tell himself or herself to add an egg
to the batter), but no one else can send the message to the baker (you, as an outsider,
can’t tell the baker to add an egg to the batter). Ruby enforces this privacy through
the mechanism of forbidding an explicit receiver. And the only circumstances under
which you can omit the receiver are precisely the circumstances in which it’s okay to
call a private method.

 It’s all elegantly engineered. There’s one small fly in the ointment, though.

Private and singleton are different
It’s important to note the difference between a private method and a singleton
method. A singleton method is “private” in the loose, informal sense that it belongs
to only one object, but it isn’t private in the technical sense. (You can make a single-
ton method private, but by default it isn’t.) A private, non-singleton instance method,
on the other hand, may be shared by any number of objects but can only be called
under the right circumstances. What determines whether you can call a private
method isn’t the object you’re sending the message to, but which object is self at the
time you send the message.

154 CHAPTER 5 The default object (self), scope, and visibility
PRIVATE SETTER (=) METHODS

The implementation of private access through the “no explicit receiver” rule runs into
a hitch when it comes to methods that end with equal signs. As you’ll recall, when you
call a setter method, you have to specify the receiver. You can’t do this

dog_years = age * 7

because Ruby will think that dog_years is a local variable. You have to do this:

self.dog_years = age * 7

But the need for an explicit receiver makes it hard to declare the method dog_years=
private, at least by the logic of the “no explicit receiver” requirement for calling pri-
vate methods.

 The way out of this conundrum is that Ruby doesn’t apply the rule to setter meth-
ods. If you declare dog_years= private, you can call it with a receiver—as long as the
receiver is self. It can’t be another reference to self; it has to be the keyword self.

 Here’s an implementation of a dog-years-aware Dog:

class Dog
 attr_reader :age, :dog_years
 def dog_years=(years)
 @dog_years = years
 end
 def age=(years)
 @age = years
 self.dog_years = years * 7
 end
 private :dog_years=
end

You indicate how old a dog is, and the dog automatically knows its age in dog years:

rover = Dog.new
rover.age = 10
puts "Rover is #{rover.dog_years} in dog years."

The setter method age= performs the service of setting the dog years, which it does by
calling the private method dog_years=. In doing so, it uses the explicit receiver self.
If you do it any other way, it won’t work. With no receiver, you’d be setting a local vari-
able. And if you use the same object, but under a different name, like this

def age=(years)
 @age = years
 dog = self
 dog.dog_years = years * 7
end

execution is halted by a fatal error:

NoMethodError: private method 'dog_years=' called for
#<Dog:0x00000101b0d1a8 @age=10>

Output: Rover is
70 in dog years.

155Deploying method-access rules
Ruby’s policy is that it’s okay to use an explicit receiver for private setter methods, but
you have to thread the needle by making sure the receiver is exactly self.

 The third method-access level, along with public and private, is protected.

5.3.2 Protected methods

A protected method is like a slightly kinder, gentler private method. The rule for pro-
tected methods is as follows: you can call a protected method on an object x, as long as
the default object (self) is an instance of the same class as x or of an ancestor or
descendant class of x’s class.

 This rule sounds convoluted. But it’s generally used for a particular reason: you
want one instance of a certain class to do something with another instance of its class.
The following listing shows such a case.

class C
 def initialize(n)
 @n = n
 end
 def n
 @n
 end
 def compare(c)
 if c.n > n
 puts "The other object's n is bigger."
 else
 puts "The other object's n is the same or smaller."
 end
 end
 protected :n
end
c1 = C.new(100)
c2 = C.new(101)
c1.compare(c2)

The goal in this listing is to compare one C instance with another C instance. The com-
parison depends on the result of a call to the method n. The object doing the compar-
ing (c1, in the example) has to ask the other object (c2) to execute its n method.
Therefore, n can’t be private.

 That’s where the protected level comes in. With n protected rather than private, c1
can ask c2 to execute n, because c1 and c2 are both instances of the same class. But if
you try to call the n method of a C object when self is anything other than an instance
of C (or of one of C’s ancestors or descendants), the method fails.

 A protected method is thus like a private method, but with an exemption for cases
where the class of self (c1) and the class of the object having the method called on it
(c2) are the same or related by inheritance.

Listing 5.9 Example of a protected method and its use

Output: The other
object’s n is bigger.

156 CHAPTER 5 The default object (self), scope, and visibility

The last topic we’ll cover in this chapter is top-level methods. As you’ll see, top-level
methods enjoy a special-case status. But even this status meshes logically with the
aspects of Ruby’s design you’ve encountered in this chapter.

5.4 Writing and using top-level methods
The most natural thing to do with Ruby is to design classes and modules and instanti-
ate your classes. But sometimes you just want to write a quick script—a few commands
stuffed in a file and executed. It’s sometimes more convenient to write method defini-
tions at the top level of your script and then call them on top-level objects than to
wrap everything in class definitions. When you do this, you’re coding in the context of
the top-level default object, main, which is an instance of Object brought into being
automatically for the sole reason that something has to be self, even at the top level.

 But you’re not inside a class or module definition, so exactly what happens when
you define a method?

5.4.1 Defining a top-level method

Suppose you define a method at the top level:

def talk
 puts "Hello"
end

It’s not inside a class- or module-definition block, so it doesn’t appear to be an
instance method of a class or module. So what is it?

 A method that you define at the top level is stored as a private instance method of
the Object class. The previous code is equivalent to this:

class Object
 private
 def talk
 puts "Hello"
 end
end

Defining private instance methods of Object has some interesting implications.
 First, these methods not only can but must be called in bareword style. Why?

Because they’re private. You can only call them on self, and only without an explicit
receiver (with the usual exemption of private setter methods, which must be called
with self as the receiver).

Inheritance and method access
Subclasses inherit the method-access rules of their superclasses. Given a class C
with a set of access rules, and a class D that’s a subclass of C, instances of D exhibit
the same access behavior as instances of C. But you can set up new rules inside the
class definition of D, in which case the new rules take precedence for instances of D
over the rules inherited from C.

157Writing and using top-level methods
 Second, private instance methods of Object can be called from anywhere in your
code, because Object lies in the method-lookup path of every class (except Basic-
Object, but that’s too special a case to worry about). So a top-level method is always
available. No matter what self is, it will be able to recognize the message you send it if
that message resolves to a private instance method of Object.

 To illustrate, let’s extend the talk example. Here it is again, with some code that
exercises it:

def talk
 puts "Hello"
end
puts "Trying 'talk' with no receiver..."
talk
puts "Trying 'talk' with an explicit receiver..."
obj = Object.new
obj.talk

The first call to talk succeeds B; the second fails with a fatal error C, because it tries
to call a private method with an explicit receiver.

 What’s nice about the way top-level methods work is that they provide a useful
functionality (simple, script-friendly, procedural-style bareword commands), but they
do so in complete conformity with the rules of Ruby: private methods have to default
to self as the receiver, and methods defined in Object are visible to all objects. No
extra language-level constructs are involved, just an elegant and powerful combina-
tion of the ones that already exist.

 The rules concerning definition and use of top-level methods bring us all the way
back to some of the bareword methods we’ve been using since as early as chapter 1.
You’re now in a position to understand how those methods work.

5.4.2 Predefined (built-in) top-level methods

From our earliest examples onward, we’ve been making bareword-style calls to puts
and print, like this one:

puts "Hello"

puts and print are built-in private instance methods of Kernel—not, like the ones
you write, of Object, but of Kernel. The upshot is similar, though (because Object
mixes in Kernel): you can call such methods at any time, and you must call them with-
out a receiver. The Kernel module thus provides a substantial toolkit of imperative
methods, like puts and print, that increases the power of Ruby as a scripting lan-
guage. You can get a lot done with Ruby scripts that don’t have any class, module, or
method definitions, because you can do so much (read and write, run system com-
mands, exit your program, and so on) with Ruby’s top-level methods.

 If you want to see all of the private instance methods that Kernel provides, try this:

$ ruby -e 'p Kernel.private_instance_methods.sort'

B

C

158 CHAPTER 5 The default object (self), scope, and visibility
The private_instance_methods method gives you an array of all the relevant meth-
ods, and sort sorts the array of method names for easier reading. As you can see,
these methods, although often useful in imperative, script-style programming, aren’t
restricted in their usefulness to that style; they include commands like require, load,
raise (raise an exception), and others, that are among the most common techniques
in all Ruby programs, whatever style of program design they exhibit.

Summary
In this chapter, you’ve seen

 The rotating role of self (the current or default object)
 Self as the receiver for method calls with no explicit receiver
 Self as the owner of instance variables
 Implications of the “classes are objects too” rule
 Variable scope and visibility for local, global, and class variables
 The rules for looking up and referencing constants
 Ruby’s method-access levels (public, private, protected)
 Writing and working with top-level method definitions

The techniques in this chapter are of great importance to Ruby. Concepts like the dif-
ference between instance variables in a class definition and instance variables in an
instance-method definition are crucial. It’s easy to look at a Ruby program and get a
general sense of what’s going on. But to understand a program in depth—and to write
well-organized, robust programs—you need to know how to detect where the various
local scopes begin and end; how constants, instance variables, and other identifiers
are resolved; and how to evaluate the impact of the ever-shifting role of self.

 This chapter has shown you how to get your bearings in a Ruby program. It’s also
shown you some techniques you can use more accurately and effectively in your code
by virtue of having your bearings. But there’s more to explore, relating to what you
can do in the landscape of a program, beyond understanding it. The next chapter, on
the subject of control flow, will address some of these techniques.

Control-flow techniques
As you’ve already seen in the case of method calls—where control of the program
jumps from the spot where the call is made to the body of the method definition—
programs don’t run in a straight line. Instead, execution order is determined by a
variety of rules and programming constructs collectively referred to as control-flow
techniques.

 Ruby’s control-flow techniques include the following:

 Conditional execution—Execution depends on the truth of an expression.
 Looping—A single segment of code is executed repeatedly.
 Iteration—A call to a method is supplemented with a segment of code that

the method can call one or more times during its own execution.
 Exceptions—Error conditions are handled by special control-flow rules.

This chapter covers
 Conditional execution

 Loops and looping techniques

 Iterators

 Exceptions and error handling
159

160 CHAPTER 6 Control-flow techniques
We’ll look at each of these in turn. They’re all indispensable to both the understand-
ing and the practice of Ruby. The first, conditional execution (if and its variants), is a
fundamental and straightforward programming tool in almost any programming lan-
guage. Looping is a more specialized but closely related technique, and Ruby provides
you with several ways to do it. When we get to iteration, we’ll be in true Ruby hallmark
territory. The technique isn’t unique to Ruby, but it’s a relatively rare programming-
language feature that figures prominently in Ruby. Finally, we’ll look at Ruby’s exten-
sive mechanism for handling error conditions through exceptions. Exceptions stop
the flow of a program, either completely or until the error condition has been dealt
with. Exceptions are objects, and you can create your own exception classes, inherit-
ing from the ones built into Ruby, for specialized handling of error conditions in your
programs.

6.1 Conditional code execution
Allow a user access to a site if the password is correct. Print an error message unless the requested
item exists. Concede defeat if the king is checkmated. The list of uses for controlling the flow
of a program conditionally—executing specific lines or segments of code only if cer-
tain conditions are met—is endless. Without getting too philosophical, we might even
say that decision making based on unpredictable but discernible conditions is as com-
mon in programming as it is in life.

 Ruby gives you a number of ways to control program flow on a conditional basis.
The most important ones fall into two categories:

 if and related keywords
 case statements

We’ll look at both in this section.

6.1.1 The if keyword and its variants

The workhorse of conditional execution, not surprisingly, is the if keyword. if
clauses can take several forms. The simplest is the following:

if condition
 # code here, executed if condition is true
end

The code inside the conditional can be any length and can include nested conditional
blocks.

 You can also put an entire if clause on a single line, using the then keyword after
the condition:

if x > 10 then puts x end

Semicolons are always an option to mimic line breaks, and if clauses embrace this
option as well:

if x > 10; puts x; end

161Conditional code execution
Conditional execution often involves more than one branch; you may want to do one
thing if the condition succeeds and another if it doesn’t. For example, if the password is
correct, let the user in; otherwise, print an error message. Ruby makes full provisions for mul-
tiple conditional branches, using else and elsif.

THE ELSE AND ELSIF KEYWORDS

You can provide an else branch in your if statement as follows:

if condition
 # code executed if condition is true
else
 # code executed if condition is false
end

There’s also an elsif keyword (spelled like that, with no second e). elsif lets you cas-
cade your conditional logic to more levels than you can with just if and else:

if condition1
 # code executed if condition1 is true
elsif condition2
 # code executed if condition1 is false
 # and condition2 is true
elsif condition3
 # code executed if neither condition1
 # nor condition2 is true, but condition3 is
end

You can have any number of elsif clauses in a given if statement. The code segment
corresponding to the first successful if or elsif is executed, and the rest of the state-
ment is ignored:

def print_conditionally
 print "Enter an integer: "
 n = gets.to_i
 if n > 0
 puts "Your number is positive."
 elsif n < 0
 puts "Your number is negative."
 else
 puts "Your number is zero."
 end
end
print_conditionally

Note that you can use a final else even if you already have one or more elsifs. The
else clause is executed if none of the previous tests for truth has succeeded. If none
of the conditions is true and there’s no else clause, the whole if statement termi-
nates and returns nil.

 Remember that nil evaluates to false in conditional execution:

 if nil; puts "Ain’t gonna happen."; end
 => nil

162 CHAPTER 6 Control-flow techniques
Sometimes you want an if condition to be negative: if something isn’t true, then execute a
given segment of code. You can do this in several ways.

NEGATING CONDITIONS WITH NOT AND !
One way to negate a condition is to use the not keyword:

if not (x == 1)

You can also use the negating ! (exclamation point, or bang) operator:

if !(x == 1)

Both of these examples use parentheses to set apart the expression being tested. You
don’t need them in the first example; you can do this:

if not x == 1

But you do need the parentheses in the second example, because the negating ! oper-
ator has higher precedence than the == operator. In other words, if you do this

if !x == 1

you’re really, in effect, comparing the negation of x with the integer 1:

if (!x) == 1

The best practice is to use parentheses most or even all of the time when writing con-
structs like this. Even if they’re not strictly necessary, they can make it easier for you
and others to understand your code and to modify it later if necessary.

 A third way to express a negative condition is with unless.

THE UNLESS KEYWORD

The unless keyword provides a more natural-sounding way to express the same
semantics as if not or if !:

unless x == 1

But take “natural-sounding” with a grain of salt. Ruby programs are written in Ruby,
not English, and you should aim for good Ruby style without worrying unduly about
how your code reads as English prose. Not that English can’t occasionally guide you;
for instance, the unless/else sequence, which does a flip back from a negative to a
positive not normally associated with the use of the word unless, can be a bit hard to
follow:

unless x > 100
 puts "Small number!"
else
 puts "Big number!"
end

163Conditional code execution
In general, if/else reads better than unless/else—and by flipping the logic of the
condition, you can always replace the latter with the former:

if x <= 100
 puts "Small number!"
else
 puts "Big number!"
end

If you come across a case where negating the logic seems more awkward than pairing
unless with else, then keep unless. Otherwise, if you have an else clause, if is gen-
erally a better choice than unless.

 You can also put conditional tests in modifier position, directly after a statement.

Life without the dangling else ambiguity
In some languages, you can’t tell which else clause goes with which if clause with-
out a special rule. In C, for example, an if statement might look like this:

if (x)
 if (y) { execute this code }
 else { execute this code };

But wait: does the code behave the way the indentation indicates (the else belongs
to the second if)? Or does it work like this?

if (x)
 if (y){ execute this code }
else { execute this code };

All that’s changed is the indentation of the third line (which doesn’t matter to the C
compiler; the indentation just makes the ambiguity visually obvious). Which if does
the else belong to? And how do you tell?

You tell by knowing the rule in C: a dangling else goes with the last unmatched if
(the first of the two behaviors in this example). But in Ruby, you have end to help you
out:

if x > 50
 if x > 100
 puts "Big number"
 else
 puts "Medium number"
 end
end

The single else in this statement has to belong to the second if, because that if
hasn’t yet hit its end. The first if and the last end always belong together, the second
if and the second-to-last end always belong together, and so forth. The if/end pairs
encircle what belongs to them, including else. Of course, this means you have to
place your end keywords correctly. It also means that the proper indentation, as
shown above, is important to discern nested if/end pairs.

x is true, but y isn’t.

x isn’t true.

164 CHAPTER 6 Control-flow techniques
CONDITIONAL MODIFIERS

It’s not uncommon to see a conditional modifier at the end of a statement in a case
like this one:

puts "Big number!" if x > 100

This is the same as

if x > 100
 puts "Big number!"
end

You can also do this with unless:

puts "Big number!" unless x <= 100

Conditional modifiers have a conversational tone. There’s no end to worry about. You
can’t do as much with them (no else or elsif branching, for example), but when you
need a simple conditional, they’re often a good fit. Try to avoid really long statements
that end with conditional modifiers, though; they can be hard to read, and hard to
keep in your head while waiting for the modifier at the end:

puts "done" && return (x > y && a < b) unless c == 0

Like other statements in Ruby, every if statement evaluates to an object. Let’s look at
how that plays out.

THE VALUE OF IF STATEMENTS

If an if statement succeeds, the entire statement evaluates to whatever is represented
by the code in the successful branch. Type this code into irb and you’ll see this princi-
ple in action:

x = 1
if x < 0
 "negative"
elsif x > 0
 "positive"
else
 "zero"
end

As irb will tell you, the value of that entire if statement is the string "positive".
 An if statement that doesn’t succeed anywhere returns nil. Here’s a full irb

example of such a case:

>> x = 1
=> 1
>> if x == 2
>> "it's 2!"
>> elsif x == 3
>> "it's 3!"

Potentially
confusing tacking
on of an unless to
an already-long line

165Conditional code execution
>> end
=> nil

Conditional statements interact with other aspects of Ruby syntax in a couple of ways
that you need to be aware of—in particular, with assignment syntax. It’s worth looking
in some detail at how conditionals behave in assignments, because it involves some
interesting points about how Ruby parses code.

6.1.2 Assignment syntax in condition bodies and tests

Assignment syntax and conditional expressions cross paths at two points: in the bodies
of conditional expressions, where the assignments may or may not happen at all, and
in the conditional tests themselves:

if x = 1
 y = 2
end

What happens (or doesn’t) when you use these idioms? We’ll look at both, starting
with variable assignment in the body of the conditional—specifically, local-variable
assignment, which displays some perhaps unexpected behavior in this context.

LOCAL-VARIABLE ASSIGNMENT IN A CONDITIONAL BODY

Ruby doesn’t draw as clear a line as compiled languages do between “compile time”
and “runtime,” but the interpreter does parse your code before running it, and cer-
tain decisions are made during that process. An important one is the recognition and
allocation of local variables.

 When the Ruby parser sees the sequence identifier, equal-sign, and value, as in this
expression,

x = 1

it allocates space for a local variable called x. The creation of the variable—not the
assignment of a value to it, but the internal creation of a variable—always takes place
as a result of this kind of expression, even if the code isn’t executed!

 Consider this example:

if false
 x = 1
end
p x
p y

The assignment to x isn’t executed, because it’s wrapped in a failing conditional test.
But the Ruby parser sees the sequence x = 1, from which it deduces that the program
involves a local variable x. The parser doesn’t care whether x is ever assigned a value. Its
job is just to scour the code for local variables for which space needs to be allocated.

 The result is that x inhabits a strange kind of variable limbo. It has been brought
into being and initialized to nil. In that respect, it differs from a variable that has no
existence at all; as you can see in the example, examining x gives you the value nil,

Entire if statement evaluates
to nil because it fails

Assignment in conditional
Assignment in conditional

Output: nil

NameError: undefined local
variable or method ‘y’

166 CHAPTER 6 Control-flow techniques
whereas trying to inspect the nonexistent variable y results in a fatal error. But
although x exists, it hasn’t played any role in the program. It exists only as an artifact
of the parsing process.

 None of this happens with class, instance, or global variables. All three of those
variable types are recognizable by their appearance (@@x, @x, $x). But local variables
look just like method calls. Ruby needs to apply some logic at parse time to figure out
what’s what, to as great an extent as it can.

 You also have to keep your wits about you when using assignment syntax in the test
part of a conditional.

ASSIGNMENT IN A CONDITIONAL TEST

In this example, note that the conditional test is an assignment (x = 1) and not an
equality test (which would be x==1):

if x = 1
 puts "Hi!"
end

The assignment works as assignments generally do: x gets set to 1. The test, therefore,
reduces to if 1, which is true. Therefore, the body of the conditional is executed, and
the string "Hi!" is printed.

 But you also get a warning:

warning: found = in conditional, should be ==

Ruby’s thinking in a case like this is as follows. The test expression if x = 1 will always
succeed, and the conditional body will always be executed. That means there’s no con-
ceivable reason for a programmer ever to type if x = 1. Therefore, Ruby concludes
that you almost certainly meant to type something else and issues the warning to alert you to
the probable mistake. Specifically, the warning suggests the == operator, which pro-
duces a real test (that is, a test that isn’t necessarily always true).

 What’s particularly nice about this warning mechanism is that Ruby is smart
enough not to warn you in cases where it’s not certain that the condition will be true.
If the right-hand side of the assignment is itself a variable, method call, or mathemati-
cal expression, then you don’t get the warning. Neither of the following if statements
produces warnings:

if x = y
if x = (2 – 1)

Unlike x = 1, the assignment expression x = y may or may not succeed as a conditional
test. (It will be false if y is false.) Therefore, it’s not implausible that you’d test that
expression, so Ruby doesn’t warn you.

 Why would you want to use an assignment in a conditional test? You certainly never
have to; you can always do this:

x = y
if x
etc.

167Conditional code execution
But sometimes it’s handy to do the assigning and testing at the same time, particularly
when you’re using a method that returns nil on failure and some other value on suc-
cess. A common example is pattern matching with the match method. This method,
which you’ll see a lot more of in chapter 11, tests a string against a regular expression,
returning nil if there’s no match and an instance of MatchData if there is one. The
MatchData object can be queried for information about the specifics of the match.
Note the use of a literal regular expression, /la/, in the course of testing for a match
against the string name:

name = "David A. Black"
if m = /la/.match(name)
 puts "Found a match!"
 print "Here's the unmatched start of the string: "
 puts m.pre_match
 print "Here's the unmatched end of the string: "
 puts m.post_match
else
 puts "No match"
end

The output from this snippet is

Found a match!
Here's the unmatched start of the string: David A. B
Here's the unmatched end of the string: ck

The match method looks for the pattern la in the string "David A. Black". The vari-
able m is assigned in the conditional B and will be nil if there’s no match. The deck is
stacked in the example, of course: there’s a match, so m is a MatchData object and can
be queried. In the example, we ask it about the parts of the string that occurred
before and after the matched part of the string, and it gives us the relevant substrings.

 As always, you could rewrite the assignment and the conditional test like this:

m = /la/.match(name)
if m
 # etc.

You don’t have to combine them into one expression. But at least in this case there’s
some semantic weight to doing so: the expression may or may not pass the conditional
test, so it’s reasonable to test it.

 Although if and friends are Ruby’s bread-and-butter conditional keywords,
they’re not the only ones. We’ll look next at case statements.

6.1.3 case statements

A case statement starts with an expression—usually a single object or variable, but any
expression can be used—and walks it through a list of possible matches. Each possible
match is contained in a when statement consisting of one or more possible matching
objects and a segment of code. When one of the terms in a given when clause matches,
that when is considered to have “won,” and its code segment is executed. Only one
match, at most, can win.

B

168 CHAPTER 6 Control-flow techniques
 case statements are easier to grasp by example than by description. The following
listing shows a case statement that tests a line of keyboard input and branches based
on its value. Add it to a file called quit_or_not.rb.

def quit_or_not
 print "Exit the program? (yes or no): "
 answer = gets.chomp
 case answer
 when "yes"
 puts "Good-bye!"
 exit
 when "no"
 puts "OK, we'll continue"
 else
 puts "That's an unknown answer -- assuming you meant 'no'"
 end
 puts "Continuing with program...."
 quit_or_not
end
quit_or_not

The case statement begins with the case keyword B, continues through all the when
blocks C and an (optional) else clause D, and ends with the end keyword E. At
most, one match will succeed and have its code executed. If it’s the one belonging to
"yes", then the program exits. Any other input is either "no" or some other value,
which this particular program interprets as equivalent to "no", causing the program to
continue running and call the quit_or_not test again F.

 You can put more than one possible match in a single when, as this snippet shows:

case answer
when "y", "yes"
 puts "Good-bye!"
 exit
 # etc.

The comma between multiple conditions in a when clause is a kind of “or” operator;
this code will say “Good-bye!” and exit if answer is either "y" or "yes".

 Let’s look next at how when clauses work under the hood. You won’t be surprised
to learn that some message sending is involved.

HOW WHEN WORKS

The basic idea of the case/when structure is that you take an object and cascade
through a series of tests for a match, taking action based on the test that succeeds. But
what does match mean in this context? What does it mean, in our example, to say that
answer matches the word yes, or the word no, or neither?

 Ruby has a concrete definition of match when it comes to when statements.

Listing 6.1 Interpreting user input with a case statement

Chomps off trailing newline
character on input string

B
C

D

E

F

169Conditional code execution
 Every Ruby object has a case equality method called === (three equal signs, some-
times called the case subsumption or threequal operator). The outcome of calling the ===
method determines whether a when clause has matched.

 You can see this clearly if you look first at a case statement and then at a transla-
tion of this statement into threequal terms. Look again at the case statement in list-
ing 6.1. Here’s the same thing rewritten to use the threequal operator explicitly:

if "yes" === answer
 puts "Good-bye!"
 exit
elsif "no" === answer
 puts "OK, we'll continue"
else
 puts "That's an unknown answer—assuming you meant 'no'"
end

The === in infix-operator position (that is, between a left-hand term and a right-hand
term) is really syntactic sugar for a method call:

if "yes".===(answer)

A when statement wraps that method call in yet more sugar: you don’t have to use ===
explicitly in either operator or method position. It’s done for you.

NOTE "yes" and "no" are on the left, and answer is on the right. In a case
statement, the object that comes after when is the receiver of the threequal
method, and the object that comes after case is the argument. This is import-
ant for instances where a.===(b) is true but b.===(a) is false.

That’s the logic of the syntax. But why does

"yes" === answer

return true when answer contains "yes"?
 The method call returns true because of how the threequal method is defined for

strings. When you ask a string to threequal itself against another string (string1 ===
string2), you’re asking it to compare its own contents character by character against
the other string and report back true for a perfect match, or false otherwise.

 The most important point in this explanation is the phrase “for strings.” Every class
(and, in theory, every individual object, although it’s usually handled at the class level)
can define its own === method and thus its own case-equality logic. For strings and,
indeed, for any object that doesn’t override it, === works the same as == (the basic
string-equals-some-other-string test method). But other classes can define the thre-
equal test any way they want.

 case/when logic is thus really object === other_object logic in disguise; and
object === other_object is really object. === (other_object) in disguise. By defin-
ing the threequal method however you wish for your own classes, you can exercise
complete control over the way your objects behave inside a case statement.

170 CHAPTER 6 Control-flow techniques
PROGRAMMING OBJECTS’ CASE STATEMENT BEHAVIOR

Let’s say we decide that a Ticket object should match a when clause in a case state-
ment based on its venue. We can bring this about by writing the appropriate threequal
method. The following listing shows such a method, bundled with enough ticket func-
tionality to make a complete working example.

class Ticket
 attr_accessor :venue, :date
 def initialize(venue, date)
 self.venue = venue
 self.date = date
 end
 def ===(other_ticket)
 self.venue == other_ticket.venue
 end
end
ticket1 = Ticket.new("Town Hall", "07/08/18")
ticket2 = Ticket.new("Conference Center", "07/08/18")
ticket3 = Ticket.new("Town Hall", "08/09/18")
puts "ticket1 is for an event at: #{ticket1.venue}."
case ticket1
when ticket2
 puts "Same location as ticket2!"
when ticket3
 puts "Same location as ticket3!"
else
 puts "No match."
end

The output from this listing is as follows:

ticket1 is for an event at: Town Hall.
Same location as ticket3!

The match is found through the implicit use of the === instance method of the
Ticket class B. Inside the case statement, the first when expression C triggers a hid-
den call to ===, equivalent to doing this:

if ticket2 === ticket1

Because the === method returns true or false based on a comparison of venues, and
ticket2’s venue isn’t the same as ticket1’s, the comparison between the two tickets
returns false. Therefore, the body of the corresponding when clause isn’t executed.

 The next test is then performed: another threequal comparison between ticket1
and ticket3 D. This test returns true; the when expression succeeds, and the code in
its body is executed.

 This kind of interflow between method definitions (===) and code that doesn’t
look like it’s calling methods (case/when) is typical of Ruby. The case/when structure
provides an elegant way to perform cascaded conditional tests; and the fact that it’s a

Listing 6.2 Implementing case statement behavior for the Ticket class

B

C

D

171Conditional code execution
bunch of === calls means you can make it do what you need by defining the ===
method in your classes.

 The case statement also comes in a slightly abbreviated form, which lets you test
directly for a truth value: case without a case expression.

THE SIMPLE CASE TRUTH TEST

If you start a case statement with the case keyword by itself—that is, with no test
expression—followed by some when clauses, the first when clause whose condition is
true will be the winner. Assuming an object user with first_name and last_name
methods, you could imaginably write a case statement like this:

case
when user.first_name == "David", user.last_name == "Black"
 puts "You might be David Black."
when Time.now.wday == 5
 puts "You're not David Black, but at least it's Friday!"
else
 puts "You're not David Black, and it's not Friday."
end

The simple case keyword in this manner is an alternate way of writing an if state-
ment. In fact, any case statement can be written as an if statement. case statements
with explicit arguments to case are often considerably shorter than their if counter-
parts, which have to resort to calling === or other comparison methods. Those with-
out explicit test arguments are usually no shorter than the equivalent if statements;
for instance, the previous example would be written like this using if:

if user.first_name == "David" or user.last_name == "Black"
 puts "You might be David Black."
elsif Time.now.wday == 5
 puts "You're not David Black, but at least it's Friday!"
else
 puts "You're not David Black, and it's not Friday."
end

The advantage of the testless case statement is that it doesn’t limit you to what you
can test with === on a given object. When you have a choice between a testless case or
an if, your choice will be based on your sense of what looks and reads best.

THE RETURN VALUE OF CASE STATEMENTS

An important final point to keep in mind about case statements is that every case
statement evaluates to a single object. If there’s a successful when or else clause, the
return value of the entire case statement is the value returned by the code in that
clause. Otherwise, if the case statement fails to find a match, the entire statement
evaluates to nil, similar to if statements that fail.

 Thus you could, for example, rewrite the conditionless example like this:

puts case
 when user.first_name == "David", user.last_name == "Black"
 "You might be David Black."
 when Time.now.wday == 5

Ordinal number
for day of week
(Sunday is 0)

172 CHAPTER 6 Control-flow techniques
 "You're not David Black, but at least it's Friday!"
 else
 "You're not David Black, and it's not Friday."
 end

In this version, the calls to puts have been extracted out of the when clauses; the whole
case statement is dedicated to finding an argument to the single puts call on the left.
That argument will be whichever of the three strings the case statement returns.

 Conditionals like if and case/when let you control program flow by doing one
thing instead of another. But sometimes you need to perform a single task again and
again. This kind of repetition can be accomplished with loops, which we’ll look at
next.

6.2 Repeating actions with loops
Ruby’s facilities for looping repeatedly through code also allow you to incorporate
conditional logic: you can loop while a given condition is true (such as a variable being
equal to a given value), and you can loop until a given condition is true. You can also
break out of a loop unconditionally, terminating the loop at a certain point, and
resume execution of the program after the loop.

 We’ll look at several ways to loop—starting, appropriately, with a method called
loop.

Exercises
1 Change the threequal definition in the Ticket class in listing 6.2 so that it

matches on date instead of location. When you run the code, it should print the
following output:

ticket1 is for an event on: 07/08/18.
Same date as ticket2!

2 Create a class called TicketComparer that has a class method called compare
that encapsulates the case statement.

To make the tickets easier to identify, add a :name attribute to the Ticket class.
The following code,

ticket1 = Ticket.new("ticket1", "Town Hall", "07/08/18")
ticket2 = Ticket.new("ticket2", "Convention Center", "07/08/18")
ticket3 = Ticket.new("ticket3", "Town Hall", "08/09/18")
puts "#{ticket1.name} is for an event on: #{ticket1.date}."
TicketComparer.compare(ticket1, ticket2, ticket3)

will produce the same output as above:

ticket1 is for an event on: 07/08/18.
Same date as ticket2!

173Repeating actions with loops
6.2.1 Unconditional looping with the loop method

The loop method doesn’t take any normal arguments: you just call it. It does, how-
ever, take a code block—that is, a delimited set of program instructions, written as
part of the method call (the call to loop) and available to be executed from the
method. (We’ll look at code blocks in much more detail later in this chapter. You can
get by with just the placeholder level of knowledge here.) The anatomy of a call to
loop, then, looks like this:

loop codeblock

Code blocks can be written in one of two ways: either in curly braces ({}) or with the
keywords do and end. The following two snippets are equivalent:

loop { puts "Looping forever!" }
loop do
 puts "Looping forever!"
end

A loose convention holds that one-line code blocks use the curly braces, and multiline
blocks use do/end. But Ruby doesn’t enforce this convention. (The braces and the
do/end pair do, in fact, differ from each other slightly. You don’t have to worry about
that now.)

 Generally, you don’t want a loop to loop forever; you want it to stop at some point.
You can usually stop by pressing Ctrl-C, but there are other, more programmatic ways,
too.

CONTROLLING THE LOOP

One way to stop a loop is with the break keyword, as in this admittedly verbose
approach to setting n to 10:

n = 1
loop do
 n = n + 1
 break if n > 9
end

Another technique skips to the next iteration of the loop without finishing the cur-
rent iteration. To do this, you use the keyword next:

n = 1
loop do
 n = n + 1
 next unless n == 10
 break
end

Here, control falls through to the break statement only if n == 10 is true. If n == 10 is
not true (unless n == 10), the next is executed, and control jumps back to the begin-
ning of the loop before it reaches break.

 You can also loop conditionally: while a given condition is true or until a condition
becomes true.

174 CHAPTER 6 Control-flow techniques
6.2.2 Conditional looping with the while and until keywords

Conditional looping is achieved via the keywords while and until. These keywords
can be used in any of several ways, depending on exactly how you want the looping to
play out.

THE WHILE KEYWORD

The while keyword allows you to run a loop while a given condition is true. A block
starting with while has to end with end. The code between while and end is the body
of the while loop. Here’s an example:

n = 1
while n < 11
 puts n
 n = n + 1
end
puts "Done!"

This code prints the following:

1
2
3
4
5
6
7
8
9
10
Done!

As long as the condition n < 11 is true, the loop executes. With each iteration of the
loop, n is incremented by 1. The eleventh time the condition is tested, it’s false (n is
no longer less than 11), and the execution of the loop terminates.

 You can also place while at the end of a loop. In this case, you need to use the key-
word pair begin/end to mark where the loop is (otherwise, Ruby won’t know how
many of the lines previous to the while you want to include in the loop):

n = 1
begin
 puts n
 n = n + 1
end while n < 11
puts "Done!"

The output from this example is the same as the output from the previous example.
 There’s a difference between putting while at the beginning and putting it at the

end. If you put while at the beginning, and if the while condition is false, the code
isn’t executed:

n = 10
while n < 10
 puts n
end

175Repeating actions with loops
Because n is already greater than 10 when the test n < 10 is performed the first time,
the body of the statement isn’t executed. But if you put the while test at the end,

n = 10
begin
 puts n
end while n < 10

the number 10 is printed. Obviously, n isn’t less than 10 at any point. But because the
while test is positioned at the end of the statement, the body is executed once before
the test is performed.

 Like if and unless, the conditional loop keywords come as a pair: while and
until.

THE UNTIL KEYWORD

The until keyword is used the same way as while but with reverse logic. Here’s
another labor-intensive way to print out the integers from 1 to 10, this time illustrating
the use of until:

n = 1
until n > 10
 puts n
 n = n + 1
end

The body of the loop (the printing and incrementing of n, in this example) is exe-
cuted repeatedly until the condition is true.

 You can also use until in the post-block position, in conjunction with a begin/end
pairing. As with while, the block will execute once before the until condition is
tested.

 Like their cousins if and unless, while and until can be used in a modifier posi-
tion in one-line statements.

THE WHILE AND UNTIL MODIFIERS

Here’s a slightly shorter way to count to 10, using until in a modifier position:

n = 1
n = n + 1 until n == 10
puts "We've reached 10!"

In place of the until statement, you could also use while n < 10.
 Note that the one-line modifier versions of while and until don’t behave the

same way as the post-positioned while and until you use with a begin/end block. In
other words, in a case like this

>> a = 1
>> a += 1 until true
=> nil
>> a
=> 1

the a += 1 statement won’t be executed, because true is already true. But in this case,

176 CHAPTER 6 Control-flow techniques
>> a = 1
>> begin
>> a += 1
>> end until true
=> nil
>> a
=> 2

the body of the begin/end block does get executed once.
 Because loop does take a block, it exhibits the same behavior regardless of how it’s

structured:

a = 1
loop { a += 1; break if true }
loop do
 a += 1
 break if true
end

In both cases, a increases by 1 because the block gives a += 1 a chance to execute
before executing the conditional statement.

6.2.3 Multiple assignment in conditional statements

Ruby allows for the assignment of values within conditional expressions. The follow-
ing expression assigns values to a and b.

if (a,b = [3,4])
 puts a
 puts b
end

The if expression evaluates to true because the values assigned to a and b are not nil.
Nil values will cause the expression to fail, as you’ve seen previously:

while (a,b = nil)
 puts "this line will not execute"
end

A warning is printed when you perform assignment within a conditional expression:

warning: found = in conditional, should be ==

As you’ve seen, it’s easy to confuse the assignment operator = with comparison opera-
tors == or ===. Ruby allows us to create these statements but advises us to proceed with
caution.

6.2.4 Looping based on a list of values

In addition to looping unconditionally (loop) and conditionally (while, until), you
can loop through a list of values, running the loop once for each value. Ruby offers
several ways to do this, one of which is the keyword for.

177Iterators and code blocks
 Let’s say you want to print a chart of Fahrenheit equivalents of Celsius values. You
can do this by putting the Celsius values in an array and then looping through the
array using the for/in keyword pair. The loop in listing 6.3 runs once for each value
in the array; each time through, that value is assigned to a variable you specify.

class Temperature
 def Temperature.c2f(celsius)
 celsius * 9.0 / 5 + 32
 end
end
celsius = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
puts "Celsius\tFahrenheit"
for c in celsius
 puts "#{c}\t#{Temperature.c2f(c)}"
end

The body of the loop (the puts statement) runs 11 times. The first time through, the
value of c is 0. The second time, c is 10; the third time, it’s 20; and so forth.

 for is a powerful tool. Oddly enough, though, on closer inspection it turns out
that for is just an alternate way of doing something even more powerful.

6.3 Iterators and code blocks
The control-flow techniques we’ve looked at so far involve controlling how many
times, or under what conditions, a segment of code gets executed. In this section,
we’ll examine a different kind of control-flow facility. The techniques we’ll discuss
here don’t just perform an execute-or-skip operation on a segment of code; they
bounce control of the program from one scope to another and back again, through
iteration.

6.3.1 The ingredients of iteration

In focusing on movement between local scopes, it may sound like we’ve gone back to
talking about method calls. After all, when you call a method on an object, control is
passed to the body of the method (a different scope); and when the method has fin-
ished executing, control returns to the point right after the point where the method
call took place.

 We are indeed back in method-call territory, but we’re exploring new aspects of it,
not just revisiting the old. We’re talking about a new construct called a code block and a
keyword by the name of yield.

 In section 6.2.1, you saw a code sample that looked like this:

loop { puts "Looping forever!" }

The word loop and the message in the string clue you in as to what you get if you run
it: that message, printed forever. But what exactly is going on? Why does that puts state-
ment get executed at all—and why does it get executed in a loop?

Listing 6.3 Using for/in with the Temperature class

Header for chart
(\t prints a tab)

178 CHAPTER 6 Control-flow techniques
 The answer is that loop is an iterator. An iterator is a Ruby method that has an extra
ingredient in its calling syntax: it expects you to provide it with a code block. The curly
braces in the loop example delimit the block; the code in the block consists of the
puts statement.

 The loop method has access to the code inside the block: the method can call
(execute) the block. To do this from an iterator of your own, you use the keyword
yield. Together, the code block (supplied by the calling code) and yield (invoked
from within the method) are the chief ingredients of iteration.

 loop itself is written in C (and uses a C function to achieve the same effect as
yield). But the whole idea of looping suggests an interesting exercise: reimplement-
ing loop in pure Ruby. This exercise will give you a first glimpse of yield in action.

6.3.2 Iteration, home-style

The job of loop is to yield control to the code block, again and again, forever. Here’s
how you might write your own version of loop:

def my_loop
 while true
 yield
 end
end

Or, even shorter:

def my_loop
 yield while true
end

Then you’d call it just like you call loop,

my_loop { puts "My-looping forever!" }

and the message would be printed over and over.
 By providing a code block, you’re giving my_loop something—a chunk of code—to

which it can yield control. When the method yields to the block, the code in the block
runs, and then control returns to the method. Yielding isn’t the same as returning
from a method. Yielding takes place while the method is still running. After the code
block executes, control returns to the method at the statement immediately following
the call to yield.

 The code block is part of the method call—that is, part of its syntax. This is an
important point: a code block isn’t an argument. The arguments to methods are the
arguments. The code block is the code block. They’re two separate constructs. You
can see the logic behind the distinction if you look at the full picture of how method
calls are put together.

179Iterators and code blocks
6.3.3 The anatomy of a method call

Every method call in Ruby has the following syntax:

 A receiver object or variable (defaulting to self if absent)
 A dot (required if there’s an explicit receiver; disallowed otherwise)
 A method name (required)
 An argument list (optional; defaults to ())
 A code block (optional; no default)

Note that the argument list and the code block are separate. Their existence varies
independently. All of these are syntactically legitimate Ruby method calls:

loop { puts "Hi" }
loop() { puts "Hi" }
string.scan(/[^,]+/)
string.scan(/[^,]+/) {|word| puts word }

(The last example shows a block parameter, word. We’ll get back to block parameters
presently.) The difference between a method call with a block and a method call with-
out a block comes down to whether or not the method can yield. If there’s a block,
then it can; if not, it can’t, because there’s nothing to yield to.

 Furthermore, some methods are written so they’ll at least do something, whether
you pass them a code block or not. String#split, for example, splits its receiver (a
string, of course) on the delimiter you pass in and returns an array of the split ele-
ments. If you pass it a block, split also yields the split elements to the block, one at a
time. Your block can then do whatever it wants with each substring: print it out, stash
it in a database column, and so forth.

 If you learn to think of the code block as a syntactic element of the method call,
rather than as one of the arguments, you’ll be able to keep things straight as you see
more variations on the basic iteration theme.

 Earlier, you saw, in brief, that code blocks can be delimited either by curly braces
or by the do/end keyword pair. Let’s look more closely now at how these two delimiter
options differ from each other.

6.3.4 Curly braces vs. do/end in code block syntax

The difference between the two ways of delimiting a code block is a difference in pre-
cedence. Look at this example, and you’ll start to see how this plays out:

>> array = [1,2,3]
=> [1, 2, 3]
>> array.map {|n| n * 10 }
=> [10, 20, 30]
>> array.map do |n| n * 10 end
=> [10, 20, 30]
>> puts array.map {|n| n * 10 }
10
20
30

B

C

D

180 CHAPTER 6 Control-flow techniques
=> nil
>> puts array.map do |n| n * 10 end
 #<Enumerator:0x00000101132048>
=> nil

The map method works through an array one item at a time, calling the code block
once for each item and creating a new array consisting of the results of all of those
calls to the block. Mapping our [1,2,3] array through a block that multiplies each
item by 10 results in the new array [10,20,30]. Furthermore, for a simple map opera-
tion, it doesn’t matter whether we use curly braces B or do/end C. The results are
the same.

 But look at what happens when we use the outcome of the map operation as an
argument to puts. The curly brace version prints out the [10,20,30] array (one item
per line, in keeping with how puts handles arrays) D. But the do/end version returns
an enumerator—which is precisely what map does when it’s called with no code block

E. (You’ll learn more about enumerators in chapter 10. The relevant point here is
that the two block syntaxes produce different results.)

 The reason is that the precedence is different. The first puts statement is inter-
preted like this:

puts(array.map {|n| n * 10 })

The second is interpreted like this:

puts(array.map) do |n| n * 10 end

In the second case, the code block is interpreted as being part of the call to puts, not
the call to map. And if you call puts with a block, it ignores the block. So the do/end
version is really equivalent to

puts array.map

And that’s why we get an enumerator.
 The call to map using a do/end–style code block illustrates the fact that if you sup-

ply a code block, but the method you call doesn’t see it (or doesn’t look for it), no
error occurs: methods aren’t obliged to yield, and many methods (including map)
have well-defined behaviors for cases where there’s a code block and cases where
there isn’t. If a method seems to be ignoring a block that you expect it to yield to, look
closely at the precedence rules and make sure the block really is available to the
method.

 We’ll continue looking at iterators and iteration by doing with several built-in Ruby
iterators what we did with loop: examining the method and then implementing our
own. We’ll start with a method that’s a slight refinement of loop: times.

E

181Iterators and code blocks
6.3.5 Implementing times

The times method is an instance method of the Integer class, which means you call it
as a method on integers. It runs the code block n times, for any integer n, and at the
end of the method, the return value is n.

 You can see both the output and the return value if you run a times example in
irb:

>> 5.times { puts "Writing this 5 times!" }
Writing this 5 times!
Writing this 5 times!
Writing this 5 times!
Writing this 5 times!
Writing this 5 times!
=> 5

The call to the method includes a code block B that gets executed five times. The
return value of the whole method is the object we started with: the integer 5 C.

 The behavior of times illustrates nicely the fact that yielding to a block and return-
ing from a method are two different things. A method may yield to its block any num-
ber of times, from zero to infinity (the latter in the case of loop). But every method
returns exactly once (assuming no fatal errors) when it’s finished doing everything it’s
going to do. It’s a bit like a jump in figure skating. You take off, execute some rota-
tions in the air, and land. And no matter how many rotations you execute, you only
take off once and only land once. Similarly, a method call causes the method to run
once and to return once. But in between, like rotations in the air, the method can
yield control zero or more times.

 Before we implement times, let’s look at another of its features. Each time times
yields to its block, it yields something. Sure enough, code blocks, like methods, can
take arguments. When a method yields, it can yield one or more values.

 The block picks up the argument through its parameters. In the case of times, you
can supply a single parameter, and that parameter will be bound to whatever value
gets yielded to the block on each iteration. As you might guess, the values yielded by
times are the integers 0 through n – 1:

>> 5.times {|i| puts "I'm on iteration #{i}!" }
I'm on iteration 0!
I'm on iteration 1!
I'm on iteration 2!
I'm on iteration 3!
I'm on iteration 4!
=> 5

Each time through—that is, each time times yields to the code block—it yields the
next value, and that value is placed in the variable i.

 We’re ready to implement times—or, rather, my_times.

B

C

182 CHAPTER 6 Control-flow techniques

class Integer
 def my_times
 c = 0
 puts "c = 0"
 puts "until c == #{self}..."
 until c == self
 yield c
 c += 1
 end
 self
 end
end
ret = 5.my_times {|i| puts "I'm on iteration #{i}!" }
puts ret

We insert puts statements B to demonstrate that the value of self is the receiver, in this
case the integer that calls my_times. We set self as the return value just as Integer#
times does C. Running the code in listing 6.4 produces the following output:

c = 0
until c == 5...
I'm on iteration 0!
I'm on iteration 1!
I'm on iteration 2!
I'm on iteration 3!
I'm on iteration 4!
5

After printing our debug statements, my_times works just like times. You’ll learn
plenty more iteration and collection-manipulation techniques that you can use to
make your method definitions both concise and clear.

 Speaking of which, our next stop is the each method. As you’ll see here, and in
even greater depth in the later chapters where we explore collection objects exten-
sively, each is a busy, pivotal method.

6.3.6 The importance of being each

The idea of each is simple: you run the each method on a collection object, and each
yields each item in the collection to your code block, one at a time. Ruby has several
collection classes, and even more classes that are sufficiently collection-like to support
an each method. You’ll see two chapters devoted to Ruby collections. Here, we’ll
recruit the humble array for our examples.

 Here’s a simple each operation:

array = [1,2,3,4,5]
array.each {|e| puts "The block just got handed #{e}." }

The output of the each call looks like this in an irb session:

>> array.each {|e| puts "The block just got handed #{e}." }
The block just got handed 1.

Listing 6.4 yield at work in Integer#my_times

B

C

183Iterators and code blocks
The block just got handed 2.
The block just got handed 3.
The block just got handed 4.
The block just got handed 5.
=> [1, 2, 3, 4, 5]

The last line isn’t method output; it’s the return value of each, echoed back by irb.
The return value of each, when it’s given a block, is its receiver, the original array.
(When it isn’t given a block, it returns an enumerator; you’ll learn about those in
chapter 10.) Like times, each doesn’t have an exciting return value. All the interest
lies in the fact that it yields values to the block.

 To implement my_each, we’ll take another step along the lines of iteration refine-
ment. With my_loop, we iterated forever. With my_times, we iterated n times. With
my_each, the number of iterations—the number of times the method yields—depends
on the size of the array.

 We need a counter to keep track of where we are in the array and to keep yielding
until we’re finished. Conveniently, arrays have a size method, which makes it easy to
determine how many iterations (how many “rotations in the air”) need to be per-
formed. As a return value for the method, we’ll use the original array object:

class Array
 def my_each
 c = 0
 until c == size
 yield self[c]
 c += 1
 end
 self
 end
end

A trial run of my_each produces the result we’re aiming for:

>> array = [1,2,3,4,5]
>> array.my_each {|e| puts "The block just got handed #{e}." }
The block just got handed 1.
The block just got handed 2.
The block just got handed 3.
The block just got handed 4.
The block just got handed 5.
=> [1, 2, 3, 4, 5]

We’ve successfully implemented at least a simple version of each. The nice thing
about each is that it’s so vanilla: all it does is toss values at the code block, one at a
time, until it runs out. One important implication of this is that it’s possible to build
any number of more complex, semantically rich iterators on top of each. We’ll finish
this reimplementation exercise with one such method: map, which you saw briefly in
section 6.3.4. Learning a bit about map will also take us into some further nuances of
code block writing and usage.

Because we're defining this method
on the Array class, we have access to
its methods, such as size.

Uses [] to get current
array element

184 CHAPTER 6 Control-flow techniques
6.3.7 From each to map

Like each, map walks through an array one element at a time and yields each element
to the code block. The difference between each and map lies in the return value: each
returns its receiver, but map returns a new array. The new array is always the same size
as the original array; but instead of the original elements, the new array contains the
accumulated return values of the code block from the iterations.

 Here’s a map example. Notice that the return value contains new elements; it’s not
just the array we started with:

>> names = ["David", "Alan", "Black"]
=> ["David", "Alan", "Black"]
>> names.map {|name| name.upcase }
=> ["DAVID", "ALAN", "BLACK"]

The mapping results in a new array, each of whose elements corresponds to the ele-
ment in the same position in the original array but processed through the code block.
The piece of the puzzle that map adds to our analysis of iteration is the idea of the
code block returning a value to the method that yielded to it. And indeed it does: just as
the method can yield a value, so too can the block return a value. The return value
comes back as the value returned from yield.

 To implement my_map, then, we have to arrange for an accumulator array, into
which we’ll drop the return values of the successive calls to the code block. We’ll then
return the accumulator array as the result of the entire call to my_map.

 Let’s start with a preliminary, but not final, implementation, in which we don’t
build on my_each but write my_map from scratch. The purpose is to illustrate exactly
how mapping differs from simple iteration. We’ll then refine the implementation.

 The first implementation looks like this:

class Array
 def my_map
 c = 0
 acc = []
 until c == size
 acc << yield self[c]
 c += 1
 end
 acc
 end
end

We now get the same results from my_map that we did from map:

>> names.my_map {|name| name.upcase }
=> ["DAVID", "ALAN", "BLACK"]

Like my_each, my_map yields each element of the array in turn. Unlike my_each, my_map
stores the value that comes back from the block. That’s how it accumulates the map-
ping of the old values to the new values: the new values are based on the old values,
processed through the block.

Initializes accumulator array

Captures return value from
block in accumulator array

Returns accumulator array

185Iterators and code blocks
 But our implementation of my_map fails to deliver on the promise of my_each—the
promise being that each serves as the vanilla iterator on top of which the more com-
plex iterators can be built. Let’s reimplement map. This time, we’ll write my_map in
terms of my_each.

BUILDING MAP ON TOP OF EACH

Building map on top of each is almost startlingly simple:

class Array
 # Put the definition of my_each here
 def my_map
 acc = []
 my_each {|e| acc << yield e }
 acc
 end
end

We piggyback on the vanilla iterator, allowing my_each to do the walk-through of the
array. There’s no need to maintain an explicit counter or to write an until loop.
We’ve already got that logic; it’s embodied in my_each. In writing my_map, it makes
sense to take advantage of it.

 There’s much, much more to say about iterators and, in particular, the ways Ruby
builds on each to provide an extremely rich toolkit of collection-processing methods.
We’ll go down that avenue in chapter 10. Here, meanwhile, let’s delve a bit more
deeply into some of the nuts and bolts of iterators—starting with the assignment and
scoping rules that govern their use of parameters and variables.

6.3.8 Block parameters and variable scope

You’ve seen that block parameters are surrounded by pipes, rather than parentheses
as method parameters are. But you can use what you’ve learned about method argu-
ments to create block-parameter lists. Remember the args_unleashed method from
chapter 2?

def args_unleashed(a,b=1,*c,d,e)
 puts "Arguments:"
 p a,b,c,d,e
end

Here’s a block-based version of the method:

def block_args_unleashed
 yield(1,2,3,4,5)
end
block_args_unleashed do |a,b=1,*c,d,e|
 puts "Arguments:"
 p a,b,c,d,e
end

The parameter bindings and program output are the same as they were with the origi-
nal version:

186 CHAPTER 6 Control-flow techniques
Arguments:
1
2
[3]
4
5

What about scope? A method definition, as you know, starts a new local scope. Blocks
are a little more complicated.

 Let’s start with a simple case: inside a block, you refer to a variable (not a block
parameter; just a variable) called x, and you’ve already got a variable called x in scope
before you write the block:

def block_scope_demo
 x = 100
 1.times do
 puts x
 end
end

When you run the method (which includes a handy puts statement), you’ll see that
the x inside the block is the same as the x that existed already:

block_scope_demo

Now, what about assigning to the variable inside a block? Again, it turns out that the
variable inside the block is the same as the one that existed prior to the block, as
you can see by changing it inside the block and then printing it out after the block is
finished:

def block_scope_demo_2
 x = 100
 1.times do
 x = 200
 end
 puts x
end
block_scope_demo_2

Blocks, in other words, have direct access to variables that already exist (such as x in
the example). However, block parameters (the variable names between the pipes)
behave differently from non-parameter variables. If you have a variable of a given
name in scope and also use that name as one of your block parameters, then the two
variables—the one that exists already and the one in the parameter list—are not the
same as each other.

NOTE Although it’s important in its own right, the fact that blocks share local
scope with the code that precedes them will take on further significance when
we look at Proc objects and closures in chapter 14. You’ll learn that blocks can
serve as the bodies of anonymous function objects, and those objects preserve
the local variables that are in scope at the time of their creation—even if the
function objects get handed around other local scopes.

Single iteration serves to
create code block context

Output: 100

Output: 200

187Iterators and code blocks
Look at the variables named x in this example:

def block_local_parameter
 x = 100
 [1,2,3].each do |x|
 puts "Parameter x is #{x}"
 x = x + 10
 puts "Reassigned to x in block; it's now #{x}"
 end
 puts "Outer x is still #{x}"
end

The output from a call to this method is

Parameter x is 1
Reassigned to x in block; it's now 11
Parameter x is 2
Reassigned to x in block; it's now 12
Parameter x is 3
Reassigned to x in block; it's now 13
Outer x is still 100

The x inside the block isn’t the same as the x outside the block, because x is used as a
block parameter. Even reassigning to x inside the block doesn’t overwrite the “outer”
x. This behavior enables you to use any variable name you want for your block param-
eters without having to worry about whether a variable of the same name is already in
scope.

 Although the block parameters within a block won’t change variables defined out-
side the block, we can still overwrite them ourselves. Let’s look again at our
Temperature class. This time we’ll define a fahrenheit variable before the block and
change it within the block to see how it behaves.

class Temperature
 def Temperature.c2f(celsius)
 celsius * 9.0 / 5 + 32
 end
 def Temperature.now
 rand(0..100)
 end
end
celsius = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
fahrenheit = Temperature.now
puts "The temperature is now: #{fahrenheit} degrees Fahrenheit."
puts "Celsius\tFahrenheit"
celsius.each do |c|
 fahrenheit = Temperature.c2f(c)
 puts "#{c}\t#{fahrenheit}"
end
puts fahrenheit

Listing 6.5 Inspecting variable behavior within a block

Outer x (before block)
Block parameter x

Assignment to x inside block

188 CHAPTER 6 Control-flow techniques
When you run this code, you’ll notice that we reassign fahrenheit to a new value
upon each iteration within the block. Because it’s not a block parameter, the last value
assigned to fahrenheit within the block will be its value after we exit the block: 212.0.

 If you wish to preserve the value of fahrenheit defined before the block, Ruby
provides block-local variables. Using a block-local variable changes the preceding
each loop to the following:

 celsius.each do |c;fahrenheit|
 fahrenheit = Temperature.c2f(2)
 puts "#{c}\t#{fahrenheit}"
end

The semicolon, followed by fahrenheit, indicates that the block needs its own
fahrenheit, unrelated to any fahrenheit that may have been created already in the
scope outside the block. The semicolon before fahrenheit says, in effect, “give me a
new variable called fahrenheit even if one already exists.” This change has the
desired effect, leaving the value of the originally defined fahrenheit unchanged.

 The variables listed after the semicolon aren’t considered block parameters; they
don’t get bound to anything when the block is called. They’re reserved names—names
you want to be able to use as temporary variables inside the block without having to
check for name collisions from outside the block.

 In sum, three basic “flavors” of block variable are available to you:

 Local variables that exist already when the block is created
 Block parameters, which are always block-local
 True block-locals, which are listed after the semicolon and aren’t assigned to

but do protect any same-named variables from the outer scope

With these tools at hand, you should be able to engineer your blocks so they do what
you need them to with respect to variables and scope, and so you don’t “clobber” any
variables from the outer scope that you don’t want to clobber.

 Ruby’s iterators and code blocks allow you to write and use methods that are engi-
neered to share their own functionality with their callers. The method contains some
logic and procedure, but when you call the method, you supply additional code that
fills out the logic and individualizes the particular call you’re making. It’s an elegant
feature with endless applications. We’ll come back to iterators when we examine col-
lection objects in detail in chapters 10 and 11.

 But now we’ll look at another control-flow mechanism. So far, we’ve been operat-
ing in a cooperative, efficient landscape. It doesn’t always work that way, though; and
one of the most important aspects of control flow that you need to understand is the
matter of what happens when things go wrong.

189Error handling and exceptions
6.4 Error handling and exceptions
Way back in chapter 1, we looked at how to test code for syntax errors:

$ ruby -cw filename.rb

Passing the -cw test means Ruby can run your program. But it doesn’t mean nothing
will go wrong while your program is running. You can write a syntactically correct pro-
gram—a program that the interpreter will accept and execute—that does all sorts of
unacceptable things. Ruby handles unacceptable behavior at runtime by raising an
exception.

6.4.1 Raising and rescuing exceptions

An exception is a special kind of object, an instance of the class Exception or a descen-
dant of that class. Raising an exception means stopping normal execution of the pro-
gram and either dealing with the problem that’s been encountered or exiting the
program completely.

 Which of these happens—dealing with the problem or aborting the program—
depends on whether you’ve provided a rescue clause. If you haven’t provided such a
clause, the program terminates; if you have, control flows to the rescue clause.

 To see exceptions in action, try dividing by zero:

$ ruby -e '1/0'

Ruby raises an exception:

Traceback (most recent call last):
 1:in `<main>' -e:1:in `/': divided by 0 (ZeroDivisionError)

ZeroDivisionError is the name of this particular exception. More technically, it’s the
name of a class—a descendant class of the class Exception. Ruby has a whole family
tree of exceptions classes, all of them going back eventually to Exception.

Exercises
Using our previous definitions, define my_times in terms of my_each. Given the defi-
nition of my_each, how can you use it to reimplement the my_times method? The
resulting code should work just like the original code:

>> 5.my_times {|i| puts "I'm on iteration #{i}!" }
I'm on iteration 0!
I'm on iteration 1!
I'm on iteration 2!
I'm on iteration 3!
I'm on iteration 4!
=> 5

190 CHAPTER 6 Control-flow techniques
SOME COMMON EXCEPTIONS

Table 6.1 shows some common exceptions. Each of these is a class descended from
StandardError, which in turn is a descendant of Exception. The exception classes are
shown, along with common reasons they’re raised and an example of code that will
raise each one.

You can try these examples in irb; you’ll get an error message, but the session
shouldn’t terminate. irb is good about making potentially fatal errors nonfatal—and
you can do something similar in your programs, too.

6.4.2 The rescue keyword to the rescue!

Having an exception raised doesn’t have to mean your program terminates. You can
handle exceptions—deal with the problem and keep the program running—by
means of the rescue keyword. Rescuing involves a rescue block, which is delimited
with the begin and end keywords and has a rescue clause in the middle:

print "Enter a number: "
n = gets.to_i
begin
 result = 100 / n
rescue
 puts "Your number didn't work. Was it zero???"
 exit
end
puts "100/#{n} is #{result}."

Table 6.1 Common exceptions

Exception name Common reason(s) How to raise it

RuntimeError The default exception raised by the
raise method.

raise

NoMethodError An object is sent a message it can’t
resolve to a method name; the
default method_missing raises
this exception.

a = Object.new
a.some_unknown_method_name

NameError The interpreter hits an identifier it
can’t resolve as a variable or method
name.

a = some_random_identifier

IOError Caused by reading a closed stream,
writing to a read-only stream, and
similar operations.

STDIN.puts("Don't write to
STDIN!")

Errno::error A family of errors relates to file I/O. File.open(-12)

TypeError A method receives an argument it
can’t handle.

a = 3 + "can't add a string to
a number!"

ArgumentError Caused by using the wrong number of
arguments.

def m(x); end; m(1,2,3,4,5)

191Error handling and exceptions
If you run this program and enter 0 as your number, the division operation (100/n)
raises a ZeroDivisionError. Because you’ve done this inside a begin/end block with a
rescue clause, control is passed to the rescue clause. An error message is printed out,
and the program exits.

 If you enter something other than 0 and the division succeeds, program control
skips over the rescue statement and block, and execution resumes thereafter (with
the call to puts).

 You can refine this technique by pinpointing the exception you want to trap.
Instead of a generic rescue instruction, which rescues any error that’s a descendant
class of StandardError, you tell rescue what to rescue:

rescue ZeroDivisionError

When constructing programs, it’s generally considered good practice to be specific
about the exception you wish to handle. The preceding code traps a single type of
exception but not others. The advantage is that you’re no longer running the risk of
inadvertently covering up some other problem by rescuing too eagerly.

 Rescuing exceptions inside a method body or code block has a couple of distinct
features worth noting.

USING RESCUE INSIDE METHODS AND CODE BLOCKS

The beginning of a method or code block provides an implicit begin/end context.
Therefore, if you use the rescue keyword inside a method or code block, you don’t
have to say begin explicitly—assuming that you want the rescue clause to govern the
entire method or block:

def open_user_file
 print "File to open: "
 filename = gets.chomp
 fh = File.open(filename)
 yield fh
 fh.close
 rescue
 puts "Couldn't open your file!"
end

If the file-opening operation B triggers an exception, control jumps directly to
the rescue clause C. The def/end keywords serve to delimit the scope of the rescue
operation.

 The begin/end syntax can also be eschewed within do/end blocks:

open_user_file do |filename|
 fh = File.open(filename)
 yield fh
 fh.close
 rescue
 puts "Couldn't open your file!"
end

B

C

192 CHAPTER 6 Control-flow techniques
Here the do and end keywords encapsulate the rescue clause. Again, rescue applies
to any failing statement preceding it within the block.

 But you may want to get a little more fine-grained about which lines your rescue
clause applies to. In the previous example, the rescue clause is triggered even if an
exception is raised for reasons having nothing to do with trying to open the file.
For example, if the call to gets raises an exception for any reason, the rescue clause
executes.

 To get more fine-grained, you have to go back to using an explicit begin/end wrapper:

def open_user_file
 print "File to open: "
 filename = gets.chomp
 begin
 fh = File.open(filename)
 rescue
 puts "Couldn't open your file!"
 return
 end
 yield fh
 fh.close
end

In this version, the rescue clause only governs what comes between the begin key-
word B and rescue C. Moreover, it’s necessary to give an explicit return command
inside the rescue clause D, because otherwise, the method will continue to execute.

NOTE You’ve seen that you can use the rescue keyword to catch nearly all
exceptions, but it’s generally considered good practice to catch specific
exceptions rather than simply using rescue to catch all exceptions. That’s
because the programmer should be aware of the possible exceptions when
executing code and then write code to catch those exceptions. In this way we
create more readable code and create better error handling.

6.4.3 Debugging with binding.irb

Ruby provides a way to open an irb session from anywhere in your program with
binding.irb. This is helpful when trying to figure out why an exception is occurring
or to evaluate an expression at a point in the execution cycle.

 Let’s look again at our division example, adding the code to a method called
divide_by_user_input:

def divide_by_user_input
 print "Enter a number: "
 n = gets.to_i
 begin
 result = 100 / n
 rescue ZeroDivisionError
 puts "Your number didn't work. Was it zero???"
 exit
 end
 puts "100/#{n} is #{result}."
end

B

C

D

193Error handling and exceptions
This code can fail for a variety of user inputs, not just 0. For example, the user can also
enter text, such as "forty-two", and a ZeroDivisionError is still thrown:

Enter a number: forty-two
Your number didn't work. Was it zero??

Well, no, our number wasn’t 0. So why did it fail in the same manner? Let’s add binding
.irb between lines 2 and 3:

print "Enter a number: "
n = gets.to_i
binding.irb
begin
 ...

Now when we run this code, execution pauses where we placed the binding.irb, and
we’re put into an irb session. If you run this code, you’ll see something similar to the
following in your terminal:

Enter a number: forty-two
From: division.rb @ line 4 :
 1: def divide_by_user_input
 2: print "Enter a number: "
 3: n = gets.to_i
=> 4: binding.irb
 5: begin
 6: result = 100 / n
 7: rescue ZeroDivisionError
 8: puts "Your number didn't work. Was it zero???"
 9: exit

irb(main):001:0>

Execution is paused at this point. The => indicates the place where the Ruby inter-
preter has paused—appropriately, on line 4, where we've called binding.irb. A few
lines before and after line 4 are displayed for context. Finally, an irb session is open at
the bottom of the output. We can issue statements to irb to learn more about our
program:

irb(main):001:0> n
=> 0

Our irb session has the context of any code that has been executed to this point,
including n = gets.to_i. Now we see that n is, in fact, set to 0. Typing another line
into irb shows us why n == 0:

irb(main):002:0> "forty-two".to_i
=> 0

Here we test a hypothesis: that calling to_i on the string "forty-two" will return 0.
We see from our experiment that this is the case. Finally, we can type exit and let the
program continue to evaluate:

irb(main):001:0> exit

194 CHAPTER 6 Control-flow techniques
Ctrl-D will achieve the same effect as exit.
 Note that exiting from a binding.irb session may cause unexpected behavior. In

this case, an UncaughtThrowError is raised rather than the divide_by_user_input
method successfully completing. Because binding.irb is only used for debugging and
learning more about your programs, this side effect shouldn’t discourage you from
using it as a tool. Just don’t leave it in your production code!

6.4.4 Avoiding NoMethodError with the safe navigation operator

One of the most common exceptions in Ruby is NoMethodError. As you already know,
no mechanism exists to prevent you from calling methods that either don’t exist or
that have yet to be defined in an object’s scope. Anytime this happens, Ruby will throw
a NoMethodError at runtime. In chapter 1 we looked at the did_you_mean? gem and
its power to help quickly diagnose these errors.

 Another common cause of NoMethodError exceptions is when methods are unin-
tentionally called on nil. This is where the safe navigation operator, &., can help us.
To demonstrate, let’s construct a Roster object for a sports team. The Roster will con-
tain multiple Player objects.

class Roster
 attr_accessor :players
end

class Player
 attr_accessor :name, :position
 def initialize(name, position)
 @name = name
 @position = position
 end
end

With these two objects, we can create a roster for a 2-on-2 women’s basketball tourna-
ment:

moore = Player.new("Maya Moore", "Forward")
taurasi = Player.new("Diana Taurasi", "Guard")
tourney_roster1 = Roster.new
tourney_roster1.players = [moore, taurasi]

If we want to know the forward for our 2-on-2 team, we might find the name this way:

if tourney_roster1.players.first.position == "Forward"
 puts "Forward: #{tourney_roster1.players.first.name}"
end

But what if our opposing roster isn’t set correctly?

tourney_roster2 = Roster.new
if tourney_roster2.players.first.position == "Forward"
 puts "Forward: #{tourney_roster1.players.first.name}"
end

Listing 6.6 Roster and Player objects

195Error handling and exceptions
tourney_roster2 hasn’t yet been set with any players. The preceding code will raise a
NoMethodError because tourney_roster2.players returns nil. We can add condi-
tional statements to avoid this, but it makes our if statement verbose and unclear:

if tourney_roster2.players &&
 tourney_roster2.players.first &&
 tourney_roster2.players.first.position == "Forward"

Instead, we can use the safe navigation operator to avoid the NoMethodError:

if tourney_roster2.players&.first&.position == "Forward"
 puts "Forward: #{tourney_roster1.players.first.name}"
end

The preceding expression doesn’t throw an exception. The safe navigation operator
tells Ruby to only call the next method if the receiver isn’t nil. Otherwise, the expres-
sion returns nil. Thus,

>> tourney_roster2.players&.first == nil
=> true
>> tourney_roster2.players&.first&.position == nil
=> true

The safe navigation operator comes in handy when working with multiple objects, as
shown here, and when chaining methods together, as you’ll see in later chapters.

6.4.5 Raising exceptions explicitly

When it comes to Ruby’s traditional flexibility and compact coding power, exceptions
are, so to speak, no exception. You can raise exceptions in your own code, and you
can create new exceptions to raise.

 To raise an exception, you use raise plus the name of the exception you wish to
raise. If you don’t provide an exception name (and if you’re not re-raising a different
kind of exception, as described in section 6.4.4), Ruby raises the rather generic
RuntimeError. You can also give raise a second argument, which is used as the mes-
sage string when the exception is raised:

def fussy_method(x)
 raise ArgumentError, "I need a number under 10" unless x < 10
end
fussy_method(20)

If run from a file called fussy.rb, this code prints out the following:

Traceback (most recent call last):
 5:in `<main>
fussy.rb:2:in `fussy_method': I need a number under 10 (ArgumentError)

You can also use rescue in such a case:

begin
 fussy_method(20)
rescue ArgumentError
 puts "That was not an acceptable number!"
end

196 CHAPTER 6 Control-flow techniques
A nice tweak is that if you give raise a message as the only argument, rather than as
the second argument where an exception class is the first argument, raise figures out
that you want it to raise a RuntimeError using the message provided. These two lines
are equivalent:

raise "Problem!"
raise RuntimeError, "Problem!"

In your rescue clauses, it’s possible to capture the exception object in a variable and
query it for possibly useful information.

6.4.6 Capturing an exception in a rescue clause

To assign the exception object to a variable, you use the special operator => along with
the rescue command. The exception object, like any object, responds to messages.
Particularly useful are the backtrace and message methods. backtrace returns an
array of strings representing the call stack at the time the exception was raised:
method names, filenames, and line numbers, showing a full roadmap of the code that
was executed along the way to the exception. message returns the message string pro-
vided to raise, if any.

 To see these facilities in action, put the preceding definition of fussy_method in
the file fussy.rb (if you haven’t already), and then add the following begin/end block:

begin
 fussy_method(20)
rescue ArgumentError => e
 puts "That was not an acceptable number!"
 puts "Here's the backtrace for this exception:"
 puts e.backtrace
 puts "And here's the exception object's message:"
 puts e.message
end

In the rescue clause, we assign the exception object to the variable e B and then ask
the exception object to display its backtrace C and its message D. When you run
fussy.rb, it will produce the following output, though the line numbers may differ:

That was not an acceptable number!
Here's the backtrace for this exception:
fussy.rb:2:in `fussy_method'
fussy.rb:6:in `<main>'
And here's the exception object's message:
I need a number under 10

The backtrace shows that we were in the fussy_method method on line 2 of fussy.rb
when the exception was raised, and that we were previously on line 6 of the same file
in the <main> context—in other words, at the top level of the program (outside of any
class, module, or method definition). The message, “I need a number under 10”
comes from the call to raise inside fussy_method.

 Your rescue clause can also re-raise the exception that triggered it.

B

C

D

197Error handling and exceptions

RE-RAISING AN EXCEPTION

It’s not uncommon to want to re-raise an exception, allowing the next location on the
call stack to handle it after your rescue block has handled it. You might, for example,
want to log something about the exception but still have it treated as an exception by
the calling code.

 Here’s a second version of the begin/end block from the open_user_file method
a few examples back. This version assumes that you have a logfile method that
returns a writeable file handle on a log file:

begin
 fh = File.open(filename)
rescue => e
 logfile.puts("User tried to open #{filename}, #{Time.now}")
 logfile.puts("Exception: #{e.message}")
 raise
end

The idea here is to intercept the exception, make a note of it in the log file, and then
re-raise it by calling raise. (Even though there’s no argument to raise, from inside a
rescue clause it figures out that you want to re-raise the exception being handled and
not the usual generic RuntimeError.) The spot in the program that called open_
user_file in the first place then has to handle the exception—or not, if it’s better to
allow it to stop program execution.

 Another refinement of handling control flow with exceptions is the ensure clause,
which executes unconditionally no matter what else happens when an exception is
raised.

What gets raised: an exception or an exception class?
The language of exception raising is class based: raise ZeroDivisionError rather
than raise ZeroDivisionError.new. But really, instances of the exception classes
are raised. The syntax lets you raise a class because that looks better and abstracts
away the fact that instantiation is involved.

You can see the class/instance switch-off if you examine the object that you capture
in the rescue clause:

begin
raise ArgumentError
rescue => e
p e.class
end

The object’s class is ArgumentError; the object itself is an instance of Argument-
Error, not the class ArgumentError.

You get a reprieve from typing .new, and your code has a nice high-level look to it,
providing enough information to show you what’s going on without unnecessary
housekeeping details.

ArgumentError

198 CHAPTER 6 Control-flow techniques
6.4.7 The ensure clause

Let’s say you want to read a line from a data file and raise an exception if the line
doesn’t include a particular substring. If it does include the substring, you want to
return the line. If it doesn’t, you want to raise ArgumentError. But whatever happens,
you want to close the file handle before the method finishes.

 Here’s how you might accomplish this, using an ensure clause:

def line_from_file(filename, substring)
 fh = File.open(filename)
 begin
 line = fh.gets
 raise ArgumentError unless line.include?(substring)
 rescue ArgumentError
 puts "Invalid line!"
 raise
 ensure
 fh.close
 end
 return line
end

In this example, the begin/end block wraps the line that reads from the file, and the
rescue clause only handles ArgumentError—which means that if something else goes
wrong (like the file not existing), it isn’t rescued. But if ArgumentError is raised based
on the test for the inclusion of substring in the string line, the rescue clause is
executed.

 Moreover, the ensure clause is executed whether an exception is raised or not.
ensure is pegged to the begin/end structure of which it’s a part, and its execution is
unconditional. In this example, we want to ensure that the file handle gets closed.
The ensure clause takes care of this, whatever else may have happened.

NOTE There’s a better way to open a file, involving a code block that wraps
the file operations and takes care of closing the file for you. But one thing at a
time; you’ll see that technique when we look at file and I/O techniques in
chapter 12.

One lingering problem with the line_from_file method is that ArgumentError isn’t
the best name for the exception we’re raising. The best name would be something
like InvalidLineError, which doesn’t exist. Fortunately, you can create your own
exception classes and name them whatever you want.

6.4.8 Creating your own exception classes

You create a new exception class by inheriting from Exception or from a descendant
class of Exception:

class MyNewException < Exception
end
raise MyNewException, "some new kind of error has occurred!"

199Error handling and exceptions
This technique offers two primary benefits. First, by letting you give new names to
exception classes, it performs a self-documenting function: when a MyNewException
gets raised, it’s distinct from, say, a ZeroDivisionError or a plain-vanilla RuntimeError.

 Second, this approach lets you pinpoint your rescue operations. Once you’ve cre-
ated MyNewException, you can rescue it by name:

class MyNewException < Exception
end
begin
 puts "About to raise exception..."
 raise MyNewException
rescue MyNewException => e
 puts "Just raised an exception: #{e}"
end

The output from this snippet is as follows:

About to raise exception...
Just raised an exception: MyNewException

Only MyNewException errors will be trapped by that rescue clause. If another excep-
tion is raised first for any reason, it will result in program termination without rescue.

 Here’s what our line_from_file method would look like with a custom excep-
tion—along with the code that creates the custom exception class. We’ll inherit from
StandardError, the superclass of RuntimeError:

class InvalidLineError < StandardError
end
def line_from_file(filename, substring)
 fh = File.open(filename)
 line = fh.gets
 raise InvalidLineError unless line.include?(substring)
 return line
 rescue InvalidLineError
 puts "Invalid line!"
 raise
 ensure
 fh.close
end

This time around, we’ve fully pinpointed the exception we want to intercept.
 Simply by inheriting from StandardError, InvalidLineError provides a meaning-

ful exception name and refines the semantics of the rescue operation. Custom excep-
tion classes are easy and cheap to produce and can add considerable value. Ruby itself
has lots of exception classes—so take the hint, and don’t hesitate to create your own
any time you feel that none of the built-in exceptions quite expresses what you need.
And don’t forget that exceptions are classes, classes are constants, and constants can
be namespaced, courtesy of nesting:

module TextHandler
 class InvalidLineError < StandardError
 end
end

200 CHAPTER 6 Control-flow techniques
def line_from_file(filename, substring)
 fh = File.open(filename)
 line = fh.gets
 raise TextHandler::InvalidLineError unless line.include?(substring)
end

Namespacing exceptions this way is polite, in the sense that it lets other people name
exceptions as they like without fearing name clashes. It also becomes a necessity once
you start creating more than a very small number of exception classes.

 With our exploration of exceptions and how they’re handled, we’ve reached the
end of this examination of control flow. As you’ve seen, control can jump around a
fair amount—but if you keep in mind the different kinds of jumping (conditionals,
loops, iterators, and exceptions), you’ll be able to follow any Ruby code and write
code that makes productive use of the many flow-related techniques available.

Summary
In this chapter, you’ve seen

 Conditionals (if/unless and case/when)
 Loops (loop, for, while, and until)
 Iterators and code blocks, including block parameters and variables
 Examples of implementing Ruby methods in Ruby
 Exceptions and exception handling

This chapter has covered several wide-ranging topics, bundled together because they
have in common the fact that they involve control flow. Conditionals move control
around based on the truth or falsehood of expressions. Loops repeat a segment of
code unconditionally, conditionally, or once for each item in a list. Iterators—meth-
ods that yield to a code block you provide alongside the call to the method—are
among Ruby’s most distinctive features. You’ve learned how to write and call an itera-
tor, techniques you’ll encounter frequently later in this book (and beyond).

 Exceptions are Ruby’s mechanism for handling unrecoverable error conditions.
Unrecoverable is relative: you can rescue an error condition and continue execution, but
you have to stage a deliberate intervention via a rescue block and thus divert and gain
control of the program where, otherwise, it would terminate. You can also create your
own exception classes through inheritance from the built-in Ruby exception classes.

 At this point, we’ll delve into Ruby’s built-in functionality, starting with some gen-
eral, pervasive features and techniques, and proceeding to specific classes and mod-
ules. Not that you haven’t seen and used many built-in features already; but it’s time to
get more systematic and to go more deeply into how the built-ins work.

Nicely namespaced
exception name!

Part 2

Built-in classes and modules

In part 2, we come to the heart of the Ruby language: built-in classes and
modules.

 A great deal of what you’ll do as a Rubyist involves Ruby’s built-ins. You’ve
already seen examples involving many of them: strings, arrays, files, and so forth.
Ruby provides you with a rich toolset of out-of-the-box built-in data types that
you can use and on which you can build.

 That’s the thing: when you design your own classes and modules, you’ll often
find that what you need is something similar to an existing Ruby class. If you’re
writing a DeckOfCards class, for example, one of your first thoughts will probably
be that a deck of cards is a lot like an array. Then you’d want to think about
whether your cards class should be a subclass of Array—or perhaps each deck
object could store an array in an instance variable and put the cards there—and
so forth. The point is that Ruby’s built-in classes provide you with starting points
for your own class and object designs as well as with a set of classes extremely use-
ful in their own right.

 We’ll start part 2 with a look at built-in essentials (chapter 7). The purpose of
this chapter is to provide you with an array (so to speak) of techniques and tools
that you’ll find useful across the board in the chapters that follow. To study
strings, arrays, and hashes, for example, it’s useful to know how Ruby handles
the concepts of true and false—concepts that aren’t pegged to any single built-in
class but that you need to understand generally.

 Following the essentials, we’ll turn to specific classes, but grouped into
higher-level categories: scalar objects first (chapter 8) and then collections (chap-
ter 9). Scalars are atomic objects, like strings, numbers, and symbols. Each scalar

202 PART 2 Built-in classes and modules
object represents one value; scalars don’t contain other objects. (Strings contain char-
acters, of course; but there’s no separate character class in Ruby, so strings are still sca-
lar.) Collection objects contain other objects; the major collection classes in Ruby are
arrays and hashes. The collection survey will also include ranges, which are hybrid
objects that can (but don’t always) serve to represent collections of objects. Finally,
we’ll look at sets, which are implemented in the standard library (rather than the
Ruby core) but which merit an exception to the general rule that our focus is on the
core itself.

 Equal in importance to the specific collection classes are the facilities that all col-
lections in Ruby share: facilities embodied in the Enumerable module. Enumerable
endows collection objects with the knowledge of how to traverse and transform them-
selves in a great number of ways. Chapter 10 is devoted to the Enumerable module and
its ramifications for Ruby programming power.

 Part 2 continues in chapter 11 with a look at regular expressions—a string-related
topic that, nonetheless, deserves some space of its own—and concludes in chapter 12
with an exploration of file and I/O operations: reading from and writing to files and
I/O streams, and related subtopics like error handling and file-status queries. Not sur-
prisingly, Ruby treats all these things, including regular expressions and I/O streams,
as objects.

 By the end of part 2, you’ll have a rich working knowledge of Ruby’s core classes,
and your own Ruby horizons will have expanded dramatically.

Built-in essentials
The term “built-in” is commonly used among Rubyists to describe utility classes
found in the core library. Some of the most popular core library classes and stan-
dard library classes are listed in table 7.1.

This chapter covers
 Literal object constructors

 Syntactic sugar

 “Dangerous” and/or destructive methods

 The to_* family of conversion methods

 Boolean states and objects, and nil

 Object-comparison techniques

 Runtime inspection of objects’ capabilities
203

204 CHAPTER 7 Built-in essentials

Array, Hash, String, and Float are all built-in classes because they’re useful and prev-
alent go-tos available without so much as a require statement. By contrast, Date is not
a built-in class because one must require 'date' before using it.

 This book puts an emphasis on classes available in the core library. The later chap-
ters in this part of the book cover specific built-in classes: what they are, what you can
do with them, and what methods their instances have. This chapter discusses a selec-
tion of topics that cut across a number of built-in classes.

 This chapter is more than that, though: it’s also a kind of next-generation Ruby lit-
eracy guide, a deeper and wider version of chapter 1. Like chapter 1, this chapter has
two goals: making it possible to take a certain amount of material for granted in later
chapters, where it will arise in various places to varying degrees; and presenting you
with information about Ruby that’s important and usable in its own right. Throughout
this chapter, you’ll explore the richness that lies in every Ruby object, as well as some
of the syntactic and semantic subsystems that make the language so interesting and
versatile.

Table 7.1 Popular core and standard library classes

Popular built-in classes Popular standard library classes

Array
Binding
Dir
Exception
File
Float
Hash
IO
Integer
Kernel
Math
Mutex
Proc
Process
Random
Range
Rational
String
Struct
Symbol
Thread
Time

Base64
Benchmark
BigDecimal
CSV
Date
Digest
ERB
FileUtils
JSON
Logger
net/* methods
open* methods
Pathname
PrettyPrint
Prime
Psych
Rake
Rdoc
Scanf
Set
Shell
Singleton
Socket
StringIO
Tempfile
Time
URI
WEBrick
YAML

205Ruby’s literal constructors
 The chapter moves through a number of topics, so it’s probably worth having a
look in advance at what you’re going to see. Here’s a lightly annotated summary:

 Literal constructors—Ways to create certain objects with syntax, rather than with a
call to new

 Syntactic sugar—Things Ruby lets you do to make your code look nicer
 “Dangerous” and/or destructive methods—Methods that alter their receivers perma-

nently, and other “danger” considerations
 The to_* family of conversion methods—Methods that produce a conversion from

an object to an object of a different class, and the syntactic features that hook
into those methods

 Boolean states and objects, and nil—A close look at true and false and related
concepts in Ruby

 Object-comparison techniques—Ruby-wide techniques, both default and customiz-
able, for object-to-object comparison

 Runtime inspection of objects’ capabilities—An important set of techniques for run-
time reflection on the capabilities of an object

You’ll find all these topics useful as you read and/or write Ruby code in working
through this book and beyond.

 You may want to fire up an irb session for this chapter; it makes frequent use of
the irb session format for the code examples, and you can often try the examples with
small variations to get a feel for how Ruby behaves.

7.1 Ruby’s literal constructors
In Ruby, one use for classes is to encapsulate the various ways we can interact with an
object. This is true of Ruby’s built-in classes like String, Integer, Array, and Hash.
Methods are grouped together to tell us how we can use each class. Most built-in
classes can be instantiated using new:

str = String.new
arr = Array.new

Some can’t; for example, you can’t create a new instance of the class Integer. But for
the most part, you can create new instances of the built-in classes.

 In addition, a lucky, select few built-in classes enjoy the privilege of having literal
constructors. That means you can use special notation, instead of a call to new, to create
a new object of that class.

 The classes with literal constructors are shown in table 7.2. When you use one of
these literal constructors, you bring a new object into existence. (Although it’s not
obvious from the table, it’s worth noting that there’s no new constructor for Symbol
objects. The only way to generate a Symbol object is with the literal constructor.)

 We’ll look in considerable detail at a great deal of functionality in all these classes.
Meanwhile, begin getting used to the notation so you can recognize these data types

206 CHAPTER 7 Built-in essentials
on sight. Literal constructors are never the only way to instantiate an object of a given
class, but they’re very commonly used.

We’ll look next at some of the syntactic sugar that Ruby makes available to you across
the spectrum of objects.

7.2 Recurrent syntactic sugar
As you know, Ruby sometimes lets you use sugary notation in place of the usual
object.method(args) method-calling syntax. This lets you do nice-looking things,
such as using a plus sign between two numbers, like an operator

x = 1 + 2

instead of the odd-looking method-style equivalent:

x = 1.+(2)

Table 7.2 Built-in Ruby classes with literal constructors

Class Literal constructor Example(s)

String Quotation marks "new string"
'new string'

Symbol Leading colon :symbol
:"symbol with spaces"

Array Square brackets [1,2,3,4,5]

Hash Curly braces {"New York": "NY",
"Oregon": "OR"}

Range Two or three dots 0..9 or 0...10

Regexp Forward slashes /([a-z]+)/

Proc (lambda) Dash, arrow, parentheses, braces ->(x,y) { x * y }

Literal constructor characters with more than one meaning
Some of the notation used for literal constructors has more than one meaning in
Ruby. Many objects have a method called [] that looks like a literal array constructor
but isn’t. Code blocks, as you’ve seen, can be delimited with curly braces—but
they’re still code blocks, not hash literals. This kind of overloading of notation is a
consequence of the finite number of symbols on the keyboard. You can always tell
what the notation means by its context, and there are few enough contexts that, with
a little practice, it will be easy to differentiate.

207Recurrent syntactic sugar
As you delve more deeply into Ruby and its built-in methods, be aware that certain
methods always get this treatment. The consequence is that you can define how your
objects behave in code like this

my_object + my_other_object

simply by defining the + method. You’ve seen this process at work, particularly in con-
nection with case equality and defining the === method. But now let’s look more
extensively at this elegant technique.

7.2.1 Defining operators by defining methods

If you define a + method for your class, then objects of your class can use the sugared
syntax for addition. Moreover, defining the meaning of that syntax works like defining
any other method. The operator is the method. It just looks nicer as an operator.

 Remember, too, that the semantics of methods like + are entirely based on conven-
tion. Ruby doesn’t know that + means addition. Nothing (other than good judgment)
stops you from writing completely nonaddition-like + methods:

obj = Object.new
def obj.+(other_obj)
 "Trying to add something to me, eh?"
end
puts obj + 100

The plus sign in the puts statement is a call to the + method of obj, with the integer
100 as the single (ignored) argument.

 Layered on top of the operator-style sugar is the shortcut sugar: x +=1 for x = x + 1.
Once again, you automatically reap the sugar harvest if you define the relevant
method(s). Here’s an example—a bank account class with + and – methods:

class Account
 attr_accessor :balance
 def initialize(amount=0)
 self.balance = amount
 end
 def +(x)
 self.balance += x
 end
 def -(x)
 self.balance -= x
 end
 def to_s
 balance.to_s
 end
end
acc = Account.new(20)
acc -= 5
puts acc

 No addition, just output

B

C
Output: 15

208 CHAPTER 7 Built-in essentials
By defining the – instance method B, we gain the -= shortcut, and can subtract from
the account using that notation C. This is a simple but instructive example of the fact
that Ruby encourages you to take advantage of the very same “wiring” that the lan-
guage itself uses, so as to integrate your programs as smoothly as possible into the
underlying technology.

 The automatically sugared methods are collected in table 7.3.

Remembering which methods get the sugar treatment isn’t difficult. They fall into sev-
eral distinct categories, as table 7.3 shows. These categories are for convenience of
learning and reference only; Ruby doesn’t categorize the methods, and the responsi-
bility for implementing meaningful semantics lies with you. The category names indi-
cate how these method names are used in Ruby’s built-in classes and how they’re most
often used, by convention, when programmers implement them in new classes.

Table 7.3 Methods with operator-style syntactic sugar–calling notation

Category Name Definition example Calling example Sugared notation

Arithmetic method/
operators

+ def +(x) obj.+(x) obj + x

- def -(x) obj.-(x) obj - x

* def *(x) obj.*(x) obj * x

/ def /(x) obj./(x) obj / x

% (modulo) def %(x) obj.%(x) obj % x

** (exponent) def **(x) obj.**(x) obj ** x

Get/set/append data [] def [](x) obj.[](x) obj[x]

[]= def []=(x,y) obj.[]=(x,y) obj[x] = y

<< def <<(x) obj.<<(x) obj << x

Comparison
method/operators

<=> def <=>(x) obj.<=>(x) obj <=> x

== def ==(x) obj.==(x) obj == x

> def >(x) obj.>(x) obj > x

< def <(x) obj.<(x) obj < x

>= def >=(x) obj.>=(x) obj >= x

<= def <=(x) obj.<=(x) obj <= x

Case equality operator === def ===(x) obj.===(x) obj === x

Bitwise operators | (OR) def |(x) obj.|(x) obj | x

& (AND) def &(x) obj.&(x) obj & x

^ (XOR) def ^(x) obj.^(x) obj ^ x

209Recurrent syntactic sugar
NOTE The conditional assignment operator ||=, as well as its rarely spotted
cousin &&=, both provide the same kind of shortcut as the pseudo-operator
methods. However, both are based on operators (|| and && respectively) that
you can’t override.

The extensive use of this kind of syntactic sugar—where something looks like an opera-
tor but is a method call—tells you a lot about the philosophy behind Ruby as a pro-
gramming language. The fact that you can define and even redefine elements like the
plus sign, minus sign, and square brackets means that Ruby has a great deal of flexibil-
ity. But there are limits to what you can redefine in Ruby. You can’t redefine any of the
literal object constructors: {} is always a hash literal (or a code block, if it appears in
that context), "" will always delimit a string, and so forth.

 But there’s plenty that you can do. You can even define some unary operators via
method definitions.

7.2.2 Customizing unary operators

The unary operators + and - occur most frequently as signs for numbers, as in -1. But
they can be defined; you can specify the behavior of the expressions +obj and -obj for
your own objects and classes. You do so by defining the methods +@ and -@.

 Let’s say that you want + and - to mean uppercase and lowercase for a stringlike
object. Here’s how you define the appropriate unary operator behavior, using a
Banner class as an example:

class Banner
 def initialize(text)
 @text = text
 end
 def to_s
 @text
 end
 def +@
 @text.upcase
 end
 def -@
 @text.downcase
 end
end

Now create a banner, and manipulate its case using the unary + and - operators:

banner = Banner.new("Eat at Joe's!")

puts banner

puts +banner

puts -banner

The basic string output for the banner text, unchanged, is provided by the to_s con-
version method B, which you’ll see up close in section 7.4.1.

B

 Output: Eat at Joe's!
Output: EAT AT JOE'S!
Output: eat at joe's!

210 CHAPTER 7 Built-in essentials
 You can also define the ! (logical not) operator, by defining the ! method. In fact,
defining the ! method gives you both the unary ! and the keyword not. Let’s add a
definition to Banner:

class Banner
 def !
 @text.reverse
 end
end

Now examine the banner, “negated.” We’ll need to use parentheses around the not
version to clarify the precedence of expressions (otherwise, puts thinks we’re trying
to print not):

puts !banner
puts (not banner)

As it so often does, Ruby gives you an object-oriented, method-based way to customize
what you might at first think are hardwired syntactic features—even unary operators
like !.

 Unary negation isn’t the only use Ruby makes of the exclamation point.

7.3 Bang (!) methods and “danger”
Ruby methods can end with an exclamation point (!), or bang. The bang has no sig-
nificance to Ruby internally; bang methods are called and executed just like any other
methods. But by convention, the bang labels a method as “dangerous”—specifically, as
the dangerous equivalent of a method with the same name but without the bang.

 Dangerous can mean whatever the person writing the method wants it to mean. In
the case of the built-in classes, it usually means this method, unlike its nonbang equiv-
alent, permanently modifies its receiver. It mutates the state of the caller. (We’ll dive much
more deeply into mutable versus immutable code in chapter 16.) It doesn’t always
mean this though: exit! is a dangerous alternative to exit, in the sense that it doesn’t
run any finalizers on the way out of the program. The danger in sub! (a method that
substitutes a replacement string for a matched pattern in a string) is partly that it
changes its receiver and partly that it returns nil if no change has taken place—unlike
sub, which always returns a copy of the original string with the replacement (or no
replacement) made.

 If “danger” is too melodramatic for you, you can think of the ! in method names as
a kind of “Heads up!” And, with very few, very specialized exceptions, every bang
method should occur in a pair with a nonbang equivalent. We’ll return to questions of
best method-naming practice after we’ve looked at some bang methods in action.

7.3.1 Destructive (receiver-changing) effects as danger

No doubt most of the bang methods you’ll come across in the core Ruby language have
the bang on them because they’re destructive: they change the object on which they’re
called. Calling upcase on a string gives you a new string consisting of the original string

Output: !s'eoJ ta taE
Output: !s'eoJ ta taE

211Bang (!) methods and “danger”
in uppercase; but upcase! turns the original string into its own uppercase equivalent,
in place:

>> str = "Hello"
=> "Hello"
>> str.upcase
=> "HELLO"
>> str
=> "Hello"
>> str.upcase!
=> "HELLO"
>> str
=> "HELLO"

Examining the original string after converting it to uppercase shows that the upper-
case version was a copy; the original string is unchanged B. But the bang operation
has changed the content of str itself C.

 Ruby’s core classes are full of destructive (receiver-changing) bang methods paired
with their nondestructive counterparts: sort/sort! for arrays, strip/strip! (strip
leading and trailing whitespace) for strings, reverse/reverse! for strings and arrays,
and many more. In each case, if you call the nonbang version of the method on the
object, you get a new object. If you call the bang version, you operate in place on the
same object to which you sent the message.

 You should always be aware of whether the method you’re calling changes its
receiver. Neither option is always right or wrong; which is best depends on what you’re
doing. One consideration, weighing in on the side of modifying objects instead of cre-
ating new ones, is efficiency: creating new objects (like a second string that’s identical
to the first except for one letter) is expensive in terms of memory and processing.
This doesn’t matter if you’re dealing with a small number of objects. But when you get
into, say, handling data from large files and using loops and iterators to do so, creating
new objects can be a drain on resources.

 On the other hand, you need to be cautious about modifying objects in place,
because other parts of the program may depend on those objects not to change. For
example, let’s say you have a database of names. You read the names out of the data-
base into an array. At some point, you need to process the names for printed output—
all in capital letters. You may do something like this:

names.each do |name|
 capped = name.upcase
 # ...code that does something with capped...
end

In this example, capped is a new object—an uppercase duplicate of name. When you
go through the same array later, in a situation where you do not want the names in
uppercase, such as saving them back to the database, the names will be the way they
were originally.

 By creating a new string (capped) to represent the uppercase version of each
name, you avoid the side effect of changing the names permanently. The operation

B

C

212 CHAPTER 7 Built-in essentials
you perform on the names achieves its goals without changing the basic state of the
data. Sometimes you’ll want to change an object permanently, and sometimes you
won’t want to. There’s nothing wrong with that, as long as you know which you’re
doing and why.

 Furthermore, don’t assume a direct correlation between bang methods and
destructive methods. They often coincide, but they’re not the same thing.

7.3.2 Destructiveness and “danger” vary independently

What follows here is some commentary on conventions and best practices. Ruby
doesn’t care; Ruby is happy to execute methods whose names end in ! whether
they’re dangerous, safe, paired with a nonbang method, not paired—whatever. The
value of the ! notation as a token of communication between a method author and a
user of that method resides entirely in conventions. It’s worth gaining a solid under-
standing of those conventions and why they make sense.

 The best advice on when to use bang-terminated method names is ...

DON’T USE ! EXCEPT IN M/M! METHOD PAIRS

The ! notation for a method name should only be used when there’s a method of the
same name without the !, when the relation between those two methods is that they
both do substantially the same thing, and when the bang version also has side effects,
a different return value, or some other behavior that diverges from its nonbang
counterpart.

 Don’t use the ! just because you think your method is dangerous in some vague,
abstract way. All methods do something; that in itself isn’t dangerous. The ! is a warn-
ing that there may be more going on than the name suggests—and that, in turn,
makes sense only if the name is in use for a method that doesn’t have the dangerous
behavior.

 Don’t name a method save! just because it writes to a file. Call that method save,
and then, if you have another method that writes to a file but (say) doesn’t back up
the original file (assuming that save does so), go ahead and call that one save!.

 If you find yourself writing one method to write to the file, and you put a ! at the
end because you’re worried the method is too powerful or too unsafe, you should
reconsider your method naming. Any experienced Rubyist who sees a save! method
documented is going to want to know how it differs from save. The exclamation point
doesn’t mean anything in isolation; it only makes sense at the end of one of a pair of
otherwise identical method names.

DON’T EQUATE ! NOTATION WITH DESTRUCTIVE BEHAVIOR, OR VICE VERSA

Danger in the bang sense usually means object-changing or “destructive” behavior. It’s
therefore not uncommon to hear people assert that the ! means destructive. From
there, it’s not much of a leap to start wondering why some destructive methods’
names don’t end with !.

 This line of thinking is problematic from the start. The bang doesn’t mean
destructive; it means dangerous, possibly unexpected behavior. If you have a method

213Built-in and custom to_* (conversion) methods
called upcase and you want to write a destructive version of it, you’re free to call it
destructive_upcase; no rule says you have to add a ! to the original name. It’s just a
convention, but it’s an expressive one.

 Destructive methods do not always end with !, nor would that make sense. Many
nonbang methods have names that lead you to expect the receiver to change. These
methods have no nondestructive counterparts. (What would it mean to have a nonde-
structive version of String#clear, which removes all characters from a string and
leaves it equal to ""? If you’re not changing the string in place, why wouldn’t you just
write "" in the first place?) If a method name without a bang already suggests in-place
modification or any other kind of “dangerous behavior,” then it’s not a dangerous
method.

 You’ll almost certainly find that the conventional usage of the ! notation is the
most elegant and logical usage. It’s best not to slap bangs on names unless you’re play-
ing along with those conventions.

 Leaving danger behind us, we’ll look next at the facilities Ruby provides for con-
verting one object to another.

7.4 Built-in and custom to_* (conversion) methods
Ruby offers a number of built-in methods whose names consist of to_ plus an indica-
tor of a class to which the method converts an object: to_s (to string), to_sym (to sym-
bol), to_a (to array), to_i (to integer), and to_f (to float). Other, more specialized
converters such as to_proc will be covered later in the book. Not all objects respond
to all of these methods. But many objects respond to a lot of them, and the principle is
consistent enough to warrant looking at them collectively.

7.4.1 String conversion: to_s and other methods defined on Object

The most commonly used to_ method is probably to_s. Every Ruby object—except
instances of BasicObject—responds to to_s, and thus has a way of displaying itself as
a string. What to_s does, as the following irb excerpts show, ranges from nothing
more than return its own receiver, when the object is already a string,

>> "I am already a string!".to_s
=> "I am already a string!"

to returning a string containing a codelike representation of an object,

>> ["one", "two", "three", 4, 5, 6].to_s
=> "[\"one\", \"two\", \"three\", 4, 5, 6]"

(where the backslash-escaped quotation marks mean there’s a literal quotation mark
inside the string), to returning an informative, if cryptic, descriptive string about an
object:

>> Object.new.to_s
=> "#<Object:0x000001030389b0>"

214 CHAPTER 7 Built-in essentials
The salient point about to_s is that it’s used by certain methods and in certain syntac-
tic contexts to provide a canonical string representation of an object. The puts
method, for example, calls to_s on its arguments. If you write your own to_s for a
class or override it on an object, your to_s will surface when you give your object to
puts. You can see this clearly, if a bit nonsensically, using a generic object:

>> obj = Object.new
=> #<Object:0x000001011c9ce0>
>> puts obj
#<Object:0x000001011c9ce0>
=> nil
>> def obj.to_s
>> "I'm an object!"
>> end
=> :to_s
>> puts obj
I'm an object!
=> nil

The object’s default string representation is the usual class and memory-location
screen dump B. When you call puts on the object, that’s what you see C. But if you
define a custom to_s method on the object D, subsequent calls to puts reflect the
new definition F. (Note that the method definition itself evaluates to a symbol, :to_s,
representing the name of the method E.)

 You also get the output of to_s when you use an object in string interpolation:

>> "My object says: #{obj}"
=> "My object says: I'm an object!"

Don’t forget, too, that you can call to_s explicitly. You don’t have to wait for Ruby to
go looking for it. But a large percentage of calls to to_s are automatic, behind-the-
scenes calls on behalf of puts or the interpolation mechanism.

NOTE When it comes to generating string representations of their instances,
arrays do things a little differently from the norm. If you call puts on an array,
you get a cyclical representation based on calling to_s on each of the ele-
ments in the array and outputting one per line. That’s a special behavior; it
doesn’t correspond to what you get when you call to_s on an array—namely,
a string representation of the array in square brackets.

While we’re looking at string representations of objects, let’s examine a few related
methods. We’re drifting a bit from the to_* category, perhaps, but these are all meth-
ods that generate strings from objects, and a consideration of them is therefore timely.

BORN TO BE OVERRIDDEN: INSPECT

Every Ruby object—once again, with the exception of instances of BasicObject—has
an inspect method. By default—unless a given class overrides inspect—the inspect
string is a mini-screen-dump of the object’s memory location:

>> Object.new.inspect
=> "#<Object:0x007fe24a292b68>"

B

C

D

E
F

215Built-in and custom to_* (conversion) methods
Actually, irb uses inspect on every value it prints out, so you can see the inspect
strings of various objects without even explicitly calling inspect:

>> Object.new
=> #<Object:0x007f91c2a8d1e8>
>> "abc"
=> "abc"
>> [1,2,3]
=> [1, 2, 3]
>> /a regular expression/
=> /a regular expression/

If you want a useful inspect string for your classes, you need to define inspect explicitly:

class Person
 def initialize(name)
 @name = name
 end
 def inspect
 @name
 end
end
david = Person.new("David")
puts david.inspect # Output: David

Another, less frequently used, method generates and displays a string representation
of an object: display.

USING DISPLAY

You won’t see display much. It occurs only once, at last count, in all the Ruby pro-
gram files in the entire standard library. (inspect occurs 160 times.) It’s a specialized
output method.

 display takes an argument: a writable output stream, in the form of a Ruby I/O
object. By default, it uses STDOUT, the standard output stream:

>> "Hello".display
Hello=> nil

Note that display, unlike puts but like print, doesn’t automatically insert a newline
character. That’s why => nil is run together on one line with the output.

 You can redirect the output of display by providing, for example, an open file
handle as an argument:

>> fh = File.open("/tmp/display.out", "w")
=> #<File:/tmp/display.out>
>> "Hello".display(fh)
=> nil
>> fh.close
=> nil
>> puts(File.read("/tmp/display.out"))
Hello

The string "Hello" is “displayed” directly to the file B, as we confirm by reading the
contents of the file in and printing them out C.

B

C

216 CHAPTER 7 Built-in essentials
 Let’s leave string territory at this point and look at how conversion techniques play
out in the case of the Array class.

7.4.2 Array conversion with to_a and the * operator

The to_a (to array) method, if defined, provides an array-like representation of
objects. to_a is defined on Array, not on Object, so it’s far less prevalent than meth-
ods like to_s. Array includes the Enumerable module, however, and all objects that
include Enumerable, including Hash, Range, Struct, and Enumerator, implement
to_a. Using to_a, a Range is easily converted to an Array:

(1..5).to_a
=> [1, 2, 3, 4, 5]

Call to_a on a Struct to return a summary of attribute settings. The following code
collects the salient details of each laptop into an array of arrays:

Computer = Struct.new(:os, :manufacturer)
laptop1 = Computer.new("linux", "Lenovo")
laptop2 = Computer.new("os x", "Apple")
[laptop1, laptop2].map { |laptop| laptop.to_a }
=> [["linux", "Lenovo"], ["os x", "Apple"]]

First we create a new Struct B. We'll cover Structs in more depth, but for now, a
Struct is a shorthand way for creating a class with read/write attributes. Struct
includes Enumerable and therefore defines to_a. Note, too, that we assign the new
Struct to Computer with a capital C. Struct.new returns a constant and we treat it
accordingly. We create a pair of laptops and map over them in an array C, calling to_a
on each. The resulting array is handy for iteration and performing further operations.

 One of to_a’s most striking features is that it automatically ties in with the * opera-
tor. The * operator (most frequently pronounced “splat” but also referred to as “star”
or “unarray”) does a kind of unwrapping of its operand into its components, those
components being the elements of its array representation.

 You’ve already seen the splat operator used in method parameter lists, where it
denotes a parameter that sponges up the optional arguments into an array. In the
more general case, the splat turns any array, or any object that responds to to_a, into
the equivalent of a bare list.

 The term bare list means several identifiers or literal objects separated by commas.
Bare lists are valid syntax only in certain contexts. For example, you can put a bare list
inside the literal array constructor brackets:

[1,2,3,4,5]

It’s a subtle distinction, but the notation lying between the brackets isn’t an array; it’s a
list, and the array is constructed from the list, thanks to the brackets.

 The star has a kind of bracket-removing or unarraying effect. What starts as an
array becomes a list. You can see this if you construct an array from a starred array:

>> array = [1,2,3,4,5]
=> [1, 2, 3, 4, 5]

B

C

217Built-in and custom to_* (conversion) methods
>> [*array]
=> [1, 2, 3, 4, 5]

The array in array has been demoted, so to speak, from an array to a bare list, cour-
tesy of the star. Compare this with what happens if you don’t use the star:

>> [array]
=> [[1, 2, 3, 4, 5]]

Here the list from which the new array gets constructed contains one item: the object
array. That object hasn’t been mined for its inner elements, as it was in the example
with the star.

 One implication is that you can use the star in front of a method argument to turn
it from an array into a list. You do this in cases where you have objects in an array that
you need to send to a method that’s expecting a broken-out list of arguments:

def combine_names(first_name, last_name)
 first_name + " " + last_name
end
names = ["David", "Black"]
puts combine_names(*names)

If you don’t use the unarraying star, you’ll send just one argument—an array—to the
method, and the method won’t be happy.

 Let’s turn to numbers.

7.4.3 Numerical conversion with to_i and to_f

Unlike some programming languages, such as Perl, Ruby doesn’t automatically con-
vert from strings to numbers or numbers to strings. You can’t do this

>> 1 + "2"

because Ruby doesn’t know how to add a string and an integer together. And you’ll
get a surprise if you do this:

print "Enter a number: "
n = gets.chomp
puts n * 100

You’ll see the string version of the number printed out 100 times. (This result also tells
you that Ruby lets you multiply a string—but it’s always treated as a string, even if it
consists of digits.) If you want the number, you have to turn it into a number explicitly:

n = gets.to_i

As you’ll see if you experiment with converting strings to integers (which you can do
easily in irb with expressions like "hello".to_i), the to_i conversion value of strings
that have no reasonable integer equivalent (including "Hello") is always 0. If your
string starts with digits but isn’t made up entirely of digits ("123hello"), the nondigit
parts are ignored and the conversion is performed only on the leading digits.

 The to_f (to float) conversion gives you, predictably, a floating-point equivalent of
any integer. The rules pertaining to nonconforming characters are similar to those

Output: David Black

TypeError: String can’t be coerced into Integer

218 CHAPTER 7 Built-in essentials
governing string-to-integer conversions: "hello".to_f is 0.0, whereas "1.23hello"
.to_f is 1.23. If you call to_f on a float, you get the same float back. Similarly, calling
to_i on an integer returns that integer.

 It’s usually nice to see to_f and to_i do their best to convert objects to floats and
integers, respectively. The preceding examples follow the logic of string conversion
about as well as we might do ourselves and doesn’t raise exceptions. If these conver-
sion rules for strings are too lax for your given context, however, there are a couple of
stricter conversion techniques available to you.

STRICTER CONVERSIONS WITH INTEGER AND FLOAT

Ruby provides methods called Integer and Float (and yes, they look like constants,
but they’re methods with names that coincide with those of the classes to which they
convert). These methods are similar to to_i and to_f, respectively, but a little stricter:
if you feed them anything that doesn’t conform to the conversion target type, they
raise an exception:

>> "123abc".to_i
=> 123
>> Integer("123abc")
ArgumentError: invalid value for Integer(): "123abc"
>> Float("3")
=> 3.0
>> Float("-3")
=> -3.0
>> Float("-3xyz")
ArgumentError: invalid value for Float(): "-3xyz"

(Note that converting from an integer to a float is acceptable. It’s the letters that cause
the problem.)

 If you want to be strict about what gets converted and what gets rejected, Integer
and Float can help you out.

Conversion vs. typecasting
When you call methods like to_s, to_i, and to_f, the result is a new object (or the
receiver, if you’re converting it to its own class). It’s not quite the same as typecast-
ing in C and other languages. You’re not using the object as a string or an integer;
you’re asking the object to provide a second object that corresponds to its idea of
itself (so to speak) in one of those forms.

The distinction between conversion and typecasting touches on some important
aspects of the heart of Ruby. In a sense, all objects are typecasting themselves con-
stantly. Every time you call a method on an object, you’re asking the object to behave
as a particular type. Correspondingly, an object’s “type” is really the aggregate of
everything it can do at a particular time.

The closest Ruby gets to traditional typecasting (and it isn’t very close) is the role-
playing conversion methods described in section 7.4.4.

219Built-in and custom to_* (conversion) methods
Getting back to the to_* family of converters: in addition to the straightforward
object-conversion methods, Ruby gives you a couple of to_* methods that have a little
extra intelligence about what their value is expected to do.

7.4.4 Role-playing to_* methods

It’s somewhat against the grain in Ruby programming to worry much about what class
an object belongs to. All that matters is what the object can do—what methods it can
execute.

 But in a few cases involving the core classes, strict attention is paid to the class of
objects. Don’t think of this as a blueprint for “the Ruby way” of thinking about objects.
It’s more like an expediency that bootstraps you into the world of the core objects in
such a way that once you get going, you can devote less thought to your objects’ class
memberships.

STRING ROLE-PLAYING WITH TO_STR

If you want to print an object, you can define a to_s method for it or use whatever
to_s behavior it’s been endowed with by its class. But what if you need an object to be
a string?

 The answer is that you define a to_str method for the object. An object’s to_str
representation enters the picture when you call a core method that requires that its
argument be a string.

 The classic example is string addition. Ruby lets you add two strings together, pro-
ducing a third string:

>> "Hello " + "there."
=> "Hello there."

If you try to add a nonstring to a string, you get an error:

>> "Hello " + 10
TypeError: no implicit conversion of Integer into String

This is where to_str comes in. If an object responds to to_str, its to_str representa-
tion will be used when the object is used as the argument to String#+.

 Here’s an example involving a simple Person class. (If you’ve got an irb session
open from the last time you defined Person, quit the session and restart for this new
definition.) The to_str method is a wrapper around the name method:

class Person
 attr_accessor :name
 def to_str
 name
 end
end

If you create a Person object and add it to a string, to_str kicks in with the name string:

david = Person.new
david.name = "David"
puts "david is named " + david + "." Output: david is named David.

220 CHAPTER 7 Built-in essentials
The to_str conversion is also used on arguments to the << (append to string)
method. And arrays, like strings, have a role-playing conversion method.

ARRAY ROLE-PLAYING WITH TO_ARY

Objects can masquerade as arrays if they have a to_ary method. If such a method is
present, it’s called on the object in cases where an array, and only an array, will do—
for example, in an array-concatenation operation.

 Here’s another Person implementation, where the array role is played by an array
containing three person attributes:

class Person
 attr_accessor :name, :age, :email
 def to_ary
 [name, age, email]
 end
end

Concatenating a Person object to an array has the effect of adding the name, age, and
email values to the target array:

david = Person.new
david.name = "David"
david.age = 55
david.email = "david@wherever"
array = []
array.concat(david)
p array

Like to_str, to_ary provides a way for an object to step into the role of an object of a
particular core class. As is usual in Ruby, sensible usage of conventions is left up to
you. It’s possible to write a to_ary method, for example, that does something other
than return an array—but you’ll almost certainly get an error message when you try to
use it, as Ruby looks to to_ary for an array. So if you’re going to use the role-playing
to_* methods, be sure to play in Ruby’s ballpark.

 We’ll turn now to the subject of Boolean states and objects in Ruby, a topic we’ve
dipped into already, but one that merits closer inquiry.

7.5 Boolean states, Boolean objects, and nil
Every expression in Ruby evaluates to an object, and every object has a Boolean value
of either true or false. Furthermore, true and false are objects. This idea isn’t as con-
voluted as it sounds. If true and false weren’t objects, then a pure Boolean expres-
sion like

100 > 80

would have no object to evaluate to. (And > is a method and therefore has to return an
object.)

 In many cases where you want to get at a truth/falsehood value, such as an if state-
ment or a comparison between two numbers, you don’t have to manipulate these

Output: ["David", 55, "david@wherever"]

221Boolean states, Boolean objects, and nil
special objects directly. In such situations, you can think of truth and falsehood as
states, rather than objects.

 We’ll look at true and false both as states and as special objects, along with the
special object nil.

7.5.1 True and false as states

Every expression in Ruby is either true or false, in a logical or Boolean sense. The best
way to get a handle on this is to think in terms of conditional statements. For every
expression e in Ruby, you can do this

if e

and Ruby can make sense of it.
 For lots of expressions, a conditional test is a stretch; but it can be instructive to try

it on a variety of expressions, as the following listing shows.

if (class MyClass end)
 puts "Empty class definition is true!"
else
 puts "Empty class definition is false!"
end
if (class MyClass; 1; end)
 puts "Class definition with the number 1 in it is true!"
else
 puts "Class definition with the number 1 in it is false!"
end
if (def m; return false; end)
 puts "Method definition is true!"
else
 puts "Method definition is false!"
end
if "string"
 puts "Strings appear to be true!"
else
 puts "Strings appear to be false!"
end
if 100 > 50
 puts "100 is greater than 50!"
else
 puts "100 is not greater than 50!"
end

Here’s the output from this listing (minus a warning about using a string literal in
a conditional):

Empty class definition is false!
Class definition with the number 1 in it is true!
Method definition is true!
Strings appear to be true!
100 is greater than 50!

Listing 7.1 Testing the Boolean value of expressions using if constructs

B

C

D

E

F

222 CHAPTER 7 Built-in essentials
As you can see, empty class definitions B are false. Nonempty class definitions evalu-
ate to the same value as the last value they contain C (in this example, the number 1);
method definitions are true D (even if a call to the method would return false);
strings are true E (don’t worry about the string literal in condition warning); and 100
is greater than 50 F. You can use this simple if technique to explore the Boolean
value of any Ruby expression.

 The if examples show that every expression in Ruby is either true or false in the
sense of either passing or not passing an if test. But these examples don’t show what
the expressions evaluate to. That’s what the if test is testing: it evaluates an expression
(such as class MyClass; end) and proceeds on the basis of whether the value pro-
duced by that evaluation is true.

 To see what values are returned by the expressions whose truth value we’ve been
testing, you can derive those values in irb:

>> class MyClass; end
=> nil
>> class MyClass; 1; end
=> 1
>> def m; return false; end
=> :m
>> "string literal!"
=> "string literal!"
>> 100 > 50
=> true

The empty class definition B evaluates to nil, which is a special object (discussed in
section 7.5.3). All you need to know for the moment about nil is that it has a Boolean
value of false (as you can detect from the behavior of the if clauses that dealt with it
in listing 7.1).

 The class definition with the number 1 in it C evaluates to the number 1, because
every class-definition block evaluates to the last expression contained inside it, or nil
if the block is empty.

 The method definition evaluates to the symbol :m D, representing the name of
the method that’s just been defined.

 "string literal!" E evaluates to itself; it’s a literal object and doesn’t have to be
calculated or processed into some other form when evaluated. Its value as an expres-
sion is itself.

 Finally, the comparison expression 100 > 50 F evaluates to true—not just to some-
thing that has the Boolean value true, but to the object true. The object true does
have the Boolean value true. But along with false, it has a special role to play in the
realm of truth and falsehood and how they’re represented in Ruby.

B

C

D

E

F

223Boolean states, Boolean objects, and nil
7.5.2 true and false as objects

The Boolean objects true and false are special objects, each being the only instance
of a class especially created for it: TrueClass and FalseClass, respectively. You can
ask true and false to tell you their classes’ names, and they will:

puts true.class

puts false.class

The terms true and false are keywords. You can’t use them as variable or method
names; they’re reserved for Ruby’s exclusive use.

 You can pass the objects true and false around, assign them to variables, and
examine them like any other object. Here’s an irb session that puts true through its
paces in its capacity as a Ruby object:

>> a = true
=> true
>> a = 1 unless a
=> nil
>> a
=> true
>> b = a
=> true

You’ll sometimes see true and false used as method arguments. For example, if you
want a class to show you all of its instance methods but to exclude those defined in
ancestral classes, you can provide the argument false to your request:

>> String.instance_methods(false)

The problem with Boolean arguments is that it’s very hard to remember what they do.
They’re rather cryptic. Therefore, it’s best to avoid them in your own code, unless
there’s a case where the true/false distinction is very clear.

 Let’s summarize the true/false situation in Ruby with a look at Boolean states ver-
sus Boolean values.

TRUE/FALSE: STATES VS. VALUES

As you now know, every Ruby expression is true or false in a Boolean sense (as indi-
cated by the if test), and there are also objects called true and false. This double
usage of the true/false terminology is sometimes a source of confusion: when you say
that something is true, it’s not always clear whether you mean it has a Boolean truth
value or that it’s the object true.

 Remember that every expression has a Boolean value—including the expression
true and the expression false. It may seem awkward to have to say, “The object true
is true.” But that extra step makes it possible for the model to work consistently. As we
saw in chapter 6, the fact that every expression has a Boolean gives us flexibility in
crafting loops and iterators.

Output: TrueClass
Output: FalseClass

224 CHAPTER 7 Built-in essentials
 Building on this point, and on some of the cases you saw in slightly different form
in table 7.2, table 7.4 shows a mapping of some sample expressions to both the out-
come of their evaluation and their Boolean value.

 Note in particular that zero and empty strings (as well as empty arrays and hashes)
have a Boolean value of true. The only objects that have a Boolean value of false are
false and nil.

And on the subject of nil: it’s time for us to look more closely at this unique object.

7.5.3 The special object nil

The special object nil is, indeed, an object (it’s the only instance of a class called
NilClass). But in practice, it’s also a kind of nonobject. The Boolean value of nil is
false, but that’s just the start of its nonobjectness.

 nil denotes an absence of anything. You can see this graphically when you inquire
into the value of, for example, an instance variable you haven’t initialized:

puts @x

This command prints an empty string and returns nil. (If you try this with a local vari-
able, you’ll get an error; local variables aren’t automatically initialized to anything, not

Table 7.4 Mapping sample expressions to their evaluation results and
Boolean values

Expression
Object to which

expression evaluates
Boolean value of

expression

1 1 True

0 0 True

1+1 2 True

true true True

false false False

nil nil False

"string" "string" True

"" "" True

puts "string" nil False

100 > 50 true True

x = 10 10 True

def x; end :x True

class C; end nil False

class C; 1; end 1 True

225Comparing two objects
even nil.) nil is also the default value for nonexistent elements of container and col-
lection objects. For example, if you create an array with three elements, and then you
try to access the tenth element (at index 9, because array indexing starts at 0), you’ll
find that it’s nil:

>> ["one","two","three"][9]
=> nil

nil is sometimes a difficult object to understand. It’s all about absence and nonexis-
tence; but nil does exist, and it responds to method calls like other objects:

>> nil.to_s
=> ""
>> nil.to_i
=> 0
>> nil.object_id
=> 8

The to_s conversion of nil is an empty string (""); the integer representation of nil
is 0; and nil’s object ID is 8. (nil has no special relationship to 8; that just happens to
be the number designated as its ID.)

 It’s not accurate to say that nil is empty, because doing so would imply that it has
characteristics and dimension, like a number or a collection, which it isn’t supposed
to. Trying to grasp nil can take you into some thorny philosophical territory. You can
think of nil as an object that exists and that comes equipped with a survival kit of
methods but that serves the purpose of representing absence and a state of being
undetermined.

 Coming full circle, remember that nil has a Boolean value of false. nil and false
are the only two objects that do. They’re not the only two expressions that do; 100 < 50
has a Boolean value of false, because it evaluates to the object false. But nil and
false are the only two objects in Ruby with a Boolean value of false. All other Ruby
objects—numbers, strings, instances of MyCoolClass—have a Boolean value of true.
Tested directly, they all pass the if test.

 Boolean values and testing provide a segue into the next topic: comparisons
between objects. We’ll look at tests involving two objects and ways of determining
whether they’re equal—and, if they aren’t, whether they can be ranked as
greater/lesser, and based on what criteria.

7.6 Comparing two objects
Ruby objects are created with the capacity to compare themselves to other objects for
equality and/or order, using any of several methods. Tests for equality are the most
common comparison tests, and we’ll start with them. We’ll then look at a built-in Ruby
module called Comparable, which gives you a quick way to impart knowledge of com-
parison operations to your classes and objects, and that is used for that purpose by a
number of built-in Ruby classes.

226 CHAPTER 7 Built-in essentials
7.6.1 Equality tests

The Object class defines three equality-test methods: ==, eql?, and equal?. At the
Object level, all equality-test methods do the same thing: they tell you whether two
objects are exactly the same object. Here they are in action:

>> a = Object.new
=> #<Object:0x00000101258af8>
>> b = Object.new
=> #<Object:0x00000101251d70>
>> a == a
=> true
>> a == b
=> false
>> a != b
=> true
>> a.eql?(a)
=> true
>> a.eql?(b)
=> false
>> a.equal?(a)
=> true
>> a.equal?(b)
=> false

All three of the positive equality-test methods give the same results in these examples:
when you test a against a, the result is true, and when you test a against b, the result is
false. (The not-equal or negative equality test method != is the inverse of the ==
method; in fact, if you define ==, your objects will automatically have the != method.)
We have plenty of ways to establish that a is a but not b.

 But there isn’t much point in having three tests that do the same thing. Further
down the road, in classes other than Object, == and/or eql? are typically redefined to
do meaningful work for different objects. For example, String redefines == and eql?
to return whether the value of the strings being compared are identical. Two strings
can have the same value but in fact be different objects. The equal? method retains its
Object definition and checks if two strings are exactly the same object. Let’s look at
string equality in action:

>> string1 = "text"
=> "text"
>> string2 = "text"
=> "text"
>> string1 == string2
=> true
>> string1.eql?(string2)
=> true
>> string1.equal?(string2)
=> false

As you can see, the strings are == and eql?, but not equal?. Ruby recommends against
redefining equal? so that it can always be used to determine object identity.

227Comparing two objects
 Why do we have == and eql? if they’re synonymous at the Object level? Because it
gives us more flexibility as we subclass Object. Because we don’t redefine equal?, we
have the option to redefine either == or eql? and compare objects in different ways.
For example, in the Numeric class (a superclass of Integer and Float), == performs
type conversion before making a comparison but eql? doesn’t:

>> 5 == 5.0
=> true
>> 5.eql? 5.0
=> false

Ruby gives you a suite of tools for object comparisons, and not always just comparison
for equality. We’ll look next at how equality tests and their redefinitions fit into the
overall comparison picture.

7.6.2 Comparisons and the Comparable module

The most commonly redefined equality-test method, and the one you’ll see used most
often, is ==. It’s part of the larger family of equality-test methods, and it’s also part of a
family of comparison methods that includes ==, !=, >, <, >=, and <=.

 Not every class of object needs, or should have, all these methods. (It’s hard to
imagine what it would mean for one Bicycle to be greater than or equal to another.
Gears?) But for classes that do need full comparison functionality, Ruby provides a
convenient way to get it. If you want objects of class MyClass to have the full suite of
comparison methods, all you have to do is the following:

1 Mix a module called Comparable (which comes with Ruby) into MyClass.
2 Define a comparison method with the name <=> as an instance method in

MyClass.

The comparison method <=> (usually called the spaceship operator or spaceship method)
is the heart of the matter. Inside this method, you define what you mean by less than,
equal to, and greater than. Once you’ve done that, Ruby has all it needs to provide the
corresponding comparison methods.

 For example, let’s say you’re taking bids on a job and using a Ruby script to help
you keep track of what bids have come in. You decide it would be handy to be able to
compare any two Bid objects, based on an estimate attribute, using simple compari-
son operators like > and <. Greater than means asking for more money, and less than
means asking for less money.

 A simple first version of the Bid class might look like the following listing.

class Bid
 include Comparable
 attr_accessor :estimate
 def <=>(other_bid)
 if self.estimate < other_bid.estimate

Listing 7.2 Example of a class that mixes in the Comparable module

B

228 CHAPTER 7 Built-in essentials
-1
 elsif self.estimate > other_bid.estimate

1
 else

0
 end
 end
end

The spaceship method B consists of a cascading if/elsif/else statement. Depend-
ing on which branch is executed, the method returns a negative number (by conven-
tion, –1), a positive number (by convention, 1), or 0. Those three return values are
predefined, prearranged signals to Ruby. Your <=> method must return one of those
three values every time it’s called—and they always mean less than, equal to, and
greater than, respectively.

 You can shorten this method. Bid estimates are either floating-point numbers or
integers (the latter, if you don’t bother with the cents parts of the figure or if you store
the amounts as cents rather than dollars). Numbers already know how to compare
themselves to each other, including integers to floats. Bid’s <=> method can therefore
piggyback on the existing <=> methods of the Integer and Float classes, like this:

def <=>(other_bid)
 self.estimate <=> other_bid.estimate
end

In this version of the spaceship method, we’re punting; we’re saying that if you want to
know how two bids compare to each other, bump the question to the estimate values
for the two bids and use that comparison as the basis for the bid-to-bid comparison.

 The payoff for defining the spaceship operator and including Comparable is that you
can from then on use the whole set of comparison methods on pairs of your objects. In
this example, bid1 wins the contract; it’s less than (as determined by <) bid2:

>> bid1 = Bid.new
=> #<Bid:0x000001011d5d60>
>> bid2 = Bid.new
=> #<Bid:0x000001011d4320>
>> bid1.estimate = 100
=> 100
>> bid2.estimate = 105
=> 105
>> bid1 < bid2
=> true

The < method (along with >, >=, <=, ==, !=, and between?) is defined in terms of <=>,
inside the Comparable module. (b.between?(a,c) tells you whether b > a and b < c.)

 All Ruby numerical classes include Comparable and have a definition for <=>. The
same is true of the String class; you can compare strings using the full assortment of
Comparable methods/operators. Comparable is a handy tool, giving you a lot of func-
tionality in return for, essentially, one method definition.

229Inspecting object capabilities
 We’ll now turn to the subject of runtime object inspection. In keeping with the
spirit of this chapter, we’ll look at enough techniques to sustain you through most of
the rest of the book. Keep in mind, though, that chapter 15 will come back to the
topic of runtime inspection (among others). So you can take this as the first, but not
the last, substantial look at the topic.

7.7 Inspecting object capabilities
Inspection and reflection refer, collectively, to the various ways in which you can get Ruby
objects to tell you about themselves during their lifetimes. Much of what you learned
earlier about getting objects to show string representations of themselves could be
described as inspection. In this section, we’ll look at a different kind of runtime reflec-
tion: techniques for asking objects about the methods they can execute.

 How you do this depends on the object and on exactly what you’re looking for.
Every object can tell you what methods you can call on it, at least as of the moment
you ask it. In addition, class and module objects can give you a breakdown of the
methods they provide for the objects that have use of those methods (as instances or
via module inclusion).

7.7.1 Listing an object’s methods

The simplest and most common case is when you want to know what messages an
object understands—that is, what methods you can call on it. Ruby gives you a typically
simple way to do this. Enter this into irb:

>> "I am a String object".methods

You’ll see a large array of method names. At the least, you’ll want to sort them so you
can find what you’re looking for:

>> "I am a String object".methods.sort

The methods method works with class and module objects, too. But remember, it
shows you what the object (the class or module) responds to, not what instances of the
class or objects that use the module respond to. For example, asking irb for

>> String.methods.sort

shows a list of methods that the Class object String responds to. If you see an item in
this list, you know you can send it directly to String.

 The methods you see when you call methods on an object include its singleton
methods—those that you’ve written just for this object—as well as any methods it can
call by the inclusion of one or more modules or inherited classes anywhere in its
ancestry. All these methods are presented as equals: the listing of methods flattens the
method lookup path and only reports on what methods the object knows about,
regardless of where they’re defined.

230 CHAPTER 7 Built-in essentials
 You can verify this in irb. Here’s an example where a singleton method is added to
a string. If you include the call to str.methods.sort at the end, you’ll see that shout
is now among the string’s methods:

>> str = "A plain old string"
=> "A plain old string"
>> def str.shout
>> self.upcase + "!!!"
>> end
=> :shout
>> str.shout
=> "A PLAIN OLD STRING!!!"
>> str.methods.sort

Conveniently, you can ask just for an object’s singleton methods:

>> str.singleton_methods
=> [:shout]

Similarly, if you mix a module into a class with include, instances of that class will
report themselves as being able to call the instance methods from that module. Inter-
estingly, you’ll get the same result even if you include the module after the instance
already exists. Start a new irb session (to clear the memory of the previous example),
and try this code. Instead of printing out all the methods, we’ll use a couple of less
messy techniques to find out whether str has the shout method:

>> str = "Another plain old string."
=> "Another plain old string."
>> module StringExtras
>> def shout
>> self.upcase + "!!!"
>> end
>> end
=> :shout
>> class String
>> include StringExtras
>> end
=> String
>> str.methods.include?(:shout)
=> true

Including the module affects strings that already exist because when you ask a string
to shout, it searches its method lookup path for a shout method and finds it in the
module. The string really doesn’t care when or how the module got inserted into the
lookup path.

 Any object can tell you what methods it knows. In addition, class and module
objects can give you information about the methods they provide.

Makes strings into shouters

231Inspecting object capabilities
7.7.2 Querying class and module objects

One of the methods you’ll find in the list generated by the irb command String
.methods.sort is instance_methods. It tells you all the instance methods that
instances of String are endowed with:

>> String.instance_methods.sort

The resulting list is the same as the list of methods, as shown by methods, for any given
string (unless you’ve added singleton methods to that string).

 You can make a similar request of a module:

>> Enumerable.instance_methods.sort

In addition to straightforward method and instance-method lists, Ruby provides a cer-
tain number of tweaks to help you make more fine-grained queries.

7.7.3 Filtered and selected method lists

Sometimes you’ll want to see the instance methods defined in a particular class with-
out bothering with the methods every object has. After all, you already know that your
object has those methods. You can view a class’s instance methods without those of the
class’s ancestors by using the slightly arcane technique, introduced earlier, of provid-
ing the argument false to the instance_methods method:

String.instance_methods(false).sort

You’ll see many fewer methods this way, because you’re looking at a list of only those
defined in the String class, without those defined in any of String’s ancestral classes
or modules. This approach gives you a restricted picture of the methods available to
string objects, but it’s useful for looking in a more fine-grained way at how and where
the method definitions behind a given object are positioned.

 Here are some ways to examine objects by calling method-listing methods:

 Examining objects at the instance level
– obj.private_methods

– obj.public_methods

– obj.protected_methods

– obj.singleton_methods

 Examining objects at the class level
– MyClass.private_instance_methods

– MyClass.protected_instance_methods

– MyClass.public_instance_methods

The last of these, public_instance_methods, is a synonym for instance_methods.
 The mechanisms for examining objects’ methods are extensive. As always, be clear

in your own mind what the object is (in particular, class/module or “regular” object)
that you’re querying and what you’re asking it to tell you.

232 CHAPTER 7 Built-in essentials
 We’ve reached the end of our midbook bootstrap session, survival kit, literacy
guide—whatever you call it (even “chapter 7”)—and we’re now in a good position to
look closely at a number of important core classes, which we’ll do over the next sev-
eral chapters.

Summary
In this chapter, you’ve seen

 Ruby’s literal constructors
 Syntactic sugar converting methods into operators
 “Destructive” methods and bang methods
 Conversion methods (to_s and friends)
 The inspect and display methods
 Boolean values and Boolean objects
 The special object nil
 Comparing objects and the Comparable module
 Examining an object’s methods

This chapter covered several topics that pertain to multiple built-in classes and mod-
ules. You’ve seen Ruby’s literal constructors, which provide a concise alternative to
calling new on certain built-in classes. You’ve also seen how Ruby provides syntactic
sugar for particular method names, including a large number of methods with names
that correspond to arithmetic operators.

 We looked at the significance of methods that change their own receivers, which
many built-in methods do (many of them bang methods, which end with !). We also
examined the to_* methods: built-in methods for performing conversions from one
core class to another.

 You’ve also learned a number of important points and techniques concerning
Boolean (true/false) values and comparison between objects. You’ve seen that every
object in Ruby has a Boolean value and that Ruby also has special Boolean objects
(true and false) that represent those values in their simplest form. A third special
object, nil, represents a state of undefinedness or absence. We also discussed tech-
niques for comparing objects using the standard comparison operator (<=>) and the
Comparable module.

 Finally, we looked at ways to get Ruby objects to tell you what methods they
respond to—a kind of reflection technique that can help you see and understand
what’s going on at a given point in your program. We’ll look more deeply at introspec-
tion and reflection in chapter 15.

 The material in this chapter will put you in a strong position to absorb what you
encounter later, in the rest of this book and beyond. When you read statements like
“This method has a bang alternative,” you’ll know what they mean. When you see doc-
umentation that tells you a particular method argument defaults to nil, you’ll know
what that means. And the fact that you’ve learned about these recurrent topics will
help us economize on repetition in the upcoming chapters about built-in Ruby classes
and modules and concentrate instead on moving ahead.

Strings, symbols,
and other scalar objects
The term scalar comes from mathematics, where it’s defined as an element that has
magnitude but not a vector. For example, the temperature outside at any given
time is a scalar element, whereas when temperature is measured every day for a
month and plotted on a graph, the graph is a vector or non-scalar element.

 In programming, scalar has a similar meaning. It refers to objects that represent
single values, such as integers and strings, as opposed to collection or container
objects that hold multiple values. In our temperature example, we might use a
Float to represent the temperature on any given day. When we collect those

This chapter covers
 String object creation and manipulation

 Methods for transforming strings

 Symbol semantics

 String/symbol comparison

 Integers and floats

 Time and date objects
233

234 CHAPTER 8 Strings, symbols, and other scalar objects
temperatures together, we store them in an Array. The Float is a scalar object
because it represents one and only one data point. The Array is a non-scalar object
because it’s a collection of Floats. Non-scalar objects also include hashes, sets, and
ranges, all of which we’ll cover in the next chapter.

 The built-in objects we’ll look at in this chapter include the following:

 Strings, which are Ruby’s standard way of handling textual material of any
length

 Symbols, which are (among other things) another way of representing text
in Ruby

 Integers
 Floating-point numbers
 Time, Date, and DateTime objects

NOTE Strings are hard to pin down as scalar or non-scalar. They can be
viewed as collections of characters in addition to being single units of text.
Still, as a good first approximation, you can look at the classes discussed in
this chapter as classes of one-dimensional, bite-sized objects, in contrast to a
collection.

These otherwise rather disparate objects are scalar—they’re one-dimensional, non-
container objects with no further objects lurking inside them the way arrays have. This
isn’t to say scalars aren’t complex and rich in their semantics; as you’ll see, they are.

8.1 Working with strings
Ruby provides two built-in classes that, between them, provide all the functionality of
text representation and manipulation: the String class and the Symbol class. Strings
and symbols are deeply different from each other, but they’re similar enough in their
shared capacity to represent text that they merit being discussed in the same chapter.
We’ll start with strings, which are the standard way to represent bodies of text of arbi-
trary content and length. You’ve seen strings in many contexts already; here, we’ll get
more deeply into some of their semantics and abilities. We’ll look first at how you write
strings, after which we’ll discuss a number of ways in which you can manipulate strings,
query them (for example, as to their length), compare them with each other, and
transform them (from lowercase to uppercase, and so on). We’ll also examine some
further details of the process of converting strings with to_i and related methods.

8.1.1 String notation

A string literal is generally enclosed in quotation marks:

"This is a string."

Single quotes can also be used:

'This is also a string.'

235Working with strings
But a single-quoted string behaves differently, in some circumstances, than a double-
quoted string. The main difference is that string interpolation doesn’t work with single-
quoted strings. Try these two snippets, and you’ll see the difference:

puts "Two plus two is #{2 + 2}."
puts 'Two plus two is #{2 + 2}.'

As you’ll see if you paste these lines into irb, you get two very different results:

Two plus two is 4.
Two plus two is #{2 + 2}.

Single quotes disable the #{...} interpolation mechanism. If you need that mecha-
nism, you can’t use single quotes. Conversely, you can, if necessary, escape (and
thereby disable) the string-interpolation mechanism in a double-quoted string, using
backslashes:

puts "Escaped interpolation: \"\#{2 + 2}\"."
=> Escaped interpolation: "#{2 + 2}".

Single- and double-quoted strings also behave differently with respect to the need to
escape certain characters. The following statements document and demonstrate
the differences. Try typing these statements into an irb session using irb -–simple
-prompt -–noecho for clarity. Look closely at which are single-quoted and which are
double-quoted, and at how the backslash is used:

puts "Backslashes (\\) have to be escaped in double quotes."
puts 'You can just type \ once in a single quoted string.'
puts "But whichever type of quotation mark you use..."
puts "...you have to escape its quotation symbol, such as \"."
puts 'That applies to \' in single-quoted strings too.'
puts 'Backslash-n just looks like \n between single quotes.'
puts "But it means newline\nin a double-quoted string."
puts 'Same with \t, which comes out as \t with single quotes...'
puts "...but inserts a tab character:\tinside double quotes."
puts "You can escape the backslash to get \\n and \\t with double quotes."

Here’s the output from this barrage of quotations. It doesn’t line up line-for-line with
the code, but you can see why if you look at the statement that outputs a newline
character:

Backslashes (\) have to be escaped in double quotes.
You can just type \ once in a single quoted string.
But whichever type of quotation mark you use...
...you have to escape its quotation symbol, such as ".
That applies to ' in single-quoted strings too.
Backslash-n just looks like \n between single quotes.
But it means newline
in a double-quoted string.
Same with \t, which comes out as \t with single quotes...
...but inserts a tab character: inside double quotes.
You can escape the backslash to get \n and \t with double quotes.

236 CHAPTER 8 Strings, symbols, and other scalar objects
You’ll see other cases of string interpolation and character escaping as we proceed.
Meanwhile, by far the best way to get a feel for these behaviors firsthand is to experi-
ment with strings in irb.

 Ruby gives you several ways to write strings in addition to single and double quota-
tion marks.

OTHER QUOTING MECHANISMS

The alternate quoting mechanisms take the form %char{text}, where char is one of
several special characters and the curly braces stand in for a delimiter of your choos-
ing. Here’s an example of one of these mechanisms: %q, which produces a single-
quoted string. Rather than typing these examples into irb, use the ruby -e '' syntax
(see the next sidebar for more information):

puts %q{You needn't escape apostrophes or quotation marks (', '', ", "") when
using %q.}

As the sample sentence points out, because you’re not using the single-quote charac-
ter as a quote character, you can use it unescaped inside the string. Here’s the output:

"You needn't escape apostrophes or quotation marks (', '', ", "") when using
%q."

Also available to you are %Q{}, which generates a double-quoted string, and plain %{}
(percent sign and delimiter), which also generates a double-quoted string. Naturally,
you don’t need to escape the double-quote character inside strings that are repre-
sented with either of these notations.

 Curly braces are by far the most common delimiter you’ll see for %-style notations.
But the delimiter can be just about anything you want as long as the opening delimiter
matches the closing one. Matching in this case means either making up a left/right
pair of braces (curly, curved, angular, or square) or being two of the same nonalpha-
numeric character. Thus all of the following are acceptable:

%q-A string-
%Q/Another string/
%[Yet another string]

If you’re using {} as a delimiter and Ruby sees a left-hand brace inside the string, it
assumes that the brace is part of the string and looks for a matching right-hand one. If
you want to include an unmatched brace of the same type as the ones you’re using for
delimiters, you have to escape it:

%Q{I can put {} in here unescaped.}
%q{I have to escape \(if I use it alone in here.)
%Q{And the same goes for \}.}

237Working with strings
Each of the %char-style quoting mechanisms generates either a single- or double-
quoted string. That distinction pervades stringdom; every string is one or the other,
no matter which notation you use—including the next one we’ll look at, the “here”
document syntax.

“HERE” DOCUMENTS

A “here” document, or heredoc, is a string, usually a multiline string, that often takes the
form of a template or a set of data lines. It’s said to be “here” because it’s physically
present in the program file, not read in from a separate text file.

 Heredocs come into being through the << operator, as shown next. For this irb
session, leave out the --noecho option:

>> text = <<EOM
This is the first line of text.
This is the second line.
Now we're done.
EOM
=> "This is the first line of text.\nThis is the second line.\nNow we're

done.\n"

The expression <<EOM means the text that follows, up to but not including the next occurrence
of “EOM.” The delimiter can be any string; EOM (end of message) is a common choice.
SQL is also common because SQL queries can get lengthy:

>> query = <<SQL
SELECT count (DISTINCT users.id)
FROM users
WHERE users.first_name='Joe';
SQL

Whatever delimiter you choose, it must be flush left, and it must be the only thing on
the line where it occurs. You can switch off the flush-left requirement by putting a
hyphen before the << operator:

>> text = <<-EOM
The EOM doesn't have to be flush left!
 EOM
=> "The EOM doesn't have to be flush left!\n"

irb doesn’t play well with some of this syntax
irb has its own Ruby parser, which has to contend with the fact that as it parses one
line, it has no way of knowing what the next line will be. The result is that irb does
things a little differently from the Ruby interpreter. In the case of quote mechanisms,
you may find that in irb, escaping unmatched square and other brackets produces
odd results. Generally, you’re better off plugging these examples into the command-
line format ruby –e 'puts %q[Example: \[]' and similar.

238 CHAPTER 8 Strings, symbols, and other scalar objects
The EOM that stops the reading of this heredoc (only a one-line document this time) is
in the middle of the line.

 Ruby also defines a “squiggly heredoc,” <<~, which strips leading whitespace from
your output. This is handy when used inside of object definitions, where the indenta-
tion we use to nest methods is otherwise incorporated into the heredoc:

class RubyWelcomeWagon
 def message
 <<-EOM

Welcome to the world of Ruby!
We're happy you're here!

 EOM
 end
end
>> RubyWelcomeWagon.new.message
=> " Welcome to the world of Ruby!\n We're happy you're here!\n"

By replacing <<- with <<~ above, the leading whitespace is stripped away and the mes-
sage isn’t indented:

>> RubyWelcomeWagon.new.message
=> "Welcome to the world of Ruby!\nWe're happy you're here!\n

By default, heredocs are read in as double-quoted strings. Thus they can include
string interpolation and use of escape characters like \n and \t. If you want a single-
quoted heredoc, put the closing delimiter in single quotes when you start the docu-
ment. To make the difference clearer, this example includes a puts of the heredoc:

>> text = <<-'EOM'
Single-quoted!
Note the literal \n.
And the literal #{2+2}.
EOM
=> "Single-quoted!\nNote the literal \\n.\nAnd the literal \#{2+2}.\n"
>> puts text
Single-quoted!
Note the literal \n.
And the literal #{2+2}.

The <<EOM (or equivalent) doesn’t have to be the last thing on its line. Wherever it
occurs, it serves as a placeholder for the upcoming heredoc. Here’s one that gets con-
verted to an integer and multiplied by 10:

a = <<EOM.to_i * 10
5
EOM
puts a

You can even use a heredoc in a literal object constructor. Here’s an example where a
string gets put into an array, creating the string as a heredoc:

array = [1,2,3, <<EOM, 4]
This is the heredoc!
It becomes array[3].

Output: 50

239Working with strings
EOM
p array

The output is

[1, 2, 3, "This is the heredoc!\nIt becomes array[3].\n", 4]

And you can use the <<EOM notation as a method argument; the argument becomes
the heredoc that follows the line on which the method call occurs. This can be useful
if you want to avoid cramming too much text into your argument list:

do_something_with_args(a, b, <<EOM)
http://some_very_long_url_or_other_text_best_put_on_its_own_line
EOM

In addition to creating strings, you need to know what you can do with them. You
can do a lot, and we’ll look at much of it in detail, starting with the basics of string
manipulation.

8.1.2 Basic string manipulation

Basic in this context means manipulating the object at the lowest levels: retrieving and
setting substrings, and combining strings with each other. From Ruby’s perspective,
these techniques aren’t any more basic than those that come later in our survey of
strings; but conceptually, they’re closer to the string metal, so to speak.

GETTING AND SETTING SUBSTRINGS

To retrieve the nth character in a string, you use the [] operator/method, giving it
the index, on a zero-origin basis, for the character you want. Negative numbers index
from the end of the string:

>> string = "Ruby is a cool language."
=> "Ruby is a cool language."
>> string[5]
=> "i"
>> string[-12]
=> "o"

If you provide a second integer argument, m, you’ll get a substring of m characters,
starting at the index you’ve specified:

>> string[5,10]
=> "is a cool "

You can also provide a single range object as the argument. We’ll look at ranges in
more depth later; for now, you can think of n..m as all the values between n and m,
inclusive (or exclusive of m, if you use three dots instead of two, n...m). The range can
use negative numbers, which count from the end of the string backward, but the sec-
ond index must always be closer to the end of the string than the first index; the index
logic only goes from left to right:

>> string[7...14]
=> " a cool"

240 CHAPTER 8 Strings, symbols, and other scalar objects
>> string[-12..-3]
=> "ol languag"
>> string[-12..20]
=> "ol langua"
>> string[15...-1]
=> "language"

You can also grab substrings based on an explicit substring search. If the substring is
found, it’s returned; if not, the return value is nil:

>> string["cool lang"]
=> "cool lang"
>> string["very cool lang"]
=> nil

It’s also possible to search for a pattern match using the [] technique with a regular
expression—[] is a method, and inside it are the arguments, so it can do whatever it’s
programmed to do:

>> string[/c[ol]+/]
=> "cool l"

We’ll look at regular expressions separately in chapter 11, at which point you’ll get a
sense of the possibilities of this way of looking for substrings.

 The [] method is also available under the name slice. Furthermore, a receiver-
changing version of slice, namely slice!, removes the character(s) from the string
permanently:

>> string.slice!("cool ")
=> "cool "
>> string
=> "Ruby is a language."

To set part of a string to a new value, you use the []= method. It takes the same kinds
of indexing arguments as [] but changes the values to what you specify. Putting the
preceding little string through its paces, here are some substring-setting examples,
with an examination of the changed string after each one:

>> string = "Ruby is a cool language."
=> "Ruby is a cool language."
>> string["cool"] = "great"
=> "great"
>> string
=> "Ruby is a great language."
>> string[-1] = "!"
=> "!"
>> string
=> "Ruby is a great language!"
>> string[-9..-1] = "thing to learn!"
=> "thing to learn!"
>> string
=> "Ruby is a great thing to learn!"

241Working with strings
Integers, ranges, strings, and regular expressions can thus all work as index or sub-
string specifiers. If you try to set to a new value part of the string that doesn’t exist—
that is, a too-high or too-low numerical index, or a string or regular expression that
doesn’t match the string—an IndexError is raised.

 In addition to changing individual strings, you can also combine strings with each
other.

COMBINING STRINGS

There are several techniques for combining strings. These techniques differ as to
whether the second string is permanently added to the first or whether a new, third
string is created out of the first two—in other words, whether the operation changes
the receiver.

 To create a new string consisting of two or more strings, you can use the +
method/operator to run the original strings together. Here’s what irb has to say
about adding strings:

>> "a" + "b"
=> "ab"
>> "a" + "b" + "c"
=> "abc"

The string you get back from + is always a new string. You can test this by assigning a
string to a variable, using it in a + operation, and checking to see what its value is after
the operation:

>> str = "Hi "
=> "Hi "
>> str + "there."
=> "Hi there."
>> str
=> "Hi "

The expression str + "there." (which is syntactic sugar for the method call str.+
("there")) evaluates to the new string "Hi there." B but leaves str unchanged C.

 To add (append) a second string permanently to an existing string, use the <<
method, which also has a syntactic sugar, pseudo-operator form:

>> str = "Hi "
=> "Hi "
>> str << "there."
=> "Hi there."
>> str
=> "Hi there."

In this example, the original string str has had the new string appended to it, as you
can see from the evaluation of str at the end B.

 String interpolation is (among other things) another way to combine strings.
You’ve seen it in action already, but let’s take the opportunity to look at a couple of
details of how it works.

B

C

B

242 CHAPTER 8 Strings, symbols, and other scalar objects
STRING COMBINATION VIA INTERPOLATION

At its simplest, string interpolation involves dropping one existing string into another:

>> str = "Hi "
=> "Hi "
>> "#{str}there."
=> "Hi there."

The result is a new string: "Hi there." However, it’s good to keep in mind that the
interpolation can involve any Ruby expression:

>> "The sum is #{2 + 2}."
=> "The sum is 4."

The code inside the curly braces can be anything. (They do have to be curly braces;
it’s not like %q{}, where you can choose your own delimiter.) It’s unusual to make the
code terribly complex, because that detracts from the structure and readability of the
program—but Ruby is happy with any interpolated code and will obligingly place a
string representation of the value of the code in your string:

>> "My name is #{class Person
attr_accessor :name

end
d = Person.new
d.name = "David"
d.name
}."

=> "My name is David."

You really, really don’t want to do this, but it’s important to understand that you can
interpolate any code you want. Ruby patiently waits for it all to run and then snags the
final value of the whole thing (d.name, in this case, because that’s the last expression
inside the interpolation block) and interpolates it.

 There’s a much nicer way to accomplish something similar. Ruby interpolates by
calling to_s on the object to which the interpolation code evaluates. You can take
advantage of this to streamline string construction, by defining your own to_s meth-
ods appropriately:

>> class Person
>> attr_accessor :name
>> def to_s
>> name
>> end
>> end
=> :to_s
>> david = Person.new
=> #<Person:0x00000101a73cb0>
>> david.name = "David"
=> "David"
>> "Hello, #{david}!"
=> "Hello, David!"

243Working with strings
Here the object david serves as the interpolated code, and produces the result of its
to_s operation, which is defined as a wrapper around the name getter method. Using
the to_s hook is a useful way to control your objects’ behavior in interpolated strings.
Remember, though, that you can also say (in the preceding example) david.name. So
if you have a broader use for a class’s to_s than a very specific interpolation scenario,
you can usually accommodate it.

 After you’ve created and possibly altered a string, you can ask it for a considerable
amount of information about itself. We’ll look now at how to query strings.

8.1.3 Querying strings

String queries come in a couple of flavors. Some give you a Boolean (true or false)
response, and some give you a kind of status report on the current state of the string.
We’ll organize our exploration of string query methods along these lines.

BOOLEAN STRING QUERIES

You can ask a string whether it includes a given substring, using include?. Given the
string used earlier ("Ruby is a cool language."), inclusion queries might look like
this:

>> string.include?("Ruby")
=> true
>> string.include?("English")
=> false

You can test for a given start or end to a string with start_with? and end_with?:

>> string.start_with?("Ruby")
=> true
>> string.end_with?("!!!")
=> false

start_with? also supports regular expressions:

>> string.start_with?(/[A-Z]/)
=> true

And you can test for the absence of content—that is, for the presence of any charac-
ters at all—with the empty? method:

>> string.empty?
=> false
>> "".empty?
=> true

Keep in mind that whitespace counts as characters; the string " " isn’t empty.

CONTENT QUERIES

The size and length methods (they’re synonyms for the same method) do what their
names suggest they do:

>> string.size
=> 24

244 CHAPTER 8 Strings, symbols, and other scalar objects
If you want to know how many times a given letter or set of letters occurs in a string,
use count. To count occurrences of one letter, provide that one letter as the argu-
ment. Still using the string "Ruby is a cool language.", there are three occurrences
of "a":

>> string.count("a")
=> 3

To count how many of a range of letters there are, you can use a hyphen-separated
range:

>> string.count("g-m")
=> 5

Character specifications are case sensitive:

>> string.count("A-Z")
=> 1

You can also provide a written-out set of characters you want to count:

>> string.count("aey. ")
=> 10

To negate the search—that is, to count the number of characters that don’t match the
ones you specify—put a ^ (caret) at the beginning of your specification:

>> string.count("^aey. ")
=> 14
>> string.count("^g-m")
=> 19
>> string.count("^g-m") + string.count("g-m") == string.size
=> true

(If you’re familiar with regular expressions, you’ll recognize the caret technique as a
close cousin of regular expression character class negation.) You can combine the
specification syntaxes and even provide more than one argument:

>> string.count("ag-m")
=> 8
>> string.count("ag-m", "^l")
=> 6

Another way to query strings as to their content is with the index method. index is
sort of the inverse of using [] with a numerical index: instead of looking up a sub-
string at a particular index, it returns the index at which a given substring occurs. The
first occurrence from the left is returned. If you want the first occurrence from the
right, use rindex:

>> string.index("cool")
=> 10
>> string.index("l")
=> 13
>> string.rindex("l")
=> 15

Three letters plus period
and space characters

Counts "a" and "g-m"
except for "l"

245Working with strings
Although strings are made up of characters, Ruby has no separate character class.
One-character strings can tell you their ordinal code, courtesy of the ord method:

>> "a".ord
=> 97

If you take the ord of a longer string, you get the code for the first character:

>> "abc".ord
=> 97

The reverse operation is available as the chr method on integers:

>> 97.chr
=> "a"

Asking a number that doesn’t correspond to any character for its chr equivalent
causes a fatal error.

 In addition to providing information about themselves, strings can compare them-
selves with other strings, to test for equality and order.

8.1.4 String comparison and ordering

The String class mixes in the Comparable module and defines a <=> method. Strings
are therefore good to go when it comes to comparisons based on character code
(ASCII or otherwise) order:

>> "a" <=> "b"
=> -1
>> "b" > "a"
=> true
>> "a" > "A"
=> true
>> "." > ","
=> true

Remember that the spaceship method/operator returns -1 if the right object is
greater, 1 if the left object is greater, and 0 if the two objects are equal. In the first case
in the previous sequence, it returns -1 because the string "b" is greater than the string
"a". But "a" is greater than "A", because the order is done by character value and the
character values for "a" and "A" are 97 and 65, respectively, in Ruby’s default encod-
ing of UTF-8. Similarly, the string "." is greater than ",", because the value for a
period is 46 and that for a comma is 44. (See section 8.1.7 for more on encoding.)

 Like Ruby objects in general, strings have several methods for testing equality.

COMPARING TWO STRINGS FOR EQUALITY

The most common string comparison method is ==,which tests for equality of string
content:

>> "string" == "string"
=> true
>> "string" == "house"
=> false

246 CHAPTER 8 Strings, symbols, and other scalar objects
The two literal "string" objects are different objects, but they have the same content.
Therefore, they pass the == test. The string "house" has different content and is there-
fore not considered equal, based on ==, with "string".

 Another equality-test method, String#eql?, tests two strings for identical content.
In practice, it usually returns the same result as ==. (There are subtle differences in
the implementations of these two methods, but you can use either. You’ll find that ==
is more common.) A third method, String#equal?, behaves like equal? usually does:
it tests whether two strings are the same object—or for that matter, whether a string
and any other object are the same object:

>> "a" == "a"
=> true
>> "a".equal?("a")
=> false
>> "a".equal?(100)
=> false

The first test succeeds because the two strings have the same contents. The second test
fails because the first string isn’t the same object as the second string. And of course
no string is the same object as the integer 100, so that test fails too. This is a good
reminder of the fact that strings that appear identical to the eye may, to Ruby, have dif-
ferent object identities.

 The next two sections will present string transformations and conversions, in that
order. The difference between the two is that a transformation involves applying some
kind of algorithm or procedure to the content of a string, whereas a conversion means
deriving a second, unrelated object—usually not even a string—from the string.

8.1.5 String transformation

String transformations in Ruby fall informally into three categories: case, formatting,
and content transformations. We’ll look at each in turn.

CASE TRANSFORMATIONS

Strings let you raise, lower, and swap their case. All of the case-changing methods have
receiver-modifying bang equivalents:

>> string = "David A. Black"
=> "David A. Black"
>> string.upcase
=> "DAVID A. BLACK"
>> string.downcase
=> "david a. black"
>> string.swapcase
=> "dAVID a. bLACK"

There’s also a method that lets you capitalize the string:

>> string = "david"
=> "david"
>> string.capitalize
=> "David"

247Working with strings
Like the other case transformers, capitalize has an in-place equivalent, capitalize!.
 You can perform a number of transformations on the format of a string, most of

which are designed to help you make your strings look nicer.

FORMATTING TRANSFORMATIONS

Strictly speaking, format transformations are a subset of content transformations; if
the sequence of characters represented by the string didn’t change, it wouldn’t be
much of a transformation. We’ll group under the formatting heading some transfor-
mations whose main purpose is to enhance the presentation of strings.

 The rjust and ljust methods expand the size of your string to the length you
provide in the first argument, padding with blank spaces as necessary:

>> string = "David A. Black"
=> "David A. Black"
>> string.rjust(25)
=> " David A. Black"
>> string.ljust(25)
=> "David A. Black "

If you supply a second argument, it’s used as padding. This second argument can be
more than one character long:

>> string.rjust(25,'.')
=> "...........David A. Black"
>> string.rjust(25,'><')
=> "><><><><><>David A. Black"

The padding pattern is repeated as many times as it will fit, truncating the last place-
ment if necessary.

 And to round things out in the justification realm, there’s a center method, which
behaves like rjust and ljust but puts the characters of the string in the center:

>> "The middle".center(20, "*")
=> "*****The middle*****"

Odd-numbered padding spots are rendered right-heavy:

>> "The middle".center(21, "*")
=> "*****The middle******"

Finally, you can prettify your strings by stripping whitespace from either or both sides,
using the strip, lstrip, and rstrip methods:

>> string = " David A. Black "
=> " David A. Black "
>> string.strip
=> "David A. Black"
>> string.lstrip
=> "David A. Black "
>> string.rstrip
=> " David A. Black"

All three of the string-stripping methods have ! versions that change the string perma-
nently in place.

248 CHAPTER 8 Strings, symbols, and other scalar objects
CONTENT TRANSFORMATIONS

We’ll look at some, though not all, of the ways you can transform a string by changing
its contents.

 The chop and chomp methods are both in the business of removing characters
from the ends of strings—but they go about it differently. The main difference is that
chop removes a character unconditionally, whereas chomp removes a target substring if
it finds that substring at the end of the string. By default, chomp’s target substring is
the newline character, \n. You can override the target by providing chomp with an
argument:

>> "David A. Black".chop
=> "David A. Blac"
>> "David A. Black\n".chomp
=> "David A. Black"
>> "David A. Black".chomp('ck')
=> "David A. Bla"

By far the most common use of either chop or chomp is the use of chomp to remove
newlines from the ends of strings. Usually these strings come to the program in the
form of lines of a file or keyboard input, such as in combination with the gets
method. Both chop and chomp have bang equivalents that change the string in place.

 On the more radical end of character removal stands the clear method, which
empties a string of all its characters, leaving the empty string:

>> string = "David A. Black"
=> "David A. Black"
>> string.clear
=> ""
>> string
=> ""

String#clear is a great example of a method that changes its receiver but doesn’t
end with the ! character. The name clear makes it clear, so to speak, that something
is happening to the string. There would be no point in having a clear method that
didn’t change the string in place; it would just be a long-winded way to say "" (the
empty string).

 If you want to swap out all your characters without necessarily leaving your string
bereft of content, you can use replace, which takes a string argument and replaces
the current content of the string with the content of that argument:

>> string = "(to be named later)"
=> "(to be named later)"
>> string.replace("David A. Black")
=> "David A. Black"

As with clear, the replace method permanently changes the string—as suggested,
once again, by the name.

 You can target certain characters for removal from a string with delete. The argu-
ments to delete follow the same rules as the arguments to count (see section 8.1.3):

249Working with strings
>> "David A. Black".delete("abc")
=> "Dvid A. Blk"
>> "David A. Black".delete("^abc")
=> "aac"
>> "David A. Black".delete("a-e","^c")
=> "Dvi A. Blck"

Another specialized string transformation is crypt, which performs a Data Encryption
Standard (DES) encryption on the string, similar to the Unix crypt(3) library func-
tion. The single argument to crypt is a two-character salt string:

>> "David A. Black".crypt("34")
=> "347OEY.7YRmio"

Make sure you read up on the robustness of any encryption techniques you use,
including crypt.

 The last transformation technique we’ll look at is string incrementation. You can
get the next-highest string with the succ method (also available under the name
next). The ordering of strings is engineered to make sense, even at the expense of
strict character-code order: "a" comes after "`" (the backtick character) as it does in
ASCII, but after "z" comes "aa", not "{". Incrementation continues, odometer-style,
throughout the alphabet:

>> "a".succ
=> "b"
>> "abc".succ
=> "abd"
>> "azz".succ
=> "baa"

The ability to increment strings comes in handy in cases where you need batch-generated
unique strings, perhaps to use as filenames.

 As you’ve already seen, strings (like other objects) can convert themselves with
methods in the to_* family. We’ll look next at some further details of string conversion.

8.1.6 String conversions

The to_i method you saw in the last chapter is one of the conversion methods avail-
able to strings. This method offers an additional feature: if you give it a positive inte-
ger argument in the range 2–36, the string you’re converting is interpreted as
representing a number in the base corresponding to the argument.

 For example, if you want to interpret 100 as a base 17 number, you can do so like
this:

>> "100".to_i(17)
=> 289

The output is the decimal equivalent of 100, base 17.
 Base 8 and base 16 are considered special cases and have dedicated methods so

you don’t have to go the to_i route. These methods are oct and hex, respectively:

250 CHAPTER 8 Strings, symbols, and other scalar objects
>> "100".oct
=> 64
>> "100".hex
=> 256

Other conversion methods available to strings include to_f (to float), to_s and
to_str (to string; it returns its receiver), to_c and to_r (to complex and rational
numbers, respectively), and to_sym or intern, which converts the string to a Symbol
object. None of these hold any particular surprises:

>> "1.2345".to_f
=> 1.2345
>> "Hello".to_str
=> "Hello"
>> "-4e-2i".to_c
=> (0-0.04i)
>> "4.55".to_r
=> (91/20)
>> "abcde".to_sym
=> :abcde
>> "1.2345and some words".to_f
=> 1.2345
>> "just some words".to_i
=> 0

Every string consists of a sequence of bytes. The bytes map to characters. Exactly how
they map to characters—how many bytes make up a character, and what those charac-
ters are—is a matter of encoding, which we’ll now take a brief look at.

8.1.7 String encoding: a brief introduction

The subject of character encoding is interesting but vast. Encodings are many, and
there’s far from a global consensus on a single best one. Beginning with version 2.0,
Ruby has used UTF-8 instead of US-ASCII as the default encoding for Ruby scripts.
Subsequent versions have added more support for non-ASCII characters in some of
the conversion methods discussed previously. Encoding in Ruby continues to be an
area of ongoing discussion and development. We won’t explore it deeply here, but
we’ll put it on our radar and look at some important encoding-related techniques.

SETTING THE ENCODING OF THE SOURCE FILE

To start with, your source code uses a certain encoding. By default, Ruby source files
use UTF-8 encoding. You can determine this by asking Ruby to display the value
__ENCODING__. Put this line in a file, and run it:

puts __ENCODING__

You need to put the line in a file because you may get different results if you run the
command directly from the command line. The reason for the difference is that a file-
less Ruby run takes its encoding from the current locale setting. You can verify this by
observing the effect of running the same command with the LANG environment vari-
able set to a different value:

Output: UTF-8

251Working with strings
LANG=en_US.iso885915 ruby -e 'puts __ENCODING__'

To change the encoding of a source file, you need to use a magic comment at the top of
the file. The magic comment takes the form

encoding: encoding

where encoding is an identifier for an encoding. For example, to encode a source file
in US-ASCII, you put this line at the top of the file:

encoding: ASCII

(You may use the word coding rather than the word encoding, if you prefer.)
 In addition to your source file, you can also query and set the encoding of individ-

ual strings.

ENCODING OF INDIVIDUAL STRINGS

Strings will tell you their encoding:

>> str = "Test string"
=> "Test string"
>> str.encoding
=> #<Encoding:UTF-8>

You can encode a string with a different encoding, as long as the conversion from the
original encoding to the new one—the transcoding—is permitted (which depends on
the compatibility of the string with the new encoding):

>> str.encode("US-ASCII")
=> "Test string"

If you need to, you can force an encoding with the force_encoding method, which
bypasses the table of “permitted” encodings and encodes the bytes of the string with
the encoding you specify, unconditionally.

 The bang version of encode changes the encoding of the string permanently:

>> str.encode!("US-ASCII")
=> "Test string"
>> str.encoding
=> #<Encoding:US-ASCII>

The encoding of a string is also affected by the presence of certain characters in a
string and/or by the amending of the string with certain characters. You can represent
arbitrary characters in a string using either the \x escape sequence with a two-digit
hexadecimal number representing a byte, or the \u escape sequence with a UTF-8
code; the corresponding character will be inserted.

 The effect on the string’s encoding depends on the character. Given an encoding
of US-ASCII, adding an escaped character in the range 0–127 (0x00-0x7F in hexadeci-
mal) leaves the encoding unchanged. If the character is in the range 128–255 (0xA0-
0xFF), the encoding switches to UTF-8. If you add a UTF-8 character in the range

Output: US-ASCII

252 CHAPTER 8 Strings, symbols, and other scalar objects
0x0000–0x007F, the ASCII string’s encoding is unaffected. UTF-8 codes higher than
0x007F cause the string’s encoding to switch to UTF-8. Here’s an example:

>> str = "Test string"
=> "Test string"
>> str.encode!("US-ASCII")
>> str << ". Euro symbol: \u20AC"
=> "Test string. Euro symbol: ?"
>> str.encoding
=> #<Encoding:UTF-8>

The \u escape sequence B lets you insert any UTF-8 character, whether you can type
it directly or not.

 There’s a great deal more to the topic of character and string encoding, but you’ve
seen enough at this point to know the kinds of operations that are available. How
deeply you end up exploring encoding will depend on your needs as a Ruby devel-
oper. Again, be aware that encoding has tended to be the focus of particularly intense
discussion and development in Ruby (and elsewhere).

 At this point, we’ll wrap up our survey of string methods and turn to a class with
some strong affinities with the String class but also some interesting differences: the
Symbol class.

8.2 Symbols and their uses
Symbols are instances of the built-in Ruby class Symbol. They have a literal constructor:
the leading colon. You can always recognize a symbol literal (and distinguish it from a
string, a variable name, a method name, or anything else) by this token:

:a
:book
:"Here's how to make a symbol with spaces in it."

You can also create a symbol programmatically by calling the to_sym method (also
known by the synonym intern) on a string, as you saw in the last section:

>> "a".to_sym
=> :a
>> "Converting string to symbol with intern....".intern
=> :"Converting string to symbol with intern...."

Note the telltale leading colons on the evaluation results returned by irb.
 You can easily convert a symbol to a string:

>> :a.to_s
=> "a"

That’s just the beginning, though. Symbols differ from strings in important ways. Let’s
look at symbols on their own terms and then come back to a comparative look at sym-
bols and strings.

B

253Symbols and their uses
8.2.1 Chief characteristics of symbols

Symbols are a hard nut to crack for many people learning Ruby. They’re not quite like
anything else, and they don’t correspond exactly to data types most people have come
across previously. In some respects they’re rather stringlike, but at the same time, they
have a lot in common with integers. It’s definitely worth a close look at their chief
characteristics: immutability and uniqueness.

IMMUTABILITY

Symbols are immutable. There’s no such thing as appending characters to a symbol;
once the symbol exists, that’s it. You’ll never see :abc << :d or anything of that kind.

 That’s not to say that there’s no symbol :abcd. There is, but it’s a completely differ-
ent symbol from :abc. You can’t change :abc itself. Like an integer, a symbol can’t be
changed. When you want to refer to 5, you don’t change the object 4 by adding 1 to it.
You can add 1 to 4 by calling 4.+(1) (or 4 + 1), but you can’t cause the object 4 to be
the object 5. Similarly, although you can use a symbol as a hint to Ruby for the genera-
tion of another symbol, you can’t alter a given symbol.

UNIQUENESS

Symbols are unique. Whenever you see :xyz, you’re seeing a representation of the
same object. Again, symbols are more like integers than strings in this respect. When
you see the notation "xyz" in two places, you’re looking at representations of two dif-
ferent string objects; the literal string constructor "" creates a new string. But :xyz is
always the same Symbol object, just as 100 is always the same object.

 You can see the difference between strings and symbols in the matter of unique-
ness by querying objects as to their object_id, which is unique for every separate
object:

>> "xyz".object_id
=> 2707250
>> "xyz".object_id
=> 2704780
>> :xyz.object_id
=> 160488
>> :xyz.object_id
=> 160488

The "xyz" notation creates a new string each time, as you can see from the fact that
each such string has a different object ID. But the :xyz notation always represents the
same object; :xyz identifies itself with the same ID number no matter how many times
you ask it.

 Because symbols are unique, there’s no point having a constructor for them; Ruby
has no Symbol#new method. You can’t create a symbol any more than you can create a
new integer. In both cases, you can only refer to them.

 The word symbol has broad connotations; it sounds like it might refer to any identi-
fier or token. It’s important to get a handle on the relation between symbol objects
and symbols in a more generic sense.

254 CHAPTER 8 Strings, symbols, and other scalar objects
8.2.2 Symbols and identifiers

This code includes one Symbol object (:x) and one local variable identifier (s):

s = :x

But it’s not unusual to refer to the s as a symbol. And it is a symbol, in the sense that it
represents something other than itself. In fact, one of the potential causes of confu-
sion surrounding the Symbol class and symbol objects is the fact that symbol objects
don’t represent anything other than themselves. In a sense, a variable name is more
“symbolic” than a symbol.

 And a connection exists between symbol objects and symbolic identifiers. Inter-
nally, Ruby uses symbols to keep track of all the names it’s created for variables, meth-
ods, and constants. You can see a list of them, using the Symbol.all_symbols class
method. Be warned; there are a lot of them! Here’s the tip of the iceberg:

>> Symbol.all_symbols
=> [:inspect, :intern, :object_id, :const_missing, :method_missing,

:method_added, :singleton_method_added, :method_removed,
:singleton_method_removed,

And on it goes, listing more than 3,000 symbols.
 When you assign a value to a variable or constant, or create a class or write a

method, the identifier you choose goes into Ruby’s internal symbol table. You can
check for evidence of this with some array-probing techniques:

>> Symbol.all_symbols.size
=> 3892
>> abc = 1
=> 1
>> Symbol.all_symbols.size
=> 3893
>> Symbol.all_symbols.grep(/abc/)
=> [:abc]

You can see from the measurement of the size of the array returned by all_symbols
that it grows by 1 when you make an assignment to abc. In addition, the symbol :abc
is now present in the array, as demonstrated by the grep operation.

Use grep rather than include?

Tests for symbol inclusion are always true
grep is a regular expression–based way of looking for matching elements in an array.
Why not just say this?

>> Symbol.all_symbols.include?(:abc)

Because it will always be true! The very act of writing :abc in the include? test puts
the symbol :abc into the symbol table, so the test passes even if there was no pre-
vious assignment to the identifier abc.

255Symbols and their uses
The symbol table is just that: a symbol table. It’s not an object table. If you use an iden-
tifier for more than one purpose—say, as a local variable and also as a method name—
the corresponding symbol will still only appear once in the symbol table:

>> def abc; end
=> :abc
>> Symbol.all_symbols.size
=> 3893

Ruby keeps track of what symbols it’s supposed to know about so it can look them up
quickly. The inclusion of a symbol in the symbol table doesn’t tell you anything about
what the symbol is for.

 Coming full circle, you can also see that when you assign a symbol to a variable,
that symbol gets added to the table:

>> abc = :my_symbol
=> :my_symbol
>> Symbol.all_symbols.size
=> 3894
>> Symbol.all_symbols.grep(/my_symbol/)
=> [:my_symbol]

Not only symbols matching variable and method names are put in the table; any sym-
bol Ruby sees anywhere in the program is added. The fact that :my_symbol gets stored
in the symbol table by virtue of your having used it means that the next time you use
it, Ruby will be able to look it up quickly. And unlike a symbol that corresponds to an
identifier to which you’ve assigned a more complex object, like a string or array, a sym-
bol that you’re using purely as a symbol, like :my_symbol, doesn’t require any further
lookup. It’s just itself: the symbol :my_symbol.

 Ruby is letting you, the programmer, use the same symbol-storage mechanism that
Ruby uses to track identifiers. Only you’re not tracking identifiers; you’re using sym-
bols for your own purposes. But you still get the benefits of Ruby exposing the whole
symbol mechanism for programmer-side use.

 What do you do with symbols?

8.2.3 Symbols in practice

Symbols have a number of uses, but most appearances fall into one of two categories:
method arguments and hash keys.

SYMBOLS AS METHOD ARGUMENTS

A number of core Ruby methods take symbols as arguments. Many such methods can
also take strings. You’ve already seen a couple of examples from the attr_* method
family:

attr_accessor :name
attr_reader :age

Reuses "abc" identifier
Method definitions
return their names

Same size; :abc is in
table only once

256 CHAPTER 8 Strings, symbols, and other scalar objects
The send method, which sends a message to an object without the dot, can take a
symbol:

"abc".send(:upcase)

send can take a symbol, which remains true even if the symbol is stored in a variable,
rather than written out, and/or determined dynamically at runtime.

 At the same time, most methods that take symbols can also take strings. You can
replace :upcase with "upcase" in the previous send example, and it will work. The
difference is that by supplying :upcase, you’re saving Ruby the trouble of translating
the string upcase to a symbol internally on its way to locating the method.

 It’s possible to go overboard. You’ll occasionally see code like this:

some_object.send(method_name.to_sym)

An extra step is taken (the to_sym conversion) on the way to passing an argument to
send. There’s no point in doing this unless the method being called can only handle
symbols. If it can handle strings and you’ve got a string, pass the string. Let the
method handle the conversion if one is needed.

Next up: symbols as hash keys. We won’t look in depth at hashes until chapter 9, but
the use of symbols as hash keys is extremely widespread and worth putting on our
radar now.

SYMBOLS AS HASH KEYS

A hash is a keyed data structure: you insert a value into it by assigning the value to a
key, and you retrieve a value by providing a reference to a key. Ruby puts no con-
straints on hash keys. You can use an array, a class, another hash, a string, or any object
you like as a hash key. But in most cases you’re likely to use strings or symbols.

 Here’s the creation of a hash with symbols as keys, followed by the retrieval of one
of the values:

>> joe_hash = { :name => "Joe", :age => 36 }
=> {:name=>"Joe", :age=>36}

Consider allowing symbols or strings as method arguments
When you’re writing a method that will take an argument that could conceivably be a
string or a symbol, it’s often nice to allow both. It’s not necessary in cases where
you’re dealing with user-generated, arbitrary strings, or where text read in from a file
is involved; those won’t be in symbol form anyway. But if you have a method that
expects, say, a method name, or perhaps a value from a finite table of tags or labels,
it’s polite to allow either strings or symbols. That means avoiding doing anything to
the object that requires it to be one or the other and that will cause an error if it’s the
wrong one. You can normalize the argument with a call to to_sym (or to_s, if you want
to normalize to strings) so that whatever gets passed in fits into the operations you
need to perform.

257Symbols and their uses
>> joe_hash[:age]
=> 36

Though the preceding is valid syntax, Ruby allows a special form of symbol represen-
tation in the hash-key position, with the colon after the symbol instead of before it and
the hash-separator arrow removed. In the time since it was introduced, this form has
become much more popular than the above:

>> joe_hash = { name: "Joe", age: 36 }

As it so often does, Ruby goes out of its way to let you write things in an uncluttered,
simple way. Of course, if you prefer the version with the standard symbol notation and
the hash arrows, you can still use that form.

 Using strings as hash keys is valid syntax and may be useful if you already have a
collection of strings on hand and need to incorporate them into a hash. But symbols
have advantages in the hash-key department.

 First, Ruby can process symbols faster, so if you’re doing a lot of hash lookups,
you’ll save a little time. You won’t notice a difference if you’re only processing small
amounts of data, but if you need to tweak for efficiency, symbol hash keys are probably
a good idea.

 Second, symbols look good as hash keys. Looking good is, of course, not a techni-
cal characteristic, and opinion about what looks good varies widely. But symbols do
have a kind of frozen, label-like look that lends itself well to cases where your hash
keys are meant to be static identifiers (name: and age: rather than "name"=> and
"age"=>), whereas strings have a malleability that’s a good fit for the representation of
arbitrary values (like someone’s name). Perhaps this is a case of projecting the techni-
cal basis of the two objects—strings being mutable, symbols not—onto the aesthetic
plane. Be that as it may, Ruby programmers tend to use symbols more than strings as
hash keys.

 So far, and by design, we’ve looked at symbols mainly by the light of how they differ
from strings. But you’ll have noticed that strings enter the discussion regularly, no
matter how much we try to separate the two. It’s worth having centered the spotlight
on symbols, but now let’s widen it and look at some specific points of comparison
between symbols and strings.

8.2.4 Strings and symbols in comparison

Symbols have become increasingly stringlike in successive versions of Ruby. That’s not
to say that they’ve shed their salient features; they’re still immutable and unique. But
they present a considerably more stringlike interface than they used to.

 Ruby 2.5 offers many instance methods that symbols share with strings:

>> Symbol.instance_methods(false).sort
=> [:<=>, :==, :===, :=~, :[], :capitalize, :casecmp, :casecmp?, :downcase,

:empty?, :encoding, :id2name, :inspect, :intern, :length, :match,
:match?, :next, :size, :slice, :succ, :swapcase, :to_proc, :to_s,
:to_sym, :upcase]

258 CHAPTER 8 Strings, symbols, and other scalar objects
Note that there are no bang versions of the various case-changing and incrementation
methods. For strings, upcase! means upcase yourself in place. Symbols, on the other
hand, are immutable; the symbol :a can show you the symbol :A, but it can’t become
the symbol :A.

 In general, the semantics of the stringlike symbol methods are the same as the
string equivalents, including incrementation:

>> sym = :david
=> :david
>> sym.upcase
=> :DAVID
>> sym.succ
=> :davie
>> sym[2]
=> "v"
>> sym.casecmp(:david)
=> 0

Note that indexing into a symbol returns a substring B, not a symbol. From the pro-
grammer’s perspective, symbols acknowledge the fact that they’re representations of
text by giving you a number of ways to manipulate their content. But it isn’t really con-
tent; :david doesn’t contain “david” any more than 100 contains “100.” It’s a matter of
the interface and of a characteristically Ruby-like confluence of object theory and pro-
gramming practicality.

 Underneath, symbols are more like integers than strings. (The symbol table is basi-
cally an integer-based hash.) They share with integers not only immutability and
uniqueness, but also immediacy: a variable to which a symbol is bound provides the
actual symbol value, not a reference to it. If you’re puzzled over exactly how symbols
work, or over why both strings and symbols exist when they seem to be duplicating
each other’s efforts in representing text, think of symbols as integer-like entities
dressed up in characters. It sounds odd, but it explains a lot.

 The integer-like qualities of symbols also provide a nice transition to the topic of
numerical objects.

8.3 Numerical objects
In Ruby, numbers are objects. You can send messages to them, just as you can to any
object:
n = 99.6
m = n.round
puts m
x = 12
if x.zero?
 puts "x is zero"
else
 puts "x is not zero"
end
puts "The ASCII character equivalent of 97 is #{97.chr}"

B

B

C

D

259Numerical objects
As you’ll see if you run this code, floating-point numbers know how to round them-
selves B (up or down). Numbers in general know C whether they’re zero. And inte-
gers can convert themselves to the character that corresponds to their ASCII value D.

 Numbers are objects; therefore, they have classes—a whole family tree of them.

8.3.1 Numerical classes

Numeric is the class from which the higher-level numeric classic Float and Integer
inherit. Numeric includes useful modules such as Comparable so that Floats, Integers,
and anything we may build that inherits from these classes contain these modules.

8.3.2 Performing arithmetic operations

For the most part, numbers in Ruby behave as the rules of arithmetic and the usual
conventions of arithmetic notation lead you to expect. The examples in table 8.1
should be reassuring in their boringness.

 Note that when you divide integers, the result is always an integer. If you want floating-
point division, you have to feed Ruby floating-point numbers (even if all you’re doing is
adding .0 to the end of an integer).

Ruby also lets you manipulate numbers in nondecimal bases. Hexadecimal integers
are indicated by a leading 0x. Here are some irb evaluations of hexadecimal integer
expressions:

>> 0x12
=> 18
>> 0x12 + 12
=> 30

The second 12 in the last expression B is a decimal 12; the 0x prefix applies only to
the numbers it appears on.

 Integers beginning with 0 are interpreted as octal (base 8):

>> 012
=> 10

Table 8.1 Common arithmetic expressions and their evaluative results

Expression Result Comments

1 + 1 2 Addition

10/5 2 Integer division

16/5 3 Integer division (no automatic floating-point conversion)

10/3.3 3.0303030303 Floating-point division

1.2 + 3.4 4.6 Floating-point addition

-12 - -7 –5 Subtraction

10 % 3 1 Modulo (remainder)

B

260 CHAPTER 8 Strings, symbols, and other scalar objects
>> 012 + 12
=> 22
>> 012 + 0x12
=> 28

As you saw in section 8.1.6, you can also use the to_i method of strings to convert
numbers in any base to decimal. To perform such a conversion, you need to supply
the base you want to convert from as an argument to to_i. The string is then inter-
preted as an integer in that base, and the whole expression returns the decimal equiv-
alent. You can use any base from 2 to 36, inclusive. Here are some examples:

>> "10".to_i(17)
=> 17
>> "12345".to_i(13)
=> 33519
>> "ruby".to_i(35)
=> 1194794

Keep in mind that most of the arithmetic operators you see in Ruby are methods. They
don’t look that way because of the operator-like syntactic sugar that Ruby gives them.
But they are methods, and they can be called as methods:

>> 1.+(1)
=> 2
>> 12./(3)
=> 4
>> -12.-(-7)
=> -5

In practice, no one writes arithmetic operations that way; you’ll always see the syntac-
tic sugar equivalents (1 + 1 and so forth). But seeing examples of the method-call
form is a good reminder of the fact that they are methods—and also of the fact that if
you define, say, a method called + in a class of your own, you can use the operator’s
syntactic sugar. (And if you see arithmetic operators behaving weirdly, it may be that
someone has redefined their underlying methods.)

 We’ll turn now to the next and last category of scalar objects we’ll discuss in this
chapter: time and date objects.

8.4 Times and dates
Ruby gives you lots of ways to manipulate times and dates. In fact, the extent and vari-
ety of the classes that represent times and/or dates, and the class and instance meth-
ods available through those classes, can be bewildering. So can the different ways in
which instances of the various classes represent themselves. Want to know what the
day we call April 24, 1705, would have been called in England prior to the calendar
reform of 1752? Load the date package, and then ask

>> require 'date'
=> true
>> Date.parse("April 24 1705").england.strftime("%B %d %Y")
=> "April 13 1705"

261Times and dates
On the less exotic side, you can perform a number of useful and convenient manipu-
lations on time and date objects.

 Times and dates are manipulated through three classes: Time, Date, and DateTime.
(For convenience, the instances of all of these classes can be referred to collectively as
date/time objects.) To reap their full benefits, you have to pull one or both of the date
and time libraries into your program or irb session:

require 'date'
require 'time'

Here the first line provides the Date and DateTime classes, and the second line
enhances the Time class. At some point in the future, all the available date- and time-
related functionality may be unified into one library and made available to programs
by default. But for the moment, you have to do the require operations if you want the
full functionality.

 In what follows, we’ll examine a large handful of date/time operations—not all of
them, but most of the common ones and enough to give you a grounding for further
development. Specifically, we’ll look at how to instantiate date/time objects, how to
query them, and how to convert them from one form or format to another.

8.4.1 Instantiating date/time objects

How you instantiate a date/time object depends on exactly which object is involved.
We’ll look at the Date, Time, and DateTime classes, in that order.

CREATING DATE OBJECTS

You can get today’s date with the Date.today constructor:

>> Date.today
=> #<Date: 2018-12-15 ((2458134j,0s,0n),+0s,2299161j)

You can get a simpler string by running to_s on the date, or by putsing it:

>> puts Date.today
2018-12-15

You can also create date objects with Date.new (also available as Date.civil). Send
along a year, month, and day:

>> puts Date.new(1959,2,1)
1959-02-01

If not provided, the month and day (or just day) default to 1. If you provide no argu-
ments, the year defaults to –4712—probably not the most useful value.

 Finally, you can create a new date with the parse constructor, which expects a
string representing a date:

>> puts Date.parse("2003/6/9")
2003-06-09

By default, Ruby expands the century for you if you provide a one- or two-digit num-
ber. If the number is 69 or greater, then the offset added is 1900; if it’s between 0 and

Assumes year/month/day order

262 CHAPTER 8 Strings, symbols, and other scalar objects
68, the offset is 2000. (This distinction has to do with the beginning of the Unix
“epoch” at the start of 1970.)

>> puts Date.parse("03/6/9")
2003-06-09
>> puts Date.parse("33/6/9")
2033-06-09
>> puts Date.parse("77/6/9")
1977-06-09

Date.parse makes an effort to make sense of whatever you throw at it, and it’s pretty
good at its job:

>> puts Date.parse("November 2 2013")
2013-11-02
>> puts Date.parse("Nov 2 2013")
2013-11-02
>> puts Date.parse("2 Nov 2013")
2013-11-02
>> puts Date.parse("2013/11/2")
2013-11-02

You can create Julian and commercial (Monday-based rather than Sunday-based day-
of-week counting) Date objects with the methods jd and commercial, respectively. You
can also scan a string against a format specification, generating a Date object, with
strptime. These constructor techniques are more specialized than the others, and we
won’t go into them in detail here; but if your needs are similarly specialized, the Date
class can address them.

 The Time class, like the Date class, has multiple constructors.

CREATING TIME OBJECTS

You can create a time object using any of several constructors: new (a.k.a. now), at,
local (a.k.a. mktime), and parse. This plethora of constructors, excessive though it
may seem at first, does provide a variety of functionalities, all of them useful. Here are
some examples, irb-style:

>> Time.new
=> 2018-12-15 18:55:47 -0500
>> Time.at(100000000)
=> 1973-03-03 04:46:40 -0500
>> Time.mktime(2007,10,3,14,3,6)
=> 2007-10-03 14:03:06 -0400
>> require 'time'
=> true
>> Time.parse("March 22, 1985, 10:35 PM")
=> 1985-03-22 22:35:00 -0500

Time.new (or Time.now) creates a time object representing the current time B.
Time.at(seconds) gives you a time object for the number of seconds since the epoch
(midnight on January 1, 1970, GMT) represented by the seconds argument C.
Time.mktime (or Time.local) expects year, month, day, hour, minute, and second
arguments. You don’t have to provide all of them; as you drop arguments off from the

B

C

D

E

F

263Times and dates
right, Time.mktime fills in with reasonable defaults (1 for month and day; 0 for hour,
minute, and second) D.

 To use Time.parse, you have to load the time library E. Once you do, Time.parse
makes as much sense as it can of the arguments you give it, much like Date.parse F.

CREATING DATE/TIME OBJECTS

DateTime is a subclass of Date, but its constructors are a little different thanks to some
overrides. The most common constructors are new (also available as civil), now, and
parse:

>> puts DateTime.new(2009, 1, 2, 3, 4, 5)
2009-01-02T03:04:05+00:00
=> nil
>> puts DateTime.now
2018-12-15T19:02:29-05:00
=> nil
>> puts DateTime.parse("October 23, 1973, 10:34 AM")
1973-10-23T10:34:00+00:00

DateTime also features the specialized jd (Julian date), commercial, and strptime
constructors mentioned earlier in connection with the Date class.

 Let’s turn now to the various ways in which you can query date/time objects.

8.4.2 Date/time query methods

In general, the time and date objects have the query methods you’d expect them to
have. Time objects can be queried as to their year, month, day, hour, minute, and sec-
ond, as can date/time objects. Date objects can be queried as to their year, month,
and day:

>> dt = DateTime.now
=> #<DateTime: 2018-12-15T19:03:41-05:00
((2458135j,221s,235620441n),-18000s,2299161j)>
>> dt.year
=> 2018
>> dt.hour
=> 19
>> dt.minute
=> 3
>> dt.second
=> 41
>> t = Time.now
=> 2018-12-15 19:05:34 -0500
>> t.month
=> 12
>> t.sec
=> 34
>> d = Date.today
=> #<Date: 2018-12-15 ((2458134j,0s,0n),+0s,2299161j)>
>> d.day
=> 15

264 CHAPTER 8 Strings, symbols, and other scalar objects
Note that date/time objects have a second method, as well as sec. Time objects have
only sec.

 Some convenient Boolean methods are available for one or more of Date, Time,
and DateTime. Through them, you can determine whether the given date/time is or
isn’t a particular day of the week:

>> t.sunday?
=> false
>> d.saturday?
=> true
>> dt.friday?
=> false

Other available queries include leap?, available to Date and DateTime, and dst?
(daylight saving time), available to Time only.

 As you’ve seen, the string representations of date/time objects differ considerably,
depending on exactly what you’ve asked for and which of the three classes you’re deal-
ing with. In practice, the default string representations aren’t used much. Instead, the
objects are typically formatted using methods designed for that purpose.

8.4.3 Date/time formatting methods

All date/time objects have the strftime method, which allows you to format their
fields in a flexible way using format strings, in the style of the Unix strftime(3) sys-
tem library:

>> t = Time.now
=> 2018-12-15 19:10:10 -0500
>> t.strftime("%m-%d-%y")
=> "12-15-18"

In the example, the format specifiers used are %m (two-digit month), %d (two-digit
day), and %Y (four-digit year). The hyphens between the fields are reproduced in the
output as literal hyphens.

 Some useful format specifiers for strftime are shown in table 8.2.

Table 8.2 Common time and date format specifiers

Specifier Description

%Y Year (four digits)

%y Year (last two digits)

%b, %B Short month, full month

%m Month (number)

%d Day of month (left-padded with zeros)

%e Day of month (left-padded with blanks)

%a, %A Short day name, full day name

265Times and dates
WARNING The %c and %x specifiers, which involve convenience combinations
of other specifiers, may differ from one locale to another; for instance, some
systems put the day before the month in the %x format. This is good, because
it means a particular country’s style isn’t hard-coded into these formats. But
you do need to be aware of it, so you don’t count on specific behavior that
you may not always get. When in doubt, you can use a format string made up
of smaller specifiers.

Here are some more examples of the format specifiers in action:

>> t.strftime("Today is %x")
=> "Today is 12/15/18"
>> t.strftime("Otherwise known as %d-%b-%y")
=> "Otherwise known as 15-Dec-18"
>> t.strftime("Or even day %e of %B, %Y.")
=> "Or even day 15 of December, 2018."
>> t.strftime("The time is %H:%m.")
=> "The time is 19:01."

In addition to the facilities provided by strftime, the Date and DateTime classes give
you a handful of precooked output formats for specialized cases like RFC 2822
(email) compliance and the HTTP format specified in RFC 2616:

>> Date.today.rfc2822
=> "Sat, 15 Dec 2018 00:00:00 +0000"
>> DateTime.now.httpdate
=> "Sun, 16 Dec 2018 00:17:53 GMT"

One way or another, you can get your times and dates to look the way you want them
to. Date/time objects also allow for conversions of various kinds, from one class of
object to another.

8.4.4 Date/time conversion methods

All of the date/time classes allow for conversion to each other; that is, Time has
to_-date and to_datetime methods, Date has to_time and to_datetime, and Date-
Time has to_time and to_date. In all cases where the target class has more informa-
tion than the source class, the missing fields are set to 0—essentially, midnight,
because all three classes have date information but only two have time information.

%H, %I Hour (24-hour clock), hour (12-hour clock)

%M Minute

%S Second

%c Equivalent to "%a %b %d %H:%M:%S %Y"

%x Equivalent to "%m/%d/%y"

Table 8.2 Common time and date format specifiers (continued)

Specifier Description

266 CHAPTER 8 Strings, symbols, and other scalar objects
 You can also move around the calendar with certain time-arithmetic methods and
operators.

DATE/TIME ARITHMETIC

Time objects let you add and subtract seconds from them, returning a new time
object:

>> t = Time.now
=> 2018-12-15 19:19:39 -0500
>> t - 20
=> 2018-12-15 19:19:19 -0500
>> t + 20
=> 2018-12-15 19:19:59 -0500

Date and date/time objects interpret + and – as day-wise operations, and they allow
for month-wise conversions with << and >>:

>> dt = DateTime.now
=> #<DateTime: 2018-12-15T19:21:11-0500 ... >
>> puts dt + 100
2019-03-25T19:21:11-05:00
>> puts dt >> 3
2019-03-15T19:21:11-05:00
>> puts dt << 10
2019-02-15T19:21:11-05:00

You can also move ahead one using the next (a.k.a. succ) method. A whole family of
next_unit and prev_unit methods lets you move back and forth by day(s), month(s),
or year(s):

>> d = Date.today
=> #<Date: 2018-12-15 ((2458134j,0s,0n),+0s,2299161j)>
>> puts d.next
2018-12-16
>> puts d.next_year
2019-12-16
>> puts d.next_month(3)
2018-12-15
>> puts d.prev_day(10)
2018-12-05

Furthermore, date and date/time objects allow you to iterate over a range of them,
using the upto and downto methods, each of which takes a time, date, or date/time
object. Here’s an upto example:

>> d = Date.today
=> #<Date: 2018-12-15 ((2458134j,0s,0n),+0s,2299161j)>
>> next_week = d + 7
=> #<Date: 2018-12-22 ((2458141j,0s,0n),+0s,2299161j)>
>> d.upto(next_week) {|date| puts "#{date} is a #{date.strftime("%A")}" }
2018-12-15 is a Saturday
2018-12-16 is a Sunday
2018-12-17 is a Monday
2018-12-18 is a Tuesday

267Summary
2018-12-19 is a Wednesday
2018-12-20 is a Thursday
2018-12-21 is a Friday
2018-12-22 is a Saturday

The date/time classes offer much more than what you’ve seen here. But the features
we’ve covered are the most common and, in all likelihood, most useful. Don’t forget
that you can always use the command-line tool ri to get information about methods!
If you try ri Date on the command line, for example, you’ll get information about the
class as well as a list of available class and instance methods—any of which you can run
ri on separately.

 We’ve reached the end of our survey of scalar objects in Ruby. Next, in chapter 9,
we’ll look at collections and container objects.

Summary
In this chapter, you’ve seen

 String creation and manipulation
 The workings of symbols
 Numerical objects, including floats and integers
 Date, time, and date/time objects and how to query and manipulate them

In short, we’ve covered the basics of the most common and important scalar objects in
Ruby. Some of these topics involved consolidating points made earlier in the book;
others were new in this chapter. At each point, we’ve examined a selection of import-
ant, common methods. We’ve also looked at how some of the scalar-object classes
relate to each other. Strings and symbols both represent text, and although they’re
different kinds of objects, conversions from one to the other are easy and common.
Numbers and strings interact, too. Conversions aren’t automatic, as they are (for
example) in Perl; but Ruby supplies conversion methods to go from string to numeri-
cal object and back, as well as ways to convert strings to integers in as many bases as 10
digits and the 26 letters of the English alphabet can accommodate.

 Time and date objects have a foot in both the string and numerical camps. You can
perform calculations on them, such as adding n months to a given date, and you can
also put them through their paces as strings, using techniques like the Time#strftime
method in conjunction with output format specifiers.

 The world of scalar objects in Ruby is rich and dynamic. Most of what you do with
Ruby will spring from what you’ve learned here about scalar objects: direct manipula-
tion of these objects, manipulation of objects that share some of their traits, or collec-
tions of multiple objects in these categories. Scalar objects aren’t everything, but they
lie at the root of virtually everything else. The tour we’ve taken of important scalar
classes and methods in this chapter will stand you in good stead as we proceed next to
look at collections and containers.

Collection and
container objects
In programming, you generally deal not only with individual objects but with collec-
tions of objects. You search through collections to find an object that matches cer-
tain criteria (like a magazine object containing a particular article); you sort
collections for further processing or visual presentation; you filter collections to
include or exclude particular items; and so forth. All of these operations, and simi-
lar ones, depend on objects being accessible in collections.

 Ruby represents collections of objects by putting them inside container objects.
In Ruby, two built-in classes dominate the container-object landscape: arrays and
hashes. We’ll start this chapter by looking at the Array and Hash classes: first in com-
parison with each other, to establish an overall understanding, and then separately.

This chapter covers
 Sequentially ordered collections with arrays

 Keyed collections with hashes

 Inclusion and membership tests with ranges

 Unique, unordered collections with sets

 Named arguments using hash syntax
268

269Arrays and hashes in comparison
 We’ll look at two other classes: Range and Set. Ranges are a bit of a hybrid: they
work partly as Boolean filters (in the sense that you can perform a true/false test as to
whether a given value lies inside a given range), but also, in some contexts, as collec-
tions. Sets are collections through and through. The only reason the Set class
requires special introduction is that it isn’t a core Ruby class; it’s a standard library
class, and although we’re not looking at many of those in depth in this book, sets fall
nicely into place beside arrays and hashes and merit our attention.

 While reading this chapter, keep in mind that it represents a first pass through a
kind of mega-topic that we’ll visit in the next chapter, too. Ruby implements collec-
tions principally through the technique of defining classes that mix in the Enumerable
module. That module gives you a package deal on methods that sort, sift, filter, count,
and transform collections. In this chapter, we’ll look primarily at what you can do with
the major collection classes other than take advantage of their Enumerable nature.
Chapter 10 deals directly with Enumerable and how it’s used. We’ll look at enough of
enumerability here to bootstrap this chapter, and then we’ll come back to it in the
next.

 Finally, this chapter includes a throwback to chapter 2. In that chapter, we looked
in depth at method parameter and argument lists, and at how arguments bind to
parameters. Once we’ve looked more closely at hashes, we’ll fill in a gap in chapter 2
by looking at Ruby’s named arguments, which use hash syntax.

 Also, keep in mind that collections are, themselves, objects. You send them mes-
sages, assign them to variables, and so forth, in normal object fashion. They just have
an extra dimension, beyond the scalar.

9.1 Arrays and hashes in comparison
An array is an ordered collection of objects—ordered in the sense that you can select
objects from the collection based on a consistent, consecutive numerical index. You’ll
have noticed that we’ve already used arrays in some of the examples earlier in the
book. It’s hard not to use arrays in Ruby. An array’s job is to store other objects. Any
object can be stored in an array, including other arrays, hashes, file handles, classes,
true and false ... any object at all. The contents of an array always remain in the same
order unless you explicitly move objects around (or add or remove them).

 Hashes are also ordered collections. Hashes store objects in pairs, each pair consist-
ing of a key and a value. You retrieve a value by means of the key. Hashes remember the
order in which their keys were inserted; that’s the order in which the hash replays
itself for you if you iterate through the pairs in it or print a string representation of it
to the screen.

 Any Ruby object can serve as a hash key and/or value, but keys are unique per
hash: you can have only one key/value pair for any given key. Hashes (or similar data
storage types) are sometimes called dictionaries or associative arrays in other languages.
They offer a tremendously—sometimes surprisingly—powerful way of storing and
retrieving data.

270 CHAPTER 9 Collection and container objects
 Arrays and hashes are closely connected. An array is, in a sense, a hash, where the
keys happen to be consecutive integers. Hashes are, in a sense, arrays, where the
indexes are allowed to be anything, not just integers. Although both arrays and hashes
are “keyed,” hash keys are more intentional because they’re determined by the pro-
grammer. For this reason, hashes are often thought of in key/value pairs. In this way,
hashes exhibit a kind of “meta-index” property. A hash’s key/value pairs can be
counted off consecutively. You can see this property in action by stepping through a
hash with the with_index method, which yields a counter value to the block along
with the key and value:

hash = { red: "ruby", white: "diamond", green: "emerald" }
hash.each_with_index {|(key,value),i|
 puts "Pair #{i} is: #{key}/#{value}"
}

The output from this code snippet is

Pair 0 is: red/ruby
Pair 1 is: white/diamond
Pair 2 is: green/emerald

The index is an integer counter, maintained as the pairs go by. The pairs are the actual
content of the hash.

TIP The parentheses in the block parameters (key,value) serve to split
apart an array. Each key/value pair comes at the block as an array of two ele-
ments. If the parameters were key,value,i, then the parameter key would
end up bound to the entire [key,value] array; value would be bound to the
index; and i would be nil. That’s obviously not what you want. The paren-
thetical grouping of (key,value) is a signal that you want the array to be dis-
tributed across those two parameters, element by element.

Conversions of various kinds between arrays and hashes are common. Some such con-
versions are automatic: if you perform certain operations of selection or extraction of
pairs from a hash, you’ll get back an array. Other conversions require explicit instruc-
tions, such as turning a flat array (["a","b","c","d"]) into a hash ({"a" => "b",
"c" => "d"}). You’ll see a good amount of back and forth between these two collec-
tion classes, both here in this chapter and in lots of Ruby code.

 In the next two sections, we’ll look at arrays and hashes in depth. Let’s start with
arrays.

9.2 Collection handling with arrays
Arrays are the bread-and-butter way to handle collections of objects. We’ll put arrays
through their paces in this section: we’ll look at the varied techniques available for
creating arrays; how to insert, retrieve, and remove array elements; combining arrays
with each other; transforming arrays (for example, flattening a nested array into a
one-dimensional array); and querying arrays as to their properties and state.

271Collection handling with arrays
9.2.1 Creating a new array

You can create an array in one of four ways:

 With the Array.new method
 With the literal array constructor (square brackets)
 With a top-level method called Array
 With the special %w{...} and %i{...} notations

You’ll see all of these techniques in heavy rotation in Ruby code, so they’re all worth
knowing. We’ll look at each in turn.

ARRAY.NEW

The new method on the array class works in the usual way:

a = Array.new

You can then add objects to the array using techniques we’ll look at later.
 Array.new lets you specify the size of the array and, if you wish, initialize its con-

tents. Here’s an irb exchange that illustrates both possibilities:

>> Array.new(3)
=> [nil, nil, nil]
>> Array.new(3,"abc")
=> ["abc", "abc", "abc"]

If you give one argument to Array.new B, you get an array of the size you asked for,
with all elements set to nil. If you give two arguments C, you get an array of the size
you asked for, with each element initialized to contain the second argument.

 You can even supply a code block to Array.new. In that case, the elements of the
array are initialized by repeated calls to the block:

>> Array.new(3) { |i| 10 * (i + 1) }
=> [10, 20, 30]

In this example, the new array has a size of 3. This number can also be passed to the
block as an iterator B. The code inside the block #1, executed three times, produces
the values 10, 20, and 30—and those are the initial values in the array C.

WARNING When you initialize multiple elements of an array using a second
argument to Array.new—as in Array.new(3, "abc")—all the elements of the
array are initialized to the same object. If you do a = Array.new(3,"abc");
a[0] << "def"; puts a[1], you’ll find that the second element of the array is
now "abcdef", even though you appended "def" to the first element. That’s
because the first and second positions in the array contain the same string
object, not two different strings that happen to both consist of "abc". To cre-
ate an array that inserts a different "abc" string into each slot, you should use
Array.new(3) { "abc" }. The code block runs three times, each time gener-
ating a new string (same characters, different string object).

B

C

B
C

272 CHAPTER 9 Collection and container objects
Preinitializing arrays isn’t always necessary, because your arrays grow as you add ele-
ments to them. But if and when you need this functionality—and/or if you see it in
use and want to understand it—it’s there.

THE LITERAL ARRAY CONSTRUCTOR: []
The second and by far most popular way to create an array is by using the literal array
constructor [] (square brackets):

a = []

When you create an array with the literal constructor, you can put objects into the
array at the same time:

a = [1,2,"three",4, []]

Notice that the last element in this array is another array. That’s perfectly legitimate;
you can nest arrays to as many levels as you wish.

 Square brackets can mean a lot of different things in Ruby: array construction,
array indexing (as well as string and hash indexing), character classes in regular
expressions, delimiters in %q[]-style string notation, even the calling of an anonymous
function. You can make an initial division of the various uses of square brackets by dis-
tinguishing cases where they’re a semantic construct from cases where they’re the
name of a method. It’s worth practicing on a few examples like this to get a feel for the
way the square brackets play out in different contexts:

[1,2,3][1]

Now back to array creation.

THE ARRAY METHOD

The third way to create an array is with a method (even though it looks like a class
name) called Array. As you know from having seen the Integer and Float methods,
it’s legal to define methods whose names begin with capital letters. Those names look
exactly like constants, and in core Ruby itself, capitalized methods tend to have the
same names as classes to which they’re related.

Index 1 on array [1,2,3]

Some more built-in methods that start with uppercase letters
In addition to the Array method and the two uppercase-style conversion methods
you’ve already seen (Integer and Float, the “fussy” versions of to_i and to_f),
Ruby provides a few other top-level methods whose names look like class names:
Complex, Rational, and String. In each case, the method returns an object of the
class that its name looks like.

The String method is a wrapper around to_s, meaning String(obj) is equivalent
to obj.to_s. Complex and Rational correspond to the to_c and to_r methods
available for numerics and strings—except Complex and Rational, like Integer and
Float, are fussy: they don’t take kindly to non-numeric strings. "abc".to_c gives

mailto:eric@example.com

273Collection handling with arrays
The Array method creates an array from its single argument. If the argument object
has a to_ary method defined, then Array calls that method on the object to generate
an array. (Remember that to_ary is the quasi-typecasting array conversion method.) If
there’s no to_ary method, it tries to call to_a. If to_a isn’t defined either, Array wraps
the object in an array and returns that:

>> string = "A string"
=> "A string"
>> string.respond_to?(:to_ary)
=> false
>> string.respond_to?(:to_a)
=> false
>> Array(string)
=> ["A string"]
>> def string.to_a
>> split(//)
>> end
=> nil
>> Array(string)
=> ["A", " ", "s", "t", "r", "i", "n", "g"]

In this example, the first attempt to run Array on the string B results in a one-
element array, where the one element is the string. That’s because strings have neither
a to_ary nor a to_a method. But after to_a is defined for the string C, the result of
calling Array is different: it now runs the to_a method and uses that as its return
value. (The to_a method splits the string into individual characters.)

 Among the various array constructors, the literal [] is the most common, followed
by Array.new and the Array method, in that order. But each has its place. The literal
constructor is the most succinct; when you learn what it means, it clearly announces
“array” when you see it. The Array method is constrained by the need for there to be
a to_ary or to_a method available.

THE %W AND %W ARRAY CONSTRUCTORS

As a special dispensation to help you create arrays of strings, Ruby provides a %w oper-
ator (shorthand for “words”), much in the same family as the %q-style operators you’ve
seen already, that automatically generates an array of strings from the space-separated
strings you put inside it. You can see how it works by using it in irb and looking at the
result:

>> %w(Joe Leo III)
=> ["Joe", "Leo", "III"]

you (0+0i), but Complex("abc") raises ArgumentError, and Rational and to_r
behave similarly.

We’re not covering rational and complex numbers here, but now you know how to gen-
erate them, in case they’re of interest to you!

B

C

274 CHAPTER 9 Collection and container objects
The % notation takes any valid delimiter, but most often curly braces or brackets:

>> %w{ Joe Leo III }
=> ["Joe", "Leo", "III"]

If any string in the list contains a whitespace character, you need to escape that charac-
ter with a backslash:

>> %w(David\ A.\ Black is a Rubyist.)
=> ["David A. Black", "is", "a", "Rubyist."]

The strings in the list are parsed as single-quoted strings. But if you need double-
quoted strings, you can use %W instead of %w:

>> %W(Joe is #{2018 - 1981} years old.)
=> ["David", "is", "37", "years", "old."]

THE %I AND %I ARRAY CONSTRUCTORS

Just as you can create arrays of strings using %w and %W, you can also create arrays of
symbols using %i and %I. The i/I distinction, like the w/W distinction, pertains to sin-
gle- versus double-quoted string interpretation:

>> %i(a b c)
=> [:a, :b, :c]
>> d = "David"
=> "David"
>> %I("#{d}")
=> [:"\"David\""]

Let’s proceed now to the matter of handling array elements.

The try_convert family of methods
Each of several built-in classes in Ruby has a class method called try_convert,
which always takes one argument. try_convert looks for a conversion method on
the argument object. If the method exists, it gets called; if not, try_convert returns
nil. If the conversion method returns an object of a class other than the class to
which conversion is being attempted, it’s a fatal error (TypeError).

The classes implementing try_convert (and the names of the required conversion
methods) are Array (to_ary), Hash (to_hash), IO (to_io), Regexp (to_regexp),
and String (to_str). Here’s an example of an object putting Array.try_convert
through its paces. (The other try_convert methods work similarly.)

>> obj = Object.new
=> #<Object:0x000001028033a8>
>> Array.try_convert(obj)
=> nil
>> def obj.to_ary
>> [1,2,3]
>> end
=> :to_ary
>> Array.try_convert(obj)

275Collection handling with arrays

9.2.2 Inserting, retrieving, and removing array elements

An array is a numerically ordered collection. Any object you add to the array goes at
the beginning, at the end, or somewhere in the middle. The most general technique
for inserting one or more items into an array is the setter method []= (square brack-
ets and equal sign). This looks odd as a method name in the middle of a paragraph
like this, but thanks to its syntactic sugar equivalent, []= works smoothly in practice.

 To use []=, you need to know that each item (or element) in an array occupies a
numbered position. Arrays in Ruby are said to be “zero-based” or “zero-origin
indexed.” Thus, the first element is at position zero (not position one). The second ele-
ment is at position one, and so forth.

 To insert an element with the []= method—using the syntactic sugar that allows
you to avoid the usual method-calling dot—do this:

a = []
a[0] = "first"

The second line is syntactic sugar for a.[]=(0,"first"). In this example, you end up
with a one-element array whose first (and only) element is the string "first".

 When you have objects in an array, you can retrieve those objects by using the []
method, which is the getter equivalent of the []= setter method:

a = [1,2,3,4,5]
p a[2]

In this case, the second line is syntactic sugar for a.[](2). You’re asking for the third
element (based on the zero-origin indexing), which is the integer 3.

 You can also perform these get and set methods on more than one element at a
time.

SETTING OR GETTING MORE THAN ONE ARRAY ELEMENT AT A TIME

If you give either Array#[] or Array#[]= (the get or set method) a second argument,
it’s treated as a length—a number of elements to set or retrieve. In the case of
retrieval, the results are returned inside a new array.

 Here’s some dialogue illustrating the multi-element operations of the [] and []=
methods:

>> a = %w(red orange yellow purple gray indigo violet)
=> ["red", "orange", "yellow", "purple", "gray", "indigo", "violet"]

=> [1, 2, 3]
>> def obj.to_ary
>> "Not an array!"
>> end
=> :to_ary
>> Array.try_convert(obj)

TypeError: can't convert Object to Array (Object#to_ary gives String...

276 CHAPTER 9 Collection and container objects
>> a[3,2]
=> ["purple", "gray"]
>> a[3,2] = "green", "blue"
=> ["green", "blue"]
>> a
=> ["red", "orange", "yellow", "green", "blue", "indigo", "violet"]

After initializing the array a, we grab two elements B, starting at index 3 (the fourth
element) of a. The two elements are returned in an array. Next, we set the fourth and
fifth elements, using the [3,2] notation C, to new values; these new values are then
present in the whole array D when we ask irb to display it at the end.

 We can provide a range to [] or []= rather than an index and a length:

>> a = %w(red orange yellow purple gray indigo violet)
=> ["red", "orange", "yellow", "purple", "gray", "indigo", "violet"]
>> a[3..5]
=> ["purple", "gray", "indigo"]
>> a[1..2] = "green", "blue"
=> ["green", "blue"]
>> a
=> ["red", "green", "blue", "purple", "gray", "indigo", "violet"]

There’s a synonym for the [] method: slice. Like [], slice takes one or two argu-
ments. It can take a single value to represent the index, or a starting index and an
optional length. In addition, a method called slice! removes the sliced items perma-
nently from the array.

 Another technique for extracting multiple array elements is the values_at
method. values_at takes one or more arguments representing indexes and returns
an array consisting of the values stored at those indexes in the receiver array:

array = %w(the dog ate the cat)
articles = array.values_at(0,3)
p articles

The dig method can extract elements from nested arrays. Recall that an array can
contain any object, including another array:

>> arr = [[1], 2, 3, [4, 5]]
=> [[1], 2, 3, [4, 5]]
>> arr[0]
=> [1]
>> arr[3][0]
=> 4

A multidimensional array is created and stored in arr B. Extracting a value with the
[]= syntax returns the array at position 0, [1] C. In order to extract an element from
an array nested within arr, another [] method is “chained” to the first, producing 4,
the integer at position 0 of arr's third element D. An identical result is produced
using the dig method:

>> arr.dig(3,0)
=> 4

B
C Syntactic sugar for

a.[]=(3,2,["green", "blue"])

D

Output: ["the", "the"]

B

C

D

277Collection handling with arrays
dig takes as arguments the index positions of each nested element within a multidi-
mensional array. In multidimensional arrays with even deeper nesting, dig begins to
shine:

>> [["Joe", %w(loves Lucy,), "his"],"adorable", ["daughter"]].dig(0,1,1)
=> "Lucy,"

You can perform set and get operations on elements anywhere in an array. But opera-
tions specifically affecting the beginnings and ends of arrays crop up most often.
Accordingly, a number of methods exist for the special purpose of adding items to or
removing them from the beginning or end of an array, as you’ll now see.

SPECIAL METHODS FOR MANIPULATING THE BEGINNINGS AND ENDS OF ARRAYS

To add an object to the beginning of an array, you can use unshift. After this operation,

a = [1,2,3,4]
a.unshift(0)

the array a now looks like this: [0,1,2,3,4].
 To add an object to the end of an array, you use push. Doing this,

a = [1,2,3,4]
a.push(5)

results in the array a having a fifth element: [1,2,3,4,5].
 You can also use a method called << (two less-than signs), which places an object

on the end of the array. Like many methods whose names resemble operators, <<
offers the syntactic sugar of usage as an infix operator. The following code adds 5 as
the fifth element of a, just like the push operation in the last example:

a = [1,2,3,4]
a << 5

The methods << and push differ in that push can take more than one argument. The
code

a = [1,2,3,4,5]
a.push(6,7,8)

adds three elements to a, resulting in [1,2,3,4,5,6,7,8].
 Corresponding to unshift and push but with opposite effect are shift and pop.

shift removes one object from the beginning of the array (thereby “shifting” the
remaining objects to the left by one position), and pop removes an object from the
end of the array. shift and pop both return the array element they have removed, as
this example shows:

>> a = [1,2,3,4,5]
=> [1, 2, 3, 4, 5]
>> a.pop
=> 5
>> p a
=> [1, 2, 3, 4]
>> a.shift

278 CHAPTER 9 Collection and container objects
=> 1
>> p a
=> [2, 3, 4]

As you can see from the running commentary in the output, the return value of pop
and shift is the item that was removed from the array. The array is permanently
changed by these operations; the elements are removed, not just referred to or
captured.

 shift and pop can remove more than one element at a time. Just provide an inte-
ger argument, and that number of elements will be removed. The removed items will
be returned as an array (even if the number you provide is 1):

>> a = %w{ one two three four five }
=> ["one", "two", "three", "four", "five"]
>> a.pop(2)
=> ["four", "five"]
>> a
=> ["one", "two", "three"]
>> a.shift(2)
=> ["one", "two"]
>> a
=> ["three"]

Table 9.1 summarizes the operations we’ve covered in this section.

We’ll turn next from manipulating one array to looking at ways to combine two or
more arrays.

Table 9.1 Common array methods

Operation Method signature(s)

Retrieve single element [index], slice(index)

Retrieve multiple elements [index, length], [start..finish], slice(index,
length), slice(start..finish), values_at(index1,
index2...)

Retrieve nested elements dig(index1, index2...)

Set single element [index]=

Set multiple elements [index, length]=, slice(index, length)

Delete elements slice!(index), slice!(index, length),
slice!(start..finish)

Add element to beginning unshift

Remove element from end pop, pop(length)

Remove element from beginning shift, shift(length)

Add element to end push, push(el1, el2...), <<

279Collection handling with arrays
9.2.3 Combining arrays with other arrays

Several methods allow you to combine multiple arrays in various ways—something
that, it turns out, is common and useful when you begin manipulating lots of data in
lists. Remember that in every case, even though you’re dealing with two (or more)
arrays, one array is always the receiver of the message. The other arrays involved in the
operation are arguments to the method.

 To add the contents of one array to another array, you can use concat:

>> [1,2,3].concat([4,5,6])
=> [1, 2, 3, 4, 5, 6]

Note that concat differs in an important way from push. Try replacing concat with
push in the example and see what happens.

 concat permanently changes the contents of its receiver. If you want to combine
two arrays into a third, new array, you can do so with the + method:

>> a = [1,2,3]
=> [1, 2, 3]
>> b = a + [4,5,6]
=> [1, 2, 3, 4, 5, 6]
>> a
=> [1, 2, 3]

The receiver of the + message—in this case, the array a—remains unchanged by the
operation (as irb tells you B).

 Another useful array-combining method, at least given a fairly liberal interpreta-
tion of the concept of “combining,” is replace. As the name implies, replace replaces
the contents of one array with the contents of another:

>> a = [1,2,3]
=> [1, 2, 3]
>> a.replace([4,5,6])
=> [4, 5, 6]
>> a
=> [4, 5, 6]

The original contents of a are gone, replaced B by the contents of the argument
array [4,5,6]. Remember that a replace operation is different from reassignment. If
you do this,

a = [1,2,3]
a = [4,5,6]

the second assignment causes the variable a to refer to a completely different array
object than the first. That’s not the same as replacing the elements of the same array
object. This starts to matter, in particular, when you have another variable that refers
to the original array, as in this code:

>> a = [1,2,3]
=> [1, 2, 3]
>> b = a
=> [1, 2, 3]

B

B

B

280 CHAPTER 9 Collection and container objects
>> a.replace([4,5,6])
=> [4, 5, 6]
>> b
=> [4, 5, 6]
>> a = [7,8,9]
=> [7, 8, 9]
>> b
=> [4, 5, 6]

Once you’ve performed the assignment of a to b B, replacing the contents of a means
you’ve replaced the contents of b C, because the two variables refer to the same array.
But when you reassign to a D, you break the binding between a and the array; a and
b now refer to different array objects: b to the same old array E, a to a new one.

 In addition to combining multiple arrays, you can also transform individual arrays
to different forms. We’ll look next at techniques along these lines.

9.2.4 Array transformations

A useful array transformation is flatten, which does an un-nesting of inner arrays.
You can specify how many levels of flattening you want, with the default being the full
un-nesting.

 Here’s a triple-nested array being flattened by various levels:

>> array = [1,2,[3,4,[5],[6,[7,8]]]]
=> [1, 2, [3, 4, [5], [6, [7, 8]]]]
>> array.flatten
=> [1, 2, 3, 4, 5, 6, 7, 8]
>> array.flatten(1)
=> [1, 2, 3, 4, [5], [6, [7, 8]]]
>> array.flatten(2)
=> [1, 2, 3, 4, 5, 6, [7, 8]]

There’s also an in-place flatten! method, which makes the change permanently in
the array.

 Another array-transformation method is reverse, which does exactly what it says:

>> [1,2,3,4].reverse
=> [4, 3, 2, 1]

Like its string counterpart, Array#reverse also has a bang (!) version, which perma-
nently reverses the array that calls it.

 Another important array-transformation method is join. The return value of join
isn’t an array but a string, consisting of the string representation of all the elements of
the array strung together:

>> ["abc", "def", 123].join
=> "abcdef123"

join takes an optional argument; if given, the argument is placed between each pair
of elements:

>> ["abc", "def", 123].join(", ")
=> "abc, def, 123"

C

D

E

Flattens completely

Flattens by one level

Flattens by two levels

281Collection handling with arrays
Joining with commas (or comma-space, as in the last example) is a fairly common
operation.

 In a great example of Ruby’s design style, there’s another way to join an array: the
* method. It looks like you’re multiplying the array by a string, but you’re actually per-
forming a join operation:

>> a = %w(one two three)
=> ["one", "two", "three"]
>> a * "-"
=> "one-two-three"

You can also transform an array with uniq. uniq gives you a new array, consisting of the
elements of the original array with all duplicate elements removed:

>> [1,2,3,1,4,3,5,1].uniq
=> [1, 2, 3, 4, 5]

Duplicate status is determined by testing pairs of elements with the == method. Any
two elements for which the == test returns true are considered duplicates of each
other. uniq also has a bang version, uniq!, which removes duplicates permanently
from the original array.

 Sometimes you have an array that includes one or more occurrences of nil, and
you want to get rid of them. You might, for example, have an array of the ZIP codes of
all the members of an organization. But maybe some of them don’t have ZIP codes. If
you want to do a histogram on the ZIP codes, you’ll want to get rid of the nil ones first.

 You can do this with the compact method. This method returns a new array identi-
cal to the original array, except that all occurrences of nil have been removed:

>> zip_codes = ["06511", "08902", "08902", nil, "10027",
"08902", nil, "06511"]
=> ["06511", "08902", "08902", nil, "10027", "08902", nil, "06511"]
>> zip_codes.compact
=> ["06511", "08902", "08902", "10027", "08902", "06511"]

Once again, there’s a bang version (compact!) available.
 In addition to transforming arrays in various ways, you can query arrays on various

criteria.

9.2.5 Array querying

Several methods allow you to gather information about an array from the array.
Table 9.2 summarizes some of them. Other query methods arise from Array’s inclu-
sion of the Enumerable module and will therefore come into view in the next chapter.

Table 9.2 Summary of common array query methods

Method name/sample call Meaning

a.size (synonyms: length, count) Number of elements in the array

a.empty? True if a is an empty array; false if it has any elements

282 CHAPTER 9 Collection and container objects
In the cases of first, last, and sample, if you don’t pass in an argument, you get just
one element back. If you do pass in an argument n, you get an array of n elements
back—even if n is 1.

 Next up: hashes. They’ve crossed our path here and there along the way, and now
we’ll look at them in detail.

9.3 Hashes
Like an array, a hash is a collection of objects. A hash consists of key/value pairs,
where any key and any value can be any Ruby object. Hashes let you perform lookup
operations based on keys. In addition to simple key-based value retrieval, you can also
perform more-complex filtering and selection operations.

 A typical use of a hash is to store complete strings along with their abbreviations.
Here’s a hash containing a selection of names and two-letter state abbreviations, along
with some code that exercises it. The => operator connects a key on the left with the
value corresponding to it on the right:

state_hash = { "Connecticut" => "CT",
"Delaware" => "DE",
"New Jersey" => "NJ",
"Virginia" => "VA" }

print "Enter the name of a state: "
state = gets.chomp
abbr = state_hash[state]
puts "The abbreviation is #{abbr}."

When you run this snippet (assuming you enter one of the states defined in the hash),
you see the abbreviation.

 Hashes remember the insertion order of their keys. Insertion order isn’t always ter-
ribly important; one of the merits of a hash is that it provides quick lookup in better-
than-linear time. And in many cases, items get added to hashes in no particular order;
ordering, if any, comes later, when you want to, say, turn a hash of names and birthdays
that you’ve created over time into a chronologically or alphabetically sorted array. Still,
however useful it may or may not be for them to do so, hashes remember their key-
insertion order and observe that order when you iterate over them or examine them.

 Like arrays, hashes can be created in several different ways.

a.include?(item) True if the array includes item; false, otherwise

a.count(item) Number of occurrences of item in array

a.first(n=1) First n elements of array

a.last(n=1) Last n elements of array

a.sample(n=1) n random elements from array

Table 9.2 Summary of common array query methods (continued)

Method name/sample call Meaning

283Hashes
9.3.1 Creating a new hash

There are four ways to create a hash:

 With the literal constructor (curly braces)
 With the Hash.new method
 With the Hash.[] method (a square-bracket class method of Hash)
 With the top-level method whose name is Hash

These hash-creation techniques are listed here, as closely as possible, in descending
order of commonness. In other words, we’ll start with the most common technique
and proceed from there.

CREATING A LITERAL HASH

When you type out a literal hash inside curly braces, you separate keys from values
with either the => operator or the { key: value } syntax. The latter is available only
for symbol keys, but this is such a common method of hash construction that you’ll
see both notations regularly in the wild. After each complete key/value pair, you put a
comma (except for the last pair, where it’s optional).

 The literal hash constructor is convenient when you have values you wish to hash
that aren’t going to change; you’ll type them into the program file once and refer to
them from the program. State abbreviations are a good example.

 You can use the literal hash constructor to create an empty hash:

h = {}

You’d presumably want to add items to the empty hash at some point; techniques for
doing so will be forthcoming in section 9.3.2.

 The second way to create a hash is with the traditional new constructor.

THE HASH.NEW CONSTRUCTOR

Hash.new creates an empty hash. But if you provide an argument to Hash.new, it’s
treated as the default value for nonexistent hash keys. We’ll return to the matter of
default values, and some bells and whistles on Hash.new, once we’ve looked at
key/value insertion and retrieval.

THE HASH.[] CLASS METHOD

The third way to create a hash involves another class method of the Hash class: the
method [] (square brackets). This method takes a comma-separated list of items and,
assuming there’s an even number of arguments, treats them as alternating keys and
values, which it uses to construct a hash:

>> Hash["Connecticut", "CT", "Delaware", "DE"]
=> {"Connecticut"=>"CT", "Delaware"=>"DE"}

If you provide an odd number of arguments, a fatal error is raised, because an odd
number of arguments can’t be mapped to a series of key/value pairs. However, you
can pass in an array of arrays, where each subarray consists of two elements. Hash.[]
will use the inner arrays as key/value pairs:

284 CHAPTER 9 Collection and container objects
>> Hash[[[1,2], [3,4], [5,6]]]
=> {1=>2, 3=>4, 5=>6}

You can also pass in anything that has a method called to_hash. The new hash will be
the result of calling that method.

 Another hash-creation technique involves the top-level Hash method.

THE HASH METHOD

The Hash method has slightly idiosyncratic behavior. If called with an empty array ([])
or nil, it returns an empty hash. Otherwise, it calls to_hash on its single argument. If
the argument doesn’t have a to_hash method, a fatal error (TypeError) is raised.

 You’ve now seen a number of ways to create hashes. Remember that they’re in
approximate descending order by commonness. You’ll see a lot more literal hash con-
structors and calls to Hash.new than you will the rest of the techniques presented. Still,
it’s good to know what’s available and how the various techniques work.

 Now let’s turn to the matter of manipulating a hash’s contents. We’ll follow much
the same path as we did with arrays, looking at insertion and retrieval operations, com-
bining hashes with other hashes, hash transformations, and querying hashes. Along
the way, we’ll also take a separate look at setting default values for nonexistent hash
keys.

9.3.2 Inserting, retrieving, and removing hash pairs

As you’ll see, hashes have a lot in common with arrays when it comes to the get- and
set-style operations—though there are some important differences and some tech-
niques that are specific to each.

ADDING A KEY/VALUE PAIR TO A HASH

To add a key/value pair to a hash, you use essentially the same technique as for add-
ing an item to an array: the []= method plus syntactic sugar.

 To add a state to state_hash, do this,

state_hash["New York"] = "NY"

which is the sugared version of this:

state_hash.[]=("New York", "NY")

You can also use the synonymous method store for this operation. store takes two
arguments (a key and a value):

state_hash.store("New York", "NY")

When you’re adding to a hash, keep in mind the important principle that keys are
unique. You can have only one entry with a given key. Hash values don’t have to be
unique; you can assign the same value to two or more keys. But you can’t have dupli-
cate keys.

 If you add a key/value pair to a hash that already has an entry for the key you’re
adding, the old entry is overwritten. Here’s an example:

285Hashes
h = Hash.new
h["a"] = 1
h["a"] = 2
puts h["a"]

This code assigns two values to the "a" key of the hash h. The second assignment clob-
bers the first, as the puts statement shows by outputting 2.

 If you reassign to a given hash key, that key still maintains its place in the insertion
order of the hash. The change in the value paired with the key isn’t considered a new
insertion into the hash.

RETRIEVING VALUES FROM A HASH

The workhorse technique for retrieving hash values is the [] method. For example, to
retrieve "CT" from state_hash and assign it to a variable, do this:

conn_abbrev = state_hash["Connecticut"]

Using a hash key is much like indexing an array—except that the index (the key) can
be anything, whereas in an array, it’s always an integer.

 Hashes also have a fetch method, which gives you an alternative way of retrieving
values by key:

conn_abbrev = state_hash.fetch("Connecticut")

fetch differs from [] in the way it behaves when you ask it to look up a nonexistent
key: fetch raises an exception, whereas [] gives you either nil or a default you’ve
specified (as discussed in the next section). If you provide a second argument to
fetch, that argument will be returned, instead of an exception being raised if the key
isn’t found. For example, this code

state_hash.fetch("Nebraska", "Unknown state")

evaluates to the string “Unknown state".
 You can also retrieve values for multiple keys in one operation, with values_at:

state_hash = { "New Jersey" => "NJ",
 "Connecticut" => "CT",
 "Delaware" => "DE" }
two_states = state_hash.values_at("New Jersey","Delaware")

This code returns an array consisting of ["NJ","DE"] and assigns it to the variable
two_states. fetch_values behaves similarly, but it raises a KeyError if the requested
key isn’t found:

>> state_hash.fetch_values("New Jersey", "Wyoming")
=> KeyError (key not found: "Wyoming")

To create a default behavior, pass a block to fetch or fetch_values. Rather than rais-
ing an error, the unknown key will be appended to the resulting array:

>> state_hash.fetch_values("New Jersey", "WYOMING") do |key|
 key.capitalize

Output: 2

286 CHAPTER 9 Collection and container objects
 end
=> ["NJ", "Wyoming"]

Like arrays, hashes can be nested within other hashes:

>> { foo: { bar: "baz" } }

This is a powerful way to store collections of data and is used frequently. Here’s
another example:

>> contacts = { john: {
phone: "555-1234",
email: "john@example.com" },

eric: {
phone: "555-1235",
email: "eric@example.com" } }

The dig method makes such collections more easily accessible. Hash#dig takes one or
more symbols as arguments:

>> contacts.dig(:eric, :email)
=> "eric@example.com"

Now that you have a sense of the mechanics of getting information into and out of a
hash, let’s circle back and look at the matter of supplying a default value (or default
code block) when you create a hash.

9.3.3 Specifying default hash values and behavior

By default, when you ask a hash for the value corresponding to a nonexistent key, you
get nil:

>> h = Hash.new
=> {}
>> h["no such key!"]
=> nil

But you can specify a different default value by supplying an argument to Hash.new:

>> h = Hash.new(0)
=> {}
>> h["no such key!"]
=> 0

Here we get back the hash’s default value, 0, when we use a nonexistent key. (You can
also set the default on an already existing hash with the default method.)

 It’s important to remember that whatever you specify as the default value is what
you get when you specify a nonexistent key—and that the key remains nonexistent until
you assign a value to it. In other words, saying h["blah"] doesn’t mean that h now has
a "blah" key. If you want that key in the hash, you have to put it there. You can verify
the fact that the hash h has no keys by examining it after performing the nonexistent-
key lookup in the last example:

>> h
=> {}

287Hashes
If you want references to nonexistent keys to cause the keys to come into existence,
you can arrange this by supplying a code block to Hash.new. The code block will be
executed every time a nonexistent key is referenced. Two objects will be yielded to the
block: the hash and the (nonexistent) key.

 This technique gives you a foot in the door when it comes to setting keys automati-
cally when they’re first used. It’s not the most elegant or streamlined technique in
Ruby, but it does work. You write a block that grabs the hash and the key, and you do a
set operation.

 For example, if you want every nonexistent key to be added to the hash with a
value of 0, create your hash like this:

h = Hash.new {|hash,key| hash[key] = 0 }

When the hash h is asked to retrieve the value for a key it doesn’t have, the block is
executed with hash set to the hash itself and key set to the nonexistent key. And
thanks to the code in the block, the key is added to the hash after all, with the value 0.

 Given this assignment of a new hash to h, you can trigger the block like this:

>> h["new key!"]
=> 0
>> h
=> {"new key!"=>0}

When you try to look up the key "new key!" B, it’s not there; but thanks to the block,
it gets added, with the value 0. Next, when you ask irb to show you the whole hash C,
it contains the automatically added pair.

 This technique has lots of uses. It lets you make assumptions about what’s in a
hash, even if nothing is there to start with. It also shows you another facet of Ruby’s
extensive repertoire of dynamic programming techniques and the flexibility of
hashes.

 We’ll turn now to ways you can combine hashes with each other, as we did with
strings and arrays.

9.3.4 Combining hashes with other hashes

The process of combining two hashes into one comes in two flavors: the destructive
flavor, where the first hash has the key/value pairs from the second hash added to it
directly; and the nondestructive flavor, where a new, third hash is created that com-
bines the elements of the original two.

 The destructive operation is performed with the update method. Entries in the
first hash are overwritten permanently if the second hash has a corresponding key:

h1 = { first: "Joe",
 last: "Leo",
 suffix: "III" }
h2 = { suffix: "Jr." }
h1.update(h2)
puts h1[:suffix]

B

C

Output: Jr.

288 CHAPTER 9 Collection and container objects
In this example, h1’s :suffix entry has been changed (updated) to the value it has in
h2. You’re asking for a refresh of your hash to reflect the contents of the second hash.
That’s the destructive version of combining hashes.

 To perform nondestructive combining of two hashes, use the merge method,
which gives you a third hash and leaves the original unchanged:

h1 = { first: "Joe",
last: "Leo",
suffix: "III" }

h2 = { suffix: "Jr." }
h3 = h1.merge(h2)
p h1[:suffix]

Here h1’s suffix: "III" pair isn’t overwritten by h2’s suffix: "Jr." pair. Instead, a
new hash is created, with pairs from both of the other two. That hash will look like
this, if examined:

{:first=>"Joe",:last=>"Leo",:suffix=>"Jr."}

Note that h3 has a decision to make: which of the two :suffix entries should it con-
tain? The answer is that when the two hashes being merged share a key, the second
hash (h2, in this example) wins. h3’s value for the :suffix key will be "Jr.".

 Incidentally, merge!—the bang version of merge—is a synonym for update. You
can use either name when you want to perform that operation.

 In addition to being combined with other hashes, hashes can also be transformed
in a number of ways, as you’ll see next.

9.3.5 Hash transformations

You can perform several transformations on hashes. Transformation, in this context,
means that the method is called on a hash, and the result of the operation (the
method’s return value) is a hash. In chapter 10, you’ll see other filtering and selecting
methods on hashes that return their result sets in arrays. Here we’re looking at hash-
to-hash operations.

Output: III

A note about Ruby hash notation
You may have noticed that irb returns your symbol/key hashes in a different format
than the one in which you type them:

>> { math: "A", science: "B+" }
=> {:math=>"A", :science=>"B+"}

The latter notation was Ruby’s only choice for symbol/key hash notation through ver-
sion 1.8.6. Versions 1.9 and above have supported the former notation. { key:
value } has since become the standard. The old notation is still supported, valid
syntax, however, and you may see it in legacy Ruby systems.

289Hashes
SELECTING AND REJECTING ELEMENTS FROM A HASH

To derive a subhash from an existing hash, use the select method. Key/value pairs
will be passed in succession to the code block you provide. Any pair for which the
block returns a true value will be included in the result hash:

>> h = Hash[1,2,3,4,5,6]
=> {1=>2, 3=>4, 5=>6}
>> h.select {|k,v| k > 1 }
=> {3=>4, 5=>6}

Rejecting elements from a hash works in the opposite way—those key/value pairs for
which the block returns true are excluded from the result hash:

>> h.reject {|k,v| k > 1 }
=> {1=>2}

select and reject have in-place equivalents (versions that change the original hash
permanently, rather than returning a new hash): select! and reject!. These two
methods return nil if the hash doesn’t change. To do an in-place operation that
returns your original hash (even if it’s unchanged), you can use keep_if and
delete_if.

REMOVING KEYS WITH NIL VALUES

The compact method works similarly for hashes as it does for arrays, eliminating any
keys containing nil values:

>> { street: "127th Street", apt: nil, borough: "Manhattan" }.compact
=> {:street=>"127th Street", :borough=>"Manhattan"}

As you’d expect, the compact! method makes its change in place.

INVERTING A HASH

Hash#invert flips the keys and the values. Values become keys, and keys become values:

>> h = { 1 => "one", 2 => "two" }
=> {1=>"one", 2=>"two"}
>> h.invert
=> {"two"=>2, "one"=>1}

Be careful when you invert hashes. Because hash keys are unique, but values aren’t,
when you turn duplicate values into keys, one of the pairs is discarded:

>> h = { 1 => "one", 2 => "more than 1", 3 => "more than 1" }
=> {1=>"one", 2=>"more than 1", 3=>"more than 1"}
>> h.invert
=> {"one"=>1, "more than 1"=>3}

Only one of the two "more than 1" values can survive as a key when the inversion is
performed; the other is discarded. You should invert a hash only when you’re certain
the values as well as the keys are unique.

290 CHAPTER 9 Collection and container objects
CLEARING A HASH

Hash#clear empties the hash:

>> {1 => "one", 2 => "two" }.clear
=> {}

This is an in-place operation: the empty hash is the same hash (the same object) as the
one to which you send the clear message.

REPLACING THE CONTENTS OF A HASH

Like strings and arrays, hashes have a replace method:

>> { 1 => "one", 2 => "two" }.replace({ 10 => "ten", 20 => "twenty"})
=> {10 => "ten", 20 => "twenty"}

This is also an in-place operation, as the name replace implies.
 We’ll turn next to hash query methods.

9.3.6 Hash querying

Like arrays (and many other Ruby objects), hashes provide a number of methods with
which you can query the state of the object. Table 9.3 shows some common hash query
methods.

None of the methods in table 9.3 should offer any surprises at this point; they’re simi-
lar in spirit, and in some cases in letter, to those you’ve seen for arrays. With the excep-
tion of size, they all return either true or false. The only surprise may be how many of
them are synonyms. Four methods test for the presence of a particular key: has_key?,
include?, key?, and member?. A case could be made that this is two or even three syn-
onyms too many. has_key? seems to be the most popular of the four and is the most
to-the-point with respect to what the method tests for.

 The has_value? method has one synonym: value?. As with its key counterpart,
has_value? seems to be more popular.

Table 9.3 Common hash query methods and their meanings

Method name/Sample call Meaning

h.has_key?(1) True if h has the key 1

h.include?(1) Synonym for has_key?

h.key?(1) Synonym for has_key?

h.member?(1) Synonym for has_key?

h.has_value?("three") True if any value in h is "three"

h.value?("three") Synonym for has_value?

h.empty? True if h has no key/value pairs

h.size Number of key/value pairs in h

291Hashes
 The other methods—empty? and size—tell you whether the hash is empty and
what its size is. (size can also be called as length.) The size of a hash is the number of
key/value pairs it contains.

 Hashes get special dispensation in method argument lists, as you’ll see next.

9.3.7 Hashes as final method arguments

If you call a method in such a way that the last argument in the argument list is a hash,
Ruby allows you to write the hash without curly braces. This perhaps trivial-sounding
special rule can, in practice, make argument lists look much nicer than they otherwise
would.

 Here’s an example. The first argument to add_to_city_database is the name of
the city; the second argument is a hash of data about the city, written without curly
braces:

add_to_city_database("New York City",
 state: "New York",
 population: 7000000,
 nickname: "Big Apple")

The method add_to_city_database has to do more work to gain access to the data
being passed to it than it would if it were binding parameters to arguments in left-to-
right order through a list:

def add_to_city_database(name, info)
 c = City.new
 c.name = name
 c.state = info[:state]
 c.population = info[:population]
 # etc.

Hashes as first arguments
In addition to learning about the special syntax available to you for using hashes as
final method arguments without curly braces, it’s worth noting a pitfall of using a hash
as the first argument to a method. The rule in this case is that you must not only put
curly braces around the hash but also put the entire argument list in parentheses. If
you don’t, Ruby will think your hash is a code block. In other words, when you do this,

my_method { NY: "New York" }, 100, "another argument"

Ruby interprets the expression in braces as a block. If you want to send a hash along
as an argument in this position, you must use parentheses around the entire argu-
ment list:

my_method({ NY: "New York" }, 100, "another argument")

This makes it clear to the Ruby interpreter that the curly braces are hash-related and
not block-related.

292 CHAPTER 9 Collection and container objects
Of course, the exact process involved in unwrapping the hash will vary from one case
to another. (Perhaps City objects store their information as a hash; that would make
the method’s job a little easier.) But one way or another, the method has to handle the
hash.

 Keep in mind that although you get to leave the curly braces off the hash literal
when it’s the last thing in an argument list, you can have as many hashes as you wish as
method arguments, in any position. Just remember that it’s only when a hash is in the
final argument position that you’re allowed to dispense with the braces.

 Until Ruby 2.0 came along, hash arguments of this kind were the closest one could
get to named or keyword arguments. That’s all changed, though. Ruby now has real
named arguments. Their syntax is very hashlike, which is why we’re looking at them
here rather than in chapter 2.

9.3.8 A detour back to argument syntax: named (keyword) arguments

Using named arguments saves you the trouble of “unwrapping” hashes in your
methods. Here’s a barebones example that shows the most basic version of named
arguments:

>> def m(a:, b:)
>> p a,b
>> end
=> :m
>> m(a: 1, b: 2)
1
2
=> [1, 2]

On the method end, there are two parameters ending with colons. On the calling
end, there’s something that looks a lot like a hash. Ruby matches everything up so that
the values for a and b bind as expected. There’s no need to probe into a hash.

 In the preceding example, a and b indicate required keyword arguments. You
can’t call the method without them:

>> m
ArgumentError: missing keywords: a, b
>> m(a: 1)
ArgumentError: missing keyword: b

You can make keyword arguments optional by supplying default values for your
named parameters—which makes the parameter list look even more hashlike:

>> def m(a: 1, b: 2)
>> p a,b
>> end
=> :m
>> m
1
2
=> [1, 2]
>> m(a:10)

B

C

293Hashes
10
2
=> [10, 2]

When you call m with no arguments B, the defaults for a and b kick in. If you provide
an a but no b C, you get the a you’ve provided and the default b. You’re also not stuck
with the order of arguments. You may pass in b and not a, and the default for a will
kick in.

 What if you go in the other direction and call a method using keyword arguments
that the method doesn’t declare? If the method’s parameter list includes a double-
starred name, the variable of that name will sponge up all unknown keyword argu-
ments into a hash, as follows:

>> def m(a: 1, b: 2, **c)
>> p a,b,c
>> end
=> :m
>> m(x: 1, y: 2)
1
2
{:x=>1, :y=>2}
=> [1, 2, {:x=>1, :y=>2}]

If there’s no keyword sponge parameter, a method call like m(x:1, y:2) is just passing
along a hash, which may or may not fail, depending on what arguments the method is
expecting.

 And of course, you can combine keyword and nonkeyword arguments:

>> def m(x, y, *z, a: 1, b:, **c, &block)
>> p x,y,z,a,b,c
>> end
=> :m
>> m(1,2,3,4,5,b:10,p:20,q:30)
1
2
[3, 4, 5]
1
10
{:p=>20, :q=>30}
=> [1, 2, [3, 4, 5], 1, 10, {:p=>20, :q=>30}]

Here the method m

 Takes two required positional arguments (x and y, bound to 1 and 2)
 Has a “sponge” parameter (z) that takes care of extra arguments following the

positional ones (3, 4, 5)
 Has one optional and one required keyword argument (a and b, respectively,

bound to 1 and 10)
 Has a keyword “sponge” (c) to absorb unknown named arguments (the p and q

hash)
 Has a variable for binding to the code block, if any (block)

294 CHAPTER 9 Collection and container objects
You’ll rarely see method signatures of this complexity, so if you can keep track of the
elements in this one, you’re probably all set!

 We’ll look next at ranges—which aren’t exactly collection objects, arguably, but
which turn out to have a lot in common with collection objects.

9.4 Ranges
A range is an object with a start point and an end point. The semantics of range opera-
tions involve two major concepts:

 Inclusion—Does a given value fall inside the range?
 Enumeration—The range is treated as a traversable collection of individual

items.

The logic of inclusion applies to all ranges; you can always test for inclusion. The logic
of enumeration kicks in only with certain ranges—namely, those that include a finite
number of discrete, identifiable values. You can’t iterate over a range that lies between
two floating-point numbers, because the range encompasses an infinite number of val-
ues. But you can iterate over a range between two integers.

 We’ll save further analysis of range iteration and enumeration logic for the next
chapter, where we’ll look at enumeration and the Enumerable module in depth. In
this section, we’ll look primarily at the other semantic concept: inclusion logic. We’ll
start with some range-creation techniques.

9.4.1 Creating a range

You can create range objects with Range.new. If you do so in irb, you’re rewarded with
a view of the syntax for literal range construction:

>> r = Range.new(1,100)
=> 1..100

The literal syntax can, of course, also be used directly to create a range:

>> r = 1..100
=> 1..100

When you see a range with two dots between the start-point and end-point values, as in
the previous example, you’re seeing an inclusive range. A range with three dots in the
middle is an exclusive range:

>> r = 1...100
=> 1...100

The difference lies in whether the end point is considered to lie inside the range.
Coming full circle, you can also specify inclusive or exclusive behavior when you cre-
ate a range with Range.new: the default is an inclusive range, but you can force an
exclusive range by passing a third argument of true to the constructor:

>> Range.new(1,100)
=> 1..100

295Ranges
>> Range.new(1,100,true)
=> 1...100

Unfortunately, there’s no way to remember which behavior is the default and which is
triggered by the true argument, except to memorize it.

 Also notoriously hard to remember is which number of dots goes with which type
of range.

REMEMBERING .. VS. ...
If you follow Ruby discussion forums, you’ll periodically see messages and posts from
people who find it difficult to remember which is which: two versus three dots, inclu-
sive versus exclusive range.

 One way to remember is to think of a range as always reaching to the point repre-
sented by whatever follows the second dot. In an inclusive range, the point after the
second dot is the end value of the range. In this example, the value 100 is included in
the range:

1..100

But in this exclusive range, the value 100 lies beyond the effective end of the range:

1...100

In other words, you can think of 100 as having been “pushed” to the right in such a
way that it now sits outside the range.

 We’ll turn now to range-inclusion logic—a section that closely corresponds to the
“query” sections from the discussions of strings, arrays, and hashes, because most of
what you do with ranges involves querying them on criteria of inclusion.

9.4.2 Range-inclusion logic

Ranges have begin and end methods, which report back their starting and ending
points:

>> r = 1..10
=> 1..10
>> r.begin
=> 1
>> r.end
=> 10

A range also knows whether it’s an exclusive (three-dot) range:

>> r.exclude_end?
=> false

With the goal posts in place, you can start to test for inclusion.
 Two methods are available for testing inclusion of a value in a range: cover? and

include? (which is also aliased as member?).

296 CHAPTER 9 Collection and container objects
TESTING RANGE INCLUSION WITH COVER?
The cover? method performs a simple test: if the argument to the method is greater
than or equal to the range’s start point and less than its end point (or equal to it, for
an inclusive range), then the range is said to cover the object. The tests are performed
using Boolean comparison tests, with a false result in cases where the comparison
makes no sense.

 All of the following comparisons make sense; one of them fails because the item
isn’t in the range:

>> r = "a".."z"
=> "a".."z"
>> r.cover?("a")
=> true
>> r.cover?("abc")
=> true
>> r.cover?("A")
=> false

But this next test fails because the item being tested for inclusion isn’t comparable
with the range’s start and end points:

>> r.cover?([])
=> false

It’s meaningless to ask whether an array is greater than the string "a". If you try such a
comparison on its own, you’ll get a fatal error. Fortunately, ranges take a more conser-
vative approach and tell you that the item isn’t covered by the range.

 Whereas cover? performs start- and end-point comparisons, the other inclusion
test, include? (or member?), takes a more collection-based approach.

TESTING RANGE INCLUSION WITH INCLUDE?
The include? test treats the range as a kind of crypto-array—that is, a collection of
values. The "a".."z" range, for example, is considered to include (as measured by
include?) only the 26 values that lie inclusively between "a" and "z".

 Therefore, include? produces results that differ from those of cover?:

>> r.include?("a")
=> true
>> r.include?("abc")
=> false

In cases where the range can’t be interpreted as a finite collection, such as a range of
floats, the include? method falls back on numerical order and comparison:

>> r = 1.0..2.0
=> 1.0..2.0
>> r.include?(1.5)
=> true

true: "a" >= "a" and "a" <= "z"

true: "abc" >= "a" and "abc" <= "z"

false: "A" < "a"

297Sets

You’ll see more about ranges as quasi-collections in the next chapter, as promised. In
this chapter, we’ve got one more basic collection class to examine: the Set class.

9.5 Sets
Set is the one class under discussion in this chapter that isn’t, strictly speaking, a Ruby
core class. It’s a standard library class, which means that to use it, you have to do this:

require 'set'

The general rule in this book is that we’re looking at the core language rather than
the standard library, but the Set class makes a worthy exception because it fits in so
nicely with the other container and collection classes we’ve looked at.

 A set is a unique collection of objects. The objects can be anything—strings, inte-
gers, arrays, other sets—but no object can occur more than once in the set. Unique-
ness is also enforced at the commonsense content level: if the set contains the string
"New York", you can’t add the string "New York" to it, even though the two strings may
technically be different objects. The same is true of arrays with equivalent content.

Are there backward ranges?
The anticlimactic answer to the question of backward ranges is this: yes and no. You
can create a backward range, but it won’t do what you probably want it to:

>> r = 100...1
=> 100...1
>> r.include?(50)
=> false

The range happily performs its usual inclusion test for you. The test calculates
whether the candidate for inclusion is greater than the start point of the range and
less than the end point. Because 50 is neither greater than 100 nor less than 1, the
test fails. And it fails silently; this is a logic error, not a fatal syntax or runtime error.

Backward ranges do show up in one particular set of use cases: as index arguments
to strings and arrays. They typically take the form of a positive start point and a neg-
ative end point, with the negative end point counting in from the right:

>> "This is a sample string"[10..-5]
=> "sample st"
>> ['a','b','c','d'][0..-2]
=> ["a", "b", "c"]

You can even use an exclusive backward range:

>> ['a','b','c','d'][0...-2]
=> ["a", "b"]

In these cases, what doesn’t work (at least, in the way you might have expected) in
a range on its own does work when applied to a string or an array.

298 CHAPTER 9 Collection and container objects
NOTE Internally, sets use a hash to enforce the uniqueness of their contents.
When an element is added to a set, the internal hash for that set gets a new
key. Therefore, any two objects that would count as duplicates if used as hash
keys can’t occur together in a set.

Let’s look now at how to create sets.

9.5.1 Set creation

To create a set, you use the Set.new constructor. You can create an empty set, or you
can pass in a collection object (defined as an object that responds to each or each_
entry). In the latter case, all the elements of the collection are placed individually in
the set:

>> new_england = ["Connecticut", "Maine", "Massachusetts",
"New Hampshire", "Rhode Island", "Vermont"]

=> ["Connecticut", "Maine", "Massachusetts",
 "New Hampshire","Rhode Island", "Vermont"]
>> state_set = Set.new(new_england)
=> #<Set: {"Connecticut", "Maine", "Massachusetts",

 "New Hampshire", "Rhode Island", "Vermont"}>

Here, we’ve created an array, new_england, and used it as the constructor argument
for the creation of the state_set set. Note that there’s no literal set constructor (no
equivalent to [] for arrays or {} for hashes). There can’t be: sets are part of the stan-
dard library, not the core, and the core syntax of the language is already in place
before the set library gets loaded.

 You can also provide a code block to the constructor, in which case every item in
the collection object you supply is passed through the block (yielded to it) with the
resulting value being inserted into the set. For example, here’s a way to initialize a set
to a list of uppercased strings:

>> names = ["David", "Yukihiro", "Chad", "Amy"]
=> ["David", "Yukihiro", "Chad", "Amy"]
>> name_set = Set.new(names) {|name| name.upcase }
=> #<Set: {"DAVID", "YUKIHIRO", "CHAD", "AMY"}>

Rather than using the array of names as its initial values, the set constructor yields
each name to the block and inserts what it gets back (an uppercase version of the
string) into the set.

 Now that we’ve got a set, we can manipulate it.

9.5.2 Manipulating set elements

Like arrays, sets have two modes of adding elements: either inserting a new element
into the set or drawing on another collection object as a source for multiple new ele-
ments. In the array world, this is the difference between << and concat. For sets, the
distinction is reflected in a variety of methods, which we’ll look at here.

299Sets
ADDING/REMOVING ONE OBJECT TO/FROM A SET

To add a single object to a set, you can use the << operator/method:

>> tri_state = Set.new(["New Jersey", "New York"])
=> #<Set: {"New Jersey", "New York"}>
>> tri_state << "Connecticut"
=> #<Set: {"New Jersey", "New York", "Connecticut"}>

Here, as with arrays, strings, and other objects, << connotes appending to a collection
or mutable object. If you try to add an object that’s already in the set (or an object
that’s content-equal to one that’s in the set), nothing happens:

>> tri_state << "Connecticut"
=> #<Set: {"New Jersey", "New York", "Connecticut"}>

To remove an object, use delete:

>> tri_state << "Pennsylvania"
=> #<Set: {"New Jersey", "New York", "Connecticut", "Pennsylvania"}>
>> tri_state.delete("Connecticut")
=> #<Set: {"New Jersey", "New York", "Pennsylvania"}>

Deleting an object that isn’t in the set doesn’t raise an error. As with adding a dupli-
cate object, nothing happens.

 The << method is also available as add. There’s also a method called add?, which
differs from add in that it returns nil (rather than returning the set itself) if the set is
unchanged after the operation:

>> tri_state.add?("Pennsylvania")
=> nil

You can test the return value of add? to determine whether to take a different condi-
tional branch if the element you’ve attempted to add was already there.

SET INTERSECTION, UNION, AND DIFFERENCE

Sets have a concept of their own intersection, union, and difference with other sets—
and, indeed, with other enumerable objects. The Set class comes with the necessary
methods to perform these operations.

 These methods have English names and symbolic aliases. The names are

 intersection, aliased as &
 union, aliased as + and |
 difference, aliased as -

Each of these methods returns a new set consisting of the original set, plus or minus
the appropriate elements from the object provided as the method argument. The
original set is unaffected.

 Let’s shift our tri-state grouping back to the East and look at some set operations:

>> tri_state = Set.new(["Connecticut", "New Jersey", "New York"])
=> #<Set: {"Connecticut", "New Jersey", "New York"}>
Subtraction (difference/-)
>> state_set - tri_state

Whoops, only two!
Adds third

Second time

300 CHAPTER 9 Collection and container objects
=> #<Set: {"Maine", "Massachusetts", "New Hampshire", "Rhode Island",
"Vermont"}>
Addition (union/+/|)
>> state_set + tri_state
=> #<Set: {"Connecticut", "Maine", "Massachusetts", "New Hampshire",
"Rhode Island", "Vermont", "New Jersey", "New York"}>
Intersection (&)
>> state_set & tri_state
=> #<Set: {"Connecticut"}>
>> state_set | tri_state
=> #<Set: {"Connecticut", "Maine", "Massachusetts", "New Hampshire",
"Rhode Island", "Vermont", "New Jersey", "New York"}>

There’s also an exclusive-or operator, ^, which you can use to take the exclusive union
between a set and an enumerable—that is, a set consisting of all elements that occur
in either the set or the enumerable but not both:

>> state_set ^ tri_state
=> #<Set: {"New Jersey", "New York", "Maine", "Massachusetts",
 "New Hampshire", "Rhode Island", "Vermont"}>

You can extend an existing set using a technique very similar in effect to the Set.new
technique: the merge method, which can take as its argument any object that responds
to each or each_entry. That includes arrays, hashes, and ranges—and, of course,
other sets.

MERGING A COLLECTION INTO ANOTHER SET

What happens when you merge another object into a set depends on what that
object’s idea of iterating over itself consists of. Here’s an array example, including a
check on object_id to confirm that the original set has been altered in place:

>> tri_state = Set.new(["Connecticut", "New Jersey"])
=> #<Set: {"Connecticut", "New Jersey"}>
>> tri_state.object_id
=> 2703420
>> tri_state.merge(["New York"])
=> #<Set: {"Connecticut", "New Jersey", "New York"}>
>> tri_state.object_id
=> 2703420

Merging a hash into a set results in the addition of two-element, key/value arrays to
the set—because that’s how hashes break themselves down when you iterate through
them. Here’s a slightly non-real-world example that demonstrates the technology:

>> s = Set.new([1,2,3])
=> #<Set: {1, 2, 3}>
>> s.merge({ "New Jersey" => "NJ", "Maine" => "ME" })
=> #<Set: {1, 2, 3, ["New Jersey", "NJ"], ["Maine", "ME"]}>

If you provide a hash argument to Set.new, the behavior is the same: you get a new set
with two-element arrays based on the hash.

301Summary
 You might want to merge just the keys of a hash, rather than the entire hash, into a
set. After all, set membership is based on hash-key uniqueness, under the hood. You
can do that with the keys method:

>> state_set = Set.new(["New York", "New Jersey"])
=> #<Set: {"New York", "New Jersey"}>
>> state_hash = { "Maine" => "ME", "Vermont" => "VT" }
=> {"Maine"=>"ME", "Vermont"=>"VT"}
>> state_set.merge(state_hash.keys)
=> #<Set: {"New York", "New Jersey", "Maine", "Vermont"}>

Try out some permutations of set merging, and you’ll see that it’s quite open ended
(just like set creation), as long as the argument is an object with an each or each_
entry method.

 Sets wouldn’t be sets without subsets and supersets, and Ruby’s set objects are sub-
and super-aware.

9.5.3 Subsets and supersets

You can test for subset/superset relationships between sets (and the arguments have
to be sets, not arrays, hashes, or any other kind of enumerable or collection) using the
unsurprisingly named subset? and superset? methods:

>> small_states = Set.new(["Connecticut", "Delaware", "Rhode Island"])
=> #<Set: {"Connecticut", "Delaware", "Rhode Island"}>
>> tiny_states = Set.new(["Delaware", "Rhode Island"])
=> #<Set: {"Delaware", "Rhode Island"}>
>> tiny_states.subset?(small_states)
=> true
>> small_states.superset?(tiny_states)
=> true

The proper_subset and proper_superset methods are also available to you. A proper
subset is a subset that’s smaller than the parent set by at least one element. If the two
sets are equal, they’re subsets of each other but not proper subsets. Similarly, a proper
superset of a set is a second set that contains all the elements of the first set plus at least
one element not present in the first set. The “proper” concept is a way of filtering out
the case where a set is a superset or subset of itself—because all sets are both.

 We’ll pick up the set thread in the next chapter, where we’ll take another pass
through collection objects in the interest of getting more deeply into the Enumerable
module and the collection-based services it provides.

Summary
In this chapter, you’ve seen

 How to create, manipulate, and transform collection objects, including
– Arrays
– Hashes

302 CHAPTER 9 Collection and container objects
– Ranges
– Sets

 Named arguments

We’ve looked closely at Ruby’s major core container classes, Array and Hash. We’ve
also looked at ranges, which principally operate as inclusion test criteria but know
how to behave as collections when their makeup permits them to (a point that will
make more sense after you’ve seen more about the Enumerable module). After
ranges, we looked at sets, which are defined in the standard library and add another
important tool to Ruby’s collection toolset. The source code for the Set class is written
in Ruby; that gave us an opportunity to look at some real production Ruby code.

 We also took a detour into named arguments, which prevent you from having to
use hash keys as pseudo-keywords and “unpacking” argument hashes in your methods.

 The concept of the collection in Ruby is closely associated with the Enumerable mod-
ule and its principle of dependence on an each method. In the next chapter, we’ll go
more deeply into Enumerable—which means looking at the many searching, filtering,
sorting, and transforming operations available on objects whose classes mix in that
module.

Collections central:
Enumerable and Enumerator
All collection objects aren’t created equal—but an awful lot of them have many
characteristics in common. In Ruby, common characteristics among many objects
tend to reside in modules. Collections are no exception: collection objects in Ruby
typically include the Enumerable module.

 Classes that use Enumerable enter into a kind of contract: the class has to define
an instance method called each, and in return, Enumerable endows the objects of
the class with all sorts of collection-related behaviors. The methods behind these
behaviors are defined in terms of each. In some respects, you might say the whole

This chapter covers
 Mixing Enumerable into your classes

 The use of Enumerable methods in collection
objects

 Strings as quasi-enumerable objects

 Sorting enumerables with the Comparable module

 Enumerators
303

304 CHAPTER 10 Collections central: Enumerable and Enumerator
concept of a “collection” in Ruby is pegged to the Enumerable module and the meth-
ods it defines on top of each.

 You’ve already seen a bit of each in action. Here, you’ll see a lot more. Keep in
mind, though, that although every major collection class partakes of the Enumerable
module, each of them has its own methods too. The methods of an array aren’t identi-
cal to those of a set; those of a range aren’t identical to those of a hash. And some-
times collection classes share method names, but the methods don’t do exactly the
same thing. They can’t always do the same thing; the whole point is to have multiple
collection classes but to extract as much common behavior as possible into a common
module.

 You can mix Enumerable into your own classes:

class C
 include Enumerable
end

By itself, that doesn’t do much. To tap into the benefits of Enumerable, you must
define an each instance method in your class:

class C
 include Enumerable
 def each
 # relevant code here
 end
end

At this point, objects of class C will have the ability to call any instance method defined
in Enumerable.

 Enumerable adds common functionality to each of the collection classes shown in
table 10.1. In addition to the Enumerable module, in this chapter we’ll look at a closely
related class called Enumerator. Enumerators are objects that encapsulate knowledge of
how to iterate through a particular collection. By packaging iteration intelligence in an
object that’s separate from the collection itself, enumerators add a further and power-
ful dimension to Ruby’s already considerable collection-manipulation facilities.

Let’s start by looking more closely at each and its role as the engine for enumerable
behavior.

Table 10.1 The major Ruby collections we’ve studied thus far, along
with some of the methods unique to each

Collection Methods

Array push, pop, shift, unshift, slice!

Hash keys, values, each_key, each_value

Range cover?

Set add, divide, intersect?, subset

305Gaining enumerability through each
10.1 Gaining enumerability through each
Any class that aspires to be enumerable must have an each method whose job is to
yield items to a supplied code block, one at a time.

 Exactly what each does will vary from one class to another. In the case of an array,
each yields the first element, then the second, and so forth. In the case of a hash, it
yields key/value pairs in the form of two-element arrays. In the case of a file handle, it
yields one line of the file at a time. Ranges iterate by first deciding whether iterating is
possible (which it isn’t, for example, if the start point is a float) and then pretending to
be an array. And if you define an each in a class of your own, it can mean whatever you
want it to mean—as long as it yields something. So each has different semantics for dif-
ferent classes. But however each is implemented, the methods in the Enumerable mod-
ule depend on being able to call it.

 You can get a good sense of how Enumerable works by writing a small, proof-of-
concept class that uses it. The following listing shows such a class: Rainbow. This class has
an each method that yields one color at a time. Because the class mixes in Enumerable,
its instances are automatically endowed with the instance methods defined in that
module.

class Rainbow
 include Enumerable
 def each
 yield "red"
 yield "orange"
 yield "yellow"
 yield "green"
 yield "blue"
 yield "indigo"
 yield "violet"
 end
end

Every instance of Rainbow will know how to iterate through the colors. In the simplest
case, we can use the each method:

r = Rainbow.new
r.each do |color|
 puts "Next color: #{color}"
end

The output of this simple iteration is as follows:

Next color: red
Next color: orange
Next color: yellow
Next color: green
Next color: blue
Next color: indigo
Next color: violet

Listing 10.1 An Enumerable class and its deployment of the each method

306 CHAPTER 10 Collections central: Enumerable and Enumerator
But that’s just the beginning. Because Rainbow mixed in the Enumerable module,
rainbows are automatically endowed with a whole slew of methods built on top of the
each method.

 Here’s an example: find, which returns the first element in an enumerable object
for which the code block provided returns true. Let’s say we want to find the first color
that begins with the letter y. We can do it with find, like this:

r = Rainbow.new
y_color = r.find {|color| color.start_with?('y') }
puts "First color starting with 'y' is #{y_color}."

find works by calling each. each yields items, and find uses the code block we’ve
given it to test those items one at a time for a match. When each gets around to yield-
ing yellow, find runs it through the block, and it passes the test. The variable
y_color therefore receives the value yellow. Notice that there’s no need to define
find. It’s part of Enumerable, which we’ve mixed in. It knows what to do and how to
use each to do it.

 Defining each, together with mixing in Enumerable, buys you a great deal of func-
tionality for your objects. Much of the searching and querying functionality you see in
Ruby arrays, hashes, and other collection objects comes directly from Enumerable. If
you want to know which methods Enumerable provides, ask it:

>> Enumerable.instance_methods(false).sort
=> [:all?, :any?, :chunk, :chunk_while, :collect, :collect_concat, :count,

:cycle, :detect, :drop, :drop_while, :each_cons, :each_entry,
:each_slice, :each_with_index, :each_with_object, :entries, :find,
:find_all, :find_index, :first, :flat_map, :grep, :grep_v, :group_by,
:include?, :inject, :lazy, :map, :max, :max_by, :member?, :min, :min_by,
:minmax, :minmax_by, :none?, :one?, :partition, :reduce, :reject,
:reverse_each, :select, :slice_after, :slice_before, :slice_when, :sort,
:sort_by, :sum, :take, :take_while, :to_a, :to_h, :uniq, :zip]

Thanks to the false argument, the list includes only the methods defined in the
Enumerable module itself. Each of these methods is built on top of each.

 In the sections that follow, you’ll see examples of many of these methods. Some of
the others will crop up in later chapters. The examples throughout the rest of this
chapter will draw on all four of the major collection classes—Array, Hash, Range, and
Set—more or less arbitrarily. Chapter 9 introduced you to these classes individually.
Armed with a sense of what makes each of them tick, you’re in a good position to
study what they have in common.

 Some of the methods in Ruby’s enumerable classes are actually overwritten in
those classes. For example, you’ll find implementations of map, select, sort, and
other Enumerable instance methods in the source code file array.c; the Array class
doesn’t simply provide an each method and mix in Enumerable (though it does do
that, and it gains behaviors that way). These overwrites are done either because a
given class requires special behavior in the face of a given Enumerable method, or for
the sake of efficiency. We’re not going to scrutinize all the overwrites. The main point

Output: First color
starting with 'y' is
yellow.

307Enumerable Boolean queries
here is to explore the ways in which all of the collection classes share behaviors and
interface.

 In what follows, we’ll look at several categories of methods from Enumerable. We’ll
start with some Boolean methods.

10.2 Enumerable Boolean queries
A number of Enumerable methods return true or false depending on whether one or
more element matches certain criteria. Given an array states, containing the names
of all the states in the United States of America, here’s how you might perform some
of these Boolean queries:

Does the array include Louisiana?
>> states.include?("Louisiana")
=> true
Do all states include a space?
>> states.all? {|state| state =~ / / }
=> false
Does any state include a space?
>> states.any? {|state| state =~ / / }
=> true
Is there one, and only one, state with "West" in its name?
>> states.one? {|state| state =~ /West/ }
=> true
Are there no states with "East" in their names?
>> states.none? {|state| state =~ /East/ }
=> true

If states were, instead, a hash with state names as keys and abbreviations as values,
you could run similar tests, although you’d need to adjust for the fact that Hash#each
yields both a key and a value each time through. The Hash#include? method checks
for key inclusion, as you saw in chapter 9, but the other methods in the previous
example handle key/value pairs:

Does the hash include Louisiana?
>> states.include?("Louisiana")
=> true
Do all states include a space?
>> states.all? {|state, abbr| state =~ / / }
=> false
Is there one, and only one, state with "West" in its name?
>> states.one? {|state, abbr| state =~ /West/ }
=> true

In all of these cases, you could grab an array via states.keys and perform the tests on
that array directly:

Do all states include a space?
>> states.keys.all? {|state| state =~ / / }
=> false

Generating the entire keys array in advance, rather than walking through the hash
that’s already there, is slightly wasteful of memory. Still, the new array contains the key

include? consults hash’s keys

Hash yields key/value
pairs to block

308 CHAPTER 10 Collections central: Enumerable and Enumerator
objects that already exist, so it only “wastes” the memory devoted to wrapping the keys
in an array. The memory taken up by the keys themselves doesn’t increase.

What about sets and ranges? Set iteration works much like array iteration for Boolean
query (and most other) purposes: if states were a set, you could run exactly the same
queries as the ones in the example with the same results. With ranges, enumerability
gets a little trickier.

 It’s more meaningful to view some ranges as enumerable—as collections of items
that you can step through—than others. The include? method works for any range.
But the other Boolean Enumerable methods force the enumerability issue: if the
range can be expressed as a list of discrete elements, then those methods work; but if
it can’t, as with a range of floats, then calling any of the methods triggers a fatal error:

>> r = Range.new(1, 10)
=> 1..10
>> r.one? {|n| n == 5 }
=> true
>> r.none? {|n| n % 2 == 0 }
=> false
>> r = Range.new(1.0, 10.0)
=> 1.0..10.0
>> r.one? {|n| n == 5 }
TypeError (can't iterate from Float)
>> r = Range.new(1, 10.3)
=> 1..10.3
>> r.any? {|n| n > 5 }
=> true

Given a range spanning two integers, you can run tests like one? and none? B because
the range can easily slip into behaving like a collection: in effect, the range 1..10
adopts the API of the corresponding array, [1,2,3,4,5,6,7,8,9,10].

 But a range between two floats C can’t behave like a finite collection of discrete
values. It’s meaningless to produce “each” float inside a range. The range has the each
method, but the method is written in such a way as to refuse to iterate over floats D.

Hashes iterate with two-element arrays
When you iterate through a hash with each or any other built-in iterator, the hash is
yielded to your code block one key/value pair at a time—and the pairs are two-
element arrays. You can, if you wish, provide just one block parameter and capture
the whole little array:

hash.each {|pair| ... }

In such a case, you’ll find the key at pair[0] and the value at pair[1]. Normally, it
makes more sense to grab the key and value in separate block parameters. But all
that’s happening is that the two are wrapped up in a two-element array, and that array
is yielded. If you want to operate on the data in that form, you may.

B

C

D

E

309Enumerable searching and selecting
(The fact that the error is TypeError rather than NoMethodError indicates that the
each method exists but can’t function on this range.)

 You can use a float as a range’s end point and still get enumeration, as long as the
start point is an integer E. When you call each (or one of the methods built on top of
each), the range behaves like a collection of integers, starting at the start point and
ending at the end point, rounded down to the nearest integer.

 In addition to answering various true/false questions about their contents, enu-
merable objects excel at performing search and select operations. We’ll turn to those
now.

10.3 Enumerable searching and selecting
It’s common to want to filter a collection of objects based on one or more selection
criteria. For example, if you have a database of people registering for a conference,
and you want to send payment reminders to the people who haven’t paid, you can fil-
ter a complete list based on payment status. Or you might need to narrow a list of
numbers to only the even ones. And so forth; the use cases for selecting elements
from enumerable objects are unlimited.

 The Enumerable module provides several facilities for filtering collections and for
searching collections to find one or more elements that match one or more criteria.
We’ll look at several filtering and searching methods here. All of them are iterators:
they all expect you to provide a code block. The code block is the selection filter. You
define your selection criteria (your tests for inclusion or exclusion) inside the block.
The return value of the entire method may, depending on which method you’re using
and on what it finds, be one object, an array (possibly empty) of objects matching your
criteria, or nil, indicating that the criteria weren’t met.

 We’ll start with a one-object search using find and then work our way through sev-
eral techniques for deriving a multiple-object result set from an enumerable query.

10.3.1 Getting the first match with find

find (also available as the synonymous detect) locates the first element in an array
for which the code block, when called with that element as an argument, returns true.
For example, to find the first number greater than 5 in an array of integers, you can
use find like this:

>> [1,2,3,4,5,6,7,8,9,10].find {|n| n > 5 }
=> 6

find iterates through the array, yielding each element in turn to the block. If the
block returns anything with the Boolean value of true, the element yielded “wins,” and
find stops iterating. If find fails to find an element that passes the code block test, it
returns nil. (Try changing n > 5 to n > 100 in the example, and you’ll see.) It’s inter-
esting to ponder the case where your array has nil as one of its elements, and your
code block looks for an element equal to nil:

[1,2,3,nil,4,5,6].find {|n| n.nil? }

310 CHAPTER 10 Collections central: Enumerable and Enumerator
In these circumstances, find always returns nil—whether the search succeeds or fails!
That means the test is useless; you can’t tell whether it succeeded. You can work
around this situation with other techniques, such as the include? method, with which
you can find out whether an array has nil as an element. You can also provide a “noth-
ing found” function—a Proc object—as an argument to find, in which case that func-
tion will be called if the find operation fails. We haven’t looked at Proc objects in
depth yet, although you’ve seen some examples of them in connection with the han-
dling of code blocks. For future reference, here’s an example of how to supply find
with a failure-handling function:

>> failure = lambda { 11 }
=> #<Proc:0x434810@(irb):6 (lambda)>
>> over_ten = [1,2,3,4,5,6].find(failure) {|n| n > 10 }
=> 11

In this example, the anonymous function (the Proc object) returns 11 B, so even if
there’s no number greater than 10 in the array, you get one anyway. (You’ll see lamb-
das and Proc objects up close in chapter 14.)

 Although find always returns one object, find_all, also known as select, always
returns an array, as does its negative equivalent reject.

B

The dominance of the array
Arrays serve generically as the containers for most of the results that come back from
enumerable selecting and filtering operations, whether or not the object being
selected from or filtered is an array. There are some exceptions to this quasi-rule, but
it holds true widely.

The plainest way to see it is by creating an enumerable class of your own and watch-
ing what you get back from your select queries. Look again at the Rainbow class in
listing 10.1. Now look at what you get back when you perform some queries:

>> r = Rainbow.new
=> #<Rainbow:0x45b708>
>> r.select {|color| color.size == 6 }
=> ["orange", "yellow", "indigo", "violet"]
>> r.map {|color| color[0,3] }
=> ["red", "ora", "yel", "gre", "blu", "ind", "vio"]
>> r.drop_while {|color| color.size < 5 }
=> ["orange", "yellow", "green", "blue", "indigo", "violet"]

In every case, the result set comes back in an array.

The array is the most generic container and therefore the logical candidate for the
role of universal result format. A few exceptions arise. A hash returns a hash from a
select or reject operation. Sets return arrays from map, but you can call map! on
a set to change the elements of the set in place. For the most part, though, enumer-
able selection and filtering operations come back to you inside arrays.

311Enumerable searching and selecting
10.3.2 Getting all matches with find_all (a.k.a. select) and reject

find_all (the same method as select) returns a new collection containing all the
elements of the original collection that match the criteria in the code block, not just
the first such element (as with find). If no matching elements are found, find_all
returns an empty collection object.

 In the general case—for example, when you use Enumerable in your own classes—
the “collection” returned by select will be an array. Ruby makes special arrangements
for hashes and sets, though: if you select on a hash or set, you get back a hash or set.
This is enhanced behavior that isn’t strictly part of Enumerable.

 We’ll stick to array examples here:

>> a = [1,2,3,4,5,6,7,8,9,10]
=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>> a.find_all {|item| item > 5 }
=> [6, 7, 8, 9, 10]
>> a.select {|item| item > 100 }
=> []

The first find_all operation returns an array of all the elements that pass the test in
the block: all elements that are greater than 5 B. The second operation also returns
an array, this time of all the elements in the original array that are greater than 10.
There aren’t any, so an empty array is returned C.

 (Arrays, hashes, and sets have a bang version, select!, that reduces the collection
permanently to only those elements that passed the selection test. There’s no find-
_all! synonym; you have to use select!.)

 Just as you can select items, so you can reject items, meaning that you find out
which elements of an array do not return a true value when yielded to the block.
Using the a array from the previous example, you can do this to get the array minus
any and all elements that are greater than 5:

>> a.reject {|item| item > 5 }
=> [1, 2, 3, 4, 5]

(Once again there’s a bang, in-place version, reject!, specifically for arrays, hashes,
and sets.)

 If you’ve ever used the command-line utility grep, the next method will ring a bell.
If you haven’t, you’ll get the hang of it anyway.

10.3.3 Selecting on threequal matches with grep

The Enumerable#grep method lets you select from an enumerable object based on
the case-equality operator, ===. The most common application of grep is the one that
corresponds most closely to the common operation of the command-line utility of the
same name, pattern matching for strings:

>> colors = %w(red orange yellow green blue indigo violet)
=> ["red", "orange", "yellow", "green", "blue", "indigo", "violet"]

B

C

312 CHAPTER 10 Collections central: Enumerable and Enumerator
>> colors.grep(/o/)
=> ["orange", "yellow", "indigo", "violet"]

But the generality of === lets you do some fancy things with grep:

>> miscellany = [75, "hello", 10...20, "goodbye"]
=> [75, "hello", 10...20, "goodbye"]
>> miscellany.grep(String)
=> ["hello", "goodbye"]
>> miscellany.grep(50..100)
=> [75]

String === object is true for the two strings in the array, so an array of those two
strings is what you get back from grepping for String B. Ranges implement === as
an inclusion test. The range 50..100 includes 75; hence the result from grepping
miscellany for that range C.

 In general, the statement enumerable.grep(expression) is functionally equiva-
lent to this:

enumerable.select {|element| expression === element }

In other words, it selects for a truth value based on calling ===. In addition, grep can
take a block, in which case it yields each element of its result set to the block before
returning the results:

>> colors = %w(red orange yellow green blue indigo violet)
=> ["red", "orange", "yellow", "green", "blue", "indigo", "violet"]
>> colors.grep(/o/) {|color| color.capitalize }
=> ["Orange", "Yellow", "Indigo", "Violet"]

The full grep syntax

enumerable.grep(expression) {|item| ... }

thus operates in effect like this:

enumerable.select {|item| expression === item}.map {|item| ... }

Again, you’ll mostly see (and probably mostly use) grep as a pattern-based string selec-
tor. But keep in mind that grepping is pegged to case equality (===) and can be used
accordingly in a variety of situations.

 Whether carried out as select or grep or some other operation, selection scenar-
ios often call for grouping of results into clusters or categories. The Enumerable
#group_by and #partition methods make convenient provisions for exactly this kind
of grouping.

10.3.4 Organizing selection results with group_by and partition

A group_by operation on an enumerable object takes a block and returns a hash. The
block is executed for each object. For each unique block return value, the result hash
gets a key; the value for that key is an array of all the elements of the enumerable for
which the block returned that value.

B

C

313Enumerable searching and selecting
 An example should make the operation clear:

>> colors = %w(red orange yellow green blue indigo violet)
=> ["red", "orange", "yellow", "green", "blue", "indigo", "violet"]
>> colors.group_by {|color| color.size }
=> {3=>["red"], 6=>["orange", "yellow", "indigo", "violet"],
 5=>["green"], 4=>["blue"]}

The block {|color| color.size } returns an integer for each color. The hash
returned by the entire group_by operation is keyed to the various sizes (3, 4, 5, 6), and
the values are arrays containing all the strings from the original array that are of the
size represented by the respective keys.

 The partition method is similar to group_by, but it splits the elements of the enu-
merable into two arrays based on whether the code block returns true for the ele-
ment. There’s no hash, just an array of two arrays. The two arrays are always returned
in true/false order.

 Consider a Person class, where every person has an age. The class also defines an
instance method teenager?, which is true if the person’s age is between 13 and 19,
inclusive:

class Person
 attr_accessor :age
 def initialize(options)
 self.age = options[:age]
 end
 def teenager?
 (13..19) === age
 end
end

Now let’s generate an array of people:

people = 10.step(25,3).map {|i| Person.new(:age => i) }

This code does an iteration from 10 to 25 in steps of 3 (10, 13, 16, 19, 22, 25), passing
each of the values to the block in turn. Each time through, a new Person is created
with the age corresponding to the increment. Thanks to map, the person objects are
all accumulated into an array, which is assigned to people. (The chaining of the itera-
tor map to the iterator step is made possible by the fact that step returns an enumera-
tor. You’ll learn more about enumerators presently.)

 We’ve got our six people; now let’s partition them into teens and non-teens:

teens = people.partition {|person| person.teenager? }

The teens array has the following content:

[[#<Person:0x000001019d1a50 @age=13>, #<Person:0x000001019d19d8 @age=16>,
#<Person:0x000001019d1988 @age=19>], [#<Person:0x000001019d1ac8
@age=10>, #<Person:0x000001019d1910 @age=22>, #<Person:0x000001019d1898
@age=25>]]

314 CHAPTER 10 Collections central: Enumerable and Enumerator
Note that this is an array containing two subarrays. The first contains those people for
whom person.teenager? returned true; the second is the non-teens. We can now use
the information, for example, to find out how many teens and non-teens we have:

puts "#{teens[0].size} teens; #{teens[1].size} non-teens"

The output from this statement reflects the fact that half of our people are teens and
half aren’t:

3 teens; 3 non-teens

Let’s look now at some “element-wise” operations—methods that involve relatively
fine-grained manipulation of specific collection elements.

10.4 Element-wise enumerable operations
Collections are born to be traversed, but they also contain special-status individual
objects: the first or last in the collection, and the greatest (largest) or least (smallest).
Enumerable objects come with several tools for element handling along these lines.

10.4.1 The first method

Enumerable#first, as the name suggests, returns the first item encountered when
iterating over the enumerable:

>> [1,2,3,4].first
=> 1
>> (1..10).first
=> 1
>> {1 => 2, "one two" => "three"}.first
=> [1, 2]

The object returned by first is the same as the first object you get when you iterate
through the parent object. In other words, it’s the first thing yielded by each. In keep-
ing with the fact that hashes yield key/value pairs in two-element arrays, taking the
first element of a hash gives you a two-element array containing the first pair that was
inserted into the hash (or the first key inserted and its new value, if you’ve changed
that value at any point):

>> address = { city: "New York", state: "NY", zip: "10027" }
=> {:city=>"New York", :state=>"NY", :zip=>"10027"}
>> address.first
=> [:city, "New York"]
>> address[:zip] = "10018"
=> "10018"
>> address.first
=> [:city, "New York"]

Perhaps the most noteworthy point about Enumerable#first is that there’s no
Enumerable#last. That’s because finding the end of the iteration isn’t as straightfor-
ward as finding the beginning. Consider a case where the iteration goes on forever.

first means
first inserted

New value doesn’t
change insertion order

315Element-wise enumerable operations
Here’s a little Die class (die as in the singular of dice). It iterates by rolling the die for-
ever and yielding the result each time:

class Die
 include Enumerable
 def each
 loop do
 yield rand(6) + 1
 end
 end
end

The loop uses the method Kernel#rand. Called with no argument, this method gener-
ates a random floating-point number n such that 0 <= n < 1. With an argument i, it
returns a random integer n such that 0 <= n < i. Thus rand(6) produces an integer in
the range (0..5). Adding one to that number gives a number between 1 and 6, which
corresponds to what you get when you roll a die.

 But the main point is that Die#each goes on forever. If you’re using the Die class,
you have to make provisions to break out of the loop. Here’s a little game where you
win as soon as the die turns up 6:

puts "Welcome to 'You Win If You Roll a 6'!"
d = Die.new
d.each do |roll|
 puts "You rolled a #{roll}."
 if roll == 6
 puts "You win!"
 break
 end
end

A typical run might look like this:

Welcome to 'You Win If You Roll a 6'
You rolled a 3.
You rolled a 2.
You rolled a 2.
You rolled a 1.
You rolled a 6.
You win!

The triviality of the game aside, the point is that it would be meaningless to call last
on your die object, because there’s no last roll of the die. Unlike taking the first ele-
ment, taking the last element of an enumerable has no generalizable meaning.

 For the same reason—the unreachability of the end of the enumeration—an enu-
merable class with an infinitely yielding each method can’t do much with methods
like select and map, which don’t return their results until the underlying iteration is
complete. Occasions for infinite iteration are, in any event, few; but observing the
behavior and impact of an endless each can be instructive for what it reveals about the
more common, finite case.

316 CHAPTER 10 Collections central: Enumerable and Enumerator
 Keep in mind, though, that some enumerable classes do have a last method:
notably, Array and Range. Moreover, all enumerables have a take method, a kind of
generalization of first, and a companion method called drop.

10.4.2 The take and drop methods

Enumerables know how to “take” a certain number of elements from the beginning of
themselves and conversely how to “drop” a certain number of elements. The take and
drop operations basically do the same thing—they divide the collection at a specific
point—but they differ in what they return:

>> states = %w(NJ NY CT MA VT FL)
=> ["NJ", "NY", "CT", "MA", "VT", "FL"]
>> states.take(2)
=> ["NJ", "NY"]
>> states.drop(2)
=> ["CT", "MA", "VT", "FL"]

When you take elements, you get those elements. When you drop elements, you get
the original collection minus the elements you’ve dropped. You can constrain the
take and drop operations by providing a block and using the variant forms
take_while and drop_while, which determine the size of the “take” not by an integer
argument but by the truth value of the block:

>> states.take_while {|s| /N/.match(s) }
=> ["NJ", "NY"]
>> states.drop_while {|s| /N/.match(s) }
=> ["CT", "MA", "VT", "FL"]

The take and drop operations are a kind of hybrid of first and select. They’re
anchored to the beginning of the iteration and terminate once they’ve satisfied the
quantity requirement or encountered a block failure. Let’s demonstrate this by add-
ing the Nebraska state code to our array:

>> states.unshift("NE")
=> ["NE", "NJ", "NY", "CT", "MA", "VT", "FL"]
>> states.take(2) { |s| /N/.match(s) }
=> ["NE", "NJ"]

unshift adds an element to the beginning of an array. take returns the first two state
codes that match the expression and stops, leaving “NY” out. You can also determine
the minimum and maximum values in an enumerable collection.

10.4.3 The min and max methods

The min and max methods do what they sound like they’ll do:

>> [1,3,5,4,2].max
=> 5
>> %w(Ruby C APL Perl Smalltalk).min
=> "APL"

Grabs first two elements

Grabs collection except
first two elements

317Element-wise enumerable operations
Minimum and maximum are determined by the <=> (spaceship comparison opera-
tor) logic, which for the array of strings puts "APL" first in ascending order. If you
want to perform a minimum or maximum test based on nondefault criteria, you can
provide a code block:

>> %w(Ruby C APL Perl Smalltalk).min {|a,b| a.size <=> b.size }
=> "C"

A more streamlined block-based approach, though, is to use min_by or max_by, which
perform the comparison implicitly:

>> %w{ Ruby C APL Perl Smalltalk }.min_by {|lang| lang.size }
=> "C"

There’s also a minmax method (and the corresponding minmax_by method), which
gives you a pair of values, one for the minimum and one for the maximum:

>> %w{ Ruby C APL Perl Smalltalk }.minmax
=> ["APL", "Smalltalk"]
>> %w{ Ruby C APL Perl Smalltalk }.minmax_by {|lang| lang.size }
=> ["C", "Smalltalk"]

Keep in mind that the min/max family of enumerable methods is always available, even
when using it isn’t a good idea. You wouldn’t want to do this, for example:

die = Die.new
puts die.max

The infinite loop with which Die#each is implemented won’t allow a maximum value
ever to be determined. Your program will hang.

 In the case of hashes, min and max use the keys to determine ordering. If you want
to use values, the *_by members of the min/max family can help you:

>> state_hash = {"New York" => "NY", "Maine" => "ME",
"Alaska" => "AK", "Alabama" => "AL" }
=> {"New York"=>"NY", "Maine"=>"ME", "Alaska"=>"AK", "Alabama"=>"AL"}
>> state_hash.min
=> ["Alabama", "AL"]
>> state_hash.min_by {|name, abbr| name }
=> ["Alabama", "AL"]
>> state_hash.min_by {|name, abbr| abbr }
=> ["Alaska", "AK"]

And of course you can, if you wish, perform calculations inside the block that involve
both the key and the value.

 At this point, we’ve looked at examples of each methods and how they link up to a
number of methods that are built on top of them. It’s time now to look at some meth-
ods that are similar to each but a little more specialized. The most important of these
is map. In fact, map is important enough that we’ll look at it separately in its own sec-
tion. First, let’s discuss some other each relatives.

No need to compare two
parameters explicitly in code block

Minimum pair, by key

Same as min

Minimum pair, by value

318 CHAPTER 10 Collections central: Enumerable and Enumerator
10.5 Relatives of each
Enumerable makes several methods available to you that are similar to each, in that
they go through the whole collection and yield elements from it, not stopping until
they’ve gone all the way through (and in one case, not even then!). Each member of
this family of methods has its own particular semantics and niche. The methods
include reverse_each, each_with_index, each_slice, each_cons, cycle, and inject.
We’ll look at them in that order.

10.5.1 reverse_each

The reverse_each method does what it sounds like it will do: it iterates backwards
through an enumerable. For example, the code

[1,2,3].reverse_each {|e| puts e * 10 }

produces this output:

30
20
10

You have to be careful with reverse_each. Don’t use it on an infinite iterator, since
the concept of going in reverse depends on the concept of knowing what the last ele-
ment is—which is a meaningless concept in the case of an infinite iterator. Try calling
reverse_each on an instance of the Die class shown earlier—but be ready to hit Ctrl-
C to get out of the infinite loop.

10.5.2 The each_with_index method (and each.with_index)

Enumerable#each_with_index differs from each in that it yields an extra item every
time through the collection: namely, an integer representing the ordinal position of
the item. This index can be useful for labeling objects, among other purposes:

>> names = ["George Washington", "John Adams", "Thomas Jefferson",
"James Madison"]
=> ["George Washington", "John Adams", "Thomas Jefferson",
"James Madison"]
>> names.each_with_index do |pres, i|
?> puts "#{i+1}. #{pres}"
>> end
1. George Washington
2. John Adams
3. Thomas Jefferson
4. James Madison

An anomaly is involved in each_with_index: every enumerable object has it, but not
every enumerable object has knowledge of what an index is. You can see this by asking
enumerables to perform an each_index (as opposed to each_with_index) operation.
The results vary from one enumerable to another:

>> %w(a b c).each_index {|i| puts i }
0

Adds 1 to avoid 0th list entry

319Relatives of each
1
2
=> ["a", "b", "c"]

Arrays, then, have a fundamental sense of an index. For hashes, the closest we have is
demonstrated with each_with_index:

>> letters = {"a" => "ay", "b" => "bee", "c" => "see" }
=> {"a"=>"ay", "b"=>"bee", "c"=>"see"}
>> letters.each_with_index {|(key,value),i| puts i }
0
1
2
=> {"a"=>"ay", "b"=>"bee", "c"=>"see"}
>> letters.each_index {|(key,value),i| puts i }
NoMethodError (undefined method `each_index' for {"a"=>"ay",
"b"=>"bee", "c"=>"see"}:Hash)

We could posit that a hash’s keys are its indexes and that the ordinal numbers gener-
ated by the each_with_index iteration are extra or meta-indexes. It’s an interesting
theoretical question; but in practice it doesn’t end up mattering much, because it’s
extremely unusual to need to perform an each_with_index operation on a hash.

 Enumerable#each_with_index works, but it’s somewhat deprecated. Instead, con-
sider using the #with_index method of the enumerator you get back from calling
each. You’ve already seen this technique in chapter 9:

>> array = %w{ red yellow blue }
=> ["red", "yellow", "blue"]
>> array.each.with_index do |color, i|
?> puts "Color number #{i} is #{color}."
>> end

It’s as simple as changing an underscore to a period … though there’s a little more to it
under the hood, as you’ll see when you learn more about enumerators a little later. (See
section 10.11.2 for more on with_index.) Using each_index also buys you some func-
tionality: you can provide an argument that will be used as the first index value, thus
avoiding the need to add one to the index in a case like the previous list of presidents:

>> names.each.with_index(1) do |pres, i|
?> puts "#{i} #{pres}"
>> end

Another subfamily of each relatives is the pair of methods each_slice and each_cons.

10.5.3 The each_slice and each_cons methods

The each_slice and each_cons methods are specializations of each that walk
through a collection a certain number of elements at a time, yielding an array of that
many elements to the block on every iteration. The difference between them is that
each_slice handles each element only once, whereas each_cons takes a new group-
ing at each element and thus produces overlapping yielded arrays.

320 CHAPTER 10 Collections central: Enumerable and Enumerator
 Here’s an illustration of the difference:

>> array = [1,2,3,4,5,6,7,8,9,10]
=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>> array.each_slice(3) {|slice| p slice }
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]
=> nil
>> array.each_cons(3) {|cons| p cons }
[1, 2, 3]
[2, 3, 4]
[3, 4, 5]
[4, 5, 6]
[5, 6, 7]
[6, 7, 8]
[7, 8, 9]
[8, 9, 10]
=> nil

The each_slice operation yields the collection progressively in slices of size n (or less
than n, if fewer than n elements remain). By contrast, each_cons moves through the
collection one element at a time and at each point yields an array of n elements, stop-
ping when the last element in the collection has been yielded once. each_slice is
part of a family of slice methods. These other slice methods return enumerators, a
concept that we’ll look at in section 10.9.

 The slicing doesn’t end there for Ruby. You can use a family of methods to group
items based on programmer-defined criteria.

10.5.4 The slice_ family of methods

The slice_ methods, first encountered in chapter 8, group collections by the criteria
defined in a block. slice_ before will split a collection at the point at which a given
criterion is matched. This criterion is provided either as a regular expression match or
a Boolean test inside a block.

 Let’s say we want to split the header of a report from its contents:

>> parsed_report = ["Top Secret Report", "Eyes Only", "=====", "Title: The
Meaning of Life"]

>> parsed_report.slice_before(/=/).to_a
=> [["Top Secret Report", "Eyes Only"],["=====", "Title: The Meaning of

Life"]]

slice_after is a complement to slice_before, slotting items into groups after the
pattern or Boolean test is found. Note in the following example that slice_after
(and of course slice_before) will create more groups if it finds more items matching
the given criterion:

>> parsed_report = ["Top Secret Report", "Eyes Only", "=====", "Title: The
Meaning of Life", "Author: [REDACTED]", "Date: 2018-01-01", "=====",
"Abstract:\n"]

321Relatives of each
>> parsed_report.slice_after(/=/).to_a
=> [["Top Secret Report", "Eyes Only", "====="], ["Title: The Meaning of

Life", "Author: [REDACTED]", "Date: 2018-01-01", "====="],
["Abstract:\n"]]

Operating on a range is just as easy as an array:

>> (1..10).slice_before { |num| num % 2 == 0 }.to_a
=> [[1], [2,3], [4,5], [6,7], [8,9], [10]]

If you’re really parsing a report, however, you’re unlikely to get it in the form of a
Ruby array. It’s more common that you’ll need to parse some input data. Luckily, the
slice_ methods operate on any collection. Let’s create a file called report.dat and
add the following data:

Top Secret Report
Eyes Only
=====
Title: The Meaning of Life
Author: [REDACTED]
Date: 2018-01-01
=====
Abstract:
In this report I give you the meaning of life, plain and simple.

Now we can operate against the data in the file:

>> File.open('report.dat').slice_before do |line|
 line.start_with?("=")
 end.to_a

In the previous example, we passed a block to slice_before and tested for our delim-
iter using a Boolean expression. The result is the same in this simple example, but you
can start to see how more complex logic can be built in and efficiently executed by
slice_before and slice_after.

 slice_when tests two elements at a time over a collection:

>> [1,2,3,3,4,5,6,6,7,8,8,8,9,10].slice_when { |i,j| i == j }.to_a
=> [[1,2,3],[3,4,5,6],[6,7,8],[8],[8,9,10]]

Why did we end all of the preceding examples by calling to_a on the result? That’s
because slice_ methods take a collection and return an enumerator. The enumera-
tor is a powerful tool that we’ll look at in depth later in this chapter.

 Yet another generic way to iterate through an enumerable is with the cycle
method.

10.5.5 The cycle method

Enumerable#cycle yields all the elements in the object again and again in a loop. If
you provide an integer argument, the loop will be run that many times. If you don’t, it
will be run infinitely.

322 CHAPTER 10 Collections central: Enumerable and Enumerator
 You can use cycle to decide dynamically how many times you want to iterate
through a collection—essentially, how many each-like runs you want to perform con-
secutively. Here’s an example involving a deck of playing cards:

class PlayingCard
 SUITS = %w(clubs diamonds hearts spades)
 RANKS = %w(2 3 4 5 6 7 8 9 10 J Q K A)
 class Deck
 attr_reader :cards
 def initialize(n=1)

@cards = []
SUITS.cycle(n) do |s|
RANKS.cycle(1) do |r|
 @cards << "#{r} of #{s}
end

end
 end
 end
end

The class PlayingCard defines constants representing suits and ranks B, whereas the
PlayingCard::Deck class models the deck. The cards are stored in an array in the
deck’s @cards instance variable, available also as a reader attribute C. Thanks to
cycle, it’s easy to arrange for the possibility of combining two or more decks.
Deck.new takes an argument, defaulting to 1 D. If you override the default, the pro-
cess by which the @cards array is populated is augmented.

 For example, this command produces a double deck of cards containing two of
each card for a total of 104:

>> deck = PlayingCard::Deck.new(2)
>> puts deck.cards.size
=> 104

That’s because the method cycles through the suits twice, cycling through the ranks
once per suit iteration E. The ranks cycle is always done only once F; cycle(1) is, in
effect, another way of saying each. For each permutation, a new card, represented by a
descriptive string, is inserted into the deck G.

 Last on the each-family method tour is inject, also known as reduce.

10.5.6 Enumerable reduction with inject

The inject method (a.k.a. reduce and similar to “fold” methods in functional lan-
guages) works by initializing an accumulator object and then iterating through a
collection (an enumerable object), performing a calculation on each iteration and
resetting the accumulator, for purposes of the next iteration, to the result of that
calculation.

 The classic example of injecting is the summing up of numbers in an array. Here’s
how to do it:

Listing 10.2 Implementing a deck of playing cards

B

C
D

E
F

G

323Relatives of each
>> [1,2,3,4].inject(0) {|acc,n| acc + n }
=> 10

And here’s how it works:

1 The accumulator is initialized to 0, courtesy of the 0 argument to inject.
2 The first time through the iteration—the code block—acc is 0, and n is set to

1 (the first item in the array). The result of the calculation inside the block is
0 + 1, or 1.

3 The second time through, acc is set to 1 (the block’s result from the previous
time through), and n is set to 2 (the second element in the array). The block
therefore evaluates to 3.

4 The third time through, acc and n are 3 (previous block result) and 3 (next
value in the array). The block evaluates to 6.

5 The fourth time through, acc and n are 6 and 4. The block evaluates to 10.
Because this is the last time through, the value from the block serves as the
return value of the entire call to inject. Thus the entire call evaluates to 10, as
shown by irb.

If you don’t supply an argument to inject, it uses the first element in the enumerable
object as the initial value for acc and yields elements starting from the second ele-
ment in the collection. In this example, that would produce the same result, because
the first iteration added 0 to 1 and set acc to 1 anyway.

 In fact, the preceding example is purposefully verbose to describe how an accumu-
lator works. We can simplify the expression:

>> [1,2,3,4].inject(:+)
=> 10

Passing the :+ method to inject tells Ruby to use a 0-based accumulator and obviates
the need for an explicit accumulator.

 Here’s an enhanced rewrite of the first example, with the accumulator automati-
cally initialized to 1. Some commentary is printed out on each interaction so that
you can see what’s happening:

>> [1,2,3,4].inject do |acc,n|
 puts "adding #{acc} and #{n}...#{acc+n}"
 acc + n
 end
adding 1 and 2...3
adding 3 and 3...6
adding 6 and 4...10
=> 10

The puts statement is a pure side effect (and, on its own, evaluates to nil), so you still
have to end the block with acc + n to make sure the block evaluates to the correct
value.

 We’ve saved perhaps the most important relative of each for last: Enumerable#map.

324 CHAPTER 10 Collections central: Enumerable and Enumerator
10.6 The map method
The map method (also callable as collect) is one of the most powerful and important
enumerable or collection operations available in Ruby. You’ve met it before (in chap-
ter 6), but there’s more to see, especially now that we’re inside the overall topic of
enumerability.

 Whatever enumerable it starts with, map always returns an array. The returned array
is always the same size as the original enumerable. Its elements consist of the accumu-
lated result of calling the code block on each element in the original object in turn.

 For example, here’s how you map an array of names to their uppercase equivalents:

>> names = %w(David Yukihiro Chad Amy)
=> ["David", "Yukihiro", "Chad", "Amy"]
>> names.map {|name| name.upcase }
=> ["DAVID", "YUKIHIRO", "CHAD", "AMY"]

The new array is the same size as the original array, and each of its elements corre-
sponds to the element in the same position in the original array. But each element has
been run through the block.

It may be obvious, but it’s important to note that what matters about map is its return
value.

10.6.1 The return value of map

The return value of map, and the usefulness of that return value, is what distinguishes
map from each. The return value of each doesn’t matter. You’ll almost never see this:

result = array.each {|x| # code here... }

Why? Because each returns its receiver. You might as well do this:

result = array
array.each {|x| ... }

Using a symbol argument as a block
You saw earlier in the book that you can use a symbol such as :upcase with an & in
front of it in method-argument position, and the result will be the same as if you used
a code block that called the method with the same name as the symbol on each ele-
ment. Thus you could rewrite the block in the last example, which calls upcase on
each element, like this:

names.map(&:upcase)

This chapter contains more examples of using symbol-argument blocks. You’ll be
presented with both variations throughout the book and see both used in real-world
programming.

325The map method
On the other hand, map returns a new object: a mapping of the original object to a
new object. So you’ll often see—and do—things like this:

result = array.map {|x| # code here... }

The difference between map and each is a good reminder that each exists purely for
the side effects from the execution of the block. The value returned by the block each
time through is discarded. That’s why each returns its receiver; it doesn’t have any-
thing else to return, because it hasn’t saved anything. map, on the other hand, main-
tains an accumulator array of the results from the block.

 This doesn’t mean that map is better or more useful than each. It means they’re dif-
ferent in some important ways. But the semantics of map do mean that you have to be
careful about the side effects that make each useful. Side effects are an important con-
cept that’s covered extensively in chapter 16. In the meantime, an example will help
you use map more effectively.

BE CAREFUL WITH BLOCK EVALUATION

Have a look at this code, and see if you can predict what the array result will contain
when the code is executed:

array = [1,2,3,4,5]
result = array.map {|n| puts n * 100 }

The answer is that result will be this:

[nil, nil, nil, nil, nil]

Why? Because the return value of puts is always nil. That’s all map cares about. Yes,
the five values represented by n * 100 will be printed to the screen, but that’s because
the code in the block gets executed. The result of the operation—the mapping
itself—is all nils, because every call to this particular block will return nil.

 There’s an in-place version of map for arrays and sets: map! (a.k.a. collect!).

10.6.2 In-place mapping with map!

Consider again the names array:

names = %w(David Yukihiro Chad Amy)

To change the names array in place, run it through map!, the destructive version of
map:

names.map!(&:upcase)

The map! method of Array is defined in Array, not in Enumerable. Because map oper-
ations generally return arrays, whatever the class of their receiver may be, doing an in-
place mapping doesn’t make sense unless the object is already an array. It would be
difficult, for example, to imagine what an in-place mapping of a range would consist
of. But the Set#map! method does an in-place mapping of a set back to itself—which
makes sense, given that a set is in many respects similar to an array.

See sidebar, “Using a symbol argument as a block”

326 CHAPTER 10 Collections central: Enumerable and Enumerator
 We’re going to look next at a class that isn’t enumerable: String. Strings are a bit
like ranges in that they do and don’t behave like collections. In the case of ranges,
their collection-like properties are enough that the class warrants the mixing in of
Enumerable. In the case of strings, Enumerable isn’t in play; but the semantics of
strings, when you treat them as iterable sequences of characters or bytes, are similar
enough to enumerable semantics that we’ll address it here.

10.7 Strings as quasi-enumerables
You can iterate through the raw bytes or the characters of a string using convenient
iterator methods that treat the string as a collection of bytes, characters, code points,
or lines. Each of these four ways of iterating through a string has an each–style
method associated with it. To iterate through bytes, use each_byte:

str = "abcde"
str.each_byte {|b| p b }

The output of this code is

97
98
99
100
101

If you want each character, rather than its byte code, use each_char:

str = "abcde"
str.each_char {|c| p c }

This time, the output is

"a"
"b"
"c"
"d"
"e"

Iterating by code point provides character codes (integers) at the rate of exactly one
per character:

>> str = "100\u20ac"
=> "100?"
>> str.each_codepoint {|cp| p cp }
49
48
48
8364

Compare this last example with what happens if you iterate over the same string byte
by byte:

>> str.each_byte {|b| p b }
49
48

327Strings as quasi-enumerables
48
226
130
172

Due to the encoding, the number of bytes is greater than the number of code points
(or the number of characters, which in this case is equal to the number of code
points).

 Finally, if you want to go line by line, use each_line:

str = "This string\nhas three\nlines"
str.each_line {|l| puts "Next line: #{l}" }

The output of this example is

Next line: This string
Next line: has three
Next line: lines

The string is split at the end of each line—or, more strictly speaking, at every occur-
rence of the current value of the global variable $/. If you change this variable, you’re
changing the delimiter for what Ruby considers the next line in a string:

str = "David!Alan!Black"
$/ = "!"
str.each_line {|l| puts "Next line: #{l}" }

Now Ruby’s concept of a “line” will be based on the ! character:

Next line: David!
Next line: Alan!
Next line: Black

Even though Ruby strings aren’t enumerable in the technical sense (String doesn’t
include Enumerable), the language provides you with the necessary tools to traverse
them as character, byte, code point, and/or line collections when you need to.

 The four each-style methods described here operate by creating an enumerator.
You’ll learn more about enumerators in section 10.9. The important lesson for the
moment is that you’ve got another set of options if you simply want an array of all
bytes, characters, code points, or lines: drop the each_ and pluralize the method
name. For example, here’s how you’d get an array of all the bytes in a string:

string = "Hello"
p string.bytes

The output is

[72, 101, 108, 108, 111]

You can do likewise with the methods chars, codepoints, and lines.
 We’ve searched, transformed, filtered, and queried a variety of collection objects

using an even bigger variety of methods. The one thing we haven’t done is sort collec-
tions. We’ll do that next.

328 CHAPTER 10 Collections central: Enumerable and Enumerator
10.8 Sorting enumerables
If you have a class, and you want to be able to arrange multiple instances of it in order,
you need to do the following:

1 Define a comparison method for the class (<=>).
2 Place the multiple instances in a container, probably an array.
3 Sort the container.

The key point is that although the ability to sort is granted by Enumerable, your class
doesn’t have to mix in Enumerable. Rather, you put your objects into a container
object that does mix in Enumerable. That container object, as an enumerable, has two
sorting methods, sort and sort_by, which you can use to sort the collection.

 In the vast majority of cases, the container into which you place objects you want
sorted will be an array. Sometimes it will be a hash, in which case the result will be an
array (an array of two-element key/value pair arrays, sorted by a key or some other
criterion).

 Normally, you don’t have to create an array of items explicitly before you sort
them. More often, you sort a collection that your program has already generated auto-
matically. For instance, you may perform a select operation on a collection of objects
and sort the ones you’ve selected. The manual stuffing of lists of objects into square
brackets to create array examples in this section is therefore a bit contrived. But the
goal is to focus directly on techniques for sorting, and that’s what we’ll do.

 Here’s a simple sorting example involving an array of integers:

>> [3,2,5,4,1].sort
=> [1, 2, 3, 4, 5]

Doing this is easy when you have numbers or even strings (where a sort gives you
alphabetical order). The array you put them in has a sorting mechanism, and the inte-
gers or strings have some knowledge of what it means to be in order.

 But what if you want to sort, say, an array of Painting objects?

>> [pa1, pa2, pa3, pa4, pa5].sort

For paintings to have enough knowledge to participate in a sort operation, you have
to define the spaceship operator (see section 7.6.2): Painting#<=>. Each painting will
then know what it means to be greater or less than another painting, and that will
enable the array to sort its contents. Remember, it’s the array you’re sorting, not each
painting; but to sort the array, its elements have to have a sense of how they compare
to each other. (You don’t have to mix in the Comparable module; you just need the
spaceship method. We’ll come back to Comparable shortly.)

 Here we’ll create a Painting class that implements Painting#<=> according to
price.

329Sorting enumerables

class Painting
 attr_reader :price
 def initialize(price)
 @price = price
 end
 def to_s
 "My price is #{price}."
 end
 def <=>(other_painting)
 self.price <=> other_painting.price
 end
end

Now let’s use the map method to generate paintings into an array:

paintings = 5.times.map { Painting.new(rand(100..900)) }

By overwriting Painting’s to_s method B, we can inspect how sort works with a few
puts statements:

puts "5 randomly generated Painting prices:"
puts paintings
puts "Same paintings, sorted:"
puts paintings.sort

Your prices will vary each time you run the program, but here’s a sample of the output:

5 randomly generated Painting prices:
My price is 147.
My price is 798.
My price is 472.
My price is 471.
My price is 675.

Same Paintings, sorted:
My price is 147.
My price is 471.
My price is 472.
My price is 675.
My price is 798.

Ruby applies the <=> test C to the paintings in the paintings array, two at a time,
building up enough information to perform the complete sort.

 Work on a few more examples of your own, and you’ll more fully understand how
sorting operates and how it relates to Enumerable. Let’s look next at defining or over-
riding sort on the fly with a block.

Listing 10.3 Painting class implements the spaceship operator

B

C

330 CHAPTER 10 Collections central: Enumerable and Enumerator
10.8.1 Defining sort-order logic with a block

In cases where no <=> method is defined for these objects, you can supply a block on
the fly to indicate how you want your objects sorted. If there’s a <=> method, you can
override it for the current sort operation by providing a block.

 Our Painting#<=> method sorts by price, but if it also defined a publicly accessi-
ble year attribute using attr_accessor :year, you could force a year-based sort by
using a block:

year_sort = paintings.sort do |a,b|
a.year <=> b.year

end

The block takes two arguments, a and b. This enables Ruby to use the block as many
times as needed to compare one painting with another. The code inside the block
does a <=> comparison between the respective years of the two paintings. For this call
to sort, the code in the block is used instead of the code in the <=> method of the
Painting class.

 You can use this code block form of sort to handle cases where your objects don’t
have a <=> method and therefore don’t know how to compare themselves to each
other. It can also come in handy when the objects being sorted are of different classes
and by default don’t know how to compare themselves to each other. Integers and
strings, for example, can’t be compared directly: an expression like "2" <=> 4 causes a
fatal error. But if you do a conversion first, you can pull it off:

>> ["2",1,5,"3",4,"6"].sort {|a,b| a.to_i <=> b.to_i }
=> [1, "2", "3", 4, 5, "6"]

The elements in the sorted output array are the same as those in the input array: a
mixture of strings and integers. But they’re ordered as they would be if they were all
integers. Inside the code block, both strings and integers are normalized to integer
form with to_i. As far as the sort engine is concerned, it’s performing a sort based on
a series of integer comparisons. It then applies the order it comes up with to the origi-
nal array.

 sort with a block can thus help you where the existing comparison methods won’t
get the job done. And there’s an even more concise way to sort a collection with a
code block: the sort_by method.

10.8.2 Concise sorting with sort_by

Like sort, sort_by is an instance method of Enumerable. The main difference is that
sort_by always takes a block, and it only requires that you show it how to treat one
item in the collection. sort_by figures out that you want to do the same thing to both
items every time it compares a pair of objects.

 The previous array-sorting example can be written like this, using sort_by:

>> ["2",1,5,"3",4,"6"].sort_by {|a| a.to_i }
=> [1, "2", "3", 4, 5, "6"]

Or sort_by(&:to_i)

331Sorting enumerables
All we have to do in the block is show (once) what action needs to be performed to
prep each object for the sort operation. We don’t have to call to_i on two objects; nor
do we need to use the <=> method explicitly.

 Let’s look next at the Comparable module and see how it fits—and sometimes
doesn’t fit—into enumerable sorting.

10.8.3 Sorting enumerables and the Comparable module

Many of the examples in this chapter combine the concepts of sorting and compar-
ing. These similar but distinct concepts are featured together in many software pro-
grams. When we first encountered the spaceship operator in section 7.6, it was in the
context of including Comparable and letting that module build its various methods (>,
<, and so on) on top of <=>. But in prepping objects to be sortable inside enumerable
containers, all we’ve done is define <=>; we haven’t mixed in Comparable.

 You don’t need to include the Comparable module for your objects to sort, but you
do need to include it to compare. A review of the techniques available will illustrate the
difference and help you choose the right one:

 You can sort objects by putting them inside an array and providing a code block
telling the array how it should rank any two of the objects.

 You can define <=> for a class and put instances of that class inside an array or
other enumerable for sorting. We saw an example of this in listing 10.3.

 You can include the Comparable module in your class to get sortability inside an
array and all the comparison operations between any two of your objects.

Our Painting class implemented <=> to achieve sorting within an array. But try to
compare one painting to another on your own (outside of an array), and you’ll run
into trouble:

>> pa1 = Painting.new(100)
>> pa2 = Painting.new(200)
>> pa1 > pa2
=> NoMethodError (undefined method '>' for #<Painting:...)

Every class that mixes in Comparable must define <=>. Rewriting our Painting class
doesn’t take much effort, because we’ve already defined <=>.

class Painting
 include Comparable
 attr_reader :price
 def initialize(price)
 @price = price
 end
 def to_s
 "My price is #{price}."
 end
 def <=>(other_painting)
 self.price <=> other_painting.price

Listing 10.4 Mixing in the Comparable module

B

332 CHAPTER 10 Collections central: Enumerable and Enumerator
 end
end

A simple include Comparable B is all it takes in this case. Now comparisons are
enabled:

>> pa1 > pa2
=> false
>> pa1 < pa2
=> true
>> pa3 = Painting.new(300)
>> pa2.between?(pa1, pa3)
=> true

We might decide to purchase a new painting only if the price is within our price range:

>> cheapest, priciest = [pa1, pa2, pa3].minmax
>> Painting.new(1000).clamp(cheapest, priciest).object_id ==

priciest.object_id
 => true

This code uses the clamp method, which is similar to between? If the Painting’s price
is less than the first argument (cheapest), clamp returns the first argument. If it's
greater than the second argument (priciest), it returns the second argument. If the
price falls between cheapest and priciest, it returns the price itself. In our example,
a new Painting is created and then immediately discarded because the price (1000)
falls outside the minimum and maximum we defined in our clamp method.

 In addition to the Enumerable and Comparable modules, and still in the realm of
enumerability, Ruby provides a class called Enumerator. Enumerators add a whole
dimension of collection-manipulation power to Ruby. We’ll look at them in depth now.

10.9 Enumerators and the next dimension of enumerability
Enumerators are closely related to iterators, but they aren’t the same thing. An itera-
tor is a method that yields one or more values to a code block. An enumerator is an
object, not a method.

 At heart, an enumerator is a simple enumerable object. It has an each method,
and it employs the Enumerable module to define all the usual methods—select,
inject, map, and friends—directly on top of its each. The twist in the plot, though, is
how the enumerator’s each method is engineered.

 An enumerator isn’t a container object. It has no “natural” basis for an each opera-
tion, the way an array does (start at element 0; yield it; go to element 1; yield it; and so
on). The each iteration logic of every enumerator has to be explicitly specified. After
you’ve told it how to do each, the enumerator takes over from there and figures out
how to do map, find, take, drop, and all the rest.

 An enumerator is like a brain in a science-fiction movie, sitting on a table with no
connection to a body but still able to think. It just needs an “each” algorithm, so that it
can set into motion the things it already knows how to do. And this it can learn in one of

333Enumerators and the next dimension of enumerability
two ways: either you call Enumerator.new with a code block, so that the code block con-
tains the each logic you want the enumerator to follow; or you create an enumerator
based on an existing enumerable object (an array, a hash, and so forth) in such a way
that the enumerator’s each method draws its elements, for iteration, from a specific
method of that enumerable object.

 We’ll start by looking at the code block approach to creating enumerators. But
most of the rest of the discussion of enumerators will focus on the second approach,
where you “hook up” an enumerator to an iterator on another object. (If you find the
block-based technique difficult to follow, no harm will come if you skim section 10.9.1
for now and focus on section 10.9.2.) Which techniques you use and how you com-
bine them will ultimately depend on your exact needs in a given situation.

10.9.1 Creating enumerators with a code block

Here’s a simple example of the instantiation of an enumerator with a code block:

e = Enumerator.new do |y|
 y << 1
 y << 2
 y << 3
end

Now, first things first: what is y?
 y is a yielder, an instance of Enumerator::Yielder, automatically passed to your

block. Yielders encapsulate the yielding scenario that you want your enumerator to
follow. In this example, what we’re saying is when you (the enumerator) get an each call,
please take that to mean that you should yield 1, then 2, then 3. The << method (in infix-
operator position, as usual) serves to instruct the yielder as to what it should yield.
(You can also write y.yield(1) and so forth, although the similarity of the yield
method to the yield keyword might be more confusing than it’s worth.) Upon being
asked to iterate, the enumerator consults the yielder and makes the next move—the
next yield—based on the instructions that the yielder has stored.

 What happens when you use e, the enumerator? Here’s an irb session where it’s
put through its paces (given that the code in the example has already been executed):

>> e.to_a
=> [1, 2, 3]
>> e.map {|x| x * 10 }
=> [10, 20, 30]
>> e.select {|x| x > 1 }
=> [2, 3]
>> e.take(2)
 => [1, 2]

The enumerator e is an enumerating machine. It doesn’t contain objects; it has code
associated with it—the original code block—that tells it what to do when it’s addressed
in terms that it recognizes as coming from the Enumerable module.

 The enumerator iterates once for every time that << (or the yield method) is
called on the yielder. If you put calls to << inside a loop or other iterator inside the

Array representation of yielded elements

Mapping, based on each

Selection, based on each

Takes first two elements yielded

334 CHAPTER 10 Collections central: Enumerable and Enumerator
code block, you can introduce just about any iteration logic you want. Here’s a rewrite
of the previous example, using an iterator inside the block:

e = Enumerator.new do |y|
 (1..3).each {|i| y << i }
end

The behavior of e will be the same, given this definition, as it is in the previous exam-
ples. We’ve arranged for << to be called three times; that means e.each will do three
iterations. Again, the behavior of the enumerator can be traced ultimately to the calls
to << inside the code block with which it was initialized.

 Note in particular that you don’t yield from the block; that is, you don’t do this:

e = Enumerator.new do
 yield 1
 yield 2
 yield 3
end

Rather, you populate your yielder (y, in the first examples) with specifications for how
you want the iteration to proceed at such time as you call an iterative method on the
enumerator.

 Every time you call an iterator method on the enumerator, the code block gets exe-
cuted once. Any variables you initialize in the block are initialized once at the start of
each such method call. You can trace the execution sequence by adding some verbos-
ity and calling multiple methods:

e = Enumerator.new do |y|
 puts "Starting up the block!"
 (1..3).each {|i| y << i }
 puts "Exiting the block!"
end
p e.to_a
p e.select {|x| x > 2 }

The output from this code is

Starting up the block!
Exiting the block!
[1, 2, 3]
Starting up the block!
Exiting the block!
[3]

You can see that the block is executed once for each iterator called on e.
 It’s also possible to involve other objects in the code block for an enumerator.

Here’s a somewhat abstract example in which the enumerator performs a calculation
involving the elements of an array while removing those elements from the array
permanently:

a = [1,2,3,4,5]
e = Enumerator.new do |y|
 total = 0
 until a.empty?

Wrong!

This is what you
don’t do!

Calls to to_a

Calls to select

335Enumerators and the next dimension of enumerability
 total += a.pop
 y << total
 end
end

Now let’s look at the fate of poor a, in irb:

>> e.take(2)
=> [5, 9]
>> a
=> [1, 2, 3]
>> e.to_a
=> [3, 5, 6]
>> a
=> []

The take operation produces a result array of two elements (the value of total for two
successive iterations) and leaves a with three elements. Calling to_a on e, at this point,
causes the original code block to be executed again, because the to_a call isn’t part of
the same iteration as the call to take. Therefore, total starts again at 0, and the until
loop is executed with the result that three values are yielded, and a is left empty.

 It’s not fair to ambush a separate object by removing its elements as a side effect of
calling an enumerator. But the example shows you the mechanism—and it also pro-
vides a reasonable segue into the other half of the topic of creating enumerators: cre-
ating enumerators whose each methods are tied to specific methods on existing
enumerable objects.

10.9.2 Attaching enumerators to other objects

The other way to endow an enumerator with each logic is to hook the enumerator up
to another object—specifically, to an iterator (often each, but potentially any method
that yields one or more values) on another object. This gives the enumerator a basis
for its own iteration: when it needs to yield something, it gets the necessary value by
triggering the next yield from the object to which it is attached, via the designated
method. The enumerator thus acts as part proxy, part parasite, defining its own each
in terms of another object’s iteration.

 You create an enumerator with this approach by calling enum_for (a.k.a. to_enum)
on the object from which you want the enumerator to draw its iterations. You provide
as the first argument the name of the method onto which the enumerator will attach
its each method. This argument defaults to :each, although it’s common to attach the
enumerator to a different method, as in this example:

names = %w(David Black Yukihiro Matsumoto)
e = names.enum_for(:select)

Specifying :select as the argument means that we want to bind this enumerator to
the select method of the names array. That means the enumerator’s each will serve as
a kind of front end to array’s select:

e.each {|n| n.include?('a') } Output: ["David", "Black", "Matsumoto"]

336 CHAPTER 10 Collections central: Enumerable and Enumerator
You can also provide further arguments to enum_for. Any such arguments are passed
through to the method to which the enumerator is being attached. For example,
here’s how to create an enumerator for inject so that when inject is called on to
feed values to the enumerator’s each, it’s called with a starting value of "Names: ":

>> e = names.enum_for(:inject, "Names: ")
=> #<Enumerator: ["David", "Black", "Yukihiro", "Matsumoto"]:inject("Names:

")>
>> e.each {|string, name| string << "#{name}..." }
=> "Names: David...Black...Yukihiro...Matsumoto..."

But be careful! That starting string "Names: " has had some names added to it, but it’s
still alive inside the enumerator. That means if you run the same inject operation
again, it adds to the same string (the line in the output in the following code is broken
across two lines to make it fit):

>> e.each {|string, name| string << "#{name}..." }
=> "Names: David...Black...Yukihiro...Matsumoto...
David...Black...Yukihiro...Matsumoto..."

When you create the enumerator, the arguments you give it for the purpose of supply-
ing its proxied method with arguments are the arguments—the objects—it will use
permanently. So watch for side effects. (In this particular case, you can avoid the side
effect by adding strings—string + "#{name}..."—instead of appending to the string
with <<, because the addition operation creates a new string object. Still, the caution-
ary tale is generally useful.)

NOTE You can call Enumerator.new(obj, method_name, arg1, arg2...) as
an equivalent to obj.enum_for(method_name, arg1, arg2...). But using
this form of Enumerator.new is discouraged. Use enum_for for the method-
attachment scenario and Enumerator.new for the block-based scenario
described in section 10.9.1.

Now you know how to create enumerators of both kinds: the kind whose knowledge of
how to iterate is conveyed to it in a code block, and the kind that gets that knowledge
from another object. Enumerators are also created implicitly when you make block-
less calls to certain iterator methods.

10.9.3 Implicit creation of enumerators by blockless iterator calls

By definition, an iterator is a method that yields one or more values to a block. But
what if there’s no block?

 The answer is that most built-in iterators return an enumerator when they’re
called without a block. Here’s an example from the String class: the each_byte
method (see section 10.7). First, here’s a classic iterator usage of the method, without
an enumerator but with a block:

>> str = "Hello"
=> "Hello"
>> str.each_byte {|b| puts b }

337Enumerator semantics and uses
72
101
108
108
111
=> "Hello"

each_byte iterates over the bytes in the string and returns its receiver (the string). But
if you call each_byte with no block, you get an enumerator:

>> str.each_byte
=> #<Enumerator: "Hello":each_byte>

The enumerator you get is equivalent to what you would get if you did this:

>> str.enum_for(:each_byte)

You’ll find that lots of methods from Enumerable return enumerators when you call
them without a block (including each, map, select, inject, and others). The main
use case for these automatically returned enumerators is chaining : calling another
method immediately on the enumerator. We’ll look at chaining as part of the cover-
age of enumerator semantics in the next section.

10.10 Enumerator semantics and uses
Now that you know how enumerators are wired and how to create them, we’re going
to look at how they’re used—and why they’re used.

 Perhaps the hardest thing about enumerators, because it’s the most difficult to
interpret visually, is how things play out when you call the each method. We’ll start by
looking at that; then, we’ll examine the practicalities of enumerators, particularly the
ways in which an enumerator can protect an object from change and how you can use
an enumerator to do fine-grained, controlled iterations. We’ll then look at how enu-
merators fit into method chains in general and we’ll see a couple of important specific
cases.

10.10.1 How to use an enumerator’s each method

An enumerator’s each method is hooked up to a method on another object, possibly a
method other than each. If you use it directly, it behaves like that other method,
including with respect to its return value.

 This can produce some odd-looking results where calls to each return filtered,
sorted, or mapped collections:

>> array = %w(cat dog rabbit)
=> ["cat", "dog", "rabbit"]
>> e = array.map
=> #<Enumerator: ["cat", "dog", "rabbit"]:map>
>> e.each {|animal| animal.capitalize }
=> ["Cat", "Dog", "Rabbit"]

Returns mapping

338 CHAPTER 10 Collections central: Enumerable and Enumerator
There’s nothing mysterious here. The enumerator isn’t the same object as the array; it
has its own ideas about what each means. Still, the overall effect of connecting an enu-
merator to the map method of an array is that you get an each operation with an array
mapping as its return value. The usual each iteration of an array, as you’ve seen, exists
principally for its side effects and returns its receiver (the array). But an enumerator’s
each serves as a kind of conduit to the method from which it pulls its values and
behaves the same way in the matter of return value.

 Another characteristic of enumerators that you should be aware of is the fact that
they perform a kind of un-overriding of methods in Enumerable.

THE UN-OVERRIDING PHENOMENON

If a class defines each and includes Enumerable, its instances automatically get map,
select, inject, and all the rest of Enumerable’s methods. All those methods are
defined in terms of each.

 But sometimes a given class has already overridden Enumerable’s version of a
method with its own. A good example is Hash#select. The standard, out-of-the-box
select method from Enumerable always returns an array, whatever the class of the
object using it might be. A select operation on a hash, on the other hand, returns a
hash:

>> h = { cat: "feline", dog: "canine", cow: "bovine" }
=> {:cat=>"feline", :dog=>"canine", :cow=>"bovine}
>> h.select {|key,value| key =~ /c/ }
=> {:cat=>"feline", :cow=>"bovine }

So far, so good (and nothing new). And if we hook up an enumerator to the select
method, it gives us an each method that works like that method:

>> e = h.enum_for(:select)
=> #<Enumerator: {:cat=>"feline", :dog=>"canine", :cow=>"bovine"}:select>
>> e.each {|key,value| key =~ /c/ }
=> {:cat=>"feline", :cow=>"bovine }

But what about an enumerator hooked up not to the hash’s select method but to the
hash’s each method? We can get one by using to_enum and letting the target method
default to each:

>> e = h.to_enum
=> #<Enumerator: {:cat=>"feline", :dog=>"canine", :cow=>"bovine"}:each>

Hash#each, called with a block, returns the hash. The same is true of the enumerator’s
each—because it’s just a front end to the hash’s each. The blocks in these examples
are empty because we’re only concerned with the return values:

>> h.each { }
=> {:cat=>"feline", :dog=>"canine", :cow=>"bovine}
>> e.each { }
=> {:cat=>"feline", :dog=>"canine", :cow=>"bovine}

339Enumerator semantics and uses
So far, it looks like the enumerator’s each is a stand-in for the hash’s each. But what
happens if we use this each to perform a select operation?

>> e.select {|key,value| key =~ /c/ }
=> [[:cat, "feline"], [:cow, "bovine"]]

The answer, as you can see, is that we get back an array, not a hash.
 Why? If e.each is pegged to h.each, how does the return value of e.select get

unpegged from the return value of h.select?
 The key is that the call to select in the last example is a call to the select method

of the enumerator, not the hash. And the select method of the enumerator is built
directly on the enumerator’s each method. In fact, the enumerator’s select method
is Enumerable#select, which always returns an array. The fact that Hash#select
doesn’t return an array is of no interest to the enumerator.

 In this sense, the enumerator is adding enumerability to the hash, even though the
hash is already enumerable. It’s also un-overriding Enumerable#select; the select
provided by the enumerator is Enumerable#select, even if the hash’s select wasn’t.
(Technically, it’s not an un-override, but it does produce the sensation that the enu-
merator is occluding the select logic of the original hash.)

 The lesson is that it’s important to remember that an enumerator is a different
object from the collection from which it siphons its iterated objects. Although this dif-
ference between objects can give rise to some possibly odd results, like select being
rerouted through the Enumerable module, it’s definitely beneficial in at least one
important way: accessing a collection through an enumerator, rather than through
the collection itself, protects the collection object from change.

10.10.2 Protecting objects with enumerators

Consider a method that expects, say, an array as its argument. (Yes, it’s a bit un-Ruby-
like to focus on the object’s class, but you’ll see that that isn’t the main point here.)

def give_me_an_array(array)

If you pass an array object to this method, the method can alter that object:

array << "new element"

If you want to protect the original array from change, you can duplicate it and pass
along the duplicate—or you can pass along an enumerator instead:

give_me_an_array(array.to_enum)

The enumerator will happily allow for iterations through the array, but it won’t absorb
changes. (It will respond with a fatal error if you try calling << on it.) In other words,
an enumerator can serve as a kind of gateway to a collection object such that it allows
iteration and examination of elements but disallows destructive operations.

340 CHAPTER 10 Collections central: Enumerable and Enumerator
 The deck of cards code from section 10.5.4 provides a nice opportunity for some
object protection. In that code, the Deck class has a reader attribute cards. When a
deck is created, its @cards instance variable is initialized to an array containing all the
cards. There’s a vulnerability here: what if someone gets hold of the @cards array
through the cards reader attribute and alters it?

deck = PlayingCard::Deck.new
deck.cards << "JOKER!!"

Ideally, we’d like to be able to read from the cards array but not alter it. (We could
freeze it with the freeze method, which prevents further changes to objects, but we’ll
need to change the deck inside the Deck class when it’s dealt from.) Enumerators pro-
vide a solution. Instead of a reader attribute, let’s make the cards method return an
enumerator.

class PlayingCard
 SUITS = %w{ clubs diamonds hearts spades }
 RANKS = %w{ 2 3 4 5 6 7 8 9 10 J Q K A }
 class Deck
 def cards

@cards.to_enum
 end
 def initialize(n=1)

@cards = []
SUITS.cycle(n) do |s|
RANKS.cycle(1) do |r|
 @cards << "#{r} of #{s}"
end

end
 end
 end
end

It’s still possible to pry into the @cards array and mess it up if you’re determined. But
the enumerator provides a significant amount of protection:

deck = PlayingCard::Deck.new
deck.cards << "Joker!!"

Of course, if you want the calling code to be able to address the cards as an array,
returning an enumerator may be counterproductive. (And at least one other tech-
nique protects objects under circumstances like this: return @cards.dup.) But if it’s a
good fit, the protective qualities of an enumerator can be convenient.

 Because enumerators are objects, they have state. Furthermore, they use their state
to track their own progress, so you can stop and start their iterations. We’ll look now at
the techniques for controlling enumerators in this way.

Listing 10.5 Safer playing cards

NoMethodError (undefined method '<<'
for #<Enumerator:0x000001020643b8>)

341Enumerator semantics and uses
10.10.3 Fine-grained iteration with enumerators

Enumerators maintain state: they keep track of where they are in their enumeration.
Several methods make direct use of this information. Consider this example:

names = %w(David Yukihiro)
e = names.to_enum
puts e.next
puts e.next
e.rewind
puts e.next

The output from these commands is

David
Yukihiro
David

The enumerator allows you to move in slow motion, so to speak, through the enumer-
ation of the array, stopping and restarting at will. In this respect, it’s like one of those
editing tables where a film editor cranks the film manually. Unlike a projector, which
you switch on and let it do its thing, the editing table allows you to influence the prog-
ress of the film as it proceeds.

 This point also sheds light on the difference between an enumerator and an itera-
tor. An enumerator is an object, and can therefore maintain state. It remembers
where it is in the enumeration. An iterator is a method. When you call it, the call is
atomic; the entire call happens, and then it’s over. Thanks to code blocks, there is of
course a certain useful complexity to Ruby method calls: the method can call back to
the block, and decisions can be made that affect the outcome. But it’s still a method.
An iterator doesn’t have state. An enumerator is an enumerable object.

 Interestingly, you can use an enumerator on a non-enumerable object. All you need
is for your object to have a method that yields something so the enumerator can adopt
that method as the basis for its own each method. As a result, the non-enumerable
object becomes, in effect, enumerable.

10.10.4 Adding enumerability with an enumerator

An enumerator can add enumerability to objects that don’t have it. It’s a matter of wir-
ing: if you hook up an enumerator’s each method to any iterator, then you can use the
enumerator to perform enumerable operations on the object that owns the iterator,
whether that object considers itself enumerable or not.

 When you hook up an enumerator to the String#bytes method, you’re effectively
adding enumerability to an object (a string) that doesn’t have it, in the sense that
String doesn’t mix in Enumerable. You can achieve much the same effect with classes
of your own. Consider the following class, which doesn’t mix in Enumerable but does
have one iterator method:

module Music
 class Scale

342 CHAPTER 10 Collections central: Enumerable and Enumerator
 NOTES = %w(c c# d d# e f f# g a a# b)
 def play

NOTES.each {|note| yield note }
 end
 end
end

Given this class, it’s possible to iterate through the notes of a scale

scale = Music::Scale.new
scale.play {|note| puts "Next note is #{note}" }

with the result

Next note is c
Next note is c#
Next note is d

and so forth. But the scale isn’t technically an enumerable. The standard methods from
Enumerable won’t work, because the class Music::Scale doesn’t mix in Enumerable
and doesn’t define each:

scale.map {|note| note.upcase }

The result is

NoMethodError (unknown method `map' for #<Music::Scale:0x3b0aec>)

Now, in practice, if you wanted scales to be fully enumerable, you’d almost certainly
mix in Enumerable and change the name of play to each. But you can also make a
scale enumerable by hooking it up to an enumerator.

 Here’s how to create an enumerator for the scale object, tied into the play
method:

enum = scale.enum_for(:play)

The enumerator, enum, has an each method; that method performs the same iteration
that the scale’s play method performs. Furthermore, unlike the scale, the enumera-
tor is an enumerable object; it has map, select, inject, and all the other standard
methods from Enumerable. If you use the enumerator, you get enumerable operations
on a fundamentally non-enumerable object:

p enum.map {|note| note.upcase }
p enum.select {|note| note.include?('f') }

The first line’s output is

["C", "C#", "D", "D#", "E", "F", "F#", "G", "A", "A#", "B"]

and the second line’s output is

["f", "f#"]

Or scale.to_enum(:play)

343Enumerator method chaining
An enumerator, then, attaches itself to a particular method on a particular object and
uses that method as the foundation method—the each—for the entire enumerable
toolset.

 Attaching an enumerator to a non-enumerable object like the scale object is a
good exercise because it illustrates the difference between the original object and the
enumerator so sharply. But in the vast majority of cases, the objects for which enumer-
ators are created are themselves enumerables: arrays, hashes, and so forth. Most of the
examples in what follows will involve enumerable objects (the exception being
strings). In addition to taking us into the realm of the most common practices, this
will allow us to look more broadly at the possible advantages of using enumerators.

 Throughout, keep in mind the lesson of the Music::Scale object and its enumer-
ator: an enumerator is an enumerable object whose each method operates as a kind
of siphon, pulling values from an iterator defined on a different object.

 We’ll conclude our examination of enumerators with a look at techniques that
involve chaining enumerators and method calls.

10.11 Enumerator method chaining
Method chaining is a common technique in Ruby programming. It’s common in part
because it’s so easy. Want to print out a comma-separated list of uppercased animals
beginning with A through N ? Just string a few methods together:

>> animals = %w(Jaguar Turtle Lion Antelope)
=> ["Jaguar", "Turtle", "Lion", "Antelope"]
>> puts animals.select {|n| n[0] < 'M' }.map(&:upcase).join(", ")
=> "JAGUAR", "LION", "ANTELOPE"

The left-to-right, conveyor-belt style of processing data is powerful and, for the most
part, straightforward. But it comes at a price: the creation of intermediate objects.
Method chaining usually creates a new object for every link in the chain. In the previ-
ous code, assuming that animals is an array of strings, Ruby ends up creating two
more arrays (one as the output of select and one from map) and a string (from
join).

 Enumerators don’t solve all the problems of method chaining. But they do miti-
gate the problem of creating intermediate objects in some cases. And enumerator-
based chaining has some semantics unto itself that it’s good to get a handle on.

10.11.1 Economizing on intermediate objects

Remember that many methods from the Enumerable module return an enumerator if
you call them without a block. In most such cases, there’s no reason to chain the enu-
merator directly to another method. animals.each.inject, for example, might as
well be animals.inject. Similarly, animals.map.select doesn’t buy you anything
over animals.select. The map enumerator doesn’t have any knowledge of what func-
tion to map to; therefore, it can’t do much other than pass the original array of values
down the chain.

344 CHAPTER 10 Collections central: Enumerable and Enumerator
 But consider animals.each_slice(2). The enumerator generated by this expres-
sion does carry some useful information; it knows that it’s expected to produce two-
element-long slices of the names array. If you place it inside a method chain, it has an
effect:

>> animals.each_slice(2).map do |predator, prey|
"Predator: #{predator}, Prey: #{prey}\n"

end
=> ["Predator: Jaguar, Prey: Turtle\n", "Predator: Lion, Prey: Antelope\n"]

The code block attached to the map operation gets handed items from the names
array two at a time, because of the each_slice(2) enumerator. The enumerator can
proceed in “lazy” fashion: rather than create an entire array of two-element slices in
memory, it can create the slices as they’re needed by the map operation.

Enumerable methods that take arguments and return enumerators, like each_slice,
are candidates for this kind of compression or optimization. Even if an enumerable
method doesn’t return an enumerator, you can create one for it, incorporating the
argument so that it’s remembered by the enumerator. You’ve seen an example of this
technique already, approached from a slightly different angle, in section 10.9.2:

e = names.enum_for(:inject, "Names: ")

The enumerator remembers not only that it’s attached to the inject method of names
but also that it represents a call to inject with an argument of "Names".

 In addition to the general practice of including enumerators in method chains, the
specialized method with_index—one of the few that the Enumerator class implements
separately from those in Enumerable—adds considerable value to enumerations.

Enumerator literacy
One consequence of the way enumerators work, and of their being returned automat-
ically from blockless iterator calls, is that it takes a little practice to read enumerator
code correctly. Consider this snippet, which returns an array of integers:

string = "An arbitrary string"
string.each_byte.map {|b| b + 1 }

Probably not useful business logic ... but the point is that it looks much like
string.each_byte is returning an array. The presence of map as the next operation,
although not conclusive evidence of an array, certainly evokes the presence of a col-
lection on the left.

Let’s put it another way. Judging by its appearance, you might expect that if you peel
off the whole map call, you’ll be left with a collection.

In fact, string.each_byte returns an enumerator. The key is that an enumerator is
a collection. It’s an enumerable object as much as an array or a hash is. It just may
take a little getting used to.

345Enumerator method chaining
10.11.2 Indexing enumerables with with_index

In the days when Rubyists used the each_with_index method, a number of us lobbied
for a corresponding map_with_index method. We never got it—but we ended up with
something even better. Enumerators have a with_index method that adds numerical
indexing, as a second block parameter, to any enumeration. Here’s how you would
use with_index to do the letter/number mapping:

('a'..'z').map.with_index {|letter,i| [letter, i] }

Note that it’s map.with_index (two methods, chained), not map_with_index (a com-
posite method name). And with_index can be chained to any enumerator. Remem-
ber the musical scale from section 10.10.4? Let’s say we enumerator-ize the play
method:

def play
 NOTES.to_enum
end

The original example of walking through the notes will now work without the creation
of an intermediate enumerator:

scale.play.map {|note| puts "Next note: #{note}" }

And now this will work too:

scale.play.with_index(1) {|note,i| puts "Note #{i}: #{note}" }

The output will be a numbered list of notes:

Note 1: c
Note 2: c#
Note 3: d
etc.

Thus the with_index method generalizes what would otherwise be a restricted func-
tionality.

 We’ll look at one more enumerator-chaining example, which nicely pulls together
several enumerator and iteration techniques and also introduces a couple of new
methods you may find handy.

10.11.3 Exclusive-or operations on strings with enumerators

Running an exclusive-or (or XOR) operation on a string means XOR-ing each of its
bytes with some value. XOR-ing a byte is a bitwise operation: each byte is represented
by an integer, and the result of the XOR operation is an exclusive-or-ing of that inte-
ger with another number.

 If your string is "a", for example, it contains one byte with the value 97. The binary
representation of 97 is 1100001. Let’s say we want to XOR it with the character #,
which has an ASCII value of 35, or 100011 in binary. Looking at it purely numerically,

Output: [["a", 0], ["b", 1], etc.]

Provides 1 as the first
value for the index

346 CHAPTER 10 Collections central: Enumerable and Enumerator
and not in terms of strings, we’re doing 97 ^ 35, or 1100001 ^ 100011 in binary terms.
An XOR produces a result that, in binary representation (that is, in terms of its bits)
contains a 1 where either of the source numbers, but not both, contained a 1, and a 0
where both of the source numbers contains the same value, whether 0 or 1. In the
case of our two numbers, the XOR operation produces 1000010 or 66.

 A distinguishing property of bitwise XOR operations is that if you perform the
same operation twice, you get back the original value. In other words, (a ^ b) ^ b == a.
Thus if we XOR 66 with 35, we get 97. This behavior makes XOR-ing strings a useful
obfuscation technique, especially if you XOR a long string byte for byte against a sec-
ond string. Say your string is "This is a string." If you XOR it character for charac-
ter against, say, #%.3u, repeating the XOR string as necessary to reach the length of
the original string, you get the rather daunting result wMG@UJV\x0ERUPQ\\Z\eD\v. If
you XOR that monstrosity against #%.3u again, you get back "This is a string."

 Now let’s write a method that will do this. We’ll add it to the String class—not nec-
essarily the best way to go about changing the functionality of core Ruby objects (as
you’ll see in chapter 13), but expedient for purposes of illustration. The following list-
ing shows the instance method String#^.

class String
 def ^(key)
 kenum = key.each_byte.cycle
 each_byte.map {|byte| byte ^ kenum.next }.pack("C*")
 end
end

The method takes one argument: the string that will be used as the basis of the XOR
operation (the key) B. We have to deal with cases where the key is shorter than the
original string by looping through the key as many times as necessary to provide
enough characters for the whole operation. That’s where enumerators come in.

 The variable kenum is bound to an enumerator based on chaining two methods off
the key string: each_byte, which itself returns an enumerator traversing the string
byte by byte, and cycle, which iterates over and over again through a collection,
resuming at the beginning when it reaches the end C. The enumerator kenum
embodies both of these operations: each iteration through it provides another byte
from the string; and when it’s finished providing all the bytes, it goes back to the
beginning of the string and iterates over the bytes again. That’s exactly the behavior
we want, to make sure we’ve got enough bytes to match whatever string we’re XOR-
ing, even if it’s a string that’s longer than the key. In effect, we’ve made the key string
infinitely long.

 Now comes the actual XOR operation D. Here we use each_byte to iterate over
the bytes of the string that’s being XOR-ed. The enumerator returned by each_byte
gets chained to map. Inside the map block, each byte of the original string is XOR-ed
with the “next” byte from the enumerator that’s cycling infinitely through the bytes of

Listing 10.6 An exclusive-or method for strings

B
C

D

347Lazy enumerators
the key string. The whole map operation, then, produces an array of XOR-ed bytes. All
that remains is to put those bytes back into a result string.

 Enter the pack method. This method turns an array into a string, interpreting
each element of the array in a manner specified by the argument. In this case, the
argument is "C*", which means treat each element of the array as an unsigned integer repre-
senting a single character (that’s the “C”), and process all of them (that’s the “*”). Packing
the array into a string of characters is thus the equivalent of transforming each array
element into a character and then doing a join on the whole array.

 Now we can XOR strings. Here’s what the process looks like:

>> str = "Nice little string."
=> "Nice little string."
>> key = "secret!"
=> "secret!"
>> x = str ^ key
 => "=\f\x00\x17E\x18H\a\x11\x0F\x17E\aU\x01\f\r\x15K"
>> orig = x ^ key
=> "Nice little string."

As you can see, XOR-ing twice with the same key gets you back to the original string.
And it’s all thanks to a two-line method that uses three enumerators!

Enumerators add a completely new tool to the already rich Ruby toolkit for collection
management and iteration. They’re conceptually and technically different from itera-
tors, but if you try them out on their own terms, you’re sure to find uses for them
alongside the other collection-related techniques you’ve seen.

 We’ll conclude our look at enumerators with a variant called a lazy enumerator.

10.12 Lazy enumerators
Lazy enumerators make it easy to enumerate selectively over infinitely large collec-
tions. To illustrate what this means, let’s start with a case where an operation tries to
enumerate over an infinitely large collection and gets stuck. What if you want to know
the first 10 multiples of 3? To use an infinite collection, we’ll create a range that goes
from 1 to the special value Float::INFINITY. Using such a range, a first approach to
the task at hand might be

Forcing an encoding
The String#^ as implemented in the previous snippet is vulnerable to encoding
issues: if you XOR, say, a UTF-8 string against an ASCII string twice, you’ll get back
a string encoded in ASCII-8BIT. To guard against this, add a call to force_encoding:

each_byte.map {|byte| byte ^ kenum.next }.pack("C*").
 force_encoding(self.encoding)

This will ensure that the byte sequence generated by the mapping gets encoded in
the original string’s encoding.

348 CHAPTER 10 Collections central: Enumerable and Enumerator
(1..Float::INFINITY).select {|n| n % 3 == 0 }.first(10)

But this line of code runs forever. The select operation never finishes, so the
chained-on first command never gets executed.

 You can get a finite result from an infinite collection by using a lazy enumerator.
Calling the lazy method directly on a range object will produce a lazy enumerator
over that range:

>> (1..Float::INFINITY).lazy
=> #<Enumerator::Lazy: 1..Infinity>

You can then wire this lazy enumerator up to select, creating a cascade of lazy
enumerators:

>>(1..Float::INFINITY).lazy.select {|n| n % 3 == 0 }
=> #<Enumerator::Lazy: #<Enumerator::Lazy: 1..Infinity>:select>

Since we’re now lazily enumerating, it’s possible to grab result sets from our opera-
tions without waiting for the completion of infinite tasks. Specifically, we can now ask
for the first 10 results from the select test on the infinite list, and the infinite list is
happy to enumerate only as much as is necessary to produce those 10 results:

>> (1..Float::INFINITY).lazy.select {|n| n % 3 == 0 }.first(10)
=> [3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

As a variation on the same theme, you can create the lazy select enumerator and
then use take on it. This allows you to choose how many multiples of 3 you want to see
without hard-coding the number. Note that you have to call force on the result of
take; otherwise, you’ll end up with yet another lazy enumerator, rather than an actual
result set:

>> my_enum = (1..Float::INFINITY).lazy.select {|n| n % 3 == 0 }
=> #<Enumerator::Lazy: #<Enumerator::Lazy: 1..Infinity>:select>
>> my_enum.take(5).force
=> [3, 6, 9, 12, 15]
>> my_enum.take(10).force
=> [3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

Lazy enumerators are a somewhat specialized tool, and you probably won’t need them
too often. But they’re very handy if you have an infinite collection and want to deal
only with a finite result set from operations on that collection.

10.12.1 FizzBuzz with a lazy enumerator

The FizzBuzz problem, in its classic form, involves printing out the integers from 1 to
100 while applying the following rules:

 If the number is divisible by 15, print "FizzBuzz".
 Else if the number is divisible by 3, print "Fizz".
 Else if the number is divisible by 5, print "Buzz".
 Else print the number.

349Summary
You can use a lazy enumerator to write a version of FizzBuzz that can handle any
range of numbers. Here’s what it might look like:

def fb_calc(i)
 case 0
 when i % 15
 "FizzBuzz"
 when i % 3
 "Fizz"
 when i % 5
 "Buzz"
 else
 i.to_s
 end
end
def fb(n)
 (1..Float::INFINITY).lazy.map {|i| fb_calc(i) }.first(n)
end

Now you can examine, say, the FizzBuzz output for the first 15 positive integers like
this:

p fb(15)

The output will be

["1", "2", "Fizz", "4", "Buzz", "Fizz", "7", "8", "Fizz", "Buzz", "11",
"Fizz", "13", "14", "FizzBuzz"]

Without creating a lazy enumerator on the range, the map operation would go on for-
ever. Instead, lazy enumeration ensures that the whole process will stop once we’ve got
what we want.

Summary
In this chapter, you’ve seen

 The Enumerable module and its instance methods
 Using Enumerable in your own classes
 Enumerator basics
 Creating enumerators
 Iterating over strings
 Lazy enumerators

This chapter focused on the Enumerable module and the Enumerator class, two enti-
ties with close ties. First, we explored the instance methods of Enumerable, which are
defined in terms of an each method and which are available to your objects as long as
those objects respond to each and your class mixes in Enumerable. Second, we looked
at enumerators, objects that encapsulate the iteration process of another object, bind-
ing themselves—specifically, their each methods—to a designated method on another

350 CHAPTER 10 Collections central: Enumerable and Enumerator
object and using that parasitic each-binding to deliver the full range of enumerable
functionality.

 Enumerators can be tricky. They build entirely on Enumerable; and in cases where
an enumerator gets hooked up to an object that has overridden some of Enumerable’s
methods, it’s important to remember that the enumerator will have its own ideas of
what those methods are. It’s not a general-purpose proxy to another object; it siphons
off values from one method on the other object.

 One way or another—be it through the use of enumerators or the use of the more
classic Ruby style of iteration and collection management—you’ll almost certainly use
the enumeration-related facilities of the language virtually every time you write a Ruby
program. It’s worth getting to know Enumerable intimately; it’s as powerful a unit of
functionality as there is anywhere in Ruby.

 We’ll turn next to the subject of regular expressions and pattern matching. As
you’ll see, there’s some payoff to looking at both strings and collection objects prior to
studying regular expressions: a number of pattern-matching methods performed on
strings return their results to you in collection form and therefore lend themselves to
iteration. Looking at regular expressions will help you develop a full-featured toolkit
for processing strings and bodies of text.

Regular expressions and
regexp-based string operations
In this chapter, we’ll explore Ruby’s facilities for pattern matching and text process-
ing, centering around the use of regular expressions. A regular expression in Ruby
serves the same purposes it does in other languages: it specifies a pattern of charac-
ters, a pattern that may or may not correctly predict (that is, match) a given string.
Pattern-match operations are used for conditional branching (match/no match),
pinpointing substrings (parts of a string that match parts of the pattern), and vari-
ous text-filtering techniques.

 Regular expressions in Ruby are objects, specifically instances of the Regexp
class. Like all other objects in Ruby, you send messages to a regular expression.

 We’ll start with an overview of regular expressions. From there, we’ll move on
to the details of how to write them and, of course, how to use them. In the latter

This chapter covers
 Regular expression syntax

 Pattern-matching operations

 The MatchData class

 Built-in methods based on pattern matching
351

352 CHAPTER 11 Regular expressions and regexp-based string operations
category, we’ll look at using regular expressions both in simple match operations and
in methods where they play a role in a larger process, such as filtering a collection or
repeatedly scanning a string.

11.1 What are regular expressions?
Regular expressions appear in many programming languages, with minor differences
among the incarnations. Their purpose is to specify character patterns that subse-
quently are determined to match (or not match) strings. Pattern matching, in turn,
serves as the basis for operations like parsing log files, testing keyboard input for valid-
ity, and isolating substrings—operations, in other words, of frequent and considerable
use to anyone who has to process strings and text.

 Regular expressions have a weird reputation. Using them is a powerful, concen-
trated technique; they burn through a large subset of text-processing problems like
acid through a padlock. They’re also, in the view of many people (including people
who understand them well), difficult to use, difficult to read, opaque, unmaintain-
able, and ultimately counterproductive.

 You have to judge for yourself. The one thing you should not do is shy away from
learning at least the basics of how regular expressions work and how to use the Ruby
methods that utilize them. Even if you decide you aren’t a “regular expression per-
son,” you need a reading knowledge of them. And you’ll by no means be alone if you
end up using them in your own programs more than you anticipated.

 A number of Ruby built-in methods take regular expressions as arguments and
perform selection or modification on one or more string objects. Regular expressions
are used, for example, to scan a string for multiple occurrences of a pattern, to substi-
tute a replacement string for a substring, and to split a string into multiple substrings
based on a matching separator.

 If you’re familiar with regular expressions from Perl, sed, vi, Emacs, or any other
source, you may want to skim or skip the expository material here and pick up in sec-
tion 11.5, where we talk about Ruby methods that use regular expressions. But note
that Ruby regular expressions aren’t identical to those in any other language. You’ll
almost certainly be able to read them, but you may need to study the differences (such
as whether parentheses are special by default or special when escaped) if you get into
writing them.

 Let’s turn now to writing some regular expressions.

11.2 Writing regular expressions
Regular expressions are written with familiar characters—of course—but you have to
learn to read and write them as things unto themselves. They’re not strings, and their
meaning isn’t always as obvious as that of strings. They’re representations of patterns.

353Writing regular expressions
11.2.1 Seeing patterns

A regular expression (regexp or regex) specifies a pattern. For every such pattern,
every string in the world either matches the pattern or doesn’t match it. The Ruby
methods that use regular expressions use them either to determine whether a given
string matches a given pattern or to make that determination and also take some
action based on the answer.

 Patterns of the kind specified by regular expressions are most easily understood,
initially, in plain language. Here are several examples of patterns expressed this way:

 The letter a, followed by a digit
 Any uppercase letter, followed by at least one lowercase letter
 Three digits, followed by a hyphen, followed by four digits

A pattern can also include components and constraints related to positioning inside
the string:

 The beginning of a line, followed by one or more whitespace characters
 The character . (period) at the end of a string
 An uppercase letter at the beginning of a word

Pattern components like “the beginning of a line,” which match a condition rather
than a character in a string, are nonetheless expressed with characters or sequences of
characters in the regexp.

 Regular expressions provide a language for expressing patterns. Learning to write
them consists principally of learning how various things are expressed inside a regexp.
The most commonly applied rules of regexp construction are fairly easy to learn. You
just have to remember that a regexp, although it contains characters, isn’t a string. It’s
a special notation for expressing a pattern that may or may not correctly describe
some or all of any given string.

11.2.2 Simple matching with literal regular expressions

Regular expressions are instances of the Regexp class, which is one of the Ruby classes
that has a literal constructor for easy instantiation. The regexp literal constructor is a
pair of forward slashes:

//

As odd as this may look, it really is a regexp, if a skeletal one. You can verify that it
gives you an instance of the Regexp class in irb:

>> //.class
=> Regexp

Another common way of representing regular expressions is with %r{}:

>> %r{}.class
=> Regexp

354 CHAPTER 11 Regular expressions and regexp-based string operations
The specifics of the regexp go between the slashes or curly braces. We’ll start to
construct a few simple regular expressions as we look at the basics of the matching
process.

 Any pattern-matching operation has two main players: a regexp and a string. The
regexp expresses predictions about the string. Either the string fulfills those predic-
tions (matches the pattern) or it doesn’t.

 The simplest way to find out whether there’s a match between a pattern and a
string is with the match method or its sibling, match?. You can do this in either direc-
tion—regexp objects and string objects both respond to match and match?, and both
of these return true:

/abc/.match?("The alphabet starts with abc.")
"The alphabet starts with abc.".match?(/abc/)

The string version of match? (the second line of the two) differs from the regexp ver-
sion in that it converts a string argument to a regexp. (We’ll return to that a little later.)
In the example, the argument is already a regexp (/abc/), so no conversion is necessary.

 Ruby also features a pattern-matching operator, =~ (equal sign and tilde). =~ goes
between a string and a regexp:

puts "Match!" if /abc/ =~ "The alphabet starts with abc."
puts "Match!" if "The alphabet starts with abc." =~ /abc/

As you might guess, this pattern-matching operator is an instance method of both the
String and Regexp classes. It’s one of the many Ruby methods that provide the syntac-
tic sugar of an infix-operator usage style.

 The match? method is useful when you’re after a simple Boolean answer to the
question of whether there’s a match between a string and a pattern. match, by con-
trast, returns a MatchData object or nil if there is no match:

>> /abc/.match("The alphabet starts with abc.")
=> #<MatchData "abc">
>> /abc/.match("def")
=> nil

The creation of a MatchData object means that a match was found. Finally, no match is
found in the string "def" for the Regexp /abc/, so the command returns nil. We’ll
examine the powerful MatchData object shortly.

 =~ returns the numerical index of the character in the string where the match
started:

>> "The alphabet starts with abc" =~ /abc/
=> 25

This example finds a match in position 25 of the string. For the moment, we’ll be con-
cerned mainly with getting a yes/no answer to an attempted match, so we’ll make
more use of the Regexp#match? method. Then we’ll turn our attention to MatchData
objects using the Regexp#match method. =~ remains useful, but most of our examples
will use match or match?. Because much of working with regular expressions deals

355Building a pattern in a regular expression
with handling the data captured by a match, you’ll likely make heavier use of match
than either match? or =~.

 Regular expressions are often built with a combination of letters and symbols.
Table 11.1 offers an overview of some of the most-often-used symbols in Ruby regular
expressions.

Now, let’s look in more detail at the composition of a regexp.

11.3 Building a pattern in a regular expression
When you write a regexp, you put the definition of your pattern between the forward
slashes. Remember that what you’re putting there isn’t a string but a set of predictions
and constraints that you want to look for in a string.

 The possible components of a regexp include the following:

 Literal characters, meaning “match this character”
 The dot wildcard character (.), meaning “match any character” (except \n, the

newline character)
 Character classes, meaning “match one of these characters”

Table 11.1 Symbols in Ruby regular expressions

Symbol Meaning

//, %r{} Instances of Regexp class

=~ Determines if a match exists

. Matches any character except \n

\ Escape character; tells Ruby to treat the next character as a literal

[] Surrounds a character class; matches either character between [and]

^ 1. Negates a character or character class; matches anything except what follows ^
2. Matches the expression at the start of a line

\d Matches any digit

\D Matches anything except a digit

\w Matches any digit, alphabetical character, or underscore

\W Matches anything except a digit, alphabetical character, or underscore

\s Matches any whitespace character (space, tab, newline)

\S Matches anything except a whitespace character (space, tab, newline)

{ } Matches a character or character class a specific number of times

$ Matches the expression at the end of a line

+ Matches one or more occurrences of the character or character class

* Matches zero or more occurrences of the character or character class

356 CHAPTER 11 Regular expressions and regexp-based string operations
We’ll discuss each of these in turn. We’ll then use that knowledge to look more deeply
at match operations.

11.3.1 Literal characters in patterns

Any literal character you put in a regexp matches itself in the string. Thus the regexp

/a/

matches any string containing the letter a.
 Some non-alphanumeric characters have special meanings to the regexp parser

(as you’ll see in detail shortly). When you want to match one of these special charac-
ters as itself, you have to escape it with a backslash (\). For example, to match the char-
acter ? (question mark), you have to write this:

/\?/

The backslash means “don’t treat the next non-alphanumeric character as special;
treat it as itself.”

 Notably, when using the %r{} syntax, you don’t need to escape the / character.
Thus, the following two expressions are equivalent:

/\/home\/jleo3/
%r{/home/jleo3}

The special characters include the following:

^ $? . / \ [] { } () + *

Among them, as you can see, is the dot, which is a special character in regular expressions.

11.3.2 The dot wildcard character (.)

Sometimes you’ll want to match any character at some point in your pattern. You do
this with the special dot wildcard character (.). A dot matches any character with the
exception of a newline. (There’s a way to make it match newlines too, which you’ll see
a little later.)

 The pattern in this regexp matches both “dejected” and “rejected”:

/.ejected/

It also matches "%ejected" and "8ejected":

>> /.ejected/.match?("%ejected")
=> true

The wildcard dot is handy, but sometimes it gives you more matches than you want.
You can impose constraints on matches while still allowing for multiple possible
strings, using character classes.

357Building a pattern in a regular expression
11.3.3 Character classes

A character class is an explicit list of characters placed inside the regexp in square
brackets:

%r{[dr]ejected}

This means “match either d or r, followed by ejected.” This new pattern matches either
“dejected” or “rejected” but not “&ejected.” A character class is a kind of partial or
constrained wildcard: it allows for multiple possible characters, but only a limited
number of them.

 Inside a character class, you can also insert a range of characters. A common case is
this, for lowercase letters:

/[a-z]/

To match a hexadecimal digit, you might use several ranges inside a character class:

/[A-Fa-f0-9]/

This matches any character a through f (upper- or lowercase) or any digit.

Sometimes you need to match any character except those on a special list. You may, for
example, be looking for the first character in a string that is not a valid hexadecimal
digit.

 You perform this kind of negative search by negating a character class. To do so,
you put a caret (^) at the beginning of the class. For example, here’s a character class
that matches any character except a valid hexadecimal digit:

%r{[^A-Fa-f0-9]}

And here’s how you might find the index of the first occurrence of a non-hex charac-
ter in a string:

>> string = "ABC3934 is a hex number."
=> "ABC3934 is a hex number."
>> string =~ %r{[^A-Fa-f0-9]}
=> 7
>> string[7..-1]
=> " is a hex number."
>> string[0...7]
=> "ABC3934"

Character classes are longer than what they match
Even a short character class like [a] takes up more than one space in a regexp. But
remember, each character class matches one character in the string. When you look
at a character class like /[dr]/, it may look like it’s going to match the substring dr.
But it isn’t: it’s going to match either d or r.

358 CHAPTER 11 Regular expressions and regexp-based string operations
Here we can index our string to return what’s matched by the regexp and what isn’t.
Ruby provides more-elegant methods for doing this, which we’ll examine in section 11.4.

 A character class, positive or negative, can contain any characters. Some character
classes are so common that they have special abbreviations.

SPECIAL ESCAPE SEQUENCES FOR COMMON CHARACTER CLASSES

To match any digit, you can do this:

/[0-9]/

You can also accomplish the same thing more concisely with the special escape
sequence \d:

/\d/

Notice that there are no square brackets here; it’s just \d. Two other useful escape
sequences for predefined character classes are these:

 \w matches any digit, alphabetical character, or underscore (_).
 \s matches any whitespace character (space, tab, newline).

Each of these predefined character classes also has a negated form. You can match any
character that isn’t a digit by doing this:

/\D/

Similarly, \W matches any character other than an alphanumeric character or underscore, and
\S matches any non-whitespace character.

 A successful call to match returns a MatchData object. Let’s look at MatchData
objects and their capabilities up close.

11.4 Matching, substring captures, and MatchData
So far, we’ve looked at basic match operations:

regex.match?(string)
string.match?(regex)

These are essentially true/false tests: either there’s a match or there isn’t. Now we’ll
examine what happens on successful and unsuccessful matches and what a match
operation can do for you beyond the yes/no answer.

11.4.1 Capturing submatches with parentheses

One of the most important techniques of regexp construction is the use of parenthe-
ses to specify captures.

 The idea is this. When you test for a match between a string—say, a line from a
file—and a pattern, it’s usually because you want to do something with the string or,
more commonly, with part of the string. The capture notation allows you to isolate
and save substrings of the string that match particular subpatterns.

 For example, let’s say we have a string containing information about a person:

359Matching, substring captures, and MatchData
Peel,Emma,Mrs.,talented amateur

From this string, we need to harvest the person’s last name and title. We know the
fields are comma separated, and we know what order they come in: last name, first
name, title, occupation.

 To construct a pattern that matches such a string, we might think in English along
the following lines:

 First some alphabetical characters
 then a comma
 then some alphabetical characters
 then a comma
 then either “Mr.” or “Mrs.”

We’re keeping it simple: restricted to Mr. or Mrs., no leaving off the final period
(which would be done in British usage), and no hyphenated names. The regexp,
then, might look like this:

/[A-Za-z]+,[A-Za-z]+,Mrs?\./

(The question mark after the s means match zero or one s. Expressing it that way lets us
match either “Mr.” and “Mrs.” concisely.) Instead of simply testing for a match using
match, we’ll use the match method and return a MatchData object. The pattern
matches the string, as irb attests:

>> /[A-Za-z]+,[A-Za-z]+,Mrs?\./.match("Peel,Emma,Mrs.,talented amateur")
=> #<MatchData "Peel,Emma,Mrs.">

We got a MatchData object rather than nil; there was a match.
 But now what? How do we isolate the substrings we’re interested in ("Peel" and

"Mrs.")?
 This is where parenthetical groupings come in. We want two such groupings: one

around the subpattern that matches the last name, and one around the subpattern
that matches the title:

/([A-Za-z]+),[A-Za-z]+,(Mrs?\.)/

Now, when we perform the match,

/([A-Za-z]+),[A-Za-z]+,(Mrs?\.)/.match("Peel,Emma,Mrs.,talented amateur")

two things happen:

 We get a MatchData object that gives us access to the submatches (discussed in a
moment).

 Ruby automatically populates a series of variables for us, which also give us
access to those submatches.

The variables that Ruby populates are global variables, and their names are based on
numbers: $1, $2, and so forth. $1 contains the substring matched by the subpattern

360 CHAPTER 11 Regular expressions and regexp-based string operations
inside the first set of parentheses from the left in the regexp. Examining $1 after the previous
match (for example, with puts $1) displays Peel. $2 contains the substring matched by
the second subpattern; and so forth. In general, the rule is this: after a successful match
operation, the variable $n (where n is a number) contains the substring matched by the
subpattern inside the nth set of parentheses from the left in the regexp.

NOTE If you’ve used Perl, you may have seen the variable $0, which rep-
resents not a specific captured subpattern but the entire substring that has
been successfully matched. Ruby uses $0 for something else: it contains the
name of the Ruby program file from which the current program or script was
initially started up. To get the matched substring from a match, you can use
the syntax m[0], where m is a MatchData object. You’ll see this technique used
in listing 11.1.

We can combine these techniques with string interpolation to generate a salutation
for a letter, based on performing the match and grabbing the $1 and $2 variables:

>> /([A-Za-z]+),[A-Za-z]+,(Mrs?\.)/.match("Peel,Emma,Mrs.,talented amateur")
=> #<MatchData "Peel,Emma,Mrs." 1:"Peel" 2:"Mrs.">
>> puts "Dear #{$2} #{$1},"
=> Dear Mrs. Peel,

The $n-style variables are handy for grabbing submatches. But you can accomplish the
same thing in a more structured, programmatic way by querying the MatchData object
returned by your match operation.

11.4.2 Match success and failure

Every match operation either succeeds or fails. Let’s start with the simpler case: fail-
ure. When you try to match a string to a pattern and the string doesn’t match, the
result is always nil:

>> %r{a}.match("b")
=> nil

The MatchData object returned by a successful match has a Boolean value of true.
Beyond this, it also stores information about the match, which you can pry out with
the appropriate methods: where the match began (at what character in the string),
how much of the string it covered, what was captured in the parenthetical groups, and
so forth.

 To use the MatchData object, you must first save it. Consider an example where you
want to pluck a phone number from a string and save the various parts of it (area
code, exchange, number) in groupings. The following listing shows how you might do
this. It’s also written as a clinic on how to use some of MatchData’s more common
methods. To follow along, create a file called matching_examples.rb and enter the
data in the following listing.

361Matching, substring captures, and MatchData

string = "My phone number is (123) 555-1234."
phone_re = %r{\((\d{3})\)\s+(\d{3})-(\d{4})}
m = phone_re.match(string)
unless m
 puts "There was no match—sorry."
 exit
end
print "The whole string we started with: "
puts m.string
print "The entire part of the string that matched: "
puts m[0]
puts "The three captures: "
3.times do |index|
 puts "Capture ##{index + 1}: #{m.captures[index]}"
end
puts "Here's another way to get at the first capture:"
print "Capture #1: "
puts m[1]

In this code, we’ve used the string method of MatchData B, which returns the entire
string on which the match operation was performed. To get the part of the string that
matched our pattern, we address the MatchData object with square brackets, with an
index of 0 C. We also use the nifty times method D to iterate exactly three times
through a code block and print out the submatches (the parenthetical captures) in
succession. Inside that code block, a method called captures fishes out the substrings
that matched the parenthesized parts of the pattern. Finally, we take another look at
the first capture, this time through a different technique E: indexing the MatchData
object directly with square brackets and positive integers, each integer corresponding
to a capture. Run matching_examples.rb to produce the following output:

The whole string we started with: My phone number is (123) 555-1234.
The entire part of the string that matched: (123) 555-1234
The three captures:
Capture #1: 123
Capture #2: 555
Capture #3: 1234
Here's another way to get at the first capture:
Capture #1: 123

This gives you a taste of the kinds of match data you can extract from a MatchData
object. You can see that there are two ways of retrieving captures. Let’s zoom in on
those techniques.

11.4.3 Two ways of getting the captures

One way to get the parenthetical captures from a MatchData object is by directly
indexing the object, array-style:

m[1]
m[2]
#etc.

Listing 11.1 Matching a phone number and querying the resulting MatchData object

Terminates program

B

C

D

E

362 CHAPTER 11 Regular expressions and regexp-based string operations
The first line will show the first capture (the first set of parentheses from the left), the
second line will show the second capture, and so on.

 As listing 11.1 shows, an index of 0 gives you the entire string that was matched.
From 1 onward, an index of n gives you the nth capture, based on counting opening
parentheses from the left. (And n, where n > 0, always corresponds to the number in
the global variable $n.)

 The other technique for getting the parenthetical captures from a MatchData object
is the captures method, which returns all the captured substrings in a single array.
Because this is a regular array, the first item in it—essentially, the same as the global vari-
able $1—is item 0, not item 1. In other words, the following equivalencies apply:

m[1] == m.captures[0]
m[2] == m.captures[1]

and so forth.
 A word about this recurrent “counting parentheses from the left” thing. Some reg-

ular expressions can be confusing as to their capture parentheses if you don’t know
the rule. Take this one, for example:

/((a)((b)c))/.match("abc")

What will be in the various captures? Well, just count opening parentheses from the
left. For each opening parenthesis, find its counterpart on the right. Everything inside
that pair will be capture number n, for whatever n you’ve gotten up to.

 That means the first capture will be "abc", because that’s the part of the string that
matches the pattern between the outermost parentheses. The next parentheses sur-
round "a"; that will be the second capture. Next comes "bc", followed by "b". And
that’s the last of the opening parentheses.

 The string representation of the MatchData object you get from this match will
obligingly show you the captures:

>> /((a)((b)c))/.match("abc")
=> #<MatchData "abc" 1:"abc" 2:"a" 3:"bc" 4:"b">

Sure enough, they correspond rigorously to what was matched between the pairs of
parentheses counted off from the left.

NAMED CAPTURES

Capturing subexpressions indexed by number is certainly handy, but there’s another,
sometimes more reader-friendly way, that you can label subexpressions: named captures.

 Here’s an example. This regular expression will match a name of the form “David
A. Black”:

>> re = %r{(?<first>\w+)\s+((?<middle>\w\.)\s+)(?<last>\w+)}

What are the words first, middle, and last doing there? They’re providing named
captures: parenthetical captures (hence the () around the expressions) that you can
recover from the MatchData object using words instead of numbers. The ? tells Ruby
to match each group zero or one times.

363Matching, substring captures, and MatchData
 If you perform a match using this regular expression, you’ll see evidence of the
named captures in the screen output representing the MatchData object:

>> m = re.match("David A. Black")
=> #<MatchData "David A. Black" first:"David" middle:"A." last:"Black">

Now you can query the object for its named captures:

>> m[:first]
=> "David"

MatchData comes with a handy named_captures method that returns a hash of your
named captures:

>> m.named_captures
=> {"first"=>"David", "middle"=>"A.", "last"=>"Black"}

You can also use ? to specify optional captures. The following regular expression will
match “Joe Leo III,” “Joe Leo, Jr.,” or “Joe Leo”:

>> re = /(?<first>\w{3})\s+((?<last>\w{3}),?\s?)(?<suffix>\w+\.?)?)/
=> /(?<first>\w{3})\s+((?<last>\w{3}),?\s?)(?<suffix>\w+\.?)?)/
>> re.match "Joe Leo III"
=> #<MatchData "Joe Leo III", first:"Joe" last:"Leo" suffix:"III">
>> m = re.match "Joe Leo, Jr."
=> #<MatchData "Joe Leo, Jr.", first:"Joe" last:"Leo" suffix:"Jr.">
>> m.named_captures
=> {"first"=>"Joe", "last"=>"Leo", "suffix"=>"Jr."}
>> m = re.match "Joe Leo"
=> #<MatchData "Joe Leo", first:"Joe" last:"Leo" suffix:nil>
>> m[:suffix]
=> nil

The ? character is a quantifier that gives our regexp more flexibility, matching multi-
ple representations of “Joe Leo.” When a ? follows a named capture, that capture will
either contain the matching substring or nil, as appropriate. You’ll learn more about
quantifiers in the next section.

 Named captures can bulk up your regular expressions, but with the payback that the
semantics of retrieving captures from the match become word-based rather than number-
based, and therefore potentially clearer and more self documenting. You also don’t have
to count pairs of parentheses to derive a reference to your captured substrings.

 MatchData objects provide information beyond the parenthetical captures, infor-
mation you can use if you need it.

Exercises
1 Create a Regexp that matches your own name. Choose names for your sub-

string captures. How do they differ from the previous examples?
2 Try to modify your Regexp to make it match both your proper name as well as a

short name or nickname of yours.

364 CHAPTER 11 Regular expressions and regexp-based string operations
11.4.4 Other MatchData information

The code in the following listing gives some quick examples of several further Match-
Data methods. Open your matching_examples.rb file from listing 11.1 and add this
code.

print "The part of the string before the part that matched was: "
puts m.pre_match
print "The part of the string after the part that matched was: "
puts m.post_match
print "The second capture began at character "
puts m.begin(2)
print "The third capture ended at character "
puts m.end(3)

The output from this supplemental code is as follows:

The string up to the part that matched was: My phone number is
The string after the part that matched was: .
The second capture began at character 25
The third capture ended at character 33

The pre_match and post_match methods you see in this listing depend on the fact
that when you successfully match a string, the string can then be thought of as being
made up of three parts: the part before the part that matched the pattern; the part
that matched the pattern; and the part after the part that matched the pattern. Any or
all of these can be an empty string. In this listing, they’re not: the pre_match and
post_match strings both contain characters (albeit only one character in the case of
post_match).

 You can also see the begin and end methods in this listing. These methods tell you
where the various parenthetical captures, if any, begin and end. To get the informa-
tion for capture n, you provide n as the argument to begin and/or end.

 The MatchData object is a kind of clearinghouse for information about what hap-
pened when the pattern met the string. With that knowledge in place, let’s continue
looking at techniques you can use to build and use regular expressions. We’ll start
with a fistful of important regexp components: quantifiers, anchors, and modifiers.
Learning about these components will help you both with writing your own regular
expressions and with your regexp literacy. If matching /abc/ makes sense to you now,
matching /^x?[yz]{2}.*\z/i will make sense to you shortly.

Listing 11.2 Supplemental code for phone number–matching operations

The global MatchData object $~
Whenever you perform a successful match operation, using either match or =~, Ruby
sets the global variable $~ to a MatchData object representing the match. On an
unsuccessful match, $~ gets set to nil. Thus you can always get at a MatchData
object, for analytical purposes, even if you use =~.

365Fine-tuning regular expressions with quantifiers, anchors, and modifiers
11.5 Fine-tuning regular expressions with quantifiers,
anchors, and modifiers
One reason regular expressions are so powerful is that they cover an incredible depth
of use cases. For example, you can test whether something matches once or many
times, determine where a match must occur, and specify parameters like case-insensitive
matching. These tasks are accomplished using quantifiers, anchors, and modifiers.

 Quantifiers let you specify how many times in a row you want something to match.
Anchors let you stipulate that the match occur at a certain structural point in a string
(beginning of string, end of line, at a word boundary, and so on). Modifiers are like
switches you can flip to change the behavior of the regexp engine; for example, by
making it case insensitive or altering how it handles whitespace.

 We’ll look at quantifiers, anchors, and modifiers here, in that order.

11.5.1 Constraining matches with quantifiers

Regexp syntax gives you ways to specify not only what you want but also how many:
exactly one of a particular character, 5–10 repetitions of a subpattern, and so forth.

 All the quantifiers operate either on a single character (which may be repre-
sented by a character class) or on a parenthetical group. When you specify that you
want to match, say, three consecutive occurrences of a particular subpattern, that
subpattern can thus be just one character, or it can be a longer subpattern placed
inside parentheses.

ZERO OR ONE

You’ve already seen a zero-or-one quantifier example. Let’s review it and go a little
more deeply into it.

 You want to match either “Mr” or “Mrs” and, just to make it more interesting, you
want to accommodate both the American versions, which end with periods, and the
British versions, which don’t. You might describe the pattern as follows:

 The character M, followed by the character r, followed by
 Zero or one of the character s, followed by
 Zero or one of the character “.”

Regexp notation has a special character to represent the zero-or-one situation: the
question mark (?). The pattern just described would be expressed in regexp notation
as follows:

/Mrs?\.?/

The question mark after the s means that a string with an s in that position will match
the pattern, and so will a string without an s. The same principle applies to the literal
period (note the backslash, indicating that this is an actual period, not a special wild-
card dot) followed by a question mark. The whole pattern, then, will match “Mr,”
“Mrs,” “Mr.,” or “Mrs.” (It will also match “ABCMr.” and “Mrs!,” but you’ll see how to
delimit a match more precisely when we look at anchors in section 11.5.3.)

366 CHAPTER 11 Regular expressions and regexp-based string operations
 The question mark is often used with character classes to indicate zero or one of
any of a number of characters. If you’re looking for either one or two digits in a row,
for example, you might express that part of your pattern like this:

\d\d?

This sequence will match “1,” “55,” “03,” and so forth.
 Along with the zero-or-one, there’s a zero-or-more quantifier.

ZERO OR MORE

A fairly common case is one in which a string you want to match contains whitespace,
but you’re not sure how much. Let’s say you’re trying to match closing </poem> tags in
an XML document. Such a tag may or may not contain whitespace. All of these are
equivalent:

</poem>
< /poem>
</ poem>
</poem
>

In order to match the tag, you have to allow for unpredictable amounts of whitespace
in your pattern—including none.

 This is a case for the zero-or-more quantifier—the asterisk or star (*):

/<\s*\/\s*poem\s*>/

Each time it appears, the sequence \s* means the string being matched is allowed to
contain zero or more whitespace characters at this point in the match. (Note the
necessity of escaping the forward slash in the pattern with a backslash. Otherwise, it
would be interpreted as the slash signaling the end of the regexp.)

 Regular expressions, it should be noted, can’t do everything. In particular, it’s a
commonplace and correct observation that you can’t parse arbitrary XML with regu-
lar expressions, for reasons having to do with the nesting of elements and the ways in
which character data is represented. Still, if you’re scanning a document because you
want to get a rough count of how many poems are in it, and you match and count
poem tags, the likelihood that you’ll get the information you’re looking for is high.

 Next among the quantifiers is one or more.

ONE OR MORE

The one-or-more quantifier is the plus sign (+) placed after the character or paren-
thetical grouping you wish to match one or more of. The match succeeds if the string
contains at least one occurrence of the specified subpattern at the appropriate point.
For example, the pattern

/\d+/

matches any sequence of one or more consecutive digits:

>> /\d+/.match?("There’s a digit here somewh3re...")
=> true

367Fine-tuning regular expressions with quantifiers, anchors, and modifiers
>> /\d+/.match?("No digits here. Move along.")
=> false
>> /\d+/.match?("Digits-R-Us 2345")
=> true

Of course, if you throw in parentheses, you can find out what got matched:

>> /(\d+)/.match("Digits-R-Us 2345")[1]
=> "2345"

Here’s a question, though. The job of the pattern \d+ is to match one or more digits.
That means as soon as the regexp engine (the part of the interpreter that’s doing all
this pattern matching) sees that the string has the digit 2 in it, it has enough informa-
tion to conclude that yes, there’s a match. Yet it clearly keeps going; it doesn’t stop
matching the string until it gets all the way to the 5. You can deduce this from the value
of $1: the fact that $1 is 2345 means that the subexpression \d+, which is what’s in the
first set of parentheses, is considered to have matched that substring of four digits.

 But why match four digits when all you need to prove you’re right is one digit? The
answer, as it so often is in life as well as regexp analysis, is greed.

11.5.2 Greedy (and non-greedy) quantifiers

The * (zero-or-more) and + (one-or-more) quantifiers are greedy. This means they
match as many characters as possible, consistent with allowing the rest of the pattern
to match.

 Look at what .+ matches in this snippet:

>> string = "abc!def!ghi!"
=> "abc!def!ghi!"
>> /.+!/.match(string)[0]
=> "abc!def!ghi!"

We’ve asked for one or more characters (using the wildcard dot) followed by an excla-
mation point. You might expect to get back the substring "abc!", which fits that
description.

 Instead, we get "abc!def!ghi!". The + quantifier greedily eats up as much of the
string as it can and only stops at the last exclamation point, not the first.

 We can make + as well as * into non-greedy quantifiers by putting a question mark
after them. Watch what happens when we do that with the last example:

>> /.+?!/.match(string)[0]
=> "abc!"

This version says, “Give me one or more wildcard characters, but only as many as you
see up to the first exclamation point, which should also be included.” Sure enough,
this time we get "abc!".

 If we add the question mark to the quantifier in the digits example, it will stop
after it sees the 2:

>> /(\d+?)/.match("Digits-R-Us 2345")[1]
=> "2"

368 CHAPTER 11 Regular expressions and regexp-based string operations
What does it mean to say that greedy quantifiers give you as many characters as they
can, “consistent with allowing the rest of the pattern to match”?

 Consider this match:

/\d+5/.match("Digits-R-Us 2345")

If the one-or-more quantifier’s greediness were absolute, the \d+ would match all four
digits—and then the 5 in the pattern wouldn’t match anything, so the whole match
would fail. But greediness always subordinates itself to ensuring a successful match.
What happens, in this case, is that after the match fails, the regexp engine backtracks:
it unmatches the 5 and tries the pattern again. This time, it succeeds: it has satisfied
both the \d+ requirement (with 234) and the requirement that 5 follow the digits that
\d+ matched.

 Once again, you can get an informative X-ray of the proceedings by capturing
parts of the matched string and examining what you’ve captured. Let’s let irb and the
MatchData object show us the relevant captures:

>> /(\d+)(5)/.match("Digits-R-Us 2345")
=> #<MatchData "2345" 1:"234" 2:"5">

The first capture is "234", and the second is "5". The one-or-more quantifier,
although greedy, has settled for getting only three digits, instead of four, in the inter-
est of allowing the regexp engine to find a way to make the whole pattern match the
string. The non-greedy version does the same thing in reverse, matching as few char-
acters as possible to make the whole pattern match the string:

>> /(\d)(5)/.match("Digits-R-Us 2345")
=> #<MatchData "45" 1:"4" 2:"5">

In addition to using the zero-/one-or-more-style modifiers, you can also require an
exact number or number range of repetitions of a given subpattern.

SPECIFIC NUMBERS OF REPETITIONS

To specify exactly how many repetitions of a part of your pattern you want matched,
put the number in curly braces ({}) right after the relevant subexpression, as this
example shows:

/\d{3}-\d{4}/

This example matches exactly three digits, a hyphen, and then four digits: 555-1212
and other phone number–like sequences.

 You can also specify a range inside the braces:

/\d{1,10}/

This example matches any string containing 1–10 consecutive digits. A single number
followed by a comma is interpreted as a minimum (n or more repetitions). You can
therefore match “three or more digits” like this:

/\d{3,}/

369Fine-tuning regular expressions with quantifiers, anchors, and modifiers
Ruby’s regexp engine is smart enough to let you know if your range is impossible;
you’ll get a fatal error if you try to match, say, {10,2} (at least 10 but no more than 2)
occurrences of a subpattern.

 In regular expression matching, an atom is one part of your pattern. Atoms include
subpatterns wrapped in parentheses, character classes, and individual characters. You
can specify that a repetition count not only for single characters or character classes
but also for any regexp atom. Thus you can do this to match five consecutive upper-
case letters:

/([A-Z]){5}/.match("David BLACK")

But there’s an important potential pitfall to be aware of in cases like this.

THE LIMITATION ON PARENTHESES

If you run that last line of code and look at what the MatchData object tells you about
the first capture, you may expect to see "BLACK". But you don’t:

>> /([A-Z]){5}/.match("David BLACK")
=> #<MatchData "BLACK" 1:"K">

It’s just "K". Why isn’t "BLACK" captured in its entirety?
 The reason is that the parentheses don’t “know” that they’re being repeated five

times. They just know that they’re the first parentheses from the left (in this particular
case) and that what they’ve captured should be stashed in the first capture slot ($1, or
captures[1] of the MatchData object). The expression inside the parentheses, [A-Z],
can only match one character. If it matches one character five times in a row, it’s still
only matched one at a time—and it will only “remember” the last one. In other words,
matching one character five times isn’t the same as matching five characters one time.

 If you want to capture all five characters, you need to move the parentheses so they
enclose the entire five-part match:

>> /([A-Z]{5})/.match("David BLACK")
=> #<MatchData "BLACK" 1:"BLACK">

Be careful and literal-minded when it comes to figuring out what will be captured.
 We’ll look next at ways in which you can specify conditions under which you want

matches to occur, rather than the content you expect the string to have.

11.5.3 Regular expression anchors and assertions

Assertions and anchors are different types of creatures from characters. When you
match a character (even based on a character class or wildcard), you’re said to be con-
suming a character in the string you’re matching. An assertion or an anchor, on the
other hand, doesn’t consume any characters. Instead, it expresses a constraint : a condi-
tion that must be met before the matching of characters is allowed to proceed.

 The most common anchors are beginning of line (^) and end of line ($). You might
use the beginning-of-line anchor for a task like removing all the comment lines from a
Ruby program file. You’d accomplish this by going through all the lines in the file and

370 CHAPTER 11 Regular expressions and regexp-based string operations
printing out only those that did not start with a hash mark (#) or with whitespace fol-
lowed by a hash mark. To determine which lines are comment lines, you can use this
regexp:

/^\s*#/

The ^ (caret) in this pattern anchors the match at the beginning of a line. If the rest of
the pattern matches, but not at the beginning of the line, that doesn’t count—as you
can see with a couple of tests:

>> comment_regexp = /^\s*#/
=> /^\s*#/
>> comment_regexp.match(" # Pure comment!")
=> #<MatchData " #">
>> comment_regexp.match(" x = 1 # Code plus comment!")
=> nil

Only the line that starts with some whitespace and the hash character is a match for
the comment pattern. The other line doesn’t match the pattern and therefore
wouldn’t be deleted if you used this regexp to filter comments out of a file.

 Table 11.2 shows a number of anchors, including beginning and end of line, and
beginning and end of string.

Note that \z matches the absolute end of the string, whereas \Z matches the end of
the string except for an optional trailing newline. \Z is useful in cases where you’re
not sure whether your string has a newline character at the end—perhaps the last line
read out of a text file—and you don’t want to have to worry about it.

 Hand in hand with anchors go assertions, which, similarly, tell the regexp processor
that you want a match to count only under certain conditions.

Table 11.2 Regular expression anchors

Notation Description Example Sample matching string

^ Beginning of line /^\s*#/ " # A Ruby comment line with
leading spaces"

$ End of line /\.$/ "one\ntwo\nthree.\nfour"

\A Beginning of string /\AFour score/ "Four score"

\z End of string /from the earth.\z/ "from the earth."

\Z End of string, exclud-
ing a final newline
character, if any

/from the earth.\Z/ "from the earth.\n"

\b Word boundary /\b\w+\b/ "!!!word***" (matches "word")

371Fine-tuning regular expressions with quantifiers, anchors, and modifiers
LOOKAHEAD ASSERTIONS

Let’s say you want to match a sequence of numbers only if it ends with a period. But
you don’t want the period itself to count as part of the match.

 One way to do this is with a lookahead assertion—or, to be complete, a zero-width,
positive lookahead assertion. Here, followed by further explanation, is how you do it:

str = "123 456. 789"
m = /\d+(?=\.)/.match(str)

At this point, m[0] (representing the entire stretch of the string that the pattern
matched) contains 456—the one sequence of numbers that’s followed by a period.

 Here’s a little more commentary on some of the terminology:

 Zero-width means it doesn’t consume any characters in the string. The presence of
the period is noted, but you can still match the period if your pattern continues.

 Positive means you want to stipulate that the period be present. There are also
negative lookaheads; they use (?!...) rather than (?=...).

 Lookahead assertion means you want to know that you’re specifying what would be
next, without matching it.

When you use a lookahead assertion, the parentheses in which you place the look-
ahead part of the match don’t count; $1 won’t be set by the match operation in the
example. And the dot after the 6 won’t be consumed by the match. (Keep this last
point in mind if you’re ever puzzled by lookahead behavior; the puzzlement often
comes from forgetting that looking ahead isn’t the same as moving ahead.)

LOOKBEHIND ASSERTIONS

The lookahead assertions have lookbehind equivalents. Here’s a regexp that matches
the string BLACK only when it’s preceded by “David “:

re = /(?<=David)BLACK/

Conversely, here’s one that matches it only when it isn’t preceded by “David”:

re = /(?<!David)BLACK/

Once again, keep in mind that these are zero-width assertions. They represent con-
straints on the string (“David” has to be before it, or this “BLACK” doesn’t count as a match),
but they don’t match or consume any characters.

Non-capturing parentheses
If you want to match something—not just assert that it’s next, but actually match it—
using parentheses, but you don’t want it to count as one of the numbered parenthet-
ical captures resulting from the match, use the (?:...) construct. Anything inside a
(?:) grouping will be matched based on the grouping, but not saved to a capture.
Note that the MatchData object resulting from the following match only has two cap-
tures; the def grouping doesn’t count, because of the ?: notation:

372 CHAPTER 11 Regular expressions and regexp-based string operations
There’s also such a thing as a conditional match.

CONDITIONAL MATCHES

While it probably won’t be among your everyday regular expression practices, it’s
interesting to note the existence of conditional matches in Ruby’s regular expression
engine (project name Onigmo). A conditional match tests for a particular capture (by
number or name), and matches one of two subexpressions based on whether or not
the capture was found.

 Here’s a simple example. The conditional expression (?(1)b|c) matches b if cap-
ture number 1 is matched; otherwise it matches c:

>> re = /(a)?(?(1)b|c)/
=> /(a)?(?(1)b|c)/
>> re.match("ab")
=> #<MatchData "ab" 1:"a">
>> re.match("b")
=> nil
>> re.match("c")
=> #<MatchData "c" 1:nil>

The regular expression re matches the string "ab" B, with "a" as the first parentheti-
cal capture and the conditional subexpression matching "a". However, re doesn’t
match the string "b" C. Because there’s no first parenthetical capture, the condi-
tional subexpression tries to match "c", and fails D. That’s also why re does match the
string "c": the condition (?(1)...) isn’t met, so the expression tries to match the
“else” part of itself, which is the subexpression /c/.

 You can also write conditional regular expressions using named captures. The pre-
ceding example would look like this:

/(?<first>a)?(?(<first>)b|c)/

And the results of the various matches would be the same.
 Anchors, assertions, and conditional matches add richness and granularity to the

pattern language with which you express the matches you’re looking for. Also in the
language-enrichment category are regexp modifiers.

(continued)
>> str = "abc def ghi"
=> "abc def ghi"
>> m = /(abc) (?:def) (ghi)/.match(str)
=> #<MatchData "abc def ghi" 1:"abc" 2:"ghi">

Unlike a zero-width assertion, a (?:) group does consume characters. It just doesn’t
save them as a capture.

B

C

D

373Fine-tuning regular expressions with quantifiers, anchors, and modifiers
11.5.4 Modifiers

A regexp modifier is a letter placed after the final, closing forward slash of the regex
literal:

/abc/i

The i modifier shown here causes match operations involving this regexp to be case
insensitive. The other most common modifier is m. The m (multiline) modifier has the
effect that the wildcard dot character, which normally matches any character except new-
line, will match any character, including newline. This is useful when you want to capture
everything that lies between, say, an opening parenthesis and a closing one, and you
don’t know (or care) whether they’re on the same line.

 Here’s an example; note the embedded newline characters (\n) in the string:

str = "This (including\nwhat's in parens\n) takes up three lines."
m = /\(.*?\)/m.match(str)

The non-greedy wildcard subpattern .*? matches:

(including\nwhat's in parens\n)

Without the m modifier, the dot in the subpattern wouldn’t match the newline charac-
ters. The match operation would hit the first newline and, not finding a) character by
that point, would fail.

 Another often-used regexp modifier is x. The x modifier changes the way the reg-
exp parser treats whitespace. Instead of including it literally in the pattern, it ignores
it unless it’s escaped with a backslash. The point of the x modifier is to let you add
comments to your regular expressions:

/
 \((\d{3})\) # 3 digits inside literal parens (area code)
 \s # One space character
 (\d{3}) # 3 digits (exchange)

- # Hyphen
 (\d{4}) # 4 digits (second part of number
/x

The previous regexp is exactly the same as this one but with expanded syntax and
comments:

/\((\d{3})\)\s(\d{3})-(\d{4})/

Be careful with the x modifier. When you first discover it, it’s tempting to bust all your
patterns wide open:

/ (?<= David\) BLACK /x

(Note the backslash-escaped literal space character, the only such character that will be
considered part of the pattern.) But remember that a lot of programmers have trained
themselves to understand regular expressions without a lot of ostensibly user-friendly

374 CHAPTER 11 Regular expressions and regexp-based string operations
extra whitespace thrown in. It’s not easy to un-x a regexp as you read it, if you’re used
to the standard syntax.

 For the most part, the x modifier is best saved for cases where you want to break
the regexp out onto multiple lines for the sake of adding comments, as in the phone
number example. Don’t assume that whitespace automatically makes regular expres-
sions more readable.

 We’ll look next at techniques for converting back and forth between two different
but closely connected classes: String and Regexp.

11.6 Converting strings and regular expressions
to each other
The fact that regular expressions aren’t strings is easy to absorb at a glance in the case
of regular expressions like this:

/[a-c]{3}/

With its special-character class and repetition syntax, this pattern doesn’t look much
like any of the strings it matches ("aaa", "aab", "aac", and so forth).

 It gets a little harder not to see a direct link between a regexp and a string when
faced with a regexp like this:

/abc/

Exercises
Use the following text to complete these exercises. You can enter it all into a variable
at the command line or create a file called collections.txt and use the File#read
method to consume the text:

Collections Report: 04/15/2018

Initech owes us $34,500. They will remit payment on 5/15.

U-North owes $96,000 and has not responded to our notice.

Weyland-Utani Corp has a balance of $25,000 dating back to 1979.

1 Use a regular expression anchor to return the three company names that begin
each line.

2 Use a lookbehind assertion to capture all the numbers in the text and convert
them to integers.

3 Create a hash that maps company name to amount owed:

{ Initech: 34,500,
U-North: $96,000,
Weland-Utani Corp: $25,000 }

375Converting strings and regular expressions to each other
This regexp isn’t the string "abc". Moreover, it matches not only "abc" but any string
with the substring "abc" somewhere inside it (like “Now I know my abcs.”). There’s no
unique relationship between a string and a similar-looking regexp.

 Still, although the visual resemblance between some strings and some regular
expressions doesn’t mean they’re the same thing, regular expressions and strings do
interact in important ways. Let’s look at some flow in the string-to-regexp direction
and then some going the opposite way.

11.6.1 String-to-regexp idioms

To begin with, you can perform string (or string-style) interpolation inside a regexp.
You do so with the familiar #{...} interpolation technique:

>> str = "def"
=> "def"
>> /abc#{str}/
=> /abcdef/

The value of str is dropped into the regexp and made part of it, just as it would be if
you were using the same technique to interpolate it into a string.

 The interpolation technique becomes more complicated when the string you’re
interpolating contains regexp special characters. For example, consider a string con-
taining a period (.). As you know, the period or dot has a special meaning in regular
expressions: it matches any single character except newline. In a string, it’s just a dot.
When it comes to interpolating strings into regular expressions, this has the potential
to cause confusion:

>> str = "a.c"
=> "a.c"
>> re = /#{str}/
=> /a.c/
>> re.match("a.c")
=> #<MatchData "a.c">
>> re.match("abc")
=> #<MatchData "abc">

Both matches succeed; they return MatchData objects rather than nil. The dot in the
pattern matches a dot in the string "a.c". But it also matches the b in "abc". The dot,
which started life as just a dot inside str, takes on special meaning when it becomes
part of the regexp.

 But you can escape the special characters inside a string before you drop the string
into a regexp. You don’t have to do this manually: the Regexp class provides a
Regexp.escape class method that does it for you. You can see what this method does
by running it on a couple of strings in isolation:

>> Regexp.escape("a.c")
=> "a\\.c"
>> Regexp.escape("^abc")
=> "\\^abc"

376 CHAPTER 11 Regular expressions and regexp-based string operations
(irb doubles the backslashes because it’s outputting double-quoted strings. If you
wish, you can puts the expressions, and you’ll see them in their real form with single
backslashes.)

 As a result of this kind of escaping, you can constrain your regular expressions to
match exactly the strings you interpolate into them:

>> str = "a.c"
=> "a.c"
>> re = /#{Regexp.escape(str)}/
=> /a\.c/
>> re.match("a.c")
=> #<MatchData "a.c">
>> re.match("abc")
=> nil

This time, the attempt to use the dot as a wildcard match character fails; "abc" isn’t a
match for the escaped, interpolated string.

 It’s also possible to instantiate a regexp from a string by passing the string to
Regexp.new:

>> Regexp.new('(.*)\s+Black')
=> /(.*)\s+Black/

The usual character-escaping and/or regexp-escaping logic applies:

>> Regexp.new('Mr\. David Black')
=> /Mr\. David Black/
>> Regexp.new(Regexp.escape("Mr. David Black"))
=> /Mr\.\ David\ Black/

Notice that the literal space characters have been escaped with backslashes—not
strictly necessary unless you’re using the x modifier, but not detrimental either.

 You can also pass a literal regexp to Regexp.new, in which case you get back a new,
identical regexp. Because you can always just use the literal regexp in the first place,
Regexp.new is more commonly used to convert strings to regexps.

 The use of single-quoted strings makes it unnecessary to double up on the back-
slashes. If you use double quotes (which you may have to, depending on what sorts of
interpolation you need to do), remember that you need to write Mr\\. so the back-
slash is part of the string passed to the regexp constructor. Otherwise, it will only have
the effect of placing a literal dot in the string—which was going to happen anyway—
and that dot will make it into the regexp without a slash and will therefore be inter-
preted as a wildcard dot.

 Now let’s look at some conversion techniques in the other direction: regexp to
string. This is something you’ll do mostly for debugging and analysis purposes.

377Common methods that use regular expressions
11.6.2 Going from a regular expression to a string

Like all Ruby objects, regular expressions can represent themselves in string form.
The way they do this may look odd at first:

>> puts /abc/
(?-mix:abc)
=> nil

This is an alternate regexp notation—one that rarely sees the light of day except when
generated by the to_s instance method of regexp objects. What looks like mix is a list
of modifiers (m, i, and x) with a minus sign in front indicating that the modifiers are
all switched off.

 You can play with putsing regular expressions in irb, and you’ll see more about
how this notation works. We won’t pursue it here, in part because there’s another way
to get a string representation of a regexp that looks more like what you probably
typed—by calling inspect or p (which in turn calls inspect):

>> /abc/.inspect
=> "/abc/"

Going from regular expressions to strings is useful primarily when you’re studying
and/or troubleshooting regular expressions. It’s a good way to make sure your regular
expressions are what you think they are.

 At this point, we’ll bring regular expressions full circle by examining the roles they
play in some important methods of other classes. We’ve gotten this far using the match
method almost exclusively; but match is just the beginning.

11.7 Common methods that use regular expressions
The payoff for gaining facility with regular expressions in Ruby is the ability to use the
methods that take regular expressions as arguments and do something with them.

 To begin with, you can always use a match operation as a test in, say, a find or
find_all operation on a collection. For example, to find all strings longer than 10
characters and containing at least 1 digit, from an array of strings called array, you
can do this:

array.find_all {|e| e.size > 10 and /\d/.match(e) }

But a number of methods, mostly pertaining to strings, are based more directly on the
use of regular expressions. We’ll look at several of them in this section.

11.7.1 String#scan

The scan method goes from left to right through a string, testing repeatedly for a
match with the pattern you specify. The results are returned in an array.

 For example, if you want to harvest all the digits in a string, you can do this:

>> "testing 1 2 3 testing 4 5 6".scan(/\d/)
=> ["1", "2", "3", "4", "5", "6"]

378 CHAPTER 11 Regular expressions and regexp-based string operations
Note that scan jumps over things that don’t match its pattern and looks for a match
later in the string. This behavior is different from that of match, which stops for good
when it finishes matching the pattern completely once.

 If you use parenthetical groupings in the regexp you give to scan, the operation
returns an array of arrays. Each inner array contains the results of one scan through
the string:

>> str = "Leopold Auer was the teacher of Jascha Heifetz."
=> "Leopold Auer was the teacher of Jascha Heifetz."
>> violinists = str.scan(/([A-Z]\w+)\s+([A-Z]\w+)/)
=> [["Leopold", "Auer"], ["Jascha", "Heifetz"]]

This example nets you an array of arrays, where each inner array contains the first
name and the last name of a person. Having each complete name stored in its own
array makes it easy to iterate over the whole list of names, which we’ve conveniently
stashed in the variable violinists:

violinists.each do |fname,lname|
 puts "#{lname}'s first name was #{fname}."
end

The output from this snippet is as follows:

Auer's first name was Leopold.
Heifetz's first name was Jascha.

The regexp used for names in this example is, of course, overly simple: it neglects
hyphens, middle names, and so forth. But it’s a good illustration of how to use cap-
tures with scan.

 String#scan can also take a code block—and that technique can, at times, save
you a step. scan yields its results to the block, and the details of the yielding depend
on whether you’re using parenthetical captures. Here’s a scan-block-based rewrite of
the previous code:

str.scan(/([A-Z]\w+)\s+([A-Z]\w+)/) do |fname, lname|
 puts "#{lname}'s first name was #{fname}."
end

Each time through the string, the block receives the captures in an array. If you’re not
doing any capturing, the block receives the matched substrings successively. Scanning
for clumps of \w characters (\w is the character class consisting of letters, numbers,
and underscore) might look like this

"one two three".scan(/\w+/) {|n| puts "Next number: #{n}" }

which would produce this output:

Next number: one
Next number: two
Next number: three

379Common methods that use regular expressions
Note that if you provide a block, scan doesn’t store the results in an array and return
them; it sends each result to the block and then discards it. That way, you can scan
through long strings, doing something with the results along the way, and avoid taking
up memory with the substrings you’ve already seen and used.

Another common regexp-based string operation is split.

11.7.2 String#split

In keeping with its name, split splits a string into multiple substrings, returning
those substrings as an array. split can take either a regexp or a plain string as the sep-
arator for the split operation. It’s commonly used to get an array consisting of all the
characters in a string. To do this, you use an empty regexp:

>> "Ruby".split(//)
=> ["R", "u", "b", "y"]

Even more string scanning with the StringScanner class
The standard library includes an extension called strscan, which provides the
StringScanner class. StringScanner objects extend the available toolkit for scan-
ning and examining strings. A StringScanner object maintains a pointer into the
string, allowing for back-and-forth movement through the string, using position and
pointer semantics.

Here are some examples of the methods in StringScanner:

>> require 'strscan'
=> true
>> ss = StringScanner.new("Testing string scanning"
=> #<StringScanner 0/23 @ "Testi...">
>> ss.scan_until(/ing/)
=> "Testing"
>> ss.pos
=> 7
>> ss.peek(7)
=> " string"
>> ss.unscan
=> #<StringScanner 0/23 @ "Testi...">
>> ss.pos
=> 0
>> ss.skip(/Test/)
=> 4
>> ss.rest
=> "ing string scanning"

Using the notion of a pointer into the string, StringScanner lets you traverse across
the string as well as examine what’s already been matched and what remains.
String-Scanner is a useful complement to the built-in string-scanning facilities.

Loads scanner library

Creates scanner

Scans string until regexp matches

Examines new pointer position

Looks at next 7 bytes (but doesn’t advance pointer)

Undoes previous scan

Moves pointer past regexp

Examines part of string to right of pointer

380 CHAPTER 11 Regular expressions and regexp-based string operations
split is often used in the course of converting flat, text-based configuration files to
Ruby data structures. Typically, this involves going through a file line by line and con-
verting each line. A single-line conversion might look like this:

line = "first_name=david;last_name=black;country=usa"
record = line.split(/=|;/)

This leaves record containing an array:

["first_name", "david", "last_name", "black", "country", "usa"]

With a little more work, you can populate a hash with entries of this kind:

data = []
record =

Hash[*line.split(/=|;/)]
data.push(record)

If you do this for every line in a file, you’ll have an array of hashes representing all the
records. That array of hashes, in turn, can be used as the pivot point to a further oper-
ation—perhaps embedding the information in a report or feeding it to a library rou-
tine that can save it to a database table as a sequence of column/value pairs.

 You can provide a second argument to split; this argument limits the number of
items returned. In this example,

>> "a,b,c,d,e".split(/,/,3)
=> ["a", "b", "c,d,e"]

split stops splitting once it has three elements to return and puts everything that’s
left (commas and all) in the third string.

 In addition to breaking a string into parts by scanning and splitting, you can also
change parts of a string with substitution operations, as you’ll see next.

11.7.3 sub/sub! and gsub/gsub!

sub and gsub (along with their bang, in-place equivalents) are the most common tools
for changing the contents of strings in Ruby. The difference between them is that
gsub (global substitution) makes changes throughout a string, whereas sub makes at
most one substitution.

SINGLE SUBSTITUTIONS WITH SUB

sub takes two arguments: a regexp (or string) and a replacement string. Whatever
part of the string matches the regexp, if any, is removed from the string and replaced
with the replacement string:

>> "typigraphical error".sub(/i/,"o")
=> "typographical error"

You can use a code block instead of the replacement-string argument. The block is
called (yielded to) if there’s a match. The call passes in the string being replaced as an
argument:

Uses * to turn array into bare list to feed to Hash[]

381Common methods that use regular expressions
>> "capitalize the first vowel".sub(/[aeiou]/) {|s| s.upcase }
=> "cApitalize the first vowel"

If you’ve done any parenthetical grouping, the global $n variables are set and available
for use inside the block.

GLOBAL SUBSTITUTIONS WITH GSUB

gsub is like sub, except it keeps substituting as long as the pattern matches anywhere
in the string. For example, here’s how you can replace the first letter of every word in
a string with the corresponding capital letter:

>> "capitalize every word".gsub(/\b\w/) {|s| s.upcase }
=> "Capitalize Every Word"

As with sub, gsub gives you access to the $n parenthetical-capture variables in the code
block.

USING THE CAPTURES IN A REPLACEMENT STRING

You can access the parenthetical captures by using a special notation consisting of
backslash-escaped numbers. For example, you can correct an occurrence of a lower-
case letter followed by an uppercase letter (assuming you’re dealing with a situation
where this is a mistake) like this:

>> "aDvid".sub(/([a-z])([A-Z])/, '\2\1')
=> "David"

Note the use of single quotation marks for the replacement string. With double
quotes, you’d have to double the backslashes to escape the backslash character.

 To double every word in a string, you can do something similar, but using gsub:

>> "double every word".gsub(/\b(\w+)/, '\1 \1')
=> "double double every every word word"

We’ll conclude our look at regexp-based tools with two techniques having in common
their dependence on the case-equality operator (===): case statements (which aren’t
method calls but which do incorporate calls to the threequal operator) and Enumerable
#grep.

A global-capture-variable pitfall
Beware: You can use the global capture variables ($1, etc.) in your substitution string,
but they may not do what you think they will. Consider this example:

>> /(abc)/.match("abc")
=> #<MatchData "abc" 1:"abc">
>> "aDvid".sub(/([a-z])([A-Z])/, "#{$2}#{$1}")
=> "abcvid"

Here, $1 from the previous match ("abc") ended up infiltrating the substitution string
in the second match. In general, sticking to the \1-style references to your captures
is safer than using the global capture variables in sub and gsub substitution strings.

382 CHAPTER 11 Regular expressions and regexp-based string operations
11.7.4 Case equality and grep

As you know, all Ruby objects understand the === message. If it hasn’t been overridden
in a given class or for a given object, it’s a synonym for ==. If it has been overridden, it’s
whatever the new version makes it be.

 Case equality for regular expressions is a match test: for any given regexp and string,
regexp === string is true if string matches regexp. You can use === explicitly as a match test:

puts "Match!" if re.match(string)
puts "Match!" if string =~ re
puts "Match!" if re === string

And, of course, you have to use whichever test will give you what you need: nil or
MatchData object for match; nil or integer offset for =~; true or false for === or
match?.

 In case statements, === is used implicitly. To test for various pattern matches in a
case statement, proceed along the following lines:

print "Continue? (y/n) "
answer = gets
case answer
when /^y/i
 puts "Great!"
when /^n/i
 puts "Bye!"
 exit
else
 puts "Huh?"
end

Each when clause is a call to ===: /^y/i === answer, and so forth.
 The other technique you’ve seen that uses the === method/operator, also implic-

itly, is Enumerable#grep. You can refer back to section 10.3.3. Here, we’ll put the spot-
light on a couple of aspects of how it handles strings and regular expressions.

 grep does a filtering operation from an enumerable object based on the case-
equality operator (===), returning all the elements in the enumerable that return a
true value when threequaled against grep’s argument. Thus if the argument to grep is
a regexp, the selection is based on pattern matches, as per the behavior of
Regexp#===:

>> ["USA", "UK", "France", "Germany"].grep(/[a-z]/)
=> ["France", "Germany"]

You can accomplish the same thing with select, but it’s a bit wordier:

["USA", "UK", "France", "Germany"].select {|c| /[a-z]/ === c }

grep uses the generalized threequal technique to make specialized select opera-
tions, including but not limited to those involving strings, concise and convenient.

383Summary
 You can also supply a code block to grep, in which case you get a combined
select/map operation: the results of the filtering operation are yielded one at a time
to the block, and the return value of the whole grep call is the cumulative result of
those yields. For example, to select countries and then collect them in uppercase, you
can do this:

>> ["USA", "UK", "France", "Germany"].grep(/[a-z]/) {|c| c.upcase }
=> ["FRANCE", "GERMANY"]

Keep in mind that grep selects based on the case-equality operator (===), so it won’t
select anything other than strings when you give it a regexp as an argument—and
there’s no automatic conversion between numbers and strings. Thus if you try this,

[1,2,3].grep(/1/)

you get back an empty array; the array has no string element that matches the regexp
/1/, no element for which it’s true that /1/ === element.

 This brings us to the end of our survey of regular expressions and some of the
methods that use them. There’s more to learn; pattern matching is a sprawling sub-
ject. But this chapter has introduced you to much of what you’re likely to need and
see as you proceed with your study and use of Ruby.

Summary
In this chapter, you’ve seen

 The underlying principles behind regular expression pattern matching
 The match and =~ techniques
 Character classes
 Parenthetical captures
 Quantifiers
 Modifiers
 Anchors
 MatchData objects
 String/regexp interpolation and conversion
 Ruby methods that use regexps: scan, split, grep, sub, gsub

This chapter has introduced you to the fundamentals of regular expressions in Ruby,
including character classes, parenthetical captures, and anchors. You’ve seen that reg-
ular expressions are objects—specifically, objects of the Regexp class—and that they
respond to messages (such as "match"). We looked at the MatchData class, instances of
which hold information about the results of a match operation. You’ve also learned
how to interpolate strings into regular expressions (escaped or unescaped, depending
on whether you want the special characters in the string to be treated as special in the
regexp), how to instantiate a regexp from a string, and how to generate a string repre-
sentation of a regexp.

384 CHAPTER 11 Regular expressions and regexp-based string operations
 Methods like String#scan, String#split, Enumerable#grep, and the “sub” family
of String methods use regular expressions and pattern matching as a way of deter-
mining how their actions should be applied. Gaining knowledge about regular expres-
sions gives you access not only to relatively simple matching methods but also to a
suite of string-handling tools that otherwise wouldn’t be usable.

 As we continue our investigation of Ruby’s built-in facilities, we’ll move in chapter
12 to the subject of I/O operations in general and file handling in particular.

File and I/O operations
As you’ll see once you dive in, Ruby keeps even file and I/O operations object ori-
ented. This is great for consistency—as your programs grow and begin interacting
with other systems, you can fall back on your “(very nearly) everything is an object”
understanding of Ruby and apply it to the utilities described in this chapter. Input
and output streams, like the standard input stream or, for that matter, any file han-
dle, are objects. Some I/O-related commands are more procedural: puts, for
example, or the system method that lets you execute a system command. But puts
is only procedural when it’s operating on the standard output stream. When you
puts a line to a file, you explicitly send the message “puts” to a File object.

 The memory space of a Ruby program is a kind of idealized space, where
objects come into existence and talk to each other. Given the fact that I/O and

This chapter covers
 Keyboard input and screen output

 The IO and File classes

 Standard library file facilities, including
FileUtils and Pathname

 The StringIO and open-uri library features
385

386 CHAPTER 12 File and I/O operations
system command execution involve stepping outside this idealized space, Ruby does a
lot to keep objects in the mix.

 Toward the end of the chapter, you’ll see more discussion of standard library (as
opposed to core) packages than anywhere else in the book. That’s because the file-
handling facilities in the standard library—highlighted by the FileUtils, Pathname,
and StringIO packages—are so powerful and so versatile that they’ve achieved a kind
of quasi-core status. The odds are that if you do any kind of file-intensive Ruby pro-
gramming, you’ll get to the point where you load those packages almost without
thinking about it.

12.1 How Ruby’s I/O system is put together
The IO class handles all input and output streams either by itself or via its descendant
classes, particularly File. To a large extent, IO’s API consists of wrappers around sys-
tem library calls, with some enhancements and modifications. The more familiar you
are with the C standard library, the more at home you’ll feel with methods like seek,
getc, and eof?. Likewise, if you’ve used another high-level language that also has a
fairly thin wrapper API around those library methods, you’ll recognize their equiva-
lents in Ruby. But even if you’re not a systems or C programmer, you’ll get the hang of
it quickly.

12.1.1 The IO class

IO objects represent readable and/or writable connections to disk files, keyboards,
screens, and other devices. You treat an IO object like any other object: you send it
messages, and it executes methods and returns the results.

 When a Ruby program starts up, it’s aware of the standard input, output, and error
streams. All three are encapsulated in instances of IO. You can use them to get a sense
of how a simple IO object works:

>> STDERR.class
=> IO
>> STDERR.puts("Problem!")
Problem!
=> nil
>> STDERR.write("Problem!\n")
Problem!
=> 9

The constants STDERR, STDIN, and STDOUT (all of which we’ll cover in detail in section
12.1.3) are automatically set when the program starts. STDERR is an IO object B. If an
IO object is open for writing (which STDERR is, because the whole point is to output
status and error messages to it), you can call puts on it, and whatever you puts will be
written to that IO object’s output stream C. In the case of STDERR—at least, in the
default startup situation—that’s a fancy way of saying that it will be written to the
screen.

B

C

D

387How Ruby’s I/O system is put together
 In addition to puts, IO objects have the print method and a write method. If you
write to an IO object, there’s no automatic newline output (write is like print rather
than puts in that respect), and the return value is the number of bytes written D.

 IO is a Ruby class, and as a class it’s entitled to mix in modules. And so it does. In
particular, IO objects are enumerable.

12.1.2 IO objects as enumerables

An enumerable, as you know, must have an each method so that it can iterate. IO
objects iterate based on the global input record separator, which, as you saw in con-
nection with strings and their each_line method in section 10.7, is stored in the
global variable $/.

 In the following examples, Ruby’s output is indicated by bold type; regular type
indicates keyboard input. The code performs an iteration on STDIN, the standard
input stream. At first, STDIN treats the newline character as the signal that one itera-
tion has finished; it thus prints each line as you enter it:

>> STDIN.each {|line| p line }
This is line 1
"This is line 1\n"
This is line 2
"This is line 2\n"
All separated by $/, which is a newline character
"All separated by $/, which is a newline character\n"

But if you change the value of $/, STDIN’s idea of what constitutes an iteration also
changes. Terminate the first iteration with Ctrl-D (or Ctrl-C, if necessary!), and try this
example:

>> $/ = "NEXT"
=> "NEXT"
>> STDIN.each {|line| p line}
First line
NEXT
"First line\nNEXT"
Next line
where "line" really means
until we see... NEXT
"\nNext line\nwhere \"line\" really means\nuntil we see... NEXT"

Here Ruby accepts keyboard input until it hits the string "NEXT", at which point it con-
siders the entry of the record to be complete.

 So $/ determines an IO object’s sense of “each.” And because IO objects are enu-
merable, you can perform the usual enumerable operations on them. (You can
assume that $/ has been returned to its original value in these examples.) The ^D
notation indicates that the typist entered Ctrl-D at that point:

>> STDIN.select {|line| line =~ /\A[A-Z]/ }
We're only interested in
lines that begin with
Uppercase letters

388 CHAPTER 12 File and I/O operations
^D
=> ["We're only interested in\n", "Uppercase letters\n"]
>> STDIN.map {|line| line.reverse }
senil esehT
terces a niatnoc
.egassem
^D
=> ["\nThese lines", "\ncontain a secret", "\nmessage."]

We’ll come back to the enumerable behaviors of IO objects in the context of file han-
dling in section 12.2. Meanwhile, the three basic IO objects—STDIN, STDOUT, and
STDERR—are worth a closer look.

12.1.3 STDIN, STDOUT, STDERR

If you’ve written programs and/or shell scripts that use any kind of I/O piping, then
you’re probably familiar with the concept of the standard input, output, and error
streams. They’re basically defaults: unless told otherwise, Ruby assumes that all input
will come from the keyboard, and all normal output will go to the terminal. Assuming,
in this context, means that the unadorned, procedural I/O methods, like puts and
gets, operate on STDOUT and STDIN, respectively.

 Error messages and STDERR are a little more involved. Nothing goes to STDERR
unless someone tells it to. So if you want to use STDERR for output, you have to name it
explicitly:

if broken?
 STDERR.puts "There's a problem!"
end

In addition to the three constants, Ruby also gives you three global variables: $stdin,
$stdout, and $stderr.

THE STANDARD I/O GLOBAL VARIABLES

The main difference between STDIN and $stdin (and the other pairs likewise) is that
you’re not supposed to reassign to the constant, but you can reassign to the variable.
The variables give you a way to modify default standard I/O stream behaviors without
losing the original streams.

 For example, perhaps you want all output going to a file, including standard out
and standard error. You can achieve this with some assignments to the global vari-
ables. Let’s create a file called outputs.rb and enter the following code.

record = File.open("/tmp/record", "w")
old_stdout = $stdout
$stdout = record
$stderr = $stdout
puts "This is a record"
z = 10/0

Listing 12.1 Direct all output to a single file

389How Ruby’s I/O system is put together
The first step is to open the file to which you want to write. (If you don’t have a /tmp
directory on your system, you can change the filename so that it points to a different
path, as long as you have write permission to it.) Next, save the current $stdout to a
variable, in case you want to switch back to it later.

 Now comes the little dance of the I/O handles. First, $stdout is redefined as the
output handle record. Next, $stderr is set equivalent to $stdout. At this point, any
plain-old puts statement results in output being written to the file /tmp/record,
because plain puts statements output to $stdout—and that’s where $stdout is now
pointing. $stderr output (like the error message resulting from a division by zero)
also goes to the file, because $stderr, too, has been reassigned that file handle.

 The result is that when you run the program, you see nothing on your screen; but
/tmp/record looks like this:

This is a record
outputs.rb:6:in `/': divided by 0 (ZeroDivisionError)
 from outputs.rb:6:in `<main>'

Of course, you can also send standard output to one file and standard error to
another. The global variables let you manipulate the streams any way you need to.

 We’ll move on to files soon, but while we’re talking about I/O in general and the
standard streams in particular, let’s look more closely at the keyboard.

12.1.4 A little more about keyboard input

Keyboard input is accomplished, for the most part, with gets and getc. As you’ve
seen, gets returns a single line of input. getc returns one character.

 One difference between these two methods is that in the case of getc, you need to
name your input stream explicitly:

line = gets
char = STDIN.getc

In both cases, input is buffered: you have to press Enter before anything happens. It’s
possible to make getc behave in an unbuffered manner so that it takes its input as
soon as the character is struck, but there’s no portable way to do this across Ruby plat-
forms. (On UNIX-ish platforms, you can set the terminal to “raw” mode with the stty
command. You need to use the system method, described in chapter 14, to do this
from inside Ruby.)

 If for some reason you’ve got $stdin set to something other than the keyboard,
you can still read keyboard input by using STDIN explicitly as the receiver of gets:

line = STDIN.gets

Assuming you’ve followed the advice in the previous section and done all your stan-
dard I/O stream juggling through the use of the global variables rather than the con-
stants, STDIN will still be the keyboard input stream, even if $stdin isn’t.

 At this point, we’re going to turn to Ruby’s facilities for reading, writing, and
manipulating files.

390 CHAPTER 12 File and I/O operations
12.2 Basic file operations
The built-in class File provides the facilities for manipulating files in Ruby. File is a
subclass of IO, so File objects share certain properties with IO objects, although the
File class adds and changes certain behaviors.

 We’ll look first at basic file operations, including opening, reading, writing, and
closing files in various modes. Then, we’ll look at a more “Rubyish” way to handle file
reading and writing: with code blocks. After that, we’ll go more deeply into the enu-
merability of files, and then end the section with an overview of some of the common
exceptions and error messages you may get in the course of manipulating files.

12.2.1 The basics of reading from files

Reading from a file can be performed one byte at a time, a specified number of bytes
at a time, or one line at a time (where line is defined by the $/ delimiter). You can also
change the position of the next read operation in the file by moving forward or back-
ward a certain number of bytes or by advancing the File object’s internal pointer to a
specific byte offset in the file.

 All of these operations are performed courtesy of File objects. So the first step is
to create a File object. The simplest way to do this is with File.new. Pass a filename to
this constructor, and, assuming the file exists, you’ll get back a file handle opened for
reading. The following examples involve a file called ticket2.rb that contains the code
in listing 3.2 and that’s stored in a directory called code:

>> f = File.new("code/ticket2.rb")
=> #<File:code/ticket2.rb>

(If the file doesn’t exist, an exception will be raised.) At this point, you can use the file
instance to read from the file. A number of methods are at your disposal. The abso-
lute simplest is the read method; it reads in the entire file as a single string:

>> f.read
=> "class Ticket\n def initialize(venue, date)\n
 @venue = venue\n @date = date\n end\n\n etc.

Although using read is tempting in many situations and appropriate in some, it can
be inefficient and a bit sledgehammer-like when you need more granularity in your
data reading and processing.

 We’ll look here at a large selection of Ruby’s file-reading methods, handling them
in groups: first, line-based read methods, and then, byte-based read methods.

Close your file handles
When you’re finished reading from and/or writing to a file, you need to close it. File
objects have a close method (for example, f.close) for this purpose. You’ll learn
about a way to open files so that Ruby handles the file closing for you, by scoping the
whole file operation to a code block. But if you’re doing it the old-fashioned way, as
in the examples involving File.new in this part of the chapter, you should close your
files explicitly. (They’ll get closed when you exit irb too, but it’s good practice to
close the ones you’ve opened.)

391Basic file operations
12.2.2 Line-based file reading

The easiest way to read the next line from a file is with gets:

>> f.gets
=> "class Ticket\n"
>> f.gets
=> " def initialize(venue, date)\n"
>> f.gets
=> " @venue = venue\n"

The readline method does much of what gets does: it reads one line from the file.
The difference lies in how the two methods behave when you try to read beyond the
end of a file: gets returns nil, and readline raises a fatal error. You can see the differ-
ence if you do a read on a File object to get to the end of the file and then try the two
methods on the object:

>> f.read
=> " def initialize(venue, date)\n @venue = venue\n
 @date = date\n end\n\n
 etc.
>> f.gets
=> nil
>> f.readline
EOFError (end of file reached)

If you want to get the entire file at once as an array of lines, use readlines (a close rel-
ative of read). Note also the rewind operation, which moves the File object’s internal
position pointer back to the beginning of the file:

>> f.rewind
=> 0
>> f.readlines
=> ["class Ticket\n", " def initialize(venue, date)\n",
 " @venue = venue\n", " @date = date\n" etc.

Keep in mind that File objects are enumerable. That means you can iterate through
the lines one at a time rather than reading the whole file into memory. The each
method of File objects (also known by the synonym each_line) serves this purpose:

>> f.each {|line| puts "Next line: #{line}" }
Next line: class Ticket
Next line: def initialize(venue, date)
Next line: @venue = venue
etc.

NOTE In the example in this subsection and several that follow, a rewind of
the File object is assumed. If you’re following along in irb, you’ll want to
type f.rewind to get back to the beginning of the file.

The enumerability of File objects merits a discussion of its own, and we’ll look at it
shortly. Meanwhile, let’s look at byte-wise simple read operations.

392 CHAPTER 12 File and I/O operations
12.2.3 Byte- and character-based file reading

If an entire line is too much, how about one character? The getc method reads and
returns one character from the file:

>> f.getc
=> "c"

You can also “un-get” a character—that is, put a specific character back onto the file-
input stream so it’s the first character read on the next read:

>> f.getc
=> "c"
>> f.ungetc("X")
=> nil
>> f.gets
=> "Xlass Ticket\n"

Every character is represented by one or more bytes. How bytes map to characters
depends on the encoding. Whatever the encoding, you can move byte-wise as well as
character-wise through a file, using getbyte. Depending on the encoding, the num-
ber of bytes and the number of characters in your file may or may not be equal, and
getc and getbyte, at a given position in the file, may or may not return the same
thing.

 Just as readline differs from gets in that readline raises a fatal error if you use it at
the end of a file, the methods readchar and readbyte differ from getc and getbyte,
respectively, in the same way. Assuming you’ve already read to the end of the File
object f, you get the following results:

>> f.getc
=> nil
>> f.readchar
EOFError (end of file reached)
>> f.getbyte
=> nil
>> f.readbyte
EOFError: (end of file reached)

During all these operations, the File object (like any IO object) has a sense of where it
is in the input stream. As you’ve seen, you can easily rewind this internal pointer to
the beginning of the file. You can also manipulate the pointer in some more-fine-
grained ways.

12.2.4 Seeking and querying file position

The File object has a sense of where in the file it has left off reading. You can both
read and change this internal pointer explicitly, using the File object’s pos (position)
attribute and/or the seek method.

 With pos, you can tell where in the file the pointer is currently pointing:

>> f.rewind
=> 0

393Basic file operations
>> f.pos
=> 0
>> f.gets
=> "class Ticket\n"
>> f.pos
=> 13

Here the position is 0 after a rewind and 13 after a reading of one 13-byte line. You
can assign to the position value, which moves the pointer to a specific location in the
file:

>> f.pos = 10
=> 10
>> f.gets
=> "et\n"

The string returned is what the File object considers a “line” as of byte 10: everything
from that position onward until the next occurrence of newline (or, strictly speaking,
of $/).

 The seek method lets you move around in a file by moving the position pointer to
a new location. This is useful for large files and in cases where you want to skip or
ignore some of the contents in the file. The location can be a specific offset into the
file, or it can be relative to either the current pointer position or the end of the file.
You specify what you want using special constants from the IO class:

f.seek(20, IO::SEEK_SET)
f.seek(15, IO::SEEK_CUR)
f.seek(-10, IO::SEEK_END)

In this example, the first line seeks to byte 20. The second line advances the pointer
15 bytes from its current position, and the last line seeks to 10 bytes before the end of
the file. Using IO::SEEK_SET is optional; a plain f.seek(20) does the same thing (as
does f.pos = 20).

 We’ve looked at several ways to read from files, starting with the all-at-once read
method, progressing through the line-by-line approach, and winding up with the
most-fine-grained reads based on character and position. All of these file-reading tech-
niques involve File objects—that is, instances of the File class. That class itself also
offers some reading techniques.

12.2.5 Reading files with File class methods

A little later, you’ll see more of the facilities available as class methods of File. For
now, we’ll look at two methods that handle file reading at the class level: File.read
and File.readlines.

 These two methods do the same thing their same-named instance-method coun-
terparts do; but instead of creating an instance, you use the File class, the method
name, and the name of the file:

full_text = File.read("myfile.txt")
lines_of_text = File.readlines("myfile.txt")

394 CHAPTER 12 File and I/O operations
In the first case, you get a string containing the entire contents of the file. In the sec-
ond case, you get an array of lines.

 These two class methods exist purely for convenience. They take care of opening
and closing the file handle for you; you don’t have to do any system-level housekeep-
ing. Most of the time, you’ll want to do something more complex and/or more effi-
cient than reading the entire contents of a file into a string or an array at one time.
Given that even the read and readlines instance methods are relatively coarse-
grained tools, if you decide to read a file in all at once, you may as well go all the way
and use the class-method versions.

You now have a good toolkit for reading files and dealing with the results. At this
point, we’ll turn to the other side of the equation: writing to files.

12.2.6 Writing to files

Writing data to a file is a form of persistence. When your program is finished running,
everything that it’s done will be lost unless it’s “written down” somewhere—typically in
a database or a file. Writing to files is incredibly useful, and you’ll find that you’ll write
to and read from files of all kinds.

 Writing to a file involves using puts, print, or write on a File object that’s
opened in write or append mode. Write mode is indicated by w as the second argu-
ment to new. In this mode, the file is created (assuming you have permission to create

Low-level I/O methods
In addition to the various I/O and File methods we’ll look at closely here, the IO
class gives you a toolkit of system-level methods with which you can do low-level I/O
operations. These include sysseek, sysread, and syswrite. These methods corre-
spond to the system calls on which some of the higher-level methods are built.

The sys- methods perform raw, unbuffered data operations and shouldn’t be mixed
with higher-level methods. Here’s an example of what not to do:

File.open("output.txt", "w") do |f|
f.print("Hello")
f.syswrite(" there!")

end
puts File.read("output.txt")

If you run this little program, here’s what you’ll see:

syswrite.rb:3: warning: syswrite for buffered IO
 there!Hello

In addition to a warning, you get the second string (the one written with syswrite)
stuck in the file before the first string. That’s because syswrite and print don’t
operate according to the same rules and don’t play nicely together. It’s best to stick
with the higher-level methods unless you have a particular reason to use the others.

395Basic file operations
it); if it existed already, the old version is overwritten. In append mode (indicated by
a), whatever you write to the file is appended to what’s already there. If the file doesn’t
exist yet, opening it in append mode creates it.

 This example performs some simple write and append operations, pausing along
the way to use the mighty File.read to check the contents of the file:

>> f = File.new("data.out", "w")
=> #<File:data.out>
>> f.puts "David A. Black, Rubyist"
=> nil
>> f.close
=> nil
>> puts File.read("data.out")
David A. Black, Rubyist
=> nil
>> f = File.new("data.out", "a")
=> #<File:data.out>
>> f.puts "Joe Leo III, Rubyist"
=> nil
>> f.close
=> nil
>> puts File.read("data.out")
David A. Black, Rubyist
Joe Leo III, Rubyist

The return value of a call to puts on a File object is the same as the return value of
any call to puts: nil. The same is true of print. If you use the lower-level write
method, which is an instance method of the IO class (and therefore available to File
objects, because File inherits from IO), the return value is the number of bytes writ-
ten to the file.

 Ruby lets you economize on explicit closing of File objects—and enables you to
keep your code nicely encapsulated—by providing a way to perform file operations
inside a code block. We’ll look at this elegant and common technique next.

12.2.7 Using blocks to scope file operations

Using File.new to create a File object has the disadvantage that you end up having
to close the file yourself. Ruby provides an alternate way to open files that puts the
housekeeping task of closing the file in the hands of Ruby: File.open with a code
block.

 If you call File.open with a code block, the block receives the File object as its sin-
gle argument. You use that File object inside the block. When the block ends, the
File object is automatically closed.

 The following listing contains an example in which a file called records.txt is
opened and read in line by line for processing. Make sure there is no newline at the
end of records.txt.

396 CHAPTER 12 File and I/O operations
records.txt:
Pablo Casals|Catalan|cello|1876-1973
Jascha Heifetz|Russian-American|violin|1901-1988
Emanuel Feuermann|Austrian-American|cello|1902-1942

read_records.rb:
File.open("records.txt") do |f|
 while record = f.gets
 name, nationality, instrument, dates = record.chomp.split('|')
 puts "#{name} (#{dates}), who was #{nationality}, played #{instrument}."
 end
end

The program consists entirely of a call to File.open along with its code block. (If you
call File.open without a block, it acts like File.new.) The block parameter, f, receives
the File object. Inside the block, the file is read one line at a time using f. The while
test succeeds as long as lines are coming in from the file. When the program hits the
end of the input file, gets returns nil, and the while condition fails.

 Inside the while loop, the current line is chomped so as to remove the final new-
line character, if any, and split on the pipe character. The resulting values are stored
in the four local variables on the left, and those variables are then interpolated into a
pretty-looking report for output:

Pablo Casals (1876-1973), who was Catalan, played cello.
Jascha Heifetz (1901-1988), who was Russian-American, played violin.
Emanuel Feuermann (1902-1942), who was Austrian-American, played cello.

The use of a code block to scope a File.open operation is common. It sometimes
leads to misunderstandings, though. In particular, remember that the block that pro-
vides you with the File object doesn’t do anything else. There’s no implicit loop. If
you want to read what’s in the file, you still have to do something like a while loop
using the File object. It’s just nice that you get to do it inside a code block and that
you don’t have to worry about closing the File object afterward.

 And don’t forget that File objects are enumerable.

12.2.8 File enumerability

Thanks to the fact that Enumerable is among the ancestors of File, you can replace
the while idiom in the previous example with each:

File.open("records.txt") do |f|
f.each do |record|

name, nationality, instrument, dates = record.chomp.split('|')
puts "#{name} (#{dates}), who was #{nationality}, played #{instrument}."

 end
end

Ruby gracefully stops iterating when it hits the end of the file.
 As enumerables, File objects can perform many of the same functions that arrays,

hashes, and other collections do. Understanding how file enumeration works requires

Listing 12.2 Using the block-based version of File.open

397Basic file operations
a slightly different mental model: whereas an array exists already and walks through its
elements in the course of iteration, File objects have to manage line-by-line reading
behind the scenes when you iterate through them. But the similarity of the idioms—
the common use of the methods from Enumerable—means you don’t have to think in
much detail about the file-reading process when you iterate through a file.

 Most important, don’t forget that you can iterate through files and address them as
enumerables. It’s tempting to read a whole file into an array and then process the
array. But why not just iterate on the file and avoid wasting the space required to hold
the file’s contents in memory?

 You could, for example, read in an entire file of plain-text records and then per-
form an inject operation on the resulting array to get the average of a particular field:

Sample record in members.txt:
Joe Leo male 37
count = 0
total_ages = File.readlines("members.txt").inject(0) do |total,line|
 count += 1
 fields = line.split
 age = fields[3].to_i
 total + age
end
puts "Average age of group: #{total_ages / count}."

But you can also perform the inject operation directly on the File object:

count = 0
total_ages = File.open("members.txt") do |f|
 f.inject(0) do |total,line|
 count += 1
 fields = line.split
 age = fields[3].to_i
 total + age
 end
end
puts "Average age of group: #{total_ages / count}."

With this approach, no intermediate array is created. The File object does its own work.
 One way or another, you’ll definitely run into cases where something goes wrong

with your file operations. Ruby will leave you in no doubt that there’s a problem, but
it’s helpful to see in advance what some of the possible problems are and how they’re
reported.

12.2.9 File I/O exceptions and errors

When something goes wrong with file operations, Ruby raises an exception. Most of
the errors you’ll get in the course of working with files can be found in the Errno
namespace: Errno::EACCES (permission denied), Errno::ENOENT (no such entity—a
file or directory), Errno::EISDIR (is a directory—an error you get when you try to
open a directory as if it were a file), and others. You’ll always get a message along with
the exception:

398 CHAPTER 12 File and I/O operations
>> File.open("no_file_with_this_name")
Errno::ENOENT (No such file or directory @ rb_sysopen -

no_file_with_this_name)
>> f = File.open("/tmp")
=> #<File:/tmp>
>> f.gets
Errno::EISDIR (Is a directory @io_fillbuff - /tmp)
>> File.open("/var/root")
Errno::EACCES (Permission denied - /var/root)

The Errno family of errors includes not only file-related errors but also other system
errors. The underlying system typically maps errors to integers (for example, on
Linux, the “not a directory” error is represented by the C macro ENOTDIR, which is
defined as the number 20). Ruby’s Errno class wraps these error-to-number mappings
in a bundle of exception classes.

 Each Errno exception class contains knowledge of the integer to which its corre-
sponding system error maps. You can get these numbers via the Errno constant of
each Errno class—and if that sounds obscure, an example will make it clearer:

>> Errno::ENOTDIR::Errno
=> 20

You’ll rarely, if ever, have to concern yourself with the mapping of Ruby’s Errno excep-
tion classes to the integers to which your operating system maps errors. But you
should be aware that any Errno exception is basically a system error percolating up
through Ruby. These aren’t Ruby-specific errors, like syntax errors or missing-method
errors; they involve things going wrong at the system level. In these situations, Ruby is
just the messenger.

 Let’s go back to what you can do when things go right. We’ll look next at some
ways in which you can ask IO and File objects for information about themselves and
their state.

Exercises
1 Type the following input into a file called hits.txt:

Party Rock Anthem/LMFAO/2011
Somebody That I Used To Know/Gotye/2012
We Found Love/Rihanna/2011
Rolling in the Deep/Adele/2011
Blurred Lines/Robin Thicke/2013
Call Me Maybe/Carly Rae Jepsen/2012
Happy/Pharrell Williams/2014
Royals/Lorde/2013
Dark Horse/Katy Perry/2014
Moves Like Jagger/Maroon 5/2011

399Querying IO and File objects

12.3 Querying IO and File objects
IO and File objects can be queried on numerous criteria. The IO class includes some
query methods; the File class adds more.

 One class and one module closely related to File also get into the act: File::Stat
and FileTest. File::Stat returns objects whose attributes correspond to the fields of
the stat structure defined by the C library call stat(2). Some of these fields are
system-specific and not meaningful on all platforms. The FileTest module offers
numerous methods for getting status information about files.

 The File class also has some query methods. In some cases, you can get the same
information about a file several ways:

>> File.size("code/ticket2.rb")
=> 219
>> FileTest.size("code/ticket2.rb")
=> 219
>> File::Stat.new("code/ticket2.rb").size
=> 219

In what follows, we’ll look at a large selection of query methods. In some cases, they’re
available in more than one way.

12.3.1 Getting information from the File class and the FileTest module

File and FileTest offer numerous query methods that can give you lots of informa-
tion about a file. These are the main categories of query: What is it? What can it do?
How big is it?

 The methods available as class methods of File and FileTest are almost identical;
they’re mostly aliases of each other. The examples will only use FileTest, but you can
use File too.

 Following are some questions you might want to ask about a given file, along with
the techniques for asking them. All of these methods return either true or false except

Use File.open with a block to parse hits.txt and output the data in the following
format:

"Party Rock Anthem," performed by LMFAO, reached #1 in 2011
"Somebody That I Used To Know," performed by Gotye, reached #1 in

2012
...
"Moves Like Jagger," performed by Maroon 5, reached #1 in 2011

2 Use file enumerability to determine the year with the most hits. Append this to
your output:

2011 was the best year for hit music between 2010 and 2014.

400 CHAPTER 12 File and I/O operations
size, which returns an integer. Keep in mind that these file-testing methods are
happy to take directories, links, sockets, and other filelike entities as their arguments.
They’re not restricted to regular files:

 Does a file exist?
FileTest.exist?("/usr/local/src/ruby/README")

 Is the file empty?
FileTest.empty?("/etc/crontab")

 Is the file a directory? A regular file? A symbolic link?
FileTest.directory?("/var/log/syslog")
FileTest.file?("/var/log/syslog")
FileTest.symlink?("/var/log/syslog")

This family of query methods also includes blockdev?, pipe?, chardev?, and
socket?.

 Is a file readable? Writable? Executable?
FileTest.readable?("/tmp")
FileTest.writable?("/tmp")
FileTest.executable?("/bin/rm")

This family of query methods includes world_readable? and world_writable?,
which test for more-permissive permissions. It also includes variants of the basic
three methods with _real appended. These test the permissions of the script’s
actual runtime ID as opposed to its effective user ID.

 What is the size of this file? Is the file empty (zero bytes)?
FileTest.size("/sbin/mkfs")
FileTest.zero?("/tmp/tempfile")

Getting file information with Kernel#test
Among the top-level methods at your disposal (that is, private methods of the Kernel
module, which you can call anywhere without a receiver, like puts) is a method called
test. You use test by passing it two arguments: the first represents the test, and
the second is a file or directory. The choice of test is indicated by a character. You
can represent the value using the ?c notation, where c is the character, or as a one-
character string.

Here’s an example that finds out whether /tmp exists:

test ?e, "/tmp"

Other common test characters include ?d (the test is true if the second argument is
a directory), ?f (true if the second argument is a regular file), and ?z (true if the sec-
ond argument is a zero-length file). For every test available through Kernel#test,
there’s usually a way to get the result by calling a method of one of the classes dis-
cussed in this section. But the Kernel#test notation is shorter and can be handy
for that reason.

401Directory manipulation with the Dir class
In addition to the query and Boolean methods available through FileTest (and
File), you can also consult objects of the File::Stat class for file information.

12.3.2 Deriving file information with File::Stat

File::Stat objects have attributes corresponding to the stat structure in the standard
C library. You can create a File::Stat object in either of two ways: with the new
method or with the stat method on an existing File object:

>> File::Stat.new("code/ticket2.rb")
=> #<File::Stat dev=0x1000002, ino=11531534, mode=0100644,
nlink=1, uid=501, gid=20, rdev=0x0, size=219, blksize=4096,
blocks=8, atime=2014-03-23 08:31:49 -0400,
mtime=2014-02-25 06:24:43 -0500, ctime=2014-02-25 06:24:43 -0500>
>> File.open("code/ticket2.rb") {|f| f.stat }

The screen output from the File::Stat.new method shows you the attributes of the
object, including its times of creation (ctime), last modification (mtime), and last
access (atime).

TIP The code block given to File.open in this example, {|f| f.stat }, eval-
uates to the last expression inside it. Because the last (indeed, only) expres-
sion is f.stat, the value of the block is a File::Stat object. In general, when
you use File.open with a code block, the call to File.open returns the last
value from the block. Called without a block, File.open (like File.new)
returns the newly created File object.

Much of the information available from File::Stat is built off of UNIX-like metrics,
such as inode number, access mode (permissions), and user and group ID. The rele-
vance of this information depends on your operating system. We won’t go into the
details here because it’s not cross-platform; but whatever information your system
maintains about files is available if you need it.

 Manipulating and querying files often involves doing likewise to directories. Ruby
provides facilities for directory operations in the Dir class. You’ll also see such opera-
tions in some of the standard library tools we’ll discuss a little later. First, let’s look at Dir.

12.4 Directory manipulation with the Dir class
Like File, the Dir class provides useful class and instance methods. To create a Dir
instance, you pass a directory path to new:

>> d = Dir.new("/home/jleo3/.rubies/ruby-2.5.1/lib/ruby/2.5.0/uri")
=> #<Dir: /home/jleo3/.rubies/ruby-2.5.1/lib/ruby/2.5.0/uri >

The most common and useful Dir-related technique is iteration through the entries
(files, links, other directories) in a directory.

NOTE The examples in this section contain references to the location of Ruby
library files and directories. The location of your Ruby files will differ with the
way in which you installed Ruby. Try running the examples by replacing the

Same output

402 CHAPTER 12 File and I/O operations
path with one that works for your machine. If you’re unsure how to locate your
Ruby installation, chapter 1 introduces tools that do just that.

12.4.1 Reading a directory’s entries

You can get hold of the entries in one of two ways: using the entries method or using
the glob technique. The main difference is that globbing the directory doesn’t return
hidden entries, which on many operating systems (including all UNIX-like systems)
means entries whose names start with a period. Globbing also allows for wildcard
matching and for recursive matching in subdirectories.

THE ENTRIES METHOD

Both the Dir class itself and instances of the Dir class can give you a directory’s
entries. Given the instance of Dir created earlier, you can do this:

>> d.entries
=> [".", "..", "ldap.rb", "rfc2396_parser.rb", "rfc3986_parser.rb",

"common.rb", "https.rb", "ldaps.rb", "ftp.rb", "mailto.rb", generic.rb",
http.rb"]

Or you can use the class-method approach:

>> Dir.entries("/home/jleo3/.rubies/ruby-2.5.1/lib/ruby/2.5.0/uri ")
=> [".", "..", "ldap.rb", "rfc2396_parser.rb", "rfc3986_parser.rb",

"common.rb", "https.rb", "ldaps.rb", "ftp.rb", "mailto.rb", generic.rb",
http.rb"]

Note that the single- and double-dot entries (current directory and parent directory,
respectively) are present. If you want to iterate through the entries, only processing
files, you need to make sure you filter out the names starting with dots.

 Let’s say we want to add up the sizes of all non-hidden regular files in a directory.
Here’s a first iteration (we’ll develop a shorter one later):

d = Dir.new("/home/jleo3/.rubies/ruby-2.5.1/lib/ruby/2.5.0/uri")
entries = d.entries
entries.delete_if {|entry| entry =~ /^\./ }
entries.map! {|entry| File.join(d.path, entry) }
entries.delete_if {|entry| !File.file?(entry) }
print "Total bytes: "
puts entries.inject(0) {|total, entry| total + File.size(entry) }

First, we create a Dir object for the target directory and grab its entries. Next comes a
sequence of manipulations on the array of entries. Using the delete_if array
method, we remove all that begin with a dot. Then, we do an in-place mapping of the
entry array so that each entry includes the full path to the file. This is accomplished
with two useful methods: the instance method Dir#path, which returns the original
directory path underlying this particular Dir instance; and File.join, which joins the
path to the filename with the correct separator (usually /, but it’s somewhat system
dependent).

 Now that the entries have been massaged to represent full pathnames, we
do another delete_if operation to delete all the entries that aren’t regular files, as

403Directory manipulation with the Dir class
measured by the File.file? test method. The entries array now contains full path-
names of all the regular files in the original directory. The last step is to add up their
sizes, a task for which inject is perfectly suited.

 Among other ways to shorten this code, you can use directory globbing instead of
the entries method.

DIRECTORY GLOBBING

Globbing in Ruby takes its semantics largely from shell globbing, the syntax that lets
you do things like this in the shell:

$ ls *.rb
$ rm *.?xt
$ for f in [A-Z]* # etc.

The details differ from one shell to another, of course; but the point is that this whole
family of name-expansion techniques is where Ruby gets its globbing syntax. An aster-
isk represents a wildcard match on any number of characters; a question mark rep-
resents one wildcard character. Regexp-style character classes are available for
matching.

 To glob a directory, you can use the Dir.glob method or Dir.[] (square brack-
ets). The square-bracket version of the method allows you to use index-style syntax, as
you would with the square-bracket method on an array or hash. You get back an array
containing the result set:

>> Dir["/usr/local/src/ruby/include/ruby/r*.h"]
=> ["/usr/local/src/ruby/include/ruby/re.h",

"/usr/local/src/ruby/include/ruby/regex.h",
"/usr/local/src/ruby/include/ruby/ruby.h"]

The glob method is largely equivalent to the [] method but a little more versatile: you
can give it not only a glob pattern but also one or more flag arguments that control its
behavior. For example, if you want to do a case-insensitive glob, you can pass the
File::FNM_CASEFOLD flag:

>> Dir.glob("info*")
=> []
>> Dir.glob("info", File::FNM_CASEFOLD)
=> ["Info", "INFORMATION"]

Another useful flag is FNM_DOTMATCH, which includes hidden dot files in the results.
 If you want to use two flags, you combine them with the bitwise OR operator, which

consists of a single pipe character. In this example, progressively more files are found
as the more permissive flags are added:

>> Dir.glob("*info*")
=> []
>> Dir.glob("*info*", File::FNM_DOTMATCH)
=> [".information"]
>> Dir.glob("*info*", File::FNM_DOTMATCH | File::FNM_CASEFOLD)
=> [".information", ".INFO", "Info"]

404 CHAPTER 12 File and I/O operations
The flags are, literally, numbers. The value of File::FNM_DOTMATCH, for example, is 4.
The specific numbers don’t matter (they derive ultimately from the flags in the system
library function fnmatch). What does matter is the fact that they’re exponents of two
accounts for the use of the OR operation to combine them.

NOTE As you can see from the first two lines of the previous example, a glob
operation on a directory can find nothing and still not complain. It gives you
an empty array. Not finding anything isn’t considered a failure when you’re
globbing.

Globbing with square brackets is the same as globbing without providing any flags. In
other words, doing this

Dir["*info*"]

is like doing this

Dir.glob("*info*", 0)

which, because the default is that none of the flags is in effect, is like doing this:

Dir.glob("*info*")

The square-bracket method of Dir gives you a kind of shorthand for the most com-
mon case. If you need more granularity, use Dir.glob.

 By default, globbing doesn’t include filenames that start with dots. Also, as you can
see, globbing returns full pathnames, not just filenames. Together, these facts let us
trim down the file-size totaling example:

dir = "/home/jleo3/.rubies/ruby-2.5.1/lib/ruby/2.5.0/uri "
entries = Dir["#{dir}/*"].select {|entry| File.file?(entry) }
print "Total bytes: "
puts entries.inject(0) {|total, entry| total + File.size(entry) }

With their exclusion of dot files and their inclusion of full paths, glob results often
correspond more closely than Dir.entries results to the ways that many of us deal
with files and directories on a day-to-day basis.

 There’s more to directory management than just seeing what’s there. We’ll look
next at some techniques that let you go more deeply into the process.

12.4.2 Directory manipulation and querying

The Dir class includes several query methods for getting information about a direc-
tory or about the current directory, as well as methods for creating and removing
directories. These methods are, like so many, best illustrated by example.

 In the next listing, we’ll create a new directory (mkdir), navigate to it (chdir), add
and examine a file, and delete the directory (rmdir). To follow along, add this code to
dir_ops.rb.

405File tools from the standard library

newdir = "/tmp/newdir"
newfile = "newfile"
Dir.mkdir(newdir)
print "Is #{newdir} empty? "
puts Dir.empty?(newdir)
Dir.chdir(newdir) do
 File.open(newfile, "w") do |f|
 f.puts "Sample file in new directory"
 end
 puts "Current directory: #{Dir.pwd}"
 puts "Directory listing: "
 p Dir.entries(".")
 File.unlink(newfile)
end
Dir.rmdir(newdir)
print "Does #{newdir} still exist? "
if File.exist?(newdir)
 puts "Yes"
else
 puts "No"
end

After initializing a couple of convenience variables B, we create the new directory
with mkdir. We use Dir.empty? C to determine if the new directory contains any files,
which of course it does not. With Dir.chdir, we change to that directory; also, using a
block with chdir means that after the block exits, we’re back in the previous directory
D. (Using chdir without a block changes the current directory until it’s explicitly
changed back.)

 As a kind of token directory-populating step, we create a single file with a single
line in it E. We then examine the current directory name using Dir.pwd and look at a
listing of the entries in the directory F. Next, we unlink (delete) the recently created
file G, at which point the chdir block is finished.

 Back in whatever directory we started in, we remove the sample directory using
Dir.rmdir (also callable as unlink or delete) H. Finally, we test for the existence of
newdir, fully expecting an answer of No (because rmdir would have raised a fatal error
if it hadn’t found the directory and successfully removed it) I.

 As promised in the introduction to this chapter, we’ll now look at some standard
library facilities for manipulating and handling files.

12.5 File tools from the standard library
File handling is an area where the standard library’s offerings are particularly rich.
Accordingly, we’ll delve into those offerings more deeply here than anywhere else in
the book. This isn’t to say that the rest of the standard library isn’t worth getting to
know, but that the extensions available for file manipulation are so central to how
most people do file manipulation in Ruby that you can’t get a firm grounding in the
process without them.

Listing 12.3 Directory manipulation and querying

B

C
D

E

F

G

H

I

406 CHAPTER 12 File and I/O operations
 We’ll look at the versatile FileUtils package first and then at the more specialized
but useful Pathname class. Next, you’ll meet StringIO, a class whose objects are, essen-
tially, strings with an I/O interface; you can rewind them, seek through them, getc
from them, and so forth. Finally, we’ll explore open-uri, a package that lets you
“open” URIs and read them into strings as easily as if they were local files.

12.5.1 The FileUtils module

The FileUtils module provides some practical and convenient methods that make it
easy to manipulate files from Ruby in a concise manner in ways that correspond to
familiar system commands. The methods’ names will be particularly familiar to users
of UNIX and UNIX-like operating systems. They can be easily learned by those who
don’t know them already.

 Many of the methods in FileUtils are named in honor of system commands with
particular command-line options. For example, FileUtils.rm_rf emulates the rm -rf
command (force unconditional recursive removal of a file or directory). You can cre-
ate a symbolic link from filename to linkname with FileUtils.ln_s(filename,
linkname), much in the manner of the ln -s command.

 As you can see, some of the methods in FileUtils are operating-system specific. If
your system doesn’t support symbolic links, then ln_s won’t work. But the majority of
the module’s methods are portable. We’ll look here at examples of some of the most
useful ones.

COPYING, MOVING, AND DELETING FILES

FileUtils provides several concise, high-level methods for these operations. The cp
method emulates the traditional UNIX method of the same name. You can cp one file
to another or several files to a directory:

>> require 'fileutils'
=> true
>> FileUtils.cp("baker.rb", "baker.rb.bak")
=> nil
>> FileUtils.mkdir("backup")
=> ["backup"]
>> FileUtils.cp(["ensure.rb", "super.rb"], "backup")
=> ["ensure.rb", "super.rb"]
>> Dir["backup/*"]
=> ["backup/ensure.rb", "backup/super.rb"]

This example also illustrates the mkdir method B as well as the use of Dir#[] C to
verify the presence of the copied files in the new backup directory.

 Just as you can copy files, you can also move them, individually or severally:

>> FileUtils.mv("baker.rb.bak", "backup")
=> 0
>> Dir["backup/*"]
=> ["backup/baker.rb.bak", "backup/ensure.rb", "backup/super.rb"]

B

C

407File tools from the standard library
And you can remove files and directories easily:

>> File.exist?("backup/super.rb")
=> true
>> FileUtils.rm("./backup/super.rb")
=> ["./backup/super.rb"]
>> File.exist?("backup/super.rb")
=> false

The rm_rf method recursively and unconditionally removes a directory:

>> FileUtils.rm_rf("backup")
=> ["backup"]
>> File.exist?("backup")
=> false

FileUtils gives you a useful toolkit for quick and easy file maintenance. But it goes
further: it lets you try commands without executing them.

THE DRYRUN AND NOWRITE MODULES

If you want to see what would happen if you were to run a particular FileUtils com-
mand, you can send the command to FileUtils::DryRun. The output of the method
you call is a representation of a UNIX-style system command, equivalent to what you’d
get if you called the same method on FileUtils:

>> FileUtils::DryRun.rm_rf("backup")
rm -rf backup
=> nil
>> FileUtils::DryRun.ln_s("backup", "backup_link")
ln -s backup backup_link
=> nil

If you want to make sure you don’t accidentally delete, overwrite, or move files, you
can give your commands to FileUtils::NoWrite, which has the same interface as
FileUtils but doesn’t perform any disk-writing operations:

>> FileUtils::NoWrite.rm("backup/super.rb")
=> nil
>> File.exist?("backup/super.rb")
=> true

You’ll almost certainly find FileUtils useful in many situations. Even if you’re not
familiar with the UNIX-style commands on which many of FileUtils’s method names
are based, you’ll learn them quickly, and it will save you having to dig deeper into the
lower-level I/O and file libraries to get your tasks done.

 Next, we’ll look at another file-related offering from the standard library: the path-
name extension.

408 CHAPTER 12 File and I/O operations
12.5.2 The Pathname class

The Pathname class lets you create Pathname objects and query and manipulate them
so you can determine, for example, the basename and extension of a pathname, or
iterate through the path as it ascends the directory structure.

 Pathname objects also have a large number of methods that are proxied from File,
Dir, IO, and other classes. We won’t look at those methods here; we’ll stick to the ones
that are uniquely Pathname’s.

 First, start with a Pathname object:

>> require 'pathname'
=> true
>> path = Pathname.new("/Users/dblack/hacking/test1.rb")
=> #<Pathname:/Users/dblack/hacking/test1.rb>

When you call methods on a Pathname object, you often get back another Pathname
object. But the new object always has its string representation visible in its own
inspect string. If you want to see the string on its own, you can use to_s or do a puts
on the pathname.

 Here are two ways to examine the basename of the path:

>> path.basename
=> #<Pathname:test1.rb>
>> puts path.basename
test1.rb

You can also examine the directory that contains the file or directory represented by
the pathname:

>> path.dirname
=> #<Pathname:/Users/dblack/hacking>

If the last segment of the path has an extension, you can get the extension from the
Pathname object:

>> path.extname
=> ".rb"

The Pathname object can also walk up its file and directory structure, truncating itself
from the right on each iteration, using the ascend method and a code block:

>> path.ascend do |dir|
>> puts "Next level up: #{dir}"
>> end

Here’s the output:

Next level up: /Users/dblack/hacking/test1.rb
Next level up: /Users/dblack/hacking
Next level up: /Users/dblack
Next level up: /Users
Next level up: /

409File tools from the standard library
The key behavioral trait of Pathname objects is that they return other Pathname
objects. That means you can extend the logic of your pathname operations without
having to convert back and forth from pure strings. By way of illustration, here’s the
last example again, but altered to take advantage of the fact that what’s coming
through in the block parameter dir on each iteration isn’t a string (even though it
prints out like one) but a Pathname object:

>> path = Pathname.new("/Users/dblack/hacking/test1.rb")
=> #<Pathname:/Users/dblack/hacking/test1.rb>
>> path.ascend do |dir|
?> puts "Ascended to #{dir.basename}"
>> end

The output is

Ascended to test1.rb
Ascended to hacking
Ascended to dblack
Ascended to Users
Ascended to /

The fact that dir is always a Pathname object means that it’s possible to call the
basename method on it. It’s true that you can always call File.basename(string) on
any string. But the Pathname class pinpoints the particular knowledge that a path
might be assumed to encapsulate about itself and makes it available to you via simple
method calls.

 We’ll look next at a different and powerful standard library class: StringIO.

12.5.3 The StringIO class

The StringIO class allows you to treat strings like IO objects. You can seek through
them, rewind them, and so forth.

 The advantage conferred by StringIO is that you can write methods that use an IO
object API, and those methods will be able to handle strings. That can be useful for
testing, as well as in a number of real runtime situations.

 Let’s say, for example, that you have a module that decomments a file: it reads
from one file and writes everything that isn’t a comment to another file. Here’s what
such a module might look like:

module DeCommenter
 def self.decomment(infile, outfile, comment_re = /\A\s*#/)
 infile.each do |inline|
 outfile.print inline unless inline =~ comment_re
 end
 end
end

The DeCommenter.decomment method expects two open file handles: one it can read
from and one it can write to. It also takes a regular expression, which has a default

410 CHAPTER 12 File and I/O operations
value. The regular expression determines whether each line in the input is a comment.
Every line that does not match the regular expression is printed to the output file.

 A typical use case for the DeCommenter module would look like this:

File.open("myprogram.rb") do |inf|
 File.open("myprogram.rb.out", "w") do |outf|
 DeCommenter.decomment(inf, outf)
 end
end

In this example, we’re taking the comments out of the hypothetical program file
myprogram.rb.

 What if you want to write a test for the DeCommenter module? Testing file transfor-
mations can be difficult, because you need to maintain the input file as part of the test
and also make sure you can write to the output file—which you then have to read back
in. StringIO makes it easier by allowing all the code to stay in one place without the
need to read or write actual files.

To use the decommenter with StringIO, save the module to decommenter.rb. Then,
create a second file, decomment_demo.rb, in the same directory and with the follow-
ing contents:

require 'stringio'
require_relative 'decommenter'
string = <<EOM
This is a comment.
This isn't a comment.
This is.
 # So is this.
This is also not a comment.
EOM
infile = StringIO.new(string)
outfile = StringIO.new("")
DeCommenter.decomment(infile,outfile)
puts "Test succeeded" if outfile.string == <<EOM
This isn't a comment.
This is also not a comment.
EOM

Testing using real files
If you want to run tests on file input and output using real files, Ruby’s tempfile
class can help you. It’s a standard library feature, so you have to require
'tempfile'. Then, you create temporary files with the constructor, passing in a
name that Ruby munges into a unique filename. For example:

tf = Tempfile.new("my_temp_file").

You can then write to and read from the file using the File object tf.

B

C

D

E
F

411Summary
After loading both the stringio library and the decommenter code B, the program
sets string to a five-line string (created using a here-document) containing a mix of
comment lines and non-comment lines C. Next, two StringIO objects are created:
one that uses the contents of string as its contents, and one that’s empty D. The
empty one represents the output file.

 Next comes the call to DeCommenter.decomment E. The module treats its two argu-
ments as File or IO objects, reading from one and printing to the other. StringIO
objects happily behave like IO objects, and the filtering takes place between them.
When the filtering is done, you can check explicitly to make sure that what was written
to the output “file” is what you expected F. The original and changed contents are
both physically present in the same file, which makes it easier to see what the test is
doing and also easier to change it.

 Another useful standard library feature is the open-uri library.

12.5.4 The open-uri library

The open-uri standard library package lets you retrieve information from the net-
work using the HTTP and HTTPS protocols as easily as if you were reading local files.
All you do is require the library (require 'open-uri') and use the Kernel#open
method with a URI as the argument. You get back a StringIO object containing the
results of your request:

require 'open-uri'
rubypage = open("http://rubycentral.org")
puts rubypage.gets

You get the doctype declaration from the Ruby Central homepage—not the most
scintillating reading, but it demonstrates the ease with which open-uri lets you import
networked materials.

Summary
In this chapter, you’ve seen

 I/O (keyboard and screen) and file operations in Ruby
 File objects as enumerables
 The STDIN, STDOUT, and STDERR objects
 The FileUtils module
 The Pathname module
 The StringIO class
 The open-uri module

I/O operations are based on the IO class, of which File is a subclass. Much of what IO
and File objects do consists of wrapped library calls; they’re basically API libraries
that sit on top of system I/O facilities.

 You can iterate through Ruby file handles as if they were arrays, using each, map,
reject, and other methods from the Enumerable module, and Ruby will take care of

412 CHAPTER 12 File and I/O operations
the details of the file handling. If and when you need to, you can also address IO and
File objects with lower-level commands.

 Some of the standard library facilities for file manipulation are indispensable, and
we looked at several: the FileUtils module, which provides an enriched toolkit for
file and disk operations; the StringIO class, which lets you address a string as if it were
an I/O stream; the Pathname extension, which allows for easy, extended operations on
strings representing file system paths; and open-uri, which makes it easy to “open”
documents on the network.

 We also looked at keyboard input and screen output, which are handled via IO
objects—in particular, the standard input, output, and error I/O handles. Ruby lets
you reassign these so you can redirect input and output as needed.

 With this chapter, we’ve come to the end of part 2 of the book and thus the end of
our survey of Ruby built-in features and classes. We’ll turn in part 3 to the broad and
deep matter of Ruby dynamics, starting with a look at one of the simplest yet most pro-
found premises of Ruby: the premise that objects, even objects of the same class, can
act and react individually.

Part 3

Ruby dynamics

Ruby is dynamic, like human nature.
—Matz, at RubyConf 2001

The phrase Ruby dynamics is almost redundant: everything about Ruby is
dynamic. Variables don’t care what class of object you bind them to, which
means you don’t have to (indeed, you can’t) declare their type in advance.
Objects get capabilities from the classes that create them but can also branch
away from their classes by having individual methods added to them. Classes and
modules can be reopened and modified after their initial definitions. Though
Ruby is a language of objects, it can also be built with a functional mindset to
produce beautiful and expressive code. Ruby is dynamic enough even to support
both functional and object-oriented programming paradigms!

 And those examples are just the beginning. In this last part of the book, we’ll
look more deeply and widely than we yet have at the ways in which Ruby allows
you to alter the execution circumstances of your program in your program

 First, in chapter 13, we’ll look at object individuation, going into the details of
how Ruby makes it possible for individual objects to live their own lives and
develop their own characteristics and behaviors outside of the class-based char-
acteristics they’re “born” with. We’ll thus circle back to one of the book’s earliest
topics: adding methods to individual objects. But here, equipped with the knowl-
edge from the intervening material, we’ll zero in much more closely on the
underlying mechanisms of object individuation.

 Chapter 14 looks at callable objects : objects you can execute. You’ve seen meth-
ods already, of course—but you haven’t seen method objects , which we’ll discuss

414 PART 3 Ruby dynamics
here, as well as anonymous functions in the form of Proc objects. Strings aren’t callable
themselves, but you can evaluate a string at runtime as a piece of Ruby code, and chap-
ter 14 includes that (sometimes questionable) technique. The chapter will also intro-
duce you to Ruby threads, which allow you to run segments of code in parallel.

 Chapter 15 looks at the facilities Ruby provides for runtime reflection: examining
and manipulating the state of your program and your objects while the program is
running and the objects exist. Ruby lets you ask your objects for information about
themselves, such as what methods they can execute at runtime; and a number of
hooks are available, in the form of methods you can write using special reserved
names, to intercept runtime events like class inheritance and module inclusion. Here
we’re entering the territory of dynamic reflection and decision making that gives
Ruby its characteristic and striking qualities of flexibility and power.

 Chapter 16 examines Ruby’s potential as a functional programming language.
Here you’ll learn how harnessing Proc objects and replacing state and variable assign-
ment with functions can help to create powerful, expressive code. Functional pro-
gramming is reviewed as a style of programming, which means it can be added to your
toolbelt to use as circumstances or preferences warrant. To round out our study, we’ll
review currying, partial function application, and tail-call optimization and how these
techniques translate to Ruby.

 This entire part of the book includes many best-practices pointers (and pointers
away from some not-so-best practices). That’s not surprising, given the kind of ground
these chapters cover. This is where your programs can distinguish themselves, for bet-
ter or worse, as to the nature and quality of their use of Ruby’s liberal dynamic-
programming toolset. It pays to think through not only the how and why but also the
whether of some of these powerful techniques according to context. Used judiciously
and advisedly, Ruby’s dynamic capabilities can take you to new and fascinating heights.

Object individuation
One of the cornerstones of Ruby’s design is object individuation—that is, the ability
of individual objects to behave differently from other objects of the same class.
Every object is a full-fledged citizen of the runtime world of the program and can
live the life it needs to.

 The freedom of objects to veer away from the conditions of their birth has a
kind of philosophical ring to it. On the other hand, it has some important technical
implications. A remarkable number of Ruby features and characteristics derive
from or converge on the individuality of objects. Much of Ruby is engineered to
make object individuation possible. Ultimately, the individuation is more import-
ant than the engineering: Matz has said over and over again that the principle of
object individuality is what matters, and how Ruby implements it is secondary.

This chapter covers
 Singleton methods and classes

 Class methods

 The extend method

 Overriding Ruby core behavior

 The BasicObject class
415

416 CHAPTER 13 Object individuation
 Still, the implementation of object individuation has some powerful and useful
components. The ability to treat like objects differently under given conditions can
keep your code more nimble, prevent unnecessary duplication or the creation of very
similar objects, and open up powerful metaprogramming techniques.

 We’ll look in this chapter at how Ruby goes about allowing objects to acquire meth-
ods and behaviors on a per-object basis, and how the parts of Ruby that make per-
object behavior possible can be used to greatest advantage. We’ll start by examining in
detail singleton methods—methods that belong to individual objects—in the context of
singleton classes, which is where singleton method definitions are stored. We’ll then dis-
cuss class methods, which are at heart singleton methods attached to class objects.
Another key technique in crafting per-object behavior is the extend method, which
does something similar to module inclusion but for one object at a time. We’ll look at
how you can use extend to individuate your objects.

 Perhaps the most crucial topic connected in any way with object individuation is
changing the core behavior of Ruby classes. Adding a method to a class that already
exists, such as Array or String, is a form of object individuation, because classes are
objects. It’s a powerful and risky technique. But there are ways to do it with compara-
tively little risk—and ways to do it per object (adding a behavior to one string, rather
than to the String class)—and we’ll walk through the landscape of runtime core
changes with an eye to how per-object techniques can help you get the most out of
Ruby’s sometimes surprisingly open class model.

 Finally, we’ll renew an earlier acquaintance: the BasicObject class. BasicObject
instances provide about the purest laboratory imaginable for creating individual
objects, and we’ll consider how that class and object individuation complement each
other.

13.1 Where the singleton methods are: the singleton class
Most of what happens in Ruby involves classes and modules, containing definitions of
instance methods

class C
 def talk
 puts "Hi!"
 end
end

and, subsequently, the instantiation of classes and the calling of those instance methods:

c = C.new
c.talk

As you saw earlier (even earlier than you saw instance methods inside classes), you can
also define singleton methods directly on individual objects:

obj = Object.new
def obj.talk
 puts "Hi!"

Output: Hi!

417Where the singleton methods are: the singleton class
end
obj.talk

And you’ve also seen that the most common type of singleton method is the class
method—a method added to a Class object on an individual basis:

class Car
 def self.makes
 %w{ Honda Ford Toyota Chevrolet Volvo }
 end
end

But any object can have singleton methods added to it. (Almost any object; see side-
bar.) The ability to define behavior on a per-object basis is one of the hallmarks of
Ruby’s design.

Instance methods—those available to any and all instances of a given class—live inside
a class or module, where they can be found by the objects that are able to call them.
But what about singleton methods? Where does a method live, if that method exists
only to be called by a single object?

13.1.1 Dual determination through singleton classes

Ruby, true to character, has a simple answer to this tricky question: an object’s single-
ton methods live in the object’s singleton class. Every object ultimately has two classes:

 The class of which it’s an instance
 Its singleton class

An object can call instance methods from its original class, and it can also call methods
from its singleton class. It has both. The method-calling capabilities of the object
amount, all together, to the sum of all the instance methods defined in these two
classes, along with methods available through ancestral classes (the superclass of the
object’s class, that class’s superclass, and so forth) or through any modules that have
been mixed in or prepended to any of these classes. You can think of an object’s

Output: Hi!

Some objects are more individualizable than others
Almost every object in Ruby can have methods added to it. The exceptions are
instances of certain Numeric subclasses, including integer classes and floats, and
symbols. If you try this,

def 10.some_method; end

you’ll get a syntax error. If you try this,

class << 10; end

you’ll get a type error and a message saying, “Can’t define singleton.” The same is
true, in both cases, of floating-point numbers and symbols.

418 CHAPTER 13 Object individuation
singleton class as an exclusive stash of methods, tailor-made for that object and not
shared with other objects—not even with other instances of the object’s class.

13.1.2 Examining and modifying a singleton class directly

Singleton classes are anonymous: although they’re class objects (instances of the class
Class), they spring up automatically without being given a name. Nonetheless, you
can open the class-definition body of a singleton class and add instance methods, class
methods, and constants to it, as you would with a regular class.

 You do this with a special form of the class keyword. Usually, a constant follows
that keyword:

class C
 # method and constant definitions here
end

But to get inside the definition body of a singleton class, you use a special notation:

class << object
 # method and constant definitions here
end

The << object notation means the anonymous, singleton class of object. When
you’re inside the singleton class–definition body, you can define methods—and these
methods will be singleton methods of the object whose singleton class you’re in.

 Consider this program, for example:

str = "I am a string"
class << str
 def twice
 self + " " + self
 end
end
puts str.twice

The output is

I am a string I am a string

The method twice is a singleton method of the string str. It’s exactly as if we had
done this:

def str.twice
 self + " " + self
end

The difference is that we’ve pried open the singleton class of str and defined the
method there.

419Where the singleton methods are: the singleton class

The class << object notation has a bit of a reputation as cryptic or confusing. It
needn’t be either. Think of it this way: it’s the class keyword, and it’s willing to accept
either a constant or an << object expression. What’s new here is the concept of the
singleton class. When you’re comfortable with the idea that objects have singleton
classes, it makes sense for you to be able to open those classes with the class keyword.
The << object notation is the way the concept “singleton class of object" is expressed
when class requires it.

 By far the most frequent use of the class << object notation for entering a single-
ton method class is in connection with class-method definitions.

DEFINING CLASS METHODS WITH CLASS <<
Here’s an idiom you’ll see often:

class Ticket
 class << self
 def most_expensive(*tickets)

Differentiating def obj.some_method and class << obj; def some_method
This question often arises: is there any difference between defining a method directly
on an object (using the def obj.some_method notation) and adding a method to an
object’s singleton class explicitly (by doing class << obj; def some_method)? The
answer is that there’s one difference: constants are resolved differently.

If you have a top-level constant N, you can also define an N inside an object’s single-
ton class:

N = 1
obj = Object.new
class << obj
 N = 2
end

Given this sequence of instructions, the two ways of adding a singleton method to
obj differ in which N is visible from within the method definition:

def obj.a_method
 puts N
end
class << obj
 def another_method
 puts N
 end
end
obj.a_method
obj.another_method

It’s relatively unusual for this difference in the visibility of constants to affect your
code; in most circumstances, you can regard the two notations for singleton method
definition as interchangeable. But it’s worth knowing about the difference, because
it may matter in some situations and it may also explain unexpected results.

Output: 1 (outer-level N)

Output: 2 (N belonging to obj’s singleton class)

420 CHAPTER 13 Object individuation
tickets.max_by(&:price)
 end
 end
end

This code results in the creation of the class method Ticket.most_expensive—much
the same method as the one defined in section 3.6.3, but that time around we did this:

def Ticket.most_expensive(*tickets) # etc.

In the current version, we’re using the class << object idiom, opening the singleton
class of the object; and in this particular case, the object involved is the class object
Ticket, which is the value of self at the point in the code where class << self is
invoked. The result of defining the method most_expensive inside the class-definition
block is that it gets defined as a singleton method on Ticket—which is to say, a class
method.

 The same class method could also be defined like this (assuming this code comes
at a point in the program where the Ticket class already exists):

class << Ticket
 def most_expensive(tickets)
 # etc.

Because self is Ticket inside the class Ticket definition body, class << self inside
the body is the same as class << Ticket outside the body. (Technically, you could even
do class << Ticket inside the body of class Ticket, but in practice you’ll usually see
class << self whenever the object whose singleton class needs opening is self.)

 The fact that class << self shows up frequently in connection with the creation of
class methods sometimes leads to the false impression that the class << object nota-
tion can only be used to create class methods, or that the only expression you can
legally put on the right is self. In fact, class << self inside a class-definition block is
just one particular use case for class << object. The technique is general: it puts you
in a definition block for the singleton class of object, whatever object may be.

 In chapter 4, we looked at the steps an object takes as it looks for a method among
those defined in its class, its class’s class, and so forth. Now we have a new item on the
radar: the singleton class. What’s the effect of this extra class on the method-lookup
process?

13.1.3 Singleton classes on the method-lookup path

Recall that method searching goes up the class-inheritance chain, with detours for any
modules that have been mixed in or prepended. When we first discussed this process,
we hadn’t talked about singleton classes and methods, and they weren’t present in the
diagram. Now we can revise the diagram to encompass them, as shown in figure 13.1.
The box containing class << object represents the singleton class of object. In its
search for the method x, object looks first for any modules prepended to its singleton
class; then it looks in the singleton class itself. It then looks in any modules that the

421Where the singleton methods are: the singleton class
singleton class has included. (In the diagram, there’s one: the module Y.) Next, the
search proceeds up to the object’s original class (class D), and so forth.

 Note in particular that it’s possible for a singleton class to prepend or include a
module. After all, it’s a class.

INCLUDING A MODULE IN A SINGLETON CLASS

Let’s build a little program that illustrates the effect of including a module in a single-
ton class. We’ll start with a simple Person class and a couple of instances of that class:

class Person
 attr_accessor :name
end
david = Person.new
david.name = "David"
joe = Person.new
joe.name = "Joe"

class Object
 (built-in)
 include Kernel

module Kernel
(built-in)

class D < C
 prepend M
 include N
end

class BasicObject
 (built-in)

class C
end

class << object
 prepend X
 include Y
end

object = D.new
object.x

module M
end

module N
end

module Y
end

module X
end

Figure 13.1 Method-search order, revised to include singleton classes

422 CHAPTER 13 Object individuation
ruby = Person.new
ruby.name = "Ruby"

Now let’s say that some persons—that is, some Person objects—don’t like to reveal
their names. A logical way to add this kind of secrecy to individual objects is to add a
singleton version of the name method to each of those objects:

def david.name
 "[not available]"
end

At this point, Joe and Ruby reveal their names, but David is being secretive. When we
do a roll call

puts "We've got one person named #{joe.name}, "
puts "one named #{david.name},"
puts "and one named #{ruby.name}."

we get only two names:

We've got one person named Joe,
one named [not available],
and one named Ruby.

So far, so good. But what if more than one person decides to be secretive? It would be
a nuisance to have to write def person.name... for every such person.

 The way around this is to use a module. Here’s what the module looks like:

module Secretive
 def name
 "[not available]"
 end
end

Now let’s make Ruby secretive. Instead of using def to define a new version of the
name method, we’ll include the module in Ruby’s singleton class:

class << ruby
 include Secretive
end

The roll call now shows that Ruby has gone over to the secretive camp; running the
previous puts statements again produces the following output:

We've got one person named Joe,
one named [not available],
and one named [not available].

What happens in Ruby’s case? We send the message “name” to the object ruby. The
object sets out to find the method. First it looks in its own singleton class, where it
doesn’t find a name method. Then it looks in the modules mixed into its singleton
class. The singleton class of ruby mixes in the Secretive module, and, sure enough,
that module contains an instance method called name. At that point, the method gets
executed.

423Where the singleton methods are: the singleton class
 Given an understanding of the order in which objects search their lookup paths
for methods, you can work out which version of a method (that is, which class or mod-
ule’s version of the method) an object will find first. Examples help, too, especially to
illustrate the difference between including a module in a singleton class and in a reg-
ular class.

SINGLETON-MODULE INCLUSION VS. ORIGINAL-CLASS-MODULE INCLUSION

When you mix a module into an object’s singleton class, you’re dealing with that
object specifically; the methods it learns from the module take precedence over any
methods of the same name in its original class. The following listing shows the
mechanics and outcome of doing this kind of include operation.

class C
 def talk
 puts "Hi from original class!"
 end
end
module M
 def talk
 puts "Hello from module!"
 end
end
c = C.new
c.talk
class << c
 include M
end
c.talk

The output from this listing is as follows:

Hi from original class!
Hello from module!

The first call to talk B executes the talk instance method defined in c’s class, C.
Then, we mix the module M, which also defines a method called talk, into c’s single-
ton class C. As a result, the next time we call talk on c D, the talk that gets executed
(the one that c sees first) is the one defined in M.

 It’s all a matter of how the classes and modules on the object’s method lookup
path are stacked. Modules included in the singleton class are encountered before the
original class and before any modules included in the original class.

 You can see this graphically by using the ancestors method, which gives you a list
of the classes and modules in the inheritance and inclusion hierarchy of any class or
module. Starting from after the class and module definitions in the previous example,
try using ancestors to see what the hierarchy looks like:

c = C.new
class << c
 include M

Listing 13.1 Including a module in a singleton class

B

C

D

424 CHAPTER 13 Object individuation
 p ancestors
end

You get an array of ancestors—essentially, the method-lookup path for instances of
this class. Because this is the singleton class of c, looking at its ancestors means look-
ing at the method-lookup path for c. Note that c’s singleton class comes first in the
ancestor list:

[#<Class:#<C:0x007fbc8b9129f0>>, M, C, Object, Kernel, BasicObject]

Now look what happens when you not only mix M into the singleton class of c but also
mix it into c’s class (C). Picking up after the previous example,

class C
 include M
end
class << c
 p ancestors
end

This time you see the following result:

[#<Class:#<C:0x007fbc8b9129f0>>, M, C, M, Object, Kernel, BasicObject]

The module M appears twice! Two different classes—the singleton class of c and the
class C—have mixed it in. Each mix-in is a separate transaction. It’s the private busi-
ness of each class; the classes don’t consult with each other. (You could even mix M
into Object, and you’d get it three times in the ancestors list.)

 You’re encouraged to take these examples, modify them, turn them this way and
that, and examine the results. Classes are objects, too—so see what happens when you
take the singleton class of an object’s singleton class. What about mixing modules into
other modules? Try some examples with prepend, too. Many permutations are possi-
ble; you can learn a lot through experimentation, using what we’ve covered here as a
starting point.

 The main lesson is that per-object behavior in Ruby is based on the same principles
as regular, class-derived object behavior: the definition of instance methods in classes
and modules, the mixing in of modules to classes, and the following of a method-
lookup path consisting of classes and modules. If you master these concepts and
revert to them whenever something seems fuzzy, your understanding will scale upward
successfully.

Exercises
Create a mix of module M, class C, and prepended module P such that the output of
ancestors looks like this:

[P, #<Class:#<C:0x007fbc8b9129f0>>, M, C, P, Object, Kernel,
BasicObject]

425Where the singleton methods are: the singleton class
13.1.4 The singleton_class method

To refer directly to the singleton class of an object, use the singleton_class method.
This method can save you some class << object round-trips.

 Here’s how you’d use this method to get the ancestors of an object’s singleton
class:

>> string = "a string"
>> string.singleton_class.ancestors
=> [#<Class:#<String:0x0000563fb8797270>>, String, Comparable, Object,

Kernel, BasicObject]

Now let’s go back and look at a special case in the world of singleton methods (special,
because it’s common and useful): class methods.

13.1.5 Class methods in (even more) depth

Class methods are singleton methods defined on objects of class Class. In many ways,
they behave like any other singleton method:

class C
end
def C.a_class_method
 puts "Singleton method defined on C"
end
C.a_class_method

But class methods also exhibit special behavior. Normally, when you define a singleton
method on an object, no other object can serve as the receiver in a call to that
method. (That’s what makes singleton methods singleton, or per-object.) Class meth-
ods are slightly different: a method defined as a singleton method of a class object can
also be called on subclasses of that class. Given the previous example, with C, you can
do this:

class D < C
end
D.a_class_method

Here’s the rather confusing output (confusing because the class object we sent the
message to is D, rather than C):

Singleton method defined on C

You’re allowed to call C’s singleton methods on a subclass of C in addition to C because
of a special setup involving the singleton classes of class objects. In our example, the
singleton class of C (where the method a_class_method lives) is considered the super-
class of the singleton class of D.

 When you send a message to the class object D, the usual lookup path is followed—
except that after D’s singleton class, the superclass of D’s singleton class is searched.
That’s the singleton class of D’s superclass. And there’s the method.

Output: Singleton method defined on C

426 CHAPTER 13 Object individuation
Figure 13.2 shows the relationships among classes in an inheritance relationship and
their singleton classes. As you can see, the singleton class of C’s child, D, is considered
a child (a subclass) of the singleton class of C.

 Singleton classes of class objects are sometimes called meta-classes. You’ll sometimes
hear the term meta-class applied to singleton classes in general, although there’s noth-
ing particularly meta about them and singleton class is a more descriptive general term.

 You can treat this explanation as a bonus topic. It’s unlikely that an urgent need to
understand it will arise often. Still, it’s a great example of how Ruby’s design is based
on a relatively small number of rules (such as every object having a singleton class,
and the way methods are looked up). Classes are special-case objects; after all, they’re
object factories as well as objects in their own right. But there’s little in Ruby that
doesn’t arise naturally from the basic principles of the language’s design—even the
special cases.

 Because Ruby’s classes and modules are objects, changes you make to those classes
and modules are per-object changes. Thus a discussion of how, when, and whether to
make alterations to Ruby’s core classes and modules has a place in this discussion of
object individuation. We’ll explore core changes next.

class C Singleton class of C

Singleton class of
Superclass of

Singleton class of Dclass D

Figure 13.2 Relationships among
classes in an inheritance relationship
and their singleton classes

Singleton classes and the singleton pattern
The word “singleton” has a second, different meaning in Ruby (and elsewhere): it
refers to the singleton pattern, which describes a class that only has one instance.
The Ruby standard library includes an implementation of the singleton pattern (avail-
able via the command require 'singleton'). Keep in mind that singleton classes
aren’t directly related to the singleton pattern; the word “singleton” is just a bit over-
loaded. It’s generally clear from the context which meaning is intended.

427Modifying Ruby’s core classes and modules
13.2 Modifying Ruby’s core classes and modules
The openness of Ruby’s classes and modules—the fact that you, the programmer, can
get under the hood of the language and change what it does—is one of the most
important features of Ruby and also one of the hardest to come to terms with. It’s like
being able to eat the dishes along with the food at a restaurant. How do you know
where one ends and the other begins? How do you know when to stop? Can you eat
the tablecloth too?

 Learning how to handle Ruby’s openness is a bit about programming technique
and a lot about best practices. It’s not difficult to make modifications to the core lan-
guage; the hard part is knowing when you should, when you shouldn’t, and how to go
about it safely.

 In this section, we’ll look at the landscape of core changes: the how, the what, and
the why (and the why not). We’ll examine the considerable pitfalls, the possible
advantages, and ways to think about objects and their behaviors that allow you to have
the best of both worlds: flexibility and safety.

 We’ll start with a couple of cautionary tales.

13.2.1 The risks of changing core functionality

The problem with making changes to the Ruby core classes is that those changes are
global: as long as your program is running, the changes you’ve made will be in effect.
If you change how a method works and that method is used somewhere else (inside
Ruby itself or in a library you load), you’ve destabilized the whole interpreter by
changing the rules of the game in midstream.

 It’s tempting, nonetheless, to customize Ruby to your liking by changing core
methods globally. After all, you can. But this is the least safe and least advisable
approach to customizing core-object behaviors. We’re only looking at it so you can get
a sense of the nature of the problem.

 One commonly cited candidate for ad hoc change is the Regexp class.

CHANGING REGEXP#MATCH (AND WHY NOT TO)
As you’ll recall from chapter 11, when a match operation using the match method
fails, you get back nil; when it succeeds, you get back a MatchData object. This result
is irritating because you can’t do the same things with nil that you can with a Match-
Data object.

 This code, for example, succeeds if a first capture is created by the match:

some_regexp.match(some_string)[1]

But if there’s no match, you get back nil—and because nil has no [] method, you
get a fatal NoMethodError exception when you try the [1] operation:

string = "A test string"
re = /A (sample) string/
substring = re.match(string)[1]

NoMethodError: undefined
method [] for nil:NilClass

428 CHAPTER 13 Object individuation
The match? method helps avoid this, but typically this will result in an extra test to see
if a match was made. For enhanced convenience, it may be tempting to do something
like this to avoid the error:

class Regexp
 alias __old_match__ match
 def match(string)
 __old_match__(string) || []
 end
end

This code first sets up an alias for match, courtesy of the alias keyword B. Then the
code redefines match. The new match hooks into the original version of match
(through the alias) and then returns either the result of calling the original version or
(if that call returns nil) an empty array.

NOTE An alias is a synonym for a method name. Calling a method by an alias
doesn’t involve any change of behavior or any alteration of the method-
lookup process. The choice of alias name in the previous example is based on
a fairly conventional formula: the addition of the word old plus the leading
and trailing underscores. (A case could be made that the formula is too con-
ventional and that you should create names that are less likely to be chosen by
other overriders who also know the convention!)

You can now do this:

/abc/.match("X")[1]

Even though the match fails, the program won’t blow up, because the failed match
now returns an empty array rather than nil. The worst you can do with the new match
is try to index an empty array, which is legal. (The result of the index operation will be
nil, but at least you’re not trying to index nil.)

 The problem is that the person using your code may depend on the match opera-
tion to return nil on failure:

if regexp.match(string)
 do something
else
 do something else
end

Because an array (even an empty one) is true, whereas nil is false, returning an array
for a failed match operation means that the true/false test (as embodied in an
if/else statement) always returns true.

 Maybe changing Regexp#match so as not to return nil on failure is something your
instincts would tell you not to do anyway. And no one advocates doing it; it’s more that
some new Ruby users don’t connect the dots and therefore don’t see that changing a
core method in one place changes it everywhere.

B

429Modifying Ruby’s core classes and modules
 Another common example, and one that’s a little more subtle (both as to what it
does and as to why it’s not a good idea), involves the String#gsub! method.

THE RETURN VALUE OF STRING#GSUB! AND WHY IT SHOULD STAY THAT WAY

As you’ll recall, String#gsub! does a global replace operation on its receiver, saving
the changes in the original object:

>> string = "Hello there!"
=> "Hello there!"
>> string.gsub!(/e/, "E")
=> "HEllo thErE!"
>> string
=> "HEllo thErE!"

As you can see, the return value of the call to gsub! is the string object with the
changes made B. (And examining the object again via the variable string confirms
that the changes are indeed permanent C.)

 Interestingly, though, something different happens when the gsub! operation
doesn’t result in any changes to the string:

>> string = "Hello there!"
=> "Hello there!"
>> string.gsub!(/zzz/, "xxx")
=> nil
>> string
=> "Hello there!"

There’s no match on /zzz/, so the string isn’t changed—and the return value of the
call to gsub! is nil.

 Like the nil return from a match operation, the nil return from gsub! has the
potential to make things blow up when you’d rather they didn’t. Specifically, it means
you can’t use gsub! reliably in a chain of methods:

>> string = "Hello there!"
=> "Hello there!"
>> string.gsub!(/e/, "E").reverse!
=> "!ErEht ollEH"
>> string = "Hello there!"
=> "Hello there!"
>> string.gsub!(/zzz/, "xxx").reverse!
NoMethodError (undefined method `reverse!' for nil:NilClass)

This example does something similar (but not quite the same) twice. The first time
through, the chained calls to gsub! and reverse! B return the newly gsub!’d and
reversed string C. But the second time, the chain of calls results in a fatal error D: the
gsub! call didn’t change the string, so it returned nil—which means we called
reverse! on nil rather than on a string.

 One possible way of handling the inconvenience of having to work around the nil
return from gsub! is to take the view that it’s not usually appropriate to chain method
calls together too much anyway. When chaining methods, it’s best to use immutable

B

C

B
C

D

430 CHAPTER 13 Object individuation
methods such as gsub (more on immutability in chapter 16). And you can always
avoid chain-related problems if you don’t chain:

>> string = "Hello there!"
=> "Hello there!"
>> string.gsub!(/zzz/, "xxx")
=> nil
>> string.reverse!
=> "!ereht olleH"

Still, a number of Ruby users have been bitten by the nil return value, either because
they expected gsub! to behave like gsub (the non-bang version, which always returns
its receiver, whether there’s been a change or not) or because they didn’t anticipate a
case where the string wouldn’t change. So gsub! and its nil return value became a
popular candidate for change.

 The change can be accomplished like this:

class String
 alias __old_gsub_bang__ gsub!
 def gsub!(*args, &block)
 __old_gsub_bang__(*args, &block)
 self
 end
end

First, the original gsub! gets an alias; that will enable us to call the original version
from inside the new version. The new gsub! takes any number of arguments (the
arguments themselves don’t matter; we’ll pass them along to the old gsub!) and a
code block, which will be captured in the variable block. If no block is supplied—and
gsub! can be called with or without a block—block is nil.

 Now, we call the old version of gsub!, passing it the arguments and reusing the
code block. Finally, the new gsub! does the thing it’s being written to do: it returns
self (the string), regardless of whether the call to __old_gsub_bang__ returned the
string or nil.

 And now, the reasons not to do this. Changing gsub! this way is probably less likely,
as a matter of statistics, to get you in trouble than changing Regexp#match is. Still, it’s
possible that someone might write code that depends on the documented behavior of
gsub!, in particular on the returning of nil when the string doesn’t change. Here’s an
example—and although it’s contrived (as most examples of this scenario are bound to
be), it’s valid Ruby and dependent on the documented behavior of gsub!:

>> states = { "NY" => "New York", "NJ" => "New Jersey", "ME" => "Maine" }
=> {"NY"=>"New York", "NJ"=>"New Jersey", "ME"=>"Maine"}
>> string = "Eastern states include NY, NJ, and ME."
=> "Eastern states include NY, NJ, and ME."
>> if string.gsub!(/\b([A-Z]{2})\b/) { states[$1] }
>> puts "Substitution occurred"
>> else
>> puts "String unchanged"
>> end
Substitution occurred

B
C

D

E

431Modifying Ruby’s core classes and modules
We start with a hash of state abbreviations and full names B. Then comes a string that
uses state abbreviations C. The goal is to replace the abbreviations with the full
names, using a gsub! operation that captures any two consecutive uppercase letters
surrounded by word boundaries (\b) and replaces them with the value from the hash
corresponding to the two-letter substring D. Along the way, we take note of whether
any such replacements are made. If any are, gsub! returns the new version of string.
If no substitutions are made, gsub! returns nil. The result of the process is printed
out at the end E.

 The damage here is relatively light, but the lesson is clear: don’t change the docu-
mented behavior of core Ruby methods. Here’s another version of the states-hash
example, using sub! rather than gsub!. In this version, failure to return nil when the
string doesn’t change triggers an infinite loop. Assuming we have the states hash and
the original version of string, we can do a one-at-a-time substitution where each sub-
stitution is reported:

>> string = "Eastern states include NY, NJ, and ME."
=> "Eastern states include NY, NJ, and ME."
>> while string.sub!(/\b([A-Z]{2})\b/) { states[$1] }
>> puts "Replacing #{$1} with #{states[$1]}..."
>> end
Replacing NY with New York...
Replacing NJ with New Jersey...
Replacing ME with Maine...

If string.sub! always returns a non-nil value (a string), then the while condition
will never fail, and the loop will execute forever.

 What you should not do, then, is rewrite core methods so that they change what
others expect them to do. There’s no exception to this. It’s something you should
never do, even though you can.

THE TAP METHOD

The tap method (callable on any object) performs the useful task of executing a code
block, yielding the receiver to the block, and returning the receiver. It’s easier to show
this than to describe it:

>> "Hello".tap {|string| puts string.upcase }.reverse
HELLO
=> "olleH"

Called on the receiver "Hello", the tap method yields that string back to its code
block, as confirmed by the printing out of the uppercased version of the string. Then
tap returns the entire string—so the reverse operation is performed on the string. If
you call gsub! on a string inside a tap block, it doesn’t matter whether it returns nil,
because tap returns the string:

>> string = "Hello there!"
>> string.tap { |str| str.gsub!(/zzz/, "xxx") }
=> "Hello there!"

432 CHAPTER 13 Object individuation
This approach is the safest of any of the alternatives because tap communicates its
intent. But caution must still be exercised. Using tap to circumvent the nil return of
gsub! (or of other similarly behaving bang methods) can introduce complexities of its
own, especially if you do multiple chaining, where some methods perform in-place
operations and others return object copies.

 That leaves us with the question of how to change Ruby core functionality safely.
We’ll look at four techniques that you can consider. The first three are additive
change, hook or pass-through change, and per-object change. Only one of them is
truly safe, although all three are safe enough to use in many circumstances. The
fourth technique is refinements, which are module-scoped changes to classes and which
can help you pinpoint your core Ruby changes so that they don’t overflow into sur-
rounding code and into Ruby itself.

 Along the way, we’ll look at custom-made examples as well as some examples from
the Active Support library, which is typically used as part of the Rails web application
development framework. Active Support provides good examples of the first two kinds
of core change: additive and pass-through. We’ll start with additive.

13.2.2 Additive changes

The most common category of changes to built-in Ruby classes is the additive change :
adding a method that doesn’t exist. The benefit of additive change is that it doesn’t
clobber existing Ruby methods. The danger inherent in it is that if two programmers
write added methods with the same name, and both get included into the interpreter
during execution of a particular library or program, one of the two will clobber the
other. There’s no way to reduce that risk to zero.

 Added methods often serve the purpose of providing functionality that a large
number of people want. In other words, they’re not all written for specialized use in
one program. There’s safety in numbers: if people have been discussing a given
method for years, and if a de facto implementation of the method is floating around
the Ruby world, the chances are good that if you write the method or use an existing
implementation, you won’t collide with anything that someone else may have written.

 The Active Support library, and specifically its core extension sublibrary, adds lots
of methods to core Ruby classes. The additions to the String class provide some good
examples. Active Support comes with a set of “inflections” on String, with methods
like pluralize and titleize. Here are some examples (you’ll need to run gem
install activesupport to run them, if you don’t have the gem installed already):

>> require 'active_support'
=> true
>> require 'active_support/core_ext'
=> true
>> "person".pluralize
=> "people"
>> "little_dorritt".titleize
=> "Little Dorritt"

Any time you add new methods to Ruby core classes, you run the risk that someone
else will add a method with the same name that behaves somewhat differently. A

433Modifying Ruby’s core classes and modules
library like Active Support depends on the good faith of its users and on its own repu-
tation as a core component of the Rails framework. If you’re using Active Support, you
presumably know that you’re entering into a kind of unwritten contract not to over-
ride its methods or load other libraries that do so. In that sense, Active Support is pro-
tected by its own breadth of usage. You can certainly use Active Support if it gives you
something you want or need, but don’t take it as a signal that it’s generally okay to add
methods to core classes. You need to be quite circumspect about doing so.

 Another way to add functionality to existing Ruby classes and modules is with a pas-
sive hooking or pass-through technique.

13.2.3 Pass-through overrides

A pass-through method change involves overriding an existing method in such a way
that the original version of the method ends up getting called along with the new ver-
sion. The new version does whatever it needs to do and then passes its arguments
along to the original version of the method. It relies on the original method to pro-
vide a return value. (As you know from the match and gsub! override examples, call-
ing the original version of a method isn’t enough if you’re going to change the basic
interface of the method by changing its return value.)

 You can use pass-through overrides for a number of purposes, including logging
and debugging:

class String
 alias __old_reverse__ reverse
 def reverse
 $stderr.puts "Reversing a string!"
 __old_reverse__
 end
end
puts "David".reverse

The output of this snippet is as follows:

Reversing a string!
divaD

The first line is printed to STDERR, and the second line is printed to STDOUT. The exam-
ple depends on creating an alias for the original reverse and then calling that alias at
the end of the new reverse.

Aliasing and its aliases
In addition to the alias keyword, Ruby has a method called alias_method, which is
a private instance method of Module. The upshot is that you can create an alias for
a method either like this,

class String
 alias __old_reverse__ reverse
end

434 CHAPTER 13 Object individuation
It’s possible to write methods that combine the additive and pass-through philoso-
phies. Some examples from Active Support demonstrate how to do this.

ADDITIVE/PASS-THROUGH HYBRIDS

An additive/pass-through hybrid is a method that has the same name as an existing core
method, calls the old version of the method (so it’s not an out-and-out replacement),
and adds something to the method’s interface. In other words, it’s an override that
offers a superset of the functionality of the original method.

 Active Support features a number of additive/pass-through hybrid methods. A
good example is the to_s method of the Time class. Unchanged, Time#to_s provides a
nice human-readable string representing the time:

>> Time.now.to_s
=> "2013-12-31 08:37:32 -0500"

Active Support adds to the method so that it can take an argument indicating a spe-
cific kind of formatting. For example (assuming you’ve required active_support),
you can format a Time object in a manner suitable for database insertion like this:

>> Time.now.to_s(:db)
=> "2013-12-31 08:37:40"

If you want the date represented as a number, ask for the :number format:

>> Time.now.to_s(:number)
=> "20131231083748"

The :rfc822 argument nets a time formatted in RFC822 style, the standard date for-
mat for dates in email headers. It’s similar to the Time#rfc822 method:

>> Time.now.to_s(:rfc822)
=> "Tue, 31 Dec 2013 08:38:00 -0500"

The various formats added to Time#to_s work by using strftime, which wraps the sys-
tem call of the same name and lets you format times in a large number of ways. So
there’s nothing in the modified Time#to_s that you couldn’t do yourself. The
optional argument is added for your convenience (and of course the database-friendly
:db format is of interest mainly if you’re using Active Support in conjunction with an

(continued)
or like this:

class String
 alias_method :__old_reverse__, :reverse
end

Because it’s a method and not a keyword, alias_method needs objects rather than
bare method names as its arguments. It can take symbols or strings. Note also that
the arguments to alias don’t have a comma between them. Keywords get to do
things like that, but methods don’t.

435Modifying Ruby’s core classes and modules
object-relational library, such as Active Record). The result is a superset of Time#to_s.
You can ignore the add-ons, and the method will work like it always did.

 As with pure method addition (such as String#pluralize), the kind of superset-
driven override of core methods represented by these examples entails some risk: spe-
cifically, the risk of collision. Is it likely that you’ll end up loading two libraries that
both add an optional :db argument to Time#to_s? No, it’s unlikely—but it’s possible.
Once again, a library like Active Support is protected by its high profile: if you load it,
you’re probably familiar with what it does and will know not to override the overrides.
Still, it’s remotely possible that another library you load might clash with Active Sup-
port. As always, it’s difficult or impossible to reduce the risk of collision to zero. You
need to protect yourself by familiarizing yourself with what every library does and by
testing your code sufficiently.

13.2.4 Per-object changes with extend

Object#extend is a kind of homecoming in terms of topic flow. We’ve wandered to
the outer reaches of modifying core classes—and extend brings us back to the central
process at the heart of all such changes: changing the behavior of an individual
object. It also brings us back to an earlier topic from this chapter: the mixing of a
module into an object’s singleton class. That’s essentially what extend does.

ADDING TO AN OBJECT’S FUNCTIONALITY WITH EXTEND

Have another look at section 13.1.3 and, in particular, the Person example where we
mixed the Secretive module into the singleton classes of some Person objects. As a
reminder, the technique was this (where ruby is a Person instance):

class << ruby
 include Secretive
end

Here’s how the Person example would look, using extend instead of explicitly open-
ing up the singleton class of the ruby object. Let’s also use extend for david (instead
of the singleton method definition with def):

module Secretive
 def name
 "[not available]"
 end
end
class Person
 attr_accessor :name
end
david = Person.new
david.name = "David"
joe = Person.new
joe.name = "Joe"
ruby = Person.new
ruby.name = "Ruby"
david.extend(Secretive)
ruby.extend(Secretive)

B

436 CHAPTER 13 Object individuation
puts "We've got one person named #{joe.name}, " +
"one named #{david.name}, " +
"and one named #{ruby.name}."

Most of this program is the same as the first version, as is the output. The key differ-
ence is the use of extend B, which has the effect of adding the Secretive module to
the lookup paths of the individual objects david and ruby by mixing it into their
respective singleton classes. That inclusion process happens when you extend a class
object, too.

ADDING CLASS METHODS WITH EXTEND

If you write a singleton method on a class object like so,

class Car
 def self.makes
 %w{ Honda Ford Toyota Chevrolet Volvo }
 end
end

or like so,

class Car
 class << self
 def makes

%w{ Honda Ford Toyota Chevrolet Volvo }
 end
 end
end

or with any of the other notational variants available, you’re adding an instance
method to the singleton class of the class object. It follows that you can achieve this, in
addition to the other ways, by using extend:

module Makers
 def makes
 %w{ Honda Ford Toyota Chevrolet Volvo }
 end
end
class Car
 extend Makers
end

If it’s more appropriate in a given situation, you can extend the class object after it
already exists:

Car.extend(Makers)

Either way, the upshot is that the class object Car now has access to the makes method.
 As with non-class objects, extending a class object with a module means mixing the

module into the class’s singleton class. You can verify this with the ancestors method:

p Car.singleton_class.ancestors

437Modifying Ruby’s core classes and modules
The output from this snippet is

[#<Class:Car>, Makers, #<Class:Object>, #<Class:BasicObject>, Class, Module,
Object, Kernel, BasicObject]

The odd-looking entries in the list are singleton classes. The singleton class of Car
itself is included; so are the singleton class of Object (which is the superclass of the
singleton class of Car) and the singleton class of BasicObject (which is the superclass
of the singleton class of Object). The main point for our purpose is that Makers is
included in the list.

 Remember too that subclasses have access to their superclass’s class methods. If
you subclass Car and look at the ancestors of the new class’s singleton class, you’ll see
Makers in the list.

 Our original purpose in looking at extend was to explore a way to add to Ruby’s
core functionality. Let’s turn now to that purpose.

MODIFYING CORE BEHAVIOR WITH EXTEND

You’ve probably put the pieces together by this point. Modules let you define self-
contained, reusable collections of methods. Kernel#extend lets you give individual
objects access to modules, courtesy of the singleton class and the mix-in mechanism. Put
it all together, and you have a compact, safe way of adding functionality to core objects.

 Let’s take another look at the String#gsub! conundrum—namely, that it returns
nil when the string doesn’t change. By defining a module and using extend, it’s possi-
ble to change gsub!’s behavior in a limited way, making only the changes you need
and no more. Here’s how:

module GsubBangModifier
 def gsub!(*args, &block)
 super || self
 end
end
str = "Hello there!"
str.extend(GsubBangModifier)
str.gsub!(/zzz/,"abc").reverse!
puts str

In the module GsubBangModifier, we define gsub!. Instead of the alias-and-call tech-
nique, we call super, returning either the value returned by that call or self—the lat-
ter if the call to super returns nil B. (You’ll recall that super triggers execution of
the next version of the current method up the method-lookup path. Hold that
thought.)

 Next, we create a string str and extend it with GsubBangModifier C. Calling
str.gsub! D executes the gsub! in GsubBangModifier, because str encounters
GsubBangModifier in its method-lookup path before it encounters the class String—
which, of course, also contains a gsub! definition. The call to super inside GsubBang-
Modifier#gsub! jumps up the path and executes the original method, String#gsub!,

B

C
D

Output: !ereht olleH

438 CHAPTER 13 Object individuation
passing it the original arguments and code block, if any. (That’s the effect of calling
super with no arguments and no empty argument list.) And the result of the call to
super is either the string itself or nil, depending on whether any changes were made
to the string.

 Thus you can change the behavior of core objects—strings, arrays, hashes, and so
forth—without reopening their classes and without introducing changes on a global
level. Having calls to extend in your code helps show what’s going on. Changing a
method like gsub! inside the String class itself has the disadvantage not only of being
global but also of being likely to be stashed away in a library file somewhere, making
bugs hard to track down for people who get bitten by the global change.

 There’s one more important piece of the puzzle of how to change core object
behaviors: refinements.

13.2.5 Using refinements to affect core behavior

The idea of a refinement is to make a temporary, limited-scope change to a class
(which can, though needn’t, be a core class).

 Here’s an example, in which a shout method is introduced to the String class but
only on a limited basis:

module Shout
refine String do

 def shout
self.upcase + "!!!"

 end
 end
end
class Person
 attr_accessor :name

using Shout
 def announce
 puts "Announcing #{name.shout}"
 end
end
david = Person.new
david.name = "David"
david.announce

Two different methods appear here, and they work hand in hand: refine B and
using C. The refine method takes a class name and a code block. Inside the code
block, you define the behaviors you want the class you’re refining to adopt. In our
example, we’re refining the String class, adding a shout method that returns an
uppercased version of the string followed by three exclamation points.

 The using method flips the switch: once you “use” the module in which you’ve
defined the refinement you want, the target class adopts the new behaviors. In the
example, we use the Shout module inside the Person class. That means that for the
duration of that class (from the using statement to the end of the class definition),
strings will be “refined” so that they have the shout method.

B

C

Output: Announcing DAVID!!!

439BasicObject as ancestor and class
 The effect of “using” a refinement comes to an end with the end of the class (or
module) definition in which you declare that you’re using the refinement. You can
actually use using outside of a class or module definition, in which case the effect of
the refinement persists to the end of the file in which the call to using occurs. If you
were to open the class again in a different file, the refinement would no longer be in
effect.

 Refinements can help you make temporary changes to core classes in a relatively
safe way. For making changes to fundamental Ruby classes such as Array and String,
refinement has become the preferred method of execution. Other program files and
libraries your program uses at runtime won’t be affected by your refinements.

 We’ll end this chapter with a look at a slightly oddball topic: the BasicObject class.
BasicObject isn’t exclusively an object-individuation topic (as you know from having
read the introductory material about it in chapter 3). But it pertains to the ancestry of
all objects—including those whose behavior branches away from their original
classes—and can play an important role in the kind of dynamism that Ruby makes
possible.

13.3 BasicObject as ancestor and class
BasicObject sits at the top of Ruby’s class tree. For any Ruby object obj, the following
is true:

obj.class.ancestors.last == BasicObject

In other words, the highest-up ancestor of every class is BasicObject. (Unless you mix
a module into BasicObject—but that’s a far-fetched scenario.)

 As you’ll recall from chapter 3, instances of BasicObject have few methods—just a
survival kit, so to speak, so they can participate in object-related activities. You’ll find it
difficult to get a BasicObject instance to tell you what it can do:

>> BasicObject.new.methods.sort
NoMethodError (undefined method `methods' for

#<BasicObject:0x007fafa308b0d8>)

But BasicObject is a class and behaves like one. You can get information directly from
it, using familiar class-level methods:

>> BasicObject.instance_methods(false).sort
=> [:!, :!=, :==, :__id__, :__send__, :equal?, :instance_eval,

:instance_exec]

What’s the point of BasicObject?

13.3.1 Using BasicObject

BasicObject enables you to create objects that do nothing, which means you can
teach them to do everything—without worrying about clashing with existing methods.
Typically, this entails heavy use of method_missing. By defining method_missing for
BasicObject or a class that you write that inherits from it, you can engineer objects

440 CHAPTER 13 Object individuation
whose behavior you’re completely in charge of and that have little or no preconceived
sense of how they’re supposed to behave.

 The best-known example of the use of an object with almost no methods is the
Builder library by the late Jim Weirich. Builder is an XML-writing tool that outputs
XML tags corresponding to messages you send to an object that recognizes few mes-
sages. The magic happens courtesy of method_missing.

 Here’s a simple example of Builder usage (and all Builder usage is simple; that’s
the point of the library). This example presupposes that you’ve installed the builder
gem.

require 'builder'
xml = Builder::XmlMarkup.new(target: STDOUT, indent: 2)
xml.instruct!
xml.friends do
 xml.friend(source: "career") do
 xml.name("Joe Leo")
 xml.address do

xml.street("123 Main Street")
xml.city("Anywhere, USA 00000")

 end
 end
end

xml is a Builder::XmlMarkup object B. The object is programmed to send its output
to STDOUT and to indent by two spaces. The instruct! command C tells the XML
builder to start with an XML declaration. All instance methods of Builder::Xml-
Markup end with a bang (!). They don’t have non-bang counterparts—which bang
methods should have in most cases—but in this case, the bang serves to distinguish
these methods from methods with similar names that you may want to use to generate
XML tags via method_missing. The assumption is that you may want an XML element
called instruct, but you won’t need one called instruct!. The bang is thus serving a
domain-specific purpose, and it makes sense to depart from the usual Ruby conven-
tion for its use.

 The output from our Builder script is this:

<?xml version="1.0" encoding="UTF-8"?>
<friends>
 <friend source="college">
 <name>Joe Smith</name>
 <address>

<street>123 Main Street</street>
<city>Anywhere, USA 00000</city>

 </address>
 </friend>
</friends>

The various XML tags take their names from the method calls. Every missing method
results in a tag, and code blocks represent XML nesting. If you provide a string argu-
ment to a missing method, the string will be used as the text context of the element.
Attributes are provided in hash arguments.

B
C

441BasicObject as ancestor and class
 A brief bit of history: Builder now uses BasicObject to do its work, but the Builder
library was written before BasicObject existed. The original versions of Builder used
a custom-made class called BlankSlate, which operated similarly and probably served
as an inspiration for BasicObject. Jim Weirich served the Ruby language well in myr-
iad ways.

 How would you implement a simple BasicObject-based class?

13.3.2 Implementing a subclass of BasicObject

Simple, in the question just asked, means simpler than Builder::XmlMarkup (which
makes XML writing simple but is itself fairly complex). Let’s write a small library that
operates on a similar principle and outputs an indented list of items. We’ll avoid hav-
ing to provide closing tags, which makes things a lot easier.

 The Lister class, shown in the following listing, will inherit from BasicObject. It
will define method_missing in such a way that every missing method is taken as a
heading for the list it’s generating. Nested code blocks will govern indentation.

class Lister < BasicObject
 attr_reader :list
 def initialize
 @list = ""
 @level = 0
 end
 def indent(string)
 " " * @level + string.to_s
 end
 def method_missing(m, &block)
 @list << indent(m) + ":"
 @list << "\n"
 @level += 2
 @list << indent(yield(self)) if block
 @level -= 2
 @list << "\n"
 return ""
 end
end

On initialization, two instance variables are set B: @list will serve as the string accu-
mulator for the entire list, and @level will guide indentation. The indent method C
takes a string (or anything that can be converted to a string; it calls to_s on its argu-
ment) and returns that string indented to the right by @level spaces.

 Most of the action is in method_missing D. The symbol m represents the missing-
method name—presumably corresponding to a header or item for the list. Accord-
ingly, the first step is to add m (indented, and followed by a colon) to @list, along with
a newline character E. Next, we increase the indentation level F and yield G. (This
step happens only if block isn’t nil. Normally, you can test for the presence of a block
with block_given?, but BasicObject instances don’t have that method!) Yielding may

Listing 13.2 Lister class: generates indented lists from a BasicObject subclass

B

C

D
E

F
G

H

442 CHAPTER 13 Object individuation
trigger more missing-method calls, in which case they’re processed and their results
added to @list at the new indentation level. After getting the results of the yield, we
decrement the indentation level and add another newline to @list.

 At the end, method_missing returns an empty string H. The goal here is to avoid
concatenating @list to itself. If method_missing ended with an expression evaluating
to @list (like @list << "\n"), then nested calls to method_missing inside yield instruc-
tions would return @list and append it to itself. The empty string breaks the cycle.

 Here’s an example of Lister in use:

lister = Lister.new
lister.groceries do |item|
 item.name { "Apples" }
 item.quantity { 10 }
 item.name { "Sugar" }
 item.quantity { "1 lb" }
end
lister.freeze do |f|

f.name { "Ice cream" }
end
lister.inspect do |i|

i.item { "car" }
end
lister.sleep do |s|

s.hours { 8 }
end
lister.print do |document|
 document.book { "Chapter 13" }
 document.letter { "to editor" }
end
puts lister.list

The output from this run is as follows:

groceries:
 name:
 Apples
 quantity:
 10
 name:
 Sugar
 quantity:
 1 lb

freeze:
 name:
 Ice cream

inspect:
 item:
 car

sleep:
 hours:
 8

443Summary
print:
 book:
 Chapter 13
 letter:
 to editor

Admittedly not as gratifying as Builder—but you can follow the yields and missing-
method calls and see how you benefit from a BasicObject instance. And if you look at
the method names used in the sample code, you’ll see some that are built-in methods
of (nonbasic) objects. If you don’t inherit from BasicObject, you’ll get an error when
you try to call freeze or inspect.

 Our look at BasicObject brings us to the end of this survey of object individua-
tion. We’ll be moving next to a different topic that’s also deeply involved in Ruby
dynamics: callable and runnable objects.

Summary
In this chapter, you’ve seen

 Singleton classes and how to add methods and constants to them
 Class methods
 The extend method
 Several approaches to changing Ruby’s core behavior
 BasicObject and how to leverage it

We’ve looked at the ways that Ruby objects live up to the philosophy of Ruby, which is
that what happens at runtime is all about individual objects and what they can do at
any given point. Ruby objects are born into a particular class, but their ability to store
individual methods in a dedicated singleton class means that any object can do almost
anything.

 You’ve seen how to open singleton class definitions and manipulate the innards of
individual objects, including class objects that make heavy use of singleton-method
techniques in connection with class methods (which are, essentially, singleton meth-
ods on class objects). You’ve also seen some of the power, as well as the risks, of the

Exercises
As it stands, the Lister class must inherit from BasicObject to avoid collision with
Object’s freeze and inspect objects. You can undefine these methods using the
undef method:

undef :freeze

Once freeze and inspect are undefined, Lister works as expected by calling
method_missing when freeze or inspect are called on its instances. Using refine-
ments and the undef method, create a Lister class that doesn’t inherit from
BasicObject but functions as above.

444 CHAPTER 13 Object individuation
ability Ruby gives you to pry open not only your own classes but also Ruby’s core
classes. This is something you should do sparingly, if at all—and it’s also something
you should be aware of other people doing, so that you can evaluate the risks of any
third-party code you’re using that changes core behaviors.

 We ended with an examination of BasicObject, the ultimate ancestor of all classes
and a class you can use in cases where even a vanilla Ruby object isn’t vanilla enough.

 The next chapter will take us into the area of callable and runnable objects: func-
tions (Proc objects), threads, eval blocks, and more. The fact that you can create
objects that embody runnable code and manipulate those objects as you would any
object adds yet another major layer to the overall topic of Ruby dynamics.

Callable and
runnable objects
In addition to the basic, bread-and-butter method calls that account for most of
what happens in your program, Ruby provides an extensive toolkit for making
things happen in a variety of ways. You need two or more parts of your code to run
concurrently? Create some Thread objects and run them as needed. Want to
choose from among a set of possible functions to execute, and don’t have enough
information in advance to write methods for them? Create an array of Proc
objects—anonymous functions—and call the one you need. You can even isolate
methods as objects, or execute dynamically created strings as code.

This chapter covers
 Proc objects as anonymous functions

 The lambda method for generating functions

 Code blocks

 Method objects

 Threads

 Executing external programs
445

446 CHAPTER 14 Callable and runnable objects
 This chapter is about objects that you can call, execute, or run: threads, anony-
mous functions, strings, and even methods that have been turned into objects. We’ll
look at all these constructs along with some auxiliary tools—keywords, variable bind-
ings, code blocks—that make Ruby’s inclusion of callable, runnable objects possible.

 Be warned: both callable and runnable objects come with a fair share of complex-
ity in how they work. Callable and runnable objects differ from each other, in both
syntax and purpose, and grouping them together in one chapter is a bit of an expedi-
ent. But it’s also an instructive way to view these objects and a gentle introduction to a
functional programming style, the subject of the next chapter.

14.1 Basic anonymous functions: the Proc class
At its most straightforward, the notion of a callable object is embodied in Ruby through
objects to which you can send the message call, with the expectation that some code
associated with the objects will be executed. The main callable objects in Ruby are Proc
objects, lambdas, and method objects. Proc objects are self-contained code sequences
that you can create, store, pass around as method arguments, and, when you wish, exe-
cute with the call method. Lambdas are similar to Proc objects. Truth be told, a
lambda is a Proc object, but one with slightly special internal engineering. The differ-
ences will emerge as we examine each in turn. Method objects represent methods
extracted into objects that you can, similarly, store, pass around, and execute.

 We’ll start our exploration of callable objects with Proc objects.

NOTE For the sake of conciseness, the term proc (in regular font) will serve in
the text to mean Proc object, much as string refers to an instance of the class
String. Lambda will mean an instance of the lambda style of Proc object.
(Don’t worry; you’ll see what that means soon!) The term function is a generic
term for standalone units of code that take input and return a value. There’s
no Function class in Ruby. Here, however, you’ll sometimes see function used
to refer to procs and lambdas. It’s just another, slightly more abstract way of
identifying those objects.

14.1.1 Proc objects

Understanding Proc objects thoroughly means being familiar with several things: the
basics of creating and using procs; the way procs handle arguments and variable bind-
ings; the role of procs as closures; the relationship between procs and code blocks; and
the difference between creating procs with Proc.new, the proc method, the lambda
method, and the literal lambda constructor ->. There’s a lot going on here, but it all
fits together if you take it one layer at a time.

 Let’s start with the basic callable object: an instance of Proc, created with
Proc.new. You create a Proc object by instantiating the Proc class, including a code
block:

pr = Proc.new { puts "Inside a Proc's block" }

447Basic anonymous functions: the Proc class
The code block becomes the body of the proc; when you call the proc, the block you
provided is executed. Thus if you call pr,

pr.call

it reports as follows:

Inside a Proc's block

That’s the basic scenario: a code block supplied to a call to Proc.new becomes the
body of the Proc object and gets executed when you call that object. Everything else
that happens, or that can happen, involves additions to and variations on this theme.

 The Kernel#proc method is an alias for Proc.new. We can achieve the same result
as above by writing the following:

pr = proc { puts "Inside a Proc's block" }

Remember that procs are objects. That means you can assign them to variables, put
them inside arrays, send them around as method arguments, and generally treat them
as you would any other object. They have knowledge of a chunk of code (the code
block they’re created with) and the ability to execute that code when asked to. But
they’re still objects.

 Perhaps the most important aspect of procs to get a handle on is the relation
between procs and code blocks. That relation is intimate and turns out to be an
important key to further understanding.

14.1.2 Procs and blocks and how they differ

When you create a Proc object, you always supply a code block. But not every code
block serves as the basis of a proc. The snippet

[1,2,3].each {|x| puts x * 10 }

involves a code block but does not create a proc. Yet the plot is a little thicker than
that. A method can capture a block, objectified into a proc, using the special parame-
ter syntax that you saw briefly in chapter 9:

def call_a_proc(&block)
 block.call
end
call_a_proc { puts "I'm the block...or Proc...or something." }

The output isn’t surprising:

I'm the block...or Proc...or something.

But it’s also possible for a proc to serve in place of the code block in a method call,
using a similar special syntax:

p = Proc.new {|x| puts x.upcase }
%w{ David Black }.each(&p)

448 CHAPTER 14 Callable and runnable objects
Here’s the output from that call to each:

DAVID
BLACK

But the question remains: exactly what’s going on with regard to procs and blocks?
Why and how does the presence of (&p) convince each that it doesn’t need an actual
code block? To a large extent, the relation between blocks and procs comes down to a
matter of syntax versus objects.

SYNTAX (BLOCKS) AND OBJECTS (PROCS)
An important and often misunderstood fact is that a Ruby code block is not an object.
This familiar trivial example has a receiver, a dot operator, a method name, and a
code block:

[1,2,3].each {|x| puts x * 10 }

The receiver is an object, but the code block isn’t. Rather, the code block is part of the
syntax of the method call.

 You can put code blocks in context by thinking of the analogy with argument lists.
In a method call with arguments

puts c2f(100)

the arguments are objects, but the argument list itself—the whole (100) thing—isn’t
an object. There’s no ArgumentList class, and there’s no CodeBlock class.

 Things get a little more complex in the case of block syntax than in the case of
argument lists, though, because of the way blocks and procs interoperate. An instance
of Proc is an object. A code block contains everything that’s needed to create a proc.
That’s why Proc.new takes a code block: that’s how it finds out what the proc is sup-
posed to do when it gets called.

 One important implication of the fact that the code block is a syntactic construct
and not an object is that code blocks aren’t method arguments. The matter of provid-
ing arguments to a method is independent of whether a code block is present, just as
the presence of a block is independent of the presence or absence of an argument list.
When you provide a code block, you’re not sending the block to the method as an
argument; you’re providing a code block, and that’s a thing unto itself. Let’s take
another, closer look now at the conversion mechanisms that allow code blocks to be
captured as procs, and procs to be pressed into service in place of code blocks.

14.1.3 Block-proc conversions

Conversion between blocks and procs is easy—which isn’t too surprising, because the
purpose of a code block is to be executed, and a proc is an object whose job is to pro-
vide execution access to a previously defined code block. We’ll look first at block-to-
proc conversions and then at the use of procs in place of blocks.

449Basic anonymous functions: the Proc class
CAPTURING A CODE BLOCK AS A PROC

Let’s start with another simple method that captures its code block as a Proc object
and subsequently calls that object:

def capture_block(&block)
 puts "Got block as proc"
 block.call
end
capture_block { puts "Inside the block" }

What happens is a kind of implicit call to Proc.new, using the same block. The proc
thus created is bound to the parameter block.

 Figure 14.1 provides an artist’s rendering of how a code block becomes a proc. The
first event (at the bottom of the figure) is the calling of the method capture_block
with a code block. Along the way, a new Proc object is created (step 2) using the same
block. It’s this Proc object that the variable block is bound to, inside the method body
(step 3).

The syntactic element (the code block) thus serves as the basis for the creation of an
object. The “phantom” step of creating the proc from the block also explains the need
for the special &-based syntax. A method call can include both an argument list and a
code block. Without a special flag like &, a Ruby method has no way of knowing that
you want to stop binding parameters to regular arguments and instead perform a
block-to-proc conversion and save the results.

 The & also makes an appearance when you want to do the conversion the other
way: use a Proc object instead of a code block.

def capture_block(&block)
puts "Got block as proc"
block.call

end

Proc.new { puts "Inside the block" }

capture_block { puts "Inside the block" }

2

1

3

Figure 14.1 A phantom Proc instantiation intervenes between a method call and a
method.

450 CHAPTER 14 Callable and runnable objects
USING PROCS FOR BLOCKS

Here’s how you might call capture_block using a proc instead of a code block:

p = Proc.new { puts "This proc argument will serve as a code block." }
capture_block(&p)

The output is

This proc argument will serve as a code block.

The key to using a proc as a block is that you actually use it instead of a block: you
send the proc as an argument to the method you’re calling. Just as you tag the param-
eter in the method definition with the & character to indicate that it should convert
the block to a proc, so too you use the & on the method-calling side to indicate that
the proc should do the job of a code block.

 Keep in mind that because the proc tagged with & is serving as the code block, you
can’t send a code block in the same method call. If you do, you’ll get an error. The call

capture_block(&p) { puts "This is the explicit block" }

results in the error “both block arg and actual block given.” Ruby can’t decide which
entity—the proc or the block—is serving as the block, so you can use only one.

 An interesting subplot is going on here. Like many Ruby operators, the & in &p is a
wrapper around a method: namely, the method to_proc. Calling to_proc on a Proc
object returns the Proc object itself, rather like calling to_s on a string or to_i on an
integer.

 But note that you still need the &. If you do this,

capture_block(p)

or this,

capture_block(p.to_proc)

the proc serves as a regular argument to the method (and, in our case, throws an
ArgumentError). You aren’t triggering the special behavior whereby a proc argument
does the job of a code block.

 Thus the & in capture_block(&p) does two things: it triggers a call to p’s to_proc
method, and it tells Ruby that the resulting Proc object is serving as a code block
stand-in. And because to_proc is a method, it’s possible to use it in a more general
way.

HASH#TO_PROC

Hash comes with its own to_proc method. This is most commonly used implicitly to
run multiple lookups at once. Following is a hash of great hip-hop albums over the
years:

albums = { 1988 => "Straight Outta Compton", 1993 => "Midnight Marauders",
 1996 => "The Score", 2004 => "Madvillainy",
 2015 => "To Pimp a Butterfly" }

451Basic anonymous functions: the Proc class
We can easily look up a single value using the [] syntax:

>> albums[2015]
=> "To Pimp a Butterfly"

If we want to look up multiple values at once, we can do so and return them in an
array using the map method and an implicit call to Hash#to_proc:

>> [1988,1996].map(&albums)
=> ["Straight Outta Compton", "The Score"]

As you know, Array#map takes a code block. In this case, we’re using a Proc object
instead by virtue of the Hash#to_proc method. Similarly, we can use a range to, for
example, determine great albums of the 1990s:

>> (1990..1999).map(&albums).compact
=> ["Midnight Marauders", "The Score"]

A look at how we implement our own custom to_proc methods follows and will
deepen your understanding of Hash#to_proc.

GENERALIZING TO_PROC

In theory, you can define to_proc in any class or for any object, and the & technique
will then work for the affected objects. You probably won’t need to do this a lot; the
three classes where to_proc is most useful are Proc and Hash (discussed earlier) and
Symbol (discussed in the next section), and to_proc behavior is already built into
those classes. But looking at how to roll to_proc into your own classes can give you a
sense of the dynamic power that lies below the surface of the language.

 Here is a rather odd but instructive piece of code:

class Person
 attr_accessor :name
 def self.to_proc
 Proc.new {|person| person.name }
 end
end
d = Person.new
d.name = "David"
j = Person.new
j.name = "Joe"
puts [d,j].map(&Person)

The best starting point, if you want to follow the trail of breadcrumbs through this
code, is the last line E. Here we have an array of two Person objects. We’re doing a
map operation on the array. Just as we did in the previous Hash example, we’re hand-
ing Array#map a Proc object. That proc is designated in the argument list as &Person.
Of course, Person isn’t a proc; it’s a class. To make sense of what it sees, Ruby asks
Person to represent itself as a proc, which means an implicit call to Person’s to_proc
method C.

 That method, in turn, produces a simple Proc object that takes one argument and
calls the name method on that argument. Person objects have name attributes B. And

B
C

D

E

452 CHAPTER 14 Callable and runnable objects
the Person objects created for purposes of trying out the code, sure enough, have
names D. All of this means that the mapping of the array of Person objects ([d,m])
will collect the name attributes of the objects, and the entire resulting array will be
printed out (thanks to puts).

 It’s a long way around. And the design is a bit loose; after all, any method that takes a
block could use &Person, which might get weird if it involved non-person objects that
didn’t have a name method. But the example shows you that to_proc can serve as a pow-
erful conversion hook. And that’s what it does in the Symbol class, as you’ll see next.

14.1.4 Using Symbol#to_proc for conciseness

The built-in method Symbol#to_proc comes into play in situations like this:

%w{ david black }.map(&:capitalize)

The result is

["David", "Black"]

The symbol :capitalize is interpreted as a message to be sent to each element of the
array in turn. The previous code is thus equivalent to

%w{ david black }.map {|str| str.capitalize }

but, as you can see, more concise.
 If you just saw &:capitalize or a similar construct in code, you might think it was

cryptic. But knowing how it parses—knowing that :capitalize is a symbol and & is a
to_proc trigger—allows you to interpret it correctly and appreciate its expressiveness.

 The Symbol#to_proc situation lends itself nicely to the elimination of parentheses:

%w{ david black }.map &:capitalize

By taking off the parentheses, you can make the proc-ified symbol look like it’s in
code-block position. There’s no necessity for this, of course, and you should keep in
mind that when you use the to_proc & indicator, you’re sending the proc as an argu-
ment flagged with & and not providing a literal code block.

 Symbol#to_proc is, among other things, a great example of something that Ruby
does for you that you could, if you had to, do easily yourself. Here’s how.

IMPLEMENTING SYMBOL#TO_PROC

Here’s the to_proc case study again:

%w{ david black }.map(&:capitalize)

We know it’s equivalent to this:

%w{ david black }.map {|str| str.capitalize }

And the same thing could also be written like this:

%w{ david black }.map {|str| str.public_send(:capitalize) }

453Basic anonymous functions: the Proc class
Normally, you wouldn’t write it that way, because there’s no need to go to the trouble of
doing a public_send if you’re able to call the method using regular dot syntax. But the
public_send-based version points the way to an implementation of Symbol#to_proc.
The job of the block in this example is to send the symbol :capitalize to each ele-
ment of the array. That means the Proc produced by :capitalize#to_proc has to
send :capitalize to its argument. Generalizing from this, we can come up with this
simple (almost anticlimactic, one might say) implementation of Symbol#to_proc:

class Symbol
 def to_proc
 Proc.new {|obj| obj.public_send(self) }
 end
end

This method returns a Proc object that takes one argument and sends self (which
will be whatever symbol we’re using) to that object.

 You can try the new implementation in irb. Let’s throw in a greeting from the
method so it’s clear that the version being used is the one we’ve just defined:

class Symbol
 def to_proc
 puts "In the new Symbol#to_proc!"
 Proc.new {|obj| obj.public_send(self) }
 end
end

Save this code to a file called sym2proc.rb, and from the directory to which you’ve
saved it, pull it into irb using the –I (include path in load path) flag and the -r
(require) flag:

irb --simple-prompt –I. -r sym2proc

Now you’ll see the new to_proc in action when you use the &: technique:

>> %w{ david black }.map(&:capitalize)
In the new Symbol#to_proc!
=> ["David", "Black"]

You’re under no obligation to use the Symbol#to_proc shortcut (let alone implement
it), but it’s useful to know how it works so you can decide when it’s appropriate to use.

 One of the most important aspects of Proc objects is their service as closures : anon-
ymous functions that preserve the local variable bindings that are in effect when the
procs are created. We’ll look next at how procs operate as closures.

14.1.5 Procs as closures

You’ve already seen that the local variables you use inside a method body aren’t the
same as the local variables you use in the scope of the method call:

def talk
 a = "Hello"
 puts a

454 CHAPTER 14 Callable and runnable objects
end
a = "Goodbye"
talk
puts a

The identifier a has been assigned to twice, but the two assignments (the two a vari-
ables) are unrelated to each other.

 You’ve also seen that code blocks preserve the variables that were in existence at
the time they were created. All code blocks do this:

>> m = 10
>> [1,2,3].each {|x| puts x * m }
10
20
30
=> [1, 2, 3]

This behavior becomes significant when the code block serves as the body of a callable
object:

def multiply_by(m)
 Proc.new {|x| puts x * m }
end
mult = multiply_by(10)
mult.call(12)

In this example, the method multiply_by returns a proc that can be called with any
argument but that always multiplies by the number sent as an argument to multiply_
by. The variable m, whatever its value, is preserved inside the code block passed to
Proc.new and therefore serves as the multiplier every time the Proc object returned
from multiply_by is called.

 Proc objects put a slightly different spin on scope. When you construct the code
block for a call to Proc.new, the local variables you’ve created are still in scope (as with
any code block). And those variables remain in scope inside the proc, no matter
where or when you call it.

 Look at the following listing, and keep your eye on the two variables called a.

def call_some_proc(pr)
 a = "irrelevant 'a' in method scope"
 puts a
 pr.call
end
a = "'a' to be used in Proc block"
pr = Proc.new { puts a }
pr.call
call_some_proc(pr)

As in the previous example, there’s an a in the method definition B and an a in the
outer (calling) scope D. Inside the method is a call to a proc. The code for that proc,
we happen to know, consists of puts a. Notice that when the proc is called from inside

Listing 14.1 Proc object preserving local context

Output: Hello
Output: Goodbye

Output: 120

B

C

D

455Basic anonymous functions: the Proc class
the method C, the a that’s printed out isn’t the a defined in the method; it’s the a
from the scope where the proc was originally created:

'a' to be used in Proc block
irrelevant 'a' in method scope
'a' to be used in Proc block

The Proc object carries its context around with it. Part of that context is a variable
called a to which a particular string is assigned. That variable lives on inside the Proc.

 A piece of code that carries its creation context around with it like this is called a
closure. Creating a closure is like packing a suitcase: wherever you open the suitcase, it
contains what you put into it when you packed it. When you open a closure (by calling
it), it contains what you put into it when it was created. Closures are important
because they preserve the partial running state of a program. A variable that goes out
of scope when a method returns may have something interesting to say later on—and
with a closure, you can preserve that variable so it can continue to provide informa-
tion or calculation results.

 The classic closure example is a counter. Here’s a method that returns a closure (a
proc with the local variable bindings preserved). The proc serves as a counter; it incre-
ments its variable every time it’s called:

def make_counter
 n = 0
 return Proc.new { n += 1 }
end
c = make_counter
puts c.call
puts c.call
d = make_counter
puts d.call
puts c.call

The output is

1
2
1
3

The logic in the proc involves adding 1 to n B; so the first time the proc is called, it
evaluates to 1; the second time to 2; and so forth. Calling make_counter and then call-
ing the proc it returns confirms this: first 1 is printed, and then 2 C. But a new
counter starts again from 1; the second call to make_counter D generates a new, local
n, which gets preserved in a different proc. The difference between the two counters
is made clear by the third call to the first counter, which prints 3 E. It picks up where
it left off, using the n variable that was preserved inside it at the time of its creation.

 Like any code block, the block you provide when you create a Proc object can take
arguments. Let’s look in detail at how block arguments and parameters work in the
course of Proc creation.

B

C

D

E

456 CHAPTER 14 Callable and runnable objects
14.1.6 Proc parameters and arguments

Here’s an instantiation of Proc, with a block that takes one argument:

pr = Proc.new {|x| puts "Called with argument #{x}" }
pr.call(100)

The output is

Called with argument 100

Procs differ from methods, with respect to argument handling, in that they don’t care
whether they get the right number of arguments. A one-argument proc like

>> pr = Proc.new {|x| p x }
=> #<Proc:0x000001029a8960@(irb):1>

can be called with any number of arguments, including none. If it’s called with no
arguments, its single parameter gets set to nil:

>> pr.call
nil

If it’s called with more than one argument, the single parameter is bound to the first
argument, and the remaining arguments are discarded:

>> pr.call(1,2,3)
1

(Remember that the single value printed out is the value of the variable x.)
 You can, of course, also use “sponge” arguments and all the rest of the parameter-

list paraphernalia you’ve already learned about. But keep in mind the point that procs
are a little less fussy than methods about their argument count—their arity. Still, Ruby
provides a way to create fussier functions: the lambda method.

14.2 Creating functions with lambda and ->
Like Proc.new, the lambda method returns a Proc object, using the provided code
block as the function body:

>> lam = lambda { puts "A lambda!" }
=> #<Proc:0x0000010299a1d0@(irb):2 (lambda)>
>> lam.call
A lambda!

As the inspect string suggests, the object returned from lambda is of class Proc. But
note the (lambda) notation. There’s no Lambda class, but there is a distinct lambda fla-
vor of the Proc class. And lambda-flavored procs are a little different from their vanilla
cousins, in three ways.

 First and most importantly, lambda-flavored procs don’t like being called with the
wrong number of arguments. Unlike traditional procs, they’re fussy:

>> lam = lambda {|x| p x }
=> #<Proc:0x000001029901f8@(irb):3 (lambda)>

457Creating functions with lambda and ->
>> lam.call(1)
1
=> 1
>> lam.call
ArgumentError (wrong number of arguments (given 0, expected 1))
>> lam.call(1,2,3)
ArgumentError (wrong number of arguments (given 3, expected 1))

Second, lambdas require explicit creation. Wherever Ruby creates Proc objects
implicitly, they’re regular procs and not lambdas. That means chiefly that when you
grab a code block in a method, like this
def m(&block)

the Proc object you’ve grabbed is a regular proc, not a lambda.
 Finally, lambdas differ from procs in how they treat the return keyword. return

inside a lambda triggers an exit from the body of the lambda to the code context
immediately containing the lambda. return inside a proc triggers a return from the
method in which the proc is being executed. Here’s an illustration of the difference:

def return_test
 l = lambda { return }
 l.call
 puts "Still here!"
 p = Proc.new { return }
 p.call
 puts "You won't see this message!"
end
return_test

The output of this snippet is "Still here!" You’ll never see the second message D
printed out because the call to the Proc object C triggers a return from the
return_test method. But the call to the lambda B triggers a return (an exit) from
the body of the lambda, and execution of the method continues where it left off.

WARNING Because return from inside a (non-lambda-flavored) proc triggers
a return from the enclosing method, calling a proc that contains return
when you’re not inside any method produces a fatal error. You can see this
for yourself by running Proc.new { return }.call in an irb session.

In addition to the lambda method, there’s a lambda literal constructor.

THE "STABBY LAMBDA" CONSTRUCTOR, ->
The lambda constructor (nicknamed the “stabby lambda”) works like this:

>> lam = -> { puts "hi" }
=> #<Proc:0x0000010289f140@(irb):1 (lambda)>
>> lam.call
hi

If you want your lambda to take arguments, you need to put your parameters in paren-
theses after the ->, not in vertical pipes inside the code block:

>> mult = ->(x,y) { x * y }

B

C
D

458 CHAPTER 14 Callable and runnable objects
=> #<Proc:0x00000101023c38@(irb):7 (lambda)>
>> mult.call(3,4)
=> 12

Stabby lambdas are a popular notation, and you’re likely to see both lambda imple-
mentations in practice. In chapter 16 you’ll see lambdas used extensively and in a vari-
ety of contexts.

 In practice, the things you call most often in Ruby aren’t procs or lambdas but
methods. So far, we’ve viewed the calling of methods as something we do at one level
of remove: we send messages to objects, and the objects execute the appropriately
named method. But it’s possible to handle methods as objects, as you’ll see next.

14.3 Methods as objects
Methods don’t present themselves as objects until you tell them to. Treating methods
as objects involves objectifying them.

14.3.1 Capturing Method objects

You can get hold of a Method object by using the method method with the name of the
method as an argument (in string or symbol form):

class C
 def talk
 puts "Method-grabbing test! self is #{self}."
 end
end
c = C.new
meth = c.method(:talk)

Note that method is called on c, an instance of C, because talk is an instance method.
Attempting to retrieve the talk method object from C will raise a NameError. You can
use the owner method to determine where this method is ultimately defined:

>> meth.owner
=> C

The owner of talk is relatively obvious in this example, but owner is a useful method
when debugging, especially when inheritance or mix-ins are present.

 At this point, you have a Method object—specifically, a bound Method object: it isn’t
the method talk in the abstract, but rather the method talk specifically bound to the
object c. If you send a call message to meth, it knows to call itself with c in the role of
self:

meth.call

Here’s the output:

Method-grabbing test! self is #<C:0x00000101201a00>.

You can also unbind the method from its object and then bind it to another object, as
long as that other object is of the same class as the original object (or a subclass):

459Methods as objects
class D < C
end
d = D.new
unbound = meth.unbind
unbound.bind(d).call

Here, the output tells you that the method was, indeed, bound to a D object (d) at the
time it was executed:

Method-grabbing test! self is #<D:0x000001011d0220>.

To get hold of an unbound method object directly without having to call unbind on a
bound method, you can get it from the class rather than from a specific instance of
the class using the instance_method method. This single line is equivalent to a method
call plus an unbind call:

unbound = C.instance_method(:talk)

After you have the unbound method in captivity, so to speak, you can use bind to bind
it to any instance of either C or a C subclass like D.

 But why would you?

14.3.2 The rationale for methods as objects

There’s no doubt that unbinding and binding methods is a specialized technique, and
you’re not likely to need more than a reading knowledge of it. But aside from the
principle that at least a reading knowledge of anything in Ruby can’t be a bad idea, on
some occasions the best answer to a “how to” question is, “With unbound methods.”

 Here’s an example. The following question comes up periodically in Ruby forums:
Suppose I’ve got a class hierarchy where a method gets redefined:

class A
 def a_method
 puts "Definition in class A"
 end
end
class B < A
 def a_method
 puts "Definition in class B (subclass of A)"
 end
end
class C < B
end

And I’ve got an instance of the subclass:

c = C.new

Is there any way to get that instance of the lowest class to respond to the message (a_method) by
executing the version of the method in the class two classes up the chain?

 By default, of course, the instance doesn’t do that; it executes the first matching
method it finds as it traverses the method-search path:

460 CHAPTER 14 Callable and runnable objects
c.a_method

The output is

Definition in class B (subclass of A)

But you can force the issue through an unbind and bind operation:

A.instance_method(:a_method).bind(c).call

Here the output is

Definition in class A

You can even stash this behavior inside a method in class C:

class C
 def call_original

A.instance_method(:a_method).bind(self).call
 end
end

and then call call_original directly on c.
 This is an example of a Ruby technique with a paradoxical status: it’s within the

realm of things you should understand, as someone gaining mastery of Ruby’s dynam-
ics, but it’s outside the realm of anything you should probably do. If you find yourself
coercing Ruby objects to respond to methods you’ve already redefined, you should
review the design of your program and find a way to get objects to do what you want as
a result of and not in spite of the class/module hierarchy you’ve created.

 Still, methods are callable objects, and they can be detached (unbound) from
their instances. As a Ruby dynamics inductee, you should at least have recognition-
level knowledge of this kind of operation.

Alternative techniques for calling callable objects
So far we’ve exclusively used the call method to call callable objects. You do, how-
ever, have a couple of other options.

One is the square-brackets method/operator, which is a synonym for call. You place
any arguments inside the brackets:

mult = lambda {|x,y| x * y }
twelve = mult[3,4]

If there are no arguments, leave the brackets empty.

You can also call callable objects using the () method:

twelve = mult.(3,4)

Note the dot before the opening parenthesis. The () method has to be called using
a dot; you can’t just append the parentheses to a Proc or Method object the way you
would with a method name. If there are no arguments, leave the parentheses empty.

461The eval family of methods
We’ll linger in the dynamic stratosphere for a while, looking next at the eval family of
methods: a small handful of methods with special powers to let you run strings as code
and manipulate scope and self in some interesting, use-case-driven ways.

14.4 The eval family of methods
Like many languages, Ruby has a facility for executing code stored in the form of
strings at runtime. In fact, Ruby has a cluster of techniques to do this, each of which
serves a particular purpose, but all of which operate on a similar principle: that of say-
ing in the middle of a program, “Whatever code strings you might have read from the
program file before starting to execute this program, execute this code string right
now.”

 The most straightforward method for evaluating a string as code, and also the most
dangerous, is the method eval. Other eval-family methods are a little softer, not
because they don’t also evaluate strings as code but because that’s not all they do.
instance_eval brings about a temporary shift in the value of self, and class_eval
(also known by the synonym module_eval) takes you on an ad hoc side trip into the
context of a class-definition block. These eval-family methods can operate on strings,
but they can also be called with a code block; thus they don’t always operate as bluntly
as eval, which executes strings.

 Let’s unpack this description with a closer look at eval and the other eval methods.

14.4.1 Executing arbitrary strings as code with eval

eval executes the string you give it:

>> eval("2+2")
=> 4

eval is the answer, or at least one answer, to a number of frequently asked questions,
such as, “How do I write a method and give it a name someone types in?” You can do
so like this:

print "Method name: "
m = gets.chomp
eval("def #{m}; puts 'Hi!'; end")
eval(m)

This code outputs

Hi!

A new method is being written. Let’s say you run the code and type in abc. The string
you subsequently use eval on is

def abc; puts 'Hi!'; end

After you apply eval to that string, a method called abc exists. The second eval exe-
cutes the string abc—which, given the creation of the method in the previous line,
constitutes a call to abc. When abc is called, “Hi!” is printed out.

462 CHAPTER 14 Callable and runnable objects

eval gives you a lot of power, but it also harbors dangers—in some people’s opinion,
enough danger to rule it out as a usable technique.

14.4.2 The dangers of eval

Executing arbitrary strings carries significant danger—especially (though not exclu-
sively) strings that come from users interacting with your program. For example, it
would be easy to inject a destructive command, perhaps a system call to rm –rf /*, into
the previous example.

 eval can be seductive. It’s about as dynamic as a dynamic programming technique
can get: you’re evaluating strings of code that probably didn’t even exist when you
wrote the program. Anywhere that Ruby puts up a kind of barrier to absolute, easy
manipulation of the state of things during the run of a program, eval seems to offer a
way to cut through the red tape and do whatever you want.

 But as you can see, eval isn’t a panacea. If you’re running eval on a string
you’ve written, it’s generally no less secure than running a program file you’ve written.
But any time an uncertain, dynamically generated string is involved, the dangers
mushroom.

The Binding class and eval-ing code with a binding
Ruby has a class called Binding whose instances encapsulate the local variable
bindings in effect at a given point in execution. And a top-level method called binding
returns whatever the current binding is.

The most common use of Binding objects is in the position of second argument to
eval. If you provide a binding in that position, the string being eval-ed is executed
in the context of the given binding. Any local variables used inside the eval string are
interpreted in the context of that binding.

Here’s an example. The method use_a_binding takes a Binding object as an argu-
ment and uses it as the second argument to a call to eval. The eval operation,
therefore, uses the local-variable bindings represented by the Binding object:

def use_a_binding(b)
 eval("puts str", b)
end
str = "I'm a string in top-level binding!"
use_a_binding(binding)

The output of this snippet is "I'm a string in top-level binding!". That string is
bound to the top-level variable str. Although str isn’t in scope inside the use_a_
binding method, it’s visible to eval thanks to the fact that eval gets a binding argu-
ment of the top-level binding, in which str is defined and bound.

Thus the string "puts str", which otherwise would raise an error (because str isn’t
defined), can be eval-ed successfully in the context of the given binding.

463The eval family of methods
 It’s difficult to clean up user input (including input from web forms and files) to
the point that you can feel safe about running eval on it. Object contains a tainted?
method that returns true for potentially insecure data, like command-line arguments
or user input. Data that comes in via the gets method, for example, will be marked as
tainted:

>> x = gets
any user input here
=> "any user input here\n"
>> x.tainted?
=> true

Ruby also maintains a global variable called $SAFE—set to 0 by default. Setting $SAFE
to 1 will prevent Ruby from running potentially unsafe methods like eval on tainted
data by raising a SecurityError. Still, the best habit to get into is the habit of not
using eval.

 It isn’t hard to find experienced and expert Ruby programmers (as well as pro-
grammers in other languages) who never use eval and never will. You have to decide
how you feel about it, based on your knowledge of the pitfalls.

 Let’s move now to the wider eval family of methods. These methods can do the
same kind of brute-force string evaluation that eval does, but they also have kinder,
gentler behaviors that make them usable and useful.

14.4.3 The instance_eval method

instance_eval is a specialized cousin of eval. It evaluates the string or code block you
give it, changing self to be the receiver of the call to instance_eval:

p self
a = []
a.instance_eval { p self }

This snippet outputs two different selfs:

main
[]

instance_eval is mostly useful for breaking into what would normally be another
object’s private data—particularly instance variables. Here’s how to see the value of an
instance variable belonging to any old object (in this case, the instance variable of @x
of a C object):

class C
 def initialize
 @x = 1
 end
end
c = C.new
c.instance_eval { puts @x }

464 CHAPTER 14 Callable and runnable objects
This kind of prying into another object’s state is generally considered impolite; if an
object wants you to know something about its state, it provides methods through
which you can inquire. Nevertheless, because Ruby dynamics are based on the chang-
ing identity of self, it’s not a bad idea for the language to give us a technique for
manipulating self directly.

Perhaps the most common use of instance_eval is in the service of allowing simpli-
fied assignment code like this:

joe = Person.new do
 name "Joe"
 age 37
end

This looks a bit like we’re using accessors, except there’s no explicit receiver and no
equal signs. How would you make this code work?

 Here’s what the Person class might look like:

class Person
 def initialize(&block)
 instance_eval(&block)
 end
 def name(name=nil)
 @name ||= name
 end
 def age(age=nil)
 @age ||= age
 end
end

The key here is the call to instance_eval B, which reuses the code block that has
already been passed in to new. Because the code block is being instance_eval-ed on
the new person object (the implicit self in the definition of initialize), the calls to
name and age are resolved within the Person class. Those methods, in turn, act as

The instance_exec method
instance_eval has a close cousin called instance_exec. The difference between
the two is that instance_exec can take arguments. Any arguments you pass it will
be passed, in turn, to the code block.

This enables you to do things like this:

string = "A sample string"
string.instance_exec("s") {|delim| self.split(delim) }

(Not that you’d need to, if you already know the delimiter; but that’s the basic technique.)

Unfortunately, which method is which—which of the two takes arguments and which
doesn’t—has to be memorized. There’s nothing in the terms eval or exec to help
you out. Still, it’s useful to have both on hand.

Output:
["A ", "ample ", "tring"]

B

C
D

465The eval family of methods
hybrid setter/getters C: they take an optional argument, defaulting to nil, and
set the relevant instance variables, conditionally, to the value of that argument. If you
call them without an argument, they just return the current value of their instance
variables D.

 The result is that you can say name "David" instead of person.name = "David". Lots
of Rubyists find this kind of miniature DSL (domain-specific language) quite pleas-
ingly compact and elegant.

 instance_eval (and instance_exec) will also happily take a string and evaluate it
in the switched self context. However, this technique has the same pitfalls as evaluat-
ing strings with eval, and should be used judiciously if at all.

 The last member of the eval family of methods is class_eval (synonym:
module_eval).

14.4.4 Using class_eval (a.k.a. module_eval)

In essence, class_eval puts you inside a class-definition body:

c = Class.new
c.class_eval do
 def some_method
 puts "Created in class_eval"
 end
end
c_instance = c.new
c_instance.some_method

But you can do some things with class_eval that you can’t do with the regular class
keyword:

 Evaluate a string in a class-definition context
 Open the class definition of an anonymous class
 Use existing local variables inside a class-definition body

The third item on this list is particularly noteworthy.
 When you open a class with the class keyword, you start a new local-variable scope.

But the block you use with class_eval can see the variables created in the scope sur-
rounding it. Look at the difference between the treatment of var, an outer-scope local
variable, in a regular class-definition body and a block given to class_eval:

>> var = "initialized variable"
=> "initialized variable"
>> class C
>> puts var
>> end
NameError (undefined local variable or method `var' for C:Class)
>> C.class_eval { puts var }
initialized variable

The variable var is out of scope inside the standard class-definition block but still in
scope in the code block passed to class_eval.

Output: Created in class_eval

466 CHAPTER 14 Callable and runnable objects
 The plot thickens when you define an instance method inside the class_eval
block:

>> C.class_eval { def talk; puts var; end }
=> nil
>> C.new.talk
NameError (undefined local variable or method `var' for #<C:0x350ba4>)

Like any def, the def inside the block starts a new scope—so the variable var is no
longer visible.

 If you want to shoehorn an outer-scope variable into an instance method, you have
to use a different technique for creating the method: the method define_method. You
hand define_method the name of the method you want to create (as a symbol or a
string) and provide a code block; the code block serves as the body of the method.

 To get the outer variable var into an instance method of class C, you do this:

>> C.class_eval { define_method ("talk") { puts var } }
=> :talk

The return value of define_method is a symbol representing the name of the newly
defined method.

 At this point, the talk instance method of C will have access to the outer-scope vari-
able var:

>> C.new.talk
initialized variable

You won’t see techniques like this used as frequently as the standard class- and
method-definition techniques. But when you see them, you’ll know that they imply a
flattened scope for local variables rather than the new scope triggered by the more
common class and def keywords.

 define_method is an instance method of the class Module, so you can call it on any
instance of Module or Class. You can thus use it inside a regular class-definition body
(where the default receiver self is the class object) if you want to sneak a variable
local to the body into an instance method. That’s not a frequently encountered sce-
nario, but it’s not unheard of. More popular is the use of define_method inside an
implementation of method_missing. Listing 14.2 shows this technique at work. We’re
going to create a Name class that accepts a first and last name. It will then leverage
method_missing to define an instance variable with the given name.

class Name
 def initialize(first_name, last_name)
 @first_name = first_name
 @last_name = last_name
 end

 def to_s
 instance_variables.each do |ivar|

Listing 14.2 Defining instance variables with method_missing and define_method

467Concurrent execution with threads
 print "#{instance_variable_get(ivar)} "
 end
 end

 def method_missing(m, args, &block)
 if m.to_s.end_with?("_name=")
 self.class.send(:define_method, m) do |args|
 instance_variable_set("@#{m.to_s.chop}", args)
 end
 send(m, args)
 else
 raise "No method for #{m}!"
 end
 end
end

In this class we define to_s to cycle through all our instance variables and print out
the values for each B. Our method_missing method is defined using the necessary
arguments C. Within method_missing, we first check to see if the method name
passed to us contains "_name=" D. If it doesn’t, we raise an exception H.

 Lines E and F are where the heavy lifting occurs. To define a method at the class
level, we need to call self.class. We then send the define_method method and pass
m as the method name. Finally, we use instance_variable_set to fill out the method
definition for m, creating an instance variable with the same name (but without the
equal sign) and setting it to the value of args. Once we’ve completed defining the
method, we need to call it to assign the instance variable. This is done with send G.

 Take it for a spin, and you’ll quickly get the hang of it:

>> n = Name.new("Joe", "Leo")
>> n.instance_variables
=> [@first_name, @last_name]
>> n.to_s
=> Joe Leo
>> n.middle_name = "Phillip"
>> n.instance_variables
=> [@first_name, @last_name, @middle_name]
>> n.to_s
=> Joe Leo Phillip
>> n.initials = "JPL"
=> RuntimeError (`method_missing`: No method for initials=!)

Ruby lets you do lightweight concurrent programming using threads. We’ll look at
threads next.

14.5 Concurrent execution with threads
Ruby’s threads allow you to do more than one thing at once in your program, through
a form of time sharing: one thread executes one or more instructions and then passes
control to the next thread, and so forth. Exactly how the simultaneity of threads plays
out depends on your system and your Ruby implementation. Ruby will try to use
native operating system threading facilities, but if such facilities aren’t available, it will
fall back on green threads (threads implemented completely inside the interpreter).

B

C
D

E
F

G

H

468 CHAPTER 14 Callable and runnable objects
We’ll black-box the green-versus-native thread issue here; our concern will be princi-
pally with threading techniques and syntax.

NOTE Parallelism and concurrency in programming are similar concepts with
a small but significant difference. Parallelism ensures that two or more tasks
can run at the exact same time, whereas concurrency only ensures a sort of
time sharing that allows for faster processing. Ruby is a language with a
Global Interpreter Lock (GIL), a mechanism that helps to ensure thread
safety in concurrent programming but at the same time prevents parallelism.
In this section, we’ll discuss concurrency as it refers to the execution of multi-
ple threads, regardless of whether they run in parallel. The actual behavior of
concurrent programming will depend on your hardware and your implemen-
tation of Ruby.

True parallelism means multiple processes ensure that two or more threads can always be
running simultaneously. Creating threads in Ruby is easy: you instantiate the Thread
class. A new thread starts executing immediately, but the execution of the code
around the thread doesn’t stop. If the program ends while one or more threads are
running, those threads are killed.

 Here’s a kind of inside-out example that will get you started with threads by show-
ing you how they behave when a program ends:

Thread.new do
 puts "Starting the thread"
 sleep 1
 puts "At the end of the thread"
end
puts "Outside the thread"

Thread.new takes a code block, which constitutes the thread’s executable code. In this
example, the thread prints a message, sleeps for one second, and then prints another
message. But outside of the thread, time marches on: the main body of the program
prints a message immediately (it’s not affected by the sleep command inside the
thread), and then the program ends—unless printing a message takes more than a
second, in which case you need to get your hardware checked! The second message
from the thread will never be seen. You’ll only see this:

Starting the thread
Outside the thread

Now, what if we want to allow the thread to finish executing? To do this, we have to use
the instance method join. The easiest way to use join is to save the thread in a vari-
able and call join on the variable. Here’s how you can modify the previous example
along these lines:

t = Thread.new do
 puts "Starting the thread"
 sleep 1
 puts "At the end of the thread"
end

469Concurrent execution with threads
puts "Outside the thread"
t.join

This version of the program produces the following output, with a one-second pause
between the printing of the first message from the thread and the printing of the last
message:

Starting the thread
Outside the thread
At the end of the thread

In addition to joining a thread, you can manipulate it in a variety of other ways,
including killing it, putting it to sleep, waking it up, and forcing it to pass control to
the next thread scheduled for execution.

14.5.1 Killing, stopping, and starting threads

To kill a thread, you send it the message kill, exit, or terminate; all three are equiv-
alent. Or, if you’re inside the thread, you call kill (or similar) in class-method form.

 You may want to kill a thread if an exception occurs inside it. Here’s an example,
admittedly somewhat contrived but brief enough to illustrate the process efficiently.
The idea is to read the contents of three files (part00, part01, and part02) into the
string text. If any of the files isn’t found, the thread terminates:

puts "Trying to read in some files..."
t = Thread.new do
 (0..2).each do |n|
 begin
 File.open("part0#{n}") do |f|
 text << f.readlines
 end
 rescue Errno::ENOENT
 puts "Message from
 thread: Failed on n=#{n}"
 Thread.exit
 end
 end
end
t.join
puts "Finished!"

The output, assuming part00 exists but part01 doesn’t, is this:

Trying to read in some files...
Message from thread: Failed on n=1
Finished!

You can also stop and start threads and examine their state. A thread can be asleep or
awake, and alive or dead. Here’s an example that puts a thread through a few of its
paces and illustrates some of the available techniques for examining and manipulat-
ing thread state:

t = Thread.new do
 puts "[Starting thread]"

Pauses as program waits for
thread to finish execution

[Starting thread]

470 CHAPTER 14 Callable and runnable objects
 Thread.stop
 puts "[Resuming thread]"
end
sleep 1
puts "Status of thread: #{t.status}"
puts "Is thread stopped? #{t.stop?}"
puts "Is thread alive? #{t.alive?}"
puts
puts "Waking up thread and joining it..."
t.wakeup
t.join
puts
puts "Is thread alive? #{t.alive?}"
puts "Inspect string for thread: #{t.inspect}"

Status of thread: sleep

Is thread stopped? true

Is thread alive? true

[Resuming thread]

Is thread alive? false

Inspects string for thread:
#<Thread:0x28d20 dead>

Fibers: a twist on threads
In addition to threads, Ruby has a Fiber class. Fibers are like reentrant code blocks:
they can yield back and forth to their calling context multiple times.

A fiber is created with the Fiber.new constructor, which takes a code block. Nothing
happens until you tell the fiber to resume, at which point the code block starts to run.
From within the block, you can suspend the fiber, returning control to the calling con-
text, with the class method Fiber.yield.

Here’s a simple example involving a talking fiber that alternates control a couple of
times with its calling context:

f = Fiber.new do
 puts "Hi."
 Fiber.yield
 puts "Nice day."
 Fiber.yield
 puts "Bye!"
end
f.resume
puts "Back to the fiber:"
f.resume
puts "One last message from the fiber:"
f.resume
puts "That's all!"

Here’s the output from this snippet:

Hi.
Back to the fiber:
Nice day.
One last message from the fiber:
Bye!
That's all!

Among other things, fibers are the technical basis of enumerators, which use fibers
to implement their own stop and start operations.

471Concurrent execution with threads
Let’s continue exploring threads with a couple of networked examples: a date server
and, somewhat more ambitiously, a chat server.

14.5.2 A threaded date server

The date server we’ll write depends on a Ruby facility that we haven’t looked at yet:
TCPServer. TCPServer is a socket-based class that allows you to start up a server almost
unbelievably easily: you instantiate the class and pass in a port number. Here’s a sim-
ple example of TCPServer in action, serving the current date to the first person who
connects to it. Put the following code in a file called dateserver.rb, and run it from the
command line. (If port 3939 isn’t available, change the number to something else.)

require 'socket'
s = TCPServer.new(3939)
conn = s.accept
conn.puts "Hi. Here's the date."
conn.puts `date`
conn.close
s.close

Now, from a different console, connect to the server:

telnet localhost 3939

You’ll see output similar to the following:

Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Hi. Here's the date.
Sun Apr 22 08:43:18 EDT 2018
Connection closed by foreign host.

The server has fielded the request and responded. The dateserver.rb program has fin-
ished its task—printing a friendly message and the date—and stopped running.

 What if you want the server to field multiple requests? Easy: don’t close the socket,
and keep accepting connections.

require 'socket'
s = TCPServer.new(3939)
while true
 conn = s.accept
 conn.puts "Hi. Here's the date."
 conn.puts `date`
 conn.close
end

Now you can ask for the date more than once, and you’ll get an answer each time.
 Things get trickier when you want to send information to the server. Making it

work for one user is straightforward; the server can accept input by calling gets:

require 'socket'
s = TCPServer.new(3939)

date in backticks executes
the system date command.

472 CHAPTER 14 Callable and runnable objects
while true
 conn = s.accept
 conn.print "Hi. What's your name? "
 name = conn.gets.chomp
 conn.puts "Hi, #{name}. Here's the date."
 conn.puts `date`
 conn.close
end

But if a second client connects to the server while the server is still waiting for the first
client’s input, the second client sees nothing—not even What's your name?—because
the server is busy.

 That’s where threading comes in. Here’s a threaded date server that accepts input
from the client. The threading prevents the entire application from blocking while it
waits for a single client to provide input:

require 'socket'
s = TCPServer.new(3939)
while (conn = s.accept)
 Thread.new(conn) do |c|

c.print "Hi. What's your name? "
name = c.gets.chomp
c.puts "Hi, #{name}. Here's the date."
c.puts `date`
c.close

 end
end

In this version, the server listens continuously for connections B. Each time it gets
one, it spawns a new thread C. The significance of the argument to Thread.new is that
if you provide such an argument, it’s yielded back to you as the block parameter. In
this case, that means binding the connection to the parameter c. Although this tech-
nique may look odd (sending an argument to a method, only to get it back when the
block is called), it ensures that each thread has a reference to its own connection
rather than fighting over the variable conn, which lives outside any thread.

 Even if a given client waits for several minutes before typing in a name D, the
server is still listening for new connections, and new threads are still spawned. The
threading approach thus allows a server to scale while incorporating two-way transmis-
sion between itself and one or more clients.

 The next level of complexity is the chat server.

14.5.3 Writing a chat server using sockets and threads

We’ll start code first this time. Listing 14.3 shows the chat-server code. A lot of what it
does is similar to what the date server does. The main difference is that the chat server
keeps a list (an array) of all the incoming connections and uses that list to broadcast
the incoming chat messages.

Accepts line of keyboard
input from client

B
C

D

473Concurrent execution with threads

require 'socket'
def welcome(chatter)
 chatter.print "Welcome! Please enter your name: "
 chatter.readline.chomp
end
def broadcast(message, chatters)
 chatters.each do |chatter|
 chatter.puts message
 end
end
s = TCPServer.new(3939)
chatters = []
while (chatter = s.accept)
 Thread.new(chatter) do |c|
 name = welcome(chatter)
 broadcast("#{name} has joined", chatters)
 chatters << chatter
 begin
 loop do
 line = c.readline
 broadcast("#{name}: #{line}", chatters)
 end
 rescue EOFError
 c.close
 chatters.delete(c)
 broadcast("#{name} has left", chatters)
 end
 end
end

There’s a lot of code in this listing, so we’ll take it in the order it executes. First comes
the mandatory loading of the socket library B. The next several lines define some
needed helper methods; we’ll come back to those after we’ve seen what they’re help-
ing with. The real beginning of the action is the instantiation of TCPServer and the
initialization of the array of chatters E.

 The server goes into a while loop similar to the loop in the date server F. When a
chatter connects, the server welcomes it (him or her, really, but it will do) G. The wel-
come process involves the welcome method C, which takes a chatter—a socket
object—as its argument, prints a nice welcome message, and returns a line of client
input. Now it’s time to notify all the current chatters that a new chatter has arrived. This
involves the broadcast method D, which is the heart of the chat functionality of the
program: it’s responsible for going through the array of chatters and sending a message
to each one. In this case, the message states that the new client has joined the chat.

 After being announced, the new chatter is added to the chatters array. That means
it will be included in future message broadcasts.

 Now comes the chatting part. It consists of an infinite loop wrapped in a
begin/rescue clause H. The goal is to accept messages from this client forever but to

Listing 14.3 Chat server using TCPServer and threads

B
C

D

E

F

G

H

I

J

1)

474 CHAPTER 14 Callable and runnable objects
take action if the client socket reports end-of-file. Messages are accepted via readline
I, which has the advantage over gets (in this situation, anyway) that it raises an
exception on end-of-file. If the chatter leaves the chat, then the current attempt to
read a line from that chatter raises EOFError. When that happens, control goes to the
rescue block J, where the departed chatter is removed from the chatters array and
an announcement is broadcast to the effect that the chatter has left 1). If there’s no
EOFError, the chatter’s message is broadcast to all chatters I.

 When using threads, it’s important to know how the rules of variable scoping and
visibility play out inside threads—and in looking at this topic, which we’ll do next,
you’ll also find out about a special category of thread-specific variables.

14.5.4 Threads and variables

Threads run using code blocks, and code blocks can see the variables already created
in their local scope. If you create a local variable and change it inside a thread’s code
block, the change will be permanent:

>> a = 1
=> 1
>> Thread.new { a = 2 }
=> #<Thread:0x390d8c run>
>> a
=> 2

You can see an interesting and instructive effect if you stop a thread before it changes
a variable, and then run the thread:

>> t = Thread.new { Thread.stop; a = 3 }
=> #<Thread:0x3e443c run>
>> a
=> 2
>> t.run
=> #<Thread:0x3e443c dead>
>> a
=> 3

Global variables remain global, for the most part, in the face of threads. That goes for
built-in globals, such as $/ (the input record separator), as well as those you create
yourself:

>> $/
=> "\n"
>> $var = 1
=> 1
>> Thread.new { $var = 2; $/ = "\n\n" }
=> #<Thread:0x38dbb4 run>
>> $/
=> "\n\n"
>> $var
=> 2
>> $/ = "\n"
=> "\n"

475Concurrent execution with threads
But some globals are thread-local globals—for example, the $1, $2, ..., $n that are
assigned the parenthetical capture values from the most recent regular expression–
matching operation. You get a different dose of those variables in every thread. Here’s
a snippet that illustrates the fact that the $n variables in different threads don’t collide:

/(abc)/.match("abc")
t = Thread.new do
 /(def)/.match("def")
 puts "$1 in thread: #{$1}"
end.join
puts "$1 outside thread: #{$1}"

The rationale for this behavior is clear: you can’t have one thread’s idea of $1 over-
shadowing the $1 from a different thread, or you’ll get extremely odd results. The $n
variables aren’t really globals once you see them in the context of the language having
threads.

 In addition to having access to the usual suite of Ruby variables, threads also have
their own variable stash—or, more accurately, a built-in hash that lets them associate
symbols or strings with values. These thread keys can be useful.

14.5.5 Manipulating thread keys

Thread keys are basically a storage hash for thread-specific values. The keys must be
symbols or strings. You can get at the keys by indexing the thread object directly with
values in square brackets. You can also get a list of all the keys (without their values)
using the keys method.

 Here’s a simple set-and-get scenario using a thread key:

>> t = Thread.new do
 Thread.current[:message] = "Hello"
 end
=> #<Thread:0x00055d11514f6b8@(irb):1 run>
>> t.join
=> #<Thread:0x00055d11514f6b8@(irb):1 dead>
p t.keys
puts t[:message]

The output is

[:message]
Hello

Note that even though the thread has completed running and is now “dead,” we can
still query its keys. Alternatively, you can use the fetch method to get key values and
assign a default value if the key isn’t set:

>> t = Thread.new do
 Thread.current[:message] = "Hola!"
 end
=> #<Thread:0x00055d11514f6b8@(irb):1 run>
>> t.join
=> #<Thread:0x00055d11514f6b8@(irb):1 dead>

Output: $1 in thread: def

Output: $1 outside thread: abc

476 CHAPTER 14 Callable and runnable objects
>> t.fetch(:message, "Greetings!")
=> "Hola!"
>> t.fetch(:msg, "Greetings!")
=> "Greetings!"
>> t.fetch(:msg)
Traceback (most recent call last):
…
KeyError (key not found: :msg)

Instead of indexing using the [] method, the preceding example uses fetch. The
method takes a key and an optional default value. First, we fetch using a valid key and a
default message of "Greetings!" B. Next, we try to fetch a nonexistent key :msg, but
because we’ve provided a default value, Ruby prints "Greetings!" anyway C. Finally,
when we try to fetch :msg and give no default value, Ruby raises a KeyError D.

 Threads loom large in games, so let’s use a game example to explore thread keys
further: a threaded, networked rock/paper/scissors (RPS) game. We’ll start with the
(threadless) RPS logic in an RPS class and use the resulting RPS library as the basis for
the game code.

A BASIC ROCK/PAPER/SCISSORS LOGIC IMPLEMENTATION

The next listing shows the RPS class, which is wrapped in a Games module (because
RPS sounds like it might collide with another class name). Save this listing to a file
called rps.rb.

module Games
 class RPS
 include Comparable

WINS = [%w{ rock scissors },
 %w{ scissors paper },
 %w{ paper rock }]

 attr_accessor :move
 def initialize(move)

@move = move.to_s
 end
 def <=>(other)

if move == other.move
0

elsif WINS.include?([move, other.move])
1

elsif WINS.include?([other.move, move])
-1

else
raise ArgumentError, "Something's wrong"

end
 end
 def play(other)

if self > other
self

elsif other > self
other

Listing 14.4 RPS game logic embodied in Games::RPS class

B

C

D

B
C

D
E

F

G

477Concurrent execution with threads
 else
 false
 end
 end
 end
end

The RPS class includes the Comparable module B; this serves as the basis for deter-
mining, ultimately, who wins a game. The WINS constant contains all possible winning
combinations in three arrays; the first element in each array beats the second element
C. There’s also a move attribute, which stores the move for this instance of RPS D. The
initialize method E stores the move as a string (in case it comes in as a symbol).

 RPS has a spaceship operator (<=>) method definition F that specifies what hap-
pens when this instance of RPS is compared to another instance. If the two have equal
moves, the result is 0—the signal that the two terms of a spaceship comparison are
equal. The rest of the logic looks for winning combinations using the WINS array,
returning -1 or 1 depending on whether this instance or the other instance has won.
If it doesn’t find that either player has a win, and the result isn’t a tie, it raises an
exception.

 Now that RPS objects know how to compare themselves, it’s easy to play them
against each other, which is what the play method does G. It’s simple: whichever
player is higher is the winner, and if it’s a tie, the method returns false.

 We’re now ready to incorporate the RPS class in a threaded, networked version of
the game, thread keys and all.

USING THE RPS CLASS IN A THREADED GAME

The following listing shows the networked RPS program. It waits for two people to
join, gets their moves, reports the result, and exits. Not glitzy—but a good way to see
how thread keys might help you.

require 'socket'
require_relative 'rps'
s = TCPServer.new(3939)
threads = []
2.times do |n|
 conn = s.accept
 threads << Thread.new(conn) do |c|
 Thread.current[:number] = n + 1
 Thread.current[:player] = c
 c.puts "Welcome, player #{n+1}!"
 c.print "Your move? (rock, paper, scissors) "
 Thread.current[:move] = c.gets.chomp
 c.puts "Thanks... hang on."
 end
end
a,b = threads
a.join
b.join

Listing 14.5 Threaded, networked RPS program using thread keys

B
C

D

E

F Uses parallel assignment syntax to
assign two variables from an array

478 CHAPTER 14 Callable and runnable objects
rps1, rps2 = Games::RPS.new(a.fetch(:move, "error")),
Games::RPS.new(b.fetch(:move, "error"))

winner = rps1.play(rps2)
if winner
 result = winner.move
else
 result = "TIE!"
end
threads.each do |t|
 t[:player].puts "The winner is #{result}!"
end
s.close

This program loads and uses the Games::RPS class, so make sure you have the RPS
code in the file rps.rb in the same directory as the program itself.

 As in the chat-server example, we start with a server B along with an array in which
threads are stored C. Rather than loop forever, though, we gather only two threads,
courtesy of the 2.times loop and the server’s accept method D. For each of the two
connections, we create a thread E.

 Now we store some values in each thread’s keys: a number for this player (based off
the times loop, adding 1 so that there’s no player 0) and the connection. We then wel-
come the player and store the move in the :move key of the thread.

 After both players have played, we grab the two threads in the convenience vari-
ables a and b and join both threads F. Next, we parlay the two thread objects, which
have memory of the players’ moves, into two RPS objects G. The winner is determined
by playing one against the other. The final result of the game is either the winner or, if
the game returned false, a tie H.

 Finally, we report the results to both players I. You could get fancier by inputting
their names or repeating the game and keeping score. But the main point of this ver-
sion of the game is to illustrate the usefulness of thread keys. Even after the threads
have finished running, they remember information, and that enables us to play an
entire game as well as send further messages through the players’ sockets.

 Next on the agenda, and last for this chapter, is the topic of issuing system com-
mands from Ruby.

14.6 Issuing system commands from inside Ruby programs
You can issue system commands in several ways in Ruby. We’ll look primarily at two of
them: the system method and the `` (backticks) technique. The other ways to com-
municate with system programs involve somewhat lower-level programming and are
more system dependent and therefore somewhat outside the scope of this book. We’ll
take a brief look at them nonetheless, and if they seem to be something you need, you
can explore them further.

G
H

I

479Issuing system commands from inside Ruby programs
14.6.1 The system and exec methods and backticks

The system method calls a system program. Backticks (``) call a system program and
return its output. The exec method replaces the current process by returning an
external command.

EXECUTING SYSTEM PROGRAMS WITH THE SYSTEM METHOD

To use system, send it the name of the program you want to run, with any arguments.
The program uses the current STDIN, STDOUT, and STDERR. Following are three simple
examples. cat and grep require pressing Ctrl-D (or whatever the “end-of-file” key is
on your system) to terminate them and return control to irb. For clarity, Ruby’s out-
put is in bold and user input is in regular font:

>> system("date")
Sun Apr 22 08:49:11 EDT 2018
=> true
>> system("cat")
I'm typing on the screen for the cat command.
I'm typing on the screen for the cat command.
=> true
>> system('grep "D"')
one
two
David
David

When you use system, the global variable $? is set to a Process::Status object that
contains information about the call: specifically, the process ID of the process you just
ran and its exit status. Here’s a call to date and one to grep, the latter terminated with
Ctrl-D. Each is followed by examination of $?:

>> system("date")
Sun Apr 22 08:49:11 EDT 2018
=> true
>> $?
=> #<Process::Status: pid 28025 exit 0>
>> system('grep "D"')
^d=> false
>> $?
=> #<Process::Status: pid 28026 exit 1>

And here’s a call to a nonexistent program:

>> system("datee")
=> nil
>> $?
=> #<Process::Status: pid 28037 exit 127>

The $? variable is thread local: if you call a program in one thread, its return value
affects only the $? in that thread:

>> system("date")
Sun Apr 22 08:49:11 EDT 2018
=> true

480 CHAPTER 14 Callable and runnable objects
>> $?
=> #<Process::Status: pid 28046 exit 0>
>> Thread.new { system("datee"); p $? }.join
#<Process::Status: pid 28047 exit 127>
=> #<Thread:0x3af840 dead>
>> $?
=> #<Process::Status: pid 28046 exit 0>

The Process::Status object reporting on the call to date is stored in $? in the main
thread B. The new thread makes a call to a nonexistent program C, and that thread’s
version of $? reflects the problem D. But the main thread’s $? is unchanged E. The
thread-local global variable behavior works much like it does in the case of the $n
regular-expression capture variables—and for similar reasons. In both cases, you don’t
want one thread reacting to an error condition that it didn’t cause and that doesn’t
reflect its actual program flow.

 The backtick technique is a close relative of system.

CALLING SYSTEM PROGRAMS WITH BACKTICKS

To issue a system command with backticks, put the command between backticks. The
main difference between system and backticks is that the return value of the backtick
call is the output of the program you run:

>> d = `date`
=> "Sun Apr 22 08:49:11 EDT 2018\n"
>> puts d
Sun Apr 22 08:49:11 EDT 2018
=> nil
>> output = `cat`
I'm typing into cat. Since I'm using backticks,
I won't see each line echoed back as I type it.
Instead, cat's output is going into the
variable output.
=> "I'm typing into cat. Since I'm using backticks,\nI won't etc.
>> puts output
I'm typing into cat. Since I'm using backticks,
I won't see each line echoed back as I type it.
Instead, cat's output is going into the
variable output.

The backticks set $? just as system does. A call to a nonexistent method with backticks
raises a fatal error:

>> `datee`
Errno::ENOENT: No such file or directory - datee
>> $?
=> #<Process::Status: pid 28094 exit 127>
>> `date`
=> "Sun Apr 22 08:49:11 EDT 2018\n"
>> $?
=> #<Process::Status: pid 28095 exit 0>

B
C

D

E

481Issuing system commands from inside Ruby programs
REPLACING THE CURRENT PROCESS BY CALLING EXEC

exec can perform the same tasks as system and backticks, but it does so by replacing
the current process with a new shell session. This produces different behavior than
system or backticks, which both call fork to run their commands in a subshell. When
we run exec "date", the date is returned, but our irb session is terminated. Our irb
session has been replaced with the shell session. When the shell session completes—
after date is evaluated—the session ends.

14.6.2 Communicating with programs via open and popen3

Using the open family of methods to call external programs is a lot more complex
than using system and backticks. We’ll look at a few simple examples, but we won’t
plumb the depths of the topic. These Ruby methods map directly to the underlying
system-library calls that support them, and their exact behavior may vary from one sys-
tem to another more than most Ruby behavior does.

 Still—let’s have a look. We’ll discuss two methods: open and the class method
Open3.popen3.

TALKING TO EXTERNAL PROGRAMS WITH OPEN

You can use the top-level open method to do two-way communication with an external
program. Here’s the old standby example of cat:

>> d = open("|cat", "w+")
=> #<IO:fd 11>
>> d.puts "Hello to cat"
=> nil
>> d.gets
=> "Hello to cat\n"
>> d.close
=> nil

The call to open is generic; it could be any I/O stream, but in this case it’s a two-way
connection to a system command B. The pipe in front of the word cat indicates that

Some system-command bells and whistles
There’s yet another way to execute system commands from within Ruby: the %x oper-
ator. %x{date}, for example, will execute the date command. Like backticks, %x
returns the string output of the command. Like its relatives %w and %q (among oth-
ers), %x allows any delimiter, as long as bracket-style delimiters match: %x{date},
%x-date-, and %x(date) are all synonymous.

Both backticks and %x allow string interpolation:

command = "date"
%x(#{command})

This can be convenient, although the occasions on which it’s a good idea to call
dynamically evaluated strings as system commands are, arguably, few.

B

C

D

E

482 CHAPTER 14 Callable and runnable objects
we’re looking to talk to a program and not open a file. The handle on the external
program works much like an I/O socket or file handle. It’s open for reading and writ-
ing (the w+ mode), so we can write to it C and read from it D. Finally, we close it E.

 It’s also possible to take advantage of the block form of open and save the last step:

>> open("|cat", "w+") {|p| p.puts("hi"); p.gets }
=> "hi\n"

A somewhat more elaborate and powerful way to perform two-way communication
between your Ruby program and an external program is the Open3.popen3 method.

TWO-WAY COMMUNICATION WITH OPEN3.POPEN3
The Open3.popen3 method opens communication with an external program and
gives you handles on the external program’s standard input, standard output, and
standard error streams. You can thus write to and read from those handles separately
from the analogous streams in your program.

 Here’s a simple cat-based example of Open3.popen3:

>> require 'open3'
=> true
>> stdin, stdout, stderr = Open3.popen3("cat")
=> [#<IO:fd 10>, #<IO:fd 11>, #<IO:fd 13>,
 #<Process::Waiter:0x000001011356f8 run>]
>> stdin.puts("Hi.\nBye")
=> nil
>> stdout.gets
=> "Hi.\n"
>> stdout.gets
=> "Bye\n"

After loading the open3 library B, we make the call to Open3.popen3, passing it the
name of the external program C. We get back three I/O handles and a Process::
Waiter object D. (Process::Waiter is an instance of Thread and can be safely
ignored here.) These I/O handles go into and out of the external program. Thus we
can write to the STDIN handle E and read lines from the STDOUT handle F. These
handles aren’t the same as the STDIN and STDOUT streams of the irb session itself.

 The next example shows a slightly more elaborate use of Open3.popen3. Be
warned: in itself, it’s trivial. Its purpose is to illustrate some of the basic mechanics of
the technique—and it uses threads, so it reillustrates some thread techniques too. The
following listing shows the code.

require 'open3'
stdin, stdout, stderr = Open3.popen3("cat")
t = Thread.new do
 loop { stdin.puts gets }
end
u = Thread.new do

n = 0

Listing 14.6 Using Open3.popen3 and threads to manipulate a cat session

B

C
D

E

F

B

C

483Issuing system commands from inside Ruby programs
 str = ""
 loop do
 str << stdout.gets
 n += 1
 if n % 3 == 0
 puts "--------\n"
 puts str
 puts "--------\n"
 str = ""
 end
 end
end
t.join
u.join

The program opens a two-way pipe to cat and uses two threads to talk and listen to
that pipe. The first thread, t B, loops forever, listening to STDIN—your STDIN, not
cat’s—and writing each line to the STDIN handle on the cat process. The second
thread, u C, maintains a counter (n) and a string accumulator (str). When the
counter hits a multiple of 3, as indicated by the modulo test D, the u thread prints out
a horizontal line, the three text lines it’s accumulated so far, and another horizontal
line. It then resets the string accumulator to a blank string and goes back to listening.

 If you run this program, remember that it loops forever, so you’ll have to interrupt
it with Ctrl-C (or whatever your system uses for an interrupt signal). The output is,
predictably, somewhat unexciting, but it gives you a good, direct sense of how the
threads are interacting with the in and out I/O handles and with each other. In this
output, the lines entered by the user are in italics:

One
Two
Three

One
Two
Three

Four
Five
Six

Four
Five
Six

As stated, we’re not going to go into all the details of Open3.popen3. But you can and
should keep it in mind for situations where you need the most flexibility in reading
from and writing to an external program.

D

484 CHAPTER 14 Callable and runnable objects
Summary
In this chapter, you’ve seen

 Proc objects
 The lambda “flavor” of process
 Code block-to-proc (and reverse) conversion
 Symbol#to_proc

 Method objects
 Bindings
 eval, instance_eval, and class_eval
 Thread usage and manipulation
 Thread-local “global” variables
 The system method
 Calling system commands with backticks
 The basics of the open and Open3.popen3 facilities

Objects in Ruby are products of runtime code execution but can, themselves, have the
power to execute code. In this chapter, we’ve looked at a number of ways in which the
general notion of callable and runnable objects plays out. We looked at Proc objects
and lambdas, the anonymous functions that lie at the heart of Ruby’s block syntax. We
also discussed methods as objects and ways of unbinding and binding methods and
treating them separately from the objects that call them. The eval family of methods
took us into the realm of executing arbitrary strings and also showed some powerful
and elegant techniques for runtime manipulation of the program’s object and class
landscape, using not only eval but, even more, class_eval and instance_eval with
their block-wise operations.

 Threads figure prominently among Ruby’s executable objects; every program runs
in a main thread even if it spawns no others. We explored the syntax and semantics of
threads and saw how they facilitate projects like multiuser networked communication.
Finally, we looked at a variety of ways in which Ruby lets you execute external pro-
grams, including the relatively simple system method and backtick technique, and
the somewhat more granular and complex open and Open3.popen3 facilities.

 There’s no concrete definition of a callable or runnable object, and this chapter
has deliberately taken a fairly fluid approach to understanding the terms. On the one
hand, that fluidity results in the juxtaposition of topics that could, imaginably, be han-
dled in separate chapters. (It’s hard to argue any direct, close kinship between, say,
instance_eval and Open3.popen3.) On the other hand, the specifics of Ruby are, to a
large extent, manifestations of underlying and supervening principles, and the idea of
objects that participate directly in the dynamism of the Ruby landscape is important.
Disparate though they may be in some respects, the topics in this chapter all align
themselves with that principle; and a good grounding in them will add significantly to
your Ruby abilities.

 At this point we’ll turn to our next—and last—major topic: runtime reflection,
introspection, and callbacks.

Callbacks, hooks,
and runtime introspection
In keeping with its dynamic nature and its encouragement of flexible, supple
object and program design, Ruby provides a large number of ways to examine
what’s going on while your program is running and to set up event-based callbacks
and hooks—essentially, tripwires that are pulled at specified times and for specific
reasons—in the form of methods with special, reserved names for which you can, if
you wish, provide definitions. Thus you can rig a module so that a particular
method gets called every time a class includes that module, or write a callback
method for a class that gets called every time the class is inherited, and so on.

This chapter covers
 Runtime callbacks: inherited, included, and

more

 The respond_to? and method_missing methods

 Introspection of object and class-method lists

 Trapping unresolved constant references

 Examining in-scope variables and constants

 Parsing caller and stack trace information
485

486 CHAPTER 15 Callbacks, hooks, and runtime introspection
 In addition to runtime callbacks, Ruby lets you perform more passive but often
critical acts of examination: you can ask objects what methods they can execute (in
even more ways than you’ve seen already) or what instance variables they have. You
can query classes and modules for their constants and their instance methods.

 A brief example: if your program encounters an error, you’ve seen ways that you
can rescue that error. But what if you want to take a certain action depending on
where in your program that error was raised? In Ruby, you can! You can examine a
stack trace to determine what method calls got you to a particular point in your pro-
gram and get access to the filenames and line numbers of all the method calls along
the way.

 In short, Ruby invites you to the party: you get to see what’s going on, in consider-
able detail, via techniques for runtime introspection; and you can order Ruby to push
certain buttons in reaction to runtime events. This chapter explores a variety of these
introspective and callback techniques and will equip you to take ever greater advan-
tage of the facilities offered by this remarkable, and remarkably dynamic, language.

15.1 Callbacks and hooks
The use of callbacks and hooks is a fairly common meta-programming technique. These
methods are called when a particular event takes place during the run of a Ruby pro-
gram. An event is something like

 A nonexistent method being called on an object
 A module being mixed into a class or another module
 An object being extended with a module
 A class being subclassed (inherited from)
 A reference being made to a nonexistent constant
 An instance method being added to a class
 A singleton method being added to an object

For every event in that list, you can (if you choose) write a callback method that will be
executed when the event happens. These callback methods are per object or per class,
not global; if you want a method called when the class Ticket gets subclassed, you
have to write the appropriate method specifically for class Ticket.

 What follows are descriptions of each of these runtime event hooks. We’ll look at
them in the order they’re listed above.

15.1.1 Intercepting unrecognized messages with method_missing

Back in chapter 4 (section 4.3) you learned quite a lot about method_missing. To
summarize: when you send a message to an object, the object executes the first
method it finds on its method-lookup path with the same name as the message. If it
fails to find any such method, it raises a NoMethodError exception—unless you’ve pro-
vided the object with a method called method_missing. (Refer back to section 4.3 if
you want to refresh your memory on how method_missing works.)

487Callbacks and hooks
 Of course, method_missing deserves a berth in this chapter too, because it’s argu-
ably the most commonly used runtime hook in Ruby. You saw in chapter 13 how it was
used to build an entire library in the Builder gem. method_missing also forms the
backbone of the Active Record library, a standard in Ruby on Rails applications.
Rather than repeat chapter 4’s coverage, though, let’s look at a couple of specific
method_missing nuances. We’ll consider using method_missing as a delegation tech-
nique; and we’ll look at how method_missing works, and what happens when you
override it, at the top of the class hierarchy.

DELEGATING WITH METHOD_MISSING

You can use method_missing to bring about an automatic extension of the way your
object behaves. For example, let’s say you’re modeling an object that in some respects
is a container but that also has other characteristics—perhaps a cookbook. You want
to be able to program your cookbook as a collection of recipes, but it also has certain
characteristics (title, author, perhaps a list of people with whom you’ve shared it or
who have contributed to it) that need to be stored and handled separately from the
recipes. Thus the cookbook is both a collection and the repository of metadata about
the collection.

 To do this in a method_missing-based way, you would maintain an array of recipes
and then forward any unrecognized messages to that array. A simple implementation
might look like this:

class Cookbook
 attr_accessor :title, :author
 def initialize
 @recipes = []
 end
 def method_missing(m,*args,&block)
 @recipes.public_send(m,*args,&block)
 end
end

Now we can perform manipulations on the collection of recipes, taking advantage of
any array methods we wish. Let’s build a simple Recipe class:

class Recipe
 attr_accessor :main_ingredient
 def initialize(main_ingredient)
 @main_ingredient = main_ingredient
 end
end

Let’s take the Cookbook for a spin and try out some array methods:

cb = Cookbook.new
recipe_for_cake = Recipe.new("flour")
recipe_for_chicken = Recipe.new("chicken")
cb << recipe_for_cake
cb << recipe_for_chicken
chicken_dishes = cb.select {|recipes| recipe.main_ingredient == "chicken" }
chicken_dishes.each { |dish| puts dish.main_ingredient }

488 CHAPTER 15 Callbacks, hooks, and runtime introspection
The cookbook instance, cb, doesn’t have methods called << and select, so those mes-
sages are passed along to the @recipes array courtesy of method_missing. We can still
define any methods we want directly in the Cookbook class—we can even override
array methods, if we want a more cookbook-specific behavior for any of those meth-
ods—but method_missing saves us from having to define a parallel set of methods for
handling pages as an ordered collection.

This use of method_missing is very straightforward (though you can mix and match it
with some of the bells and whistles from chapter 4) but very powerful; it adds a great
deal of intelligence to a class in return for little effort.

METHOD_MISSING, RESPOND_TO?, AND RESPOND_TO_MISSING?
An oft-cited problem with method_missing is that it doesn’t align with respond_to?.
Consider this example. In the Person class, we intercept messages that start with set_,
and transform them into setter methods: set_age(n) becomes age=n and so forth.
For example:

class Person
 attr_accessor :name, :age
 def initialize(name, age)
 @name, @age = name, age
 end
 def method_missing(m, *args, &block)
 if /set_(.*)/.match(m)
 self.public_send("#{$1}=", *args)
 else
 super
 end
 end
end

So does an instance of person have a set_age method, or not? Well, you can call that
method, but the person object claims it doesn’t respond to it:

person = Person.new("Joe", 37)
person.set_age(38)
p person.age
p person.respond_to?(:set_age)

Ruby’s method-delegating techniques
In this method_missing example, we’ve delegated the processing of messages (the
unknown ones) to the array @recipes. Ruby has several mechanisms for delegating
actions from one object to another. The Forwardable module implements delegate
and a handful of other delegating methods. Less often, you may come across both
the Delegator class and the SimpleDelegator class in your further encounters with
Ruby.

38

false

489Callbacks and hooks
The way to get method_missing and respond_to? to line up with each other is by
defining the special method respond_to_missing?. Here’s a definition you can add
to the preceding Person class:

def respond_to_missing?(m, include_private = false)
 /set_/.match(m) || super
end

Now the new person object will respond differently given the same queries:

38
true

You can control whether private methods are included by using a second argument to
respond_to?. That second argument will be passed along to respond_to_missing?.
In the example, it defaults to false.

 As a bonus, methods that become visible through respond_to_missing? can also
be objectified into method objects using method:

person = Person.new("Joe", 37)
p person.method(:set_age)

Overall, method_missing is a highly useful event-trapping tool. But it’s far from the
only one.

15.1.2 Trapping include and prepend operations

You know how to include a module in a class or other module, and you know how to
prepend a module to a class or module. If you want to trap these events—to trigger a
callback when the events occur—you can define special methods called included and
prepended. Each of these methods receives the name of the including or prepending
class or module as its single argument.

 Let’s look closely at included, knowing that prepended works in much the same
way. You can do a quick test of included by having it trigger a message printout and
then perform an include operation:

module M
 def self.included(c)
 puts "I have just been mixed into #{c}."
 end
end
class C
 include M
end

You see the message "I have just been mixed into C." as a result of the execution of
M.included when M gets included by (mixed into) C. (Because you can also mix mod-
ules into modules, the example would also work if C were another module.)

 When would it be useful for a module to intercept its own inclusion like this? One
commonly discussed case revolves around the difference between instance and class
methods. When you mix a module into a class, you’re ensuring that all the instance

<Method: Person#set_age>

490 CHAPTER 15 Callbacks, hooks, and runtime introspection
methods defined in the module become available to instances of the class. But the
class object isn’t affected. The question arises: what if you want to add class methods to
the class by mixing in the module along with adding the instance methods?

 Courtesy of included, you can trap the include operation and use the occasion to
add class methods to the class that’s doing the including. The following listing shows
an example.

module M
 def self.included(cl)
 def cl.a_class_method

puts "Now the class has a new class method."
 end
 end
 def an_inst_method
 puts "This module supplies this instance method."
 end
end
class C
 include M
end
C.a_class_method
c = C.new
c.an_inst_method

The output from this listing is

This module supplies this instance method.
Now the class has a new class method.

When class C includes module M, two things happen. First, an instance method called
an_inst_method appears in the lookup path of its instances (such as c). Second,
thanks to M’s included callback, a class method called a_class_method is defined for
the class object C.

 Module#included is a useful way to hook into the class/module engineering of
your program. Meanwhile, let’s look at another callback in the same general area
of interest: Module#extended.

15.1.3 Intercepting extend

As you know from chapter 13, extending individual objects with modules is one of
the most powerful techniques available in Ruby for taking advantage of the flexibility
of objects and their ability to be customized. It’s also the beneficiary of a runtime
hook: using the Module#extended method, you can set up a callback that will be trig-
gered whenever an object performs an extend operation that involves the module in
question.

 The next listing shows a modified version of listing 15.1 that illustrates the work-
ings of Module#extended.

Listing 15.1 Using included to add a class method as part of a mix-in operation

491Callbacks and hooks

module M
 def self.extended(obj)
 puts "Module #{self} is being used by #{obj}."
 end
 def an_inst_method
 puts "This module supplies this instance method."
 end
end
my_object = Object.new
my_object.extend(M)
my_object.an_inst_method

The output from this listing is

Module M is being used by #<Object:0x007f8e2a95bae0>.
This module supplies this instance method.

It’s useful to look at how the included and extended callbacks work in conjunction
with singleton classes. There’s nothing too surprising here; what you learn is how con-
sistent Ruby’s object and class model is.

SINGLETON-CLASS BEHAVIOR WITH EXTENDED AND INCLUDED

In effect, extending an object with a module is the same as including that module in
the object’s singleton class. Whichever way you describe it, the upshot is that the mod-
ule is added to the object’s method-lookup path, entering the chain right after the
object’s singleton class.

 But the two operations trigger different callbacks: extended and included. The
following listing demonstrates the relevant behaviors.

module M
 def self.included(c)
 puts "#{self} included by #{c}."
 end
 def self.extended(obj)
 puts "#{self} extended by #{obj}."
 end
end
obj = Object.new
puts "Including M in object's singleton class:"
class << obj
 include M
end
puts
obj = Object.new
puts "Extending object with M:"
obj.extend(M)

Both callbacks are defined in the module M: included B and extended C. Each call-
back prints out a report of what it’s doing. Starting with a freshly minted, generic

Listing 15.2 Triggering a callback from an extend event

Listing 15.3 Extending an object and including it into its singleton class

B

C

D

E

492 CHAPTER 15 Callbacks, hooks, and runtime introspection
object, we include M in the object’s singleton class D and then repeat the process,
using another new object and extending the object with M directly E.

 The output from this listing is

Including M in object's singleton class:
M included by #<Class:#<Object:0x0000010193c978>>.
Extending object with M:
M extended by #<Object:0x0000010193c310>.

Sure enough, the include triggers the included callback, and the extend triggers
extended, even though in this particular scenario the results of the two operations are
the same: the object in question has M added to its method-lookup path. It’s a nice
illustration of some of the subtlety and precision of Ruby’s architecture and a useful
reminder that manipulating an object’s singleton class directly isn’t quite identical to
doing singleton-level operations directly on the object.

 Just as modules can intercept include and extend operations, classes can tell when
they’re being subclassed.

15.1.4 Intercepting inheritance with Class#inherited

You can hook into the subclassing of a class by defining a special class method called
inherited for that class. If inherited has been defined for a given class, then when
you subclass the class, inherited is called with the name of the new class as its single
argument.

 Here’s a simple example, where class C reports on the fact that it has been sub-
classed:

class C
 def self.inherited(subclass)
 puts "#{self} just got subclassed by #{subclass}."
 end
end
class D < C
end

The subclassing of C by D automatically triggers a call to inherited and produces the
following output:

C just got subclassed by D.

inherited is a class method, so descendants of the class that defines it are also able to
call it. The actions you define in inherited cascade: if you inherit from a subclass,
that subclass triggers the inherited method, and so on down the chain of inheri-
tance. If you do this,

class E < D
end

you’re informed that D just got subclassed by E. You get similar results if you sub-
class E, and so forth.

493Callbacks and hooks

Let’s look now at how to intercept a reference to a nonexistent constant.

15.1.5 The Module#const_missing method

Module#const_missing is another commonly used callback. As the name implies, this
method is called whenever an unidentifiable constant is referred to inside a given
module or class:

class C
 def self.const_missing(const)
 puts "#{const} is undefined—setting it to 1."
 const_set(const,1)
 end
end
puts C::A
puts C::A

The limits of the inherited callback
Everything has its limits, including the inherited callback. When D inherits from C,
C is D’s superclass; but in addition, C’s singleton class is the superclass of D’s sin-
gleton class. That’s how D manages to be able to call C’s class methods. But no call-
back is triggered. Even if you define inherited in C’s singleton class, it’s never
called.

Here’s a test bed. Note how inherited is defined inside the singleton class of C.
But even when D inherits from C—and even after the explicit creation of D’s singleton
class—the callback isn’t triggered:

class C
 class << self
 def self.inherited
 puts "Singleton class of C just got inherited!"
 puts "But you'll never see this message."
 end
 end
end
class D < C
 class << self
 puts "D's singleton class now exists, but no callback!"
 end
end

The output from this program is

D's singleton class now exists, but no callback!

You’re extremely unlikely ever to come across a situation where this behavior mat-
ters, but it gives you a nice X-ray of how Ruby’s class model interoperates with its
callback layer.

494 CHAPTER 15 Callbacks, hooks, and runtime introspection
The output of this code is

A is undefined—setting it to 1.
1
1

Thanks to the callback, C::A is defined automatically when you use it without defining
it. This is taken care of in such a way that puts can print the value of the constant; puts
never has to know that the constant wasn’t defined in the first place. Then, on the sec-
ond call to puts, the constant is already defined, and const_missing isn’t called.

 One of the most powerful event-callback facilities in Ruby is method_added, which
lets you trigger an event when a new instance method is defined.

15.1.6 The method_added and singleton_method_added methods

If you define method_added as a class method in any class or module, it will be called
when any instance method is defined or redefined. Here’s a basic example:

class C
 def self.method_added(m)
 puts "Method #{m} was just defined."
 end
 def a_new_method
 end
end

The output from this program is

Method a_new_method was just defined.

The singleton_method_added callback does much the same thing, but for singleton
methods. Perhaps surprisingly, it even triggers itself. If you run this snippet,

class C
 def self.singleton_method_added(m)
 puts "Method #{m} was just defined."
 end
end

you’ll see that the callback—which is a singleton method on the class object C—trig-
gers its own execution:

Method singleton_method_added was just defined.

The callback will also be triggered by the definition of another singleton (class)
method. Let’s expand the previous example to include such a definition:

class C
 def self.singleton_method_added(m)
 puts "Method #{m} was just defined."
 end
 def self.new_class_method
 end
end

Defines callback

Triggers it by defining
instance method

495Callbacks and hooks
The new output is

Method singleton_method_added was just defined.
Method new_class_method was just defined.

In most cases, you should use singleton_method_added with objects other than class
objects. Here’s how its use might play out with a generic object:

obj = Object.new
def obj.singleton_method_added(m)
 puts "Singleton method #{m} was just defined."
end
def obj.a_new_singleton_method
end

The output in this case is

Singleton method singleton_method_added was just defined.
Singleton method a_new_singleton_method was just defined.

Again, you get the somewhat surprising effect that defining singleton_method_added
triggers the callback’s own execution.

 Putting the class-based and object-based approaches together, you can achieve the
object-specific effect by defining the relevant methods in the object’s singleton class:

obj = Object.new
class << obj
 def singleton_method_added(m)
 puts "Singleton method #{m} was just defined."
 end
 def a_new_singleton_method
 end
end

The output for this snippet is exactly the same as for the previous example. Finally,
coming full circle, you can define singleton_method_added as a regular instance
method of a class, in which case every instance of that class will follow the rule that the
callback will be triggered by the creation of a singleton method:

class C
 def singleton_method_added(m)
 puts "Singleton method #{m} was just defined."
 end
end
c = C.new
def c.a_singleton_method
end

Here, the definition of the callback B governs every instance of C. The definition of a
singleton method on such an instance C therefore triggers the callback, resulting in
this output:

Singleton method a_singleton_method was just defined.

B

C

496 CHAPTER 15 Callbacks, hooks, and runtime introspection
It’s possible that you won’t use either method_added or singleton_method_added
often in your Ruby applications. But experimenting with them is a great way to get a
deeper feel for how the various parts of the class, instance, and singleton-class pictures
fit together.

 We’ll turn now to the subject of examining object capabilities ("abc".methods and
friends). The basics of this topic were included in the “Built-in essentials” coverage in
chapter 7, and as promised in that chapter, we’ll go into them more deeply here.

15.2 Interpreting object capability queries
At this point in your work with Ruby, you can set your sights on doing more with lists
of objects’ methods than examining and discarding them. In this section, we’ll look at
a few examples (and there’ll be plenty of room left for you to create more, as your
needs and interests demand) of ways in which you might use and interpret the infor-
mation in method lists. The Ruby you’ve learned since we last addressed this topic
directly will stand you in good stead. You’ll also learn a few fine points of the method-
querying methods themselves.

 Let’s start at the most familiar point of departure: listing non-private methods with
the methods method.

15.2.1 Listing an object’s non-private methods

To list the non-private (public or protected) methods that an object knows about, you
use the method methods, which returns an array of symbols. Arrays being arrays, you
can perform some useful queries on the results of the initial query. Typically, you’ll fil-
ter the array in some way so as to get a subset of methods.

 Here, for example, is how you might ask a string what methods it knows about that
involve modification of case:

>> string = "Test string"
=> "Test string"
>> string.methods.grep(/case/).sort
=> [:casecmp, :casecmp?, :downcase, :downcase!, :swapcase, :swapcase!,

:upcase, :upcase!]

The grep filters out any symbol that doesn’t have case in it. (Remember that although
they’re not strings, symbols exhibit a number of stringlike behaviors, such as being
greppable.) The sort command at the end is useful for most method-listing opera-
tions. It doesn’t make much of a difference in this example, because there are only
eight methods; but when you get back arrays of 100 or more symbols, sorting them
can help a lot.

 Grepping for case depends on the assumption, of course, that case-related meth-
ods will have case in their names. There’s definitely an element of judgment, often
along the lines of making educated guesses about what you think you’ll find, in many
method-capability queries. Things tend to work out, though, as Ruby is more than rea-
sonably consistent and conventional in its choice of method names.

497Interpreting object capability queries
 Some of the case methods are also bang (!) methods. Following that thread, let’s
find all the bang methods a string has, again using a grep operation:

>> string.methods.grep(/.!/).sort
=> [:capitalize!, :chomp!, :chop!, :delete!, :delete_prefix!,

:delete_suffix!, :downcase!, :encode!, :gsub!, :lstrip!, :next!,
:reverse!, :rstrip!, :scrub!, :slice!, :squeeze!, :strip!, :sub!,
:succ!, :swapcase!, :tr!, :tr_s!, :unicode_normalize!, :upcase!]

Why the dot before the ! in the regular expression? Its purpose is to ensure that
there’s at least one character before the ! in the method name, and thus to exclude
the !, !=, and !~ methods, which contain ! but aren’t bang methods in the usual
sense. We want methods that end with a bang, but not those that begin with one.

 Let’s use methods a little further. Here’s a question we can answer by interpreting
method-query results: do strings have any bang methods that don’t have correspond-
ing non-bang methods?

string = "Test string"
methods = string.methods
bangs = string.methods.grep(/.!/)
unmatched = bangs.reject do |b|
 methods.include?(b[0..-2].to_sym)
end
if unmatched.empty?
 puts "All bang methods are matched by non-bang methods."
else
 puts "Some bang methods have no non-bang partner: "
 puts unmatched
end

The code works by collecting all of a string’s non-private methods and, separately, all
of its bang methods B. Then, a reject operation filters out all bang method names for
which a corresponding non-bang name can be found in the larger method-name list
C. The [0..-2] index grabs everything but the last character of the symbol—the
method name minus the !, in other words—and the call to to_sym converts the result-
ing string back to a symbol so that the include? test can look for it in the array of
methods. If the filtered list is empty, that means that no unmatched bang method
names were found. If it isn’t empty, then at least one such name was found and can be
printed out D.

 If you run the script as it is, it will always take the first (true) branch of the if state-
ment. If you want to see a list of unmatched bang methods, you can add the following
line to the program, just after the first line:

def string.surprise!; end

When you run the modified version of the script, you’ll see this:

Some bang methods have no non-bang partner:
surprise!

B

C

D

Output: All bang
methods are matched
by non-bang methods.

498 CHAPTER 15 Callbacks, hooks, and runtime introspection
As you’ve already seen, writing bang methods without non-bang partners is usually
bad practice—but it’s a good way to see the methods method at work.

 You can, of course, ask class and module objects what their methods are. After all,
they’re just objects. But remember that the methods method always lists the non-
private methods of the object itself. In the case of classes and modules, that means
you’re not getting a list of the methods that can be called on the instances of the
class—or instances of classes that mix in the module. You’re getting the methods that
the class or module itself knows about. Here’s a (partial) result from calling methods
on a newly created class object:

>> class C; end
=> nil
>> C.methods.sort
=> [:!, :!=, :!~, :<, :<=, :<=>, :==, :===, :=~, :>, :>=, :__id__, :__send__,

:alias_method, :allocate, :ancestors, :autoload, :autoload?, :class,
:class_eval, :class_exec, :class_variable_defined?, :class_variable_get,
:class_variable_set, :class_variables, etc.

Class and module objects share some methods with their own instances, because
they’re all objects, and objects in general share certain methods. But the methods you
see are those that can be called on the class or module itself. You can also ask classes
and modules about the instance methods they define. We’ll return to that technique
shortly. First, let’s look briefly at the process of listing an object’s private and protected
methods.

15.2.2 Listing private and protected methods

Every object (except instances of BasicObject) has a private_methods method and a
protected_methods method. They work as you’d expect; they provide arrays of sym-
bols, but containing private and protected method names, respectively.

 Freshly minted Ruby objects have a lot of private methods and no protected
methods:

$ ruby -e 'o = Object.new; p o.private_methods.size'
74
$ ruby -e 'o = Object.new; p o.protected_methods.size'
0

What are those private methods? They’re private instance methods defined mostly in
the Kernel module and in the BasicObject class. Here’s how you can track this down:

$ ruby -e 'o = Object.new; p o.private_methods -
BasicObject.private_instance_methods(false) -
Kernel.private_instance_methods(false)'

Note that after you subtract the private methods defined in Kernel and BasicObject,
the remaining method is :DelegateClass, the only private method defined on
Object. The private methods defined in Kernel are the methods we think of as “top-
level,” like puts, binding, and raise. Play around a little with the method-listing tech-
niques you’re learning here and you’ll see some familiar methods listed.

Output: [:DelegateClass]

499Interpreting object capability queries
 Naturally, if you define a private method yourself, it will also appear in the list of
private methods. Here’s an example: a simple Person class in which assigning a name
to the person via the name= method triggers a name-normalization method that
removes everything other than letters and selected punctuation characters from the
name. The normalize_name method is private:

class Person
 attr_reader :name
 def name=(name)
 @name = name
 normalize_name
 end
 private
 def normalize_name
 name.gsub!(/[^-a-z'.\s]/i, "")
 end
end
david = Person.new
david.name = "123David!! Bl%a9ck"
raise "Problem" unless david.name == "David Black"
puts "Name has been normalized."
p david.private_methods.sort.grep(/normal/)

Protected methods can be examined in much the same way, using the protected_-
methods method.

 In addition to asking objects what methods they know about, it’s frequently useful
to ask classes and modules what methods they provide.

15.2.3 Getting class and module instance methods

Classes and modules come with a somewhat souped-up set of method-querying meth-
ods. Examining those available in String illustrates the complete list. The methods
that are specific to classes and modules are in bold:

>> String.methods.grep(/methods/).sort
=> [:instance_methods, :methods, :private_instance_methods,
:private_methods,:protected_instance_methods, :protected_methods,

:public_instance_methods,:public_methods, :singleton_methods]

The methods shown in bold give you lists of instance methods of various kinds
defined in the class or module. The four methods work as follows:

 instance_methods returns all public and protected instance methods.
 public_instance_methods returns all public instance methods.
 protected_instance_methods and private_instance_methods return all pro-

tected and private instance methods, respectively.

When calling any of these methods, you have the option of passing in an argument. If
you pass in the argument false, then the list of methods you get back will include
only those defined in the class or module you’re querying. If you pass in any argument

Defines nondefault
write accessor

Normalizes name
when assigned

Removes undesired
characters from name

Makes sure
normalization works

Prints success message

Result of private method
inspection: [:normalize_name]

500 CHAPTER 15 Callbacks, hooks, and runtime introspection
with Boolean truth (anything other than false or nil), or if you pass in no argument,
the list of methods will include those defined in the class or module you’re querying
and all of its ancestor classes and modules.

 For example, you can find out which instance methods the Range class defines, like
this:

>> Range.instance_methods(false).sort
=> [:==, :===, :begin, :bsearch, :cover?, :each, :end, :eql?, :exclude_end?,

:first, :hash, :include?, :inspect, :last, :max, :member?, :min, :size,
:step, :to_s]]

Going one step further, what if you want to know which of the methods defined in the
Enumerable module are overridden in Range? You can find out by performing an and
(&) operation on the two lists of instance methods: those defined in Enumerable and
those defined in Range:

>> Range.instance_methods(false) & Enumerable.instance_methods(false)
=> [:first, :min, :max, :member?, :include?]

As you can see, Range redefines five methods that Enumerable already defines.
 We’ll look shortly at the last of the methods-style methods, singleton_methods.

But first, let’s create a program that produces a list of all the overrides of all classes
that mix in Enumerable.

GETTING ALL THE ENUMERABLE OVERRIDES

The strategy here will be to find out which classes mix in Enumerable and then per-
form on each such class an and (&) operation like the one in the last example, storing
the results and, finally, printing them out. The following listing shows the code.

overrides = {}
enum_classes = ObjectSpace.each_object(Class).select do |c|

c.ancestors.include?(Enumerable) && c.name
end
enum_classes.sort_by {|c| c.name}.each do |c|
 overrides[c] = c.instance_methods(false) &

Enumerable.instance_methods(false)
end
overrides.delete_if {|c, methods| methods.empty? }
overrides.each do |c,methods|
 puts "Class #{c} overrides: #{methods.sort.join(", ")}"
end

First, we create an empty hash in the variable overrides B. We then get a list of all
classes that mix in Enumerable. The technique for getting this list involves the
ObjectSpace module and its each_object method C. This method takes a single argu-
ment representing the class of the objects you want it to find. In this case, we’re inter-
ested in objects of class Class, and we’re only interested in those that have Enumerable
among their ancestors and that have a non-nil value for :name. The each_object

Listing 15.4 Enumerable descendants’ overrides of Enumerable instance methods

B
C

D

E
F

501Interpreting object capability queries
method returns an enumerator, and the call to select on that enumerator has the
desired effect of filtering the list of all classes down to a list of only those that have
mixed in Enumerable.

 Now it’s time to populate the overrides hash. For each class in enum_classes
(nicely sorted by class name), we put an entry in overrides. The key is the class, and
the value is an array of method names—the names of the Enumerable methods that
this class overrides D. After removing any entries representing classes that haven’t
overridden any Enumerable methods E, we proceed to print the results, using sort
and join operations to make the output look consistent and clear F, as shown here:

Class ARGF.class overrides: to_a
Class Array overrides: any?, collect, count, cycle, drop, drop_while,

find_index, first, include?, map, max, min, reject, reverse_each,
select, sort, sum, take, take_while, to_a, to_h, uniq, zip

Class Enumerator overrides: each_with_index, each_with_object
Class Enumerator::Lazy overrides: chunk, chunk_while, collect,

collect_concat, drop, drop_while, find_all, flat_map, grep, grep_v,
lazy, map, reject, select, slice_after, slice_before, slice_when, take,
take_while, uniq, zip

Class Gem::List overrides: to_a
Class Hash overrides: any?, include?, member?, reject, select, to_a, to_h
Class ObjectSpace::WeakMap overrides: include?, member?
Class Range overrides: first, include?, max, member?, min
Class Struct overrides: select, to_a, to_h

The first line pertains to the somewhat anomalous object designated as ARGF.class,
which is a unique, specially engineered object involved in the processing of program
input. The other lines pertain to several familiar classes that mix in Enumerable. In
each case, you see which Enumerable methods the class in question has overridden.

 Let’s look next at how to query an object with regard to its singleton methods.

15.2.4 Listing objects’ singleton methods

A singleton method, as you know, is a method defined for the sole use of a particular
object (or, if the object is a class, for the use of the object and its subclasses) and
stored in that object’s singleton class. You can use the singleton_methods method to
list all such methods. Note that singleton_methods lists public and protected single-
ton methods but not private ones. Here’s an example:

class C
end
c = C.new
class << c
 def x
 end
 def y
 end
 def z
 end
 protected :y
 private :z

B
C
D

502 CHAPTER 15 Callbacks, hooks, and runtime introspection
end
p c.singleton_methods.sort

An instance of class C is created B, and its singleton class is opened C. Three meth-
ods are defined in the singleton class, one each at the public (x), protected (y), and
private (z) levels D. The printout of the singleton methods of c E looks like this:

[:x, :y]

x and y are included in the array. z isn’t because singleton_methods doesn’t return
private methods. Singleton methods are also considered just methods. The methods
:x and :y will show up if you call c.methods, too. You can use the class-based method-
query methods on the singleton class. Add this code to the end of the last example:

class << c
 p private_instance_methods(false)
end

When you run it, you’ll see this:

[:z]

The method :z is a singleton method of c, which means it’s an instance method (a
private instance method, as it happens) of c’s singleton class.

 You can ask a class for its singleton methods, and you’ll get the singleton methods
defined for that class and for all of its ancestors. Here’s an irb-based illustration:

>> class C; end
=> nil
>> class D < C; end
=> nil
>> def C.a_class_method_on_C; end
=> nil
>> def D.a_class_method_on_D; end
=> nil
>> D.singleton_methods
=> [:a_class_method_on_D, :a_class_method_on_C]

Once you get some practice using the various methods methods, you’ll find them use-
ful for studying and exploring how and where methods are defined. For example, you
can use method queries to examine how the class methods of File are composed. To
start with, find out which class methods File inherits from its ancestors, as opposed to
those it defines itself:

>> File.singleton_methods - File.singleton_methods(false)
=> [:read, :sysopen, :for_fd, :popen, :foreach, :binread, :binwrite, :new,

:pipe, :write, :select, :copy_stream, :open, :try_convert, :readlines]

The call to singleton_methods(false) provides only the singleton methods defined
on File. The call without the false argument provides all the singleton methods
defined on File and its ancestors. The difference is the ones defined by the ancestors.

E

503Introspection of variables and constants
 The superclass of File is IO. Interestingly, although not surprisingly, all 15 of the
ancestral singleton methods available to File are defined in IO. You can confirm this
with another query:

>> IO.singleton_methods(false)
=> [:read, :sysopen, :for_fd, :popen, :foreach, :binread, :binwrite, :new,

:pipe, :write, :select, :copy_stream, :open, :try_convert, :readlines]

The relationship among classes—in this case, the fact that File is a subclass of IO and
therefore shares its singleton methods (its class methods)—is directly visible in the
method-name arrays. The various methods methods allow for almost unlimited inspec-
tion and exploration of this kind.

 As you can see, the method-querying facilities in Ruby can tell you quite a lot about
the objects, classes, and modules that you’re handling. You just need to connect the
dots by applying collection-querying and text-processing techniques to the lists they
provide. Interpreting method queries is a nice example of the kind of learning feed-
back loop that Ruby provides: the more you learn about the language, the more you
can learn.

 We’ll turn next to the matter of runtime reflection on variables and constants.

15.3 Introspection of variables and constants
Ruby can tell you several things about which variables and constants you have access to
at a given point in runtime. You can get a listing of local or global variables, an object’s
instance variables, the class variables of a class or module, and the constants of a class
or module.

15.3.1 Listing local and global variables

The local and global variable inspections are straightforward: you use the top-level
methods local_variables and global_variables. In each case, you get back an
array of symbols corresponding to the local or global variables currently defined:

>> x = 1
>> p local_variables
[:x]
>> p global_variables.sort
[:$!, :$", :$$, :$&, :$', :$*, :$+, :$,, :$-0, :$-F, :$-I, :$-K, :$-W, :$-a,

:$-d, :$-i, :$-l, :$-p, :$-v, :$-w, :$., :$/, :$0, :$:, :$;, :$<, :$=,
:$>, :$?, :$@, :$DEBUG, :$FILENAME, :$KCODE, :$LOADED_FEATURES,
:$LOAD_PATH, :$PROGRAM_NAME, :$SAFE, :$VERBOSE, :$\, :$_, :$`,
:$binding, :$stderr, :$stdin, :$stdout, :$~]

The global-variable list includes globals like $: (the library load path, also available as
$LOAD_PATH), $~ (the global MatchData object based on the most recent pattern-
matching operation), $0 (the name of the file in which execution of the current pro-
gram was initiated), $FILENAME (the name of the file currently being executed), and
others. global_variables also returns the thread-local variables discussed in chapter
14. The local-variable list includes all currently defined local variables.

504 CHAPTER 15 Callbacks, hooks, and runtime introspection
 Note that local_variables and global_variables don’t give you the values of
the variables they report on; they just give you the names. The same is true of the
instance_variables method, which you can call on any object.

15.3.2 Listing instance variables

Here’s another rendition of a simple Person class, which illustrates what’s involved in
an instance-variable query:

class Person
 attr_accessor :name, :age
 def initialize(name)
 @name = name
 end
end
joe = Person.new("Joe")
p joe.instance_variables
joe.age = 37
p joe.instance_variables

The object joe has two instance variables initialized at the time of the query. One of
them, @name, was assigned a value at the time of the object’s creation and thus is
returned with an instance_variables call. The other, @age, is present because of the
accessor attribute age. Attributes are implemented as read and/or write methods
around instance variables, so even though @age doesn’t appear explicitly anywhere in
the program, it gets initialized when the object is assigned an age. At that point,
instance_variables returns both @name and @age.

 All instance variables begin with the @ character, and all globals begin with $. You
might expect Ruby not to bother with those characters when it gives you lists of vari-
able names; but the names you get in the lists do include the beginning characters.

 Next, we’ll look at execution-tracing techniques that help you determine the
method-calling history at a given point in runtime.

[:@name]

[:@name, :@age]

The irb underscore variable
If you run local_variables in a new irb session, you’ll see an underscore:

>> local_variables
=> [:_]

The underscore is a special irb variable: it represents the value of the last expres-
sion evaluated by irb. You can use it to grab values that otherwise will have disap-
peared:

>> Person.new("David")
=> #<Person:0x000001018ba360 @name="David">
>> david = _
=> #<Person:0x000001018ba360 @name="David">

Now the Person object is bound to the variable david.

505Tracing execution
15.4 Tracing execution
No matter where you are in the execution of your program, you got there somehow.
Either you’re at the top level, or you’re one or more method-calls deep. Ruby provides
information about how you got where you are. The chief tool for examining the
method-calling history is the top-level method caller.

15.4.1 Examining the stack trace with caller

The caller method provides an array of strings. Each string represents one step in
the stack trace: a description of a single method call along the way to where you are
now. The strings contain information about the file or program where the method
call was made, the line on which the method call occurred, and the method from
which the current method was called, if any.

 Here’s an example. Put these lines in a file called tracedemo.rb:

def x
 y
end
def y
 z
end
def z
 puts "Stacktrace: "
 p caller
end
x

All this program does is bury itself in a stack of method calls: x calls y, y calls z. Inside
z, we get a stack trace, courtesy of caller. Here’s the output from running
tracedemo.rb:

Stacktrace:
["tracedemo.rb:5:in `y'", "tracedemo.rb:2:in `x'", "tracedemo.rb:11:in
`<main>'"]

Each string in the stack trace array contains one link in the chain of method calls that
got us to the point where caller was called. The first string represents the most
recent call in the history: we were at line 5 of tracedemo.rb, inside the method y. The
second string shows that we got to y via x. The third, final string tells us that we were in
<main>, which means the call to x was made from the top level rather than from inside
a method.

 You may recognize the stack trace syntax from the messages you’ve seen from fatal
errors. If you rewrite the z method to look like this,

def z
 raise
end

the output will look like this:
Traceback (most recent call last):
 3: from tracedemo.rb:11:in ‘<main>'

506 CHAPTER 15 Callbacks, hooks, and runtime introspection
 2: from tracedemo.rb:2:in `x'
 1: from tracedemo.rb:5:in `y'
tracedemo.rb:8:in `z': unhandled exception

This is a prettier version of the stack trace array we got from caller. Notably, the
traceback on raise is printed in reverse order of the array. This is new and experi-
mental in Ruby 2.5. It’s intended to aid debugging by printing the most recent call
last.

 Ruby stack traces are useful, but they’re also looked askance at because they consist
solely of strings. If you want to do anything with the information a stack trace pro-
vides, you have to scan or parse the string and extract the useful information. Another
approach is to write a Ruby tool for parsing stack traces and turning them into objects.

15.4.2 Writing a tool for parsing stack traces

Given a stack trace—an array of strings—we want to generate an array of objects, each
of which has knowledge of a program or filename, a line number, and a method name
(or <main>). We’ll write a Call class, which will represent one stack trace step per
object, and a Stack class that will represent an entire stack trace, consisting of one or
more Call objects. To minimize the risk of name clashes, let’s put both of these classes
inside a module, CallerTools. Let’s start by describing in more detail what each of
the two classes will do.

 CallerTools::Call will have three reader attributes: program, line, and meth.
(It’s better to use meth than method as the name of the third attribute because classes
already have a method called method, and we don’t want to override it.) Upon initial-
ization, an object of this class will parse a stack trace string and save the relevant sub-
strings to the appropriate instance variables for later retrieval via the attribute-reader
methods.

 CallerTools::Stack will store one or more Call objects in an array, which in turn
will be stored in the instance variable @backtrace. We’ll also write a report method,
which will produce a (reasonably) pretty-printable representation of all the informa-
tion in this particular stack of calls.

 Now, let’s write the classes.

THE CALLERTOOLS::CALL CLASS

The following listing shows the Call class along with the first line of the entire pro-
gram, which wraps everything else in the CallerTools module.

module CallerTools
 class Call
 CALL_RE = /(.*):(\d+):in `(.*)'/
 attr_reader :program, :line, :meth
 def initialize(string)

@program, @line, @meth = CALL_RE.match(string).captures
 end

Listing 15.5 Beginning of the CallerTools module, including the Call class

B
C

D

507Tracing execution
 def to_s
 "%30s%5s%15s" % [program, line, meth]
 end
 end
end

We need a regular expression with which to parse the stack trace strings; that regular
expression is stored in the CALL_RE constant B. CALL_RE has three parenthetical cap-
ture groupings, separated by uncaptured literal substrings. Here’s how the regular
expression matches up against a typical stack trace string. Bold type shows the sub-
strings that are captured by the corresponding regular expression subpatterns. The
nonbold characters aren’t included in the captures but are matched literally:

myrubyfile.rb:234:in `a_method'
 .* :\d+:in ` .* '

The class has, as specified, three reader attributes for the three components of the call
C. Initialization requires a string argument, the string is matched against CALL_RE,
and the results, available via the captures method of the MatchData object, are placed
in the three instance variables corresponding to the attributes, using parallel assign-
ment D. (We get a fatal error for trying to call captures on nil if there’s no match.
You can alter the code to handle this condition directly if you wish.)

 We also define a to_s method for Call objects E. This method comes into play in
situations where it’s useful to print out a report of a particular backtrace element. It
involves Ruby’s handy % technique. On the left of the % is a sprintf-style formatting
string, and on the right is an array of replacement values. You might want to tinker
with the lengths of the fields in the replacement string—or, for that matter, write your
own to_s method, if you prefer a different style of output.

 Now it’s time for the Stack class.

THE CALLERTOOLS::STACK CLASS

The Stack class, along with the closing end instruction for the entire CallerTools
module, is shown in the following listing.

module CallerTools
 class Stack
 def initialize
 stack = caller
 stack.shift
 @backtrace = stack.map do |call|
 Call.new(call)
 end
 end
 def report
 @backtrace.map do |call|
 call.to_s
 end
 end

Listing 15.6 CallerTools::Stack class

E

B

C

D

508 CHAPTER 15 Callbacks, hooks, and runtime introspection
 def find(&block)
 @backtrace.find(&block)
 end
 end
end

Upon initialization, a new Stack object calls caller and saves the resulting array B. It
then shifts that array, removing the first string; that string reports on the call to
Stack.new itself and is therefore just noise.

 The stored @backtrace should consist of one Call object for each string in the
stack array. That’s a job for map C. Note that there’s no backtrace reader attribute.
In this case, all we need is the instance variable for internal use by the object.

 Next comes the report method, which uses map on the @backtrace array to gener-
ate an array of strings for all the Call objects in the stack D. This report array is suit-
able for printing or, if need be, for searching and filtering.

 The Stack class includes one final method: find E. It works by forwarding its code
block to the find method of the @backtrace array. It works a lot like some of the deck-
of-cards methods you’ve seen, which forward a method to an array containing the
cards that make up the deck. Techniques like this allow you to fine-tune the interface
of your objects, using underlying objects to provide them with exactly the functional-
ity they need. (You’ll see the specific usefulness of find shortly.)

 Now, let’s try out CallerTools.

USING THE CALLERTOOLS MODULE

You can use a modified version of the “x, y, z” demo from section 15.4.1 to try out
CallerTools. Put this code in a file called callertest.rb:

require_relative 'callertools'
def x
 y
end
def y
 z
end
def z
 stack = CallerTools::Stack.new
 puts stack.report
end
x

When you run the program, you’ll see this output:

 callertest.rb 9 z
 callertest.rb 6 y
 callertest.rb 3 x
 callertest.rb 12 <main>

Nothing too fancy, but it’s a nice programmatic way to address a stack trace rather
than having to munge the strings directly every time. (There’s a lot of blank space at
the beginnings of the lines, but there would be less if the file paths were longer—and
of course you can adjust the formatting to taste.)

E

509Callbacks and method inspection in practice
 Next on the agenda, and the last stop for this chapter, is a project that ties together
a number of the techniques we’ve been looking at: stack tracing, method querying,
and callbacks, as well as some techniques you know from elsewhere in the book. We’ll
write a test framework.

15.5 Callbacks and method inspection in practice
In this section, we’ll implement MicroTest, a tiny test framework. It doesn’t have many
features, but the ones it has will demonstrate some of the power and expressiveness of
the callbacks and inspection techniques you’ve just learned.

 First, a bit of backstory.

15.5.1 MicroTest background: MiniTest

Ruby ships with a testing framework called MiniTest. You use MiniTest by writing a
class that inherits from the class MiniTest::Unit::TestCase and that contains meth-
ods whose names begin with the string test. You can then either specify which test
methods you want executed, or arrange (as we will below) for every test-named
method to be executed automatically when you run the file. Inside those methods,
you write assertions. The truth or falsehood of your assertions determines whether your
tests pass.

 The exercise we’ll do here is to write a simple testing utility based on some of the
same principles as MiniTest. To help you get your bearings, we’ll look first at a full
example of MiniTest in action, and then do the implementation exercise.

 We’ll test dealing cards. The following listing shows a version of a class for a deck of
cards. The deck consists of an array of 52 strings held in the @cards instance variable.
Dealing one or more cards means popping that many cards off the top of the deck.
Create a file called cards.rb and enter the code in the following listing.

module PlayingCards
 RANKS = %w{ 2 3 4 5 6 7 8 9 10 J Q K A }
 SUITS = %w{ clubs diamonds hearts spades }
 class Deck
 def initialize
 @cards = []
 RANKS.each do |r|
 SUITS.each do |s|
 @cards << "#{r} of #{s}"
 end
 end
 @cards.shuffle!
 end
 def deal(n=1)
 @cards.pop(n)
 end
 def size
 @cards.size
 end

Listing 15.7 Deck-of-cards implementation with card-dealing capabilities

B

C

510 CHAPTER 15 Callbacks, hooks, and runtime introspection
 end
end

Creating a new deck B involves initializing @cards, inserting 52 strings into it, and
shuffling the array. Each string takes the form rank of suit, where rank is one of the
ranks in the constant array RANKS and suit is one of SUITS. In dealing from the deck
C, we return an array of n cards, where n is the number of cards being dealt and
defaults to 1.

 So far, so good. Now, let’s test it. Enter MiniTest. The next listing shows the test
code for the PlayingCards class. The test code assumes that you’ve saved the cards
code to a separate file called cards.rb in the same directory as the test-code file (which
you can call card_test.rb).

require 'minitest/autorun'
require_relative 'cards'
class CardTest < MiniTest::Test
 def setup
 @deck = PlayingCards::Deck.new
 end
 def test_deal_one
 @deck.deal
 assert_equal(51, @deck.size)
 end
 def test_deal_many
 @deck.deal(5)
 assert_equal(47, @deck.size)
 end
end

The first order of business is to require both the minitest/autorun library and the
cards.rb file B. minitest/autorun loads the MiniTest library and causes MiniTest to
run the test methods it encounters without our having to make explicit method calls.
Next, we create a CardTest class that inherits from MiniTest::Test C. In this class,
we define three methods. The first is setup D. The method name setup is magic to
MiniTest; if defined, it’s executed before every test method in the test class. Running
the setup method before each test method contributes to keeping the test methods
independent of each other, and that independence is an important part of the archi-
tecture of test suites.

 Now come the two test methods, test_deal_one E and test_deal_many G. These
methods define the actual tests. In each case, we’re dealing from the deck and then
making an assertion about the size of the deck subsequent to the dealing. Remember
that setup is executed before each test method, which means @deck contains a full 52-
card deck for each method.

 The assertions are performed using the assert_equal method F. This method
takes two arguments. If the two are equal (using == to do the comparison behind the
scenes), the assertion succeeds. If not, it fails.

Listing 15.8 card_test.rb: testing the dealing accuracy of PlayingCards::Deck

B

C
D

E

F

G

511Callbacks and method inspection in practice
 Execute card_test.rb from the command line. Here’s what you’ll see (probably
with a different seed and different time measurements):

$ ruby card_test.rb
Run options: --seed 39562
Running:
..
Finished tests in 0.000784s, 2551.0204 runs/s, 2551.0204 assertions/s.
2 runs, 2 assertions, 0 failures, 0 errors, 0 skips

The last line tells you that there were two methods whose names began with test
(2 runs) and a total of two assertions (the two calls to assert_equal). It tells you further
that both assertions passed (no failures) and that nothing went drastically wrong (no
errors; an error is something unrecoverable like a reference to an unknown variable,
whereas a failure is an incorrect assertion). It also reports that no tests were skipped
(skipping a test is something you can do explicitly with a call to the skip method).

 The most striking thing about running this test file is that at no point do you have
to instantiate the CardTest class or explicitly call the test methods or the setup
method. Thanks to the loading of the autorun feature, MiniTest figures out that it’s
supposed to run all the methods whose names begin with test, running the setup
method before each of them. This automatic execution—or at least a subset of it—is
what we’ll implement in our exercise.

15.5.2 Specifying and implementing MicroTest

Here’s what we’ll want from our MicroTest utility:

 Automatic execution of the setup method and test methods, based on class
inheritance

 A simple assertion method that either succeeds or fails

The first specification will entail most of the work.
 We need a class that, upon being inherited, observes the new subclass and executes

the methods in that subclass as they’re defined. For the sake of (relative) simplicity,
we’ll execute them in definition order, which means setup should be defined first.

 Here’s a more detailed description of the steps needed to implement MicroTest:

1 Define the class MicroTest.
2 Define MicroTest.inherited.
3 Inside inherited, the inheriting class should ...
4 Define its own method_added callback, which should ...
5 Instantiate the class and execute the new method if it starts with test, but first

...
6 Execute the setup method, if there is one.

Here’s a nonworking, commented mockup of MicroTest in Ruby:

class MicroTest
 def self.inherited(c)

512 CHAPTER 15 Callbacks, hooks, and runtime introspection
c.class_eval do
def self.method_added(m)
If m starts with "test"
Create an instance of c
If there's a setup method
Execute setup
Execute the method m

end
 end
 end
end

There’s a kind of logic cascade here. Inside MicroTest, we define self.inherited,
which receives the inheriting class (the new subclass) as its argument. We then enter
into that class’s definition scope using class_eval. Inside that scope, we implement
method_added, which will be called every time a new method is defined in the class.

 Writing the full code follows directly from the comments inside the code mockup.
The following listing shows the full version of micro_test.rb. Put it in the same direc-
tory as callertools.rb.

require_relative 'callertools'
class MicroTest
 def self.inherited(c)

c.class_eval do
def self.method_added(m)
if m =~ /^test/
 obj = self.new
 if obj.methods.include?(:setup)
 obj.setup
 end
 obj.send(m)
end

end
 end
 end
 def assert(assertion)
 if assertion

puts "Assertion passed"
true

 else
puts "Assertion failed:"
stack = CallerTools::Stack.new
failure = stack.find {|call| call.meth !~ /assert/ }
puts failure
false

 end
 end
 def assert_equal(expected, actual)
 result = assert(expected == actual)
 puts "(#{actual} is not #{expected})" unless result
 result
 end
end

Listing 15.9 MicroTest, a testing class that emulates some MiniTest functionality

B
C

D

E

F

G

H

513Callbacks and method inspection in practice
Inside the class definition (class_eval) scope of the new subclass, we define
method_added, and that’s where most of the action is. If the method being defined
starts with test B, we create a new instance of the class C. If a setup method is
defined D, we call it on that instance. Then (whether or not there was a setup
method; that’s optional), we call the newly added method using send, because we
don’t know the method’s name in advance.

NOTE As odd as it may seem (in light of the traditional notion of pattern
matching, which involves strings), the m in the pattern-matching operation m
=~ /^test/ is a symbol, not a string. The ability of symbol objects to match
themselves against regular expressions is part of the general move we’ve
already noted toward making symbols more easily interchangeable with
strings. Keep in mind, though, the important differences between the two, as
explained in chapter 8.

The assert method tests the truth of its single argument E. If the argument is true
(in the Boolean sense; it doesn’t have to be the actual object true), a message is
printed out, indicating success. If the assertion fails, the message printing gets a little
more intricate. We create a CallerTools::Stack object and pinpoint the first Call
object in that stack whose method name doesn’t contain the string assert F. The
purpose is to make sure we don’t report the failure as having occurred in the assert
method nor in the assert_equal method (described shortly). It’s not robust; you
might have a method with assert in it that you did want an error reported from. But
it illustrates the kind of manipulation that the find method of CallerTools::Stack
allows.

 The second assertion method, assert_equal, tests for equality between its two
arguments G. It does this by calling assert on a comparison. If the result isn’t true,
an error message showing the two compared objects is displayed H. Either way—suc-
cess or failure—the result of the assert call is returned from assert_equal.

 To try out MicroTest, put the following code in a file called micro_card_test.rb,
and run it from the command line:

require_relative 'micro_test'
require_relative 'cards'
class CardTest < MicroTest
 def setup
 @deck = PlayingCards::Deck.new
 end
 def test_deal_one
 @deck.deal
 assert_equal(51, @deck.size)
 end
 def test_deal_many
 @deck.deal(5)
 assert_equal(47, @deck.size)
 end
end

514 CHAPTER 15 Callbacks, hooks, and runtime introspection
As you can see, this code is almost identical to the MiniTest test file we wrote before.
The only differences are the names of the test library and parent test class. And when
you run the code, you get these somewhat obscure but encouraging results:

Assertion passed
Assertion passed

If you want to see a failure, change 51 to 50 in test_deal_one:

Assertion failed:
micro_card_test.rb 11 test_deal_one

(51 is not 50)
Assertion passed

MicroTest won’t supplant MiniTest any time soon, but it does do a couple of the most
magical things that MiniTest does. It’s all made possible by Ruby’s introspection and
callback facilities, techniques that put extraordinary power and flexibility in your
hands.

Summary
In this chapter, you’ve seen

 Intercepting methods with method_missing
 Runtime hooks and callbacks for objects, classes, and modules
 Querying objects about their methods, on various criteria
 Trapping references to unknown constants
 Stack traces
 Writing the MicroTest framework

We’ve covered a lot of ground in this chapter, and practicing the techniques covered
here will contribute greatly to your grounding as a Rubyist. We looked at intercepting
unknown messages with method_missing, along with other runtime hooks and call-
backs like Module.included, Module.extended, and Class.inherited. The chapter
also took us into method querying in its various nuances: public, protected, private;
class, instance, singleton. You’ve seen some examples of how this kind of querying can
help you derive information about how Ruby does its own class, module, and method
organization.

 The last overall topic was the handling of stack traces, which we put to use in the
CallerTools module. The chapter ended with the extended exercise consisting of
implementing the MicroTest class, which pulled together a number of topics and
threads from this chapter and elsewhere.

 We’ve been going through the material methodically and deliberately, as befits a
grounding or preparation. But if you look at the results, particularly MicroTest, you
can see how much power Ruby gives you in exchange for relatively little effort. That’s
why it pays to know about even what may seem to be the magic or “meta” parts of
Ruby. They really aren’t—it’s all Ruby, and once you internalize the principles of class
and object structure and relationships, everything else follows.

Ruby and
functional programming
By now you know that Ruby is a powerful and expressive language that offers solu-
tions to myriad software-programming challenges. Ruby encourages an object-
oriented programming approach to language design, and thus far we’ve mostly
restricted our study of programming principles to this discipline. But Ruby has
long supported many elements of a functional programming style. In fact, in recent
years Ruby has added even more language features to support writing code in a
functional style.

This chapter covers
 A description of the functional style of

programming

 Pure functions

 Method chaining and Kernel#itself

 Higher-order functions

 Method#curry, Proc#curry, and partial function
application

 Recursion
515

516 CHAPTER 16 Ruby and functional programming
 The word “style” is important here. Ruby doesn’t meet the definition of a purely
functional language because it doesn’t guarantee referential transparency or immuta-
bility (both defined in this chapter). Nevertheless, tenets of functional programming
are available to the Rubyist. Software engineers can evaluate the pros and cons of each
approach when choosing between object-oriented and functional programming
styles. In a large enough program, mixing the two styles of programming is possible.
As an engineer, you’ll find yourself frequently evaluating the trade-offs of one style
over another.

 You’ve already seen examples of methods that encapsulate functional behavior.
Enumerable#map, which we’ll revisit, is one such example. In this chapter, we’ll dive
into what makes code functional, where advantages can be reaped from a functional
style of programming, and how Ruby allows you to harness this power. Table 16.1 lists
some properties of functional and object-oriented programming styles.

NOTE We use the terms “method” and “function” interchangeably in this
chapter. Ruby makes no distinction between the two. Generally speaking,
functional programmers speak in terms of functions. Terms such as “pure
functions,” defined later in the chapter, lend themselves to the function
nomenclature.

16.1 Understanding pure functions
Pure functions lie at the core of functional programming and have their roots in
mathematical principles. Pure functions exhibit specific behavior such as referential
transparency. A function that, when given the same arguments, always returns the
same result with no side effects is said to possess referential transparency—much
more on this property later in the chapter. Pure functions lay the foundation for func-
tional programs.

Table 16.1 Properties of functional and object-oriented programming styles

Property Object-oriented Functional

Promotes code reuse

Models behavior with objects

Separates data and behavior

Promotes encapsulation

Terse code

Generic routines

Modularity

Flexibility with polymorphism

517Understanding pure functions
 Because functional programming is mathematics based, learning the underlying
mathematical principles behind a functional technique can be very helpful in the
early going. We won’t dive into mathematics too deeply in this chapter, but a simple
example may be helpful.

 Let’s say we set a variable called num to the integer value 100:

>> num = 100

Now we want to increment the value. We know that Ruby allows us to do this by rede-
fining num:

>> num = num + 1
=> 101

num now equals 101. But this isn’t a functional programming approach. Why? Think
about the mathematical implications of the statement, specifically using the transitive
property:

num = num + 1
1 = num - num
1 = 0

Whoops! Our way of incrementing variables is valid in the Ruby world but not in the
math world. In functional programming, we wouldn’t change the value of num. We’d
simply create a new variable:

>> new_num = num + 1
=> 101

Using two variables is equally valid Ruby syntax via the transitive property:

new_num = num + 1
1 = new_num - num
1 = 101 - 100
1 = 1

Changing the value of a variable once it has been set is (usually) considered a side
effect. We’ll learn more about side effects next.

16.1.1 Methods with side effects

A side effect is virtually anything a method does other than returning a value. Modify-
ing an instance variable, raising an exception, and outputting text to the console are
all examples of side effects. Side effects can be intentional or unintentional. At times
they’re useful, and at other times they should be avoided.

 Let’s say we want to write a method that implements the behavior of Array#sum:
sum returns the result of adding each item within a given array. We could implement it
the following way:

def sum_of_parts(arr)
 sum = 0
 arr.size.times { sum = sum + arr.shift }
 sum
end

518 CHAPTER 16 Ruby and functional programming
In this example, we first initialize a sum variable to 0. Then we loop over each element
in the array, using Array#shift to remove each element and add it to sum.

 Type the following into your console, and you’ll see that it works as expected the
first time:

>> my_array = [1,3,5]
>> sum_of_parts my_array
=> 9

But the second time we run sum_of_parts, we get a different value:

>> sum_of_parts my_array
=> 0

What happened? By implementing Array#shift, we removed every item from my_
array until it was empty:

>> my_array
=> []

Array#shift has the side effect of mutating the array that’s passed in. But Enumerable
#reduce (which is an alias for #inject) also allows us to sum elements in an array. We
can reduce sum_of_parts to a one-line method with no side effects thusly:

def sum_of_parts(arr)
 arr.reduce(:+)
end

By not modifying arr, this version of sum_of_parts can be called any number of times
and return the same value.

 Side effects abound in everyday software development, and some are less obvious
than you may think. The following behaviors are inherently side effects:

 Outputting data to the terminal
 Changing a record in a database
 Updating a value on a web page

Methods with no side effects are called pure functions. The evaluation of a pure func-
tion results in a value determined solely by its arguments and has no observable side
effects. The first time we implemented sum_of_parts, the result was determined by
the input (the array we gave it). However, a side effect kept it from being a pure func-
tion. Our new sum_of_parts method is pure, because the lack of side effects keeps it
returning the same result, method call after method call.

 As you’ll see, many of Ruby’s built-in methods are pure.

16.1.2 Pure functions and referential transparency in Ruby

A pure function is one whose result is solely dependent on its parameters. It may not
surprise you to learn that pure functions abound in some of Ruby’s most basic math
operators:

>> 3 + 4
=> 7

519Understanding pure functions
Remember from chapter 1 that +, -, *, /, and others are simply methods with character
syntax instead of letters. The preceding math operation can be rewritten as follows:

>> 3.+(4)

+ is a pure function. It operates on a receiver (3), takes an argument (4), and returns
the result. Every time + is called with identical receivers and arguments, it will return
identical results. Importantly, it never modifies the receiver or the argument in pro-
ducing a result.

 Pure functions are said to be referentially transparent. Referential transparency is
achieved if the expression can be replaced by the value of the expression without
changing the program’s behavior. In all cases, 3 + 4 can be replaced by 7 without
altering the state of a Ruby program. The + method makes for referentially transpar-
ent functions.

 Let’s look at a less obvious example: Enumerable#map. map operates on a receiver
and takes a block as an argument. Here’s an implementation of map on an array:

>> [3,5,7,9].map { |i| i * 5 }
=> [15, 25, 35, 45]

This map function takes an array as a receiver, iterates over the array, and yields each
item in turn to the block. The block takes the value yielded to it, multiplies it by 5, and
returns the resulting value. map then stores each resulting value in a new array. map
never modifies the receiver; it always creates a new array. In this way, it maintains its
status as a pure function.

 In fact, map is one of the most common built-in methods in functional languages.
reduce, more commonly found in Ruby by its alias inject, is another. As you’ll see
next, Ruby also contains many built-in methods with side effects.

16.1.3 Side effects in Ruby’s built-in methods

As discussed elsewhere in the book, bang methods often contain side effects. Whereas
upcase returns an all-caps version of the string upon which it is called, upcase! both
returns the all-caps value and mutates the string:

>> str = "joe"
>> str.upcase
=> "JOE"
>> str
=> "joe"
>> str.upcase!
=> "JOE"
>> str
=> "JOE"

str is permanently changed here. upcase! returns the desired result and has the side
effect of changing the value of str. chomp!, gsub!, reverse!, and slice! are all
examples of built-in Ruby methods with side effects. These are (for the most part)
methods that operate on String. But Array and Hash objects have their own share of
methods with side effects, not all of which end in an exclamation mark.

520 CHAPTER 16 Ruby and functional programming
 You’ll quickly intuit that compact!, select!, and sort!, among others, will perma-
nently alter the state of an array or hash. Meanwhile, << is sometimes overlooked
because it is syntactic sugar, is used commonly, and lacks an exclamation mark. But
use the array-append operator on your array, and you change its state:

>> arr = [1, 2, 3]
>> arr << 4
>> arr
=> [1, 2, 3, 4]

delete, also lacking an exclamation mark in its name, does the opposite for hashes:

>> hash = { a: "foo", b: "bar" }
>> hash.delete(:a)
>> hash
=> { :b => "bar" }

Remember that modifying state is not the only kind of side effect. A side effect can
also be an exception, and many Ruby built-in methods raise an exception if particular
conditions aren’t met. In this way, your code may have unintentional side effects,
which you’ll want to avoid no matter what style of code you choose to write:

>> arr = [1, 2, 3]
>> arr.drop(-1)
=> ArgumentError (attempt to drop negative size)

Passing a negative value to Array#drop will raise an ArgumentError. In the proper
context, this exception can be useful. As long as the ArgumentError is handled with a
proper try, catch, or ensure clause, arr.drop(-1) can execute without unexpected
interruption. But an unhandled exception is a side effect and should be avoided
regardless of whether you write in an object-oriented or functional style.

 Table 16.2 lists some other commonly used Ruby built-in objects whose methods
have documented exception cases.

Table 16.2 Methods with documented exception
cases

Class Method

String []=

encode

unicode_normalize

unicode_normalized?

Array fetch

drop

take

transpose

521Understanding pure functions
At some point, changing state becomes important. Ruby programs are often intention-
ally built with side effects, because this is how we manage an object’s state. Functional
programming offers consistency through stateless behavior, pure functions, and refer-
ential transparency. But to create programs that do anything of value, you’ll eventually
need to alter some state—persist records to a database, write output to the console, or
update the view of a web page. Both object-oriented and functional styles are import-
ant to learn because understanding how and why to use both will lead to better-
designed programs.

 Before we create some of our own functions, let’s look a little closer at simple state
management.

16.1.4 Modifying an object’s state

An object’s state is the value of its attributes at a given point in time. Most object-
oriented programming is built on the idea of setting, modifying, and retrieving the
state of objects. In traditional OOP, we construct objects with state and behavior in
mind.

 Consider the following Grade object. It maintains several variables as well as a
method that calculates a letter grade based on the average of numerical test scores.

class Grade
 attr_reader :letter

 def calculate_grade(scores)
 case scores.sum / scores.size
 when 90..100
 @letter_grade = "A"
 when 80...90
 @letter_grade = "B"
 when 70...80
 @letter_grade = "C"
 when 60...70
 @letter_grade = "D"
 else

Hash fetch

fetch_values

rehash

Integer coerce

sqrt

+, -, /, *,
and most other operator methods

Table 16.2 Methods with documented exception
cases (continued)

Class Method

522 CHAPTER 16 Ruby and functional programming
 @letter_grade = "F"
 end
 end
end

Next, we’ll write a ReportCard object that uses the Grade object to issue a report card:

class ReportCard

 def initialize(name, physics_grade, chemistry_grade, biology_grade)
 @name = name
 @physics_grade = physics_grade
 @chemistry_grade = chemistry_grade
 @biology_grade = biology_grade
 end

 def issue
 puts "Report Card for #{@name}"
 puts
 puts "Physics: #{@physics_grade.letter}"
 puts "Chemistry: #{@chemistry_grade.letter}"
 puts "Biology: #{@biology_grade.letter}"
 end
end

Finally, let’s put these objects to work and build a report card:

>> physics_grade = Grade.new
>> physics_grade.calculate_grade([78,92,90])
>> chemistry_grade = Grade.new
>> chemistry_grade.calculate_grade([90,80,88])
>> biology_grade = Grade.new
>> biology_grade.calculate_grade([99,90,98])

>> rc = ReportCard.new(physics_grade, chemistry_grade, biology_grade)
>> rc.issue
Report Card for Joe

Physics: B
Chemistry: B
Biology: A

The Grade object maintains state—the letter grade for a set of numerical scores.
ReportCard depends on this state both to maintain its own state (@physics_grade,
@chemistry_grade, and @biology_grade) and to issue its output (#issue).

 As we construct systems of growing complexity, modifying the state of our objects
increases the risk of errors. In this case we might mitigate some of the risk by remov-
ing some state from our objects. Let’s implement Grade and ReportCard without any
instance variables:

class Grade
 def self.calculate_grade(scores)
 case scores.sum / scores.size
 when 90..100
 "A"
 when 80...90
 "B"

523Immutability
 when 70...80
 "C"
 when 60...70
 "D"
 else
 "F"
 end
 end
end

In this example, we do away with the letter instance variables. The result is an object
with just one singleton method, calculate_grade.

 We can treat ReportCard the same way, removing state and reducing the object to
a single class method, issue:

Class ReportCard
 def self.issue(name, physics_grade, chemistry_grade, biology_grade)
 puts "Report Card for #{name}"
 puts
 puts "Physics: #{physics_grade}"
 puts "Chemistry: #{chemistry_grade}"
 puts "Biology: #{biology_grade}"
 end
end

Working with these new objects is more succinct simply because we needn’t initialize
them:

>> physics_grade = Grade.calculate([78, 92, 90])
>> chemistry_grade = Grade.calculate([90, 80, 88])
>> biology_grade = Grade.calculate([99,90,98])
>> ReportCard.issue("Joe", physics_grade, chemistry_grade, biology_grade)

The output is the same as in our original implementation. All we’ve really done in this
example is remove instance variables and custom initialize methods. But the effect of
this simple change is worth considering. If we can eliminate the management of state,
we’re a step closer to working with pure functions. Rather than creating singleton
methods as we’ve done here, we can examine the underlying expressions and whether
those can be recreated as functions. The rest of this chapter will consider techniques
for doing just that.

16.2 Immutability
Immutable objects don’t change once they’ve been created. In this way they differ
from most of the objects you’ve seen in the book.

 When we make an object’s attributes immutable, we’re assured that no other pro-
gram or function will change its value at a later time:

class Record
 attr_accessor :artist, :title, :year, :rating

 def initialize(artist, title, year, rating)
 @artist = artist

524 CHAPTER 16 Ruby and functional programming
 @title = title
 @year = year
 @rating = rating
 end
end

The preceding Record class behaves like any other object until we call freeze on it.
From that point on, the attributes are immutable:

>> the_unseen = Record.new("Quasimoto", "The Unseen", 2000, 3.5)
>> the_unseen.rating = 4.5
=> 4.5
>> the_unseen.freeze
>> the_unseen.rating.frozen?
=> true
>> the_unseen.artist = "Madlib"
=> FrozenError: (can't modify frozen Record)

Let’s now look at freeze and frozen a bit more closely.

16.2.1 Object#freeze and Object#frozen?

In functional languages, if you try to change an immutable object, you’ll get an excep-
tion of some kind. In most languages, constants provide an example of immutability.
As we know, this isn’t so in Ruby:

>> CONSTANT = "can't change me!"
=> "can't change me!"
>> CONSTANT.gsub!(/can\'t/, 'can')
=> "can change me!"

In fact, nearly everything in Ruby can be mutated. Ruby’s Object class provides a
freeze method to make objects (nearly) immutable:

>> CONSTANT.freeze
=> "can change me"
>> CONSTANT.gsub!(/can/, 'can\'t')
=> FrozenError (can't modify frozen String)

You can check whether an object is frozen by using the frozen? method:

>> CONSTANT.frozen?
=> true

Because freeze is defined on Object, nearly any object or attribute on an object can
be frozen. But be careful! As you saw in previous sections of the book, freezing an
object doesn’t guarantee immutability for all of its attributes.

 Frozen objects generally make for safer code because we can be confident that,
once frozen, they won’t be modified by other methods or objects later in the execution
cycle. It’s for this reason that immutable objects are a popular choice when multiple
threads are involved.

525Immutability
16.2.2 Frozen string literals

You can make your Ruby strings default to frozen (immutable) rather than calling
freeze on each one. This is achieved in one of the following ways:

 Run your programs on the command line with a specific instruction. This will
make every string in your program frozen by default:
ruby --enable-frozen-string-literal my_program.rb

 Add the following line to the top of any individual file:
frozen_string_literal: true

This will make all strings in that file frozen, but not strings in other files throughout
your program.

 You can make frozen strings default in an irb session by setting the RUBYOPT envi-
ronment variable at the same time as you start the session:

RUBYOPT=--enable-frozen-string-literal irb

Why the two approaches to strings, one frozen and one not? Versions of Ruby 3.0 and
later will all default to frozen strings. The options listed above are a way for Rubyists to
prepare themselves and their code for this major change to the language.

 When strings are frozen, they occupy one and only one place in memory. A look at
a string’s object_id tells the tale. Try running the following examples using RUBYOPT=
--enable-frozen-string-literal irb (and compare to the results you get with
plain irb):

>> str = "a frozen string"
>> new_str = "a frozen string"
>> new_str.object_id == str.object_id
=> true
>> str << ", brr!"
=> FrozenError (can't modify frozen String)

With frozen string literals turned on, two strings that look identical will occupy the
very same place in memory and thus have the same object_id. (Note: strings sur-
rounded by single quotes display the same behavior.)

 What if you really need a string to change? One way is to dup the string and make
the change, thereby creating an entirely new and unfrozen string:

>> str = "a frozen string"
>> new_str = str.dup
>> new_str.object_id == str.object_id
=> false
>> new_str << ", brr!"
=> "a frozen string, brr!"

Another alternative is String.new, which creates unfrozen strings by default:

>> str = String.new("an unfrozen string")
>> str.frozen?
=> false

526 CHAPTER 16 Ruby and functional programming
>> str << ", heating up!"
=> "an unfrozen string, heating up!"

A third option is to use the unary plus operator:

>> str = "frozen!"
>> str.frozen?
=> true
>> unfrozen_str = +str
>> unfrozen_str.frozen?
=> false

String immutability is still under heavy discussion and development, so expect things
to shift and change somewhat as we approach the release of Ruby 3.0.

 Let’s now turn our attention to higher-order functions and find out what else func-
tional programming has to offer Rubyists.

16.3 Higher-order functions
A method that takes a function as an argument or returns a function as a result is
called a higher-order function. You’ve already seen that some methods can take a block
as an argument. In Ruby, a method can also return a proc. In a functional program-
ming style, procs are functions that are either used as arguments or returned as val-
ues. Both types of functions are considered higher-order functions.

 Ruby has many higher-order functions built into the language. You’re getting a
heavy dose of map and inject/reduce in this chapter, all of which are higher-order
functions because they accept a block as an argument:

>> [1,3,5].map { |x| x * 5 }
=> [5, 15, 25]

Here map takes { |x| x * 5 } as a function and transforms the array, importantly
returning a brand-new array as a result. Examples of methods that take functions as
arguments abound:

True immutability not included
Frozen though they may seem, Ruby objects can always be modified. When a Ruby
object is frozen, a flag at the C level of Ruby is set that determines that object’s
behavior. When the flag is set, we get frozen behavior. But the flag can be unset,
thereby “unfreezing” or “thawing” the object. (No standard method exists to unfreeze
an object; it requires altering the object’s C-level implementation and may change
depending on your Ruby interpreter. Ruby does not make it easy, but it is possible.)

Because nothing can be made truly immutable, Ruby isn’t considered a pure func-
tional language. Immutability is a requirement for such languages. This shouldn’t
deter you from using functional programming paradigms in the language, as long as
you’re aware of the limitations.

527Higher-order functions
>> Array.new(4) { |i| "#{i + 1}A" }
=> ["1A", "2A", "3A", "4A"]

>> { a: 80, b: 90, c: 100 }.select { |k, v| v > 90 }
=> {:c=>100}

>> "I love Ruby!".each_byte { |b| print b, ' ' }
=> 73 32 108 111 118 101 32 82 117 98 121 33

Later, we’ll use techniques to create methods that return functions. Let’s look next at
method chaining, a feature of Ruby frequently enhanced by higher-order functions.

16.3.1 Method chaining

You’ve seen examples of method chaining throughout the book. Here’s a simple
example:

>> "joe".upcase.reverse
=> "EOJ"

"joe" is the receiver for upcase. The result of "joe".upcase, "JOE", is then the
receiver for reverse. "JOE" is never printed to the screen because upcase and
reverse are chained together.

 Earlier we preached caution about chaining too many methods together. This is
particularly true when the methods being chained together lack referential transpar-
ency. On the other hand, the preceding example works, because all three of these
conditions are met:

 Both methods are defined on the String object
 Both methods return an instance of String
 Neither method contains any side effects

We can find the same easy-to-execute method chaining in Ruby’s Integer objects:

>> 10 / 5 + 2
=> 4

Chaining methods is often made easier by applying the principles just listed, in partic-
ular ensuring that there are no side effects. Let’s look at two methods built into Ruby’s
Kernel that aid in method chaining.

16.3.2 Kernel#itself and Kernel#yield_self

Method chaining is a popular practice in Ruby, regardless of whether you’re writing
functional or object-oriented code. itself and yield_self are recent additions to
the Ruby programming language, and both are used to promote easier chaining of
methods.

 Kernel#itself was added to Ruby to aid in the construction of more-fluid method
chains. itself seems insignificant on the surface. It simply returns the object on
which it’s called:

528 CHAPTER 16 Ruby and functional programming
>> "Ruby".itself
=> "Ruby"
>> [1, 1, 3, 4, 5, 5, 5, 6, 7].itself
=> [1, 1, 3, 4, 5, 5, 5, 6, 7]

When we dig a little deeper, though, we can see a way for itself to add some syntactic
sugar to our operations. A common example is with the group_by method, which
operates on an enumerable and returns a hash. Suppose we want to group identical
strings in an array. We can do so with a clunky block:

>> %w(joe, joe, david, matz, david, matz, joe)group_by { |name | name }
=> {"joe"=>["joe", "joe", "joe"], "david"=>["david", "david"],

"matz"=>["matz", "matz"]}

Or we can substitute with itself and produce an identical result:

>> %w(joe, joe, david, matz, david, matz, joe).group_by(&:itself)
=> {"joe"=>["joe", "joe", "joe"], "david"=>["david", "david"],

"matz"=>["matz", "matz"]}

Replacing the block with itself is not earth shattering, and that’s the point. By sim-
ply returning the object, it becomes a useful tool for clarity and conciseness as we
chain more methods together. itself is also useful as a default argument:

def filter_arr(arr, method=:itself)
 arr.public_send(method)
end

>> a = [1,1,2,2,3,5,6]
>> filter_arr(a, :uniq)
=> [1, 2, 3, 5, 6]
>> filter_arr(a)
=> [1, 1, 2, 2, 3, 5, 6]

Kernel#yield_self functions much like Object#tap. Both take a block and yield the
receiver to that block. The difference is that yield_self returns the result of the
block rather than the receiver itself:

>> "Ruby".yield_self { |str| str + " Roundtable" }
=> "Ruby Roundtable"

yield_self can be thought of as a cousin of tap that discourages side effects, just as
map performs functions similar to each but without side effects. Because tap only
returns the receiver, we’d need to add a puts statement to see the results of combin-
ing strings:

>> "Ruby".tap { |str| puts str + " Roundtable" }
Ruby Roundtable
=> "Ruby"

Because yield_self returns the result of its block, successive calls can be chained
together. This has an elegance to it when used with lambdas in a functional program-
ming style:

529Higher-order functions
>> add_newline = -> (str) { str + "\n" }
>> welcome = -> (str) { "Welcome, " + str.upcase + "!" }
>> "joe".yield_self(&welcome).yield_self(&add_newline) + "We’re glad you’re

here!"
=> "Welcome, JOE!\nWe’re glad you’re here!"

When yield_self is called without a block, it returns an enumerator:

>> 3.yield_self.class
=> Enumerator

This gives us more flexibility to call yield_self in other situations:

>> (1..10).yield_self { |r| r.member?(rand(15)) } # returns true or false
>> (rand(10) + 1).yield_self { |x| x.odd? ? x + 1 : x } # returns an even

number between 2 and 10.

NOTE In an upcoming release of Ruby, yield_self will be aliased to then.
yield_self isn’t particularly descriptive or succinct, and the Ruby core team
has decided that the method then achieves both.

16.3.3 Functions that return functions

Ruby’s map method is a higher-order function because it takes a block as an argument.
This block gives transformation instructions to the receiver, an array. The result of
calling map is a brand-new array containing whatever transformation was applied in
the given block. This array is a value returned by calling map.

 A popular technique in functional programming is creating higher-order func-
tions that return other functions. In Ruby, that means writing methods that return a
proc containing transformation instructions rather than a value. You saw an example
of this in chapter 14:

def multiply_by(m)
 Proc.new {|x| puts x * m }
end
mult = multiply_by(10)
mult.call(12)

The result of the multiply_by method is not a straightforward value but a proc that
performs yet another transformation. The method returns a function, which makes
the method itself a higher-order function. The function that’s returned can be called
later (for example, when more information has been gathered) with an argument
that can be evaluated to return a value.

 With a technique called currying, we can even evaluate parts of a function rather
than the entire function at once.

16.3.4 Currying and partial function application

In chapter 14 you saw that Proc objects—excluding lambdas—are less strict about
what arguments are passed into them. Whereas a method defines a strict arity, or argu-
ment count, most procs allow us to pass in any number of arguments. Ruby’s curry
method deals directly with arity, specifically by passing in fewer arguments to either
methods or procs.

530 CHAPTER 16 Ruby and functional programming
 Partial function application is a functional programming technique whereby a func-
tion is passed any number of arguments less than its arity. The function is evaluated
with the given arguments, and a new function is returned that takes the rest of the
arguments. Let’s look at a simple example of a proc that adds two arguments:

>> add = -> (a, b) { a + b }

When we use partial function application for add, passing in the value 1 for a, the fol-
lowing expression is returned:

>> add = -> (1, b) { 1 + b }

Currying is subtly different. Instead of returning one function, currying returns a
series of functions that each take one argument. Let’s look again at our add proc:

>> add = -> (a, b) { a + b }

A curried version of add chains two functions together, one for each argument:

>> add = -> (a) { -> (b) { a + b } }

Both of these statements are valid Ruby syntax. The curry method obviates the need
to write the second version. A partially applied function, by contrast, applies whatever
arguments are passed to it and returns only one function with which we can evaluate
the result.

 In Ruby, curry accomplishes both partial application and currying. We won’t see
functions chained together or partially applied the way you see them above. Just take
note of what’s happening under the hood.

 One use case for currying and partial function application is to create generic
functions that can be reused. Let’s say we want to create a series of functions that take
an array and return the elements that are multiples of an integer:

def find_multiples_of_3(arr)
 arr.select { |el| el % 3 == 0 }
end

>> find_multiples_of_3([-3,3,4,5,6,8,9,10,12])
=> [-3, 3, 6, 9, 12]

def find_multiples_of_5(arr)
 arr.select { |el| el % 5 == 0 }
end

>> find_multiples_of_5([-3,3,4,5,6,8,9,10,12])
=> [5, 10]

As we add more methods similar to the two here, things can quickly get cumbersome.
The methods are very similar, except for one argument. By abstracting that argument,
we can create a generic, or multiuse function:

>> find_multiples = -> (x, arr) { arr.select { |el| el % x == 0 } }

531Higher-order functions
This generic function takes the form of a lambda. The curry method allows us to cre-
ate a function that returns another function:

>> find_multiples_of = find_multiples.curry
>> find_multiples_of_3 = find_multiples_of.(3)
>> find_multiples_of_5 = find_multiples_of.(5)

find_multiples_of is the curried form of find_multiples. Now we can pass in one
argument and return a function that takes the remaining argument, an array. From
here, finding multiples in an array is performed similarly to the method-based
approach:

>> find_multiples_of_3.([-3,3,4,5,6,8,9,10,12])
=> [-3, 3, 6, 9, 12]
>> find_multiples_of_5.([-3,3,4,5,6,8,9,10,12])
=> [5, 10]

This approach makes use of higher-order functions: it creates a function that returns
another function. It’s shorter than the method-based approach and doesn’t duplicate
the effort of determining multiples.

 Several ways exist to call curried or partially applied functions. Let’s turn again to
our simple addition example, this time adding another argument:

>> add = -> (a, b, c) { a + b + c }
>> fun = add.curry
=> #<Proc:0x000055f71c9718f0 (lambda)>

Calling curry with no arguments returns a lambda. We can evaluate this lambda all at
once,

>> fun.(1,2,3)
=> 6

or chain several calls together,

>> fun.(1).(2).(3)

or pass in just one argument, which returns a function that takes two arguments:

>> fun2 = fun.(1)
=> #<Proc:0x000055f71ca50d20 (lambda)>
>> fun2.(2,3)
=> 6

Finally, we can pass in two arguments with predictable results:

>> fun3 = fun.(1,2)
=> #<Proc:0x000055f71ca50d20 (lambda)>
>> fun3.(3)
=> 6

In all these examples, the function waits until it has the necessary arguments, return-
ing functions along the way. When all arguments have been supplied, the function is
evaluated and returns a value.

532 CHAPTER 16 Ruby and functional programming
 curry also takes an optional arity argument. When called with this argument, the
curried object will only be evaluated when the given number of arguments has been
supplied:

>> sum_all = -> (*nums) { nums.reduce(:+) }
>> sum_all.curry.(1,2,3)
=> 6
>> sum_at_least_four = sum_all.curry(4)
>> sum1 = sum_at_least_four.(3,4)
=> #<Proc:0x000055d2f90867a0 (lambda)>
>> sum2 = sum1.(5)
=> #<Proc:0x000055d2f90b4948 (lambda)>
>> sum3 = sum2.(7)
=> 19

Passing in 4 to the curry method means that the function will wait until at least four
arguments have been passed in before evaluating itself. Until then, the function is
happy to return a partially applied function.

 When it comes to calling curried or partially applied functions, we have several
types of notation at our disposal:

>> fun.(1,2,3)
=> 6

When using parentheses, we must separate them with a dot operator. The dot opera-
tor is actually shorthand for call:

>> fun.call(1,2,3)
=> 6

Square brackets can replace arguments in parentheses. When using square brackets,
the dot operator isn’t necessary:

>> fun[1,2,3]
=> 6
>> fun[1,2][3]
=> 6

Methods can also be curried:

>> def add(a, b, c) ; a + b + c ; end
=> :add
>> fun = method(:add).curry
=> #<Proc:0x000055f71cb45758 (lambda)>
>> fun.(1,2,3)
=> 6

As you can see, the curry method turns our add method into a lambda. Once that
transition is complete, the lambda behaves exactly as all of our previous examples.

 Next we’ll look at recursion and see what tools Ruby uses to support this technique.

533Recursion
16.4 Recursion
Simply put, recursion is when a function calls itself one or more times before returning
the desired result. Because it provides a mechanism for iterating that produces no
side effects, it’s an oft-used tool of functional programmers.

 One classic example used to demonstrate recursion is to evaluate the Fibonacci
sequence. In this example, we want to find the integer in the Fibonacci sequence at a
given point x. Here’s an iterative approach:

def fibonacci(x)
 y = 0
 z = 1

 x.times do
 temp = y
 y = z
 z = temp + y
 end

 y
end

>> fibonacci(7)
=> 13

A recursive solution will call itself successively, decrementing the arguments it passes,
until it arrives at the correct answer. In this case, we can write a much more terse
function:

def fibonacci(x)
 x <= 1 ? x : fibonacci(x - 1) + fibonacci(x - 2)
end

>> fibonacci(7)
=> 13

A recursive function isn’t complete without a terminal clause. A terminal clause lets the
function know that evaluation is complete, and it should return a value rather than
continuing to call itself. In the preceding fibonacci example, x <= 1 is the terminal
clause. As soon as this statement returns true, we stop recursing and return x. If
we didn’t have this clause, the method would call itself forever (or until we stopped it
ourselves).

 Let’s look at another common example, finding the sum of the squares for the first
x positive integers (not to be confused with the statistical formula, sum of squares):

def sum_squares(x)
 if x == 0
 0
 else
 x**2 + sum_squares(x - 1)
 end
end

>> sum_squares(3)
=> 14

534 CHAPTER 16 Ruby and functional programming
In this case, x == 0 is the terminal clause. Our function continues to decrement x and
recursively call sum_squares until the terminal-clause condition is met. At that point,
the function returns its value.

 Recursion is a difficult programming concept to master, and a full treatment of the
topic falls outside the scope of this book. It’s important to mention here the proper-
ties of Ruby that make it adequate for recursive functions: lazy evaluation and tail-call
optimization.

16.4.1 Lazy evaluation

In chapter 10 we covered the lazy method and how it impacts enumerators. Func-
tional languages make use of lazy evaluation in order to work with very large, or even
infinite, sets of data. These sets of data are often expressed as sequences, and working
with sequences forms a cornerstone of functional programming.

 Let’s turn again to finding multiples. We can find multiples of a given number
against infinite positive numbers:

def find_multiples(num, mult)
 (1..Float::INFINITY).lazy.select { |x| x % mult == 0}.first(num)
end

>> find_multiples(3, 50)
=> [50, 100, 150]

Using our knowledge of partial function application, we can use the curry method to
give us a generic function for reuse:

>> first_3_multiples = self.method(:find_multiples).curry.(3)
=> #<Proc:0x000055c3b7d76088 (lambda)>
>> first_5_multiples = self.method(:find_multiples).curry.(5)
=> #<Proc:0x000055c3b8243368 (lambda)>
>> first_3_multiples.(256)
=> [256, 512, 768]

As recursive functions call themselves indefinitely or until a terminal clause is
reached, lazy evaluation comes in handy. Let’s use lazy evaluation to create a sequence
of squares for each positive integer:

>> squares = (1..Float::INFINITY).lazy.map { |x| x * x }
=> #<Enumerator::Lazy: #<Enumerator::Lazy: 1..Infinity>:map>

We’ve stored an infinite sequence into a lazy enumerator called squares. We can now
use Enumerator methods to filter our sequence:

>> squares.first(10)
=> [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>> squares.first(10)[3]
=> 16

By creating an infinite sequence, summing consecutive squares becomes a trivial matter:

def sum_squares(y)
 squares = (1..Float::INFINITY).lazy.map { |x| x * x }

535Recursion
 squares.first(y).sum
end

Generic functions can be used as building blocks to meet more-complex require-
ments. Suppose we want to create a function that takes two integers that we’ll call a
“powers factorial” and a “set size.” We take the first consecutive numbers raised to the
given powers factorial for the given set size and then recurse on the powers factorial.
Finally, we’ll add the numbers in each set together. For example, with a powers facto-
rial of 4 and a set size of 3, we’ll add the first 3 integers to the 4th power to the first 3
integers cubed, and so on, until we reach a power of 1. The result is 154 and is broken
down as follows:

[1, 16, 81] + [1, 8, 27] + [1, 4, 9] + [1, 2, 3] = [1, 16, 81, 1, 8, 27, 1, 4, 9, 1, 2, 3] = 154

We start by turning our squares enumerator into a generic function:

powers = -> (power) { (1..Float::INFINITY).lazy.map { |x| x**power } }

We need a terminal clause. Any integer to the power of 1 is the integer itself. So when
power == 1, we’ll stop recursing and return an array with consecutive positive inte-
gers. Finally, we’ll use flatten and sum to add the elements of the array. Here’s the
recursive method in its entirety:

def sum_powers_factorial(pfact, size)
 powers = -> (power) { (1..Float::INFINITY).lazy.map { |x| x**power } }
if pfact == 1
 Array.new(size) { |x| x + 1 }
 else
 [powers.call(pfact).first(size),
 sum_powers_factorial(pfact - 1, size)].
 flatten.sum
 end
end

>> sum_factorial_powers(4, 3)
=> 154

We begin by defining powers B so that we can use it later in the function. We then
define the terminal clause C. When pfact == 1, we return an array of length size
with consecutive positive integers beginning with 1. Next, we use our powers function
to return an array of size consecutive integers to the power of pfact D. We combine
this into an array with a recursive call to sum_powers_factorial until the terminal
clause evaluates to true. At that point, we flatten the array and sum the elements to
give us our final value.

 By creating generic functions and combining them into higher-order functions, we
have much more succinct code. In this case, we solved a complex mathematical prob-
lem with just a few lines of code—an object-oriented solution would involve poten-
tially many more lines of code. Which is more expressive? Which would more aptly fit
your needs? That’s a question only you, the Rubyist, can answer.

B

C

D

536 CHAPTER 16 Ruby and functional programming
 Let’s look next at an optimization technique that can positively impact your recur-
sive functions.

16.4.2 Tail-call optimization

Recursive functions can take a long time to evaluate. In our previous Fibonacci exam-
ple, calculating the 7th or 8th integer in the sequence is quick. Depending on your
hardware, you may start to see a lag in computation around the 30th integer. Try cal-
culating the 100th integer, and you’ll be waiting awhile! With even larger numbers,
the computation may take up all available resources and bring your machine to a halt.
Ruby will helpfully raise a SystemStackError before this happens, but you’re still left
with a function that doesn’t, well, function.

 When evaluating a recursive function, the Ruby interpreter typically needs to add
an additional stack frame to its call stack each time it evaluates the function. A
SystemStackError indicates that the call stack—the number of subroutines that the
Ruby interpreter will evaluate—has grown too large for the machine to handle. These
types of errors—common in many programming languages—are often called “stack
overflow” errors.

 Tail-call optimization unburdens the Ruby interpreter by allowing tail-recursive
functions to be evaluated without adding successive stack frames to the call stack.
When the call stack remains constant, we avoid stack overflow errors and can recurse
many thousands of times through a function without exhausting system resources.

 For tail-call optimization to work, the function itself must be tail recursive. This
means that the last instruction in a function is a call to the function itself. Our previ-
ous recursive fibonacci example wasn’t tail recursive because the last instruction was
an operation, fibonacci(x - 1) + fibonacci(x - 2), and not a simple call to itself.
To make it tail recursive, we’ll split it into two functions.

 Write the following code in a file called fib_tail_recursive.rb.

def fibonacci_helper(x, y, num)
 num < 1 ? x : fibonacci_helper(y, x + y, num - 1)
end

def fibonacci(x)
 fibonacci_helper(0, 1, x)
end

fibonacci_helper is tail recursive because its final instruction is to call itself. With a
tail-recursive function in place, Ruby can resolve fibonacci much faster and for much
larger numbers. You can now safely evaluate fibonacci(100) or even fibonacci
(10000) in no time!

 Tail-call optimization isn’t turned on by default in Ruby. Without it enabled, you’ll
eventually encounter a SystemStackError if your call requires hundreds of thousands
or millions of recursions to evaluate. You can enable tail-call optimization by setting
compile options on the RubyVM::InstructionSequence class. To try this, create a new

537Summary
file called fib_implementer.rb. Set your compile options, require the fib_tail_recursive
file, and call the fibonacci function.

RubyVM::InstructionSequence.compile_option = {
 tailcall_optimization: true,
 trace_instruction: false
}

require_relative 'fib_tail_recursive'

puts fibonacci(1000000)

With tail-call optimization turned on, fibonacci can evaluate much larger numbers
and will not encounter a SystemStackError.

Summary
In this chapter, you’ve seen

 The differences between functional and object-oriented programming styles
 Pure functions and referential transparency
 freeze and frozen? methods in the context of immutable code
 How Ruby will handle strings in version 3.0
 Currying and partial function application techniques with curry
 The lazy method and tail-call optimization

Ruby isn’t a purely functional language, but it provides tools that make this style of
programming possible. It gives you a new set of tools and a different perspective on
the code you write. Plus, it’s fun!

 Immutability and referential integrity are tenets of functional programming with
broad applicability in other languages. Recursion and tail-call optimization, while not
specific to a functional programming style, tend to be used more frequently in such
paradigms. This chapter provided the principles that can help you learn and grow as a
Rubyist and as a programmer.

 And that’s that! Enjoy your status as a well-grounded Rubyist and the many struc-
tures you’ll build on top of the foundation you’ve acquired through this book.

index

Symbols

- (dash character) 76
- operator 209
-- flags

--noecho flag 30
--noecho option 237
--simple-prompt option 5,

29
--version command-line

switch 26
-c command-line switch 25
-c flag 13
-cw command-line flag 13
-e command-line switch 25
-h command-line switch 26
-l command-line switch 25
-r command-line flag 17
-v command-line switch 26
-w command-line switch 25
-w flag 13, 26–27

:: (double colon) 90
! operator 162
. (dot operator) 48
@ character 8, 504
* (asterisk) 50
* operators, array conversion

with 216–217
*args parameter 116
& character 450
&: syntax 86
&& operator 209
#{...} operator 44
% operators 237, 265,

272–274, 356
+ (plus sign) 43
+ method 207

+ operator 209
<< method 241
<< operator 237
<<~ (squiggly heredoc) 238
<<EOM expression 237
<=> method 227–228
<=> operator 477
= (equal sign) 73–74
= method 240, 275, 284
== (double equal sign

operator) 48
=== operator 169–171, 207,

381–382
> method 220
|| operator 209
||= (or-equals) operator 98
$ (dollar sign) 8
$: (dollar-colon) 22
$? variable 479
$/ delimiter 390
$0 variable 360
$stdout variable 389

A

absolute constant path,
forcing 144–145

Active Support library 432
ActiveRecord library 487
add? method 299
additive changes 432–433
additive/pass-through hybrids

434–435
alias 428
alias_method 433–434
all_symbols method 254
ancestors method 423, 436

ancestors, BasicObject as
439–444

ancestry, of objects 82
anchors, fine-tuning regular

expressions with
369–372

archdir 18
ARGF.class 501
ArgumentError 190, 197–198,

450, 520
ArgumentList class 448
arguments 10

final method arguments,
hashes as 291–292

methods taking 39–40
proc arguments 456
See also method arguments

arithmetic method operators
208

arithmetic, operations
259–260

arity 456
Array class 11, 99, 204, 206,

268
Array method 272–273
Array.new method 271–272
arrays 9, 270–282

combining 279–280
conversion

with * operators 216–217
with to_a 216–217

creating 271–274
%I array constructors 274
%i array constructors 274
%W array constructors

273–274
%w array constructors

273–274
539

540 INDEX
arrays, creating (continued)
Array method 272–273
Array.new 271–272

getting more than one array
element at a time
275–277

hashes vs. 269–270
inserting array elements

275–278
manipulating beginnings of

277–278
manipulating ends of

277–278
querying 281–282
removing array elements

275–278
retrieving array elements

275–278
role-playing with to_ary

method 220
setting more than one array

element at time
275–277

transformations of 280–281
assert method 513
assert_equal method 510, 513
assertions, fine-tuning regular

expressions with
369–372

conditional matches 372
lookahead assertions 371
lookbehind assertions

371–372
assignment operations 6
assignment operator 176
assignments

local-variable assignment in
conditional body
165–166

of variables 56–63
objects 57–59
references in 57–60

syntax in conditional bodies
165–167

syntax in conditional tests
165–167

associative arrays 269
asterisk (*) 50
at-sign (@) 8
atomic values 9
attr_* method family

attributes and 77–80
summary of 80

attr_accessor, creating
reader/writer attri-
butes with 79

attribute reader methods 77
attribute writer methods 77
attributes

attr_* method family and
77–80

summary of attr_*
methods 80

automating creation of
78–79

attr_reader method 79
attr_writer method 79
automating creation of

attributes 78–79
availability

of tickets 44–45

B

backticks
calling system programs

with 480
overview of 479–481

backtrace method 196
backward ranges 297
Baker class 152
bang (!) methods 210–220
bareword 133
bareword-style invocations 10
BasicObject 83, 105, 415–416,

439–441, 498
as ancestor 439–444
as class 439–444
implementing subclasses of

441–444
begin keyword 190, 295, 364
beginning-of-line anchor 369
behaviors

of core
modifying with extend

437–438
refinements 438–439

of objects 46–49
defining 38
identifying uniquely with

object_id method 47
querying abilities with

respond_to? method
48

sending messages to with
send method 48–49

of singleton class
with extended 491–492
with included 491–492

benchmark.rb file 18

Binding class 462
binding method 462
binding.irb, debugging with

192–194
bindir key 17
Bitwise operators 208
blockless iterator calls, implicit

creation of enumera-
tors by 336–337

blocks
block-proc conversions

448–452
capturing code blocks as

proc 449
generalizing to_proc

451–452
Hash#to_proc

450–451
using procs for blocks 450

defining sort-order logic with
330

evaluation, with map
methods 325

parameters 185–188, 270
procs vs. 447–448
to scope file operations

395–396
using procs for 450

Boolean objects
overview of 220–225
true/false as 223–224

Boolean queries 243, 307–309
Boolean states 220–225

expressing in methods
44–45

true/false as 221–222
break keyword 173
built-in classes 204–205, 208,

210, 232
built-in methods, side effects

of 519–521
bundler utility 34
byte-based file reading 392

C

callable objects 446, 454
callbacks 485–514

extended, singleton-class
behavior with 491–492

implementing MicroTest
511–514

included, singleton-class
behavior with 491–492

541INDEX
callbacks (continued)
MiniTest 509–511
specifying MicroTest

511–514
caller method, examining stack

traces with 505–506
CallerTools

Call class 506–507
Stack class 507–508

call_original method 460
camelCase names 56
capture_block method

449–450
captures 361–381

in replacement strings 381
named captures 362–363

captures method 361
capturing

code blocks as procs 449
Method objects 458–459
submatches with parentheses

358–360
caret 357, 370
case equality 169, 311, 382–384
case keyword 168, 171
case statements 167–172

behavior of 170–171
case truth tests 171
case/when structure

168–169
return value of 171–172

case transformations 246–247
case-changing methods 246
center method 247
chaining 337
change_string method 61
character classes

overview of 357–358
special escape sequences for

358
character-based file reading

392
chat servers

writing using sockets
472–474

writing using threads
472–474

Child class 148
chomp method 248
chop method 248
chr method 245
Class class 95
class definitions 9
class instance methods, enu-

merable overrides
500–501

class keyword 9, 65, 83,
418–419

class methods 86–87, 89,
425–426

adding with extend 436–437
defining with class 419–420
instance methods vs. 88–89
self in definitions of 130–132
writing 87–88

class objects
calling methods 85
creating 83–85
instance variables of

149–151
querying 231

class variables 8
across classes 145–148
across instances 145–148
class hierarchy and 148
pros and cons of 148–149
syntax 145–151

class-definition blocks 127
Class.new method 84
Class#inherited, intercepting

inheritance with
492–493

classes 65–69, 103–115
as objects and message

receivers 83–89
class methods vs. instance

methods 88–89
class objects calling

methods 85
creating class objects

83–85
singleton method 86
writing class methods

87–88
class variables across

145–148
designing and naming

121–124
hierarchy of 80–83

BasicObject 83
class variables and 148
object ancestry 82
single inheritance 81–82

mixing modules into 99–101
nesting 123–124
numerical 259
organizing objects with

64–94
attributes and attr_*

method family 77–80
constants 89–92

instance variables and
object state 69–72

setter methods 72–77
origin of objects in 11
reopening 67–69
self in 129–132

class_eval method 461,
465–467

clean_tmp task 31
clear method 248
clearing hashes 290
clone method 61
code blocks 173, 177–188

block parameters 185–188
capturing as procs 449
creating enumerators with

333–335
curly braces vs. do/end in

179–180
implementing each method

182–183
implementing map method

building map on top of
each 185

overview of 184–185
implementing times method

181–182
method calls 179
rescue keyword in 191–192
variable scope 185–188

combining
arrays 279–280
hashes 287–288
strings

overview of 241
via interpolation 242–243

compact method 281
compact! method 520
Comparable module 232, 245,

303, 328
overview of 227–229
sorting enumerables and

331–332
comparing

objects 225–229
Comparable module

227–229
equality tests 226–227

strings
for equality 245–246
overview of 245

concat method 279
concurrency 468
concurrent execution, with

threads 467–478

542 INDEX
concurrent execution, with
threads (continued)

killing threads 469–471
manipulating thread

keys 475–478
starting threads 469–471
stopping threads 469–471
threaded date servers

471–472
threads 474–475
variables 474–475
writing chat servers using

sockets 472–474
writing chat servers using

threads 472–474
conditional execution 9, 31,

160–172
assignment syntax in condi-

tional bodies
local-variable assignment

in conditional body
165–166

overview of 165–167
assignment syntax in condi-

tional tests 165–167
case statements 167–172

behavior of 170–171
case truth tests 171
case/when structure

168–169
return value of case

statements 171–172
conditional assignment

operator 209
conditional bodies

assignment syntax in
165–167

local-variable assignment
in 165–166

conditional modifiers 164
else keyword 161–162
elsif keyword 161–162
if keyword 160–165
if statements 164–165
negating conditions with

bang (!) 162
negating conditions with not

162
unless keyword 162–163

conditional looping
with until keywords 175–176

overview of 174–175
until modifiers 175–176

with while keywords 175–176
overview of 174
while modifiers 175–176

conditions
negating with bang (!) 162
negating with not 162

constant lookup 125, 144
constants 9, 65, 89–92

basic use of 90–91
introspection of 503–504
predefined 90–91
reassigning vs. modifying

91–92
resolution of 143–145

constraining matches, with
quantifiers 365–367

constructors, literal 205–206
content queries 243–245
content transformations

248–249
contents, of hashes 290
control-flow techniques

159–200
conditional code execution

160–172
case statements 167–172
if keyword 160–165

error handling 189–200
exceptions 189–200

avoiding NoMethodError
with safe navigation
operators 194–195

capturing in rescue clauses
196–197

creating exception classes
198–200

debugging with
binding.irb 192–194

ensure clauses 198
raising 189–190
raising explicitly 195–196
rescue keyword 190–192
rescuing 189–190

iterators 177–178
repeating actions with loops

172–177
looping based on lists of

values 176–177
multiple assignment in

conditional statements
176

unconditional looping
with loop method 173

conversion methods, for
date/time 265–267

conversions
numerical

with to_f method 217–219
with to_i method 217–219

of arrays
with * operators 216–217
with to_a method 216–217

of regular expressions to
strings 377

of strings 249–250
of strings to regular expres-

sions, string-to-regexp
idioms 375–376

with Float 218–219
with Integer 218–219

convertors
converting 88
second iterations 13–14

core behavior
modifying with extend

437–438
refinements 438–439

core, risks of changing
functionality 427–432

cover? method 296
crypt(3) library function 249
curly braces 173, 178–180
currying 529–532
cycle method 321–322

D

danger 210–220
destructive (receiver-changing)

effects as 210–212
varies independently from

destructiveness
212–213

bang (!) notation and
destructive behavior
212–213

bang (!) notation in
method pairs 212

dangerous methods 205
dash character (-) 76
Data Encryption Standard

(DES) 249
Date class 261
date format specifiers 264
date objects, creating 261–262
date/time 260–267

arithmetic 266–267
conversion methods

265–267
formatting methods 264–265
objects

creating 263
instantiating 261–263

query methods 263–264

543INDEX
DateTime class 261, 265
debugging with binding.irb

192–194
decomment_demo.rb file 410
DeCommenter.decomment

method 409
def keyword 9, 38
default method 286
default-valued arguments

54–55, 63
define_method 466–467
defining

behaviors of objects 38
class methods with class

419–420
methods more than once

106–109
operators by defining

methods 207–209
sort-order logic with blocks

330
top-level methods 156–157

delegating, with method_miss-
ing method 487–488

delete_if operation 402
delimiters 236
deploying method-access rules

151–156
private methods 151–155
protected methods 155–156

DES (Data Encryption
Standard) 249

destructive methods 203, 212
destructiveness

as danger 210–212
varies independently from

danger 212–213
bang (!) notation and

destructive behavior
212–213

bang (!) notation in
method pairs 212

dictionaries 269
did_you_mean gem 19
Dir class

manipulating directories
with 401–405

overview of 401–404
reading directory entries

402–404
querying directories with

404–405
Dir.glob method 403
directories

globbing 403–404

manipulating with Dir class
401–405

querying with Dir class
404–405

reading entries
entries method 402–403
overview of 402–404

display method 215–216, 232
do/end, curly braces vs.

179–180
dollar sign ($) 8
dollar-colon ($:) 22
dot operator 48, 532
dot wildcard character

355–356
double colon (::) 90
double equal sign operator

(==) 48
double-quoted strings

235–236, 238
downto method 266
drop methods 316
drop_while method 316
duping objects 61–62

E

each method 32, 182–183, 308,
318–323, 335, 391

building map on top of 185
gaining enumerability

through 305–307
of enumerators 337–339

each.with_index method
318–319

each_byte method 326, 336
each_char method 326
each_cons method 319–320
each_entry method 301
each_line method 327, 387
each_object method 500
each_slice method 319–320
each_with_index method

318–319
else clause 161, 163, 168, 171
else keyword 161–162
elsif keyword 161–162
Employee class 81
empty argument list 132
encoding 251, 347

of source files 250–251
strings 250–252

end keyword 131, 163, 190–192
end method 295, 364

end of line anchor 369
ensure clauses 198
entries method 402–403
Enumberable#first 314–316
enumerability

adding with enumerators
341–343

gaining through each
methods 305–307

of files 396–397
Enumerable module 269, 281,

294, 301–302
Enumerable#grep method 311
enumerables

Boolean queries 307–309
element-wise operations

314–317
drop methods 316
Enumberable#first

314–316
max methods 316–317
min methods 316–317
take methods 316

indexing with with_index
method 345

IO objects as 387–388
overrides 500–501
reduction with inject method

322–323
searching 309–314

getting first match with
find operator 309–310

getting matches with
find_all method 311

selecting 309–314
getting matches with reject

operation 311
getting matches with select

method 311
organizing results with

group_by method
312–314

organizing results with par-
tition method 312–314

with grep 311–312
sorting 328–332

Comparable module and
331–332

defining sort-order logic
with blocks 330

with sort_by method
330–331

enumerators 332–343
adding enumerability

with 341–343

544 INDEX
enumerators (continued)
attaching to other objects

335–336
creating with code blocks

333–335
each method of 337–339
exclusive-or operations on

strings with 345–347
fine-grained iteration with

341
FizzBuzz with 348–350
implicit creation of, by block-

less iterator calls
336–337

lazy 347–350
method chaining 343–347

economizing on interme-
diate objects 343–344

exclusive-or operations on
strings with
enumerators 345–347

indexing enumerables
with with_index
method 345

protecting objects with
339–340

strings as 326–327
enum_for method 335
eof? method 386
EOFError 474
eql? method 226–227
equal? method 226–227
equality 47
equality tests 226–227
equality-test method 246
Errno class 398
Errno::error 190
error handling 189–200
errors, in file I/O 397–398
escape sequences, for character

classes 358
estimate attribute 227
eval family of methods

461–467
class_eval (module_eval)

465–467
executing arbitrary strings as

code with 461–462
instance_eval method

463–465
pitfalls of using 462–463

event_date method 72
exceptions 189–200

capturing in rescue clauses
196–197

creating exception classes
198–200

debugging with binding.irb
192–194

ensure clauses 198
in file I/O 397–398
raising

explicitly 195–196
overview of 189–190

re-raising 197
rescue keyword 190–192

using inside code blocks
191–192

using inside methods
191–192

rescuing 189–190
exclusive range 294–295
exclusive-or operations, on

strings with
enumerators 345–347

exec method 479–481
extend keyword 110–111
extend method 99, 415–416,

443
intercepting 490–492
per-object changes with

435–438
adding class methods with

436–437
adding to object function-

ality with 435–436
modifying core behavior

with 437–438
extended callbacks, singleton-

class behavior with
491–492

extensions 20–25
loading 21–22
loading files in default load

path 22–23
require feature 23–24
required 27
require_relative 24–25

F

f.seek method 393
FalseClass 223
fetch method 285, 475
Fiber class 470
Fiber.yield method 470
FIFO (first in, first out)

behavior 97
File class 390, 393, 399–401

file handles 390, 409, 411
__FILE__ keyword 9
file mode 16
File objects, querying 399–401

deriving file information with
File::Stat 401

getting information from File
class 399–401

getting information from
FileTest module
399–401

File::Stat objects, deriving file
information from 401

File.join method 402
File.new method 396
File.open method 87, 395
File.read method 393, 395
File.readlines method 393
files 14–17, 390–398

byte-based file reading 392
character-based file reading

392
file enumerability 396–397
file I/O errors 397–398
line-based file reading 391
loading in load path 22–23
querying file positions

392–393
reading from 15–16, 390
reading with File class

methods 393–394
seeking file positions

392–393
using blocks to scope

operations 395–396
writing to 16–17, 394–395

FileTest module, getting infor-
mation from 399–401

FileUtils module 406–407,
411–412

fileutils.rb file 18
final method arguments,

hashes as 291–292
find operator 309–310
find_all method 310–311, 377
fine-grained iteration, with

enumerators 341
first in, first out (FIFO)

behavior 97
flatten! method 280
Float class 204

conversions with 218–219
floating-point numbers 6, 11
fnmatch function 404
force_encoding method 251,

347

545INDEX
forcing absolute constant path
144–145

fork method 481
formal parameters 39
formatting

methods, for date/time
264–265

transformations 247
Forwardable module 488
freeze method 340
freezing objects 61–62
frozen string literals 525–526
Function class 446
functions

creating with lambda
456–458

creating with stabby lambda
(->) 456–458

higher-order functions
526–532

currying 529–532
Kernel#itself 527–529
Kernel#yield_self 527–529
method chaining 527
partial function

application 529–532
returning functions 529

G

gem install command 33
gem method 34
gem uninstall command 33
gems

directory of 19–20
installing packages with

33–34
loading 34

generic objects 46
getbyte method 392
getc method 386, 392
GIL (Global Interpreter Lock)

468
global substitution 380–381
global variables 8

built-in 137
global scope and 136–138
i/o 388–389
listing 503–504
pros and cons of 137–138

global-capture-variable 381
globbing directories 403–404
greedy quantifiers, fine tuning

regular expressions
with 367–369

limitations on parentheses
369

specific numbers of
repetitions 368–369

grep method
case equality and 382–384
overview of 311–312

group_by method 312–314,
528

gsub methods 380–381
global substitutions with 381
using captures in replace-

ment strings 381
gsub! method 430

H

Hash class 204, 206, 268
hash keys 17, 256–257
hash literal 209
Hash method 284

empty? method 290
has_key?(1) method 290
has_value?(290
include?(1) method 290
key?(1) method 290
member?(1) method 290
size method 290
value?(290

hash notation 288
Hash.[] class method 283–284
Hash.new constructors 283
Hash.new method 283
Hash#include? method 307
Hash#to_proc 450–451
hashes 282–294

adding key/value pairs to
284–286

arrays vs. 269–270
as final method arguments

291–292
clearing 290
combining 287–288
creating 283–284

creating literal hashes 283
Hash method 284
Hash.[] class method

283–284
Hash.new constructor 283

inserting hash pairs 284–286
inverting 289
named (keyword) arguments

292–294
querying 290–291

rejecting elements from 289
removing hash pairs

284–286
replacing contents of 290
retrieving hash pairs

284–286
selecting elements from 289
specifying default hash values

286–287
transformations 288–290

heredoc 237–239
hex method 249
hierarchies

of classes 80–83
BasicObject 83
class variables and 148
object ancestry 82
single inheritance 81–82

of methods 114–115
higher-order functions

526–532
currying 529–532
functions returning

functions 529
Kernel#itself 527–529
Kernel#yield_self 527–529
method chaining 527
partial function application

529–532
hooks 485–514
hyphen-separated range 244

I

I/O methods 388, 394
ID numbers 47
identifiers 7–9
if clauses 160, 222
if keyword 9, 160–165
if statements 164–165
immediate values 58
immutability 523–526

frozen string literals 525–526
Object#freeze 524
Object#frozen? 524
of symbols 253

include? method 96, 99, 109,
296–297, 308, 310

operation 423
operations, trapping

489–490
included callbacks, singleton-

class behavior with
491–492

inclusive range 294–296

546 INDEX
index method 244
IndexError 241
indexing enumerables, with

with_index 345
inheritance 121–123

class hierarchy and 80–83
BasicObject 83
object ancestry 82

intercepting with
Class#inherited
492–493

single 81–82
initialize method 71–73, 77, 90,

113, 118, 147, 150
initializing objects with

state 71–72
inject method, enumerable

reduction with
322–323

inserting
array elements 275–278
hash pairs 284–286

inspect method 214–215, 377
installing

packages with gem
commands 33–34

Ruby 4–5
instance methods 66–67, 417

class methods vs. 88–89
self in definitions of 130

instance variables 8, 145, 158
listing 504
object state and 69–72
of class objects 149–151
resolving through self

134–136
instance_eval method 143,

461, 463–465
instance_exec method 143,

464
instance_method method 459
instance_methods method 231
instance_variable_set 467
instantiated classes 65
instantiating date/time objects

261–263
instantiation 11
Integer class 11, 181, 205
Integer method, conversions

with 218–219
integer-bound variables 59
intermediate objects 343–344
intern 252
interpolation 43

See also string interpolation

interpreter command-line
switches 25–29

check syntax (-c) 26
combining switches (-cw)

28–29
executing literal script (-e)

26
printing help information

(-h, - -help) 28
printing Ruby version

(- -version) 28
requiring named files or

extensions (-rname) 27
running in line mode (-l) 27
running in verbose mode

(-v, - -verbose) 27
turning on warnings (-w) 26

introspection 48
of constants 503–504
of variables 503–504

listing global variables
503–504

listing instance variables
504

listing local variables
503–504

InvalidLineError 198–199
IO classes 386–387
IO objects

as enumerables 387–388
querying 399–401

deriving file information
with File::Stat 401

getting information from
File class 399–401

getting information from
FileTest module
399–401

IOError 190
irb utility 5, 29–30, 45, 237
is_a? method 92
iterations, fine-grained, with

enumerators 341
iterators 32, 177–188

block parameters 185–188
curly braces vs. do/end

179–180
implementing each method

182–183
implementing map method

184–185
implementing times method

181–182
method calls 179
variable scope 185–188

J

join method 280, 468

K

Kernel module 96, 105, 115,
157, 400

Kernel#itself 527–529
Kernel#open method 411
Kernel#proc method 447
Kernel#test 400
Kernel#yield_self 527–529
key parameter 270
key/value pairs, adding to

hashes 284–286
keyboards 14–17

input from 389
inputs 14–15

KeyError 476
keys method 301
keys, with nil values 289
keywords 9, 62
killing threads 469–471

L

lambda method 445–446,
456–457

lambda, creating functions with
456–458

LANG environment variable
250

last in, first out (LIFO)
principle 97

last method 316
lazy enumerators 347–350
lazy evaluation 534–536
lazy method 534, 537
leading whitespace, stripping

238
length method 243
library 21
LIFO (last in, first out)

principle 97
line mode 27
line-based file reading 391
line_from_file method

198–199
Lister class 441, 443
listing

global variables 503–504
instance variables 504
local variables 503–504

547INDEX
listing (continued)
non-private methods

496–498
object methods 229–230
private methods 498–499
protected methods 498–499
singleton methods 501–503
values, looping based on

176–177
literal characters 356
literal constructors 205–206
literal hashes, creating 283
literal scripts, executing 26
ljust method 247
load method 21, 99
load paths, loading files in

22–23
load_and_report method 101
local scope 139–143, 186
local variables 6, 8–9, 56–63,

165–166, 186, 188
listing 503–504
references and method

arguments 60–62
lookahead assertions 371
lookbehind assertions 371–372
looping 172–177

based on lists of values
176–177

conditional with until
keywords 175–176

conditional with while
keywords 175–176

multiple assignments in con-
ditional statements 176

unconditional with loop
method 173

lstrip method 247

M

magic comment 251
map method 180, 184–185,

529
block evaluation with 325
building on top of each 185
in-place mapping with map!

325–326
return values of 324–325

mapping, in place with map!
325–326

match method 28, 383
common uses 377
difference between match

and match? 354

substring captures 358–361
with lookaheads 371
with MatchData 167, 364
with modifiers 373

match? method 354, 428
MatchData class 351, 383
matches

conditional 372
constraining with quantifiers

365–367
success and failure 360–361

matching, with regular
expressions 353–355

Math module 90
max methods 316–317
merge method 288, 300
message method 196
message receivers

classes as 83–89
class methods vs. instance

methods 88–89
class objects calling

methods 85
creating class objects

83–85
singleton method 86
writing class methods

87–88
self as default 132–134

messages 9–11
origin of objects in classes 11
sending to objects 38–39
unrecognized, intercepting

with method_missing
method 486–489

meta-classes 426
method arguments 50–55

as symbols 255–256
default values for 51–52
limits of 54–55
optional 50–51
order of parameters 52–54
references and 60–62
required 50–51

method calls 9–11
origin of objects in classes 11
overview of 179

method chaining
enumerators 343–347

economizing on interme-
diate objects 343–344

exclusive-or operations on
strings with
enumerators 345–347

indexing enumerables
with with_index
method 345

overview of 527
method definitions 9
method inspection 509–514

implementing MicroTest
511–514

MiniTest 509–511
specifying MicroTest

511–514
method lists

filtered 231–232
selected 231–232

method lookup 103–115
basics of 103–106
method search 105–106
rules of 111–112

Method objects, capturing
458–459

method search 105–106
method-access rules 151, 156
method-definition blocks 127,

143
method-lookup path, singleton

classes on 420–424
including modules in

421–423
singleton-module inclusion

vs. original-class-module
inclusion 423–424

method-search order 421
method-wrapping operators 98
method_added method

494–496
method_missing method 10,

104, 115–120, 466
combining super and

116–120
delegating with 487–488
intercepting unrecognized

messages with 486–489
methods

as objects 458–461
built-in, side effects of

519–521
class objects calling 85
defining more than once

106–109
defining operators by

207–209
deploying access rules

151–156
equal sign (=) in names

73–74

548 INDEX
methods (continued)
expressing Boolean state in

44–45
going up method search path

with super 112–114
inspecting hierarchies

114–115
overriding 67
private 151–155
protected 155–156
rescue keyword in 191–192
return values of 40–41
self in definitions of 129–132
syntactic sugar for 74–75
taking arguments 39–40
top-level

defining 156–157
predefined 157–158
writing 156–158

un-overriding 338–339
using regular expressions

377–384
case equality and grep

method 382–384
gsub methods 380–381
String#scan method

377–379
String#split method

379–380
sub methods 380–381

with side effects 517–518
methods method 46, 48, 229,

231
min methods 316–317
MiniTest 509–511
minitest gem 19
minmax_by method 317
mix-in operation 96
mix-ins 121–123
mkdir method 406
modifiers

conditional 164
fine-tuning regular expres-

sions with 373–374
until 175–176
while 175–176

Module class 95
module instance methods

499–501
module objects, querying 231
module-definition blocks 127,

130, 139, 141
Module#const_missing method

493–494
Module#extended method 490

Module#included method 490
module_eval 461, 465–467
modules 81, 96–115

designing and naming
121–124

encapsulating stacklikeness
97–99

including in singleton classes
421–423

including more than once
108–109

mixing into classes 99–101
nesting 123–124
self in 129–132

ModuleTester object 96
most_expensive method 86
multiply_by method 454, 529
MyClass.private_instance_

methods 231
MyClass.protected_instance_

methods 231
MyClass.public_instance_

methods 231

N

name files, required 27
name method 422, 451–452
named arguments 269,

292–293, 302
named captures 362–363
named parameters 50
NameError 190, 458
namespacing exceptions 200
namespacing tasks 32
naming

classes 121–124
modules 121–124

nesting
classes 123–124
modules 123–124

net-telnet gem 19
new method 65, 84, 87
newline character 235, 248
next keyword 173
next method 266
nil object 224–225
nil values, removing keys with

289
NilClass 224
NoMethodError 24, 28, 190,

194–195, 309, 486
non-capturing parentheses 371
non-global variable 137

non-private methods, listing
496–498

nonbang methods 213
nonexistent key 285–287
nonkeyword arguments 293
normalize data 76
not keyword 162
nth character 239
numerical classes 259
numerical conversions

with to_f method 217–219
with to_i method 217–219

numerical objects 258–260
numerical classes 259
performing arithmetic

operations 259–260

O

obj (object) 38
obj.c2f method 39
obj.private_methods 231
obj.protected_methods 231
obj.public_methods 231
obj.singleton_methods 231
Object class 65, 524
object methods, listing

229–230
Object#freeze 524
Object#frozen? 524
object_id method 46–47, 253
objects 9–11, 36–41, 57–59, 448

adding to functionality of
with extend 435–436

ancestry of 82
attaching enumerators to

335–336
BasicObject 83
callable 445–484
classes as 83–89

class methods vs. instance
methods 88–89

class objects calling
methods 85

creating class objects
83–85

singleton method 86
writing class methods

87–88
comparing 225–229

Comparable module
227–229

equality tests 226–227
creating 37–39

549INDEX
objects, creating (continued)
date objects 261–262
date/time objects 263
time objects 262–263

defining behavior of 38
duping 61–62
entering references 58–59
equality of 47
filtered method lists 231–232
freezing 61–62
identifying uniquely with

object_id method 47
in classes, origin of 11
initializing with state 71–72
innate behaviors of 46–49
inspecting capabilities

of 229–232
intermediate 343–344
listing object methods

229–230
methods as 458–461
methods that take

arguments 39–40
modifying states of 521–523
nature vs. nurture 92–94
numerical 258–260

numerical classes 259
performing arithmetic

operations 259–260
organizing with classes

64–94
attributes and attr_*

method family 77–80
constants 89–92
inheritance and class

hierarchy 80–83
setter methods 72–77

protecting with enumerators
339–340

querying abilities with
respond_to? method
48

querying capabilities of
496–503

getting class instance
methods 499–501

getting module instance
methods 499–501

listing non-private
methods 496–498

listing private
methods 498–499

listing protected
methods 498–499

listing singleton
methods 501–503

return values of
methods 40–41

Ruby and object
orientation 36–37

runnable 445–484
selected method lists

231–232
sending messages to 38–39
sending messages with send

method 48–49
state of, instance variables

and 69–72
ObjectSpace module 500
oct method 249
octal integers 259
one-argument method 50
one-or-more quantifier 367
open method

communicating with external
programs via 481–482

communicating with pro-
grams via 481–484

open operation 87
open-uri library 411–412
Open3.popen3, two-way com-

munication with
482–484

open_user_file method 197
operators

defining by defining
methods 207–209

unary, customizing 209–210
optional arguments 55
or-equals (||=) operator 98
ord method 245
ordering, strings 245–246
original-class-module inclusion

423–424
overmodularization 121
overrides, enumerables

500–501
overriding methods 67

P

parallelism 468
parameters

blocking 179
of procs 456
order of 52–54

parentheses
capturing submatches

with 358–360

limitations on 369
parsing stack traces 506–509

CallerTools::Call class
506–507

CallerTools::Stack class
507–508

using CallerTools module
508–509

partial function application
529–532

partition method 312–314
pass-through hybrids 434–435
pass-through overrides

433–435
Pathname class 408–409
Pathname module 411
Pathname package 386
pattern matching 352, 503, 513
per-class state 149–151
per-object changes, with extend

method 435–438
adding class methods with

436–437
adding to object functionality

with 435–436
modifying core behavior

with 437–438
period character 353
phantom Proc 449
pipe character 396, 403
plus sign (+) 43
pop method 278
popen3, communicating with

programs via 481–484
post_match method 364
power_assert gem 19
powers function 535
predefined

constants 90–91
top-level methods 157–158

preinitializing arrays 272
pre_match method 364
prepend method 96, 99, 109
prepend operations, trapping

489–490
prev_unit method 266
print command 13–14
print method 42, 215, 387
printing

help information 28
Ruby version 28

private methods 151–155
listing 498–499
private setter (=)

methods 154–155

550 INDEX
private setter (=) methods
154–155

private_instance_methods
method 158, 499

private_methods method 498
Proc class 446–456

arguments 456
as closures 453–455
block-proc conversions

448–452
capturing code blocks as

proc 449
generalizing to_proc

451–452
Hash#to_proc

450–451
using procs for blocks 450

parameters 456
Proc objects 446–447
procs vs. blocks 447–448
Symbol#to_proc 452–453

Proc objects 86, 186
programs

creating first 12
feeding to Ruby 12–14

checking for syntax errors
12–13

second converter iterations
13–14

running 13
saving 11–12
writing 11–12

protected methods 152,
155–156

protected_instance_methods
499

protecting objects, with
enumerators 339–340

public_send method 49
pure functions

built-in methods, side effects
of 519–521

methods, with side effects
517–518

modifying object states
521–523

overview of 516–523
referential transparency

518–519
push method 103, 277
puts method 13–14, 29–30, 42
puts statement 177–178, 180,

186, 207

Q

quantifiers, constraining
matches with 365–367

query methods, for date/time
263–264

querying
arrays 281–282
class objects 231
directories with Dir class

404–405
enumerable Boolean

queries 307–309
File objects 399–401

deriving file information
with File::Stat 401

getting information from
File class 399–401

getting information from
FileTest module
399–401

file positions 392–393
hashes 290–291
IO objects 399–401

deriving file information
with File::Stat 401

getting information from
File class 399–401

getting information from
FileTest module
399–401

module objects 231
object abilities with

respond_to? method
48

object capability 496–503
getting class instance

methods 499–501
getting module instance

methods 499–501
listing non-private

methods 496–498
listing object singleton

methods 501–503
listing private

methods 498–499
listing protected

methods 498–499
strings 243–245

Boolean string queries
243

content queries 243–245
ticket objects 42–43

quoting mechanisms 236–237

R

raising exceptions
explicitly 195–196
overview of 189–190, 197

rake gem 19
rake utility 20

task-management utility
31–33

Range class 206, 269
range object 239
range-inclusion logic 295–297

testing with cover? 296
testing with include?

296–297
ranges 294–297

creating 294–295
inclusive (..) vs. exclusive (...)

295
range-inclusion logic

295–297
testing with cover? 296
testing with include?

296–297
.rb filename extension 12
rbconfig package 17, 91
rdoc gem 19
readbyte method 392
readchar method 392
reader/writer attributes 79
reading files 390

byte-based 392
character-based 392
line-based 391
with File class methods

393–394
readline method 391–392
real world 36–37
reassigning

constants 91–92
variables, references in

59–60
recurrent syntactic sugar

206–210
customizing unary operators

209–210
defining operators by defin-

ing methods 207–209
recursion 141, 533–537

lazy evaluation 534–536
tail-call optimization 536

reduce method 322
references 57–59

entering 58–59

551INDEX
references, entering (continued)
method arguments and

60–62
variable assignments 59–60

referential transparency
518–519

refine method 438
refinements, to affect core

behavior 438–439
reflection 48, 229
Regexp class 206, 351, 353,

355, 375, 383, 427
regexp-based string operations

351–384
Regexp.escape class method

375
regexp#match, changing

427–429
regular expressions 351–384

building patterns in 355–358
character classes 357–358
dot wildcard character (.)

356
literal characters in

patterns 356
constraining matches with

quantifiers 365–367
converting strings to

374–377
converting to strings 377
fine-tuning 365–374

with anchors 369–372
with assertions 369–372
with greedy quantifiers

367–369
with modifiers 373–374

matching with 353–355
methods using 377–384

case equality and grep
method 382–384

gsub methods 380–381
String#scan method

377–379
String#split method

379–380
sub methods 380–381

overview of 352
seeing patterns in 353
writing 352–355

reject operation 310–311
rejecting elements, from hashes

289
removing

array elements 275–278
hash pairs 284–286

reopening classes 67–69
repetitions, specific numbers of

368–369
replace method 57–58, 61, 248,

279
contents of hashes 290
process by calling exec 481

report method 104, 107–108,
113, 506, 508

require method 21, 23–24, 33,
99, 204

required arguments 55
require_relative 24–25
rescue keyword 189–192,

196–199
exceptions 189–190
using inside code blocks

191–192
using inside methods

191–192
reserved names 188
respond_to? method 46, 489

overview of 488–489
querying object abilities with

48
respond_to_missing? method

488–489
retrieving

array elements 275–278
hash pairs 284–286

return keyword 41, 457
return values

of case statements 171–172
of map methods 324–325
of methods 40–41
of String#gsub! 429–431

return_test method 457
reverse_each method 318
rindex method 244
rjust method 247
rm_rf method 407
-rname command-line switch

26
role-playing

array role-playing with to_ary
220

string role-playing with to_str
219–220

to_* (conversion) methods
219–220

rstrip method 247
Ruby

feeding programs to 12–14
checking for syntax errors

12–13

running programs 13
second converter iterations

13–14
gems directory 19–20
installing 4–5, 17–20

RubyGems utility 19
RUBYOPT variable 525
ruby_version method 96
runtime introspection 485–514
RuntimeError 190

S

safe navigation operators
194–195

save! method 212
saving programs 11–12
scalar values 9
scan method 378
scanf message 24
scope 145–151

determining 136–151
class variables 145–151
visibility 145–151

global 136–138
local 139–143
resolution of constants and

143–145
scoping file operations

395–396
scripts. See literal scripts
searching enumerables

309–314
getting first match with find

operator 309–310
getting matches with find_all

method 311
SecurityError 463
seek method 386, 392–393
select method 289, 310–311,

328, 335, 338–339, 348
select! method 520
selecting

elements from hashes 289
enumerables 309–314

getting matches with reject
operation 311

getting matches with select
method 311

organizing results with
group_by method
312–314

organizing results with par-
tition method 312–314

with grep 311–312

552 INDEX
self 126–136
as default receiver of

messages 132–134
in classes 129–132
in method definitions

129–132
in modules 129–132
overview of 126–127
resolving instance variables

through 134–136
top-level self objects 128–129

self keyword 7, 126
self.class method 467
send (synonym: __send__)

method 46
send method 48–49, 256
Set class 269, 297, 299, 302
Set#map! method 325
sets 297–302
setter methods 72–77

equal sign (=) in method
names 73–74

syntactic sugar for assign-
ment-like methods
74–75

setup method 510–513
shortcut operators 98
shorthand syntax 86
single dot (.) 22
single inheritance 81–82
single substitutions, with sub

methods 380–381
single-quoted strings 235
singleton classes 416–426

behavior with extended
491–492

behavior with included
491–492

class methods 425–426
dual determination

through 417–418
examining 418–420
including modules in

421–423
modifying 418–420
on method-lookup path

420–424
singleton_class method 425

singleton methods 67, 81,
85–87, 92, 112, 131, 153

listing 501–503
self in definitions of 130–132

singleton_class method 425
singleton_method_added

method 494–496

sitearchdir 18
sitedir 18
sitelibdir 18
size method 183, 243
slice method 320
slice! method 276
sockets, writing chat servers

using 472–474
sort method 46, 328, 496
sort-order logic, defining with

blocks 330
sort! method 520
sort_by method 328, 330–331
sorting enumerables 328–332

Comparable module and
331–332

defining sort-order logic with
blocks 330

with sort_by method
330–331

source code tree 17
source files, encoding 250–251
spaceship operator 227–228,

477
splat (*) operators, array con-

version with 216–217
sprintf-style formatting string

507
squiggly heredoc 238
stabby lambda (->) constructor

456–458
stack traces

examining with caller
505–506

parsing 506–509
CallerTools::Call class

506–507
CallerTools::Stack class

507–508
using CallerTools module

508–509
standard library 18–20, 23
StandardError 190–191, 199
star (*) operators, array conver-

sion with 216–217
start_with? method 118
state

initializing objects with
71–72

modifying 521–523
STDERR constant 386, 388,

411
STDERR objects 388–389
STDIN constant 386–389, 411
STDIN objects 388–389

STDOUT constant 386, 388,
411

STDOUT objects 388–389
str.methods.sort method 230
strftime method 264, 267
string argument 73
String class 11, 204, 206, 234,

245, 252, 336, 346, 416,
432, 438

string interpolation, shortening
ticket code via 43–44

string literal 234
string method 360–361
string-to-regexp idioms

375–376
string.each_byte method 344
String#bytes method 341
String#clear method 248
String#eql? method 246
String#equal? method 246
String#gsub!, return values of

429–431
String#scan method 377–379
String#split method 379–380
StringIO class 409–412
StringIO package 386
stringlike interface 257
strings 234–252

arbitrary, executing as code
with eval 461–462

as quasi-enumerables
326–327

combining
overview of 241
via interpolation 242–243

comparing 245–246
conversions 249–250
converting regular expres-

sions to 377
converting to regular

expressions 374–377
encoding 250–252

individual strings 251–252
setting encoding of source

files 250–251
frozen string literals 525–526
manipulating 239–243

getting substrings 239–241
setting substrings 239–241

notation of 234, 237–239
ordering 245–246
querying 243–245

Boolean string queries
243

content queries 243–245

553INDEX
strings (continued)
replacement, captures in

381
role-playing with to_str

method 219–220
symbols vs. 257–258
transformations 246–249

case transformations
246–247

content transformations
248–249

formatting transformations
247

with enumerators, exclusive-
or operations on
345–347

StringScanner class 379
strip method 247
sub methods 380–381

single substitutions with
380–381

using captures in replace-
ment strings 381

subclass 80, 122
subclasses of BasicObject,

implementing 441–444
submatches, capturing with

parentheses 358–360
substitutions

global with gsub methods
381

single with sub methods
380–381

substrings
getting 239–241
setting 239–241

succ method 249, 266
Suitcase class 101
sum_of_parts method 518
super

combining method_missing
method and 116–120

going up method search
path 112–114

superclass 80, 122
super_method, inspecting

method hierarchies
with 114–115

switches 28–29
symbol argument 324–325
Symbol class 206, 234, 252, 254
Symbol object 205
Symbol.all_symbols class

method 254
Symbol#new method 253

Symbol#to_proc
for conciseness 452–453
implementing 452–453

symbols 78, 118, 252–258
as hash keys 256–257
as method arguments

255–256
chief characteristics of 253
identifiers and 254–255
in practice 255–257
strings vs. 257–258

syntactic sugar 74–75, 205
recurrent 206–210

customizing unary
operators 209–210

defining operators by
defining methods
207–209

syntax 448
assignment syntax in condi-

tional bodies 165–167
assignment syntax in condi-

tional tests 165–167
checking 26
checking for errors 12–13
for Ruby 6–7
of class variables 145–151

sysread method 394
sysseek method 394
system commands

communicating with pro-
grams via open
481–484

communicating with pro-
grams via popen3
481–484

system method 478–481, 484
system programs

calling with backticks 480
executing with system

method 479–480
system-level methods 394
SystemStackError 536–537
syswrite method 394

T

tail-call optimization 536
tainted? method 463
take method 316
take_from_stack method 101
take_while method 316
talk method 39
tap method 431–432
Task class 37

tasks, namespacing 32
TCPServer class 471
terminated methods 75
test-named method 509
test-unit gem 19
testing

case truth tests 171
equality tests 226–227
range inclusion with cover?

296
range inclusion with include?

296–297
text editors 4–5
then keyword 160
third-party libraries 19
threads 474–475

concurrent execution with
467–478

threaded date servers
471–472

variables 474–475
writing chat servers using

sockets 472–474
killing 469–471
manipulating thread keys

475–478
RPS (rock/paper/scis-

sors) classes in
threaded games
477–478

RPS (rock/paper/scis-
sors) logic 476–477

starting 469–471
stopping 469–471
writing chat servers using

472–474
Time class 68, 261–262
time objects, creating 262–263
time.rb file 68
times method 181–182, 361
to_* (conversion) methods

213–216
array conversion with *

operators 216–217
array conversion with to_a

216–217
display method 215–216
inspect method 214–215
numerical conversion with

to_f 217–219
numerical conversion with

to_i 217–219
role-playing 219–220

array role-playing with
to_ary 220

554 INDEX
to_* (conversion) methods,
role-playing (continued)

string role-playing with
to_str 219–220

to_s method 213
to_a method 216–217, 273
to_ary method 220, 273
to_date method 265
to_datetime method 265
to_enum method 335
to_f (to float) conversion

method 217
to_f method, numerical conver-

sions with 217–219
to_hash method 284
to_i method 217–219, 249, 260
to_i route method 249
to_proc method 450–452
to_s conversion method 209
to_s method 213, 507
to_str method, string role-

playing with 219–220
to_sym method 252
total method 335
total_count method 147
total_count= method 150
to_time method 265
tracing execution 505–509

examining stack traces with
caller 505–506

writing tools for parsing stack
traces 506–509

transcoding 251
transformations

of arrays 280–281
of hashes 288–290
of strings 246–249

case transformations
246–247

content transformations
248–249

formatting
transformations 247

transparency, referential
518–519

trapping
include operations 489–490
prepend operations 489–490

true/false
as Boolean objects 223–224
as Boolean states 221–222
states vs. values 223–224

TrueClass 223
try_convert method 274
twice method 418
two-element arrays 305, 308,

314
typecasting 218
TypeError 190, 284, 309

U

un-overriding methods
338–339

unary operators, customizing
209–210

unbound methods 459
UncaughtThrowError 194
unconditional looping, with

loop methods 173
under_score names 56
underscore variable 504
uniq method 281
uniq! method 281
uniqueness, of symbols 253
unless keyword 162–163
unload method 101
unrecognized messages, inter-

cepting with
method_missing
method 486–489

unshift method 277
until keywords

conditional looping with
174–176

until modifiers 175–176
until loop 185, 335
unwrapping hashes 292
update method 287
upto method 266
uri.rb file 18
using method 438

V

values, lists of 176–177
values_at method 276
variable scope 185–188
variables 8

assignments of 56–63
objects 57–59
references 57–59
references in 59–60

global

built-in 137
global scope and 136–138
pros and cons of 137–138

introspection of 503–504
listing global

variables 503–504
listing instance

variables 504
listing local variables

503–504
local 56–63
overview of 474–475
See also instance variables

vendordir 18
venue argument 72
VENUES constant 90
verbose mode 27
version managers 4, 20
visibility 145–151

W

warnings 26
when clause 167–171
while keyword 396

conditional looping with
174–176

while modifiers 175–176
whitespace, stripping 238
wildcard character 355
with_index method 270, 345
word parameter 179

X

x modifier 373–374, 376
xmlrpc gem 19
xmlschema method 69

Y

yield keyword 178
yield method 333

Z

zero-or-more quantifier 367
ZeroDivisionError 189, 191,

193

D
esigned for developer productivity, Ruby is an easy-to-learn
dynamic language perfect for creating virtually any kind of
soft ware. Its famously friendly development community,

countless libraries, and amazing tools, like the Rails framework,
have established it as the language of choice for high-profi le
companies, including GitHub, SlideShare, and Shopify. Th e
future is bright for the well-grounded Rubyist!

In The Well-Grounded Rubyist, Third Edition, expert authors David
A. Black and Joseph Leo deliver Ruby mastery in an easy-to-
read, casual style. You’ll lock in core principles as you write
your fi rst Ruby programs. Th en, you’ll progressively build up
to topics like refl ection, threading, and recursion, cementing
your knowledge with high-value exercises to practice your skills
along the way.

What’s Inside
Basic Ruby syntax
Running Ruby extensions
FP concepts like currying, side-eff ect-free code,
and recursion
Ruby 2.5 updates

For readers with beginner-level programming skills.

David A. Black is an internationally known Ruby developer and
author, and a cofounder of Ruby Central. Ruby teacher
and advocate Joseph Leo III is the founder of Def Method and
lead organizer of the Gotham Ruby Conference.

$49.99 / Can $65.99 [INCLUDING eBOOK]

RUBY

M A N N I N G

Black Leo
THE WELL-GROUNDED Rubyist Third Edition

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/the-well-grounded-rubyist-third-edition

See first page

“A deep and thorough dive
into the Ruby programming

language.”
—Brian Daley

University of Connecticut

“The authors’ methodical and
logical teaching will make you
fall in love with Ruby. It has
never looked this good!”

—Pierre-Michel Ansel, 8x8

“Concepts are introduced
via examples—perfect for

deep understanding.
 Highly recommended!”—Prabhuti Prakash, Atos India

“The title says it all: this
book provides you with a

solid foundation for your Ruby
programming before exploring

advanced topics.”
—Deshuang Tang, Broadcom

	brief contents
	contents
	preface
	acknowledgments
	about this book
	Welcome
	How this book is organized
	Who should read this book
	What this book doesn?t include
	A word on Ruby versions
	Code conventions, examples, and downloads
	liveBook discussion forum

	about the authors
	about the cover illustration
	Part 1 Ruby foundations
	1 Bootstrapping your Ruby literacy
	1.1 Basic Ruby language literacy
	1.1.1 Installing Ruby and using a text editor
	1.1.2 A Ruby syntax survival kit
	1.1.3 The variety of Ruby identifiers
	1.1.4 Method calls, messages, and Ruby objects
	1.1.5 Writing and saving a simple program
	1.1.6 Feeding the program to Ruby
	1.1.7 Keyboard and file I/O

	1.2 Anatomy of the Ruby installation
	1.2.1 The Ruby standard library subdirectory (RbConfig::CONFIG[?rubylibdir?])
	1.2.2 The C extensions directory (RbConfig::CONFIG[?archdir?])
	1.2.3 The site_ruby (RbConfig::CONFIG[?sitedir?]) and vendor_ruby (RbConfig::CONFIG[?vendordir?]) directories
	1.2.4 Standard Ruby gems and the gems directory

	1.3 Ruby extensions and programming libraries
	1.3.1 Loading external files and extensions
	1.3.2 ?Load?-ing a file in the default load path
	1.3.3 ?Require?-ing a feature
	1.3.4 require_relative

	1.4 Out-of-the-box Ruby tools and applications
	1.4.1 Interpreter command-line switches
	1.4.2 A closer look at interactive Ruby interpretation with irb
	1.4.3 The rake task-management utility
	1.4.4 Installing packages with the gem command

	Summary

	2 Objects, methods, and local variables
	2.1 Talking to objects
	2.1.1 Ruby and object orientation
	2.1.2 Creating a generic object
	2.1.3 Methods that take arguments
	2.1.4 The return value of a method

	2.2 Crafting an object: the behavior of a ticket
	2.2.1 The ticket object, behavior first
	2.2.2 Querying the ticket object
	2.2.3 Shortening the ticket code via string interpolation
	2.2.4 Ticket availability: expressing Boolean state in a method

	2.3 The innate behaviors of an object
	2.3.1 Identifying objects uniquely with the object_id method
	2.3.2 Querying an object?s abilities with the respond_to? method
	2.3.3 Sending messages to objects with the send method

	2.4 A close look at method arguments
	2.4.1 Required and optional arguments
	2.4.2 Default values for arguments
	2.4.3 Order of parameters and arguments
	2.4.4 What you can?t do in argument lists

	2.5 Local variables and variable assignment
	2.5.1 Variables, objects, and references
	2.5.2 References in variable assignment and reassignment
	2.5.3 References and method arguments
	2.5.4 Local variables and the things that look like them

	Summary

	3 Organizing objects with classes
	3.1 Classes and instances
	3.1.1 Instance methods
	3.1.2 Overriding methods
	3.1.3 Reopening classes

	3.2 Instance variables and object state
	3.2.1 Initializing an object with state

	3.3 Setter methods
	3.3.1 The equal sign (=) in method names
	3.3.2 Syntactic sugar for assignment-like methods
	3.3.3 Setter methods unleashed

	3.4 Attributes and the attr_* method family
	3.4.1 Automating the creation of attributes
	3.4.2 Summary of attr_* methods

	3.5 Inheritance and the Ruby class hierarchy
	3.5.1 Single inheritance: one to a customer
	3.5.2 Object ancestry and the not-so-missing link: the Object class
	3.5.3 BasicObject

	3.6 Classes as objects and message receivers
	3.6.1 Creating class objects
	3.6.2 How class objects call methods
	3.6.3 A singleton method by any other name ...
	3.6.4 When, and why, to write a class method
	3.6.5 Class methods vs. instance methods

	3.7 Constants up close
	3.7.1 Basic use of constants
	3.7.2 Reassigning vs. modifying constants

	3.8 Nature vs. nurture in Ruby objects
	Summary

	4 Modules and program organization
	4.1 Basics of module creation and use
	4.1.1 A module encapsulating ?stacklikeness?
	4.1.2 Mixing a module into a class
	4.1.3 Using the module further

	4.2 Modules, classes, and method lookup
	4.2.1 Illustrating the basics of method lookup
	4.2.2 Defining the same method more than once
	4.2.3 How prepend works
	4.2.4 How extend works
	4.2.5 The rules of method lookup summarized
	4.2.6 Going up the method search path with super
	4.2.7 Inspecting method hierarchies with method and super_method

	4.3 The method_missing method
	4.3.1 Combining method_missing and super

	4.4 Class/module design and naming
	4.4.1 Mix-ins and/or inheritance
	4.4.2 Nesting modules and classes

	Summary

	5 The default object (self), scope, and visibility
	5.1 Understanding self, the current/default object
	5.1.1 Who gets to be self, and where
	5.1.2 The top-level self object
	5.1.3 Self inside class, module, and method definitions
	5.1.4 Self as the default receiver of messages
	5.1.5 Resolving instance variables through self

	5.2 Determining scope
	5.2.1 Global scope and global variables
	5.2.2 Local scope
	5.2.3 The interaction between local scope and self
	5.2.4 Scope and resolution of constants
	5.2.5 Class variable syntax, scope, and visibility

	5.3 Deploying method-access rules
	5.3.1 Private methods
	5.3.2 Protected methods

	5.4 Writing and using top-level methods
	5.4.1 Defining a top-level method
	5.4.2 Predefined (built-in) top-level methods

	Summary

	6 Control-flow techniques
	6.1 Conditional code execution
	6.1.1 The if keyword and its variants
	6.1.2 Assignment syntax in condition bodies and tests
	6.1.3 case statements

	6.2 Repeating actions with loops
	6.2.1 Unconditional looping with the loop method
	6.2.2 Conditional looping with the while and until keywords
	6.2.3 Multiple assignment in conditional statements
	6.2.4 Looping based on a list of values

	6.3 Iterators and code blocks
	6.3.1 The ingredients of iteration
	6.3.2 Iteration, home-style
	6.3.3 The anatomy of a method call
	6.3.4 Curly braces vs. do/end in code block syntax
	6.3.5 Implementing times
	6.3.6 The importance of being each
	6.3.7 From each to map
	6.3.8 Block parameters and variable scope

	6.4 Error handling and exceptions
	6.4.1 Raising and rescuing exceptions
	6.4.2 The rescue keyword to the rescue!
	6.4.3 Debugging with binding.irb
	6.4.4 Avoiding NoMethodError with the safe navigation operator
	6.4.5 Raising exceptions explicitly
	6.4.6 Capturing an exception in a rescue clause
	6.4.7 The ensure clause
	6.4.8 Creating your own exception classes

	Summary

	Part 2 Built-in classes and modules
	7 Built-in essentials
	7.1 Ruby?s literal constructors
	7.2 Recurrent syntactic sugar
	7.2.1 Defining operators by defining methods
	7.2.2 Customizing unary operators

	7.3 Bang (!) methods and ?danger?
	7.3.1 Destructive (receiver-changing) effects as danger
	7.3.2 Destructiveness and ?danger? vary independently

	7.4 Built-in and custom to_* (conversion) methods
	7.4.1 String conversion: to_s and other methods defined on Object
	7.4.2 Array conversion with to_a and the * operator
	7.4.3 Numerical conversion with to_i and to_f
	7.4.4 Role-playing to_* methods

	7.5 Boolean states, Boolean objects, and nil
	7.5.1 True and false as states
	7.5.2 true and false as objects
	7.5.3 The special object nil

	7.6 Comparing two objects
	7.6.1 Equality tests
	7.6.2 Comparisons and the Comparable module

	7.7 Inspecting object capabilities
	7.7.1 Listing an object?s methods
	7.7.2 Querying class and module objects
	7.7.3 Filtered and selected method lists

	Summary

	8 Strings, symbols, and other scalar objects
	8.1 Working with strings
	8.1.1 String notation
	8.1.2 Basic string manipulation
	8.1.3 Querying strings
	8.1.4 String comparison and ordering
	8.1.5 String transformation
	8.1.6 String conversions
	8.1.7 String encoding: a brief introduction

	8.2 Symbols and their uses
	8.2.1 Chief characteristics of symbols
	8.2.2 Symbols and identifiers
	8.2.3 Symbols in practice
	8.2.4 Strings and symbols in comparison

	8.3 Numerical objects
	8.3.1 Numerical classes
	8.3.2 Performing arithmetic operations

	8.4 Times and dates
	8.4.1 Instantiating date/time objects
	8.4.2 Date/time query methods
	8.4.3 Date/time formatting methods
	8.4.4 Date/time conversion methods

	Summary

	9 Collection and container objects
	9.1 Arrays and hashes in comparison
	9.2 Collection handling with arrays
	9.2.1 Creating a new array
	9.2.2 Inserting, retrieving, and removing array elements
	9.2.3 Combining arrays with other arrays
	9.2.4 Array transformations
	9.2.5 Array querying

	9.3 Hashes
	9.3.1 Creating a new hash
	9.3.2 Inserting, retrieving, and removing hash pairs
	9.3.3 Specifying default hash values and behavior
	9.3.4 Combining hashes with other hashes
	9.3.5 Hash transformations
	9.3.6 Hash querying
	9.3.7 Hashes as final method arguments
	9.3.8 A detour back to argument syntax: named (keyword) arguments

	9.4 Ranges
	9.4.1 Creating a range
	9.4.2 Range-inclusion logic

	9.5 Sets
	9.5.1 Set creation
	9.5.2 Manipulating set elements
	9.5.3 Subsets and supersets

	Summary

	10 Collections central: Enumerable and Enumerator
	10.1 Gaining enumerability through each
	10.2 Enumerable Boolean queries
	10.3 Enumerable searching and selecting
	10.3.1 Getting the first match with find
	10.3.2 Getting all matches with find_all (a.k.a. select) and reject
	10.3.3 Selecting on threequal matches with grep
	10.3.4 Organizing selection results with group_by and partition

	10.4 Element-wise enumerable operations
	10.4.1 The first method
	10.4.2 The take and drop methods
	10.4.3 The min and max methods

	10.5 Relatives of each
	10.5.1 reverse_each
	10.5.2 The each_with_index method (and each.with_index)
	10.5.3 The each_slice and each_cons methods
	10.5.4 The slice_ family of methods
	10.5.5 The cycle method
	10.5.6 Enumerable reduction with inject

	10.6 The map method
	10.6.1 The return value of map
	10.6.2 In-place mapping with map!

	10.7 Strings as quasi-enumerables
	10.8 Sorting enumerables
	10.8.1 Defining sort-order logic with a block
	10.8.2 Concise sorting with sort_by
	10.8.3 Sorting enumerables and the Comparable module

	10.9 Enumerators and the next dimension of enumerability
	10.9.1 Creating enumerators with a code block
	10.9.2 Attaching enumerators to other objects
	10.9.3 Implicit creation of enumerators by blockless iterator calls

	10.10 Enumerator semantics and uses
	10.10.1 How to use an enumerator?s each method
	10.10.2 Protecting objects with enumerators
	10.10.3 Fine-grained iteration with enumerators
	10.10.4 Adding enumerability with an enumerator

	10.11 Enumerator method chaining
	10.11.1 Economizing on intermediate objects
	10.11.2 Indexing enumerables with with_index
	10.11.3 Exclusive-or operations on strings with enumerators

	10.12 Lazy enumerators
	10.12.1 FizzBuzz with a lazy enumerator

	Summary

	11 Regular expressions and regexp-based string operations
	11.1 What are regular expressions?
	11.2 Writing regular expressions
	11.2.1 Seeing patterns
	11.2.2 Simple matching with literal regular expressions

	11.3 Building a pattern in a regular expression
	11.3.1 Literal characters in patterns
	11.3.2 The dot wildcard character (.)
	11.3.3 Character classes

	11.4 Matching, substring captures, and MatchData
	11.4.1 Capturing submatches with parentheses
	11.4.2 Match success and failure
	11.4.3 Two ways of getting the captures
	11.4.4 Other MatchData information

	11.5 Fine-tuning regular expressions with quantifiers, anchors, and modifiers
	11.5.1 Constraining matches with quantifiers
	11.5.2 Greedy (and non-greedy) quantifiers
	11.5.3 Regular expression anchors and assertions
	11.5.4 Modifiers

	11.6 Converting strings and regular expressions to each other
	11.6.1 String-to-regexp idioms
	11.6.2 Going from a regular expression to a string

	11.7 Common methods that use regular expressions
	11.7.1 String#scan
	11.7.2 String#split
	11.7.3 sub/sub! and gsub/gsub!
	11.7.4 Case equality and grep

	Summary

	12 File and I/O operations
	12.1 How Ruby?s I/O system is put together
	12.1.1 The IO class
	12.1.2 IO objects as enumerables
	12.1.3 STDIN, STDOUT, STDERR
	12.1.4 A little more about keyboard input

	12.2 Basic file operations
	12.2.1 The basics of reading from files
	12.2.2 Line-based file reading
	12.2.3 Byte- and character-based file reading
	12.2.4 Seeking and querying file position
	12.2.5 Reading files with File class methods
	12.2.6 Writing to files
	12.2.7 Using blocks to scope file operations
	12.2.8 File enumerability
	12.2.9 File I/O exceptions and errors

	12.3 Querying IO and File objects
	12.3.1 Getting information from the File class and the FileTest module
	12.3.2 Deriving file information with File::Stat

	12.4 Directory manipulation with the Dir class
	12.4.1 Reading a directory?s entries
	12.4.2 Directory manipulation and querying

	12.5 File tools from the standard library
	12.5.1 The FileUtils module
	12.5.2 The Pathname class
	12.5.3 The StringIO class
	12.5.4 The open-uri library

	Summary

	Part 3 Ruby dynamics
	13 Object individuation
	13.1 Where the singleton methods are: the singleton class
	13.1.1 Dual determination through singleton classes
	13.1.2 Examining and modifying a singleton class directly
	13.1.3 Singleton classes on the method-lookup path
	13.1.4 The singleton_class method
	13.1.5 Class methods in (even more) depth

	13.2 Modifying Ruby?s core classes and modules
	13.2.1 The risks of changing core functionality
	13.2.2 Additive changes
	13.2.3 Pass-through overrides
	13.2.4 Per-object changes with extend
	13.2.5 Using refinements to affect core behavior

	13.3 BasicObject as ancestor and class
	13.3.1 Using BasicObject
	13.3.2 Implementing a subclass of BasicObject

	Summary

	14 Callable and runnable objects
	14.1 Basic anonymous functions: the Proc class
	14.1.1 Proc objects
	14.1.2 Procs and blocks and how they differ
	14.1.3 Block-proc conversions
	14.1.4 Using Symbol#to_proc for conciseness
	14.1.5 Procs as closures
	14.1.6 Proc parameters and arguments

	14.2 Creating functions with lambda and ->
	14.3 Methods as objects
	14.3.1 Capturing Method objects
	14.3.2 The rationale for methods as objects

	14.4 The eval family of methods
	14.4.1 Executing arbitrary strings as code with eval
	14.4.2 The dangers of eval
	14.4.3 The instance_eval method
	14.4.4 Using class_eval (a.k.a. module_eval)

	14.5 Concurrent execution with threads
	14.5.1 Killing, stopping, and starting threads
	14.5.2 A threaded date server
	14.5.3 Writing a chat server using sockets and threads
	14.5.4 Threads and variables
	14.5.5 Manipulating thread keys

	14.6 Issuing system commands from inside Ruby programs
	14.6.1 The system and exec methods and backticks
	14.6.2 Communicating with programs via open and popen3

	Summary

	15 Callbacks, hooks, and runtime introspection
	15.1 Callbacks and hooks
	15.1.1 Intercepting unrecognized messages with method_missing
	15.1.2 Trapping include and prepend operations
	15.1.3 Intercepting extend
	15.1.4 Intercepting inheritance with Class#inherited
	15.1.5 The Module#const_missing method
	15.1.6 The method_added and singleton_method_added methods

	15.2 Interpreting object capability queries
	15.2.1 Listing an object?s non-private methods
	15.2.2 Listing private and protected methods
	15.2.3 Getting class and module instance methods
	15.2.4 Listing objects? singleton methods

	15.3 Introspection of variables and constants
	15.3.1 Listing local and global variables
	15.3.2 Listing instance variables

	15.4 Tracing execution
	15.4.1 Examining the stack trace with caller
	15.4.2 Writing a tool for parsing stack traces

	15.5 Callbacks and method inspection in practice
	15.5.1 MicroTest background: MiniTest
	15.5.2 Specifying and implementing MicroTest

	Summary

	16 Ruby and functional programming
	16.1 Understanding pure functions
	16.1.1 Methods with side effects
	16.1.2 Pure functions and referential transparency in Ruby
	16.1.3 Side effects in Ruby?s built-in methods
	16.1.4 Modifying an object?s state

	16.2 Immutability
	16.2.1 Object#freeze and Object#frozen?
	16.2.2 Frozen string literals

	16.3 Higher-order functions
	16.3.1 Method chaining
	16.3.2 Kernel#itself and Kernel#yield_self
	16.3.3 Functions that return functions
	16.3.4 Currying and partial function application

	16.4 Recursion
	16.4.1 Lazy evaluation
	16.4.2 Tail-call optimization

	Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

