

The Rails 5 Way
Obie Fernandez
This book is for sale at http://leanpub.com/tr5w

This version was published on 2017-06-15

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build traction once you do.

© 2016 - 2017 Obie Fernandez

http://leanpub.com/tr5w
http://leanpub.com/
http://leanpub.com/manifesto

Also By Obie Fernandez
How to Eat Nachos and Influence People
The Lean Enterprise
Programación para Niños
El Libro Principiante de Node
Serverless
XML The Rails Way
Mastering The Rails Way
Testing The Rails Way

http://leanpub.com/u/obie
http://leanpub.com/nachos
http://leanpub.com/theleanenterprise
http://leanpub.com/programacionparaninos
http://leanpub.com/node-principiante
http://leanpub.com/serverless
http://leanpub.com/therailsway-xml
http://leanpub.com/mtrw
http://leanpub.com/ttrw

Contents

Foreword . ii

Foreword (to The Rails 4 Way) . v

Foreword (to The Rails 3 Way) . vii

Foreword (to The Rails Way) . ix

Acknowledgments . x

About the Author . xi

Introduction . xii
About This Book . xiii
David Heinemeier Hansson (aka DHH) xvi
Goals . xvii
Prerequisites . xviii
Required Technology . xix
Licenses, Attributions and Trademark Notice xx

1. Rails Configuration and Environments 1
1.1 Bundler . 3
1.2 Startup Scripts . 12
1.3 Default Initializers . 14
1.4 Other Common Initializers . 22
1.5 Spring Application Preloader . 25
1.6 Development Mode . 26
1.7 Test Mode . 32
1.8 Production Mode . 34
1.9 Configuring a Database . 37
1.10 Configuring Application Secrets 39
1.11 Logging . 41

2. Routing . 48

CONTENTS

2.1 The Two Purposes of Routing . 49
2.2 The routes.rb File . 50
2.3 Route Globbing . 63
2.4 Named Routes . 65
2.5 Scoping Routing Rules . 71
2.6 Listing Routes . 75
2.7 Conclusion . 76

3. REST, Resources, and Rails . 77
3.1 REST in a Rather Small Nutshell 78
3.2 Resources and Representations 80
3.3 REST in Rails . 81
3.4 Routing and CRUD . 82
3.5 The Standard RESTful Controller Actions 86
3.6 Singular Resource Routes . 91
3.7 Nested Resources . 92
3.8 Routing Concerns . 98
3.9 RESTful Route Customizations . 99
3.10 Controller-Only Resources . 104
3.11 Different Representations of Resources 107
3.12 The RESTful Rails Action Set . 110
3.13 Conclusion . 116

4. Working with Controllers . 117
4.1 Rack . 118
4.2 Action Dispatch: Where It All Begins 122
4.3 Render unto View… . 126
4.4 Additional Layout Options . 140
4.5 Redirecting . 141
4.6 Controller/View Communication 146
4.7 Action Callbacks . 147
4.8 Streaming . 153
4.9 Variants . 161
4.10 Conclusion . 163

5. Working with Active Record . 164
5.1 The Basics . 165
5.2 Macro-Style Methods . 167
5.3 Defining Attributes . 170
5.4 CRUD: Creating, Reading, Updating, Deleting 173
5.5 Database Locking . 188
5.6 Querying . 192
5.7 Ignoring Columns . 214

CONTENTS

5.8 Connections to Multiple Databases in Different Models 215
5.9 Using the Database Connection Directly 217
5.10 Custom SQL Queries . 222
5.11 Other Configuration Options . 224
5.12 Conclusion . 226

6. Active Record Migrations . 227
6.1 Creating Migrations . 228
6.2 Defining Columns . 242
6.3 Transactions . 250
6.4 Data Migration . 251
6.5 Database Schema . 255
6.6 Database Seeding . 256
6.7 Database-Related Tasks . 258
6.8 Conclusion . 263

7. Active Record Associations . 264
7.1 The Association Hierarchy . 265
7.2 One-to-Many Relationships . 266
7.3 Belongs to Associations . 268
7.4 Has Many Associations . 280
7.5 Many-to-Many Relationships . 297
7.6 One-to-One Relationships . 313
7.7 Working with Unsaved Objects and Associations 318
7.8 Association Extensions . 320
7.9 The CollectionProxy Class . 322
7.10 Conclusion . 324

8. Validations . 325
8.1 Finding Errors . 326
8.2 The Simple Declarative Validations 327
8.3 Common Validation Options . 340
8.4 Conditional Validation . 343
8.5 Short-form Validation . 346
8.6 Custom Validation Techniques . 348
8.7 Skipping Validations . 352
8.8 Working with the Errors Hash . 353
8.9 Testing Validations with Shoulda 354
8.10 Conclusion . 355

9. Advanced Active Record . 356
9.1 Scopes . 357
9.2 Callbacks . 363

CONTENTS

9.3 Attributes API . 375
9.4 Serialized Attributes . 384
9.5 Enums . 389
9.6 Generating Secure Tokens . 392
9.7 Calculation Methods . 394
9.8 Batch Operations . 396
9.9 Single-Table Inheritance (STI) . 407
9.10 Abstract Base Model Classes . 415
9.11 Polymorphic has_many Relationships 416
9.12 Foreign-key Constraints . 421
9.13 Modules for Reusing Common Behavior 426
9.14 Value Objects . 431
9.15 Non-Persisted Models . 435
9.16 Modifying Active Record Classes at Runtime 437
9.17 PostgreSQL . 440
9.18 Conclusion . 446

10.Action View . 447
10.1 Layouts and Templates . 448
10.2 Partials . 458
10.3 Conclusion . 466

11.All About Helpers . 467
11.1 ActiveModelHelper . 468
11.2 AssetTagHelper . 469
11.3 AssetUrlHelper . 475
11.4 AtomFeedHelper . 482
11.5 CacheHelper . 484
11.6 CaptureHelper . 485
11.7 ControllerHelper . 487
11.8 CsrfHelper . 488
11.9 DateHelper . 489
11.10DebugHelper . 497
11.11FormHelper . 498
11.12FormOptionsHelper . 520
11.13FormTagHelper . 529
11.14JavaScriptHelper . 536
11.15NumberHelper . 537
11.16OutputSafetyHelper . 544
11.17RecordTagHelper . 545
11.18RenderingHelper . 547
11.19SanitizeHelper . 548
11.20TagHelper . 551

CONTENTS

11.21TextHelper . 553
11.22TranslationHelper and the I18n API 558
11.23UrlHelper . 580
11.24Writing Your Own View Helpers 585
11.25Wrapping and Generalizing Partials 589
11.26Conclusion . 596

12.Haml . 597
12.1 Getting Started . 598
12.2 The Basics . 599
12.3 Doctype . 606
12.4 Comments . 607
12.5 Evaluating Ruby Code . 609
12.6 Helpers . 612
12.7 Filters . 614
12.8 Haml and Content . 616
12.9 Configuration Options . 617
12.10Conclusion . 620

13.Session Management . 621
13.1 What to Store in the Session . 622
13.2 Storage Mechanisms . 624
13.3 Cookies . 628
13.4 Conclusion . 630

14.Authentication and Authorization 631
14.1 Warden . 632
14.2 Devise . 637
14.3 has_secure_password . 652
14.4 Pundit . 657
14.5 Conclusion . 665

15.Security . 666
15.1 Password Management . 667
15.2 Log Masking . 670
15.3 SSL (Secure Sockets Layer) . 671
15.4 Model Mass-assignment Attributes Protection 672
15.5 SQL Injection . 676
15.6 Cross-Site Scripting (XSS) . 678
15.7 XSRF (Cross-Site Request Forgery) 682
15.8 Session Fixation Attacks . 686
15.9 Keeping Secrets . 687
15.10Conclusion . 689

CONTENTS

16.Action Mailer . 690
16.1 Mailer Models . 691
16.2 Previews . 703
16.3 Receiving Emails . 706
16.4 Testing Email Content . 708
16.5 Sending via API . 710
16.6 Configuration . 711
16.7 Conclusion . 712

17.Caching and Performance . 713
17.1 View Caching . 714
17.2 Data Caching . 733
17.3 Control of Web Caching . 736
17.4 ETags . 738
17.5 Conclusion . 740

18.Background Processing . 741
18.1 Active Job . 742
18.2 Queueing Backends . 747
18.3 Rails Runner . 760
18.4 Conclusion . 762

19.Asset Pipeline . 763
19.1 Introduction to Asset Management 764
19.2 Organization. Where Does Everything Go? 766
19.3 Manifest Files . 767
19.4 Custom Format Handlers . 773
19.5 Post-Processing . 774
19.6 Helpers . 776
19.7 Fingerprinting . 779
19.8 Serving the Files . 781
19.9 Rake Tasks . 785
19.10Webpack . 786
19.11Conclusion . 787

20.Ajax on Rails . 788
20.1 Unobtrusive JavaScript . 790
20.2 Ajax and JSON . 795
20.3 Ajax and HTML . 798
20.4 JSONP Requests . 800
20.5 Conclusion . 802

21.Turbolinks . 803

CONTENTS

21.1 Turbolinks Usage . 804
21.2 Building Your Turbolinks Application 807
21.3 Understanding Turbolinks Caching 809
21.4 Making Transformations Idempotent 811
21.5 Responding to Page Updates . 812
21.6 Persisting Elements Across Page Loads 813
21.7 Advanced Turbolinks . 814
21.8 Turbolinks API Reference . 817
21.9 Turbolinks Events . 818
21.10Conclusion . 819

22.Action Cable . 820
22.1 Web Sockets . 821
22.2 Publish-Subscribe Pattern . 822
22.3 Connections . 823
22.4 Channels . 825
22.5 Subscriptions . 826
22.6 Streams . 828
22.7 Subscriptions Revisited (Browser-Side) 829
22.8 Rebroadcasting . 830
22.9 Channel Actions . 831
22.10Configuration . 833
22.11Running Standalone Cable Servers 835
22.12Generator . 836
22.13Conclusion . 837

23.RSpec . 838
23.1 Introduction . 839
23.2 Behavior-Driven Development . 841
23.3 Basic Syntax and API . 843
23.4 Custom Expectation Matchers . 859
23.5 Helper Methods . 862
23.6 Shared Behaviors . 864
23.7 Shared Context . 865
23.8 Mocks and Stubs . 866
23.9 Running Specs . 870
23.10Factory Girl . 872
23.11RSpec and Rails . 887
23.12Feature Specs with Capybara . 903
23.13Working with Files in Your Specs 906
23.14RSpec Tools . 907
23.15Conclusion . 911

CONTENTS

Active Model API Reference . 912
AttributeAssignment . 913
AttributeMethods . 914
Callbacks . 917
Conversion . 919
Dirty . 920
Errors . 924
ForbiddenAttributesError . 931
Lint::Tests . 932
MissingAttributeError . 934
Model . 935
Name . 937
Naming . 940
SecurePassword . 942
Serialization . 943
Serializers::JSON . 944
Translation . 948
Type . 949
ValidationError . 950
Validations . 951
Validator . 958

Active Support API Reference . 959
Array . 960
Autoload . 970
BacktraceCleaner . 973
Benchmark . 974
Benchmarkable . 975
BigDecimal . 976
Cache::FileStore . 977
Cache::MemCacheStore . 978
Cache::MemoryStore . 979
Cache::NullStore . 980
Cache::Store . 981
CachingKeyGenerator . 987
Callbacks . 988
Class . 992
Concern . 995
Configurable . 996
Date . 997
DateAndTime .1009
DateTime .1013
Dependencies .1018

CONTENTS

DescendantsTracker .1024
Digest::UUID .1025
Duration .1026
Enumerable .1029
ERB::Util .1032
EventedFileUpdateChecker .1033
FalseClass .1034
File .1035
FileUpdateChecker .1036
Gzip .1038
Hash .1039
HashWithIndifferentAccess .1047
Inflector .1048
Inflector::Inflections .1049
Integer .1055
JSON .1056
Kernel .1057
KeyGenerator .1059
LazyLoadHooks .1060
Locale .1061
LogSubscriber .1065
Logger .1067
MessageEncryptor .1068
MessageVerifier .1070
Module .1071
Module::Concerning .1079
Multibyte::Chars .1081
Multibyte::Unicode .1085
NameError .1087
NilClass .1088
Notifications .1089
NumberHelper .1094
Numeric .1095
Object .1107
OrderedOptions .1114
ProxyObject .1115
Railtie .1116
Range .1118
Regexp .1120
Rescuable .1121
SecureRandom .1123
SecurityUtils .1124

CONTENTS

String .1125
StringInquirer .1136
Subscriber .1137
TaggedLogging .1138
TestCase .1139
Testing::Assertions .1141
Thread .1146
Time .1148
TimeWithZone .1160
TimeZone .1162
TrueClass .1167
XmlMini .1168

Rails API .1170
Rails API Mode .1171
JSON .1173

CONTENTS i

“I can positively say that it’s the single best Rails book ever pub-
lished to date. By a long shot.”
—Antonio Cangiano, Software Engineer and Technical Evangelist at
IBM

“This book is a great crash course in Ruby on Rails! It doesn’t just
document the features of Rails, it filters everything through the lens
of an experienced Rails developer—so you come out a Pro on the
other side.”
—Dirk Elmendorf, co-founder of Rackspace & Rails developer since
2005

“The key to The Rails Way is in the title. It literally covers the
“way” to do almost everything with Rails. Writing a truly exhaustive
reference to the most popular Web application framework used by
thousands of developers is no mean feat. A thankful community of
developers that has struggled to rely on scant documentation will
embrace The Rails Way with open arms. A tour de force!”
—Peter Cooper, Editor, Ruby Inside

“Hal Fulton’s The Ruby Way has always been by my side as a
reference while programming Ruby. Many times I had wished there
was a book that had the same depth and attention to detail, only
focused on the Rails framework. That book is now here and hasn’t
left my desk for the past month.”
—Nate Klaiber, Ruby Programmer

“As noted in my contribution to the Afterword: “What Is the Rails
Way (To You)?,” I knew soon after becoming involved with Rails that
I had found something great. Now, with Obie’s book, I have been
able to step into Ruby on Rails development coming from .NET and
be productive right away. The applications I have created I believe
to be a much better quality due to the techniques I learned using
Obie’s knowledge.”
—Robert Bazinet, InfoQ.com, .NET and Ruby community Editor, and
founding member of the Hartford, CT Ruby Brigade

“Extremely well written; it’s a resource that every Rails programmer
should have. Yes, it’s that good.”
—Reuven Lerner, Linux Journal columnist

Foreword
Why are you even reading this book? Rails is old and busted. Everybody knows
that Node.js is the new hotness.
Just kidding. It’s true that Rubyists and Rails programmers alike could learn
a lot from Node. But Rails is a slow burn, an old hotness that somehow hasn’t
petered out yet.
Really, the question isn’t “Why are you even reading this book?” The horrifying
thing about this book is that you probably won’t read it. The question, really,
is “Why aren’t you reading it?” What I hear is that this book’s supposed to be
a reference for intermediate to expert Rails programmers. This is not how I
approached it at all.
I got started in Rails in December of 2005, when it was brand spanking new,
but by 2010 or so, I had forgotten a lot of what I knew, and Rails had changed
a lot. So I read an earlier edition of this book cover-to-cover, and I was kind of
embarassed about it, because I figured it was a book for newbies to read like
that. I thought every Rails newbie was doing what I was doing.
I somehow forgot that in the tech industry, learning how something works
before you use it is exotic and wizardly. In the exacting, demanding Rails
school that I would run if I had nothing better to do with my life, you would
be required to read this book cover-to-cover, along with Rails Anti-Patterns,
another book in this series, before you were ever allowed to write a line of
code. You’d even have to memorize parts of it. Of course, nobody does that
before they build Rails apps, and few people do it at all.
Unfortunately, this means that the more you learn about Rails, the more you’ll
see people using it wrong. But the upside is that reading this book is actually
a really good idea. It’s weird that I should have to say this, but while buying
this book is a good first step, you’re not done yet. Reading it is also a very
good idea.
It’s not just me. If you read Steve Klabnik’s foreword for the previous edition
of this book, you’ll see that he also read an edition of this book cover-to-cover,
and that this was sufficient to catapult him from Rails newbie to superstar
hacker overlord.
I don’t mean to diminish his work, of course; he’s also done a ton of open
source work on Rails, far more than I have, and he’s since developed and
shared expertise in REST and Rust. (Presumably, when a technology comes

Foreword iii

along named Rist, Rast, or Rost, he’ll be an expert in that too. It’s an odd
speciality, but he’s clearly got it locked down.) But I do want to suggest a
controversial possibility: maybe the standards of expertise in our industry are
so low that all you have to do, to radically outpace every Rails programmer
you know, is actually read this book, start to finish.
I know it’s over 700 pages, but every single book in George RR Martin’s A
Song of Ice and Fire is longer than that, and I know at least half the people
who buy this book will have read that entire series. If you can sit through
an endless list of pheasant pies and random food involving persimmons, as if
anyone even knows what a persimmon is, you can sit down and invest some
time in actually getting good at the thing that you do for a living. Stranger
things have happened.
Rails is often seen as a newbie-friendly shorthand for building web apps.
Unwise people say that it makes building web apps so simple that anybody
can do it. I’m going to recommend that you regard that point of view as utter
bullshit. Here’s an alternative paradigm: Rails is a user interface for web
development which streamlines complex tasks. It doesn’t take the complexity
away. It streamlines your interaction with that complexity. There are two
things you should really watch out for here.
The first is that in programming, all abstractions are ultimately leaky ab-
stractions. For example, it’s irresponsible to write any kind of code which
handles money and currency if you don’t understand the basics of floating-
point math, including the reasons why computers can’t actually do floating-
point math. It’s literally impossible to represent many decimal fractions as
binary fractions, and computers represent everything in binary because they
ultimately run everything through logic gates. This means that it’s impossible
to accurately represent certain numerical values as floating-point numbers,
and people can take that mathematical impossiblity quite personally when
it affects the accuracy of their bank account balances. In other words,
the realities of calculation in silicon are very important when you’re doing
financial transactions. That’s just an example, but in every case, if you’ve got
a systemwhich makes complex stuff simple, it’s still a really good idea to know
what those underlying complexities ultimately are.
The second thing you should understand, to avoid the majority of pitfalls in
Rails, is that building a good user interface is a lot of work. Every project out
there will encounter the tricky situation where you get the first 90% of the
problem out of the way, and then you discover that the remaining 10% of the
problem – all the random little edge cases and details – will take as much code
as the first 90% did. User interface code is all about that remaining 10%. And
Rails really is a user interface for web development. So entire libraries within
Rails, such as Active Relation, are dedicated to that little 10%.

Foreword iv

One solution to both these problems is to read this book cover to cover. It’s
certainly not the only solution, and it might not even be the best. The best
solution is probably to win the lottery and spend all your time smoking weed,
but there are quite a few practical obstacles to implementing this solution, so
you might end up choosing to read this book instead.
Long story short, you bought this book. Good idea. Now read it.

Foreword (to The Rails 4 Way)
A long time ago, I was an intern at a technology company. We had “deploy
week,” meaning that after deploying, we took an entire week to fight fires.
Moving our code to the production environment would inevitably cause
unexpected changes. One day, I read a blog post titled “Unit Testing with
Ruby on Rails,” and my life was forever changed. I excitedly went and told
my team that we could write code to check whether our code worked before
deploying, but they weren’t particularly interested. A few months later, when
a friend asked me if I wanted to be the CTO of his startup, I said, “Only if I
can do it in Ruby on Rails.”
My story was fairly typical for that period. I didn’t know anything about Ruby,
but I had to write my application in Rails. I figured out enough Ruby to fake
it and cobbled together an application in record time. There was just one
problem: I didn’t really understand how it actually worked. This is the deal
everyone makes with Rails at the start. You can’t think about the details too
much because you’re flying to the sky like a rocket.
This book, however, isn’t about that. When I read The Rails Way for the first
time, I felt like I truly understood Rails for the first time. All those details
I didn’t fully understand were now able to be grokked. Every time someone
said, “Rails is magic,” I would smile to myself. If Rails was magic, I had peered
behind the curtain. One day I decided that I should write some documentation
to help dispel those kinds of comments. One commit became two; two became
twenty. Eventually, I was a large contributor in my own right. Such a long way
for someone who had just a few short years earlier never heard of a unit test!
As Rails has changed, so has The Rails Way. In fact, one criticism you could
make of this book is that it’s not actually “the Rails way”; after all, it teaches
you HAML instead of ERb! I think that this criticismmisses the mark. After all,
it’s not 2005 anymore. To see what I mean, go read the two forewords from
the previous editions. They appear right after this one… I’ll wait.
Done? David’s foreword was quite accurate for both Rails 2 and The Rails Way.
At that time, Rails was verymuch “not as a blank slate equally tolerant of every
kind of expression.” Rails was built for what I call the “Omakase Stack”: you
have no choice, you get exactly what Chef David wants to serve you.1

1
Omakase is a Japanese term used at sushi restaurants to leave the selection to the chef. To learn more about

the Omakase stack, read http://words.steveklabnik.com/rails-has-two-default-stacks

http://words.steveklabnik.com/rails-has-two-default-stacks

Foreword (to The Rails 4 Way) vi

Yehuda’s foreword was also quite accurate–but for Rails 3 and The Rails 3
Way. “We brought this philosophy to every area of Rails 3: flexibility without
compromise.” With Rails 3, you get the Omakase stack by default, but you are
free to swap out components: if you don’t like sushi, you can substitute some
sashimi.
There was a lot of wailing and gnashing of teeth during the development of
Rails 3. Jeremy Ashkenas called it “by far the worst misfortune to ever happen
to Rails.” Rails 3 was an investment in the future of Rails, and investments can
take awhile to pay off. At the release of Rails 3, it seemed like we had waited
more than a year for no new features. Rails was a little better, but mostly the
same. The real benefit was where it couldn’t be seen: in the refactoring work.
Rails 1 was “red-green.” Rails 2 was “red-green.” Rails 3 was “refactor.” It
took a little while for gem authors to take advantage of this flexibility, but
eventually, they did.
And that brings us now to Rails 4 and The Rails 4 Way. This book still
explains quite a bit about how Rails works at a low level, but also gives you
an alternate vision from the Omakase Stack, based on the experience and
talent of Hashrocket. In many ways, The Rails 4 Way, Agile Web Development
with Rails, and Rails 4 in Action are all “the Rails way.” Contemporary Rails
developers get the best of both worlds: They can take advantage of the rapid
development of convention over configuration, but if they choose to follow
a different convention, they can. And we have many sets of conventions to
choose from. It’s no longer “David’s way or the highway,” though David’s way
is obviously the default, as it should be.
It has been an amazing few years for Rails, and it has been a pleasure to take
part in its development. I hope that this book will give you the same level of
insight and clarity into Rails as it did for me, years ago, while also sparking
your imagination for what Rails will undoubtedly become in the future.
—Steve Klabnik, Ruby Hero

Foreword (to The Rails 3 Way)
From the beginning, the Rails framework turned web development on its head
with the insight that the vast majority of time spent on projects amounted
to meaningless sit-ups. Instead of having the time to think through your
domain-specific code, you’d spend the first few weeks of a project deciding
meaningless details. By making decisions for you, Rails frees you to kick off
your project with a bang, getting a working prototype out the door quickly.
This makes it possible to build an application with some meat on its bones in
a few weekends, making Rails the web framework of choice for people with a
great idea and a full-time job.
Rails makes some simple decisions for you, like what to name your controller
actions and how to organize your directories. It also gets pretty aggressive,
and sets development-friendly defaults for the database and caching layer
you’ll use, making it easy to change to more production-friendly options once
you’re ready to deploy.
By getting so aggressive, Rails makes it easy to put at least a few real users
in front of your application within days, enabling you to start gathering the
requirements from your users immediately, rather than spending months ar-
chitecting a perfect solution, only to learn that your users use the application
differently than you expected.
The Rails team built the Rails project itself according to very similar goals.
Don’t try to overthink the needs of your users. Get something out there that
works, and improve it based on actual usage patterns. By all accounts, this
strategy has been a smashing success, and with the blessing of the Rails core
team, the Rails community leveraged the dynamism of Ruby to fill in the gaps
in plugins. Without taking a close look at Rails, you might think that Rails’
rapid prototyping powers are limited to the 15-minute blog demo, but that
you’d fall off a cliff when writing a real app. This has never been true. In
fact, in Rails 2.1, 2.2 and 2.3, the Rails team looked closely at common usage
patterns reflected in very popular plugins, adding features that would further
reduce the number of sit-ups needed to start real-life applications.
By the release of Rails 2.3, the Rails ecosystem had thousands of plugins, and
applications like Twitter started to push the boundaries of the Rails defaults.
Increasingly, youmight build your next Rails application using a non-relational
database or deploy it inside a Java infrastructure using JRuby. It was time to
take the tight integration of the Rails stack to the next level.

Foreword (to The Rails 3 Way) viii

Over the course of 20 months, starting in January 2008, we looked at a
wide range of plugins, spoke with the architects of some of the most popular
Rails applications, and changed the way the Rails internals thought about its
defaults.
Rather than start from scratch, trying to build a generic data layer for Rails,
we took on the challenge of making it easy to give any ORM the same tight
level of integration with the rest of the framework as Active Record. We
accepted no compromises, taking the time to write the tight Active Record
integration using the same APIs that we now expose for other ORMs. This
covers the obvious, such as making it possible to generate a scaffold using
DataMapper or Mongoid. It also covers the less obvious, such as giving
alternative ORMs the same ability to include the amount of time spent in the
model layer in the controller’s log output.
We brought this philosophy to every area of Rails 3: flexibility without
compromise. By looking at the ways that an estimated million developers use
Rails, we could hone in on the needs of real developers and plugin authors,
significantly improving the overall architecture of Rails based on real user
feedback.
Because the Rails 3 internals are such a departure from what’s come before,
developers building long-lived applications and plugin developers need a
resource that comprehensively covers the philosophy of the new version of
the framework. The RailsTM 3 Way is a comprehensive resource that digs
into the new features in Rails 3 and perhaps more importantly, the rationale
behind them.
—Yehuda Katz, Rails core team alumni

Foreword (to The Rails Way)
Rails is more than a programming framework for creating web applications.
It’s also a framework for thinking about web applications. It ships not as a
blank slate equally tolerant of every kind of expression. On the contrary, it
trades that flexibility for the convenience of “what most people need most of
the time to do most things.” It’s a designer straightjacket that sets you free
from focusing on the things that just don’t matter and focuses your attention
on the stuff that does.
To be able to accept that trade, you need to understand not just how to do
something in Rails, but also why it’s done like that. Only by understanding
the why will you be able to consistently work with the framework instead of
against it. It doesn’t mean that you’ll always have to agree with a certain
choice, but you will need to agree to the overachieving principle of conven-
tions. You have to learn to relax and let go of your attachment to personal
idiosyncrasies when the productivity rewards are right.
This book can help you do just that. Not only does it serve as a guide in your
exploration of the features in Rails, it also gives you a window into the mind
and soul of Rails. Why we’ve chosen to do things the way we do them, why
we frown on certain widespread approaches. It even goes so far as to include
the discussions and stories of how we got there—straight from the community
participants that helped shape them.
Learning how to do Hello World in Rails has always been easy to do on your
own, but getting to know and appreciate the gestalt of Rails, less so. I applaud
Obie for trying to help you on this journey. Enjoy it.
—David Heinemeier Hansson, Creator of Ruby on Rails

Acknowledgments
TK
Miguel Salas,
As always, I’d also like to express a huge debt of gratitude to our executive
editor at Pearson: Debra Williams-Cauley. Without her constant support and
encouragement throughout the years, the Professional Ruby Series would not
exist.
—Obie Fernandez (December 2013)

About the Author
Obie Fernandez has been hacking computers since he got his first Com-
modore VIC-20 in the eighties, and found himself in the right place and time as
a programmer on some of the first Java enterprise projects of the mid-nineties.
He moved to Atlanta in 1998, where he founded the Extreme Programming
(later Agile Atlanta) User Group and was that group’s president and organizer
for several years. In 2004, he joined world-renowned consultancy Thought-
Works and made a name for himself tackling high-risk, progressive projects
in the enterprise, including some of the first enterprise projects in the world
utilizing Ruby on Rails. He also gained a reputation and fan following for being
one of the fledgling framework’s loudest evangelists.
In 2007, Obie leveraged his position in the community to launch Hashrocket,
a firm specializing in Ruby on Rails development. Over the course of three
years it grew to almost 50 employees, 7 million in revenue and recognition
as one of the world’s best web design and development consultancies. At
Hashrocket, Obie specialized in orchestrating the creation of large-scale, web-
based applications, both for startups and mission-critical enterprise projects.
At the end of 2010, Obie sold his stake in Hashrocket and has been either
founding or consulting technology startups ever since. His last startup,
Andela, has received close to $40 million in funding, including a $24 million
Series B round led Chan Zuckerberg Initiative. With Andela, Obie is helping
to transform the technology sphere by training 100 thousand brilliant young
Africans how to become world-class technology leaders.
Today, in addition to writing, consulting clients, and pursuing his passion
for DJing and electronic music production, Obie keeps a variety of side
projects that keep him coding on an almost daily basis. Learn more at http:
//obiefernandez.com.

http://obiefernandez.com
http://obiefernandez.com

Introduction
It’s an exciting time for the Rails community. Our mainstream adoption is as
strong as ever. More than 10 years since DHH made the initial Rails releases,
we have cemented our place as the standard bearer amongst web frameworks.
While Rails 5 does not bring a huge leap forward in features like its prede-
cessor did, it does give us a level of fit and finish that surpasses any major
technology framework that most of us have ever worked with. Everything.
Just. Works. Maybe it’s just that I’m getting older, but as I’ve worked my way
through the comprehensive revision/rewrite cycle for this edition, I marveled
at how little digging and debugging I had to do, even for new features. Truly,
with maturity and community depth, we have acquired strength beyond what
anyone could have imagined at the start when we were the radicals.

This particular revision of The Rails Way was much less of a team exercise
than earlier ones. This time around it was me, sitting in my cabin outside
Atlanta, with my dog Daisy at my feet and copious amounts of research at my
fingertips. During this revision cycle, I fell in love with Rails all over again,
and banged out a couple of side projects just for the sheer fun of it. I couldn’t
be prouder of how it’s come together. I pored over every line, and tightened
up the writing in every single chapter. I checked every bit of sample code,
and changed lots of it to reflect more modern techniques.

Introduction xiii

About This Book

As with previous editions, this book is not a tutorial or basic introduction to
Ruby or Rails. The idea is for the full-time Rails developer to give it a once
over straight through at first, then use it as a day-to-day reference. The more
confident reader might be able to get started in Rails using just this book,
extensive online resources, and his wits, but there are other publications that
are more introductory in nature and might be a wee bit more appropriate for
beginners.
Historically, every contributor to this book has worked with Rails on a full
time basis. We do not spend our days writing books or training other people,
although that is certainly something that we enjoy doing on the side.
This book was originally conceived for myself, because I hate having to use
online documentation, especially API docs, which need to be consulted over
and over again. Since the API documentation is liberally licensed (just like
the rest of Rails), there are some sections of the book that draw from the API
documentation. But in practically all of those cases, the API documentation
has been expanded and/or corrected, supplemented with additional examples
and enhanced with commentary drawn from practical experience.
Hopefully you are like me—I really like books that I can keep next to my
keyboard, scribble notes in, and fill with bookmarks and dog-ears. When I’m
coding, I want to be able to quickly refer to API documentation, in-depth
explanations, and relevant examples.

Book Structure

I attempted to give the material a natural structure while meeting the goal of
being the best-possible Rails reference book. To that end, careful attention
has been given to presenting holistic explanations of each subsystem of
Rails, including detailed API information where appropriate. Every chapter
is slightly different in scope, and I suspect that Rails is now too big a topic to
cover the whole thing in depth in just one book.
Believe me, it has not been easy coming up with a structure that makes perfect
sense for everyone. Particularly, I have noted surprise in some readers when
they notice that Active Record is not covered first. Rails is foremost a web
framework and, at least to me, the controller and routing implementation is
the most unique, powerful, and effective feature, with Active Record following
a close second.

Introduction xiv

Sample Code and Listings

The domains chosen for the code samples should be familiar to almost all
professional developers. They include time and expense tracking, auctions,
regional data management, and blogging applications. I don’t spend pages
explaining the subtler nuances of the business logic for the samples or justify
design decisions that don’t have a direct relationship to the topic at hand.
Following in the footsteps of my series colleague Hal Fulton and The Ruby
Way, most of the snippets are not full code listings—only the relevant code is
shown. Ellipses (…) often denote parts of the code that have been eliminated
for clarity.
Whenever a code listing is large and significant, and I suspect that you might
want to use parts of it verbatim in your own code, I supply a listing heading.
There are not too many of those. The whole set of code listings will not add up
to a complete working system, nor are there 30 pages of sample application
code in an appendix. The code listings should serve as inspiration for your
production-ready work, but keep in mind that it often lacks touches necessary
in real-world work. For example, examples of controller code are oftenmissing
pagination and access control logic, because it would detract from the point
being expressed.
Some of the source code for my examples can be found at https://github.
com/obie/tr5w_time_and_expenses. Note that it is not a working nor complete
application. It just made sense at times to keep the code in the context of an
application and hopefully you might draw some inspiration from browsing it.

Concerning Third-Party RubyGems and Plugins

Whenever you find yourself writing code that feels like plumbing, by which I
mean completely unrelated to the business domain of your application, you’re
probably doing too much work. I hope that you have this book at your side
when you encounter that feeling. There is almost always some new part of the
Rails API or a third-party RubyGem for doing exactly what you are trying to
do.
As a matter of fact, part of what sets this book apart is that I never hesitate
in calling out the availability of third-party code, and I even document the
RubyGems and plugins that I feel are most crucial for effective Rails work. In
cases where 3rd-party code is better than the built-in Rails functionality, we
don’t cover the built-in Rails functionality (pagination is a good example).
An average developer might see his productivity double with Rails, but I’ve
seen serious Rails developers achieve gains that are much, much higher.

https://github.com/obie/tr5w_time_and_expenses
https://github.com/obie/tr5w_time_and_expenses

Introduction xv

That’s because we follow the Don’t Repeat Yourself (DRY) principle religiously,
of which Don’t Reinvent The Wheel (DRTW) is a close corollary. Reimple-
menting something when an existing implementation is good enough is an
unnecessary waste of time that nevertheless can be very tempting, since it’s
such a joy to program in Ruby.
Ruby on Rails is actually a vast ecosystem of core code, official plugins, and
third-party plugins. That ecosystem has been exploding rapidly and provides
all the raw technology you need to build even themost complicated enterprise-
class web applications. My goal is to equip you with enough knowledge that
you’ll be able to avoid continuously reinventing the wheel.

Introduction xvi

David Heinemeier Hansson (aka DHH)

Regarding David Heinemeier Hansson a.k.a. DHH. I had the pleasure of
establishing a friendship with David, creator of Rails, in early 2005, before
Rails hit the mainstream and he became an International Web 2.0 Superstar.
My friendship with David is a big factor in why I’m writing this book today.
David’s opinions and public statements shape the Rails world, which means
he gets quoted a lot when we discuss the nature of Rails and how to use it
effectively.
I don’t know if this is true anymore, but back when I wrote the original edition
of this book, David had told me on a couple of occasions that he hates the
“DHH” moniker that people tend to use instead of his long and difficult-to-
spell full name. For that reason, in this book I try to always refer to him as
“David” instead of the ever-tempting “DHH.” When you encounter references
to “David” without further qualification, I’m referring to the one-and-only
David Heinemeier Hansson.
There are a number of notable people from the Rails world that are also
referred to on a first-name basis in this book. Those include:

• Yehuda Katz
• Jamis Buck
• Xavier Noria
• Tim Pope

Introduction xvii

Goals

As already stated, I hope to make this your primary working reference for
Ruby on Rails. Over time I hope this book gives you as an application devel-
oper/programmer greater confidence in making design and implementation
decisions while working on your day-to-day tasks. After spending time with
this book, your understanding of the fundamental concepts of Rails coupled
with hands-on experience should leave you feeling comfortable working on
real-world Rails projects, with real-world demands.
If you are in an architectural or development lead role, this book is not
targeted to you but should make you feel more comfortable discussing the
pros and cons of Ruby on Rails adoption and ways to extend Rails to meet the
particular needs of the project under your direction.
Finally, if you are a development manager, you should find the practical
perspective of the book and our coverage of testing and tools especially
interesting and hopefully get some insight into why your developers are so
excited about Ruby and Rails.

Introduction xviii

Prerequisites

The reader is assumed to have the following knowledge:

• Basic Ruby syntax and language constructs such as blocks
• Solid grasp of object-oriented principles and design patterns
• Basic understanding of relational databases and SQL
• Familiarity with how Rails applications are laid out and function
• Basic understanding of network protocols such as HTTP and SMTP
• Basic understanding of JSON and web services
• Familiarity with transactional concepts such as ACID properties

As noted in the section “Book Structure,” this book does not progress from
easy material in the front to harder material in the back. Some chapters do
start out with fundamental, almost introductory material, and push on to more
advanced coverage. There are definitely sections of the text that experienced
Rails developer will gloss over. However, I believe that there is new knowledge
and inspiration in every chapter, for all skill levels.

Introduction xix

Required Technology

A late-model Apple MacBookPro running Mac OS X. Just kidding, of course.
Linux is pretty good for Rails development also. Microsoft Windows—well, let
me just put it this way—your mileage may vary. I’m being nice and diplomatic
in saying that. We specifically do not discuss Rails development on Microsoft
platforms in this book. It’s common knowledge that the vast majority of
working Rails professionals develop and deploy on non-Microsoft platforms.

Introduction xx

Licenses, Attributions and Trademark Notice

Portions of the text are derived or excerpted from the Ruby on Rails source
code, Copyright (c) 2005-2016 David Heinemeier Hansson.
Portions of Chapter 14 are derived from the Warden github wiki, Copyright
(c) 2009 Daniel Neighman.
Portions of Chapter 19 are derived from Turbolinks™ source code, Copyright
(c) 2016 Basecamp, LLC.
Portions of Chapter 21 are derived from Factory Girl source code, Copyright
(c) 2008-2016 Joe Ferris and thoughtbot, inc.
Portions of Chapter 22 are derived from Active Model Serializers source code,
Copyright (c) 2014 Steve Klabnik
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Portions of Appendix C are derived from the Byebug source code, Copyright
(c) 2016 David Rodríguez.
Copyright (c) David Rodríguez deivid.rodriguez@gmail.com All rights re-
served.
Redistribution and use in source and binary forms, with or without mod-
ification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and

mailto:deivid.rodriguez@gmail.com

Introduction xxi

the following disclaimer in the documentation and/or other materials provided
with the distribution.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS
“AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
Portions of the manuscript are derived from RailsGuides, licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License https://
creativecommons.org/licenses/by-sa/4.0/
“Rails”, “Ruby on Rails”, and the Rails logo are trademarks of David Heine-
meier Hansson. All rights reserved.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

1. Rails Configuration and
Environments
[Rails] gained a lot of its focus and appeal because I didn’t try
to please people who didn’t share my problems. Differentiating
between production and development was a very real problem for
me, so I solved it the best way I knew how.
—David Heinemeier Hansson

Rails applications have always been preconfigured with three standard modes
of operation: development, test, and production. These modes are basically
execution environments and have a collection of associated settings that
determine things such as which database to connect to and whether the
classes of your application should be reloaded with each request. It is simple
to create your own custom environments if necessary.
The current environment can be specified via the environment variable
RAILS_ENV, which names the desired mode of operation and corresponds to
an environment definition file in the config/environments folder. You can also
set the environment variable RACK_ENV, or as a last resort you may rely on the
default being development. Since this environment setting governs some of the
most fundamental aspects of Rails, such as class loading, in order to really
understand the Rails way you should understand its environment settings.
The most fundamental aspect of your application settings is its list of external
libraries that it depends on. Therefore, we kick off this chapter by covering
Bundler, a tool that manages Rubygem dependencies for Ruby applications.
It takes a manifest file as input and is able to fetch, download, and install
the gems in the manifest, plus any and all child dependencies. A little later
in the chapter we move on to how Rails starts up and handles requests, by
examining scripts such as boot.rb and application.rb and the settings that
make up the three standard environment settings (modes). We also cover some
of the basics of defining your own environments, and why you might choose
to do so.
Note that this book is not written with absolute newcomers to Rails in mind.
To make the most out of this book, you should already be at least somewhat
familiar with how to bootstrap a Rails application and the MVC (Model-View-
Controller) architectural pattern. If you are not, I recommend that you first

Rails Configuration and Environments 2

take advantage of the excellent Ruby on Rails Tutorial website1 by Michael
Hartl, a fellow Addison-Wesley Professional Ruby Series author.

API Mode
Instead of using Rails to generate HTML on the server side, an ongoing
trend in web development is to write rich client applications that execute
in the browser using technologies such as Angular or React. These client
applications treat their Rails backends as just an API server, and generally
communicate via JSON.
Rails 5 introduces an “API Mode” for bootstrapping new applications that
will not be used for serving traditional HTML-based browser applications.
We cover the details of API Mode in Chapter 23, “API Mode”.

1
https://www.railstutorial.org/

https://www.railstutorial.org/
https://www.railstutorial.org/

Rails Configuration and Environments 3

1.1 Bundler

Bundler2 is not a technology that is specific to Rails, but it is the preferred way
to manage your application’s Rubygem dependencies. Applications generated
with Rails use Bundler automatically, and you should not need to install the
bundler gem separately since it’s a dependency of Rails itself.

Since we believe that it is silly to not use Bundler, figuring out how to do so
is left as an exercise for adventurous and/or nonconformist readers.

One of the most important things that Bundler does is dependency resolution
on the full list of gems specified in your configuration, all at once. This
differs from the one-at-a-time dependency resolution approach employed by
Rubygems and previous versions of Rails, which can (and often did) result in
the following hard-to-fix problem.
Assume that your system had the following Rubygem versions installed:

activesupport 4.0.2
activesupport 3.2.11
activemerchant 1.29.3
rails 3.2.11

It turns out that activemerchant 1.29.3 depends on activesupport >= 2.3.14.
Therefore, when you load it using the gem command (from the RubyGems
library) like this

gem 'activemerchant', '1.29.3'

it results in the loading of activemerchant, as well as the latest compatible
versions of its dependencies, including the activesupport 4.0.2 gem, since it
is greater than or equal to version 2.3.14. Subsequently, trying to load rails
itself with

gem 'rails', '3.2.11'

results in the following exception at runtime:

2http://bundler.io

http://bundler.io/
http://bundler.io/

Rails Configuration and Environments 4

can't activate activesupport (= 3.2.11, runtime)
for ["rails-3.2.11"], already activated
activesupport-4.0.2 for ["activemerchant-1.29.3"]

The exception happens because activemerchant has a broader dependency
that results in the activation of a version of Active Support that does not satisfy
the more narrow dependency of the older version of Rails. Bundler solves this
problem by evaluating all dependencies at once and figuring out exactly the
right versions of gems to load.
For an interesting perspective concerning the way that Bundler was con-
ceived, make sure to read Yehuda’s blog post on the subject3.

Gemfile

The root of your Rails project directory contains a Ruby-based gem manifest
file named simply Gemfile, with no filename extension. The Gemfile specifies
all dependencies of your Rails app, including the version of Rails being used.
The basic syntax for the Gemfile is super simple:

gem 'kaminari'
gem 'nokogiri'

To load a dependency only in a specific environment, place it in a group block
specifying one or more environment names as symbols:

group :development do
gem 'byebug'

end

group :test do
gem 'capybara'
gem 'database_cleaner'

end

group :development, :test do
gem 'rspec-rails'
gem 'factory_girl_rails'

end
3http://yehudakatz.com/2010/04/21/named-gem-environments-and-bundler/

http://yehudakatz.com/2010/04/21/named-gem-environments-and-bundler/
http://yehudakatz.com/2010/04/21/named-gem-environments-and-bundler/

Rails Configuration and Environments 5

The gem directive takes an optional second argument describing the version
of the Rubygem desired. Leaving the version argument off will simply get the
latest available stable version, which may not be the latest version available.
To include a release candidate or a pre-release gem you’ll need to specify the
version explicitly.
The format of the version argument matches the RubyGem versioning scheme
to which you should already be accustomed:

gem 'nokogiri', '1.5.6'
gem 'pry-rails', '> 0.2.2'
gem 'decent_exposure', '~> 2.0.1'
gem 'draper', '1.0.0.beta6'

You can find full instructions on how to craft a version string in the RubyGems
documentation4.
Occasionally, the name of the gem that should be used in a require statement
is different than the name of that gem in the repository. In those cases, the
:require option solves this simply and declaratively right in the Gemfile:

gem 'webmock', require: 'webmock/rspec'

Loading Gems Directly From a Git Repository

Until now we have been loading our gems from https://rubygems.org. It is
possible to specify a gem by its source repository as long as it has a .gemspec
file in the root directory. Just add a :git option to the call to gem:

gem 'carrierwave', git: 'https://github.com/carrierwaveuploader/carrierwave.git'

If the gem source repository is hosted on GitHub and is public, you can use
the :github shorthand:

gem 'carrierwave', github: 'carrierwaveuploader/carrierwave'

Gemspecs with binaries or C extensions are also supported:

gem 'nokogiri', git: 'https://github.com/tenderlove/nokogiri.git'

If there is no .gemspec file at the root of a gem’s git repository, you must tell
Bundler which version to use when resolving its dependencies:

4http://docs.rubygems.org/read/chapter/16

http://docs.rubygems.org/read/chapter/16
http://docs.rubygems.org/read/chapter/16
https://rubygems.org
http://docs.rubygems.org/read/chapter/16

Rails Configuration and Environments 6

gem 'deep_merge', '1.0', git: 'https://github.com/peritor/deep_merge.git'

It’s also possible to specify that a git repository contains multiple .gemspec files
and should be treated as a gem source. The following example does just that
for the most common git repository that fits the criteria, the Rails codebase
itself. (Note: You should never actually need to put the following code in a
Gemfile for one of your Rails applications!)

git 'https://github.com/rails/rails.git'
gem 'railties'
gem 'action_pack'
gem 'active_model'

Additionally, you can specify that a git repository should use a particular ref,
branch, or tag as options to the git directive:

git 'https://github.com/rails/rails.git',
ref: '4aded'

git 'https://github.com/rails/rails.git',
branch: '3-2-stable'

git 'https://github.com/rails/rails.git',
tag: 'v3.2.11'

Specifying a ref, branch, or tag for a git repository specified inline uses the
same option syntax:

gem 'nokogiri', git: 'https://github.com/tenderlove/nokogiri.git', ref: '0eec4'

Loading Gems From the File System

You can use a gem that you are actively developing on your local workstation
using the :path option:

gem 'nokogiri', path: '~/code/nokogiri'

Installing Gems

Every time you modify the Gemfile, or more specifically, if you introduce
dependencies not yet installed, invoke the install command to ensure that
all the dependencies in your Gemfile are available to your Rails application.5

5
rbenv allows you to easily install, manage and work with multiple Ruby versions and it’s a must-have tool for

modern Rails developers. https://github.com/sstephenson/rbenv

https://github.com/sstephenson/rbenv

Rails Configuration and Environments 7

$ bundle install
Fetching gem metadata from https://rubygems.org/..........
Fetching version metadata from https://rubygems.org/..
Fetching dependency metadata from https://rubygems.org/.
Resolving dependencies...
Using rake 11.3.0
Using concurrent-ruby 1.0.2
Using i18n 0.7.0
Using minitest 5.9.1
Using thread_safe 0.3.5
Using builder 3.2.2
Using erubis 2.7.0
Using mini_portile2 2.1.0
Using rack 2.0.1
Using nio4r 1.2.1
Using websocket-extensions 0.1.2
Using mime-types-data 3.2016.0521
Using arel 7.1.4
Using bundler 1.13.6
Using byebug 9.0.6
Using coffee-script-source 1.10.0
Using execjs 2.7.0
Using method_source 0.8.2
Using thor 0.19.1
Using debug_inspector 0.0.2
Using ffi 1.9.14
Using multi_json 1.12.1
Using rb-fsevent 0.9.8
Using puma 3.6.0
Using sass 3.4.22
Using tilt 2.0.5
Using sqlite3 1.3.12
Using turbolinks-source 5.0.0
Using tzinfo 1.2.2
Using nokogiri 1.6.8.1
Using rack-test 0.6.3
Using sprockets 3.7.0
Using websocket-driver 0.6.4
Using mime-types 3.1
Using coffee-script 2.4.1
Using uglifier 3.0.3
Using rb-inotify 0.9.7
Using turbolinks 5.0.1
Using activesupport 5.0.0.1
Using loofah 2.0.3

Rails Configuration and Environments 8

Using mail 2.6.4
Using listen 3.0.8
Using rails-dom-testing 2.0.1
Using globalid 0.3.7
Using activemodel 5.0.0.1
Using jbuilder 2.6.0
Using spring 2.0.0
Using rails-html-sanitizer 1.0.3
Using activejob 5.0.0.1
Using activerecord 5.0.0.1
Using spring-watcher-listen 2.0.1
Using actionview 5.0.0.1
Using actionpack 5.0.0.1
Using actioncable 5.0.0.1
Using actionmailer 5.0.0.1
Using railties 5.0.0.1
Using sprockets-rails 3.2.0
Using coffee-rails 4.2.1
Using jquery-rails 4.2.1
Installing web-console 3.4.0
Using rails 5.0.0.1
Using sass-rails 5.0.6
Bundle complete! 15 Gemfile dependencies, 62 gems now installed.
Use `bundle show [gemname]` to see where a bundled gem is installed.

The install command updates all dependencies named in your Gemfile to the
latest versions that do not conflict with other dependencies. It is invoked
automatically upon bootstrapping a new Rails application using the rails new
command in your terminal.
The first time you run bundle install no Gemfile.lock file exists yet. (We’ll talk
about gem locking in the next section.) Bundler will start by fetching all remote
sources, resolving dependencies and installing needed gems.
Re-running bundle install without updating the Gemfile will cause Bundler
to re-fetch all remote sources but use the dependencies specified in the
Gemfile.lock instead of resolving dependencies again. Under normal circum-
stances, this doesn’t change anything about your configuration.
The most common situation is that a Gemfile.lock does exist, and you have
updated your Gemfile by adding or modifying a dependency. When running
bundle install the dependencies specified in Gemfile.lockwill be used for gems
that did not change, but dependencies will be re-resolved for any gems that
were updated.

Rails Configuration and Environments 9

Gem Locking

Every time you run bundle install or bundle update, Bundler calculates the
dependency tree for your application and stores the results in a file named
Gemfile.lock that looks a little like this:

GEM
remote: https://rubygems.org/
specs:

actioncable (5.0.0.1)
actionpack (= 5.0.0.1)
nio4r (~> 1.2)
websocket-driver (~> 0.6.1)

actionmailer (5.0.0.1)
actionpack (= 5.0.0.1)
actionview (= 5.0.0.1)
activejob (= 5.0.0.1)
mail (~> 2.5, >= 2.5.4)
rails-dom-testing (~> 2.0)

Once a lock file is created, Bundler will only load specific versions of gems
that you were using at the moment that the Gemfile was locked, the idea being
that you lock your configuration down to using versions of dependencies that
you know will work well with your application.

Note
The Gemfile.lock file should always be checked into version control,
to ensure every machine running the application uses the exact same
versions of gems.6

To illustrate the importance of this, imagine the Gemfile.lock is miss-
ing and the application is being deployed to production. Since the
dependency tree is non-existent, Bundler has to resolve all of the gems
from the Gemfile on that machine. This in result may install newer gem
versions than you tested against, causing unforeseen issues.

Packaging Gems

You can package up all your gems in the vendor/cache directory inside of your
Rails application:

6http://yehudakatz.com/2010/12/16/clarifying-the-roles-of-the-gemspec-and-gemfile/

http://yehudakatz.com/2010/12/16/clarifying-the-roles-of-the-gemspec-and-gemfile/

Rails Configuration and Environments 10

$ bundle package

Running bundle install --local in an application with packaged gems will use
the gems in the package and skip connecting to rubygems.org or any other
gem sources. You can use this to avoid external dependencies at deploy time or
if you depend on private gems that are not available in any public repository.

Making gem dependencies available to non-Rails scripts
Non-Rails scripts must be executed with bundle exec in order to get a
properly initialized RubyGems environment:

$ bundle exec guard

Bin Stubs

Bootstrapping a new application will result in the creation of binstubs for
Rails executables, located in the bin folder. A binstub is a script containing
an executable that runs in the context of the bundle. This means one does
not have to prefix bundle exec each time a Rails specific executable is invoked.
Binstubs are first class citizens of your project and should be added into your
version control system like any other source code file.
By default, the following stubs are available on every new Rails project:

• bin/bundle
• bin/rails
• bin/rake
• bin/setup
• bin/spring
• bin/update

To add a binstub of a commonly used executable in your bundle, invoke bundle
binstubs some-gem-name. To illustrate, consider the following example,

$ bundle binstubs guard

which creates a binstub for guard in the bin folder:

Rails Configuration and Environments 11

#!/usr/bin/env ruby
#
This file was generated by Bundler.
#
The application 'guard' is installed as part of a gem, and
this file is here to facilitate running it.
#

require 'pathname'
ENV['BUNDLE_GEMFILE'] ||= File.expand_path("../../Gemfile",

Pathname.new(__FILE__).realpath)

require 'rubygems'
require 'bundler/setup'

load Gem.bin_path('guard', 'guard')

Using binstubs, scripts can be executed directly from the bin directory:

$ bin/guard

Rails Configuration and Environments 12

1.2 Startup Scripts

Whenever you start a process to handle requests with Rails (such as with rails
server), one of the first things that happens is that config/boot.rb is loaded.
There are three files involved in setting up the entire Rails stack.

config/environment.rb

This file loads application.rb, then runs initializer scripts.

Load the Rails application.
require_relative 'application'

Initialize the Rails application.
Rails.application.initialize!

config/boot.rb

This file is required by application.rb to set up Bundler and load paths for
Rubygems.

ENV['BUNDLE_GEMFILE'] ||= File.expand_path('../Gemfile', __dir__)
require 'bundler/setup' # Set up gems listed in the Gemfile.

Bundler.setup will add all your gems to the Rails load path but wonâ€™t
actually require them. This is referred to as a “lazy-loading” setup. More
about that in The Rails Class Loader section later in the chapter.

config/application.rb

Now we get into the meat of configuration. This script loads the Ruby on Rails
gems and gems for the specified Rails.env and configures the application.
Let’s go step by step through the settings provided in the default config/ap-
plication.rb file that you’ll find in a newly created Rails application. As you’re
reading through the following sections, make a mental note to yourself that
changes to these files require a server restart to take effect.

Rails Configuration and Environments 13

require_relative 'boot'

Note that the boot script is generated as part of your Rails application, but you
don’t (usually) need to edit it. [TK anyone know of any examples of needing to
edit it?]
Next, the Rails gems are loaded.

require 'rails/all'

By replacing this line you can easily cherry-pick only the components needed
by your application:

To pick the frameworks you want, remove 'require "rails/all"'
and list only the framework railties that you want:
#
require "active_model/railtie"
require "active_record/railtie"
require "action_controller/railtie"
require "action_mailer/railtie"
require "action_view/railtie"
require "sprockets/railtie"
require "rails/test_unit/railtie"

The main configuration of our application follows, which gets its own module
and class:

module TimeAndExpenses
class Application < Rails::Application

Settings in config/environments/* take precedence over those
specified here. Application configuration should go into files
in config/initializers
-- all .rb files in that directory are automatically loaded.

As opposed to the simpler assumptions of earlier Rails versions, the creation
of a module specifically for your application lays a foundation for running
multiple Rails applications in the same executable Ruby process.

Rails Configuration and Environments 14

1.3 Default Initializers

The config/initializers directory contains a set of default initializer scripts. In
this section, we’ll take a walk through them and briefly cover their functions.
Remember that you need to restart your server when you modify any of these
files – by their nature, they are only loaded once at server startup.
Also note that you can (and should) add configuration settings for your own
application by adding your own Ruby scripts to the initializers directory. The
following ten initializers are included by default in all Rails applications.

config/initializers/application_controller_renderer.rb

View rendering is covered in depth in Chapter 10, “Action View”. For now,
what you should know is that Rails 5 introduces the ActionController::Renderer
class as a utility for rendering arbitrary templates’ absent controller actions
(For example, to render a PDF report in a background job).
Templates are rendered in a context with supplementary data. For example,
if a view template needs to create a URL, how will it know what hostname to
use or whether to use SSL or not?
The application_controller_renderer.rb script provides a place for setting
those kinds of defaults.

ApplicationController.renderer.defaults.merge!(
http_host: 'example.org',
https: false
)

config/initializers/assets.rb

The [Asset Pipeline] has a number of settings that allow you to customize its
behavior. These settings are covered in detail in Asset Pipeline Configuration.

Rails Configuration and Environments 15

Version of your assets, change this if you want to expire all your assets.
Rails.application.config.assets.version = '1.0'

Add additional assets to the asset load path
Rails.application.config.assets.paths << Emoji.images_path

Precompile additional assets.
application.js, application.css, and all non-JS/CSS in app/assets folder are already add\
ed.
Rails.application.config.assets.precompile += %w(search.js)

config/initializers/backtrace_silencers.rb

Nobody likes really long exception backtraces, except maybe Java program-
mers. (Kidding!) Rails actually gives you a built-in mechanism for reducing
the size of backtraces by eliminating lines that don’t really add anything to
your debugging effort.

You can add backtrace silencers for libraries that you're using but don't wish to see in\
your backtraces.

Rails.backtrace_cleaner.add_silencer { |line| line =~ /my_noisy_library/ }

The backtrace_silencers.rb initializer lets you modify the way that backtraces
are shortened. I’ve found it useful to remove backtrace entries for noisy
libraries, but removing all silencers is usually never needed during normal
application development.

You can also remove all the silencers if you're trying to debug a problem that might ste\
m from framework code.
Rails.backtrace_cleaner.remove_silencers!

config/initializers/cookies_serializer.rb

Since browser cookies are simply string-based key-value pairs, then storing
anything other than strings requires serialization. This setting controls how
Rails handles that serialization behavior.

Specify a serializer for the signed and encrypted cookie jars.
Valid options are :json, :marshal, and :hybrid.
Rails.application.config.action_dispatch.cookies_serializer = :json

Rails Configuration and Environments 16

Note that applications created before Rails 4.1 use Ruby’s built-in Marshal class
to serialize cookie values into the signed and encrypted cookie jars. If you are
upgrading to Rails 5 and want to transparently migrate your existing Marshal-
serialized cookies into the new JSON-based format, you can set the cookies_-
serializer to :hybrid:

Rails.application.config.action_dispatch.cookies_serializer = :hybrid

When using the :json or :hybrid serializer, you should beware that not all Ruby
objects can be natively serialized as JSON. For example, Date and Time objects
will be serialized as strings, and Hashes will have symbolic keys stringified.

class CookiesController < ApplicationController
def set_cookie

cookies.encrypted[:expiration_date] = Date.tomorrow # => Thu, 20 Mar 2014
redirect_to action: 'read_cookie'

end

def read_cookie
cookies.encrypted[:expiration_date] # => "2014-03-20"

end
end

It’s advisable that you only store simple data (strings and numbers) in
cookies. If you have to store complex objects, you will need to handle the
conversion manually when reading the values on subsequent requests. If you
use the cookie session store (the default case), then this advice applies to the
session and flash hashes also.

config/initializers/filter_parameter_logging.rb

When a request is made to your application, by default Rails logs details such
as the request path, HTTP method, IP Address, and parameters. If an attacker
somehow gained access to your logs, they may be able to view sensitive
information, like passwords and credit card numbers.
The filter_parameter_logging.rb initializer let’s you specify what request pa-
rameters should be filtered from your log files. If Rails receives a request
parameter included in the filter_parameters collection, it will mark it as
[FILTERED] in your logs.

Rails Configuration and Environments 17

Configure sensitive parameters which will be filtered from the log file.
Rails.application.config.filter_parameters += [:password]

config/initializers/inflections.rb

Rails has a class named Inflector whose responsibility is to transform strings
(words) from singular to plural, class names to table names, modularized class
names to ones without, and class names to foreign keys, etc. (Some of its
operations have funny names, such as dasherize.)
The default inflections for pluralization and singularization of uncountable
words are kept in an interesting file inside the ActiveSupport gem, named
inflections.rb.
Most of the time the Inflector class does a decent job of figuring out the
pluralized table name for a given class, but occasionally it won’t. This is one
of the first stumbling blocks for many new Rails users, but it is not necessary
to panic. With a little ad hoc testing beforehand, it’s easy to find out how
Inflector will react to certain words. We just need to use the Rails console,
which by the way is one of the best things about working in Rails.
You fire up the console from your terminal with the rails console command:

$ rails console
>> ActiveSupport::Inflector.pluralize "project"
=> "projects"
>> ActiveSupport::Inflector.pluralize "virus"
=> "viri"
>> "pensum".pluralize # Inflector features are mixed into String

by default
=> "pensums"

As you can see in the example, Inflector tries to be smart, pluralizing virus
as viri; but if you know your Latin, you have already noticed that the plural
pensum should actually be pensa. Needless to say, the inflector does not know
Latin.7

However, you can teach the inflector new tricks by adding new pattern rules,
by pointing out an exception, or by declaring certain words unpluralizable.
The preferred place to do that is inside the config/initializers/inflections.rb
file, where a commented example is already provided:

7Comically, the Rails inflection of virus is also wrong. See http://en.wikipedia.org/wiki/Plural_form_of_words_
ending_in_-us#Virus

http://en.wikipedia.org/wiki/Plural_form_of_words_ending_in_-us#Virus
http://en.wikipedia.org/wiki/Plural_form_of_words_ending_in_-us#Virus

Rails Configuration and Environments 18

ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.plural /^(ox)$/i, '\1en'
inflect.singular /^(ox)en/i, '\1'
inflect.irregular 'person', 'people'
inflect.uncountable %w(fish sheep)

end

The file activesupport/test/inflector_test_cases.rb8 has a long list of pluraliza-
tions correctly handled by Inflector. I found some of them pretty interesting,
such as the following:

"datum" => "data",
"medium" => "media",
"analysis" => "analyses"

config/initializers/mime_types.rb

Rails supports a standard set of MIME types (*/*, text/html, text/plain, text/-
javascript, text/css, text/calendar, text/csv, application/xml, application/rss+xml,
application/atom+xml, application/x-yaml, multipart/form-data, application/x-
www-form-urlencoded, application/json).

Short name respond_to symbol Aliases and
Explanations

text/html :html, :xhtml application/xhtml+xml
text/plain :text, :txt

text/javascript :js application/javascript,
application/x-
javascript

text/css :css Cascading style
sheets

text/calendar :ics iCalendar format for
sharing
meeting requests
and tasks

text/csv :csv Comma-separated
values

application/xml :xml text/xml,
application/x-xml

application/rss+xml :rss Really Simple
Syndication format8https://github.com/rails/rails/blob/master/activesupport/test/inflector_test_cases.rb

https://github.com/rails/rails/blob/master/activesupport/test/inflector_test_cases.rb
https://github.com/rails/rails/blob/master/activesupport/test/inflector_test_cases.rb

Rails Configuration and Environments 19

Short name respond_to symbol Aliases and
Explanations
for web feeds

application/atom+xml :atom Atom Syndication
Format for web
feeds

application/x-yaml :yaml text/yaml - The
human-readable
data serialization
format

application/x-www-
form-

:url_encoded_form The default content
type of HTML

urlencoded forms
multipart/form-data :multipart_form Used for HTML

forms that contain
files, non-ASCII data,
and
binary data

application/json :json text/x-json,
application/jsonrequest
-
JavaScript Object
Notation

If your application needs to respond to other MIME types, you can register
them in the mime_types.rb initializer

Add new mime types for use in respond_to blocks:
Mime::Type.register "text/richtext", :rtf

config/initializers/new_framework_defaults.rb

This initializer contains migration options that promise to ease migration to
Rails 5 from earlier versions. The script is reproduced here, but descriptions
of what these settings do is covered in their related chapters.

Rails Configuration and Environments 20

Enable per-form CSRF tokens. Previous versions had false.
Rails.application.config.action_controller.per_form_csrf_tokens = true

Enable origin-checking CSRF mitigation. Previous versions had false.
Rails.application.config.action_controller.forgery_protection_origin_check = true

Make Ruby 2.4 preserve the timezone of the receiver when calling `to_time`.
Previous versions had false.
ActiveSupport.to_time_preserves_timezone = true

Require `belongs_to` associations by default. Previous versions had false.
Rails.application.config.active_record.belongs_to_required_by_default = true

Do not halt callback chains when a callback returns false. Previous versions had true.
ActiveSupport.halt_callback_chains_on_return_false = false

Configure SSL options to enable HSTS with subdomains. Previous versions had false.
Rails.application.config.ssl_options = { hsts: { subdomains: true } }

config/initializers/session_store.rb

Rails session cookies are encrypted by default using something called an
encrypted cookie store. The session_store.rb initializer configures the session
store of the application, by setting its session store type and key.

Rails.application.config.session_store :cookie_store,
key: '_example_session'

The session cookies are signed using the secret_key_base set in the config/se-
crets.yml configuration file. If you are really paranoid, you can change the
secret key in config/secrets.yml or run rake secret to generate a new one
automatically.

config/initializers/wrap_parameters.rb

Introduced in Rails 3.1, the wrap_parameters.rb initializer configures your
application to work with many JavaScript frameworks out of the box.

Rails Configuration and Environments 21

Be sure to restart your server when you modify this file.

This file contains settings for ActionController::ParamsWrapper which
is enabled by default.

Enable parameter wrapping for JSON. You can disable this by setting
:format to an empty array.
ActiveSupport.on_load(:action_controller) do

wrap_parameters format: [:json]
end

To enable root element in JSON for ActiveRecord objects.
ActiveSupport.on_load(:active_record) do
self.include_root_in_json = true
end

When submitting JSON parameters to a controller, Rails willwrap the parame-
ters into a nested hash, with the controller’s name being set as the key. In that
way, the controller can treat JavaScript clients and HTML forms identically.
To illustrate, consider the following JSON:

{"title": "The Rails 5 Way"}

If a client submitted the preceding JSON to a controller named ArticlesCon-
troller, Rails would nest the params hash under the key “article”. This ensures
the setting of model attributes from request parameters is consistent with the
convention used when submitting from Rails form helpers.

{"title": "The Rails 5 Way", "article" => {"title": "The Rails 5 Way"}}

Rails Configuration and Environments 22

1.4 Other Common Initializers

While the following settings are not included in the Rails boilerplate, we feel
they are sufficiently common as to be worth mentioning.

Time Zones

The default time zone for Rails applications is UTC. If the business domain of
your application is sensitive to knowing exactly what time zone the server is
in, add an initializer script with the following setting to override the default:

Set Time.zone default to the specified zone and make Active Record
auto-convert to this zone.
Run "rake -D time" for a list of tasks for finding time zone names.
config.time_zone = 'Central Time (US & Canada)'

Juanito says…
rake time:zones:all will list all the time zones Rails knows about.

Localization

Rails features localization support via locale files, behavior that is covered in
great detail in Chapter 11, “All About Helpers,” in the TranslationHelper and
I18n API sections.
The default locale is :en. Both it and the location of your locale files can be
overridden in an initializer.

config.i18n.default_locale = :de
config.i18n.load_path += Dir[Rails.root.join('config','sprechen','*.{rb,yml}')]

Generator Default Settings

Rails generator scripts make certain assumptions about your tool chain.
Setting the correct values here means having to type fewer parameters on
the command line. For instance, to use RSpec without fixtures and Haml as
the template engine, our settings would look like the following:

Rails Configuration and Environments 23

Configure generators values. Many other options are available,
be sure to check the documentation.
config.generators do |g|

g.template_engine :haml
g.test_framework :rspec, fixture: false

end

Note that Rubygems such as rspec-rails and factory_girl_rails handle this
particular configuration for you automatically.

Load Path Modifications

By default, Rails looks for code in a number of standard directories, including
all nested directories under app, such as app/models. This is referred to
collectively as the load path. It’s exceedingly rare to need to do so, but it
is possible to add other directories to the load path using the following code:

Custom directories with classes and modules you want to be autoloadable
config.autoload_paths += %W(#{config.root}/extras)

In case you didn’t know, the %W functions as a whitespace-delimited array
literal and is used quite often in the Rails codebase for convenience.

Log-Level Override

The default log level is :debug, and you can override it if necessary.

Force all environments to use the same logger level
(by default production uses :info, the others :debug)
config.log_level = :debug

This book covers use of the Rails logger in-depth later on in this chapter.

Rails Configuration and Environments 24

Schema Dumper

Every time you run tests, Rails dumps the schema of your development
database and copies it to the test database using an auto-generated schema.rb
script. It looks very similar to an Active Record migration script; in fact, it
uses the same API.
You might find it necessary to revert to the older style of dumping the schema
using SQL, if you’re doing things that are incompatible with the schema
dumper code (see the comment).

Use SQL instead of Active Record's schema dumper when creating the
test database. This is necessary if your schema can't be completely
dumped by the schema dumper, for example, if you have constraints
or db-specific column types
config.active_record.schema_format = :sql

Console

It’s possible to supply a block to console to be evaluated when the Rails
environment is loaded via the terminal. This enables you to set console-specific
configurations. I like saving some typing with helper methods like this one.

console do
def obie

User.where(email: "obiefernandez@gmail.com").first
end

end

Rails Configuration and Environments 25

1.5 Spring Application Preloader

Rails ships with an application preloader named Spring.9 Unless you disable
it, during development your application process will keep running in the
background continuously. This speeds up development by eliminating the
need to boot up Rails from scratch every time you execute tests or run a rake
task.
While running, Spring monitors folders config and initializers for changes.
If a file within those folders is changed, Spring will automatically restart your
application. Spring will also restart if any gem dependencies are changed
during development.
To demonstrate the speed increase Spring provides, let’s run the same rake
task in both Rails 4.0 and and a preloaded 4.1 application:

Rails 4.0
$ time bin/rake about

...
bin/rake about 1.20s user 0.36s system 22% cpu 6.845 total

Rails 4.1
$ time bin/rake about

...
bin/rake about 0.08s user 0.04s system 32% cpu 0.370 total

The preloaded Rails environment using Spring provided a savings of over 6
seconds. Those kinds of time savings can add up, especially if you practice
TDD.
You can tweak settings for files that Spring monitors for reloading behavior
in config/spring.rb

%w(
.ruby-version
.rbenv-vars
tmp/restart.txt
tmp/caching-dev.txt

).each { |path| Spring.watch(path) }

–
Remember we said that the value of the RAILS_ENV environment variable
dictates which additional environment settings are loaded next? So now let’s
review the default settings for each of Rails’ standard modes.

9https://github.com/rails/spring

https://github.com/rails/spring

Rails Configuration and Environments 26

1.6 Development Mode

Development is Rails’ default mode and the one in which you will spend most
of your time as a developer. This section contains an in-depth explanation of
each setting in config/environments/development.rb.

Rails.application.configure do
Settings specified here will take precedence over those in
config/application.rb.

Note that configuration settings specified in these environment scripts also
take precedence over those set in initializers.

Automatic Class Reloading

One of the signature benefits of using Rails is the quick feedback cycle offered
by its development mode. Make changes to your code, hit Reload in the
browser, and like magic, the changes are reflected in your application. This
behavior is governed by the config.cache_classes setting:

In the development environment your application's code is reloaded on
every request. This slows down response time but is perfect for
development since you don't have to restart the web server when you
make code changes.
config.cache_classes = false

Without getting into too much nitty-gritty detail, when the config.cache_-
classes setting is true, Rails will use Ruby’s require statement to do its class
loading, and when it is false, it will use load instead.
When you require a Ruby file, the interpreter executes and caches it. If the
file is required again (as in subsequent requests), the interpreter ignores the
require statement and moves on. When you load a Ruby file, the interpreter
executes the file again, no matter how many times it has been loaded before.
Now it’s time to examine the Rails class-loading behavior a bit more in
depth, because sometimes you won’t be able to get certain things to reload
automatically, and it will drive you crazy unless you understand how class
loading works!

Rails Configuration and Environments 27

The Rails Class Loader

In plain old Ruby, a script file doesn’t need to be named in any particular
way that matches its contents. In Rails, however, you’ll notice that there’s
almost always a direct correlation between the name of a Ruby file and the
class or module contained within. Rails takes advantage of the fact that Ruby
provides a callback mechanism for missing constants. When Rails encounters
an undefined constant in the code, it uses a class loader routine based on
file-naming conventions to find and require the needed Ruby script.
How does the class loader knowwhere to search? Rails has the concept of load
paths, and the default load paths include the base directories of just about
anywhere you would think of adding code to your Rails application.
Want to see the contents of your project’s load path? Just fire up the console
and type $LOAD_PATH.

$ rails console
Loading development environment.
>> $LOAD_PATH
=> ["/usr/local/lib/ruby/... # about 20 lines of output

I snipped the console output to save space. A typical Rails project load path
will usually have 60 or more items in its load path. Try it and see.

Rails, Modules, and Auto-Loading Code

Normally in Ruby, when you want to include code from another file in your
application, you have to include a require statement. However, Rails enhances
Ruby’s default behavior by establishing a simple convention that enables Rails
to automatically load your code in most cases. If you’ve used the Rails console
at all, you’ve already seen this behavior in action: You never have to explicitly
require anything!
This is how it works: If Rails encounters a class or module in your code that is
not already defined, Rails uses the following convention to guess which files
it should require to load that module or class.
If the class or module is not nested, insert an underscore between the
constant’s names and require a file of this name. For example,

• EstimationCalculator becomes require "estimation_calculator".
• KittTurboBoost becomes require "kitt_turbo_boost".

Rails Configuration and Environments 28

If the class or module is nested, Rails inserts an underscore between each
of the containing modules and requires a file in the corresponding set of
subdirectories. For example,

• MacGyver::SwissArmyKnife becomes require "mac_gyver/swiss_army_knife".
• Example::ReallyRatherDeeply::NestedClass becomes require "example/really_-

rather_deeply/nested_class" and if not already loaded, Rails would ex-
pect to find it in a file called nested_class.rb, in a directory called
really_rather_deeply, itself in the directory example of which can be found
somewhere in Ruby’s load path (e.g., one of the app subdirectories, lib,
or a plugin’s lib directory).

The bottom line is that you should rarely need to explicitly load Ruby code in
your Rails applications (using require) if you follow the naming conventions.10

Eager Load

To speed up the boot time of starting a Rails server during development, your
project code and libraries are not eager loaded into memory. Instead, they are
loaded on an as-needed basis (aka “lazy-loading”). This behavior is governed
by the config.eager_load setting:

Do not eager load code on boot.
config.eager_load = false

In your production environment, you will want this set to true, as it copies
most of your application into memory. This provides a performance increase
to web servers that copy on write, such as Unicorn.

Error Reports

Requests from localhost, like when you’re developing, generate useful error
messages that include debugging information such as a line number where the
error occurred and a backtrace. Setting consider_all_requests_local to true
causes Rails to display those developer-friendly error screens even when the
machinemaking the request is remote. This is admittedly a bit of an edge-case.

10If you want to learn more about this topic, Benjamin Fleischer has written about using Rails-style autoload
versus require versus require_relative at http://www.benjaminfleischer.com/2013/07/18/ruby-requires-confusion/.

http://www.benjaminfleischer.com/2013/07/18/ruby-requires-confusion/

Rails Configuration and Environments 29

config.consider_all_requests_local = true

Caching

You normally do not want caching behavior when you’re in development mode.
The only time you do want it is if you’re actually testing caching, and we
discuss that at length in Chapter 17, “Caching and Performance”.

Enable/disable caching. By default caching is disabled.
if Rails.root.join('tmp/caching-dev.txt').exist?

config.action_controller.perform_caching = true
config.cache_store = :memory_store
config.public_file_server.headers = {

'Cache-Control' => 'public, max-age=172800'
}

else
config.action_controller.perform_caching = false
config.cache_store = :null_store

end

In earlier versions of Rails, you merely set the perform_caching property to
true or false. Now, as you can see in the code listing, caching behavior is
determined by the presence of tmp/caching-dev.txt. This is done this way to
help ensure that you don’t accidentally leave caching on. Unexpected caching
behavior can be subtle and tricky to diagnose.

Action Mailer Settings

Rails assumes that you don’t want Action Mailer to raise delivery exceptions
in development mode, so based on the config.action_mailer.raise_delivery_-
errors settings, it will swallow those exceptions. That’s fine because mailing
capabilities don’t necessarily work in an average development workstation,
particularly on Windows and other platforms that lack sendmail.

Don't care if the mailer can't send.
config.action_mailer.raise_delivery_errors = false

If you actually want to send mail while in development mode as part of
debugging or ad-hoc testing, then you probably should toggle this setting to
true.

Rails Configuration and Environments 30

Xavier says…
I find it handy to set config.action_mailer.perform_deliveries = false
in development. No delivery attempt is performed, but you can still
see the mail in the log file to check that it looks good, copy account
activation URLs, etc.

config.action_mailer.perform_caching = false

This line of code should probably be part of the caching section. Setting it
to true tells Action Mailer to not ignore cache methods called in mailer view
templates.

Deprecation Notices

Deprecations warnings are very useful for lettting you know when you
should stop using a particular piece of functionality. The configuration setting
config.active_support.deprecation enables you to set how you would like to re-
ceive deprecation warnings. In development mode, by default all deprecation
warnings will appear in the development log.

Print deprecation notices to the Rails logger.
config.active_support.deprecation = :log

Pending Migrations Error Page

In previous versions of Rails, if pending migrations needed to be run, the
web server would fail to start. As of Rails 4, a new error page is displayed
instead, indicating to developers that they should run rake db:migrate RAILS_-
ENV=development to resolve the issue.

Raise an error on page load if there are pending migrations
config.active_record.migration_error = :page_load

Assets Debug Mode

Rails 3.1 introduced us to the Asset Pipeline, a framework to concatenate and
minify JavaScript and other static assets. By default in development mode,
JavaScript and CSS files are served separately in the order they were specified
in their respective manifest files. Setting config.assets.debug to false would
result in Sprockets concatenating and running preprocessors on all assets,
making it a lot harder to debug errors when they occur.

Rails Configuration and Environments 31

Debug mode disables concatenation and preprocessing of assets.
config.assets.debug = true

Suppress logger output for asset requests.
config.assets.quiet = true

Development mode also omits logger output for asset requests, because they
aren’t normally very useful. You can turn them on here for debugging if
necessary.

Missing Translations

Rails views normally just print the key for missing translations, since that’s
what you want when you’re developing prior to translation activities taking
place.

Raises error for missing translations
config.action_view.raise_on_missing_translations = true

This property is uncommented in test mode, which we’re about to cover.

Rails Configuration and Environments 32

1.7 Test Mode

Whenever you run Rails in test mode, that is, the value of the RAILS_-
ENV environment value is test, then the following settings are in effect
(config/environments/test.rb reproduced here for reference purposes):

Rails.application.configure do
Settings specified here will take precedence over those in config/application.rb.

The test environment is used exclusively to run your application's
test suite. You never need to work with it otherwise. Remember that
your test database is "scratch space" for the test suite and is wiped
and recreated between test runs. Don't rely on the data there!
config.cache_classes = true

Do not eager load code on boot. This avoids loading your whole application
just for the purpose of running a single test. If you are using a tool that
preloads Rails for running tests, you may have to set it to true.
config.eager_load = false

Configure public file server for tests with Cache-Control for performance.
config.public_file_server.enabled = true
config.public_file_server.headers = {

'Cache-Control' => 'public, max-age=3600'
}

Show full error reports and disable caching.
config.consider_all_requests_local = true
config.action_controller.perform_caching = false

Raise exceptions instead of rendering exception templates.
config.action_dispatch.show_exceptions = false

Disable request forgery protection in the test environment.
config.action_controller.allow_forgery_protection = false
config.action_mailer.perform_caching = false

Tell Action Mailer not to deliver emails to the real world.
The :test delivery method accumulates sent emails in the
ActionMailer::Base.deliveries array.
config.action_mailer.delivery_method = :test

Print deprecation notices to the stderr.
config.active_support.deprecation = :stderr

Rails Configuration and Environments 33

Raises error for missing translations
config.action_view.raise_on_missing_translations = true

end

Most people get by without ever needing to modify their test environment
settings.

Custom Environments
If necessary, you can create additional environments for your Rails
app to run by cloning one of the existing environment files in the
config/environments directory of your application. The most common
use case for custom environments is in setting up additional pro-
duction configurations, such as for staging and QA deployments. Do
you have access to the production database from your development
workstation? Then a triage environment might make sense. Use the
normal environment settings for development mode, but point its
database connection to a production database server. It’s a potentially
life-saving combination when you need to quickly diagnose issues in
production.

Rails Configuration and Environments 34

1.8 Production Mode

Finally, production mode is what you want your Rails application running
in whenever it is deployed to its hosting environment and serving public
requests. There are a number of significant ways that production mode differs
from the other modes, not least of which is the speed boost you get from not
reloading all of your application classes for every request.
Here is config/environments/production.rb:

Rails.application.configure do
Settings specified here will take precedence over those in
config/application.rb.

Code is not reloaded between requests.
config.cache_classes = true

Eager load code on boot. This eager loads most of Rails and
your application in memory, enabling both threaded web servers
and those relying on copy on write to perform better.
Rake tasks automatically ignore this option for performance.
config.eager_load = true

Full error reports are disabled and caching is turned on.
config.consider_all_requests_local = false
config.action_controller.perform_caching = true

Disable serving static files from the `/public` folder by default since
Apache or NGINX already handles this.
config.public_file_server.enabled = ENV['RAILS_SERVE_STATIC_FILES'].present?

Compress JavaScripts and CSS.
config.assets.js_compressor = :uglifier
config.assets.css_compressor = :sass

Do not fall back to the assets pipeline if a precompiled asset is missed.
config.assets.compile = false

`config.assets.precompile` and `config.assets.version` have moved to
config/initializers/assets.rb.

Enable serving of images, stylesheets, and JavaScripts from an asset server.
config.action_controller.asset_host = 'http://assets.example.com'

Specifies the header that your server uses for sending files.

Rails Configuration and Environments 35

config.action_dispatch.x_sendfile_header = 'X-Sendfile' # for Apache
config.action_dispatch.x_sendfile_header = 'X-Accel-Redirect' # for NGINX

Mount Action Cable outside main process or domain
config.action_cable.mount_path = nil
config.action_cable.url = 'wss://example.com/cable'
config.action_cable.allowed_request_origins = ['http://example.com',
/http:\/\/example.*/]

Force all access to the app over SSL, use Strict-Transport-Security, and
use secure cookies.
config.force_ssl = true

Use the lowest log level to ensure availability of diagnostic information
when problems arise.
config.log_level = :debug

Prepend all log lines with the following tags.
config.log_tags = [:request_id]

Use a different cache store in production.
config.cache_store = :mem_cache_store

Use a real queuing backend for Active Job (and separate queues per
environment)
config.active_job.queue_adapter = :resque
config.active_job.queue_name_prefix = "auction_#{Rails.env}"
config.action_mailer.perform_caching = false

Ignore bad email addresses and do not raise email delivery errors.
Set this to true and configure the email server for immediate delivery to
raise delivery errors.
config.action_mailer.raise_delivery_errors = false

Enable locale fallbacks for I18n (makes lookups for any locale fall back to
the I18n.default_locale when a translation cannot be found).
config.i18n.fallbacks = true

Send deprecation notices to registered listeners.
config.active_support.deprecation = :notify

Use default logging formatter so that PID and timestamp are not suppressed.
config.log_formatter = ::Logger::Formatter.new

Use a different logger for distributed setups.

Rails Configuration and Environments 36

require 'syslog/logger'
config.logger = ActiveSupport::TaggedLogging.new(Syslog::Logger.new
'app-name')

if ENV["RAILS_LOG_TO_STDOUT"].present?
logger = ActiveSupport::Logger.new(STDOUT)
logger.formatter = config.log_formatter
config.logger = ActiveSupport::TaggedLogging.new(logger)

end

Do not dump schema after migrations.
config.active_record.dump_schema_after_migration = false

end

Assets

In production mode, assets are by default precompiled by the Asset Pipeline.
All files included in application.js and application.css asset manifests are
compressed and concatenated into their respective files of the same name,
located in the public/assets folder.
If an asset is requested that does not exist in the public/assets folder, Rails will
throw an exception. To enable live asset compilation fallback on production,
set config.assets.compile to true.
The application.js and application.css manifest files are the only JavaScrip-
t/Stylesheets included during the asset pipeline precompile step. To include
additional assets, specify them using the config.assets.precompile configura-
tion setting.

config.assets.precompile += %w(admin.css)

Asset Hosts

By default, Rails links to assets on the current host in the public folder, but
you can direct Rails to link to assets from a dedicated asset server. The
config.action_controller.asset_host setting is covered in detail in Chapter 11,
“All About Helpers,” in the “Using Asset Hosts” section.

Rails Configuration and Environments 37

1.9 Configuring a Database

The file database.yml found in the config folder specifies all the configuration
settings required by Active Record to connect to a database. When a new
application is bootstrapped, Rails automatically generates boilerplate sections
for each environment.
The following is an example of a generated config/database.yml file configured
to work with PostgreSQL:

default: &default
adapter: postgresql
encoding: unicode
pool: 5
username: example
password:

development:
<<: *default
database: example_development

Connect on a TCP socket. Omitted by default since the client uses a
domain socket that doesn't need configuration. Windows does not have
domain sockets, so uncomment these lines.
#host: localhost

The TCP port the server listens on. Defaults to 5432.
If your server runs on a different port number, change accordingly.
#port: 5432

Schema search path. The server defaults to $user,public.
#schema_search_path: myapp,sharedapp,public

Minimum log levels, in increasing order:
debug5, debug4, debug3, debug2, debug1,
log, notice, warning, error, fatal, and panic
Defaults to warning.
#min_messages: notice

Warning: The database defined as "test" will be erased and
re-generated from your development database when you run "rake".
Do not set this db to the same as development or production.
test:

<<: *default
database: example_test

Rails Configuration and Environments 38

production:
<<: *default
database: example_production

An old best practice within the Rails community has been not to store
config/database.yml in version control. First and foremost, if a hacker gained
access to the application repository, they would have all the connection
settings to your production database. Secondly, developers on the team could
potentially have different development and test database settings. New to
Rails 4.1 is the capability to configure Active Record with an environment
variable DATABASE_URL. This allows each developer working on the project to
have their own copy of config/database.yml that is not stored in version control.
The production environment of the Rails application would just need to have
DATABASE_URL set with a valid connection string to be configured correctly.

Rails Configuration and Environments 39

1.10 Configuring Application Secrets

There is also a secrets.yml file found within the config folder. This file is meant
to store your application’s sensitive data, such as access keys and passwords
that are required for external APIs. At a minimum, Rails requires that secret_-
key_base is set for each environment of your application. This is the property
that used to be set in the secret_token.rb initializer in older versions of Rails.

config/secrets.yml

Be sure to restart your server when you modify this file.

Your secret key is used for verifying the integrity of signed cookies.
If you change this key, all old signed cookies will become invalid!

Make sure the secret is at least 30 characters and all random,
no regular words or you'll be exposed to dictionary attacks.
You can use `rake secret` to generate a secure secret key.

Make sure the secrets in this file are kept private
if you're sharing your code publicly.

development:
secret_key_base: 7aed4bcb28...

test:
secret_key_base: a4b717a2a8...

production:
secret_key_base: 39a63892bd...

Kevin says….
I would strongly advise not storing any production secret values in
version control. Like database.yml, if a hacker gained access to the
application repository, they could use these values to exploit your
application. Instead, set all production secret values to environment
variables. The environment variables will only be set on your produc-
tion machine.

config/secrets.yml
...
production:

secret_key_base: <%= ENV['SECRET_KEY_BASE'] %>

Rails Configuration and Environments 40

A hash of all the secrets defined in config/secrets.yml can be accessed via
Rails.application.secrets.

>> Rails.application.secrets
=> {:secret_key_base=>"7aed4bcb28..."}

To access a specific secrets, pass X to

An accessor for each secret key is also provided. For example, to access the
secret for secret_key_base, invoke Rails.application.secrets.secret_key_base.
This will return the value of secret_key_base for the current environment.

>> Rails.env
=> "development"
>> Rails.application.secrets.secret_key_base
=> "7aed4bcb28..."

Secret Token
Certain types of hacking involve modifying the contents of cookies without
the server knowing about it. By digitally signing all cookies sent to the
browser, Rails can detect whether they were tampered with. Rails signs
cookies using the value of secret_key_base, found in config/secrets.yml, which
is randomly generated along with your app.

Rails Configuration and Environments 41

1.11 Logging

Most programming contexts in Rails (models, controllers, view templates)
have a logger attribute, which holds a reference to a logger conforming to the
interface of Log4r or the default Ruby 1.8+ Logger class. Can’t get a reference
to logger somewhere in your code? The Rails.logger method references a
logger that you can use anywhere.
It’s really easy to create a new Logger in Ruby, as shown in the following
example:

$ pry
> require 'logger'
=> true

> logger = Logger.new STDOUT
=> #<Logger:0x00000106c795f0 @progname=nil, @level=0, ...>

> logger.warn "do not want!!!"
W, [2013-11-02T18:34:30.281003 #54844] WARN -- : do not want!!!
=> true

> logger.info "in your logger, giving info"
I, [2013-11-02T18:34:57.186636 #54844] INFO -- : in your logger, giving info
=> true

Typically, you add a message to the log using the logger whenever the need
arises, using a method corresponding to the severity of the log message. The
standard logger’s severities are (in increasingly severe order):

debug
Use the debug level to capture data and application state useful for
debugging problems later on. This level is not usually captured in
production logs.

info
Use info level to capture informational messages. I like to use this log
level for time-stamping non-ordinary events that are still within the
bounds of good application behavior.

warn
Use the warn level to capture things that are out of the ordinary and
might be worth investigating. Sometimes I’ll throw in a logged warning

Rails Configuration and Environments 42

when guard clauses in my code keep a client from doing something they
weren’t supposed to do. My goal is to alert whoever’s maintaining the
application about a malicious user or bug in the user interface, as in the
following example:

def create
begin

group.add_member(current_user)
flash[:notice] = "Successfully joined #{scene.display_name}"

rescue ActiveRecord::RecordInvalid
flash[:error] = "You are already a member of #{group.name}"
logger.warn "A user tried to join a group twice. UI should

not have allowed it."
end

redirect_back(fallback_location: group_path)
end

error
Use the error log level to capture information about error conditions that
don’t require a server restart.

fatal
The worst-case imaginable has happened—your application is now dead
and manual intervention is necessary to restart it.

Rails Log Files

The log folder of your Rails application holds three log files corresponding to
each of the standard environments. Log files can grow very large over time.
A rake task is provided for easily clearing the log files:

$ rake log:clear # Truncates all *.log files in log/ to zero bytes

The contents of log/development.log are very useful while you’re working.
Many Rails coders leave a terminal window open with a continuous tail of
the development log open while they’re coding:

Rails Configuration and Environments 43

$ tail -f log/development.log

Article Load (0.2ms) SELECT "articles".* FROM "articles" WHERE
"articles"."id" = $1 LIMIT 1 [["id", "1"]]

All sorts of valuable information are available in the development log. For
instance, every time you make a request, a bunch of useful information about
it shows up in the log. Here’s a sample from one of my projects.

Started GET "/user_photos/1" for 127.0.0.1 at 2007-06-06 17:43:13
Processing by UserPhotosController#show as HTML
Parameters: {"/users/8-Obie-Fernandez/photos/406"=>nil,
"action"=>"show", "id"=>"406", "controller"=>"user_photos",
"user_id"=>"8-Obie-Fernandez"}
User Load (0.4ms) SELECT * FROM users WHERE (users.'id' = 8)
Photo Load (0.9ms) SELECT * FROM photos WHERE (photos.'id' = 406
AND (photos.resource_id = 8 AND photos.resource_type = 'User'))
CACHE (0.0ms) SELECT * FROM users WHERE (users.'id' = 8)

Rendered adsense/_medium_rectangle (1.5ms)
User Load (0.5ms) SELECT * FROM users WHERE (users.'id' = 8)
LIMIT 1
SQL (0.4ms) SELECT count(*) AS count_all FROM messages WHERE
(messages.receiver_id = 8 AND (messages.'read' = 0))

Rendered layouts/_header (25.3ms)
Rendered adsense/_leaderboard (0.4ms)
Rendered layouts/_footer (0.8ms)
Rendered photos/show.html.erb within layouts/application.html.erb (38.9ms)
Completed in 99ms (Views: 37.4ms | ActiveRecord: 12.3ms) with 200

This is a list of all the data items contained in that chunk of log output:

• The controller and action that were invoked
• The remote IP address of the computer making the request
• A timestamp indicating when the request happened
• The session ID associated with the request
• The hash of parameters associated with the request
• Database request information including the time and the SQL statement
executed

• Query cache hit info including time and the SQL statement triggering
results from the cache instead of a roundtrip to the database

• Rendering information for each template involved in rendering the view
output and time consumed by each

Rails Configuration and Environments 44

• Total time used in completing the request with corresponding request-
per-second figures

• Analysis of the time spent in database operations versus rendering
• The HTTP status code and URL of the response sent back to the client

Tagged Logging

Log files can contain an extensive amount of information, making tracking
down issues or particular requests difficult. To alleviate this issue, Rails 3.2
introduced the capability to prepend information to each of your logmessages.
To add “tagged” information to your logs, pass an array of one or manymethod
names that respond to the request object to the config.log_tags configuration
setting.
To illustrate, assuming we want to track the subdomain that each request
is made from; we can achieve this by setting config.log_tags to [:subdomain].
When Rails writes to the log, it will prefix the output of request.subdomain,
resulting in a log message like the following:

[some_subdomain] Started GET "/articles" for 127.0.0.1 at 2013-02-01 11:49:09 -0500

Log File Analysis

A number of informal analyses can be easily performed using just the devel-
opment log output and some common sense.

Performance
One of the more obvious analyses would be a study of the performance
of your application. The faster your requests execute, the more requests
you can serve with a given Rails process. That’s why performance figures
are often expressed in terms of requests per second. Find the queries and
rendering sections that are taking a long time and figure out why.

It’s important to realize that the times reported by the logger are not super-
accurate. In fact, they’re wrong more often than not, if simply for the reason
that it’s very difficult to measure the timing of something from within itself.
Add up the percentage of rendering and database times for any given request
and it will not always be close to 100%.
However, despite not being accurate in a purely objective sense, the reported
times are perfect for making subjective comparisons within the same applica-
tion. They give you a way of gauging whether an action is taking longer than
it used to or whether it is relatively faster or slower than another action, and
so on.

Rails Configuration and Environments 45

SQL queries
Active Record not behaving as expected? The fact that SQL generated
by Active Record is logged can often help you debug problems caused by
complicated queries.

Identification of N+1 select problems
Whenever you are displaying a record along with an associated collection
of records, there’s a chance that you will have a so-called N+1 select
problem. You’ll recognize the problem by a series of many SELECT state-
ments, with the only difference being the value of the primary key.

For example, here’s a snippet of some log output from a real Rails application
showing an N+1 select issue in the way that FlickrPhoto instances are being
loaded:

FlickrPhoto Load (1.3ms) SELECT * FROM flickr_photos WHERE
(flickr_photos.resource_id = 15749 AND flickr_photos.resource_type =
'Place' AND (flickr_photos.'profile' = 1)) ORDER BY updated_at desc
LIMIT 1
FlickrPhoto Load (1.7ms) SELECT * FROM flickr_photos WHERE
(flickr_photos.resource_id = 15785 AND flickr_photos.resource_type =
'Place' AND (flickr_photos.'profile' = 1)) ORDER BY updated_at desc
LIMIT 1
FlickrPhoto Load (1.4ms) SELECT * FROM flickr_photos WHERE
(flickr_photos.resource_id = 15831 AND flickr_photos.resource_type =
'Place' AND (flickr_photos.'profile' = 1)) ORDER BY updated_at desc
LIMIT 1

and so on and so forth, for pages and pages of log output. Look familiar?
Luckily, each of those database queries is executing very quickly, around
0.0015 seconds each. That’s because 1)MySQL is extraordinarily fast for small
SELECT statements and 2) my Rails process is on the same physical machine as
the database.
Still, accumulate enough of those N queries and they add up quickly to eat
away at performance. Absent the mitigating factors I mentioned, I would have
a serious performance problem to address. The problem would be especially
severe if the database was on a separate machine, giving me network latency
to deal with on each of those queries.
N+1 select issues are not the end of the world. A lot of times all it takes
is proper use of the includes method on a particular query to alleviate the
problem.

Rails Configuration and Environments 46

Separation of Concerns
A well-designed model-view-controller application follows certain pro-
tocols related to which logical tier does database operations (that
would be the model) versus rendering tasks (the view). Generally
speaking, you want your controller to cause the loading of all of the
data that is going to be needed for rendering from the database. In
Rails, it is accomplished by controller code that queries the model for
needed data and makes that data available to the view.

Database access during rendering is usually considered a bad practice. Calling
database methods directly from template code violates proper separation of
concerns and is a maintainability nightmare.11

However, there are plenty of opportunities for implicit database access during
view rendering to creep into your codebase, encapsulated by the model, and
perhaps triggered by lazy loading of associations. Can we conclusively call
it a bad practice? It’s hard to say so definitively. There are cases (such as
usage of fragment caching) where it makes sense to have database operations
happening during view rendering.

Using Alternate Logging Schemes
It’s easy! Just assign a class compatible with Ruby’s Logger to one of
the various logger class variables, such as ActiveRecord::Base.logger. A
quick hack based on the capability to swap loggers is one demonstrated
by David at various events, including his keynote at Railsconf 2007.
During a console session, assign a new Logger instance pointing to
STDOUT to ActiveRecord::Base.logger in order to see the SQL being
generated right in your console. Jamis has a complete write-up of the
technique and more at http://weblog.jamisbuck.org/2007/1/31/more-
on-watching-activerecord.

Rails::Subscriber.colorize_logging

This tells Rails whether to use ANSI codes to colorize the logging statements.
The colors make it much easier to read the logs (except on Windows) and may
complicate matters if you use software like syslog. Defaults to true. Change
to false if you view your logs with software that doesn’t understand the ANSI
color codes.
Here’s a snippet of log output with the ANSI codes visible:

11Practically every PHP application ever written has this problem.

http://weblog.jamisbuck.org/2007/1/31/more-on-watching-activerecord
http://weblog.jamisbuck.org/2007/1/31/more-on-watching-activerecord

Rails Configuration and Environments 47

^[[4;36;1mSQL (0.0ms)^[[0m ^[[0;1mMysql::Error: Unknown table
'expense_reports': DROP TABLE expense_reports^[[0m

^[[4;35;1mSQL (3.2ms)^[[0m ^[[0mCREATE TABLE expense_reports ('id'
int(11) DEFAULT NULL auto_increment PRIMARY KEY, 'user_id' int(11))

Wilson says…
Almost nobody I meet seems to know how to display colorized logs in
a pager. The -R option tells less to output “raw” control characters to
the screen.

Syslog
UNIX-like systems have a system service called syslog. For various
reasons, it might be a better choice for production logging of your Rails
applications.

• Finer-grained control over logging levels and content.
• Consolidation of logger output for multiple Rails applications.
• If you’re using remote syslog capabilities of many systems, con-
solidation of logger output for multiple Rails application servers
is possible. Contrast this with having to handle individual log files
on each application server box separately.

You can use Eric Hodel’s SyslogLogger12 to interface your Rails
application to syslog.

Conclusion

We’ve kicked off our Rails journey by covering Bundler in fairly good detail
and then reviewing Rails initialization step-by-step, along with the different
environments in which Rails executes and how it loads its dependencies,
including your application code. An in-depth look at Rails mode variants
revealed how we can customize Rails behavior to our taste.
Next up we delve into one of the configuration files that we skipped over in this
section, the one that controls what URLs will be available in your Rails-based
web application: config/routes.rb.

12http://docs.seattlerb.org/SyslogLogger

http://docs.seattlerb.org/SyslogLogger
http://docs.seattlerb.org/SyslogLogger

2. Routing
I dreamed a thousand new paths. . . I woke and walked my old one.
—Chinese proverb

The routing system in Rails is the system that examines the URL of an incom-
ing request and determines what action should be taken by the application.
And it does a good bit more than that. Rails routing can be a bit of a tough nut
to crack. But it turns out that most of the toughness resides in a small number
of concepts. After you’ve got a handle on those, the rest falls into place nicely.
This chapter introduces you to the principal techniques for defining and
manipulating routes. The next chapter builds on this knowledge, helping you
to explore the facilities Rails offers in support of writing applications that
comply with the principles of Representational State Transfer (REST). As
you’ll see, those facilities can be of tremendous use to you even if you’re not
planning to scale the heights of REST theorization. Both chapters assume at
least a basic knowledge of the Model-View-Controller (MVC) pattern and Rails
controllers.
Some of the examples in these two chapters are based on a small auction
application. The examples are kept simple enough that they should be com-
prehensible on their own. The basic idea is that there are auctions and each
auction involves auctioning off an item. There are users and they submit bids.
That’s it.
The triggering of a controller action is the main event in the life cycle of a
connection to a Rails application. So it makes sense that the process by which
Rails determines which controller and which action to execute must be very
important. That process is embodied in the routing system.
The routing system maps URLs to actions. It does this by applying rules that
you specify using a special syntax in the config/routes.rb file. Actually it’s just
plain Ruby code, but it uses special methods and parameters, a technique
sometimes referred to as an internal Domain Specific Language (DSL). If
you’re using Rails generators, code gets added to the routes file automatically,
and you’ll get some reasonable behavior. But it doesn’t take much work to
write custom rules and reap the benefits of the flexibility of the routing system.

Routing 49

2.1 The Two Purposes of Routing

The routing system does two things: It maps requests to controller action
methods, and it enables the dynamic generation of URLs for you for use as
arguments to methods like link_to and redirect_to.
Each rule—or to use the more common term, route—specifies a pattern, which
will be used both as a template for matching URLs and as a blueprint for creat-
ing them. The pattern can be generated automatically based on conventions,
such as in the case of REST resources. Patterns can also contain a mixture
of static substrings, forward slashes (mimicking URL syntax), and positional
segment key parameters that serve as “receptors” for corresponding values
in URLs.
A route can also include one or more hardcoded segment keys, in the form
of key/value pairs accessible to controller actions in a hash via the params
method. A couple of keys (:controller and :action) determine which controller
and action gets invoked. Other keys present in the route definition simply get
stashed for reference purposes.
Putting some flesh on the bones of this description, here’s a sample route:

get 'recipes/:ingredient' => "recipes#index"

In this example, you find the following:

• static string (recipes)
• slash (/)
• segment key (:ingredient)
• controller action mapping ("recipes#index")
• HTTP verb constraining method (get)

Routes have a pretty rich syntax—this one isn’t by any means the most
complex (nor the most simple)—because they have to do so much. A single
route, like the one in this example, has to provide enough information both
to match an existing URL and to manufacture a new one. The route syntax is
engineered to address both of these processes.

Routing 50

2.2 The routes.rb File

Routes are defined in the file config/routes.rb, as shown in Listing 2.1. This
file is created when you bootstrap a Rails application.

Listing 2.1: The default routes.rb file

Rails.application.routes.draw do
For details on the DSL available within this file,
see http://guides.rubyonrails.org/routing.html

end

Thewhole file consists of a single call to themethod draw of Rails.application.routes,
which takes a block.
At runtime, the block is evaluated inside of an instance of the class ActionDis-
patch::Routing::Mapper. Through it you configure the Rails routing system.
The routing system has to find a pattern match for a URL it’s trying to
recognize or a parameters match for a URL it’s trying to generate. It does
this by going through the routes in the order in which they’re defined; that is,
the order in which they appear in routes.rb. If a given route fails to match, the
matching routine falls through to the next one. As soon as any route succeeds
in providing the necessary match, the search ends.

The router code in Rails 5 is based on work by Aaron Patterson (aka
Tenderlove) in https://github.com/rails/journey.

Regular Routes

The basic way to define a route is to supply a URL pattern plus a controller
class/action method mapping string with the special :to parameter.

get 'products/:id', to: 'products#show'

Since this is so common, a shorthand form is provided:

get 'products/:id' => 'products#show'

https://github.com/rails/journey

Routing 51

David has publicly commented on the design decision behind the shorthand
form, when he said that it drew inspiration from two sources: 1

1) the pattern we’ve been using in Rails since the beginning of
referencing controllers as lowercase without the “Controller” part
in controller: "main" declarations and 2) the Ruby pattern of signal-
ing that you’re talking about an instance method by using #. The
influences are even part mixed. Main #index would be more con-
fusing in my mind because it would hint that an object called Main
actually existed, which it doesn’t. MainController#index would just
be a hassle to type out every time–exactly the same reason we went
with controller: "main" versus controller: "MainController". Given
these constraints, I think "main#index" is by far the best alternative…

The information in this part of the chapter is mostly academic. You should
be defining the vast majority of your routes in a RESTful fashion, as covered
extensively in Chapter 3, “REST, Resources, and Rails”

Constraining Request Methods

As of Rails 4, it’s recommended to limit the HTTP method used to access a
route. If you are using the match directive to define a route, you accomplish
this by using the :via option:

match 'products/:id' => 'products#show', via: :get

Rails provides a shorthand way of expressing this particular constraint, by
replacing match with the desired HTTP method (get, post, patch, etc.)

get 'products/:id' => 'products#show'
post 'products' => 'products#create'

If, for some reason, you want to constrain a route to more than one HTTP
method, you can pass :via an array of verb names.

1Full comments at http://yehudakatz.com/2009/12/26/the-rails-3-router-rack-it-up.

http://yehudakatz.com/2009/12/26/the-rails-3-router-rack-it-up

Routing 52

match 'products/:id' => 'products#show', via: [:get, :post]

Defining a route without specifying an HTTPmethod will result in Rails raising
a RuntimeError exception.

It used to be possible to make a route match any HTTP method by passing
:any to the :via option, but it was removed in favor of forcing the developer
to be more explicit. Note that providing that option doesn’t error out or raise
a deprecation warning, it just sets your route to respond to a (non-existent)
ANY HTTP method.

match 'products' => 'products#index', via: :any # doesn't do what you think it does

URL Patterns

Keep in mind that there’s no necessary correspondence between the number
of fields in the pattern string, the number of segment keys, and the fact that
every connection needs a controller and an action. For example, you could
write a route like

get ":id" => "products#show"

which would recognize a URL like

http://localhost:3000/8

The routing system would set the value of params[:id] in your controller action
to 8 (based on the position of the :id segment key, which matches the position
of 8 in the URL), and it would execute the show action of the products controller.
Of course, this is a bit of a stingy route, in terms of visual information. On the
other hand, the following example route contains a static string, products/,
inside the URL pattern:

match 'products/:id' => 'products#show'

This string anchors the recognition process. Any URL that does not contain
the static string products/ in its leftmost slot will not match this route.

Routing 53

As for URL generation, static strings in the route simply get placed within the
URL that the routing system generates. The URL generator uses the route’s
pattern string as the blueprint for the URL it generated. The pattern string
stipulates the substring products.
As we go, you should keep the dual purpose of recognition/generation in mind,
which is why it was mentioned several times so far. There are two principles
that are particularly useful to remember:

• The same rule governs both recognition and generation. The whole
system is set up so that you don’t have to write rules twice. You write
each rule once, and the logic flows through it in both directions.

• The URLs that are generated by the routing system (via link_to and
friends) only make sense to the routing system. The resulting URL,
http://example.com/products/19201, contains not a shred of a clue as
to what’s supposed to happen when a user follows it—except insofar as
it maps to a routing rule. The routing rule then provides the necessary
information to trigger a controller action. Someone looking at the URL
without knowing the routing rules won’t know which controller and
action the URL maps to.

Segment Keys

The URL pattern string can contain parameters (denoted with a colon)
referred to as segment keys. In the following route declaration, :id is a
segment key:

get 'products/:id' => 'products#show'

When this route matches a request URL, the :id portion of the pattern acts
as a type of matcher, and picks up the value of that segment. For instance,
using the same example, the value of id for the following URL would be 4:
http://example.com/products/4

This route, when matched, will always take the visitor to the product con-
troller’s show action. You’ll see techniques for matching controller and action
based on segments of the URL shortly. The symbol :id inside the quoted
pattern in the route is a segment key (that you can think of as a type of
variable). Its job is to be latched onto by a value.
What that means in the example is that the value of params[:id] will be set to
the string "4". You can access that value inside your products/show action.
When you generate a URL, you have to supply values that will attach to the
segment keys inside the URL pattern string. The simplest to understand (and
original) way to do that is using a hash, like this:

Routing 54

link_to "Products",
controller: "products",
action: "show",
id: 1

As you probably know, it’s actually more common nowadays to generate URLs
usingwhat are called named routes, versus supplying the controller and action
parameters explicitly in a hash. However, right nowwe’re reviewing the basics
of routing.
In the call to link_to, we’ve provided values for all three parameters of the
route. Two of them are going to match the hard-coded, segment keys in the
route; the third, :id, will be assigned to the corresponding segment key in the
URL pattern.
It’s vital to understand that the call to link_to doesn’t know whether it’s
supplying hard-coded or segment values. It just knows (or hopes!) that these
three values, tied to these three keys, will suffice to pinpoint a route and
therefore a pattern string–and therefore a blueprint for generating a URL
dynamically.

Hardcoded Parameters
It’s always possible to insert additional hardcoded parameters into
route definitions that don’t have an effect on URL matching but are
passed along with the normal expected params.

get 'products/special' => 'products#show', special: 'true'

Mind you, I’m not suggesting that this example is a good practice.
It would make more sense to me (as a matter of style) to point at a
different action rather than inserting a clause. Your mileage may vary.

get 'products/special' => 'products#special'

Spotlight on the :id Field

Note that the treatment of the :id field in the URL is not magic; it’s just treated
as a value with a name. If you wanted to, you could change the rule so that :id
was :blah but then you’d have to do the following in your controller action:

Routing 55

@product = Product.find(params[:blah])

The name :id is simply a convention. It reflects the commonness of the case in
which a given action needs access to a particular database record. The main
business of the router is to determine the controller and action that will be
executed.
The id field ends up in the params hash, already mentioned. In the common,
classic case, you’d use the value provided to dig a record out of the database:

class ProductsController < ApplicationController
def show

@product = Product.find(params[:id])
end

end

Optional Segment Keys

Rails 3 introduced a syntax for defining optional parts of the URL pattern.
The easiest way to illustrate this syntax is by taking a look at the legacy
default controller route, found in old versions of Rails at the bottom of a default
config/routes.rb file:

match ':controller(/:action(/:id(.:format)))', via: :any # doesn't work in Rails 5

Note that parentheses are used to define optional segment keys, kind of like
what you would expect to see when defining optional groups in a regular
expression.

Defining Defaults

You can define default parameters in a route by supplying a hash for the
:defaults option. This even applies to parameters that you do not specify as
dynamic segments in the route itself.

get 'photos/:id', to: 'photos#show', defaults: { format: 'jpg' }

In the preceding example, Rails would match http://example.com/photos/12 to
the show action of PhotosController, and set params[:format] to "jpg".

For security reasons, you cannot override defaults by changing the
values in the params object.

Routing 56

Redirect Routes

It’s possible to code a redirect directly into a route definition, using the
redirect method:

get "/foo", to: redirect('/bar')

The argument to redirect can contain either a relative URL or a full URI.

get '/google', to: redirect('https://google.com/')

Rails lets you use a basic string interpolation in the supplied redirect argu-
ment to easily relay parameters, like this:

get 'docs/:article', to: redirect('/wiki/%{article}')

The redirectmethod can also take a block, which receives the request params
as its argument. This enables you to, for instance, do quick versioning of web
service API endpoints. Just remember that the do end syntax for the redirect
block wouldn’t work, as Ruby would pass the block to match instead of redirect.
Use curly braces instead.2

match "/api/v1/:api",
to: redirect { |params| "/api/v2/#{params[:api].pluralize}" },
via: [:get, :post]

If you need it, the redirect method also accepts parameters, such as :status.
(Rails uses a 301 status code for redirects by default.)

match "/api/v1/:api", to:
redirect(status: 302) { |params| "/api/v2/#{params[:api].pluralize}" },
via: [:get, :post]

All the other options that would work with a call to url_for will work with a
redirect. (:host, :port, etc.)
For example, it’s possible to pass a path parameter, which in conjunction with
a wildcard and interpolation, enables you to supply only the parts of the URL
that need to change.

2Examples drawn from Yehuda Katz’ excellent blog post about generic actions in Rails 3 routes at http:
//yehudakatz.com/2009/12/20/generic-actions-in-rails-3/.

http://yehudakatz.com/2009/12/20/generic-actions-in-rails-3/
http://yehudakatz.com/2009/12/20/generic-actions-in-rails-3/

Routing 57

get 'stores/:name', to: redirect(status: 302, path: '/%{name}')
get 'stores/:name(*all)', to: redirect(status: 302, path: '/%{name}%{all}')

Finally, an object that responds to call can be supplied as the last (or
only) parameter to redirect, enabling you to encapsulate commonly used
redirection code in objects. The call method must accept two arguments,
params and request, and return a string.

get 'accounts/:name' => redirect(SubdomainRedirector.new('api'))

If you return a path without a leading slash, then the url is prefixed with the
current SCRIPT_NAME environment variable. This is typically a forward slash but
may be different in a mounted engine or where the application is deployed
to a subdirectory of a website.

The Format Segment

Let’s revisit a legacy-style default route again:

get ':controller(/:action(/:id(.:format)))'

The .:format at the end matches a literal dot and a “format” segment key after
the id field. That means it will match, for example, a URL like the following:

http://localhost:3000/products/show/3.json

Here, the value of params[:format] will be set to json. The :format field is also
special; it has an effect inside the controller action. That effect is related to
the behavior of a method called respond_to.
The respond_to method enables you to write your action so that it will return
different results, depending on the requested format. Here’s a show action for
the products controller that offers either HTML or JSON:

Routing 58

def show
@product = Product.find(params[:id])
respond_to do |format|

format.html
format.json { render json: @product.to_json }

end
end

The respond_to block in this example has two clauses. The HTML clause just
consists of format.html. A request for HTML will be handled by the usual
rendering of a view template. The JSON clause includes a code block; if JSON
is requested, the block will be executed and the result of its execution will be
returned to the client.
Here’s a command-line illustration, using curl (slightly edited to reduce line
noise):

$ curl http://localhost:3000/products/show/1.json -i
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Length: 81
Connection: Keep-Alive

{"created_at":"2013-02-09T18:25:03.513Z",
"description":"Keyboard",
"id":"1",
"maker":"Apple",
"updated_at":"2013-02-09T18:25:03.513Z"}

The .json on the end of the URL results in respond_to choosing the json branch,
and the returned document is a JSON representation of the product.
Requesting a format that is not included as an option in the respond_to block
will not generate an exception. Rails will return a 406 Not Acceptable status,
to indicate that it can’t handle the request.
If you want to set up an else condition for your respond_to block, you can use
the any method, which tells Rails to catch any other formats not explicitly
defined.

Routing 59

def show
@product = Product.find(params[:id])
respond_to do |format|

format.html
format.json { render json: @product.to_json }
format.any

end
end

Just make sure that you explicitly tell any what to do with the request or have
view templates corresponding to the formats you expect. Otherwise, you’ll get
a MissingTemplate exception.

ActionView::MissingTemplate (Missing template products/show,
application/show with {:locale=>[:en], :formats=>[:xml],
:handlers=>[:erb, :builder, :raw, :ruby, :jbuilder, :coffee]}.)

Routes as Rack Endpoints

You’ll see usage of the :to option in routes throughout this chapter. What’s
most interesting about :to is that its value is what’s referred to as a Rack
Endpoint. To illustrate, consider the following simple example:

get "/hello", to: proc { |env| [200, {}, ["Hello world"]] }

The router is very loosely coupled to controllers! The shorthand syntax (like
"items#show") relies on the actionmethod of controller classes to return a Rack
endpoint that executes the action requested.

>> ItemsController.action(:show)
=> #<Proc:0x01e96cd0@...>

The capability to dispatch to a Rack-based application, such as one created
with Sinatra3, can be achieved using the mount method. The mount method
accepts an :at option, which specifies the route to which the Rack-based
application will map.

3http://www.sinatrarb.com

http://www.sinatrarb.com/
http://www.sinatrarb.com/

Routing 60

class HelloApp < Sinatra::Base
get "/" do

"Hello World!"
end

end

Rails.application.routes.draw do
mount HelloApp, at: '/hello'

end

Alternatively, a shorthand form is also available:

mount HelloApp => '/hello'

Accept Header

You can also trigger a branching on respond_to by setting the Accept header
in the request. When you do this, there’s no need to add the .:format part of
the URL. (However, note that out in the real world, it’s difficult to get this
technique to work reliably due to HTTP client/browser inconsistencies.)
Here’s a curl example that does not specify a .json format, but does set
the Accept header to application/json: {lang=text, linenos=off} $ curl -i -
H “Accept: application/json” http://localhost:3000/products/show/1 HTTP/1.1
200 OK Content-Type: application/json; charset=utf-8 Content-Length: 81
Connection: Keep-Alive

{"created_at":"2013-02-09T18:25:03.513Z",
"description":"Keyboard",
"id":"1",
"maker":"Apple",
"updated_at":"2013-02-09T18:25:03.513Z"}

The result is exactly the same as in the previous example.

Segment Key Constraints

Sometimes you want not only to recognize a route but to recognize it at a
finer-grained level than just what components or fields it has. You can do this
through the use of the :constraint option (and possibly regular expressions).
For example, you could route all show requests so that they went to an error
action if their id fields were non-numerical. You’d do this by creating two
routes, one that handled numerical ids, and a fall-through route that handled
the rest:

Routing 61

get ':controller/show/:id' => :show, constraints: {:id => /\d+/}
get ':controller/show/:id' => :show_error

Implicit Anchoring
The example constraint we’ve been using

constraints: {:id => /\d+/}

seems like it would match "foo32bar". It doesn’t because Rails implicitly
anchors it at both ends. Adding explicit anchors \A and \z causes
exceptions to be raised.

It’s so common to set constraints on the :id param that Rails lets you shorten
our previous example to simply

get ':controller/show/:id' => :show, id: /\d+/
get ':controller/show/:id' => :show_error

Regular expressions in routes can be useful, especially when you have routes
that differ from each other only with respect to the patterns of their compo-
nents. But they’re not a full-blown substitute for data-integrity checking. You
probably still want to make sure that the values you’re dealing with are usable
and appropriate for your application’s domain.
From the example, you might conclude that :constraints checking applies
to elements of the params hash. However, you can also check a grab-bag
of other request attributes that return a string, such as :subdomain and
:referrer. Matching methods of request that return numeric or boolean values
are unsupported and will raise a somewhat cryptic exception during route
matching.

only allow users admin subdomain to do old-school routing
get ':controller/:action/:id' => :show, constraints: {subdomain: 'admin'}

If for some reason you need more powerful constraints checking, you have
full access to the request object, by passing a block or any other object that
responds to call as the value of :constraints like the following:

Routing 62

protect records with id under 100
get 'records/:id' => "records#protected",

constraints: proc { |req| req.params[:id].to_i < 100 }

The Root Route

A root route is a rule specifying what should happen when someone connects
to the “root” of your website (or routing namespace).

http://example.com # Note the lack of "/anything" at the end!

The root route says, “I don’t want any values; I want nothing, and I already
know what controller and action I’m going to trigger!”
Here are some examples of fairly common empty route rules:

root to: "welcome#index"
root to: "pages#home"

Shorthand syntax
root "user_sessions#new"

Defining the empty route gives people something to look at when they connect
to your site with nothing but the domain name. You might be wondering why
you see something when you view a newly-generated Rails application that
still has its root route commented out.
The answer is that if a root route is not defined, by default, Rails will route
to an internal controller Rails::WelcomeController and render a welcome page
instead.
In previous versions of Rails, this was accomplished by including the file
index.html in the public directory of newly generated applications. Any static
content in the public directory hierarchy matching the URL scheme that you
come up with for your app results in the static content being served up instead
of triggering the routing rules. Actually, the web server will serve up the
content without involving Rails at all.

A Note on Route Order
Routes are consulted, both for recognition and for generation, in the
order they are defined in routes.rb. The search for a match ends when
the first match is found, meaning that you have to watch out for false
positives.

Routing 63

2.3 Route Globbing

In some situations, you might want to grab one or more components of a route
without having to match them one by one to specific positional parameters.
For example, your URLs might reflect a directory structure. If someone
connects to

/items/list/base/books/fiction/dickens

you want the items/list action to have access to all four remaining fields. But
sometimes there might be only three fields:

/items/list/base/books/fiction

or five:

/items/list/base/books/fiction/dickens/little_dorrit

So you need a route that will match (in this particular case) everything after
the second URI component. You define it by globbing the route with an
asterisk.

get 'items/list/*specs', controller: 'items', action: 'list'

Now, the products/list action will have access to a variable number of slash-
delimited URL fields, accessible via params[:specs]:

def list
specs = params[:specs] # e.g, "base/books/fiction/dickens"

end

Routing 64

Globbing Key-Value Pairs
Route globbing might provide the basis for a general mechanism for
fielding ad hoc queries. Let’s say you devise a URI scheme that takes
the following form:

http://localhost:3000/items/q/field1/value1/field2/value2/...

Making requests in this way will return a list of all products whose
fields match the values, based on an unlimited set of pairs in the URL.
In other words, http://localhost:3000/items/q/year/1939/material/wood
could generate a list of all wood items made in 1939. The route that
would accomplish this would be

get 'items/q/*specs', controller: "items", action: "query"

Of course, you’ll have to write a query action like this one to support
the route:

def query
@items = Item.where(Hash[*params[:specs].split("/")])
if @items.empty?

flash[:error] = "Can't find items with those properties"
end
render :index

end

How about that square brackets class method on Hash, eh? It converts
a one-dimensional array of key/value pairs into a hash! This is further
proof that in-depth knowledge of Ruby is a prerequisite for becoming
an expert Rails developer.

Routing 65

2.4 Named Routes

The topic of named routes almost deserves a chapter of its own. In fact, what
you learn here will feed directly into our examination of REST-related routing
in Chapter 3.
The idea of naming a route is basically to make life easier on you, the
programmer. There are no outwardly visible effects as far as the application is
concerned. When you name a route, a newmethod gets defined for use in your
controllers and views; the method name follows a convention like name_url
(with name being the name you gave the route), and calling the method,
with appropriate arguments, results in a URL string being generated that will
trigger the route. In addition, a method called name_path also gets created; this
method generates just the path part of the URL, without the protocol and host
components.

Creating a Named Route

The way you name a route is by using the optional :as parameter in a rule:

get 'help' => 'help#index', as: 'help'

In this example, you’ll get methods called help_url and help_path, which you
can use wherever Rails expects a URL or URL components:

link_to "Help", help_path

And, of course, the usual recognition and generation rules are in effect. The
pattern string consists of just the static string component "help". Therefore,
the path you’ll see in the hyperlink will be

/help

When someone clicks on the link, the index action of the help controller will
be invoked.

Routing 66

Xavier says…
You can test named routes in the console directly using the special app
object.

>> app.clients_path
=> "/clients"

>> app.clients_url
=> "http://www.example.com/clients"

Named routes save you some effort when you need a URL generated. A named
route zeros in directly on the route you need, bypassing the matching process
that would be needed otherwise. That means you don’t have to provide as
much detail as you otherwise would, but you still have to provide values for
any segment keys in the route’s pattern string that cannot be inferred.

name_path versus name_url

When you create a named route, you’re actually creating at least two route
helper methods. In the preceding example, those two methods are help_url
and help_path. The difference is that the _urlmethod generates an entire URL,
including protocol and domain, whereas the _path method generates just the
path part (sometimes referred to as an absolute path or a relative URL).
According to the HTTP spec, redirects should specify a URI, which can be
interpreted (by some people) to mean a fully-qualified URL4. Therefore, if you
want to be pedantic about it, you probably should always use the _url version
when you use a named route as an argument to redirect_to in your controller
code.
Other than redirects, permalinks, and a handful of edge cases, it’s the Rails
way to use _path instead of _url. It produces a shorter string, and the user
agent (browser or otherwise) should be able to infer the fully qualified URL
whenever it needs to do so, based on the HTTP headers of the request, a base
element in the document, or the URL of the request.

Prathamesh says….
Using _path in mailer templates is deprecated; use _url instead. Over
the years, I have seen many times where using _path helpers in mailer
templates was the root cause of hard to diagnose issues.

4http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Routing 67

As you read this book and as you examine other code and other examples, the
main thing to remember is that help_url and help_path are basically doing the
same thing. I tend to use the _url style in general discussions about named
route techniques but to use _path in examples that occur inside view templates
(for example, with link_to and form_for). It’s mostly a writing-style thing, based
on the theory that the URL version is more general and the path version more
specialized. In any case, it’s good to get used to seeing both and getting your
brain to view them as very closely connected.

Using Literal URLs
You can, if you wish, hard-code your paths and URLs as string argu-
ments to link_to, redirect_to, and friends. For example, instead of

link_to "Help", controller: "main", action: "help"

you can write

link_to "Help", "/main/help"

However, using a literal path or URL bypasses the routing system. If
you write literal URLs, you’re on your own to maintain them. (You can,
of course, use Ruby’s string interpolation techniques to insert values,
if that’s appropriate for what you’re doing, but really stop and think
about why you are reinventing Rails functionality if you go down that
path.)

What to Name Your Routes

As you’ll learn in Chapter 3, the best way to figure out what names you should
use for your routes is to follow REST conventions, which are baked into Rails
and simplify things greatly. Otherwise, you’ll need to think top-down; that is,
think about what you want to write in your application code, and then create
the routes that will make it possible.
Take, for example, this call to link_to:

Routing 68

link_to "Auction of #{item.name}",
controller: "items",
action: "show",
id: item.id

The routing rule to match that path is (a generic route):

get "item/:id" => "items#show"

It sure would be nice to shorten that link_to code. After all, the routing rule
already specifies the controller and action. This is a good candidate for a
named route for items:

get "item/:id" => "items#show", as: "item"

Lets improve the situation by introducing item_path in the call to link_to:

link_to "Auction of #{item.name}", item_path(id: item.id)

Giving the route a name is a shortcut; it takes us straight to that route, without
a long search and without having to provide a thick description of the route’s
hard-coded parameters.

Argument Sugar

In fact, we can make the argument to item_path even shorter. If you need to
supply an id number as an argument to a named route, you can just supply
the number, without spelling out the :id key:

link_to "Auction of #{item.name}", item_path(item.id)

And the syntactic sugar goes even further: You can and should provide objects
and Rails will grab the id automatically by calling to_param on it. (ActiveRecord
objects and almost everything else in Rails come with to_param methods by
default.)

link_to "Auction of #{item.name}", item_path(item)

This principle extends to other segment keys in the pattern string of the named
route. For example, if you’ve got a route like

Routing 69

get "auction/:auction_id/item/:id" => "items#show", as: "item"

you’d be able to call it like

link_to "Auction of #{item.name}", item_path(auction, item)

and you’d get something like this as your path (depending on the exact id
numbers):

/auction/5/item/11

Here, we’re letting Rails infer the ids of both an auction object and an item
object, which it does by calling to_param on whatever non-hash arguments you
pass into named route helpers. As long as you provide the arguments in the
order in which their ids occur in the route’s pattern string, the correct values
will be dropped into place in the generated path.

A Little More Sugar with Your Sugar?

Furthermore, it doesn’t have to be the id value that the route generator inserts
into the URL. As alluded to a moment ago, you can override that value by
defining a to_param method in your model.
Let’s say you want the description of an item to appear in the URL for
the auction on that item. In the item.rb model file, you would override
to_param; here, we’ll override it so that it provides a “munged” (stripped of
punctuation and joined with hyphens) version of the description, courtesy of
the parameterize method added to strings in Active Support.

def to_param
description.parameterize

end

Subsequently, the method call item_path(auction, item) will produce some-
thing like

/auction/3/item/cello-bow

Of course, if you’re putting things like “cello-bow” in a path field called :id,
you will need to make provisions to dig the object out again. Blog applications
that use this technique to create slugs for use in permanent links often have a
separate database column to store the munged version of the title that serves
as part of the path. That way, it’s possible to do something like

Routing 70

Item.where(munged_description: params[:id]).first!

to unearth the right item. (And yes, you can call it something other than :id
in the route to make it clearer!)

Courtenay says….
Why shouldn’t you use numeric IDs in your URLs? First, your competi-
tors can see just how many auctions you create. Numeric consecutive
IDs also enable people to write automated spiders to steal your content.
It’s a window into your database. And finally, words in URLs just look
better.

Routing 71

2.5 Scoping Routing Rules

Rails gives you a variety of ways to bundle together related routing rules
concisely. They’re all based on usage of the scope method and its various
shortcuts. For instance, let’s say that you want to define the following routes
for auctions:

get 'auctions/new' => 'auctions#new'
get 'auctions/edit/:id' => 'auctions#edit'
post 'auctions/pause/:id' => 'auctions#pause'

You could DRY up your routes.rb file by using the scope method instead:

scope controller: :auctions do
get 'auctions/new' => :new
get 'auctions/edit/:id' => :edit
post 'auctions/pause/:id' => :pause

end

Then you would DRY it up again by adding the :path argument to scope:

scope path: '/auctions', controller: :auctions do
get 'new' => :new
get 'edit/:id' => :edit
post 'pause/:id' => :pause

end

Controller

The scope method accepts a :controller option (or it can interpret a symbol as
its first argument to assume a controller). Therefore, the following two scope
definitions are identical:

scope controller: :auctions do
scope :auctions do

To make it more obvious what’s going on, you can use the controller method
instead of scope, in what’s essentially syntactic sugar:

Routing 72

controller :auctions do

Path Prefix

The scope method accepts a :path option (or it can interpret a string as its
first parameter to mean a path prefix). Therefore, the following two scope
definitions are identical:

scope path: '/auctions' do
scope '/auctions' do

The :path option also understands symbols instead of strings. The following
scope definition

scope :auctions, :archived do

will scope all routes nested under it to the “/auctions/archived” path.

Name Prefix

The scope method also accepts a :as option that affects the way that named
route URL helper methods are generated. The route

scope :auctions, as: 'admin' do
get 'new' => :new, as: 'new_auction'

end

will generate a named route URL helper method called admin_new_auction_url.

Namespaces

URLs can be grouped by using the namespace method, which is syntactic sugar
that rolls upmodule, name prefix and path prefix settings into one declaration.
The implementation of the namespace method converts its first argument into
a string, which is why in some example code you’ll see it take a symbol.

Routing 73

namespace :auctions do
get 'new' => :new
get 'edit/:id' => :edit
post 'pause/:id' => :pause

end

Bundling Constraints

If you find yourself repeating similar segment key constraints in related
routes, you can bundle them together using the :constraints option of the
scope method:

scope controller: :auctions, constraints: {:id => /\d+/} do
get 'edit/:id' => :edit
post 'pause/:id' => :pause

end

It’s likely that only a subset of rules in a given scope need constraints applied
to them. In fact, routing will break if you apply a constraint to a rule that
doesn’t take the segment keys specified. Since you’re nesting, you probably
want to use the constraints method, which is just more syntactic sugar to
tighten up the rule definitions.

scope path: '/auctions', controller: :auctions do
get 'new' => :new
constraints id: /\d+/ do

get 'edit/:id' => :edit
post 'pause/:id' => :pause

end
end

To enable modular reuse, you may supply the constraints method with an
object that has a matches? method.

Routing 74

class DateFormatConstraint
def self.matches?(request)

request.params[:date] =~ /\A\d{4}-\d\d-\d\d\z/ # YYYY-MM-DD
end

end

in routes.rb
constraints(DateFormatConstraint) do

get 'since/:date' => :since
end

In this particular example (DateFormatConstraint) if an errant or malicious user
input a badly formatted date parameter via the URL, Rails will respond with
a 404 status instead of causing an exception to be raised.

Routing 75

2.6 Listing Routes

A handy route listing utility can be invoked by typing rails routes in your ap-
plication directory. For example, here is the output for a routes file containing
just a single resources :products rule:

$ rails routes
Prefix Verb URI Pattern Controller#Action

products GET /products(.:format) products#index
POST /products(.:format) products#create

new_product GET /products/new(.:format) products#new
edit_product GET /products/:id/edit(.:format) products#edit

product GET /products/:id(.:format) products#show
PATCH /products/:id(.:format) products#update
PUT /products/:id(.:format) products#update
DELETE /products/:id(.:format) products#destroy

The output is a table with four columns. The first two columns are optional
and contain the name of the route and HTTP method constraint, if they are
provided. The third column contains the URL mapping string. Finally, the
fourth column indicates the controller and action method that the route maps
to, plus constraints that have been defined on that route’s segment keys (if
any).
Note that the routes task checks for an optional controller parameter.

$ rails routes -c products

would only list the routes related to ProductsController.

Juanito says…
While you have a server up and running on the development environ-
ment, you could visit /rails/info/routes to get a complete list of routes
of your Rails application.

Routing 76

2.7 Conclusion

The first half of the chapter helped you to fully understand the generic routing
rules of Rails and how the routing system has two purposes:

• Recognizing incoming requests and mapping them to a corresponding
controller action, along with any additional variable receptors.

• Recognizing URL parameters in methods such as link_to and matching
them up to a corresponding route so that proper HTML links can be
generated.

We built on our knowledge of generic routing by covering some advanced
techniques such as using regular expressions and globbing in our route
definitions, plus the bundling of related routes under shared scope options.
Finally, before moving on, you should make sure that you understand how
named routes work and why they make your life easier as a developer by
allowing you to write more concise view code. As you’ll see in the next chapter,
once we start defining batches of related named routes, we’re on the cusp of
delving into REST.

3. REST, Resources, and Rails
Before REST came, I (and pretty much everyone else) never really
knew where to put stuff.
—Jonas Nicklas on the Ruby on Rails mailing list

What I’ve come to embrace is that being almost fundamentalistic
about when I create a new controller to stay adherent to REST has
served me better every single time. Every single time I’ve regretted
the state of my controllers, it’s been because I’ve had too few of
them. I’ve been trying to overload things too heavily.
—DHH interview on Full Stack Radio http://www.fullstackradio.
com/32

Representational State Transfer (REST) is a complex topic in information
theory, and a comprehensive exploration of it is well beyond the scope of this
chapter.1 However, we’ll touch on some of the keystone concepts.
The reason that we devote an entire chapter to REST is that one of the inherent
problems that all web developers face is deciding how to name and organize
the resources and actions of their application. And it just so happens that the
vast majority of Rails applications are backed by databases and fit well into
the REST paradigm (aka “RESTful design”).

1
For those interested in a complete description of REST, the canonical text is Roy Fielding’s dissertation, which

you can find at http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm. In particular, you’ll probably want to
focus on Chapters 5 and 6 of the dissertation, which cover REST in relation to HTTP.

http://www.fullstackradio.com/32
http://www.fullstackradio.com/32
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

REST, Resources, and Rails 78

3.1 REST in a Rather Small Nutshell

REST is described by its creator, Roy T. Fielding, as a network architectural
style, specifically the style manifested in the architecture of the World Wide
Web. Indeed, Fielding is not only the creator of REST but also one of the
authors of the HTTP protocol itself. REST and the web have a very close
relationship.
Fielding defines REST as a series of constraints imposed upon the interaction
between system components. Basically, you start with the general proposition
of machines that can talk to each other, and you start ruling some practices
in and others out by imposing constraints that include (among others):

• Use of a client-server architecture
• Stateless communication
• Explicit signaling of response cacheability
• Use of HTTP request methods such as GET, POST, PUT and DELETE

(We’ll get into what each of those bullet points mean later in the chapter.)
Systems that adhere to REST constraints are said to be RESTful. Much of the
web itself uses REST-compliant communication, but notably, it has plenty of
room for violations of REST principles. REST constraints have to be purposely
built into a system by its designer.
To get the most out of this chapter, the most important thing you have to
understand is that REST is designed to help you provide services using the
native idioms and constructs of HTTP. It used to be that you’d find, if you
looked for it, lots of discussion comparing REST to, for example, SOAP—with
the thrust of the pro-REST argument being that HTTP already enables you to
provide services, so you don’t need a semantic layer on top of it. Just use what
HTTP already gives you.
One of the allures of REST is that it scales relatively well for big systems,
like the web. Another is that it encourages—mandates, even—the use of
stable, long-lived identifiers (URIs). Machines talk to each other by sending
requests and responses labeled with these identifiers. Messages consist of
representations (manifestations in text, XML, graphic format, and so on) of
resources (high-level, conceptual descriptions of content) or simply HTTP
headers.
Ideally at least, when you ask a machine for a JSON representation of a
resource—say, Romeo and Juliet—you’ll use the same identifier every time
and the same request metadata indicating that you want JSON, and you’ll get

REST, Resources, and Rails 79

the same response. And if it’s not the same response, there’s a reason—like,
the resource you’re retrieving is a changeable one (“The current transcript
for Student #3994,” for example).

REST, Resources, and Rails 80

3.2 Resources and Representations

The REST style characterizes communication between system components
(where a component is, say, a web browser or a server) as a series of requests
to which the responses are representations of resources.
A resource, in this context, is a “conceptual mapping” (Fielding). Resources
themselves are not tied to a database, a model, or a controller. Examples of
resources include

• The current time of day
• A library book’s borrowing history
• The entire text of The Little Prince
• A map of Jacksonville Beach, Florida
• The inventory of a store

A resource may be singular or plural, changeable (like the time of day) or fixed
(like the text of The Little Prince). It’s basically a high-level description of the
thing you’re trying to get hold of when you submit a request.
A resource may also be ephemeral, like the result of authenticating to a server
or a temporary filtering of tabular data.
Whether permanent, subject to change or ephemeral, the point is that re-
sources are nouns.
Next, it’s important to realize that what you actually get from a RESTful server
is never the resource itself but a representation of it. This is where REST
unfolds onto themyriad content types and actual deliverables that are the stuff
of the web. A resource may, at any given point, be available in any number
of representations (or none at all). Thus your site might offer a text version
of The Little Prince but also an audio version. Those two versions would
be understood as the same resource and would be retrieved via the same
identifier (URI). The difference in content type—one representation versus
another—would be negotiated separately in the request.

REST, Resources, and Rails 81

3.3 REST in Rails

The REST support in Rails consists of methods to define resources in the
routing system, designed to impose a particular style, order, and logic on your
controllers and, consequently, on the way the world sees your application.
There’s more to it than just a set of naming conventions (though there’s that
too). In the larger scheme of things, the benefits that accrue to you when you
use Rails’ REST support fall into two categories:

• Convenience and automatic best practices for you
• A RESTful interface to your application’s services for everyone else

You can reap the first benefit even if you’re not concerned with the second.
In fact, that’s going to be our focus here: what the REST support in Rails can
do for you in the realm of making your code nicer and your life as a Rails
developer easier.
I don’t mean to minimize the importance of REST itself, nor the seriousness
of the endeavor of providing REST-based services. Rather, it’s an expedient;
we can’t talk about everything, and this section of the book is primarily about
routing and how to do it, so we’re going to favor looking at REST in Rails from
that perspective.
Getting back to practical matters, the focus of the rest of this chapter will be
showing you how the REST support in Rails opens the door to further study
and practice, including the study of Fielding’s dissertation and the theoretical
tenets of REST. Again, we won’t cover everything about REST here, but what
we do cover will be onward compatible with the wider topic.
It all starts with CRUD…

REST, Resources, and Rails 82

3.4 Routing and CRUD

The acronym CRUD (Create Read Update Delete) is the classic summary of
the spectrum of database operations. It’s also a kind of rallying cry for Rails
practitioners. Because we address our databases through abstractions, we’re
prone to forget how simple it all is. This manifests itself mainly in excessively
creative names for controller actions.
If you’re ignorant of RESTful design, then there’s a strong temptation to name
your actions add_item and replace_email_address and things like that. But we
needn’t, and usually shouldn’t, do this. True, the controller does not map to the
database, the way the model does. But things get simpler when you name your
actions after CRUD operations—or as close to the names of those operations
as you can get.
The routing system does not force you to implement your app’s CRUD
functionality in any consistent manner. You can create a route that maps to
any action, whatever the action’s name. Choosing CRUD names is a matter
of discipline. Except… when you use the REST facilities offered by Rails, it
happens automatically.
Another way of looking at it is that REST in Rails involves standardization
of action names. In fact, the heart of the Rails’ REST support is a technique
for creating bundles of named routes automatically—named routes that are
bundled together to point to a specific, predetermined set of actions.
Here’s the logic. It’s good to give CRUD-based names to your actions. It’s
convenient and elegant to use named routes. The REST support in Rails gives
you named routes that point to CRUD-based action names. Therefore, using
the REST facilities gives you a shortcut to some best practices.
Shortcut hardly describes how little work you have to do to get a big payoff.
If you put

resources :auctions

into your config/routes.rb file, you will have created four named routes, which,
in a manner to be described in this chapter, connect to seven controller
actions. And those actions have nice CRUD-like names, as you will see.

REST Resources and Rails

Like most of Rails, support for RESTful applications is “opinionated”; that is, it
offers a particular way of designing a REST interface, and the more you play

REST, Resources, and Rails 83

along, the more convenience you reap from it. Most Rails applications are
database-backed, and the Rails take on REST tends to associate a resource
very closely with an Active Record model or a model/controller stack.
In fact, you’ll hear people using the terminology fairly loosely. For instance,
they’ll say that they have created a Book resource. What they mean, in most
cases, is that they have created a Book model, a book controller with a set of
CRUD actions, and some named routes pertaining to that controller (courtesy
of resources :books). You can have a Book model and controller, but what you
actually present to the world as your resources, in the REST sense, exists at
a higher level of abstraction: The Little Prince, borrowing history, and so on.
The best way to get a handle on the REST support in Rails is by going from
the known to the unknown. In this case, from the topic of named routes to the
more specialized topic of REST.

From Named Routes to REST Support

When we first looked at named routes, we saw examples where we consoli-
dated things into a route name. By creating a route like

get 'auctions/:id' => "auction#show", as: 'auction'

you gain the capability to use nice helper methods in situations like

link_to item.description, auction_path(item.auction)

The route ensures that a path will be generated that will trigger the show action
of the auctions controller. The attraction of this kind of named route is that
it’s concise and readable.
Now, think in terms of CRUD. The named route auction_path is a nice fit for a
show (the R in CRUD) action. What if we wanted similarly nicely named routes
for the create, update, and delete actions?
Well, we’ve used up the route name auction_path on the show action. We could
make up names like auction_delete_path and auction_create_path, but those are
cumbersome. We really want to be able to make a call to auction_path and have
it mean different things, depending on which action we want the URL to point
to.
We could differentiate between the singular (auction_path) and the plural
(auctions_path). A singular URL makes sense, semantically, when you’re doing
something with a single, existing auction object. If you’re doing something
with auctions in general, the plural makes more sense.
The kinds of things you dowith auctions in general include creating. The create
action will normally occur in a form such as the following:

REST, Resources, and Rails 84

form_tag auctions_path

It’s plural because we’re not saying “perform an action with respect to a
particular auction”, but rather “with respect to the collection of auctions,
perform the action of creation.” Yes, we’re creating one auction, not many.
But at the time we make the call to our named route, auctions_path, we’re
addressing auctions in general.
Another case where you might want a plural named route is when you want
an overview of all of the objects of a particular kind, or at least, some kind of
general view, rather than a display of a particular object. This kind of general
view is usually handled with an index action. These index actions typically load
a lot of data into one or more variables, and the corresponding view displays
it as a list or table (possibly more than one).
Here again, we’d like to be able to say the following:

link_to "Click here to view all auctions", auctions_path

Already, though, the strategy of breaking auction_path out into singular and
plural has hit the wall: We’ve got two places where we want to use the plural
named route. One is create; the other is index. But they’re both going to look
like

/auctions

How is the routing system going to know that when we use auctions_path as
a link versus using it in a form that we mean the create action and not index?
We need another qualifier, another flag, another variable on which to branch.
Luckily, we’ve got a perfect candidate.

Reenter the HTTP Verb

Form submissions are POSTs by default. Index actions are GETs. That means
that we need to get the routing system to realize that

/auctions submitted in a GET request!

versus

REST, Resources, and Rails 85

/auctions submitted in a POST request!

are two different things.We also have to get the routing system to generate the
same URL—/auctions—but with a different HTTP request method, depending
on the circumstances.
This is what the REST facility of Rails routing does for you. It allows you to
stipulate that you want /auctions routed differently, depending on the HTTP
request method. It lets you define named routes with the same name, but with
intelligence about their HTTP verbs. In short, it uses HTTP verbs to provide
that extra data slot necessary for achieving everything you want to achieve in
a concise way.
The way you do this is by using a special routing method: resources. Here’s
what it would look like for auctions:

resources :auctions

That’s it. Making this one call inside routes.rb is the equivalent of defining
four named routes. And if you mix and match those four named routes with a
variety of HTTP request methods, you end up with seven useful permutations.

REST, Resources, and Rails 86

3.5 The Standard RESTful Controller Actions

Calling resources :auctions involves striking a kind of deal with the routing
system. The system hands you four named routes. Between them, these four
routes point to seven controller actions, depending on HTTP request method.
In return, you agree to use very specific names for your controller actions:
index, create, show, update, destroy, new, edit.
It’s not a bad bargain, since a lot of work is done for you and the action names
you have to use are nicely CRUD-like.
Table 3.1 summarizes what happens. It’s a kind of “multiplication table”
showing you what you get when you cross a given RESTful named route with
a given HTTP request method. Each box (the nonempty ones, that is) shows
you, first, the URL that the route generates and, second, the action that gets
called when the route is recognized. (Table 3.1 lists _pathmethods rather than
_url ones, but you get both.)

Table 3.1: RESTful Routes Table Showing Helpers, Paths, and the Resulting Con-
troller Action

Helper
Method

GET POST PATCH DELETE

client_-
path(client)

/clients/1
show

/clients/1
update

/clients/1
destroy

clients_-
path

/clients
index

/clients
create

edit_-
client_-
path(client)

/clients/1/edit
edit

new_-
client_path

/clients/new
new

(The edit and new actions have unique named routes, and their URLs have a
special syntax.)
Since named routes are now being crossed with HTTP request methods, you’ll
need to know how to specify the request method when you generate a URL
so that your GET’d clients_url and your POST’d clients_url don’t trigger the
same controller action. Most of what you have to do in this regard can be
summed up in a few rules:

1. The default request method is GET.
2. In a form_tag or form_for call, the POSTmethod will be used automatically.

REST, Resources, and Rails 87

3. When you need to (which is going to be mostly with PATCH and DELETE
operations), you can specify a request method along with the URL
generated by the named route.

An example of needing to specify a DELETE operation is a situation when you
want to trigger a destroy action with a link:

link_to "Delete", auction_path(auction), method: :delete

Depending on the helper method you’re using (as in the case of form_for), you
might have to put the method inside a nested hash:

form_for "auction", url: auction_path(auction),
html: { method: :patch } do |f|

That last example, which combined the singular named route with the PATCH
method, will result in a call to the update action when submitting the form
(as per row 2, column 4 of Table 3.1). You don’t normally have to program
this functionality specifically, because as we’ll see later in the book, Rails
automatically figures out whether you need a POST or PATCH if you pass an
object to form helpers.

PATCH versus PUT

If you are coming from a previous version of Rails, you may be wondering
why the update action of a RESTful route is mapped to the HTTP verb PATCH
instead of PUT. In the HTTP standards document RFC 57892, it outlines that
a PUT request to a given resource is meant to completely replace it on the
origin server. However, when updating a resource in Rails, rarely, if ever,
do you replace an entire resource when performing an update. For example,
when updating an Active Record model, Rails sets the attribute updated_at
timestamp, not the requesting client.
Therefore, to better implement HTTP semantics, Rails uses the HTTP verb
PATCH for updates. PATCH make possible both full and partial updates of a
resource and is more suited to how Rails updates resources.
If you are upgrading an existing Rails application, the HTTP verb PUT will
still map to the update action in RESTful routes, but it’s recommended to use
PATCH instead.

2http://tools.ietf.org/html/rfc5789

http://tools.ietf.org/html/rfc5789
http://tools.ietf.org/html/rfc5789

REST, Resources, and Rails 88

Singular and Plural RESTful Routes

As you may have noticed, some of the RESTful routes are singular; some are
plural. The logic is as follows:

1. The routes for show, new, edit, and destroy are singular because they’re
working on a particular resource.

2. The rest of the routes are plural. They deal with collections of related
resources.

The singular RESTful routes require an argument because they need to be
able to figure out the id of the member of the collection referenced.

item_url(item) # show, update, or destroy, depending on HTTP verb

You don’t have to call the id method on item. Rails will figure it out (by calling
to_param on the object passed to it.)

The Special Pairs: new/create and edit/update

As Table 3.1 shows, new and edit obey somewhat special RESTful naming
conventions. The reason for this has to do with create and update and how
new and edit relate to them.
Typically, create and update operations involve submitting a form. That means
that they really involve two actions—two requests—each:

1. The action that results in the display of the form
2. The action that processes the form input when the form is submitted

The way this plays out with RESTful routing is that the create action is
closely associated with a preliminary new action, and update is associated with
edit. These two actions, new and edit, are really assistant actions: All they’re
supposed to do is show the user a form, as part of the process of creating or
updating a resource.
Fitting these special two-part scenarios into the landscape of resources is
a little tricky. A form for editing a resource is not, itself, really a resource.
It’s more like a pre-resource. A form for creating a new resource is sort of
a resource, if you assume that being new—that is, nonexistent—is something
that a resource can do and still be a resource!

REST, Resources, and Rails 89

That line of reasoning might be a little too philosophical to be useful. The
bottom line, as implemented in RESTful Rails, is the following: The new action
is understood to be giving you a new, single (as opposed to plural) resource.
However, since the logical verb for this transaction is GET, and GETting a
single resource is already spoken for by the show action, new needs a named
route of its own.
That’s why you have to use

link_to "Create a new item", new_item_path

to get a link to the items/new action.
The edit action is understood not to be giving you a full-fledged representation
of a resource, exactly, but rather a kind of edit flavor of the show resource. So
it uses the same URL as show, but with a kind of modifier, in the form of /edit,
hanging off the end, which is consistent with the URL form for new:

/items/5/edit

The corresponding named route is edit_item_url(@item). As with new, the
named route for edit involves an extra bit of name information, to differentiate
it from the implied show of the existing RESTful route for GETting a single
resource.

The PATCH and DELETE Cheat

We have just seen how Rails routes PATCH and DELETE requests. Modern
HTTP clients are able to use said verbs, but forms in older web browsers can’t
be submitted using anything other than a POST. Rails provides a hack that is
nothing to worry about, other than being aware of what’s going on.
A PATCH or DELETE request originating in a browser, in the context of REST
in Rails, is actually a POST request with a hidden field called _method set to
either "patch" or "delete". The Rails application processing the request will
pick up on this and route the request appropriately to the update or destroy
action.
You might say, then, that the REST support in Rails is ahead of its time. REST
components using HTTP should understand all of the request methods. They
don’t, so Rails forces the issue. As a developer trying to get the hang of how
the named routes map to action names, you don’t have to worry about this
little cheat. And hopefully some day it won’t be necessary any more.

REST, Resources, and Rails 90

Limiting Routes Generated

It’s possible to add :except and :only options to the call to resources in order
to limit the routes generated.

resources :clients, except: [:index]
resources :clients, only: [:new, :create]

If you make the leap from thinking of resources as strictly things that are
stored in a database to concepts in my application, then it begins to make
sense why the only limitation is useful. There are concepts that only require
a couple of routes. A common example is authentication: when you sign in to
the application, you are creating a session, and when you sign out, you are
destroying it. That can be (and is) modeled in a RESTful fashion by libraries
such as Devise.

REST, Resources, and Rails 91

3.6 Singular Resource Routes

In addition to resources, there’s also a singular (or singleton) form of resource
routing: resource. It’s used to represent a resource that only exists once in its
given context.
A singleton resource route at the top level of your routes can be appropriate
when there’s only one resource of its type for the whole application, perhaps
something like a per-user profile.

resource :profile

You get almost the full complement of resource routes, all except the collection
route (index). Note that the method name resource, the argument to that
method, and all the named routes generated are in the singular.

$ rake routes
profile POST /profile(.:format) profiles#create

new_profile GET /profile/new(.:format) profiles#new
edit_profile GET /profile/edit(.:format) profiles#edit

GET /profile(.:format) profiles#show
PATCH /profile(.:format) profiles#update
PUT /profile(.:format) profiles#update
DELETE /profile(.:format) profiles#destroy

It’s assumed that you’re in a context where it’s meaningful to speak of the
profile—the one and only—because there’s a user to which the profile is
scoped. The scoping itself is not automatic; you have to authenticate the user
and retrieve the profile from (and/or save it to) the database explicitly. There’s
no real magic or mind-reading here; it’s just an additional routing technique
at your disposal if you need it.

REST, Resources, and Rails 92

3.7 Nested Resources

Let’s say you want to perform operations on bids: create, edit, and so forth.
You know that every bid is associated with a particular auction. That means
that whenever you do anything to a bid, you’re really doing something to an
auction/bid pair—or, to look at it another way, an auction/bid nest. Bids are at
the bottom of a drill-down hierarchical structure that always passes through
an auction.
What you’re aiming for here is a URL that looks like

/auctions/3/bids/5

What it does depends on the HTTP verb it comes with, of course. But the
semantics of the URL itself are: the resource that can be identified as bid 5,
belonging to auction 3.
Why not just go for bids/5 and skip the auction? For a couple of reasons. First,
the URL is more informative—longer, it’s true, but longer in the service of
telling you something about the resource. Second, thanks to the way RESTful
routes are engineered in Rails, this kind of URL gives you immediate access
to the auction id in the controller, via params[:auction_id].
To created nested resource routes, put this in routes.rb:

resources :auctions do
resources :bids

end

What that tells the routing mapper is that you want RESTful routes for auction
resources; that is, you want auctions_url, edit_auction_url, and all the rest of it.
You also want RESTful routes for bids: auction_bids_url, new_auction_bid_url,
and so forth.
However, the nested resource command also involves you inmaking a promise.
You’re promising that whenever you use the bid named route helpers, you will
provide an auction resource in which they can be nested. In your application
code, that translates into an argument to the named route method:

link_to "See all bids", auction_bids_path(auction)

When you make that call, you enable the routing system to add the /auctions/3
part before the /bids part. And, on the receiving end—in this case, in the

REST, Resources, and Rails 93

action bids/index, which is where that URL points—you’ll find the id of auction
in params[:auction_id]. (It’s a plural RESTful route, using GET. See Table 3.1
again if you forgot.)
You can nest to any depth. Each level of nesting adds one to the number of
arguments you have to supply to the nested routes. This means that for the
singular routes (show, edit, destroy), you need at least two arguments:

link_to "Delete this bid", auction_bid_path(auction, bid), method: :delete

This will enable the routing system to get the information it needs (essentially
auction.id and bid.id) in order to generate the route.
Alternatively, instead of specifying the route to be used in a view helper, such
as link_to, you can simply pass an object.

link_to "Delete this bid", [auction, bid], method: :delete

Since the object in the preceding example is an Array, Rails infers that the
route is nested. And, based on the order and class names of the objects in the
Array, Rails will use the auction_bid_path helper behind the scenes.

RESTful Controller Mappings

Something we haven’t yet explicitly discussed is how RESTful routes are
mapped to a given controller. It was just presented as something that happens
automatically, which in fact it does, based on the name of the resource.
Going back to our recurring example, given the following nested route

resources :auctions do
resources :bids

end

there are two controllers that come into play, the AuctionsController and the
BidsController.

REST, Resources, and Rails 94

Considerations

Is nesting worth it? For single routes, a nested route usually doesn’t tell you
anything you wouldn’t be able to figure out anyway. After all, a bid belongs to
an auction.
Thatmeans you can access bid.auction_id just as easily as you can params[:auction_-
id], assuming you have a bid object already.
Furthermore, the bid object doesn’t depend on the nesting. You’ll get params[:id]
set to 5, and you can dig that record out of the database directly. You don’t
need to know what auction it belongs to.

Bid.find(params[:id])

A common rationale for judicious use of nested resources, and the one most
often issued by David, is the ease with which you can enforce permissions
and context-based constraints. Typically, a nested resource should only be
accessible in the context of its parent resource, and it’s really easy to enforce
that in your code based on the way that you load the nested resource using
the parent’s Active Record association.

auction = Auction.find(params[:auction_id])
bid = auction.bids.find(params[:id]) # prevents auction/bid mismatch

If you want to add a bid to an auction, your nested resource URL would be

http://localhost:3000/auctions/5/bids/new

The auction is identified in the URL rather than having to clutter your new bid
form data with hidden fields or resorting to non-RESTful practices.

Deep Nesting?

Jamis Buck is a very influential figure in the Rails community, almost as much
as David himself. In February 2007, via his blog3, he basically told us that deep
nesting was a bad thing and proposed the following rule of thumb: Resources
should never be nested more than one level deep.
That advice is based on experience and concerns about practicality. The
helper methods for routes nested more than two levels deep become long and
unwieldy. It’s easy to make mistakes with them and hard to figure out what’s
wrong when they don’t work as expected.
Assume that in our application example, bids have multiple comments. We
could nest comments under bids in the routing like this:

3http://weblog.jamisbuck.org/2007/2/5/nesting-resources

http://weblog.jamisbuck.org/2007/2/5/nesting-resources
http://weblog.jamisbuck.org/2007/2/5/nesting-resources

REST, Resources, and Rails 95

resources :auctions do
resources :bids do

resources :comments
end

end

Instead, Jamis would have us do the following:

resources :auctions do
resources :bids

end

resources :bids do
resources :comments

end

resources :comments

Notice that each resource (except auctions) is defined twice, once in the top-
level namespace, and one in its context. The rationale? When it comes to
parent-child scope, you really only need two levels to work with. The resulting
URLs are shorter and the helper methods are easier to work with.

auctions_path # /auctions
auctions_path(1) # /auctions/1
auction_bids_path(1) # /auctions/1/bids
bid_path(2) # /bids/2
bid_comments_path(3) # /bids/3/comments
comment_path(4) # /comments/4

I personally don’t follow Jamis’ guideline all the time in my projects, but I have
noticed something about limiting the depth of your nested resources. It helps
with the maintainability of your codebase in the long run.

Courtenay says…
Many of us disagree with the venerable Jamis. Want to get into fisticuffs
at a Rails conference? Ask people whether they believe routes should
be nested more than one layer deep.

REST, Resources, and Rails 96

Shallow Routes

As of Rails 2.3, resource routes accept a :shallow option that helps to shorten
URLs where possible. The goal is to leave off parent collection URL segments
where they are not needed. The end result is that the only nested routes
generated are for the :index, :create, and :new actions. The rest are kept in
their own shallow URL context.
It’s easier to illustrate than to explain, so let’s define a nested set of resources
and set :shallow to true:

resources :auctions, shallow: true do
resources :bids do

resources :comments
end

end

Alternatively coded, it looks as follows (if you’re block-happy):

resources :auctions do
shallow do

resources :bids do
resources :comments

end
end

end

The resulting routes are:

bid_comments GET /bids/:bid_id/comments(.:format)
POST /bids/:bid_id/comments(.:format)

new_bid_comment GET /bids/:bid_id/comments/new(.:format)
edit_comment GET /comments/:id/edit(.:format)

comment GET /comments/:id(.:format)
PATCH /comments/:id(.:format)
PUT /comments/:id(.:format)
DELETE /comments/:id(.:format)

auction_bids GET /auctions/:auction_id/bids(.:format)
POST /auctions/:auction_id/bids(.:format)

new_auction_bid GET /auctions/:auction_id/bids/new(.:format)
edit_bid GET /bids/:id/edit(.:format)

bid GET /bids/:id(.:format)
PATCH /bids/:id(.:format)
PUT /bids/:id(.:format)

REST, Resources, and Rails 97

DELETE /bids/:id(.:format)
auctions GET /auctions(.:format)

POST /auctions(.:format)
new_auction GET /auctions/new(.:format)

edit_auction GET /auctions/:id/edit(.:format)
auction GET /auctions/:id(.:format)

PATCH /auctions/:id(.:format)
PUT /auctions/:id(.:format)
DELETE /auctions/:id(.:format)

If you analyze the routes generated carefully, you’ll notice that the nested
parts of the URL are only included when they are needed to determine what
data to display.

REST, Resources, and Rails 98

3.8 Routing Concerns

One of the fundamental principles Rails developers follow is Don’t Repeat
Yourself (DRY). Even though this is the case, the config/routes.rb file can be
prone to having repetition in the form of nested routes that are shared across
multiple resources. For example, let’s assume in our recurring example, that
both auctions and bids can have comments associated with them.

resources :auctions do
resources :bids
resources :comments
resources :image_attachments, only: :index

end

resources :bids do
resources :comments

end

To eliminate code duplication and to encapsulate shared behavior across
routes, Rails 4 introduced the routing method concern.

concern :commentable do
resources :comments

end

concern :image_attachable do
resources :image_attachments, only: :index

end

To add a routing concern to a RESTful route, pass the concern to the :concerns
option.

resources :auctions, concerns: [:commentable, :image_attachable] do
resources :bids

end

resources :bids, concerns: :commentable

The :concerns option can accept one or more routing concerns.

REST, Resources, and Rails 99

3.9 RESTful Route Customizations

Rails’ RESTful routes give you a pretty nice package of named routes, mapped
to useful, common, controller actions—the CRUD superset you’ve already
learned about. Sometimes, however, you want to customize things a little
more, while still taking advantage of the RESTful route naming conventions
and the multiplication table approach to mixing named routes and HTTP
request methods.
The techniques for doing this are useful when, for example, you’ve got more
than one way of viewing a resource that might be described as showing. You
can’t (or shouldn’t) use the show action itself for more than one such view.
Instead, you need to think in terms of different perspectives on a resource
and create URLs for each one.

Extra Member Routes

For example, let’s say we want to make it possible to retract a bid. The basic
nested route for bids looks like this:

resources :auctions do
resources :bids

end

We’d like to have a retract action that shows a form (and perhaps does some
screening for retractability). The retract isn’t the same as destroy; it’s more
like a portal to destroy. It’s similar to edit, which serves as a form portal to
update. Following the parallel with edit/update, we want a URL that looks like

/auctions/3/bids/5/retract

and a helper method called retract_auction_bid_url. The way you achieve this
is by specifying an extra member route for the bids, as in Listing 3.1.

REST, Resources, and Rails 100

Listing 3.1: Adding an extra member route

resources :auctions do
resources :bids do

member do
get :retract

end
end

end

Then you can add a retraction link to your view using

link_to "Retract", retract_bid_path(auction, bid)

and the URL generatedwill include the /retractmodifier. That said, you should
probably let that link pull up a retraction form (and not trigger the retraction
process itself!). The reason I say that is because, according to the tenets of
HTTP, GET requests should not modify the state of the server; that’s what
other requests methods like POST are for.
So how do you trigger an actual retraction? Is it enough to add a :method option
to link_to?

link_to "Retract", retract_bid_path(auction,bid), method: :post

Not quite. Remember that in Listing 3.1 we defined the retract route as a get,
so a POST will not be recognized by the routing system. The solution is to
define an extra member route with post, like this:

resources :auctions do
resources :bids do

member do
get :retract
post :retract

end
end

end

If you’re handling more than one HTTP verb with a single action, you should
switch to using a single match declaration and a :via option, like this:

REST, Resources, and Rails 101

resources :auctions do
resources :bids do

member do
match :retract, via: [:get, :post]

end
end

end

Thanks to the flexibility of the routing system, we can tighten it up further
using match with an :on option, like

resources :auctions do
resources :bids do

match :retract, via: [:get, :post], on: :member
end

end

which would result in a route like this (output from rake routes):

retract_auction_bid GET|POST
/auctions/:auction_id/bids/:id/retract(.:format) bids#retract

Extra Collection Routes

You can use the same routing technique to add routes that conceptually apply
to an entire collection of resources:

resources :auctions do
collection do

match :terminate, via: [:get, :post]
end

end

In its shorter form:

resources :auctions do
match :terminate, via: [:get, :post], on: :collection

end

This example will give you a terminate_auctions_path method, which will
produce a URL mapping to the terminate action of the auctions controller.
(A slightly bizarre example, perhaps, but the idea is that it would enable you
to end all auctions at once.)
Thus you can fine-tune the routing behavior—even the RESTful routing
behavior—of your application, so that you can arrange for special and spe-
cialized cases while still thinking in terms of resources.

REST, Resources, and Rails 102

Custom Action Names

Occasionally, you might want to deviate from the default naming convention
for Rails RESTful routes. The :path_names option allows you to specify alternate
name mappings. The example code shown changes the new and edit actions
to Spanish-language equivalents.

resources :projects, path_names: { new: 'nuevo', edit: 'cambiar' }

The URLs change (but the names of the generated helper methods do not).

GET /projects/nuevo(.:format) projects#new
GET /projects/:id/cambiar(.:format) projects#edit

Mapping to a Different Controller

You may use the :controller option to map a resource to a different controller
than the one it would do so by default. This feature is occasionally useful for
aliasing resources to a more natural controller name.

resources :photos, controller: "images"

Routes for New Resources

The routing system has a neat syntax for specifying routes that only apply
to new resources, ones that haven’t been saved yet. You declare extra routes
inside of a nested new block, like this:

resources :reports do
new do

post :preview
end

end

The declaration above would result in the following route being defined:

preview_new_report POST /reports/new/preview(.:format) reports#preview

Refer to your new route within a view form by altering the default :url.

REST, Resources, and Rails 103

= form_for(report, url: preview_new_report_path) do |f|
...
= f.submit "Preview"

Considerations for Extra Routes

Referring to extra member and collection actions, David has been quoted as
saying, “If you’re writing so many additional methods that the repetition is
beginning to bug you, you should revisit your intentions. You’re probably not
being as RESTful as you could be.”
The last sentence is key. Adding extra actions corrupts the elegance of your
overall RESTful application design because it leads you away from finding all
of the resources lurking in your domain.
Keeping in mind that real applications are more complicated than code
examples in a reference book, let’s see what would happen if we had to model
retractions strictly using resources. Rather than tacking a retract action onto
the BidsController, wemight feel compelled to introduce a retraction resource,
associated with bids, and write a RetractionController to handle it.

resources :bids do
resource :retraction

end

RetractionController could now be in charge of everything having to do with
retraction activities, rather than having that functionality mixed into BidsCon-
troller. And if you think about it, something as weighty as bid retraction would
eventually accumulate quite a bit of logic. Some would call breaking it out
into its own controller proper separation of concerns or even just good object-
orientation.

David says he doesn’t put extra methods on his controllers anymore. For a
detailed explanation of how and why he breaks out extras into their own
(sub-)resource controllers, read this great blog posta.

ahttp://jeromedalbert.com/how-dhh-organizes-his-rails-controllers/

http://jeromedalbert.com/how-dhh-organizes-his-rails-controllers/
http://jeromedalbert.com/how-dhh-organizes-his-rails-controllers/

REST, Resources, and Rails 104

3.10 Controller-Only Resources

Resources are high-level abstractions of what’s available through your web
application. Database operations just happen to be one of the ways that you
store and retrieve the data you need to generate representations of resources.
But a REST resource doesn’t necessarily have to map directly to a controller,
either, at least not in theory. You could, if you wanted to, provide REST services
whose public identifiers (URIs) did not match the names of your controllers
at all.
What all of this adds up to is that you might have occasion to create a
set of resource routes, and a matching controller, that don’t correspond
to any model in your application at all. There’s nothing wrong with a full
resource/controller/model stack where everything matches by name. But you
may find cases where the resources you’re representing can be encapsulated
in a controller but not a model.
An example in the auction application is a sessions controller, which we
allluded to earlier in the chapter. Assume a routes.rb file containing this line:

resource :session

It maps the URL /session to a SessionController as a singleton resource, yet
there’s no Session model. (By the way, it’s properly defined as a singleton
resource because from the user’s perspective there is only one session.)
Why go the RESTful style for authentication? If you think about it, user
sessions can be created and destroyed. The creation of a session takes place
when a user logs in; when the user logs out, the session is destroyed. The
RESTful Rails practice of pairing a new action and view with a create action
can be followed! The user login form can be the session-creating form, housed
in the template file such as session/new.html.haml.

%h1 Log in
= form_for :user, url: session_path do |f|

%p
= f.label :login
= f.text_field :login

%p
= f.label :password
= f.password_field :password

%p
= f.submit "Log in"

When the form is submitted, the input is handled by the create method of the
sessions controller:

REST, Resources, and Rails 105

def create
if user.try(:authorize, params[:user][:password])

redirect_to home_url, notice: "Welcome, #{user.first_name}!"
else

redirect_to action: "new", flash: { error: "Login invalid." }
end

end

protected
def user

@user ||= User.find_by(login: params[:user][:login])
end

Nothing is written to any database table in this action, but it’s worthy of the
name create by virtue of the fact that it creates a session. Furthermore, if you
did at some point decide that sessions should be stored in the database, you’d
already have a nicely abstracted handling layer.
It pays to remain open-minded, then, about the possibility that CRUD as
an action-naming philosophy and CRUD as actual database operations may
sometimes occur independently of each other and the possibility that the
resource-handling facilities in Rails might usefully be associated with a
controller that has no corresponding model. Creating a session on the server
isn’t a REST-compliant practice, since REST mandates stateless transfers of
representations of resources. But it’s a good illustration of why, and how,
you might make design decisions involving routes and resources that don’t
implicate the whole application stack.

Xavier says…
Whether sessions are REST-compliant or not depends on the session
storage. What REST disallows is not the idea of application state in
general but rather the idea of client state stored in the server. REST
demands that your requests are complete. For example, putting an
auction_id in a hidden field of a form or in its action path is fine. There
is state in that request that the edit action wants to pass to the update
action, and you dumped it into the page, so the next request to update
a bid carries all of what’s needed. That’s RESTful.
Now, using hidden fields and such is not the only way to do this. For
example, there is no problem using a user_id cookie for authentication.
Why? Because a cookie is part of a request. Therefore, I am pretty sure
that cookie-based sessions are considered to be RESTful by the same
principle. That kind of storage makes your requests self-contained and
complete.

REST, Resources, and Rails 106

Sticking to CRUD-like action names is, in general, a good idea. As long as
you’re doing lots of creating and destroying anyway, it’s easier to think of a
user logging in as the creation of a session than to come up with a whole new
semantic category for it. Rather than the new concept of user logs in, just
think of it as a new occurrence of the old concept, session gets created.

REST, Resources, and Rails 107

3.11 Different Representations of Resources

One of the foundations of REST is that the components in a REST-based system
exchange representations of resources. The distinction between resources
and their representations is vital. We mentioned that at the beginning of the
chapter, but didn’t expound on it until now.
As a client or consumer of REST services, you don’t actually retrieve a
resource from a server; you retrieve representations of that resource. You also
provide representations: A form submission, for example, sends the server a
representation of a resource, together with a request—for example, PATCH—
that this representation be used as the basis for updating the resource.
Representations are the exchange currency of resource management.

The respond_to Method

The capability to return different representations in RESTful Rails practice
is based on the respond_to method in the controller, which, as you’ve seen
in the previous chapter, enables you to return different responses depending
on what the client wants. Moreover, when you create resource routes you
automatically get URL recognition for URLs ending with a dot and a :format
parameter.
For example, assume that you have resources :auctions in your routes file and
some respond_to logic in the AuctionsController like

def index
@auctions = Auction.all
respond_to do |format|

format.html
format.xml { render xml: @auctions }

end
end

which will let you to connect to this URL: /auctions.xml.
The resource routing will ensure that the index action gets executed. It will
also recognize the .xml at the end of the route and interact with respond_to
accordingly, returning the XML representation.

REST, Resources, and Rails 108

Responders Gem

The Responders4 Gem features functionality that was removed from Rails 4.2
offering a more concise way of responding to a variety of formats in the same
controller.

class AuctionsController < ApplicationController
respond_to :html, :xml, :json
def index

@auctions = Auction.all
respond_with(@auctions)

end
end

Here we’ve told our controller, at the class level, that it should expect to
respond to html, xml, and json so that each action will automatically return
the appropriate content.
When the request comes in, the responder would attempt to do the following
(given a .json extension on the URL):

• Attempt to render an associated view with a .json extension
• If no view exists, call to_json on the object passed to responds_with
• If the object does not respond to to_json, call to_format on it

For nested and namespaced resources, you must pass dependencies to the
respond_to method similarly to the way you would generate a route.

respond_with(@user, :managed, @client)

Formatted Named Routes

So far we’ve covered how Rails recognizes different formats. But what if you
want to generate a link to the XML representation of a resource? You can
achieve it by passing an extra argument to the RESTful named route:

link_to "XML version of this auction", auction_path(@auction, :xml)

This will generate the following HTML:

4https://github.com/plataformatec/responders

https://github.com/plataformatec/responders
https://github.com/plataformatec/responders

REST, Resources, and Rails 109

XML version of this auction

When followed, this link will trigger the XML clause of the respond_to block in
the show action of the auctions controller. The resulting XML may not look like
much in a browser, but the named route is there if you want it.
The circuit is now complete: You can generate URLs that point to a specific
response type, and you can honor requests for different types by using
respond_to. All told, the routing system and the resource-routing facilities built
on top of it give you quite a set of powerful, concise tools for differentiating
among requests and, therefore, being able to serve up different representa-
tions.

REST, Resources, and Rails 110

3.12 The RESTful Rails Action Set

Rails REST facilities, ultimately, are about named routes and the controller
actions to which they point. The more you use RESTful Rails, the more you get
to know each of the seven RESTful actions. How they work across different
controllers (and different applications) is of course somewhat different. Still,
perhaps because there’s a finite number of them and their roles are fairly well-
delineated, each of the seven tends to have fairly consistent properties and a
characteristic feel to it.
Now we’re going to take a closer look at each of the seven actions, with
examples and comments. You’ll encounter all of them again, particularly in
Chapter 4, “Working with Controllers,” but here you’ll get some backstory
and start to get a sense of the characteristic usage of them and issues and
choices associated with them.

Index

Typically, an index action provides a representation of a plural (or collection)
resource. However, to be clear, not all resource collections are mapped to
the index action. Your default index representations will usually be generic,
although admittedly that has a lot to do with your application-specific needs.
But in general, the index action shows the world the most neutral representa-
tion possible. A very basic index action looks like

class AuctionsController < ApplicationController
def index

@auctions = Auction.all
end

end

The associated view template will display information about each auction, with
links to specific information about each one, and to profiles of the sellers.
You’ll certainly encounter situations where you want to display a representa-
tion of a collection in a restricted way. In our recurring example, users should
be able to see a listing of all their bids, but maybe you don’t want users seeing
other people’s bids.
There are a couple of ways to do this. One way is to test for the presence of
a logged-in user and decide what to show based on that. But that’s not going
to work here. For one thing, the logged-in user might want to see the more
public view. For another, the more dependence on server-side state we can
eliminate or consolidate, the better.

REST, Resources, and Rails 111

So let’s try looking at the two bid lists, not as public and private versions of
the same resource, but as different index resources. The difference can be
reflected in the routing like the following:

resources :auctions do
resources :bids do

get :manage, on: :collection
end

end
resources :bids

We can now organize the bids controller in such a way that access is
nicely layered, using action callbacks only where necessary and eliminating
conditional branching in the actions themselves:

class BidsController < ApplicationController
before_action :check_authorization, only: :manage

def index
@bids = Bid.all

end

def manage
@bids = auction.bids

end

protected

def auction
@auction ||= Auction.find(params[:auction_id])

end

def check_authorization
auction.authorized?(current_user)

end
end

There’s now a clear distinction between /bids and /auctions/1/bids/manage and
the role that they play in your application.
On the named route side, we’ve now got bids_url and manage_auction_bids_-
url. We’ve thus preserved the public, stateless face of the /bids resource, and
quarantined as much stateful behavior as possible into a discrete member

REST, Resources, and Rails 112

resource, /auctions/1/bids/manage. Don’t fret if this mentality doesn’t come to
you naturally. It’s part of the REST learning curve.

Lar says…
If they are truly different resources, why not give them each their
own controllers? Surely there will be other actions that need to be
authorized and scoped to the current user.

Show

The RESTful show action is the singular flavor of a resource. That generally
translates to a representation of information about one object, one member
of a collection. Like index, show is triggered by a GET request.
A typical—one might say classic—show action looks like

class AuctionController < ApplicationController
def show

@auction = Auction.find(params[:id])
end

end

As with index actions, it’s good to make your show actions as public as possible
and offload the administrative and privileged views onto either a different
controller or a different action.

Destroy

Destroy actions are good candidates for administrative safeguarding, though
of course it depends on what you’re destroying. You might want something
like this to protect the destroy action.

class ProductsController < ApplicationController
before_action :admin_required, only: :destroy

A typical destroy action might look like

REST, Resources, and Rails 113

def destroy
product.destroy
redirect_to products_url, notice: "Product deleted!"

end

This approach might be reflected in a simple administrative interface like

%h1 Products
- products.each do |product|

%p= link_to product.name, product
- if current_user.admin?

%p= link_to "delete", product, method: :delete

That delete link appears depending on whether current user is an admin.
The Rails UJS (Unobtrusive JavaScript) API greatly simplifies the HTML
emitted for a destroy action, using CSS selectors to bind JavaScript to (in
this case) the “delete” link. See Chapter 19, “Ajax on Rails,” for much more
information about how it works.
DELETE submissions are dangerous. Rails wants to make them as hard as
possible to trigger accidentally—for instance, by a crawler or bot sending
requests to your site. So when you specify the DELETE method, JavaScript that
submits a form is bound to your “delete” link, along with a rel="nofollow"
attribute on the link. Since bots don’t submit forms (and shouldn’t follow links
marked “nofollow”), this gives a layer of protection to your code.

New and Create

As you’ve already seen, the new and create actions go together in RESTful Rails.
A “new resource” is really just an entity waiting to be created. Accordingly,
the new action customarily presents a form, and create creates a new record,
based on the form input.
Let’s say you want a user to be able to create (that is, start) an auction. You’re
going to need

1. A new action, which will display a form
2. A create action, which will create a new Auction object based on the form
input, and proceed to a view (show action) of that auction

The new action doesn’t have to do much. In fact, it has to do nothing. Like any
empty action, it can even be left out. Rails will still figure out which view to
render. However, your controller will need an auction helper method, like

REST, Resources, and Rails 114

protected

def auction
@auction ||= current_user.auctions.build(params[:auction])

end
helper_method :auction

If this technique is alien to you, don’t worry. We’ll describe it in detail in the
section “Decent Exposure”.
A simplistic new.html.haml template might look like Listing 3.2.

Listing 3.2: A New Auction Form

%h1 Create a new auction
= form_for auction do |f|

= f.label :subject
= f.text_field :subject
%br
= f.label :description
= f.text_field :description
%br
= f.label :reserve
= f.text_field :reserve
%br
= f.label :starting_bid
= f.text_field :starting_bid
%br
= f.label :end_time
= f.datetime_select :end_time
%br
= f.submit "Create"

Once the information is filled out by a user, it’s time for the main event: the
create action. Unlike new, this action has something to do.

def create
if auction.save

redirect_to auction_url(auction), notice: "Auction created!"
else

render :new
end

end

REST, Resources, and Rails 115

Edit and Update

Like new and create, the edit and update actions go together: edit provides a
form, and update processes the form input.
The form for editing a record appears similar to the form for creating one. (In
fact, you can put much of it in a partial template and use it for both; that’s left
as an exercise for the reader.)
The form_for method is smart enough to check whether the object you pass to
it has been persisted or not. If it has, then it recognizes that you are doing an
edit and specifies a PATCH method on the form.

REST, Resources, and Rails 116

3.13 Conclusion

In this chapter, we tackled the tough subject of using REST principles to guide
the design of our Rails applications, mainly as they apply to the routing system
and controller actions. We learned how the foundation of RESTful Rails is the
resources method in your routes file and how to use the numerous options
available to make sure that you can structure your application exactly how it
needs to be structured.
By necessity, we’ve already introduced many controller-related topics and
code examples in our tour of the routing and REST features. In the next
chapter, we’ll cover controller concepts and the Action Controller API in
depth.

4. Working with Controllers
Remove all business logic from your controllers and put it in the
model. (My) instructions are precise, but following them requires
intuition and subtle reasoning.
—Nick Kallen

Like any computer program, your Rails application involves the flow of control
from one part of your code to another. The flow of program control gets
pretty complex with Rails applications. There are many bits and pieces in the
framework, many of which execute each other. And part of the framework’s
job is to figure out, on the fly, what your application files are called and what’s
in them, which of course varies from one application to another.
The heart of it all, though, is pretty easy to identify: It’s the controller. When
someone connects to your application, what they’re basically doing is asking
the application to execute a controller action. Sure, there are many different
flavors of how this can happen and edge cases where it doesn’t exactly happen
at all. But if you know how controllers fit into the application life cycle, you
can anchor everything else around that knowledge. That’s why we’re covering
controllers before the rest of the Rails APIs.
Controllers are the C inMVC. They’re the first port of call, after the dispatcher,
for the incoming request. They’re in charge of the flow of the program: They
gather information and make it available to the views.
Controllers are also very closely linked to views, more closely than they’re
linked to models. It’s possible to write the entire model layer of an application
before you create a single controller or to have different people working on the
controller and model layers who never meet or talk to each other. However,
views and controllers are more tightly coupled to one another. They share a lot
of information and the names you choose for your variables in the controller
will have an effect on what you do in the view.
In this chapter, we’re going to look at what happens on the way to a controller
action being executed and what happens as a result. In the middle, we’ll take
a long look at how controller classes themselves are set up, particularly in
regard to the many different ways that we can render views. Then we’ll wrap
up the chapter with a couple of additional topics related to controllers: action
callbacks and streaming.
First, though, let’s look at the underpinnings of the Rails controller, and almost
every other Ruby web framework out there.

Working with Controllers 118

4.1 Rack

Rack is a modular interface for handling web requests, written in Ruby, with
support for many different web servers. It abstracts away the handling of
HTTP requests and responses into a single, simple call method that can be
used by anything from a plain Ruby script all the way to Rails itself.

Listing 2.1: HelloWorld as a Rack application

class HelloWorld
def call(env)

[200, {"Content-Type" => "text/plain"}, ["Hello world!"]]
end

end

An HTTP request invokes the call method and passes in a hash of environment
variables, akin to the way that CGI works. The call method should return a
three-element array consisting of the status, a hash of response headers, and
finally, the body of the request.

Newer web developers may have never heard of CGI (Common Gateway
Interface). It is a specification dating back to the 1990’s about how a web
server should communicate with executable scripts and programs to serve
up dynamic content. https://www.w3.org/CGI/

As of Rails 2.3, request handling was moved to Rack and the concept of
middleware was introduced. Classes that satisfy Rack’s call interface can
be chained together as filters. Rack itself includes a number of useful filter
classes that do things such as logging and exception handling.
Rails 3 took this one step further and was re-architected from the ground
up to fully leverage Rack filters in a modular and extensible manner. A full
explanation of Rails’ Rack underpinnings are outside the scope of this book,
especially since Rack does not really play a part in day-to-day development
of applications. However, it is essential Rails knowledge to understand that
much of Action Controller is implemented as Rack middleware modules. Want
to see which Rack filters are enabled for your application? There’s a rake task
for that!

https://www.w3.org/CGI/

Working with Controllers 119

$ rake middleware
use Rack::Runtime
use Rack::MethodOverride
use ActionDispatch::RequestId
use Rails::Rack::Logger
use ActionDispatch::ShowExceptions
use ActionDispatch::DebugExceptions
use ActionDispatch::RemoteIp
use ActionDispatch::Reloader
use ActionDispatch::Callbacks
use ActiveRecord::Migration::CheckPending
use ActiveRecord::ConnectionAdapters::ConnectionManagement
use ActiveRecord::QueryCache
use ActionDispatch::Cookies
use ActionDispatch::Session::CookieStore
use ActionDispatch::Flash
use ActionDispatch::ParamsParser
use Rack::Head
use Rack::ConditionalGet
use Rack::ETag
run Example::Application.routes

What’s checking for pending Active Record migrations have to do with serving
requests anyway?

module ActiveRecord
class Migration

class CheckPending
...

def call(env)
ActiveRecord::Base.logger.silence do

ActiveRecord::Migration.check_pending!
end
@app.call(env)

end
end

end
end

Ahh, it’s not that pending Active Record migrations has anything specifically
to do with serving requests. It’s that Rails is designed in such a way that
different aspects of its behavior are introduced into the request call chain as
individual Rack middleware components or filters.

Working with Controllers 120

Configuring Your Middleware Stack

Your application object enables you to access and manipulate the Rack
middleware stack during initialization, via config.middleware like

config/application.rb

module Example
class Application < Rails::Application

...
Rack::ShowStatus catches all empty responses the app it wraps and
replaces them with a site explaining the error.
config.middleware.use Rack::ShowStatus

end
end

Rack Lobster
As I found out trying to experiment with the hilariously-named Rack::Lobster,
your custom Rack middleware classes need to have an explicit initializer
method, even if they don’t require runtime arguments.

The methods of config.middleware give you very fine-grained control over the
order in which your middleware stack is configured. The args parameter is
an optional hash of attributes to pass to the initializer method of your Rack
filter.

• config.middleware.insert_after(existing_middleware, new_middleware, args)

Adds the new middleware after the specified existing middleware in the
middleware stack.

• config.middleware.insert_before(existing_middleware, new_middleware, args)

Adds the newmiddleware before the specified existing middleware in the
middleware stack.

• config.middleware.delete(middleware)

Removes a specified middleware from the stack.
• config.middleware.swap(existing_middleware, new_middleware, args)

Swaps a specified middleware from the stack with a new class.
• config.middleware.use(new_middleware, args)

Takes a class reference as its parameter and just adds the desired
middleware to the end of the middleware stack.

Working with Controllers 121

For an example of a very useful Rack middleware implemented as a Ruby
Gem, check out https://github.com/cyu/rack-cors. It elegantly provides sup-
port for Cross-Origin Resource Sharing (CORS).

https://github.com/cyu/rack-cors

Working with Controllers 122

4.2 Action Dispatch: Where It All Begins

Controller and view code in Rails has always been part of its Action Pack
framework. As of Rails 3, dispatching of requests was extracted into its own
sub-component of Action Pack called Action Dispatch. It contains classes that
interface the rest of the controller system to Rack.

Request Handling

The entry point to a request is an instance of ActionDispatch::Routing::RouteSet,
the object on which you can call draw at the top of config/routes.rb.
The route set chooses the rule that matches, and calls its Rack endpoint. So a
route like

get 'foo', to: 'foo#index'

has a dispatcher instance associated to it, whose call method ends up
executing

FooController.action(:index).call

Prior to Rails 4, the RouteSet would convert its path data into an array
of regular expressions. When a request needed to be dispatched, it would
iterate through the array and try to match the given urls one by one. It
worked, but it was relatively slow. Nowadays, the core routing module in
ActionDispatch is called Journey. It uses some advanced computer science
techniques to do its thing, like a generalized transition graph (GTG) and non-
deterministic finite automata (NFA). If you dig into its codebase, you’ll find
a Yacc grammar file for parsing route definitions!

As covered in the section “Routes as Rack Endpoints,” the route set can call
any other type of Rack endpoint, like a Sinatra app, a redirect macro or a bare
lambda. In those cases no dispatcher is involved.
All of this happens quickly, behind the scenes. It’s unlikely that you would ever
need to dig into the source code of ActionDispatch; it’s the sort of thing that
you can take for granted to just work. However, to really understand the Rails
way, it is important to know what’s going on with the dispatcher. In particular,
it’s important to remember that the various parts of your application are just
bits (sometimes long bits) of Ruby code and that they’re getting loaded into a
running Ruby interpreter.

Working with Controllers 123

Getting Intimate with the Dispatcher

Just for the purpose of learning, let’s trigger the Rails dispatching mechanism
manually. We’ll do this little exercise from the ground up, starting with a new
Rails application:

$ rails new dispatch_me --skip-turbolinks --skip-spring --skip-action-cable

Now create a single controller demo, with an index action (Note that Haml is
set up as our template language):

$ cd dispatch_me/
$ rails generate controller demo index

create app/controllers/demo_controller.rb
route get "demo/index"

invoke haml
create app/views/demo
create app/views/demo/index.html.haml
invoke test_unit
create test/controllers/demo_controller_test.rb
invoke helper
create app/helpers/demo_helper.rb
invoke test_unit
create test/helpers/demo_helper_test.rb
invoke assets
invoke coffee
create app/assets/javascripts/demo.js.coffee
invoke scss
create app/assets/stylesheets/demo.css.scss

If you take a look at app/controllers/demo_controller.rb, you’ll see that it has
an index action:

class DemoController < ApplicationController
def index
end

end

There’s also a view template file, app/views/demo/index.html.haml with some
placeholder language. Just to see things more clearly, let’s replace it with
something we will definitely recognize when we see it again. Replace the
contents of index.html.haml with

Working with Controllers 124

Hello!

Not much of a design accomplishment, but it will do the trick.
Now that we’ve got a set of dominos lined up, it’s just a matter of pushing over
the first one: the dispatcher. To do that, start by firing up the Rails console
from your Rails application directory.

$ rails console
Loading development environment (Rails 5.0.0.1)
>>

There are some variables from the web server that Rack expects to use for
request processing. Since we’re going to be invoking the dispatcher manually,
we have to set those variables like this in the console (output ommited for
brevity)

>> env = {}
>> env['REMOTE_ADDR'] = '127.0.0.1'
>> env['REQUEST_METHOD'] = 'GET'
>> env['PATH_INFO'] = '/demo/index'
>> env['rack.input'] = StringIO.new

Now that we’ve replicated an HTTP environment, we’re now ready to fool the
dispatcher into thinking it’s getting a request. Actually, it is getting a request.
It’s just that it’s coming from someone sitting at the console, rather than from
a proper web server. (Note that we edited the output HTML a bit to make
it easier to read. The actual console will spit it out all in a big concatenated
string, including a bunch of META tag gibberish.)

>> rack_body_proxy = DispatchMe::Application.call(env).last
=> #<Rack::BodyProxy:0x007f8163bb8be0 @body=#<Rack::BodyProxy:0x007f8163bb8c30 @body=#<Rac\
k::BodyProxy:0x007f8163bb8e88 @body=#<Rack::BodyProxy:0x007f816b911330 @body=#<Rack::BodyP\
roxy:0x007f816b912aa0 @body=["<!DOCTYPE html>...
>> rack_body_proxy.last
=> "<!DOCTYPE html>

<html>
<head>...</head>
<body><h1>Demo#index</h1>

<p>Find me in app/views/demo/index.html.erb</p>
</body>

</html>

If you want to see everything contained in the ActionDispatch::Response object
returned from call then try the following code:

Working with Controllers 125

>> y DispatchMe::Application.call(env)

The handy y method formats its argument as a YAML string, making it a lot
easier to understand. We won’t reproduce the output here because it’s huge,
but it includes things like HTTP headers.
Getting back to the dispatching process, up to now we’ve executed the call
method of of our Rails application and as a result, the index action got executed
and the index template (such as it is) got rendered and the results of the
rendering got wrapped in some HTTP headers and returned.
Just think: If you were a web server, rather than a human, and you had
just done the same thing, you could now return that document, headers and
“Hello!” and all, to a client.
You can follow the trail of bread crumbs even further by diving into the Rails
source code, but for purposes of understanding the chain of events in a Rails
request and the role of the controller, the peek under the hood we’ve just done
is sufficient.

Tim says…
Note that if you give Rack a path that resolves to a static file, it will be
served directly from the web server without involving the Rails stack.
As a result, the object returned by the dispatcher for a static file is
different than what you might expect.

Working with Controllers 126

4.3 Render unto View…

The goal of the typical controller action in a traditional web application is to
render a view template—that is, to fill out the template and hand the results,
usually an HTML document, back to the server for delivery to the browser.
Oddly—at least it might strike you as a bit odd, though not illogical—you don’t
actually need to define a controller action, as long as you’ve got a template
that matches the action name.
You can try this out in under-the-hood mode. Go into app/controller/demo_-
controller.rb, and delete the index action so that the file will look empty, like
this:

class DemoController < ApplicationController
end

Don’t delete app/views/demo/index.html.haml, and then try the console exercise
(DispatchMe::Application.call(env) and all that) again. You’ll see the same
result.
By the way, make sure you reload the console when you make changes—it
doesn’t react to changes in source code automatically. The easiest way to
reload the console is simply to type reload!. But be aware that any existing
instances of Active Record objects that you’re holding on to will also need to
be reloaded (using their individual reloadmethods). Sometimes it’s simpler to
just exit the console and start it up again.

When in Doubt, Render

People love saying that Rails is magical. This is the sort of thing they’re talking
about: Rails knows that when it gets a request for the index action of the demo
controller, what really matters is handing something back to the server. So if
there’s no index action in the controller file, Rails shrugs and says, “Well, let’s
just assume that if there were an index action, it would be empty anyway, and
I’d just render index.html.haml. So that’s what I’ll do.”
You can learn something from an empty controller action, though. Let’s go
back to this version of the demo controller:

Working with Controllers 127

class DemoController < ApplicationController
def index
end

end

What you learn from seeing the empty action is that, at the end of every
controller action, if nothing else is specified, the default behavior is to render
the template whose name matches the name of the controller and action,
which in this case means app/views/demo/index.html.haml.
In other words, every controller action has an implicit render command in it.
And render is a real method. You could write the preceding example like this:

def index
render "demo/index"

end

You don’t have to, though, because it’s assumed that it’s what you want,
and that is part of what Rails people are talking about when they discuss
convention over configuration. Don’t force the developer to add code to
accomplish something that can be assumed to be a certain way.

Explicit Rendering

Rendering a template is like putting on a shirt: If you don’t like the first one
you find in your closet—the default, so to speak—you can reach for another
one and put it on instead.
If a controller action doesn’t want to render its default template, it can render
a different one by calling the render method explicitly. Any template file in
the app/views directory tree is available. (Actually, that’s not exactly true. Any
template on the whole system is available!) But why would you want your
controller action to render a template other than its default? There are several
reasons, and by looking at some of them, we can cover all of the handy features
of the controller’s render method.

If you want to capture a call to render without automatically sending it
to the browser, you can call render_to_string instead. It takes exactly
the same options as render, but it returns a string instead of triggering
a response.

Working with Controllers 128

Rendering Another Action’s Template

A common reason for rendering an entirely different template is to redisplay
a form, when it gets submitted with invalid data and needs correction. In
such circumstances, the usual web strategy is to redisplay the form with
the submitted data and trigger the simultaneous display of some error
information, so that the user can correct the form and resubmit.
The reason that process involves rendering another template is that the action
that processes the form and the action that displays the form may be—and
often are—different from each other. Therefore, the action that processes the
form needs a way to redisplay the original (form) template, instead of treating
the form submission as successful and moving on to whatever the next screen
might be.
Wow, that was a mouthful of an explanation. Here’s a practical example:

class EventController < ActionController::Base
def new

This (empty) action renders the new.html.haml template, which
contains the form for inputting information about the new
event record and is not actually needed.

end

def create
This method processes the form input. The input is available via
the params hash, in the nested hash keyed to :event
@event = Event.new(params[:event])
if @event.save

ignore the next line for now
redirect_to dashboard_path, notice: "Event created!"

else
render action: 'new' # doesn't execute the new method!

end
end

end

On failure, that is, if @event.save does not return true, we render the “new”
template. Assuming new.html.haml has been written correctly, this will auto-
matically include the display of error information embedded in the new (but
unsaved) Event object.
Note that the template itself doesn’t “know” that it has been rendered by the
create action rather than the new action. It just does its job: It fills out and
expands and interpolates, based on the instructions it contains and the data
(in this case, @event) that the controller has passed to it.

Working with Controllers 129

Rendering a Different Template Altogether

In a similar fashion, if you are rendering a template for a different action, it
is possible to render any template in your application by calling render with a
string pointing to the desired template file. The render method is very robust
in its capability to interpret which template you’re trying to refer to.

render template: '/products/index.html.haml'

A couple of notes: It’s not necessary to pass a hash with :template because
it’s the default option. Also, in our testing, all of the following permutations
worked identically when called from ProductsController:

render '/products/index.html.haml'
render 'products/index.html.haml'
render 'products/index.html'
render 'products/index'
render 'index'
render :index

The :template option only works with a path relative to the template root
(app/views, unless you changed it, which would be extremely unusual).

Tim says…
Use only enough to disambiguate. The content type defaults to that of
the request, and if you have two templates that differ only by template
language, you’re Doing It Wrong.

Under rare circumstances, you can use the rendermethod to access templates
that are entirely outside of your application using the :file option.

render file: "/u/apps/warehouse_app/current/app/views/products/show"

Provide an absolute file-system path to the desired template. It will render
using the current layout for your controller.

Using the :file option in combination with users’ input can lead to
security problems since an attacker could use this action to access
sensitive files.

Working with Controllers 130

Rendering a Partial Template

Another option is to render a partial template (usually referred to simply as a
partial). Usage of partial templates allows you to organize your template code
into small files. Partials can also help you to avoid clutter and encourage you
to break your template code up into reusable modules.
There are a few ways to trigger partial rendering. The first, and most obvious,
is using the :partial option to explicitly specify a partial template. Rails has
a convention of prefixing partial template file names with an underscore
character, but you never include the underscore when referring to partials.

render partial: 'product' # renders app/views/products/_product.html.haml

Leaving the underscore off of the partial name applies, even if you’re referring
to a partial in a different directory than the controller that you’re currently
in!

render partial: 'shared/product'
renders app/views/shared/_product.html.haml

The second way to trigger partial rendering depends on convention. If you
pass render :partial to an object, Rails will use its class name to find a partial
to render. You can even omit the :partial option, as in the following example
code:

render partial: @product
render @product
render 'product'

All three lines render the app/views/products/_product.html.haml template.
Partial rendering from a controller is mostly used in conjunction with XHR
calls that need to dynamically update segments of an already displayed page.
The technique, along with generic use of partials in views, is covered in
greater detail in Chapter 10, “Action View.”

Rendering HTML

It’s a poor practice, but you can send an HTML string back to the browser by
using the :html option.

Working with Controllers 131

render html: "Not Found".html_safe

Make sure to mark it safe, or Rails will complain about a potential security
vulnerability.

Rendering Inline Template Code

Occasionally, you may want to send the browser a snippet of HTML generated
using template code that is too small to merit its own partial. This practice is
contentious because it is a flagrant violation of proper separation of concerns
between MVC layers. Still, if you want to flaunt the rules, you can use render
inline: '...

Rails treats the inline code exactly as if it were a view template. The default
type of view template processing is ERb, but passing an additional :type option
allows you to choose Haml.

render inline: "%span.foo #{@foo.name}", type: "haml"

Courtenay says…
If you were one of my employees, I’d reprimand you for using view code
in the controller, even if it is only one line. Keep your view-related code
in the views!

Accessing Helpers in the Controller

If you’ve decided to use inline template code in your controllers despite our
advice to the contrary, then you might as well have access to your view helpers
too. Rails gives you access via the helpersmethod of the base controller class.
It returns a module containing all the helper methods available to the view.

Working with Controllers 132

module UsersHelper
def full_name(user)

user.first_name + user.last_name
end

end

class UsersController < ApplicationController

def update
@user = User.find params[:id]
if @user.update(user_params)

notice = "#{helpers.full_name(@user) is successfully updated}"
redirect_to user_path(@user), notice: notice

else
render :edit

end
end

end

As shown in the preceding example, using helpers inside your controllers is
occasionally very useful for generating dynamic flash messages.

Rendering Javascript

Rails can execute arbitrary JavaScript expressions in your browser.

render js: "alert('Hello world!')"

The supplied string will be sent to the browser with a MIME type of text/-
javascript.

Rendering Text

What if you simply need to send plain text back to the browser, particularly
when responding to XHR and certain types of web service requests?

render plain: 'Submission accepted'

Rendering raw body output

You can send a raw content back to the browser, without setting any content
type, by using the :body option.

Working with Controllers 133

render body:

This option should be used only if you don’t care about the content type
of the response. Using :plain or :html is usually more appropriate. Unless
overridden, the response returned from this render option will be text/html.

Rendering Other Types of Structured Data

The render command also accepts a series of (convenience) options for
returning structured data such as JSON or XML. The content-type of the
response will be set appropriately and additional options apply.1

:json

JSON2 is a small subset of JavaScript selected for its usability as a lightweight
data-interchange format. It is mostly used as a way of sending data down
to JavaScript code running in a rich web application via Ajax calls. Active
Record has built-in support for conversion to JSON, which makes Rails an
ideal platform for serving up JSON data, as in the following example:

render json: @record

As long as the parameter responds to to_json, Rails will call it for you, which
means you don’t have to call it yourself with ActiveRecord objects.
Any additional options passed to render :json are also included in the invoca-
tion of to_json.

render json: @projects, include: :tasks

Additionally, if you’re doing JSONP, you can supply the name of a callback
function to be invoked in the browser when it gets your response. Just add a
:callback option with the name of a valid JavaScript method.

render json: @record, callback: 'updateRecordsDisplay'

:xml

Active Record also has built-in support for conversion to XML, as in the
following example:

1Yehuda has written an excellent description of how to register additional rendering options at https://blog.
engineyard.com/2010/render-options-in-rails-3/.

2For more information on JSON go to http://www.json.org/.

https://blog.engineyard.com/2010/render-options-in-rails-3/
https://blog.engineyard.com/2010/render-options-in-rails-3/
http://www.json.org/

Working with Controllers 134

render xml: @record

As long as the parameter responds to to_xml, Rails will call it for you, which
means you don’t have to call it yourself with ActiveRecord objects.
Any additional options passed to render :xml are also included in the invocation
of to_xml.

render xml: @projects, include: :tasks

Default Rendering Policies

Template lookup for rendering takes into account the action name, locales,
format, variant, template handlers, etc. We’ll discuss how these parameters
are specified momentarily.
If templates exist for the controller action, but not in the right format (or
variant, etc.), then an ActionController::UnknownFormat is raised, which may
result in 204 No Content being returned to the client. This is a signficant
departure from older Rails behavior of just picking a default template to
render. The reason for the change is that the list of available templates is
assumed to be a complete enumeration of all the possible formats (or variants)
wanted by the developer. In other words, having only JSON templates defined
is your way of indicating that the controller action is, for instance, not meant
to handle HTML or XML requests.
Now if you are in development mode, and the current request is an “interac-
tive” browser request, meaning that you got there by entering the URL in the
address bar, submitting a form, clicking on a link, etc. as opposed to an XHR or
non-browser API request, then the raising of ActionView::UnknownFormat should
result in a helpful error message being displayed in the browser.

A lot of times, the reason Rails is not finding a suitable template to render for
your action is because you forgot to end your method with a call to redirect_-
to.

In any case, if Rails cannot find a template to render, remember that it will
respond to the request with “204 No Content”. The tricky thing about that
particular status code is that many browsers will simply ignore it and do
nothing. If you’re not paying attention to what’s going on (particularly the
Rails server console), you might think that the previous page re-rendered,
especially if it contained an error status or message. Don’t say we didn’t warn
you.

Working with Controllers 135

Rendering Nothing

If you really don’t want to render anything at all, don’t just omit your action
templates. Explicitly indicate your intention by using the headmethod. It takes
a symbol corresponding to the desired status code.

head :ok

A common use of this technique is to block unauthorized access.

head :unauthorized

The head method also accepts an options hash that is interpreted as header
names and values to be included with the response. To illustrate, consider the
following example, which returns an empty response with a status of 201 and
also sets the Location header:

head :created, location: auction_path(@auction)

Rendering Options

Most calls to the render method accept additional options. Here they are in
alphabetical order.

:content_type**

All content flying around the web is associated with a MIME type.3 For
instance, HTML content is labeled with a content-type of text/html. However,
there are occasions where you want to send the client something other than
HTML. Rails doesn’t validate the format of the MIME identifier you pass to
the :content_type option, so make sure it is valid.

:layout**

By default, Rails has conventions regarding the layout template it chooses to
wrap your response in, and those conventions are covered in detail in Chapter
10, “Action View.” The :layout option makes it possible for you to specify
whether you want a layout template to be rendered if you pass it a boolean
value or the name of a layout template, if you want to deviate from the default.

3MIME is specified in five RFC documents, so it is muchmore convenient to point you to a rather good description
of MIME provided by Wikipedia at http://en.wikipedia.org/wiki/MIME.

http://en.wikipedia.org/wiki/MIME

Working with Controllers 136

render layout: false # disable layout template
render layout: 'login' # a template app/views/layouts is assumed

:status**

The HTTP protocol includes many standard status codes4 indicating a variety
of conditions in response to a client’s request. Rails will automatically use the
appropriate status for most common cases, such as 200 OK for a successful
request.
consult the documentation for Rack at http://www.rubydoc.info/github/rack/
rack/Rack/Utils. The fully documented, official list of status codes is available
in this RFC: http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.
The theory and techniques involved in properly using the full range of HTTP
status codes would require a dedicated chapter, perhaps an entire book. For
your convenience, Table 4.1 demonstrates some codes that I’ve occasionally
found useful in my day-to-day Rails programming.

Table 4.1: Common HTTP status codes

Status Code Description
200 OK Everything is fine and here is your

content.
201 Created A new resource has been created

and its location
can be found in the Location HTTP
response
header.

307 Temporary Redirect The requested resource resides
temporarily under
a different URI.

Occasionally, you need to
temporarily redirect
the user to a different action,
perhaps while
some long-running process is
happening or while
the account of a particular
resource’s owner is
suspended.

This particular status code dictates
that an

4For a list of all the HTTP status codes supported in Rails (all 59 of them!),

http://www.rubydoc.info/github/rack/rack/Rack/Utils
http://www.rubydoc.info/github/rack/rack/Rack/Utils
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Working with Controllers 137

Table 4.1: Common HTTP status codes

Status Code Description
HTTP response header named
Location contain
the URI of the resource that the
client
redirects to. Since the render
method doesn’t
take a hash of response header
fields, you have
to set them manually prior to
invoking render.
Luckily, the response hash is in scope
within
controller methods, as in the
following example:

def paid_resource
if current_user.account_expired?
response.headers['Location'] =
account_url(current_user)
render text: "Account expired",
status: 307
end

end

401 Unauthorized Sometimes a user will not provide
credentials to
view a restricted resource or
authentication
and/or authorization will fail.
Assuming using a
Basic or Digest HTTP
Authentication scheme, when
that happens you should probably
return a 401.

403 Forbidden I like to use 403 in conjunction with
a short

The server understood the render :text message in situations
where the

request, but is refusing client has requested a resource that
is not

to fulfill it. normally available via the web
application’s
interface.

In other words, the request appears
to have

Working with Controllers 138

Table 4.1: Common HTTP status codes

Status Code Description
happened via artificial means. A
human or robot,
for reasons innocent or guilty (it
doesn’t
matter), is trying to trick the server
into
doing something it isn’t supposed to
do.

For example, my current Rails
application is
public-facing and is visited by the
GoogleBot on
a daily basis. Probably due to a bug
existing at
some point, the URL /favorites was
indexed.
Unfortunately, /favorites is only
supposed to
be available to logged-in users.
However, once
Google knows about a URL it will
keep coming
back for it in the future. This is how
I told it
to stop:

def index
return render nothing: true,
status: 403 unless logged_in?
@favorites =

current_user.favorites.all
end

404 Not Found You may choose to use 404 when a
resource of a

The server cannot find the specific given ID does not exist in
your

resource you requested. database (whether due to it being
an invalid ID
or due to the resource having been
deleted).

For example, “GET
/people/2349594934896107”

Working with Controllers 139

Table 4.1: Common HTTP status codes

Status Code Description
doesn’t exist in our database at all,
so what do
we display? Do we render a show
view with a
flash message saying no person with
that ID
exists? Not in our RESTful world. A
404 would be
better.

Moreover, if we happen to be using
something
like paranoia and we know that the
resource
used to exist in the past, we could
respond with
410 Gone.

500 Internal Server The server encountered an
unexpected condition

Error that prevented it from fulfilling the
request.
You probably know by now, this is
the status
code that Rails serves up if you have
an error
in your code.

503 Service Unavailable The 503 code comes in very handy
when taking

The server is temporarily a site down for maintenance,
particularly when

unavailable. upgrading RESTful web services.

Working with Controllers 140

4.4 Additional Layout Options

You can specify layout options at the controller class level if you want to reuse
layouts for multiple actions.

class EventController < ActionController::Base
layout "events", only: [:index, :new]
layout "global", except: [:index, :new]

end

The layoutmethod can accept either a String, Symbol, or boolean, with a hash
of arguments after.

String
Determines the template name to use.

Symbol
Call the method with this name, which is expected to return a string with
a template name.

true
Raises an argument error.

false
Do not use a layout.

The optional arguments are either :only or :except and expect an array of
action names that should or should not apply to the layout being specified.

Working with Controllers 141

4.5 Redirecting

The life cycle of a Rails application is divided into requests. Rendering a
template, whether the default one or an alternate one—or, for that matter,
rendering a partial or some text or anything—is the final step in the handling
of a request. Redirecting, however, means terminating the current request
and asking the client to initiate a new one.
Look at this example of a form-handling create method:

def create
if @event.save

redirect_to :index, notice: "Event created!"
else

render :new
end

end

If the save operation succeeds, we redirect_to a different action along with a
notice message for the flash hash. In this case, it’s the index action. The logic
here is that if the new Event record gets saved, the next order of business is
to take the user back to the top-level view.
The main reason to redirect rather than just render a template after creating
or editing a resource (really a POST action) has to do with browser reload
behavior. If you didn’t redirect, the user would be prompted to re-submit the
form if they hit the back button or reload.

Working with Controllers 142

Sebastian says…
Which redirect is the right one? When you use Rails’ redirect_to
method, you tell the user agent (i.e., the browser) to perform a new
request for a different URL. That response can mean different things,
and it’s why modern HTTP has four different status codes for redirec-
tion.The old HTTP 1.0 had two codes: 301 akaMoved Permanently and
302 aka Moved Temporarily.
A permanent redirect meant that the user agent should forget about
the old URL and use the new one from now on, updating any references
it might have kept (i.e., a bookmark or in the case of Google, its
search databases). A temporary redirect was a one-time only affair.
The original URL was still valid, but for this particular request the user
agent should fetch a new resource from the redirection URL.
But there was a problem: If the original request had been a POST,
whatmethod should be used for the redirected request? For permanent
redirects it was safe to assume the new request should be a GET, since
that was the case in all usage scenarios. But temporary redirects were
used both for redirecting to a view of a resource that had just been
modified in the original POST request (which happens to be the most
common usage pattern) and also for redirecting the entire original
POST request to a new URL that would take care of it.
HTTP 1.1 solved this problem with the introduction of two new status
codes: 303 meaning See Other and 307 meaning Temporary Redirect.
A 303 redirect would tell the user agent to perform a GET request,
regardless of what the original verb was, whereas a 307 would always
use the same method used for the original request. These days, most
browsers handle 302 redirects the same way as 303, with a GET
request, which is the argument used by the Rails Core team to keep
using 302 in redirect_to. A 303 status would be the better alternative
because it leaves no room for interpretation (or confusion), but I guess
nobody has found it annoying enough to push for a patch.
If you ever need a 307 redirect, say, to continue processing a POST
request in a different action, you can always accomplish your own
custom redirect by assigning a path to response.header["Location"] and
then rendering with render status: 307.

The redirect_to Method

The redirect_to method takes two parameters:

Working with Controllers 143

redirect_to(target, response_status = {})

The target parameter takes one of several forms.
Hash - The URL will be generated by calling url_for with the argument
provided.

redirect_to action: "show", id: 5

Active Record object—The URL will be generated by calling url_forwith the
object provided, which should generate a named URL for that record.

redirect_to post

String starting with protocol like http://—Used directly as the target url
for redirection.

redirect_to "http://www.rubyonrails.org"
redirect_to articles_url

String not containing a protocol—The current protocol and host is prepended
to the argument and used for redirection.

redirect_to "/"
redirect_to articles_path

Redirection happens as a “302 Moved” header unless otherwise specified.
The response_status parameter takes a hash of arguments. The code can be
specified by name or number, as in the following examples:

redirect_to post_url(@post), status: :found
redirect_to :atom, status: :moved_permanently
redirect_to post_url(@post), status: 301
redirect_to :atom, status: 302

It is also possible to assign a flash message as part of the redirection. There
are two special accessors for commonly used flash names alert and notice, as
well as a general purpose flash bucket.

Working with Controllers 144

redirect_to post_url(@post), alert: "Watch it, mister!"
redirect_to post_url(@post), status: :found, notice: "Pay attention to the road"
redirect_to post_url(@post), status: 301, flash: { updated_post_id: @post.id }
redirect_to :atom, alert: "Something serious happened"

As of Rails 4, you can register your own flash types by using the ActionCon-
troller::Flash.add_flash_types macro style method.

class ApplicationController
...

add_flash_types :error
end

When a flash type is registered, a special flash accessor, similar to alert and
notice, becomes available to be used with redirect_to.

redirect_to post_url(@post), error: "Something went really wrong!"

Courtenay says…
Remember that redirect and render statements don’t magically halt ex-
ecution of your controller action method. To prevent DoubleRenderError,
consider explicitly calling return after redirect_to or render like this:

def show
@user = User.find(params[:id])
if @user.activated?
render :activated and return

end
...

end

The redirect_back method

You can use redirect_back to return the user to the page they just came from, a
very useful technique in traditional web applications. The location to “go back
to”is pulled from the HTTP_REFERER header. Since it isn’t guaranteed to be
set by the browser, you must provide a fallback_location parameter.

Working with Controllers 145

redirect_back fallback_location: root_path

If you’re upgrading from earlier versions of Rails, this technique used to work
with the magic symbol :back.

redirect_to :back # doesn't work in Rails 5

Working with Controllers 146

4.6 Controller/View Communication

When a view template is rendered, it generally makes use of data that the
controller has pulled from the database. In other words, the controller gets
what it needs from the model layer and hands it off to the view.
The way Rails implements controller-to-view data handoffs is through instance
variables. Typically, a controller action initializes one or more instance vari-
ables. Those instance variables can then be used by the view.
There’s a bit of irony (and possible confusion for newcomers) in the choice of
instance variables to share data between controllers and views. The main rea-
son that instance variables exist is so that objects (whether Controller objects,
String objects, and so on) can hold on to data that they don’t share with other
objects. When your controller action is executed, everything is happening
in the context of a controller object—an instance of, say, DemoController or
EventController. Context includes the fact that every instance variable in the
code belongs to the controller instance.
When the view template is rendered, the context is that of a different object,
an instance of ActionView::Base. That instance has its own instance variables
and does not have access to those of the controller object.
So instance variables, on the face of it, are about the worst choice for a way
for two objects to share data. However, it’s possible to make it happen—or
make it appear to happen. What Rails does is to loop through the controller
object’s variables and, for each one, create an instance variable for the view
object, with the same name and containing the same data.
It’s kind of labor-intensive for the framework: It’s like copying over a grocery
list by hand. But the end result is that things are easier for you, the program-
mer. If you’re a Ruby purist, you might wince a little bit at the thought of
instance variables serving to connect objects, rather than separate them. On
the other hand, being a Ruby purist should also include understanding the
fact that you can do lots of different things in Ruby—such as copying instance
variables in a loop. So there’s nothing really un-Ruby-like about it. And it does
provide a seamless connection, from the programmer’s perspective, between
a controller and the template it’s rendering.

Stephen says…
I’m a cranky old man, and dammit, Rails is wrong, wrong, wrong. Using
instance variables to share data with the view sucks. If you want to see
howmy Decent Exposure library helps you avoid this horrible practice,
skip ahead to the section “Decent Exposure”

Working with Controllers 147

4.7 Action Callbacks

Action callbacks enable controllers to run shared pre and post processing code
for their actions. These callbacks can be used to do authentication, caching,
or auditing before the intended action is performed. Callback declarations are
macro style class methods, that is, they appear at the top of your controller
method, inside the class context, before method definitions. We suggest
omitting the parentheses around the method arguments, to emphasize their
declarative nature, like this:

before_action :require_authentication

As with many other macro-style methods in Rails, you can pass as many
symbols as you want to the callback method:

before_action :security_scan, :audit, :compress

Or you can break them out into separate lines, like this:

before_action :security_scan
before_action :audit
before_action :compress

You should make your action callback methods protected or private; otherwise,
they might be callable as public actions on your controller (via the default
route).

Tim says…
In addition to protected and private, we can declare that a method
should never be dispatched with the more intention-revealing hide_-
action.

Importantly, action callbacks have access to request, response, and all the
instance variables set by other callbacks in the chain or by the action (in the
case of after callbacks). Action callbacks can set instance variables to be used
by the requested action and often do so.

Action Callback Inheritance

Controller inheritance hierarchies share action callbacks downward. Your
average Rails application has an ApplicationController from which all other
controllers inherit, so if you wanted to add action callbacks that are always
run no matter what, that would be the place to do so.

Working with Controllers 148

class ApplicationController < ActionController::Base
after_action :compress

Subclasses can also add and/or skip already defined action callbacks without
affecting the superclass. For example, consider the two related classes in
Listing 4.1, and how they interact.

Listing 4.1: A Pair of Cooperating before callbacks

class BankController < ActionController::Base
before_action :audit

protected

def audit
record this controller's actions and parameters in an audit log

end

end

class VaultController < BankController
before_action :verify_credentials

protected

def verify_credentials
make sure the user is allowed into the vault

end

end

Any actions performed on BankController (or any of its subclasses) will cause
the audit method to be called before the requested action is executed. On
the VaultController, first the audit method is called, followed by verify_cre-
dentials, because that’s the “downwards” order in which the callbacks were
specified, as per the inheritance hierarchy. (Callbacks are executed in the
class context where they’re declared, and the BankController has to be loaded
before VaultController, since it’s the parent class.)
If the audit method happens to call render or redirect_to for whatever reason,
verify_credentials and the requested action are never called. This is called
halting the action callback chain.

Working with Controllers 149

Action Callback Types

An action callback can take one of three forms: method reference (symbol),
external class, or block. The first is by far the most common and works by
referencing a protected method somewhere in the inheritance hierarchy of
the controller. In the bank example in Listing 4.1, both BankController and
VaultController use this form.

Action Callback Classes

Using an external class makes for more easily reused generic callbacks, such
as output compression. External callback classes are implemented by having
a static callback method on any class and then passing this class to the action
callback method, as in Listing 4.2. The name of the class method should match
the type of callback desired (for example, before, after, around).

Listing 4.2: An output compression action callback

class OutputCompressionActionCallback
def self.after(controller)

controller.response.body = compress(controller.response.body)
end

end

class NewspaperController < ActionController::Base
after_action OutputCompressionActionCallback

end

The method of the action callback class is passed the controller instance it is
running in. It gets full access to the controller and can manipulate it as it sees
fit. The fact that it gets an instance of the controller to play with also makes it
seem like feature envy, and frankly, I haven’t had much use for this technique.

Inline Method

The inline method (using a block parameter to the action method) can be used
to quickly do something small that doesn’t require a lot of explanation or just
as a quick test.

Working with Controllers 150

class WeblogController < ActionController::Base
before_action do

redirect_to new_user_session_path unless authenticated?
end

end

The block is executed in the context of the controller instance, using instance_-
eval. This means that the block has access to both the request and response
objects complete with convenience methods for params, session, template,
and assigns.

Action Callback Chain Ordering

Using before_action and after_action appends the specified callbacks to the
existing chain. That’s usually just fine, but sometimes you care more about
the order in which the callbacks are executed. When that’s the case, you can
use prepend_before_action and prepend_after_action. Callbacks added by these
methods will be put at the beginning of their respective chain and executed
before the rest, like the example in Listing 4.3.

Listing 4.3: An example of prepending before action callbacks
class ShoppingController < ActionController::Base

before_action :verify_open_shop

class CheckoutController < ShoppingController
prepend_before_action :ensure_items_in_cart, :ensure_items_in_stock

The action callback chain for the CheckoutController is now :ensure_items_-
in_cart, :ensure_items_in_stock, :verify_open_shop. So if either of the ensure
callbacks halts execution, we’ll never get around to seeing if the shop is open.
You may pass multiple action callback arguments of each type as well as a
block. If a block is given, it is treated as the last argument.

Around Action Callbacks

Around action callbacks wrap an action, executing code both before and after
the action that they wrap. They may be declared as method references, blocks,
or objects with an around class method.
To use a method as an around_action, pass a symbol naming the Ruby method.
Use yield within the method to run the action.
For example, Listing 4.4 has an around callback that logs exceptions (not that
you need to do anything like this in your application; it’s just an example).

Working with Controllers 151

Listing 4.4: An around action callback to log exceptions

around_action :catch_exceptions

private

def catch_exceptions
yield

rescue => exception
logger.debug "Caught exception! #{exception}"
raise

end

To use a block as an around_action, pass a block taking as args both the
controller and the action parameters. You can’t call yield from blocks in Ruby,
so explicitly invoke call on the action parameter:

around_action do |controller, action|
logger.debug "before #{controller.action_name}"
action.call
logger.debug "after #{controller.action_name}"

end

To use an action callback object with around_action, pass an object responding
to :around. With an action callback method, yield to the block like this:

around_action BenchmarkingActionCallback

class BenchmarkingActionCallback
def self.around(controller)

Benchmark.measure { yield }
end

end

Action Callback Chain Skipping

Declaring an action callback on a base class conveniently applies to its
subclasses, but sometimes a subclass should skip some of the action callbacks
it inherits from a superclass:

Working with Controllers 152

class ApplicationController < ActionController::Base
before_action :authenticate
around_action :catch_exceptions

end

class SignupController < ApplicationController
skip_before_action :authenticate

end

class HackedTogetherController < ApplicationController
skip_action_callback :catch_exceptions

end

Action Callback Conditions

Action callbacks may be limited to specific actions by declaring the actions to
include or exclude, using :only or :except options. Both options accept single
actions (such as only: :index) or arrays of actions (except: [:foo, :bar]).

class Journal < ActionController::Base
before_action :authorize, only: [:edit, :delete]

around_action except: :index do |controller, action_block|
results = Profiler.run(&action_block)
controller.response.sub! "</body>", "#{results}</body>"

end

private

def authorize
Redirect to login unless authenticated.

end
end

Action Callback Chain Halting

The before_action and around_action methods may halt the request before the
body of a controller action method is run. This is useful, for example, for
denying access to unauthenticated users. As mentioned earlier, all you have
to do to halt the before action chain is call render or redirect_to. After action
callbacks will not be executed if the before action chain is halted.
Around action callbacks halt the request unless the action block is called. If
an around action callback returns before yielding, it is effectively halting the
chain and any after action callbacks will not be run.

Working with Controllers 153

4.8 Streaming

Rails has built-in support for streaming binary content back to the requesting
client, as opposed to its normal duties rendering view templates.

ActionController::Live

Rails 4 introduced the ActionControler::Live module, a controller mixin that
enables the controller actions to stream on-the-fly generated data to the client.
It adds an I/O like interface object named stream to the response object. Using
stream, you can call write, to immediately stream data to the client, and close,
to explicitly close the stream. The response object is equivalent to the what
you’d expect in the context of the controller and can be used to control various
things in the HTTP response, such as the Content-Type header.
The following example demonstrates how you can stream a large amount of
on-the-fly generated data to the browser:

class StreamingController < ApplicationController
include ActionController::Live

Streams about 180 MB of generated data to the browser.
def stream

response.headers["Content-Type"] = "text/event-stream"
10_000_000.times do |i|

response.stream.write "Event #{i} just happened\n"
end

ensure
response.stream.close

end
end

When using live streaming, there are a couple of things to take into consider-
ation:

• All actions executed from ActionController::Live enabled controllers are
run in a separate thread. This means the controller action code being
executed must be threadsafe.

• A concurrent Ruby web server, such as puma5, is required to take advan-
tage of live streaming.

5
Puma Web Server http://puma.io/

http://puma.io/

Working with Controllers 154

• Headers must be added to the response before anything is written to the
client.

• Streams must be closed once finished, otherwise a socket may be left
open indefinitely.

For an interesting perspective on why live streaming was added into Rails
and how to utilize it to serve Server-Sent Events, make sure to read Aaron
Patterson’s blog post on the subject6.

Support for EventSource

Live streaming is most useful with a relatively new W3C recommendation
for Server-Sent Events7, commonly known as the EventSource API. For many
applications, it presents a simple and compelling alternative to XHR polling
and web sockets, with the limitation that the client can only listen to updates;
it cannot publish anything. It seems perfect for things like updating read-only
views (like dashboards) with real-time statistics, social media updates, etc.

Due to incomplete browser support, try using my friend Aslak’s
EventSource8 JavaScript library, as opposed to trying to use the API
directly.

EventSource and live streaming (together with Redis) make it trivial to imple-
ment things like chat functionality. Given a server with functionality like this:

class ChatChannelController < ApplicationController
include ActionController::Live

def show
response.headers["Content-Type"] = "text/event-stream"
redis = Redis.new
redis.psubscribe("channel-#{params[:id]}:*") do |on|

on.pmessage do |subscription, event, data|
response.stream.write "data: #{data}\n\n"

end
end

rescue IOError
Client disconnected

6http://tenderlovemaking.com/2012/07/30/is-it-live.html
7https://www.w3.org/TR/eventsource/
8https://www.npmjs.com/package/eventsource

http://tenderlovemaking.com/2012/07/30/is-it-live.html
https://www.w3.org/TR/eventsource/
https://www.npmjs.com/package/eventsource
http://tenderlovemaking.com/2012/07/30/is-it-live.html
https://www.w3.org/TR/eventsource/
https://www.npmjs.com/package/eventsource

Working with Controllers 155

ensure
redis.quit
response.stream.close

end
end

Here’s essential Javascript on the browser side:

source = new EventSource(chat_channel_url(id));
source.addEventListener("message", function(e) {
appendChatMessage(e.data)

});

There are some additional features of this API that you should know about.
An optional id field represents the unique id of the message just sent. If avail-
able, then when EventSource automatically reestablishes a lost connection, it
will include a header (Last-Event-ID) in its request to the server, enabling you
to pick up where you left off.
You can send different events by specifying an event type in your stream. Here
is a stream that has two event types, “add” and “remove”:

event: add
data: 73857293

event: remove
data: 2153

event: add
data: 113411

The script to handle such a stream would look like this (where addHandler
and removeHandler are functions that take one argument, the event):

var source = new EventSource('updates.cgi');
source.addEventListener('add', addHandler);
source.addEventListener('remove', removeHandler);

If you just send data without an event specified, the default type is “message”.
For a complete description of this spec, go to https://html.spec.whatwg.org/
multipage/comms.html#server-sent-events.

https://html.spec.whatwg.org/multipage/comms.html#server-sent-events
https://html.spec.whatwg.org/multipage/comms.html#server-sent-events

Working with Controllers 156

Streaming Templates

By default, when a view is rendered in Rails, it first renders the template, and
then the layout of the view. When returning a response to a client, all required
Active Record queries are run, and the entire rendered template is returned
all in one burst.
Introduced in version 3.2, Rails added support for streaming views to the
client. This enables views to be rendered as they are processed, including
only running Active Record scoped queries when they are needed. In order to
achieve this, Rails reverses the normal rendering order. The layout is rendered
first instead of last, then each part of the template is processed.
To enable view streaming, pass the option stream to the render method.

class EventController < ActionController::Base
def index

@events = Events.all
render stream: true

end
end

This approach can only be used to stream view templates. To stream other
types of data, such as JSON, take a look at the Section “ActionController::Live”.

Streaming Buffers and Files

Rails also supports sending buffers and files with two methods in the Action-
Controller::Streaming module: send_data and send_file.

send_data(data, options = {})

The send_datamethod enables you to send textual or binary data in a buffer to
the user as a named file. You can set options that affect the content type and
apparent filename and alter whether an attempt is made to display the data
inline with other content in the browser or the user is prompted to download
it as an attachment.

Options

The send_data method has the following options:

:filename
Suggests a filename for the browser to use.

Working with Controllers 157

:type
Specifies an HTTP content type. Defaults to 'application/octet-stream'.

:disposition
Specifies whether the file will be shown inline or downloaded. Valid
values are inline and attachment (default).

:status
Specifies the status code to send with the response. Defaults to '200 OK'.

Usage Examples

Creating a download of a dynamically generated tarball:

send_data my_generate_tarball_method('dir'), filename: 'dir.tgz'

Sending a dynamic image to the browser, like, for instance, a captcha system:

require 'RMagick'

class CaptchaController < ApplicationController

def image
create an RMagic canvas and render difficult to read text on it
...

img = canvas.flatten_images
img.format = "JPG"

send it to the browser
send_data img.to_blob, disposition: 'inline', type: 'image/jpg'

end
end

send_file(path, options = {})

The send_filemethod sends an existing file down to the client using Rack::Sendfile
middleware, which intercepts the response and replaces it with a webserver
specific X-Sendfile header. The web server then becomes responsible for
writing the file contents to the client instead of Rails. This can dramatically
reduce the amount of work accomplished in Ruby and takes advantage of the
web servers optimized file delivery code.9

9
More information, particularly about webserver configuration available at http://rack.rubyforge.org/doc/Rack/

Sendfile.html

http://rack.rubyforge.org/doc/Rack/Sendfile.html
http://rack.rubyforge.org/doc/Rack/Sendfile.html

Working with Controllers 158

Options

Here are the options available for send_file:

:filename
Suggests a filename for the browser to use. Defaults to File.basename(path)

:type
Specifies an HTTP content type. Defaults to 'application/octet-stream'.

:disposition
Specifies whether the file will be shown inline or downloaded. Valid
values are 'inline' and 'attachment' (default).

:status
Specifies the status code to send with the response. Defaults to '200 OK'.

:url_based_filename
Should be set to true if you want the browser to guess the filename
from the URL, which is necessary for i18n filenames on certain browsers
(setting :filename overrides this option).

There’s also a lot more to read about Content-* HTTP headers10 if you’d like
to provide the user with additional information that Rails doesn’t natively
support (such as Content-Description).

Security Considerations

Note that the send_file method can be used to read any file accessible to the
user running the Rails server process, so be extremely careful to sanitize11
the path parameter if it’s in any way coming from untrusted users.
If you want a quick example, try the following controller code:

class FileController < ActionController::Base
def download

send_file(params[:path])
end

end

Give it a route
10See the official spec at http://www.w3.org/Protocols/rfc2616/rfc2615-sec14.html.
11Heiko Webers has an old, yet still useful write-up about sanitizing filenames at http://www.rorsecurity.info/

2007/03/27/working-with-files-in-rails/.

http://www.w3.org/Protocols/rfc2616/rfc2615-sec14.html
http://www.rorsecurity.info/2007/03/27/working-with-files-in-rails/
http://www.rorsecurity.info/2007/03/27/working-with-files-in-rails/

Working with Controllers 159

get 'file/download' => 'file#download'

then fire up your server and request any file on your system:

$ curl http://localhost:3000/file/download?path=/etc/hosts
##
Host Database
#
localhost is used to configure the loopback interface
when the system is booting. Do not change this entry.
##
127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost
fe80::1%lo0 localhost

Courtenay says…
There are few legitimate reasons to serve static files through Rails.
Unless you are protecting content, I strongly recommend you cache the
file after sending it. There are a few ways to do this. Since a correctly
configured web server will serve files in public/ and bypass rails, the
easiest is to just copy the newly generated file to the public directory
after sending it:

public_dir = File.join(Rails.root, 'public', controller_path)
FileUtils.mkdir_p(public_dir)
FileUtils.cp(filename, File.join(public_dir, filename))

All subsequent views of this resource will be served by the web server.

Usage Examples

Here’s the simplest example, just a simple zip file download:

send_file '/path/to.zip'

Sending a JPG to be displayed inline requires specification of the MIME
content-type:

Working with Controllers 160

send_file '/path/to.jpg',
type: 'image/jpeg',
disposition: 'inline'

This will show a 404 HTML page in the browser. We append a charset
declaration to the MIME type information:

send_file '/path/to/404.html,
type: 'text/html; charset=utf-8',
status: 404

How about streaming an FLV file to a browser-based Flash video player?

send_file @video_file.path,
filename: video_file.title + '.flv',
type: 'video/x-flv',
disposition: 'inline'

Regardless of how you do it, you may wonder why you would need a mecha-
nism to send files to the browser anyway, since it already has one built in—
requesting files from the public directory. Well, many times a web application
will front files that need to be protected from public access. (For example, it’s
a common requirement for membership-based adult websites.)

Working with Controllers 161

4.9 Variants

Rails 4.1 gave Action Pack a feature called variants, the capability to ren-
der different HTML, JSON, and XML templates based on some criteria. To
illustrate, assuming we have an application that requires specific templates
to be rendered for iPhone devices only, we can set a request variant in a
before_action callback.

class ApplicationController < ActionController::Base
before_action :set_variant

protected

def set_variant
request.variant = :mobile if request.user_agent =~ /iPhone/i

end
end

Note
Note that request.variant can be set based on any arbitrary condition, such
as the existence of certain request headers, subdomain, current user, API
version, etc.

Next, in a controller action, we can explicitly respond to variants like any other
format. This includes the capability to execute code specific to the format by
supplying a block to the declaration.

class PostsController < ApplicationController
def index

...
respond_to do |format|

format.html do |html|
html.mobile do # renders app/views/posts/index.html+mobile.haml
@mobile_only_variable = true

end
end

end
end

end

Working with Controllers 162

By default, if no respond_to block is declared within your action, Action Pack
will automatically render the correct variant template if one exists in your
views directory.
Variants are a powerful new feature in Action Pack that can be utilized for
more than just rendering views based on a user agent. Since a variant can be
set based on any condition, it can be utilized for a variety of use cases, such as
rolling out features to a certain group of application users or even A/B testing
a template.

Working with Controllers 163

4.10 Conclusion

In this chapter, we covered concepts at the very core of how Rails works: the
request dispatcher and how controllers render views. Importantly, we covered
the use of rendering and controller action callbacks, which you will use
constantly, for all sorts of purposes. The Action Controller API is fundamental
knowledge, which you need to understand well along your way to becoming
an expert Rails programmer.
Moving on, we’ll leave Action Pack and head over to the other major compo-
nent API of Rails: Active Record.

5. Working with Active Record
An object that wraps a row in a database table or view, encapsulates
the database access, and adds domain logic on that data.
—Martin Fowler, Patterns of Enterprise Architecture

The Active Record pattern, identified by Martin Fowler in his seminal work,
Patterns of Enterprise Architecture, maps one domain class to one database
table, and one instance of that class to each row of that database. It is a simple
approach that, while not perfectly applicable in all cases, provides a powerful
framework for database access and object persistence in your application.
The Rails Active Record framework is an implementation of the pattern and
includes mechanisms for representing models and their relationships, CRUD
(create, read, update and delete) operations, complex searches, validations,
callbacks, and many more features.
As with the rest of Rails, Active Record relies heavily on convention over
configuration. It’s easy to use it when you start a project with a new database
schema following those conventions. However, Active Record also provides
configuration settings that let you adapt it to work well with legacy database
schemas that don’t necessarily conform to Rails conventions.
According to Martin Fowler, delivering the keynote address at the inaugural
Rails conference in 2006, Ruby on Rails has successfully taken the Active
Record pattern much further than anyone imagined it could go. It shows you
what you can achieve when you have a single-minded focus on a set of ideals,
which in the case of Rails is simplicity.

Working with Active Record 165

5.1 The Basics

For the sake of completeness, let’s briefly review the basics of how Active
Record works. In order to create a new model class, the first thing you do is
to declare it as a subclass of ApplicationRecord, using Ruby’s class extension
syntax:

class Client < ApplicationRecord
end

ApplicationRecord is the default parent model for all other mod-
els starting from Rails 5. It is an abstract class inheriting from
ActiveRecord::Base. If you are coming from earlier versions, don’t
worry, your models inheriting from ActiveRecord::Base will still work.

By convention, an Active Record class named Client will be automatically
mapped to the clients table. Rails understands pluralization, as covered in
the section “Pluralization” in this chapter.
Also by convention, Active Record will expect an id column to use as primary
key. It should be an integer, and incrementing of the key should be managed
automatically by the database server when creating new records. Note how
the class itself makes no mention of the table name, columns, or their
datatypes.1

Each instance of an Active Record class provides access to the data from one
row of the backing database table, in an object-oriented manner. The columns
of that row are represented as attributes of the object, using straightforward
type conversions (i.e., Ruby strings for varchars, Ruby dates for dates, and
so on), and with no default data validation. Attributes are inferred from the
column definition pertaining to the tables with which they’re linked. Adding,
removing, and changing attributes and their types are done by changing the
columns of the table in the database.
When you’re running a Rails server in development mode, changes to the
database schema are reflected in the Active Record objects immediately, via
the web browser. However, if you make changes to the schema while you have
your Rails console running, the changes will not be reflected automatically.
Pick up changes manually by typing reload! at the console.

1The useful Annotate gem can automatically maintain schema information in a comment at the top of your model
(and other relevant) source files. Check it out at https://github.com/ctran/annotate_models

https://github.com/ctran/annotate_models

Working with Active Record 166

Courtenay says…
Active Record is a great example of the Rails “Golden Path.” If you
keep within its limitations, you can go far, fast. Stray from the path,
and you might get stuck in the mud. This Golden Path involves many
conventions, like naming your tables in the plural form (“users”).
It’s common for new developers to Rails and rival web-framework
evangelists to complain about how tablesmust be named in a particular
manner, how there are no constraints in the database layer, that
foreign keys are handled all wrong, enterprise systems must have
composite primary keys, and more. Get the complaining out of your
system now, because all these defaults are simply defaults, and in most
cases can be overridden with a single line of code or a plugin.

Working with Active Record 167

5.2 Macro-Style Methods

Most of the important classes you write while coding a Rails application are
configured using what I call macro-style method invocations (also known in
some circles as a domain-specific language or DSL). Basically, the idea is to
have a highly readable block of code at the top of your class that makes it
immediately clear how it is configured.
Macro-style invocations are usually placed at the top of the file, and for
good reason. Those methods declaratively tell Rails how to manage instances,
perform data validation and callbacks, and relate with other models. Many
of them involve metaprogramming, meaning that they participate in adding
behavior to your class at runtime, in the form of additional instance variables
and methods.

Relationship Declarations

For example, look at the Client class with some relationships declared. We’ll
talk about associations extensively in Chapter 7, “Active Record Associations.”
All I want to do now is to illustrate what I’m talking about when I say macro-
style:

app/models/client.rb
class Client < ApplicationRecord

has_many :billing_codes
has_many :billable_weeks
has_many :timesheets, through: :billable_weeks

end

As a result of those three has_many declarations, the Client class gains at least
three new attributes, proxy objects that let you manipulate the associated
collections interactively.
I still remember the first time I sat with an experienced Java programmer
friend of mine to teach him some Ruby and Rails. After minutes of profound
confusion, an almost visible light bulb appeared over his head as he pro-
claimed, “Oh! They’re methods!”
Indeed, they’re regular old method calls, in the context of the class object
(rather than one of its instances). We leave the parentheses off to emphasize
the declarative intention.
When the Ruby interpreter loads client.rb, it executes those has_many meth-
ods that are defined as class methods of Active Record’s Base class. They

Working with Active Record 168

are executed in the context of the Client class, adding attributes that are
subsequently available to Client instances. It’s a programming model that is
potentially strange to newcomers but quickly becomes second nature to the
Rails programmer.

Convention over Configuration

Convention over configuration is one of the guiding principles of Ruby on
Rails. If we follow Rails conventions, very little explicit configuration is
needed, which stands in stark contrast to the reams of configuration that are
required to get even a simple application running in other technologies.
It’s not that a newly bootstrapped Rails application comes with default
configuration in place already, reflecting the conventions that will be used.
It’s that the conventions are baked into the framework, actually hard-coded
into its behavior, and you need to override the default behavior with explicit
configuration when applicable.
It’s also worth mentioning that most configuration happens in close proximity
to what you’re configuring. You will see associations, validations, and callback
declarations at the top of most Active Record models.
I suspect that the first explicit configuration (over convention) that many of us
deal with in Active Record is the mapping between class name and database
table, since by default Rails assumes that our database name is simply the
pluralized form of our class name.

Setting Names Manually

The table_name and primary_key setter methods let you use any table and
primary names you’d like, but you’ll have to specify them explicitly in your
model class.

class Client < ApplicationRecord
self.table_name = "CLIENT"
self.primary_key = "CID"

end

It’s only a couple of extra lines per model, but don’t do it if you don’t absolutely
need it. An example of needing it is in large organizations where you are not
at liberty to dictate the naming guidelines for your database schema. In many
such places, a separate DBA group controls all database schemas. But if you do
have flexibility to choose your schema standards, you should really just follow
Rails conventions. They might not be what you’re used to, but following them
will save you time and unnecessary headaches.

Working with Active Record 169

Legacy Naming Schemes

If you are working with legacy schemas, you may be tempted to automatically
set table_name everywhere, whether you need it or not. Before you get
accustomed to doing that, learn the additional options available that might
just be more DRY and make your life easier.
Let’s assume you need to turn off table pluralization altogether; you would set
the following attribute in an initializer, perhaps config/initializers/legacy_-
settings.rb:

Rails.application.config.active_record.pluralize_table_names = false

There are various other useful attributes of ActiveRecord::Base, provided for
configuring Rails to work with legacy naming schemes. We’ll cover them here
for the sake of completeness, but 90% or more of Rails developers never have
to worry about this stuff.

primary_key_prefix_type

Accessor for the prefix type that will be prepended to every primary key
column name. If :table_name is specified, Active Record will look for tableid
instead of id as the primary column. If :table_name_with_underscore is specified,
Active Record will look for table_id instead of id.

table_name_prefix

Some departments prefix table names with the name of the database. Set this
attribute accordingly to avoid having to include the prefix in all of your model
class names.

table_name_suffix

Similar to prefix, but adds a common ending to all table names.

Working with Active Record 170

5.3 Defining Attributes

The list of attributes associated with an Active Record model class is not
declared explicitly, unless you have a reason to do so.2 At runtime, the Active
Record model class reads its attribute information directly from the database
definition. Adding, removing, and changing attributes and their type is done
by manipulating the database definition itself via Active Record migrations.
The practical implication of the Active Record pattern is that you have to
define your database table structure and make sure it exists in the database
prior to working with your persistent models. Some people may have issues
with that design philosophy, especially if they’re coming from a background
in top-down design.

The Rails way is undoubtedly to have model classes that map closely
to your database schema. On the other hand, remember you can
have models that are simple Ruby classes and do not inherit from
ApplicationRecord. Among other things, it is common to use non-Active
Record model classes to encapsulate data and logic for the view layer.

Default Attribute Values

Migrations let you define default attribute values by passing a :default option
to the column method. However, I feel like default values are part of your
domain logic and should be kept together with the rest of the domain logic
of your application, in the model layer, instead of being spread around the
codebase.
A common example is the case when your model should return the string “n/a”
instead of a nil (or empty) string for an attribute that has not been populated
yet. It’s super easy to implement this behavior declaratively using the new
Rails 5 Attributes API.

class TimesheetEntry < ApplicationRecord
attribute :category, :string, default: 'n/a'

end

But what if you’re stuck on an older version of Rails or want the value of
the default to depend on the value of other attributes at runtime? The case
presents a good way to learn how attributes exist in model objects at runtime.

2Chapter 9, “Advanced Active Record,” fully covers the new Rails 5 Attributes API, including how and when to
use it.

Working with Active Record 171

To begin with, since we’re getting into more than just a line of declarative
code, let’s whip up a quick spec describing the behavior we want. This is often
referred to as test-driven development (or TDD, for short.)

describe TimesheetEntry do
it "has a category of 'n/a' if not available" do

entry = TimesheetEntry.new
expect(entry.category).to eq('n/a')

end
end

If we run this spec it should fail.
Going back to our model, we note that attribute accessors are usually handled
“magically” by Active Record’s internals. In this case, we’re implementing the
default value behavior by overriding the built-in magic with an explicit getter
method. All we need to do is to define a method with the same name as the
attribute and use Ruby’s || operator, which will “short-circuit” if @category is
not nil. If it is nil, then it will return the right-hand value.

class TimesheetEntry < ApplicationRecord
def category

@category || 'n/a'
end

end

Now we run the spec and it passes. Great. Are we done? Not quite. We should
test a case when the real category value should be returned. I’ll insert an
example with a not-nil category.

describe TimesheetEntry do
it "returns category when available" do

entry = TimesheetEntry.new(category: "TR5W")
expect(entry.category).to eq("TR5W")

end

it "has a category of 'n/a' if not available" do
entry = TimesheetEntry.new
expect(entry.category).to eq('n/a')

end
end

Working with Active Record 172

Uh-oh. The first spec fails. Seems our default ‘n/a’ string is being returned no
matter what. Which means that the @category instance variable must not be
getting set when we thought it was. Should we even know that it is getting set
or not? It is an implementation detail of Active Record, is it not?
The fact that Rails does not use instance variables like @category to store
the model attributes is in fact an implementation detail. But model instances
have a couple of methods, write_attribute and read_attribute, conveniently
provided by Active Record for the purposes of overriding default accessors,
which is exactly what we’re trying to do. Using them, we don’t have to
know about the implementation details of how the model object uses instance
variables. Phew!
Let’s fix our TimesheetEntry class.

class TimesheetEntry < ApplicationRecord
def category

read_attribute(:category) || 'n/a'
end

end

Now the spec passes, and we learned how to use read_attribute. How about a
simple example of using its sister method, write_attribute?

class SillyFortuneCookie < ApplicationRecord
def message=(txt)

write_attribute(:message, txt + ' in bed')
end

end

Alternatively, both of these examples could have been written with the shorter
forms of reading and writing attributes, using square brackets.

class TimesheetEntry < ApplicationRecord
def category

self[:category] || 'n/a'
end

end

class SillyFortuneCookie < ApplicationRecord
def message=(txt)

self[:message] = txt + ' in bed'
end

end

Working with Active Record 173

5.4 CRUD: Creating, Reading, Updating,
Deleting

The four standard operations of a database system combine to form a popular
acronym: CRUD. It sounds somewhat negative, because as a synonym for
garbage or unwanted accumulation the word crud in English has a rather
bad connotation. However, in Rails circles, use of the word CRUD is benign.
In fact, as in earlier chapters, designing your app to function primarily as
RESTful CRUD operations is considered a best practice!

Creating New Active Record Model Instances

The most straightforward way to create a new instance of an Active Record
model is by using a regular Ruby constructor, the class method new. New
objects can be instantiated as either empty (by omitting parameters) or pre-set
with attributes but not yet saved. Just pass a hash with key names matching
the associated table column names. In both instances, valid attribute keys are
determined by the column names of the associated table—hence you can’t
have attributes that aren’t part of the table columns.
You can find out if an Active Record object is saved by looking at the value of
its id, or programmatically, by using the methods new_record? and persisted?:

>> c = Client.new
=> #<Client id: nil, name: nil, code: nil>
>> c.new_record?
=> true
>> c.persisted?
=> false

Active Record constructors take an optional block, which can be used to do
additional initialization. The block is executed after any passed-in attributes
are set on the instance:

>> c = Client.new do |client|
?> client.name = "Nile River Co."
>> client.code = "NRC"
>> end
=> #<Client id: 1, name: "Nile River Co.", code: "NRC">

Active Record has a handy-dandy create class method that creates a new
instance, persists it to the database, and returns it in one operation:

Working with Active Record 174

>> c = Client.create(name: "Nile River, Co.", code: "NRC")
=> #<Client id: 1, name: "Nile River, Co.", code: "NRC" ...>

The create method takes an optional block, just like new.

Reading Active Record Objects

Finding an existing object by its primary key is very simple and is probably one
of the first things we all learn about Rails when we first pick up the framework.
Just invoke find with the key of the specific instance you want to retrieve.
Remember that if an instance is not found, a RecordNotFound exception is raised.

>> first_project = Project.find(1)
=> #<Project id: 1 ...>
>> boom_client = Client.find(99)
ActiveRecord::RecordNotFound: Couldn't find Client with ID=99

>> all_clients = Client.all
=> #<ActiveRecord::Relation [#<Client id: 1, name: "Paper Jam Printers",

code: "PJP" ...>, #<Client id: 2, name: "Goodness Steaks",
code: "GOOD_STEAKS" ...>]>

>> first_client = Client.first
=> #<Client id: 1, name: "Paper Jam Printers", code: "PJP" ...>

By the way, it is entirely common for methods in Ruby to return different types
depending on the parameters used, as illustrated in the example. Depending
on how find is invoked, you will get either a single Active Record object or an
array of them.
For convenience, first, last and all also exist as syntactic sugar wrappers
around the find method.

>> Product.last
=> #<Product id: 1, name: "leaf", sku: nil,

created_at: "2010-01-12 03:34:41", updated_at: "2010-01-12 03:34:41">

Since the underlying pattern is so common, the first_or_initialize method
wraps first, and defaults to initializing a new instance with the provided
parameters if the result set is empty.

Working with Active Record 175

>> Event.delete_all
SQL (9.2ms) DELETE FROM "events"

=> 5
>> Event.all

Event Load (0.1ms) SELECT "events".* FROM "events"
=> #<ActiveRecord::Relation []>
>> e = Event.first_or_initialize(starts_at: Date.today)

Event Load (0.1ms) SELECT "events".* FROM "events" ORDER BY "events"."id" ASC LIMIT ? \
[["LIMIT", 1]]

=> #<Event id: nil, starts_at: "2016-11-28", ...>
>> e.save

(0.1ms) begin transaction
SQL (0.2ms) INSERT INTO "events" ...

>> Event.first_or_initialize(starts_at: 1.year.ago)
Event Load (0.1ms) SELECT "events".* FROM "events" ORDER BY "events"."id" ASC LIMIT ? \
[["LIMIT", 1]]

=> #<Event id: 6, starts_at: "2016-11-28", ...>

Finally, the find method also understands arrays of ids, and raises a Record-
NotFound exception if it can’t find all of the ids specified:

>> Product.find([1, 2])
ActiveRecord::RecordNotFound: Couldn't find all Products with IDs (1,
2) (found 1 results, but was looking for 2)

A lesser known cousin of find is named take (since v4.0.2). It returns a record
(or N records if a parameter is supplied) without any implied order, instead
relying on whatever order is provided by the database implementation. If an
order is supplied (even though it would be nonsensical to do so) it will be
respected.

returns an object fetched by SELECT * FROM people LIMIT 1
Person.take

returns 5 objects fetched by SELECT * FROM people LIMIT 5
Person.take(5)

Reading and Writing Attributes

After you have retrieved a model instance from the database, you can access
each of its columns in several ways. The easiest (and clearest to read) is simply
with dot notation:

Working with Active Record 176

>> first_client.name
=> "Paper Jam Printers"
>> first_client.code
=> "PJP"

The private read_attribute method of Active Record, covered briefly in an
earlier section, is useful to know about and comes in handy when you want
to override a default attribute accessor. To illustrate, while still in the Rails
console, I’ll go ahead and reopen the Client class on the fly and override the
name accessor to return the value from the database but reversed:

>> class Client < ApplicationRecord
>> def name
>> read_attribute(:name).reverse
>> end
>> end
=> nil
>> first_client.name
=> "sretnirP maJ repaP"

Hopefully, it’s not too painfully obvious for me to demonstrate why you need
read_attribute in that scenario. Recursion is a bitch if it’s unexpected:

>> class Client < ApplicationRecord
>> def name
>> self.name.reverse
>> end
>> end
=> nil
>> first_client.name
SystemStackError: stack level too deep

from (irb):21:in 'name'
from (irb):21:in 'name'
from (irb):24

As can be expected by the existence of a read_attribute method (and as we
covered earlier in the chapter), there is also a write_attribute method that
lets you change attribute values. Just as with attribute getter methods, you
can override the setter methods and provide your own behavior:

Working with Active Record 177

class Project < ApplicationRecord
The description for a project cannot be changed to a blank string
def description=(new_value)

write_attribute(:description, new_value) unless new_value.blank?
end

end

The preceding example illustrates a way to do basic validation, since it checks
to make sure that a value is not blank before allowing assignment. However,
as we’ll see in Chapter 8, “Validations,” there are better ways to do this.

Hash Notation

Yet another way to access attributes is using the [attribute_name] operator,
which lets you access the attribute as if it were a regular hash.

>> first_client['name']
=> "Paper Jam Printers"
>> first_client[:name]
=> "Paper Jam Printers"

String versus Symbol
Many Rails methods accept symbol and string parameters interchangeably,
and that is potentially very confusing. Which is more correct? The general
rule is to use symbols when the string is a name for something and a string
when it’s a value. You should probably be using symbols when it comes to
keys of options hashes and the like.

The attributes Method

There is also an attributesmethod that returns a hash with each attribute and
its corresponding value as returned by read_attribute. If you use your own
custom attribute reader and writer methods, it’s important to remember that
attributeswill not use custom attribute readers when accessing its values, but
attributes= (which lets you do mass assignment) does invoke custom attribute
writers.

Working with Active Record 178

>> first_client.attributes
=> {"name"=>"Paper Jam Printers", "code"=>"PJP", "id"=>1}

Being able to grab a hash of all attributes at once is useful when you want to
iterate over all of them or pass them in bulk to another function. Note that
the hash returned from attributes is not a reference to an internal structure
of the Active Record object. It is a copy, which means that changing its values
will have no effect on the object it came from.

>> atts = first_client.attributes
=> {"name"=>"Paper Jam Printers", "code"=>"PJP", "id"=>1}
>> atts["name"] = "Def Jam Printers"
=> "Def Jam Printers"
>> first_client.attributes
=> {"name"=>"Paper Jam Printers", "code"=>"PJP", "id"=>1}

To make changes to an Active Record object’s attributes in bulk, it is possible
to pass a hash to the attributes writer.

Accessing and Manipulating Attributes Before They Are
Typecast

The Active Record connection adapters, classes that implement behavior spe-
cific to databases, fetch results as strings and Rails takes care of converting
them to other datatypes if necessary, based on the type of the database
column. For instance, integer types are cast to instances of Ruby’s Fixnum class,
and so on.
Even if you’re working with a new instance of an Active Record object and
have passed in constructor values as strings, they will be typecast to their
proper type when you try to access those values as attributes.
Sometimes you want to be able to read (or manipulate) the raw attribute
data without having the column-determined typecast run its course first, and
that can be done by using the *attribute*_before_type_cast accessors that are
automatically created in your model.
For example, consider the need to deal with currency strings typed in by your
end users. Unless you are encapsulating currency values in a currency class
(highly recommended, by the way) you need to deal with those pesky dollar
signs and commas. Assuming that our Timesheet model had a rate attribute
defined as a :decimal type, the following code would strip out the extraneous
characters before typecasting for the save operation:

Working with Active Record 179

class Timesheet < ApplicationRecord
before_validation :fix_rate

def fix_rate
self[:rate] = rate_before_type_cast.tr('$,','')

end
end

Reloading

The reload method does a query to the database and resets the attributes of
an Active Record object. The optional options argument is passed to find when
reloading so you may do, for example, record.reload(lock: true) to reload the
same record with an exclusive row lock. (See the section “Database Locking”
later in this chapter.)

Cloning

Producing a copy of an Active Record object is done simply by calling clone,
which produces a shallow copy of that object. It is important to note that for
the sake of memory efficiency, no associations will get copied, even though
they are stored internally as instance variables. Accessing associations on the
clone will re-query the database.

The Query Cache

By default, Rails attempts to optimize performance by turning on a simple
query cache. It is a hash stored on the current thread, one for every active
database connection. (Most Rails processes will have just one.)
Whenever a find (or any other type of select operation) happens and the query
cache is active, the corresponding result set is stored in a hash with the SQL
that was used to query for them as the key. If the same SQL statement is used
again in another operation, the cached result set is used to generate a new
set of model objects instead of hitting the database again.
You can enable the query cache manually by wrapping operations in a cache
block, as in the following example:

Working with Active Record 180

User.cache do
puts User.first
puts User.first
puts User.first

end

Check your development.log and you should see the following entries:

User Load (0.1ms) SELECT "users".* FROM "users" ORDER BY "users"."id"
ASC LIMIT 1
CACHE (0.0ms) SELECT "users".* FROM "users" ORDER BY "users"."id"
ASC LIMIT 1 LIMIT 1
CACHE (0.0ms) SELECT "users".* FROM "users" ORDER BY "users"."id"
ASC LIMIT 1

The database was queried only once. Try a similar experiment in your own
console without the cache block, and you’ll see that three separate User Load
events are logged.

Save and delete operations result in the cache being cleared, to
prevent propagation of instances with invalid states. If you find it
necessary to do so for whatever reason, call the clear_query_cache class
method to clear out the query cache manually.

Logging

The log file indicates when data is being read from the query cache instead
of the database. Just look for lines starting with CACHE instead of a Model
Load.

Place Load (0.1ms) SELECT * FROM places WHERE (places.id = 15749)
CACHE (0.0ms) SELECT * FROM places WHERE (places.id = 15749)
CACHE (0.0ms) SELECT * FROM places WHERE (places.id = 15749)

Default Query Caching in Controllers

For performance reasons, Active Record’s query cache is turned on by default
for the processing of controller actions.

Working with Active Record 181

Limitations

The Active Record query cache was purposely kept very simple. Since it
literally keys cached model instances on the SQL that was used to pull them
out of the database, it can’t connect multiple find invocations that are phrased
differently but have the same semantic meaning and results.
For example, “select foo from bar where id = 1” and “select foo from bar where
id = 1 limit 1”” are considered different queries and will result in two distinct
cache entries.

Updating

The simplest way to manipulate attribute values is to treat your Active Record
object as a plain old Ruby object, meaning via direct assignment using
myprop=(some_value).
There are a number of other different ways to update Active Record objects,
as illustrated in this section. First, let’s look at how to use the update class
method of ActiveRecord::Base.

class ProjectController < ApplicationController
def update

Project.update(params[:id], params[:project])
redirect_to projects_path

end

def mass_update
Project.update(params[:projects].keys, params[:projects].values])
redirect_to projects_path

end
end

The first form of update takes a single numeric id and a hash of attribute values,
while the second form takes a list of ids and a list of values and is useful in
scenarios where a form submission from a web page with multiple updateable
rows is being processed.
The update class method does invoke validation first and will not save a
record that fails validation. However, it returns the object whether or not the
validation passes. That means that if you want to know whether or not the
validation passed, you need to follow up the call to update with a call to valid?

Working with Active Record 182

class ProjectController < ApplicationController
def update

project = Project.update(params[:id], params[:project])
if project.valid? # uh-oh, do we want to run validate again?

redirect_to project
else

render 'edit'
end

end
end

A problem is that now we are calling valid? twice, since the update call also
called it. Perhaps a better option is to use the update instance method once as
part of an if statement:

class ProjectController < ApplicationController
def update

project = Project.find(params[:id])
if project.update(params[:project])

redirect_to project
else

render 'edit'
end

end
end

And of course, if you’ve done some basic Rails programming, you’ll recognize
that pattern, since it is used in the generated scaffolding code. The update
method takes a hash of attribute values and returns true or false depending
on whether the save was successful or not, which is dependent on validation
passing.

Updating by Condition

Active Record has another class method useful for updating multiple records
at once: update_all. It maps closely to the way that you would think of using a
SQL update...where statement. The update_all method takes two parameters:
the set part of the SQL statement and the conditions, expressed as part of a
where clause. The method returns the number of records updated.
I think this is one of those methods that is generally more useful in a scripting
context than in a controller method, but you might feel differently. Here is a
quick example of how I might go about reassigning all the Rails projects in
the system to a new project manager.

Working with Active Record 183

Project.update_all({manager: 'Ron Campbell'}, technology: 'Rails')

The update_all method also accepts string parameters, which enables you to
leverage the power of SQL!

Project.update_all("cost = cost * 3", "lower(technology) LIKE '%microsoft%'")

Updating a Particular Instance

The most basic way to update an Active Record object is to manipulate its
attributes directly and then call save. It’s worth noting that save will insert a
record in the database if necessary or update an existing record with the same
primary key.

>> project = Project.find(1)
>> project.manager = 'Brett M.'
>> project.save
=> true

The save method will return true if it was successful or false if it failed for
any reason. There is another method, save!, that will use exceptions instead.
Which one to use depends on whether you plan to deal with errors right away
or delegate the problem to another method further up the chain.
It’s mostly a matter of style, although the non-bang save and update methods
that return a boolean value are often used in controller actions, as the clause
for an if condition:

class StoryController < ApplicationController
def points

story = Story.find(params[:id])
if story.update_attribute(:points, params[:value])

render text: "#{story.name} updated"
else

render text: "Error updating story points"
end

end
end

Working with Active Record 184

Updating Specific Attributes

The instance methods update_attribute and update take one key/value pair or
hash of attributes, respectively, to be updated on your model and saved to the
database in one operation.
The update_attribute method updates a single attribute and saves the record,
but updates made with this method are not subjected to validation checks! In
other words, this method allows you to persist an Active Record model to the
database even if the full object isn’t valid. Model callbacks are executed, but
the updated_at is still bumped.

Lark says…
I feel dirty whenever I use update_attribute.

On the other hand, update is subject to validation checks and is often used on
update actions and passed the params hash containing updated values.
Active Record also provides an instance method update_column, which accepts
a single key/value pair. Although similar to update_attribute, the update_column
method not only skips validations checks but also does not run callbacks and
skips the bumping of the updated_at timestamp.
Rails 4 introduced an update_columns method, which works exactly the same
as update_column, except that instead of accepting a single key/value pair as a
parameter, it accepts a hash of attributes.

Courtenay says…
If you have associations on a model, Active Record automatically
creates convenience methods for mass assignment. In other words,
a Project model that has_many :users will expose a user_ids attribute
writer, which gets used by its update method. This is an advantage if
you’re updating associations with checkboxes because you just name
the checkboxes project[user_ids][] and Rails will handle the magic. In
some cases, allowing the user to set associations this way would be a
security risk.

Saving without Updating Timestamp

Rails 5 adds a touch option to save, which gives you the option of doing an
update operation without updating the record’s updated_at timestamp. Simply
pass touch: false and remember that it only works on update, not when
inserting a new record.

Working with Active Record 185

>> user = User.first
>> user.updated_at
=> Wed, 16 Mar 2016 09:12:44 UTC +00:00

>> user.notes = "Hide this note from auditors"
>> user.save(touch: false)

UPDATE "users" SET "notes" = ? WHERE "users"."id" = ?
[["notes", "Hide this note from auditors"], ["id", 12]]

=> true

Like quite a few smaller features in Rails, I find it difficult to imagine how
“no-touch” could be useful.

Convenience Updaters

Rails provides a number of convenience update methods in the form of
increment, decrement, and toggle, which do exactly what their names suggest
with numeric and boolean attributes. Each has a bang variant (such as toggle!)
that additionally invokes update_attribute after modifying the attribute.

Touching Records

There may be certain cases where updating a time field to indicate a record
was viewed is all you require, and Active Record provides a convenience
method for doing so in the form of touch. This is especially useful for cache
auto-expiration, which is covered in Chapter 17, “Caching and Performance.”
Using this method on a model with no arguments updates the updated_at
timestamp field to the current time without firing any callbacks or validation.
If a timestamp attribute is provided it will update that attribute to the current
time along with updated_at.

>> user = User.first
>> user.touch # => sets updated_at to now.
>> user.touch(:viewed_at) # sets viewed_at and updated_at to now.

If a :touch option is provided to a belongs to relation, it will touch the parent
record when the child is touched.

Working with Active Record 186

class User < ApplicationRecord
belongs_to :client, touch: true

end

>> user.touch # => also calls user.client.touch

Readonly Attributes

Sometimes you want to designate certain attributes as read-only, which
prevents them from being updated after the parent object is created. The
feature is primarily for use in conjunction with calculated attributes. In fact,
Active Record uses this method internally for counter_cache attributes, since
they are maintained with their own special SQL update statements.
The only time that read-only attributes may be set are when the object is not
saved yet. The following example code illustrates usage of attr_readonly. Note
the potential gotcha when trying to update a read-only attribute.

class Customer < ApplicationRecord
attr_readonly :social_security_number

end

>> customer = Customer.new(social_security_number: "130803020")
=> #<Customer id: 1, social_security_number: "130803020", ...>
>> customer.social_security_number
=> "130803020"
>> customer.save

>> customer.social_security_number = "000000000" # Note, no error raised!
>> customer.social_security_number
=> "000000000"

>> customer.save
>> customer.reload
>> customer.social_security_number
=> "130803020" # the original readonly value is preserved

The fact that trying to set a new value for a read-only attribute doesn’t raise
an error bothers my sensibilities, but I understand how it can make using this
feature a little bit less code-intensive.
You can get a list of all read-only attributes via the class method readonly_-
attributes.

Working with Active Record 187

>> Customer.readonly_attributes
=> #<Set: {"social_security_number"}>

Deleting and Destroying

Finally, if you want to remove a record from your database, you have two
choices. If you already have a model instance, you can destroy it:

>> bad_timesheet = Timesheet.find(1)

>> bad_timesheet.destroy
=> #<Timesheet id: 1, user_id: "1", submitted: nil,

created_at: "2006-11-21 05:40:27", updated_at: "2006-11-21 05:40:27">

The destroymethod will both remove the object from the database and prevent
you from modifying it again:

>> bad_timesheet.user_id = 2
RuntimeError: can't modify frozen Hash

Note that calling save on an object that has been destroyed will fail silently.
If you need to check whether an object has been destroyed, you can use the
destroyed? method.
The destroy method also has a complimentary bang method, destroy!. Calling
destroy! on an object that cannot be destroyed will result in an ActiveRe-
cord::RecordNotDestroyed exception being raised.
You can also call destroy and delete as class methods, passing the id(s) to
delete. Both variants accept a single parameter or array of ids:

Timesheet.delete(1)
Timesheet.destroy([2, 3])

The naming might seem inconsistent, but it isn’t. The delete method uses
SQL directly and does not load any instances (hence it is faster). The destroy
method does load the instance of the Active Record object and then calls
destroy on it as an instance method. The semantic differences are subtle
but come into play when you have assigned before_destroy callbacks or have
dependent associations—child objects that should be deleted automatically
along with their parent object.

Working with Active Record 188

5.5 Database Locking

Locking is a term for techniques that prevent concurrent users of an appli-
cation from overwriting each other’s work. Active Record doesn’t normally
use any type of database locking when loading rows of model data from the
database. If a given Rails application will only ever have one user updating
data at the same time, then you don’t have to worry about it.
However, when more than one user may be accessing and updating the exact
same data simultaneously, then it is vitally important for you as the developer
to think about concurrency. Ask yourself, what types of collisions or race
conditions could happen if two users were to try to update a given model at
the same time?
There are a number of approaches to dealing with concurrency in database-
backed applications, two of which are natively supported by Active Record:
optimistic and pessimistic locking. Other approaches exist, such as locking
entire database tables. Every approach has strengths and weaknesses, so it
is likely that a given application will use a combination of approaches for
maximum reliability.

Optimistic Locking

Optimistic locking describes the strategy of detecting and resolving collisions
if they occur, and is commonly recommended in multi-user situations where
collisions should be infrequent. Database records are never actually locked in
optimistic locking, making it a bit of a misnomer.
Optimistic locking is a fairly common strategy, because so many applications
are designed such that a particular user will mostly be updating with data
that conceptually belongs to him and not other users, making it rare that two
users would compete for updating the same record. The idea behind optimistic
locking is that since collisions should occur infrequently, we’ll simply deal with
them only if they happen.

Implementation

If you control your database schema, optimistic locking is really simple to
implement. Just add an integer column named lock_version to a given table,
with a default value of zero.

Working with Active Record 189

class AddLockVersionToTimesheets < ActiveRecord::Migration

def change
add_column :timesheets, :lock_version, :integer, default: 0

end

end

Simply adding that lock_version column changes Active Record’s behavior.
Now, if the same record is loaded as two different model instances and saved
differently, the first instance will win the update, and the second one will cause
an ActiveRecord::StaleObjectError to be raised.
We can illustrate optimistic locking behavior with a simple spec:

describe Timesheet do
it "locks optimistically" do

t1 = Timesheet.create
t2 = Timesheet.find(t1.id)

t1.rate = 250
t2.rate = 175

expect(t1.save).to be_true
expect { t2.save }.to raise_error(ActiveRecord::StaleObjectError)

end
end

The spec passes because calling save on the second instance raises the
expected ActiveRecord::StaleObjectError exception. Note that the savemethod
(without the bang) returns false and does not raise exceptions if the save fails
due to validation, but other problems, such as locking in this case, can indeed
cause it to raise exceptions.
To use a database column named something other than lock_version, change
the setting using locking_column. To make the change globally, add the follow-
ing line to an initializer:

Rails.application.config.active_record.locking_column =
:alternate_lock_version

Like other Active Record settings, you can also change it on a per-model basis
with a declaration in your model class:

Working with Active Record 190

class Timesheet < ApplicationRecord
self.locking_column = :alternate_lock_version

end

Handling StaleObjectError

Now of course, after adding optimistic locking, you don’t want to just leave it
at that, or the end user who is on the losing end of the collision would simply
see an application error screen. You should try to handle the StaleObjectError
as gracefully as possible.
Depending on the criticality of the data being updated, you might want to
invest time into crafting a user-friendly solution that somehow preserves the
changes that the loser was trying to make. At minimum, if the data for the
update is easily re-creatable, let the user know why their update failed with
controller code that looks something like the following:

def update
timesheet = Timesheet.find(params[:id])
timesheet.update(params[:timesheet])
redirect somewhere

rescue ActiveRecord::StaleObjectError
redirect_to [:edit, timesheet], flash: { error: "Timesheet was modified while you were e\

diting it." }
end

There are some advantages to optimistic locking. It doesn’t require any special
feature in the database, and it is fairly easy to implement. As you saw in the
example, very little code is required to handle the StaleObjectError.
The main disadvantages to optimistic locking are that update operations are a
bit slower because the lock version must be checked and the potential for bad
user experience, since they don’t find out about the failure until after they’ve
potentially lost data.

Pessimistic Locking

Pessimistic locking requires special database support (built into the major
databases) and locks down specific database rows during an update operation.
It prevents another user from reading data that is about to be updated, in order
to prevent them from working with stale data.
Pessimistic locking works in conjunction with transactions as in the following
example:

Working with Active Record 191

Timesheet.transaction do
t = Timesheet.lock.first
t.approved = true
t.save!

end

It’s also possible to call lock! on an existing model instance, which simply
calls reload(lock: true) under the covers. You wouldn’t want to do that on an
instance with attribute changes since it would cause them to be discarded by
the reload. If you decide you don’t want the lock anymore, you can pass false
to the lock! method.
Pessimistic locking takes place at the database level. The SELECT statement
generated by Active Record will have a FOR UPDATE (or similar) clause added
to it, causing all other connections to be blocked from access to the rows
returned by the select statement. The lock is released once the transaction is
committed. There are theoretically situations (Rails process goes boom mid-
transaction?!) where the lock would not be released until the connection is
terminated or times out.

Considerations

Web applications scale best with optimistic locking, which as we’ve discussed
doesn’t really use any database-level locking at all. However, you have to add
application logic to handle failure cases. Pessimistic locking is a bit easier
to implement, but can lead to situations where one Rails process is waiting
on another to release a database lock, that is, waiting and not serving any
other incoming requests. Remember that Rails processes are typically single-
threaded.
In my opinion, pessimistic locking should not be super dangerous as it is on
other platforms, since in Rails we don’t ever persist database transactions
across more than a single HTTP request. In fact, it would be impossible to
do that in a shared-nothing architecture. (If you’re running Rails with JRuby
and doing crazy things like storing Active Record object instances in a shared
session space, all bets are off.)
A situation to be wary of would be one where you have many users competing
for access to a particular record that takes a long time to update. For best
results, keep your pessimistic-locking transactions small and make sure that
they execute quickly.

Working with Active Record 192

5.6 Querying

In mentioning Active Record’s find method earlier in the chapter, we didn’t
look at the wealth of options available in addition to querying by primary key
and the first, last and all methods. Each method discussed here returns an
ActiveRecord::Relation—a chainable object that is lazy evaluated against the
database only when the actual records are needed.

ActiveRecord’s querying and relationship behavior are implemented using
the Arela relational algebra gem, which is considered part of Rails and
maintained by the Rails core team.We attempt to provide youwith a complete
overview in this chapter, but note that full coverage and explanation of
everything possible with Arel would require a book of its own.

ahttps://github.com/rails/arel

Note that I have attempted to order the method list by relative importance to
daily coding tasks.

where(*conditions)

It’s very common to need to filter the result set of a find operation (just a
SQL SELECT under the covers) by adding conditions (to the WHERE clause). Active
Record gives you a number of ways to do just that with the where method.
The conditions parameter can be specified as a string or a hash. Parameters
are automatically sanitized to prevent SQL-injection attacks.
Passing a hash of conditions will construct a where clause containing a union
of all the key/value pairs. If all you need is equality, versus, say LIKE criteria,
I advise you to use the hash notation, since it’s arguably the most readable of
the styles.

Product.where(sku: params[:sku])

The hash notation is smart enough to create an IN clause if you associate an
array of values with a particular key.

Product.where(sku: [9400,9500,9900])

https://github.com/rails/arel
https://github.com/rails/arel

Working with Active Record 193

The simple string form can be used for statements that don’t involve data
originating outside of your app. It’s most useful for doing LIKE comparisons,
as well as greater-than/less-than and the use of SQL functions not already
built into Active Record, like those needed for querying into Hstore and JSON
columns in PostgreSQL.
If you do choose to use the string style, additional arguments to the where
method will be treated as query variables to insert into the where clause.

Product.where('description like ? and color = ?', "%#{terms}%", color)
Product.where('sku in (?)', selected_skus)
User.where('preferences @> ?', {newsletter: true}.to_json)

Note that dates, booleans, and arrays like selected_skus are coerced into their
SQL expression representations correctly and automatically.

where.not

The Active Record query interface for the most part abstracts SQL from the
developer. However, there is a condition that always requires using pure
string conditions in a where clause, specifying a NOT condition with <> or
!=, depending on the database. Starting in Rails 4, the query method not has
been added to rectify this.
To use the new query method, it must be chained to a where clause with no
arguments:

Article.where.not(title: 'Rails 3')
>> SELECT "articles".* FROM "articles"
WHERE ("articles"."title" != 'Rails 3')

The not query method can also accept an array to ensure multiple values are
not in a field:

Article.where.not(title: ['Rails 3', 'Rails 5'])
>> SELECT "articles".* FROM "articles"
WHERE ("articles"."title" NOT IN ('Rails 3', 'Rails 5'))

Bind Variables

When using multiple parameters in the conditions, it can easily become hard
to read exactly what the fourth or fifth questionmark is supposed to represent.

Working with Active Record 194

In those cases, you can resort to named bind variables instead. That’s done by
replacing the question marks with symbols and supplying a hash with values
for the matching symbol keys as a second parameter.

Product.where("name = :name AND sku = :sku AND created_at > :date",
name: "Space Toilet", sku: 80800, date: '2009-01-01')

During a quick discussion on IRC about this final form, Robby Russell gave
me the following clever snippet:

Message.where("subject LIKE :foo OR body LIKE :foo", foo: '%woah%')

In other words, when you’re using named placeholders (versus question mark
characters) you can use the same bind variable more than once. Like, whoa!
Simple hash conditions like this are very common and useful, but they will
only generate conditions based on equality with SQL’s AND operator.

User.where(login: login, password: password).first

If you want logic other than AND, you’ll have to use one of the other forms
available.

Boolean Conditions

It’s particularly important to take care in specifying conditions that in-
clude boolean values. Databases have various different ways of representing
boolean values in columns. Some have native boolean datatypes, and others
use a single character, often 1 and 0 or T and F (or even Y and N). Rails will
transparently handle the data conversion issues for you if you pass a Ruby
boolean object as your parameter:

Timesheet.where('submitted = ?', true)

Nil Conditions

Rails expert Xavier Noria reminds us to take care in specifying conditions
that might be nil. Using a question mark doesn’t let Rails figure out that a nil
supplied as the value of a condition should probably be translated into IS NULL
in the resulting SQL query.
Compare the following two find examples and their corresponding SQL
queries to understand this common gotcha. The first example does not work
as intended, but the second one does work:

Working with Active Record 195

>> User.where('email = ?', nil)
User Load (151.4ms) SELECT * FROM users WHERE (email = NULL)

>> User.where(:email => nil)
User Load (15.2ms) SELECT * FROM users WHERE (users.email IS NULL)

order(*clauses)

The ordermethod takes one or more symbols (representing column names) or
a fragment of SQL, specifying the desired ordering of a result set:

Timesheet.order('created_at desc')

The SQL spec defaults to ascending order if the ascending/descending option
is omitted, which is exactly what happens if you use symbols.

first two timesheets ever created
Timesheet.order(:created_at).take(2)

As of Rails 4, order can also accept hash arguments, eliminating the need to
write SQL for descending order clauses.

Timesheet.order(created_at: :desc)

Wilson says…
The SQL spec doesn’t prescribe any particular ordering if no “order
by” clause is specified in the query. That seems to trip people up, since
the common belief is that “ORDER BY id ASC” is the default.

The value of the :order option is not validated by Rails, which means you
can pass any code that is understood by the underlying database, not just
column/direction tuples. An example of why that is useful is when wanting to
fetch a random record:

Working with Active Record 196

MySQL
Timesheet.order('RAND()')

Postgres
Timesheet.order('RANDOM()')

Microsoft SQL Server
Timesheet.order('NEWID()') # uses random uuids to sort

Oracle
Timesheet.order('dbms_random.value').first

Remember that ordering large datasets randomly is known to perform terribly
on most databases, particularly MySQL.

Tim says…
A clever, performant and portable way to get a random record is to
generate a random offset in Ruby.

Timsheet.limit(1).offset(rand(Timesheet.count)).first

take(number) and skip(number)

The take (aliased to limit) method takes an integer value establishing a limit on
the number of rows to return from the query. It’s companion, the skip (aliased
to offset) method, which must be chained to take, specifies the number of
rows to skip in the result set and is 0-indexed. (At least it is in MySQL. Other
databases may be 1-indexed.) Together these options are used for paging
results.

Don’t do pagination of your models manually. Use the Kaminari gem at
https://github.com/amatsuda/kaminari.

For example, a call to find for the second page of 10 results in a list of
timesheets is:

Timesheet.take(10).skip(10)

https://github.com/amatsuda/kaminari

Working with Active Record 197

Depending on the particulars of your application’s data model, it may make
sense to always put some limit on the maximum number of Active Record
objects fetched in any one specific query. Letting the user trigger unbounded
queries pulling thousands of Active Record objects into Rails at one time is a
recipe for disaster.

select(*clauses)

By default, Active Record generates SELECT * FROM queries, but it can be
changed if, for example, you want to do a join but not include the joined
columns. Or if you want to add calculated columns to your result set, like
this:

>> b = BillableWeek.select("mon_hrs + tues_hrs as two_day_total").first
=> #<BillableWeek ...>
>> b.two_day_total
=> 16

Now, if you actually want to fully use objects with additional attributes that
you’ve added via the select method, don’t forget the * clause:

>> b = BillableWeek.select(:*, "mon_hrs + tues_hrs as two_day_total").first
=> #<BillableWeek id: 1...>

Keep inmind that columns not specified in the query, whether by * or explicitly,
will not be populated in the resulting objects! So, for instance, continuing the
first example, trying to access created_at on b has unexpected results:

ActiveModel::MissingAttributeError: missing attribute: created_at

The reason that the attribute is missing is because the result set returned from
the database governs what attributes are created on Active Record objects.
They are that tightly bound to the database schema.

from(*tables)

The from method enables you to modify the table name(s) portion of the SQL
statements generated by Active Record.
You can provide a custom value if you need to include extra tables for joins or
to reference a database view or subquery.

Working with Active Record 198

>> Topic.select('title').from(Topic.approved).to_sql
=> "SELECT title FROM (SELECT * FROM topics WHERE approved = 't')"

You can also use it to override the generated aliases with your own, which is
probably not super useful but could yield some readability benefits in certain
situations involving complex joins.

>> Topic.select('a.title').from(Topic.approved, :a).to_sql
=> "SELECT a.title FROM (SELECT * FROM topics WHERE approved = 't')"

The capability to control the FROM clause means you can easily make all or part
of it dynamic. Here’s an example from an application that enables tagging on
a variety of different models:

def self.find_tagged_with(list)
select("#{table_name}.*").

from("#{table_name}, tags, taggings").
where("#{table_name}.#{primary_key} = taggings.taggable_id

and taggings.tag_id = tags.id
and tags.name IN (?)",
Tag.parse(list))

end

This example code is mixed into a target class using Ruby modules.
Learn how to use that technique yourself in the section “Modules
for Reusing Common Behavior” from Chapter 9, “Advanced Active
Record.”

group(*args)

group specifies a GROUP BY SQL-clause to add to the query generated by Active
Record. Generally, you’ll want to combine :group with the :select option, since
valid SQL requires that all selected columns in a grouped SELECT be either
aggregate functions or columns.

>> users = Account.select('name, SUM(cash) as money').group('name').to_a
=> [#<User name: "Joe", money: "3500">, #<User name: "Jane", money: "9245">]

Keep in mind that those extra columns you bring back might sometimes be
strings if Active Record doesn’t try to typecast them. In those cases, you’ll
have to use to_i and to_f to explicitly convert the string to numeric types.

Working with Active Record 199

>> users.first.money > 1_000_000
ArgumentError: comparison of String with 1000000 failed

from (irb):8:in '>'

distinct

If you need to perform a query with a ‘DISTINCT SQL’-clause, you can use the
distinct method.

>> User.select(:login).distinct
User Load (0.2ms) SELECT DISTINCT login FROM "users"

having(*clauses)

If you need to perform a group query with a SQL HAVING clause, you use the
having method

>> User.group("created_at").having(["created_at > ?", 2.days.ago])
=> [#<User name: "Joe", created_at: "2013-03-05 19:30:11">]

includes(*associations)

Active Record has the capability to eliminate “N+1” queries by letting you
specify what associations to eager load using the includes method or option
in your finders. Active Record will load those relationships with the minimum
number of queries possible.
To eager load first-degree associations, provide includes with an array of
association names. When accessing these later in the same request cycle,
further database queries will not be needed.

>> users = User.where(login: "mack").includes(:billable_weeks)
=> [#<User login: "mack">]
>> users.first.billable_weeks.each { |week| puts week }
=> #<Week start_date: "2008-05-01 00:00:00">

For second degree associations, provide a hash with the array as the value for
the hash key.

Working with Active Record 200

>> clients = Client.includes(users: [:avatar])
=> [#<Client id: 1, name: "Hashrocket">]

You may add more inclusions following the same pattern.

>> Client.includes(
users: [:avatar, { timesheets: :billable_weeks }]

)
=> [#<Client id: 1, name: "Hashrocket">]

If possible, includes uses LEFT OUTER JOIN to grab all the data it needs in one
query. When that happens, it delegates to eager_load. Otherwise, it will use at
least two separate queries and delegate to preload.
If you know you want one approach versus the other, you can ensure you get
it by using eager_load or preload directly with the same syntax.

eager_load(*associations)

As mentioned already, eager_load grabs all data together in a single query
using joins, instead of using separate queries like preload does.

preloads(*associations)

As mentioned already, preloads uses separate queries to pre-load associated
data rather than attempting to bring all data back together in a single query
using joins like eager_load does.
We didn’t talk about this too much in our description of includes, so I’ll provide
an example.

>> User.preload(:auctions).to_a
User Load (0.1ms) SELECT "users".* FROM "users"
Auction Load (0.2ms) SELECT "auctions".* FROM "auctions"
WHERE "auctions"."user_id" IN (1, 2)

Notice the two separate SQL queries. Logically, since the queries are separate,
you can’t refer to a preloaded table in a query expression the way that you can
using includes.

references(*table_names)

The query method references is used to indicate that a related table is
referenced by some part of the SQL expression under construction. It’s only
needed in cases where Active Record can’t figure out which table to join on
its own, like in the following example:

Working with Active Record 201

>> User.includes(:auctions).where('auctions.name = ?','Lumina')
User Load (0.2ms) SELECT "users".* FROM "users" WHERE (auctions.name = 'Lumina')

ActiveRecord::StatementInvalid: SQLite3::SQLException: no such column: auctions.name
...

You might be wondering why Active Record couldn’t figure out that it needed
the auctions table based on the call to includes. I’m not sure either and couldn’t
find a good answer. I do know that to get the above example to work, you need
to use references with the name of the table to join.

User.includes(:auctions)
.where('auctions.name = ?','Lumina')
.references(:auctions)

A much better and more concise alternative to use of references is available if
you are able to use hash syntax instead of a string for your where conditions, as
in the following example. It automatically generates a LEFT OUTER JOIN using
table name aliases:

>> User.includes(:auctions)
.where(auctions: {name: 'Lumina'})

SQL (0.2ms) SELECT "users"."id" AS t0_r0, "users"."email" AS t0_r1,
"users"."password_digest" AS t0_r2, "users"."password_reset_token" AS
t0_r3, "users"."name" AS t0_r4, "users"."created_at" AS t0_r5,
"users"."updated_at" AS t0_r6, "users"."token" AS t0_r7,
"auctions"."id" AS t1_r0, "auctions"."name" AS t1_r1,
"auctions"."description" AS t1_r2, "auctions"."ends_at" AS t1_r3,
"auctions"."created_at" AS t1_r4, "auctions"."updated_at" AS t1_r5,
"auctions"."closes_at" AS t1_r6, "auctions"."user_id" AS t1_r7 FROM
"users" LEFT OUTER JOIN "auctions" ON "auctions"."user_id" =
"users"."id" WHERE "auctions"."name" = ? [["name", "Lumina"]]

Note that includes and its sister methods work with association names,
while references needs actual table names.

joins(expression)

joins works similarly to includes using an INNER JOIN in the resulting SQL
query. One of the key bits of knowledge to understand about inner joins is
they return only the set of records that match the tables being joined. If a row
on either side of the join is missing its corresponding row on the other side,
neither will be returned in the result set.

Working with Active Record 202

>> User.joins(:auctions).to_sql
=> "SELECT users.* FROM users INNER JOIN auctions ON auctions.user_id = users.id"

The query in the example returns not only the row in the users table that
contains the user’s information, it also brings back the corresponding rows
that will populate the user.auctions association. When that association is
accessed later within the same request cycle, it will not result in additional
database queries, just like with includes.
The joins method also understands multiple joins, as well as nested associa-
tion joins, using hash notation.

>> User.joins(auctions: [:bids]).to_sql
=> "SELECT users.* FROM users INNER JOIN auctions ON auctions.user_id = users.id INNER JOI\
N bids ON bids.auction_id = auctions.id"

While the joinsmethod normally takes symbols corresponding to table names
and can figure out the ON clause based on association metadata, if you want to
provide a more complex expression, then write the clause yourself and pass
it in as a string.

Buyer.select(:*, 'count(carts.id) as cart_count')
.joins('left outer join carts on carts.buyer_id = buyers.id')
.group('buyers.id')

Note that LEFT JOIN queries are popular enough that they get their own
method left_outer_join in Rails 5.

By far the most common usage of the joins method is to eager-fetch data for
associated objects in a single SELECT statement in order to prevent so-called
N+1 queries.

left_outer_join

As mentioned previously, LEFT OUTER JOIN is popular enough that it gets its own
method in Rails 5.

Working with Active Record 203

>> User.select(:*, 'count(bids.id) as bid_count)')
.left_outer_joins(auctions: [:bids])
.group('users.id').to_sql

=> "SELECT *, count(bids.id) as bid_count) FROM users LEFT OUTER
JOIN auctions ON auctions.user_id = users.id LEFT OUTER JOIN
bids ON bids.auction_id = auctions.id GROUP BY users.id"

The method is aliased to left_joins for those of you who prefer shorter names.

I can only imagine using joins and left_outer_join in circumstances where
I need the join for querying purposes alone, and not for eager loading an
association, because otherwise I would use includes instead. This part of the
API might seem overly confusing, but I think it is designed in such a way as
to help you write the most intention-revealing code as possible.

find_or_create_by(attributes, &block)

find_or_create_by finds the first record using the relation and given attributes,
or if none are found, saves a new record using the provided attributes and
where clause values of the relation.
This silly example looks for active users named Buster and creates a matching
record if it doesn’t find one.

User.active.find_or_create_by(first_name: 'Buster', ...)

Assuming that the active scope does the obvious thing, that code is identical
to the following:

User.find_or_create_by(active: true, first_name: 'Buster', ...)

If you’re playing with this technique, it’s also worth taking a look at create_-
with, which gives you the option of explicitly specifying attribute values to use
for creation (but not the query).
Notice the slight difference in behavior in this example compared to the last
two:

Working with Active Record 204

>> User.create_with(active: true)
.find_or_create_by(first_name: 'Buster', ...)

What this code does is to search for any users (whether active or not), and if
not found, creates an active user named Buster.
If for whatever reason you need it, you can pass a block to find_or_create_by.
In the case of generating a new record, it will be yielded to the block prior to
saving to the database. This technique looks something like this:

User.find_or_create_by(first_name: 'Scarlett') do |user|
user.last_name = 'Johansson'

end

Note that the behavior or find_or_create_by is not atomic. First it executes
a SELECT, and if there are no results, then an INSERT is attempted. If there are
other threads or processes, a race condition could result in two similar records
being saved to the database.
As is usually the case in these situations, if the record you are trying to create
has a UNIQUE constraint at the database level, then you can catch the resulting
exception and retry, like this:

begin
CreditAccount.transaction(requires_new: true) do

CreditAccount.find_or_create_by(user_id: user.id)
end

rescue ActiveRecord::RecordNotUnique
retry

end

The find_or_create_by is similar to regular create in that if validation fails,
it will not try to save to the database and will return an unsaved record.
Unsurprisingly, there’s also a version of this method called find_or_create_by!
that (like create!) will raise an exception if validation fails.

find_or_initialize_by(attributes, &block)

find_or_initialize_by is very similar to find_or_create_by but calls new instead
of create under the covers.

new(attributes, &block)

new is very similar to find_or_initialize_by but without the find operation.

Working with Active Record 205

>> active_users = User.where(active: true)
>> active_users.new
=> #<User id: nil, active: true, created_at: nil, updated_at: nil>

create_with

See find_or_create_by.

reload

See the “Reloading” section of this chapter.

reset

reset blows away all of the relation’s settings and contents. It is used to ensure
that the next access of a relation (if needed) hits the database again instead of
using cached values. Contrast it with reload, which always hits the database
again no matter what.

explain

explain runs EXPLAIN on the query or queries triggered by this relation and
returns the result as a string. Note that this method can actually run queries
as part of its operation since the results are needed when eager loading is
involved.

> User.includes(:auctions).where(auctions: {name: 'Foo'}).explain
SQL (0.2ms) SELECT "users"."id" AS t0_r0, ...

=> EXPLAIN for: SELECT "users"."id" AS t0_r0 ...
0|0|0|SCAN TABLE users
0|1|1|SEARCH TABLE auctions USING AUTOMATIC COVERING INDEX
(name=? AND user_id=?)

extending(*modules, &block)

extending specifies one or many modules with methods that will extend
the scope with additional methods. It returns a relation object, for further
chaining or extension.

Working with Active Record 206

module Pagination
def page(number)

pagination code
end

end

scope = Model.all.extending(Pagination)
scope.page(params[:page])

You can pass more than one module to extending and it also takes an optional
block (essentially acting as an anonymous module).

same example extended with a block
scope = Model.all.extending(Pagination) do

def per_page(number)
pagination code goes here

end
end

exists?

exists takes arguments to those of find and instead of returning records
returns a boolean for whether or not the query has results.

>> User.create(login: "mack")
=> #<User id: 1, login: "mack">
>> User.exists?(1)
=> true
>> User.exists?(login: "mack")
=> true

Of course, it can also be chained off of a relation.

>> User.where(login: "mack").exists?
=> true

any?

any is the opposite of empty?

empty?

If the relation is loaded, empty returns true if no records are present. If the
relation is not loaded, it does a count under the covers to derive a return value.

Working with Active Record 207

File activerecord/lib/active_record/relation.rb
def empty?

return @records.empty? if loaded?

if limit_value == 0
true

else
c = count(:all)
c.respond_to?(:zero?) ? c.zero? : c.empty?

end
end

many?

many returns true if the relation returns more than one record. It is imple-
mented using SELECT COUNT as seen in the example.

>> User.where(id: 1).many?
(0.1ms) SELECT COUNT(*) FROM "users" WHERE "users"."id" = ? [["id", 1]]

=> false

one?

one? returns true if the relation returns exactly one record.

none

Introduced in Rails 4, ActiveRecord::QueryMethods.none is a chainable relation
that causes a query to return zero records. The query method returns
ActiveRecord::NullRelation, which is an implementation of the Null Object
pattern. It is to be used in instances where you have a method that returns
a relation, but there is a condition in which you do not want the database
to be queried. All subsequent chained conditions will work without issue,
eliminating the need to continuously check whether the object your are
working with is a relation.

Working with Active Record 208

def visible
case role
when :reviewer

Post.published
when :bad_user

Post.none
end

end

If chained, the following code will not break for users
with a :bad_user role
posts = current_user.visible.where(name: params[:name])

lock

lock specifies locking settings for the query. It is described earlier in this
chapter in the “Database Locking” section.

readonly

Chaining the readonly method marks returned objects as read-only. You can
change their attributes, but you won’t be able to save them back to the
database.

>> c = Comment.readonly.first
=> #<Comment id: 1, body: "Hey beeyotch!">
>> c.body = "Keep it clean!"
=> "Keep it clean!"
>> c.save
ActiveRecord::ReadOnlyRecord: ActiveRecord::ReadOnlyRecord

reorder

Using reorder, you can replace any existing defined order on a given relation.

>> Member.order('name DESC').reorder(:id)
Member Load (0.6ms) SELECT "members".* FROM "members" ORDER BY
"members"."id" ASC

Any subsequent calls to order will be appended to the query.

Working with Active Record 209

>> Member.order('name DESC').reorder(:id).order(:name)
Member Load (0.6ms) SELECT "members".* FROM "members" ORDER BY
"members".name ASC, "members"."id" ASC

reverse_order

reverse_order is a convenience method for reversing an existing order clause
on a relation.

>> Member.order(:name).reverse_order
Member Load (0.4ms) SELECT "members".* FROM "members" ORDER BY
"members".name DESC

rewhere(conditions)

rewhere enables changing a previously set where condition for a given attribute,
instead of appending to that condition. (Rarely used.)

In the console and unsure what conditions are in effect on a scope or
relation? Try calling where_values_hash and it will tell you.

scoping(&block)

scoping defines a scope for all queries in the provided block.

Comment.where(post_id: 1).scoping do
Comment.first

end
SELECT * FROM comments WHERE comments.post_id = 1 LIMIT 1

unscope(*args)

The unscope query method is useful when you want to remove an unwanted
relation without reconstructing the entire relation chain. For example, to
remove an order clause from a relation, add unscope(:order):

>> Member.order('name DESC').unscope(:order)
SELECT members.* FROM members

Additionally, one can pass a hash as an argument to unscope specific :where
values. This will cause only the value specified to not be included in the where
clause.

Working with Active Record 210

Member.where(name: "Tyrion", active: true).unscope(where: :name)

is equivalent to

Member.where(active: true)

The following is a listing of the query methods unscope accepts:

• :from
• :group
• :having
• :includes
• :joins
• :limit
• :lock
• :offset
• :order
• :readonly
• :select
• :where

merge(other)

merge merges in the conditions from an other relation or array. If passed an
ActiveRecord::Relation, then the return value is a merged relation. If passed
an array, it returns an array representing the intersection of the resulting
records with the other array.
I can’t immediately think of a use for array intersection using this method, but
I do find its other form useful for composing elegant query code.

Find recent posts with comments highlighted by the editor
Post.recent.joins(:comments).merge(Comment.where(editor_pick: true))

Interestingly, other can also be a Proc, whose evaluation context is the relation
that you’re merging into. According to the docs this is most useful for
associations.

Working with Active Record 211

Find recent comments on a given post highlighted by the editor
editor_pick = -> { where(editor_pick: true) }
post.comments.latest.merge(editor_pick)

I suspect there’s no good reason to do something like that last example, unless
editor_pick was some more complex bit of logic that you’ve extracted into its
own object and want to share across different contexts.

only(*onlies)

only limits a relation to specified components. Pass one or more symbols
representing the part of the query to include.

only keep the scope's where clause, discard anything else
Post.latest.only(:where)

except(*skips)

except removes part of the query. Pass one or more symbols representing the
part of the query to skip. (It is probably very rare to need to do this.)

discards any order condition that might be on the scope
Post.latest.except(:order)

or(other)

You can generate OR expressions in your SQL queries by chaining Arel nodes
together using the or method.

Member.where(name: "Tyrion").or(Member.where(family: 'Lannister').first)

=> SELECT * FROM members WHERE members.name = 'Tyrion'
OR members.family = 'Lannister'

Compare this to a logical AND, which doesn’t require an explicit method call
and is Arel’s default behavior upon chaining.

Working with Active Record 212

Member.where(name: "Tyrion").where(family: 'Lannister')

=> SELECT * FROM members WHERE members.name = 'Tyrion'
AND members.family = 'Lannister'

load

load loads the relation from the database and returns the relation. Used
in extremely rare cases where it is necessary to load a relation during its
construction. The return value is the relation itself, not the records.

to_a

to_a loads the relation from the database and returns the resulting Active
Record objects in an Array (instead of wrapped in a relation.)

to_sql

As demonstrated in numerous examples throughout this section, calling to_sql
on a relation will dump the generated SQL. It is most useful for debugging
complicated joins.

to_json and friends

The results of relations can be serialized to a variety of textual formats using
to_json, to_yaml and to_xml. They use the Psych gem in conjunction with
encode_with(coder) under the covers.

>> User.where(id: 1).to_json
User Load (0.1ms) SELECT users.* FROM users ...

=> "[{"id":1,"email":"obiefernandez@gmail.com", ...}]"

arel_table

For cases in which you want to generate custom SQL yourself through Arel,
you may use the arel_tablemethod to gain access to the Table instance for the
class.

Working with Active Record 213

>> users = User.arel_table
>> users.where(users[:login].eq("mack")).to_sql
=> "SELECT `users`.`id`, `users`.`login` FROM `users`

WHERE `users`.`login` = 'mack'"

As we mentioned at the opening of this section, the Arel API is quite complex.
You should consult the Arel documentation3 to learn how to construct custom
queries using its DSL.

cache_key

cache_key returns a cache key that can be used to identify the records fetched
by this query.

>> Product.where("name like ?", "%Cosmic Encounter%").cache_key
=> "products/query-1850ab3d302391b85-1-20150714212553907087000"

A full description of this method and how to use it is presented in Chapter 17,
“Caching and Performance.”

3https://github.com/rails/arel/

https://github.com/rails/arel/
https://github.com/rails/arel/

Working with Active Record 214

5.7 Ignoring Columns

Active Record handles automatic schema introspection and mapping but
has not traditionally exposed an abstraction for the table definition itself or
allowed it to be altered. The attitude of the core team with regards to that
policy is gradually changing with the introduction of the Attributes API and
the capability to ignore specified columns using ActiveRecord::Base.ignored_-
columns

If you find yourself working with legacy tables containing inconveniently
named columns or in a situation4where you need tomake one ormore columns
temporarily invisible to Active Record, simply add them to the ignored_column
array.

class User < ApplicationRecord
self.ignored_columns = %w(associations)

end

4It’s common to need to ignore columns during online schema changes using tools like https://github.com/
soundcloud/lhm.

https://github.com/soundcloud/lhm
https://github.com/soundcloud/lhm

Working with Active Record 215

5.8 Connections to Multiple Databases in
Different Models

Connections are created via ActiveRecord::Base.establish_connection and re-
trieved by ActiveRecord::Base.connection. All classes inheriting from ActiveRe-
cord::Base will use this connection. What if you want some of your models to
use a different connection? You can add class-specific connections.
For example, let’s say you need to access data residing in a legacy database
apart from the database used by the rest of your Rails application. We’ll create
a new base class that can be used by models that access legacy data. Begin by
adding details for the additional database under its own key in database.yml.
Then call establish_connection to make LegacyProjectBase and all its subclasses
use the alternate connection instead.

class LegacyProjectBase < ApplicationRecord
establish_connection :legacy_database
self.abstract_class = true
...

end

Incidentally, to make this example work with subclasses, you must specify
self.abstract_class = true in the class context. Otherwise, Rails considers the
subclasses of LegacyProject to be using single-table inheritance (STI), which
we discuss at length in Chapter 9, “Advanced Active Record.”

Xavier says…
You can easily point your base class to different databases depending
on the Rails environment like this:

class LegacyProjectBase < ApplicationRecord
establish_connection "legacy_#{Rails.env}"
self.abstract_class = true
...

end

Then just add multiple entries to database.yml to match the result-
ing connection names. In the case of our example, that is legacy_-
development, legacy_test, etc.

The establish_connection method takes a string (or symbol) key pointing to a
configuration already defined in database.yml. Alternatively, you can pass it a

Working with Active Record 216

literal hash of options, although it’s messy to put this sort of configuration
data right into your model file instead of database.yml

class TempProject < ApplicationRecord
establish_connection adapter: 'sqlite3', database: ':memory:'
...

end

Rails keeps database connections in a connection pool inside the ActiveRe-
cord::Base class instance. The connection pool is simply a Hash object indexed
by the Active Record class. During execution, when a connection is needed,
the retrieve_connection method walks up the class-hierarchy until a matching
connection is found.

Working with Active Record 217

5.9 Using the Database Connection Directly

It is possible to use Active Record’s underlying database connections directly,
and sometimes it is useful to do so from custom scripts and for one-off or
ad-hoc testing.
Access the connection via the connection attribute of any Active Record class.
If all your models use the same connection, then use the connection attribute
of ActiveRecord::Base.

ActiveRecord::Base.connection.execute("show tables").values

Themost basic operation that you can do with a connection is simply to execute
a SQL statement from the DatabaseStatementsmodule. For example, Listing 5.1
shows a method that executes a SQL file statement by statement.

Listing 5.1: Execute a SQL file line by line using active record’s connection
def execute_sql_file(path)

File.read(path).split(';').each do |sql|
begin

ActiveRecord::Base.connection.execute(#{sql}\n") unless sql.blank?
rescue ActiveRecord::StatementInvalid

$stderr.puts "warning: #{$!}"
end

end
end

If for some reason you want to execute methods directly on the underlying
Ruby-based database driver library, you can access it via raw_connection.

rc = ActiveRecord::Base.connection.raw_connection
rc.prepare('some_name', "SELECT FROM my_table WHERE id = $1")
st = connection.exec_prepared('some_name', [id])

The DatabaseStatements Module

The ActiveRecord::ConnectionAdapters::DatabaseStatementsmodulemixes a num-
ber of useful methods into the connection object that make it possible to
work with the database directly instead of using Active Record models. I’ve
purposely left out some of the methods of this module because they are used
internally by Rails to construct SQL statements dynamically, and I don’t think
they’re of much use to application developers.
For the sake of readability in the select_ examples below, assume that the
connection object has been assigned to conn, like this:

Working with Active Record 218

conn = ActiveRecord::Base.connection

begin_db_transaction()

Begins a database transaction manually (and turns off Active Record’s default
autocommitting behavior).

commit_db_transaction()

Commits the transaction (and turns on Active Record’s default autocommit-
ting behavior again).

delete(sql_statement)

Executes a SQL DELETE statement provided and returns the number of rows
affected.

execute(sql_statement)

Executes the SQL statement provided in the context of this connection. This
method is abstract in the DatabaseStatements module and is overridden by
specific database adapter implementations. As such, the return type is a result
set object corresponding to the adapter in use.

insert(sql_statement)

Executes an SQL INSERT statement and returns the last autogenerated ID from
the affected table.

reset_sequence!(table, column, sequence = nil)

Used in Oracle and Postgres; updates the named sequence to the maximum
value of the specified table’s column.

rollback_db_transaction()

Rolls back the currently active transaction (and turns on auto-committing).
Called automatically when a transaction block raises an exception or returns
false.

select_all(sql_statement)

Returns an array of record hashes with the column names as keys and column
values as values.

Working with Active Record 219

conn.select_all("select name from businesses limit 5")
=> [{"name"=>"Hopkins Painting"}, {"name"=>"Whelan & Scherr"},
{"name"=>"American Top Security Svc"}, {"name"=>"Life Style Homes"},
{"name"=>"378 Liquor Wine & Beer"}]

select_one(sql_statement)

Works similarly to select_all but returns only the first row of the result set, as
a single hash with the column names as keys and column values as values.
Note that this method does not add a limit clause to your SQL statement
automatically, so consider adding one to queries on large datasets.

>> conn.select_one("select name from businesses")
=> {"name"=>"New York New York Salon"}

select_value(sql_statement)

Works just like select_one, except that it returns a single value: the first column
value of the first row of the result set.

>> conn.select_value("select * from businesses limit 1")
=> "Cimino's Pizza"

select_values(sql_statement)

Works just like select_value, except that it returns an array of the values of
the first column in all the rows of the result set.

>> conn.select_values("select * from businesses limit 5")
=> ["Ottersberg Christine E Dds", "Bally Total Fitness", "Behboodikah,
Mahnaz Md", "Preferred Personnel Solutions", "Thoroughbred Carpets"]

update(sql_statement)

Executes the update statement provided and returns the number of rows
affected. Works exactly like delete.

Other Connection Methods

The full list of methods available on connection, which returns an instance
of the underlying database adapter, is fairly long. Most of the Rails adapter
implementations define their own custom versions of these methods. That
makes sense, since all databases have slight variations in how they handle
SQL and very large variations in how they handle extended commands, such
as for fetching metadata.
A peek at abstract_adapter.rb shows us the default method implementations:

Working with Active Record 220

...

Returns the human-readable name of the adapter. Use mixed case - you
can always use downcase if needed.
def adapter_name

'Abstract'
end

Does this adapter support migrations? Backend specific, as the
abstract adapter always returns +false+.
def supports_migrations?

false
end

Can this adapter determine the primary key for tables not attached
to an Active Record class, such as join tables? Backend specific, as
the abstract adapter always returns +false+.
def supports_primary_key?

false
end

...

In the following list of method descriptions and code samples, I’m accessing
the connection of our sample time_and_expenses application in the Rails
console, and again I’ve assigned connection to a local variable named conn,
for convenience.

active?

Indicates whether the connection is active and ready to perform queries.

adapter_name

Returns the human-readable name of the adapter, as in the following example:

>> conn.adapter_name
=> "SQLite"

disconnect! and reconnect!

Closes the active connection or closes and opens a new one in its place,
respectively.

Working with Active Record 221

raw_connection

As mentioned earlier, this method provides access to the underlying database
connection. Useful for when you need to execute a proprietary statement
or you’re using features of the Ruby database driver that aren’t necessarily
exposed in Active Record. (In trying to come up with a code sample for this
method, I was able to crash the Rails console with ease. There isn’t much in
the way of error checking for exceptions that you might raise while mucking
around with raw_connection.)

supports_count_distinct?

Indicates whether the adapter supports using DISTINCT within COUNT in SQL
statements. This is true for all adapters except SQLite, which therefore
requires a workaround when doing operations such as calculations.

supports_migrations?

Indicates whether the adapter supports migrations.

tables

Produces a list of tables in the underlying database schema. It includes tables
that aren’t usually exposed as Active Record models, such as schema_info and
sessions.

>> conn.tables
=> ["schema_migrations", "users", "timesheets", "expense_reports",
"billable_weeks", "clients", "billing_codes", "sessions"]

verify!(timeout)

Lazily verify this connection, calling active? only if it hasn’t been called for
timeout seconds.

Working with Active Record 222

5.10 Custom SQL Queries

Active Record’s find_by_sql class method takes a SQL query string and returns
an array of Active Record objects based on the results. It predates Relation and
practically everything else in Rails.
Here’s a barebones example, which you would never actually need to do in a
real application:

>> Client.find_by_sql("select * from clients")
=> [#<Client id: 1, name: "Paper Jam Printers",

code: "PJP" ...>, #<Client id: 2, name: "Goodness Steaks",
code: "GOOD_STEAKS" ...>]

You should take care to use find_by_sql only when you really need it! And
thanks to the power of Arel, nowadays it’s rare to need it. The problem
with using SQL directly starts with reduced database portability. When you
use Active Record’s normal find operations, Rails takes care of handling
differences between the underlying databases for you.
Active Record also already has a ton of built-in functionality abstracting
queries. In fact, half of this chapter was dedicated to listing those abstractions
as the exist in Arel. It would be unwise to reinvent that functionality in your
application code.
There are cases where it might seem that you might need to use find_by_sql,
but you actually don’t. A common one is a LIKE query:

>> Client.find_by_sql("select * from clients where code like 'A%'")
=> [#<Client id: 1, name: "Amazon, Inc" ...>]

Turns out that you can easily pass that LIKE clause to a where method:

>> param = "A"
>> Client.where("code like ?", "#{param}%")
=> [#<Client id: 1, name: "Amazon, Inc" ...>]

Preventing SQL Injection Attacks
Under the covers, Rails sanitizesa your SQL code, provided that you parame-
terize your query. Active Record executes your SQL using the connection.select_-
all method, iterating over the resulting array of hashes and invoking your
Active Record’s initialize method for each row in the result set.
What would this section’s example look like un-parameterized?

Working with Active Record 223

>> Client.where("code like '#{params[:code]}%'")
=> [#<Client id: 1, name: "Amazon, Inc" ...>] # NOOOOO!

Notice the missing question mark as a variable placeholder. Always remem-
ber that interpolating user-supplied values into a SQL fragment of any type
is very unsafe! Just imagine what would happen to your project if a malicious
user called that unsafe find with params[:code] set to

"Amazon'; DELETE FROM users;'

This particular example might fail in your own experiments. The outcome is
very specific to the type of database/driver that you’re using. Some popular
databases drivers may even have features that help to prevent SQL injection.
I still think it’s better to be safe than sorry.
Chapter 15, “Security,” covers this topic in-depth.

aSanitization prevents SQL injection attacks. For more information about SQL injection and Rails see
http://guides.rubyonrails.org/security.html#sql-injection.

The count_by_sql method works in a manner similar to find_by_sql.

>> Client.count_by_sql("select count(*) from clients")
=> 132

Again, you should have a special reason to be using it instead of the abstrac-
tions provided by Active Record and Arel.

http://guides.rubyonrails.org/security.html#sql-injection

Working with Active Record 224

5.11 Other Configuration Options

In addition to the configuration options used to instruct Active Record on how
to handle naming of tables and primary keys, there are a number of other
settings5 that govern miscellaneous functions. Set them in an initializer, if
needed.

default_timezone

Tells Rails whether to use Time.local (using :local) or Time.utc (using :utc)
when pulling dates and times from the database. Defaults to :local

Rails.application.config.active_record.default_timezone = :utc

logger

Accepts a logger conforming to the interface of Log4r or the default Ruby
Logger class, which is then passed on to any new database connections made.
You can retrieve this logger by calling logger on either an Active Record model
class or instance. Set to nil to disable logging.

primary_key

UUIDs are becoming a popular alternative to auto-incrementing integer
primary keys. (Not supported in all databases, though.)

Rails.application.config.active_record.primary_key = :uuid

schema_format

Specifies the format to use when dumping the database schema with certain
default rake tasks. Use the :sql option to have the schema dumped as
potentially database-specific SQL statements. Just beware of incompatibilities
if you’re trying to use the :sql option with different databases for development
and testing. The default option is :ruby, which dumps the schema as an
ActiveRecord::Schema file that can be loaded into any database that supports
migrations.

5This section does not contain an exhaustive list of Active Record configuration options. For a complete, always
up-to-date list see http://edgeguides.rubyonrails.org/configuring.html#configuring-active-record.

http://edgeguides.rubyonrails.org/configuring.html#configuring-active-record

Working with Active Record 225

Rails.application.config.active_record.schema_format = :sql

schema_migrations_table_name

Lets you set a string to be used as the name of the schema migrations table.

store_full_sti_class

Specifies whether Active Record should store the full constant name including
namespace when using Single-Table Inheritance (STI), covered in Chapter 9,
“Advanced Active Record.”

warn_on_records_fetched_greater_than

This configuration setting helps you find queries that return a result set with
a number of rows larger than the set limit.

...config.active_record.warn_on_records_fetched_greater_than = 1000

If the result set loaded is greater than the limit, a warning is posted in the
log. (Grep the log for “Query fetched”.) The warning can help you find cases
where a poorly scoped operation is loading too many objects into memory at
a time.

Looking for config.active_record.auto_explain_threshold_in_seconds?
This cool feature, which would automatically log EXPLAIN output for
long-running queries was removed in Rails 4, and many of us will
definitely miss it. Its removal solved a long-running issue with database
connections failing during asset compilation. Fortunately, you can
still invoke explain manually on a query that you suspect might be
problematic.

Working with Active Record 226

5.12 Conclusion

This chapter covered the fundamentals of Active Record, the framework
included with Ruby on Rails for creating database-bound model classes.
We’ve learned how Active Record expresses the convention over configuration
philosophy that is such an important part of the Rails way and how to make
settings manually that override the conventions in place.
We’ve also looked at the methods provided by ActiveRecord::Base, the parent
class of all persistent models in Rails, which include everything you need to do
basic CRUD operations: create, read, update, and delete. Finally, we reviewed
how to drill through Active Record to use the database connection whenever
you need to do so.
In the following chapter, we continue our coverage of Active Record by
learning how migrations help evolve an application’s database schema.

6. Active Record Migrations
Baby step to four o’clock. Baby step to four o’clock.
—Bob Wiley

It’s a fact of life that the database schema of your application will evolve
over the course of development. Tables are added, names of columns are
changed, things are dropped—you get the picture. Without strict conventions
and process discipline for the application developers to follow, keeping the
database schema in proper lock-step with application code is traditionally a
very troublesome job.
Migrations are Rails’ way of helping you to evolve the database schema of your
application (also known as its DDL) without having to drop and re-create the
database each time you make a change. And not having to drop and recreate
the database each time a change happens means that you don’t lose your
development data. That may or may not be that important, but is usually very
convenient. The only changes made when you execute a migration are those
necessary to move the schema from one version to another, whether that move
is forward or backward in time.
Of course, being able to evolve your schema without having to recreate your
databases and the loading/reloading of data is an order of magnitude more
important once you’re in production.

Active Record Migrations 228

6.1 Creating Migrations

Rails provides a generator for creating migrations.

$ rails generate migration
Usage:
rails generate migration NAME [field[:type][:index]...] [options]

At minimum, you need to supply a descriptive name for the migration in
CamelCase (or underscored_text—both work) and the generator does the rest.
Other generators, such as the model and scaffolding generators, also create
migration scripts for you, unless you specify the --skip-migration option.
The descriptive part of the migration name is up to you, but most Rails
developers that I know try to make it match the schema operation (in simple
cases) or at least allude to what’s going on inside (in more complex cases).

If you change the classname of your migration to something that
doesn’t match its filename, you will get an uninitialized constant error
when that migration gets executed.

The whole workflow starts with generating a newmigration, editing its source
(if necessary), then running rails db:migrate from your terminal.

Generator Magic

If the migration name is of the form “CreateXXX” and is followed by a list of
column names and types, then a migration creating the table XXX with the
columns listed will be generated. For example:

$ rails g migration CreateProducts name:string part_number:string

generates

Active Record Migrations 229

class CreateProducts < ActiveRecord::Migration[5.0]
def change

create_table :products do |t|
t.string :name
t.string :part_number

end
end

end

If themigration name is of the form “AddXXXToYYY” or “RemoveXXXFromYYY”
and is followed by a list of column names and types then amigration containing
the appropriate add_column and remove_column statements will be created.

$ rails g migration AddPartNumberToProducts part_number:string

will generate

class AddPartNumberToProducts < ActiveRecord::Migration[5.0]
def change

add_column :products, :part_number, :string
end

end

If you’d like to add an index on the new column, you can do that as well:

$ bin/rails generate migration AddPartNumberToProducts
part_number:string:index

will generate

class AddPartNumberToProducts < ActiveRecord::Migration[5.0]
def change

add_column :products, :part_number, :string
add_index :products, :part_number

end
end

Add as many columns as you need.

$ rails g migration AddDetailsToProducts part_number:string price:decimal

generates

Active Record Migrations 230

class AddDetailsToProducts < ActiveRecord::Migration[5.0]
def change

add_column :products, :part_number, :string
add_column :products, :price, :decimal

end
end

The migration generator will produce join tables if “JoinTable” is part of the
name.

$ rails g migration CreateJoinTableCustomerProduct customer product

will produce the following migration:

class CreateJoinTableCustomerProduct < ActiveRecord::Migration[5.0]
def change

create_join_table :customers, :products do |t|
t.index [:customer_id, :product_id]
t.index [:product_id, :customer_id]

end
end

end

Sequencing

Originally, Rails migrations were sequenced via a simple numbering scheme
baked into the name of the migration file and automatically managed by the
migration generator. Each migration simply received a sequential number.
There were many inconveniences inherent in that approach, especially in
team environments where two developers could check in a migration with
the same sequence number. Thankfully those issues were eliminated by using
timestamps to sequence migrations instead.
A record of migrations that have already been run is kept in a special hidden
database table that Rails maintains. It is named schema_migrations and only has
one column:

Active Record Migrations 231

mysql> desc schema_migrations;
+---------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+--------------+------+-----+---------+-------+
| version | varchar(255) | NO | PRI | NULL | |
+---------+--------------+------+-----+---------+-------+
1 row in set (0.00 sec)

The first thing that rails db:migrate does is to check the schema_migrations
table and execute any migrations on your file system that have not yet run
(even if they have earlier timestamps than any you’ve added yourself in the
interim).

The change method

Rails pushes you towards defining reversible migrations. In older versions,
each migration class had two instance methods named up and down. The up
method included the the logic of what to change in the database for the
migration, while the downmethod specified how to revert/roll back that change.
While it’s still possible to use up and down, nowadays we usually use the change
method. For most operations, Rails is smart enough to figure out how to roll
back automatically.
The following migration file 20130313005347_create_clients.rb illustrates creat-
ing a new simple table named clients:

class CreateClients < ActiveRecord::Migration[5.0]
def change

create_table :clients do |t|
t.string :name
t.string :code
t.timestamps

end
end

end

If we go to the command line in our project folder and type rails db:migrate,
then the clients table will be created. Rails gives us informative output during
the migration process so that we see what is going on:

Active Record Migrations 232

$ rails db:migrate
== CreateClients: migrating ==
-- create_table(:clients)

-> 0.0448s
== CreateClients: migrated (0.0450s) =================================

Wondering what that [5.0] is doing at the end of the migration’s base
class? It turns out that there are slight differences in the Migration
API’s behavior between Rails 5 and older versions, for instance the
way that it automatically adds NOT NULL to timestamps.
The changes mean that if you were to upgrade an old Rails application
to version 5 and re-run old migrations, you’d get a different schema
than you were expecting. The problem is avoided by the introduction
of a compatibility layer, which is where that version tagging with the
square brackets comes in. If [5.0] is not present on a migration class,
it will be run with legacy behavior. However, Rails will raise a warning
asking you to add the appropriate version tag to the old migrations.

Rolling back

It’s easy to roll back changes if you made a mistake in development.

$ rails db:rollback
== 20161123170510 CreateEvents: reverting =====================================
-- drop_table(:events)

-> 0.0009s
== 20161123170510 CreateEvents: reverted (0.0111s) ============================

If you ever need to roll back to an earlier version of the schema, just pass it a
version number to roll back to, as in rails db:migrate VERSION=20161123170510.

Redo

It’s actually super common to forget to add something to a migration. Rails
gives you rails db:migrate:redo as a convenient way to rollback and re-migrate
in one command.

Active Record Migrations 233

Reversible Operations

If a migration is very complex, Active Record may not be able to reverse it
without some additional information from you.
The reversible method acts very similarly to to the old school up and down
migration methods, that were common in previous versions of Rails. Using
reversible, you can specify operations to perform when running a migration
and others when reverting it.
In the following example, the reversible method passes logic in a block to
methods, up and down, to create a new function in a PostgreSQL database:

def change
reversible do |dir|

dir.up do
execute <<-END

CREATE FUNCTION add(integer, integer) RETURNS integer
AS 'select $1 + $2;'
LANGUAGE SQL
IMMUTABLE
RETURNS NULL ON NULL INPUT;

END
end

dir.down do
execute "DROP FUNCTION add"

end
end

end

The Migrations API doesn’t know anything about custom functions, which
is why in the example we have to drop down to talking to the database
connection directly, using the execute method.

Irreversible Operations

Some transformations are destructive in a manner that cannot be reversed.
Migrations of that kind should raise an ActiveRecord::IrreversibleMigration
exception in their reversible down block.

Active Record Migrations 234

For example, what if someone on your team made a silly mistake and defined
the telephone column of your clients table as an integer? You can change the
column to a string and the data will migrate cleanly, but going from a string
to an integer? Not so much.

def change
reversible do |dir|

dir.up do
Phone number fields are not integers, duh!
change_column :clients, :phone, :string

end

dir.down { raise ActiveRecord::IrreversibleMigration }
end

end

create_table(name, options, &block)

The create_table method needs at minimum a name for the table and a block
containing column definitions. Why do we specify identifiers with symbols
instead of strings? Both will work, but symbols require one less keystroke.
The create_table method makes a huge, but usually true, assumption that we
want an auto-incrementing, integer-typed, primary key. That is why you don’t
see it declared in the list of columns. If that assumption happens to be wrong,
it’s time to pass create_table some options in a hash.
For example, how would you define a simple join table consisting of two
foreign key columns and not needing its own primary key? Just pass the
create_table method an :id option set to false as a boolean, not a symbol!
It will stop the migration from auto-generating a primary key altogether:

create_table :ingredients_recipes, id: false do |t|
t.column :ingredient_id, :integer
t.column :recipe_id, :integer

end

Alternatively, the same functionality can be achieved using the create_join_-
table method, covered later in the chapter.
If all you want to do is change the name of the primary key column from
its default of ‘id’, pass the :id option a symbol instead. For example, let’s say
your corporation mandates that primary keys follow the pattern tablename_id.
Then the earlier example would look as follows:

Active Record Migrations 235

create_table :clients, id: :clients_id do |t|
t.column :name, :string
t.column :code, :string
t.column :created_at, :datetime
t.column :updated_at, :datetime

end

Options

The force: true option tells the migration to go ahead and drop the table being
defined if it exists. Be careful with this one, since it will produce (possibly
unwanted) data loss when run in production. As far as I know, the :force option
is mostly useful for making sure that the migration puts the database in a
known state but isn’t all that useful on a daily basis.
The :options option enables you to append custom instructions to the SQL
CREATE statement and is useful for adding database-specific commands to your
migration. Depending on the database you’re using, you might be able to
specify things such as character set, collation, comments, min/max sizes, and
many other properties using this option.
The temporary: true option specifies creation of a temporary table that will only
exist during the current connection to the database. In other words, it only
exists during the migration. In advanced scenarios, this option might be useful
for migrating big sets of data from one table to another but is not commonly
used.

Sebastian says…
A little known fact is that you can remove old migration files (while still
keeping newer ones) to keep the db/migrate folder to amanageable size.
You can move the older migrations to a db/archived_migrations folder
or something like that. Once you do trim the size of your migrations
folder, use the rake db:reset task to (re)create your database from
db/schema.rb and load seed data into your development environment.

change_table(table_name, &block)

This method works just like create_table and accepts the same kinds of column
definitions.

Active Record Migrations 236

create_join_table(*table_names)

In Rails 4, a new migration method create_join_table was added to easily
create has_and_belongs_to_many-style join tables. The create_join_table accepts
at minimum the names of two tables.

create_join_table :ingredients, :recipes

The preceding code example will create a table named ‘ingredients_recipes’
with no primary key.

Options

:table_name
If you do not agree with the Rails convention of concatenating both tables
names with an underscore, the :table_name option enables you to override
it explicitly.

:column_options
Add any extra options to append to the foreign key column definitions.
For example, you might need to use UUID keys instead of integers.

class CreateJoinTableUserAuction < ActiveRecord::Migration[5.0]
def change

create_join_table(:users, :auctions, column_options: {type: :uuid})
end

end

:options, :temporary, and :force
Accept the same interface as the equivalent options found in create_table.

API Reference

The following section details the methods that are available in the context of
create_table and change_table methods within a migration class.

change(column_name, type, options = {})

Changes the column’s definition according to the new options. The options
hash optionally contains a hash with arguments that correspond to the options
used when adding columns.

Active Record Migrations 237

t.change(:name, :string, limit: 80)
t.change(:description, :text)

change_default(column_name, default)

Sets a new default value for a column.

t.change_default(:qualification, 'new')
t.change_default(:authorized, 1)

column(column_name, type, options = {})

Adds a new column to the named table.

t.column(:name, :string)

Note that you can also use the short-hand version by calling it by type. This
adds a column (or columns) of the specified type.

t.string(:goat)
t.string(:goat, :sheep)
t.integer(:age, :quantity)

The basic column types supported by most all database adapters are listed in
Table 6.1.

Table 6.1: Column Types Most Commonly Used with Rails

Column type Description
:string Limited to 255 characters by default. Might be

case-sensitive depending on database.
:text Generally unlimited length depending on

database. Usually can’t be indexed like regular
strings.

:integer Whole number, in contrast to :decimal or :float.
:decimal Stored with specified precision. Use for math

that requires accuracy.
:float Floating-point decimal number with fixed

precision depending on platform. Do not use for
math that requires accuracy due to rounding
errors.

:boolean True or false.
:binary Raw chunks of data saved in database-specific

way.

Active Record Migrations 238

Table 6.1: Column Types Most Commonly Used with Rails

Column type Description
:date Year, month and day (no time).
:time Hours, minutes, seconds (no date).
:datetime Date and time stored together.
:timestamp Exactly the same as :datetime on Rails.1

Learn more about defining columns a little later on in the chapter.

index(column_name, options = {})

Adds a new index to the table. The column_name parameter can be one symbol
or an array of symbols referring to columns to be indexed. The name parameter
lets you override the default name that would otherwise be generated.

a simple index
t.index(:name)

a unique index
t.index([:branch_id, :party_id], unique: true)

a named index
t.index([:branch_id, :party_id], unique: true, name: 'by_branch_party')

Rails has built-in support for PostgreSQL [partial indices].(https://www.postgresql.org/docs/9.4/static/indexes-
partial.html) You can specify them in your migration by adding a :where option
to the normal index declaration. The main benefit is reduction of the size of
indexes on commonly used queries within an application.
For example, let’s assume your application queries constantly for clients that
have a status of “active” within the system. Instead of creating an index on
the status column for every client record, we can include only those records
that meet the specified criteria:

add_index(:clients, :status, where: 'active')

Rails also has built-in support for PostgreSQL expression indexes, with op-
tional [operator classes].(https://www.postgresql.org/docs/9.4/static/indexes-
opclass.html) Take note of the SQL expression and operator on line 3.

1This stackoverflow question features a great explanation of :datetime versus :timestamp.

http://stackoverflow.com/questions/3928275/in-ruby-on-rails-whats-the-difference-between-datetime-timestamp-time-and-da

Active Record Migrations 239

1 def change
2 add_index :users,
3 'lower(last_name) varchar_pattern_ops',
4 name: "index_users_on_name_unique",
5 unique: true
6 end

Instead of a column name, there’s a SQL expression specifying that the value
of the index should be a lower-case representation of the user’s last name.
The varchar_pattern_ops operator class (also on line 3) is especially useful for
fields that you know you will be doing LIKE or regexp queries on. It changes the
way that the index analyzes the column from being based on locale-specific
collation to a character-by-character B-tree. Just be careful to also create
normal indexes if needed, or some of your queries might end up doing full
table scans and run really slowly.

belongs_to(*args) and references(*args)

These two methods are aliases to each other. They add a foreign key column
to another model, using Active Record naming conventions. Optionally, it adds
a _type column if the :polymorphic option is set to true.

create_table :accounts do
t.belongs_to(:person)

end

create_table :comments do
t.references(:commentable, polymorphic: true)

end

A common best practice is to create an index for each foreign key in your
database tables. It’s so common, that Rails 5 automatically does it for you.
If you’re on an older version of Rails or want to disable auto-indexing, you
can use the :index option of references and belongs_to methods. It accepts a
boolean value or the same hash options as the index method, covered in the
preceding section.

create_table :accounts do
t.belongs_to :person, index: false

end

remove(*column_names)

Removes the column(s) specified from the table definition.

Active Record Migrations 240

t.remove(:qualification)
t.remove(:qualification, :experience)

remove_index(options = {})

Removes the given index from the table. Specify the index to remove either
by its columns or explicitly by its name.

remove the accounts_branch_id_index from the accounts table
t.remove_index column: :branch_id

remove the accounts_branch_id_party_id_index from the accounts table
t.remove_index column: [:branch_id, :party_id]

remove the index named by_branch_party in the accounts table
t.remove_index name: :by_branch_party

remove_references(*args) and remove_belongs_to

Removes a reference. Optionally removes a type column if marked as polymor-
phic.

t.remove_belongs_to(:person)
t.remove_references(:commentable, polymorphic: true)

remove_timestamps

You will never use this method. It removes created_at and updated_at columns.

rename(old_column_name, new_column_name)

Renames a column. The old name comes first, a fact that I usually can’t
remember. I try to remember it as renaming this to that.

t.rename :description, :name

revert

If you have ever wanted to revert a specific migration file explicitly within
another migration, now you can. The revert method can accept the name of a
migration class, which when executed, reverts the given migration.

Active Record Migrations 241

revert CreateProductsMigration

The revert method can also accept a block of directives to reverse on
execution.

timestamps

Adds Active Record-maintained timestamp (created_at and updated_at) columns
to the table.

t.timestamps

As of Rails 5, timestamps are automatically marked as NOT NULL.

Active Record Migrations 242

6.2 Defining Columns

Columns can be added to a table using either the column method, inside the
block of a create_table statement, or with the add_column method. Other than
taking the name of the table to add the column to as its first argument, the
methods work identically.

create_table :clients do |t|
t.column :name, :string

end

add_column :clients, :code, :string
add_column :clients, :created_at, :datetime

The first (or second) parameter obviously specifies the name of the column,
and the second (or third) obviously specifies its type. The SQL92 standard
defines fundamental data types, but each database implementation has its
own variation on the standards.
Rails has its own generalized names for column types, which we summarized
earlier in this chapter in Table 6.1. If you’re familiar with database column
types, when you examined that table it might have struck you as a little weird
that there is a database column declared as type :string, since databases don’t
have string columns—they have char or varchars types.

Column Type Mappings

The reason for declaring a database column as type string is that Rails
migrations are meant to be database-agnostic. That’s why you could (as I’ve
done on occasion) develop using Postgres as your database and deploy in
production to Oracle.
A complete discussion of how to go about choosing the right data type for your
application needs is outside the scope of this book. However, it is useful to have
a reference for how migration’s generic types map to database-specific types.
The mappings for the databases most commonly used with Rails are in Table
6.2.

Active Record Migrations 243

Table 6.2: Column Mappings for the Databases Most Commonly Used with Rails

Migration
Type

MySQL Postgres SQLite Oracle Ruby
Class

:binary blob bytea blob blob String
:boolean tinyint(1) boolean boolean number(1) Boolean
:date date date date date Date
:datetime datetime timestamp datetime date Time
:decimal decimal decimal decimal decimal BigDecimal
:float float float float number Float
:integer int(11) integer integer number(38) Fixnum
:string varchar(255)character

varying(255)
varchar(255)varchar2(255)String

:text text text text clob String
:time time time time date Time
:timestamp datetime timestamp datetime date Time

Native Database Column Types

Each connection adapter class has a native_database_types hash which estab-
lishes the mapping described in Table 6.1. If you need to look up the mappings
for a database not listed in Table 6.1, you can pop open the adapter Ruby
code and find the native_database_types hash, like the following one inside the
PostgreSQLAdapter class within postgresql_adapter.rb:

NATIVE_DATABASE_TYPES = {
primary_key: "serial primary key",
string: { name: "character varying" },
text: { name: "text" },
integer: { name: "integer" },
float: { name: "float" },
decimal: { name: "decimal" },
datetime: { name: "timestamp" },
time: { name: "time" },
date: { name: "date" },
daterange: { name: "daterange" },
numrange: { name: "numrange" },
tsrange: { name: "tsrange" },
tstzrange: { name: "tstzrange" },
int4range: { name: "int4range" },
int8range: { name: "int8range" },
binary: { name: "bytea" },
boolean: { name: "boolean" },
xml: { name: "xml" },

Active Record Migrations 244

tsvector: { name: "tsvector" },
hstore: { name: "hstore" },
inet: { name: "inet" },
cidr: { name: "cidr" },
macaddr: { name: "macaddr" },
uuid: { name: "uuid" },
json: { name: "json" },
jsonb: { name: "jsonb" },
ltree: { name: "ltree" },
citext: { name: "citext" },
point: { name: "point" },
line: { name: "line" },
lseg: { name: "lseg" },
box: { name: "box" },
path: { name: "path" },
polygon: { name: "polygon" },
circle: { name: "circle" },
bit: { name: "bit" },
bit_varying: { name: "bit varying" },
money: { name: "money" },

}

You might have noticed that the PostgreSQL adapter includes a large number
of column type mappings that are not available in other databases. You can
specify these column types in your migration and they’ll work just fine, but
you’ll, of course, lose database portability.

The easiest way to peek at the adapter code is on Github2.

We delve into why youmight want to use extended column types such as hstore
and array in Chapter 9, “Advanced Active Record.”

Column Options

For many column types, just specifying type is not enough information. All
column declarations accept the following options:

default: value
Sets a default to be used as the initial value of the column for new rows.

2https://github.com/rails/rails/tree/master/activerecord/lib/active_record/connection_adapters

https://github.com/rails/rails/tree/master/activerecord/lib/active_record/connection_adapters
https://github.com/rails/rails/tree/master/activerecord/lib/active_record/connection_adapters

Active Record Migrations 245

You don’t ever need to explicitly set the default value to null. Just leave
off this option to get a null default value. It’s worth noting that MySQL
5.x ignores default values for binary and text columns.

limit: size
Adds a size parameter to string, text, binary, or integer columns. Its
meaning varies depending on the column type that it is applied to.
Generally speaking, limits for string types refers to number of characters,
whereas for other types it specifies the number of bytes used to store the
value in the database.

null: false
Makes the column required at the database level by adding a not null
constraint.

index: true
Adds an ordinary generated index for the column.

comment: text
Adds a comment for the column that will be visible in schema.rb and
certain kinds of database management software.

The comment option is new to Rails 5 and especially useful on larger
teamswhere it’s not always possible to keep upwith exactly what every
new column added to the database does. Currently only MySQL and
PostgreSQL allow comments.

Decimal Precision

Columns declared as type :decimal accept the following options:

precision: number
Precision is the total number of digits in a number.

scale: number
Scale is the number of digits to the right of the decimal point. For
example, the number 123.45 has a precision of 5 and a scale of 2.
Logically, the scale cannot be larger than the precision.

Active Record Migrations 246

Note
Decimal types pose a serious opportunity for data loss during migrations of
production data between different kinds of databases. The default precisions
between Oracle and SQL Server can cause the migration process to truncate
and change the value of your numeric data if it doesn’t have precision details
specified.

Column Type Gotchas

The choice of column type is not necessarily a simple choice and depends on
both the database you’re using and the requirements of your application.

:binary
Depending on your particular usage scenario, storing binary data in
the database can cause very significant performance problems. Active
Record doesn’t generally exclude any columns when it loads objects
from the database, and putting large binary attributes on commonly used
models will increase the load on your database server significantly. If you
must put binary content in a commonly-used class, take advantage of the
:select method to only bring back the columns you need.

:boolean
The way that boolean values are stored varies from database to database.
Some use 1 and 0 integer values to represent true and false, respectively.
Others use characters such as T and F. Rails handles the mapping
between Ruby’s true and false very well, so you don’t need to worry about
the underlying scheme yourself. Setting attributes directly to database
values such as 1 or F may work correctly but is considered an anti-
pattern.

:datetime and :timestamp
The Ruby class that Rails maps to datetime and timestamp columns is
Time. In 32-bit environments, Time doesn’t work for dates before 1902.
Ruby’s DateTime class does work with year values prior to 1902, and Rails
falls back to using it if necessary. It doesn’t use DateTime to begin for
performance reasons. Under the covers, Time is implemented in C and is
very fast, whereas DateTime is written in pure Ruby and is comparatively
slow.

Active Record Migrations 247

:time
It’s very, very rare that you want to use a :time datatype— perhaps
if you’re modeling an alarm clock. Rails will read the contents of the
database as hour, minute, and second values into a Time object with
dummy values for the year, month, and day.

:decimal
Older versions of Rails (prior to 1.2) did not support the fixed-precision
:decimal type and as a result many old Rails applications incorrectly used
:float datatypes. Floating-point numbers are by nature imprecise, so it is
important to choose :decimal instead of :float for most business-related
applications.

Tim says…
If you’re using a float to store values that need to be precise, such as
money, you’re a jackass. Floating point calculations are done in binary
rather than decimal, so rounding errors abound in places you wouldn’t
expect.

>> 0.1+0.2 == 0.3
=> false
>> BigDecimal('0.1') + BigDecimal('0.2') == BigDecimal('0.3')
=> true

:float
Don’t use floats to store currency values, or more accurately, any type of
data that needs fixed precision. Since floating-point numbers are pretty
much approximations, any single representation of a number as a float is
probably okay. However, once you start doingmathematical operations or
comparisons with float values, it is ridiculously easy to introduce difficult
to diagnose bugs into your application.

:integer and :string
There aren’t many gotchas that I can think of when it comes to integers
and strings. They are the basic data building blocks of your application,
and many Rails developers leave off the size specification, which results
in the default maximum sizes of 11 digits and 255 characters, respec-
tively. You should keep in mind that you won’t get an error if you try
to store values that exceed the maximum size defined for the database
column, which again, is 255 characters by default. Your string will simply

Active Record Migrations 248

get truncated. Use validations to make sure that user-entered data does
not exceed the maximum size allowed.

:text
There have been reports of text fields slowing down query performance
on some databases, enough to be a consideration for applications that
need to scale to high loads. If you must use a text column in a perfor-
mance-critical application, put it in a separate table.

Preserving Custom Data Types
If use of database-specific datatypes (such as :double, for higher
precision than :float) is critical to your project, use the config.active_-
record.schema_format = :sql setting in config/application.rb to make
Rails dump schema information in native SQL DDL format rather than
its own cross-platform compatible Ruby code, via the db/schema.rb file.

“Magic” Timestamp Columns

Rails does magic with datetime columns, if they’re named a certain way.
Active Record will automatically timestamp create operations if the table has
columns named created_at or created_on. The same applies to updates when
there are columns named updated_at or updated_on.
Note that created_at and updated_at should be defined as datetime, but if you
use t.timestamps then you don’t have to worry about what type of columns they
are.
Automatic timestamping can be turned off globally, by setting the following
variable in an initializer.

ActiveRecord::Base.record_timestamps = false

The preceding code turns off timestamps for all models, but record_timestamps
is class-inheritable, so you can also do it on a case-by-case basis by setting
self.record_timestamps to false at the top of specific model classes.

More Command-line Magic

A number of commonly used column type modifiers can be passed directly on
the command line. They are enclosed by curly braces and follow the field type:
For instance, running:

Active Record Migrations 249

$ rails g migration AddDetailsToProducts 'price:decimal{5,2}'
supplier:references{polymorphic}

will produce a migration that looks like this:

class AddDetailsToProducts < ActiveRecord::Migration[5.0]
def change

add_column :products, :price, :decimal, precision: 5, scale: 2
add_reference :products, :supplier, polymorphic: true

end
end

This particular magic is not a well documented area of Rails. It’s “dark magic”
if you will and fun to experiment with.

Active Record Migrations 250

6.3 Transactions

Rails normally tries to execute your migration inside of a transaction, if that
functionality is supported by your database. (Most do.) Occasionally, this
can cause an issue if you try to do something that doesn’t work inside of a
transaction. (Like adding certain kinds of indexes3.)
If you run into this kind of issue, you can turn off transactions for a particular
migration using the disable_ddl_transaction! class method.

class AddConcurrentIndexToBids < ActiveRecord::Migration[5.0]
disable_ddl_transaction!
def change

reversible do |dir|
dir.up do

execute "CREATE INDEX CONCURRENTLY index_auction_id
ON bids(auction_id)"

end
dir.down do

execute "DROP INDEX index_auction_id"
end

3https://www.postgresql.org/docs/9.1/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

https://www.postgresql.org/docs/9.1/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY
https://www.postgresql.org/docs/9.1/static/sql-createindex.html#SQL-CREATEINDEX-CONCURRENTLY

Active Record Migrations 251

6.4 Data Migration

So far we’ve only discussed using migration files to modify the schema of
your database. Inevitably, you will run into situations where you also need to
perform data migrations, whether in conjunction with a schema change or
not.

Using SQL

In most cases, you should craft your data migration in raw SQL using the
execute command that is available inside a migration class.
For example, say you had a phones table that kept phone numbers in their
component parts and later wanted to simplify your model by just having a
number column instead. You’d write a migration similar to this one:

class CombineNumberInPhones < ActiveRecord::Migration
def change

add_column :phones, :number, :string
reversible do |dir|

dir.up do
execute "UPDATE phones SET number =

CONCAT(area_code, prefix, suffix)"
end
dir.down do

code to undo that update, ugh...
might want to make this one Irreversible

end
end

remove_column :phones, :area_code
remove_column :phones, :prefix
remove_column :phones, :suffix

end
end

There is a naive alternative to using SQL in the example above that would be
more lines of code and significantly slower.

Active Record Migrations 252

Phone.find_each do |p|
p.number = p.area_code + p.prefix + p.suffix
p.save

end

I suppose a better Ruby-based solution would be to use Active Record’s
update_all method.

Phone.update_all("set number = concat(area_code, prefix, suffix)")

While I admit that it’s tempting to do that instead of hacking some SQL that
you might not be as comfortable with, the danger comes down the road as
your schema and model design continues to evolve. Although it’s unlikely in
this example, Phonemight not have the same configuration and behavior in the
future as it does today.
In the next section, we delve into how you protect yourself from that situation
by writing a simple, standalone Phone model in the migration script itself.

I can actually tell you from experience that introducing migration-specific
models can get messy and hard to debug very quickly. I strongly advise
sticking to raw SQL in data migrations whenever possible.

Migration Models

If you declare an Active Record model inside of a migration script, it’ll be
namespaced to that migration class.

class HashPasswordsOnUsers < ActiveRecord::Migration
class User < ActiveRecord::Base
end

def change
reversible do |dir|

dir.up do
add_column :users, :hashed_password, :string
User.reset_column_information
User.find_each do |user|
user.hashed_password = Digest::SHA1.hexdigest(user.password)
user.save!

Active Record Migrations 253

end
remove_column :users, :password

end

dir.down { raise ActiveRecord::IrreversibleMigration }
end

end
end

Why not use just your application model classes in the migration scripts
directly? As your schema evolves, older migrations that use model classes
directly can and will break down and become unusable. Properly namespacing
migration models prevent you from having to worry about name clashes with
your application’s model classes or ones that are defined in other migrations.

Durran says…
Note that Active Record caches column information on the first request
to the database, so if you want to perform a data migration immediately
after a migration you may run into a situation where the new columns
have not yet been loaded. This is a case where using reset_column_-
information can come in handy. Simply call this class method on your
model, and everything will be reloaded on the next request.

Database Adapter Helper Methods

The database adapter has a number of methods that facilitate data analysis
without involving the overhead of loading Active Record objects. Since they
can be called directly in the context of your migration, they can be pretty
convenient.

None of the following methods do any kind of typecasting for you. All
values returned will be in the form of a string.

select_all(sql)

Returns an ActiveRecord::Result on which you can call to_a to have an array of
hashes.

Active Record Migrations 254

>> select_all("SELECT * FROM users").to_a
=> [{ 'id' => '1', 'name' => 'Obie Fernandez' }...

select_rows(sql)

Similar to select_all, but returns an array of arrays (tuples) containing the
contents of each row in the result set.

>> select_rows("SELECT id, name FROM users")
=> [["1","obie"],["2","bob"],["3","cam"]]

select_one(sql)

Similar to select_all, but returns one row as a hash.

select_values(sql)

Returns an array of the first column in a select.

>> select_values("SELECT * FROM users")
=> ['1', '2', ...] # returns id column since it is first

select_value(sql)

Similar to select_values, but returns only the first value as a string. Useful for
executing functions, querying counts and doing other kinds of calculations
that return a single value.

>> select_value("SELECT answer FROM secret(life, universe, everything))
=> '42'

You might be wondering how to use these helper methods outside of
migrations. They’re available on connection, which is a class method of
every Active Record model.

Active Record Migrations 255

6.5 Database Schema

The file db/schema.rb is generated every time you migrate and reflects the lat-
est status of your database schema. The top of a schema file looks something
like this.

ActiveRecord::Schema.define(version: 20161123170510) do

create_table "auctions", force: :cascade do |t|
t.string "name"
t.text "description"
t.datetime "ends_at"
t.datetime "created_at", null: false
t.datetime "updated_at", null: false
t.datetime "closes_at"
t.integer "user_id"

end

It looks very similar to a migration!
Indeed, schema.rb uses the same API as migrations. However, you should never
edit db/schema.rb by hand because this file is auto-generated from the current
state of the database every time you do a migration.
Instead of editing schema.rb directly, you use the migrations feature of Active
Record described in this chapter to incrementally modify your database, which
has the side effect of regenerating this schema definition.
Rails’ schema definition provides the authoritative record of truth for the
latest version of your database schema. If you need to recreate your database
on another server, you should be using db:schema:load, not running all the
migrations from scratch.
It’s strongly recommended to check schema.rb into your version control sys-
tem. First of all, it helps to have one definitive schema definition around for
reference. Secondly, it gives you the capability to run rake db:schema:load to
create your database schema from scratch without having to run all migra-
tions from the beginning. That’s especially important because old migrations
have a tendency to break in difficult to understand ways.

Active Record Migrations 256

6.6 Database Seeding

The automatically created file db/seeds.rb is a default location for creating
seed data for your database. It was introduced in order to stop the practice
of inserting seed data in individual migration files, which makes sense if you
accept the premise that migrations should never be used for seeding example
or base data required by your application. It is executed with the rake db:seed
task (or created alongside the database when you run rake db:setup).
At its simplest, the contents of seed.rb is simply a series of create! statements
that generate baseline data for your application, whether it’s default or related
to configuration. For example, let’s add an admin user and some billing codes
to our time and expenses app:

User.create!(login: 'admin',
email: 'admin@example.com',
:password: '123', password_confirmation: '123',
authorized_approver: true)

client = Client.create!(name: 'Workbeast', code: 'BEAST')
client.billing_codes.create!(name: 'Meetings', code: 'MTG')
client.billing_codes.create!(name: 'Development', code: 'DEV')

Why use the bang version of the create methods? Because otherwise you won’t
find out if you had errors in your seed file. An alternative would be to use
first_or_create methods to make seeding idempotent.

c = Client.where(name: 'Workbeast', code: 'BEAST').first_or_create!
c.billing_codes.where(name: 'Meetings', code: 'MTG').first_or_create!
c.billing_codes.where(name: 'Development', code: 'DEV').first_or_create!

Another common seeding practice worth mentioning is calling delete_all prior
to creating new records, so that seeding does not generate duplicate records.
This practice avoids the need for idempotent seeding routines and lets you be
very secure about exactly what your database will look like after seeding.)

User.delete_all
User.create!(login: 'admin', ...

Client.delete_all
client = Client.create!(name: 'Workbeast', ...

Active Record Migrations 257

Carlos says…
I typically use the seed.rb file for data that is essential to all environ-
ments, including production.
For dummy data that will be only used on development or staging, I
prefer to create custom rake tasks under the lib/tasks directory, for ex-
ample lib/tasks/load_dev_data.rake. This helps keep seed.rb clean and
free from unnecessary conditionals, like unless Rails.env.production?

Active Record Migrations 258

6.7 Database-Related Tasks

The following command-line tasks are included by default in boilerplate Rails
projects.

db:create and db:create:all

Create the database defined in config/database.yml for the current Rails.env.
If the current environment is development, Rails will create both the local
development and test databases.(Or create all of the local databases defined
in config/database.yml in the case of db:create:all.)

db:drop and db:drop:all

Drops the database for the current RAILS_ENV. If the current environment is
development, Rails will drop both the local development and test databases.
(Or drops all of the local databases defined in config/database.yml in the case
of db:drop:all.)

db:forward and db:rollback

The db:rollback task moves your database schema back one version. Similarly,
the db:forward task moves your database schema forward one version and is
typically used after rolling back.

db:migrate

Applies all pending migrations. If a VERSION environment variable is provided,
then db:migratewill apply pendingmigrations through the migration specified,
but no further. The VERSION is specified as the timestamp portion of the
migration file name.

example of migrating up with param
$ rails db:migrate VERSION=20130313005347
== CreateUsers: migrating ==
-- create_table(:users)

-> 0.0014s
== CreateUsers: migrated (0.0015s) =================================

If the VERSION provided is older than the current version of the schema, then
this task will actually roll back the newer migrations.

Active Record Migrations 259

example of migrating down with param
$ rails db:migrate VERSION=20130312152614
== CreateUsers: reverting ==
-- drop_table(:users)

-> 0.0014s
== CreateUsers: reverted (0.0015s) =================================

db:migrate:down

This task will invoke the down method of the specified migration only. The
VERSION is specified as the timestamp portion of the migration file name.

$ rails db:migrate:down VERSION=20130316172801
== CreateClients: reverting ==
-- drop_table(:clients)

-> 0.0028s
== CreateClients: reverted (0.0054s) ===============================

db:migrate:up

This task will invoke the upmethod of the specified migration only. The VERSION
is specified as the timestamp portion of the migration file name.

$ rails db:migrate:down VERSION=20130316172801
== CreateClients: migrating ==
-- create_table(:clients)

-> 0.0260s
== CreateClients: migrated (0.0261s) ===============================

db:migrate:redo

Executes the downmethod of the latest migration file, immediately followed by
its up method. This task is typically used right after correcting a mistake in
the up method or to test that a migration is working correctly.

Active Record Migrations 260

$ rails db:migrate:redo
== AddTimesheetsUpdatedAtToUsers: reverting ========================
-- remove_column(:users, :timesheets_updated_at)

-> 0.0853s
== AddTimesheetsUpdatedAtToUsers: reverted (0.0861s) ===============

== AddTimesheetsUpdatedAtToUsers: migrating ========================
-- add_column(:users, :timesheets_updated_at, :datetime)

-> 0.3577s
== AddTimesheetsUpdatedAtToUsers: migrated (0.3579s) ===============

db:migrate:reset

Resets your database for the current environment using your migrations (as
opposed to using schema.rb).

db:migrate:status

Displays the status of all existing migrations in a nicely formatted table. It will
show up for migrations that have been applied, and down for those that haven’t.
This task is useful in situations where you might want to check for recent
changes to the schema before actually applying them (right after pulling from
the remote repository, for example).

$ rails db:migrate:status

database: timesheet_development

Status Migration ID Migration Name
--

up 20130219005505 Create users
up 20130219005637 Create timesheets
up 20130220001021 Add user id to timesheets

down 20130220022039 Create events

db:reset and db:setup

The db:setup creates the database for the current environment, loads the
schema from db/schema.rb, then loads the seed data. It’s used when you’re
setting up an existing project for the first time on a development workstation.
The similar db:reset task does the same thing except that it drops and
recreates the database first.

Active Record Migrations 261

db:schema:dump

Creates a db/schema.rb file that can be portably used against any DB supported
by Active Record. Note that creation (or updating) of schema.rb happens
automatically any time you migrate.

db:schema:load

Loads schema.rb file into the database for the current environment.

db:seed

Loads the seed data from db/seeds.rb as described in this chapter’s section
“Database Seeding.”

db:structure:dump

Dumps the database structure to a SQL file containing raw DDL code in a
format corresponding to the database driver specified in database.yml for your
current environment.

$ rake db:structure:dump

$ cat db/development_structure.sql
CREATE TABLE `avatars` (

`id` int(11) NOT NULL AUTO_INCREMENT,
`user_id` int(11) DEFAULT NULL,
`url` varchar(255) COLLATE utf8_unicode_ci DEFAULT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

...

I’ve rarely needed to use this task. It’s possible that some Rails teams working
in conjunction with DBAs that exercise strict control over their application’s
database schemas will need this task on a regular basis.

db:test:prepare

Checks for pendingmigrations and load the test schema by doing a db:schema:dump
followed by a db:schema:load.
This task gets used very often during active development whenever you’re
running specs or tests without using Rake. (Standard spec-related Rake tasks
run db:test:prepare automatically for you.)

Active Record Migrations 262

db:version

Returns the timestamp of the latest migration file that has been run. Works
even if your database has been created from db/schema.rb, since it contains the
latest version timestamp in it:

ActiveRecord::Schema.define(version: 20130316172801)

Active Record Migrations 263

6.8 Conclusion

This chapter covered the fundamentals of Active Record migrations. In the fol-
lowing chapter, we continue our coverage of Active Record by learning about
how model objects are related to each other and interact via associations.

7. Active Record Associations
Any time you can reify something, you can create something that
embodies a concept, it gives you leverage to work with it more
powerfully. That’s exactly what’s going on with has_many :through.
—Josh Susser

Active Record associations let you declaratively express relationships between
model classes. The power and readability of the Associations API is an
important part of what makes working with Rails so special.
This chapter covers the different kinds of Active Record associations available
while highlighting use cases and available customizations for each of them.We
also take a look at the classes that give us access to relationships themselves.

Active Record Associations 265

7.1 The Association Hierarchy

Associations typically appear as methods on Active Record model objects. For
example, the method timesheets might represent the timesheets associated
with a given user.

user.timesheets

People used to get confused about the type of objects returned by these
association methods because they have a way of masquerading as plain
old Ruby objects and arrays. Rails 4 dropped the charade. Inspecting any
association now reveals that it is in fact a proxy object.

>> user.timesheets
=> #<ActiveRecord::Associations::CollectionProxy []>

The CollectionProxy acts like a middleman between the object that owns the
association and the actual associated object. Fortunately, it’s not the Ruby way
to care about the actual class of an object. What messages an object responds
to is a lot more significant.
But before we get any deeper into the details of the association proxies, let’s
talk about the relationships that Active Record lets you model, starting with
the most common kind.

Active Record Associations 266

7.2 One-to-Many Relationships

An example of one-to-many relationships in our sample code is the association
between the User, Timesheet, and ExpenseReport classes:

class User < ActiveRecord::Base
has_many :timesheets
has_many :expense_reports

end

Timesheets and expense reports should be linked in the opposite direction as
well, so that it is possible to reference the user to which a timesheet or expense
report belongs.

class Timesheet < ActiveRecord::Base
belongs_to :user

end

class ExpenseReport < ActiveRecord::Base
belongs_to :user

end

When these relationship declarations are executed, Rails uses some metapro-
gramming magic to dynamically add code to your models. In particular, proxy
collection objects are created that let you manipulate the relationship easily.

Don’t create associations that have the same name as instance meth-
ods of ActiveRecord::Base. Since the association adds a method with
that name to its model, it will override the inherited method and break
things. For instance, attributes and connection would make really bad
choices for association names.

If I whip up the rails console I should be able to add a new blank timesheet to
my user and then check to make sure it’s there:

Active Record Associations 267

>> obie = User.find(1)
=> #<User id: 1...>
>> obie.timesheets << Timesheet.new
=> #<ActiveRecord::Associations::CollectionProxy [#<Timesheet id: 1 ...]>
>> obie.timesheets
=> #<ActiveRecord::Associations::CollectionProxy [#<Timesheet id: 1 ...]>

Adding Associated Objects to a Collection

Notice that the Timesheet object gains an id immediately. Appending an object
to a has_many collection automatically saves that object, that is, unless the
parent object (the owner of the collection) is not yet stored in the database.
Let’s make sure that’s the case using Active Record’s reload method, which
re-fetches the attributes of an object from the database:

>> obie.timesheets.reload
=> #<ActiveRecord::Associations::CollectionProxy [#<Timesheet id: 1, user_id: 1 ...]>

There it is. The foreign key, user_id, was automatically set by the << method.
It takes one or more association objects to add to the collection, and since
it flattens its argument list and inserts each record, push and concat behave
identically.
I could have used a create method on the association proxy, and it would have
worked essentially the same way:

>> obie.timesheets.create
=> #<ActiveRecord::Associations::CollectionProxy [#<Timesheet id: 1, user_id: 1 ...]>

Active Record Associations 268

7.3 Belongs to Associations

The belongs_to class method expresses a relationship from one Active Record
object to a single associated object for which it has a foreign key attribute. The
trick to remembering whether a class “belongs to” another one is considering
which has the foreign key column in its database table.
Assigning an object to a belongs_to association will set its foreign key attribute
to the owner object’s id but will not save the record to the database automat-
ically, as in the following example:

>> timesheet = Timesheet.create
=> #<Timesheet id: 1409, user_id: nil...>
>> timesheet.user = obie
=> #<User id: 1, login: "obie"...>
>> timesheet.user.login
=> "obie"
>> timesheet.reload
=> #<Timesheet id: 1409, user_id: nil...>

Methods

Defining a belongs_to relationship on an Active Record class creates accessor
methods with the same name on its model instances, plus a handful of useful
additional methods.

Reloading

Just invoking the association method will query the database (if necessary)
and return an instance of the related object. If you want to explicitly reload
the related object from the database, Active Record provides a reload_<asso-
ciation_name> method for that purpose.
In the following capture from my console, I query for a timesheet and take a
peek at the object_id of its related user. Notice that the second time I invoke
the association via user on line 5, the object_id remains the same because
the related object has been cached. However, invoking reload_user on line 7
reloads the relationship, and I get a new instance of user.

Active Record Associations 269

1 >> ts = Timesheet.first
2 => #<Timesheet id: 3, user_id: 1...>
3 >> ts.user.object_id
4 => 70279541443160
5 >> ts.user.object_id
6 => 70279541443160
7 >> ts.reload_user && ts.user.object_id
8 => 70279549419744

Building and Creating Related Objects via the Association

Besides the accessor and reload methods, during the belongs_to method’s
metaprogramming it also adds factory methods for creating new instances
of the related class and attaching them via the foreign key automatically.
Following a common pattern, the build_<association_name> method does not
save the new object, but the create_<association_name> method does. Both
methods take an optional hash of attribute parameters with which to initialize
the newly instantiated objects. Both are essentially one-line convenience
methods, which I don’t find particularly useful. It just doesn’t usually make
sense to create instances in that direction!
To illustrate, I’ll simply show the code for building a User from a Timesheet or
creating a Client from a BillingCode, neither of which would ever happen in
real code because it just doesn’t make sense to do so:

>> ts = Timesheet.first
=> #<Timesheet id: 3, user_id: 1...>

>> ts.build_user
=> #<User id: nil, email: nil...>

>> bc = BillingCode.first
=> #<BillingCode id: 1, code: "TRAVEL"...>

>> bc.create_client
=> #<Client id: 1, name=>nil, code=>nil...>

You’ll probably find yourself creating instances of belonging objects from the
has_many side of the relationship much more often.

Options

The following options can be passed in a hash to the belongs_to method to
customize the behavior of the association.

Active Record Associations 270

autosave

Whether to automatically save the owning record whenever this record is
saved. Defaults to false, because this behavior is usually not necessary. With
the exception of counter cache columns, changing a child does not generally
mean changes on the parent object.
If true, always save the associated object or destroy it if marked for de-
struction, when saving the parent object. If false, never save or destroy the
associated object.

By default, associated objects are only saved if they are new records.

class_name

Assume for a moment that we wanted to establish another belongs_to rela-
tionship from the Timesheet class to User, this time modelling the relationship
to the approver of the timesheet. You might start by adding an approver_id
column to the timesheets table and an authorized_approver column to the users
table via a migration. Then you would add a second belongs_to declaration to
the Timesheet class:

class Timesheet < ActiveRecord::Base
belongs_to :approver
belongs_to :user
...

Active Record won’t be able to figure out what class you’re trying to link with
just the information provided because you’ve (legitimately) acted against the
Rails convention of naming a relationship according to the related class. It’s
time for a :class_name parameter.

class Timesheet < ActiveRecord::Base
belongs_to :approver, class_name: 'User'
belongs_to :user
...

counter_cache

Use this option to make Rails automatically update a counter field on the
associated object with the number of belonging objects. The option value can
be true, in which case the pluralized name of the belonging class plus _count
is used, or you can supply your own column name to be used:

Active Record Associations 271

counter_cache: true
counter_cache: :number_of_children

If a significant percentage of your association collections will be empty at
any given moment, you can optimize performance at the cost of some extra
database storage by using counter caches liberally. The reason is that when
the counter cache attribute is at zero, Rails won’t even try to query the
database for the associated records!

The value of the counter cache column must be set to zero by default
in the database! Otherwise the counter caching won’t work at all. It’s
because the way that Rails implements the counter caching behavior is
by adding a simple callback that goes directly to the database with an
UPDATE command and increments the value of the counter. If you’re not
careful, and neglect to set a default value of 0 for the counter cache
column on the database, or misspell the column name, the counter
cache will still seem to work! There is a magic method on all classes
with has_many associations called collection_count, just like the counter
cache. It will return a correct count value based on the in-memory
object, even if you don’t have a counter cache option set or the counter
cache column value is null!

In the case that a counter cache was altered on the database side, you may
tell Active Record to reset a potentially stale value to the correct count via the
class method reset_counters. Its parameters are the id of the object and a list
of association names.

Timesheet.reset_counters(5, :weeks)

It might feel a little more intuitive to put the counter_cache op-
tion on the has_many side of the association. However, doing so
(at least in Rails 5.0.1) will result in a cryptic error message
like ActiveModel::MissingAttributeError: can't write unknown attribute
'true'. Worse, it is raised from the bowels of ActiveRecord and not
from the line in your code where you made the mistake. Same goes for
other invalid options. Just something to file away in the back of your
mind in case it happens to you.

Active Record Associations 272

dependent

Specifies a rule that the associated owner record should be destroyed or just
deleted from the database, depending on the value of the option being :destroy
or :delete, respectively.
The :destroy option will cause the dependent’s callbacks to fire, whereas
:delete will not.
Usage of this option might make sense in a has_one / belongs_to pairing.
However, it is really unlikely that you want this behavior on has_many /
belongs_to relationship; it just doesn’t seem to make sense to code things that
way.

If an owner record has its :dependent option set on the corresponding
has_many association, then destroying one associated record will have
the ripple effect of destroying all of its siblings.

foreign_key

Specifies the name of the foreign key column that should be used to find the
associated object. Rails will normally infer this setting from the name of the
association, by adding _id to it. You can override the inferred foreign key name
with this option if necessary.

without the explicit option, Rails would guess administrator_id
belongs_to :administrator, foreign_key: 'admin_user_id'

inverse_of

Explicitly declares the name of the inverse association in a bi-directional
relationship. Considered an optimization, use of this option enables Rails to
return the same instance of an object no matter which side of the relationship
it is accessed from.
Covered in detail in Section “inverse_of: name_of_belongs_to_association”.

optional

See required.

Active Record Associations 273

polymorphic

Set the :polymorphic option to true in order to specify that an object is related
to its association in a polymorphic way. That is the Rails way of saying that
the type (class name) of the related object is stored in the database along
with its foreign key. Making a belongs_to relationship polymorphic abstracts
the association so that any compatible model in the system can fill it.
In a sense, polymorphic associations let you trade relational integrity for
convenience in child relationships that are reused across your application.
Common examples are models such as photo attachments, comments, notes,
line items, and so on.

One developer’s sense of convenience is another’s sense of abuse.

Let’s illustrate by writing a Comment class that attaches to its subjects polymor-
phically. We’ll associate it to both expense reports and timesheets. Listing 7.1
has the schema information in migration code, followed by the code for the
classes involved. Notice the :subject_type column, which stores the class name
of the associated class.

Listing 7.1: Comment class using polymorphic belongs to relationship

create_table :comments do |t|
t.text :body
t.references :subject, polymorphic: true

references can be used as a shortcut for following two statements
t.integer :subject_id
t.string :subject_type

t.timestamps
end

class Comment < ActiveRecord::Base
belongs_to :subject, polymorphic: true

end

class ExpenseReport < ActiveRecord::Base
belongs_to :user
has_many :comments, as: :subject

end

Active Record Associations 274

class Timesheet < ActiveRecord::Base
belongs_to :user
has_many :comments, as: :subject

end

As you can see in the ExpenseReport and Timesheet classes of Listing 7.1, there
is a corresponding syntax where you give Active Record a clue that the
relationship is polymorphic by specifying as: :subject. We haven’t covered
has_many’s options yet in this chapter, and polymorphic relationships have their
own section in Chapter 9, “Advanced Active Record.”

primary_key

You should never need to use this option, except perhaps with strange legacy
database schemas. It enables you to specify a surrogate column on the owning
record to use as the target of the foreign key, instead of the usual primary key.

required

Require associated object to be present. (Defaults to true.)
In Rails 5, belongs_to associations automatically add a validation requiring
the associated record to be present. This makes sense in the vast majority
of cases—you don’t want to save an orphan record to the database. It’s also
becoming more and more acceptable in the Rails world to put foreign-key
constraints on relationships, which means that trying to save an object with a
missing belongs to association could trigger a failure at the database level.
If you’re modeling an optional belongs to association then remember to set
this option to false (or set optional: true.)
Interestingly, this option was introduced in Rails 4 but defaulted to false. You
could also get the same behavior on older versions of Rails but had to opt in
by using validates_presence_of and referencing the association name.

If you’re migrating a large application to Rails 5 and
really want to turn off this behavior, you’re in luck. Go
into config/initializers/new_framework_defaults.rb and set
config.active_record.belongs_to_required_by_default to false.

touch

If set to true, touches the owning record’s updated_at timestamp.

Active Record Associations 275

class Timesheet < ActiveRecord::Base
belongs_to :user, touch: true
...

Also works with a specific timestamp column specified by column_name if it is
supplied. This option is helpful for caching schemes where timestamps are
used to invalidate cached view content. The column_name option is particularly
useful here if you want to do fine-grained fragment caching of the owning
record’s view.
For example, let’s set the foundation for doing just that with the User /
Timesheet association:

$ rails generate migration AddTimesheetsUpdatedAtToUsers timesheets_updated_at:datetime
invoke active_record
create db/migrate/20130413175038_add_timesheets_updated_at_to_users.rb

$ rake db:migrate
== AddTimesheetsUpdatedAtToUsers: migrating ==================================
-- add_column(:users, :timesheets_updated_at, :datetime)

-> 0.0005s
== AddTimesheetsUpdatedAtToUsers: migrated (0.0005s) =========================

class Timesheet < ActiveRecord::Base
belongs_to :user, touch: 'timesheets_updated_at'
...

Learn about caching in Chapter 17, “Caching and Performance.”

Note that the touch operation is a straight to the database UPDATE oper-
ation. Since it doesn’t rely on normal Active Record update operations,
you can’t rely on touch behavior to trigger validations or passively save
other attributes you may have changed on the associated object.

validate

Defaults to false on belongs_to associations, contrary to its counterpart setting
on has_many. Tells Active Record to validate the owner record but only in
circumstances where it would normally save the owning record, such as when
the record is new and a save is required in order to get a foreign key value.

Active Record Associations 276

Tim says…
Use validates_associated if you want association validation outside of
automatic saving.

Scopes

Sometimes the need arises to have a relationship that must satisfy certain
conditions in order for it to be valid. To facilitate this, Rails allows us to supply
chain query criteria, or a “scope”, to a relationship definition as an optional
second block argument. Active Record scopes are covered in detail in Chapter
9.

where(*conditions)

To illustrate supplying a condition to a belongs_to relationship, let’s assume
that the users table has a column named approver:

class Timesheet < ActiveRecord::Base
belongs_to :approver,

-> { where(approver: true) },
class_name: 'User'

...
end

Now in order for the assignment of a user to the approver field to work, that
user must be authorized. I’ll go ahead and add a spec that both indicates the
intention of my code and lets me show it in action. First, I turn my attention
to spec/models/timesheet_spec.rb

require 'spec_helper'

describe Timesheet do
subject(:timesheet) { Timesheet.create }

describe '#approver' do
it 'may have a user associated as an approver' do

timesheet.approver = User.create(approver: true)
expect(timesheet.approver).to be

end
end

end

Active Record Associations 277

It’s a good start, but I also want to make sure something happens to prevent
the system from assigning a non-authorized user to the approver field, so I add
another spec:

it 'cannot be associated with a non-authorized user' do
timesheet.approver = User.create(approver: false)
expect(timesheet.approver).to_not be

end

I have my suspicions about the validity of that spec, though, and as I half-
expected, it doesn’t really work the way I want it to work:

1) Timesheet#approver cannot be associated with a non-authorized user
Failure/Error: expect(timesheet.approver).to_not be

expected #<User id: 1, approver: false ...> to evaluate to false

The problem is that Active Record (for better or worse, probably worse) allows
me to make the invalid assignment. The scope option only applies during the
query to get the association back from the database. I’ll have some more work
ahead of me to achieve the desired behavior, but I’ll go ahead and prove out
Rails’ actual behavior by fixing my specs. I’ll do so by leveraging reload_-
<association>, which tells the parent of the association to reload its target
object:

describe Timesheet do
subject(:timesheet) { Timesheet.create }

describe '#approver' do
it 'may have a user associated as an approver' do

timesheet.approver = User.create(approver: true)
timesheet.save
timesheet.reload_approver
expect(timesheet.approver(true)).to be

end

it 'cannot be associated with a non-authorized user' do
timesheet.approver = User.create(approver: false)
timesheet.save
timesheet.reload_approver
expect(timesheet.approver(true)).to_not be

end
end

end

Active Record Associations 278

Those two specs do pass, but note that I went ahead saved the timesheet, since
just assigning a value to it will not save the record.
The takeaway is that providing a scope on relationships never affects the
assignment of associated objects, only how those objects are read back
from the database. To enforce the rule that a timesheet approver must be
authorized, you’d need to add a before_save callback to the Timesheet class
itself. Callbacks are covered in detail at the beginning of Chapter 9, “Advanced
Active Record.”

includes

In previous versions of Rails, relationship definitions had an :include option,
that would take a list of second-order association names (on the owning
record) that should be eagerly-loaded when the current object was loaded.
As of Rails 4, the way to do this is supplying the includes clause as part of the
scope argument.

belongs_to :post, -> { includes(:author) }

In general, this technique is used to knock N+1 select operations down to N
plus the number of associations being included. It is rare to use this technique
on a belongs_to, rather than on the has_many side.
If necessary, due to conditions or orders referencing tables other than the
main one, a SELECT statement with the necessary LEFT OUTER JOINS will be
constructed on the fly so that all the data needed to construct a whole object
graph is queried in one big database request.
With judicious use of using a relationship scope to include second-order
associations and careful benchmarking, you can sometimes improve the per-
formance of your application dramatically, mostly by eliminating N+1 queries.
On the other hand, pulling lots of data from the database and instantiating
large object trees can be very costly, so using an includes scope is no “silver
bullet.” As they say, your mileage may vary.

select

Replaces the SQL select clause that normally is generated when loading this
association, which usually takes the form table_name.*. This just provides
additional flexibility that it normally never needed.

Active Record Associations 279

readonly

Locks down the reference to the owning record so that you can’t modify it. The-
oretically, this might make sense in terms of constraining your programming
contexts very specifically, but I’ve never had a use for it. Still, for illustrative
purposes, here is an example where I’vemade the user association on Timesheet
read-only:

class Timesheet < ActiveRecord::Base
belongs_to :user, ~> { readonly }
...

>> t = Timesheet.first
=> #<Timesheet id: 1, submitted: nil, user_id: 1...>

>> t.user
=> #<User id: 1, login: "admin"...>

>> t.user.save
ActiveRecord::ReadOnlyRecord: ActiveRecord::ReadOnlyRecord

Active Record Associations 280

7.4 Has Many Associations

Just like it sounds, the has_many association enables you to define a relationship
in which one model has many other models that belong to it. The sheer
readability of code constructs such as has_many is a major reason that people
fall in love with Rails.
The has_many class method is often used without additional options. If Rails can
guess the type of class in the relationship from the name of the association,
no additional configuration is necessary. This bit of code should look familiar
by now:

class User < ActiveRecord::Base
has_many :timesheets
has_many :expense_reports

The names of the associations can be singularized and match the names of
models in the application, so everything works as expected.

Methods

Fundamentally, has_many association proxies are fancy wrappers around a
Ruby array and have all of a normal array’s methods. Named scopes and all
of ActiveRecord::Base’s class methods and Arel relations are also available on
association collections, including find, order, where, etc.

user.timesheets.where(submitted: true).order('updated_at desc')
user.timesheets.late # assuming a scope :late defined on the Timesheet class

The following methods of CollectionProxy are available to has_many association
collections.

<<(*records) and create(attributes = {})

Both methods will add either a single associated object or many, depending on
whether you pass them an array or not. They both also trigger the :before_add
and :after_add callbacks (covered in this chapter’s options section for has_-
many).
Finally, the return value behavior of both methods varies wildly. The create
method returns the new instance created, which is what you’d expect given
its counterpart in ActiveRecord::Base. On the other hand, the <<method returns

Active Record Associations 281

the association proxy, which enables chaining and is also natural behavior for
a Ruby array.

Somewhat unfortunately, the << method will return false and not
itself if any of the records being added causes the operation to fail.
Therefore, you shouldn’t depend on the return value of << being
something on which you can continue chaining additional methods.

any? and many?

The any? method behaves like its Enumerable counterpart if you give it a
block, otherwise it’s the opposite of empty?. Its companion method many?, which
is an ActiveSupport extension to Enumerable, returns true if the size of the
collection is greater than one, or if a block is given, if two or more elements
match the supplied criteria.

average(column_name, options = {})

Convenience wrapper for calculate(:average, ...)

build(attributes={}, &block)

Traditionally, the build method has corresponded to the new method of Active
Record classes, except that it automatically sets the owner’s foreign key and
appends it to the association collection in one operation. However, as of Rails
2.2, the new method has the same behavior and probably should be used
instead of build.

user.timesheets.build(attributes)
user.timesheets.new(attributes) # same as calling build

One possible reason to still use build is that as a convenience, if the
attributes parameter is an array of hashes (instead of just one), then
build executes for each one. However, you would usually accomplish
that kind of behavior using accepts_nested_attributes_for on the own-
ing class, covered in Chapter 11, “All About Helpers”, in the section
about fields_for.

Active Record Associations 282

calculate(operation, column_name, options = {})

Provides aggregate (:sum, :average, :minimum and :maximum) values within the
scope of associated records. Covered in detail in Chapter 9, “Advanced Active
Record,” in the section about Calculation Methods.

clear

The clearmethod is similar to invoking delete_all, but instead of returning an
array of deleted objects, it is chainable.

count(column_name=nil, options={})

Counts all associated records in the database. The first parameter, column_name
gives you the option of counting on a column instead of generating COUNT(*) in
the resulting SQL. If the :counter_sql option is set for the association, it will
be used for the query; otherwise you can pass a custom value via the options
hash of this method.
Assuming that no :counter_sql or :finder_sql options are set on the associa-
tion, nor passed to count, the target class’s count method is used, scoped to
only count associated records.

create(attributes, &block) and create!(attributes, &block)

Instantiates a new record with its foreign key attribute set correctly, adds the
new record to the association collection, and then saves it, all in one method
call. The bang variant raises Active::RecordInvalid if saving fails, while the
non-bang variant returns true or false, as you would expect it to based on the
behavior of create methods elsewhere in Active Record.
The owning record must be saved in order to use create, otherwise an
ActiveRecord::RecordNotSaved exception is raised.

>> User.new.timesheets.create
ActiveRecord::RecordNotSaved: You cannot call create unless the parent is saved

If a block is passed to create or create!, it will yield the newly-created instance
after the passed-in attributes are assigned but before saving the record to the
database.

Active Record Associations 283

delete(*records) and delete_all

The delete and delete_all methods are used to sever specified associations or
all of them, respectively. Both methods operate transactionally.
Invoking delete_all executes a SQL UPDATE that sets foreign keys for all cur-
rently associated objects to nil, effectively disassociating them from their
parent.

The names of the delete and delete_all methods can be misleading.
By default, they don’t delete anything from the database—they only
sever associations by clearing the foreign key field of the associated
record. This behavior is related to the :dependent option, which defaults
to :nullify. If the association is configured with the :dependent option
set to :delete or :destroy, then the associated records will actually be
deleted from the database.

destroy(*records) and destroy_all

The destroy and destroy_all methods are used to remove specified associa-
tions from the database or all of them, respectively. Both methods operate
transactionally.
The destroy_all method takes no parameters; it’s an all or nothing affair.
When called, it begins a transaction and invokes destroy on each object in the
association, causing them all to be deleted from the database with individual
DELETE SQL statements.

There are load issues to consider if you plan to use destroy_all with
large association collections, since many objects will be loaded into
memory at once.

empty?

Simply calls size.zero?

find(id)

Find an associated record by id, a really common operation when dealing with
nested RESTful resources. Raises an ActiveRecord::RecordNotFound exception if
either the id or foreign_key of the owner record is not found.

Active Record Associations 284

first(*args)

Returns the first associated record. Passing first an integer argument mimics
the semantics of Ruby’s Array#first, returning that number of records.

>> c = Client.first
=> #<Client id: 1, name: "Taigan", ...>
>> c.billing_codes.first(2)
=> [#<BillingCode id: 1, client_id: 1, code: "MTG"...>,

#<BillingCode id: 2, client_id: 1, code: "DEV"...>]

If you’re a Rails 5 hipster, you can use this method’s cooler alias take.

ids

Returns an array of primary keys for the associated objects by hitting the
database with a pluck operation.

include?(record)

Checks to see if the supplied record exists in the association collection and
that it still exists in the underlying database table.

last(*args)

Returns the last associated record. Refer to the description of first earlier
in this section for more details—it behaves exactly the same except for the
obvious.

length

Returns the size of the collection by loading it (if necessary) and calling size
on the array.

maximum(column_name, options = {})

Convenience wrapper for calculate(:maximum, ...). Covered in detail in Chap-
ter 9, “Advanced Active Record,” in the section “Calculation Methods.”

Active Record Associations 285

minimum(column_name, options = {})

Convenience wrapper for calculate(:minimum, ...). Covered in detail in Chap-
ter 9, “Advanced Active Record”, in the section “Calculation Methods.”

new(attributes, &block)

Instantiate a new record with its foreign key attribute set to the owner’s id
and add it to the association collection, in one method call.

pluck(*column_names)

Returns an array of attribute values. Covered in detail in Chapter 9, “Advanced
Active Record,” in the section about Calculation Methods.

replace(other_array)

Replaces the collection of records currently inside the proxy with other_array.
Works by deleting objects that exist in the current collection, but not in
other_array, and inserting (using concat) objects that don’t exist in the current
collection but do exist in other_array.

select(select=nil, &block)

The select method enables the specification of one or more columns to be
selected for an association result set.

>> user.timesheets.select(:submitted).to_a
=> [#<Timesheet id: nil, submitted: false>,

#<Timesheet id: nil, submitted: true>]
>> user.timesheets.select([:id,:submitted]).to_a
=> [#<Timesheet id: 1, submitted: false>,

#<Timesheet id: 2, submitted: true>]

Only attributes specified will be populated in the resulting objects! For
instance, continuing the first example, trying to access updated_at on any
of the returned timesheets results in an ActiveModel::MissingAttributeError
exception being raised.

Active Record Associations 286

>> timesheet = user.timesheets.select(:submitted).first
=> #<Timesheet id: nil, submitted: false>
>> timesheet.updated_at
ActiveModel::MissingAttributeError: missing attribute: updated_at

One of the main reasons to use this method is to perform calculations in the
database. If you’re doing that and still need a complete object to work with,
pass :* as the first argument.

>> user.timesheets.select(:*, "calc_something(col1, col2) as delta").to_a
=> [#<Timesheet id: 1, ..., delta: 1234>,

Alternatively, passing a block to the select method behaves similarly to
Array#select. The result set from the database scope is converted into an
array of objects and iterated through using Array#select, including only objects
where the specified block returns true.

size

If the collection has already been loaded or its owner object has never been
saved, the sizemethod simply returns the size of the current underlying array
of associated objects.
Otherwise, a SELECT COUNT(*) query is executed to get the size of the associated
collection without having to load any objects.

A number of configuration options can affect the behavior of the size
method. For instance, the query is bounded to the :limit option of the
association, if there is any set. Also, if there is a counter_cache option
set on the association, then the value of the counter cache attribute on
the parent is used instead of executing a database query.

When you know that you are starting from an unloaded state and it’s likely
that there are associated records in the database that you will need to load no
matter what, it’s more efficient to use length instead of size.
Some association options, such as :group and :uniq, come into play when
calculating size—basically they will always force all objects to be loaded from
the database so that the resulting size of the association array can be returned.

sum(column_name, options = {})

Convenience wrapper for calculate(:sum, ...). Covered in detail in Chapter
9, “Advanced Active Record,” in the section “Calculation Methods.”

Active Record Associations 287

uniq

Iterates over the target collection and populates an Array with the unique val-
ues present. Keep in mind that equality of Active Record objects is determined
by identity, meaning that the value of the id attribute is the same for both
objects being compared.

Options

Despite the ease of use of has_many, there is a surprising amount of power
and customization possible for those who know and understand the options
available.

after_add

Called after a record is added to the collection via the << method. It is not
triggered by the collection’s createmethod, so careful consideration is needed
when relying on association callbacks. A lambda callback will get called
directly, versus a symbol, which correlates to a method on the owning record,
which takes the newly-added child as a parameter. It’s also possible to pass
an array of lambda or symbols.
Add callback method options to a has_many by passing one or more symbols
corresponding to method names or Proc objects. See Listing 7.2 in the
:before_add option for an example.

after_remove

Called after a record has been removed from the collection with the delete
method. A lambda callback will get called directly, versus a symbol, which
correlates to a method on the owning record, which takes the newly-added
child as a parameter. It’s also possible to pass an array of lambda or symbols.
See Listing 7.2 in the :before_add option for an example.

as

Specifies the polymorphic belongs_to association to use on the related class.
(See Chapter 9, “Advanced Active Record,” for more about polymorphic
relationships.)

Active Record Associations 288

autosave

Whether to automatically save all modified records in an association collection
when the parent is saved. Defaults to false, but note that normal Active Record
behavior is to save new associations records automatically when the parent is
saved.
If true, associated objects are destroyed if marked for destruction when saving
the parent object.

before_add

Triggered when a record is added to the collection via the << method.
(Remember that concat and push are aliases of <<.)
A lambda callback will get called directly, versus a symbol, which correlates
to a method on the owning record, which takes the newly-added child as a
parameter. It’s also possible to pass an array of lambda or symbols.
Raising an exception in the callback will stop the object from getting added to
the collection. (Basically, this is because the callback is triggered right after
the type mismatch check, and there is no rescue clause to be found inside <<.)

Listing 7.2: A simple example of :before—add callback usage

has_many :unchangable_posts,
class_name: "Post",
before_add: :raise_exception

private

def raise_exception(object)
raise "You can't add a post"

end

Of course, that would have been a lot shorter code using a Proc since it’s a
one liner. The owner parameter is the object with the association. The record
parameter is the object being added.

has_many :unchangable_posts,
class_name: "Post",
before_add: ->(owner, record) { raise "Can't do it!" }

One more time, with a lambda, which doesn’t check the arity of block
parameters:

Active Record Associations 289

has_many :unchangable_posts,
class_name: "Post",
before_add: lambda { raise "You can't add a post" }

before_remove: callback

Called before a record is removed from a collection with the delete method.
See before_add for more information. As with :before_add, raising an exception
stops the remove operation.

class User < ActiveRecord::Base
has_many :timesheets,

before_remove: :check_timesheet_destruction,
dependent: :destroy

protected

def check_timesheet_destruction(timesheet)
if timesheet.submitted?

raise TimesheetError, "Cannot destroy a submitted timesheet."
end

end

Note that this is a somewhat contrived example, because it violates my
sense of good object-oriented principles. The User class shouldn’t really
be responsible for knowing when it’s okay to delete a timesheet or not.
The check_timesheet_destruction method would more properly be added as a
before_destroy callback on the Timesheet class.

class_name

The :class_name option is common to all of the associations. It allows you to
specify, as a string, the name of the class of the association and is needed when
the class name cannot be inferred from the name of the association itself.

has_many :draft_timesheets, -> { where(submitted: false) },
class_name: 'Timesheet'

dependent

The default behavior when deleting a record that has_many associations is to
leave the associated records in the database alone. Their foreign key fields
will still point at the record that was deleted. That’s ehrm, not great, so this
is an option that is almost always worth considering.

Active Record Associations 290

:nullify
Active Record will attempt to nullify, or clear, the foreign key that joins
the parent record to the associations. Note that nullification can fail due
to foreign key constraints.

:destroy
Associated objects are destroyed along with the parent object, by itera-
tively calling their destroy methods.

:delete_all
Associated objects are deleted in one fell swoop at the database level
using a single SQL command. Note: While this option is much faster
than :destroy, it doesn’t trigger any destroy callbacks on the associated
objects—you should use this option very carefully. It should only be used
on associations that depend solely on the parent object.

:restrict_with_exception
If associated objects are present when you attempt to destroy a parent
object, Rails raises an ActiveRecord::DeleteRestrictionError exception.

:restrict_with_error
An error is added to the parent object if any associated objects are
present, rolling back the deletion from the database.

foreign_key

Overrides the convention-based foreign key column name that would normally
be used in the SQL statement that loads the association. Normally it would be
the owning record’s class name with _id appended to it.

inverse_of

Explicitly declares the name of the inverse association in a bi-directional
relationship. Considered an optimization, use of this option enables Rails to
return the same instance of an object no matter which side of the relationship
it is accessed from.
Consider the following, using our recurring example, without usage of in-
verse_of.

Active Record Associations 291

>> user = User.first
>> timesheet = user.timesheets.first
=> <Timesheet id: 1, user_id: 1...>
>> timesheet.user.equal? user
=> false

We use equal? instead of == because we purposely want to check object
equality, not identity. As you see in the example, there are two instances of
the same user in memory.
If we add :inverse_of to the association objection on User, like

has_many :timesheets, inverse_of: :user

then timesheet.user.equal? user will be true. Try something similar in one of
your apps to see it for yourself.

primary_key

Specifies a surrogate key to use instead of the owning record’s primary key,
whose value should be used when querying to fill the association collection.

source and source_type

Used exclusively as additional options to assist in using has_many :through
associations with polymorphic belongs_to. Covered in detail later in this
chapter.

through

Creates an association collection via another association. See the section
“has_many :through”

validate

In cases where the child records in the association collection would be
automatically saved by Active Record, this option (true by default) dictates
whether to ensure that they are valid. If you always want to check the
validity of associated records when saving the owning record, then use
validates_associated :association_name.

Active Record Associations 292

Scoping

The has_many association provides the capability to customize the query used
by the database to retrieve the association collection. This is achieved by
passing a scope block to the has_many method definition using any of the
standard Active Record query methods, as covered in Chapter 5, “Working
with Active Record.”
In this section, we’ll cover themost common scopemethods used with has_many
associations.

where(*conditions)

Using the query method where, you could add extra conditions to the Active
Record-generated SQL query that brings back the objects in the association.
You can apply extra conditions to an association for a variety of reasons. How
about approval of comments?

has_many :comments,

Plus, there’s no rule that you can’t have more than one has_many associations
exposing the same two related tables in different ways. Just remember that
you’ll probably have to specify the class name too.

has_many :pending_comments, -> { where(approved: true) },
class_name: 'Comment'

extending(*extending_modules)

Specifies one or many modules with methods that will extend the association
collection proxy. Used as an alternative to defining additional methods in a
block passed to the has_many method itself. Discussed in the section “Associa-
tion Extensions.”

group(*args)

Adds a GROUP BY SQL clause to the queries used to load the contents of the
association collection.

having(*clauses)

Must be used in conjunction with the group query method and adds extra
conditions to the resulting SQL query used to load the contents of the
association collection.

Active Record Associations 293

includes(*associations)

Takes an array of second-order association names (as an array) that should be
eager-loaded when this collection is loaded. With judicious use of the includes
query method and careful benchmarking, you can sometimes improve the
performance of your application dramatically.
To illustrate, let’s analyze how includes affects the SQL generated while nav-
igating relationships. We’ll use the following simplified versions of Timesheet,
BillableWeek, and BillingCode:

class Timesheet < ActiveRecord::Base
has_many :billable_weeks

end

class BillableWeek < ActiveRecord::Base
belongs_to :timesheet
belongs_to :billing_code

end

class BillingCode < ActiveRecord::Base
belongs_to :client
has_many :billable_weeks

end

First, I need to set up my test data, so I create a timesheet instance and add
a couple of billable weeks to it. Then I assign a billable code to each billable
week, which results in an object graph (with four objects linked together via
associations).
Next, I do a fancy one-line collect, which gives me an array of the billing codes
associated with the timesheet:

>> Timesheet.find(3).billable_weeks.collect(&:code)
=> ["TRAVEL", "DEVELOPMENT"]

Without the includes scope method set on the billable_weeks association of
Timesheet, that operation cost me the following four database hits (copied from
log/development.log, and prettied up a little):

Active Record Associations 294

Timesheet Load (0.3ms) SELECT timesheets.* FROM timesheets WHERE
(timesheets.id = 3) LIMIT 1
BillableWeek Load (1.3ms) SELECT billable_weeks.* FROM billable_weeks WHERE
(billable_weeks.timesheet_id = 3)
BillingCode Load (1.2ms) SELECT billing_codes.* FROM billing_codes WHERE
(billing_codes.id = 7) LIMIT 1
BillingCode Load (3.2ms) SELECT billing_codes.* FROM billing_codes WHERE
(billing_codes.id = 8) LIMIT 1

This demonstrates the so-called “N+1 select” problem that inadvertently
plagues many systems. Anytime I need one billable week, it will cost me
N select statements to retrieve its associated records. Now let’s provide
the billable_weeks association a scope block using includes, after which the
Timesheet class looks as follows:

class Timesheet < ActiveRecord::Base
has_many :billable_weeks, -> { includes(:billing_code) }

end

Simple! Rerunning our test statement yields the same results in the console:

>> Timesheet.find(3).billable_weeks.collect(&:code)
=> ["TRAVEL", "DEVELOPMENT"]

But look at how different the generated SQL is:

Timesheet Load (0.4ms) SELECT timesheets.* FROM timesheets WHERE (timesheets.id
= 3) LIMIT 1
BillableWeek Load (0.6ms) SELECT billable_weeks.* FROM billable_weeks WHERE
(billable_weeks.timesheet_id = 3)
BillingCode Load (2.1ms) SELECT billing_codes.* FROM billing_codes WHERE
(billing_codes.id IN (7,8))

Active Record smartly figures out exactly which BillingCode records it will
need and pulls them in using one query. For large datasets, the performance
improvement can be dramatic!
It’s generally easy to find N+1 select issues just by watching the log scroll
by while clicking through the different screens of your application. (Of
course, make sure that you’re looking at realistic data or the exercise will be
pointless.) Screens that might benefit from eager loading will cause a flurry of
single-row SELECT statements, one for each record in a given association being
used.
If you’re feeling particularly daring (perhaps masochistic is a better term) you
can try including a deep hierarchy of associations by mixing hashes into your
includes query method, like in this fictional example from a bulletin board:

Active Record Associations 295

has_many :posts, -> { includes([:author, {comments: {author: :avatar }}]) }

That example snippet will grab not only all the comments for a Post but all
their authors and avatar pictures as well. You can mix and match symbols,
arrays, and hashes in any combination to describe the associations you want
to load.
The biggest potential problem with so-called “deep” includes is pulling too
much data out of the database. You should always start out with the simplest
solution that will work, then use benchmarking and analysis to figure out if
optimizations such as eager-loading help improve your performance.

Wilson says…
Let people learn eager loading by crawling across broken glass, like
we did. It builds character!

limit(integer)

Appends a LIMIT clause to the SQL generated for loading this association.
This option is potentially useful in capping the size of very large association
collections. Use in conjunction with the order query method to make sure you
are grabbing the most relevant records.

offset(integer)

An integer determining the offset from where the rows should be fetched
when loading the association collection. I assume this is here mostly for
completeness, since it’s hard to envision a valid use case.

order(*clauses)

Specifies the order in which the associated objects are returned via an ORDER
BY SQL fragment, such as "last_name, first_name DESC".

readonly

Sets all records in the association collection to read-onlymode, which prevents
saving them.

select(expression)

By default, this is * as in SELECT * FROM but can be changed if, for example, you
want to add additional calculated columns or “piggyback” additional columns
from joins onto the associated object as it’s loaded.

Active Record Associations 296

distinct

Strips duplicate objects from the collection. Sometimes useful in conjunction
with has_many :through.

Active Record Associations 297

7.5 Many-to-Many Relationships

Associating persistent objects via a join table can be one of the trickier aspects
of object-relational mapping to implement correctly in a framework. Rails has
a couple of techniques that let you represent many-to-many relationships in
your model. We’ll start with the older and simpler has_and_belongs_to_many and
then cover the newer has_many :through.

I must clear my conscience with a disclaimer. As far as I can tell, the Rails
Core Team is reluctantly maintaining support for has_and_belongs_to_many
(habtm for short), and it is practically obsolete in the minds of many Rails
developers. Using has_many :through to establish first-class join models should
make your life easier. However, habtm is still a fact of life in legacy applica-
tions andmay even be occasionally useful in new ones. We think the following
section also contains some example code that enlightens the reader about
nuances of Active Record behavior.

has_and_belongs_to_many

The has_and_belongs_to_manymethod establishes a link between two associated
Active Record models via an intermediate join table. Unless the join table is
explicitly specified as an option, Rails guesses its name by concatenating the
table names of the joined classes, in alphabetical order and separated with an
underscore.
For example, if I was using has_and_belongs_to_many (or habtm for short) to
establish a relationship between Timesheet and BillingCode, the join table
would be named billing_codes_timesheets, and the relationship would be
defined in the models. Both the migration class and models are listed:

class CreateBillingCodesTimesheets < ActiveRecord::Migration
def change

create_join_table :billing_codes, :timesheets do |t|
t.index [:billing_code_id, :timesheet_id]
t.index [:timesheet_id, :billing_code_id]

end
end

end

class Timesheet < ActiveRecord::Base

Active Record Associations 298

has_and_belongs_to_many :billing_codes
end

class BillingCode < ActiveRecord::Base
has_and_belongs_to_many :timesheets

end

The create_join_table method takes care of creating the table without a
primary key automatically. It also specifies that the foreign keys can’t be
null. We add indexes for the foreign keys in both directions, to make sure
that queries are optimized.

Self-Referential Relationships

What about self-referential many-to-many relationships? Let’s create a join
table and establish a link between related BillingCode objects.

class CreateRelatedBillingCodes < ActiveRecord::Migration
def change

create_table :related_billing_codes, id: false do |t|
t.column :first_billing_code_id, :integer, null: false
t.column :second_billing_code_id, :integer, null: false

end
end

end

This time I was not able to use create_join_table since I’m doing something
out of the ordinary. Accordingly, the association declaration needs a bunch of
explicit options because I’ve stepped outside the realm of convention.

class BillingCode < ApplicationRecord
has_and_belongs_to_many :related,

join_table: 'related_billing_codes',
foreign_key: 'first_billing_code_id',
association_foreign_key: 'second_billing_code_id',
class_name: 'BillingCode'

BillingCode objects now have a related collection of billing codes that you can
treat as you would an array.

Active Record Associations 299

Bidirectionality

It’s worth noting that the related relationship of the BillingCode is not auto-
matically bidirectional. Just because you associate two objects in one direction
does not mean they’ll be associated in the other direction. But what if you do
want to automatically establish a bidirectional relationship? It’s not too hard.
First, let’s write a spec for the BillingCode class to prove our solution. When we
add bidirectionality we don’t want to break the normal behavior, so at first my
spec example will establish that the normal habtm relationship works correctly:

describe BillingCode do
let(:travel_code) { BillingCode.create(code: 'TRAVEL') }
let(:dev_code) { BillingCode.create(code: 'DEV') }

it "has a working related habtm association" do
travel_code.related << dev_code
expect(travel_code.reload.related).to include(dev_code)

end
end

I run the spec and it passes.
Now I can proceed to modify the example in order to prove that the bidirec-
tional behavior that we’re going to add works. It ends up looking very similar
to the first example.

describe BillingCode do
let(:travel_code) { BillingCode.create(code: 'TRAVEL') }
let(:dev_code) { BillingCode.create(code: 'DEV') }

before do
travel_code.related << dev_code

end

it "has a working related habtm association" do
expect(travel_code.reload.related).to include(dev_code)

end

it "should have a bidirectional habtm association" do
expect(travel_code.related).to include(dev_code)
expect(dev_code.reload.related).to include(travel_code)

end
end

Of course, the new version fails, since we haven’t added the new behavior yet.

Active Record Associations 300

Association Callbacks

How will we implement this behavior? (Older editions of this book tackled
thb problem with messy custom SQL options that aren’t supported anymore.)
Luckily, associations like has_and_belongs_to_many have collections callbacks:

• before_add
• after_add
• before_remove
• after_remove.

If any of the before_add callbacks throw an exception, the object will
not be added to the collection. Similarly, if any of the before_remove
callbacks throw an exception, the object will not be removed from the
collection.

It looks like after_add and after_remove will fit our needs. As usual with
callbacks, you can pass a symbol pointing a to an instance method, a Proc,
or even an array. In this case, I’ll add a method.

class BillingCode < ApplicationRecord
has_and_belongs_to_many :related,

join_table: 'related_billing_codes',
foreign_key: 'first_billing_code_id',
association_foreign_key: 'second_billing_code_id',
class_name: 'BillingCode',
after_add: :reciprocate

def reciprocate(other_billing_code)
unless other_billing_code.related.include?(self)

other_billing_code.related << self
end

end
end

The spec passes! Make sure to note that the conditional on line 10 prevents
infinite recursion.
While we’re at it, let’s make sure that reciprocal links are cleaned up when a
related billing code is removed from the collection. I’ll test drive this too.

Active Record Associations 301

describe BillingCode do
...

it "has a working related habtm association" do ...

it "should have a bidirectional habtm association" do ...

it "should clean up reciprocal relationship on removal" do
travel_code.related.delete(dev_code)
expect(travel_code.related).to_not include(dev_code)
expect(dev_code.reload.related).to_not include(travel_code)

end
end

When I run this spec it fails on line 11, as expected. The first link was broken
but not the second. I’ll make the spec pass by adding an after_remove callback.

class BillingCode < ApplicationRecord
has_and_belongs_to_many :related,

join_table: 'related_billing_codes',
foreign_key: 'first_billing_code_id',
association_foreign_key: 'second_billing_code_id',
class_name: 'BillingCode',
after_add: :reciprocate,
after_remove: :cleanup

def reciprocate(other_billing_code)
unless other_billing_code.related.include?(self)

other_billing_code.related << self
end

end

def cleanup(other_billing_code)
if other_billing_code.related.include?(self)
other_billing_code.related.delete(self)

end
end

end

Here is the complete code that passes the spec successfully. The reciprocate
and cleanup methods mirror themselves nicely.

Active Record Associations 302

$ rails spec
...

Finished in 0.0618 seconds (files took 1.2 seconds to load)
3 examples, 0 failures

Extra Columns on has_and_belongs_to_many Join Tables

Rails has never had a problem with you adding as many extra columns as
you want to habtm’s join table. The extra attributes will be read in and added
ontomodel objects accessed via the habtm association. However, speaking from
experience, the severe annoyances you will deal with in your application code
make it really unattractive to go that route.
What kind of annoyances? For starters, records returned from join tables with
additional attributes will be marked as read-only because it’s not possible to
save changes to those additional attributes.
The way that Rails makes those extra columns of the join table available
might cause problems in other parts of your codebase. Having extra attributes
appear magically on an object is kind of cool, but what happens when you try
to access those extra properties on an object that wasn’t fetched via the habtm
association? Kaboom! Get ready for some potentially bewildering debugging
exercises.
Methods of the habtm proxy act just as they would for a has_many relationship.
Similarly, habtm shares options with has_many; only its :join_table option is
unique. It allows customization of the join table name.
To sum up, habtm is a simple way to establish a many-to-many relationship
using a join table. As long as you don’t need to capture additional data about
the relationship, everything is fine. The problems with habtm begin once you
want to add extra columns to the join table, after which you’ll want to upgrade
the relationship to use has_many :through instead.

“Real Join Models” and habtm

The Rails documentation advises readers that: “It’s strongly recommended
that you upgrade any [has_and_belongs_to_many] associations with attributes
to a real join model.” Use of has_and_belongs_to_many, which was one of the
original innovative features in Rails, fell out of favor once the capability to
create real join models was introduced via the has_many :through association.
Realistically, has_and_belongs_to_many is not going to be removed from Rails,
for a couple of sensible reasons. First of all, plenty of legacy Rails applications
need it. Second, has_and_belongs_to_many provides a way to join classes without

Active Record Associations 303

a primary key defined on the join table, which is occasionally useful. But most
of the time you’ll find yourself wanting to model many-to-many relationships
with has_many :through.

As of Rails 4.1, has_and_belongs_to_many doesn’t even have its own implemen-
tation anymore. If you dig into the Active Record source code you’ll note that
it’s just a layer over a specially-configured has_many association.

has_many :through

The has_many :through association enables you to specify a one-to-
many relationship indirectly via an intermediate join table. In fact,
you can specify more than one such relationship via the same table,
which effectively makes it a replacement for has_and_belongs_to_-
many. The biggest advantage is that the join table contains full-
fledgedmodel objects complete with primary keys and ancillary data
[…] join models just work the same way all your other Active Record
models do.
Josh Susser http://blog.hasmanythrough.com/2006/2/28/association-
goodness

My old friend (and world-famous Ruby Rogue) Josh Susser used to be con-
sidered the expert on Active Record associations, to the extent that his blog
was called has_many :through. I still can’t do better than his description of
the :through option for has_many, written back in 2006 when the feature was
originally introduced in Rails 1.1.

Join Models

To illustrate the has_many :through association, we’ll set up a Client model
so that it has many Timesheet objects, through a normal has_many association
named billable_weeks.

class Client < ActiveRecord::Base
has_many :billable_weeks
has_many :timesheets, through: :billable_weeks

end

The BillableWeek class was already in our sample application and is ready to
be used as a join model:

http://blog.hasmanythrough.com/2006/2/28/association-goodness
http://blog.hasmanythrough.com/2006/2/28/association-goodness

Active Record Associations 304

class BillableWeek < ActiveRecord::Base
belongs_to :client
belongs_to :timesheet

end

We can also set up the inverse relationship, from timesheets to clients, like
this:

class Timesheet < ActiveRecord::Base
has_many :billable_weeks
has_many :clients, through: :billable_weeks

end

Notice that has_many :through is always used in conjunction with a normal has_-
many association. Also, notice that the normal has_many association will often
have the same name on both classes that are being joined together, which
means the :through option will read the same on both sides.

through: :billable_weeks

How about the join model—will it always have two belongs_to associations?
Nope.

More than a has_and_belongs_to_many replacement

You can also use has_many :through to easily aggregate has_many or has_one
associations on a join model. Forgive me for switching to a completely
nonrealistic domain for a moment—it’s only intended to clearly demonstrate
what I’m trying to describe:

class Grandparent < ApplicationRecord
has_many :parents
has_many :grand_children, through: :parents, source: :children

end

class Parent < ActiveRecord::Base
belongs_to :grandparent
has_many :children

end

For the sake of clarity in later chapters, I’ll refer to this usage of has_many
:through as aggregating.

Active Record Associations 305

Courtenay says…
We use has_many :through so much! It has pretty much replaced the old has_-
and_belongs_to_many, because it enables your join models to be upgraded to
full objects. It’s like when you’re just dating someone and they start talking
about the Relationship (or, eventually, Our Marriage). It’s an example of an
association being promoted to something more important than the individual
objects on each side.

Aggregating Associations

When you’re using has_many :through to aggregate multiple child associations,
there are more significant limitations—essentially you can query to your
hearts content using find and friends, but you can’t append or create new
records through them.
For example, let’s add a billable_weeks association to our sample User class.
(Note: For the sake of clarity, I’ve hidden the options for timesheets.)

class User < ActiveRecord::Base
has_many :timesheets, ...
has_many :billable_weeks, through: :timesheets
...

The billable_weeks association aggregates all the billable week objects belong-
ing to all of the user’s timesheets.

class Timesheet < ActiveRecord::Base
belongs_to :user
has_many :billable_weeks, -> { includes(:billing_code) }
...

Now let’s go into the Rails console and set up some example data so that we
can use the new billable_weeks collection (on User).

Active Record Associations 306

>> admin = User.first
>> obie = User.second
>> client = Client.first

>> obie.timesheets
=> #<ActiveRecord::Associations::CollectionProxy []>

>> ts1 = obie.timesheets.create(approver: admin)
=> #<Timesheet id: 1 ...>

>> ts2 = obie.timesheets.create(approver: admin)
=> #<Timesheet id: 2 ...>

>> ts1.billable_weeks.create(start_date: 1.week.ago, client: client)
=> #<BillableWeek id: 1, timesheet_id: 1 ...>

>> ts2.billable_weeks.create(start_date: 1.week.ago, client: client)
=> #<BillableWeek id: 2, timesheet_id: 2 ...>

>> obie.billable_weeks.to_a
=> [#<BillableWeek id: 1, timesheet_id: 1 ...>, #<BillableWeek id: 2,
timesheet_id: 2 ...>]

Just for fun, let’s see what happens if we try to create a BillableWeek with a
User instance:

>> w = obie.billable_weeks.create(start_date: 3.weeks.ago, client: client)
=> #<BillableWeek id: nil, client_id: 2...

That nil id tells us that while a record was returned, it was not saved to the
database. What do you think was wrong with it?

>> w.errors.messages
=> {:timesheet=>["must exist"]}

Logically, it isn’t possible to create a billable week instancewithout a timesheet
specified. But what if we specify a timesheet in the arguments to the billable
week constructor? After all, that is the attribute that is missing.

Active Record Associations 307

>> obie.billable_weeks.create(timesheet: ts1, ...)

ActiveRecord::HasManyThroughCantAssociateThroughHasOneOrManyReflection:
Cannot modify association 'User#billable_weeks' because the source
reflection class 'BillableWeek' is associated to 'Timesheet' via
:has_many.

Nope. Even though it seems like it should be possible, Rails doesn’t want you
to write it this way.

Usage Considerations and Examples

You can use non-aggregating has_many :through associations in almost the
same ways as any other has_many associations. For instance, appending an
object to a has_many :through collection will save the object as expected:

>> c = Client.create(name: "Trotter's Tomahawks", code: "ttom")
=> #<Client id: 5 ...>

>> c.timesheets << Timesheet.new(user: employee, ...)
=> #<ActiveRecord::Associations::CollectionProxy [#<Timesheet id: 2 ...>]>

The main benefit of has_many :through is that Active Record takes care of
managing the instances of the join model for you. If we call billable _weeks on
the client object, we’ll see that there was a billable week object with default
values created for us:

>> c.billable_weeks
BillableWeek Load (0.2ms) SELECT "billable_weeks".* FROM "billable_...
=> #<ActiveRecord::Associations::CollectionProxy [#<BillableWeek id: 2,
client_id: 2, billing_code_id: nil, timesheet_id: 7 ...>]>

As you can tell by the values of client_id and timesheet_id, the billable week
object that was automatically created is properly associated with both the
client and the timesheet. There are also other attributes (like billing code and
the hours columns) that were not populated.
If we want to set those all in one operation, we could create the join model
directly and include a new Timesheet object as one of the supplied properties.

Active Record Associations 308

>> bw = c.billable_weeks.create(billing_code: code,
timesheet: Timesheet.new(...))

This sort of operation would be impossible with has_and_belongs_to_many be-
cause it doesn’t have an abstraction for the join model.

Unfortunately our example code is starting to get a little farfetched for this
particular domain. I’m not sure why you would want to create a billable week
instance without having a timesheet first.

Join Models and Validations

When you append to a non-aggregating has_many :through association with
<<, Active Record will always create a new join model, even if one already
exists for the two records being joined. We haven’t reached the topic of
validations in the book yet, but I do want to mention here that you can add
validates_uniqueness_of constraints on the join model to keep duplicate joins
from happening.
This is what such a constraint might look like on our BillableWeek join model.

validates_uniqueness_of :client_id, scope: :timesheet_id

That says, in effect: “There should only be one of each client per timesheet.”
If your join model has additional attributes with their own validation logic,
then there’s another important consideration to keep in mind. Adding records
directly to a has_many :through association causes a new join model to be
automatically created with a blank set of attributes. Validations on additional
columns of the join model will fail unless they have default values at the
database level or are using the Attributes API. Speaking from experience, lots
of times you’ll need to add new records by creating join model objects directly
and associating them appropriately.

Options

The options for has_many :through are the same as the options for has_many—
remember that :through itself is just an option on has_many! However, some of
has_many’s options change or become more significant when :through is used.

Active Record Associations 309

First of all, the :class_name and :foreign_key options are no longer valid, since
they are implied from the target association on the join model. The following
are the rest of the options that have special significance together with has_many
:through.

source

The :source option specifies which association to use on the associated class.
This option is not mandatory because normally Active Record assumes that the
target association is the singular (or plural) version of the has_many association
name. If your association names don’t match up, then you have to set :source
explicitly.
For example, the following code will use the BillableWeek’s sheet association
to populate timesheets.

has_many :timesheets, through: :billable_weeks, source: :sheet

source_type

The :source_type option is needed when you establish a has_many :through to a
polymorphic belongs_to association on the join model. Consider the following
example concerning clients and contacts:

class Client < ActiveRecord::Base
has_many :client_contacts
has_many :contacts, through: :client_contacts

end

class ClientContact < ActiveRecord::Base
belongs_to :client
belongs_to :contact, polymorphic: true

end

In this somewhat contrived example, the most important fact is that a Client
has many contacts, through their polymorphic relationship to the join model,
ClientContact. There isn’t a Contact class; we just want to be able to refer to
contacts in a polymorphic sense, meaning either a Person or a Business.

Active Record Associations 310

class Person < ActiveRecord::Base
has_many :client_contacts, as: :contact

end

class Business < ActiveRecord::Base
has_many :client_contacts, as: :contact

end

Now take a moment to consider the backflips that Active Record would have
to perform in order to figure out which tables to query for a client’s contacts.
Remember that there isn’t a contacts table!

>> Client.first.contacts

Active Record would theoretically need to be aware of every model class that
is linked to the other end of the contacts polymorphic association. In fact, it
cannot do those kinds of backflips, which is probably a good thing as far as
performance is concerned:

>> Client.first.contacts
ActiveRecord::HasManyThroughAssociationPolymorphicSourceError: Cannot have a

has_many :through association 'Client#contacts' on the polymorphic object
'Contact#contact' without 'source_type'.

The only way to make this scenario work (somewhat) is to give Active Record
some help by specifying which table it should search when you ask for the
contacts collection, and you do that with the source_type option naming the
target class, symbolized, like this:

class Client < ActiveRecord::Base
has_many :client_contacts
has_many :people, through: :client_contacts,

source: :contact, source_type: :person

has_many :businesses, through: :client_contacts,
source: :contact, source_type: :business

end

Meh. Kind of loses the polymorphic goodness this way, doesn’t it?

After the :source_type is specified, the association will work as expected, but
we don’t get a general purpose contacts collection.

Active Record Associations 311

>> Client.first.people.create!
=> [#<Person id: 1>]

If you’re upset that you cannot associate people and business together in a
contacts association, you could try writing your own accessor method for a
client’s contacts:

class Client < ActiveRecord::Base
def contacts

people_contacts + business_contacts
end

end

Of course, you should be aware that calling that contactsmethod will result in
at least two database requests and will return an Array, without the association
proxy methods that you might expect it to have.

Unique Association Objects

The distinct scope method tells the association to include only unique objects.
It is especially useful when using has_many :through since two different join
model objects could easily reference the same related object. That’s hard to
explain without an example.
In our recurring example code, clients are connected to timesheets via billable
weeks. If we query in that direction, and there is more than one billable week
on a timesheet for the same client, then we get the same timesheet returned
more than once.

>> Client.first.timesheets.reload.to_a
[#<Timesheet id: 1...>, #<Timesheet id: 1...>]

It’s not extraordinary for two distinct model instances of the same database
record to be in memory at the same time—it’s just not usually desirable.
Here’s how we fix it, by scoping the association.

class Client < ActiveRecord::Base
has_many :timesheets, -> { distinct }, through: :billable_weeks

end

After adding the distinct scope to the has_many :through association, only one
instance per record is returned.

Active Record Associations 312

>> Client.first.timesheets.reload.to_a
=> [#<Timesheet id: 1...>]

Active Record Associations 313

7.6 One-to-One Relationships

One of the most basic relationship types in object-oriented programming is
a one-to-one object relationship. In Active Record we declare a one-to-one
relationships using the has_one and belongs_tomethods together. As in the case
of a has_many relationship, you call belongs_to on the model whose database
table contains the foreign key column linking the two records together.

has_one

Conceptually, has_one works almost exactly like has_many does, except that
when the database query is executed to retrieve the related object, a LIMIT
1 clause is added to the generated SQL so that only one row is returned.
The name of a has_one relationship should be singular, which will make it read
naturally, for example: has_one :last_timesheet, has_one :primary_account, has_-
one :profile_photo, and so on.
Let’s take a look at has_one in action by adding avatars for our users.

class Avatar < ActiveRecord::Base
belongs_to :user

end

class User < ActiveRecord::Base
has_one :avatar
...

end

That’s simple enough. Firing this up in rails console, we can look at some of
the new methods that has_one adds to User.

>> u = User.first
>> u.avatar
=> nil

>> u.build_avatar(url: '/avatars/smiling')
=> #<Avatar id: nil, url: "/avatars/smiling", user_id: 1>

>> u.avatar.save
=> true

As you can see, we can use build_avatar to build a new avatar object and
associate it with the user. While it’s great that has_one will associate an avatar
with the user, it isn’t really anything that has_many doesn’t already do. So let’s
take a look at what happens when we assign a new avatar to the user.

Active Record Associations 314

>> u = User.first
>> u.avatar
=> #<Avatar id: 1, url: "/avatars/smiling", user_id: 1>

>> u.create_avatar(url: '/avatars/frowning')
=> #<Avatar id: 2, url: "/avatars/4567", user_id: 1>

>> Avatar.all.to_a
=> [#<Avatar id: 1, url: "/avatars/smiling", user_id: nil>, #<Avatar id: 2, url:
"/avatars/4567", user_id: 1>]

The last line from that console session is the most interesting because it shows
that our initial avatar is now no longer associated with the user. Of course, the
previous avatar was not removed from the database, which is something that
we want in this scenario. So, we’ll use the dependent: :destroy option to force
avatars to be destroyed when they are no longer associated with a user.

class User < ActiveRecord::Base
has_one :avatar, dependent: :destroy

end

With some additional fiddling around in the console, we can verify that it
works as intended. In doing so, you might notice that Rails only destroys the
avatar that was just removed from the user, so bad data that was in your
database from before will still remain. Keep this in mind when you decide
to add dependent: :destroy to your code, and remember to manually clear
orphaned data that might otherwise remain.

This is definitely a case where not null and foreign-key constraints can help
keep your database in order.

Using has_one together with has_many

As I alluded to earlier, has_one is sometimes used to single out one record
of significance alongside an already established has_many relationship. For
instance, let’s say we want to easily be able to access the last timesheet a
user was working on:

Active Record Associations 315

class User < ActiveRecord::Base
has_many :timesheets

has_one :latest_sheet,
-> { order('created_at desc') },
class_name: 'Timesheet'

end

I had to specify a :class_name so that Active Record knows what kind of object
we’re associating. (It can’t figure it out based on the name of the association,
:latest_sheet.)
When adding a has_one relationship to a model that already has a has_many
defined to the same relatedmodel, it is not necessary to add another belongs_to
method call to the target object, just for the new has_one. That might seem a
little counterintuitive at first, but if you think about it, the same foreign key
value is being used to read the data from the database.

Options

The options for has_one associations are similar to the ones for has_many. For
your convenience, we briefly cover the most relevant ones here.

as

Allows you to set up a polymorphic association, covered in Chapter 9,
“Advanced Active Record.”

class_name

Allows you to specify the class this association uses. Normally, this option is
inferred by Rails from the name of the association, but it is especially common
to need it with has_one.

dependent

The :dependent option specifies how Active Record should treat associated
objects when the parent object is deleted. In the case of has_one, it’s not so
much deletion as de-association that triggers this option.
The default behavior is to do nothing with associated objects, which in certain
situations will leave orphaned records in your database.
There are a few different values that you can pass and they work just like the
:dependent option of has_many.

Active Record Associations 316

:destroy
Destroys the associated object when it is no longer associated with the
primary object.

:delete
Deletes the object in the database without invoking callbacks.

:restrict_with_exception
Raises exception if you try to replace an existing relationship

:restrict_with_error
Similar to _with_exception but adds an error to the owner object, which
should cause its validations to fail before saving.

:nullify
(Default) Sets the foreign key values to nil so that the relationship is
broken.

Scopes

The scopes for has_one associations are similar to the ones for has_many. We
briefly cover the most relevant ones here.

where(*conditions)

Enables you to specify conditions that the object must meet to be included in
the association.

class User < ActiveRecord::Base
has_one :manager, -> (where(type: 'manager')),

class_name: 'Person'

Here manager is specified as a person object that has type = 'manager'. I almost
always use where conditions in conjunction with has_one. When Active Record
loads the association, it’s grabbing one of potentially many rows that have the
right foreign key. That means that absent some explicit conditions (or perhaps
an order scope), you’re leaving it in the hands of the database to pick a row.

order(*clauses)

Enables you to specify a SQL fragment that will be used to order the results.
This is an especially useful option with has_one when trying to associate the
latest of something or another.

Active Record Associations 317

class User < ActiveRecord::Base
has_one :latest_timesheet,

-> { order('created_at desc') },
class_name: 'Timesheet'

end

readonly

Sets the record in the association to read-only mode, which prevents saving
it.

Active Record Associations 318

7.7 Working with Unsaved Objects and
Associations

You can manipulate objects and associations before they are saved to the
database, but there is some special behavior you should be aware of, mostly
involving the saving of associated objects. Whether an object is considered
unsaved is based on the result of calling new_record?

One-to-One Associations

Assigning a new object to a belongs_to association does not save the parent or
the associated object.
Assigning an object to a has_one association automatically saves that object
(and potentially the object being replaced, if there is one) so that their foreign
key fields are updated. The exception to this behavior is if the parent object
is unsaved, since that would mean that there is no foreign key value to set.
When saves fail for any of the objects being updated (due to one of them
being invalid) the assignment operation returns false and the assignment is
cancelled. That behavior makes sense (if you think about it), but it can be the
cause ofmuch confusionwhen you’re not aware of it. If you have an association
that doesn’t seem to work, check the validation rules of the related objects.

Collections

Adding a new object to has_many and has_and_belongs_to_many collections auto-
matically saves it, unless the owner of the collection is not yet stored in the
database (since there would be no foreign key value to save).
If objects being added to a collection (via << or similar means) fail to save
properly, then the operation will return false. If you want your code to be
a little more explicit, or you want to add an object to a collection without
automatically saving it, then you can use the collection’s build method. It’s
exactly like create, except that it doesn’t save.
Members of a collection with changes are only automatically saved or updated
when their parent is saved or updated if the autosave option is set to true on
the parent. (The default is false.)

Note that the accepts_nested_attributes_for method results in the as-
sociated collection’s autosave option being turned on.

Active Record Associations 319

Deletion

Associations that are set with auto-saving turned on are also afforded the
capability to have their records deleted when an inverse record is saved. This
is to enable the records from both sides of the association to get persisted
within the same transaction and is handled through the mark_for_destruction
method.
Consider our User and Timesheet models again:

class User < ActiveRecord::Base
has_many :timesheets, autosave: true

end

If I would like to have a particular set of Timesheet instances destroyed when
the User is saved, this is how to mark them for destruction.

user = User.where(name: "Durran")
user.timesheets.closed.each(&:mark_for_destruction)
user.save # => closed timesheets get automatically deleted

Since both kinds of changes are persisted in the same transaction, if the
operation were to fail the database would not be in an inconsistent state.
Do note though, that even if a marked child record did not get deleted, the
mark doesn’t reset, so it would still be marked for destruction, and any later
attempts to save its parent would once again attempt to delete it. You can use
reload to clear the flag if necessary.

Active Record Associations 320

7.8 Association Extensions

The proxy objects that handle access to associations can be extended with
your own application code. You can add your own custom finders and factory
methods to be used specifically with a particular association.
For example, let’s say you wanted a concise way to refer to an account’s people
by name. You may create an extension on the association like that shown in
Listing 7.4.

Listing 7.4: An association extension on a people collection

class Account < ActiveRecord::Base
has_many :people do

def named(full_name)
first_name, last_name = full_name.split(" ", 2)
where(first_name: first_name, last_name: last_name).first_or_create

end
end

end

Now we have a named method available to use on the people collection.

account = Account.first
person = account.people.named("David Heinemeier Hansson")
person.first_name # => "David"
person.last_name # => "Heinemeier Hansson"

If you need to share the same set of extensions between many associations,
you can specify an extension module, instead of a block with method defini-
tions. Here is the same feature shown in Listing 7.4, except broken out into
its own Ruby module:

module ByNameExtension
def named(full_name)

first_name, last_name = full_name.split(" ", 2)
where(first_name: first_name, last_name: last_name).first_or_create

end
end

Now we can use it to extend many different relationships, as long as they’re
compatible. (Our contract in the example consists of a model with columns
first_name and last_name.)

Active Record Associations 321

class Account < ActiveRecord::Base
has_many :people, -> { extending(ByNameExtension) }

end

class Company < ActiveRecord::Base
has_many :people, -> { extending(ByNameExtension) }

end

If you need to use multiple named extension modules, you can pass an array of
modules to the extending query method instead of a single module, like this:

has_many :people, -> { extending(ByNameExtension, ByRecentExtension) }

In the case of name conflicts, methods contained in modules added later in
the array supercede those earlier in the array.

Consider a Class Method Instead
Unless you have a valid reason to reuse the extension logic with more than
one type of model, you’re probably better off leveraging the fact that class
methods are automatically available on has_many associations.

class Person < ActiveRecord::Base
belongs_to :account

def self.named(full_name)
first_name, last_name = full_name.split(" ", 2)
where(first_name: first_name, last_name: last_name).first_or_create

end
end

Active Record Associations 322

7.9 The CollectionProxy Class

CollectionProxy, the parent of all association proxies, contributes a handful of
useful methods that apply to most kinds of associations and can come into
play when you’re writing association extensions.

Owner, Reflection, and Target

The object that holds the association is known as the @owner. The associated
object (or array of objects) is known as the @target. Metadata about the
association itself is available in @reflection, which is an instance of the class
ActiveRecord::Reflection::AssociationReflection.

class Blog < ActiveRecord::Base
has_many :posts

end

blog = Blog.first

The association proxy blog.posts is an instance of CollectionProxy. It has a
reference to the blog object as @owner and the collection of its posts as @target.
The proxy delegates unknown methods to @target via Ruby’s built-in method_-
missing hook. (This is, for instance, the reason that a has many association
proxy has all the same methods as Array.)
The @target object is not loaded until it is needed. For example, blog.posts.count
is computed directly through SQL and does not trigger by itself the loading of
post records into @target.
The @reflection object is an instance of ActiveRecord::Reflection::AssociationReflection
and contains all of the configuration options for the association. That includes
both default settings and those that were explicitly passed to the association
method when it was declared.
It might not appear sane to expose these attributes publicly and allow their
manipulation. However, without access to them it would be much more
difficult to write advanced association extensions. The loaded?, loaded, target,
and target= methods are public for similar reasons.
The following code sample demonstrates the use of owner within a published_-
prior_to extension method, originally contributed by Wilson Bilkovich:

Active Record Associations 323

class ArticleCategory < ActiveRecord::Base
has_ancestry

has_many :articles do
def published_prior_to(date, options = {})

if owner.is_root?
Article.where('published_at < ? and category_id = ?', date, proxy_owner)

else
self is the 'articles' association here so we inherit its scope
self.all(options)

end
end

end
end

Ancestry (formerly acts_as_tree) is a gem/plugin that en-
ables the records of a Ruby on Rails ActiveRecord model
to be organised as a tree structure (or hierarchy). It uses
a single, intuitively formatted database column, using a
variation on the materialised path pattern. It exposes all
the standard tree structure relations (ancestors, parent,
root, children, siblings, descendants), and all of them can
be fetched in a single SQL query. Additional features are
STI support, scopes, depth caching, depth constraints, easy
migration from older plugins/gems, integrity checking, in-
tegrity restoration, arrangement of (sub)tree into hashes
and different strategies for dealing with orphaned records.
https://github.com/stefankroes/ancestry

As you can see, the owner reference is used to check whether the parent of this
association is a “top-level” node in the tree.

reload and reset

The reset method puts the association proxy back in its initial state, which is
unloaded (cached association objects are cleared). The reloadmethod invokes
reset and then loads associated objects from the database.

https://github.com/stefankroes/ancestry

Active Record Associations 324

7.10 Conclusion

The capability to model associations is what makes Active Record more than
just a data-access layer. The ease and elegance with which you can declare
those associations are what make Active Record more than your ordinary
object-relational mapper.
We have just covered the fundamentals of how Active Record associations
work and ended on an advanced note by taking a quick look at CollectionProxy.
I hope that the options andmethods guide for each type of association provides
a valuable reference guide for your day-to-day development activities.
Now lets formally dive into a subject that has begun to crop up here and there
already: Validations.

8. Validations
I have bought this wonderful machine—a computer. Now I am rather
an authority on gods, so I identified the machine—it seems to me to
be an Old Testament god with a lot of rules and no mercy.
—Joseph Campbell

The Validations API in Active Model, along with its supplementary function-
ality in Active Record allows you to declaratively define valid states for your
model objects. The validation methods hook into the life cycle of an Active
Record model object and are able to inspect the object to determine whether
certain attributes are set, have values in a given range, or pass any other
logical hurdles that you specify.
In this chapter, we’ll describe the validation methods available and how
to use them effectively. We’ll also explore how those validation methods
interact with your model’s attributes and how the built-in error-messaging
system messages can be used effectively in your application’s user interface
to provide descriptive feedback.
Finally, we’ll cover how to use Active Model’s validation functionality in your
own, non-Active Record classes.

Validations 326

8.1 Finding Errors

Validation problems are also known as (drumroll please…) errors! Every
Active Record model object contains a collection of errors, accessible (un-
surprisingly) as the errors attribute.
When a model object is valid, the errors collection is empty. In fact, when you
call valid? on a model object, a series of steps to find errors is taken as follows
(slightly simplified):

1. Clear the errors collection.
2. Run validations.
3. Return whether the model’s errors collection is now empty or not.

If the errors collection ends up empty, the object is valid. In cases where you
have to write actual validation logic yourself, you mark an object invalid by
adding items to the errors collection using its add methods. Simple as that.
We’ll cover the methods of the Errors class in some more detail later on. It
makes more sense to look at the validation methods themselves first.

Validations 327

8.2 The Simple Declarative Validations

Whenever possible, you should set validations for your models declaratively
by using one or more of the following class methods available to all Active
Record classes. (Listed alphabetically)

Unless otherwise noted, all of the validates methods accept a variable
number of attributes, plus options. There are some options for these
validation methods that are common to all of them, and we’ll cover
them at the end of the section.

validates_absence_of

The validates_absence_of method ensures specified attributes are blank, It
uses the blank? method, defined on Object, which returns true for values that
are nil or a blank string "". It is the polar opposite of the commonly used
validates_presence_of validation method, covered later in this section.

class Account < ActiveRecord::Base
validates_absence_of :spambot_honeypot_field

end

When the validates_absence_of validation fails, an error message is stored in
the model object reading “attribute must be blank.”

validates_acceptance_of

Many web applications have screens in which the user is prompted to agree
to terms of service or some similar concept, usually involving a check box.
No actual database column matching the attribute declared in the validation
is required. When you call this method, it will create virtual attributes
automatically for each named attribute you specify. I see this validation as
a type of syntax sugar since it is so specific to web application programming.

class Account < ActiveRecord::Base
validates_acceptance_of :privacy_policy, :terms_of_service

end

Note that you can use this validation with or without a boolean column on the
table backing your model. A transient attribute will be created if necessary.

Validations 328

The fact that this validation defaults to creating transient attributes gives you
an indication of how little your average web developer cares about things like
terms of service and privacy policies. On the other hand, most users don’t
ever read them either!

Choose to store the value in the database only if you need to keep track of
whether the user accepted the term, for auditing or other reasons.
When the validates_acceptance_of validation fails, an error message is stored
in the model object reading “attribute must be accepted.”
The :accept option makes it easy to change the value considered acceptance.
The default value is "1", which matches the value supplied by check boxes
generated using Rails helper methods. Sometimes a little more attention is
required from the user than just checking a box.

class Cancellation < ActiveRecord::Base
validates_acceptance_of :account_cancellation, accept: 'YES'

end

If you use the preceding example in conjunction with a text field connected to
the account_cancellation attribute, the user would have to type the word YES
in order for the cancellation object to be valid.

validates_associated

Used to ensure that all associated objects are valid on save. Works with
any kind of association and is specific to Active Record (not Active Model.)
We emphasize all because the default behavior of has_many associations is to
ensure the validity of only their new child records on save.

You probably don’t need to use this particular validation nowadays
since has_many associations default to validate: true. But realize that
setting validate: true carelessly on a belongs_to association can now
cause infinite loops.

A validates_associated on belongs_to will not fail if the association is nil. If you
want to make sure that the association is populated and valid, you have to use
validates_associated in conjunction with validates_presence_of.

Validations 329

Tim says…
It’s possible to get similar behavior by using a combination of the
:autosave and :validate options on a has_many.

validates_confirmation_of

The validates_confirmation_of method is another case of syntactic sugar for
web applications, since it is so common to include dual-entry text fields
to make sure that the user entered critical data such as passwords and e-
mail address correctly. This validation will create a virtual attribute for the
confirmation value and compare the two attributes to make sure they match
in order for the model to be valid.
Here’s an example, using our fictional Account model again:

class Account < ActiveRecord::Base
validates_confirmation_of :password

end

The user interface used to set values for the Account model would need
to include extra text fields named with a _confirmation suffix, and when
submitted, the value of those fields would have to match in order for this
validation to pass. A simplified example of matching view code is provided.

= form_for account do |f|
= f.label :login
= f.text_field :login
= f.label :password
= f.password_field :password
= f.label :password_confirmation
= f.password_field :password_confirmation
= f.submit

I’m pretty sure the ubiquitous nature of this validation on user objects has
wasted millions of developer hours in the rails terminal!

Validations 330

validates_each

The validates_each method is a little more free-form than its companions in
the validation family in that it doesn’t have a predefined validation function.
Instead, you give it an array of attribute names to check and supply a Ruby
block to be used in checking each attribute’s validity.
Sorry, I realize that was a mouthful. Perhaps an example would help.

class Invoice < ActiveRecord::Base
validates_each :supplier_id, :purchase_order do |record, attr, value|

record.errors.add(attr) unless PurchasingSystem.validate(attr, value)
end

end

Notice that parameters for the model instance (record), the name of the
attribute as a symbol, and the value to check are passed as parameters to
the block. As per usual practice, the model object is marked valid or not by
merit whether anything has been added to its errors object. The return value
of the block is ignored.
There aren’t too many situations where this method is necessary, but one
plausible example is when interacting with external services for validation.
You might wrap the external validation in a facade specific to your application
and then call it using a validates_each block:

validates_format_of

To use validates_format_of, you’ll have to know how to use Ruby regular
expressions.1 Pass the method one or more attributes to check and a regular
expression as the (required) :with option.
A good example, as shown in the Rails docs, is checking for a valid e-mail
address format:

class Person < ActiveRecord::Base
validates_format_of :email,

with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/
end

1
Check out the excellent http://rubular.com if you need help composing Ruby regular expressions.

http://rubular.com

Validations 331

By the way, that example is totally not an RFC-compliant email address
format checker. If you need to validate email addresses try the plugin at
https://github.com/spectator/validates_email.

Courtenay says…
Regular expressions are awesome but can get very complex, particu-
larly when validating domain names or email addresses. You can use
#{} inside regular expressions, so split up your regex into chunks like
this:

validates_format_of :name, with:
/\A((localhost)|#{DOMAIN}|#{NUMERIC_IP})#{PORT}\z/

That expression is pretty straightforward and easy to understand. The
constants themselves are not so easy to understand but easier than if
they were all jumbled in together:

PORT = /(([:]\d+)?)/
DOMAIN = /([a-z0-9\-]+\.?)*([a-z0-9]{2,})\.[a-z]{2,}/
NUMERIC_IP = /(?>(?:1?\d?\d|2[0-4]\d|25[0-5])\.){3}
(?:1?\d?\d|2[0-4]\d|25[0-5])(?:\/(?:[12]?\d|3[012])|-(?>(?:1?\d?\d|
2[0-4]\d|25[0-5])\.){3}(?:1?\d?\d|2[0-4]\d|25[0-5]))?/

Lark says…
I’ll take your readability Courtenay and raise you test isolation. Your
regular expression should itself be in a constant so you can test it.

validates_inclusion_of and validates_exclusion_of

These twin methods take a variable number of attribute names and an :in
option. When they run, they check to make sure that the value of the attribute
is included (or excluded, respectively) in the enumerable object passed as the
:in option.
The politically incorrect examples in the Rails docs are probably some of the
best illustrations of their use, so I’ll take inspiration from them:

https://github.com/spectator/validates_email

Validations 332

class Person < ActiveRecord::Base
validates_inclusion_of :gender, in: %w(m f), message: '- O RLY?'
...

class Account < ActiveRecord::Base
validates_exclusion_of :username, in: %w(admin superuser),

message: ', huh? Borat says "Naughty, naughty!"'
...

Notice that in the last example I introduced usage of the :message option,
common to all validationmethods, to customize the errormessage constructed
and added to the errors object when the validation fails. We’ll cover the default
error messages and how to effectively customize them a little further along in
the chapter.

validates_length_of

The validates_length_of method takes a variety of different options to let you
concisely specify length constraints for a given attribute of your model.

class Account < ActiveRecord::Base
validates_length_of :login, minimum: 5

end

If you’re ever modeling a webapp that you think I might enjoy using, give me
an early heads up and please remember to make the mimum length of the
username 4 characters. Thanks!

Constraint Options

The :minimum and :maximum options work as expected, but don’t use them
together. To specify a range, use the :within option and pass it a Ruby range,
as in the following example:

class Account < ActiveRecord::Base
validates_length_of :username, within: 5..20

end

To specify an exact length of an attribute, use the :is option:

Validations 333

class Account < ActiveRecord::Base
validates_length_of :account_number, is: 16

end

Error Message Options

Rails gives you the capability to generate detailed error messages for vali-
dates_length_of via the :too_long, :too_short, and :wrong_length options. Use
%{count} in your custom error message as a placeholder for the number
corresponding to the constraint.

class Account < ActiveRecord::Base
validates_length_of :account_number, is: 16,

wrong_length: "should be %{count} characters long"
end

validates_numericality_of

The somewhat clumsily named validates_numericality_of method is used to
ensure that an attribute can only hold a numeric value.
The :only_integer option lets you further specify that the value should only be
an integer value and defaults to false.

class Account < ActiveRecord::Base
validates_numericality_of :account_number, only_integer: true

end

The :even and :odd options do what you would expect and are useful for things
like, I don’t know, checking electron valences. (Actually, I’m not creative
enough to think of what you would use this validation for, but there you go.)
The following comparison options are also available:

• :equal_to
• :greater_than
• :greater_than_or_equal_to
• :less_than
• :less_than_or_equal_to
• :other_than

Infinity and Other Special Float Values

Interestingly, Ruby has the concept of infinity built-in. If you haven’t seen
infinity before, try the following in a console:

Validations 334

>> (1.0/0.0)
=> Infinity

Infinity is considered a number by validates_numericality_of. Databases (like
PostgreSQL) with support for the IEEE 754 standard should allow special
float values like Infinity to be stored. The other special values are positive
infinity (+INF), negative infinity (-INF), and not-a-number (NaN). IEEE 754
also distinguishes between positive zero (+0) and negative zero (-0). NaN is
used to represent results of operations that are undefined.

validates_presence_of

One of the more common validation methods, validates_presence_of, is used
to denote mandatory attributes. This method checks whether the attribute is
blank using the blank?method, defined on Object, which returns true for values
that are nil or a blank string "".

class Account < ActiveRecord::Base
validates_presence_of :username, :email, :account_number

end

A commonmistake is to use validates_presence_ofwith a boolean attribute, like
the backing field for a checkbox. If you want to make sure that the attribute
is true, use validates_acceptance_of instead.
The boolean value false is considered blank, so if you want to make sure that
only true or false values are set on your model, use the following pattern:

validates_inclusion_of :protected, in: [true, false]

Validating the Presence and/or Existence of Associated Objects

When you’re trying to ensure that an association is present, pass validates_-
presence_of its foreign key attribute, not the association variable itself. Note
that the validation will fail in cases when both the parent and child object are
unsaved (since the foreign key will be blank).
Many developers try to use this validation with the intention of ensuring that
associated objects actually exist in the database. Personally, I think that would
be a valid use case for an actual foreign-key constraint in the database, but
if you want to do the check in your Rails code then emulate the following
example:

Validations 335

class Timesheet < ActiveRecord::Base
belongs_to :user
validates_presence_of :user_id
validate :user_exists

protected

def user_exists
errors.add(:user_id, "doesn't exist") unless User.exists?(user_id)

end
end

Without a validation, if your application violates a database foreign key
constraint, you will get an Active Record exception.

validates_uniqueness_of

The validates_uniqueness_ofmethod is Active Record-specific and ensures that
the value of an attribute is unique for all models of the same type. This
validation does not work by adding a uniqueness constraint at the database
level. It does work by constructing and executing a query looking for a
matching record in the database at validation time. If any record is returned
when this method does its query, the validation fails.

class Account < ActiveRecord::Base
validates_uniqueness_of :username

end

By specifying a :scope option, additional attributes can be used to determine
uniqueness. You may pass :scope one or more attribute names as symbols
(putting multiple symbols in an array).

class Address < ActiveRecord::Base
validates_uniqueness_of :line_two, scope: [:line_one, :city, :zip]

end

It’s also possible to specify whether to make the uniqueness constraint
case-sensitive or not, via the :case_sensitive option (ignored for nontextual
attributes).
With the addition of support for PostgreSQL array columns in Rails 4, the
validates_uniqueness_of method can be used to validate that all items in the
array are unique.

Validations 336

Tim says…
This validation is not foolproof due to a potential race condition
between the SELECT query that checks for duplicates and the INSERT or
UPDATE which persists the record. An Active Record exception could be
generated as a result, so be prepared to handle that failure in your
controller. I recommend that you use a unique index constraint in
the database if you absolutely must make sure that a column value
is unique.

Enforcing Uniqueness of Join Models

In the course of using join models (with has_many :through), it seems pretty
common to need to make the relationship unique. Consider an application
that models students, courses, and registrations with the following code:

class Student < ActiveRecord::Base
has_many :registrations
has_many :courses, through: :registrations

end

class Registration < ActiveRecord::Base
belongs_to :student
belongs_to :course

end

class Course < ActiveRecord::Base
has_many :registrations
has_many :students, through: :registrations

end

How do you make sure that a student is not registered more than once for a
particular course? The most concise way is to use validates_uniqueness_ofwith
a :scope constraint. The important thing to remember with this technique is
to reference the foreign keys, not the names of the associations themselves:

Validations 337

class Registration < ActiveRecord::Base
belongs_to :student
belongs_to :course

validates_uniqueness_of :student_id, scope: :course_id,
message: "can only register once per course"

end

Notice that since the default error message generated when this validation
fails would not make sense, I’ve provided a custom error message that will
result in the expression: “Student can only register once per course.”

Tim says…
Astute readers will notice that the validation was on student_id but the error
message references “Student.” Rails special cases this to do what you mean.

Limit Constraint Lookup

As of Rails 4, you can specify criteria that constrains a uniqueness validation
against a set of records by setting the :conditions option.
To illustrate, let’s assume we have an article that requires titles to be unique
against all published articles in the database. We can achieve this using
validates_uniqueness_of by doing the following:

class Article < ActiveRecord::Base
validates_uniqueness_of :title,

conditions: -> { where.not(published_at: nil) }
...

end

When the model is saved, Active Record will query for title against all articles
in the database that are published. If no results are returned, the model is
valid.

validates_with

All of the validation methods we’ve covered so far are essentially local to the
class in which they are used. If you want to develop a suite of custom, reusable

Validations 338

validation classes, then you need a way to apply them to your models, and that
is exactly what the validates_with method enables you to do.
To implement a custom validator, extend ActiveRecord::Validator and imple-
ment the validate method. The record being validated is available as record,
and you manipulate its errors hash to log validation errors.
The following examples, from Ryan Daigle’s excellent post2 on this feature,
demonstrate a reusable email field validator:

class EmailValidator < ActiveRecord::Validator
def validate()

record.errors[:email] << "is not valid" unless
record.email =~ /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/

end
end

class Account < ActiveRecord::Base
validates_with EmailValidator

end

The example assumes the existence of an email attribute on the record. If you
need to make your reusable validator more flexible, you can access validation
options at runtime via the options hash, like this:

class EmailValidator < ActiveRecord::Validator
def validate()

email_field = options[:attr]
record.errors[email_field] << "is not valid" unless

record.send(email_field) =~ /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/
end

end

class Account < ActiveRecord::Base
validates_with EmailValidator, attr: :email

end

RecordInvalid

Whenever you do so-called bang operations (such as save!) and a validation
fails, you should be prepared to rescue ActiveRecord::RecordInvalid. Validation

2
http://ryandaigle.com/articles/2009/8/11/what-s-new-in-edge-rails-independent-model-validators

http://ryandaigle.com/articles/2009/8/11/what-s-new-in-edge-rails-independent-model-validators
http://ryandaigle.com/articles/2009/8/11/what-s-new-in-edge-rails-independent-model-validators

Validations 339

failures will cause RecordInvalid to be raised, and its message will contain a
description of the failures.
Here’s a quick example from one of my applications that has pretty restrictive
validations on its User model:

>> u = User.new
=> #<User ...>
>> u.save!
ActiveRecord::RecordInvalid: Validation failed: Name can't be blank,
Password confirmation can't be blank, Password is too short (minimum
is 5 characters), Email can't be blank, Email address format is bad

Validations 340

8.3 Common Validation Options

The following options apply to all of the validation methods.

allow_blank and allow_nil

In some cases, you only want to trigger a validation if a value is present; in
other words, the attribute is optional. There are two options that provide this
functionality.
The :allow_blank option skips validation if the value is blank according to the
blank?method. Similarly, the :allow_nil option skips the validation if the value
of the attribute is nil; it only checks for nil, and empty strings "" are not
considered nil, but they are considered blank.

if and unless

The :if and :unless options is covered in the next section, “Conditional
Validation.”

message

As we’ve discussed earlier in the chapter, the way that the validation process
registers failures is by adding items to the errors object of the model object
being checked. Part of the error item is a specific message describing the
validation failure. All of the validation methods accept a :message option so
that you can override the default error message format.

class Account < ActiveRecord::Base
validates_uniqueness_of :username, message: "is already taken"

end

The default English locale file in Active Model defines most of the standard
error message templates.

Validations 341

inclusion: "is not included in the list"
exclusion: "is reserved"
invalid: "is invalid"
confirmation: "doesn't match %{attribute}"
accepted: "must be accepted"
empty: "can't be empty"
blank: "can't be blank"
present: "must be blank"
too_long: "is too long (maximum is %{count} characters)"
too_short: "is too short (minimum is %{count} characters)"
wrong_length: "is the wrong length (should be %{count} characters)"
not_a_number: "is not a number"
not_an_integer: "must be an integer"
greater_than: "must be greater than %{count}"
greater_than_or_equal_to: "must be greater than or equal to %{count}"
equal_to: "must be equal to %{count}"
less_than: "must be less than %{count}"
less_than_or_equal_to: "must be less than or equal to %{count}"
other_than: "must be other than %{count}"
odd: "must be odd"
even: "must be even"

The default messages only use the count variable for interpolation, where
appropriate, but model, attribute, and value are always available.

validates_uniqueness_of username, message: "%{value} is already registered"

on

By default, validations are run on save (both create and update operations).
If you need to do so, you can limit a given validation to just one of those
operations by passing the :on option either :create or :update.
Assuming that your application does not support changing emails, one good
use for on: :createmight be in conjunction with validates_uniqueness_of, since
checking uniqueness with a query on large datasets can be time-consuming.

class Account < ActiveRecord::Base
validates_uniqueness_of :email, on: :create

end

strict

Rails 4 introduced a :strict validation option that defaults to false. Turning it
on causes an exception ActiveModel::StrictValidationFailed to be raised when
a model is invalid.

Validations 342

class Account < ActiveRecord::Base
validates :email, presence: { strict: true }

end

To override the type of exception raised on error, pass the custom exception
to the :strict option.

class Account < ActiveRecord::Base
validates :email, presence: { strict: EmailRequiredException }

end

Validations 343

8.4 Conditional Validation

Since validation methods are based on the Active Model Callback API, they
all accept :if and :unless options to determine at runtime (not during class
definition) whether the validation needs to be run or not.
The following three types of arguments can be supplied as parameters:

Symbol
The name of a method to invoke as a symbol. This is probably the most
common option and offers the best performance.

String
A snippet of Ruby code to eval might be useful when the condition is
really short, but keep in mind that eval’ing statements is relatively slow.

Proc
A block of code to be instance_eval‘d, so that self is the current record.
Perhaps the most elegant choice for one-line conditionals.

validates_presence_of :approver, if: -> { approved? && !legacy? }

Usage and Considerations

A primary use case for conditional validation is when an object can be validly
persisted in more than one state. A very common example involves the User
(or Person) model, used for login and authentication.

validates_presence_of :password, if: :password_required?
validates_presence_of :password_confirmation, if: :password_required?
validates_length_of :password, within: 4..40, if: :password_required?
validates_confirmation_of :password, if: :password_required?

This code is not DRY (meaning that it is repetitive). You can refactor it to make
it a little dryer using the with_options method that Active Support mixes into
Object.

Validations 344

with_options if: :password_required? do |user|
user.validates_presence_of :password
user.validates_presence_of :password_confirmation
user.validates_length_of :password, within: 4..40
user.validates_confirmation_of :password

end

The example validations check for the two cases when a (plaintext) password
field should be required in order for the model to be valid.

def password_required?
encrypted_password.blank? || !password.blank?

end

The first case is if the encrypted_password attribute is blank, because that means
we are dealing with a new User instance that has not been given a password
yet. The other case is when the password attribute itself is not blank; perhaps
this is happening during an update operation when the user is attempting to
reset a password.

Validation Contexts

Another way to accomplish conditional validation leverages support for valida-
tion contexts. Declare a validation and pass the name of an application-specific
validation context as the value of the :on option. That validation will now only
be checked when explicitly invoked using record.valid?(context_name).
Consider the following example involving a report generation app. Saving a
report without a name is fine, but publishing one without a name is not.

class Report < ActiveRecord::Base
validates_presence_of :name, on: :publish

end

class ReportsController < ApplicationController
expose(:report)

POST /reports/1/publish
def publish

if report.valid? :publish
redirect_to report, notice: "Report published"

else
flash.now.alert = "Can't publish unnamed reports!"

Validations 345

render :show
end

end
end

I can’t let this example go without mentioning that it might be better (and
definitely more RESTful) to create a Publication model to represent the
publishing of a report and contain related validation logic, instead of mixing
it up in Report.

Validations 346

8.5 Short-form Validation

The validates method identifies an attribute and accepts options that corre-
spond to the validators we’ve already covered in the chapter. It lets you group
all the validations that apply to a single field together and can tighten up your
model code nicely as well as make it more readable.

validates :username, presence: true,
format: { with: /[A-Za-z0-9]+/ },
length: { minimum: 3 },
uniqueness: true

The following options are available for use with the validates method.

absence: true
Alias for validates_absence_of. Supply additional options by replacing true
with a hash.

validates :unwanted, absence: { message: "should not have been set" }

acceptance: true
Alias for validates_acceptance_of, typically used with checkboxes that
indicate acceptance of terms. Supply additional options by replacing true
with a hash.

validates :terms, acceptance: { message: 'must be accepted' }

confirmation: true
Alias for validates_confirmation_of, typically used to ensure that email
and password confirmation fields match up correctly. Supply additional
options by replacing true with a hash.

validates :email, confirmation: { message: 'is required' }

exclusion: { in: [1,2,3] }
Alias for validates_exclusion_of. If your only option is the array to exclude
against, you can shorten the syntax further by supplying an array as the
value.

Validations 347

validates :username, exclusion: %w(admin superuser)

format: { with: /.*/ }
Alias for validates_format_of. If your only option is the regular expression,
you can shorten the syntax further by making it the value like:

format: /[A-Za-z0-9]+/

inclusion: { in: [1,2,3] }
Alias for validates_inclusion_of. If your only option is the inclusion array,
you can shorten the syntax further by making the array the value.

validates :gender, inclusion: %w(male female)

length: { minimum: 0, maximum: 1000 }
Alias for validates_length_of. If your only options are minimum and
maximum lengths, you can shorten the syntax further by supplying a
Ruby range as the value.

validates :username, length: 3..20

numericality: true
Alias for validates_numericality_of. Supply additional options by replac-
ing true with a hash.

validates :quantity, numericality: { message: 'should be a number' }

presence: true
Alias for validates_presence_of. Supply additional options by replacing
true with a hash.

validates :username, presence: { message: 'is missing (How do you expect to login without \
it?)' }

uniqueness: true
Alias for validates_uniqueness_of. Supply additional options by replacing
true with a hash.

validates :screenname, uniqueness: { message: "was nabbed by someone else first" }

Validations 348

8.6 Custom Validation Techniques

When declarative validation don’t meet your needs, Rails gives you a few
custom techniques.

Custom Validation Macros

Rails has the capability to add custom validation macros (available to all your
model classes) by extending ActiveModel::EachValidator.
The following example is silly but demonstrates the functionality.

class ReportLikeValidator < ActiveModel::EachValidator
def validate_each(record, attribute, value)

unless value["Report"]
record.errors.add(attribute, 'does not appear to be a Report')

end
end

end

If you have more than one custom validation class, you’d probably be best off
giving them their own directory like app/models/validations.

Now that your custom validator exists, it is available to use with the validates
macro in your model.

class Report < ActiveRecord::Base
validates :name, report_like: true

end

The class name ReportLikeValidator is inferred from the symbol provided
(:report_like).
You can receive options via the validates method by adding an initializer
method to your custom validator class. For example, let’s make ReportLikeVal-
idator more generic.

Validations 349

class LikeValidator < ActiveModel::EachValidator
def initialize(options)

@with = options[:with]
super

end

def validate_each(record, attribute, value)
unless value[@with]

record.errors.add(attribute, "does not appear to be like #{@with}")
end

end
end

Our model code would change to

class Report < ActiveRecord::Base
validates :name, like: { with: "Report" }

end

Create a Custom Validator Class

This technique involves inheriting from ActiveModel::Validator and implement-
ing a validate method that takes the record to validate.
I’ll demonstrate with a really wicked example.

class RandomlyValidator < ActiveModel::Validator
def validate(record)

record.errors[:base] << "FAIL #1" unless first_hurdle(record)
record.errors[:base] << "FAIL #2" unless second_hurdle(record)
record.errors[:base] << "FAIL #3" unless third_hurdle(record)

end

private

def first_hurdle(record)
rand > 0.3

end

def second_hurdle(record)
rand > 0.6

end

def third_hurdle(record)

Validations 350

rand > 0.9
end

end

Use your new custom validator in a model with the validates_with macro.

class Report < ActiveRecord::Base
validates_with RandomlyValidator

end

Add a validate Method to Your Model

Giving your model class a validate instance method might be the way to go if
you want to check the state of your object holistically and keep the code for
doing so inside of the model class itself.

The validate method is an older technique that I can’t fully endorse because
it unnecessarily adds complexity to the model class as compared to how easy
it is to create custom validators that are testable in isolation.

For example, assume that you are dealing with a model object with a set of
three integer attributes (:attr1, :attr2, and :attr3) and a precalculated total
attribute (:total). The total must always equal the sum of the three attributes:

class CompletelyLameTotalExample < ActiveRecord::Base
def validate

if total != (attr1 + attr2 + attr3)
errors[:total] << "doesn't add up"

end
end

end

You can alternatively add an error message to the whole object instead of just
a particular attribute, using the :base key, like this:

errors[:base] << "The total doesn't add up!"

One of the subtleties of writing validations in Rails is that when you are adding
errors to a particular attribute, you use a sentence fragment, versus when you

Validations 351

are adding to :base, you use an entire sentence. That’s because at some point,
you’ll want to expose error messages to the user. The method used to do that
for an attribute is full_messages_for, which takes the name of the attribute plus
whatever errors have been added to an attribute and strings it all together into
a whole sentence using Active Support’s to_sentence method.

Remember: The way to mark an object as invalid is to add to its Errors
object. The return value of a custom validation method is not used.

Validations 352

8.7 Skipping Validations

The methods update_attribute and update_column don’t invoke validations, yet
their companion method update does. Whoever wrote the related Rails API
docs believes that this behavior is “especially useful for Boolean flags on
existing records.”
I don’t know if that is entirely true or not, but I do know that it is the source of
ongoing contention in the community. Unfortunately, I don’t have much more
to add other than some simple common-sense advice: Be very careful using
the update_attribute or update_columnmethods. It can easily persist your model
objects in invalid states.

Validations 353

8.8 Working with the Errors Hash

Some methods are provided to enable you to add validation errors to the
collection manually and alter the state of the Errors object.

errors[:base] = msg

Adds an error message related to the overall object state itself and not
the value of any particular attribute. Make your error messages complete
sentences, because Rails does not do any additional processing of them to
make them readable.

errors[:attribute] = msg

Adds an error message related to a particular attribute. The message should
be a sentence fragment that reads naturally when prepended with the capi-
talized name of the attribute.

clear

As you might expect, the clear method clears the state of the Errors object.

Checking for Errors

It’s also possible to check the Errors object for validation failures on specific
attributes with a couple of methods, just using square brackets notation. An
array is always returned; it’s an empty one when there aren’t any validation
errors for the attribute specified.

>> user.errors[:login]
=> ["zed is already registered"]
>> user.errors[:password]
=> []

Alternatively, you could also access full error messages for a specific attribute
using the full_messages_for method. Just like accessing validation failures for
attributes using bracket notation, an array is always returned.

>> user.errors.full_messages_for(:email)
=> ["Email can't be blank"]

Validations 354

8.9 Testing Validations with Shoulda

Even though validations are declarative code, if you’re doing TDD then you’ll
want to specify them before writing them. Luckily, Thoughtbot’s Shoulda
Matchers library3 contains a number of matchers designed to easily test
validations.

describe Post do
it { should validate_uniqueness_of(:title) }
it { should validate_presence_of(:body).with_message(/wtf/) }
it { should validate_presence_of(:title) }
it { should validate_numericality_of(:user_id) }

end

describe User do
it { should_not allow_value("blah").for(:email) }
it { should_not allow_value("b lah").for(:email) }
it { should allow_value("a@b.com").for(:email) }
it { should allow_value("asdf@asdf.com").for(:email) }
it { should ensure_length_of(:email).is_at_least(1).is_at_most(100) }
it { should ensure_inclusion_of(:age).in_range(1..100) }

end

3https://github.com/thoughtbot/shoulda-matchers

https://github.com/thoughtbot/shoulda-matchers
https://github.com/thoughtbot/shoulda-matchers
https://github.com/thoughtbot/shoulda-matchers

Validations 355

8.10 Conclusion

In this (relatively speaking) short chapter, we covered the ActiveRecord
Validations API in-depth. One of the most appealing aspects of Rails is how
we can declaratively specify the criteria for determining the validity of model
objects.

9. Advanced Active Record
Respectful debate, honesty, passion, and working systems created
an environment that not even the most die-hard enterprise architect
could ignore, no matter how buried in Java design patterns. Those
who placed technical excellence and pragmaticism above religious
attachment and vendor cronyism were easily convinced of the
benefits that broadening their definition of acceptable technologies
could bring.1

—Ryan Tomayko (March 2006)

Active Record is a simple object-relational mapping (ORM) framework com-
pared to other popular ORM frameworks, such as Hibernate in the Java world.
Don’t let that fool you, though: Under its modest exterior, Active Record has
some pretty advanced features. To really get the most effectiveness out of
Rails development, you need to have more than a basic understanding of
Active Record—things like knowing when to break out of the one-table/one-
class pattern or how to leverage Ruby modules to keep your code clean and
free of duplication.
In this chapter, we wrap up this book’s comprehensive coverage of Active
Record by reviewing scopes, callbacks, single-table inheritance (STI), poly-
morphic models and other advanced features of the library. We also provide
a cursory review of metaprogramming and Ruby domain-specific languages
(DSLs) as they relate to Active Record.

1http://lesscode.org/2006/03/12/someone-tell-gosling/

http://lesscode.org/2006/03/12/someone-tell-gosling/

Advanced Active Record 357

9.1 Scopes

Scopes (or “named scopes” if you’re old school) enable you to define and chain
query criteria in a declarative and reusable manner.

class Timesheet < ActiveRecord::Base
scope :submitted, -> { where(submitted: true) }
scope :underutilized, -> { where('total_hours < 40') }

To declare a scope, use the scope class method, passing it a name as a symbol
and a callable object that includes a query criterion within. You can simply use
Arel criteria methods such as where, order, and limit to construct the definition
as shown in the example. The queries defined in a scope are only evaluated
whenever the scope is invoked.

class User < ActiveRecord::Base
scope :delinquent, -> { where('timesheets_updated_at < ?', 1.week.ago) }

Invoke scopes as you would class methods.

>> User.delinquent
=> [#<User id: 2, timesheets_updated_at: "2013-04-20 20:02:13"...>]

Note that instead of using the scopemacro style method, you can simply define
a class method on an Active Record model, which returns a scoped method
such as where. To illustrate, the following class method is equivalent to the
delinquent scope defined in the previous example.

def self.delinquent
where('timesheets_updated_at < ?', 1.week.ago)

end

Scope Parameters

You can pass arguments to scope invocations by adding parameters to the
proc you use to define the scope query.

class BillableWeek < ActiveRecord::Base
scope :newer_than, ->(date) { where('start_date > ?', date) }

Then pass the argument to the scope as you would normally.

Advanced Active Record 358

BillableWeek.newer_than(Date.today)

Chaining Scopes

One of the benefits of scopes is that you can chain them together to create
complex queries from simple ones:

>> Timesheet.underutilized.submitted.to_a
=> [#<Timesheet id: 3, submitted: true, total_hours: 37 ...

Scopes can be chained together for reuse within scope definitions themselves.
For instance, let’s say that we always want to constrain the result set of
underutilized to submitted timesheets:

class Timesheet < ActiveRecord::Base
scope :submitted, -> { where(submitted: true) }
scope :underutilized, -> { submitted.where('total_hours < 40') }

Scopes and has_many

In addition to being available at the class context, scopes are available
automatically on has_many association attributes.

>> u = User.find(2)
=> #<User id: 2, username: "obie"...>
>> u.timesheets.size
=> 3
>> u.timesheets.underutilized.size
=> 1

Scopes and Joins

You can use Arel’s join method to create cross-model scopes. For instance, if
we gave our recurring example Timesheet a submitted_at date attribute instead
of just a boolean, we could add a scope to User enabling us to see who is late
on their timesheet submission.

Advanced Active Record 359

scope :tardy, -> {
joins(:timesheets).
where("timesheets.submitted_at <= ?", 7.days.ago).
group("users.id")

}

Arel’s to_sql method is useful for debugging scope definitions and usage.

>> User.tardy.to_sql
=> "SELECT "users".* FROM "users"

INNER JOIN "timesheets" ON "timesheets"."user_id" = "users"."id"
WHERE (timesheets.submitted_at <= '2013-04-13 18:16:15.203293')
GROUP BY users.id" # query formatted nicely for the book

Note that as demonstrated in the example, it’s a good idea to use unambiguous
column references (including table name) in cross-model scope definitions so
that Arel doesn’t get confused.

Scope Combinations

Our example of a cross-model scope violates good object-oriented design
principles: it contains the logic for determining whether or not a Timesheet is
submitted, which is code that properly belongs in the Timesheet class. Luckily
we can use Arel’s merge method to fix it. First we put the late logic where it
belongs, in Timesheet:

scope :late, -> { where("timesheet.submitted_at <= ?", 7.days.ago) }

Then we use our new late scope in tardy:

scope :tardy, -> {
joins(:timesheets).group("users.id").merge(Timesheet.late)

}

If you have trouble with this technique, make absolutely sure that your scopes’
clauses refer to fully qualified column names. (In other words, don’t forget to
prefix column names with tables.) The console and to_sql method are your
friends for debugging.

Default Scopes

There may arise use cases where you want certain conditions applied to the
finders for your model. Consider that our timesheet application has a default
view of open timesheets—we can use a default scope to simplify our general
queries.

Advanced Active Record 360

class Timesheet < ActiveRecord::Base
default_scope { where(status: "open") }

end

Now when we query for our Timesheets, by default the open condition will be
applied:

>> Timesheet.pluck(:status)
=> ["open", "open", "open"]

Default scopes also get applied to your models when building or creating them
which can be a great convenience or a nuisance if you are not careful. In our
previous example all new Timesheets will be created with a status of “open.”

>> Timesheet.new
=> #<Timesheet id: nil, status: "open">
>> Timesheet.create
=> #<Timesheet id: 1, status: "open">

You can override this behavior by providing your own conditions or scope to
override the default setting of the attributes.

>> Timesheet.where(status: "new").new
=> #<Timesheet id: nil, status: "new">
>> Timesheet.where(status: "new").create
=> #<Timesheet id: 1, status: "new">

There may be cases where at runtime you want to create a scope and pass it
around as a first class object leveraging your default scope. In this case Active
Record provides the all method.

>> timesheets = Timesheet.all.order("submitted_at DESC")
=> #<ActiveRecord::Relation [#<Timesheet id: 1, status: "open"]>
>> timesheets.where(name: "Durran Jordan").to_a
=> []

There’s another approach to scopes that provides a sleeker syntax, scoping,
which enables the chaining of scopes via nesting within a block.

Advanced Active Record 361

>> Timesheet.order("submitted_at DESC").scoping do
>> Timesheet.first
>> end
=> #<Timesheet id: 1, status: "open">

That’s pretty nice, but what if we don’t want our default scope to be included
in our queries? In this case Active Record takes care of us through the unscoped
method.

>> Timesheet.unscoped.order("submitted_at DESC").to_a
=> [#<Timesheet id: 2, status: "submitted">]

Similar to overriding our default scope with a relation when creating new
objects, we can supply unscoped as well to remove the default attributes.

>> Timesheet.unscoped.new
=> #<Timesheet id: nil, status: nil>

Using Scopes for CRUD

You have a wide range of Active Record’s CRUD methods available on scopes,
which gives you some powerful capabilities. For instance, let’s give all our
underutilized timesheets some extra hours.

>> u.timesheets.underutilized.pluck(:total_hours)
=> [37, 38]

>> u.timesheets.underutilized.update_all("total_hours = total_hours + 2")
=> 2

>> u.timesheets.underutilized.pluck(:total_hours)
=> [39]

Scopes including a where clause using hashed conditions will populate at-
tributes of objects built off of them with those attributes as default values.
Admittedly it’s a bit difficult to think of a plausible use case for this feature,
but we’ll show it in an example. First, we add the following scope to Timesheet:

scope :perfect, -> { submitted.where(total_hours: 40) }

Now, building an object on the perfect scope should give us a submitted
timesheet with 40 hours.

Advanced Active Record 362

> Timesheet.perfect.build
=> #<Timesheet id: nil, submitted: true, user_id: nil, total_hours: 40 ...>

As you’ve probably realized by now, the Arel underpinnings of Active Record
are tremendously powerful and truly elevate the Rails platform.

Advanced Active Record 363

9.2 Callbacks

This advanced feature of Active Record enables the savvy developer to attach
behavior at a variety of different points along a model’s life cycle, such as after
initialization, before database records are inserted, updated or removed, and
so on.
Callbacks can do a variety of tasks, ranging from simple things such as logging
and massaging of attribute values prior to validation to complex calculations.
Callbacks can halt the execution of the life-cycle process taking place. Some
callbacks can even modify the behavior of the model class on the fly. We’ll
cover all of those scenarios in this section, but first let’s get a taste of what a
callback looks like. Check out the following silly example:

class Beethoven < ActiveRecord::Base
before_destroy :last_words

protected

def last_words
logger.info "Friends applaud, the comedy is over"

end
end

So prior to dying (ehrm, being destroy‘d), the last words of the Beethoven class
will always be logged for posterity. As we’ll see soon, there are 14 different
opportunities to add behavior to your model in this fashion. Before we get to
that list, let’s cover the mechanics of registering a callback.

One-Liners

Now, if (and only if) your callback routine is really short,2 you can add it by
passing a block to the callback macro. We’re talking one-liners!

class Napoleon < ActiveRecord::Base
before_destroy { logger.info "Josephine..." }
...

end
2If you are browsing old Rails source code, you might come across callback macros receiving a short string of

Ruby code to be eval’d in the binding of the model object. That way of adding callbacks was deprecated in Rails 1.2
because you’re always better off using a block in those situations.

Advanced Active Record 364

Since Rails 3, the block passed to a callback is executed via instance_eval so
that its scope is the record itself (versus needing to act on a passed in record
variable). The following example implements “paranoid” model behavior,
covered later in the chapter.

class Account < ActiveRecord::Base
before_destroy { self.update_attribute(:deleted_at, Time.now); false }
...

Protected or Private

Except when you’re using a block, the access level for callbackmethods should
always be protected or private. It should never be public, since callbacks
should never be called from code outside the model.
Believe it or not, there are even more ways to implement callbacks, but we’ll
cover those techniques further along in the chapter. For now, let’s look at the
lists of callback hooks available.

Matched before/after Callbacks

In total, there are 19 types of callbacks you can register on your models!
Thirteen of them are matching before/after callback pairs, such as before_-
validation and after_validation. Four of them are around callbacks, such as
around_save. (The other two, after_initialize and after_find, are special, and
we’ll discuss them later in this section.)

List of Callbacks

This is the list of callback hooks available during a save operation. (The list
varies slightly depending on whether you’re saving a new or existing record.)

• before_validation
• after_validation
• before_save
• around_save
• before_create (for new records) and before_update (for existing records)
• around_create (for new records) and around_update (for existing records)
• after_create (for new records) and after_update (for existing records)
• after_save

Advanced Active Record 365

Delete operations have their own callbacks:

• before_destroy
• around_destroy executes a DELETE database statement on yield
• after_destroy is called after record has been removed from the database
and all attributes have been frozen (read-only)

Callbacks may be limited to specific Active Record life cycles (:create, :update,
:destroy), by explicitly defining which ones can trigger the it, using the :on
option. The :on option may accept a single lifecycle (like on: :create) or an
array of life cycles on: [:create, :update].

Run only on create
before_validation :some_callback, on: :create

Additionally, transactions have callbacks as well, for when you want actions to
occur after the database is guaranteed to be in a permanent state. Note that
only “after” callbacks exist here due to the nature of transactions—it’s a bad
idea to be able to interfere with the actual operation itself.

• after_commit
• after_rollback
• after_touch

Skipping Callback Execution
The following Active Record methods, when executed, do not run any
callbacks:

• decrement
• decrement_counter
• delete
• delete_all
• increment
• increment_counter
• toggle
• touch
• update_column
• update_columns
• update_all
• update_counters

Advanced Active Record 366

Halting Execution

In earlier versions of Rails, it was easy to accidentally halt Active Record
callbacks by returning false, and that behavior was blamed for scores of subtle
bugs.
Rails 5 forces you to throw(:abort) explicitly in order to halt execution of the
filter chain.
If you halt the chain then no further callbacks are executed. If there was a save
underway, it will return false, while save! will raise a RecordNotSaved error.
The following configuration setting in config/initializers/new_framework_de-
faults.rb enables reverting to the old behavior.

Do not halt callback chains when a callback returns false. Previous versions had true.
ActiveSupport.halt_callback_chains_on_return_false = false

If you are working with an older version of Rails or have changed the
setting mentioned, please keep the following advice in mind: since the last
expression of a Ruby method is returned implicitly, it is pretty common to
write a callback that halts execution unintentionally. If you have an object
with callbacks that mysteriously fails to save, make sure you aren’t returning
false or nil by mistake.

Callback Usages

Of course, the callback you should use for a given situation depends on what
you’re trying to accomplish. The best I can do is to serve up some examples
to inspire you with your own code.

Cleaning Up Attribute Formatting with before_validation on Create

The most common examples of using before_validation callbacks have to
do with cleaning up user-entered attributes. For example, the following
CreditCard class cleans up its number attribute so that false negatives don’t
occur on validation:

Advanced Active Record 367

class CreditCard < ActiveRecord::Base
before_validation on: :create do

Strip everything in the number except digits
self.number = number.gsub(/[^0-9]/, "")

end
end

Geocoding with before_save

Assume that you have an application that tracks addresses and has mapping
features. Addresses should always be geocoded before saving, so that they
can be displayed rapidly on a map later.3

As is often the case, the wording of the requirement itself points you in the
direction of the before_save callback:

class Address < ActiveRecord::Base

before_save :geocode
validates_presence_of :street, :city, :state, :country
...

def to_s
[street, city, state, country].compact.join(', ')

end

protected

def geocode
result = Geocoder.coordinates(to_s)
self.latitude = result.first
self.longitude = result.last

end
end

Note
For the sake of this example, we will not be using Geocoder’s Active
Record extensions.

Before we move on, there are a couple of additional considerations. The
preceding code works great if the geocoding succeeds, but what if it doesn’t?
Do we still want to allow the record to be saved? If not, we should halt the
execution chain:

3I recommend the excellent Geocoder gem available at http://www.rubygeocoder.com/.

http://www.rubygeocoder.com/

Advanced Active Record 368

def geolocate
result = Geocoder.coordinates(to_s)
return false if result.empty? # halt execution

self.latitude = result.first
self.longitude = result.last

end

The only problem remaining is that we give the rest of our code (and by
extension, the end user) no indication of why the chain was halted. Even
though we’re not in a validation routine, I think we can put the errors
collection to good use here:

def geolocate
result = Geocoder.coordinates(to_s)
if result.present?

self.latitude = result.first
self.longitude = result.last

else
errors[:base] << "Geocoding failed. Please check address."
false

end
end

If the geocoding fails, we add a base error message (for the whole object) and
halt execution, so that the record is not saved.

Exercise Your Paranoia with before_destroy

What if your application has to handle important kinds of data that, once
entered, should never be deleted? Perhaps it would make sense to hook into
Active Record’s destroy mechanism and somehow mark the record as deleted
instead?
The following example depends on the accounts table having a deleted_at
datetime column.

Advanced Active Record 369

class Account < ActiveRecord::Base
before_destroy do

self.update_attribute(:deleted_at, Time.current)
false

end

...
end

After the deleted_at column is populated with the current time, we return false
in the callback to halt execution. This ensures that the underlying record is
not actually deleted from the database.4

It’s probably worth mentioning that there are ways that Rails enables you to
unintentionally circumvent before_destroy callbacks:

• The delete and delete_all class methods of ActiveRecord::Base are almost
identical. They remove rows directly from the database without instanti-
ating the corresponding model instances, which means no callbacks will
occur.

• Model objects in associations definedwith the option dependent: :delete_-
all will be deleted directly from the database when removed from the
collection using the association’s clear or delete methods.

Cleaning Up Associated Files with after_destroy

Model objects that have files associated with them, such as attachment
records and uploaded images, can clean up after themselves when deleted
using the after_destroy callback. The following method from thoughtbot’s
Paperclip5 gem is a good example:

4Real-life implementation of the example would also need to modify all finders to include deleted_at is NULL
conditions; otherwise, the records marked deleted would continue to show up in the application. That’s not a trivial
undertaking, and luckily you don’t need to do it yourself. There’s a Rails plugin named destroyed_at created by
Dockyard that does exactly that, and you can find it at https://github.com/dockyard/destroyed_at.

5Get Paperclip at https://github.com/thoughtbot/paperclip.

https://github.com/dockyard/destroyed_at
https://github.com/thoughtbot/paperclip

Advanced Active Record 370

Destroys the file. Called in an after_destroy callback
def destroy_attached_files

Paperclip.log("Deleting attachments.")
each_attachment do |name, attachment|

attachment.send(:flush_deletes)
end

end

Special Callbacks: after_initialize and after_find

The after_initialize callback is invoked whenever a new Active Record model
is instantiated (either from scratch or from the database). Having it available
prevents you from having tomuck aroundwith overriding the actual initialize
method.
The after_find callback is invoked whenever Active Record loads a model
object from the database, and is actually called before after_initialize, if both
are implemented. Because after_find and after_initialize are called for each
object found and instantiated by finders, performance constraints dictate that
they can only be added as methods, and not via the callback macros.
What if you want to run some code only the first time that a model is ever
instantiated and not after each database load? There is no native callback for
that scenario, but you can do it using the after_initialize callback. Just add
a condition that checks to see whether it is a new record:

after_initialize do
if new_record?

...
end

end

In a number of Rails apps that I’ve written, I’ve found it useful to capture user
preferences in a serialized hash associated with the User object. The serialize
feature of Active Record models makes this possible, since it transparently
persists Ruby object graphs to a text column in the database. Unfortunately,
you can’t pass it a default value, so I have to set one myself:

Advanced Active Record 371

class User < ActiveRecord::Base
serialize :preferences # defaults to nil
...

protected

def after_initialize
self.preferences ||= Hash.new

end
end

Using the after_initialize callback, I can automatically populate the prefer-
ences attribute of my user model with an empty hash, so that I never have to
worry about it being nilwhen I access it with code such as user.preferences[:show_-
help_text] = false.

Kevin says…
You could change the preceding example to not use callbacks by
using the Active Record store, a wrapper around serialize that is used
exclusively for storing hashes in a database column.

class User < ActiveRecord::Base
serialize :preferences # defaults to nil
store :preferences, accessors: [:show_help_text]
...

end

By default, the preferences attribute would be populated with an
empty hash. Another added benefit is the capability to explicitly define
accessors, removing the need to interact with the underlying hash
directly. To illustrate, let’s set the show_help_text preference to true:

>> user = User.new
=> #<User id: nil, properties: {}, ...>
>> user.show_help_text = true
=> true
>> user.properties
=> {"show_help_text" => true}

Ruby’s metaprogramming capabilities, combined with the capability to run
code whenever a model is loaded using the after_find callback, are a powerful
mix. Since we’re not done learning about callbacks yet, we’ll come back to

Advanced Active Record 372

uses of after_find later on in the chapter, in the section “Modifying Active
Record Classes at Runtime.”

Callback Classes

It is common enough to want to reuse callback code for more than one object
that Rails gives you a way to write callback classes. All you have to do is pass
a given callback queue an object that responds to the name of the callback
and takes the model object as a parameter.
Here’s our paranoid example from the previous section as a callback class:

class MarkDeleted
def self.before_destroy(model)

model.update_attribute(:deleted_at, Time.current)
false

end
end

The behavior of MarkDeleted is stateless, so I added the callback as a class
method. Now you don’t have to instantiate MarkDeleted objects for no good
reason. All you do is pass the class to the callback queue for whichever models
you want to have the mark-deleted behavior:

class Account < ActiveRecord::Base
before_destroy MarkDeleted
...

end

class Invoice < ActiveRecord::Base
before_destroy MarkDeleted
...

end

Multiple Callback Methods in One Class

There’s no rule that says you can’t have more than one callback method in a
callback class. For example, you might have special audit log requirements to
implement:

Advanced Active Record 373

class Auditor
def initialize(audit_log)

@audit_log = audit_log
end

def after_create(model)
@audit_log.created(model.inspect)

end

def after_update(model)
@audit_log.updated(model.inspect)

end

def after_destroy(model)
@audit_log.destroyed(model.inspect)

end
end

To add audit logging to an Active Record class, you would do the following:

class Account < ActiveRecord::Base
after_create Auditor.new(DEFAULT_AUDIT_LOG)
after_update Auditor.new(DEFAULT_AUDIT_LOG)
after_destroy Auditor.new(DEFAULT_AUDIT_LOG)
...

end

Wow, that’s ugly, having to add three Auditors on three lines. We could extract
a local variable called auditor, but it would still be repetitive. This might be
an opportunity to take advantage of Ruby’s open classes, the fact that you can
modify classes that aren’t part of your application.
Wouldn’t it be better to simply say acts_as_audited at the top of the model that
needs auditing? We can quickly add it to the ActiveRecord::Base class, so that
it’s available for all our models.
On my projects, the file where “quick and dirty” code like the method in
Listing 9.1 would reside is lib/core_ext/active_record_base.rb, but you can put
it anywhere you want. You could even make it a plugin.

Advanced Active Record 374

Listing 9.1: A quick-and-dirty ‘acts as audited’ method

class ActiveRecord::Base
def self.acts_as_audited(audit_log=DEFAULT_AUDIT_LOG)

auditor = Auditor.new(audit_log)
after_create auditor
after_update auditor
after_destroy auditor

end
end

Now, the top of Account is a lot less cluttered:

class Account < ActiveRecord::Base
acts_as_audited

Testability

When you add callback methods to a model class, you pretty much have to test
that they’re functioning correctly in conjunction with the model to which they
are added. That may or may not be a problem. In contrast, callback classes
are super-easy to test in isolation.

describe '#after_create' do
let(:auditable) { double() }
let(:log) { double() }
let(:content) { 'foo' }

it 'audits a model was created' do
expect(auditable).to receive(:inspect).and_return(content)
expect(log).to receive(:created).and_return(content)
Auditor.new(log).after_create(auditable)

end
end

Advanced Active Record 375

9.3 Attributes API

The new Rails 5 Attributes API enables developers to declare a specific type
for a given attribute of their model, along with an optional default value. It
is not strict type validation in the technical sense but provides standardized
hooks for casting and coercion logic in and out of your database.
Explicitly declaring an attribute overrides Active Record’s standard type
casting behavior and for the first time gives Rails developers a standardized
way of specifying custom types, via classes that control how values are
converted to and from SQL when assigned to a model. The primary impact
should be less need for the use of attr_accessor and related methods in your
model code.
Let’s demonstrate use of the API with a simple Event class.

> rails g scaffold Event starts_at:date

In addition to the starting date, we want the user to be able to specify
recurrence when they create a new event, all in the same form. So we add
a few extra attributes to the event model.

class Event < ApplicationRecord
attr_accessor :repeats
attr_accessor :repeats_end

The intention is that based on the user input, we’ll have our controller
code create additional Event instances. (I’m not implying this is good or bad
application design; I am just trying to keep the example understandable.)
The view, with those additional fields, looks something like this:

= form_for event do |f|
- if event.errors.any?

#error_explanation
%h2= "#{pluralize(event.errors.count, "error")} prohibited this event from being sav\

ed:"
%ul

- event.errors.full_messages.each do |msg|
%li= msg

.field
= f.label :starts_at

Advanced Active Record 376

= f.date_select :starts_at
.field

= f.label :repeats
= f.check_box :repeats

.field
= f.label :repeats_end
= f.date_select :repeats_end

.actions
= f.submit 'Save'

The form looks like this in the browser.

New Event form

Here’s the related controller (with actions other than create hidden).

class EventsController < ApplicationController
expose :events, ->{ Event.all }
expose :event

def create
byebug
if event.save

redirect_to event, notice: 'Event was successfully created.'
else

render :new

Advanced Active Record 377

end
end

private

def event_params
params.require(:event).permit(:starts_at, :repeats, :repeats_end)

end
end

Notice I added a byebug on line 6. When I submit a form, I’ll get a debugging
console in my terminal.

Started POST "/events" for ::1 at 2016-11-23 12:25:43 -0500
Processing by EventsController#create as HTML

Parameters: {"utf8"=>"âœ“", "authenticity_token"=>"xizidXXPRLuTU7trrZpeIb7plNPTU0SyaNQiX\
bWlVvHKMQU96ODqaPUig1126phyKdEttAIGrCp8keaNOVP9TQ==", "event"=>{"starts_at(1i)"=>"2016", "\
starts_at(2i)"=>"11", "starts_at(3i)"=>"23", "repeats"=>"1", "repeats_end(1i)"=>"2017", "r\
epeats_end(2i)"=>"11", "repeats_end(3i)"=>"23"}, "commit"=>"Save"}

[2, 11] in ./auction/app/controllers/events_controller.rb
2: expose :events, ->{ Event.all }
3: expose :event
4:
5: def create
6: byebug

=> 7: if event.save

Rails gets incoming date data as a hash.

"repeats_end(1i)"=>"2017", "repeats_end(2i)"=>"11", "repeats_end(3i)"=>"23"

…and it gets check box values as an integer.

"repeats"=>"1"

Let’s check how those were set in our event model.

Advanced Active Record 378

(byebug) event.repeats
"1"
(byebug) event.repeats_end
{1=>2016, 2=>11, 3=>25}

Not exactly useful yet. We need some type coercion.

Type Coercion

One of the most common kinds of model code in Rails is type coercion, that
is, taking form-inputted values from the user and transforming them into
representations that are more useful to our code.
Continuing with the example from the last section, we had a couple of at-
tributes that need coercion: event.repeats and event.repeats_end. We’ll accom-
plish it the old way first, by transforming the incoming values on assignment.

class Event < ApplicationRecord
attr_reader :repeats
attr_reader :repeats_end

def repeats=(val)
@repeats = (val == "1")

end

def repeats_end=(val)
@repeats_end = Date.new(*val.values)

end

Now when we submit new event data, our event object has attributes of the
right type.

(byebug) event
#<Event id: nil, starts_at: "2016-11-23", created_at: nil, updated_at: nil>
(byebug) event.repeats
true
(byebug) event.repeats_end
Thu, 23 Nov 2017

Note that even though that seems to be working, our implementation leaves
a lot to be desired. For instance, check out the following bug.

Advanced Active Record 379

>> e = Event.new(repeats: true)
=> #<Event id: nil, starts_at: nil, created_at: nil, updated_at: nil>
>> e.repeats
>> false

D’oh. As I hope you can imagine, even based on this simple example, account-
ing for all edge cases in type conversion is tedious and error-prone.
What the new Attributes API gives you is the capability to declaratively tell
Active Record how to do type coercion, even for fields like our example’s
repeats and repeats_end fields, which are not backed by columns in the
database. Since it leverages Rails’ battle tested built-in type conversion, you
can be more confident using it than reinventing the wheel in your application
code.
Let’s refactor Event to take advantage of the new API.

class Event < ApplicationRecord
attribute :repeats, :boolean, default: false
attribute :repeats_end, :date

end

And if we submit the new event form again:

(byebug) event
#<Event id: nil, starts_at: "2016-11-23", created_at: nil, updated_at: nil>
(byebug) event.repeats
true
(byebug) event.repeats_end
Thu, 23 Nov 2017
(byebug)

There we go, exactly the same as last time, in less than half the code. It’s
worth pointing out that the attributes still don’t show up in the the console’s
inspect representation of the object, but the type coercion worked exactly as
intended.
While we’re on the subject, you might be wondering how ActiveRecord’s type
coercion logic works. Here’s the relevant Rails source code for a boolean cast.

Advanced Active Record 380

activerecord/lib/active_model/type/boolean.rb
module ActiveModel

module Type
class Boolean < Value

FALSE_VALUES =
[false, 0, "0", "f", "F", "false", "FALSE", "off", "OFF"].to_set

def type
:boolean

end

private
def cast_value(value)
if value == ""

nil
else

!FALSE_VALUES.include?(value)
end

end
end

end
end

In the remainder of the section, we’ll get into more detail about how the
Attributes API works, and how you can write your own type implementations.

the attribute method

The attribute method takes at minimum a name and cast_type parameter.
Active Record comes with a slew of built-in cast types, taken from Active
Model. You can examine them yourself at https://github.com/rails/rails/tree/
master/activemodel/lib/active_model/type.

Cast type Type class
:big_integer ActiveModel::Type::BigInteger
:binary ActiveModel::Type::Binary
:boolean ActiveModel::Type::Boolean
:date ActiveModel::Type::Date
:date_time ActiveModel::Type::DateTime
:decimal ActiveModel::Type::Decimal
:float ActiveModel::Type::Float
:integer ActiveModel::Type::Integer
:string ActiveModel::Type::String

https://github.com/rails/rails/tree/master/activemodel/lib/active_model/type
https://github.com/rails/rails/tree/master/activemodel/lib/active_model/type

Advanced Active Record 381

Cast type Type class
:text ActiveModel::Type::Text
:time ActiveModel::Type::Time

The attribute method also accepts the following options:

default
The default value to use when no value is provided. Overrides default set
via database, if any. Otherwise, default will be nil.

array
If using PostgreSQL, set array: true to specify that the type should be an
array of cast_type.

range
If using PostgreSQL, this option specifies that the type should be a range.
Supply a Ruby range object with the desired valid range of values.

class Issue
attribute :priority, :integer, range: [0..5]

Stuck on an old version of Rails that’s missing the attribute declaration? Try
Virtus https://github.com/solnic/virtus.

Custom Types

Since there’s only so many fundamental kinds of data (string, boolean, date,
etc.) that you can put into a database column, you normally start defining your
own custom type by extending one of the built-in cast types.
Logan Serman has a clever example in his blog at http://blog.metova.com/
rails-5-attributes-api. He extends the built in string type to give it String-
Inquirer behavior. This nifty little Active Support class is what lets you ask
strings if they equal a certain value with Ruby-style boolean notation.

Rails.env.development?

Even though it’s a little pointless, I’ll apply the pattern to our Event class for
illustrative purposes.

https://github.com/solnic/virtus
http://blog.metova.com/rails-5-attributes-api
http://blog.metova.com/rails-5-attributes-api

Advanced Active Record 382

class Inquiry < ActiveRecord::Type::String
def type

:inquiry
end

def cast(value)
super.inquiry

end
end

class Event < ApplicationRecord
attribute :repeats, Inquiry.new
attribute :repeats_end, :date

end

By default, cast is invoked on both setting and getting values from the
database. If you only want to affect setting behavior, then override deserialize
for the getting and leave cast for setting only. (The default behavior is for
deserialize to call cast.)
When we check our event in the console, we see the new behavior.

=> 7: if event.save
8: redirect_to event, notice: 'Event was successfully created.'
9: else

10: render :new
11: end

(byebug) event.repeats?
true

Of course, we lost the typecasting to boolean, which is why I called this
particular example silly.

(byebug) event.repeats
"1"

If you implement serialize in a custom type, then it’ll be invoked as part of
generating SQL queries.
[TK example]

Registering New Attribute Types

If you’re going to reuse a custom type throughout your application (or are
providing it as part of a Gem), then you probably want to register it globally
in an initializer.

Advanced Active Record 383

config/initializers/custom_attribute_types.rb
ActiveRecord::Type.register :inquiry, Inquiry.new

The register method adds a new type to Active Record’s registry, enabling
it to be referenced by symbol in the call to attribute. If your custom type is
only meant to be used with a specific database adapter, you can define that by
passing an option adapter: :adapter_name. If your type has the same name as
a native type for the current adapter, an exception will be raised unless you
specify override: true.

Working with Money
TheMoney-Rails gem is essential for dealing withmoney and currency. Check
it out at https://github.com/RubyMoney/money-rails
Lots of sample code out there related to the Attributes API (including the
Rails source code itself) uses to_f to deal with money conversion. I’ll show
you why that’s unsuitable for production use in just a few lines of playing
around on the console:

>> 19.99 * 100.to_f
=> 1998.9999999999998
>> (19.99 * 100.0).to_i
=> 1998

Floating numbers are by their very nature imprecise, which makes them
highly unsuitable for use in money calculations. Hacker exploits based on the
kinds of bugs that can be introduced by using floats to calculate monetary
values are referred to as salami slicing or penny slicing, and have played a
key role in the plots of films such as Superman III and Office Space.

https://github.com/RubyMoney/money-rails

Advanced Active Record 384

9.4 Serialized Attributes

Active Record lets you mark an attribute backed by a text column in the
database as being serialized. Whatever object (more accurately, graph of
objects) you assign to that attribute will be stored in the database as YAML,
Ruby’s native serialization format.

Sebastian says…
TEXT columns usually have a maximum size of 64K, and if your
serialized attributes exceed the size constraints, you’ll run into a lot
of errors. On the other hand, if your serialized attributes are that big,
you might want to rethink what you’re doing. At least move them into
a separate table and use a larger column type if your server allows it.

One of the first things that new Rails developers do when they discover the
serialize declaration is to use it to store a hash of arbitrary objects related to
user preferences. Why bother with the complexity of a separate preferences
table if you can denormalize that data into the users table instead?

class User < ActiveRecord::Base
NOTE: Bad example, see the next section
serialize :preferences, Hash

end

The optional second parameter (used in the example) takes a class that limits
the type of object that can be stored. The serialized object must be of that
class on retrieval or SerializationTypeMismatch will be raised.
The serialize method does not give us an easy way to set a default value.
That’s unfortunate, because it would be nice to be able to assume that our
preferences attribute is already initialized when we want to use it.

For various reasons, the serialize method feels dated and useless compared
to newer, related features. Read on to learn more about alternatives.

ActiveRecord::Store

Rails 3.2 introduced a store declaration, which uses serialize behind the
scenes to declare a single-column key/value store.

Advanced Active Record 385

class User < ApplicationRecord
store :settings

end

An added benefit of using store is that its assigned serialized attribute is set
to an empty HashWithIndifferentAccess by default, saving you from the kind
of acrobatics we described in older editions of this book and giving you the
capability to use either string or symbolic keys.

>> u = User.new(settings: {promos_ok: true})
>> u.settings
=> {'promos_ok' => true}
>> u.settings[:promos_ok]
=> true

Marshalling

Serializing and de-serializing data to get it in and out of the text column in
your database is referred to as marshalling. You can use the default (YAML)
or specify a different option using :coder, like this:

class User < ApplicationRecord
store :settings, coder: JSON

end

The :coder option works with any object that responds to load and dump, so it’s
easy to roll your own implementation.

module B64Coder
extend self

def load(data)
return {} unless data
Marshal.load(Base64.decode64(data))

end

def dump(data)
Base64.encode64(Marshal.dump(data || {}))

end

end

Accessing Stored Data

Writing to a store accessor method will create a key/value pair within the
serialized hash attribute, as shown in the following example:

Advanced Active Record 386

>> user = User.new
=> #<User id: nil, preferences: {}, ...>
>> user.inline_help = false
=> false
>> user.preferences
=> {"inline_help"=>false}

Alternatively, you can use the store_accessor declaration to declare read/write
accessors for a serialized attribute.

store_accessor :inline_help

If you only have a few accessors, you might want to just declare them inline
as options to the store declaration:

class User < ApplicationRecord
store :settings, accessors: [:inline_help, :promos_ok]

end

Overwriting Default Accessors

It’s possible to do type coercion and other kinds of manipulation of the data
being read and written from the store by overriding the generated reader and
writer methods.
In the following example, volume_adjustment is automatically converted to/from
an integer in the model code.

class Song < ApplicationRecord
store :settings, accessors: [:volume_adjustment]

def volume_adjustment
super.to_i

end

def volume_adjustment=(decibels)
super(decibels.to_s)

end

Note that in our example, overwriting volume_adjustment= is not actually
necessary; any value passed in will be coerced to a string on its way into the
database.

Advanced Active Record 387

Validations

If you define accessors, then you can also specify validations (with the
exception of uniqueness, since it relies on database queries.) Going back to
the song example, let’s apply a range constraint to the volume adjustment.

class Song < ApplicationRecord
store :settings, accessors: [:volume_adjustment]

validates_inclusion_of :volume_adjustment, :in => 1..10

Limitations

Unfortunately, Rails gives you one level of accessor syntax sugar and that’s it.
In other words, there’s no built-in support for accessing nested hash values.
The other big limitation is that it isn’t possible to include data in serialized
stores as part of SQL queries, which limits the use of store primarily to things
such as user preferences and other kinds of data strictly bound in use to a
particular object instance.
Don’t despair, though. Backing a serialized attribute with a full-fledged object
graph, including queries, is not only possible, it opens up some pretty amazing
possibilities. Read on for more details.

Native Database Support for Serialized Attributes

Rails 4 offered huge improvements in how we can include non-relational
data inside of relational tables by including support for PostgreSQL native
[Hstore],(https://www.postgresql.org/docs/9.4/static/hstore.html) JSON, and
JSONb type columns.
Now you can back serialized attributes with those more advanced column
types instead of just a plain text field, and you gain the capability to query
those fields via SQL expressions. Supposedly, the performance of these fields
can rival dedicated NoSQL stores such as MongoDB, giving you the best of
both worlds.
Note that there are significant differences between the column types:

hstore
Stores values as strings. Single-level key/value store, no nesting allowed.
May require type coercion on both database and application levels.

Advanced Active Record 388

json
Keeps exact copy of input provided, meaning that any and all operations
involve re-parsing. Requires explicit indexing for querying. Preserves key
ordering on output.

jsonb
Keeps a binary representation in order to avoid re-parsing. Automatically
indexed, meaning it’s possible to query any path without a specific index.
Does not preserve key ordering.

Don’t bother using Hstore. Support for it is buggy and it has too many
limitations when it comes to typecasting.

Both JSON types support automatic type conversion of arrays, numerics,
booleans and nulls, as well as nesting. The PostgreSQL section has more
detailed information about these types.

If you’re setting a default value, like an empty hash, for any of these
column types, make sure to pass the migration default value a Ruby
hash {} and not a string (aka JSON) representation of a hash.

Querying JSON fields involves non-standard [functions and operators].(https://www.postgresql.org/docs/9.4/static/functions-
json.html) It also may require quite a bit of attention paid to having the right
indexes in place. Nando Vieira provides a lengthy and detailed explanation
of the topic, including performance benchmarks at http://nandovieira.com/
using-postgresql-and-jsonb-with-ruby-on-rails.

Note that if you’re in a controller and you store params (the whole
object or a subset) in a serialized field, under the covers Rails will
invoke to_unsafe_h in order to transform the params into a hash for
storage. Therefore, a side effect to take into consideration is that
potentially un-permitted attributes will make it into storage.

http://nandovieira.com/using-postgresql-and-jsonb-with-ruby-on-rails
http://nandovieira.com/using-postgresql-and-jsonb-with-ruby-on-rails

Advanced Active Record 389

9.5 Enums

One of the newest significant additions to Active Record (introduced in Rails
4.1) is the capability to set an attribute as an enumerable. Once an attribute
has been set as an enumerable, Active Record will restrict the assignment of
the attribute to a collection of predefined values.

Before you read any further, go check out this blog post6 by the fine
folks at Foraker Labs. It describes how to use the Enumerated Type7
gem with Active Record, which I think has considerable advantages
over Rails’ own implementation.

To declare an enumerable attribute, use the enum macro style class method,
passing it an attribute name and an array of status values that the attribute
can be set to.

class Post < ApplicationRecord
enum status: %i(draft published archived)
...

end

Active Record implicitly maps each predefined value of an enum attribute to an
integer, therefore the column type of the enum attribute must be an integer as
well. By default, an enum attribute will be set to nil. To set an initial state, you
can set a default value in a migration. It’s recommended to set this value to
the first declared status, which would map to 0.

class CreatePosts < ActiveRecord::Migration
def change

create_table :posts do |t|
t.integer :status, default: 0

end
end

end

For instance, given our example, the default status of a Post model would be
“draft”:

6
https://www.foraker.com/blog/enumerated-types-in-activerecord
7https://github.com/rafer/enumerated_type

https://www.foraker.com/blog/enumerated-types-in-activerecord
https://github.com/rafer/enumerated_type
https://www.foraker.com/blog/enumerated-types-in-activerecord
https://github.com/rafer/enumerated_type

Advanced Active Record 390

>> Post.new.status
=> "draft"

You should never have to work with the underlying integer data type of an
enum attribute, as Active Record creates both predicate and bang methods for
each status value.

post.draft!
post.draft? # => true
post.published? # => false
post.status # => "draft"

post.published!
post.published? # => true
post.draft? # => false
post.status # => "published"

post.status = nil
post.status.nil? # => true
post.status # => nil

Active Record also provides scope methods for each status value. Invoking
one of these scopes will return all records with that given status.

Post.draft
Post Load (0.1ms) SELECT "posts".* FROM "posts"

WHERE "posts"."status" = 0

Prefixes and Suffixes

You probably shouldn’t have more than one enum in a single class. But if for
some reason you do, it’s fairly easy to run into a name-collision problem with
your statuses.

class Issue < ActiveRecord::Base
enum :state, [:open, :closed]
enum :other_state, [:something, :closed]

end

In the preceding example, the generated methods closed, closed? and closed!
for :other_state would collide and raise an error. Solve the problem by
introducing either a :prefix or suffix parameter.
{lang=ruby, linenos=off}pse enum :state, [:open, :closed] enum :other_state,
[:something, :closed], prefix: ‘other_state’ end

Advanced Active Record 391

Reflection

Active Record creates a class method with a pluralized name of the defined
enum on the model that returns a hash with the key and value of each status.
In our preceding example, the Post model would have a class method named
statuses.

>> Post.statuses
=> {"draft"=>0, "published"=>1, "archived"=>2}
>> Post.statuses[:published]
=> 1

You should only need to access this class method when you need to know the
underlying ordinal value of an enum.

State Machine

The enum feature provides Active Record with simple state machine function-
ality out of the box. If your application requires advanced state machine
features such as declarative event definitions, status transition callbacks
and conditional state transitions, try https://github.com/pluginaweek/state_
machine.

https://github.com/pluginaweek/state_machine
https://github.com/pluginaweek/state_machine

Advanced Active Record 392

9.6 Generating Secure Tokens

It’s pretty common for Active Record models to need unique random tokens.
Traditionally, you could create one like this.

class User < ActiveRecord::Base
before_create :generate_token

private

def generate_token
self.token = loop do

t = SecureRandom.hex(16)
break t unless User.where(token: t).exists?

end
end

Rails 5 introduces a useful macro-style class method called has_secure_token
that wraps this functionality up into a one-liner.

class User < ApplicationRecord
has_secure_token

User instances will automatically get a unique token.

>> user = User.create
=> #<User id: ...

>> user.token
=> "njHcvhKSwX9toZKEe9YETA8C"

The has_secure_token method takes an optional name parameter. Pass it a
symbol matching the name of your database field.

class User < ApplicationRecord
has_secure_token :auth_token

Stuck on an older version of Rails? There’s an exact backport of
this functionality for Rails 3 and 4 available at https://github.com/
robertomiranda/has_secure_token.

https://github.com/robertomiranda/has_secure_token
https://github.com/robertomiranda/has_secure_token

Advanced Active Record 393

Migrations

Under the covers, Rails uses SecureRandom.base58(24), and collisions are very
highly unlikely. However, it is still advisable to put a unique constraint on the
database column just in case. Along those lines, if you declare the type of your
column as token in a migration, then Rails will automatically add it as a string
with a unique index.

Regenerating a Token

If for some reason you need to expire or otherwise reset your token, just call
regenerate_<name_of_token>:

>> user.regenerate_token
(0.1ms) begin transaction

User Exists (0.1ms) SELECT 1 AS one FROM "users"...
SQL (0.2ms) UPDATE "users" SET "updated_at" = ?, "token" = ? WHERE
"users"."id" = ? [["updated_at", 2016-11-21 22:20:33 UTC], ["token",
"YDSNntcYiVKm8ueYy2zAXhqq"], ["id", 2]]
(8.1ms) commit transaction

=> true

>> u.token
=> "YDSNntcYiVKm8ueYy2zAXhqq"

Advanced Active Record 394

9.7 Calculation Methods

All Active Record classes have a calculate method that provides easy access
to aggregate function queries in the database. Methods for count, sum, average,
minimum, and maximum have been added as convenient shortcuts.
Calculation methods can be used in combination with Active Record relation
methods to customize the query. Since calculation methods do not return an
ActiveRecord::Relation, they must be the last method in a scope chain.
There are two basic forms of output:

Single aggregate value
The single value is type cast to Fixnum for COUNT, Float for AVG, and the
given column’s type for everything else.

Grouped values
This returns an ordered hash of the values and groups them by the
:group option. It takes either a column name or the name of a belongs_to
association.

The following examples illustrate the usage of various calculation methods.

Person.calculate(:count, :all) # The same as Person.count

SELECT AVG(age) FROM people
Person.average(:age)

Selects the minimum age for everyone with a last name other than 'Drake'
Person.where.not(last_name: 'Drake').minimum(:age)

Selects the minimum age for any family without any minors
Person.having('min(age) > 17').group(:last_name).minimum(:age)

average(column_name, *options)

Calculates the average value on a given column. The first parameter should
be a symbol identifying the column to be averaged.

count(column_name, *options)

Count operates using three different approaches. Count without parameters
will return a count of all the rows for the model. Count with a column_name will
return a count of all the rows for the model with the supplied column present.

Advanced Active Record 395

ids

Return all the IDs for a relation based on its table’s primary key.

User.ids # SELECT id FROM "users"

maximum(column_name, *options)

Calculates the maximum value on a given column. The first parameter should
be a symbol identifying the column to be calculated.

minimum(column_name, *options)

Calculates the minimum value on a given column. The first parameter should
be a symbol identifying the column to be calculated.

pluck(*column_names)

The pluck method queries the database for one or more columns of the
underlying table of a model.

>> User.pluck(:id, :name)
=> [[1, 'Obie']]
>> User.pluck(:name)
=> ['Obie']

It returns an array of values of the specified columns with the corresponding
data type.

sum(column_name, *options)

Calculates a summed value in the database using SQL. The first parameter
should be a symbol identifying the column to be summed.

Advanced Active Record 396

9.8 Batch Operations

Even though ActiveRecord doesn’t have too much in the way of optimizations
for batch operations, that kind of work is sufficiently common as to deserve
some explanation.
In this section, we cover the basics of CRUD operations on large datasets.

Creating Many Records

Imagine that we need to import a lot of records into a database, records that
are stored in a CSV file. A naive, Rails-based approach to this challenge might
be to simply load the CSV content using Ruby’s standard CSV API and then
iterate over each row, doing an Active Record create! for each:

CSV.foreach("path/to/import/items.csv") do |row|
Item.create! legacy_id: row[0], name: row[1], etc...

end

When executed, that code would result in many INSERT INTO 'items'... kind of
SQL statements being generated and run in the datase. It would work and is
easy to understand. But since inserts are relatively slow operations, the naive
approach could take a very long time to execute given a large dataset.
A better approach would be to leverage the database’s capabilities for doing
bulk imports. However, since that functionality is not natively supported
in ActiveRecord, we’ll need to drop down an abstraction level and execute
custom SQL directly on the database connection.
Postgres, MySQL and the other dominant relational databases can all do at
least two different types of bulk import operations. The first is simply to
provide more than one list to the VALUES clause of the INSERT INTO table_name
statement, aka a “multi-insert.”
In the following example, we first take the effort of batching the input data, so
we don’t blow memory consumption out of control. It’ll still chew up a bunch
of memory on the Ruby side of the equation to build up the array, but the
database side will be at least an order of magnitude faster.

Advanced Active Record 397

CSV.foreach("path/to/import/items.csv") do |row|
items << "('#{row[0]}','#{row[1]}'...)"

end

BATCH_SIZE = 1000

while items.any?
next_batch = items.shift(BATCH_SIZE)
sql = "INSERT INTO items(legacy_id, name, ...)

VALUES " + next_batch.join(", ")
ActiveRecord::Base.connection.execute(sql)

end

The value of BATCH_SIZE in the example is arbitrary. If you are faced with a
situation requiring a lot of data importation on a regular basis, it’ll probably
be worthwhile to experiment with your batch size to find a value that is optimal
for performance based on the shape of the input data and the configuration
of your network and database hardware.

Multi-inserts can be quite tedious if you have a lot of columns because the
columns names and values from the array must line up perfectly. It’s also
worth mentioning that with this and any other approach that puts incoming
data directly into the database without going through ActiveRecord, you had
better make sure that incoming data is sanitized.

Bulk Insert Considerations

The two approaches have tradeoffs. The first is slow but enables you to rely
on validations, security, and other logic present in the ActiveRecord models.
The first approach also makes it easy to create association instances based on
denormalized input data. Since you’re doing discrete create operations, you’d
just add additional ones for dependent objects.
The multi-insert approach is faster, possibly way faster, but you lose valida-
tions, easy associations, and security protections (like sanitization). You also
may need to worry about key constraints, what to do with duplicate data, and
other kinds of error conditions. If not done in Ruby, that logic will need to be
[implemented on the database side],(https://www.postgresql.org/docs/current/static/sql-
insert.html) else you’ll need to write additional programs that do post-import
cleanup duties.

Advanced Active Record 398

You should also put some thought into transactions, which affect both perfor-
mance and program logic. A simple optimization for the first approach would
be to wrap the individual create statements into a single large transaction like
this:

Item.transaction do
CSV.foreach("path/to/import/items.csv") do |row|

Item.create! legacy_id: row[0], name: row[1], etc...
end

Without that call to Item.transaction, the default behavior for Active Record is
to wrap each operation in its own transaction, and that is slow. However, you
need to keep in mind the meaning of transaction—if there is any failure, none
of the data will be inserted. Depending on your requirements, that could be a
great or a terrible thing.

Active Record Import gem

There’s a Ruby gem called activerecord-import that is specifically made for
simplifying multi-insert code in Rails. Not only does it provide a useful
abstraction for simplifying your code, it also understands Active Record
associations and can generate complex relationship inserts, while optimizing
for the minimum number of statements needed and automatically avoiding
N+1 insert problems.
The gem adds an import class method to Active Record. Here’s a simple
refactoring of our first example.

items = []
CSV.foreach("path/to/import/items.csv") do |row|

item = Item.new legacy_id: row[0], name: row[1], etc...
end
Item.import items

In this case, we actually instantiated Item objects, but the library can also
accept representations as arrays of data (and works faster that way).

Advanced Active Record 399

items = []
CSV.foreach("path/to/import/items.csv") do |row|

items << [row[0], row[1], etc...]
end
Item.import items, validate: false

The import method take options such as validate. Using raw data and turning
off validation yields the fastest performance. Just as with its native SQL
counterpart, each child array represents an individual record, and its list of
values must appear in the same order as the columns appear in the database.
The other significant option to the importmethod is batch_size, so that you can
tune performance.
This essential gem has a lot to offer, more than we can completely cover in
this book. Learn more at https://github.com/zdennis/activerecord-import.

Using COPY to Import Millions of Rows

The INSERT based approaches we’ve covered so far do not really scale to
the importation of millions of rows of data. To do that (assuming we have
access to CSV formatted data that is sufficiently pre-processed) we can
take advantage of bulk file import functionality that is usually built into
the database itself. The example we present is based on Postgres’ COPY FROM
extension to the SQL standard8 and uses functionality provided by [the pgRuby
gem].(https://bitbucket.org/ged/ruby-pg/wiki/Home)

Caveat Importer: Whether you can use operations like COPY FROM may
also be affected by whether you have access the database server file
system and many other factors.

Setup raw connection
conn = ActiveRecord::Base.connection.raw_connection
conn.exec("COPY items (legacy_id, name, ...) FROM STDIN WITH CSV")

file = File.open('path/to/import/items.csv', 'r')
while !file.eof?

Add row to copy data
conn.put_copy_data(file.readline)

end

8
https://www.postgresql.org/docs/current/static/sql-copy.html

https://github.com/zdennis/activerecord-import
https://www.postgresql.org/docs/current/static/sql-copy.html
https://www.postgresql.org/docs/current/static/sql-copy.html
https://www.postgresql.org/docs/current/static/sql-copy.html

Advanced Active Record 400

When finished with the import, call put_copy_end
method provided by Ruby's PG driver
conn.put_copy_end

check the result for errors and print them
while res = conn.get_result

if err = res.error_message
p err

end
end

Reading Many Records at Once

Now that we’ve discussed putting a lot of data into the database at once, let’s
turn around and analyze how to get a lot of data out of the database all at
once. This is yet another area where naive approaches have huge negative
performance implications.
Let’s say we want to generate a large CSV call list based on person data. We
write a Rake task featuring a query and a loop over the results. Then we puts
the fields we want to capture.

namespace :export do
task :call-list do

puts "name,phone"
Contact.where(...).each do |contact|

puts "#{contact.name},#{contact.phone}"
end

Hopefully, this code is fairly self-explanatory. For simplicity’s sake, the output
is piped to an output file via the command line.

$ bundle exec rake export:call-list > new-call-list.csv

The biggest problem with this approach is that it costs a lot of memory. If the
query returns a bunch of results, Active Record is going to instantiate objects
for all of them before it starts writing anything to the output. There is no
automatic use of cursors or anything of the sort.

Generating CSV output the way we do it in these examples can get
tedious and error-prone. If you want to generate CSV output, you
should definitely use the classic FasterCSV gem available at http:
//fastercsv.rubyforge.org/.

http://fastercsv.rubyforge.org/
http://fastercsv.rubyforge.org/

Advanced Active Record 401

Optimizing Large Reads with find_each

For a job like this one, it wouldn’t hurt to just break the processing of results
into more digestible chunks. As long as those chunks fit into Ruby’s working
memory (heap) it shouldn’t slow down too much. The code is not too much
different either because batched queries are built into the Active Record API.

namespace :export do
task :call-list do

puts "name,phone"
Contact.where(...).find_each do |contact|

puts "#{contact.name},#{contact.phone}"
end

The find_each method executes in batches of 1000 records by default. To use
a different batch size, just pass it as an option.

:batch_size
Specifies the size of the batch. Defaults to 1000.

:begin_at
Specifies the primary key value to start from, inclusive of the value.

:finish
Specifies the primary key value to end at, inclusive of the value.

:error_on_ignore
Raises an error if the order and limit have to be ignored due to batching.

Using the full suite of find_each options, you can break big read
jobs into work shared by multiple workers operating on the same
processing queue. For example, you could give the first worker all the
records with ids between 0 and 1,000 and have worker 2 handle from
1,001 to 2000, etc.

The sort order for find_each queries is automatically set to ascending on the
primary key (id ASC) in order to make the batch ordering work. You can’t set a
query limit either, because that parameter is used to control the batch sizes.

Note that in the example provided, we are (presumably) only using
some data that maps directly to database columns, not anything that
actually requires behavior coded in the Active Record object. That
means that a far more efficient and faster way to accomplish the same
job is to use pluck since it yields arrays and avoids Active Record
instantiation altogether.

Advanced Active Record 402

Reading Groups of Records at a Time Using find_in_batches

In contrast to its sister method find_each (that yields once for each record in
the entire result set) the find_in_batchesmethod yields groups of records as an
array. Pass it a block that takes the group as an argument, or chain it together
with other enumerable methods.

namespace :export do
task :call-list do

puts "batch_num,name,phone"
Contact.where(...).find_in_batches.with_index do |contacts, n|

contacts.each do
puts "#{n},#{contact.name},#{contact.phone}"

end

Operating on Groups of Records Using in_batches

The third sister in this trifecta is in_batches, which (as you might guess) is very
similar to find_in_batches. The difference is that instead of executing the find
query itself, it yields an ActiveRecord::Relation object representing the batch.
You can then use that relation to do operations other than loading an Active
Record instance.
For example, you can use in_batches to efficiently clean up old data without
thrashing your DB.

namespace :clean do
task :notifications do

q = ['created_at < ?', 1.year.ago]
Notification.where(q).in_batches do |rel|

rel.delete_all
sleep(10) # throttle

end

Or you could make all of your users awesome!

User.in_batches.update_all(awesome: true)

The in_batches method yields groups of 1000 records by default. Its options
are very similar to its sisters with the following two exceptions.

:of Specifies the size of the batch.

:load
Specifies whether the relation should be loaded. Defaults to false because
otherwise this method would behave almost exactly like find_in_batches.

Advanced Active Record 403

Updating Many Records at Once

We already covered the use of update_all in Chapter 5, “Working with Active
Record.” As a reminder, this method creates a single SQL UPDATE statement.
Active Record objects are not instantiated, and all matching rows are updated
at once in a single transaction. Since individual objects are not involved, no
callbacks or other Active Record logic gets executed.
Active Record actually has two very similar update_all methods, one on Ac-
tiveRecord::Base and the other on ActiveRecord::Relation. I consider the first to
be supremely dangerous for use in production code because it indiscriminately
updates all rows in a given table.

>> Event.update_all starts_at: Date.today
SQL (8.4ms) UPDATE "events" SET "starts_at" = '2016-11-28'

=> 1
>> Event.where(id: 1).update_all starts_at: Date.today

SQL (0.1ms) UPDATE "events" SET "starts_at" = '2016-11-28' WHERE "events"."id" = ? [["\
id", 1]]
=> 0

If the resulting N+1 query doesn’t scare you off, and you need to trigger
validations, then instead of using update_all, you can use plain ole update, a
method that’s been part of Active Record’s base class since the beginning.
Additionally, Rails 5 provides ActiveRecord::Relation its own update method.
Both respect validation, but failure of any particular row update does not
cause the entire operation to fail.

Bulk Deletion

Deleting more than one record at a time, especially through Active Record
associations, can be tricky. Let’s discuss some considerations to keep in mind
using a hypothetical account registration system represented by the following
Active Record models:

Advanced Active Record 404

class Account
has_many :registrations
has_many :persons, through: :registrations

class Registration
belongs_to :account
belongs_to :person

class Person
has_many :registrations
has_many :accounts, through: :registrations

First of all, let’s talk about what happens when dependency parameters are
ommitted from the relationship declarations.

Person.where(criteria).delete_all

This bit of Ruby results in the following SQL mass deletion:

DELETE FROM `persons` where ...

Notice that no registrations are deleted.
Calling destroy_all has a lot more complex behavior, but also does not
automatically remove any associated registration records.

Person.destroy_all

This code destroys data by instantiating each record and calling its #destroy
method. Callbacks are executed, and the collection of objects that were
destroyed will be returned. Each will be frozen, to reflect that no changes
should be made (since they can’t be persisted).
Instantiation, callback execution, and deletion of each record can be time
consuming when you’re removing many records at once. It generates at least
one SQL DELETE query per record (or possibly more, to enforce your callbacks).

DELETE FROM `persons` where id `persons`.`id` = 1
DELETE FROM `persons` where id `persons`.`id` = 2
DELETE FROM `persons` where id `persons`.`id` = 3
-- and so on...

Basically, if you want to delete many rows quickly, without concern for their
associations or callbacks, use delete_all.

Advanced Active Record 405

Deletion of Dependent Data

If the relationships are defined with dependent behavior, then associated
records can be automatically deleted.

class Account
has_many :registrations, dependent: :destroy
has_many :persons, through: :registrations

class Registration
belongs_to :account
belongs_to :person

class Person
has_many :registrations, dependent: :destroy
has_many :accounts, through: :registrations

In contrast to the previous example, now deleting an instance of either an
account or a person will bulk delete associated registration records.

Deleting via Associations

It’s preferable in most cases to rely on the machinery of Active Record’s
dependent logic to bulk delete associated records. Why? Because like we
stated at the opening of the chapter, things can get tricky. For example, what
if (in the name of being explicit) we chose to do person deletion in two steps,
first deleting registrations.

person.registrations.destroy

If there is no :dependent option set on has_many :registrations, then the
associations are nullified, that is, the registration’s person_id foreign_key will
be set to null, and you’d have orphaned registration records dirtying your
database. That may or may not be what you wanted to happen. Probably not.
What if the :dependent option is set?

class Person
has_many :registrations, dependent: :destroy
has_many :accounts, through: :registrations

Then even calling delete_all on the association like this

Advanced Active Record 406

person.registrations.delete_all

does not do exactly what you might expect. The resulting SQL will look
something like this (join ommitted for clarity):

DELETE FROM registrations WHERE registrations.person_id = 1 AND
registrations.id IN (1, 2, 3...)

Depending on whether the :dependent option is set to destroy, Active Record
may also go ahead and query the data so that it can return frozen objects.
In this case, it’s probably better to just be a bit more explicit rather than use
the association.

Registration.where(person_id: person.id).delete_all

results in

DELETE FROM registrations WHERE registrations.person_id = 1

That’s signficantly cleaner and faster.

Advanced Active Record 407

9.9 Single-Table Inheritance (STI)

A lot of applications start out with a User model of some sort. Over time, as
different kinds of users emerge, it might make sense to make a greater dis-
tinction between them. Admin and Guest classes are introduced, as subclasses
of User. Now, the shared behavior can reside in User, and subtype behavior
can be pushed down to subclasses. However, all user data can still reside in
the users table—all you need to do is introduce a type column that will hold
the name of the class to be instantiated for a given row.
To delve into the topic of single-table inheritance, let’s turn back to our exam-
ple of a recurring Timesheet class. We need to know how many billable_hours
are outstanding for a given user. The calculation can be implemented in
various ways, but in this case we’ve chosen to write a pair of class and instance
methods on the Timesheet class:

class Timesheet < ActiveRecord::Base
...

def billable_hours_outstanding
if submitted?

billable_weeks.map(&:total_hours).sum
else

0
end

end

def self.billable_hours_outstanding_for(user)
user.timesheets.map(&:billable_hours_outstanding).sum

end

I’m not suggesting that this is great code. It works, but it’s inefficient, and
that if/else condition is a little fishy. Its shortcomings become apparent
once requirements emerge related to marking a Timesheet as paid. The
requirements force us tomodify Timesheet’s billable_hours_outstandingmethod
even though it is unrelated code:

Advanced Active Record 408

def billable_hours_outstanding
if submitted? && not paid?

billable_weeks.map(&:total_hours).sum
else

0
end

end

That latest change is a clear violation of the open-closed principle,[ˆocp] which
urges you to write code that is open for extension, but closed for modification.
We know that we violated the principle, because we were forced to change the
billable_hours_outstanding method to accommodate the new Timesheet status.
Though it may not seem like a large problem in our simple example, consider
the amount of conditional code that will end up in the Timesheet class once we
start having to implement functionality such as paid_hours and unsubmitted_-
hours. [ˆocp]: http://en.wikipedia.org/wiki/Open/closed_principle has a good
summary.
So what’s the answer to this messy question of the constantly changing
conditional? Given that you’re reading the section of the book about single-
table inheritance, it’s probably no big surprise that we think one good answer
is to use object-oriented inheritance. To do so, let’s break our original Timesheet
class into four classes.

class Timesheet < ActiveRecord::Base
...

def self.billable_hours_outstanding_for(user)
user.timesheets.map(&:billable_hours_outstanding).sum

end
end

class DraftTimesheet < Timesheet
def billable_hours_outstanding

0
end

end

class SubmittedTimesheet < Timesheet
def billable_hours_outstanding

billable_weeks.map(&:total_hours).sum
end

end

http://en.wikipedia.org/wiki/Open/closed_principle

Advanced Active Record 409

Now when the requirements demand the capability to calculate partially paid
timesheets, we need only add some behavior to a PaidTimesheet class. Nomessy
conditional statements in sight!

class PaidTimesheet < Timesheet
def billable_hours_outstanding

billable_weeks.map(&:total_hours).sum - paid_hours
end

end

Mapping Inheritance to the Database

Mapping object inheritance effectively to a relational database is not one of
those problems with a definitive solution. We’re only going to deep dive into
the one mapping strategy that Rails supports natively, which is single-table
inheritance, called STI for short.
In STI, you establish one table in the database to hold all of the records for any
sub-type of object in a given inheritance hierarchy. In Active Record STI, that
one table is named after the top parent class of the hierarchy. In the example
we’ve been considering, that table would be named timesheets.
Hey, that’s what it was called before, right? Yes, but to enable STI we have to
add a type column. It will contain a string representing the type of the stored
object. The following migration would properly set up the database for our
example:

class AddTypeToTimesheet < ActiveRecord::Migration
def change

add_column :timesheets, :type, :string
end

end

No default value is needed. Once the type column is added to an Active Record
model, Rails will automatically take care of keeping it populated with the right
value. Using the console, we can see this behavior in action:

>> d = DraftTimesheet.create
>> d.type
=> 'DraftTimesheet'

When you try to find an object using the query methods of a base STI class,
Rails will automatically instantiate objects using the appropriate subclass.

Advanced Active Record 410

This is especially useful in polymorphic situations, such as the timesheet
example we’ve been describing, where we retrieve all the records for a
particular user and then call methods that behave differently depending on
the object’s class.

>> Timesheet.first
=> #<DraftTimesheet:0x2212354...>

STI Considerations

Although Rails makes it extremely simple to use single-table inheritance, there
are a few caveats that you should keep in mind.
To begin with, you cannot have an attribute on two different subclasses with
the same name but a different type. Since Rails uses one table to store all
subclasses, these attributes with the same name occupy the same column in
the table. Frankly, there’s not much of a reason why that should be a problem
unless you’ve made some pretty bad data-modeling decisions.
More importantly, you need to have one column per attribute on any subclass,
and any attribute that is not shared by all the subclasses must accept nil
values. In the recurring example, PaidTimesheet has a paid_hours column that is
not used by any of the other subclasses. DraftTimesheet and SubmittedTimesheet
will not use the paid_hours column and leave it null in the database. In order
to validate data for columns not shared by all subclasses, you must use Active
Record validations and not the database.
Third, it is not a good idea to have subclasses with too many unique attributes.
If you do, you will have one database table with many null values in it.
Normally, a tree of subclasses with a large number of unique attributes
suggests that something is wrong with your application design and that you
should refactor. So if you have an STI table that is getting out of hand, it is
time to reconsider your decision to use inheritance to solve your particular
problem. Perhaps your base class is too abstract?

As an STI table gets wider and wider, full of nullable columns, it
begins to resemble a schemaless document store like MongoDB. If you
designed your application with an STI table as a main/primary data
repository, maybe you should not be using a relational database in the
first place? You might even be in for a world of hurt in the future9 as
the application gets more complicated and you want to stop using STI.

9
https://about.futurelearn.com/blog/refactoring-rails-sti/

https://about.futurelearn.com/blog/refactoring-rails-sti/
https://about.futurelearn.com/blog/refactoring-rails-sti/

Advanced Active Record 411

Finally, legacy database constraints may require a different name in the
database for the type column. In this case, you can set the new column name
using the class setter method inheritance_column in the base class. For the
Timesheet example, we could do the following:

class Timesheet < ActiveRecord::Base
self.inheritance_column = 'object_type'

end

Now Rails will automatically populate the object_type column with the object’s
type.

STI and Associations

It seems pretty common for applications, particularly data-management ones,
to have models that are very similar in terms of their data payload, mostly
varying in their behavior and associations to each other. If you used object-
oriented languages prior to Rails, you’re probably already accustomed to
breaking down problem domains into hierarchical structures.
Take, for instance, a Rails application that deals with the population of states,
counties, cities, and neighborhoods. All of these are places, which might lead
you to define an STI class named Place as shown in Listing 9.2. I’ve also
included the database schema for clarity:10

Listing 9.2: The places database schema and the place class

== Schema Information
#
Table name: places
#
id :integer(11) not null, primary key
region_id :integer(11)
type :string(255)
name :string(255)
description :string(255)
latitude :decimal(20, 1)
longitude :decimal(20, 1)
population :integer(11)
created_at :datetime
updated_at :datetime

10For autogenerated schema information added to the top of your model classes, try the annotate gem at https:
//github.com/ctran/annotate_models

https://github.com/ctran/annotate_models
https://github.com/ctran/annotate_models

Advanced Active Record 412

class Place < ActiveRecord::Base
end

Place is, in essence, an abstract class. It should not be instantiated, but there
is no foolproof way to enforce that in Ruby. (No big deal, this isn’t Java!) Now
let’s go ahead and define concrete subclasses of Place:

class State < Place
has_many :counties, foreign_key: 'region_id'

end

class County < Place
belongs_to :state, foreign_key: 'region_id'
has_many :cities, foreign_key: 'region_id'

end

class City < Place
belongs_to :county, foreign_key: 'region_id'

end

You might be tempted to try adding a cities association to State, knowing that
has_many :through works with both belongs_to and has_many target associations.
It would make the State class look something like this:

class State < Place
has_many :counties, foreign_key: 'region_id'
has_many :cities, through: :counties

end

That would certainly be cool, if it worked. Unfortunately, in this particular
case, since there’s only one underlying table that we’re querying, there simply
isn’t a way to distinguish among the different kinds of objects in the query:

Mysql::Error: Not unique table/alias: 'places': SELECT places.* FROM
places INNER JOIN places ON places.region_id = places.id WHERE
((places.region_id = 187912) AND ((places.type = 'County'))) AND
((places.`type` = 'City'))

What would we have to do to make it work? Well, the most realistic would
be to use specific foreign keys, instead of trying to overload the meaning of
region_id for all the subclasses. For starters, the places table would look like
the example in Listing 9.3.

Advanced Active Record 413

Listing 9.3: The places database schema revised

== Schema Information
#
Table name: places
#
id :integer(11) not null, primary key
state_id :integer(11)
county_id :integer(11)
type :string(255)
name :string(255)
description :string(255)
latitude :decimal(20, 1)
longitude :decimal(20, 1)
population :integer(11)
created_at :datetime
updated_at :datetime

The subclasses would be simpler without the :foreign_key options on the
associations. Plus you could use a regular has_many relationship from State
to City, instead of the more complicated has_many :through.

class State < Place
has_many :counties
has_many :cities

end

class County < Place
belongs_to :state
has_many :cities

end

class City < Place
belongs_to :county

end

Of course, all those null columns in the places table won’t win you any friends
with relational database purists. That’s nothing, though. Just a little bit later
in this chapter we’ll take a second, more in-depth look at polymorphic has_many
relationships, which will make the purists positively hate you.

Advanced Active Record 414

Interested in tryingMultiple Table Inheritance? The technique, dubbed
MTI for short, lets you define ActiveRecord objects that persist their
attributes across more than one table. MTI is not built-in to Rails
proper, but you can get it via a battle-tested Ruby Gem called
ActiveRecord::ActsAs. We don’t want to get into the details of how
to use it in this book, but you can check it out at https://github.
com/hzamani/active_record-acts_as. It seems to be especially suited to
tackling design of ecommerce applications.

https://github.com/hzamani/active_record-acts_as
https://github.com/hzamani/active_record-acts_as

Advanced Active Record 415

9.10 Abstract Base Model Classes

In contrast to single-table inheritance, it is possible for Active Record models
to share common code via inheritance and still be persisted to different
database tables. In fact, every Rails developer uses an abstract model in their
code whether they realize it or not: ActiveRecord::Base.
The Base class has tons of behavior in it, but you can’t instantiate one and save
it in your database. It must be subclassed to be useful.
Using this technique in your own code involves creating an abstract base
model class that persistent subclasses will extend. It’s actually one of the
simpler techniques that we broach in this chapter.
Let’s take the Place class from the previous section (refer to Listing 9.3) and
revise it to be an abstract base class in Listing 9.4. It’s simple really—we just
have to add one line of code:

Listing 9.4: The abstract place class

class Place < ActiveRecord::Base
self.abstract_class = true

end

Marking an Active Record model abstract is essentially the opposite of making
it an STI class with a type column. You’re telling Rails: “Hey, I don’t want you
to assume that there is a table named places.”
For this refactoring to work, we would next have to establish individual tables
for states, counties, and cities. A side effect is that we would no longer be able
to query across subtypes with code like Place.all.
Both class and instance methods are shared down the inheritance hierarchy
of Active Record models. So are constants and other class members brought
in through module inclusion. That means we can put all sorts of code inside
Place that will be useful to its subclasses.

Even after 10+ years, use of abstract classes in Rails does not come with a
bunch of hard-and-fast rules to guide you—previous experience with object-
oriented techniques and experimentation is really helpful.

Advanced Active Record 416

9.11 Polymorphic has_many Relationships

Rails gives you the capability to make one class belong_to more than one type
of another class, as eloquently stated by blogger Mike Bayer:

The “polymorphic association,” on the other hand, while it bears
some resemblance to the regular polymorphic union of a class
hierarchy, is not really the same since you’re only dealing with a
particular association to a single target class from any number of
source classes, source classes which don’t have anything else to
do with each other; i.e., they aren’t in any particular inheritance
relationship and probably are all persisted in completely different
tables. In this way, the polymorphic association has a lot less to do
with object inheritance and a lot more to do with aspect-oriented
programming (AOP); a particular concept needs to be applied to a
divergent set of entities which otherwise are not directly related.
Such a concept is referred to as a cross-cutting concern, such as,
all the entities in your domain need to support a history log of all
changes to a common logging table. In the AR example, an Order
and a User object are illustrated to both require links to an Address
object.11

In other words, this is not polymorphism in the typical object-oriented sense
of the word; rather, it is something unique to Rails.

Modeling User Comments

In our recurring Time and Expenses example, let’s assume that we want both
BillableWeek and Timesheet to have many comments (a shared Comment class).
A naive way to solve this problem might be to have the Comment class belong
to both the BillableWeek and Timesheet classes and have billable_week_id and
timesheet_id as columns in its database table.

class Comment < ActiveRecord::Base
belongs_to :timesheet
belongs_to :expense_report

end
11http://techspot.zzzeek.org/2007/05/29/polymorphic-associations-with-sqlalchemy/

http://techspot.zzzeek.org/2007/05/29/polymorphic-associations-with-sqlalchemy/

Advanced Active Record 417

I call that approach naive because it would be difficult to work with and hard
to extend. Among other things, you would need to add code to the application
to ensure that a Comment never belonged to both a BillableWeek and a Timesheet
at the same time. The code to figure out what a given comment is attached to
would be cumbersome to write. Even worse, every time you want to be able
to add comments to another type of class, you’d have to add another nullable
foreign key column to the comments table.
Rails solves this problem in an elegant fashion, by enabling us to define what
it terms polymorphic associations. We first mentioned the technique when we
described the polymorphic: true option of the belongs_to association in Chapter
7, “Active Record Associations.”

The Interface

Using a polymorphic association, we need define only a single belongs_to and
add a pair of related columns to the underlying database table. From that
moment on, any class in our system can have comments attached to it (which
would make it commentable), without needing to alter the database schema
or the Comment model itself.

class Comment < ActiveRecord::Base
belongs_to :commentable, polymorphic: true

end

There isn’t a Commentable class (or module) in our application. We named
the association :commentable because it accurately describes the interface of
objects that will be associated in this way. The name :commentable will turn up
again on the other side of the association:

class Timesheet < ActiveRecord::Base
has_many :comments, as: :commentable

end

class BillableWeek < ActiveRecord::Base
has_many :comments, as: :commentable

end

Here we have the friendly has_many association enhanced with an :as pa-
rameter. The :as marks this association as polymorphic and specifies which
interface we are using on the other side of the association. While we’re on the
subject, the other end of a polymorphic belongs_to can be either a has_many or
a has_one and work identically.

Advanced Active Record 418

The database columns

Here’s a migration that will create the comments table:

class CreateComments < ActiveRecord::Migration
def change

create_table :comments do |t|
t.text :body
t.integer :commentable
t.string :commentable_type

end
end

end

As you can see, there is a column called commentable_type that stores the class
name of the associated object. TheMigrations API actually gives you a one-line
shortcut with the references method, which takes a polymorphic option:

create_table :comments do |t|
t.text :body
t.references :commentable, polymorphic: true

end

We can see how it comes together using the Rails console (some lines
ommitted for brevity):

>> c = Comment.create(body: 'I could be commenting anything.')
>> t = TimeSheet.create
>> b = BillableWeek.create
>> c.update_attribute(:commentable, t)
=> true
>> "#{c.commentable_type}: #{c.commentable_id}"
=> "Timesheet: 1"
>> c.update_attribute(:commentable, b)
=> true
>> "#{c.commentable_type}: #{c.commentable_id}"
=> "BillableWeek: 1"

As you can tell, both the Timesheet and the BillableWeek that we played with
in the console had the same id (1). Thanks to the commentable_type attribute,
stored as a string, Rails can figure out which is the correct related object.

Advanced Active Record 419

has_many :through and Polymorphics

There are some logical limitations that come into play with polymorphic
associations. For instance, since it is impossible for Rails to know the tables
necessary to join through a polymorphic association, the following hypotheti-
cal code, which tries to find everything that the user has commented on, will
not work.

class Comment < ActiveRecord::Base
belongs_to :user # author of the comment
belongs_to :commentable, polymorphic: true

end

class User < ActiveRecord::Base
has_many :comments
has_many :commentables, through: :comments

end

>> User.first.commentables
ActiveRecord::HasManyThroughAssociationPolymorphicSourceError:
Cannot have a has_many :through association 'User#commentables'
on the polymorphic object

If you really wan to do so, it’s possible to use has_many :through with poly-
morphic associations but only by specifying exactly what type of polymorphic
associations you want via the :source_type option. In most cases, you will also
need to use the :source option, since the association name will not match the
interface name used for the polymorphic association:

class User < ActiveRecord::Base
has_many :comments
has_many :commented_timesheets, through: :comments,

source: :commentable, source_type: 'Timesheet'
has_many :commented_billable_weeks, through: :comments,

source: :commentable, source_type: 'BillableWeek'
end

It’s verbose, and the whole scheme loses its elegance if you go this route, but
it works:

Advanced Active Record 420

>> User.first.commented_timesheets.to_a
=> [#<Timesheet ...>]

Advanced Active Record 421

9.12 Foreign-key Constraints

Referential integrity is a relational database concept. It refers to the enforce-
ment of otherwise implied relationships among data and is accomplished using
foreign key constraints. Referential integrity ensures that the relationship
between rows in two related tables remains synchronized during database
operations.
We haven’t really mentioned foreign-key constraints so far, even though we’re
nearing the end of our Active Record coverage. That’s mainly because histori-
cally, DHH took [a hard line against the use of foreign-key constraints in Rails
applications],(http://stackoverflow.com/a/7805719/626048) to the extent that
some described his view of databases as a “giant hash”.
However, the years have worn down this particular Rails opinion, to the
extent that Rails 4.2 shipped with built-in support for declaring foreign
key constraints in migrations. The feature was championed by Yves Senn
and largely made possible due to the work of Rails hero Matthew Higgins,
maintainer of the hugely popular Foreigner12 gem.
Consider the following example based on our recurring online auction system
sample code.

class User < ActiveRecord::Base
has_many :auctions
validates :name, presence: true

end

class Auction < ActiveRecord::Base
belongs_to :user
validates :user, presence: true

end

Our online auction system has become very popular and soon we are beset
by spammers, creating auctions merely for their own nefarious purposes. Not
only do they create an auction, but they slam it with bids in a way that makes
them show up on our homepage.
The abuse is obvious, so we give the site administrators functionality for
deleting users when they notice abuse. Wewant associated data to get cleaned
up, so we make some enhancements to our model.

12https://github.com/matthuhiggins/foreigner

https://github.com/matthuhiggins/foreigner
https://github.com/matthuhiggins/foreigner

Advanced Active Record 422

class User < ActiveRecord::Base
has_many :auctions, dependent: :destroy
validates :name, presence: true

end

class Auction < ActiveRecord::Base
belongs_to :user
validates :user, presence: true

has_many :bids, dependent: :destroy
end

Months later, we’re called back in to help diagnose error reports related to
the site homepage blowing up with errors when it tries to render the of list
popular auctions.
The error we find in the logs is

undefined method `name' for nil:NilClass

Upon investigation, it appears that some spammy auctions are still in the
database, even though they do not have an associated user. Rendering fails
when the view tries to output the name of who posted the auction. In the
database, their user_id field is set to null.
But why? Hadn’t we set the :dependent option to protect ourselves?
Turns out that battling spammers is a cat’n’mouse affair. After awhile, the
site administrators got tired of their reactive approach to fighting them. So
they hired a data scientist to write software capable of figuring out which
users were in the early process of engaging in spammy behavior. The data
scientist’s nightly job outputs a CSV file.
Manually deleting users based on a CSV file sucks, so our crafty site admin-
istrator whipped up a cron job and Rake task to take the data scientist’s CSV
file and automatically delete users based on it every night.
The first version of his script looked something like this:

user_ids = CSV.read(csv_path).flatten
User.destroy(user_ids)

This job seemed to work fine, sometimes. If the list of users to delete was
particularly long, it timed out. So after skimming some StackOverflow posts,
our site administrator changed his Rake task to look like this instead:

Advanced Active Record 423

user_ids = CSV.read(csv_path).flatten
User.where(id: user_ids).delete_all

Uh-oh. If you remember our coverage of bulk deletion earlier in this chapter,
you realize that the delete_all method doesn’t instantiate the objects it is
deleting, and therefore no after_destroy callbacks are fired, which makes our
:dependent declaration useless.
As we start writing a clean-up script to look for orphaned auctions, it occurs
to us that this mess is our own fault for not using foreign key constraints to
maintain referential integrity in the first place.
Shaking our heads, we go ahead and add a migration to link auctions and
users at the database level.

def change
add_foreign_key :auctions, :users

end

Now the site admin’s nightly crom job will fail if it tries to delete a user with
auctions. The problem is that all the spammy users have auctions, so we have
basically broken the nightly script altogether.
After some analysis, the solution we choose is to let the database and not our
Rails code handle the entire cleanup job. We do that by specifying a cascading
delete operation on our foreign key.

def change
add_foreign_key :auctions, :users, on_delete: :cascade

end

The :cascade option says that we want rows deleted in the child table when
corresponding rows are deleted in the parent table.
If we had designed these tables with foreign keys, indexes, and cascading
deletes from the start, our migration might have looked like this:

create_table :auctions do |t|
t.references :user, index: true, foreign_key: {on_delete: :cascade}
...

Advanced Active Record 424

There might be circumstances wher you want to create a composite
foreign key, meaning one that references more than one column,
which is something that is not natively supported in the migration
API. Or you might want to leverage some behavior specific to your
particular database version, not natively supported by Rails. In those
cases you’ll need to execute SQL DDL statements using ActiveRecord’s
connection.execute functionality. If you go down that road, remember
to change your schema dumping to :sql so that your migration changes
are preserved when the database is rebuilt.

Foreign Key Names and Indexes

Foreign key declarations made like this

def change
add_foreign_key :auctions, :users

end

will reference the id column of the users table. If the column names can not
be derived from the table names, the migrations API gives you :column and
:primary_key options to let you get more explicit.
Rails will generate a name for every foreign key starting with fk_rails_ fol-
lowed by 10 characters that are deterministically generated from the tables
and columns involved. The add_foreign_key method also has a :name option in
case you need to specify explicitly use of a different index name for some
reason.

Removing Foreign Keys

There are three different ways to remove foreign keys using the Migrations
API:

Advanced Active Record 425

let Active Record figure out the column name
remove_foreign_key :accounts, :branches

remove foreign key for a specific column
remove_foreign_key :accounts, column: :owner_id

remove foreign key by name
remove_foreign_key :accounts, name: :special_fk_name

Advanced Active Record 426

9.13 Modules for Reusing Common Behavior

In this section, we’ll talk about one strategy for breaking out functionality that
is shared between disparate model classes. Instead of using inheritance, we’ll
put the shared code into modules.
In the section “Polymorphic has_many Relationships,” we described how to add
a commenting feature to our recurring sample Time and Expenses application.
We’ll continue fleshing out that example, since it lends itself to factoring out
into modules.
The requirements we’ll implement are as follows: Both users and approvers
should be able to add their comments to a Timesheet or ExpenseReport. Also,
since comments are indicators that a timesheet or expense report requires
extra scrutiny or processing time, administrators of the application should be
able to easily view a list of recent comments. Human nature being what it is,
administrators occasionally gloss over the comments without actually reading
them, so the requirements specify that a mechanism should be provided for
marking comments as “OK” first by the approver, then by the administrator.
Again, here is the polymorphic has_many :comments, as: :commentable that we
used as the foundation for this functionality:

class Timesheet < ActiveRecord::Base
has_many :comments, as: :commentable

end

class ExpenseReport < ActiveRecord::Base
has_many :comments, as: :commentable

end

class Comment < ActiveRecord::Base
belongs_to :commentable, polymorphic: true

end

Next, we enable the controller and action for the administrator that list the
10 most recent comments with links to the item to which they are attached.

Advanced Active Record 427

class Comment < ActiveRecord::Base
scope :recent, -> { order('created_at desc').limit(10) }

end

class CommentsController < ApplicationController
before_action :require_admin, only: :recent
expose(:recent_comments) { Comment.recent }

end

Here’s some of the simple view template used to display the recent comments.

%ul.recent.comments
- recent_comments.each do |comment|

%li.comment
%h4= comment.created_at
= comment.text
.meta

Comment on:
= link_to comment.commentable.title, comment.commentable
Yes, this would result in N+1 selects.

So far, so good. The polymorphic association makes it easy to access all types
of comments in one listing. In order to find all of the unreviewed comments
for an item, we can use a named scope on the Comment class together with
the comments association.

class Comment < ActiveRecord::Base
scope :unreviewed, -> { where(reviewed: false) }

end

>> timesheet.comments.unreviewed

Both Timesheet and ExpenseReport currently have identical has_many methods
for comments. Essentially, they both share a common interface. They’re
commentable!
To minimize duplication, we could specify common interfaces that share code
in Ruby by including a module in each of those classes where the module
contains the code common to all implementations of the common interface.
So, mostly for the sake of example, let’s go ahead and define a Commentable
module to do just that and include it in our model classes:

Advanced Active Record 428

module Commentable
has_many :comments, as: :commentable

end

class Timesheet < ActiveRecord::Base
include Commentable

end

class ExpenseReport < ActiveRecord::Base
include Commentable

end

Whoops, this code doesn’t work! To fix it, we need to understand an essential
aspect of the way that Ruby interprets our code dealing with open classes.

A Review of Class Scope and Contexts

In many other interpreted, OO programming languages, you have two phases
of execution—one in which the interpreter loads the class definitions and says
“this is the definition of what I have to work with,” followed by the phase
in which it executes the code. This makes it difficult (though not necessarily
impossible) to add new methods to a class dynamically during execution.
In contrast, Ruby lets you add methods to a class at any time. In Ruby, when
you type class MyClass, you’re doing more than simply telling the interpreter
to define a class; you’re telling it to “execute the following code in the scope
of this class.”
Let’s say you have the following Ruby script:

class Foo < ActiveRecord::Base
has_many :bars

end
class Foo < ActiveRecord::Base

belongs_to :spam
end

When the interpreter gets to line 1, you are telling it to execute the following
code (up to the matching end) in the context of the Foo class object. Because
the Foo class object doesn’t exist yet, it goes ahead and creates the class. At
line 2, we execute the statement has_many :bars in the context of the Foo class
object. Whatever the has_many method does, it does right now.
When we again say class Foo at line 4, we are once again telling the interpreter
to execute the following code in the context of the Foo class object, but this

Advanced Active Record 429

time, the interpreter already knows about class Foo; it doesn’t actually create
another class. Therefore, on line 5, we are simply telling the interpreter to
execute the belongs_to :spam statement in the context of that same Foo class
object.
In order to execute the has_many and belongs_to statements, those methods
need to exist in the context in which they are executed. Because these are
defined as classmethods in ActiveRecord::Base, andwe have previously defined
class Foo as extending ActiveRecord::Base, the code will execute without a
problem.
However, when we define our Commentable module like this

module Commentable
has_many :comments, as: :commentable

end

we get an error when it tries to execute the has_many statement. That’s because
the has_many method is not defined in the context of the Commentable module
object.
Given what we now know about how Ruby is interpreting the code, we now
realize that what we really want is for that has_many statement to be executed
in the context of the including class.

The included Callback

Luckily, Ruby’s Module class defines a handy callback that we can use to do just
that. If a Module object defines the method included, it gets run whenever that
module is included in another module or class. The argument passed to this
method is the module/class object into which this module is being included.
We can define an included method on our Commentable module object so that it
executes the has_many statement in the context of the including class (Timesheet,
ExpenseReport, and so on):

module Commentable
def self.included(base)

base.class_eval do
has_many :comments, as: :commentable

end
end

end

Advanced Active Record 430

Now, when we include the Commentable module in our model classes, it will
execute the has_many statement just as if we had typed it into each of those
classes’ bodies.
The technique is common enough, within Rails and gems, that it was added
as a first-class concept in the ActiveSupport API as of Rails 3. The preceding
example becomes shorter and easier to read as a result:

app/models/concerns/commentable.rb
module Commentable

extend ActiveSupport::Concern
included do

has_many :comments, as: :commentable
end

end

Whatever is inside of the included block will get executed in the class context
of the class where the module is included.
As of version 4.0, Rails includes the directory app/models/concerns as the place
to keep all your application’s model concerns. Any file found within this
directory will automatically be part of the application load path.

Courtenay says…
There’s a fine balance to strike here. Magic like include Commentable certainly
saves on typing andmakes your model look less complex, but it can also mean
that your association code is doing things you don’t know about. This can
lead to confusion and hours of head-scratching while you track down code in
a separate module. My personal preference is to leave all associations in the
model and extend them with a module. That way you can quickly get a list of
all associations just by looking at the code.

Advanced Active Record 431

9.14 Value Objects

In Domain Driven Design13 (DDD) there is a distinction between Entity Objects
and Value Objects. All model objects that inherit from ActiveRecord::Basewould
be considered Entity Objects in DDD.
An Entity object cares about identity, since each one is unique, regardless of
similarities between attribute values. In Active Record, uniqueness is derived
from the primary key. Comparing two different Entity Objects for equality
should always return false, even if all of its attributes (other than the primary
key) are equivalent.
Here is an example comparing two hypothetical Active Record address ob-
jects:

>> home = Address.create(city: "Brooklyn", state: "NY")
>> office = Address.create(city: "Brooklyn", state: "NY")
>> home == office
=> false

In this case, you are actually creating two new Address records and persisting
them to the database, therefore they have different primary key values. They
are different entities.
In contrast, Value Objects are generally immutable, and they are considered
equal if their attributes are equal. When creating Value Objects for use with
Active Record you do not inherit from ActiveRecord::Base but instead simply
define a standard Ruby object. This form of composition is called an Aggregate
in DDD.
The attributes of a value object are stored in the database alongside the
columns of its parent object.
A simple example is that of a Person with a single Address. To model this using
composition, first we need a Person model with corresponding address fields
for the Address object. We create it with the following migration:

13http://www.domaindrivendesign.org/

http://www.domaindrivendesign.org/

Advanced Active Record 432

class CreatePeople < ActiveRecord::Migration[5.0]
def change

create_table :people do |t|
t.string :name
t.string :address_street
t.string :address_city
t.string :address_state

end

The Person model looks like this:

class Person < ActiveRecord::Base
def address

@address ||= Address.new(address_city, address_state)
end

def address=(address)
self[:address_city] = address.city
self[:address_state] = address.state

@address = address
end

end

Now we need a corresponding AddressType object, which looks like this:

class Address
attr_reader :city, :state

def initialize(city, state)
@city, @state = city, state

end

def ==(other_address)
city == other_address.city && state == other_address.state

end
end

Note that this is just a standard Ruby object that does not inherit from
ActiveRecord::Base. We have defined reader methods for our attributes and are
assigning them upon initialization. We also have to define our own == method
for use in comparisons. Wrapping this all up we get the following usage:

Advanced Active Record 433

>> gary = Person.create(name: "Gary")
>> gary.address_city = "Brooklyn"
>> gary.address_state = "NY"
>> gary.address
=> #<Address:0x007fcbfcce0188 @city="Brooklyn", @state="NY">

Note that we don’t use ActiveRecord’s Attributes API to define the attributes
of Address. The core team has hinted that the Attributes API is destined
for migration into Active Model in a future version of Rails, but until that
happens, you can only use it with Active Record objects.

Alternately you can instantiate the address directly and assign it using the
address accessor:

>> gary.address = Address.new("Brooklyn", "NY")
>> gary.address
=> #<Address:0x007fcbfa3b2e78 @city="Brooklyn", @state="NY">

Immutability

It’s also important to treat value objects as immutable. Don’t allow them to be
changed after creation. Instead, create a new object instance with the new
value instead. Active Record will not persist value objects that have been
changed through means other than the writer method on the parent object.

The Money Gem

A common approach to using Value Objects is in conjunction with the money
gem.14

14https://github.com/RubyMoney/money

https://github.com/RubyMoney/money

Advanced Active Record 434

class Expense < ActiveRecord::Base
def cost

@cost ||= Money.new(cents || 0, currency || Money.default_currency)
end

def cost=(cost)
self[:cents] = cost.cents
self[:currency] = cost.currency.to_s

cost
end

end

Remember to add a migration with the two columns, the integer cents, and
the string currency that money needs.

class CreateExpenses < ActiveRecord::Migration
def change

create_table :expenses do |t|
t.integer :cents
t.string :currency

end
end

end

Now asking for or setting the cost of an item would use a Money instance.

>> expense = Expense.create(cost: Money.new(1000, "USD"))
>> cost = expense.cost
>> cost.cents
=> 1000
>> expense.currency
=> "USD"

Advanced Active Record 435

9.15 Non-Persisted Models

In Rails 3, if you wanted to use a standard Ruby object with Action View
helpers, such as form_for, the object had to “act” like an Active Record
instance. This involved including/extending various Active Model module
mixins and implementing the method persisted?. At a minimum, Active-
Model::Conversion should be included and ActiveModel::Naming extended. These
two modules alone provide the object all the methods it needs for Rails to
determine partial paths, routes, and naming. Optionally, extending Active-
Model::Translation adds internationalization support to your object, while in-
cluding ActiveModel::Validations enables validations to be defined. All modules
are covered in detail in the Active Model API Reference.
To illustrate, let’s assume we have a Contact class that has attributes for name,
email, and message. However, the data for contacts in our application is stored
in a proprietary third-party API, not our relational database.
The following implementation of Contact in Action Pack and Action View works
in all modern versions of Rails:

class Contact
extend ActiveModel::Naming
extend ActiveModel::Translation
include ActiveModel::Conversion
include ActiveModel::Validations

attr_accessor :name, :email, :message

validates :name, presence: true
validates :email,

format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/ },
presence: true

validates :message, length: {maximum: 1000}, presence: true

def initialize(attributes = {})
attributes.each do |name, value|
send("#{name}=", value)

end
end

def persisted?
false

end
end

Advanced Active Record 436

Rails 4 introduced ActiveModel::Model, a module mixin that removes the
drudgery of manually having to implement a compatible interface and dra-
matically simplifies the code above.
Model takes care of including/extending the modules mentioned above, defines
an initializer to set all attributes on initialization, and sets persisted? to false
by default. Using it, the Contact class can be implemented as follows:

class Contact
include ActiveModel::Model

attr_accessor :name, :email, :message

validates :name, presence: true
validates :email,

format: { with: /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\z/ },
presence: true

validates :message, length: {maximum: 1000}, presence: true
end

Advanced Active Record 437

9.16 Modifying Active Record Classes at
Runtime

The metaprogramming capabilities of Ruby, combined with the after_find
callback, open the door to some interesting possibilities, especially if you’re
willing to blur your perception of the difference between code and data. I’m
talking about modifying the behavior of model classes on the fly, as they’re
loaded into your application.
Listing 9.5 is a drastically simplified example of the technique, which assumes
the presence of a config column on your model. During the after_find callback,
we get a handle to the unique singleton class15 of the model instance being
loaded. Then we execute the contents of the config attribute belonging to this
particular Account instance, using Ruby’s class_evalmethod. Since we’re doing
this using the singleton class for this instance, rather than the global Account
class, other account instances in the system are completely unaffected.

Listing 9.5: Runtime metaprogramming with after_find

class Account < ActiveRecord::Base
...

protected

def after_find
singleton = class << self; self; end
singleton.class_eval(config)

end
end

I used powerful techniques like this one in a supply-chain application that
I wrote for a large industrial client. “Lot”“ is a generic term in the industry
used to describe a shipment of product. Depending on the vendor and product
involved, the attributes and business logic for a given lot vary quite a bit.
Since the set of vendors and products being handled changed on a weekly
(sometimes daily) basis, the system needed to be reconfigurable without
requiring a production deployment.
Without getting into too much detail, the application allowed the maintenance
programmers to easily customize the behavior of the system by manipulating

15I don’t expect this to make sense to you unless you are familiar with Ruby’s singleton classes and the capability
to evaluate arbitrary strings of Ruby code at runtime. A good place to start is http://yehudakatz.com/2009/11/15/
metaprogramming-in-ruby-its-all-about-the-self/.

http://yehudakatz.com/2009/11/15/metaprogramming-in-ruby-its-all-about-the-self/
http://yehudakatz.com/2009/11/15/metaprogramming-in-ruby-its-all-about-the-self/

Advanced Active Record 438

Ruby code stored in the database, associated with whatever product the lot
contained.
For example, one of the business rules associated with lots of butter being
shipped for Acme Dairy Co. might dictate a strictly integral product code,
exactly 10 digits in length. The code, stored in the database and associated
with the product entry for Acme Dairy’s butter product, would therefore
contain the following two lines:

validates_numericality_of :product_code, only_integer: true
validates_length_of :product_code, is: 10

Considerations

A relatively complete description of everything you can do with Ruby metapro-
gramming, and how to do it correctly, would fill its own book. For instance, you
might realize that doing things like executing arbitrary Ruby code straight out
of the database is inherently dangerous. That’s why I emphasize again that the
examples shown here are very simplified. All I want to do is give you a taste
of the possibilities.
If you do decide to begin leveraging these kinds of techniques in real-world
applications, you’ll have to consider security and approval workflow and a
host of other important concerns. Instead of allowing arbitrary Ruby code to
be executed, youmight feel compelled to limit it to a small subset related to the
problem at hand. Youmight design a compact API, or even delve into authoring
a domain-specific language (DSL), crafted specifically for expressing the
business rules and behaviors that should be loaded dynamically. Proceeding
down the rabbit hole, you might write custom parsers for your DSL that
could execute it in different contexts—some for error detection and others for
reporting. It’s one of those areas where the possibilities are quite limitless.

Ruby and Domain-Specific Languages

My former colleague Jay Fields and I pioneered the mix of Ruby metapro-
gramming, Rails, and internal16 domain-specific languages while doing Rails
application development for clients. I still occasionally speak at conferences
and blog about writing DSLs in Ruby.
Jay has also written and delivered talks about his evolution of Ruby DSL
techniques, which he calls Business Natural Languages (or BNL for short17).

16The qualifier internal is used to differentiate a domain-specific language hosted entirely inside of a general-
purpose language, such as Ruby, from one that is completely custom and requires its own parser implementation.

17Googling BNL will give you tons of links to the Toronto-based band Barenaked Ladies, so you’re better off going
directly to the source at http://blog.jayfields.com/2006/07/business-natural-language-material.html.

http://blog.jayfields.com/2006/07/business-natural-language-material.html

Advanced Active Record 439

When developing BNLs, you craft a domain-specific language that is not
necessarily valid Ruby syntax but is close enough to be transformed easily
into Ruby and executed at runtime, as shown in Listing 9.6.

Listing 9.6: Example of business natural language

employee John Doe
compensate 500 dollars for each deal closed in the past 30 days
compensate 100 dollars for each active deal that closed more than
365 days ago
compensate 5 percent of gross profits if gross profits are greater than
1,000,000 dollars
compensate 3 percent of gross profits if gross profits are greater than
2,000,000 dollars
compensate 1 percent of gross profits if gross profits are greater than
3,000,000 dollars

The capability to leverage advanced techniques such as DSLs is yet another
powerful tool in the hands of experienced Rails developers.

Courtenay says…
DSLs suck! Except the ones written by Obie, of course. The only people
who can read and write most DSLs are their original authors. As a
developer taking over a project, it’s often quicker to just reimplement
instead of learning the quirks and exactly which words you’re allowed
to use in an existing DSL. In fact, a lot of Ruby metaprogramming
sucks too. It’s common for people gifted with these new tools to go a
bit overboard. I consider metaprogramming, self.included, class_eval,
and friends to be a bit of a code smell on most projects. If you’re
making a web application, future developers and maintainers of the
project will appreciate your using simple, direct, granular, and well-
tested methods, rather than monkeypatching into existing classes or
hiding associations in modules. That said, if you can pull it off—your
code will become more powerful than you can possibly imagine.

Advanced Active Record 440

9.17 PostgreSQL

Out of all the databases supported by Active Record, PostgreSQL always
seems to get the most attention and coolest features. In this section, we
present a handful of features that are only available using PostgreSQL.

Array Type

This array column type allows us to conveniently store a list of values, such as
strings, within a single database row.
For instance, assuming we had an Article model, we could store all the
article’s tags in an array attribute named tags. Since the tags are not stored
in another table, when Active Record retrieves an article from the database,
it does so in a single query.
To declare a column as an array, pass true to the :array option for a column
type such as string:

class AddTagsToArticles < ActiveRecord::Migration
def change

change_table :articles do |t|
t.string :tags, array: true

end
end

end
ALTER TABLE "articles" ADD COLUMN "tags" character varying(255)[]

The array column type will also accept the option :length to limit the number
of items allowed in the array.

t.string :tags, array: true, length: 10

To set a default value for an array column, you must use the PostgreSQL array
notation ({value}). Setting the default option to {} ensures that every row in
the database will default to an empty array.

t.string :tags, array: true, default: '{rails,ruby}'

The migration in the preceding code sample would create an array of strings
that defaults every row in the database to have an array containing strings
“rails” and “ruby”.

Advanced Active Record 441

>> article = Article.create
(0.1ms) BEGIN
SQL (66.2ms) INSERT INTO "articles" ("created_at", "updated_at") VALUES
($1, $2) RETURNING "id" [["created_at", Wed, 23 Oct 2013 15:03:12

>> article.tags
=> ["rails", "ruby"]

If the PgArrayParser gem18 is included in the application Gemfile, Rails will
use it when parsing PostgreSQL’s array representation. The gem includes a
native C extention and JRuby support.

Querying

If you wish to query an array column using Active Record, you can use the ANY
and ALL functions. To demonstrate, given our previous example, using the ANY
method we could query for any articles that have the tag “rails”:

Article.where("? = ANY(tags)", "rails")

Alternatively, the ALL function searches for arrays where all values in the array
equal the value specified. (Not useful for tagging.)
If you are doing queries on large tables with array column type, the column
should probably be indexed with either GiST or GIN.

add_index :articles, :tags, using: 'gin'

Network Address Types

PostgreSQL comes with column types exclusively for IPv4, IPv6, and MAC
addresses. IPv4 or IPv6 host address are represented with Active Record data
types inet and cidr, where the former accepts values with nonzero bits to
the right of the netmask. When Active Record retrieves inet/cidr data types
from the database, it converts the values to IPAddr objects. MAC addresses are
represented with the macaddr data type, which are represented as a string in
Ruby.
To set a column as a network address in an Active Record migration, set the
data type of the column to inet, cidr, or macaddr:

18https://github.com/DockYard/pg_array_parser

https://github.com/DockYard/pg_array_parser
https://github.com/DockYard/pg_array_parser

Advanced Active Record 442

class CreateNetworkAddresses < ActiveRecord::Migration
def change

create_table :network_addresses do |t|
t.inet :inet_address
t.cidr :cidr_address
t.macaddr :mac_address

end
end

end

Setting an inet or cidr type to an invalid network address will result in an
IPAddr::InvalidAddressError exception being raised. If an invalid MAC address
is set, an error will occur at the database level resulting in an ActiveRe-
cord::StatementInvalid: PG::InvalidTextRepresentation exception being raised.

>> address = NetworkAddress.new
=> #<NetworkAddress id: nil, inet_address: nil, ...>

>> address.inet_address = 'abc'
IPAddr::InvalidAddressError: invalid address

>> address.inet_address = "127.0.0.1"
=> "127.0.0.1"

>> address.inet_address
=> #<IPAddr: IPv4:127.0.0.1/255.255.255.255>

>> address.save && address.reload
=> #<NetworkAddress id: 1,

inet_address: #<IPAddr: IPv4:127.0.0.1/255.255.255.255>, ...>

UUID Type

The uuid column type represents a Universally Unique Identifier (UUID), a
128-bit value that is generated by an algorithm that makes it highly unlikely
that the same value can be generated twice.
To set a column as a UUID in an Active Record migration, set the type of the
column to uuid:

add_column :table_name, :unique_identifier, :uuid

When reading and writing to a UUID attribute, you will always be dealing with
a Ruby string:

Advanced Active Record 443

record.unique_identifier = 'a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11'

If an invalid UUID is set, an error will occur at the database level resulting
in an ActiveRecord::StatementInvalid: PG::InvalidTextRepresentation exception
being raised.

Range Types

If you have ever needed to store a range of values, Active Record now supports
PostgreSQL range types. These ranges can be created with both inclusive and
exclusive bounds. The following range types are natively supported:

• daterange
• int4range
• int8range
• numrange
• tsrange
• tstzrange

To illustrate, consider a scheduling application that stores a date range
representing the availability of a room.

class CreateRooms < ActiveRecord::Migration
def change

create_table :rooms do |t|
t.daterange :availability

end
end

end

room = Room.create(availability: Date.today..Float::INFINITY)
room.reload
room.availability # Tue, 22 Oct 2013...Infinity
room.availability.class # Range

Note that the Range class does not support exclusive lower bound. For more
detailed information about the PostgreSQL range types, consult the [official
documentation].(http://www.postgresql.org/docs/9.3/static/rangetypes.html)

Advanced Active Record 444

JSON Type

Introduced in PostgreSQL 9.2, the json column type adds the capability for
PostgreSQL to store JSON structured data directly in the database. When an
Active Record object has an attribute with the type of json, the encoding/de-
coding of the JSON itself is handled behind the scenes by ActiveSupport::JSON.
This enables you to set the attribute to a hash or already encoded JSON string.
If you attempt to set the JSON attribute to a string that cannot be decoded, a
JSON::ParserError will be raised.
To set a column as JSON in an Active Record migration, set the data type of
the column to json:

add_column :users, :preferences, :json

To demonstrate, let’s play with a preferences attribute. To begin, I’ll create a
user with the color preference of blue.

>> user = User.create(preferences: { color: "blue"})
(0.2ms) BEGIN
SQL (1.1ms) INSERT INTO "users" ("preferences") VALUES ($1) RETURNING
"id" [["preferences", {:color=>"blue"}]]
(0.4ms) COMMIT

=> #<User id: 1, preferences: {:color=>"blue"}>

Next up, let’s verify that when we retrieve the user from the database the
preferences attribute doesn’t return a JSON string but a hash representation
instead.

>> user.reload
User Load (10.7ms) SELECT "users".* FROM "users" WHERE "users"."id" = $1
LIMIT 1 [["id", 1]]

=> #<User id: 1, preferences: {"color"=>"blue"}>

>> user.preferences.class
=> Hash

Index Types

PostgreSQL provides several index types: B-tree, Hash, GiST, SP-GiST, GIN
and BRIN. Each index type uses a different algorithm that is best suited to
different types of queries. By default, the CREATE INDEX command creates B-
tree indexes, which fit the most common situations.

Advanced Active Record 445

If you are doing any queries on columns with textual content such as hstore
and json types, be sure to add the appropriate index19, which is probably GIN
or GiST. The distinguishing factor between the two index types is that GIN
index lookups are three times faster than GiST indexes. However, they also
take three times longer to build.
You can define a non-default index using Active Record migrations by setting
the index option :using to :gin or :gist respectively.

add_index :photos, :properties, using: :gin
add_index :photos, :properties, using: :gist # alternate

GIN and GiST indexes support queries with @>, ?, ?& and ?| operators that we
used in the hstore and json example code.

19https://www.postgresql.org/docs/9.6/static/indexes-types.html

https://www.postgresql.org/docs/9.6/static/indexes-types.html
https://www.postgresql.org/docs/9.6/static/indexes-types.html

Advanced Active Record 446

9.18 Conclusion

With this chapter we conclude our comprehensive coverage of Active Record.
Among other things, we examined how callbacks let us factor our code in a
clean and object-oriented fashion. We also expanded our modeling options
by considering single-table inheritance, abstract classes, and Active Record’s
distinctive polymorphic relationships.
At this point in the book, we’ve covered two parts of the MVC pattern: the
model and the controller. It’s now time to delve into the third and final part:
the view.

10. Action View
The very powerful and the very stupid have one thing in common.
Instead of altering their views to fit the facts, they alter the facts to
fit their views…which can be very uncomfortable if you happen to
be one of the facts that needs altering.
—Doctor Who

If controllers are the skeleton and musculature of your Rails application, then
models form the heart and mind, and your view templates (based on Action
View, the third major component of Rails) are your application’s skin and
fashion accessories—the part that is visible to the outside world.
Action View is the Rails API for putting together the visual component of your
application, namely the HTML and associated content that will be rendered in
a web browser whenever someone uses your Rails application. In this brave
new world of REST resources, Action View is involved in generating almost
any sort of output you generate, not just HTML.

ERb versus Haml
Action View contains a full-featured templating system based on a Ruby
library named ERb. It takes data prepared by the controller layer and
interleaves it with view code to create a presentation layer for the end user.
It’s also one of the first things you learn about Rails and part of the standard
Ruby library. While ERb is the Rails standard, I much prefer a templating
solution named Haml[ˆhaml-site] and as such, have used it all over the book
for examples. I think Haml is such a superior choice over ERb that, other
than mentioning it here, this edition does not cover ERb at all. Haml, on the
other hand, get its own full chapter.
http://haml-lang.com/

In this chapter, we cover the fundamentals of the Action View framework,
from effective use of partials, to the significant performance boosts possible
via caching.

http://haml-lang.com/

Action View 448

10.1 Layouts and Templates

Rails has easy conventions for template usage, related to the location of
templates with the Rails project directories.
The app/views directory contains subdirectories corresponding to the name of
controllers in your application. Within each controller’s view subdirectory, you
place a template named to match its corresponding action.
The special app/views/layout directory holds layout templates, intended to be
reusable containers for your views. Again, naming conventions are used to
determine which templates to render, except that this time it is the name of
the controller that is used for matching.

Template Filename Conventions

The filename of a template in Rails carries a lot of significance. Its parts,
delimited with periods, correspond to the following information:

• name (usually maps to action)
• locale (optional)
• content type
• templating engine(s)
• variant (optional, new in Rails 4.1)

We’ll get into specifics about this naming scheme a little further along in the
chapter.

Layouts

A layout is an HTML document container meant to be reused by many
controller’s actions. Simple applications may have one layout shared by all
actions, while more complex applications may have many layouts, even one or
more per controller.
Action View decides which layout to render based on the inheritance hier-
archy of controllers being executed. Most Rails applications have an appli-
cation.html.haml file in their layout directory, because it’s part of the files
generated by the rails new bootstrapping script. The base layout shares its
name with the ApplicationController, which is typically extended by all the
other controllers in an application; therefore it is picked up as the default
layout for all views.

Action View 449

It is picked up, unless of course, a more specific layout template is in place,
but quite often it makes sense to use just one application-wide template, such
as the simple one shown in Listing 10.1.

Listing 10.1: A simple general-purpose application.html.haml layout template

!!! 5
%html

%head
%meta{ charset: 'utf-8' }
%title TR4W Time and Expenses Sample Application
= csrf_meta_tag
= stylesheet_link_tag 'application', media: 'all'
= javascript_include_tag 'application'

%body
= yield

Yielding Content

The Ruby language’s built-in yield keyword is put to good use in making layout
and action templates collaborate. Notice the use of yield at the end of the
layout template:

%body
= yield

In this case, yield by itself is a special message to the rendering system. It
marks where to insert the output of the action’s rendered output, which is
usually the template corresponding to that action.
You can add extra places in your layout where you want to be able to yield
content by including additional yield invocations—just make sure to pass a
unique identifier as the argument. A good example is a layout that has left
and right sidebar content (simplified, of course):

%body
.left.sidebar

= yield :left
.content

= yield
.right.sidebar

= yield :right

Action View 450

The .content div receives the main template markup generated. But how do
you give Rails content for the left and right sidebars? Easy—just use the
content_for method anywhere in your template code. I usually stick it at the
top of the template so that it’s obvious.

- content_for :left do
%h2 Navigation
%ul

%li ...

- content_for :right do
%h2 Help
%p Lorem ipsum dolor sit amet, consectetur adipisicing elit...

%h1 Page Heading
%p ...

Besides sidebars and other types of visible content blocks, I suggest you yield
for additional content to be added to the HEAD element of your page, as shown
in Listing 10.2.

Listing 10.2: Yielding additional head content
!!! 5
%html

%head
%meta{ charset: 'utf-8' }
%title TR4W Time and Expenses Sample Application
= csrf_meta_tag
= stylesheet_link_tag 'application', media: 'all'
= javascript_include_tag 'application'
= yield :head

%body
= yield

Kevin says…
Yielding in the HEAD element is also a great technique to include page
specific meta tags, such as those required for Facebook Open Graph.

Conditional Output

One of the most common idioms you’ll use when coding Rails views is to
conditionally output content to the view. The most elementary way to control
conditional output is to use if statements.

Action View 451

- if show_subtitle?
%h2= article.subtitle

A lot of times you can use inline if conditions and shorten your code, since
the = outputter doesn’t break if you feed it a nil value. Just add a postfix if
condition to the statement:

%h2= article.subtitle if show_subtitle?

Of course, there’s a problem with the preceding example. The if statement on
a separate line will eliminate the <h2> tags entirely, but the one-liner second
example does not.
There are a couple of ways to deal with the problem and keep it a one-liner.
First, there’s the butt-ugly solution that I’ve occasionally seen in some Rails
applications, which is the only reason why I’m mentioning it here!

= "<h2>#{h(article.subtitle)}</h2>".html_safe if show_subtitle?

A more elegant solution involves Rails’ content_tag helper method, but admit-
tedly a one-liner is probably not superior to its two-line equivalent in this case.

= content_tag('h2', article.subtitle) if show_subtitle?

Helper methods, both the ones included in Rails like content_tag and the ones
that you’ll write on your own, are your main tool for building elegant view
templates. Helpers are covered extensively in Chapter 11, “All About Helpers.”

Decent Exposure

We’ve seen how layouts and yielding content blocks work, but other than that,
how should data get from the controller layer to the view? During preparation
of the template, instance variables set during execution of the controller
action will be copied over as instance variables of the template context. Even
though it’s the standard way exposed by Rails documentation, sharing state
via instance variables in controllers promotes close coupling with views.
Hashrocket’s Decent Exposure gem provides a declarativemanner of exposing
an interface to the state that controllers contain, thereby decreasing coupling
and improving your testability and overall design.
https://github.com/hashrocket/decent_exposure

https://github.com/hashrocket/decent_exposure

Action View 452

When invoked, Decent Exposure’s expose macro creates a method with the
given name, evaluates the provided block and memoizes the result. This
method is then declared as a helper_method so that views may have access to it
and is made unroutable as an action. When no block is given, expose attempts
to intuit which resource you want to acquire:

expose :timesheet

Does something kind of like this, just more concisely:

Timesheet.find(params[:timesheet_id] || params[:id])

The symbol passed to expose is used to guess the class name of the object you
want to find and related parameters—useful since almost every controller in
a normal Rails application uses this kind of code in the show, edit, update and
destroy actions.
In a slightly more complicated scenario, you might need to find an instance
of an object using something other than a simple find method on its Active
Record class. Decent Exposure provides an array of options for customizing
default behavior, including :scope:

expose :client
expose :timesheet, scope: -> { client.timesheets }

The example says, “search for timesheets in the client’s association instead of
the Timesheet class.” And note that exposures can refer to each other.

In the RESTful controller paradigm, with its nesting of resources, you’ll find
yourself using this particular idiom again and again.

Exposing completely custom code is just a matter of passing a block.

expose :client
expose :timesheet, scope: -> { client.timesheets }
expose :timesheet_approval_presenter do

TimesheetApprovalPresenter.new(timesheet, current_user)
end

or a symbol

Action View 453

expose :client
expose :timesheet, scope: -> { client.timesheets }
expose :timesheet_approval_presenter, :setup_presenter
...

private

def setup_presenter
...
TimesheetApprovalPresenter.new(timesheet, current_user)

end

The last couple of examples also demonstrate how expose declarations can
depend on each other. In fact, proper use of expose should eliminate most
model-lookup code from your actual controller actions.
At Hashrocket, use of Decent Exposure has proven so beneficial that it
completely replaced direct use of instance variables in controllers and views.
The helper methods created by the expose macro are just referred to directly
in the view.

Standard Instance Variables

More than just instance variables from the controller are copied over to the
template.

assigns

Want to see everything that comes across the controller-view boundary?
Throw = debug(assigns) into your template and take a look at the output. The
assigns attribute is essentially internal to Rails, and you should not use it
directly in your production code.

base_path

Local filesystem path pointing to the base directory of your application where
templates are kept.

controller

The current controller instance is made available via controller, before it goes
out of scope at the end of request processing. You can take advantage of
the controller’s knowledge of its name (via the controller_name attribute) and
the action that was just performed (via the action_name attribute), in order to
structure your CSS more effectively.

Action View 454

%body{ class: "#{controller.controller_name} #{controller.action_name}" }

That would result in a BODY tag looking something like this, depending on the
action executed:

<body class="timesheets index">

Note
You could also replicate the functionality in the previous example by using
the Haml helper method page_class.

%body{ class: page_class }

Hopefully you already know that the C in CSS stands for cascading, which
refers to the fact that class names cascade down the tree of elements in
your markup code and are available for creation of rules. The trick is to
automatically include the controller and action name as classnames of your
body element, so that you can use them to customize the look and feel of
the page very flexibly later on in the development cycle. For example, here’s
how you would use the technique to vary the background of header elements
depending on the controller path in SCSS:

body {
.timesheets .header {

background: image_url(timesheet-bg.png) no-repeat left top;
}

.expense_reports .header {
background: image_url(expense-reports-bg.png) no-repeat left top;

}
}

cookies

The cookies variable is a hash containing the user’s cookies. There might be
situations where it’d be okay to pull values out to affect rendering, but most
of the time you’ll be using cookies in your controller, not the view.

Action View 455

flash

The flash has popped up in larger code samples throughout the book so far,
whenever you want to send the user a message from the controller layer but
only for the duration of the next request.

def create
if user.try(:authorize, params[:user][:password])

redirect_to home_url, notice: "Welcome, #{user.first_name}!"
else

redirect_to :new, alert: "Login invalid."
end

end

A common Rails practice is to use flash[:notice] to hold benign notice
messages, and flash[:alert] for communication of a more serious nature.

Note
It’s so common to set flash notice and alertmessages on redirects that Rails
enables you to set them in the redirect_to method as optional parameters.

def create
if user.try(:authorize, params[:user][:password])
redirect_to home_url, notice: "Welcome, #{user.first_name}!"

else
redirect_to home_url, alert: "Bad login"

end
end

Special accessors for notices and alerts are included as helper methods on the
flash object itself, since their use is so common.

def create
if user.try(:authorize, params[:user][:password])

redirect_to home_url, notice: "Welcome, #{user.first_name}!"
else

redirect_to action: "new", alert: "Login invalid."
end

end

Action View 456

Displaying flash messages

Personally, I like to conditionally output both notice and alertmessages in div
elements, right at the top of my layout, and use CSS to style them as shown
in Listing 10.3:

Listing 10.3: Standardized flash notice and error placement in application.html.haml

%html
...
%body

- if flash.notice
.notice= flash.notice

- if flash.alert
.notice.alert= flash.alert

= yield

The CSS for .notice defines most of the style for the element, and .alert
overrides just the aspects that are different for alerts.

A modern way to display flash notices is within a toast (aka snackbar)
widget at the bottom of the screen (http://www.w3schools.com/howto/
howto_js_snackbar.asp).

flash.now

Sometimes you want to give the user a flash message but only for the current
request. In fact, a common newbie Rails programming mistake is to set a flash
notice and not redirect, thereby incorrectly showing a flash message on the
following request.
It is possible to make flash cooperate with a render by using the flash.now
method.

http://www.w3schools.com/howto/howto_js_snackbar.asp
http://www.w3schools.com/howto/howto_js_snackbar.asp

Action View 457

class ReportController < ActionController::Base
def create

if report.save
redirect_to report_path(report), notice: "#{report.title} has been created."

else
flash.now.alert = "#{report.title} could not be created."
render :new

end
end

end

The flash.now object also has notice and alert accessors, like its traditional
counterpart.

logger

Have something to record for posterity in the logs while you’re rendering the
view? Use the logger method to get the view’s Logger instance, the same as
Rails.logger, unless you’ve changed it.

params

This is the same params hash that is available in your controller. It’s very
dangerous from a security perspective to put unfiltered parameter data into
the output stream of your template. The following section, “Protecting the
Integrity of Your View from User-Submitted Content,” covers that topic in
depth.

request and response

The HTTP request and response objects are exposed to the view, but other than
for debugging purposes, I can’t think of any reason why you would want to
use them directly from your template.

session

The session variable is the user’s session hash. There might be situations
where it’d be okay to pull values out to affect rendering, but I shudder to
think that you might try to set values in the session from the view layer. Use
with care, and primarily for debugging, just like request and response.

Action View 458

10.2 Partials

A partial is a fragment of template code. The Rails Way is to use partials to
factor view code into modular chunks that can be assembled in layouts with
as little repetition as possible.
In older versions of Rails, the syntax for including a partial within a template
started with render :partial, but now passing a string to render within your
viewwill get interpreted to mean you want to render a partial. Partial template
names must begin with an underscore, which serves to set them apart visually
within a given view template directory. However, you leave the underscore out
when you refer to them.

%h1 Details
= render 'details'

Simple Use Cases

The simplest partial use case is simply to extract a portion of template code.
Some developers divide their templates into logical parts by using partial
extraction. Sometimes it is easier to understand the structure of a screen if
the significant parts are factored out of it.
For instance, Listing 10.4 is a simple user registration screen that has its parts
factored out into partials.

Listing 10.4: Simple user registration form with partials

%h1 User Registration
= error_messages_for :user
= form_for :user, url: users_path do

.registration
.details.demographics

= render 'details'
= render 'demographics'

.location
= render 'location'

.opt_in
= render 'opt_in'

.terms
= render 'terms'

%p= submit_tag 'Register'

Action View 459

While we’re at it, let me pop open one of those partials. To conserve space,
we’ll take a look at one of the smaller ones, the partial containing the opt-in
check boxes of this particular app. The source is in Listing 10.5; notice that
its name begins with an underscore.

Listing 10.5: The opt-in partial in the file app/views/users/_opt_in.html.haml

%fieldset#opt_in
%legend Spam Opt In
%p

= check_box :user, :send_event_updates
Send me updates about events!
%br
= check_box :user, :send_site_updates
Notify me about new services

Personally, I like partials to be entirely contained inside a semantically
significant markup container. In the case of the opt-in partial in Listing 10.5,
both check box controls are contained inside a single fieldset element, which
I’ve given an id attribute. Following that rule, more as a loose guideline than
anything else, helps me tomentally identify how the contents of this partial are
going to fit inside the parent template. If we were dealing with other markup,
perhaps outside of a form, I might choose to wrap the partial markup inside a
well-identified div container, instead of a fieldset.

Reuse of Partials

Since the registration form is neatly factored out into its component parts, it
is easy to create a simple edit form using some of its partials, as in Listing
10.6.

Listing 10.6: Simple user edit form reusing some of the same partials

%h1 Edit User
= form_for :user, url: user_path(@user), method: :put do

.settings
.details

= render 'details'
.demographics

= render 'demographics'
.opt_in

= render 'opt_in'
%p= submit_tag 'Save Settings'

Action View 460

If you compare Listings 10.4 and 10.6, you’ll notice that markup skeleton
changed and the page has less content than the registration form. Perhaps the
user’s location is handled in greater detail on another screen, and certainly
you don’t want to require agreement of terms every time the user changes
her settings.

Shared Partials

Until now we’ve been considering the use of partials that reside in the same
directory as their parent template. However, you can easily refer to partials
that are in other directories, just by prefixing the directory name. You still
leave off the underscore, which has always felt a little weird.
Let’s add a captcha partial to the bottom of the registration form from Listing
10.4, to help prevent spammers from invading our web application:

...
.terms

= render 'terms'
.captcha

= render 'shared/captcha'
%p= submit_tag 'Register'

Since the captcha partial is used in various different parts of the application, it
makes sense to let it reside in a shared folder rather than any particular view
folder. However, you do have to be a little bit careful when you move existing
template code into a shared partial. It’s quite possible to inadvertently craft a
partial that depends implicitly on where it’s rendered.
For example, take the case of the Rails-talk mailing list member with a
troublesome partial defined in login/_login.html.haml:

= form_tag do
%fieldset

%label
Username:
= text_field_tag :username, params[:username]

%br
%label

Password:
= password_field_tag :password, params[:password]

%br
= submit_tag "Login"

Action View 461

The login form submission worked when he rendered this partial as part of
the login controller’s login action (“the login page”), but not when it was
included as part of the view for any other section of his website. The problem is
that form_tag (covered in the next chapter) takes an optional action parameter
telling it where to post its information. If you leave out the action, the formwill
post back to its current URL, which will vary for shared partials, depending
on where they’re being used from.

An alternate, perhaps more important lesson here is: give forms embedded
in shared partials explicit url targets.

Passing Variables to Partials

Partials inherit the variables and methods exposed to their parent templates
implicitly. That’s why the form helpers used in the partials of Listings 10.4 and
10.6 work: They rely implicitly on an usermethod to be in scope. I feel it’s fine
to use this implicit sharing in some cases, particularly when the partials are
tightly bound to their parent templates. It would be especially true in cases
where the only reason you broke out a partial in the first place was to reduce
the size and complexity of a particularly large template.
However, once you get into the practice of breaking out partial templates for
reuse, depending on implicit context gets a lot more dicey. That’s why Rails
supports the passing of locally scoped variables to partial templates, as in the
following snippet:

= render 'shared/address', form: form

The values of the optional hash are converted into locally scoped variables (no
@ sign) in the partial.
Listing 10.7 is a variation on the registration template. This time we’re using
the version of form_for that yields a block parameter representing the form to
its form helper methods. We’ll pass that form parameter on, too.

Action View 462

Listing 10.7: Simple user registration template passing form as local variable

%h1 User Registration
= form_for :user, url: users_path do |form|

.registration
.details.address.demographics

= render 'details', form: form
= render 'shared/address', form: form

%p= form.submit 'Register'

And finally, in Listing 10.8 we have the shared address form.

Listing 10.8: A simple shared address partial using local variable

%fieldset.address
%legend Address
%p

%label Street
%br
= form.text_area :street, rows: 2, cols: 40

%p
%label City
%br
= form.text_field :city

%p
%label State
%br
= form.text_field :state, size: 2

%p
%label Zip
%br
= form.text_field :zip, size: 15

The form helper methods, which we’ll cover in Chapter 11, “All About
Helpers,” have a variation in which they are called on the form variable yielded
by the form_for method. That is exactly what we passed on to these partials.

The local_assigns Hash

If you need to check for the presence of a certain local variable in a partial,
you can do it by checking the local_assigns hash that is part of every template.
Using the Ruby idiom defined? variable won’t work due to limitations of the
rendering system.

Action View 463

- if local_assigns.has_key? :special
= special

Rendering an Object

The render method also provides a shorthand syntax for rendering an object
into a partial, which strictly depends on Rails naming conventions.

= render entry

Rails magic alert!

The partial corresponding to the last code snippet is named _entry.html.haml
and gets a local variable named entry. This is equivalent to the following:

= render partial: 'entry', object: entry

To set a different local variable name other than the name of the partial, you
could use the locals hash as seen earlier in the chapter or specify the desired
name through the :as option.

= render partial: 'entry', object: some_entry, as: :item

Rendering Collections

One of the best uses of partials is to render collections. Once you get into the
habit of rendering collections with partials, you won’t want to go back to the
relative ugliness of cluttering your templates with for loops and each.
When the render method gets an Enumerable as its first argument, it assumes
that you want to render a collection of partials.

= render entries

This is simple and precise yet very dependent on a naming conventions. The
objects being rendered are exposed to the partial template as a local variable
named the same as the partial template itself. In turn the template should be
named according to the class of the objects being rendered.
The partial corresponding to the last code snippet is named _entry.html.haml
and gets a local variable named entry.

Action View 464

= div_for(entry) do
= entry.description
#{distance_of_time_in_words_to_now entry.created_at} ago

Kevin says…
If the collection passed into the rendermethod is empty, nil is returned.
Using this knowledge, you can write code such as

= render(entries) || "No entires exist"

to provide fallback content.

Since the partial template used is based on the class of each item, you
can easily render a heterogeneous collection of objects. This technique is
particularly useful in conjunction with collections of STI subclasses.
If you want to override that behavior, then revert to the older partial syntax
and specify the :partial and :collection options explicitly like this:

= render partial: 'entry', collection: @entries

The partial_counter Variable

There’s another variable set for collection-rendered partials that doesn’t get
much attention. It’s a 0-indexed counter variable that tracks the number of
times a partial has been rendered. It’s useful for rendering numbered lists of
things. The name of the variable is the name of the partial, plus _counter.

= div_for(entry) do
"#{entry_counter}:#{entry.description}
#{distance_of_time_in_words_to_now entry.created_at} ago"

Sharing Collection Partials

If you wanted to use the same partial that you use with a collection, except
with a single entry object, you’d have to pass it that single instance via the
locals hash described in the preceding section, like this:

= render 'entry', entry: some_entry

Logging

If you take a look at your development log, you’ll notice that it shows which
partials have been rendered and how long they took.

Action View 465

Rendering template within layouts/application
Rendering listings/index
Rendered listings/_listing 0.6ms
Rendered listings/_listing 0.3ms
Rendered listings/_listing 0.2ms
Rendered listings/_listing 0.2ms
Rendered listings/_listing 0.2ms
Rendered layouts/_login 2.4ms
Rendered layouts/_header 3.3ms
Rendered layouts/_footer 0.1ms

Action View 466

10.3 Conclusion

In this chapter, we’ve covered the Action View framework with an explanation
of templating and how the Rails rendering system works. We’ve also covered
the use of partials in-depth, since their use is essential for effective Rails
programming.
Now it’s time to cover the mechanism whereby you can inject a whole bunch
of smarts into your view layer without cluttering up your templates: Helpers.

11. All About Helpers
“Thank you for helping Helpers Helping the Helpless. Your help was
very… helpful!”
—Mrs. Duong in the movie The Weekenders

Throughout the book so far, we’ve mentioned some of the varied helper
methods provided by Rails to help you assemble the user interface of your web
application. This chapter lists and explains all of the helper modules and their
methods, followed by instructions on effectively creating your own helpers.

Note
This chapter is essentially reference material. Although every effort has been
made to make it readable straight through, you will notice that coverage
of Action View’s helper modules is arranged alphabetically, starting with
ActiveModelHelper and ending with UrlHelper. Within each module’s section,
the methods are broken up into logical groups whenever appropriate.

All About Helpers 468

11.1 ActiveModelHelper

Older editions of the book documented the ActiveModelHelper module, which
contained helper methods for dynamically generating HTML forms from
Active Model-backed objects. That code was removed from Rails and is
essentially abandoned.
If you are looking for similar functionality that works with Rails 5, then check
out the hugely popular Formtastic gem at https://github.com/justinfrench/
formtastic.

https://github.com/justinfrench/formtastic
https://github.com/justinfrench/formtastic

All About Helpers 469

11.2 AssetTagHelper

This module provides methods for generating HTML that links views to assets
such as images, JavaScripts, stylesheets, and feeds. These methods do not
verify that assets exist before linking to them, they simply create link tags.

The AssetTagHelpermodule includes somemethods that you will use on a daily
basis during active Rails development, particularly image_tag.

Head Helpers

Some of the helper methods in this module help you add content to the head
element of your HTML document.

auto_discovery_link_tag(type = :rss, url_options = {}, tag_options = {})

Returns a link tag that browsers and news readers can use to autodetect an
RSS or ATOM feed. The type can either be :rss (default) or :atom. Control the
link options in url_for format using the url_options.
You can modify the link tag itself using the tag_options parameter:

:rel
Specify the relation of this link; defaults to "alternate".

:type
Override MIME type (such as "application/atom+xml") that Rails would
otherwise generate automatically for you.

:title
Specify the title of the link; defaults to a capitalized type.

All About Helpers 470

auto_discovery_link_tag
=> <link rel="alternate" type="application/rss+xml" title="RSS"
href="http://www.currenthost.com/controller/action" />

auto_discovery_link_tag(:atom)
=> <link rel="alternate" type="application/atom+xml" title="ATOM"
href="http://www.currenthost.com/controller/action" />

auto_discovery_link_tag(:rss, {action: "feed"})
=> <link rel="alternate" type="application/rss+xml" title="RSS"
href="http://www.currenthost.com/controller/feed" />

auto_discovery_link_tag(:rss, {action: "feed"}, {title: "My RSS"})
=> <link rel="alternate" type="application/rss+xml" title="My RSS"
href="http://www.currenthost.com/controller/feed" />

favicon_link_tag(source='favicon.ico', options={})

Returns a link loading a favicon file. By default, Rails will set the icon to
favicon.ico. You may specify a different file in the first argument.
The favicon_link_tag helper accepts an optional options hash that accepts the
following:

:rel
Specify the relation of this link; defaults to ‘shortcut icon’

:type
Override the auto-generatedmime type; defaults to ‘image/vnd.microsoft.icon’

favicon_link_tag '/myicon.ico'
=> <link href="/assets/favicon.ico" rel="shortcut icon"
type="image/vnd.microsoft.icon" />

javascript_include_tag(*sources)

Returns a script tag for each of the sources provided. You can pass in the
filename (the .js extension is optional) of JavaScript files that exist in your
app/assets/javascripts directory for inclusion into the current page, or you
can pass their full path, relative to your document root.

All About Helpers 471

javascript_include_tag "xmlhr"
=> <script src="/assets/xmlhr.js?1284139606"></script>

javascript_include_tag "common", "/elsewhere/cools"
=> <script src="/assets/common.js?1284139606"></script>
<script src="/elsewhere/cools.js?1423139606"></script>

When the Asset Pipeline is enabled, passing the name of the manifest file as a
source will include all JavaScript or CoffeeScript files that are specified within
the manifest.

javascript_include_tag "application"

By default, not including the .js extension to a JavaScript source will result
in .js being suffixed to the filename. However, this does not play well with
JavaScript templating languages, as they have extensions of their own. To
rectify this, as of Rails 4.1, setting the option :extname to false will tell the
javascript_include_tag helper to not append .js to the supplied source.

javascript_include_tag 'templates.jst', extname: false
=> <script src="/javascripts/templates.jst"></script>

You can modify the HTML attributes of the script tag by passing a hash as the
last argument.

stylesheet_link_tag(*sources)

Returns a stylesheet link tag for the sources specified as arguments. If you
don’t specify an extension, .css will be appended automatically. Just like other
helper methods that take a variable number of arguments plus options, you
can pass a hash of options as the last argument and they will be added as
attributes to the tag.

All About Helpers 472

stylesheet_link_tag "style"
=> <link href="/stylesheets/style.css" media="screen"
rel="Stylesheet" type="text/css" />

stylesheet_link_tag "style", media: "all"
=> <link href="/stylesheets/style.css" media="all"
rel="Stylesheet" type="text/css" />

stylesheet_link_tag "random.styles", "/css/stylish"
=> <link href="/stylesheets/random.styles" media="screen"
rel="Stylesheet" type="text/css" />
<link href="/css/stylish.css" media="screen"
rel="Stylesheet" type="text/css" />

You can modify the HTML attributes of the script tag by passing a hash as the
last argument.

Asset Helpers

This module also contains a series of helper methods that generate asset-
related markup. It’s important to generate asset tags dynamically because
often assets are either packaged together or served up from a different server
source than your regular content. Asset helper methods also timestamp your
asset source urls to prevent browser caching problems.

audio_tag(source, options = {})

Returns an HTML 5 audio tag based on the source argument.

audio_tag("sound")
=> <audio src="/audios/sound" />

audio_tag("sound.wav")
=> <audio src="/audios/sound.wav" />

audio_tag("sound.wav", autoplay: true, controls: true)
=> <audio autoplay="autoplay" controls="controls" src="/audios/sound.wav" />

image_tag(source, options = {})

Returns an img tag for use in a template. The source parameter can be a full
path or a file that exists in your images directory. You can add additional
arbitrary attributes to the img tag using the options parameter. The following
two options are treated specially:

All About Helpers 473

:alt
If no alternate text is given, the filename part of the source is used, after
being capitalized and stripped of the extension.

:size
Supplied as widthxheight so "30x45" becomes the attributes width="30" and
height="45". The :size option will fail silently if the value is not in the
correct format.

image_tag("icon.png")
=>

image_tag("icon.png", size: "16x10", alt: "Edit Entry")
=>

image_tag("/photos/dog.jpg", class: 'icon')
=>

video_tag(sources, options = {})

Returns an HTML 5 video tag for the sources. If sources is a string, a single
video tag will be returned. If sources is an array, a video tag with nested source
tags for each source will be returned. The sources can be full paths or files
that exists in your public videos directory.
You can add normal HTML video element attributes using the options hash.
The options supports two additional keys for convenience and conformance:

:poster
Set an image (like a screenshot) to be shown before the video loads. The
path is calculated using image_path

:size
Supplied as widthxheight in the same manner as image_tag. The :size
option can also accept a stringified number, which sets both width and
height to the supplied value.

All About Helpers 474

video_tag("trailer")
=> <video src="/videos/trailer" />

video_tag("trailer.ogg")
=> <video src="/videos/trailer.ogg" />

video_tag("trail.ogg", controls: true, autobuffer: true)
=> <video autobuffer="autobuffer" controls="controls"
src="/videos/trail.ogg" />

video_tag("trail.m4v", size: "16x10", poster: "screenshot.png")
=> <video src="/videos/trailer.m4v" width="16" height="10"
poster="/images/screenshot.png" />

video_tag(["trailer.ogg", "trailer.flv"])
=> <video>
<source src="trailer.ogg"/>
<source src="trailer.flv"/>
</video>

For Plugins Only

A handful of class methods in AssetTagHelper relate to configuration and are
intended for use in plugins.

• register_javascript_expansion
• register_stylesheet_expansion

All About Helpers 475

11.3 AssetUrlHelper

This module provides methods for generating asset paths and urls and
contains some of the most commonly used helpers in Rails. All have _path and
_url variants, which produce relative and absolute URL strings, accordingly:

image_path("rails.png")
=> "/assets/rails.png"

image_url("rails.png")
=> "http://www.example.com/assets/rails.png"

Note that all of these methods are aliased so that you have a
workaround in case of name conflict with your own application’s
resources names such as assets, images, etc.

asset_path(source, options = {})

Computes the path to asset in public directory. If :type options is set, a file
extension will be appended and scoped to the corresponding public directory.
All other asset *_path helpers delegate through this method.

asset_path "application.js"
=> /assets/application.js
asset_path "application", type: :javascript
=> /assets/application.js
asset_path "application", type: :stylesheet
=> /assets/application.css

Also aliased as path_to_asset.

asset_url(source, options = {})

Computes the full URL to an asset in the public directory. This will use
asset_path internally, so they behave the same way. If the :host option is set, it
overrides the global config.action_controller.asset_host setting normally set
in config/environments/production.rb.

All About Helpers 476

asset_url "application.js", host: "http://cdn.example.com"
=> http://cdn.example.com/assets/application.js

Also aliased as url_to_asset.

audio_path(source, options = {})

Computes the path to an audio asset in the public audios directory. Full paths
from the document root will be passed through. Used internally by audio_tag
to build the audio path.

audio_path("horse")
=> /audios/horse
audio_path("horse.wav")
=> /audios/horse.wav
audio_path("sounds/horse.wav")
=> /audios/sounds/horse.wav
audio_path("/sounds/horse.wav")
=> /sounds/horse.wav
audio_path("http://www.example.com/sounds/horse.wav")
=> http://www.example.com/sounds/horse.wav

Also aliased as path_to_audio.

audio_url(source, options = {})

Computes the full URL to an audio asset in the public audios directory. This
will use audio_path internally. Since audio_url is based on asset_url you can set
:host options.
Also aliased as url_to_audio.

font_path(source, options = {})

Computes the path to a font asset in the app/assets/fonts directory, which you
would have to add yourself to your Rails project since it’s not generated by
default.
Full paths from the document root (beginning with a “/”) will be passed
through.

All About Helpers 477

font_path("font.ttf")
=> /assets/font.ttf
font_path("dir/font.ttf")
=> /assets/dir/font.ttf
font_path("/dir/font.ttf")
=> /dir/font.ttf

Also aliased as path_to_font.

font_url(source, options = {})

Computes the full URL to a font asset. Uses font_path internally, so most of
their behaviors will be the same. Since font_url is based on asset_url method
you can set :host options.
Also aliased as url_to_font.

image_path(source)

Computes the path to an image asset in the app/assets/images directory. Full
paths from the document root (beginning with a “/”) will be passed through.
This method is used internally by image_tag to build the image path.

image_path("edit.png")
=> /assets/edit.png
image_path("icons/edit.png")
=> /images/icons/edit.png
image_path("/icons/edit.png")
=> /icons/edit.png

If you have images as application resources this method may conflict with
their named routes. The alias path_to_image is provided to avoid that. Rails
uses the alias internally, and plugin authors are encouraged to do so.

Also aliased as path_to_image

image_url(source, options = {})

Computes the full URL to an image asset. This will use image_path internally, so
most of their behaviors will be the same. Since image_url is based on asset_url
you can set :host options.
Also aliased as url_to_image.

All About Helpers 478

javascript_path(source, options = {})

Computes the path to a JavaScript asset in the public javascripts directory.
If the source filename has no extension, .js will be appended (except for
explicit URIs) Full paths from the document root will be passed through. Used
internally by javascript_include_tag to build the script path.

javascript_path "xmlhr"
=> /assets/xmlhr.js
javascript_path "dir/xmlhr.js"
=> /assets/dir/xmlhr.js
javascript_path "/dir/xmlhr"
=> /dir/xmlhr.js
javascript_path "http://www.example.com/js/xmlhr"
=> http://www.example.com/js/xmlhr
javascript_path "http://www.example.com/js/xmlhr.js"
=> http://www.example.com/js/xmlhr.js

Also aliased as path_to_javascript.

javascript_url(source, options = {})

Computes the full URL to a JavaScript asset in the public javascripts directory.
This will use javascript_path internally, so most of their behaviors will be the
same. Since javascript_url is based on asset_url you can set :host options.
Also aliased as url_to_javascript

stylesheet_path(source, options = {})

Computes the path to a stylesheet asset in the public stylesheets directory.
If the source filename has no extension, .css will be appended (except for
explicit URIs). Full paths from the document root will be passed through. Used
internally by stylesheet_link_tag helper method to build the stylesheet path.

All About Helpers 479

stylesheet_path "style"
=> /assets/style.css
stylesheet_path "dir/style.css"
=> /assets/dir/style.css
stylesheet_path "/dir/style.css"
=> /dir/style.css
stylesheet_path "http://www.example.com/css/style"
=> http://www.example.com/css/style
stylesheet_path "http://www.example.com/css/style.css"
=> http://www.example.com/css/style.css

Also aliased as path_to_stylesheet.

stylesheet_url(source, options = {})

Computes the full URL to a stylesheet asset in the public stylesheets directory.
This will use stylesheet_path internally, so most of their behaviors will be the
same. Since stylesheet_url is based on asset_url you can set :host options.
Also aliased as url_to_stylesheet.

video_path

Computes the path to a video asset in the public/videos directory, which you
would have to add yourself to your Rails project since it’s not generated
by default. Full paths from the document root will be passed through. Used
internally by video_tag to build the video src path.

video_path("hd")
=> /videos/hd
video_path("hd.avi")
=> /videos/hd.avi
video_path("trailers/hd.avi")
=> /videos/trailers/hd.avi
video_path("/trailers/hd.avi")
=> /trailers/hd.avi
video_path("http://www.example.com/vid/hd.avi")
=> http://www.example.com/vid/hd.avi

Also aliased as path_to_video.

video_url(source, options = {})

Computes the full URL to a video asset in the public videos directory. This will
use video_path internally, so most of their behaviors will be the same. Since
video_url is based on asset_url method you can set :host‘ options.
Also aliased as url_to_video.

All About Helpers 480

Using Asset Hosts

By default, Rails links to these assets on the current host in the public folder,
but you can direct Rails to link to assets from a dedicated asset server
by setting ActionController::Base.asset_host in the application configuration,
typically in config/environments/production.rb.
For example, you’d define assets.example.com to be your asset host this way,
inside the configure block of your environment-specific configuration files:

config.action_controller.asset_host = "assets.example.com"

This module’s helpers automatically take the asset host setting into account:

image_tag("rails.png")
=>
stylesheet_link_tag("application")
=> <link href="http://assets.example.com/assets/application.css" media="screen" rel="sty\
lesheet" />

Why serve your assets from a different host name? Browsers open a limited
number of simultaneous connections to a single host. The exact number
varies by browser and version. This limit may cause some asset downloads
to wait for previous assets to finish before they can begin.

You can use the %d wildcard in the asset_host setting to distribute the requests
over four hosts. For example, assets%d.example.com will spread the asset
requests over assets0.example.com, assets0.example.com, etc.
This may improve the asset loading performance of your application. It is also
possible the combination of additional connection overhead (DNS, SSL) and
the overall browser connection limits may result in this solution being slower.
You should be sure to measure your actual performance across targeted
browsers both before and after this change.
To implement the corresponding hosts you can either set up four actual hosts
or use wildcard DNS to CNAME the wildcard to a single asset host.
If needed for some reason, you can exert more control over the asset host by
setting asset_host to a proc, and it will get executed on demand. The proc is
passed a source parameter with the absolute path of the asset (for example
“/assets/rails.png”) to work with. The second parameter is the http request,
letting you inspect different aspects of the incoming request, such as whether
it is secure.

All About Helpers 481

config.action_controller.asset_host = Proc.new { |source, request|
if request && request.ssl?

"#{request.protocol}#{request.host_with_port}"
else

"#{request.protocol}assets.example.com"
end

}

Note that the request parameter might not be supplied, the prime example
being when assets are precompiled via a Rake task. Make sure to use a Proc
instead of a lambda, since a Proc allows missing parameters and sets them to
nil.
As with other parts of Rails that take procs, an alternative that accomodates
more complext logic is implementing a custom asset host object that responds
to call and takes either one or two parameters just like the proc.

config.action_controller.asset_host = AssetHostingConfig.new

All About Helpers 482

11.4 AtomFeedHelper

Provides an atom_feed helper to aid in generating Atom feeds in Builder
templates.

atom_feed do |feed|
feed.title("My great blog!")
feed.updated(@posts.first.created_at)

@posts.each do |post|
feed.entry(post) do |entry|

entry.title(post.title)
entry.content(post.body, type: 'html')

entry.author do |author|
author.name("DHH")

end
end

end
end

The options for atom_feed are:

language
Defaults to "en-US".

root_url
The HTML alternative that this feed is doubling for. Defaults to "/" on
the current host.

url The URL for this feed. Defaults to the current URL.

id The id for this feed. Defaults to tag:#{request.host},#{options}:#{request.fullpath.split(".")}

schema_date
The date at which the tag scheme for the feed was first used. A good
default is the year you created the feed. See http://feedvalidator.org/
docs/error/InvalidTAG.html for more information. If not specified, 2005
is used by default.

instruct
Hash of XML processing instructions in the form {target => {attribute
=> value, ...}} or {target => [{attribute => value, ...},]}

Other namespaces can be added to the root element:

http://feedvalidator.org/docs/error/InvalidTAG.html
http://feedvalidator.org/docs/error/InvalidTAG.html

All About Helpers 483

atom_feed(
'xmlns:app' => 'http://www.w3.org/2007/app',
'xmlns:openSearch' => 'http://a9.com/-/spec/opensearch/1.1/'
) do |feed|
feed.title("My great blog!")
feed.updated((@posts.first.created_at))
feed.tag!(openSearch:totalResults, 10)

@posts.each do |post|
feed.entry(post) do |entry|

entry.title(post.title)
entry.content(post.body, type: 'html')
entry.tag!('app:edited', Time.now)

entry.author do |author|
author.name("DHH")

end
end

end
end

The Atom spec defines five elements that may directly contain xhtml content
if type: 'xhtml' is specified as an attribute:

• content
• rights
• title
• subtitle
• summary

If any of these elements contain xhtml content, this helper will take care of
the needed enclosing div and an xhtml namespace declaration.

entry.summary type: 'xhtml' do |xhtml|
xhtml.p pluralize(order.line_items.count, "line item")
xhtml.p "Shipped to #{order.address}"
xhtml.p "Paid by #{order.pay_type}"

end

The atom_feedmethod yields an AtomFeedBuilder instance. Nested elements also
yield AtomBuilder instances.

All About Helpers 484

11.5 CacheHelper

This module contains helper methods related to caching fragments of a
view. Fragment caching is useful when certain elements of an action change
frequently or depend on complicated state, while other parts rarely change
or can be shared among multiple parties. The boundaries of a fragment to be
cached are defined within a view template using the cache helper method.
This topic and its helper method is covered in detail in the caching section of
Chapter 17, “Caching and Performance.”

All About Helpers 485

11.6 CaptureHelper

One of the great features of Rails views is that you are not limited to rendering
a single flow of content. Along the way, you can define blocks of template code
that should be inserted into other parts of the page during rendering using
yield, as described in Chapter 10’s section about yielding content.
The technique is accomplished via a pair of methods from the CaptureHelper
module.

capture(&block)

The capture method lets you capture part of a template’s output (inside a
block) and assign it to an instance variable. The value of that variable can
subsequently be used anywhere else on the template.

- message_html = capture do
%div

This is a message

I don’t think that the capture method is that useful on its own in a template.
It’s a lot more useful when you use it in your own custom helper methods. It
gives you the capability to write your own helpers that grab template content
wrapped using a block. We cover that technique later on in this chapter in the
section “Writing Your Own Helpers.”

content_for(name, &block)

This helper helps you to designate a part of your template as content for
another part of the page. It works similarly to its sister method capture (in fact,
it uses capture itself). Instead of returning the contents of the block provided
to it, it stores the content to be retrieved using yield elsewhere in the template
(or most commonly, in the surrounding layout).
A common example is to insert sidebar content into a layout. In the following
example, the link will not appear in the flow of the view template. It will appear
elsewhere in the template, wherever yield :navigation_sidebar appears.

- content_for :navigation_sidebar do
= link_to 'Detail Page', item_detail_path(item)

By default, the content_for helper concatenates whatever blocks it is given
with the same identifier.
Take the following example of a navigation scheme. First we add a link to
home:

All About Helpers 486

- content_for :navigation do
= link_to 'Home', root_path

And in another place in the view templates, we add a link for the login:

- content_for :navigation do
= link_to 'Login', login_path

Then, in another template or layout, the following code would render both
links in order:

= yield :navigation

If the flush parameter is true, then content_for replaces previous content
instead of concatenating.
Simple content can be passed as a parameter, like this:

- content_for :page_script, javascript_include_tag('page-specific')

Due to inherent limitations, the content_for helper is ignored in caches.
So you shouldn’t use it in markup that is destined to be fragment
cached.

content_for?(name)

Using this method, you can check whether the template will ultimately yield
any content under a particular name using the content_for helper method
so that you can make layout decisions earlier in the template. The following
example clearly illustrates usage of this method, by altering the CSS class of
the body element dynamically:

%body{class: content_for?(:right_col) ? 'one-column' : 'two-column'}
= yield
= yield :right_col

provide(name, content = nil, &block)

The provide helper method works the same way as content_for, except for
when used with streaming. When streaming, provide flushes the current buffer
straight back to the layout and stops looking for more contents.
If you want to concatenate multiple times to the same buffer when rendering
a given template you should use content_for instead.

All About Helpers 487

11.7 ControllerHelper

This undocumented module provides all methods and behavior that delegate
to the view’s associated controller. That includes methods such as flash,
action_name, and controller_name, etc.

All About Helpers 488

11.8 CsrfHelper

The CsrfHelper module only contains one method, named csrf_meta_tags.
Including it in the <head> section of your template will output meta tags
“csrf-param” and “csrf-token” with the name of the cross-site request forgery
protection parameter and token, respectively.

%head
= csrf_meta_tags

The meta tags “csrf-param” and “csrf-token” are used by Rails to generate
dynamic forms that implement non-remote links with :method. You don’t need
to use these tags for regular forms as they generate their own hidden fields
containing the same data.
For AJAX requests other than GETs, extract the csrf-token from the meta-tag
and send as the "X-CSRF-Token" HTTP header. If you are using jQuery with
jquery-rails, this happens automatically.

All About Helpers 489

11.9 DateHelper

The DateHelpermodule is used primarily to create HTML select tags for differ-
ent kinds of calendar data. It also features one of the longest-named helper
methods, a beast peculiar to Rails, called distance_of_time_in_words_to_now.

Lark says…
I guess that helper method name was too much of a mouthful, since at some
point it was aliased to time_ago_in_words.

The Date and Time Selection Helpers

The following methods help you create form field input tags dealing with date
and time data. All of them are prepared for multi-parameter assignment to
an Active Record object. That’s a fancy way of saying that even though they
appear in the HTML form as separate input fields, when they are posted back
to the server, it is understood that they refer to a single attribute of the model.
That’s some Rails magic for you!

Using the traditional Rails date input fields should be a crime. Use an
HTML5 text input field with type=date instead, to get a native calendar
widget for free.

date_select(object_name, method, options = {}, html_options = {})

Returns a matched set of three select tags (one each for year, month, and
day) preselected for accessing a specified date-based attribute (identified by
the method parameter) on an object assigned to the template (identified by
object_name).
It’s possible to tailor the selects through the options hash, which accepts all
the keys that each of the individual select builders do (such as :use_month_-
numbers for select_month).
The date_select method also takes :discard_year, :discard_month, and :dis-
card_day options, which drop the corresponding select tag from the set of
three. Common sense dictates that discarding the month select will also
automatically discard the day select. If the day is omitted, but not the month,
Rails will assume that the day should be the first of the month.

All About Helpers 490

It’s also possible to explicitly set the order of the tags using the :order option
with an array of symbols :year, :month, and :day in the desired order. Symbols
may be omitted, and the respective select tag is not included.
Passing disabled: true as part of the options will make elements inaccessible
for change.

date_select(:post, "written_on")
date_select(:post, "written_on", start_year: 1995,

use_month_numbers: true,
discard_day: true,
include_blank: true)

date_select(:post, "written_on", order: [:day, :month, :year])
date_select(:user, "birthday", order: [:month, :day])

If anything is passed in the html_options hash it will be applied to every select
tag in the set.

datetime_select(object_name, method, options = {}, html_options = {})

Works exactly like date_select, except for the addition of hour and minute
select tags. Seconds may be added with the option :include_seconds. Along
with the addition of time information come additional discarding options:
:discard_hour, :discard_minute, and :discard_seconds.
Setting the ampm option to true return hours in the AM/PM format.

datetime_select("post", "written_on")
datetime_select("post", "written_on", ampm: true)

time_select(object_name, method, options = {}, html_options = {})

Returns a set of select tags (one for hour, minute, and optionally second) pre-
selected for accessing a specified time-based attribute (identified by method) on
an object assigned to the template (identified by object_name). You can include
the seconds by setting the :include_seconds option to true.
As with datetime_select, setting ampm: true will result in hours displayed in the
AM/PM format.

time_select("post", "sunrise")
time_select("post", "written_on", include_seconds: true)
time_select("game", "written_on", ampm: true)

All About Helpers 491

The Individual Date and Time Select Helpers

Sometimes you need just a particular element of a date or time, and Rails
obliges you with a comprehensive set of individual date and time select
helpers. In contrast to the date and time helpers that we just looked at, the
following helpers are not bound to an instance variable on the page. Instead,
they all take a date or time Ruby object as their first parameter. (All of these
methods have a set of common options, covered in the following subsection.)

select_date(date = Date.current, options = {}, html_options = {})

Returns a set of select tags (one each for year, month, and day) pre-selected
with the date provided (or the current date). It’s possible to explicitly set the
order of the tags using the :order option with an array of symbols :year, :month,
and :day in the desired order.

select_date(started_at, order: [:year, :month, :day])

select_datetime(datetime = Time.current, options = {}, html_options = {})

Returns a set of select tags (one each for year, month, day, hour, and minute)
pre-selected with the datetime. Optionally, setting the include_seconds: true
option adds a seconds field. It’s also possible to explicitly set the order of the
tags using the :order option with an array of symbols :year, :month, and :day,
:hour, :minute, and :seconds in the desired order. You can also add character
values for the :date_separator and :time_separator options to control visual
display of the elements (they default to "/" and ":").

select_day(date, options = {}, html_options = {})

Returns a select tag with options for each of the days 1 through 31 with the
current day selected. The date can also be substituted for a day value ranging
from 1 to 31. If displaying days with a leading zero is your preference, setting
the option use_two_digit_numbers to true will accomplish this.

select_day(started_at)
select_day(10)
select_day(5, use_two_digit_numbers: true)

By default, the field name defaults to day but can be overridden using the
:field_name option.

All About Helpers 492

select_hour(datetime, options = {}, html_options = {})

Returns a select tag with options for each of the hours 0 through 23 with
the current hour selected. The datetime parameter can be substituted with an
hour number from 0 to 23. Setting the ampm option to true will result in hours
displayed in the AM/PM format. By default, the field name defaults to hour but
can be overridden using the :field_name option.

select_minute(datetime, options = {}, html_options = {})

Returns a select tag with options for each of the minutes 0 through 59 with the
current minute selected. Also can return a select tag with options by minute_-
step from 0 through 59 with the 00 minute selected. The datetime parameter
can be substituted by a seconds value of 0 to 59. By default, the field name
defaults to minute but can be overridden using the :field_name option.

select_month(date, options = {}, html_options = {})

Returns a select tag with options for each of the months January through
December with the current month selected. By default, the month names are
presented as user options in the drop-down selection, and the month numbers
(1 through 12) are used as values submitted to the server.
It’s also possible to use month numbers for the presentation instead of names
by setting use_month_numbers: true. To display month numbers with a leading
zero, set option :use_two_digit_numbers to true. If you happen to want both
numbers and names, set add_month_numbers: true. If you would prefer to show
month names as abbreviations, set the :use_short_month option to true. Finally,
if you want to use your own month names, set the value of the :use_month_names
key in your options to an array of 12 month names.

Will use keys like "January", "March"
select_month(Date.today)

Will use keys like "1", "3"
select_month(Date.today, use_month_numbers: true)

Will use keys like "1 - January", "3 - March"
select_month(Date.today, add_month_numbers: true)

Will use keys like "Jan", "Mar"
select_month(Date.today, use_short_month: true)

Will use keys like "Januar", "Marts"

All About Helpers 493

select_month(Date.today, use_month_names: %w(Januar Februar
Marts ...))

By default, the field name defaults to month but can be overridden using the
:field_name option.

select_second(datetime, options = {}, html_options = {})

Returns a select tag with options for each of the seconds 0 through 59 with
the current second selected. The datetime parameter can either be a DateTime
object or a second given as a number. By default, the field name defaults to
second but can be overridden using the :field_name option.

select_time(datetime = Time.current, options = {}, html_options = {})

Returns a set of HTML select tags (one for hour and minute). You can set the
:time_separator option to format the output. It’s possible to take an input for
sections by setting option :include_seconds to true.

select_time(some_time, time_separator: ':', include_seconds: true)

select_year(date, options = {}, html_options = {})

Returns a select tag with options for each of the five years on each side
of the current year selected. The five-year radius can be changed using the
:start_year and :end_year options. Both ascending and descending year lists
are supported by making :start_year less than or greater than :end_year. The
date parameter can either be a Date object or a year given as a number.

ascending year values
select_year(Date.today, start_year: 1992, end_year: 2007)

descending year values
select_year(Date.today, start_year: 2005, end_year: 1900)

By default, the field name defaults to year, but can be overridden using the
:field_name option.

All About Helpers 494

Common Options for Date Selection Helpers

All of the select-type methods share a number of common options that are as
follows:

:discard_type
Set to true if you want to discard the type part of the select name. If
set to true, the select_month method would use simply date (which can be
overwritten using :prefix) instead of date[month].

:field_name: Enables you to override the natural name of a select tag (from
day, minute, and so on).

:include_blank
Set to true if it should be possible to set an empty date.

:prefix
Overwrites the default prefix of date used for the names of the select tags.
Specifying birthday would result in a name of birthday[month] instead of
date[month] when passed to the select_month method.

:use_hidden
Set to true to embed the value of the datetime into the page as an HTML
hidden input, instead of a select tag.

:disabled
Set to true if you want show the select fields as disabled.

:prompt
Set to true (for a generic prompt), a prompt string or a hash of prompt
strings for :year, :month, :day, :hour, :minute and :second.

distance_in_time Methods with Complex Descriptive Names

Some distance_in_time methods have really long, complex descriptive names
that nobody can ever remember without looking them up. Well, at least for the
first dozen times or so you might not remember.
I find the following methods to be a perfect example of the Rails way when
it comes to API design. Instead of going with a shorter and necessarily more
cryptic alternative, the framework author decided to keep the name long and
descriptive. It’s one of those cases where a nonprogrammer can look at your
code and understand what it’s doing. Well, probably.

All About Helpers 495

I also find these methods remarkable in that they are part of why people
sometimes consider Rails part of the Web 2.0 phenomenon (circa 2008).
What other web framework would include ways to humanize the display of
timestamps?

distance_of_time_in_words(from_time, to_time = 0, include_seconds_or_options
= {}, options = {}))

Reports the approximate distance in time between two Time, DateTime, or Date
objects or integers as seconds. Set the include_seconds parameter to true if you
want more detailed approximations when the distance is less than 1 minute.
The easiest way to show what this method does is via examples:

>> from_time = Time.current

>> helper.distance_of_time_in_words(from_time, from_time + 50.minutes)
=> about 1 hour

>> helper.distance_of_time_in_words(from_time, from_time + 15.seconds)
=> less than a minute

>> helper.distance_of_time_in_words(from_time, from_time + 15.seconds,
include_seconds: true)

=> less than 20 seconds

>> helper.distance_of_time_in_words(from_time, 3.years.from_now)
=> about 3 years

The Rails API docs ask you to note that Rails calculates 1 year as 365.25 days.

distance_of_time_in_words_to_now(from_time, include_seconds_or_options = {})

Works exactly like distance_of_time_in_words except that the to_time is hard-
coded to the current time. Usually invoked on created_at or updated_at at-
tributes of your model, followed by the string ago in your template, as in the
following example:

All About Helpers 496

%strong= comment.user.name
%br
%small= "#{distance_of_time_in_words_to_now(review.created_at)} ago"

Note that this method is aliased to time_ago_in_words for those who prefer
shorter method names.

time_tag(date_or_time, *args, &block)

Introduced in Rails 3.1, the time_tag returns an HTML5 time element for a
given date or time. Using the semantic time_tag helper ensures that your date
or times within your markup are in a machine-readable format. Setting the
option pubdate to true will add the attribute to the tag, indicating that the date
or time is a publishing date. The following examples show the output you can
expect when using it:

time_tag(Date.current)
=> <time datetime="2013-08-13">August 13, 2013</time>

time_tag(Time.current)
=> <time datetime="2013-08-13T14:58:29Z">August 13, 2013 14:58</time>

time_tag(Time.current, pubdate: true)
=> <time datetime="2013-08-13T15:02:56Z" pubdate="pubdate">August 13, 2013 15:02</time>

= time_tag(Date.current) do
%strong Once upon a time

=> <time datetime="2013-08-13">Once upon a time</time>

All About Helpers 497

11.10 DebugHelper

The DebugHelper module only contains one method, named debug. Output
it in your template, passing it an object that you want dumped to YAML
and displayed in the browser inside PRE tags. Useful for debugging during
development, but not much else.

All About Helpers 498

11.11 FormHelper

The FormHelper module provides a set of methods for working with HTML
forms, especially as they relate to Active Record model objects assigned to
the template. Its methods correspond to each type of HTML input fields (such
as text, password, select, and so on) available. When the form is submitted,
the value of the input fields are bundled into the params that is passed to the
controller.
There are two types of form helper methods. The types found in this module
are meant to work specifically with Active Record model attributes, and the
similarly named versions in the FormTagHelper module are not.

Note
The form helper methods in this section can also be used with non
Active Record models, as long as the model passes the Active Model
Lint tests found in the module ActiveModel::Lint::Tests. The easiest
way to do this is to include the module mixin ActiveModel::Model to your
class.

Creating Forms for Models

The core method of this helper is form_for, and we mentioned it in Chapter 3,
“REST, Resources, and Rails.”
The form_for helper method creates an HTML form that allows the user to
create or update the attributes of a specific model object and potentially
associated objects. Themethod takes a block and yields a form object, on which
you can invoke input helper methods. When you call input helper methods
on the form object, you omit their first object_name parameter, since it can be
inferred from the form.
The form_formethod can be used in several slightly different ways, depending
on how much you wish to rely on Rails to infer automatically from the model
how the form should be constructed. For a generic model object, a form can
be created by passing form_for a string or symbol naming an object:

All About Helpers 499

= form_for :person do |f|
.field

First name:
= f.text_field :first_name

.field
Last name:
= f.text_field :last_name

.field
Bio:
= f.text_area :bio

.field
Admin?
= f.check_box :admin

.actions
= f.submit

In the example above, the variable f yielded to the block is a FormBuilder
object that incorporates the knowledge about the model object represented
by :person passed to form_for. Methods defined on the FormBuilder are used to
generate fields bound to this model.
Thus, for example

f.text_field :first_name

will get expanded to

text_field :person, :first_name

which results in an HTML <input> tag, the name attribute of which is per-
son[first_name]. This means that when the form is submitted, the value entered
by the user will be available in the controller as params[:person][:first_name].
If :person also happens to be the name of an instance variable @person, then
the default value of the fields shown when the form is initially displayed will
be the value of the corresponding attributes of @person.

Use with Model Object Instances

While our examples so far have passed form_for a symbol as its first argument,
it’s entirely possible to pass a live object instance instead. This behaves in
almost the same way as outlined previously, with a couple of small exceptions.
First, the prefix used to name the input elements within the form (and their

All About Helpers 500

prefix in the params hash) is derived from the object’s class. If the object is an
instance of Post you’ll get attributes submitted as params[:post].
A second, important effect is that the default values used to fill the form’s
inputs will be taken from the model object instance.
Third, if the model object passed in is configured as a RESTful resource,
Rails will try to infer the URL and HTTP method that the form should use
automatically, instead of requiring explicit options to be set.
Assume that post in the following example is an existing resource to be edited
by the user.

form_for post do |f|

is syntax sugar for

form_for post, as: :post, url: post_path(post), method: :patch,
html: { class: "edit_post", id: "edit_post_45" } do |f|

}
The form_formethod also recognizes new records, by calling new? on the object
you pass to it, and would result in the following options:

url: posts_path, html: { class: "new_post", id: "new_post" }

form_for Options

In any of its variants, the rightmost argument to form_for is an optional hash
of options:

as If you want the resulting params hash posted to your controller to be
named based on something other than the class name of the object you
pass to form_for, you can pass an arbitrary symbol to the :as option:
form_for person, as: :client do |f|

In that case, the following call to text_field

f.text_field :first_name

would get expanded to

All About Helpers 501

text_field :client, :first_name, object: person

and submitted to the controller as params[:client][:first_name]

authenticity_token
Authenticity token to use in the form. Use only if you need to pass a
custom authenticity token string or not at all (by passing false).

If your app only uses remote forms, you may remove the automatic
embedded authenticity tokens by setting config.action_view.embed_-
authenticity_token_in_remote_forms = false. This is really helpful when
you’re fragment-caching the form. Remote forms get their authenticity
token from a meta tag in the page head, so embedding one inside the
form is unnecessary.

builder
Optional form builder class (instead of ActionView::Helpers::FormBuilder).

enforce_utf8
Set to false to disable the hidden input with name utf8. Having trouble
with incoming data that is not UTF-8 encoded? Take a look at https://
github.com/singlebrook/utf8-cleaner.

html
Optional HTML attributes for the generated HTML form tag.

method
The HTTP method to use when submitting the form. This option defaults
to POST. For browser compatibility reasons, if PATCH, PUT, DELETE or
another verb is used, a hidden input with name _method is added to the
form in order to simulate the verb, and Rails will pick it up automatically.
(POST will still be used as the underlying transport method.)

namespace
A namespace that will be prefixed with an underscore on the generated
HTML id of the form.

remote
If set to true, Rails UJS code will control the submit behavior (as opposed
to a normal HTML submit action.) More on this topic in Chapter 19, “Ajax
on Rails.”

url The URL to which the form is submitted. It takes the same fields you pass
to url_for or link_to. In particular, you may pass a named route directly
here as well. Defaults to the current action.

https://github.com/singlebrook/utf8-cleaner
https://github.com/singlebrook/utf8-cleaner

All About Helpers 502

Resource-oriented Style

The preferred way to use form_for is to rely on automated resource identifi-
cation, which will use the conventions and named routes of that approach,
instead of manually configuring the :url option.
For example, if post is an existing record to be edited, then the resource-
oriented style:

= form_for post do |f|

is equivalent to

= form_for post, as: :post, url: post_path(post),
method: :patch, html: { class: "edit_post",
id: "edit_post_45" } do |f|

The form_formethod also recognizes new records, by calling new? on the object
you pass to it.

= form_for(Post.new) do |f|

expands to

= form_for post, as: :post, url: posts_path, html: { class: "new_post",
id: "new_post" } do |f|

The individual conventions can be overridden by supplying an object argument
plus :url, :method, and/or :html options.

= form_for(post, url: super_post_path(post)) do |f|

You can create forms with namespaced routes by passing an array as the first
argument, as in the following example, which would map to a admin_post_url:

= form_for([:admin, post]) do |f|

The following example is the equivalent (old-school) version of form_tag, which
doesn’t use a yielded form object and explicitly names the object being used
in the input fields:

All About Helpers 503

= form_tag people_path do
.field

= label :person, :first_name
= text_field :person, :first_name

.field
= label :person, :last_name
= text_field :person, :last_name

.buttons
= submit_tag 'Create'

The first version has slightly less repetition (remember your DRY principle)
and is almost always going to be more convenient as long as you’re rendering
Active Record objects.

Variables Are Optional

If you explicitly specify the object name parameter for input fields rather than
letting them be supplied by the form, keep in mind that it doesn’t have to
match a live object instance in scope for the template. Rails won’t complain if
the object is not there. It will simply put blank values in the resulting form.

Rails-Generated Form Conventions

The HTML generated by the form_for invocations in the preceding example is
characteristic of Rails forms and follows specific naming conventions.
In case you’re wondering, the authenticity_token hidden field with gibberish
up near the top of the form has to do with protection against malicious Cross-
Site Request Forgery (CSRF) attacks.

<form accept-charset="UTF-8" action="/people" method="post">
<div style="margin:0;padding:0;display:inline">

<input name="utf8" type="hidden" value="✓" />
<input name="authenticity_token" type="hidden"

value="afl+6u3J/2meoHtve69q+tD9gPc3/QUsHCqPh85Z4WU=" /></div>
<div class='field'>

<label for="person_first_name">First name</label>
<input id="person_first_name" name="person[first_name]" type="text" />

</div>
<div class='field'>

<label for="person_last_name">Last name</label>
<input id="person_last_name" name="person[last_name]" type="text" />

</div>
<div class='buttons'>

All About Helpers 504

<input name="commit" type="submit" value="Create" />
</div>

</form>

When this form is submitted, the params hash will look like the following ex-
ample (using the format reflected in your development log for every request):

Parameters: {"utf8"=>"✓",
"authenticity_token"=>"afl+6u3J/2meoHtve69q+tD9gPc3/QUsHCqPh85Z4WU=",
"person"=>{"first_name"=>"William", "last_name"=>"Smith"},
"commit"=>"Create"}

The parameters contain utf8=✓ to force the client to use UTF-8 en-
coding in its request. It works because the key-value-pair (which
is ignored by the server) contains a unicode-only character. This
workaround/hack is primarily necessary because old versions of Mi-
crosoft Internet Explorer tried to send everything in Latin-1 encoding.

As you can see, the params hash has a nested "person" value, which is
accessed using params[:person] in the controller. That’s pretty fundamental
Rails knowledge, and I’d be surprised if you didn’t know it already. I promise
we won’t rehash much more basic knowledge after the following section.

Displaying Existing Values

If you were editing an existing instance of Person, that object’s attribute values
would have been filled into the form. That’s also pretty fundamental Rails
knowledge. What about if you want to edit a new model object instance, pre-
populated with certain values? Do you have to pass the values as options to
the input helper methods? No. Since the form helpers display the values of the
model’s attributes, it would simply be a matter of initializing the object with
the desired values in the controller, as follows:

expose :person, build: -> {
Set default values that you want to appear in the form
Person.new(first_name: 'First', last_name: 'Last')

}

All About Helpers 505

We covered the Decent Exposure gem and its expose method in the last
chapter.

Since you’re only using new, no record is persisted to the database, and your
default values magically appear in the input fields.

Mixing Input Helpers

Note that form_for doesn’t create an exclusive scope. It’s possible to use both
the stand-alone FormHelper methods along with methods from FormTagHelper.
For example:

= form_for :person do |f|
%label First name
= f.text_field :first_name
%label Last name
= f.text_field :last_name
= check_box_tag "person[admin]", "1", @person.company.admin?
Admin?
= f.submit

This also works for the methods in FormOptionHelper and DateHelper that are
designed to work with an object as base, like collection_select and datetime_-
select.

How Form Helpers Get Their Values

A rather important lesson to learn about Rails form helper methods is that the
value they display comes directly from the database prior to meddling by the
developer. Unless you know what you’re doing, you may get some unexpected
results if you try to override the values to be displayed in a form.
Let’s illustrate with a simple LineItem model, which has a decimal rate
attribute (by merit of a rate column in its database table). We’ll override its
implicit rate accessor with one of our own:

All About Helpers 506

class LineItem < ActiveRecord::Base
def rate

"A RATE"
end

end

In normal situations, the overridden accessor is hiding access to the real rate
attribute, as we can illustrate using the console:

>> li = LineItem.new
=> #<LineItem ...>
>> li.rate
=> "A RATE"

However, suppose you were to compose a form to edit line items using form
helpers:

= form_for line_item do |f|
= f.text_field :rate

You would find that it works normally, as if that overridden rate accessor
doesn’t exist. The fact is that Rails form helpers use special methods named
attribute_before_type_cast (which are covered in Chapter 5, “Working With
Active Record”). The preceding example would use the method rate_before_-
type_cast and bypass the overriding method we defined.

Integrating Additional Objects in One Form

The fields_for helper method creates a scope around a specific model object
like form_for but doesn’t create the form tags themselves. Neither does it have
an actual HTML representation as a div or fieldset. The fields_for method is
suitable for specifying additional model objects in the same form, particularly
associations of the main object being represented in the form.

Generic Examples

The following simple example represents a person and its associated permis-
sions.

All About Helpers 507

= form_for person do |f| %>
First name:
= f.text_field :first_name
Last name:
= f.text_field :last_name
.permissions

= fields_for person.permission do |permission_fields|
Admin?:
= permission_fields.check_box :admin

Nested Attributes Examples

When the object belonging to the current scope has a nested attribute writer
for a certain attribute, fields_forwill yield a new scope for that attribute. This
enables you to create forms that set or change the attributes of a parent object
and its associations in one go.
Nested attribute writers are normal setter methods named after an associa-
tion. The most common way of defining these writers is either by declaring
accepts_nested_attributes_for in a model definition or by defining a method
with the proper name. For example, the attribute writer for the association
:address is called address_attributes=.
Whether a one-to-one or one-to-many style form builder will be yielded
depends on whether the normal reader method returns a single object or an
array of objects. Consider a simple Ruby Person class that returns a single
Address from its address reader method and responds to the address_attributes=
writer method:

class Person
def address

@address
end

def address_attributes=(attributes)
Process the attributes hash

end
end

This model can now be used with a nested fields_for, like:

All About Helpers 508

= form_for person do |f|
= f.fields_for :address do |address_fields|

Street:
= address_fields.text_field :street
Zip code:
= address_fields.text_field :zip_code

When address is already an association on a Person you can use accepts_-
nested_attributes_for to define the writer method for you, like this:

class Person < ActiveRecord::Base
has_one :address
accepts_nested_attributes_for :address

end

The :autosave option is automatically enabled on every association for
which accepts_nested_attributes_for is used.

If you want to destroy the associated model through the form, you have to
enable it first using the :allow_destroy option for accepts_nested_attributes_for
like this:

class Person < ActiveRecord::Base
has_one :address
accepts_nested_attributes_for :address, allow_destroy: true

end

Now, when you use a checkbox form element specially named _destroy, with a
value that evaluates to true, the logic generated by accepts_nested_attribute_-
for will destroy the associated model. (This is a super useful technique for list
screens that enable deletion of multiple records at once using checkboxes.)

= form_for person do |f|
= f.fields_for :address do |address_fields|

Delete this address:
= address_fields.check_box :_destroy

fields_for with One-to-Many Associations

Consider a Person class that returns an array of Project instances from
the projects reader method and responds to the projects_attributes= writer
method:

All About Helpers 509

class Person < ActiveRecord::Base
def projects

[@project1, @project2]
end

def projects_attributes=(attributes)
Process the attributes hash

end
end

This model can now be used with a nested fields_for helper method in a form.
The block given to the nested fields_for call will be repeated for each instance
in the collection automatically:

= form_for person do |f|
= f.fields_for :projects do |project_fields|

.project
Name:
= project_fields.text_field :name

It’s also possible to specify the instance to be used by doing the iteration
yourself. The symbol passed to fields_for refers to the reader method of the
parent object of the form, but the second argument contains the actual object
to be used for fields:

= form_for person do |f|
- person.projects.select(&:active?).each do |project|

= f.fields_for :projects, project do |project_fields|
.project

Name:
= project_fields.text_field :name

Since fields_for also understands a collection as its second argument in that
situation, you can shrink that last example to the following code. Just inline
the projects collection:

= form_for person do |f|
= f.fields_for :projects, projects.select(&:active?) do |project_fields|

.project
Name:
= project_fields.text_field :name

If in our example Person was an Active Record model and projects was one of
its has_many associations, then you could use accepts_nested_attributes_for to
define the writer method for you:

All About Helpers 510

class Person < ActiveRecord::Base
has_many :projects
accepts_nested_attributes_for :projects

If the hash submitted contains an id key that matches an already associated
record, the matching record will be modified. If id is missing, a new record
instance will be appended to the association.
As with using accepts_nested_attributes_for with a belongs_to association, if
you want to destroy any of the associated models through the form, you have
to enable it first using the :allow_destroy option:

class Person < ActiveRecord::Base
has_many :projects
accepts_nested_attributes_for :projects, allow_destroy: true

This will make it possible for you to specify which models to destroy in the
attributes hash by adding a boolean form element named _destroy

= form_for person do |form|
= form.fields_for :projects do |project_fields|
Delete this project
= project_fields.check_box :_destroy

You may also set a :reject_if proc to silently ignore any new record hashes if
they fail to pass your criteria.

class Person < ActiveRecord::Base
has_many :projects
accepts_nested_attributes_for :projects, reject_if: proc { |attr|
attr['name'].blank? }

The reason reject_if is useful is because it’s quite common in situa-
tions where you have multiple lines of form inputs for child records for
the UI to purposely leave a line or two blank at the end of the list as
placeholders for new records.

Saving Nested Attributes

Nested records are updated on save, even when the intermediate parent
record is unchanged. For example, consider the following model code:

All About Helpers 511

class Project < ActiveRecord::Base
has_many :tasks
accepts_nested_attributes_for :tasks

end

class Task < ActiveRecord::Base
belongs_to :project
has_many :assignments
accepts_nested_attributes_for :assignments

end

class Assignment < ActiveRecord::Base
belongs_to :task

end

The following spec snippet illustrates nested saving:

setup project, task and assignment objects...
project.update(name: project.name,

tasks_attributes: [{
id: task.id,
name: task.name,
assignments_attributes: [

{
id: assignment.id,
name: 'Paul'

}]
}]

assignment.reload
expect(assignment.name).to eq('Paul')

Customized Form Builders

Under the covers, the form_for and fields_for methods use a class named
ActionView::Helpers::FormBuilder. An instance of it is yielded to the form block.
Conveniently, you can subclass it in your application to override existing or
define additional form helpers.
For example, let’s say you made a builder class to automatically add labels to
form inputs when text_field is called. You’d enable it with the :builder option
like:

All About Helpers 512

= form_for person, builder: LabelingFormBuilder do |f|

The FormBuilder object can be thought of as serving as a proxy for the
methods in the FormHelper module. This class, however, allows you to call
methods with the model object you are building the form for.
The standard set of helper methods for form building are located in the field_-
helpers class attribute of ActionView::Helpers::FormBuilder, and we’re about to
cover them individually in the next section.
If needed, you can create your own custom FormBuilder templates by subclass-
ing ActionView::Helpers::FormBuilder and adding your own helper methods,
like this one:

class MyFormBuilder < ActionView::Helpers::FormBuilder
def div_radio_button(method, tag_value, options = {})

@template.content_tag(:div,
@template.radio_button(

@object_name, method, tag_value, objectify_options(options)
)

)
end

end

The preceding code creates a new method div_radio_button that wraps a div
around a new radio button.

Note that when options are passed in, you must call objectify_options
in order for the model object to get correctly passed to the method. If
objectify_options is not called, then the newly created helper will not
be linked back to the model.

The div_radio_button code from above can now be used as follows:

= form_for @person, :builder => MyFormBuilder do |f|
I am a child:
= f.div_radio_button(:admin, "child")
I am an adult:
= f.div_radio_button(:admin, "adult")

Detailed instructions about making custom form builder classes would fill
its own chapter, but you could view the source of some popular Rails form
builders such as SimpleForm1 and formtasic2 to learn more.

1
https://github.com/plataformatec/simple_form
2https://github.com/justinfrench/formtastic

https://github.com/plataformatec/simple_form
https://github.com/justinfrench/formtastic

All About Helpers 513

If you invest in making your custom form builder and like it so much that you
want to use it by default across your whole app, it’s possible to replace Rails’
built-in form builder. Just override the value of ActionView::Base.default_form_-
builder in an initializer.

ActionView::Base.default_form_builder = MySuperSpecialFormBuilder

Form Inputs

For each of these methods, there is a similarly named form builder method
that omits the object_name parameter, referencing instead the object that was
passed in to form_for or fields_for.

button(value = nil, options = {}, &block)

Adds a button to a form.

f.button("Create post")
=> <button name='button' type='submit'>Create post</button>

When no value is given, it checks whether the object is a new resource or not
in order to automatically generate an appropriate label:

= form_for post do |f|
= f.button %>

In the preceding example, if post is a new record, it will use “Create Post” as its
button label, otherwise, it uses “Update Post”. Default labels for buttons can
be customized using I18n, under the helpers.submit key (the same as submit
helper) and accept the %{model} as an interpolation variable:

en:
helpers:

submit:
create: "Create a %{model}"
update: "Confirm changes to %{model}"

Rails also searches for a key specific to the provided object, in case you want
to further customize the button values for a specific model:

All About Helpers 514

en:
helpers:

submit:
post:

create: "Add %{model}"

Since buttons can contain additional markup, passing a block to the button
method instead of a value lets you wrap more than just a simple string value.

f.button do
content_tag(:strong, 'Ask me!')

end

=> <button name='button' type='submit'>
Ask me!
</button>

check_box(object_name, method, options = {}, checked_value = "1",
unchecked_value = "0")

Returns a checkbox tag tailored for accessing a specified attribute (identified
by method) on an object encapsulated in the form builder or identified by the
optional object_name. The model attribute should return an integer; if that
integer is above zero, then the checkbox is checked. Additional options on
the input tag can be passed in as options. The checked_value defaults to 1 while
the default unchecked_value is set to 0, which will naturally typecast to boolean
values.
Note that this helper generates an extra hidden input field to ensure that a
false value is passed even if the check box is unchecked. Ordinarily, if it was
unchecked it would simply be missing from the request parameters.

check_box('timesheet', 'approved')
=> <input name="timesheet[approved]" type="hidden" value="0"/>
<input checked="checked" type="checkbox" id="timesheet_approved"
name="timesheet[approved]" value="1" />

This way, the client either sends only the hidden field (representing the
check box is unchecked), or both fields. Since the HTML specification says
key/value pairs have to be sent in the same order they appear in the form,
and parameters extraction gets the last occurrence of any repeated key in the
query string, this little hack works for ordinary forms.
Unfortunately the hack fails for check boxes within array-like nested form
fields, as in the following example.

All About Helpers 515

= fields_for "project[invoice_attributes][]", invoice, index: nil do |form|
= form.check_box :paid

In this situation, for each item with a checked check box you will end up with
an extra ghost item for that attribute, assigned to “0”. A potential workaround
is to lose some of the magic by working with check_box_tag.

color_field(object_name, method, options = {})

Creates an HTML5-style color input field that enables setting of a color via
hex values (as a string). The default value of a color_field is set to "#000000"
if the underlying attribute is nil.

color_field(:car, :paint_color)
=> <input id="car_paint_color" name="car[paint_color]" type="color"
value="#000000" />"

To override the default value, pass a string in the format "#RRGGBB" to the option
:value. This method is otherwise identical to text_field.

date_field(object_name, method, options = {})

Creates an HTML5-style date input field.

date_field(:person, :birthday)
=> <input id="person_birthday" name="person[birthday]" type="date" />

The default value is generated by trying to call strftime with "%Y-%m-%d" on the
object’s value, which makes it behave as expected for instances of DateTime
and ActiveSupport::TimeWithZone. You can override the default by setting the
:value option explicitly with a string in the format YYYY-MM-DD (ISO8601).

user.born_on = Date.new(1984, 1, 27)
...
date_field(:user, :born_on, value: "1984-05-12")
=> <input id="user_born_on" name="user[born_on]" type="date"
value="1984-05-12" />

The :min and :max options accept instances of Date or Time, or a string in the
format YYYY-MM-DD (ISO8601).

All About Helpers 516

date_field(:user, "born_on", min: Date.today)
=> <input id="user_born_on" name="user[born_on]" type="date"
min="2014-05-20" />

date_field(:user, "born_on", min: "2014-05-20")
=> <input id="user_born_on" name="user[born_on]" type="date"
min="2014-05-20" />

datetime_field(object_name, method, options = {})

Creates an HTML5-style datetype input field that accepts time entry in UTC.
If a DateTime or ActiveSupport::TimeWithZone instance is provided to the helper
by the underlying attribute, it calls strftime with “%Y-%m-%dT%T.%L%z” on
the value to attempt setting a default value.
To override the default value, pass a string in the format “%Y-%m-%dT%T.%L%z”
to the option :value. This method is otherwise identical to date_field.

datetime_local_field(object_name, method, options = {})

Creates an HTML5-style datetime-local input field. This method is otherwise
identical to datetime_field, except that the value used is local over UTC.

email_field(object_name, method, options = {})

Creates an HTML5-style email input field. This method is otherwise identical
to text_field.

email_field(:user, :email)
=> <input id="user_email" name="user[email]" type="email" />

file_field(object_name, method, options = {})

Creates a file upload field and automatically adds multipart: true to the
enclosing form. See file_field_tag for more details.

hidden_field(object_name, method, options = {})

Creates a hidden field, with parameters and options similar to text_field.

label(object_name, method, content_or_options = nil, options = nil, &block)

Creates a label tag with the for attribute pointed at the specified input field.

All About Helpers 517

label('timesheet', 'approved')
=> <label for="timesheet_approved">Approved</label>
label('timesheet', 'approved', 'Approved?')
=> <label for="timesheet_approved">Approved?</label>

Many of us like to link labels to input fields by nesting. (Many would say that’s
the correct usage of labels.) As of Rails 3 the label helper accepts a block so
that nesting is possible and works as would be expected.

= f.label :terms do
= f.check_box :accept_terms
%span Accept #{link_to "Terms", terms_path}

month_field(object_name, method, options = {})

Creates an HTML5-style month input field. A month value is represented
by four digits for the year, followed by a dash, and ending with two digits
representing the month (ex.2013-08).
If a DateTime or ActiveSupport::TimeWithZone instance is provided to the helper,
it calls strftimewith “%Y-%m” on the object’s value to attempt setting a default
value.

month_field(:user, :born_on)
=> <input id="user_born_on" name="user[born_on]" type="month" />

To override the default value, pass a string in the format “%Y-%m” to the option
:value. This method is otherwise identical to datetime_field.

number_field(object_name, method, options = {})

Creates an HTML5-style number input field. This method is otherwise identi-
cal to text_field with the following additional options:

:min
The minimum acceptable value.

:max
The maximum acceptable value.

:in A range specifying the :min and :max values.

:step
The acceptable value granularity.

All About Helpers 518

password_field(object_name, method, options = {})

Creates a traditional password input field. This method is otherwise identical
to text_field but renders empty by default for security reasons. If you want to
pre-populate the user’s password you can do something like

password_field(:user, :password, value: user.password)

You should never have a reason to pre-populate a password field with a
password, because you should never store a user password in plaintext.

radio_button(object_name, method, tag_value, options = {})

Creates a traditional HTML radio button input field.

= radio_button(:post, :category, "rails")
= radio_button(:post, :category, "ruby")

range_field(object_name, method, options = {})

Creates an HTML5-style range input field. This method is otherwise identical
to number_field.

search_field(object_name, method, options = {})

Creates an HTML5-style search input field. This method is otherwise identical
to text_field.

Inputs of type “search” may be styled differently by some browsers, often
with rounded corners.

telephone_field(object_name, method, options = {})

Creates an HTML5-style telephone input field. This method is otherwise
identical to text_field and is aliased as phone_field.

text_area(object_name, method, options = {})

Creates a traditional HTML multiline text input field (the textarea tag). The
:size option lets you easily specify the dimensions of the text area, instead of
having to resort to explicit :rows and :cols options.

All About Helpers 519

text_area(:comment, :body, size: "25x10")
=> <textarea name="comment[body]" id="comment_body" cols="25" rows="10">
</textarea>

text_field(object_name, method, options = {})

Creates a standard HTML text input field.

time_field(object_name, method, options = {})

Creates an HTML5-style input field of type “time”. If a DateTime or ActiveSup-
port::TimeWithZone instance is provided to the helper, it calls strftime with
“%T.%L” on the object’s value to attempt setting a default value.

time_field(:task, :started_at)
=> <input id="task_started_at" name="task[started_at]" type="time" />

To override the default value, pass a string in the format “%T.%L” to the option
:value. This method is otherwise identical to datetime_field.

url_field(object_name, method, options = {})

Creates an HTML5-style input field of type “url”. This method is otherwise
identical to text_field.

week_field(object_name, method, options = {})

Creates an HTML5-style input field of type “week”. If a DateTime or ActiveSup-
port::TimeWithZone instance is provided to the helper, it calls strftimewith “%Y-
W%W” on the object’s value to attempt setting a default value.

week_field(:task, :started_at)
=> <input id="task_started_at" name="task[started_at]" type="week" />

To override the default value, pass a string in the format “%Y-W%W” to the
option :value. This method is otherwise identical to datetime_field.

All About Helpers 520

11.12 FormOptionsHelper

The methods in the FormOptionsHelpermodule are all about helping you to work
with HTML select elements, by giving you ways to turn collections of objects
into option tags.

Select Helpers

The following methods help you to create select tags based on a pair of object
and attribute identifiers.

collection_select(object, method, collection, value_method, text_method,
options = {}, html_options = {})

Returns both select and option tags for the given object and method using the
value_method and text_method symbols provided to construct a list of option tags
from the collection parameter.

grouped_collection_select(object, method, collection, group_method,
group_label_method, option_key_method, option_value_method, options = {},
html_options = {})

Returns select, optgroup, and option tags for the given object and method using
option_groups_from_collection_for_select (covered later in this chapter).

select(object, method, collection, options = {}, html_options = {})

Creates a select tag and a series of contained option tags for the provided
object and attribute. The value of the attribute currently held by the object
(if any) will be selected, provided that the object is available (not nil). See
options_for_select section for the required format of the choices parameter.
Here’s a small example where the value of @post.person_id is 1:

= select(:post, :person_id,
Person.all.collect { |p| [p.name, p.id] },
{ include_blank: true })

Executing that helper code would generate the following HTML output:

All About Helpers 521

<select id="post_person_id" name="post[person_id]">
<option value=""></option>
<option value="1" selected="selected">David</option>
<option value="2">Sam</option>
<option value="3">Tobias</option>

</select>

If necessary, specify selected: value to explicitly set the selection or selected:
nil to leave all options unselected. The include_blank: true option inserts a
blank option tag at the beginning of the list, so that there is no preselected
value. Also, you can disable specific values by setting a single value or an array
of values to the :disabled option.

time_zone_select(object, method, priority_zones = nil, options = {},
html_options = {})

Returns select and option tags for the given object and method, using time_-
zone_options_for_select to generate the list of option tags.
In addition to the :include_blank option documented in the preceding section,
this method also supports a :model option, which defaults to ActiveSup-
port::TimeZone. This may be used by users to specify a different timezone
model object.
Additionally, setting the priority_zones parameter with an array of ActiveSup-
port::TimeZone objects will list any specified priority time zones above any
other.

time_zone_select(:user, :time_zone, [
ActiveSupport::TimeZone['Eastern Time (US & Canada)'],
ActiveSupport::TimeZone['Pacific Time (US & Canada)']

])
=> <select id="user_time_zone" name="user[time_zone]">
<option value="Eastern Time (US & Canada)">
(GMT-05:00) Eastern Time (US & Canada)
</option>
<option value="Pacific Time (US & Canada)">
(GMT-08:00) Pacific Time (US & Canada)
</option>
<option disabled="disabled" value="">-------------</option>
<option value="American Samoa">(GMT-11:00) American Samoa</option>
...

Finally, setting the option :default to an instance of ActiveSupport::TimeZone,
sets the default selected value if none was set.

All About Helpers 522

Checkbox/Radio Helpers

The following methods create input tags of type “checkbox” or “radio” based
on a collection.

collection_check_boxes(object, method, collection, value_method,
text_method, options = {}, html_options = {}, &block)

The form helper collection_check_boxes creates a collection of check boxes and
associated labels based on a collection.
To illustrate, assuming we have a Post model that has multiple categories,
using the collection_check_boxes helper, we can add the capability to set the
category_ids of the post:

collection_check_boxes(:post, :category_ids, Category.all, :id, :name)
=> <input id="post_category_ids_1" name="post[category_ids][]"
type="checkbox" value="1" />
<label for="post_category_ids_1">Ruby on Rails</label>
<input id="post_category_ids_2" name="post[category_ids][]"
type="checkbox" value="2" />
<label for="post_category_ids_2">Ruby</label>
...

If you wanted to change the way the labels and check boxes are rendered,
passing a block will yield a builder:

collection_check_boxes(:post, :category_ids, Category.all,
:id, :name) do |item|
item.label(class: 'check-box') { item.check_box(class: 'check-box') }

end

The builder also has access to methods object, text and value of the current
item being rendered.

collection_radio_buttons(object, method, collection, value_method,
text_method, options = {}, html_options = {}, &block)

The form helper collection_radio_buttons creates a collection of radio buttons
and associated labels based on a collection. It is predominately used to set an
individual value, such as a belongs_to relationship on a model.

All About Helpers 523

Kevin says….
Use collection_radio_buttons with a collection that only has a handful
of items unless you want your page to be polluted with radio buttons.
Fall back to a collection_select for a large collection.

collection_radio_buttons(:post, :author_id, Author.all, :id, :name)
=> <input id="post_author_1" name="post[author_id][]"
type="radio" value="1" />
<label for="post_author_1">Obie</label>
<input id="post_author_2" name="post[author_id][]"
type="radio" value="2" />
<label for="post_author_2">Kevin</label>
...

Similar to the collection_check_boxes helper, if you wanted to change the way
the labels and radio buttons are rendered, passing a block yields a builder:

collection_radio_buttons(:post, :author_id,
Author.all, :id, :name) do |item|
item.label(class: 'radio-button') {

item.radio_button(class: 'radio-button')
}

end

The builder also has access to the methods object, text, and value of the
current item being rendered.

Option Helpers

For all of the following methods, only option tags are returned, so you have to
invoke them from within a select helper or otherwise wrap them in a select
tag.

grouped_options_for_select(grouped_options, selected_key = nil, options =
{})

Returns a string of option tags, such as options_for_select, but surrounds them
with optgroup tags.

All About Helpers 524

option_groups_from_collection_for_select(collection, group_method,
group_label_method, option_key_method, option_value_method, selected_key =
nil)

Returns a string of option tags, like options_from_collection_for_select but
surrounds them with optgroup tags. The collection should return a subarray
of items when calling group_method on it. Each group in the collection should
return its own name when calling group_label_method. The option_key_method
and option_value_method parameters are used to calculate option tag attributes.
It’s probably much easier to show in an example than to explain in words.

option_groups_from_collection_for_select(@continents, :countries,
:continent_name, :country_id, :country_name, @selected_country.id)

This example could output the following HTML:

<optgroup label="Africa">
<option value="1">Egypt</option>
<option value="4">Rwanda</option>
...

</optgroup>
<optgroup label="Asia">
<option value="3" selected="selected">China</option>
<option value="12">India</option>
<option value="5">Japan</option>
...

</optgroup>

For the sake of clarity, here are the model classes reflected in the example:

class Continent
def initialize(name, countries)

@continent_name = name; @countries = countries
end

def continent_name
@continent_name

end

def countries
@countries

end
end

All About Helpers 525

class Country
def initialize(id, name)

@id, @name = id, name
end

def country_id
@id

end

def country_name
@name

end
end

options_for_select(container, selected = nil)

Accepts a container (hash, array, or anything else enumerable) and returns a
string of option tags. Given a container where the elements respond to first
and last (such as a two-element array), the “lasts” serve as option values and
the “firsts” as option text. It’s not too hard to put together an expression that
constructs a two-element array using the map and collect iterators.
For example, assume you have a collection of businesses to display, and you’re
using a select field to enable the user to filter based on the category of the
businesses. The category is not a simple string; in this example, it’s a proper
model related to the business via a belongs_to association:

class Business < ActiveRecord::Base
belongs_to :category

end

class Category < ActiveRecord::Base
has_many :businesses

def <=>(other)
...

end
end

A simplified version of the template code for displaying that collection of
businesses might look like the following:

All About Helpers 526

- opts = businesses.map(&:category).collect { |c| [c.name, c.id] }
= select_tag(:filter, options_for_select(opts, selected_filter))

The first line puts together the container expected by options_for_select by
first aggregating the category attributes of the businesses collection using map
and the nifty &:method syntax. The second line generates the select tag using
those options (covered later in the chapter). Realistically, you want to massage
that category list a little more, so that it is ordered correctly and does not
contain duplicates:

... businesses.map(&:category).uniq.sort.collect {...

Particularly with smaller sets of data, it’s perfectly acceptable to do this level
of data manipulation in Ruby code. And of course, you probably don’t want to
ever shove hundreds or especially thousands of rows in a select tag, making
this technique quite useful. Remember to implement the spaceship method in
your model if you need it to be sortable by the sort method.
Also, it’s worthwhile to experiment with eager loading in these cases, so
you don’t end up with an individual database query for each of the objects
represented in the select tag. In the case of our example, the controller would
populate the businesses collection using code like this:

expose(:businesses) do
Business.where(...).includes(:category)

end

Hashes are turned into a form acceptable to options_for_select automatically—
the keys become firsts and values become lasts.
If the selected parameter is specified (with either a value or array of values
for multiple selections), the matching last or element will get the selected
attribute:

All About Helpers 527

options_for_select([["Dollar", "$"], ["Kroner", "DKK"]])
=> <option value="$">Dollar</option>
<option value="DKK">Kroner</option>

options_for_select(["VISA", "MasterCard"], "MasterCard")
=> <option>VISA</option>
<option selected="selected">MasterCard</option>

options_for_select({ "Basic" => "$20", "Plus" => "$40" }, "$40")
=> <option value="$20">Basic</option>
<option value="$40" selected="selected">Plus</option>

>> options_for_select(["VISA", "MasterCard", "Discover"],
["VISA", "Discover"])

=> <option selected="selected">VISA</option>
<option>MasterCard</option>
<option selected="selected">Discover</option>

A lot of people have trouble getting this method to correctly display their
selected item. Make sure that the value you pass to selectedmatches the type
contained in the object collection of the select; otherwise, it won’t work. In
the following example, assuming price is a numeric value, without the to_s,
selection would be broken, since the values passed as options are all strings:

options_for_select({ "Basic" => "20", "Plus" => "40" }, price.to_s)
=> <option value="20">Basic</option>
<option value="40" selected="selected">Plus</option>

options_from_collection_for_select(collection, value_method, text_method,
selected=nil)

Returns a string of option tags that have been compiled by iterating over
the collection and assigning the result of a call to the value_method as the
option value and the text_method as the option text. If selected is specified,
the element returning a match on value_method will get preselected.

options_from_collection_for_select(Person.all, :id, :name)
=> <option value="1">David</option>

<option value="2">Sam</option>
...

All About Helpers 528

time_zone_options_for_select(selected = nil, priority_zones = nil, model =
::ActiveSupport::TimeZone)

Returns a string of option tags for pretty much any timezone in the world.
Supply a ActiveSupport::TimeZone name as selected to have it preselected. You
can also supply an array of ActiveSupport::TimeZone objects as priority_zones,
so that they will be listed above the rest of the (long) list. TimeZone.us_zones is
a convenience method that gives you a list of the U.S. timezones only.
The selected parameter must be either nil or a string that names a ActiveSup-
port::TimeZone (covered in Appendix B, “ActiveSupport API Reference”).

All About Helpers 529

11.13 FormTagHelper

The following helper methods generate HTML form and input tags based
on explicit naming and values, contrary to the similar methods present in
FormHelper, which require association to an Active Record model instance.
All of these helper methods take an options hash, which may contain special
options or simply additional attribute values that should be added to the HTML
tag being generated.

button_tag(content_or_options = nil, options = nil, &block)

Creates a button element that can be used to define a submit, reset, or generic
button to be used with JavaScript.

button_tag('Submit')
=> <button name="button" type="submit">Submit</button>

button_tag('Some call to action',type: 'button')
=> <button name="button" type="button">Some call to action</button>

check_box_tag(name, value = "1", checked = false, options = {})

Creates a check box input field. Unlike its fancier cousin, check_box in FormHelper,
this helper does not give you an extra hidden input field to ensure that a false
value is passed even if the check box is unchecked.

check_box_tag('remember_me')
=> <input id="remember_me" name="remember_me" type="checkbox" value="1"/>

check_box_tag('remember_me', 1, true)
=> <input checked="checked" id="remember_me" name="remember_me"
type="checkbox" value="1" />

color_field_tag(name, value = nil, options = {})

Creates a color input field that enables setting of a color via hex values. This
method is otherwise identical to text_field_tag.

date_field_tag(name, value = nil, options = {})

Creates a date input field. This method is otherwise identical to text_field_tag.

All About Helpers 530

datetime_field_tag(name, value = nil, options = {})

Creates a datetime input field, which accepts time in UTC. This method is
otherwise identical to text_field_tag with the following additional options:

:min
The minimum acceptable value.

:max
The maximum acceptable value.

:step
The acceptable value granularity.

datetime_local_field_tag(name, value = nil, options = {})

Creates an input field of type “datetime-local”. This method is otherwise
identical to datetime_field_tag, except that the value is not in UTC.

email_field_tag(name, value = nil, options = {})

Creates an email input field. This method is otherwise identical to text_field_-
tag.

field_set_tag(legend = nil, options = nil, &block)

Wrap the contents of the given block in a fieldset tag and optionally give it a
legend tag.

file_field_tag(name, options = {})

Creates a file upload field. If you’re using this helper (rather than file_field)
remember to set your HTML form to multipart or file uploads will mysteriously
not work:

= form_tag '/upload', multipart: true do
= label_tag :file, 'File to Upload'
= file_field_tag :file
= submit_tag

This input field has a couple of unique options.

All About Helpers 531

multiple
Most modern browser will allow the user to select multiple files if this
option is set to true.

accept
Set to one or more mime-types to filter the kinds of files that the user will
be able to select in the Select File dialog.

When a form containing this input is submitted, the controller action will
receive a File object pointing to the uploaded file as it exists in a tempfile
on your system. Processing of an uploaded file is beyond the scope of this
book.

If you’re smart, you’ll use Jonas Nicklas’ excellent CarrierWave gem
instead of reinventing the wheel. Check it out at https://github.com/
carrierwaveuploader/carrierwave.

form_tag(url_for_options = {}, options = {}, &block)

Starts a form tag, with its action attribute set to the URL passed as the url_-
for_options parameter.
The :method option defaults to POST. Browsers handle HTTP GET and POST
natively; if you specify “patch,” “delete,” or any other HTTP verb is used, a
hidden input field will be inserted with the name _method and a value corre-
sponding to the method supplied. The Rails request dispatcher understands the
_method parameter, which is the basis for the RESTful techniques you learned
in Chapter 3, “REST, Resources, and Rails.”
The :multipart option enables you to specify that you will be including file-
upload fields in the form submission and the server should be ready to handle
those files accordingly.
The :authenticity_token option is used only if you need to pass a custom
authenticity token string or for indicating not to include one at all by setting
the option to false.
Setting the option :remote to true will enable the Unobtrusive JavaScript
drivers to take control of the submit behavior (Covered in Chapter 19, Ajax on
Rails).

https://github.com/carrierwaveuploader/carrierwave
https://github.com/carrierwaveuploader/carrierwave

All About Helpers 532

form_tag('/posts')
=> <form action="/posts" method="post">

>> form_tag('/posts/1', method: :patch)
=> <form action="/posts/1" method="post">
<input name="_method" type="hidden" value="patch" />
...

form_tag('/upload', multipart: true)
=> <form action="/upload" method="post" enctype="multipart/form-data">

You might note that all parameters to form_tag are optional. If you leave them
off, you’ll get a form that posts back to the URL that it came from—a quick
and dirty solution that I use quite often when prototyping or experimenting.
To quickly set up a controller action that handles post-backs, just include
an if/else condition that checks the request method, something like the
following:

def add
if request.post?

handle the posted params
redirect_back(fallback_location: root_path)

end
end

Notice that if the request is a post, I handle the form params and then redirect
back to the original URL (using redirect_back). Otherwise, execution simply
falls through and would render whatever template is associated with the
action.

hidden_field_tag(name, value = nil, options = {})

Creates a hidden field, with parameters similar to text_field_tag.

image_submit_tag(source, options = {})

Displays an image that, when clicked, will submit the form. The interface for
this method is the same as its cousin image_tag in the AssetTagHelper module.
Image input tags are popular replacements for standard submit tags, because
they make an application look fancier. They are also used to detect the location
of the mouse cursor on click—the params hash will include x and y data.

All About Helpers 533

label_tag(name = nil, content_or_options = nil, options = nil, &block)

Creates a label tag with the for attribute set to name.

month_field_tag(name, value = nil, options = {})

Creates an input field of type “month”. This method is otherwise identical to
text_field_tag with the following additional options:

:min
The minimum acceptable value.

:max
The maximum acceptable value.

:step
The acceptable value granularity.

number_field_tag(name, value = nil, options = {})

Creates a number input field. This method is otherwise identical to text_-
field_tag with the following additional options:

:min
The minimum acceptable value.

:max
The maximum acceptable value.

:in A range specifying the :min and :max values

:step
The acceptable value granularity.

password_field_tag(name = "password", value = nil, options = {})

Creates a password input field. This method is otherwise identical to text_-
field_tag.

radio_button_tag(name, value, checked = false, options = {})

Creates a radio button input field. Make sure to give all of your radio button
options the same name so that the browser will consider them linked.

All About Helpers 534

range_field_tag(name, value = nil, options = {})

Creates a range input field. This method is otherwise identical to number_-
field_tag.

search_field_tag(name, value = nil, options = {})

Creates a search input field. This method is otherwise identical to text_field_-
tag.

select_tag(name, option_tags = nil, options = {})

Creates a drop-down selection box, or if the :multiple option is set to true, a
multiple-choice selection box. The option_tags parameter is an actual string
of option tags to put inside the select tag. You should not have to generate
that string explicitly yourself. Instead, use the helpers in FormOptions (covered
in the previous section of this chapter), which can be used to create common
select boxes such as countries, time zones, or associated records.

submit_tag(value = "Save changes", options = {})

Creates a submit button with the text value as the caption. In conjunction
with the unobtrusive JavaScript driver, one can set a :data attribute named
:disable_with that can be used to provide a name for disabled versions of the
submit button.

submit_tag('Save article', data: { disable_with: 'Please wait...' })
=> <input data-disable-with="Please wait..."
name="commit" type="submit" value="Save article" />

telephone_field_tag(name, value = nil, options = {})

Creates a telephone input field. This method is otherwise identical to text_-
field_tag and is aliased as phone_field_tag.

text_area_tag(name, content = nil, options = {})

Creates a multiline text input field (the textarea tag). The :size option lets you
easily specify the dimensions of the text area, instead of having to resort to
explicit :rows and :cols options.

All About Helpers 535

text_area_tag(:body, nil, size: "25x10")
=> <textarea name="body" id="body" cols="25" rows="10"></textarea>

text_field_tag(name, value = nil, options = {})

Creates a standard text input field.

time_field_tag(name, value = nil, options = {})

Creates an input field of type “time”. This method is otherwise identical to
text_field_tag with the following additional options:

:min
The minimum acceptable value.

:max
The maximum acceptable value.

:step
The acceptable value granularity.

url_field_tag(name, value = nil, options = {})

Creates an input field of type “url”. This method is otherwise identical to text_-
field_tag.

utf8_enforcer_tag()

Creates the hidden UTF8 enforcer tag.

utf8_enforcer_tag
=> <input name="utf8" type="hidden" value="✓" />

week_field_tag(name, value = nil, options = {})

Creates an input field of type “week”. This method is otherwise identical to
text_field_tag with the following additional options:

:min
The minimum acceptable value.

:max
The maximum acceptable value.

:step
The acceptable value granularity.

All About Helpers 536

11.14 JavaScriptHelper

Provides helper methods to facilitate inclusion of JavaScript code in your
templates. Not terribly useful if you’re using Haml and :javascript filters.

escape_javascript(javascript)

Escapes line breaks, single and double quotes for JavaScript segments. It’s
also aliased as j.

javascript_tag(content_or_options_with_block = nil, html_options = {},
&block)

Outputs a script tag with the content inside. The html_options are added as
tag attributes.

All About Helpers 537

11.15 NumberHelper

This module provides assistance in converting numeric data to formatted
strings suitable for displaying in your view. Methods are provided for phone
numbers, currency, percentage, precision, positional notation, and file size.

number_to_currency(number, options = {})

Formats a number into a currency string. You can customize the format in the
options hash.

:locale
Sets the locale to be used for formatting, defaults to current locale.

:precision
Sets the level of precision, defaults to 2.

:unit
Sets the denomination of the currency, defaults to "$".

:separator
Sets the separator between the units, defaults to ".".

:delimiter
Sets the thousands delimiter, defaults to ",".

:format
Sets the format for non-negative numbers, defaults to "%u%n".

:negative_format
Sets the format for negative numbers, defaults to prepending a hyphen
to the formatted number.

:raise
Setting to true raises InvalidNumberError when the number is invalid.

All About Helpers 538

number_to_currency(1234567890.50)
=> $1,234,567,890.50

number_to_currency(1234567890.506)
=> $1,234,567,890.51

number_to_currency(1234567890.506, precision: 3)
=> $1,234,567,890.506

number_to_currency(1234567890.50, unit: "£", separator: ",",
delimiter: "")

=> £1234567890,50

number_to_human_size(number, options = {})

Formats a number that is more readable to humans. Useful for numbers that
are extremely large, like 1200000000, which would become “1.2 Billion”. You
can customize the format in the options hash.

:locale
Sets the locale to be used for formatting, defaults to current locale.

:precision
Sets the level of precision, defaults to 3.

:significant
If true, precision will be the number of significant digits, otherwise the
number of fractional digits are used. Defaults to true.

:separator
Sets the separator between fractional and integer digits, defaults to ".".

:delimiter
Sets the thousands delimiter, defaults to "".

:strip_insignificant_zeros
Setting to true removes insignificant zeros after the decimal separator,
defaults to true.

:units
A hash of unit quantifier names or a string containing an i18n scope
where to find this hash. It might have the following keys:

• integers: :unit, :ten, *:hundred, :thousand, :million, *:billion, :tril-
lion, *:quadrillion

All About Helpers 539

• fractionals: :deci, :centi, *:mili, :micro, :nano, *:pico, :femto

:format
Sets the format for non-negative numbers, defaults to "%n %u". The field
types are:

• %u: The quantifier
• %n: The number

number_to_human(123) # => "123"
number_to_human(1234) # => "1.23 Thousand"
number_to_human(1234567) # => "1.23 Million"
number_to_human(489939, precision: 4) # => "489.9 Thousand"

Kevin says…
Rails provides the capability to set your own custom unit qualifier by
setting the :units option.

number_to_human(10000, units: {unit: "m", thousand: "km"}) # => "10 km"

number_to_human_size(number, options = {})

Formats the bytes in size into a more understandable representation. Useful
for reporting file sizes to users. You can customize the format in the options
hash.

:locale
Sets the locale to be used for formatting, defaults to current locale.

:precision
Sets the level of precision, defaults to 3.

:significant
If true, precision will be the number of significant digits, otherwise the
number of fractional digits are used. Defaults to true.

:separator
Sets the separator between fractional and integer digits, defaults to ".".

All About Helpers 540

:delimiter
Sets the thousands delimiter, defaults to "".

:strip_insignificant_zeros
Setting to true removes insignificant zeros after the decimal separator,
defaults to true.

:format
Sets the format for non-negative numbers, defaults to "%u%n".

:prefix
Setting to :si formats the number using the SI prefix, defaults to :binary.

:raise
Setting to true raises InvalidNumberError when the number is invalid.

number_to_human_size(123) => 123 Bytes
number_to_human_size(1234) => 1.21 KB
number_to_human_size(12345) => 12.1 KB
number_to_human_size(1234567) => 1.18 MB
number_to_human_size(1234567890) => 1.15 GB
number_to_human_size(1234567890123) => 1.12 TB
number_to_human_size(1234567, precision: 2) => 1.2 MB

number_to_percentage(number, options = {})

Formats a number as a percentage string. You can customize the format in
the options hash.

:locale
Sets the locale to be used for formatting, defaults to current locale.

:precision
Sets the level of precision, defaults to 3

:significant
If true, precision will be the number of significant digits, otherwise the
number of fractional digits are used. Defaults to false.

:separator
Sets the separator between the units, defaults to "."

:delimiter
Sets the thousands delimiter, defaults to "".

All About Helpers 541

:strip_insignificant_zeros
Setting to true removes insignificant zeros after the decimal separator,
defaults to false.

:format
Sets the format of the percentage string, defaults to "%n%".

:raise
Setting to true raises InvalidNumberError when the number is invalid.

number_to_percentage(100) => 100.000%
number_to_percentage(100, precision: 0) => 100%
number_to_percentage(302.0574, precision: 2) => 302.06%

number_to_phone(number, options = {})

Formats a number (either integer or string) as a U.S. phone number. You can
customize the format in the options hash.

:area_code
Adds parentheses around the area code.

:delimiter
Specifies the delimiter to use, defaults to "-".

:extension
Specifies an extension to add to the end of the generated number.

:country_code
Sets the country code for the phone number.

:raise
Setting to true raises InvalidNumberError when the number is invalid.

number_to_phone(1235551234) # => "123-555-1234"
number_to_phone("1235551234", area_code: true) # => "(123) 555-1234"
number_to_phone("1235551234", delimiter: " ") # => "123 555 1234"

All About Helpers 542

number_with_delimiter(number, options = {})

Formats a number with grouped thousands using a delimiter. You can cus-
tomize the format in the options hash.

:locale
Sets the locale to be used for formatting, defaults to current locale.

:delimiter
Sets the thousands delimiter, defaults to ",".

:separator
Sets the separator between the units, defaults to ".".

:raise
Setting to true raises InvalidNumberError when the number is invalid.

number_with_delimiter(12345678) # => "12,345,678"
number_with_delimiter(12345678.05) # => "12,345,678.05"
number_with_delimiter(12345678, delimiter: ".") # => "12.345.678"

number_with_precision(number, options = {})

Formats a number with the specified level of precision. You can customize the
format in the options hash.

:locale
Sets the locale to be used for formatting, defaults to current locale.

:precision
Sets the level of precision, defaults to 3

:significant
If true, precision will be the number of significant digits, otherwise the
number of fractional digits are used. Defaults to false.

:separator
Sets the separator between the units, defaults to "."

:delimiter
Sets the thousands delimiter, defaults to "".

:strip_insignificant_zeros
Setting to true removes insignificant zeros after the decimal separator,
defaults to false.

:raise
Setting to true raises InvalidNumberError when the number is invalid.

All About Helpers 543

number_with_precision(111.2345) # => "111.235"
number_with_precision(111.2345, precision: 2) # => "111.23"

All About Helpers 544

11.16 OutputSafetyHelper

This is an extremely simple helper module.

raw(stringish)

Bypasses HTML sanitization by calling to_s, then html_safe on the argument
passed to it. Since escaping tags happens by default, this helper method can
be used when you don’t want Rails to automatically escape template content.
This is not recommended if the data being rendered comes from the user’s
input.

safe_join(array, sep=$,)

Synax sugar! Returns a HTML safe string by first escaping all array items and
joining them by calling Array#join using the supplied separator. The returned
string is also called with html_safe for good measure.

safe_join(["<p>foo</p>".html_safe, "<p>bar</p>"], "
")
=> "<p>foo</p>
<p>bar</p>"

to_sentence(array, options = {})

Converts an array to a comma-separated sentence where the last element is
joined by the connector word. This simply wraps ActiveSupport’s Array#to_-
sentence method together with html_safe escaping.

All About Helpers 545

11.17 RecordTagHelper

This module assists in creation of HTML markup code that follows good, clean
naming conventions.

Haml provides very similar functionality via its square-bracket object
notation.

Given an object, such as an Active Record instance, Haml can output an HTML
element with the id and class attributes set by that object via the [] operator.
For instance, assuming @post is an instance of a Post class, with an id value of
1 then the following template code ???

content_tag_for(tag_name, single_or_multiple_records, prefix = nil, options
= nil, &block)

This helper method creates an HTML element with id and class parameters
that relate to the specified Active Record object. For instance, assuming
@person is an instance of a Person class with an id value of 123, then the following
template code

= content_tag_for(:tr, @person) do
%td= @person.first_name
%td= @person.last_name

will produce the following HTML

<tr id="person_123" class="person">
...

</tr>

If you require the HTML id attribute to have a prefix, you can specify it as a
third argument:

content_tag_for(:tr, @person, :foo) do ...
=> "<tr id="foo_person_123" class="person">..."

The content_tag_for helper also accepts a hash of options, which will be
converted to additional HTML attributes on the tag. If you specify a :class
value, it will be combined with the default class name for your object instead
of replacing it (since replacing it would defeat the purpose of the method!).

All About Helpers 546

content_tag_for(:tr, @person, :foo, class: 'highlight') do ...
=> "<tr id="foo_person_123" class="person highlight">..."

div_for(record, *args, &block)

Produces a wrapper div element with id and class parameters that relate to
the specified Active Record object. This method is exactly like content_tag_for
except that it’s hard-coded to output div elements.

All About Helpers 547

11.18 RenderingHelper

This module contains helper methods related to rendering from a view
context, to be used with an ActionView::Renderer object. Development of an
Action View renderer is outside the scope of this book, but for those who are
interested, investigating the source code for ActionView::TemplateRenderer and
ActionView::PartialRenderer would be a good starting point.3

3https://github.com/rails/rails/tree/4-0-stable/actionpack/lib/action_view/renderer

https://github.com/rails/rails/tree/4-0-stable/actionpack/lib/action_view/renderer

All About Helpers 548

11.19 SanitizeHelper

The SanitizeHelper module provides a set of methods for scrubbing text
of undesired HTML elements. Rails sanitizes and escapes html content by
default, so this helper is really intended to assist with the inclusion of dynamic
content into your views, especially content coming from rich-edit controls like
TinyMCE, Quill and others.

sanitize(html, options = {})

Encodes all tags and strips all attributes (not specifically allowed) from the
html string passed to it. Also strips href and src tags with invalid protocols,
particularly in an effort to prevent abuse of javascript attribute values.

= sanitize @article.body

With its default settings, the sanitize method does its best to counter known
hacker tricks such as using unicode/ascii/hex values to get past the JavaScript
filters.
You can customize the behavior of sanitize by adding or removing allowable
tags and attributes using the :attributes or :tags options.

= sanitize @article.body, tags: %w(table tr td),
attributes: %w(id class style)

It’s possible to add tags to the default allowed tags in your application by
altering the value of config.action_view.sanitized_allowed_tags in an initializer.
For instance, the following code adds support for basic HTML tables:

class Application < Rails::Application
config.action_view.sanitized_allowed_tags = 'table', 'tr', 'td'

end

You can also remove some of the tags that are allowed by default.

All About Helpers 549

class Application < Rails::Application
config.after_initialize do

ActionView::Base.sanitized_allowed_tags.delete 'div'
end

end

Or change them altogether.

class Application < Rails::Application
config.action_view.sanitized_allowed_attributes = 'id', 'class', 'style'

end

Sanitizing user-provided text does not guarantee that the resulting markup
will be valid (conforming to a document type) or even well-formed. The output
may still contain unescaped <, >, & characters that confuse browsers and
adversely affect rendering.

sanitize_css(style)

Sanitizes a block of CSS code. Used by sanitize when it comes across a style
attribute in HTML being sanitized.

strip_links(html)

Strips all link tags from text, leaving just the link text.

strip_links('Ruby on Rails')
=> Ruby on Rails

strip_links('Please email me at me@email.com.')
=> Please email me at me@email.com.

strip_links('Blog: Visit.')
=> Blog: Visit

strip_tags(html)

Strips all tags from the supplied HTML string, including comments. Its HTML
parsing capability is limited by that of the html-scanner tokenizer built into
Rails. 4

4You can examine the source code of the html-scanner yourself by opening up https://github.com/rails/rails/blob/
4-0-stable/actionpack/lib/action_view/vendor/html-scanner/html/sanitizer.rb.

https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/vendor/html-scanner/html/sanitizer.rb
https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/vendor/html-scanner/html/sanitizer.rb

All About Helpers 550

strip_tags("Strip <i>these</i> tags!")
=> Strip these tags!

strip_tags("Bold no more! See more here...")
=> Bold no more! See more here...

strip_tags("<div id='top-bar'>Welcome to my website!</div>")
=> Welcome to my website!

All About Helpers 551

11.20 TagHelper

This module provides helper methods for generating HTML tags programmat-
ically.

cdata_section(content)

Returns a CDATA section wrapping the given content.

Use the :cdata filter in Haml to accomplish the same thing more
elegantly.

CDATA sections are used to escape blocks of text containing characters that
would otherwise be recognized as markup. CDATA sections begin with the
string <![CDATA[and end with (and may not contain) the string]]>.

content_tag(name, content_or_options_with_block = nil, options = nil, escape
= true, &block)

Returns an HTML block tag of type name surrounding the content. Add HTML
attributes by passing an attributes hash as options. Instead of passing the
content as an argument, you can also use a block to hold additional markup
(and/or additional calls to content_tag), in which case you pass your options as
the second parameter. Set escape to false to disable attribute value escaping.
Here are some simple examples of using content_tag without a block:

content_tag(:p, "Hello world!")
=> <p>Hello world!</p>

content_tag(:div, content_tag(:p, "Hello!"), class: "message")
=> <div class="message"><p>Hello!</p></div>

content_tag("select", options, multiple: true)
=> <select multiple="multiple">...options...</select>

Here it is with content in a block (shown as template code rather than in the
console):

All About Helpers 552

= content_tag :div, class: "strong" do
Hello world!

The preceding code produces the following HTML:

<div class="strong">Hello world!</div>

escape_once(html)

Returns an escaped version of HTML without affecting existing escaped
entities.

escape_once("1 > 2 & 3")
=> "1 < 2 & 3"

escape_once("<< Accept & Checkout")
=> "<< Accept & Checkout"

tag(name, options = nil, open = false, escape = true)

Returns an empty HTML tag of type name, which by default is XHTML
compliant. Setting open to true will create an open tag compatible with HTML
4.0 and below. Add HTML attributes by passing an attributes hash to options.
Set escape to false to disable attribute value escaping.
The options hash is used with attributes with no value like (disabled and
readonly), which you can give a value of true in the options hash. You can
use symbols or strings for the attribute names.

tag("br")
=>

tag("br", nil, true)
=>

tag("input", type: 'text', disabled: true)
=> <input type="text" disabled="disabled" />

tag("img", src: "open.png")
=>

All About Helpers 553

11.21 TextHelper

The methods in this module provide filtering, formatting, and string transfor-
mation capabilities.

concat(string)

The preferredmethod of outputting text in your views is to use the = expression
in Haml syntax, or the <%= expression %> in eRuby syntax. The regular puts and
print methods do not operate as expected in an eRuby code block—that is, if
you expected them to output to the browser. If you absolutely must output
text within a non-output code block like - expression in Haml, or <% expression
%> in eRuby, you can use the concat method. I’ve found that this method can
be especially useful when combined with capture in your own custom helper
method implementations.
The following example code defines a helper method that wraps its block
content in a div with a particular CSS class.

def wrap(&block)
concat(content_tag(:div, capture(&block), class: "wrapped_content"))

end

You would use it in your template as follows:

- wrap do
My wrapped content

current_cycle(name = "default")

Returns the current cycle string after a cycle has been started. Useful for
complex table highlighting or any other design need that requires the current
cycle string in more than one place.

- # Alternate background colors with coordinating text color
- [1,2,3,4].each do |item|

%div(style="background-color:#{cycle('red', 'green', 'blue')}")
%span(style="color:dark#{current_cycle}")= item

Reset the cycle by calling reset_cycle.

All About Helpers 554

cycle(first_value, *values)

Creates a Cycle object whose to_smethod cycles through elements of the array
of values passed to it, every time it is called. This can be used, for example,
to alternate classes for table rows. Here’s an example that alternates CSS
classes for even and odd numbers, assuming that the @items variable holds an
array with 1 through 4:

%table
- @items.each do |item|

%tr{ class: cycle('even', 'odd') }
%td= item

As you can tell from the example, you don’t have to store the reference to
the cycle in a local variable or anything like that; you just call the cycle
method repeatedly. That’s convenient, but it means that nested cycles need
an identifier. The solution is to pass cycle a name: cycle_name option as its last
parameter. Also, you can manually reset a cycle by calling reset_cycle and
passing it the name of the cycle to reset. For example, here is some data to
iterate over:

Cycle CSS classes for rows, and text colors for values within each row
@items = [{first: 'Robert', middle: 'Daniel', last: 'James'},

{first: 'Emily', last: 'Hicks'},
{first: 'June', middle: 'Dae', last: 'Jones'}]

And here is the template code. Since the number of cells rendered varies, we
want to make sure to reset the colors cycle before looping:

- @items.each do |item|
%tr{ class: cycle('even', 'odd', name: 'row_class') }

- item.values.each do |value|
%td{ class: cycle('red', 'green', name: 'colors') }

= value
- reset_cycle 'colors'

excerpt(text, phrase, options = {})

Extracts an excerpt from text that matches the first instance of phrase. The
:radius option expands the excerpt on each side of the first occurrence of
phrase by the number of characters defined in :radius (which defaults to 100).
If the excerpt radius overflows the beginning or end of the text, the :omission
option will be prepended/appended accordingly. Use the :separator option to
set the delimitation.
If the phrase isn’t found, nil is returned. Let’s look at some examples.

All About Helpers 555

excerpt('This is an example', 'an', radius: 5)
=> "...s is an examp..."

excerpt('This is an example', 'is', radius: 5)
=> "This is an..."

excerpt('This is an example', 'is')
=> "This is an example"

excerpt('This next thing is an example', 'ex', radius: 2)
=> "...next..."

excerpt('This is also an example', 'an', radius: 8, omission: '<chop> ')
=> "<chop> is also an example"

highlight(text, phrases, options = {})

Highlights one or more phrases everywhere in text by inserting into a
highlighter template. The highlighter can be specialized by passing the option
:highlighter as a single-quoted string with \1 where the phrase is to be
inserted.

highlight('You searched for: rails', 'rails')
=> You searched for: <mark>rails</mark>

highlight('You searched for: ruby, rails, dhh', 'actionpack')
=> You searched for: ruby, rails, dhh

highlight('You searched for: rails', ['for', 'rails'],
highlighter: '\1')

=> You searched for: rails

highlight('You searched for: rails', 'rails',
highlighter: '\1')

=> You searched for: rails

Note that as of Rails 4, the highlight helper now uses the HTML5 mark tag by
default.

All About Helpers 556

pluralize(count, singular, plural = nil)

Super useful for creating highly polished apps. This helper attempts to
pluralize the singular word unless count is 1. If the plural is supplied, it will
use that when count is > 1. If the ActiveSupport Inflector is loaded, it will use
the Inflector to determine the plural form; otherwise, it will just add an “s” to
the singular word.

pluralize(1, 'person')
=> 1 person

pluralize(2, 'person')
=> 2 people

pluralize(3, 'person', 'users')
=> 3 users

pluralize(0, 'person')
=> 0 people

reset_cycle(name = "default")

Resets a cycle (see the cycle method in this section) so that it starts cycling
from its first element the next time it is called. Pass in a name to reset a named
cycle.

simple_format(text, html_options = {}, options = {})

Returns text transformed into HTML using simple formatting rules. Two or
more consecutive newlines (\n\n) are considered to denote a paragraph and
thus are wrapped in p tags. One newline (\n) is considered to be a line break,
and a br tag is appended. This method does not remove the newlines from the
text.
Any attributes set in html_options will be added to all outputted paragraphs.
The following options are also available:

:sanitize
Setting this option to false will not sanitize any text.

:wrapper_tag
A string representing the wrapper tag, defaults to "p".

All About Helpers 557

truncate(text, options = {}, &block)

If text is longer than the :length option (defaults to 30), text will be truncated
to the length specified, and the last three characters will be replaced with the
the :omission (defaults to "..."). The :separator option enables defining the
delimitation. Finally, to not escape the output, set :escape to false.

truncate("Once upon a time in a world far far away", length: 7)
=> "Once..."

truncate("Once upon a time in a world far far away")
=> "Once upon a time in a world..."

truncate("And they found that many people were sleeping better.",
length: 25, omission: '... (continued)')

=> "And they f... (continued)"

word_wrap(text, options = {})

Wraps the text into lines no longer than the :line_width option. This method
breaks on the first whitespace character that does not exceed :line_width
(which is 80 by default).

word_wrap('Once upon a time')
=> Once upon a time

word_wrap('Once upon a time', line_width: 8)
=> Once\nupon a\ntime

word_wrap('Once upon a time', line_width: 1)
=> Once\nupon\na\ntime

All About Helpers 558

11.22 TranslationHelper and the I18n API

I18n stands for internationalization, and the I18n gem that ships with Rails
makes it easy to support multiple languages other than English in your Rails
applications. When you internationalize your app, you do a sweep of all the
textual content in your models and views that needs to be translated, as
well as demarking data like currency and dates, which should be subject to
localization.5

Rails provides an easy-to-use and extensible framework for translating your
application to a single custom language other than English or for providing
multi-language support in your application.
The process of internationalization in Rails involves the abstraction of strings
and other locale-specific parts of your application (such as dates and currency
formats) out of the codebase and into a locale file.
The process of localizationmeans to provide translations and localized formats
for the abstractions created during internationalization. In the process of
localizing your application you’ll probably want to do following three things:

• Replace or add to Rails’ default locale.
• Abstract strings used in your application into keyed dictionaries—e.g.,
flash messages, static text in your views, etc.

• Store the resulting dictionaries somewhere.

Internationalization is a complex problem. Natural languages differ in somany
ways (e.g., in pluralization rules) that it is hard to provide tools for solving all
problems at once. For that reason the Rails I18n API focuses on the following:

• Providing support for English and similar languages by default.
• Making it easy to customize and extend everything for other languages.

As part of this solution, every static string in the Rails framework—e.g., Active
Record validation messages, time and date formats—has been international-
ized, so localization of a Rails application means overriding Rails defaults.

5This section is an authorized remix of the complete guide to using I18n in Rails, by Sven Fuchs and Karel
Minarik, available at http://guides.rubyonrails.org/i18n.html.

http://guides.rubyonrails.org/i18n.html

All About Helpers 559

Localized Views

Before diving into the more complicated localization techniques, let’s briefly
cover a simple way to translate views that is useful for content-heavy pages.
Assume you have a BooksController in your application. Your index action
renders content in app/views/books/index.html.haml template. When you put
a localized variant of that template such as index.es.html.haml in the same
directory, Rails will recognize it as the appropriate template to use when the
locale is set to :es. If the locale is set to the default, the generic index.html.haml
view will be used normally.
You can make use of this feature when working with a large amount of static
content that would be clumsy to maintain inside locale dictionaries. Just bear
in mind that any changes to a template must be kept in sync with all of its
translations.

TranslationHelper Methods

The following two methods are provided for use in your views and assume that
I18n support is set up in your application.

localize(*args) aliased to l

Delegates to ActiveSupport’s I18n#translate method with no additional func-
tionality. Normally you want to use translate instead.

translate(key, options = {}) aliased to t

Delegates to ActiveSupport’s I18n#translate method, while performing three
additional functions. First, it’ll catch MissingTranslationData exceptions and
turn them into inline spans that contain the missing key, such that you can
see within your views when keys are missing.
Second, it’ll automatically scope the key provided by the current partial if the
key starts with a period. So if you call translate(".foo") from the people/in-
dex.html.haml template, you’ll be calling I18n.translate("people.index.foo").
This makes it less repetitive to translate many keys within the same partials
and gives you a simple framework for scoping them consistently. If you don’t
prepend the key with a period, nothing is converted.
Third, it’ll mark the translation as safe HTML if the key has the suffix “_-
html” or the last element of the key is the word “html”. For example, calling
translate("header.html")will return a safe HTML string that won’t be escaped.

All About Helpers 560

I18n Setup

There are just a few simple steps to get up and running with I18n support for
your application.
Following the convention over configuration philosophy, Rails will set up your
application with reasonable defaults. If you need different settings, you can
overwrite them easily.
Rails adds all .rb and .yml files from the config/locales directory to your trans-
lations load path, automatically.6 The default en.yml locale in this directory
contains a sample pair of translation strings:

en:
hello: "Hello world"

This means, that in the :en locale, the key hello will map to the “Hello world”
string.7

You can use YAML or standard Ruby hashes to store translations in the default
(Simple) backend.
Unless you change it, the I18n library will use English (:en) as its default locale
for looking up translations. Change the default in using code similar to:

config.i18n.default_locale = :de

Note
The i18n library takes a pragmatic approach to locale keys (after some
discussiona), including only the locale (“language”) part, like :en, :pl, not the
region part, like :en-US or :en-UK, which are traditionally used for separating
“languages” and “regional setting” or “dialects”. Many international appli-
cations use only the “language” element of a locale such as :cz, :th, or :es
(for Czech, Thai and Spanish). However, there are also regional differences
within different language groups that may be important. For instance, in the
:en-US locale you would have $ as a currency symbol, while in :en-UK, you
would have £. Nothing stops you from separating regional and other settings
in this way: you just have to provide full “English – United Kingdom” locale
in a :en-UK dictionary. Rails I18n plugins such as Globalize3b may help you

6The translations load path is just an array of paths to your translation files that will be loaded automatically
and available in your application. You can pick whatever directory and translation file naming scheme makes sense
for you.

7Every string inside Rails is internationalized in this way, see for instance Active Record validation messages in
the file or time and date formats in the file.

All About Helpers 561

implement it.
ahttps://groups.google.com/forum/?hl=en#!topic/rails-i18n/FN7eLH2-lHA
bhttps://github.com/svenfuchs/globalize3

Setting and Passing the Locale

If you want to translate your Rails application to a single language other than
English, you can just set default_locale to your locale in application.rb as
shown earlier, and it will persist through the requests. However, you probably
want to provide support for more locales in your application, depending on the
user’s preference. In such case, you need to set and pass the locale between
requests.

Warning
You may be tempted to store the chosen locale in a session or a cookie.
Do not do so. The locale should be transparent and a part of the URL.
This way you don’t break people’s basic assumptions about the web
itself: if you send a URL of some page to a friend, she should see the
same page, same content.

You can set the locale in a before_action in your ApplicationController like this:

before_action :set_locale

def set_locale
if params[:locale] is nil then I18n.default_locale will be used
I18n.locale = params[:locale]

end

This approach requires you to pass the locale as a URL query parameter as in
http://example.com/books?locale=pt. (This is, for example, Google’s approach.)
Getting the locale from params and setting it accordingly is not the hard part
of this technique. Including the locale parameter in every URL generated by
your application is the hard part. To include an explicit option in every URL

= link_to books_url(locale: I18n.locale)

https://groups.google.com/forum/?hl=en#!topic/rails-i18n/FN7eLH2-lHA
https://github.com/svenfuchs/globalize3

All About Helpers 562

would be tedious at best and impossible to maintain at worst.
A default_url_options method in ApplicationController is useful precisely in
this scenario. It enables us to set defaults for url_for and helper methods
dependent on it.

def default_url_options(options={})
logger.debug "default_url_options is passed options: #{options.inspect}\n"
{ locale: I18n.locale }

end

Every helper method dependent on url_for (e.g., helpers for named routes
like root_path or root_url, resource routes like books_path or books_url, etc.)
will now automatically include the locale in the query string, like

http://localhost:3000/?locale=ja

Having the locale hang at the end of every path in your application can
negatively impact readability of your URLs. Moreover, from an architectural
standpoint, locales are a concept that live above other parts of your application
domain, and your URLs should probably reflect that.
You might want your URLs to look more like www.example.com/en/books (which
loads the English locale) and www.example.com/nl/books (which loads theNether-
lands locale). This is achievable with the same default_url_options strategy we
just reviewed. You just have to set up your routes with a scope option in this
way:

config/routes.rb
scope "/:locale" do

resources :books
end

Even with this approach, you still need to take special care of the root
URL of your application. An URL like http://localhost:3000/nl will not work
automatically because the root "books#index" declaration in your routes.rb
doesn’t take locale into account. After all, there should only be one “root”
of your website.
A possible solution is to map a URL like the following:

All About Helpers 563

config/routes.rb
get '/:locale' => "dashboard#index"

Do take special care about the order of your routes, so this route declaration
does not break other ones. It would be most wise to add it directly before the
root declaration at the end of your routes file.

Warning
This solution has currently one rather big downside. Due to the
default_url_options implementation, you have to pass the :id option
explicitly, like link_to 'Show', book_url(id: book) and not depend on
Rails’ magic in code like link_to 'Show', book. If this should be a
problem, have a look at Sven Fuchs’s routing_filter8 plugin which
simplifies working with routes in this way.

Setting the Locale from the Domain Name

Another option you have is to set the locale from the domain name where your
application runs. For example, we want www.example.com to load the English (or
default) locale and www.example.es to load the Spanish locale. Thus the top-level
domain name is used for locale setting. This has several advantages:

• The locale is a very obvious part of the URL.
• People intuitively grasp in which language the content will be displayed.
• It is very trivial to implement in Rails.
• Search engines seem to like that content in different languages lives at
different, inter-linked domains.

You can implement it like this in your ApplicationController:

8https://github.com/svenfuchs/routing-filter

https://github.com/svenfuchs/routing-filter

All About Helpers 564

before_action :set_locale

def set_locale
I18n.locale = extract_locale_from_uri

end

Get locale from top-level domain or return nil
def extract_locale_from_tld

parsed_locale = request.host.split('.').last
(available_locales.include? parsed_locale) ? parsed_locale : nil

end

Try adding localhost aliases to your file to test this technique.

127.0.0.1 application.com

127.0.0.1 application.it

127.0.0.1 application.pl

Setting the Locale from the Host Name

We can also set the locale from the subdomain in a very similar way inside of
ApplicationController.

before_action :set_locale

def set_locale
I18n.locale = extract_locale_from_uri

end

def extract_locale_from_subdomain
parsed_locale = request.subdomains.first
(available_locales.include? parsed_locale) ? parsed_locale : nil

end

Setting Locale from Client Supplied Information

In specific cases, it would make sense to set the locale from client-supplied
information, i.e., not from the URL. This information may come, for example,
from the users’ preferred language (set in their browser), can be based on
the users’ geographical location inferred from their IP, or users can provide
it simply by choosing the locale in your application interface and saving it
to their profile. This approach is more suitable for web-based applications
or services, not for websites. See the sidebar about sessions, cookies, and
RESTful architecture.

All About Helpers 565

Using Accept-Language

One source of client supplied information would be an Accept-Language HTTP
header. People may set this in their browser9 or other clients (such as curl).
A trivial implementation of setting locale based on the Accept-Language header
in ApplicationController might be:

before_action :set_locale

def set_locale
I18n.locale = extract_locale_from_accept_language_header
logger.debug "* Locale set to '#{I18n.locale}'"

end

private

def extract_locale_from_accept_language_header
request.env['HTTP_ACCEPT_LANGUAGE'].scan(/^[a-z]{2}/).first

end

In real production environments you should use much more robust code than
the example above. Try plugins such as Iain Hecker’s http_accept_language10
or even Rack middleware such as locale11.

Using GeoIP (or Similar) Database

Yet another way of choosing the locale from client information would be to
use a database for mapping the client IP to the region, such as GeoIP Lite
Country.12 The mechanics of the code would be very similar to the preceding
code—you would need to query the database for the user’s IP and look up your
preferred locale for the country/region/city returned.

User Profile

You can also provide users of your application with means to set (and possibly
override) the locale in your application interface as well. Again, mechanics
for this approach would be very similar to the code above—you’d probably
let users choose a locale from a dropdown list and save it to their profile in
the database. Then you’d set the locale to this value using a before_action in
ApplicationController.

9http://www.w3.org/International/questions/qa-lang-priorities
10https://github.com/iain/http_accept_language
11https://github.com/rack/rack-contrib/blob/master/lib/rack/contrib/locale.rb
12http://dev.maxmind.com/geoip/legacy/geolite/

http://www.w3.org/International/questions/qa-lang-priorities
https://github.com/iain/http_accept_language
https://github.com/rack/rack-contrib/blob/master/lib/rack/contrib/locale.rb
http://dev.maxmind.com/geoip/legacy/geolite/

All About Helpers 566

Internationalizing Your Application

After you’ve set up I18n support for your Ruby on Rails application and told
it which locale to use and how to preserve it between requests, you’re ready
for the really interesting part of the process: actually internationalizing your
application.

Premature internationalization is as bad, and possibly worse, than
premature optimization. Features under active development are likely
to get refactored, changed or eliminated, and if you have already
invested in translation, you might be in for a world of pain trying
to figure out which keys are still in use. Internationalization usually
comes relatively late in the timeline of a project. Work on it when you
feel confident that no more major changes will be happening.

The Public I18n API

First of all, you should be acquainted with the I18n API. The two most
important methods of the I18n API are

translate # Lookup text translations
localize # Localize Date and Time objects to local formats

These have the aliases #t and #l, so you can use them like

I18n.t 'store.title'
I18n.l Time.now

The Process

I18n and localization take place primarily in certain parts of your Rails
application with user-facing strings:

• Views
• Mailers
• Forms
• Models

Controllers shouldn’t contain much in the way of strings subject to i18n,
with the exception of alerts and notice messages. Helpers probably shouldn’t
contain much text either.
Take the following basic pieces of a simple Rails application as an example for
describing the process.

All About Helpers 567

config/routes.rb
Rails.application.routes.draw do

root "home#index"
end

app/controllers/home_controller.rb
class HomeController < ApplicationController

def index
flash[:notice] = "Welcome"

end
end

app/views/home/index.html.haml
%h1 Hello world!
%p.notice= flash[:notice]

The example has two strings that are currently hard-coded in English. To
internationalize this code, we must replace those strings with calls to Rails’
#t helper with a key that makes sense for the translation.

app/controllers/home_controller.rb
class HomeController < ApplicationController

def index
flash[:notice] = t(:welcome_flash)

end
end

app/views/home/index.html.haml
%h1= t(:hello_world)
%p.notice= flash[:notice]

Now when you render this view, it will show an error message that tells you
that the translations for the keys :hello_world and :welcome_flash are missing.
Rails adds a t (translate) helper method to your views so that you do not
need to spell out I18n.t all the time. Additionally, this helper will catch
missing translations and wrap the resulting error message into a .
To make the example work you would add the missing translations into the
dictionary files (thereby doing the localization part of the work):

All About Helpers 568

config/locale/en.yml
en:

hello_world: Hello World
welcome_flash: Welcome

config/locale/pirate.yml
pirate:

hello_world: Ahoy World
welcome_flash: All aboard!

Note
You need to restart the server when you add or edit locale files.

You may use YAML (.yml) or plain Ruby (.rb) files for storing your translations.
YAML is the preferred option among Rails developers. However, it has one big
disadvantage. YAML is very sensitive to whitespace and special characters,
so the application may not load your dictionary properly. Ruby files will crash
your application on first request, so you may easily find what’s wrong. (If you
encounter any “weird issues” with YAML dictionaries, try putting the relevant
portion of your dictionary into a Ruby file.)

For a completely different, and potentially much easier (albeit pricey),
solution to internationalizing your application, check out PhraseApp13.
They have a product called the In-Context-Editor, that makes the actual
web UI of your application editable by teams of translators. It’s the way
to go for large i18n jobs.

Adding Date/Time Formats

Okay! Now let’s add a timestamp to the view, so we can demo the date/time
localization feature as well. To localize the time format you pass the Time
object to I18n.l or use Rails’ #l helper method in your views.

13http://phraseapp.com

http://phraseapp.com/
http://phraseapp.com/

All About Helpers 569

app/views/home/index.html.haml
%h1= t(:hello_world)
%p.notice= flash[:notice]
%p= l(Time.now, format: :short)

And in our pirate translations file let’s add a time format (it’s already there in
Rails’ defaults for English):

config/locale/pirate.yml
pirate:

time:
formats:

short: "arrrround %H'ish"

The rails-i18n repository
There’s a great chance that somebody has already done much of the hard
work of translating Rails’ defaults for your locale. See the rails-i18n repos-
itory at GitHuba for an archive of various locale files. When you put such
file(s) in config/locale/ directory, they will automatically be ready for use.

ahttps://github.com/svenfuchs/rails-i18n

Organization of Locale Files

Putting translations for all parts of your application in one file per locale could
be hard to manage. You can store these files in a hierarchy that makes sense
to you.
For example, your config/locale directory could look like this:

|-defaults
|---es.rb
|---en.rb
|-models
|---book
|-----es.rb
|-----en.rb
|-views
|---defaults
|-----es.rb

https://github.com/svenfuchs/rails-i18n

All About Helpers 570

|-----en.rb
|---books
|-----es.rb
|-----en.rb
|---users
|-----es.rb
|-----en.rb
|---navigation
|-----es.rb
|-----en.rb

This way, you can separate model and model attribute names from text inside
views, and all of this from the “defaults” (e.g., date and time formats). Other
stores for the i18n library could provide different means of such separation.

Note
The default locale loading mechanism in Rails does not load locale files in
nested dictionaries, like we have here. So, for this to work, we must explicitly
tell Rails to look further through settings in

config/application.rb
config.i18n.load_path += Dir[File.join(Rails.root, 'config',
'locales', '**', '*.{rb,yml}')]

Looking Up Translations

Basic Lookup, Scopes, and Nested Keys

Translations are looked up by keys, which can be either Symbols or Strings,
so these calls are equivalent:

I18n.t :message
I18n.t 'message'

The translate method also takes a :scope option, which can contain one or
more additional keys that will be used to specify a “namespace” or scope for
a translation key:

All About Helpers 571

I18n.t :invalid, scope: [:activerecord, :errors, :messages]

This looks up the :invalid message in the Active Record error messages.
Additionally, both the key and scopes can be specified as dot-separated keys
as in the following:

I18n.translate :"activerecord.errors.messages.invalid"

Thus the following four calls are equivalent:

I18n.t 'activerecord.errors.messages.invalid'
I18n.t 'errors.messages.invalid', scope: :activerecord
I18n.t :invalid, scope: 'activerecord.errors.messages'
I18n.t :invalid, scope: [:activerecord, :errors, :messages]

Context matters, especially in translation work. Therefore, in anything but
the most basic circumstances, forget about using symbols and scopes as
identifiers. Just use explicit dot notation across the board, and create prefix
schemes that match the organization of your resources. It’s a lot easier to
understand and maintain. PhraseApp has a great writeup on the subject
of translation key naming at https://phraseapp.com/blog/posts/ruby-lessons-
learned-naming-and-managing-rails-i18n-keys/.

Default Values

When a :default option is given, its value will be returned if the translation is
missing:

I18n.t :missing, default: 'Not here'
=> 'Not here'

If the :default value is a Symbol, it will be used as a key and translated. You
can provide multiple values as default. The first one that results in a value will
be returned.
For example, the following first tries to translate the key :missing and then the
key :also_missing. As both do not yield a result, the string “Not here” will be
returned:

https://phraseapp.com/blog/posts/ruby-lessons-learned-naming-and-managing-rails-i18n-keys/
https://phraseapp.com/blog/posts/ruby-lessons-learned-naming-and-managing-rails-i18n-keys/

All About Helpers 572

I18n.t :missing, default: [:also_missing, 'Not here']
=> 'Not here'

Bulk and Namespace Lookup

To look up multiple translations at once, an array of keys can be passed:

I18n.t [:odd, :even], scope: 'activerecord.errors.messages'
=> ["must be odd", "must be even"]

Also, a key can translate to a (potentially nested) hash of grouped translations.
For instance, you can receive all Active Record error messages as a Hash with

I18n.t 'activerecord.errors.messages'
=> { inclusion: "is not included in the list", exclusion: ... }

View Scoped Keys

Rails implements a convenient way to reference keys inside of views. Assume
you have the following local file:

es:
books:

index:
title: "Título"

You can reference the value of books.index.title inside of the app/views/book-
s/index.html.haml template by prefixing the key name with a dot. Rails will
automatically fill in the scope based on the identity of the view.

= t '.title'

The experts at PhraseApp advise strongly against using scoped keys,
and we agree with them. Once you begin having similar keys in
different contexts, it becomes way too difficult to maintain. Even
though it’ll cost some more keystrokes, for the sake of maintainability
explicit key identifiers should be globally unique in the context of your
whole application.

Interpolation

In many cases you want to abstract your translations in such a way that
variables can be interpolated into the translation. For this reason the I18n
API provides an interpolation feature.
All options besides :default and :scope that are passed to translate will be
interpolated to the translation:

All About Helpers 573

I18n.backend.store_translations :en, thanks: 'Thanks %{name}!
I18n.translate :thanks, name: 'Jeremy'
=> 'Thanks Jeremy!'

If a translation uses :default or :scope as an interpolation variable, an
I18n::ReservedInterpolationKey exception is raised. If a translation expects
an interpolation variable, but this has not been passed to translate, an
I18n::MissingInterpolationArgument exception is raised.

Pluralization

In English there are only one singular and one plural form for a given string,
e.g., “1 message” and “2 messages,” but other languages have different
grammars with additional or fewer plural forms14. Thus, the I18n API provides
a flexible pluralization feature.
The :count interpolation variable has a special role in that it both is interpo-
lated to the translation and used to pick a pluralization from the translations
according to the pluralization rules defined by Unicode:

I18n.backend.store_translations :en, inbox: {
one: '1 message',
other: '%{count} messages'

}

I18n.translate :inbox, count: 2
=> '2 messages'

I18n.translate :inbox, count: 1
=> 'one message'

The algorithm for pluralizations in :en is as simple as

entry[count == 1 ? 0 : 1]

The translation denoted as :one is regarded as singular, versus any other value
regarded as plural (including the count being zero).
If the lookup for the key does not return a Hash suitable for pluralization, an
I18n::InvalidPluralizationData exception is raised.

14http://www.unicode.org/cldr/charts/supplemental/language_plural_rules.html

http://www.unicode.org/cldr/charts/supplemental/language_plural_rules.html

All About Helpers 574

How to Store Your Custom Translations

The Simple backend shipped with Active Support enables you to store transla-
tions in both plain Ruby and YAML format. A Ruby hash locale file would look
like the following:

{
pt: {

foo: {
bar: "baz"

}
}

}

The equivalent YAML file would look like this:

pt:
foo:

bar: baz

In both cases the top level key is the locale. :foo is a namespace key and :bar
is the key for the translation “baz”.
Here is a real example from the Active Support en.yml translations YAML file:

en:
date:

formats:
default: "%Y-%m-%d"
short: "%b %d"
long: "%B %d, %Y"

So, all of the following equivalent lookups will return the :short date format
"%B %d":

I18n.t 'date.formats.short'
I18n.t 'formats.short', scope: :date
I18n.t :short, scope: 'date.formats'
I18n.t :short, scope: [:date, :formats]

Generally, we recommend using YAML as a format for storing translations.

Translations for Active Record Models

You can use themethods Model.human_name and Model.human_attribute_name(attribute)
to transparently look up translations for your model and attribute names.
For example, when you add the following translations:

All About Helpers 575

en:
activerecord:

models:
user: Dude

attributes:
user:

login: "Handle"
will translate User attribute "login" as "Handle"

User.human_name will return “Dude” and User.human_attribute_name(:login) will
return “Handle”.

Error Message Scopes

Active Record validation error messages can also be translated easily. Active
Record gives you a couple of namespaces where you can place your message
translations in order to provide different messages and translation for certain
models, attributes, and/or validations. It also transparently takes single table
inheritance into account.
This gives you quite powerful means to flexibly adjust your messages to your
application’s needs.
Consider a User model with a validates_presence_of validation for the name
attribute like

class User < ActiveRecord::Base
validates_presence_of :name

end

The key for the error message in this case is :blank. Active Record will look
up this key in the namespaces:

activerecord.errors.models.[model_name].attributes.[attribute_name]
activerecord.errors.models.[model_name]
activerecord.errors.messages

Thus, in our example it will try the following keys in this order and return the
first result:

All About Helpers 576

activerecord.errors.models.user.attributes.name.blank
activerecord.errors.models.user.blank
activerecord.errors.messages.blank

When your models are additionally using inheritance then the messages are
looked up in the inheritance chain.
For example, you might have an Admin model inheriting from User:

class Admin < User
validates_presence_of :name

end

Then Active Record will look for messages in this order:

activerecord.errors.models.admin.attributes.title.blank
activerecord.errors.models.admin.blank
activerecord.errors.models.user.attributes.title.blank
activerecord.errors.models.user.blank
activerecord.errors.messages.blank

This way you can provide special translations for various error messages
at different points in your model’s inheritance chain and in the attributes,
models, or default scopes.

Error Message Interpolation

The translated model name, translated attribute name, and value are always
available for interpolation.
So, for example, instead of the default error message "can not be blank" you
could use the attribute name like "Please fill in your %{attribute}".

Validation
interpolation

with option Message Interpolation

validates_-
confirmation_-
of

- :confirmation -

validates_-
acceptance_of

- :accepted -

validates_-
presence_of

- :blank -

validates_-
length_of

:within, :in :too_short count

All About Helpers 577

Validation
interpolation

with option Message Interpolation

validates_-
length_of

:within, :in :too_long count

validates_-
length_of

:is :wrong_length count

validates_-
length_of

:minimum :too_short count

validates_-
length_of

:maximum :too_long count

validates_-
format_of

- :taken -

validates_-
uniqueness_of

- :invalid -

validates_-
inclusion_of

- :inclusion -

validates_-
exclusion_of

- :exclusion -

validates_-
associated

- :invalid -

validates_-
numericality_-
of

- :not_a_number -

validates_-
numericality_-
of

:greater_than :greater_than count

validates_-
numericality_-
of

:greater_-
than_or_-
equal_to

:greater_-
than_or_-
equal_to

count

validates_-
numericality_-
of

:equal_to :equal_to count

validates_-
numericality_-
of

:less_than_-
or_equal_to

::less_than_-
or_equal_to

count

validates_-
numericality_-
of

:odd :odd -

validates_-
numericality_-
of

:even :even -

All About Helpers 578

Overview of Other Built-In Methods that Provide I18n
Support

Rails uses fixed strings and other localizations, such as format strings and
other format information in a couple of helpers. Here’s a brief overview.

Action View Helper Methods

• distance_of_time_in_words translates and pluralizes its result and inter-
polates the number of seconds, minutes, hours, and so on. See date-
time.distance_in_words15 translations.

• datetime_select and select_month use translated month names for pop-
ulating the resulting select tag. See date.month_names16 for translations.
datetime_select also looks up the order option from date.order17 (unless
you pass the option explicitely). All date selection helpers translate
the prompt using the translations in the datetime.prompts18 scope if
applicable.

• The number_to_currency, number_with_precision, number_to_percentage, num-
ber_with_delimiter and number_to_human_size helpers use the number for-
mat settings located in the number19 scope.

Active Record Methods

• human_name and human_attribute_name use translations for model names and
attribute names if available in the activerecord.models20 scope. They also
support translations for inherited class names (e.g., for use with STI) as
explained in “Error message scopes”.

• ActiveRecord::Errors#generate_message (which is used by Active Record
validations but may also be used manually) uses human_name and hu-
man_attribute_name. It also translates the error message and supports
translations for inherited class names as explained in “Error message
scopes”.

• ActiveRecord::Errors#full_messages prepends the attribute name to the
error message using a separator that will be looked up from activere-
cord.errors.format (and which defaults to "%{attribute} %{message}").

15https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/locale/en.yml#L4
16https://github.com/rails/rails/blob/4-0-stable/activesupport/lib/active_support/locale/en.yml#L155
17https://github.com/rails/rails/blob/4-0-stable/activesupport/lib/active_support/locale/en.yml#L18
18https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/locale/en.yml#L39
19https://github.com/rails/rails/blob/4-0-stable/activesupport/lib/active_support/locale/en.yml#L37
20https://github.com/rails/rails/blob/4-0-stable/activerecord/lib/active_record/locale/en.yml#L37

https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/locale/en.yml#L4
https://github.com/rails/rails/blob/4-0-stable/activesupport/lib/active_support/locale/en.yml#L155
https://github.com/rails/rails/blob/4-0-stable/activesupport/lib/active_support/locale/en.yml#L18
https://github.com/rails/rails/blob/4-0-stable/actionpack/lib/action_view/locale/en.yml#L39
https://github.com/rails/rails/blob/4-0-stable/activesupport/lib/active_support/locale/en.yml#L37
https://github.com/rails/rails/blob/4-0-stable/activerecord/lib/active_record/locale/en.yml#L37

All About Helpers 579

Active Support Methods

• Array#to_sentence uses format settings as given in the support.array scope.

Exception Handling

In some contexts you might want to change I18n’s default exception handling
behavior. For instance, the default exception handling does not enable catch-
ing of missing translations during automated tests easily. For this purpose a
different exception handler can be specified. The specified exception handler
must be a method on the I18n module. You would add code similar to the
following to your file or other kind of initializer.

module I18n
def just_raise_that_exception(*args)

raise args.first
end

end

I18n.exception_handler = :just_raise_that_exception

This would re-raise all caught exceptions including MissingTranslationData.

All About Helpers 580

11.23 UrlHelper

This module provides a set of methods for making links and getting URLs
that depend on the routing subsystem, covered extensively in Chapter 2,
“Routing,” and Chapter 3, “REST, Resources, and Rails,” of this book.

button_to(name = nil, options = nil, html_options = nil, &block)

Generates a form containing a single button that submits to the URL created
by the set of options. This is the safest method to ensure that links that cause
changes to your data are not triggered by search bots or accelerators. If the
HTML button does not work with your layout, you can also consider using the
link_to method (also in this module) with the :method modifier.
The options hash accepts the same options as the url_for method.
The generated form element has a class name of button-to to enable styling
of the form itself and its children. This class name can be overridden by
setting :form_class in :html_options. The :method option works just like the
link_to helper. If no :methodmodifier is given, it defaults to performing a POST
operation.

button_to("New", action: "new")
=> "<form method="post" action="/controller/new" class="button-to">
<div><input value="New" type="submit" /></div>
</form>"

button_to "Delete Image", { action: "delete", id: @image.id },
method: :delete, data: { confirm: "Are you sure?" }

=> "<form method="post" action="/images/delete/1" class="button_to">
<div>
<input type="hidden" name="_method" value="delete" />
<input data-confirm='Are you sure?'
value="Delete Image" type="submit" />
<input name="authenticity_token" type="hidden"
value="10f2163b45388899..."/>
</div>
</form>"

current_page?(options)

Returns true if the current request URI was generated by the given options.
For example, let’s assume that we’re currently rendering the /shop/checkout
action:

All About Helpers 581

current_page?(action: 'process')
=> false

current_page?(action: 'checkout') # controller is implied
=> true

current_page?(controller: 'shop', action: 'checkout')
=> true

link_to(name = nil, options = nil, html_options = nil, &block)

One of the fundamental helper methods. Creates a link tag of the given name
using a URL created by the set of options. The valid options are covered in the
description of this module’s url_for method. It’s also possible to pass a string
instead of an options hash to get a link tag that uses the value of the string as
the href for the link. If nil is passed as a name, the link itself will become the
name.

:data
Adds custom data attributes.

method: symbol
Specifies an alternative HTTP verb for this request (other than GET). This
modifier will dynamically create an HTML form and immediately submit
the form for processing using the HTTP verb specified (:post, :patch, or
:delete).

remote: true
Enables the unobtrusive JavaScript driver to make an Ajax request to the
URL instead of following the link.

The following data attributes work alongside the unobtrusive JavaScript
driver:

confirm: 'question?'
The unobtrusive JavaScript driver will display a JavaScript confirmation
prompt with the question specified. If the user accepts, the link is
processed normally; otherwise, no action is taken.

:disable_with
Used by the unobtrusive JavaScript driver to provide a name for disabled
versions.

All About Helpers 582

Generally speaking, GET requests should be idempotent, that is, they do not
modify the state of any resource on the server and can be called one or
many times without a problem. Requests that modify server-side resources or
trigger dangerous actions like deleting a record should not usually be linked
with a normal hyperlink, since search bots and so-called browser accelerators
can follow those links while spidering your site, leaving a trail of chaos.

If the user has JavaScript disabled, the request will always fall back
to using GET, no matter what :method you have specified. This is
accomplished by including a valid href attribute. If you are relying on
the POST behavior, your controller code should check for it using the
post?, delete?, or patch? methods of request.

As usual, the html_options will accept a hash of HTML attributes for the link
tag.

= link_to "Help", help_widgets_path

= link_to "Rails", "http://rubyonrails.org/",
data: { confirm: "Are you sure?" }

= link_to "Delete", widget_path(@widget), method: :delete,
data: { confirm: "Are you sure?" }

[Renders in the browser as...]

Help

Rails

<a href="/widgets/42" rel="nofollow" data-method="delete"
data-confirm="Are you sure?">View

link_to_if(condition, name, options = {}, html_options = {}, &block)

Syntax sugar. Creates a link tag using the same options as link_to if the
condition is true; otherwise, only the name is output (or block is evaluated for
an alternative value, if one is supplied).

link_to_unless(condition, name, options = {}, html_options = {}, &block)

Syntax sugar. Creates a link tag using the same options as link_to unless the
condition is true, in which case only the name is output (or block is evaluated
for an alternative value, if one is supplied).

All About Helpers 583

link_to_unless_current(name, options = {}, html_options = {}, &block)

Creates a link tag using the same options as link_to unless the condition
is true, in which case only the name is output (or block is evaluated for an
alternative value, if one is supplied).
Although it might seem silly at first, this method is pretty useful sometimes.
Remember that the block given to link_to_unless_current is evaluated if the
current action is the action given. So, if we had a comments page (that shared
its template with the associated blog post) and we wanted to render a “Go
Back” link instead of a link to the comments page when the user is in the
process of commenting, we could do something like

link_to_unless_current("Comment", { controller: 'comments', action: 'new}) do
link_to("Go back", posts_path)

end

Despite the given example, this helper is most often used for creating
navigation menus.

mail_to(email_address, name = nil, html_options = {}, &block)

Creates a mailto link tag to the specified email_address, which is also used as
the name of the link unless name is specified. Additional HTML attributes for
the link can be passed in html_options.
The mail_to helper has several methods for customizing the email address
itself by passing special keys to html_options:

:subject
The subject line of the email.

:body
The body of the email.

:cc Add cc recipients to the email.

:bcc
Add bcc recipients to the email.

Here are some examples of usages:

All About Helpers 584

mail_to "me@domain.com"
=> me@domain.com

mail_to "me@domain.com", "My email"
=> My email

mail_to "me@domain.com", "My email", cc: "ccaddress@domain.com",
subject: "This is an email"

=> <a href="mailto:me@domain.com?cc=ccaddress@domain.com&
subject=This%20is%20an%20email">My email

Note
In previous versions of Rails, the mail_to helper provided options for encoding
the email address to hinder email harvesters. If your application is still
dependent on these options, add the actionview-encoded_mail_to gem to your
Gemfile.

Redirecting Back

If you pass the magic symbol :back to any method that uses url_for under
the covers (redirect_to, etc.) the contents of the HTTP_REFERER request header
will be returned. (If a referer is not set for the current request, it will return
javascript:history.back() to try to make the browser go back one page.)

url_for(:back)
=> "javascript:history.back()"

As of Rails 5, don’t pass :back to redirect_to. Use the new redirect_back
method instead, and pass it a fallback location explicitly.

redirect_back(fallback_location: root_path)

All About Helpers 585

11.24 Writing Your Own View Helpers

As you develop an application in Rails, you should be on the lookout for
opportunities to refactor duplicated view code into your own helper methods.
As you think of these helpers, you add them to one of the helper modules
defined in the app/helpers folder of your application.
There is an art to effectively writing helper methods, similar in nature to
what it takes to write effective APIs. Helper methods are basically a custom,
application-level API for your view code. It is difficult to teach API design in
a book form. It’s the sort of knowledge that you gain by apprenticing with
more experienced programmers and lots of trial and error. Nevertheless, in
this section, we’ll review some varied use cases and implementation styles
that we hope will inspire you in your own application design.

Small Optimizations: The Title Helper

Here is a simple helper method that has been of use to me on many projects
now. It’s called h1_title, and it combines two simple functions essential to a
good HTML document:

• Setting the title of the page in the document’s head.
• Setting the content of the page’s h1 element.

This helper assumes that you want the title and h1 elements of the page to
be the same and has a dependency in your application layout (or whatever
partial contains the contents of your <head> element.
The code for the helper is in Listing 11.3 and would be added to app/helper-
s/application_helper.rb since it is applicable to all views.

Listing 11.3: The h1_title Helper
def h1_title(name)

content_for(:title) { name }
content_tag("h1", name)

end

First it sets content to be yielded in the layout as :title, and then it outputs
an h1 element containing the same text. I could have used string interpolation
on the second line, such as "<h1>#{name}</h1>", but it would have been sloppier
than using the built-in Rails helper method content_tag.
My application template is now written to yield :title so that it gets the page
title.

All About Helpers 586

%html
%head

%title= yield :title

As is hopefully obvious, you call the h1_title method in your view template
where you want to have an h1 element:

- h1_title "New User"
= form_for(user) do |f|

...

Encapsulating View Logic: The photo_for Helper

Here’s another relatively simple helper. This time, instead of simply outputting
data, we are encapsulating some view logic that decides whether to display a
user’s profile photo or a placeholder image. It’s logic that you would otherwise
have to repeat over and over again throughout your application.
The dependency (or contract) for this particular helper is that the user object
being passed in has a profile_photo associated to it, which is an attachment
model based on Rick Olson’s old attachment_fu Rails plugin. The code in
Listing 11.4 should be easy enough to understand without delving into the
details of attachment_fu. Since this is an example, I broke out the logic for
setting src into an if/else structure; otherwise, this would be a perfect place
to use Ruby’s ternary operator.

Listing 11.4: The photo—for helper encapsulating common view logic

def photo_for(user, size=:thumb)
if user.profile_photo

src = user.profile_photo.public_filename(size)
else

src = 'user_placeholder.png'
end
link_to(image_tag(src), user_path(user))

end

Tim says…
Luckily, the latest generation of attachment plugins such as Paperclip and
CarrierWave use a NullObject pattern to alleviate the need for you to do this
sort of thing.

All About Helpers 587

Smart View: The breadcrumbs Helper

Lots of web applications feature user-interface concepts called breadcrumbs.
They are made by creating a list of links, positioned near the top of the page,
displaying how far the user has navigated into a hierarchically organized
application. I think it makes sense to extract breadcrumb logic into its own
helper method instead of leaving it in a layout template.
The trick to our example implementation (shown in Listing 11.5) is to use
the presence of helper methods exposed by the controller, on a convention
specific to your application, to determine whether to add elements to an array
of breadcrumb links.

Listing 11.5: breadcrumbs Helper Method for a Corporate Directory Application

1 def breadcrumbs
2 return if controller.controller_name == 'home'
3
4 html = [link_to('Home', root_path)]
5
6 # first level
7 html << link_to(company.name, company) if respond_to? :company
8
9 # second level

10 html << link_to(department.name, department) if respond_to? :department
11
12 # third and final level
13 html << link_to(employee.name, employee) if respond_to? :employee
14
15 html.join(' > ').html_safe
16 end

Here’s the line-by-line explanation of the code, noting where certain applica-
tion-design assumptions are made.
On line 2, we abort execution if we’re in the context of the application’s
homepage controller, since its pages don’t ever need breadcrumbs. A simple
return with no value implicitly returns nil, which is fine for our purposes.
Nothing will be output to the layout template.
On line 4 we are starting to build an array of HTML links, held in the html
local variable, which will ultimately hold the contents of our breadcrumb trail.

All About Helpers 588

The first link of the breadcrumb trail always points to the home page of the
application, which of course will vary, but since it’s always there we use it to
initialize the array. In this example, it uses a named route called root_path.
After the html array is initialized, all we have to do is check for the presence of
the methods returning objects that make up the hierarchy (lines 7 to 13). It is
assumed that if a department is being displayed, its parent company will also
be in scope. If an employee is being displayed, both department and company
will be in scope as well. This is not just an arbitrary design choice. It is a
common pattern in Rails applications that are modelled on REST principles
and using nested resource routes.
Finally, on line 15, the array of HTML links is joined with the > character,
to give the entire string the traditional breadcrumb appearance. The call to
html_safe tells the rendering system that this is HTML code and we’re cool
with that—don’t sanitize it!

All About Helpers 589

11.25 Wrapping and Generalizing Partials

I don’t think that partials (by themselves) lead to particularly elegant or
concise template code. Whenever there’s a shared partial template that gets
used over and over again in my application, I will take the time to wrap it
up in a custom helper method that conveys its purpose and formalizes its
parameters. If appropriate, I might even generalize its implementation to
make it more of a lightweight, reusable component.

A tiles Helper

Let’s trace the steps to writing a helper method that wraps what I consider
to be a general-purpose partial. Listing 11.6 contains code for a partial for a
piece of a user interface that is common to many applications and generally
referred to as a tile. It pairs a small thumbnail photo of something on the left
side of the widget with a linked name and description on the right.
Tiles can also represent other models in your application, such as users and
files. As I mentioned, tiles are a very common construct in modern user
interfaces and operating systems. So let’s take the cities tiles partial and
transform it into something that can be used to display other types of data.

Note
I realize that it has become passé to use HTML tables and I happen to agree
that div-based layouts plus CSS are a lot more fun and flexible to work with.
However, for the sake of simplicity in this example, and since the UI structure
we’re describing is tabular, I’ve decided to structure it using a table.

Listing 11.6: A tiles partial prior to wrapping and generalization
1 %table.cities.tiles
2 - cities.in_groups_of(columns) do |row|
3 %tr
4 - row.each do |city|
5 %td[city]
6 .left
7 = image_tag(city.photo.url(:thumb))
8 .right
9 .title

10 = city.name
11 .description
12 = city.description

All About Helpers 590

Explanation of the Tiles Partial Code

Since we’re going to transform this city-specific partial into a generalized UI
component, I want to make sure that the code we start with makes absolute
sense to you first. Before proceeding, I’m going through the implementation
line by line and explaining what everything in Listing 11.6 does.
Line 1 opens up the partial with a table element and gives it semantically
significant CSS classes so that the table and its contents can be properly
styled.
Line 2 leverages a useful Array extension method provided by ActiveSupport,
called in_groups_of. It uses both of the local variables: cities and columns. Both
will need to be passed into this partial using the :locals option of the render
:partialmethod. The cities variable will hold the list of cities to be displayed,
and columns is an integer representing how many city tiles each row should
contain. A loop iterates over the number of rows that will be displayed in this
table.
Line 3 begins a table row using the tr element.
Line 4 begins a loop over the tiles for each row to be displayed, yielding a city
for each.
Line 5 opens a td element and uses Haml’s object reference notation to auto-
generate a dom_id attribute for the table cell in the style of city_98, city_99,
and so on.
Line 6 opens a div element for the left side of the tile and has the CSS class
name needed so that it can be styled properly.
Line 7 calls the image_tag helper to insert a thumbnail photo of the city.
Skipping along, lines 9 – 10 insert the content for the .title div element, in
this case, the name and state of the city.
Line 12 directly invokes the description method.

Calling the Tiles Partial Code

In order to use this partial, we have to call render :partial with the two
required parameters specified in the :locals hash:

= render "cities/tiles", cities: @user.cities, columns: 3

I’m guessing that most experienced Rails developers have written some
partial code similar to this and tried to figure out a way to include default
values for some of the parameters. In this case, it would be really nice to not

All About Helpers 591

have to specify :columns all the time, since in most cases we want there to be
three.
The problem is that since the parameters are passed via the :locals hash and
become local variables, there isn’t an easy way to insert a default value in the
partial itself. If you left off the columns: n part of your partial call, Rails would
bomb with an exception about columns not being a local variable or method.
It’s not the same as an instance variable, which defaults to nil and can be
used willy-nilly.
Experienced Rubyists probably know that you can use the defined? method to
figure out whether a local variable is in scope or not, but the resulting code
would be very ugly. The following code might be considered elegant, but it
doesn’t work!21

columns = 3 unless defined? columns

Instead of teaching you how to jump through annoying Ruby idiom hoops, I’ll
show you how to tackle this challenge the Rails way, and that is where we can
start discussing the helper wrapping technique.

Tim says…
Obie might not want to make you jump through Ruby idiom hoops, but I don’t
mind…

Write the Helper Method

First, I’ll add a new helper method to the CitiesHelper module of my applica-
tion, like in Listing 11.7. It’s going to be fairly simple at first. In thinking about
the name of the method, it occurs to me that I like the way that tiled(cities)
will read instead of tiles(cities), so I name it that way.

21If you want to know why it doesn’t work, you’ll have to buy the first book in this series: The Ruby Way ISBN:
0672328844.

All About Helpers 592

Listing 11.7: The CitiesHelper tiled method

module CitiesHelper
def tiled(cities, columns=3)

render "cities/tiles", cities: cities, columns: columns
end

end

Right from the start I can take care of that default columns parameter by
giving the helper method parameter for columns a default value. That’s just
a normal feature of Ruby. Now instead of specifying the render :partial call
in my view template, I can simply write = tiled(cities), which is considerably
more elegant and terse. It also serves to decouple the implementation of the
tiled city table from the view. If I need to change the way that the tiled table
is rendered in the future, I just have to do it in one place: the helper method.

Generalizing Partials

Now that we’ve set the stage, the fun can begin. The first thing we’ll do is move
the helper method to the ApplicationHelper module so that it’s available to all
view templates. We’ll also move the partial template file to app/views/shared/_-
tiled_table.html.haml to denote that it isn’t associated with a particular kind
of view and to more accurately convey its use. As a matter of good code style,
I also do a sweep through the implementation and generalize the identifiers
appropriately. The reference to cities on line 2 becomes collection. The block
variable city on line 4 becomes item. Listing 11.8 has the new partial code.

Listing 11.8: Tiles partial code with revised naming

%table.tiles
- collection.in_groups_of(columns) do |row|

%tr
- row.each do |item|

%td[item]
.left

= image_tag(item.photo.public_filename(:thumb))
.right

.title
= item.name

.description
= item.description

All About Helpers 593

There’s still the matter of a contract between this partial code and the objects
that it is rendering. Namely, they must respond to the following messages:
photo, name, and description. A survey of other models in my application reveals
that I need more flexibility. Some things have names, but others have titles.
Sometimes I want the description to appear under the name of the object
represented, but other times I want to be able to insert additional data about
the object plus some links.

Lambda: The Ultimate Flexibility

Ruby enables you to store references to anonymous methods (also known as
procs or lambdas) and call them at will whenever you want.22 Knowing this
capability is there, what becomes possible? For starters, we can use lambdas
to pass in blocks of code that will fill in parts of our partial dynamically.
For example, the current code for showing the thumbnail is a big problem.
Since the code varies greatly depending on the object being handled, I want
to be able to pass in instructions for how to get a thumbnail image without
having to resort to big if/else statements or putting view logic in my model
classes. Please take a moment to understand the problem I’m describing, and
then take a look at how we solve it in Listing 11.9. Hint: The thumbnail, link,
title, and description variables hold lambdas!

Listing 11.9: Tiles partial code refactored to use lambdas

.left
= link_to thumbnail.call(item), link.call(item)

.right
.title

= link_to title.call(item), link.call(item)
.description

= description.call(item)

Notice that in Listing 11.9, the contents of the left and right div elements come
from variables containing lambdas. On line 2 we make a call to link_to and
both of its arguments are dynamic. A similar construct on line 5 takes care
of generating the title link. In both cases, the first lambda should return the
output of a call to image_tag, and the second should return a URL. In all of these
lambda usages, the item currently being rendered is passed to the lambdas as
a block variable.

22If you’re familiar with Ruby already, you might know that Proc.new is an alternate way to create anonymous
blocks of code. I prefer lambda, at least in Ruby 1.9, because of subtle behavior differences. Lambda blocks check
the arity of the argument list passed to them when call is invoked, and explicitly calling return in a lambda block
works correctly.

All About Helpers 594

Wilson says…
Things like link.call(item) could potentially look even sassier as link[item],
except that you’ll shoot your eye out doing it. (Proc#[] is an alias for
Proc#call.)

The New Tiled Helper Method

If you now direct your attention to Listing 11.10, you’ll notice that the tiled
method is changed considerably. In order to keep my positional argument list
down to a manageable size, I’ve switched over to taking a hash of options as
the last parameter to the tiledmethod. This approach is useful, and it mimics
the way that almost all helper methods take options in Rails.
Default values are provided for all parameters, and they are all passed along
to the partial via the :locals hash given to render.

Listing 11.10: The tiled collection helper method with lambda parameters

module ApplicationHelper

def tiled(collection, opts={})
opts[:columns] ||= 3

opts[:thumbnail] ||= lambda do |item|
image_tag(item.photo.url(:thumb))

end

opts[:title] ||= lambda { |item| item.to_s }

opts[:description] ||= lambda { |item| item.description }

opts[:link] ||= lambda { |item| item }

render "shared/tiled_table",
collection: collection,
columns: opts[:columns],
link: opts[:link],
thumbnail: opts[:thumbnail],
title: opts[:title],
description: opts[:description]

end
end

All About Helpers 595

Finally, to wrap up this example, here’s a snippet showing how to invoke our
new tiled helper method from a template, overriding the default behavior for
links:

tiled(cities, link: lambda { |city| showcase_city_path(city) })

The showcase_city_path method is available to the lambda block, since it is a
closure, meaning that it inherits the execution context in which it is created.

All About Helpers 596

11.26 Conclusion

This very long chapter served as a thorough reference for helper methods,
both those provided by Rails and ideas for ones that you will write yourself.
Effective use of helper methods leads to more elegant and maintainable view
templates. At this point you should also have a good overview of how I18n
support in Ruby on Rails works and are ready to start translating your project.
Before we fully conclude our coverage of Action View, we’ll jump into the world
of Ajax and JavaScript. Arguably, one of the main reasons for Rails’s continued
popularity is its support for those two crucial technologies of Web 2.0.
This chapter is published under the Creative Commons Attribution-ShareAlike
4.0 license, http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

12. Haml
HAML gave us a great take on how views can also be done. It looks
a little cryptic at first, but don’t let that shake you off. Once you
internalize the meaning of %, #, and . it should be all good (and you
already know most just from CSS). […] Additionally, I can’t help but
have respect for a Canadian who manages to swear more than I did
during my vendoritis rant and drink beer at the same time. A perfect
example of the diversity in the Rails community. Very much part of
what makes us special.1

—David (talking about Haml and Hampton Catlin in September
2006)

Haml is a “whitespace-sensitive” HTML templating engine that uses inden-
tation to determine the hierarchy of an HTML document. Haml was created
because its creator, Hampton Catlin, was tired of having to type markup and
wanted all of his output code to be beautifully formatted. What he invented
was a new templating engine that removed a lot of noisy boilerplate, such as
angle brackets (from ERb) and did away with the need to close blocks and
HTML tags.
http://haml.info
We love Haml because it’s truly minimal, enabling a developer to focus simply
on the structure of the page and not on the content. Today it’s common to keep
view logic out of your templates, but that directive has been a guiding principle
of Haml since its beginning. According to the 2012 Ruby Survey2, 36.96% of
Rubyists prefer Haml over ERb, and 15.84% demand it in their projects. Haml
is also the standard templating engine at various professional Ruby agencies,
such as Hashrocket, Envy Labs, Remarkable Labs, and Astrails.
In this chapter, we’ll cover the fundamentals of Haml, from creating HTML
elements, to using filters to create other kinds of textual content embedded
in your document.

1
http://david.heinemeierhansson.com/arc/2006_09.html
2
http://survey.hamptoncatlin.com/survey/stats

http://haml.info
http://david.heinemeierhansson.com/arc/2006_09.html

Haml 598

12.1 Getting Started

To start using the Haml template language over ERb in your project, first add
the haml-rails gem to your Gemfile and run bundle install.

Gemfile
gem 'haml-rails'

The benefit of using haml-rails over simply the haml gem is it adds support for
Rails specific features. For instance, when you use a controller or scaffold
generator, haml-rails will generate Haml views instead of using the Rails
default of ERb. The haml-rails gem also configures Haml templates to work
with cache digests out of the box.

Haml 599

12.2 The Basics

In this section, we’ll cover how to create HTML elements and attributes using
Haml.

Creating an Element

To create an HTML element in Haml, you simply need to prefix the percent
character % to an element name. The element name can be any string, enabling
you to use elements introduced in HTML5, such as header.
Haml

%header content

HTML

<header>content</header>

Haml will automatically handle generating opening and closing tags for the
element on compilation. Not only does this make templates more concise and
clean, it also eliminates common errors such forgetting to not close HTML
tags.

Attributes

Attributes in Haml are defined using two styles. The first style involves
defining attributes between curly braces ({}). These attribute “brackets” are
really just Ruby hashes and are evaluated as such. Because of this, local
variables and ruby logic can be used when defining attributes.

%a{ title: @article.title, href: article_path(@article) } Title

Multiline Attributes
Attribute hashes can be separated on multiple lines for readability. All
newlines must be placed right after the comma:

%a{ title: @article.title,
href: article_path(@article) } Title

The second style follows the more traditional way of defining HTML attributes
using equal signs. Note that attributes are separated by white space, not
commas.

Haml 600

%a(title=@article.title href=article_path(@article)) Title

In both styles, the right-hand value of each attribute must be a valid
Ruby expression.

Data Attributes

Introduced with HTML 5, data attributes enable custom data to be embedded
in any HTML element by prefixing an attribute with data-. Instead of littering
the attribute hash with multiple attribute keys prefixed with data-, you can
define all their data attributes in a nested hash associated with the key :data,
like this:
Haml

%article{ data: { author_id: 1 } } Lorem Ipsum...

HTML

<article data-author-id='123'>Lorem Ipsum...</article>

Note that underscores are automatically replaced with a hyphen. Not that
you’d want to, but you can change this behavior by setting the Haml config-
uration option hyphenate_data_attrs to false. (Haml configuration options are
covered in detail later in this chapter.)
It’s also possible to nest data hashes more than one level, to reduce verbosity
when attributes share common roots.
Haml

%article{ data: { author: {id: 1, name: "Kevin Wu" } } Lorem Ipsum...

HTML

<article data-author-id='123' data-author-name='Kevin Wu'>Lorem Ipsum...</article>

Boolean Attributes

In HTML, there exist certain attributes that do not have a value associated
with them, such as required.

Haml 601

<input type="text" required>

These are referred to as boolean attributes in Haml, since their value does not
matter, only that they’re present. To represent these attributes in using the
hash-style attribute syntax, set the value of the attribute to true.

%input{ type: 'text', required: true }

Otherwise, if you’re using the HTML attribute style syntax, a boolean value
doesn’t have to be set at all.

%input(type="text" required)

XHTML
If the format of Haml is set to :xhtml, boolean attributes will be set to their
name. To illustrate, given the preceding example, Haml would render the
following HTML:

<input type="text" required="required" />

Classes and IDs

Haml was designed to promote the DRY principle (not repeating code un-
necessarily.) As such, it provides a shorthand syntax for adding id and class
attributes to an element. The syntax is borrowed from CSS, where ids are
represented by a pound (#) and classes by a period (.). Both of these signs
must be placed immediately after the element and before an attributes hash.
Haml

#content
.entry.featured

%h3.title Haml
%p.body Lorem Ipsum...

HTML

Haml 602

<div id='content'>
<div class='entry featured'>

<h3 class='title'>Haml</h3>
<p class='body'>Lorem Ipsum...</p>

</div>
</div>

As the preceding example shows, multiple class names can be specified in the
same way as CSS, by chaining the class names together with periods. In a
slightly more complicated scenario, the shortcut CSS style class and id syntax
can be combined with long-hand attributes. Both values are merged together
when compiled down to HTML.
Haml

%article.featured{ class: @article.visibility }

HTML

<article class='feature visible'>...</article>

Haml has some serious tricks up its sleeves for dealing with complex id and
class attributes. For instance, an array of class names will automatically be
joined with a space.
Haml

%article{ class: [@article.visibility, @article.category] }

HTML

<article class='visible breakingnews'>...</article>

Arrays of id values will be joined with an underscore.
Haml

%article{ id: [@article.category, :article, @article.id] }

HTML

Haml 603

<article id='sports_article_1234'>...</article>

Note that the array is flattened and any elements that evaluate to false or nil
will be dropped automatically. This lets you do some pretty clever tricks at the
expense of readability and maintainability.

%article{ class: [@article.visibility,
@article.published_at < 4.hours.ago && 'breakingnews'] }

In the example, if the article was published less than four hours ago, then
breakingnews will be added as one of the CSS classes of the element.
While we’re on the subject, remember that it is advisable to migrate this kind
of logic into your Ruby classes. In this particular example, we might give the
Article class (or one of its presenters or decorator classes) a breakingnews?
method and use it instead of inlining the business logic.

def breaking?
published_at < 4.hours.ago

end

%article{ class: [@article.visibility, @article.breaking? && 'breakingnews'] }

If breaking? returns false, then the Ruby expression short circuits to false, and
Haml ignores that particular class name.

Implicit Divs

The default elements of Haml are divs. Since they are used so often in markup,
you can simply define a div with a class or id using . or # respectively.
Haml

#container
.content Lorem Ipsum...

HTML

Haml 604

<div id="container">
<div class="content">

Lorem Ipsum...
</div>

</div>

Implicit Div Creation
Not having to specify div tags explicitly helps your markup to be more
semantic from the start, placing focus on the intention of the div instead of
treating it as just another markup container. It’s also one of the main reasons
that we recommend Haml over ERB. We believe that Haml templates lessen
mental burden by communicating the structure of your DOM in a way that
maps cleanly to the CSS that will be applied to the document.

Empty Tags

In HTML, there are certain elements that don’t require a closing tag, such as
br. By default, Haml will not add a closing tag for the following tags:

• area
• base
• br
• col
• hr
• img
• input
• link
• meta
• param

To illustrate, consider the following example:

%hr

would render HTML

Haml 605

<hr>

or XHTML

<hr />

Adding a forward slash character (/) at the end of a tag definition causes Haml
to to treat it as being an empty element. The list of empty tags Haml uses can
be overridden using the autoclose configuration setting. Haml configuration
options are covered in detail later in this chapter.

Haml 606

12.3 Doctype

A doctype must be the first item in any HTML document. By including
the characters !!! at the beginning of a template, Haml will automatically
generate a doctype based on the configuration option :format, set to :html5 by
default. Adding !!! to a template would result in the following HTML:

<!DOCTYPE html>

Haml also enables the specifying of a specific doctype after !!!. A complete
listing of supported doctypes can be found on Haml’s reference website3.

3
http://haml.info/docs/yardoc/file.REFERENCE.html#doctype_

Haml 607

12.4 Comments

There are two types of comments in Haml, those that appear in rendered
HTML and those that don’t.

HTML Comments

To leave a comment that will be rendered by Haml, place a forward slash (/)
at the beginning of the line you want commented. Anything nested under that
line will also be commented out.
Haml

/ Some comment

HTML

<!-- Some comment -->

You can use this feature to produce Internet Explorer conditional comments
by suffixing the condition in square brackets like this:

/[if lt IE 9]

Haml Comments

Besides conditional comments for targeting Internet Explorer, comments left
in your markup are meant to communicate a message to other developers
working with the template. These messages should not be rendered to the
browser as they are specific to your team. In Haml, starting a line with -#
ensures any text following the pound sign isn’t rendered at all.
Haml

-# Some important comment...
%h1 The Rails 5 Way

HTML

Haml 608

<h1>The Rails 5 Way</h1>

If any text is nested beneath this kind of silent comment, it will also be
ommitted from the resulting output.

Haml 609

12.5 Evaluating Ruby Code

Somewhat similar to ERb, using = results in Haml evaluating Ruby code
following the equals character and outputting the result into the document.
Haml

%p= %w(foo bar).join(' ')

HTML

<p>foo bar</p>

Alternatively, using the hyphen character - evaluates Ruby code but doesn’t
insert its output into the resulting document. This is commonly used in
combination with if\else statements and loops.

- if flash.notice
.notice= flash.notice

Note that Ruby blocks don’t need to be explicitly closed in Haml. As seen in
the previous example, any indentation beneath a Ruby evaluation command
indicates a block.

Kevin says…
Do not use - to set variables. If you find yourself doing so, this is an
indication that you need to create some form of view object, such as a
presenter or decorator.

Lines of Ruby code can be broken up over multiple lines as long as each line
but the last ends with a comma.

= image_tag post.mage_url,
class: 'featured-image'

Interpolation

Ruby code can can be interpolated in two ways in Haml, inline with plain text
using #{}, or using string interpolation in combination with =. To illustrate, the
following two lines of Haml code samples are equivalent:

Haml 610

%p By: #{post.author_name}

%p= "By: #{post.author_name}"

Both are valid. The first is considered much better form, because it’s more
concise.

Escaping/Unescaping HTML

To match the default Rails XSS protection scheme, Haml will sanitize any
HTML sensitive characters from the output of =. This results in any = call
to behave like &=.
Haml

&= "Cookies & Cream"

HTML

Cookies & Cream

Alternatively, to unescape HTML with Haml, simply use != instead of =. If the
Haml configuration option escape_html is set to false, then any call to = will
behave like !=. (You probably will never want to do that.)
Haml

!= "Remember the awful <blink> tag?"

HTML

Remember the awful <blink> tag?

Escaping the First Character of a Line

On rare occasion, you might want to start a line of your template with a
character such as = that would normally be interpreted. You may escape the
first character of a line using a backslash.
Haml

Haml 611

%p
\= equality for all =

HTML

<p>
= equality for all =

</p>

Multiline Declarations

Haml is meant to be used for layout and design. Although you can technically
write multiline declarations within a template, the creators of Haml made this
intentionally awkward to discourage people from doing so.
If you do for some reason need declarations that span multiple lines in a Haml
template, you can do so by adding the multiline operator | to the end of each
line.

#content
%p= h(|

"While possible to write" + |
"multiline Ruby code, " + |
"it is not the Haml way" + |
"as you should eliminate as much Ruby" + |
"in your views as possible") |

We highly recommend extracting multi-line Ruby code into helpers, decora-
tors, or presenters.

Haml 612

12.6 Helpers

Haml provides a variety of helpers that are useful for day-to-day development,
such as creating list items for each item in a collection and setting CSS ids
and classes based on a model or controller.

Object Reference []

Given an object, such as an Active Record instance, Haml can output an HTML
element with the id and class attributes set by that object via the [] operator.
For instance, assuming @post is an instance of a Post class, with an id value of
1 then the following template code

%li[@post]
%h4= @post.title
= @post.excerpt

renders

<li class='post' id='post_1'>...

This is similar to using Rails helpers div_for and content_tag_for, covered in
Chapter 11, “All About Helpers.”

page_class

Returns the name of the current controller and action to be used with the class
attribute of an HTML element. This is commonly used with the body element,
to enable easy style targeting based on a particular controller or action. To
illustrate, assuming the current controller is PostsController and action index

%body{ class: page_class }

renders

<body class='posts index'>

Using this technique is incompatible with Turbolinks, which changes
the contents of the body without altering the body attributes. Don’t say
I didn’t warn you.

Haml 613

list_of(enum, opts = {}) { |item| ... }

Given an Enumerable object and a block, the list_of method will iterate and
yield the results of the block into sequential elements.
Haml

%ul
= list_of [1, 2, 3] do |item|

Number #{item}

HTML

Number 1
Number 2
Number 3

Haml 614

12.7 Filters

Haml ships with a collection of filters that enable you to pass arbitrary
blocks of text content as input to another processor, with the resulting output
inserted into the document. The syntax for using a filter is a colon followed by
the name of the filter. For example, to use the markdown filter

:markdown
The Rails 5 Way

Some even more awesome **Rails** related content.

renders

<h1>The Rails 5 Way</h1>

<p>Some even more awesome Rails related content.</p>

Here is a table of all the filters that Haml supports by default:

:cdata Surrounds the filtered text with CDATA
tags.

:coffee or coffeescript Compiles filtered text into JavaScript
using CoffeeScript.

:css Surrounds the filtered text with style
tags.

:erb Parses the filtered text with ERb. All
Embedded Ruby code is evaluated in the
same context as the Haml template.

:escaped HTML-escapes filtered text.
:javascript Surrounds the filtered text with script

tag.
:less Compiles filtered text into CSS using

Less.
:markdown Parses the filtered text with Markdown.
:plain Does not parse filtered text. Can be

used to insert chunks of HTML that will
be inserted as is without going through
Haml.

:preserve Inserts filtered text with whitespace
preserved.

:ruby Parses the filtered text with the Ruby
interpreter. Ruby code is evaluated in
the same context as the Haml template.

Haml 615

:sass Compiles filtered text into CSS using
Sass, enclosed in a <style> tag.

:scss Same as the :sass filter, except it uses
the SCSS syntax to produce the CSS
output.

Some filters require external gems to be added to your Gemfile in order to
work. For instance, the :markdown filter requires a markdown gem, such as
redcarpet. To use a specific library when there is more than one choice, tell
Tilt which one to pick:

Tilt.prefer Tilt::RedCarpetTemplate

Note that #{} interpolation within filters is never HTML-escaped auto-
matically, the way it is in normal template code.

Haml 616

12.8 Haml and Content

In Chris Eppstein’s blog post “Haml Sucks for Content” 4, he stated his
opinions on why one shouldn’t use Haml to build content:

Haml’s use of CSS syntax for IDs and class names should make it
very clear: The markup you write in Haml is intended to be styled by
your stylesheets. Conversely, content does not usually have specific
styling—it is styled by tags.

Essentially what Chris was trying to convey is to not use native Haml syntax
for creating anything other than skeletal (or structural) HTML markup. Use
filters to inline reader content, such as in this example using the :markdown
filter.

%p
Do
%strong not
use
%a{ href: "http://haml.info" } Haml
for content

is equivalent to the following markdown within a filter

:markdown
Do **not* use [Haml](http://haml.info) for content

We like the idea, but admit that your mileage may vary. It really depends on
the type of project you’re working on and the capabilities of the person that
will be maintaining the Haml template source files.

4
http://chriseppstein.github.io/blog/2010/02/08/haml-sucks-for-content

Haml 617

12.9 Configuration Options

Haml provides various configuration options to control exactly how markup is
rendered. Options can be set by setting the Haml::Template.options hash in a
Rails initializer.

config/initializers/haml.rb
Haml::Template.options[:format] = :html5

autoclose

The autoclose option accepts an array of all tags that Haml should self-close if
no content is present. Defaults to [meta, img, link, br, hr, input, area, param, col,
base].

cdata

Determines whether Haml will include CDATA sections around JavaScript and
CSS blocks when using the :javascript and :css filters respectively.
When format is set to html, defaults to false. If the format is xhtml, cdata will
always be set to true and cannot be overridden.
This option also affects the following filters: * :sass * :scss * :less * :coffee-
script

compiler_class

The compiler class to usewhen compilingHaml toHTML. Defaults to Haml::Compiler.

encoding

The default encoding for HTML output is Encoding.default_internal. If that is
not set, the default is the encoding of the Haml template. The encoding option
can be set to either a string or an Encoding object.

escape_attrs

If set to true (default), will escape all HTML-sensitive characters in attributes.

Haml 618

escape_html

When Haml is used with a Rails project, the escape_html option is automatically
set to true to match Rails’ XSS protection scheme. This causes = to behave like
&= in Haml templates.

format

Specifies the output format of a Haml template. By default, it’s set to :html5.
Other options include:

• :html4
• :xhtml: Will cause Haml to automatically generate self closing tags and
wrap the output of JavaScript and CSS filters inside CDATA.

hyphenate_data_attrs

Haml converts underscores in all data attributes to use hyphens by default.
To disable this functionality, set hyphenate_data_attrs to false.

mime_type

The mime type that rendered Haml templates are served with. If this is set to
text/xml then the format will be overridden to :xhtml even if it has been set to
:html4 or :html5.

parser_class

The parser class to use. Defaults to Haml::Parser.

preserve

The preserve option accepts an array of all tags that should have their newlines
preserved using the preserve helper. Defaults to [‘textarea’, ‘pre’].

remove_whitespace

Setting to true causes all tags to be treated as if whitespace removal Haml
operators are present. Defaults to false.

Haml 619

ugly

Haml does not attempt to format or indent the output HTML of a rendered
template. By default, ugly is set to false in every Rails environment except
production. This enables you to view the rendered HTML in a pleasing format
when you’re in development but yields higher performance in production.

Haml 620

12.10 Conclusion

In this chapter, we learned how Haml helps developers create clear, well-
indented markup in your Rails applications. In the following chapter we will
cover how to manage sessions with Active Record, memcached, and cookies.

13. Session Management
I’d hate to wake up some morning and find out that you weren’t you!
—Dr. Miles J. Binnell (Kevin McCarthy) in Invasion of the Body
Snatchers (Allied Artists, 1956)

HTTP is a stateless protocol. Without the concept of a session (not unique
to Rails), there’d be no way to know that any HTTP request was related
to another one. You’d never have an easy way to know who is accessing
your application! Identification of your user (and presumably, authentication)
would have to happen on each and every request handled by the server.1

Luckily, whenever a new user accesses our Rails application, a new session is
automatically created. Using the session, we can maintain just enough server-
side state to make our lives as web programmers significantly easier.
We use the word session to refer both to the time that a user is actively
using the application, as well as to refer to the persistent hash data structure
that we keep around for that user. That data structure takes the form of a
hash, identified by a unique session id, a 32-character string of random hex
numbers. When a new session is created, Rails automatically sends a cookie
to the browser containing the session id, for future reference. From that point
on, each request from the browser sends the session id back to the server,
and continuity can be maintained.
The Rails way to design web applications dictates minimal use of the session
for storage of stateful data. In keeping with the share nothing philosophy
embraced by Rails, the proper place for persistent storage of data is the
database, period (or some other cached repository).
The bottom line is that the longer you keep objects in the user’s session hash,
the more problems you create for yourself in trying to keep those objects from
becoming stale (in other words, out of date in relation to the database).
This chapter deals with matters related to session use, starting with the
question of what to put in the session.

1
If you are really new to web programming and want a very thorough explanation of how web-based session

management works, you may want to read the information available at http://www.technicalinfo.net/papers/
WebBasedSessionManagement.html.

http://www.technicalinfo.net/papers/WebBasedSessionManagement.html
http://www.technicalinfo.net/papers/WebBasedSessionManagement.html

Session Management 622

13.1 What to Store in the Session

Deciding what to store in the session hash does not have to be super-difficult
if you simply commit to storing as little as possible in it. Generally speaking,
integers (for key values) and short string messages are okay.Objects are not.

The Current User

There is one important integer that most Rails applications store in the
session, and that is the current_user_id—not the current user object but its id.
Even if you roll your own login and authentication code (which you shouldn’t
do), don’t store the entire User (or Person) in the sessionwhile the user is logged
in. (See Chapter 14, “Authentication and Authorization,” for more information
about keeping track of the current user.)
The authentication system should take care of loading the user instance from
the database prior to each request and making it available in a consistent
fashion, via a method on your ApplicationController. In particular, following
this advice will ensure that you are able to disable access to given users
without having to wait for their session to expire.

Session Use Guidelines

Here are some more general guidelines on storing objects in the session:

• They must be serializable by Ruby’s Marshal API, which excludes certain
types of objects such as a database connection and other types of I/O
objects.

• Large object graphs may exceed the size available for session storage.
Whether this limitation is in effect for you depends on the session store
chosen and is covered later in the chapter. (It’s 4KB when storing the
session in browser cookies.)

• Critical data should not be stored in the session, since it can be suddenly
lost by the user (by closing the browser or clearing cookies).

• Objects with attributes that change often should not be kept in the
session.

• Modifying the structure of an object and keeping old versions of it stored
in the session is a recipe for disaster. Deployment scripts should clear old
sessions to prevent this sort of problem from occurring, but with certain
types of session stores, such as the cookie store, this problem is hard to
mitigate. The simple answer (again) is to just not keep anything, except
for the occasional id, in the session and especially not full objects.

Session Management 623

You used to be able to turn off the session, but since Rails 2.3,
applications that don’t need sessions don’t have to worry about them.
Sessions are lazy-loaded, which means unless you access the session
in a controller action, there is no performance implication.

Session Management 624

13.2 Storage Mechanisms

The mechanisms through which sessions are persisted can vary. Rails’ default
behavior is to store session data as cookies in the browser, which is fine for
almost all applications. If you need to exceed the 4KB storage limit inherent in
using cookies, then you can opt for an alternative session store. But of course,
you shouldn’t be exceeding that limit, because you shouldn’t be keeping much
other than an id or two in the session. Have I said that enough?
There are potential security concerns related to session-replay attacks involv-
ing cookies, which might push you in the direction of using an alternative form
of session storage.

Active Record Session Store

In previous version of Rails, the capability to switch over to storing sessions
in the database was built into framework itself. However as of version 4.0, the
Active Record session store has been extracted into its own gem. Read about
it at https://github.com/rails/activerecord-session_store.

The reason it’s been extracted is that using it is considered a bad
idea. If your application receives a large amount of traffic, the sessions
database table is continuously bombarded with read/write operations.
And why are you putting more than 4KB in the session, anyway?

Memcached Session Storage

If you are running a high-traffic Rails deployment, you’re probably already
leveraging memcached in some way or another. The memcached server daemon
is a remote-process memory cache that helps power some of the most highly
trafficked sites on the Internet.
The memcached session storage option lets you use your memcached server as
the repository for session data and is blazing fast. It’s also nice because it has
built-in expiration, meaning you don’t have to expire old sessions yourself.
To use memcached, the first step is to add the dalli gem to your Gemfile and
run bundle:

https://github.com/rails/activerecord-session_store

Session Management 625

Gemfile
gem 'dalli'

Next, set up your Rails environment to use memcached as its cache store. At
a minimum, you can set the configuration setting cache_store to :mem_cache_-
store:

config/environments/production.rb
config.cache_store = :mem_cache_store

Note
Since Rails 4, when defining a cache_store using option :mem_cache_store
the dalli2 gem is used behind the scenes instead of the memcache-client
gem. Besides being threadsafe, which Rails 4 is by default, here are
some of the reasons why Dalli is the new default memcached client:

• It is approximately 20% faster than the memcache-client gem.
• Dalli has the capability to handle failover with recovery and
adjustable timeouts.

• Dalli uses the newer memcached binary protocol.

For more details, see the Cache Storage section in Chapter 17,
“Caching and Performance.”

Next, modify Rails’ default session store setting in config/initializers/ses-
sion_store.rb. At minimum, replace the contents of the file with the following:

Rails.application.config.
session_store ActionDispatch::Session::CacheStore

This will tell Rails to use the cache_store of the application as the underlying
session store as well. Additionally, you could explicitly set the number of
seconds a session is available for by setting the :expire_after option.

2
https://github.com/mperham/dalli

https://github.com/mperham/dalli

Session Management 626

Rails.application.config.
session_store ActionDispatch::Session::CacheStore,

expires_after: 20.minutes

The Controversial CookieStore

In February 2007, core-team member Jeremy Kemper made a pretty bold
commit to Rails. He changed the default session storage mechanism from the
venerable PStore to a new system based on a CookieStore. His commit message
summed it up well:

Introduce a cookie-based session store as the Rails default. Sessions
typically contain at most a user_id and flash message; both fit within
the 4K cookie size limit. A secure hash is included with the cookie
to ensure data integrity (a user cannot alter his user_id without
knowing the secret key included in the hash). If you have more than
4K of session data or don’t want your data to be visible to the user,
pick another session store. Cookie-based sessions are dramatically
faster than the alternatives.

I describe the CookieStore as controversial because of the fallout over making
it the default session storage mechanism. For one, it imposes a very strict size
limit, only 4KB. A significant size constraint like that is fine if you’re following
the Rails way and not storing anything other than integers and short strings
in the session. If you’re bucking the guidelines, well, you might have an issue
with it.

Encrypted Cookies

Lots of people have complained about the inherent insecurity of storing
session information, including the current user information on the user’s
browser. In Rails 3, cookies were only digitally signed, which verified that
they were generated by your application and were difficult to alter. However,
the contents of the cookie could still be easily read by the user. As of Rails 4,
all cookies are encrypted by default, making them not only hard to alter but
hard to read too.

Replay Attacks

Another problem with cookie-based session storage is its vulnerability to
replay attacks, which generated an enormous message thread on the rails-

Session Management 627

core mailing list. S. Robert James kicked off the thread3 by describing a replay
attack:
Example:

1. User receives credits, stored in his session.
2. User buys something.
3. User gets his new, lower credits stored in his session.
4. Evil hacker takes his saved cookie from step 1 and pastes it back in his
browser’s cookie jar. Now he’s gotten his credits back.

• This is normally solved using something called nonce. Each signing
includes a once-only code, and the signer keeps track of all of the codes
and rejects any message with the code repeated. But that’s very hard
to do here, since there may be several app servers serving up the same
application.

• Of course, we could store the nonce in the DB, but that defeats the entire
purpose!

The short answer is: Do not store sensitive data in the session. Ever. The longer
answer is that coordination of nonces across multiple servers would require
remote process interaction on a per-request basis, which negates the benefits
of using the cookie session storage to begin with.

3If you want to read the whole thread (all 83 messages of it), simply search Google for “Replay attacks with
cookie session.” The results should include a link to the topic on the Ruby on Rails: Core Google Group.

Session Management 628

13.3 Cookies

This section is about using cookies, not the cookie session store. The cookie
container, as it’s known, looks like a hash, and is available via the cookies
method in the scope of controllers. Lots of Rails developers use cookies to
store user preferences and other small nonsensitive bits of data. Be careful
not to store sensitive data in cookies, since they can be read by users. The
cookies container is also available by default in view templates and helpers.

Reading and Writing Cookies

The cookie container is filled with cookies received, along with the request,
and sends out any cookies that you write to it with the response. Note that
cookies are read by value, so you won’t get the cookie object itself back, just
the value it holds as a string (or as an array of strings if it holds multiple
values).
To create or update cookies, you simply assign values using the brackets
operator. You may assign either a single string value or a hash containing
options, such as :expires, which takes a number of seconds before which the
cookie should be deleted by the browser. Remember that Rails convenience
methods for time are useful here:

writing a simple session cookie
cookies[:list_mode] = "false"

specifying options, curly brackets are needed to avoid syntax error
cookies[:recheck] = { value: "false", expires: 5.minutes.from_now }

I find the :path options useful in enabling you to set options specific to
particular sections or even particular records of your application. The :path
option is set to '1', the root of your application, by default.
The :domain option enables you to specify a domain, which is most often used
when you are serving up your application from a particular host but want to
set cookies for the whole domain.

Session Management 629

cookies[:login] = {
value: @user.security_token,
domain: '.domain.com',
expires: Time.now.next_year

}

Cookies can also be written using the :secure option, and Rails will only ever
transmit them over a secure HTTPS connection:

writing a simple session cookie
cookies[:account_number] = { value: @account.number, secure: true }

Finally, you can delete cookies using the delete method:

cookies.delete :list_mode

Accessing Cookies from JavaScript

The :httponly option tells Rails whether cookies can be accessible via scripting
or only HTTP. It defaults to true as a security precaution. You can change it on
a per-use basis like the other cookie options or change the default behavior
for the whole app in config/initializers/session_store.rb.

Be sure to restart your server when you modify this file.
Rails.application.config.session_store :cookie_store, key: "_my_application_session", http\
only: false

Permanent Cookies

Here’s some Rails magic. Writing cookies to the response via the cook-
ies.permanent hash automatically gives them an expiration date 20 years in
the future.

cookies.permanent[:remember_me] = current_user.id

Session Management 630

13.4 Conclusion

Deciding how to use the session is one of the more challenging tasks that
faces a web application developer. That’s why we put a couple of sections
about it right in the beginning of this chapter. We also covered the various
options available for configuring sessions, including storage mechanisms and
methods for timing out sessions and the session lifecycle. We also covered use
of a closely-related topic, browser cookies.

14. Authentication and
Authorization

“Thanks goodness [sic], there’s only about a billion of these because
DHH doesn’t think auth/auth [sic] belongs in the core.”
—George Hotelling at http://del.icio.us/revgeorge/authentication

If you’re building a web application, more often than not you will need some
form of user security. User security can be broken up into two categories,
authentication, which verifies the identity of a user, and authorization, which
verifies what they are able to do in your application.
In version 3.1, Rails introduced has_secure_password, which adds methods to
set and authenticate against a BCrypt password. Although this functionality
now exists in the framework, it is only a small part of a robust authentication
solution. We still need to write our own authentication code, or we have to
look outside of Rails core for a suitable solution.
In this chapter, we’ll cover authentication with Warden and Devise, writing
your own authentication code with has_secure_password, and an authorization
library called Pundit.

Authentication and Authorization 632

14.1 Warden

As we mentioned in Chapter 1, the foundation of Rails and all other signf-
icant Ruby-based web frameworks is a simple HTTP adapter library called
Rack. Warden provides a mechanism for authentication in Rack-based Ruby
applications. It’s made to support multiple applications sharing the same rack
instance.
Warden is designed to be lazy. That is, if you don’t use it, it doesn’t do anything,
but when you do use it, it will spring into action and provide an underlying
mechanism to enable authentication in any Rack-based application.
Warden enables all downstream middlewares and endpoints to share a com-
mon authentication mechanism, whilst still enabling the overall application
to manage it. Each application can access the authenticated user, or request
authentication in the same way, using the same logic throughout the Rack
graph. Each application can layer whatever sugary API on top, and the
underlying system will still work.

We don’t use Warden directly but rather through a higher-level authentica-
tion library such as Devise. However, it’s still worthwhile understanding how
Warden works in case you want to step outside normal conventions.

Middleware

Warden sits in the Rack stack, after the session middleware (that stores a
session, hash-like object in env['rack.session']).
Warden injects a lazy object into the Rack environment at env['warden']. This
lazy object allows you to interact with it to ask if it’s authenticated or to force
authentication to occur in any downstream piece of Rack machinery.

Authentication and Authorization 633

Ask whether a request has been authenticated already
env['warden'].authenticated?
Ask if a request is authenticated for a particular scope (:foo)
env['warden'].authenticated?(:foo)
Try to authenticate via the :password strategy
env['warden'].authenticate(:password)
Try to authenticate and raise exception on failure
env['warden'].authenticate!(:password)

After authentication is performed, if successful, it will provide access to a user
object.

env['warden'].authenticate(:password)
env['warden'].user # the user object

By placing the authentication process directly after the session middleware,
all downstreammiddleware and applications gain access to the authentication
object. This enables all Rack middlewares and endpoints to use the same
underlying authentication system as the rest of your application.

Strategies

A strategy is the place where the logic of authentication is actually run.
Warden uses the concept of cascading strategies to determine whether a
request should be authenticated. It will try strategies one after another until

• A strategy succeeds
• No strategies are found relevant
• A strategy Fails

Conceptually, a strategy is where you put the logic for authenticating a
request. Practically, it’s a descendent of Warden::Strategies::Base.
Let’s take a look at defining a Warden strategy that authenticates a user with
username and password attributes:

Authentication and Authorization 634

Warden::Strategies.add(:password) do
def valid?

params['username'] || params['password']
end

def authenticate!
u = User.authenticate(params['username'], params['password'])
u.nil? ? fail!("Could not log in") : success!(u)

end
end

The example code declares a strategy called :password. The optional valid?
method acts as a guard for the strategy, if needed. If you declare it, the
strategy will only be tried if it returns true.
The strategy above is reasoning that if there’s either a username or a password
param, then the user is trying to login. If there’s only one of them, then the
User.authenticate call will fail, but it was still the desired (valid) strategy.
The authenticate! method is where the work of actually authenticating the
request happens.
You have a number of request related methods available.

request
The Rack::Request object.

session
The session object for the request.

params
The parameters of the request.

env The Rack env object.

There are also a number of actions you can take in your strategy.

halt!
Stops cascading of strategies and makes this one the last one processed.

pass
Ignore this strategy.

success
Pass a user object to log in a user. Causes a halt!.

Authentication and Authorization 635

fail!
Sets the strategy to fail. Causes a halt!.

redirect
Redirect to another url. You can supply it with params to be encoded and
also options. Causes a halt!.

custom
Enables you to optionally introduce new middleware by returning a
custom rack array to be handed back untouched. Causes a halt!.

There are a couple more miscellaneous methods to be aware of too.

headers
Sets headers to respond with relevance to the strategy.

errors
Provides access to an errors object where you can add errors relating to
authentication.

Scopes

Warden scopes provide amechanism for allowingmultiple authenticated users
to share a single session.
The most common example is :admin and :user. The :user scope is used for
normal users to gain access to the application. The :admin scope is used to log
in users who are admins and have elevated privileges.
Whether or not to use this technique (multiple users in a single session) has
more to do with how you want to design your application’s user experience
than technical limitations.
For instance, how would we implement impersonation with this technique?
Imagine that the :admin is logged in and wants to view your site as a particular
:user. We can log both users into the same session to enable the admin to
impersonate the user.

Note that multiple scopes are well-supported by Devise (covered later in the
chapter). We only present this functionality in Warden as a useful example of
how scopes work.

Authentication and Authorization 636

class ImpersonationController < AdminController
expose(:user)

def create
warden = request.env['warden']
if warden.authenticated?(:admin)

sign out existing user
warden.authenticated?(:user) && warden.logout(:user)
sign in user to impersonate
warden.set_user(user, scope: :user)

redirect_to root_path, notice: "Now impersonating #{user.name}"
end

end
end

How do we stop impersonating?

class ImpersonationController < AdminController

...

def destroy
warden = env['warden']
activate both sessions
warden.authenticated?(:admin) && warden.authenticated?(:user)
log out only the user session and only the user session data is cleared
warden.logout(:user)

redirect_to "/admin"
end

When you log out the user in the example above, the user is removed from
the overall session (they’re logged out), but their scoped session data is also
cleared. The admin’s scoped session data is, however, left intact.

Warden is fairly complex. A full explanation is found in its wiki at https://
github.com/hassox/warden/wiki.

https://github.com/hassox/warden/wiki
https://github.com/hassox/warden/wiki

Authentication and Authorization 637

14.2 Devise

Devise1 is a highly modular Rack-based authentication framework that sits
on top of Warden. It has a robust feature set and leverages the use of Rails
generators. Its flexibility means that you get to pick and choose which parts
of it are most suitable for your application.

Devise is a huge topic, and due to space and scope constraints, we only scrape
the surface of it in this book. As of the latest edition, the Devise Wiki’s “How-
to” section has [99 articles and counting].(https://github.com/plataformatec/devise/wiki/How-
Tos)

Getting Started

Add the devise gem to your project’s Gemfile and bundle install. Then you can
generate the Devise configuration by running

$ rails generate devise:install

This will create the initializer for Devise and an English version i18n YAML
for Devise’s messages. Devise will also alert you at this step to remember to
do some mandatory Rails configuration if you have not done so already. This
includes setting your default host for Action Mailer, setting up your root route,
and making sure your flash messages will render in the application’s default
layout.

Modules

Adding authentication functionality to your models using Devise is based on
the concept of adding different modules to your class, based on only what you
need. The available modules for you to use are:

confirmable
Adds the capability to require email confirmation of user accounts.

database-authenticatable
Handles authentication of a user, as well as password encryption.

1https://github.com/plataformatec/devise

https://github.com/plataformatec/devise

Authentication and Authorization 638

lockable
Can lock an account after n number of failed login attempts.

omniauthable
Adds support for Oauth authentication via [Omniauth].(https://github.com/:
intridea/omniauth)

recoverable
Provides password reset functionality.

registerable
Alters user sign up to be handled in a registration process, along with
account management.

rememberable
Provides remember me functionality.

timeoutable
Enables sessions to be expired in a configurable time frame.

trackable
Stores login counts, timestamps, and IP addresses.

validatable
Adds customizable validations to email and password.

Knowing which modules you wish to include in your model is important for
setting up your models, migrations, and configuration options later on.

Models

To set up authentication in a model, run the Devise generator for that model
and then edit it. For the purpose of our examples, we will use the ever-so-
exciting User model.

$ rails generate devise User

This will create your model, a database migration, and route for your shiny
new model. Devise will have given you some default modules to use, which
you will need to alter in your migration and model if you want to use different
modules. In our example we only use a subset of what is offered.
Our resulting database migration looks like

Authentication and Authorization 639

class DeviseCreateUsers < ActiveRecord::Migration
def change

create_table(:users) do |t|
Database authenticatable
t.string :email, null: false, default: ""
t.string :encrypted_password, null: false, default: ""

Recoverable
t.string :reset_password_token
t.datetime :reset_password_sent_at

Rememberable
t.datetime :remember_created_at

Trackable
t.integer :sign_in_count, default: 0
t.datetime :current_sign_in_at
t.datetime :last_sign_in_at
t.string :current_sign_in_ip
t.string :last_sign_in_ip

Confirmable
t.string :confirmation_token
t.datetime :confirmed_at
t.datetime :confirmation_sent_at
t.string :unconfirmed_email # Only if using reconfirmable

Lockable
t.integer :failed_attempts, default: 0 # Only if lock strategy
is :failed_attempts
t.string :unlock_token # Only if unlock strategy is :email or :both
t.datetime :locked_at

t.timestamps
end

add_index :users, :email, unique: true
add_index :users, :reset_password_token, unique: true
add_index :users, :confirmation_token, unique: true
add_index :users, :unlock_token, unique: true

end
end

We then modify our User model to mirror the modules we included in our
migration.

Authentication and Authorization 640

class User < ActiveRecord::Base
Include default devise modules. Others available are:
:confirmable, :lockable, :timeoutable and :omniauthable
devise :database_authenticatable, :registerable,

:recoverable, :rememberable, :trackable, :validatable
end

Now we’re ready to rake db:migrate and let the magic happen.

Remember to restart your server after installing Devise, otherwise
you’ll get all sorts of weird errors.

Mappings / Scopes

Devise refers to its models as mappings because they map to underlying
Warden scopes (as discussed in the previous section). Most web applications
have a single Devise mapping/scope, but of those that have more, the most
common pair is probably :user and :admin.
Designing an application with separate scopes (and sessions) for admins and
users is a decision that has to be made with an eye towards security and UX
concerns. Splitting the scopes adds complexity in some regards but might
result in an overall cleaner and easier to maintain codebase. (Not having to
sprinkle user.admin? conditionals all over the place sounds like a good choice.)

Controllers

Devise generates handy helper methods that can be used in your controllers
to authenticate your model or get access to the currently signed in person.
For example, if you want to restrict access in a controller you may use one of
the helpers as a before_action.

class MeatProcessorController < ApplicationController
before_action :authenticate_user!

end

For Rails 5, note that the boilerplate protect_from_forgery is no
longer prepended to the before_action chain, so if you have called
authenticate_user! in your ApplicationController class before protect_-
from_forgery, some requests will error out with a “Can’t verify CSRF
token authenticity” exception. To resolve the problem, either change
the order in which you call them or use protect_from_forgery prepend:
true.

Authentication and Authorization 641

You can also access the currently signed in user via the current_user helper
method or the current session via the user_session method. Use user_signed_-
in? if you want to check whether the user had logged in without using the
before_action.

Thais says…
The helper methods are generated dynamically, so in the case where
your authenticated models are named differently use the model name
instead of user in the examples. An instance of this could be with an
Admin model—your helpers would be current_admin, admin_signed_in?,
and admin_session.

Here is the full list of helper methods generated by Devise for each of your
authenticated models (which Devise refers to as mappings):

• authenticate_#{mapping}!
• #{mapping}_signed_in?
• current_#{mapping}
• #{mapping}_session

If you have defined groups, each group gets the same set of helper meth-
ods, with the addition of a current_#{group_name.to_s.pluralize} method that
returns all currently authenticated mappings.

Additional Controller Helpers

Devise adds a slew of helper methods to its controllers. The most common are

devise_controller?
Returns true if called on a Devise controller, false otherwise. Useful if you
want to apply a before filter to all controllers related to authentication.

devise_parameter_sanitizer
Override this method in your application controller to use your own
parameter sanitizer.

Routing

Devise’s main directive is its entry in your config/routes.rb file, accomplished
with the devise_for method.

Authentication and Authorization 642

devise_for :users

Absent additional configuration, this declaration will use the controllers and
views built into Devise to provide you with auto-magical functionality.
Assuming that you create a custom scoped controller for admins
rails generate devise:controllers admins

then Devise will generate new controller templates in app/controllers/admins,
and the sessions controller within that folder will look like this:

class Admins::SessionsController < Devise::SessionsController
GET /admins/sign_in
def new
super
end
...

end

In that case, you’d tell the router to use that controller:

devise_for :admins, controllers: { sessions: "admin/sessions" }

Overriding Defaults

The devise_for is responsible for generating all needed routes for Devise,
based on what modules you have defined in your model.
Let’s say you have a User model configured to use the authenticatable,
confirmable and recoverable modules.
Declaring devise_for :users in your routes will look inside your User model to
determine the modules used and create their associated routes:

> rails routes | grep 'devise'

new_user_session GET /users/sign_in
{controller:"devise/sessions", action:"new"}
user_session POST /users/sign_in
{controller:"devise/sessions", action:"create"}

destroy_user_session DELETE /users/sign_out
{controller:"devise/sessions", action:"destroy"}

new_user_password GET /users/password/new(.:format)
{controller:"devise/passwords", action:"new"}

Authentication and Authorization 643

edit_user_password GET /users/password/edit(.:format)
{controller:"devise/passwords", action:"edit"}
user_password PUT /users/password(.:format)
{controller:"devise/passwords", action:"update"}

POST /users/password(.:format)
{controller:"devise/passwords", action:"create"}

new_user_confirmation GET /users/confirmation/new(.:format)
{controller:"devise/confirmations", action:"new"}

user_confirmation GET /users/confirmation(.:format)
{controller:"devise/confirmations", action:"show"}

POST /users/confirmation(.:format)
{controller:"devise/confirmations", action:"create"}

If you need to customize the routes generated by Devise, you can pass it
options such as :class_name, :path_prefix and so on, including the possibility
to change path_names for I18n translation lookups:

devise_for :users,
path: "auth",
path_names: {

sign_in: 'login',
sign_out: 'logout',
password: 'secret',
confirmation: 'verification',
unlock: 'unblock',
registration: 'register',
sign_up: 'cmon_let_me_in' }

Namespaces

The devise_for integrates nicely with namespaces in your application. Calling
it inside of a namespace like this

namespace :publisher do
devise_for :account

end

results in many changes from the standard behavior. The example provided
will use publisher/sessions controller instead of devise/sessions. You can revert
this change or configure it directly by passing the :module option described
below to devise_for. All the helpers and methods for controllers and views
are affected as well. The example provided will provide you with the fol-
lowing methods: current_publisher_account, authenticate_publisher_account!,
publisher_account_signed_in?, etc.

Authentication and Authorization 644

Options

The primary devise_for option not affected by namespace is the model name.
It can be explicitly set via the :class_name option.
Options for devise_for method include the following:

class_name
Sets up a different class to be looked up by Devise, if it cannot be deduced
automatically by the route name.

devise_for :users, class_name: 'Account'

path
Enables you to set up a path name that will be used instead of the default.
The following route configuration would set up your authentication route
as /accounts instead of /users:

devise_for :users, path: 'accounts'

singular
Overrides the generated singular name for a given resource. This is used
as the helper methods names in controller (authenticate_#{singular}!,
#{singular}_signed_in?”, current_#{singular} and #{singular}_session), as
the scope name in routes and as the scope given to warden.

devise_for :admins, singular: :manager
class ManagerController < ApplicationController

before_filter authenticate_manager!

def show
@manager = current_manager
...

end
end

Don’t do stuff like this unless absolutely necessary.

path_names
Override default i18n lookup keys.

Authentication and Authorization 645

devise_for :users, path_names: {
sign_in: 'login', sign_out: 'logout',
password: 'secret', confirmation: 'verification',
registration: 'register', edit: 'edit/profile'

}

controllers
Explicitly override specified default controllers in order to implement
custom behavior.

devise_for :users, controllers: { sessions: "users/sessions" }

failure_app
A rack app to be invoked on authentication failure.

sign_out_via
The HTTP method(s) accepted for the sign_out action (defaults to :get).
If you wish to restrict this to accept only :post or :delete requests, you
should do:

devise_for :users, sign_out_via: [:post, :delete]

module
The namespace where to find controllers (defaults to “devise”, thus
referencing devise/sessions, devise/registrations, etc). This option lets
you change them all at once.

devise_for :users, module: "users"

skip
Specify routes to not be generated. Accepts :all as an option, meaning
it will not generate any routes at all.

devise_for :users, skip: :sessions

only
The opposite of :skip

Authentication and Authorization 646

skip_helpers
Skip generating url helpers like new_session_path(user). Occasionally
useful for avoiding conflicts with previous routes.

format
Whether to include (.:format) in the generated routes. Set to true by
default, set to false to disable.

constraints
Same as any other routing constraints.

defaults
Same as any other routing defaults

For a full description of routing functionality, check the Devise
source code http://www.rubydoc.info/github/plataformatec/devise/
ActionDispatch/Routing/Mapper#devise_for-instance_method.

Adding Custom Actions to Override Controllers

The devise_for method has a sister named devise_scope that gives you the
capability to add arbitrary routes to Devise’s default list of known actions.
This is important if you add a custom action to a controller that overrides an
out of the box Devise controller.

class RegistrationsController < Devise::RegistrationsController
def update

do something different here
end

def deactivate
not a standard action
deactivate code here

end
end

In order to get Devise to recognize the deactivate action, your devise_scope
entry should look like this:

http://www.rubydoc.info/github/plataformatec/devise/ActionDispatch/Routing/Mapper#devise_for-instance_method
http://www.rubydoc.info/github/plataformatec/devise/ActionDispatch/Routing/Mapper#devise_for-instance_method

Authentication and Authorization 647

devise_scope :owner do
post "deactivate", to: "registrations#deactivate", as: "deactivate_registration"

end

Post Sign-in Options

You can control where a newly-authenticated user gets routed via naming con-
vention in routes.rb. Devise will look for a route named #{mapping]_root_path.
For example, if you had a Devise mapping for user, you could define it in one
of the following two ways:

get '/users' => 'users#index', as: :user_root # creates user_root_path

namespace :user do
root 'users#index' # creates user_root_path

end

If a mapping-specific root path is not found, Devise will redirect to the main
root_path of the application.
To override this behavior with more complicated logic of your own, override
the after_sign_in_path_for(resource) method in your ApplicationController. It
is passed the authenticated object as resource so that you can use its attributes
as part of your routing logic. For example, you could redirect to the user’s own
dashboard, profile, or something along those lines.

def after_sign_in_path_for(resource)
stored_location_for(resource) ||

if resource.is_a?(User)
user_dashboard_url(resource)

else
super

end
end

The stored_location_for method returns and deletes a URL stored in the
session for the given resource. This makes it possible to automatically take
the user to the page they were trying to access before being prompted to log
in.
Devise also gives you a similar after_sign_out_path_for(resource_or_scope) in
case you want to send users to a location other than root_path after signing
out.

Authentication and Authorization 648

Views

Devise is built as a Rails Engine, and comes with views for all of your included
modules. All you need to do is write some CSS, and you’re off to the races.
However there may be some situations where you want to customize them,
and Devise provides a nifty script to copy all of the internal views into your
application.

rails generate devise:views

If you are authenticating more than one model and don’t want to use the same
views for both, just set the following option in your config/initializers/de-
vise.rb:

config.scoped_views = true

ERB to Haml
The views extracted from the Devise Rails Engine are ERB templates.
If your preference is to use Haml for templates, you can convert the
Devise ERB templates via the html2haml gem.
After the gem is installed, run the following command from the root of
your Rails project:

$ for file in app/views/devise/**/*.erb; do html2haml -e $file
${file%erb}haml && rm $file; done

Configuration

When you first set up Devise using rails generate devise:install, a devise.rb
was tossed into your config/initializers directory. This initializer is where all
the configuration for Devise is set, and it is already packed full of commented-
out goodies for all configuration options with excellent descriptions for each
option.

Durran says…
Using MongoDB as your main database? Under the general configura-
tion section in the initializer, switch the requirement of active---record
to mongoid for pure awesomeness.

Authentication and Authorization 649

Devise comes with internationalization support out of the box and ships with
English message definitions located in config/locales/devise.en.yml. (You’ll
see this was created after you ran the install generator at setup.) This file
can be used as the template for Devise’s messages in any other language by
staying with the same naming convention for each file.

Create a Chilean Spanish translation in config/locales/devise.cl.yml weon!

Strong Parameters

With the addition of Strong Parameters to Rails 4, Devise has followed suit
and moved the concern of mass-assignment to the controller. In Devise, mass-
assignment parameter sanitation occurs in the following three actions:

sign_in
Corresponding to controller action Devise::SessionsController#new, only
authentication keys, such as email, are permitted.

sign_up
Corresponding to controller action Devise::RegistrationsController#create,
permits authentication keys, password, and password_confirmation.

account_update
Corresponding to controller action Devise::RegistrationsController#update,
permits authentication keys, password, password_confirmation, and cur-
rent_password.

If you require additional parameters to be permitted by Devise, the simplest
way to do so is through a before_action callback in ApplicationController.

class ApplicationController < ActionController::Base
before_action :devise_permitted_parameters, if: :devise_controller?

protected

def devise_permitted_parameters
devise_parameter_sanitizer.for(:sign_up) << :phone_number

end
end

Additionally, you can completely change the Devise defaults by passing a block
to devise_parameter_sanitizer.

Authentication and Authorization 650

class ApplicationController < ActionController::Base
before_action :devise_permitted_parameters, if: :devise_controller?

protected

def devise_permitted_parameters
devise_parameter_sanitizer.

for(:sign_in) { |user| user.permit(:email, :password, :remember_me,
:username) }

end
end

Formore details on Strong Parameters, see [Chapter 15, “Security”].(#chapter15-
security)

Extensions

There are plenty of third party extensions out there for Devise for all sorts of
uses. Here are some our favorites:

cas_authenticatable
Enables single sign on using CAS.

devise_campaignable
Have your users automatically added to a mail campaign tool of your
choice. Currently supports MailChimp, but it is easy to adapt for Cam-
paignMonitor and other email service providers.

devise_uid
Adds support for UUID primary keys.

invitable
Adds support for sending account invitations by email.

ldap_authenticatable
Authenticate users using LDAP.

two_factor_authentication
Provides a foundation for implementing two-factor authentication, for
enhanced security.

A complete list of extensions, including many external authentication in-
tegrations, can be found at: https://github.com/plataformatec/devise/wiki/
Extensions.

https://github.com/plataformatec/devise/wiki/Extensions
https://github.com/plataformatec/devise/wiki/Extensions

Authentication and Authorization 651

Testing with Devise

To enable Devise test helpers in controller specs, create the spec support file
devise.rb in the spec/support folder.

spec/support/devise.rb
RSpec.configure do |config|

config.include Devise::TestHelpers, type: :controller
end

This will add helper methods sign_in and sign_out that enable creating and
destroying a session for a controller spec respectively. Both methods accept
an instance of a Devise model.

require 'spec_helper'

describe AuthenticatedController do
let(:user) { FactoryGirl.create(:user) }

before do
sign_in user

end

...
end

Summary

Devise is an excellent solution if you want a large number of standard features
out of the box while writing almost no code at all. It has a clean and easy
to understand API and can be used with little to no ramp up time on any
application.

Authentication and Authorization 652

14.3 has_secure_password

Prior to version 3.1, Rails did not include any sort of standard authentication
mechanism. That changed with the introduction of has_secure_password, an
ActiveModel mechanism that adds methods to set and authenticate against
a BCrypt password.2 However, has_secure_password is only a small piece to
a complete authentication solution. Unlike other solutions like Devise, one
still needs to implement a few extra items in order to get has_secure_password
running properly.

Getting Started

To use Active Model’s has_secure_password, uncomment the required gem
dependency bcrypt in your Gemfile and run bundle install.

gem 'bcrypt', '~> 3.1.7'

Creating the Models

To add authentication to a model, it must have an attribute named password_-
digest. For the purpose of our example, let’s generate a new User model that
will authenticate with an email and password.

$ rails generate model User email:string password_digest:string

Then edit the CreateUsersmigration to add the columns your application needs
to satisfy its authentication requirements.

class CreateUsers < ActiveRecord::Migration
def change

create_table :users do |t|
t.string :email
t.string :password_digest
t.timestamps

t.index(:email, unique: true)
end

end
end

2
A BCrypt password is based on the Blowfish cipher, incorporating a salt and is resistant to brute-force attacks.

For more information, see the Wikipedia article on the subject.

http://en.wikipedia.org/wiki/Bcrypt

Authentication and Authorization 653

Next, set up your User model, by adding the macro style method has_secure_-
password. We’ve added a uniqueness validation for email to ensure we can only
have one email per user.

class User < ActiveRecord::Base
has_secure_password

validates :email, presence: true, uniqueness: { case_sensitive: false }
end

A virtual attribute password is automatically added to the model, which when
set, automatically copies its encrypted value to password_digest. Validations
on create for the presence and confirmation of password are also automatically
added.
To illustrate, let’s create and authenticate a user in the console:

>> user = User.create(email: 'user@example.com')
=> #<User id: nil, email: "user@example.com", password_digest: nil,

created_at: nil, updated_at: nil>

>> user.valid?
=> false

>> user.errors.full_messages
=> ["Password can't be blank"]

>> user = User.create(email: 'user@example.com', password: 'therails4way',
password_confirmation: 'therails4way')

=> #<User id: 1, email: "user@example.com", password_digest:
"$2a$10$RZfWUZiGze9Bk13PFOYB5eWKZuJUMAnqU/90rpcywGja...",
created_at: "2013-10-01 15:26:55", updated_at: "2013-10-01 15:26:55">

>> user.authenticate('abcdefgh')
=> false

>> user.authenticate('therails4way')
=> #<User id: 1, email: "user@example.com", password_digest:

"$2a$10$RZfWUZiGze9Bk13PFOYB5eWKZuJUMAnqU/90rpcywGja...",
created_at: "2013-10-01 15:26:55", updated_at: "2013-10-01 15:26:55">

Setting Up the Controllers

Once the User model has been set up, we need to create a sessions controller
to manage the session for your authenticated model. A resourceful controller

Authentication and Authorization 654

for “users” is also required, but its implementation will depend on your own
application’s requirements.
To create the controllers, run the following in the terminal:

$ rails generate controller sessions
$ rails generate controller users

In your ApplicationController you will need to provide access to the current
user so that all of your controllers can access this information easily.

class ApplicationController < ActionController::Base
protect_from_forgery with: :exception

helper_method :current_user

protected

def current_user
@current_user ||= User.find(session[:user_id]) if session[:user_id]

end
end

The SessionsController should respond to new, create, and destroy in order to
leverage all basic sign-in/out functionality.

class SessionsController < ApplicationController
def new
end

def create
user = User.where(email: params[:email]).first

if user && user.authenticate(params[:password])
session[:user_id] = user.id
redirect_to root_url, notice: 'Signed in successfully.'

else
flash.now.alert = 'Invalid email or password.'
render :new

end
end

def destroy
session[:user_id] = nil

Authentication and Authorization 655

redirect_to root_url, notice: 'Signed out successfully.'
end

end

Make sure you’ve added the routes for the new controllers.

Rails.application.routes.draw do
resource :session, only: [:new, :create, :destroy]
resources :users
...

end

Finally, create a view app/views/sessions/new.html.haml containing a sign-in
form to enable users to create a session within your application:

%h1 Sign in

- if flash.alert
.alert= flash.alert

= form_tag session_path do
.field

= label_tag :email
= email_field_tag :email, params[:email],

placeholder: 'Enter your email address', required: true

.field
= label_tag :password
= password_field_tag :password, params[:password],

placeholder: 'Enter your password', required: true

= submit_tag 'Sign in'

Controller, Limiting Access to Actions

Now that you are authenticating, you will want to control access to specific
controller actions. A common pattern for handling this is through the use of
action callbacks in your controllers, where the authentication checks reside
in your ApplicationController.

Authentication and Authorization 656

class ApplicationController < ActionController::Base
...

protected

def authenticate
unless current_user

redirect_to new_session_url,
alert: 'You need to sign in or sign up before continuing.'

end
end

end

class DashboardController < ApplicationController
before_action :authenticate

end

Summary

We’ve only scratched the surface of implementing a full blown authentication
solution using has_secure_password. Although the implementation is simple, it
leaves a bit to be desired. Some things to consider when creating your own
authentication framework from scratch include “remember me” functionality,
the capability for a user to reset a password, token authentication, and so on.

Realistically, there’s little reason to write your own “full-blown” authentica-
tion framework instead of using a mature solution like Devise or its lighter-
weight alternative, Authem https://github.com/paulelliott/authem.

https://github.com/paulelliott/authem

Authentication and Authorization 657

14.4 Pundit

Authorization is the process of specifying access rights to resources,3 such
as models. Once a user has been authenticated within an application, using
authorization, you can limit a user from performing certain actions, for
instance updating a record. Besides actions, one could even limit what is
visible to a user based on their role. For example, if we created a blog
application, a normal user should only be able to view published posts, while
an administrator should be able to view all posts within the application.
Pundit4 is a minimal authorization library created by the folks at Elabs that is
focused around a notion of policy classes. A policy is a class that has the same
name as a model class, suffixed with the word “Policy”. It accepts both a user
and model instance that are used to determine whether the provided user has
permissions to perform certain actions.

The Can Can gem is a much more popular option for authorization, but I have
found through experience that its design quickly leads to unmaintainable
code in larger applications (https://github.com/ryanb/cancan).

Getting Started

Add the pundit gem to your project’s Gemfile and bundle install. Then you can
install Pundit by running the pundit:install generator:

$ rails generate pundit:install

This will create an application policy in app/policies for Pundit. Although
optional, inheriting from ApplicationPolicy for each of your policy files is
recommended, as it ensures by default no resourceful action is authorized.

3http://en.wikipedia.org/wiki/Authorization
4https://github.com/elabs/pundit

https://github.com/ryanb/cancan
http://en.wikipedia.org/wiki/Authorization
https://github.com/elabs/pundit

Authentication and Authorization 658

app/policies/application_policy.rb
class ApplicationPolicy

attr_reader :user, :record

def initialize(user, record)
@user = user
@record = record

end

def index?
false

end

def show?
scope.where(id: record.id).exists?

end

def create?
false

end

def new?
create?

end

def update?
false

end

def edit?
update?

end

def destroy?
false

end

def scope
Pundit.policy_scope!(user, record.class)

end
end

Next, to include the Pundit methods within a controller, include Pundit in your
ApplicationController:

Authentication and Authorization 659

class ApplicationController < ActionController::Base
include Pundit

end

Creating a Policy

To create a policy for a model, run the Pundit generator for that model and
then edit it. To illustrate, we will use the Post model from the preceding
example of a blog application.

$ rails generate pundit:policy post

The generator creates the following PostPolicy in the app/policies folder:

class PostPolicy < ApplicationPolicy
class Scope < Struct.new(:user, :scope)

def resolve
scope

end
end

end

In the case of our example, let’s guard against non-administrator users from
creating a blog post by implementing the create? predicate method.

class PostPolicy < ApplicationPolicy
def create?

user.admin?
end
...

end

Besides checking against a role, you can add permission conditions based on
the record itself. For example, in this blogging application, an administrator
can only delete a post if it hasn’t been published.

Authentication and Authorization 660

class PostPolicy < ApplicationPolicy
def destroy?

user.admin? && !record.published?
end
...

end

Controller Integration

Pundit provides various helper methods to be used in controllers to authorize a
user to perform an action against a record. For example, the authorizemethod
will automatically infer the policy file based on the passed in record instance.

Kevin Says…
The second argument to a Pundit policy check can be any object, not
necessarily just an Active Record instance.

To illustrate, let’s check whether the current user can create a post within the
PostsController:

class PostsController < ApplicationController
expose(:post)

def create
authorize post
post.save
respond_with(post)

end

...
end

The above call to authorize is equivalent to PostPolicy.new(current_user, @post).create?.
If the user is not authorized, Pundit will raise a NotAuthorizedError exception.

Note
The authorize method will gain access to the currently logged in user by
calling the current_user method. This can be overridden by implementing a
method called pundit_user in your controller.

Authentication and Authorization 661

If you want to ensure authorization is always executed within your controllers,
Pundit also provides a method verify_authorized that raises an exception if
authorize hasn’t been called. This method should be run within an after_action
callback.

class ApplicationController < ActionController::Base
after_filter :verify_authorized, except: :index

end

Policy Scopes

Using Pundit, we can define a scope within a policy to limit what records
are returned based on a user role. For example, in our recurring blogging
application example, an administrator should be able to view all posts,
whereas a user should only be able to view posts that have been published.
This is achieved by implementing a nested class named Scope under the policy
class. The instances of the scope must respond to the method resolve, which
should return an ActiveRecord::Relation.

class PostPolicy < ApplicationPolicy
class Scope < Struct.new(:user, :scope)

def resolve
if user.admin?

scope
else

scope.where(published: true)
end

end
end
...

end

Pundit provides a helper method, policy_scope, that infers the policy file based
on the class passed into it and returns the scope specific to the current user’s
permissions.

def index
@posts = policy_scope(Post)

end

which is equivalent to

Authentication and Authorization 662

def index
@posts = PostPolicy::Scope.new(current_user, Post).resolve

end

To ensure policy scopes are always called for specific controller actions, run
verify_policy_scoped in an after_action callback. If policy_scope is not called,
an exception will be raised.

class ApplicationController < ActionController::Base
after_filter :verify_policy_scoped, only: :index

end

Strong Parameters

Pundit also makes it possible to explicitly set what attributes are allowed to
be mass-assigned with strong parameters based on a user role.

app/policies/assignment_policy.rb
class AssignmentPolicy < ApplicationPolicy

def permitted_attributes
if user.admin?

[:title, :question, :answer, :status]
else

[:answer]
end

end
end

app/controllers/assignments_controller.rb
class AssignmentsController < ApplicationController

expose(:assignment, attributes: :assignment_params)

def update
assignment.save
respond_with(assignment)

end

private

def assignment_params
params.require(:assignment).

permit(policy(assignment).permitted_attributes)
end

end

Authentication and Authorization 663

Testing Policies

Although Pundit comes with its own RSpec matchers for testing, our prefer-
ence is to use an RSpec matcher created by the team at Thunderbolt Labs5 as
it provides better readability.
To get started, add the following into a file under spec/support:

spec/support/matchers/permit_matcher.rb
RSpec::Matchers.define :permit do |action|

match do |policy|
policy.public_send("#{action}?")

end

failure_message do |policy|
"#{policy.class} does not permit #{action} on #{policy.record} for
#{policy.user.inspect}."

end

failure_message_when_negated do |policy|
"#{policy.class} does not forbid #{action} on #{policy.record} for
#{policy.user.inspect}."

end
end

Using the above RSpec matcher, you can test policies that look like

spec/policies/post_policy.rb
require 'spec_helper'

describe PostPolicy do
subject(:policy) { PostPolicy.new(user, post) }

let(:post) { FactoryGirl.build_stubbed(:post) }

context "for a visitor" do
let(:user) { nil }

it { is_expected.to permit(:show) }
it { is_expected.to_not permit(:create) }
it { is_expected.to_not permit(:new) }
it { is_expected.to_not permit(:update) }
it { is_expected.to_not permit(:edit) }

5http://thunderboltlabs.com/blog/2013/03/27/testing-pundit-policies-with-rspec

http://thunderboltlabs.com/blog/2013/03/27/testing-pundit-policies-with-rspec

Authentication and Authorization 664

it { is_expected.to_not permit(:destroy) }
end

context "for an administrator" do
let(:user) { FactoryGirl.create(:administrator) }

it { is_expected.to permit(:show) }
it { is_expected.to permit(:create) }
it { is_expected.to permit(:new) }
it { is_expected.to permit(:update) }
it { is_expected.to permit(:edit) }
it { is_expected.to permit(:destroy) }

end
end

Authentication and Authorization 665

14.5 Conclusion

In addition to a tour of Warden, the authentication middleware underlying
all major Rails authentication frameworks, we covered our favorite auth
frameworks: Devise and Pundit. Keep in mind that there are plenty more
options out there to examine if those are not well-suited for your application.
Also, you were able to see how easy it is to roll your own simple authentication
solution using has_secure_password.

15. Security
Ruby on Rails security sucks lolz amirite? No. Well, no to the nuance.
Software security does, in general, suck. Virtually every production
system has security bugs in it. When you bring pen testers in
to audit your app, to a first approximation, your app will lose.
While Ruby on Rails cherishes its Cool-Kid-Not-Lame-Enterprise-
Consultingware image, software which is absolutely Big Freaking
Enterprise consultingware, like say the J2EE framework or Spring,
have seen similar vulnerabilities in the past.1

—Patrick McKenzie

Security is a very broad topic, one that we can’t possibly cover in a single book
chapter. Still there are things that every competent web developer using Rails
should know.
Unlike many other software engineering topics, security is not something that
you can solve by investingmore hours to fix bugs or inefficient algorithms. Nor
it is something you can do by trial and error. You have to know most common
attack vectors and how to avoid vulnerabilities.
We will look into commonweb application security problems and the ways that
Rails deals with them, as well as general security guidelines and practices.
Along the way we will discuss management of passwords and other private in-
formation, logmasking, mass-assignment attributes protection, SQL Injection,
Cross-Site Scripting (XSS), Cross-Site Request Forgery (XSRF) and more.

1http://www.kalzumeus.com/2013/01/31/what-the-rails-security-issue-means-for-your-startup/

http://www.kalzumeus.com/2013/01/31/what-the-rails-security-issue-means-for-your-startup/

Security 667

15.1 Password Management

We can safely say leaking your customer’s plain text passwords is probably
one of the most embarrassing security problems to have. Especially as the
“do not store plain text passwords” mantra is widely known, and doing the
right thing is really not that hard. Quite easy actually. It usually boils down
to using one of the many libraries available. It’s also not something that you
need to pay constant attention to. You do it once, and you are done.

The biggest problem with storing plain text passwords is that many people
use the same password on multiple sites, and so in an event of a leak, you do
not only expose user’s accounts in your application but potentially also put a
lot of people other accounts at risk.

The solution is simple and well known: securely hash all passwords. Secure
hashing is not the same as encryption, as encryption assumes the ability
to decrypt, while secure hashing is a one way function. Once you store a
password, there is no way to get it back in the original form.
Popular hash functions include MD5 and SHA1. MD5 is considered insecure
and is no longer used for password security,2 but you’ll occasionally see it used
to hash values that are not under attack.
“How do you check a hashed password?” you might ask. It’s simple, actually—
when we need to test a password given to a login form, we just pass it through
the same one way hash function and compare the results.
The actual low level details are a bit more complicated, as we also want to
protect against what is known as dictionary rainbow table attack. An attacker
might get access to a database of hashed user passwords and compare the
hashes to a table of hashes of dictionary words. Statistically, if you have
enough users, a significant number of them will use dictionary words for their
passwords. This allows an attacker to find out their password from the rainbow
table and, using other information you have stored (like user email), try to gain
access to those user’s accounts on other services.
You prevent rainbow table attacks by using a salt, a random string that is
generated for every user during account creation and which is used together
with the user’s password when calculating the hashed password that we store
in the database.

2Carnegie Mellon’s Software Engineering Institute says that MD5 “should be considered cryptographically
broken and unsuitable for further use.” http://www.kb.cert.org/vuls/id/836068

http://www.kb.cert.org/vuls/id/836068

Security 668

Since the salt is random for every user there is no way to prepare a dictionary
table of every dictionary word with every possible salt. So the attacker is left
with the brute force attack, actually trying to pick passwords one by one, by
trying every possible password combination with the user’s salt.
To make it even harder on the attacker, most “serious” password storage
libraries use a secure hashing algorithm that was intentionally made very
“expensive” to compute, usually by doing a lot of rounds of hash function
computation in a sequence.
We’ve delved into the gory details, and you might wonder if it involves a lot of
work to implement this stuff in Rails. It does not. All the popular authentication
libraries like Authlogic and Devise implement salted-hashing of passwords
right out of the box.

Bcrypt

Even if you’re not using a third-party authentication gem for some reason,
Rails itself has straightforward support for secure password storage with the
help of the popular BCrypt library.
To add secure hashed passwords to an ActiveModel class you just need to call
the has_secure_password class method. {#has_secure_password}
The usage is very simple:

class User
has_secure_password

end

From the Rails documentation:

This mechanism requires you to have a password_digest attribute.
Validations for presence of password on create, confirmation of
password > (using a password_confirmation attribute) are automat-
ically added. If > you wish to turn off validations, pass validations:
false as an > argument. You can add more validations by hand if
need be.
If you don’t need the confirmation validation, just don’t set any >
value to the password_confirmation attribute and the validation > will
not be triggered.
You need to add bcrypt-ruby (∼> 3.0.0) to Gemfile to use #has_-
secure_password:
gem 'bcrypt-ruby', '∼> 3.0.0'

Security 669

To actually validate the password during authentication you can use the
authenticate method:

User.find_by(email: "john@doe.com").try(:authenticate, params[:password])

The method will return the object itself if the password matches or nil
otherwise.

Security 670

15.2 Log Masking

Great, we are no longer storing the passwords in the database. We are not
done though. We might still be leaking the passwords and other sensitive
information into the application logs. For every request, Rails logs the request
parameters into the log file unless the parameter name includes one of the
“filtered” strings. For a “filtered” parameter Rails will replace the value by
[FILTERED] before the logging:

Started POST
"/users?name=john&password=[FILTERED]&password_confirmation=[FILTERED]"
for 127.0.0.1 at 2013-02-24 22:29:59 +0000

Processing by UsersController#create as */*
Parameters: {"name"=>"john", "password"=>"[FILTERED]",
"password_confirmation"=>"[FILTERED]"}

Rails protects any parameter that includes password in its name by default, so
both password and password_confirmation are already covered. If your password
is using a differently named parameter, or if you want to protect other infor-
mation (for example credit card numbers), you should add those parameter
names to the special Rails configuration variable filter_parameters.
By default, standard Rails projects include config/initializers/filter_parame-
ter_logging.rb with the following line:

Rails.application.config.filter_parameters += [:password]

To protect another parameter, simply add it to the array, e.g.:

Rails.application.config.filter_parameters += [:password, :cc, :ccv]

Security 671

15.3 SSL (Secure Sockets Layer)

So now our apps are secure, right? We properly encrypted our passwords
in the database and we filtered sensitive data from being recorded in our
logs. Well, we’re not quite finished with security yet. The password (and other
potentially sensitive data) is still vulnerable to eavesdropping while in-transit
from the user’s browser to your web server.
To completely secure the information you need to use SSL (Secure Sockets
Layer). Configuring and managing SSL for your web server is out of the scope
of this book, but there are things to be done on the Rails side, which we will
cover now.
First, set config.force_ssl = true in your configuration file to force all access
to the application over SSL. Then specify use of Strict-Transport-Security
HTTP header3 and secure cookies.
The force_ssl setting works by redirecting to an HTTPS URL with same
parameters if you try to access the application via plain HTTP.

Trying to access a non-GET HTTP action with HTTP might not actually
work as you can not redirect to a POST request. The way to go is to
use force_ssl on the GET request that renders the form. In which case
standard form helpers will keep the HTTPS format for the form submit
action.

If you want fine-grained control over the forcing of SSL connections, you can
supply parameters to a controller’s force_ssl classmethod. It accepts the same
kind of options as a before_action, as well as :host and :port options in case
you need to specify a domain.

class UsersController < ApplicationController
force_ssl only: [:new, :edit], host: "www.foobar.com"

If class-level options are not suitable for your application, you can always roll
your own logic inside an action method. The ssl? method of a request option
returns true if the request was received over an HTTPS connection.

3<http://tools.ietf.org/html/draft-hodges-strict-transport-sec-02?

Security 672

15.4 Model Mass-assignment Attributes
Protection

Since its origins, Rails has featured a convenient mass-assignment feature
enabling assignment of multiple model attributes by passing a hash of values.
As such, it’s common to create a model using User.create(params[:user]) and
to update it later using User.update(params[:user]).
Without protection, direct mass-assignment access to all model attributes
would be easy to exploit. For example, if you happen to define an is_admin
boolean field in the “users” table, an attacker could give themselves admin
privileges by sneaking in an is_admin=true on an otherwise innocent registra-
tion form.
In the previous Rails versions, mass-assignment protection was implemented
on the model level using attr_accessible and attr_protected class level meth-
ods.
In a nutshell, you could call attr_accessible with a list of model attributes to
indicate that those attributes are safe to mass-update. attr_protected would
do the opposite, disabling access to passed attributes. This is referred to as
whitelisting and blacklisting, respectively.
There were several practical problems with the former approach:

• It was too cumbersome to use, as it restricted mass-assignment globally,
including tests and access from other models. In those cases you usually
know very well what attributes you are assigning and having to jump
through hoops to do so. The result wasn’t very pleasant.

• Simple whitelisting and blacklisting didn’t allow for special cases where
access to attributes depend on other attributes or other records, for
example, user roles and permissions.

• Models don’t feel like the right place to do define these kinds of re-
strictions, since most of the time we only need restrictions on mass-
assignment when passing unfiltered parameters to models inside a
controller action method.

Rails 4 introduced a new and improved way of controlling mass-assignment
attributes. The functionality was made available and proven in earlier Rails
versions with the strong_parameters gem. The new approach forbids mass-
assignment of a model attribute from a controller unless that attribute was
white-listed.

Security 673

Whitelisting is configured using two simple methods (permit and require) that
are exposed on a controller’s params object. Calls to those methods can be
chained to validate nested params hashes.
Calling require will validate that the parameter is actually present and throw
an ActionController::ParameterMissing exception if it is not. It will also return
the “extracted” value of the parameter.

params.require(:user)

An ActionController::ParameterMissing exception, unless unhandled, will bub-
ble up to the Rails dispatcher and result in a HTTP 400 Bad Request response.
Calling permit with a list of attributes will enable those attributes to “pass
through” to the model during mass-assignment but only if the value is one
of the supported “scalar” types: String, Symbol, NilClass, Numeric, TrueClass,
FalseClass, Date, Time, DateTime, StringIO, IO, ActionDispatch::Http::UploadedFile
or Rack::Test::UploadedFile. This restriction disables evil injection of arrays,
hashes or any other objects.

params.require(:user).permit(
:name, :email, :password, :password_confirmation)

Another option is to pass a hash. This will enable you to declare that one of
the attributes can contain an array of scalar values:

params.permit(ids: [])

To whitelist all the attributes in a given hash call permit! method on it:

params.require(:log_entry).permit!

Using a combination of permit and require, it’s relatively easy to implement
different parameter filtering options for creating new records and updating
existing records or any other “complicated” logic required:

Security 674

Listing 15.1 A typical UsersController with param filtering

class UsersController < ApplicationController

def create
user = User.create!(create_params)
redirect_to user

end

def update
user = User.find(params[:id])
user.update!(update_params)
redirect_to user

end

private

def create_params
params.require(:user).permit(:name, :email, :password,

:password_confirmation)
end

def update_params
params.require(:user).permit(name: true, email: true, tags: [])

end
end

There is an uncommon edge case that could trip up experienced Rails develop-
ers new to Rails 5. It crops up when slicing values from params for later use. In
Rails 5, params was changed to be an instance of ActionController::Parameters
that behaves a lot like a hash but always enforces security constraints. Line 2
in the following example does not return a hash.

def do_something_with_params
params.slice(:param, :other_param)

end

Unless you call permit first, the results of that slice operation will return an
empty object. The following code does work the way intended.

Security 675

def do_something_with_params
params.permit([:param, :other_param]).to_h

end

If you know the parameters you’re trying to store are not originating in the
wild and are guaranteed to be safe, you can choose to use to_unsafe_hash and
skip the permit calls.

def do_something_with_params
params.to_unsafe_h.slice(:param, :other_param)

end

The controller and action parameters are always allowed by default. There is
a configuration option in application.rb that enables other parameters to be
marked as always safe and available.

config.always_permitted_parameters = %w(controller action param other_param)

Security 676

15.5 SQL Injection

SQL injection attacks were very popular when people wrote SQL code for their
applications by hand. But even today, if you’re not careful, you can introduce
code that is susceptible to this kind of attack.

What Is a SQL Injection?

SQL injection is a catch-all description for attacks on SQL database-driven
applications. The attacker includes malicious fragments of SQL code in
otherwise legitimate input provided to the application, in the hopes that the
application “messes up” and sends those fragments along to the database to
be executed.
Let’s see how this can happen. Suppose that we implemented product search
functionality in our application using the following piece of code:

class ProductsController < ApplicationController
def search

@products = Product.where("name LIKE '%#{params[:search_terms]}%'")
end

end

For a search string “test”, this code will execute the following SQL query:

SELECT * FROM products WHERE name LIKE '%test%';

Okay so far. But what if the user submits search_terms with a value of ';DELETE
FROM users;

In this case, the resulting SQL code sent to the database is:

SELECT * FROM products WHERE name LIKE '%';DELETE FROM users;%';

That second statement will wipe out the entire ‘users’ table in the database.
Using variations on the same theme, an attacker could modify the users table
to reset an administrator’s password or retrieve data that he shouldn’t have
access to.
To protect ourseleves from this attack we could start escaping all the user
input ourselves, but fortunately we don’t have to do that, as ActiveRecord
already does it for us. We just need to know how to use it correctly.

Security 677

The first rule to remember is to never directly inject user’s input into any
string that will be used as a part of an SQL query. Instead we should use
the variable substitution facility provided by ActiveRecord (and other object-
mapping software—they all have it):

@products = Product.where('name LIKE ?', "%#{params[:query]}%")

The ‘?’ character in the query fragment serves as a variable placeholder. You
can have more than one in any given query, just make sure to pass the right
number of variables to interpolate.
You can read more about it this behavior in Chapter 5, “Working with Active
Record.”

Security 678

15.6 Cross-Site Scripting (XSS)

Cross-Site Scripting is one of the most common security vulnerabilities, but
that doesn’t make it any less severe. When successfully exploited it can give
an attacker a bypass around application authorization and authentication
mechanisms and leak personal information.
The attack works by injecting client-side executable code into the application
pages. An example of such code can be JavaScript that “leaks” cookies to a
remote server, which would allow the attacker to ‘clone’ any affected session.
So if the attacker is able to lay his hands on the administrator session he would
be able to impersonate an administrator without actually passing the required
authentication procedures, just by using an already authenticated session.
There are several ways attack code can “leak” the information. One of the
simplest ones is to insert an image tag into the DOM with image reference to
the attacker’s server and image path including the leaked information. The
attacker’s server access logs will capture the information where it can be
retrieved later.
All recent versions of Rails make it relatively easy to avoid this kind of attack.
In this section we will discuss the key elements provided by Rails to defend
against XSS attacks and point out things to watch out for.
The most common mistake leading to an XSS vulnerability is failing to escape
user input when rendering html. There are several possible vectors of attack
for exploiting this mistake.
Attack code can be first saved into the database (like, for example, injecting
it into a post title, or comment body, etc.), in which case such a database
record becomes infected. Anyone visiting a page with infected data will run
the malicious JavaScript code embedded in the record, allowing the attacker
to access the visiting user’s session and do whatever they’re allowed to do.
Another vector involves passing attack code as a URL parameter that is
directly rendered into the page, causing the victim to visit an “infected” URL.
In both cases the victim’s browser is exposed to the attack code, which
will execute in the browser’s context. The solution is to always “escape” or
“sanitize” unsafe HTML content.
In this context, “escaping” means replacing some of the string characters by
an HTML escape sequences that will remove the special meaning from the text
and cause it to render as regular text. Sanitizing, on the other hand, means
validating the HTML content to ensure only “good” HTML tags and attributes
are used.

Security 679

Note that sanitizing is inherently less secure than escaping, and should only
be used where rendered content must contain HTML markup. An example
would be a WYSIWYG HTML editor on a text area that manages code that is
later rendered on a page.

HTML Escaping

In previous versions of Rails you had to think hard about escaping and utilize
the h view helper method to escape potentially unsafe content. Rails core
fielded a lot of criticism for making our code “unsafe by default.” Having to
think about escaping turns out to be very error-prone, and many developers
forgot to do it properly. Recent versions of Rails (starting with 3.0) do a much
better job. Every string is tagged as either safe or unsafe. All unsafe strings
are automatically escaped by default. You only need to think about explicitly
managing the “safeness” of strings when you’re writing helpers that output
HTML into your template.
For obvious reasons, all Rails HTML helpers will output “safe” strings that can
be directly rendered on a page. Otherwise you would have to call html_safe on
the output of a helper.
For example, let’s look at the following view fragment:

%li= link_to @user.name, user_path(@user), class: user_class(@user)

The user’s name will be escaped and so will the return value of the user_-
class view helper method, (assuming it wasn’t tagged as safe.) The result of
user_path(@user) is an unsafe string, so it will be escaped as well.
The net result of those changes in later versions of Rails is that it becomes
easy to ensure proper HTML escaping. The “right thing” will be done in most
cases, and Rails will play it safe by default. Occasionally Rails feels like it
escapes “too much” when you forget to use html_safe on the return value of a
custom view helper method. But the error is usually easy to spot.
Even though Rails is safe by default, you should still be very careful when
you call html_safe though. Calling it on unsafe input without validation will
absolutely create an XSS vulnerability in your application.

Security 680

The most common source of confusion about needing html_safe in view
helper methods happens when manipulating literal strings.

def paragraphize(text)
text.split("\r\n\r\n").map do |paragraph|

content_tag(:p, paragraph)
end.join.html_safe

end

The call to content_tag on line 3 will properly escape its input, so
we don’t have to manually escape paragraph. It is itself a view helper
method, so it will tag its return value as html_safe. However, join will
join the safe strings from content_tag with an unsafe "" which is used
as the default join string. You’ll scratch your head and wonder what’s
going on, before adding the final html_safe in a state of confusion.

HTML Sanitization

In contrast to escaping, sanitization leaves some HTML intact. The idea is to
only leave “safe” html tags that we want and to remove all the rest. As usual
with filtering problems, there are 2 approaches: blacklisting and whitelisting.
Blacklisting involves trying to detect and remove “bad” HTML fragments,
like JavaScript tags or script content in links. Whitelisting only allows HTML
elements that are explicitly allowed, and escapes anything else.
Blacklisting is not a secure solution, since new hacks are being devised all the
time, and there’s no way we’d be able to be 100% sure that our blacklist is
complete at all times. Therefore, we must use the whitelisting approach.
Rails has a SanitizeHelper module for “for scrubbing text of undesired HTML
elements”. It includes several methods for our disposal that we already
covered in Chapter 11, “All About Helpers,” so we won’t repeat them here.

Input versus Output Escaping

One more thing to discuss about HTML escaping is timing. When should we
do it? On input of user data or during rendering (output)?
The rule of thumb is to escape on output, the rationale being that we might
want to render the content in different formats and each has its own escaping
requirements. For example, escaping HTML on input will not help us if the
output format is JSON, which requires escaping of quote characters and not
HTML tags.

Security 681

Sanitization also mostly makes sense on output, as it will allow us to change
the rules without re-applying them on all the data already stored.

Especially cautious application developers might decide to escape and
sanitize on both input and output, but we find that it usually isn’t
necessary.

Security 682

15.7 XSRF (Cross-Site Request Forgery)

Cross-Site Request Forgery (usually abbreviated as CSRF or XSRF) is a type
of web application vulnerability that allows an attacker to modify application
state on behalf of a user that is logged into the application by luring the user
to click on a carefully crafted link, visit a page, or even just open an email with
malicious embedded images.
Assume that an intern named Frank at a banking institution implemented
account fund transfer functionality as an HTTP GET method, like so:

GET /transfers?from_account_id=123&to_account_id=456&amount=1000

Note that you would NEVER do something like this in real life. This example
is for illustrative purposes only. In fact, if you’re following proper RESTful
practices, a GET would not make any modifications to server state. We’re
about to see why…
Of course everyone, even interns, know you should authenticate banking
transfers. So Frank does some research on Rails security and properly
authenticates and authorizes the request.
You see the problem yet? No? Assume an end-user logs into his online banking,
leaves it logged in and flips over to check his email in another browser tab.
Even a relatively unsophisticated attacker could send him anHTML email with
the following image:

<img src="http://banking-domain/transfers?from_account_id=<users_account_id>
&to_account_id=<attacker_account_id>&amount=1000">

It’s a long shot, but if this image is opened by the victim’s browser while it
is authenticated and authorized, the transfer will get executed because the
session cookie from the bank is still valid.
Fortunately for the bank, Frank’s codewas reviewed, and the reviewer pointed
out the problem. So Frank fixed the problem by modifying his transfer action
to use a POST instead of GET.
Are the bank’s customers safe yet? Not quite. An attacker can still “lure”
victims to an innocent-looking site hosting JavaScript that will post to the fund
transfer URL from within the victim’s browser.
So how do we protect ourselves against this chicanery?

Security 683

Restricting HTTP Method for Actions with Side-effects

First we must only allow side effects on non-GET requests (e.g., POST,
DELETE, PATCH). This is actually specified by HTTP protocol guidelines, and
there are several ways to accomplish the restriction in Rails.
First, we can restrict the request methods at the routing level:

post 'transfers' => 'transfers#create'

resources :users do
post :activate, on: :member

end

Rails’ standard resources routing helper exhibits the correct behavior by
default. It will require POST to access create, PATCH to access update, and
DELETE to access destroy. You need to be careful when you define your own
non-resource routes, especially if you use :action segment routes.
The truly paranoid among us can use a controller class method called verify
to make sure that proper methods are used for controller actions with side-
effects:

class UsersController < ApplicationController
verify method: [:post, :put, :delete], only: [:activate, :create,

:update], redirect_to: '/'

Require Security Token for Protected Requests

Using the proper HTTP request method is not enough. We need to ensure that
the requests originate form our application. You could check the referrer of
HTTP requests, but the proper way to do it is to include a security token as
a parameter or header on protected requests and validate the token on the
server side.
Rails has built-in facilities to handle exactly this kind of security check. The
boilerplate implementation of ApplicationController generated for new apps
includes the following code:

Security 684

class ApplicationController
Prevent CSRF attacks by raising an exception.
For APIs, you may want to use :null_session instead.
protect_from_forgery with: :exception

end

This code adds a verify_authenticity_token before action callback to all re-
quests in your application. The protect_from_forgery method takes :if/:except
parameters just like a normal before_action declaration.
Additionally, the with parameter accepts one of the supported protection
strategies: :exception, :null_session, or :reset_session.

:exception
Raises ActionController::InvalidAuthenticityToken exception.

:reset_session
Resets the user’s session.

:null_session (default)
Executes the request as if no session exists. Used by default if no with
parameter is supplied.

The difference between :reset_session and :null_session is that :null_session
doesn’t actually change the session, only substitutes an empty one for the
current requests, while :reset_session will leave it empty for subsequent
requests as well.

Client-side Security Token Handling

Now that we are requiring a security token on the server side we need to pass
it from the client side. Standard Rails form helpers (e.g. form_for) will include
the token as a hidden parameter.
The same goes for the rails link helpers that generate non-GET Ajax requests
(e.g., link_to with method: :post). Note that the actual handling of security
tokens is done in the UJS JavaScript library, e.g., jquery-rails. You can check
out the implementation of the handleMethod function in jquery_ujs.js if you’re
curious about it.
To function properly the browser needs access to the security token from the
server. It is provided with a call to csrf_meta_tags in your application layout
header section:

Security 685

%head
....
= csrf_meta_tags

This will render two meta tags:

<meta content="authenticity_token" name="csrf-param" />
<meta content="...." name="csrf-token" />

The actual token is stored in the session. It is generated for the first time
when it is needed and preserved for the duration of the session. The call to
csrf_meta_tags is included in the boilerplate application template of a fresh
Rails app.

Security 686

15.8 Session Fixation Attacks

A session fixation attack is something to be aware of if you implement your
own session management. The Rails cookies session store is immune from
these types of attacks.
Many session security implementations depend on the session id being a
secret. If the attacker is successfully able to force a user to use their session
id and login into the system, the attacker can get access to the authenticated
session by using that id.

Session fixation attacks are only possible when hackers are able to force the
setting of a third session id in the user’s browser through a URL or other
means. For example, in some configurations of PHP, you can allow a session
id to be passed as a URL parameter called _my_app_session_id. The attacker
can send victims to the malicious link, which then redirects back to the target
system including a session id that they generated.

Defending against this hack is pretty simple. Whenever you elevate a user’s
privileges, call the reset_session helper, which ensures that their session id is
changed. Attackers are left with an old unauthenticated session.

Any decent Rails authentication system, like Devise, already protects
you from session fixation attacks. So you don’t usually need to worry
about it unless you are doing something unusual.

Security 687

15.9 Keeping Secrets

As a general rule, you should not store secret things in your source code. This
includes passwords, security tokens, API keys, etc. Assume that a determined
attacker will gain access to your source code and use it to their advantage, if
they can.
So where do you store secret parts of your application’s configuration,
including API keys and tokens for external services? The recommended way
is to get those from your process environment.
For example, let’s say you need to configure a Pubnub service. The following
code will enable you to configure Pubnub using five environment variables.
(Put it in config/initializers/pubnub.rb.)

PUBNUB = Pubnub.new(
ENV["PUBNUB_PUBLISH_KEY"],
ENV["PUBNUB_SUBSCRIBE_KEY"],
ENV["PUBNUB_SECRET_KEY"],
ENV["PUBNUB_CYPHER"] || "",
ENV["PUBNUB_SSL"] == "true")

If you deploy to Heroku you can easily configure environment variables using
the heroku command line tool:

$ heroku config:add PUBNUB_PUBLISH_KEY=.... PUBNUB_SUBSCRIBE_KEY=... ...

Other deployment options should enable you to define environment variables
easily since it’s a common need.
Even if you have no easy way to control the environment directly, you almost
always have a way to add extra files to the deployment directory. You can load
such a file into your environment like this (add this code to the top of your
config/application.rb):

change this path according to your needs
ENV_PATH = File.expand_path('../env.rb', __FILE__)
require ENV_PATH if File.exists?(ENV_PATH)

The env.rb file can assign environment variables as needed:

Security 688

ENV["PUBNUB_PUBLISH_KEY"] = "..."

IMPORTANT: Rails, by default, stores a very important secret in the source
code. Take a look at config/secrets.yml:

Rails.application.secrets.secret_key_base = '...'

Change this to the following:

config/secrets.yml

...

production:
secret_key_base: <%= ENV["SECRET_KEY_BASE"] %>

This token is used to sign the session cookie, and it allows anyone that has it
to modify session to their liking, bypassing most security measures.

Security 689

15.10 Conclusion

Security is a topic that should never be taken lightly, especially when de-
veloping business-critical applications. Since exploits are always being dis-
covered, it’s very important to keep up-to-date on new developments. We
recommend that you check out http://guides.rubyonrails.org/security.html4
and http://railssecurity.com/5 for the latest information available.

You should consider using Code Climate6 to automatically analyze and
audit your Rails code after every git push. Tell Bryan and Noah that
The Rails Way authors sent you.

4http://guides.rubyonrails.org/security.html
5http://railssecurity.com
6http://codeclimate.com

http://guides.rubyonrails.org/security.html
http://railssecurity.com/
http://codeclimate.com/
http://guides.rubyonrails.org/security.html
http://railssecurity.com/
http://codeclimate.com/

16. Action Mailer
It’s a cool way to send emails without tons of code.
—Jake Scruggs

Integration with email is a crucial part of most modern web application
projects. Whether it’s sign-up confirmations, password recovery, or letting
users control their accounts via email, you’ll be happy to hear that Rails offers
great support for both sending and receiving email, thanks to its Action Mailer
framework.
In this chapter, we’ll cover what’s needed to set up your deployment to be
able to send and receive mail with the Action Mailer framework and by writing
mailer models, the entities in Rails that encapsulate code having to do with
email handling.

Action Mailer 691

16.1 Mailer Models

A mailer model is a class that encapsulates code for a particular class of
automated emails in your application. A small application might only have
one mailer, and larger ones might have many. There could be a correlation
between mailer classes and other parts of your domain or not. It all depends.
Let’s go ahead and create a mailer model that will contain code pertaining
to sending notices in our time and expenses sample app. Rails provides a
generator to get us started rapidly. This mailer will send out notices to users
of our sample application who are late in entering their time.

$ rails generate mailer NoticesMailer
create app/mailers/notices_mailer.rb
invoke haml
create app/views/notices_mailer

identical app/views/layouts/mailer.text.haml
identical app/views/layouts/mailer.html.haml

invoke rspec
create spec/mailers/notices_mailer_spec.rb
create spec/mailers/previews/notices_mailer_preview.rb

A view folder for the mailer is created at app/views/notices_mailer, and the
mailer itself is stubbed out at app/mailers/notices_mailer.rb:

class NoticesMailer < ApplicationMailer
end

Kind of like a default Active Record subclass, there’s not much there at the
start. The generated class inherits from ApplicationMailer, which was created
at the time that the application was newly bootstrapped, in app/mailers/appli-
cation_mailer.rb

class ApplicationMailer < ActionMailer::Base
default from: "system@timeandexpenses.com"
layout 'mailer'

end

This class, which inherits from ActionMailer::Base, follows what should already
be a familiar pattern in Rails. It gives you a place to set property and code
behavior that is shared across all mailers.

Action Mailer 692

Preparing Outbound Email Messages

You work with Action Mailer classes by defining public mailer methods that
correspond to types of emails that you want to send. Inside the public method,
you assign instance variables needed to render the message template(s) and
then call the mail method, which is conceptually similar to the render method
used in controllers.
Continuing with our example, let’s flesh out a late_timesheet mailer action in
the NoticesMailer class that takes recipient and week_of parameters.

Listing 16.1: Adding a mailer method

class NoticesMailer < ActionMailer::Base
def late_timesheet(recipient:, week_of:)

@recipient = recipient
@week_of = week_of
mail to: recipient.email,

subject: "[T&E] Your timesheet is late!!!"
end

end

To keep things simple, we’re passing the objects needed directly from param-
eters to the template, as instance variables. Then we call mail to send the
message.

Decent Exposure

For the sake of system robustness, some claim that it’s better for parameters
to async processes (like mailer actions) to be simple integers and strings
rather than complex objects.1

If you follow that advice, the first part of yourmailer actionmethodwill contain
essentially boilerplate code that uses ids to look up Active Record objects
and assign them to instance variables. We can significantly cut down on that
boilerplate, plus eliminate the use of icky instance variables by using Decent
Exposure, just like we do in our controller actions.

1Marshallling versus extra database lookups: determining the tradeoffs are left as an exercise for the reader.

Action Mailer 693

class PostMailer < ApplicationMailer
expose(:posts, -> { Post.last_week.popular.take(10) })
expose(:post)

def top_ten_posts_for_last_week
mail to: User.active.pluck(:email)

end

def featured_post(id:)
@greeting = "Featured Post"
mail to: "to@example.org"

end
end

In the example, both posts and post are exposed as helper methods to your
mailer template.
Note that in order for this technique to work, youmust use Ruby 2-style named
parameters for your action methods. The mailer’s instance methods are not
called directly but rather through the mailer class, which gives the Decent
Exposure library a chance to hook into the execution chain and do its magic.

Action instance methods

The following methods are available inside of a mailer action.

attachments
Enables you to add normal and inline file attachments to your message.

attachments["myfile.zip"] = File.read("/myfile.zip")
attachments.inline["logo.png"] = File.read("/logo.png")

headers
Enables you to supply a hash of arbitrary custom email headers.

headers("X-Author" => "Obie Fernandez")

mail
Generates an email message to be sent. It takes an optional hash of
parameters and headers passed to the Mail::Message initializer and an
optional block. If no block is specified, mailer templates will be used to
construct the email with the same name as the method in the mailer. If
a block is specified these can be customized.

Action Mailer 694

mail method parameters

The following parameters can be passed to the mail method:

subject
Required. A subject line for the message.

to Required. The recipient addresses for the message, either as a string
(for a single address) or an array (for multiple addresses). Remember
that this method expects actual address strings, not your application’s
user objects.

def missing_timesheets_for_last_week
mail to: User.missing_timesheets_for_last_week.pluck(:email),

subject: "[T&E] Your timesheet is late!!!"
end

from
Required. Specifies the from address for the message as a string.

cc Specifies carbon-copy recipient (Cc:) addresses for the message, either
as a string (for a single address) or an array for multiple addresses.

bcc Specifies blind recipient (Bcc:) addresses for the message, either as a
string (for a single address) or an array for multiple addresses.

reply_to
Sets the email for the reply-to header.

date
An optional explicit sent on date for themessage, usually passed Time.now.
Will be automatically set by the delivery mechanism if you don’t supply
a value, and cannot be set using the default macro.

content_type
MIME type for the message.

body
Lets you provide the message body yourself and overrides template ren-
dering behavior. Rails defaults to text/plain unless you tell it otherwise
using content_type.

Here’s a useful mailer that I have in almost every production Rails app I’ve
ever worked on:

Action Mailer 695

class UtilityMailer < ApplicationMailer
def notify_support(subject:, message:)

mail to: ENV['SUPPORT_EMAIL'],
subject: subject,
body: message

end
end

dynamic_delivery_options
Lets you override the default delivery options (e.g., SMTP credentials)
per mailer action. Rarely needed.

mail Method Formats

The mail method takes an optional block letting you provide custom formats
similar to Rails routes.

mail(to: "user@example.com") do |format|
format.text
format.html

end

Mailer Views

The body of the email is created by using a view template (regular Haml
or ERb) that has the instance variables in the mailer available as instance
variables in the template. So the corresponding text template for the mailer
method in Listing 16.1 could look like this:

Dear <%= @recipient.name =%>,

Your timesheet for the week of <%= @week_of.strftime("%m/%d") %> is late. You should feel \
ashamed.

Sincerely,
T&E System

Don’t use Haml for plain text email templates. ERb is actually a little
easier and doesn’t lose line breaks. Try it and see.

If the recipient was Aslak, the email generated would look like this:

Action Mailer 696

From: system@timeandexpenses.com
To: aslak@tw.com
Subject: [T&E] Your timesheet is late!!!

Dear Aslak,

Your timesheet for the week of Aug 15th is late. Shame on you!

Mailer views are located in the app/views/name_of_mailer_class directory. The
specific mailer view is known to the class because its name is the same as
the mailer method. In our example from above, our mailer view for the late_-
timesheetmethodwill be in app/views/late_notice_mailer/late_notice.html.haml
for the HTML version and app/views/late_notice_mailer/late_notice.text.erb
for the plain text version.

Note that plain text email templates have a text extension, not txt!
That tripped me up pretty badly once.

HTML Email Messages

To send mail as HTML, make sure your view template generates HTML
and that the corresponding template name corresponds to the email method
name. You can also override this template name in the block in the formatter,
although I’d be hard pressed to imagine why you would need to do so.

mail(to: "user@example.com") do |format|
format.text
format.html { render "another_template" }

end

The render Method

The render method inside a mailer formatter block is very similar to its
Action View counterpart. It understands parameters such as text or nothing to
override template rendering. It also understands layout, in case you want to
specify a different layout for a particular mailer action.

Multipart Messages

If a plain text and HTML template are present for a specific mailer action,
the text template and the HTML template will both get sent by default as a
multipart message. The HTML part will be flagged as alternative content for
those email clients that support it.

Action Mailer 697

Implicit Multipart Messages

As mentioned earlier in the chapter, multipart messages can also be used
implicitly, without passing a block of formatters to the mail method, because
Action Mailer will automatically detect and use multipart templates, where
each template is named after the name of the action, followed by the content
type. Each such detected template will be added as a separate part to the
message.
For example, if the following templates existed, each would be rendered and
added as a separate part to the message, with the corresponding content type.
The same body hash is passed to each template.

• signup_notification.text.haml
• signup_notification.text.html.haml
• signup_notification.text.xml.builder
• signup_notification.text.yaml.erb

Attachments

Including attachments in emails is relatively simple; just use the attachments
method in your class.

class NoticesMailer < ActionMailer::Base
def late_timesheet(recipient:, week_of:)

@recipient = recipient
@week_of = week_of
attachments["handbook.pdf"] = File.read("/docs/employee/handbook.pdf")
mail to: recipient.email,
from: "test@myapp.com",
subject: "[T&E] Your timesheet is late!!!"

end
end

If you wanted to use the image inline in the HTML template just use attach-
ments.inline like this:

attachments.inline["shame.jpg"] = File.read("app/assets/images/shame.jpg")

Action Mailer 698

Notice that File.read works with a relative path at the root of your Rails
application.

You can access this attachment in the template via the attachments hash, calling
the url method to get the image’s relative content id path. (The content id
path, or cid for short, is like a URL pointing to a specific part of a multi-part
message.)

-# app/views/notices_mailer/late_notice.html.haml

%p Dear #{@recipient.name},

%p Your timesheet for the week of #{@week_of.strftime("%m/%d")} is late. Here's a photo de\
picting how you should feel about it.

%p= image_tag attachments['shame.jpg'].url, alt: "Shame on you"

%p Sincerely,

%p T&E System

Attachment Parameters and Alternate Encodings

Rails automatically Base64 encodes attachments. If you want something
different, encode your content yourself and pass in the encoded content and
encoding information in a hash to the attachments method. Pass the file name
and specify headers and content and Action Mailer, and Mail will use the
settings you pass in.

control, encoded_content = PGP.crypt(message)

attachments['control'] = {
mime_type: 'application/pgp-encrypted',
encoding: 'PGP',
content: encoded_content

}
attachments['encoded_content'] = {

mime_type: 'application/octet-stream',
encoding: 'PGP',
content: encoded_content

}

Action Mailer 699

The example is just illustrative pseudo-code. If you’re interested in
learning how to use PGP in your Rails application, check out the
Mail:GPG Gem https://github.com/jkraemer/mail-gpg.

Once you specify an encoding, Mail will assume that your content is already
encoded and not try to Base64 encode it.

Generating URLs

Generating application URLs is handled through named routes or using the
url_for helper. Since mail does not have request context like controllers do,
the host configuration option needs to be set. The best practice for this is to
define them in the corresponding environment configuration, although it can
be defined on a per mailer basis or even per method call.

config/environments/production.rb
config.action_mailer.default_url_options = { host: 'accounting.com' }

In your mailer you can now generate your URL. It is important to note that
you cannot use the _path variation for your named routes since email readers
don’t have the concept of a current URL from which to derive a hostname.

Mailer Layouts

Mailer layouts behave just like controller layouts. To be automatically recog-
nized they need to have the same name as the mailer itself. In our ongoing
example code in this chapter, a template would automatically be used for our
HTML emails.
Just like with normal views, you can also add custom layouts if your heart
desires, either at the class level or as an optional parameter to the render
method.

https://github.com/jkraemer/mail-gpg

Action Mailer 700

class LateNotice < ApplicationMailer
layout "alternative"

def late_timesheet(user, week_of)
mail(to: user.email) do |format|

format.html { render layout: "another" }
end

end
end

We’ve now talked extensively about preparing email messages for sending,
but what about actually sending them to the recipients?

Sending an Email

Sending emails involves calling the mailer action at the class level of your
mailer class. That’s unintuitive, because mailer actions are implemented as
instance methods, but that’s the way it works.

aslak = User.find_by(email: "aslak@thoughtworks.com")
LateNotice.late_timesheet(recipient: aslak,

week_of: 1.week.ago).deliver_later

Mailer class methods return an ActionMailer::MessageDelivery object, which
can be told to deliver_now or deliver_later to send itself out.
ActionMailer::MessageDelivery is just a wrapper object around a Mail::Message.
If you want to inspect, alter, or do anything else with the Mail::Message object,
you can access it via the message method on the delivery object.

Asynchronous Delivery

Active Job integrates with Action Mailer to easily enable sending of emails
without holding up request processing. Just use deliver_later instead of
deliver_now.
Newly created jobs are placed in a queue named mailers. That behavior can be
customized in an initializer or environment script using the following setting:

config.action_mailer.deliver_later_queue_name = 'default'

Action Mailer 701

Callbacks

As of Rails 4, the capability to define action callbacks for a mailer was added.
Like their Action Controller counterparts, you can specify before_action, af-
ter_action, and around_action callbacks to run shared pre- and post-processing
code within a mailer.
Callbacks accept one or more symbols, representing a matching method in
the mailer class:

before_action :set_headers

Or you can pass the callback a block to execute, like this:

before_action { logger.info "Sending out an email!" }

A common example of why you would use a callback in a mailer is to set inline
attachments, such as images, that are used within the email template.

class NoticesMailer < ActionMailer::Base
before_action :set_inline_attachments

def late_timesheet(user, week_of)
@recipient = user.name
mail(

to: recipient.email,
from: "test@myapp.com",
subject: "[Time and Expenses] Timesheet notice"

)
end

protected

def set_inline_attachments
attachments["logo.png"] = File.read("/images/logo.png")

end
end

Action callbacks are covered in detail in Chapter 4, “Workingwith Controlers,”
in the “Action Callbacks” section.

Action Mailer 702

Interceptors

There are situations, particularly in staging environments, when you want to
intercept emails prior to delivery. Action Mailer provides this functionality via
Interceptors. You can register them to make modifications to mail messages
right before they are processed for delivery.

class SandboxEmailInterceptor
def self.delivering_email(message)

message.to = ['sandbox@example.com']
end

end

For an interceptor to be active, you need to register it. Do that in an initializer
file or within the environment script where you want the interceptor to be
active.

ActionMailer::Base.register_interceptor(SandboxEmailInterceptor)

Action Mailer 703

16.2 Previews

By default in Rails, all email messages sent in development via Action Mailer
are set to test mode. This means if you send an email from your application,
the output of that message would display in your development log. While this
can show you if the output is correct, it does not indicate whether the email
message is rendered correctly. A way around this would be to connect your
development environment to an actual SMTP server. Even though this would
enable you to view the email in your mail client of choice, it’s also a very bad
idea—combined with realistic sample user data, you could accidentally email
real people.
Rails 4.1 introduced Action Mailer previews, which give us a means of
rendering plain text and HTML mail templates in the browser without having
to deliver them. It’s super useful.
When we generated our LateNotice mailer in the beginning of the chapter,
an action mailer preview class was generated and placed in spec/mailers/pre-
views/late_notice_preview.rb.
It’s empty by default, so let’s flesh it out with some code that pulls up a user
created in our db/seeds.rb

Preview all emails at http://localhost:3000/rails/mailers/notices_mailer
class NoticesMailerPreview < ActionMailer::Preview

def late_timesheet
user = User.find_by!(email: "obie@trxw.com")
NoticesMailer.late_timesheet(recipient: user, week_of: 1.week.ago)

end
end

You might be tempted to use fixtures or FactoryGirl to create test data
for your mailer previews. The problem with that approach is that since
you’re not in a test environment, the data you create in the preview
code is not cleaned up automatically. I prefer using seed data because
then I don’t have to worry about object lifecycles.

By default, all previews are located in the test/mailers/previews directory.
However, this directory path can be overridden using the preview_path con-
figuration option.

Action Mailer 704

For those using RSpec
config.action_mailer.preview_path = "#{Rails.root}/spec/mailers/previews"

To obtain a listing of all Action Mailer previews available within your appli-
cation, navigate to http://localhost:3000/rails/mailers/ while running a local
development server instance.
I pull up my own list of mailer preview instances and select the link for Notices
Mailer, late_timesheet.

Action Mailer 705

a Mailer Preview

Action Mailer 706

16.3 Receiving Emails

Third-party email service providers all provide some sort of inbound email
processing capability, and they all work the same way. I strongly recommend
using them instead of Rails’ own inbound email capabilities.
For instance, let’s say you’re using the excellent Postmark service for sending
email. Postmark can be configured2 to accept and parse any emails sent
to your server’s unique inbound email address and/or all emails sent to a
forwarding domain that you set up for that purpose. Postmark will POST
incoming email messages as JSON to a URL you specify. This enables you to
treat incoming email as an data source just like you would JSON being posted
from a web client or mobile app.

The receive Method

If you’re on a really tight budget or have some other reason preventing you
from using a third-party email service provider, then you can try setting up
your server to receive emails using Rails itself. The first step is to add a
public method named receive to one of your application’s ActionMailer::Base
subclasses. It will take a Mail::Message3 object instance as its single parameter.
When there is incoming email to handle, the raw email string is converted
into a Mail::Message object automatically, and your receive method is invoked
for further processing. You don’t have to implement the receive class method
yourself; it is inherited from ActionMailer::Base.4

That’s all pretty confusing to explain, but simple in practice.

Listing 16.2: A simple MessageArchiver mailer class with a receive method
class MessageArchiver < ActionMailer::Base

def receive(email)
person = Person.where(email: email.to.first).first!
person.emails.create(

subject: email.subject,
body: email.body

)
end

end

2http://developer.postmarkapp.com/developer-process-email.html
3https://github.com/mikel/mail
4If you are using a third-party email service, such as Sendgrid, be sure to checkout the Griddler gem by

thoughtbot. It’s a Rails engine that hands off preprocessed email objects to a class solely responsible for processing
the incoming email.

http://developer.postmarkapp.com/developer-process-email.html
http://developer.postmarkapp.com/developer-process-email.html
https://github.com/mikel/mail
https://github.com/thoughtbot/griddler

Action Mailer 707

The receive class method can be the target for a Postfix recipe or any other
mail-handler process that can pipe the contents of the email to another
process. The rails runner command makes it easy to handle incoming mail:

$ /path/to/app/bin/rails runner 'MessageArchiver.receive(STDIN.read)'

That way, when a message is received, the receive class method would be fed
the raw string content of the incoming email via STDIN.

Handling Incoming Attachments

Processing files attached to incoming email messages is just a matter of using
the attachments attribute of Mail::Message, as in Listing 16.3. This example
assumes that you have a Person class, with a has_many association photos, that
contains a Carrierwave attachment.5

class PhotoByEmail < ApplicationMailer

def receive(email)
person = Person.where(email: email.from.first).first!
if email.has_attachments?

email.attachments.each do |file|
person.photos.create(asset: file)

end
end

end
end

There’s not much more to it than that, except of course to wrestle with
the configuration of your mail-processor (outside of Rails) since they are
notoriously difficult to configure.6 After you have your mail-processor calling
the rails runner command correctly, add a crontab so that incoming mail is
handled about every five minutes or so, depending on the needs of your
application.

5Carrierwave, created by Jonas Nicklas, can be found at https://github.com/jnicklas/carrierwave.
6Rob Orsini, author of O’Reilly’s Rails Cookbook recommends getmail, which you can get from http://pyropus.

ca/software/getmail.

https://github.com/jnicklas/carrierwave
http://pyropus.ca/software/getmail
http://pyropus.ca/software/getmail

Action Mailer 708

16.4 Testing Email Content

Ben Mabey’s email_spec7 gem provides a nice way to test your mailers using
RSpec. Add it to your Gemfile, and then first make the following additions to
your spec/spec_helper.rb.

RSpec.configure do |config|
config.include(EmailSpec::Helpers)
config.include(EmailSpec::Matchers)

end

Mailer specs reside in spec/mailers, and email_spec provides convenience
matchers for asserting that the mailer contains the right attributes.

reply_to
Checks the reply-to value.

deliver_to
Verifies the recipient.

deliver_from
Assertion for the sender.

bcc_to
Verifies the Bcc.

cc_to
Verifies the Cc.

have_subject
Performs matching of the subject text.

include_email_with_subject
Performs matching of the subject text in multiple emails.

have_body_text
Matches for text in the body.

have_header
Checks for a matching email header.

These matchers can then be used to assert that the generated email has the
correct content included in it.

7https://github.com/bmabey/email-spec

https://github.com/bmabey/email-spec

Action Mailer 709

require "spec_helper"

describe InvoiceMailer do
let(:invoice) { Invoice.new(name: "Acme", email: "joe@example.com") }

describe "#create_late" do
subject(:email) { InvoiceMailer.create_late(invoice) }

it "delivers to the invoice email" do
expect(email).to deliver_to("joe@example.com")

end

it "contains the invoice name" do
expect(email).to have_body_text(/Acme/)

end

it "has a late invoice subject" do
expect(email).to have_subject(/Late Invoice/)

end
end

end

If you’re attempting to test whether or not the mailer gets called and sends the
email, it is recommended to simply check via a mock that the deliver method
got executed.

Action Mailer 710

16.5 Sending via API

In addition to SMTP, the major email service vendors all provide the capability
to send transactional email via API. For example, sending single emails
through Postmark is as simple as [sending an HTTP POST request to their /e-
mail endpoint with a JSONmessage].(http://developer.postmarkapp.com/developer-
send-api.html)

{
"From": "sender@example.com",
"To": "receiver@example.com",
"Cc": "copied@example.com",
"Bcc": "blank-copied@example.com",
"Subject": "Test",
"Tag": "Invitation",
"HtmlBody": "Hello",
"TextBody": "Hello",
"ReplyTo": "reply@example.com",
"Headers": [

{
"Name": "CUSTOM-HEADER",
"Value": "value"

}
],
"TrackOpens": true,
"TrackLinks": "HtmlOnly"

}

As you can tell from the example code, using third-party email service
providers also gives you value-added features like tagging and tracking
of opens and link click-throughs.

Realistically, there’s little reason to use third-party APIs directly in this way,
because they all have well-supported libraries that integrate with Action
Mailer. To use Postmark, just add the postmark-rails gem and configure
accordingly.

config.action_mailer.delivery_method = :postmark
config.action_mailer.postmark_settings = { api_key: ENV['POSTMARK_KEY'] }

Action Mailer 711

16.6 Configuration

If your production server has sendmail installed, then ActionMailer will happily
use it to send emails. If you don’t, and you don’t want to use a third-party email
service, then you can try setting up Rails to send email directly via SMTP.
Lacking sendmail, Rails will try to send email via SMTP (port 25) of localhost.
If you happen to be running Rails on a host that has an SMTP daemon running
and it accepts SMTP email locally, you don’t have to do anything else in order
to send mail. If you don’t have SMTP available on localhost, you have to decide
how your system will send email.
The ActionMailer::Base class has a hash named smtp_settings that holds con-
figuration information. The settings here will vary depending on the SMTP
server that you use.
The sample code (shown in Listing 16.3) demonstrates the SMTP server
settings that are available (and their default values). Perhaps you’ll want to
add similar code to your production environment:

16.3: SMTP settings for ActionMailer

ActionMailer::Base.smtp_settings = {
address: 'smtp.yourserver.com', # default: localhost
port: 25, # default: 25
domain: 'yourserver.com', # default: localhost.localdomain
user_name: 'user', # no default
password: 'password', # no default
authentication: :plain # :plain, :login or :cram_md5

}

The vast majority of Rails applications rely on third-party SMTP
services that specialize in delivering automated email, avoiding user
spam filters and blacklists. The most popular email service providers in
the world are Sendgrid, Postmark, andMailgun. If you’re already using
Mailchimp (and you probably are, judging by their popularity) then
their transactional email add-on, formerly named Mandrill, is another
potential option.

Action Mailer 712

16.7 Conclusion

In this chapter, we learned how Rails makes sending and receiving email easy.
With relatively little code, you can set up your application to send out email,
even HTML email with inline graphics attachments. Receiving email is even
easier, except perhaps for setting up mail-processing scripts and cron jobs.
We also briefly covered the configuration settings that go in your application’s
environment specific configuration related to mail.

17. Caching and Performance
Watch me lean then watch me rock.
—Soulja Boy

Historically, Rails suffered from unfair criticisms over perceived weaknesses
in scalability. The continued success of Rails in ultra high traffic usage at
companies such as Groupon has made liars of the critics. It turns out that
the raw CPU efficiency missing from Ruby is just not too much of a factor
in IO-bound web applications. It is entirely possible to make your Rails
application responsive and scalable with ease. Those mechanisms used to
squeeze maximum performance out of your Rails apps are the subject of this
chapter.
Much of that performance comes from view caching, letting you specify that
anything from entire pages down to fragments of the page should be captured
to disk as HTML files and sent along by your web server on future requests
with minimal involvement from Rails itself. ETag support means that, in best-
case scenarios, it’s not even necessary to send any content at all back to the
browser, beyond a couple of HTTP headers.

Caching and Performance 714

17.1 View Caching

ActiveView’s templating system is both flexible and powerful. However, it is
relatively slow, even in the best case scenarios. Sometimes, just rendering a
page can consume 80% of the average request processing time.1 Therefore,
once you get the basic functionality of your app coded, it’s worth doing a
pass over your views and figuring out how to cache their content to achieve
maximum performance.
Historically, there have been three types of view caching in Rails. As of Rails
4, two of those types, action and page caching, were extracted into officially-
supported, but separate, gems. Even though a consensus is emerging that
“Russian Doll” caching using fragment caching is enough, we briefly cover
the other two methods here for the sake of completeness:

Page caching
The output of an entire controller action is cached to disk, with no further
involvement by the Rails dispatcher.

Action caching
The output of an entire controller action is cached, but the Rails dis-
patcher is still involved in subsequent requests, and controller filters are
executed.

Fragment caching
Arbitrary reusable bits and pieces of your page’s output are cached to
prevent having to render them again in the future.

Knowing that your application will eventually require caching should influ-
ence your design decisions. Projects with optional authentication often have
controller actions that are impossible to page or action-cache because they
handle both login states internally.
Most of the time, you won’t have too many pages with completely static
content that can be cached using caches_page or caches_action, and that’s
where fragment caching comes into play. It’s also the main reason that these
two pieces of functionality were extracted out of core Rails.

For scalability reasons, you might be tempted to page cache skeleton
markup or content that is common to all users, then use Ajax to
subsequently modify the page. It works, but I can tell you from
experience that it’s difficult to develop and maintain and probably not
worth the effort for most applications.

1http://www.appneta.com/blog/russian-doll-caching/

http://www.appneta.com/blog/russian-doll-caching/

Caching and Performance 715

Page Caching

The simplest form of caching is page caching, triggered by use of the
caches_page macro-style method in a controller. It tells Rails to capture the
entire output of the request to disk so that it is served up directly by the web
server on subsequent requests without the involvement of the dispatcher. On
subsequent requests, nothing will be logged to the Rails log, nor will controller
filters be triggered—absolutely nothing to do with Rails will happen, just like
the static HTML that happens with files served from your project’s public
directory.

class HomepageController < ApplicationController
caches_page :index

def index
...

Beginning in Rails 4, if you want to use page caching then you need to add its
gem to your Gemfile:

gem 'actionpack-page_caching'

Next, include the module and specify the folder in which to store cached pages
in ApplicationController:

class ApplicationController < ActionController::Base
include ActionController::Caching::Pages
self.page_cache_directory = "#{Rails.root.to_s}/public/cache/pages"

end

For classic Rails behavior, you may set the page_cache_directory to the public
root, but if you don’t, then ensure that your webserver knows where to find
cached versions.2

2http://www.rubytutorial.io/page-caching-with-rails-4

http://www.rubytutorial.io/page-caching-with-rails-4

Caching and Performance 716

Sample Nginx/Puma configuration file with page caching enabled

upstream puma_server_domain_tld {
server unix:/path/to/the/puma/socket;

}
server {

listen 80;
server_name domain.tld;
root /path/to/the/app;
location / {

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $http_host;
proxy_redirect off;
try the $uri, than the uri inside the cache folder, than the puma socket
try_files $uri /page_cache/$uri /page_cache/$uri.html @puma;

}
location @puma{

proxy_pass http://puma_server_domain_tld;
break;

}
}

Action Caching

By definition, if there’s anything that has to change on every request or
specific to an end user’s view of that page, page caching is not an option. On
the other hand, if all we need to do is run some filters that check conditions
before displaying the page requested, the caches_actionmethod will work. It’s
almost like page caching, except that controller filters are executed prior to
serving the cached HTML file. That gives you the option to do some extra
processing, redirect, or even blow away the existing action cache and re-
render if necessary.
As with page caching, this functionality has been extracted from Rails 4 and
above, so you need to add the official action caching gem to your Gemfile in
order to use it:

gem 'actionpack-action_caching'

Action caching is implemented with fragment caching (covered later in this
chapter) and an around_action controller callback. The output of the cached
action is keyed based on the current host and the path, which means that it
will still work even with Rails applications serving multiple subdomains using

Caching and Performance 717

a DNS wildcard. Also, different representations of the same resource, such as
HTML and XML, are treated like separate requests and cached separately.
Listing 17.1 (like most of the listings in this chapter) is taken from a dead-
simple blog application with public and private entries. On default requests,
we run a filter that figures out whether the visitor is logged in and redirects
them to the public action if not.

Listing 17.1: A controller that uses page and action caching
class EntriesController < ApplicationController

before_action :check_logged_in, only: [:index]

caches_page :public
caches_action :index

def public
@entries = Entry.where(private: false).limit(10)
render :index

end

def index
@entries = Entry.limit(10)

end

private

def check_logged_in
redirect_to action: 'public' unless logged_in?

end

end

The public action displays only the public entries and is visible to anyone,
which is what makes it a candidate for page caching. However, since it doesn’t
require its own template, we just call render :index explicitly at the end of the
public action.

Caching in Development Mode?
I wanted to mention up front that caching is disabled in development
mode. If you want to play with caching during development for testing
purposes, you can toggle it at the command-line:
$ rails dev:cache Development mode is now being cached.
Additional information about this topic is available in Chapter 1’s
section about configuring cache settings.

Caching and Performance 718

Fragment Caching

Users are accustomed to all sorts of dynamic content on the page, and
your application layout will be filled with things like welcome messages and
notification counts. Fragment caching enables us to capture parts of the
rendered page and serve them up on subsequent requests without needing
to render their content again. The performance improvement is not quite
as dramatic as with page or action caching, since the Rails dispatcher is
still involved in serving the request, and often the database is still hit with
requests. However, automatic key expiration means that “sweeping” old
cached content is significantly easier than with page or action caching. And
actually, the best way to use fragment caching is on top of a cache store like
Memcached that’ll automatically kick out old entries, meaning there’s little to
no sweeping required.3

The cache Method

Fragment caching is, by its very nature, something that you specify in your
view template rather than at the controller level. You do so using the cache view
helper method of the ActionView::Helpers::CacheHelper module. In addition to
its optional parameters, the method takes a block, which enables you to easily
wrap content that should be cached.
Once we log in to the sample application reflected in Listing 17.1, the header
section should probably display information about the user, so action-caching
the index page is out of the question. We’ll remove the caches_action directive
from the EntriesController but leave cache_page in place for the public action.
Then we’ll go into the entries/index.html.haml template and add fragment
caching, as shown in Listing 17.2.

Listing 17.2 The index template with cache directive

%h1 #{@user.name}'s Journal
%ul.entries

- cache do
= render partial: 'entry', collection: @entries

Just like that, the HTML that renders the collection of entries is stored as a
cached fragment associated with the entries page. Future requests will not
need to re-render the entries. Here’s what it looks like when Rails checks to
see whether the content is already in the cache:

3It’s also possible to do the same with Redis. See http://antirez.com/post/redis-as-LRU-cache.html

http://antirez.com/post/redis-as-LRU-cache.html

Caching and Performance 719

"get" "views/localhost:3000/entries/d57823a936b2ee781687c74c44e056a0"

The cache was not warm on the first request, so Rails renders the content and
sets it into the cache for future use:

"setex" "views/localhost:3000/entries/d57823a936b2ee781687c74c44e056a0"
"5400" "\x04\bo: ActiveSupport::Cache::Entry\b:\x0b@valueI\"\x02\xbbf

<li class="entry">...

If you analyze the structure of the keys being sent to the cache (in this case
Redis) you’ll notice that they are composed of several distinct parts.

views/
Indicates that we are doing some view caching.

hostname/
The host and port serving up the content. Note that this doesn’t break
with virtual hostnames since the name of the server itself is used.

type/
In the case of our example it’s entries, but that spot in the key would
contain some indicator of the type of data being rendered. If you do not
provide a specific key name, it will be set to the name of the controller
serving up the content.

digest/
The remaining hexadecimal string is an MD5 hash of the template con-
tent, so that changing the content of the template busts the cache. This
functionality (available in Rails 4 and beyond) eliminates the need for
homebrewed template versioning schemes. Most template dependencies
can be derived from calls to render in the template itself.4

Despite the nifty cache-busting behavior of adding template digests
to your cache keys automatically, there are some situations where
changes to the way you’re generating markup will not bust the cache
correctly. The primary case is when you have markup generated in a
helper method, and you change the body of that helper method. The
digest hash generated for templates that use that helper method will
not change; they have no way of knowing to do so. There is no super
elegant solution to this problem. Rails core suggests adding a comment
to the template where the helper is used andmodifying it whenever the
behavior of the helper changes.5

4https://github.com/rails/cache_digests#implicit-dependencies
5https://github.com/rails/cache_digests#explicit-dependencies

https://github.com/rails/cache_digests#implicit-dependencies
https://github.com/rails/cache_digests#explicit-dependencies

Caching and Performance 720

Fragment Cache Keys

The cachemethod takes an optional name parameter that we left blank in Listing
17.2. That’s an acceptable solution when there is only one cached fragment
on a page. Usually there’ll be more than one. Therefore, it’s a good practice to
identify the fragment in a way that will prevent collisions with other fragments
whether they are on the same page or not. Listing 17.3 is an enhanced version
of the entries page. Since this blog handles content for multiple users, we’re
keying the list of entries off the user object itself.

Listing 17.3 Enhanced version of the entries page

%h1 #{@user.name}'s Journal

- cache @user do
%ul.entries

= render partial: 'entry', collection: @entries

- content_for :sidebar do
- cache [@user, :recent_comments] do

= render partial: 'comment', collection: @recent_comments

Notice that we’ve also added recent comments in the sidebar and named those
fragment cache accordingly to show how to namespace cache keys. Also note
the use of an array in place of a name or single object for those declarations,
to create a compound key.
After the code in Listing 17.3 is rendered, there will be at least two fragments
in the cache, keyed as follows:

views/users/1-20131126171127/1e4adb3067d5a7598ea1d0fd0f7b7ff1
views/users/1-20131126171127/recent_comments/1f440155af81f1358d8f97a099395802

Note that the recent comments are correctly identified with a suffix. We’ll also
add a suffix to the cache of entries, to make sure that we don’t have future
conflicts.

- cache [@user, :entries] do
%ul.entries

= render partial: 'entry', collection: @entries
...

Caching and Performance 721

Accounting for URL Parameters

Earlier versions of Rails transparently used elements of the page’s URL to
key fragments in the cache. It was an elegant solution to a somewhat difficult
problem of caching pages that take parameters. Consider, for instance, what
would happen if you added pagination, filtering, or sorting to your list of blog
entries in our sample app: the cache directive would ignore the parameters
because it’s keying strictly on the identity of the user object. Therefore, we
need to add any other relevant parameters to a compound key for that page
content.
For example, let’s expand our compound key for user entries by adding the
page number requested:

- cache [@user, :entries, page: params[:page]] do
%ul.entries

= render partial: 'entry', collection: @entries

The key mechanism understands hashes as part of the compound key and adds
their content using a slash delimiter.

views/users/1-20131126171127/entries/page/1/1e4adb3067d5a7598ea1d0fd0f7b7ff1
views/users/1-20131126171127/entries/page/2/1e4adb3067d5a7598ea1d0fd0f7b7ff1
views/users/1-20131126171127/entries/page/3/1e4adb3067d5a7598ea1d0fd0f7b7ff1
etc...

If your site is localized, you probably want to include the user’s locale in the
compound key so that you don’t serve up the wrong languages to visitors from
different places.

- cache [@user, :entries, locale: @user.locale, page: params[:page]] do
%ul.entries

= render partial: 'entry', collection: @entries

As you can tell, construction of cache keys can get complicated, and that’s a
lot of logic to be carrying around in our view templates. DRY up your code if
necessary by extracting into a view helper and/or overriding the key object’s
cache_key method.

Caching and Performance 722

class User
def cache_key

[super, locale].join '-'
end

Object Keys
As you’ve seen in our examples so far, the cache method accepts
objects, whether by themselves or in an array as its name parameter.
When you do that, it’ll call cache_key or to_param on the object provided
to get a name for the fragment. By default, ActiveRecord and Mongoid
objects respond to cache_key with a dashed combination of their id and
updated_at timestamp (if available).

Global Fragments

Sometimes, you’ll want to fragment-cache content that is not specific to a
single part of your application. To add globally keyed fragments to the cache,
simply use the name parameter of the cache helper method, but give it a string
identifier instead of an object or array.
In Listing 17.4, we cache the site stats partial for every user, using simply
:site_stats as the key.

Listing 17.4: Caching the stats partial across the site

%h1 #{@user.name}'s Journal

- cache [@user, :entries, page: params[:page]] do
%ul.entries

= render partial: 'entry', collection: @entries

- content_for :sidebar do
- cache(:site_stats) do

= render partial: 'site_stats'
...

Now, requesting the page results in the following key being added to the
cache:

views/site_stats/1e4adb3067d5a7598ea1d0fd0f7b7ff1

Caching and Performance 723

Relation Cache Keys

As of Rails 5, you have a new option for caching data originating with Active
Record queries: ActiveRecord::Relation now has a cache_key method. Assume
that our Auction class has a live scope, and use it as the object that we pass to
the cache method. When cache_key is invoked on it, this is what the resulting
key will look like:

>> Auction.live.all.cache_key
=> "auctions/query-c4b1ec1948b8f67ed32b36805-27-20160116111659084027"

auctions
Identifies the table supplying the data.

query-<hex-digest>
An MD5 hexadecimal digest of the SQL used to query the database.

27 The number of results returned from the database.

20160116111659084027
Timestamp of the newest record in the result set (based on the value of
:created_at attribute.)

While this technique is promising, there are some sharp edge-cases to take
into account. First of all, because of the reliance on counting the number
of results items, it doesn’t work on relations that include a limit clause.
Secondly, modifying one of the records doesn’t necessarily invalidate the
cache. For an in-depth discussion of the pitfalls and possible alternatives, as
well as insight into how this particular cache key implementation will be fixed
in future versions of Rails, see the discussion thread at https://github.com/
rails/rails/pull/21503

Russian-Doll Caching

If you nest calls to the cache method and provide objects as key names, you
get a strategy referred to as “russian-doll” caching by David6 and others.7

To take advantage of this strategy, let’s update our example code, assuming
that a user has many entries (and remembering that this is a simple blog
application).

6
http://signalvnoise.com/posts/3113-how-key-based-cache-expiration-works
7http://blog.remarkablelabs.com/2012/12/russian-doll-caching-cache-digests-rails-4-countdown-to-2013

https://github.com/rails/rails/pull/21503
https://github.com/rails/rails/pull/21503
http://signalvnoise.com/posts/3113-how-key-based-cache-expiration-works
http://blog.remarkablelabs.com/2012/12/russian-doll-caching-cache-digests-rails-4-countdown-to-2013

Caching and Performance 724

Listing 17.5: Russian-doll nesting

%h1 #{@user.name}'s Journal

- cache [@user, :entries, page: params[:page]] do
%ul.entries

= render partial: 'entry', collection: @entries

- content_for :sidebar do
- cache(:site_stats) do

= render partial: 'site_stats'

entries/_entry.html.haml

- cache entry do
%li[entry]

%p.content= entry.content
...

Now we retain fast performance even if the top-level cache is busted. For
instance, adding a new entry would update the timestamp of the @user, but
only the new entry has to be rendered. The rest of the content already exists
as smaller fragments that are not invalid and can get reused.

Listing 17.6: Example of using touch to invalidate a parent record’s cache key

class User < ActiveRecord::Base
has_many :entries

end

class Entry < ActiveRecord::Base
belongs_to: user, touch: true

end

For this to work correctly, there has to be a way for the parent object
(@user in the case of the example) to be updated automatically when one
of its dependent objects changes. That’s where the touch functionality of
ActiveRecord and other object mapper libraries comes in, as demonstrated
in Listing 17.6.
Outside of the Rails world, the russian doll strategy is also known as genera-
tional caching.

I have found that using this strategy can dramatically improve
application performance and lessen database load considerably.

Caching and Performance 725

It can save tons of expensive table scans from happening in the
database. By sparing the database of these requests, other queries
that do hit the database can be completed more quickly.
In order to maintain cache consistency this strategy is conservative
in nature, this results in keys being expired that don’t necessarily
need to be expired. For example if you update a post in a particular
category, this strategy will expire all the keys for all the categories.
While this may seem somewhat inefficient and ripe for optimization,
I’ve often found that most applications are so read-heavy that these
types of optimization don’t make a noticeable overall performance
difference. Plus, the code to implement those optimizations then
become application ormodel specific, andmore difficult tomaintain.
…in this strategy nothing is ever explicitly deleted from the cache.
This has some implications with respect to the caching tool and
eviction policy that you use. This strategy was designed to be used
with caches that employ a Least Recently Used (LRU) eviction policy
(like Memcached). An LRU policy will result in keys the with old
generations being evicted first, which is precisely what you want.
Other eviction policies can be used (e.g. FIFO) although they may
not be as effective.

Jonathan Kupferman discussing web application caching
strategies8

Later in the chapter, we discuss how to configure Memcached as your
application’s cache.

David details an extreme form of Russian-Doll caching in his seminal blog
post [How Basecamp Next got to be so damn fast without using much
client-side UI].(http://signalvnoise.com/posts/3112-how-basecamp-next-got-
to-be-so-damn-fast-without-using-much-client-side-ui) The level of detail he
goes into is too much for this book, but we recommend his strategy of
aggressively cached reuse of identical bits of markup in many different
contexts of his app. CSS modifies the display of the underlying markup to
fit its context properly.

8http://www.regexprn.com/2011/06/web-application-caching-strategies_05.html

http://www.regexprn.com/2011/06/web-application-caching-strategies_05.html

Caching and Performance 726

Collection Caching

Starting with Rails 5, if you know ahead of time that you will be rendering
a collection of objects that contain cached fragments, then you can explicitly
tell Rails to grab all the data at once using read_multi instead of one at a time.
You do that by adding cached: true to your collection rendering.

= render partial: 'entry', collection: @entries

Using this technique can speed up rendering significantly by avoiding what’s
known as an “N+1 select problem” in the database world. Some claim speed
improvements of up to 76%.9

You’ll see this behavior reflected in the logs like this.

Rendered collection of entries/_entry.html.erb [20 / 20 cache hits] (219.5ms)

Conditional Caching

Rails provides cache_if and cache_unless convenience helpers that wrap the
cache method and add a boolean parameter.

- cache_unless current_user.admin?, @expensive_stats_to_calculate do
...

Expiration of Cached Content

Whenever you use caching, you need to consider any and all situations that
will cause the cache to become stale (out of date). As we’ve seen, so-called
generational caching attempts to solve cache expiry by tying the keys to
information about the versions of the underlying objects. But if you don’t use
generational caching, then you need to write code that manually sweeps away
old cached content or makes it time-out, so that new content to be cached in
its place.

Time-based Expiry

The simplest strategy for cache invalidation is simply time-based, that is, tell
the cache to automatically invalidate content after a set time period. All of
the Rails cache providers (Memcached, Redis, etc.) accept an option for time-
based expiry. Just add :expires_in to your fragment cache directive:

9https://ninjasandrobots.com/rails-faster-partial-rendering-and-caching

https://ninjasandrobots.com/rails-faster-partial-rendering-and-caching

Caching and Performance 727

- cache @entry, expire_in: 2.hours do
= render @post

We can tell you from experience that this kind of cache invalidation is only
good for a narrow set of circumstances. Most of the time, you only want to
invalidate when underlying data changes state.

Expiring Pages and Actions

The expire_page and expire_action controller methods let you explicitly delete
content from the cache in your action, so that it is regenerated on the next
request. There are various ways to identify the content to expire, but one of
them is by passing a hash with url_for conventions used elsewhere in Rails.
Given the esoteric nature of this topic, we leave it as a research exercise for
the motivated reader.

Expiring Fragments

The sample blogging app we’ve been playing with has globally cached content
to clear out, for which we’ll be using the expire_fragment method.

def create
@entry = @user.entries.build(params[:entry])
if @entry.save

expire_fragment(:site_stats)
redirect_to entries_path(@entry)

else
render action: 'new'

end
end

This isn’t the greatest or most current Rails code in the world. All it’s doing is
showing you basic use of expire_fragment. Remember that the key you provide
to expire_fragment needs to match the key you used to set the cache in the first
place. The difficulty in maintaining this kind of code is the reason that key
invalidation is considered one of the hardest problems in computer science!
Occasionally, youmight want to blow away any cached content that references
a particular bit of data. Luckily, the expire_fragment method also understands
regular expressions. In the following example, we invalidate anything related
to a particular user:

Caching and Performance 728

expire_fragment(%r{@user.cache_key})

The big gotcha with regular expressions and expire_fragment is that it
is not supported for use with Memcached. However, in recent years
more and more developers are choosing Redis as their cache store,
since it’s also used for queuing asynchronous jobs and other reasons.
Redis does support regular expressions for expiration.

Automatic Cache Expiry with Sweepers

Since caching is a unique concern, it tends to feel like something that should
be applied in an aspect-oriented fashion instead of procedurally.
A Sweeper class is kind of like an old-school Active Record Observer object,
except that it’s specialized for use in expiring cached content. When you write
a sweeper, you tell it which of your models to observe for changes, just as you
would with callback classes and observers.

Remember that observers are no longer included in Rails by default,
so if you need sweepers, you’ll have to add the official observers gem
to your Gemfile.

gem 'rails-observers'

Listing 17.7: Moving expiry logic out of controller into a Sweeper class
class EntrySweeper < ActionController::Caching::Sweeper

observe Entry

def expire_cached_content(entry)
expire_page controller: 'entries', action: 'public'
expire_fragment(:site_stats)

end

alias_method :after_commit, :expire_cached_content
alias_method :after_destroy, :expire_cached_content

end

Once you have a Sweeper class written, you still have to tell your controller to
use that sweeper in conjunction with its actions. Here’s the top of the revised
entries controller:

Caching and Performance 729

class EntriesController < ApplicationController
caches_page :public
cache_sweeper :entry_sweeper, only: [:create, :update, :destroy]
...

Like many other controller macros, the cache_sweeper method takes :only and
:except options. There’s no need to bother the sweeper for actions that can’t
modify the state of the application, so we do indeed include the :only option
in our example.

Avoiding Extra Database Activity

Once you have fragments of your view cached, you might think to yourself
that it no longer makes sense to do the database queries that supply those
fragments with their data. After all, the results of those database queries will
not be used again until the cached fragments are expired. The fragment_exist?
method lets you check for the existence of cached content and takes the same
parameters that you used with the associated cache method.
Here’s how we would modify the index action accordingly:

def index
unless fragment_exist? [@user, :entries, page: params[:page]]

@entries = Entry.all.limit(10)
end

end

Now the finder method will only get executed if the cache needs to be
refreshed. However, as Tim pointed out in previous editions of this book,
the whole issue is moot if you use Decent Exposure10 to make data available
to your views via methods, not instance variables. Because Decent Exposure
method invocations are inside the templates instead of your controllers, inside
the blocks passed to the cache method, the problem solves itself.

We actually disputed whether to even include this section in the
current edition. Since view rendering is so much slower than database
access, avoidance of database calls represents a minor additional
optimization on top of the usual fragment caching. Meaning you should
only have to worry about this if you’re trying to squeeze every last bit
of performance out of your application, and even then, we advise you
to really think about it.

10https://github.com/voxdolo/decent_exposure

Caching and Performance 730

Cache Logging

If you’ve turned on caching during development, you can monitor the Rails
console or development log for messages about caching and expiration.

Write fragment views/pages/52781671756e6bd2fa060000-20131110153647/
stats/1f440155af81f1358d8f97a099395802 (1.4ms)
Cache digest for pages/_page.html: 1f440155af81f1358d8f97a099395802
Read fragment views/pages/52781604756e6bd2fa050000-20131104214748/
stats/1f440155af81f1358d8f97a099395802 (0.3ms)

Cache Storage

You can set up your application’s default cache store by calling config.cache_-
store= in the Application definition inside your config/application.rb file or
in an environment specific configuration file. The first argument will be the
cache store to use, and the rest of the argument will be passed as arguments
to the cache store constructor.
By default, Rails gives you three different options for storage of action and
fragment cache data. Other options require installation of third-party gems.11

ActiveSupport::Cache::FileStore
Keeps the fragments on disk in the cache_path, which works well for all
types of environments (except Heroku) and shares the fragments for all
the web server processes running off the same application directory.

ActiveSupport::Cache::MemoryStore
Keeps fragments in process memory, in a threadsafe fashion. This store
can potentially consume an unacceptable amount of memory if you do not
limit it and implement a good expiration strategy. The cache store has a
bounded size specified by the :size options to the initializer (default is
32.megabytes). When the cache exceeds the allotted size, a cleanup will
occur and the least recently used entries will be removed. Note that only
small Rails applications that are deployed on a single process will ever
benefit from this configuration.

ActiveSupport::Cache::MemCacheStore
Keeps the fragments in a separate process using a proven cache server
named memcached.

See Appendix B Cache::Store, for full documentation of caching methods
included in Active Support.

11See http://edgeguides.rubyonrails.org/caching_with_rails.html#cache-stores for a full list of support cache
providers, including Terracotta’s Ehcache.

http://edgeguides.rubyonrails.org/caching_with_rails.html#cache-stores

Caching and Performance 731

Redis-based Caching

The redis-rails gem provides a full set of stores (Cache, Session, HTTP
Cache), but it’s not a default part of Rails. To install, add the following to
your Gemfile:

gem 'redis-rails'

Then configure the cache store to use :redis_store in an initializer or environ-
ment script.

config.cache_store = :redis_store, "redis://localhost:6379/0/cache", { expires_in: 90.minu\
tes }

It’s also possible to provide a hash instead of a URL.

config.cache_store = :redis_store, {
host: "localhost",
port: 6379,
db: 0,
password: "mysecret",
namespace: "cache"

}

Configuration Examples

The :memory_store option is enabled by default. Unlike session data, which is
limited in size, fragment-cached data can grow to be quite large, which means
you almost certainly don’t want to use this default option in production.

config.cache_store = :memory_store, expire_in: 1.minute, compress: true
config.cache_store = :file_store, "/path/to/cache/directory"

All cache stores take the following hash options as their last parameter:

expires_in
Supply a time for items to be expired from the cache.

compress
Specify whether to use compression or not.

compress_threshold
Specify the threshold at which to compress, with the default being 16k.

Caching and Performance 732

namespace
If your application shares a cache with others, this option can be used to
create a namespace for it.

race_condition_ttl
This option is used in conjunction with the :expires_in option on content
that is accessed and updated heavily. It prevents multiple processes from
trying to simultaneously repopulate the same key. The value of the option
sets the number of seconds that an expired entry can be reused (be stale)
while a new value is being regenerated.

Limitations of File-Based Storage

As long as you’re hosting your Rails application on a single server, setting up
caching is fairly straightforward and easy to implement (of course, coding it
is a different story).
If you think about the implications of running a cached application on a cluster
of distinct physical servers, you might realize that cache invalidation is going
to be painful. Unless you set up the file storage to point at a shared filesystem
such as NFS or GFS, it won’t work.

Caching and Performance 733

17.2 Data Caching

Each of the caching mechanisms described in the previous section is actually
using an implementation of an ActiveSupport::Cache::Store, covered in detail
inside Appendix B, “Active Support API Reference.”
Rails actually always exposes its default cache store via the Rails.cache
method, and you can use it anywhere in your application or from the console:

>> Rails.cache.write(:color, :red)
=> true
>> Rails.cache.read :color
=> :red

Eliminating Extra Database Lookups

One of the most common patterns of simple cache usage is to eliminate
database lookups for commonly accessed data, using the cache’s fetchmethod.
For the following example, assume that your application’s user objects are
queried very often by id. The fetch method takes a block that is executed and
used to populate the cache when the lookup misses, that is, a value is not
already present.

Listing 17.8: The fetch method

class User < ActiveRecord::Base
def self.fetch(id)

Rails.cache.fetch("user_#{id}") { User.find(id) }
end

def after_commit
Rails.cache.write("user_#{id}", self)

end

def after_destroy
Rails.cache.delete("city_#{id}")

end
end

With relatively little effort, you could convert the code in Listing 17.8 into a
Concern and include it wherever needed.

Caching and Performance 734

Initializing New Caches

We can also initialize a new cache directly or through ActiveSupport::Cache.lookup_-
store if we want to use different caches for different reasons. (Not that we
recommend doing that.) Either one of these methods of creating a new cache
takes the same expiration and compression options as mentioned previously,
and the same three stores exist as for fragment caching: FileStore, MemoryStore,
and MemCacheStore.

ActiveSupport::Cache::MemCacheStore.new(
expire_in: 5.seconds

)
ActiveSupport::Cache.lookup_store(

:mem_cache_store, compress: true
)

Once you have your cache object, you can read and write to it via its very
simple API and any Ruby object that can be serialized can be cached, including
nils.

cache = ActiveSupport::Cache::MemoryStore.new
cache.write(:name, "John Doe")
cache.fetch(:name) # => "John Doe"

fetch Options

There are several now-familiar options that can be passed to fetch in order
to provide different types of behavior for each of the different stores. Options
in addition to those listed here are available based on the individual cache
implementations.

:compress
Use compression for this request.

:expire_in
Tell an individual key in the cache to expire in n seconds.

:force
If set to true will force the cache to delete the supplied key.

Caching and Performance 735

:race_condition_ttl
Supply seconds as an integer and a block. When an item in the cache is
expired for less than the number of seconds, its time gets updated and
its value is set to the result of the block.

There are other available functions on caches, and additional options can be
passed depending on the specific cache store implementation.

delete(name, options)
Delete a value for the key.

exist?(name, options)
Will return true if a value exists for the provided key.

read(name, options)
Get a value for the supplied key or return nil if none found.

read_multi(*names)
Return the values for the supplied keys as a hash of key/value pairs.

write(name, value, options)
Write a value to the cache.

Caching and Performance 736

17.3 Control of Web Caching

Action Controller offers a pair of methods for easily setting HTTP 1.1 Cache-
Control headers. Their default behavior is to issue a private instruction, so
that intermediate caches (web proxies) must not cache the response. In this
context, private only controls where the response may be cached and not the
privacy of the message content.
The public setting indicates that the response may be cached by any cache
or proxy and should never be used in conjunction with data served up for a
particular end user.
Using curl --head we can examine the way that these methods affect HTTP
responses. For reference, let’s examine the output of a normal index action.

$ curl --head localhost:3000/reports
HTTP/1.1 200 OK
Etag: "070a386229cd857a15b2f5cb2089b987"
Connection: Keep-Alive
Content-Type: text/html; charset=utf-8
Date: Wed, 15 Sep 2010 04:01:30 GMT
Server: WEBrick/1.3.1 (Ruby/1.8.7/2009-06-12)
X-Runtime: 0.032448
Content-Length: 0
Cache-Control: max-age=0, private, must-revalidate
Set-Cookie: ...124cc92; path=/; HttpOnly

Don’t get confused by the content length being zero. That’s only because curl
--head issues a HEAD request. If you’re experimenting with your own Rails
app, try curl -v localhost:3000 to see all the HTTP headers plus the body
content.

expires_in(seconds, options =)

This method will overwrite an existing Cache-Control header.12

Examples include

12See http://http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9 for more information.

Caching and Performance 737

expires_in 20.minutes
expires_in 3.hours, public: true
expires in 3.hours, 'max-stale' => 5.hours, public: true

Setting expiration to 20 minutes alters our reference output as follows:

Cache-Control: max-age=1200, private

expires_now

Sets a HTTP 1.1 Cache-Control header of the response to no-cache, informing
web proxies and browsers that they should not cache the response for
subsequent requests.

Caching and Performance 738

17.4 ETags

The bulk of this chapter deals with caching content so that the server does
less work than it would have to do otherwise but still incurs the cost of
transporting page data to the browser. The ETags scheme, where E stands
for entity, enables you to avoid sending any content to the browser at all if
nothing has changed on the server since the last time a particular resource
was requested. A properly implemented ETags scheme is one of the most
significant performance improvements that can be implemented on a high
traffic website.13

Rendering automatically inserts the Etag header on 200 OK responses, calcu-
lated as an MD5 hash of the response body. If a subsequent request comes
in that has a matching Etag,14 the response will be changed to a 304 Not
Modified, and the response body will be set to an empty string.
The key to performance gains is to short circuit the controller action and
prevent rendering if you know that the resulting Etag is going to be the
same as the one associated with the current request. I believe you’re actually
being a good Internet citizen by paying attention to proper use of ETags in
your application. According to RFC 261615, “the preferred behavior for an
HTTP/1.1 origin server is to send both a strong entity tag and a Last-Modified
value.”
Rails does not set a Last-Modified response header by default, so it’s up to you
to do so using one of the following methods.

fresh_when(options)

Sets ETag and/or Last-Modified headers and renders a 304 Not Modified re-
sponse if the request is already fresh. Freshness is calculated using the
cache_keymethod of the object (or array of objects) passed as the :etag option.
For example, the following controller action shows a public article:

13TimBraywrote a now-classic blog post on the topic at http://www.tbray.org/ongoing/When/200x/2008/08/14/Rails-
ETags.

14http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19
15http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.3.4

http://www.tbray.org/ongoing/When/200x/2008/08/14/Rails-ETags
http://www.tbray.org/ongoing/When/200x/2008/08/14/Rails-ETags
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.3.4

Caching and Performance 739

expose(:article)

def show
fresh_when(etag: article,

last_modified: article.created_at.utc,
public: true)

end

This code will only render the show template when necessary. As you can tell,
this is superior even to view caching because there is no need to check the
server’s cache, and data payload delivered to the brower is almost completely
eliminated.

stale?(options)

Sets the ETag and/or Last-Modified headers on the response and checks them
against the client request (using fresh_when). If the request doesn’t match the
options provided, the request is considered stale and should be generated
from scratch.
You want to use this method instead of fresh_when if there is additional logic
needed at the controller level in order to render your view.

expose(:article)

expose(:statistics) do
article.really_expensive_operation_to_calculate_stats

end

def show
if stale?(etag: article,

last_modified: article.created_at.utc,
public: true)

decent_exposure memoizes the result, later used by the view
statistics()

respond_to do |format|
...

end
end

end

The normal rendering workflow is only triggered inside of the stale? condi-
tional if needed.

Caching and Performance 740

17.5 Conclusion

We’ve just covered a fairly complicated subject: caching. Knowing how to use
caching will really save your bacon when you work on Rails applications that
need to scale. Indeed, developers of high-traffic Rails websites tend to see
Rails as a fancy HTML generation platform with which to create content ripe
for caching.

18. Background Processing
People count up the faults of those who keep them waiting.
—French Proverb

Users of modern websites have lofty expectations when it comes to application
responsiveness—most likely they will expect behavior and speed similar to
that of desktop applications. Proper user experience guidelines would dictate
that no HTTP request/response cycle should take more than a second to
execute. However, there will be actions that arise that simply cannot achieve
this time constraint.
Tasks of this nature can range from simple, long running tasks due to
network latency to more complex tasks that require heavy processing on the
server. Examples of these actions could be sending an email or processing
video, respectively. In these situations it is best to have the actions execute
asynchronously, so that the responsiveness of the application remains swift
while the procedures run.
In this chapter these types of tasks are referred to as background jobs. They
include any execution that is handled in a separate process from the Rails
application serving up responses to web requests.
Rails provides a framework for declaring jobs and making them run on a
variety of queuing backends. It is called Active Job.

Background Processing 742

18.1 Active Job

The main point of the Active Job framework is to ensure that all Rails apps
have a consistent job infrastructure in place. That way other Rails features
and third-party gems have a standardized foundation to build upon, without
worrying about API differences between job runners implementations such
as Delayed Job and Resque. (That was exactly the situation prior to the
introduction of Active Job in Rails 4.2, and it was painful.)
Active Job works “out of the box” with a simple in-process thread pool. The
main problem with it is that jobs in the queue will be dropped if the server is
restarted. For more bulletproof operation, you’ll want to use one of the back-
ground processing libraries covered later in the chapter. We’ll be discussing
the strengths and weaknesses of each one so that you can determine what
is appropriate for your application. However, since the introduction of Active
Job in Rails 4.2, this decision is more of an operational concern than anything
else.

Creating a Job

This section describes how to create a job and place it in a queue for
processing. Active Job objects can be defined by creating a class that inherits
from the ActiveJob::Base class. The only necessary method to implement is
the perform method. However, most of the time you use a Rails generator to
start from a boilerplate class.

Job Generator

Let’s use that generator to create a job in app/jobs, along with a corresponding
spec. The job of the job (ha!) will be to remove auctions that have ended more
than an hour ago:

$ rails g job auctions_cleanup
invoke rspec
create spec/jobs/auctions_cleanup_job_spec.rb
create app/jobs/auctions_cleanup_job.rb

Incidentally, we could have told the generator that job will run on a specific
queue with the --queue command-line parameter, like this:

Background Processing 743

$ rails g job auctions_cleanup --queue urgent

If you don’t provide a queue name, it ends up in a queue called simply default.
Let’s look at the Ruby class generated.

class AuctionsCleanupJob < ApplicationJob
queue_as :default

def perform(*args)
Do something later

end
end

The signature of the perform method is totally up to you as the developer. For
our cleanup job, we’ll take a cutoff time and pass it to a service object that
takes care of the actual work involved.

class AuctionsCleanupJob < ApplicationJob
queue_as :default

def perform(cutoff)
ArchiveAuctions.concluded_older_than(cutoff)

end
end

It’s always a good idea to minimize the business logic contained in job
classes. Instead, give that responsibility to a model or service class
that can be well-tested in isolation from the background processing
machinery.

Enqueueing a Job

Now somewhere else in the codebase, or perhaps in a crontab, you’ll enqueue
the job for processing by the background library.

Enqueue a job to be performed as soon as the queuing system is
free.
AuctionsCleanupJob.perform_later 2.hours.ago

For those of you that are new to asynchronous processing, it’s worth mention-
ing that the work won’t actually be performed unless theworker processes (or
threads, whatever the case may be) belonging to the background processing
library, are actually running. If they’re not, the job will just sit in its queue
awaiting execution.

Background Processing 744

Delayed Execution

Calling perform_later immediately queues the job for execution. But what if
we want to delay execution, perhaps to a time when the server is less busy?
Call set first, like this:

Enqueue a job to be performed at midnight
AuctionsCleanupJob

.set(wait_until: Date.tomorrow.midnight)

.perform_later(2.hours.ago)

We inserted a set method in the call chain. It has a number of options besides
wait_until, listed next:

:wait
Enqueues the job after a specified delay period has elapsed.

:wait_until
Enqueues the job at the time specified.

:queue
Enqueues the job on a specified queue. Make sure your queuing backend
“listens” to the queue name you specify here. For some backends, you
need to specify which queues the workers process.

:priority
Enqueues the job with the specified priority. This is the first time we’re
mentioning priority so far in the chapter. It’s simply an integer value that
can be used by the underlying queue system (if supported) to prioritize
jobs relative to each other.

Immediate Execution

It is possible to call the perform_now class method on a job to bypass the
queueing system and execute the job code immediately in the same process. I
find it useful for command-line and admin tools that bypass normal application
workflow.
Here’s an example of the AuctionsCleanupJob called from a Rake task:

Background Processing 745

namespace :auctions do
task :archive_completed do

AuctionsCleanupJob.perform_now(2.hours.ago)
end

end

Callbacks / Hooks

ActiveJob provides lifecycle callbacks / hooks that can be used to add behavior
to jobs and catch exceptions raised during execution. An example would be
the automatic retrying of a failed job.
An example job that needs to retry itself automatically on failure and logged
some information before it started processing would look like so:

class NotificationJob < Application Job
before_enqueue do |job|

Logger.info "Starting Notification Job #{job.id}"
end

def perform(user_id)
user = User.find(user_id)
Notifier.send_notification_to(user)

end

rescue_from(ActiveRecord::RecordNotFound) do |exception|
Do something with the exception

end
end

Integration with Action Mailer

One of the most common jobs in a modern web application is sending emails
outside of the request-response cycle, so the user doesn’t have to wait on
it. Active Job is integrated with Action Mailer so you can easily send emails
asynchronously:

If you want to send the email now use #deliver_now
UserMailer.welcome(@user).deliver_now

If you want to send the email through Active Job use #deliver_later
UserMailer.welcome(@user).deliver_later

Background Processing 746

GlobalID

Active Job supports GlobalID1 for parameters. This makes it possible to pass
model objects to your job instead of class/id pairs, which you then have to
manually deserialize.
Before GlobalID jobs would look like this:

class TrashableCleanupJob < ApplicationJob
def perform(trashable_class, trashable_id, depth)

trashable = trashable_class.constantize.find(trashable_id)
trashable.cleanup(depth)

end
end

Ugh. Now you can simply do:

class TrashableCleanupJob < ApplicationJob
def perform(trashable, depth)

trashable.cleanup(depth)
end

end

This technique works with any class that mixes in GlobalID::Identification,
which is the case with ActiveRecord models since Rails 4.2.

If a passed record is deleted after the job is enqueued but be-
fore the perform method is called, then Active Job will raise an
ActiveJob::DeserializationError.

1https://github.com/rails/globalid

https://github.com/rails/globalid
https://github.com/rails/globalid

Background Processing 747

18.2 Queueing Backends

At the time of publication, Active Job has adapters for nearly a dozen queueing
backend systems. We provide descriptions for a few of them in this chapter. An
up-to-date list and feature comparison table should always be available online
at http://api.rubyonrails.org/classes/ActiveJob/QueueAdapters.html.

Sucker Punch

Sucker Punch is a single-process Ruby asynchronous processing library, and
it represents a step up from Rails’ in-memory store. The fact that it shares the
main server process reduces hosting costs on a service like Heroku.
Sucker Punch is built on top of concurrent-ruby, which means it will only
work with Ruby web servers designed to be concurrent. Nowadays, the most
popular concurrent Ruby web server is [Puma].(http://puma.io)
When using SuckerPunch, each Job type gets its own queue (pool) with indi-
vidual workers working to clear pending jobs. Unlike most other background
processing libraries, Sucker Punch’s jobs are stored in memory. The benefit
is that there is no additional infrastructure requirement (i.e., database, redis,
etc.). However, if the web processes are restarted with jobs remaining in the
queue, those will be lost. Therefore, Sucker Punch is generally recommended
for jobs that are fast and non-mission critical.
To use Sucker Punch, simply add it to your Gemfile:

gem 'sucker_punch'

Then configure the back end to use it in an initializer:

config.active_job.queue_adapter = :sucker_punch

That’s literally all there is to it, which makes it the least complicated of the
background processing libraries we describe in this chapter.

Sidekiq

Sidekiq http://sidekiq.org/ is a full-featured background processing library.
Like Resque (covered later in this chapter), Sidekiq uses Redis for its storage
engine, minimizing the overhead involved in job processing compared to other
options.

http://api.rubyonrails.org/classes/ActiveJob/QueueAdapters.html
http://sidekiq.org/

Background Processing 748

Sidekiq is probably the best performing and memory efficient background
processing library in the Ruby ecosystem. In fact over the last few years it
has broken out into mainstream use even by developers working in Python,
JavaScript and other worlds. It is also backed by a company that provides paid,
enterprise-level support and a Pro version with advanced features.
Among its benefits, the primary one is that Sidekiq is natively multithreaded,
which enables it to process jobs in parallel without the overhead of having to
run multiple processes. It also means Sidekiq can process jobs with a much
smaller memory footprint compared to other background processing libraries,
such as Delayed Job or Resque.

Since Sidekiq is multithreaded, all code executed by Sidekiq should be
threadsafe.

To use Sidekiq, add it to your Gemfile:

gem 'sidekiq'

Then configure the backend to use it in an initializer:

config.active_job.queue_adapter = :sidekiq

Sidekiq depends on Redis and will assume by default that a Redis server can
be found at localhost:6379. That’s the usual situation in development and test
modes, and even in smaller production deployments.
In larger production deployments, you’re probably going to be running Redis
on a different server. To override the location, add an initializer script that
configures redis in both Sidekiq.configure_server and Sidekiq.configure_client
code blocks.

config/environments/production.rb

Sidekiq.configure_server do |config|
config.redis = {

url: 'redis://redis.example.com:6379/10',
namespace: 'tr5w'

}
end

Sidekiq.configure_client do |config|
config.redis = {

Background Processing 749

url: 'redis://redis.example.com:6379/10',
namespace: 'tr5w'

}
end

Note that setting the :namespace option is completely optional but highly
recommended if Sidekiq is sharing access to a Redis database.

Juanito says…
Keep in mind that Sidekiq requires Redis 2.4 or greater.

Running Sidekiq Workers

To start up Sidekiq workers, run the sidekiq command from the root of your
Rails application.

$ bundle exec sidekiq

This allows for starting a Sidekiq process that begins processing against the
“default” queue. To use multiple queues, you can pass the name of a queue
and and optional weight to the sidekiq command.

$ bundle exec sidekiq -q default -q critical,2

Queues have a weight of 1 by default. If a queue has a higher weight, it will be
checked that many more times than a queue with a weight of 1. For instance,
in the example above, the critical queue is checked twice as often as default.
Stopping jobs involves sending signals to the sidekiq process, which then takes
the appropriate action on all processors:

TERM
Signals that Sidekiq should shut down within the -t timeout option.
Any jobs that are not completed within the timeout period are pushed
back into Redis. These jobs are executed again once Sidekiq restarts. By
default, the timeout period is 8 seconds.

USR1
Continues working on current jobs but stops accepting any new ones.

Concurrency

By default, Sidekiq starts up 25 concurrent processors. To explicitly set the
number of processors for Sidekiq to use, pass the -c option to the sidekiq
command.

Background Processing 750

$ bundle exec sidekiq -c 100

Active Record Database Connections
When using Sidekiq alongside Active Record, ensure that the Active
Record connection pool setting pool is close or equal to the number of
Sidekiq processors.

production:
adapter: postgresql
database: example_production
pool: 25

sidekiq.yml

If you find yourself having to specify different options to the sidekiq command
for multiple environments, you configure Sidekiq using a YAML file.

config/sidekiq.yml

:concurrency: 10
:queues:

- [default, 1]
- [critical, 5]

staging:
:concurrency: 25

production:
:concurrency: 100

Now, when starting the sidekiq command, pass the path of sidekiq.yml to the
-C option.

$ bundle exec sidekiq -e $RAILS_ENV -C config/sidekiq.yml

Error Handling

Sidekiq ships with support to notify the following exception notification
services if an error occurs within a worker during processing:

• Airbrake
• Honeybadger

Other services, such as Sentry and New Relic, implement their own Sidekiq
middleware that handles the reporting of errors. Installation usually involves
adding a single require statement to a Rails initializer.

Background Processing 751

config/initializers/sentry.rb
require 'raven/sidekiq'

Job ID

ActiveJob has its own Job ID, which means nothing to Sidekiq. In Rails 5 and
later, you can get Sidekiq’s JID by calling provider_job_id on a job instance,
like this:

job = SomeJob.perform_later
jid = job.provider_job_id

Monitoring

When Resque was released, it set a precedent for Ruby background process-
ing libraries by shipping with a web interface to monitor your queues and jobs.
Sidekiq follows suit and also comes with a Sinatra application that can be run
standalone or be mounted with your Rails application.
To run the web interface standalone, create a config.ru file and boot it with
any Rack server:

require 'sidekiq'

Sidekiq.configure_client do |config|
config.redis = { size: 1 }

end

require 'sidekiq/web'
run Sidekiq::Web

If you prefer to access the web interface within your Rails application,
explicitly mount Sidekiq::Web to a path in your config/routes.rb file.

require 'sidekiq/web'

Rails.application.routes.draw do
mount Sidekiq::Web => '/sidekiq'
...

end

Since the web interface is a Sinatra application, you will need to add the
sinatra gem to your Gemfile.

Background Processing 752

Gemfile
gem 'sinatra', '>= 1.3.0', require: nil

Summary

Sidekiq is highly recommended for any Rails application that has a large
number of jobs. It’s the fastest and most efficient background processing
library available due to it being multithreaded.
With a Redis backend, Sidekiq does not suffer from the potential database
locking issues that can arise when using Delayed Job and has significantly
better performance with respect to queue management over both Delayed
Job and Resque.
Note that Redis stores all of its data in memory, so if you are expecting a large
number of jobs but do not have a significant amount of RAM to spare, you may
need to look at a different framework.

Resque

Resque https://github.com/resque/resque is a background processing frame-
work that supports multiple queues and, like Sidekiq, uses Redis for its
persistent storage. Rather than threads, Resque uses a parent/child forking
architecture, which makes its resource consumption predictable and easily
managed. Resque also comes with a Sinatra web application to monitor the
queues and jobs.
We recommend the use of Resque where a large number of jobs are in play
at the same time and your code is not threadsafe. It does not support priority
queueing but does support multiple queues, which is advantageous when jobs
can be categorized together and given pools of workers to run them.
To use Resque, add it to your Gemfile:

gem 'resque'

Then add a config/resque.yml pointing to the location of your Redis instances:

development: localhost:6379
staging: localhost:6379
production: localhost:6379

Then configure the backend to use it in config/initializers/resque.rb:

https://github.com/resque/resque

Background Processing 753

config.active_job.queue_adapter = :resque

rails_env = ENV['RAILS_ENV'] || 'development'
config = YAML.load_file(Rails.root.join 'config','resque.yml')
Resque.redis = config[rails_env]

Worker Hooks

Because Resque is multi-process, it provides a number of worker hooks that
you define in an initializer script. They are before_first_fork, before_fork, and
after_fork. Before hooks are executed in the parent process, while after hooks
execute in child processes. This is important to note since changes in the
parent process will be permanent for the life of the worker, whereas changes
in the child process will be lost when the job completes.

Before the worker's first fork
Resque.before_first_fork do

puts "Creating worker"
end

Before every worker fork
Resque.before_fork do |job|

puts "Forking worker"
end

After every worker fork
Resque.after_fork do |job|

puts "Child forked"
end

Worker hooks are primarily used for setting up shared resources. Those can
include external connection pools, as well as mutexes, for operating on jobs
that must be serialized.

Running Workers

Resque comes with two rake tasks that can be used to run workers, one to run
a single worker for one or more queues, the second to run multiple workers.
Configuration options are supplied as environment variables when running
the tasks and enable defining the queue for the workers to monitor, logging
verbosity, and the number or workers to start.

Background Processing 754

Start 1 worker for the communications queue
$ QUEUE=communications rake environment resque:work

Start 6 workers for the communications queue
$ QUEUE=communications COUNT=6 rake resque:workers

Start 2 workers for all queues
$ QUEUE=* COUNT=2 rake resque:workers

Stopping jobs involves sending signals to the parent Resque workers, which
then take the appropriate action on the child and themselves:

QUIT
Waits for the forked child to finish processing, then exits.

TERM/INT
Immediately kills the child process and exits.

USR1
Immediately kills the child process but leaves the parent worker running.

USR2
Finishes processing the child action, then waits for CONT before spawn-
ing another.

CONT
Continues to start jobs again if it was halted by a USR2.

Monitoring

Just like Sidekiq, one of the really nice features of Resque is the web interface
that it ships with for monitoring your queues and jobs. It can run standalone
or be mounted with your Rails application.
To run standalone, simply run resque-web from the command line. If you prefer
to access the web interface within your Rails application, explicitly mount an
instance of Resque::Server.new to a path in your config/routes.rb file.

Background Processing 755

require "resque/server"

Rails.application.routes.draw do
mount Resque::Server.new => '/resque'
...
end

Plugins

Resque has a strong plugin ecosystem to provide it with additional useful
features. Most plugins are modules that are included in your job classes, only
to be used on specific jobs that need the extra functionality. Plugins of note
are listed next, and a complete list can be found at https://github.com/resque/
resque/wiki/plugins.

resque-scheduler
A job scheduler built on top of Resque.

resque-throttle
Restricts the frequency with which jobs are run.

resque-retry
Adds configurable retry and exponential backoff behavior for failed jobs.

Que

Our favorite newcomer to the background processing arena is called Que. It
claims to protect _your jobs with the same ACID guarantees as the rest of
your data, which it accomplishes by putting its own data inside of Postgres
along with the rest of your application data. I consider it a modern spiritual
successor to the venerable Delayed Job, described later in the chapter.
Que uses advisory locks2, which gives it several advantages over other
RDBMS-backed queues:

• Concurrency—Workers don’t block each other when trying to lock jobs,
as often occurs with “SELECT FOR UPDATE”-style locking. This allows
for very high throughput with a large number of workers.

• Efficiency—Locks are held in memory, so locking a job doesn’t incur a
disk write. These first two points are what limit performance with other
queues - all workers trying to lock jobs have to wait behind one that’s

2
http://www.postgresql.org/docs/current/static/explicit-locking.html#ADVISORY-LOCKS

https://github.com/resque/resque/wiki/plugins
https://github.com/resque/resque/wiki/plugins
http://www.postgresql.org/docs/current/static/explicit-locking.html#ADVISORY-LOCKS
http://www.postgresql.org/docs/current/static/explicit-locking.html#ADVISORY-LOCKS

Background Processing 756

persisting its UPDATE on a locked_at column to disk (and the disks of
however many other servers your database is synchronously replicating
to). Under heavy load, Que’s bottleneck is CPU, not I/O.

• Safety—If a Ruby process dies, the jobs it’s working won’t be lost, or left
in a locked or ambiguous state - they immediately become available for
any other worker to pick up.

Additionally, there are the general benefits of storing jobs in Postgres, along-
side the rest of your data, rather than in Redis or a dedicated queue:

• Transactional Control—Queue a job along with other changes to your
database, and it’ll commit or rollback with everything else. If you’re using
ActiveRecord or Sequel, Que can piggyback on their connections, so
setup is simple and jobs are protected by the transactions you’re already
using.

• Atomic Backups—Your jobs and data can be backed up together and
restored as a snapshot. If your jobs relate to your data (and they usually
do), there’s no risk of jobs falling through the cracks during a recovery.

• Fewer Dependencies—If you’re already using Postgres (and you prob-
ably should be), a separate queue is another moving part that can break.

• Security—Postgres’ support for SSL connections keeps your data safe
in transport, for added protection when you’re running workers on cloud
platforms that you can’t completely control.

Que’s primary goal is reliability. You should be able to leave your application
running indefinitely without worrying about jobs being lost due to a lack of
transactional support or left in limbo due to a crashing process. Que does
everything it can to ensure that jobs you queue are performed exactly once
(though the occasional repetition of a job can be impossible to avoid—see the
Que docs on how to write a reliable job3).
Que’s secondary goal is performance. It won’t be able to match the speed or
throughput of a dedicated queue, or maybe even a Redis-backed queue, but it
should be fast enough for most use cases. In benchmarks of RDBMS queues4
using PostgreSQL 9.3 on a AWS c3.8xlarge instance, Que approaches 10,000
jobs per second or about twenty times the throughput of DelayedJob.
Que also includes a worker pool, so that multiple threads can process jobs in
the same process. It can even do this in the background of your web process—
if you’re running on Heroku, for example, you don’t need to run a separate
worker dyno.
To install, add Que to your Gemfile:

3https://github.com/chanks/que/blob/master/docs/writing_reliable_jobs.md
4https://github.com/chanks/queue-shootout

https://github.com/chanks/que/blob/master/docs/writing_reliable_jobs.md
https://github.com/chanks/queue-shootout
https://github.com/chanks/que/blob/master/docs/writing_reliable_jobs.md
https://github.com/chanks/queue-shootout

Background Processing 757

gem 'que'

Bundle install, then generate and run a migration for the job table.

$ rails g que:install
$ rails db:migrate

If you’re using ActiveRecord to dump your database’s schema, set your
schema_format to :sql so that Que’s table structure is managed correctly.

Related Projects

• que-web5 is a Sinatra-based UI for inspecting your job queue.
• que-testing6 enables making assertions on enqueued jobs.
• que-go7 is a port of Que for the Go programming language. It uses the
same table structure so that you can use the same job queue from Ruby
and Go applications.

• wisper-que8 adds support for Que to [wisper].(https://github.com/krisleech/wisper)

Caveats

Que’s job table undergoes a lot of churnwhen it is under high load, and like any
heavily-written table, is susceptible to bloat and slowness if Postgres isn’t able
to clean it up. The most common cause of this is long-running transactions, so
it’s recommended to try to keep all transactions against the database housing
Que’s job table as short as possible. This is good advice to remember for any
high-activity database but bears emphasizing when using tables that undergo
a lot of writes.

Delayed Job

Delayed Job[ˆdelayed-job] is a robust background processing library, ex-
tracted from Shopify.com back in 2008. It still works well in situations where
the total number of jobs is low and the tasks they execute are not long running
or consume large amounts of memory.

5https://github.com/statianzo/que-web
6https://github.com/statianzo/que-testing
7https://github.com/bgentry/que-go
8https://github.com/joevandyk/wisper-que

https://github.com/statianzo/que-web
https://github.com/statianzo/que-testing
https://github.com/bgentry/que-go
https://github.com/joevandyk/wisper-que
https://github.com/statianzo/que-web
https://github.com/statianzo/que-testing
https://github.com/bgentry/que-go
https://github.com/joevandyk/wisper-que

Background Processing 758

In contrast to Sidekiq and Resque, Delayed Job keeps its queues in a database
along with the rest of your application data. Therefore, along with adding
delayed_job to your Gemfile, you also need to add one of the following backend
gems:

delayed_job_active_record
Use the same database as ActiveRecord.

delayed_job_mongoid
Use Mongoid (to connect to MongoDB).

The Delayed Job wiki has a full list9 of supported backends.

Getting Started

Run the Delayed Job generator to create your execution and migration scripts.

$ rails generate delayed_job:active_record

This will create a database migration that will need to be run to set up the
delayed_jobs table in the database, as well as a command-line script to run
Delayed Job workers.
To change the default settings for Delayed Job, first add a delayed_job.rb in
your config/initializers directory. Options then can be configured by calling
various methods on Delayed::Worker, which include settings for changing the
behavior of the queue with respect to tries, timeouts, maximum run times,
sleep delays, and other options.

Delayed::Worker.destroy_failed_jobs = false
Delayed::Worker.sleep_delay = 30
Delayed::Worker.max_attempts = 5
Delayed::Worker.max_run_time = 1.hour
Delayed::Worker.max_priority = 10

Running Workers

To start up Delayed Job workers, use the delayed_job command created by the
generator. This enables starting a single worker or multiple workers on their
own processes and also provides the capability to stop all workers.

9https://github.com/collectiveidea/delayed_job/wiki/Backends

https://github.com/collectiveidea/delayed_job/wiki/Backends
https://github.com/collectiveidea/delayed_job/wiki/Backends

Background Processing 759

Start a single worker
RAILS_ENV=staging bin/delayed_job start

Start multiple workers, each in a separate process
RAILS_ENV=production bin/delayed_job -n 4 start

Stop all workers
RAILS_ENV=staging bin/delayed_job stop

Durran says…
Delayed Job workers generally have a lifecycle that is equivalent to an
application deployment. Because of this, their memory consumption
grows over time and may eventually have high swap usage, causing
workers to become unresponsive. A good practice is to have a moni-
toring tool like God or monit watching jobs and restarting them when
their memory usage hits a certain point.

Caveats

Do note that if you are using Delayed Job with a relational database backend
and have a large number of jobs, performance issuesmay arise due to the table
locking the framework employs. Since jobs may have a long lifecycle, be wary
of resource consumption due to workers not releasing memory once jobs are
finished executing. Also where job execution can take a long period of time,
higher priority jobs will still wait for the other jobs to complete before being
processed. In these cases, using a non-relational backend, such as MongoDB
or potentially another library such as Sidekiq, may be advisable.

Background Processing 760

18.3 Rails Runner

Rails comes with a built-in tool for running tasks independent of the web cycle.
The rails runner command simply loads the default Rails environment and
then executes some specified Ruby code. Popular uses include the following:

• Importing “batch” external data
• Executing any (class) method in your models
• Running intensive calculations, delivering e-mails in batches, or execut-
ing scheduled tasks

Usages involving rails runner that you should avoid at all costs are the
following:

• Processing incoming e-mail
• Tasks that take longer to run as your database grows

Getting Started

For example, let us suppose that you have a model called “Report.” The Report
model has a class method called generate_rankings, which you can call from the
command line using

$ rails runner 'Report.generate_rankings'

Since we have access to all of Rails, we can even use the Active Record finder
methods to extract data from our application.10

$ rails runner 'User.pluck(:email).each { |e| puts e }'
charles.quinn@highgroove.com
me@seebq.com
bill.gates@microsoft.com
obie@obiefernandez.com

This example demonstrates that we have access to the User model and are
able to execute arbitrary Rails code. In this case, we’ve collected some e-mail
addresses that we can now spam to our heart’s content. (Just kidding!)

Usage Notes

There are some things to remember when using rails runner. You must specify
the production environment using the -e option; otherwise, it defaults to
development. The rails runner help option tells us:

10Be careful to escape any characters that have specific meaning to your shell.

Background Processing 761

$ rails runner -h

Usage: rails runner [options] ('Some.ruby(code)' or a filename)
-e, --environment=name Specifies the environment for the runner

to operate under (test/development/production).
Default: development

Using rails runner, we can easily script any batch operations that need to
run using cron or another system scheduler. For example, you might calculate
the most popular or highest-ranking product in your e-commerce application
every few minutes or nightly, rather than make an expensive query on every
request:

$ rails runner â€“e production 'Product.calculate_top_ranking'

A sample crontab to run that script might look like

0 */5 * * * root /usr/local/bin/ruby \
/apps/exampledotcom/current/script/rails runner -e production \
'Product.calculate_top_ranking'

The script will run every five hours to update the Productmodel’s top rankings.

Considerations

On the positive side: It doesn’t get any easier and there are no additional
libraries to install. That’s about it. As for negatives: The rails runner process
loads the entire Rails environment. For some tasks, particularly short-lived
ones, that can be quite wasteful of resources. Also, nothing prevents multiple
copies of the same script from running simultaneously, which can be catas-
trophically bad, depending on the contents of the script.

Wilson says…
Do not process incoming e-mail with rails runner. It’s a Denial of
Service attack waiting to happen.

Summary

The Rails Runner is useful for short tasks that need to run infrequently, but
jobs that require more heavy lifting, reporting, and robust failover mecha-
nisms are best handled by other libraries.

Background Processing 762

18.4 Conclusion

Most web applications today will need to incorporate some form of asyn-
chronous behavior, and we’ve covered some of the important libraries avail-
able when needing to implement background processing. There are many
other frameworks and techniques available for handling this, so choose the
solution that is right for your needs—just remember to never make your users
wait.

19. Asset Pipeline
It’s not enough to solve the problem, we have to have the pleasure.
—DHH, RailsConf 2011 keynote

The asset pipeline is one of those Railsmagic features that makes developer’s
life so easy that once you master it you will never want to go back. It also
significantly improves perceived performance of your application and reduces
burdens on your application server. It’s a huge win for Rails overall that
nonetheless might make you want to tear your hair out and switch to (shudder)
Django until you understand how it works. Persevere! We promise it’s worth
the learning curve. According to David, the asset pipeline was by far his
favorite element of the Rails 3.1 release.
“Wait,” you might ask, “what is an asset”?
It’s simple—by “assets” we mean images, Javscript, CSS, and other static files
that we need in order to properly render our pages.
Web applications built with early versions of Rails shared common problems
with managing static assets. Before the asset pipeline, you just dumped all
your JavaScript files into the public/javascripts directory, all your CSS files
into public/stylesheets and your image files into public/images without any
structure. Afterwards, you could load all your Javscript files within your
templates using the helper <%= javascript_include_tag :all %>. It completely
ignored files in subdirectories of public/javascripts, so that if you wanted to
organize your assets into subdirectories you had to manually load them into
your layout. What a mess!
There were other inconveniences as well. For instance, if you wanted to load
the files in a certain order, you had to replace the :all directive with a
manually maintained list of “includes” in the exact order that you needed.
When you wanted to use a library that came with JavaScript and CSS files
(e.g., twitter bootstrap) you had to copy those files into your public directory
and keep it under source control so that they will be available for the running
application. Worse, you had to read the README files carefully to figure out
just exactly what files you needed to copy and in which exact order you had
to load them. Not fun.

Asset Pipeline 764

19.1 Introduction to Asset Management

The major goal of the asset pipeline is to make management of static assets
easy, even trivial. In this chapter, we discuss organization of assets, how can
they be packaged into neat external gem dependencies, available asset pre-
processors and compressors, helpers that assist us with the Asset Pipeline,
and more.
Incidentally, automated asset management is not a new concept. It has existed
since before the Rails era, and plugins to add this critical functionality to
Rails began appearing many years ago. The most successful one is Sprockets,
written primarily by Sam Stephenson of 37signals and Rails core team fame.
Sprockets was eventually incorporated into Rails itself and is at the core of
the Rails asset pipeline implementation.

In Rails 4, the whole Asset Pipeline was extracted into a separate gem,
“sprockets-rails,” and can be removed from your application Gemfile
to disable it.

Which features of asset management solutions would be most useful to us in
building a Rails application?
For starters, we could organize the asset files into a sensible directory tree
instead of ‘junk drawer’ directories filled haphazardly.
We might also want to compress all our assets, so that they can be served
faster to web browsers and eat up less bandwidth.
We could also consolidate multiple source files of the same kind (JavaScript
or CSS) into single files, reducing the number of HTTP requests made by the
browser and significantly improving page load times.
On the other hand, compressing and consolidating all those source files could
make debugging during development a nightmare, so our wish list would
also include the capability to turn those features off, except for production
environments.
What else? To speed up page loading times even more, we might “pre-shrink”
our asset files with themaximum compression level, so that our web server
doesn’t waste CPU cycles zipping up the same files over and over again on
each request.
We would also want to include cache-busting features, giving us the capa-
bility to force expiration of stale assets from all cache layers (HTTP proxies,
browsers, etc.) when their content changes.

Asset Pipeline 765

Furthermore, we might want the capability to transparently compile lan-
guages such as CoffeeScript for Javscript assets and Sass and Less for CSS
stylesheets.
All the highlighted features in our wish list and more are part of the Asset
Pipeline, making this aspect of Rails programming a lot more enjoyable than
in earlier versions.
We could try to describe how the entire Asset Pipeline works at the high level
now, but it would require too many forward references to stuff we haven’t yet
explained. Therefore we are going to build out our understanding from the
bottom up. Keep in mind the overall goal: concatenating and serving asset
files and “bundles” composed of multiple files, which can possibly be pre- and
post-processed or compiled from different formats.
Now let’s dive in.

Asset Pipeline 766

19.2 Organization. Where Does Everything Go?

Asset Pipeline continues with the Rails tradition of separate directories for
images, stylesheets and scripts but adds an additional dimension of organiza-
tion. There are now three locations where you can store assets in your project
directory. Those are app/assets, lib/assets, and vendor/assets.
This small change already gives us a much better way to organize the project
files. Files specific to the current project go into app/assets, external libraries
go into vendor/assets, and assets for your own libraries can go into lib/assets.

You can still put files into the public directory, and Rails will serve them
same as before, with no processing.

You no longer need to copy the static assets bundled with your gems into your
project directory. The asset pipeline will find them automatically and make
them available for your application (more on this later).

Asset Pipeline 767

19.3 Manifest Files

The organizational structure doesn’t just involve new directories. If you look
into the app/assets directory of a freshly generated Rails application, you’ll
notice a couple of files with include directives in them: app/assets/javascript-
s/application.js and app/assets/stylesheets/application.css. Those are called
asset manifest files, and they specify instructions on where the pipeline
processor can find other assets and in which order to load them. The loaded
files are concatenated into a single “bundle” file named after the manifest.
Let’s take a look at application.js:

// This is a manifest file that'll be compiled into application.js,
// which will include all the files listed below.
//
// Any Javscript/Coffee file within this directory, lib/assets/javascripts,
// vendor/assets/javascripts, or vendor/assets/javascripts of plugins,
// if any, can be referenced here using a relative path.
//
// It's not advisable to add code directly here, but if you do, it'll
// appear at the bottom of the compiled file.
//
// WARNING: THE FIRST BLANK LINE MARKS THE END OF WHAT'S TO BE PROCESSED,
// ANY BLANK LINE SHOULD GO AFTER THE REQUIRES BELOW.
//
//= require jquery
//= require jquery_ujs
//= require turbolinks
//= require_tree .

Let’s also take a look at application.css:

/*
* This is a manifest file that'll be compiled into application.css,
* which will include all the files listed below.
*
* Any CSS and SCSS file within this directory, lib/assets/stylesheets,
* vendor/assets/stylesheets, or vendor/assets/stylesheets of plugins,
* if any, can be referenced here using a relative path.
*
* You're free to add application-wide styles to this file and they'll
* appear at the top of the compiled file, but it's generally better
* to create a new file per style scope.
*

Asset Pipeline 768

*= require_self
*= require_tree .
*/

A manifest is just a JavaScript or CSS file with a commented block at the
beginning of the file that includes special directives in it that specify other
files of the same format to concatenate in the exact order. Several comment
formats are supported:

// This is a single line comment (JavaScript, SCSS)
//= require foo

/* This is a multi-line comment (CSS, SCSS, JavaScript)
*= require foo
*/

This is a single line comment too (CoffeeScript)
#= require foo

Note the equal signs at the beginning of the lines. If you skip those the
directives won’t work.

Make as many manifest files as you need. For example, the admin.css and
admin.js manifest could contain the JS and CSS files that are used for the
admin section of an application.

Manifest directives

There are several manifest directives available:

require
The most basic one. It concatenates the content of the referenced file
you specify into the final packaged asset “bundle”. It will only do it once,
even if the same filename appears multiple times in the manifest, either
directly or as a part of require_tree (see below).

include
Just like require but will insert the file again if it appears in the manifest
more than once.

Asset Pipeline 769

require_self
Inserts the content of the file itself (after the directives). This is often
useful when you want to make sure that JavaScript code from a manifest
comes before any other code that is loaded with require_tree. We see an
example of that in the default application.css.

require_directory
Will load all the files of the same format in the specified directory in an
alphabetical order. It will skip files that were already loaded.

require_tree
Just like require_directory, but it will also recursively load all the files in
subdirectories as well. It will skip files that were already loaded as well.

depend_on
Declares a dependency on a file without actually loading it into the
“bundle”. It can be useful to force Rails to recompile cached asset bundle
in response to the change in this file, even if it is not concatenated into
the bundle directly.

Directives are processed in the order they are read in the file, but when
you use require_tree there is no guarantee of the order in which files will be
included. If for dependency reasons you need to make sure of a certain order,
just require those files explicitly.

Search Path

When you require an asset from a manifest file Rails searches for it in all
directories in its search path. You do not need to specify file extensions. The
processor assumes you are looking for files that match the type of the manifest
file itself.
The search path includes all the directories that are directly under the default
assets locations app/assets, lib/assets, and vendor/assets by default, meaning
you can easily add other directories for new asset types to the list by creating
them under any of the standard asset locations, e.g., app/assets/fonts.
Files in subdirectories can be accessed by using a relative path:

// this will load the app/assets/javascripts/library/foo.js
//= require 'library/foo'

The directories are traversed in the order that they appear in the search path.
The first file with the required name “wins”.

Asset Pipeline 770

Note that all the directories in the search path are “equal”, and can store files
of any format. It means you can put your JavaScript files in app/assets/stylesheets
and CSS files in app/assets/javascripts, and Rails will work just the same. But
your fellow developers will probably stop talking to you.

Gemified Assets

As mentioned before, gems can contain assets, and there are gems that exist
with the sole purpose of packaging asset files for Asset Pipeline.
To make gem assets available to an application the gem has to define an
“engine” i.e., a class that inherits from Rails::Engine. Once “required” it will
add app/assets, lib/assets, and vendor/assets directories from the gem to the
search path.
Let’s see the example from jquery-rails. You can find its engine in the
lib/jquery/ui/rails/engine.rb file of the gem’s source code:

module Jquery
module Ui

module Rails
class Engine < ::Rails::Engine
end

end
end

end

This Ruby file is loaded when you include this Gem into your application and
as a result all the subdirectories of gem’s vendor/assets directory are added to
the search path.

Index Files

Index files make inclusion of “bundles” of files easy. If, for example, your
Foobar library has a directory lib/assets/foobar with index.js file inside, Rails
will recognize this file as a manifest and let you include the whole “bundle”
with a single directive:

Asset Pipeline 771

//= require 'foobar'

As with your Rails project, manifest files can encapsulate all the gem asset
files and ensure proper load order without any additional effort on your part.

Format Handlers

Asset Pipeline is not called a pipeline for nothing. Source files go into one end,
get processed and compiled (if necessary), concatenated and compressed,
then come out of the other end of the pipeline as bundles. There are multiple
stages that the source files go through while traversing the pipeline.
There are many format handlers available with Rails, with more available
as third party gems. Some of them are compilers, like CoffeeScript, that
compile one format into another. Others are more simple pre-processors like
“Interpolated Strings” engine that performs ruby substitution, e.g., #{...}
regardless of the underlying format of the file so that it can process a
CoffeeScript file before it will be compiled into JavaScript.
Before we continue with individual handlers, we should discuss the file
naming scheme, because the file extensions used on an asset determine
which handlers are invoked. Asset files that are intended for compilation/pre-
processing can have more than one extension, concatenated one after the
other.
When asked to serve products in a manifest, either explicitly or as part of
a compound require directive, the asset pipeline constructs the output by
iteratively processing the file from one format into the next. It starts with
the processing corresponding to the right-most file extension and continues
until the requested leftmost extension format is obtained.
For example, let’s dissect the processing of an asset source file named
products.css.sass.erb.str.
The pipeline will first pass this file through an Interpolated Strings engine,
then the ERB template engine, after which the result is treated as a Sass file.
Sass files get compiled into normal CSS, which is in turn served to the browser
as the final result.1

In case it wasn’t obvious, the order in which you specify the file extensions is
important. If you were to name a file foo.css.erb.sass, the first processor to get
the file would be the Sass compiler, and it would blow up when it encountered
ERB tags.

1We are ignoring post-processing for a moment.

Asset Pipeline 772

Naturally, for this entire scheme to work, pre-processors and/or compilers
should be available for all the relevant formats. A wide swath of pre-processing
power is provided to Rails by a gem named Tilt, a generic interface to multiple
Ruby template engines.2 The following table outlines the Tilt engines, file
extensions, and required libraries.

ENGINE FILE EXTENSIONS REQUIRED LIBRARIES
------------------------ ----------------------- ----------------------------
Asciidoctor .ad, .adoc, .asciidoc asciidoctor (>= 0.1.0)
ERB .erb, .rhtml none (included ruby stdlib)
Interpolated String .str none (included ruby core)
Erubis .erb, .rhtml, .erubis erubis
Haml .haml haml
Sass .sass haml (< 3.1) or sass (>= 3.1)
Scss .scss haml (< 3.1) or sass (>= 3.1)
Less CSS .less less
Builder .builder builder
Liquid .liquid liquid
RDiscount .markdown, .mkd, .md rdiscount
Redcarpet .markdown, .mkd, .md redcarpet
BlueCloth .markdown, .mkd, .md bluecloth
Kramdown .markdown, .mkd, .md kramdown
Maruku .markdown, .mkd, .md maruku
RedCloth .textile redcloth
RDoc .rdoc rdoc
Radius .radius radius
Markaby .mab markaby
Nokogiri .nokogiri nokogiri
CoffeeScript .coffee coffee-script (+ javascript)
Creole (Wiki markup) .wiki, .creole creole
WikiCloth (Wiki markup) .wiki, .mediawiki, .mw wikicloth
Yajl .yajl yajl-ruby
CSV .rcsv none (Ruby >= 1.9),

fastercsv (Ruby < 1.9)

Note that quite a few of the extensions recognized by Tilt have
dependencies on gems that don’t automatically come with Rails.

2For an up-to-date list of supported formats please refer to Tilt’s README file. https://github.com/rtomayko/tilt

https://github.com/rtomayko/tilt

Asset Pipeline 773

19.4 Custom Format Handlers

Even though Tilt provides quite a few formats, you might need to implement
your own. Template handler classes have a simple interface. They define a
class attribute named default_handler containing the desired Mime-type of the
content and a class method with the signature call(template) that receives the
template content and returns the processed result.
For example, here is the handler class from the Rabl3 gem, used to generate
JSON using templates.

module ActionView
module Template::Handlers

class Rabl
class_attribute :default_format
self.default_format = Mime::JSON

def self.call(template)
ommitted for clarity...

end
end

end
end

Note that by convention, template handlers are defined in the ActionView::Template::Handlers
module. Once your custom code is available to your application in the lib
folder or as a gem, register it using the register_template_handler method,
providing the extension to match, and the handler class:

ActionView::Template.register_template_handler :rabl, ActionView::Template::Handlers::Rabl

3https://github.com/nesquena/rabl

https://github.com/nesquena/rabl
https://github.com/nesquena/rabl

Asset Pipeline 774

19.5 Post-Processing

In addition to pre-processing various formats into JavaScripts and stylesheets,
the asset pipeline can also post-process the results. By default post-processing
compressors are available for both stylesheets and JavaScripts.

Stylesheets

By default stylesheets are compressed using the YUI Compressor4, which is
the only stylesheets compressor available out of the box with Rails.
You can control it by changing the config.assets.css_compressor configuration
option, that is set to yui by default.
When using Sass in a Rails project, you could set the CSS compressor to
use Sass’ standard compressor with the config.assets.css_compressor = :sass
option.

JavaScripts

There are several JavaScript compression options available: :closure, :ugli-
fier, and :yui, provided by closure-compiler, uglifier or yui-compressor gems
respectively.
The :uglifier option is the default, but you can control it by changing the
config.assets.js_compressor configuration option.

Custom Compressor

You can use a custom post-processor by defining a class with a compressmethod
that accepts a string and assigning an instance of it to one of the configuration
options above, like this:

4http://yui.github.io/yuicompressor/css.html

http://yui.github.io/yuicompressor/css.html
http://yui.github.io/yuicompressor/css.html

Asset Pipeline 775

class MyProcessor
def compress(string)

do something
end

end

config.assets.css_compressor = MyProcessor.new

Asset Pipeline 776

19.6 Helpers

To link assets into your Rails templates, you use the same old helpers as
always, javascript_include_tag and stylesheet_link_tag. Call these helpers in
the <head> of your layout template, passing them the name of your manifest
files.

<%= stylesheet_link_tag "application" %>
<%= javascript_include_tag "application" %>

One of the common frustrations of the Asset Pipeline learning curve is
figuring out that you don’t need to explicitly link to every asset file in your
layout template anymore. Unless you break off large portions of assets for
different parts of your app (most commonly, for admin sections) you’ll just
need one each for the application.js and application.css files. If you try to
explicitly include or link to assets that are bundled up, your app will work
in development mode where it’s possible to serve up assets dynamically.
However, it will break in production where assets must be precompiled. The
bundled-up assets will simply not exist.
You’ll know that you’re running into this problem when you get the following
error:

ActionView::Template::Error (foo.js isn't precompiled)

To fix this problem, make sure that foo.js is required in one of your manifest
files, and get rid of the call to javascript_include_tag "foo".
By default, Rails only seeks to precompile assets named “application.” If you
have a good reason to break off additional bundles of assets, like for the
admin section of your app, tell the pipeline to precompile those bundles by
adding the names of the manifest files to the config.assets.precompile array in
config/initializers/assets.rb.

Precompile additional assets.
application.js, application.css, and all non-JS/CSS in app/assets folder are already add\
ed.
Rails.application.config.assets.precompile += %w(search.js)

Images

The venerable image_tag helper knows to search the asset/images directory tree
and not just the public folder. It will also search through the paths specified
in the config.assets.paths setting in config/initializers/assets.rb and any
additional paths added by gems.

Asset Pipeline 777

Add additional assets to the asset load path
Rails.application.config.assets.paths << Emoji.images_path

If you’re passing user-supplied data to the image_tag helper, note that
a blank or non-existent path will raise a server exception during
processing of the template.

Getting the URL of an Asset File

The asset_path and asset_url helpers can be used if you need to generate the
URL of an asset. But you’d need to make sure to include the .erb file extension
at the right-most position. For example, consider the following snippet of
JavaScript taken from a file named transitions.js.erb which contains the line:

this.loadImage('<%= asset_path "noise.jpg" %>');

The asset pipeline runs the source through ERB processing first and interpo-
lates in the correct path to the desired JPG file.

Built-in Sass Asset Path Helpers

Similarly, in a Sass stylesheet named layout.css.scss.erb you might have the
following code, but you wouldn’t for reasons that we’ll explain momentarily:

header {
background-image: url("<%= asset_path "header-photo-vert.jpg" %>");

}

Because this is such a common construct, Rails’ Sass processing has built-in
helpers, useful for referencing image, font, video, audio, and other stylesheet
assets.

header {
background-image: image-url("header-photo-vert.jpg");

}

Reusing a familiar pattern, image-url("rails.png") becomes url(/assets/rails.png)
and image-path("rails.png") becomes "/assets/rails.png". The more generic
form can also be used, but the asset path and class must both be speci-
fied: asset-url("rails.png", image) becomes url(/assets/rails.png) and asset-
path("rails.png", image) becomes "/assets/rails.png".

Asset Pipeline 778

Data URIs

You can easily embed the source of an image directly into a CSS file using the
Data URL scheme5 with the asset_data_uri method like this:

icon {
background: url(<%= asset_data_uri 'icon.png' %>)

}

Many different kinds of content can be inlined using data urls, although a full
explanation of each is outside the scope of this book. Generally speaking, you
want to keep the size of inlined data small to avoid blowing up the size of your
CSS file.

5http://tools.ietf.org/html/rfc2397

http://tools.ietf.org/html/rfc2397

Asset Pipeline 779

19.7 Fingerprinting

In the past, Rails encoded and appended an asset’s file timestamp to all asset
paths like this:

<link href="/assets/foo.css?1385926153" media="screen" rel="stylesheet" />

This simple scheme enabled you to set a cache-expiration date for the asset
far into the future, but still instantly invalidate it by updating the file. The
updated timestamp changed the resulting URL, which busted the cache.
Note that in order for this scheme to work correctly, all your application
servers had to return the same timestamps. In other words, they needed to
have their clocks synchronized. If one of them drifted out of sync, you would
see different timestamps at random and the caching wouldn’t work properly.
Another problem with the old approach was that it appended the timestamps
as a query parameter. Not all cache implementations treat query parameters
as parts of their cache key, leading to stale cache hits or no caching at all.
Yet another problemwas that with many deployment methods, file timestamps
would change on each deployment. This led to unnecessary cache invalida-
tions after each production deploy.
The new asset pipeline drops the timestamping scheme and uses content
fingerprinting instead. Fingerprinting makes the file name dependent on the
files’ content so that the filename only ever changes when the actual file
content is changed.
It’s worth knowing that these two lines

<%= javascript_include_tag "application" %>
<%= stylesheet_link_tag "application" %>

will look like this in production:

<script src="/assets/application-908e25f4bf641868d8683022a5b62f54.js">
</script>
<link

href="/assets/application-4dd5b109ee3439da54f5bdfd78a80473.css"
media="screen" rel="stylesheet"></link>

In the rare case that you want to invalidate all your assets at the same time,
you can take advantage of the fact that Rails uses a version identifier as part of
the configuration of its fingerprinting algorithm. The version string is stored
in config/initializers/assets.rb.

Asset Pipeline 780

Version of your assets, change this if you want to expire all your assets.
Rails.application.config.assets.version = '1.0'

Asset Pipeline 781

19.8 Serving the Files

To take full advantage of asset fingerprinting provided by the asset pipeline,
you should configure your web server to set headers on your precompiled
assets to a far-future expiration date. With cache headers in place, a client
will only request an asset once until either the filename changes or the cache
has expired.
Here’s an example for Apache:

The Expires* directives requires the Apache module `mod_expires` to be enabled.
<Location /assets/>

Use of ETag is discouraged when Last-Modified is present
Header unset ETag
FileETag None
RFC says only cache for 1 year
ExpiresActive On
ExpiresDefault "access plus 1 year"

</Location>

And here’s one for Nginx:

location ~ ^/assets/ {
expires 1y;
add_header Cache-Control public;
add_header Last-Modified "";
add_header ETag "";
break;

}

The fingerprinting feature is controlled by the config.assets.digest Rails
setting. By default it is only set in the “production” environment.

Note that the asset pipeline always makes copies of non-fingerprinted asset
files available in the same /assets directory.

Configuration Settings

Default configuration of your asset pipeline settings lives in a boilerplate-
generated script in config/initializers/assets.rb.

Asset Pipeline 782

The first standard setting assets.version enables you to expire cached assets
associated with the front-end of your application, all at once, in one fell swoop.
It consists of a version number used as a salt in the fingerprinting of your
project’s asset URLs.

Version of your assets, change this if you want to expire all your assets.
Rails.application.config.assets.version = '1.0'

It’s rare to need to change this setting but very useful if you do.
The next setting is the asset.paths array.

Add additional assets to the asset load path
Rails.application.config.assets.paths << Emoji.images_path

It is an array of directory names that serve as the search path for asset helper
methods. By modifying it you can add your own paths to the list.

config.assets.paths << Rails.root.join("app", "react", "assets")

Finally, there is a setting for adding additional asset configurations beyond the
default application. This is theoretically useful in scenarios where you want
to create deployable packages of assets that are either a subset or completely
apart from your primary application bundle.

Precompile additional assets.
application.js, application.css, and all non-JS/CSS in app/assets folder are already add\
ed.
Rails.application.config.assets.precompile += %w(search.js)

Who Delivers the Assets?

In development mode, assets are served through a middleware called Sprock-
ets. That’s not necessarily the case in production since many Rails deploy-
ments live behind a reverse HTTP proxy server such as Nginx or Apache.
Those servers both serve as load balancers for pools of Rails application server
instances and serve static files directly. In other words, when Nginx sees
a request for an asset such as /assets/rails.png it will grab it from disk at
/public/assets/rails.png and serve it directly. The Rails server will never see
these requests.
The configuration settings that control that behavior exist in config/environ-
ments/production.rb.

Asset Pipeline 783

Disable serving static files from the `/public` folder by default since
Apache or NGINX already handles this.
config.public_file_server.enabled = ENV['RAILS_SERVE_STATIC_FILES'].present?

Specifies the header that your server uses for sending files.
config.action_dispatch.x_sendfile_header = "X-Sendfile" # for apache
config.action_dispatch.x_sendfile_header = 'X-Accel-Redirect' # for nginx

As you can see, whether or not Rails serves static files is determined by the
RAILS_SERVE_STATIC_FILES environment variable.
A modern approach to hosting Rails applications adheres to something called
the twelve-factor app6 standard. One of its tenets is to minimize the di-
vergence between development and production environments. Heroku is
perfect for twelve-factor apps in this regard, because it handles load-balanc-
ing requests to your Rails application at its own HTTP-level routing layer,
separate from your application. That means a production Rails application on
Heroku can just handle requests for static assets directly. The same goes for
Rails applications that live behind an edge-caching CDN (Content Delivery
Network) such as CloudFlare. Doing so is generally recommended, especially
for consumer-facing applications.

GZip Compression

If you’ve been poking around the files generated by the asset pipeline, you
may have noticed that it also generates full-compression gzipped versions of
its output files. (Alongside /assets/application.css, there is also /assets/appli-
cation.css.gz.) The benefit of doing it during the precompilation process and
not on-the-fly is that it only happens once, enabling the use of the maximum
compression level to minimize file size and minimizing CPU load on the server.
That said, it takes some configuration on the web server to enable serving up
those pre-compressed files.
As an example, for Nginx you should add gzip_static on; to the configuration:

6https://12factor.net

https://12factor.net/
https://12factor.net/

Asset Pipeline 784

location ~ ^/assets/ {
expires 1y;
add_header Cache-Control public;
add_header Last-Modified "";
add_header ETag "";
gzip_static on;
break;

}

Asset Pipeline 785

19.9 Rake Tasks

Rails production mode expects all manifests and asset files to be pre-com-
piled on disk and available to be served up out of the location specified in
config.assets.prefix setting, which defaults to public/assets.

Compiled asset files should never be versioned in source control, and
the default .gitignore file for Rails includes a line for public/assets/*.

As part of deploying your application to production, you’ll call the following
rake task to create compiled versions of your assets directly on the server:

$ RAILS_ENV=production bundle exec rake assets:precompile

Note that cloud-platforms such as Heroku automatically do this step for you
in such a way that is compatible with their otherwise read-only filesystem.
However, Heroku also prevents your Rails application from being initialized as
part of asset pre-compilation, and certain references to objects ormethods will
not be available, causing the compile process to fail. To catch these errors, pre-
compile assets on your development machine and note any issues that crop up.
Just be aware that local pre-compilation will result in the creation of a bunch
of asset files in your /public/assets directory. Those can and will be served
up instead of the asset pipeline being invoked, even in development mode. If
you’re scratching your head wondering why changes to your JavaScript and
CSS files are not being reflected in your browser, then you probably need to
delete pre-compiled assets. Use the rake assets:clobber task to get rid of them
easily.

The official Asset Pipeline guidea goes into great detail about using pre-
compiled assets with development mode or even setting up Rails to compile
assets on the fly. It’s rare that you would want or need to do either.

ahttp://guides.rubyonrails.org/asset_pipeline.html#local-precompilation

http://guides.rubyonrails.org/asset_pipeline.html#local-precompilation

Asset Pipeline 786

19.10 Webpack

What we didn’t cover at all in this chapter (on purpose), are viable alternatives
to the asset pipeline, of which there are at least a few. I felt like it would be
negligent at this point in Rails history to neglect mentioning that the primary
competitor to the asset pipeline is a wonderful piece of JavaScript software
called Webpack7.
As opposed to declaring dependencies in external manifest files, Webpack
enables you to declare dependencies inside of each component. This style is
closer to what we would associate with normal general-purpose computing in
languages such as Ruby. Webpack is able to understand require statements
inside of your JavaScript and CSS files and figure out dependency graphs in
order to create deployable asset bundles. This functionality is extremely useful
for applications that have rich-client front ends and want to treat JavaScript
as a first-class citizen in their project.
For a comical and extremely long detailed writeup on the subject, check out
this blog post by the incomparable Giles Bowkett http://gilesbowkett.blogspot.
com/2016/10/let-asset-pipeline-die.html.

7http://webpack.github.io/

http://webpack.github.io/
http://gilesbowkett.blogspot.com/2016/10/let-asset-pipeline-die.html
http://gilesbowkett.blogspot.com/2016/10/let-asset-pipeline-die.html
http://webpack.github.io/

Asset Pipeline 787

19.11 Conclusion

The asset pipeline is an important part of making Ruby on Rails a productive
web framework. In this chapter, we’ve covered the major aspects of working
with the asset pipeline and how to configure it for production. We’ve also
pointed you in the right direction in case you’re interested in learning about
its alternatives.

20. Ajax on Rails
Ajax isn’t a technology. It’s really several technologies, each flour-
ishing in its own right, coming together in powerful new ways.
—Jesse J. Garrett, who coined the name AJAX

Ajax is an acronym that stands for Asynchronous JavaScript and XML. It
encompasses techniques that enable us to liven up web pages with behaviors
that happen outside the normal HTTP request life-cycle (without a page
refresh).
Some example use-cases for Ajax techniques are

• “Type ahead” input suggestion, as in Google search.
• Sending form data asynchronously.
• Seamless navigation of web-presented maps, as in Google Maps.
• Dynamically updated lists and tables, as in Gmail and other web-based
email services.

• Web-based spreadsheets.
• Forms that allow in-place editing.
• Live preview of formatted writing alongside a text input.

Ajax is made possible by the XMLHttpRequestObject (or XHR for short), an API
that is available in all modern browsers. It enables JavaScript code on the
browser to exchange data with the server and use it to change the user
interface of your application on the fly, without needing a page refresh.
Incidentally, Ajax, especially in Rails, has very little to do with XML, despite
its presence there at the end of the acronym. By default Rails does not even
include XML parsing capabilities. The payload of asynchronous requests can
be anything. Often they are simply form parameters exchanged for snippets of
HTML, dynamically inserted into the page’s DOM. Most common these days
is for the client and server to talk to each other using data encoded in a simple
variant of JavaScript called JSON.
It’s outside the scope of this book to teach you the fundamentals of JavaScript
and/or Ajax. It’s also outside of our scope to dive into the design considera-
tions of adding Ajax to your application, elements of which are lengthy and
occasionally controversial. Proper coverage of those subjects would require a

Ajax on Rails 789

whole book and there are many such books to choose from in the marketplace.
Therefore, the rest of the chapter will assume that you understand what Ajax
is and why you would use it in your applications. It also assumes that you have
a basic understanding of JavaScript programming.

CoffeeScript
CoffeeScript is a Ruby-esque language that compiles into JavaScript. Because
DHH and many Rails developers are fans of CoffeeScript, support for using it
(including the compiler) is natively included in Rails itself. This book assumes
that the reader is familiar with CoffeeScript syntax.

Ajax on Rails 790

20.1 Unobtrusive JavaScript

The Unobtrusive JavaScript (UJS) features in Rails provide a library-indepen-
dent API for specifying Ajax actions. The Rails team has provided UJS im-
plementations for both jQuery and Prototype, available under https://github.
com/rails/jquery-ujs and https://github.com/rails/prototype-rails, respectively.
By default, newly-generated Rails applications use jQuery as its JavaScript
library of choice.
To easily integrate jQuery into your Rails application, simply include the
jquery-rails gem in your Gemfile and run bundle install. Next, ensure that
the right directives are present in your JavaScript manifest file (listed in the
following).

Gemfile
gem 'jquery-rails'

// app/assets/javascripts/application.js
//= require jquery
//= require jquery_ujs

By including those require statements in your JavaScript manifest file, both
the jQuery and jquery_ujs libraries will automatically be bundled up along with
the rest of your assets and served to the browser efficiently. Use of manifest
files is covered in detail in Chapter 20, “Asset Pipeline.”

UJS Usage

Prior to version 3.0, Rails was not unobstrusive, resulting in generatedmarkup
being coupled to your JavaScript library of choice. For example, one of the
most dramatic changes caused by the move to UJS was the way that delete
links were generated.

= link_to 'Delete', user_path(1), method: :delete,
data: { confirm: "Are you sure?" }

Prior to the use of UJS techniques, the resulting HTML would look something
like this mess:

https://github.com/rails/jquery-ujs
https://github.com/rails/jquery-ujs
https://github.com/rails/prototype-rails

Ajax on Rails 791

<a href="/users/1" onclick="if (confirm('Sure?')) { var f =
document.createElement('form'); f.style.display = 'none';
this.parentNode.appendChild(f); f.method = 'POST'; f.action =
this.href;var m = document.createElement('input'); m.setAttribute('type',
'hidden'); m.setAttribute('name', '_method'); m.setAttribute('value',
'delete'); f.appendChild(m);f.submit(); };return false;">Delete

Now, taking advantage of UJS, it will look like

<a data-confirm="Are you sure?" data-method="delete" href="/users/1"
rel="nofollow">Delete

Note that Rails uses the standard HTML5 data- attributes method as a means
to attach custom events to DOM elements.
Also required for Rails UJS support is the csrf_meta_tag, which must be placed
in the head of the document and adds the csrf-param and csrf-token meta tags
used in dynamic form generation.

%head
= csrf_meta_tag

CSRF stands for cross-site request forgery and the csrf_meta_tag is onemethod
of helping to prevent the attack from happening. CSRF protection is covered
in detail in Chapter 15, “Security.”

Helpers

As covered in Chapter 11, “All About Helpers,” Rails ships with view helper
methods to generate markup for common HTML elements. The following is a
listing of Action View helpers that have hooks to enable Ajax behavior via the
Unobtrusive JavaScript driver.

button_to

The button_to helper generates a form containing a single button that submits
to the URL created by the set of options. Setting the :remote option to true,
enables the unobtrusive JavaScript driver to make an Ajax request in the
background to the URL.
To illustrate, the following markup

Ajax on Rails 792

= button_to("New User", new_user_path, remote: true)

generates

<form action="/users/new" class="button_to" data-remote="true"
method="post">
<div>

<input type="submit" value="New User">
<input name="authenticity_token" type="hidden"

value="HDVQ/5AHK+f5ChqN8qaah8Pd0gZzkoa21vqbvbayHBY=">
</div>

</form>

To display a JavaScript confirmation prompt with a question specified, supply
data attribute :confirm with a question. If accepted, the button will be
submitted normally; otherwise, no action is taken.

= button_to("Deactivate", user, data: { confirm: 'Are you sure?' })

The Unobtrusive JavaScript driver also enables the disabling of the button
when clicked via the :disable_with data attribute. This prevents duplicate
requests from hitting the server from subsequent button clicks by a user.
If used in combination with remote: true, once the request is complete, the
Unobtrusive JavaScript driver will re-enable the button and reset the text to
its original value.

= button_to("Deactivate", user, data: { disable_with: 'Deactivating...' })

form_for

The form_for helper is used to create forms with an Active Model instance. To
enable the submission of a form via Ajax, set the :remote option to true. For
instance, assuming we had a form to create a new user, the following

= form_for(user, remote: true) do |f|
...

would generate

Ajax on Rails 793

<form accept-charset="UTF-8" action="/users" class="new_user"
data-remote="true" id="new_user" method="post">
...

</form>

form_tag

Like form_for, the form_tag accepts the :remote option to enable Ajax form
submission. For detailed information on form_tag, see Chapter 11, “All About
Helpers”.

link_to

The link_to helper creates a link tag of the given name using a URL created
by the set of options. Setting the option :remote to true, allows the unobtrusive
JavaScript driver to make an Ajax request to the URL instead of the following
the link.

= link_to "User", user, remote: true

By default, all links will always perform an HTTP GET request. To specify an
alternative HTTP verb, such as DELETE, you can set the :method option with the
desired HTTP verb (:post, :patch, or :delete).

= link_to "Delete User", user, method: :delete

If the user has JavaScript disabled, the request will always fall back to using
GET, no matter what :method you have specified.
The link_to helper also accepts data attributes :confirm and :disable_with,
covered earlier in the button_to section.

jQuery UJS Custom Events

When a form, link, or button is marked with the data-remote attribute, the
jQuery UJS driver fires the following custom events:

Ajax on Rails 794

Event name parameters Occurrence
ajax:before event Ajax event is started,

aborts if stopped.
ajax:beforeSend event, xhr, Before request is sent,

settings aborts if stopped.
ajax:send event, xhr Request is sent.
ajax:success event, data, Request completed, and

HTTP
status, xhr response was a success.

ajax:error event, xhr, Request completed, and
HTTP

status, error response returned an
error.

ajax:complete event, xhr, After request
completed,

status regardless of outcome.
ajax:aborted:required event, elements When there exists blank

required field in a form.
Continues with
submission if
stopped.

ajax:aborted:file event, elements When there exists a
populated
file field in the form.
Aborts if stopped.

This enables you, for instance, to handle the success/failure of Ajax submis-
sions. To illustrate, let’s bind to both the ajax:success and ajax:error events in
the following CoffeeScript:

$(document).ready ->
$("#new_user")

.on "ajax:success", (event, data, status, xhr) ->
$(@).append xhr.responseText

.on "ajax:error", (event, xhr, status, error) ->
$(@).append "Something bad happened"

Ajax on Rails 795

20.2 Ajax and JSON

JavaScript Object Notation (JSON) is a simple way to encode JavaScript
objects. It is also considered a language-independent data format, making
it a compact, human-readable, and versatile interchange format. This is the
preferred method of interchanging data between the web application code
running on the server and any code running in the browser, particularly for
Ajax requests.
Rails provides a to_json on every object, using a sensible mechanism to
do so for every type. For example, BigDecimal objects, although numbers,
are serialized to JSON as strings, since that is the best way to represent a
BigDecimal in a language-independent manner. You can always customize the
to_jsonmethod of any of your classes if youwish, but it should not be necessary
to do so.

Ajax link_to

To illustrate an Ajax request, let’s enable our sample app’s Client controller
to respond to JSON and provide a method to supply the number of draft
timesheets outstanding for each client:

respond_to :html, :xml, :json
...
GET /clients/counts
GET /clients/counts.json
def counts

respond_with(Client.all_with_counts) do |format|
format.html { redirect_to clients_path }

end
end

Sample code not working?Make sure you have the [Responders gem].(https://github.com/plataformatec/responders/)

This uses the Client class method all_with_counts, which returns an array of
hashmaps:

Ajax on Rails 796

def self.all_with_counts
all.map do |client|

{ id: client.id, draft_timesheets_count: client.timesheets.draft.count }
end

end

When GET /clients/counts is requested and the content type is JSON, the
response is the following:

[{"draft_timesheets_count":0, "id":20},
{"draft_timesheets_count":1, "id":21}]

You will note in the code example that HTML and XML are also supported
content types for the response, so it’s up to the client to decide which format
works best for them. We’ll look at formats other than JSON in the next few
sections.
In this case, our Client index view requests a response in JSON format:

- content_for :head do
= javascript_include_tag 'clients.js'

...
%table#clients_list
...

- @clients.each do |client|
%tr[client]

%td= client.name
%td= client.code
%td.draft_timesheets_count= client.timesheets.draft.count

...
= link_to 'Update draft timesheets count', counts_clients_path,

remote: true, data: { type: :json }, id: 'update_draft_timesheets'

To complete the asynchronous part of this Ajax-enabled feature, we also need
to add an event-handler to the UJS ajax:success event, fired when the Ajax call
on the update_draft_timesheets element completes successfully. Here, jQuery
is used to bind a JavaScript function to the event once the page has loaded.
This is defined in clients.js:

Ajax on Rails 797

$(function() {
$("#update_draft_timesheets").on("ajax:success", function(event, data) {

$(data).each(function() {
var td = $('#client_' + this.id + ' .draft_timesheets_count')
td.html(this.draft_timesheets_count);

});
});

});

In each row of the clients listing, the respective td with a class of draft_-
timesheets_count is updated in place with the values from the JSON response.
There is no need for a page refresh, and user experience is improved.

Ajax on Rails 798

20.3 Ajax and HTML

The Ruby classes in your Rails application will normally contain the bulk of
that application’s logic and state. Ajax-heavy applications can leverage that
logic and state by transferring HTML, rather than JSON, to manipulate the
DOM.
A web application may respond to an Ajax request with a HTML fragment,
used to insert or replace an existing part of the page. This is most usually
done when the transformation relies on complex business rules and perhaps
complex state that would be inefficient to duplicate in JavaScript.
Let’s say your application needs to display clients in some sort of priority
order, and that order is highly variable and dependent on the current context.
There could be a bunch of rules dictating what order they are shown in.
Perhaps it’s that whenever a client has more than a certain number of draft
timesheets, we want to flag that in the page.

%td.draft_timesheets_count
- if client.timesheets.draft.count > 3

%span.drafts-overlimit WARNING!
%br

= client.timesheets.draft.count

Along with that, let’s say on a Friday or Saturday we need to group clients by
their hottest spending day so we can make ourselves an action plan for the
beginning of the following week.
These are just two business rules that, when combined, are a bit of a handful
to implement both in Rails and in JavaScript. Applications tend to have many
more than just two rules combining, and it quickly becomes prohibitive to
implement those rules in JavaScript to transform JSON into DOM changes.
That’s particularly true when the page making the Ajax call is external and
not one we’ve written.
We can opt to transfer HTML in the Ajax call and using JavaScript to update a
section of the page with that HTML. Under one context, the snippet of HTML
returned could look like

Ajax on Rails 799

<tr id="client_22" class="client"></tr>
<tr>

<td></td><td>Aardworkers</td><td>AARD</td><td>$4321</td>
<td class="draft_timesheets_count">0</td>

</tr>
<tr id="client_23" class="client"></tr>
<tr>

<td></td><td>Zorganization</td><td>ZORG</td><td>$9999</td>
<td class="draft_timesheets_count">1</td>

</tr>

Whereas, in another context, it could look like

<tr>
<td>Friday</td>

</tr>
<tr>

<td>Saturday</td>
</tr>
<tr id="client_24" class="client"></tr>
<tr>

<td></td><td>Hashrocket</td><td>HR</td><td>$12000</td>
<td class="draft_timesheets_count">

WARNING!
5

</td>
</tr>
<tr id="client_22" class="client"></tr>
<tr>

<td></td><td>Aardworkers</td><td>AARD</td><td>$4321</td>
<td class="draft_timesheets_count">0</td>

</tr>

The JavaScript event handler for the Ajax response then just needs to update
the innerHTML of a particular HTML element to alter the page, without having to
know anything about the business rules used to determine what the resulting
HTML should be.

The counterargument to this technique is that it tightly couples your presen-
tation layer to server-side logic. Larger teams, with specialized roles such as
front-end engineers, may find it preferable to maintain much looser coupling
between tiers.

Ajax on Rails 800

20.4 JSONP Requests

JSONP pads, or wraps, JSON data in a call to a JavaScript function that exists
on your page. You specify the name of that function in a callback query string
parameter. Note that some public APIs may use something other than callback,
but it has become the convention in Rails and most JSONP applications.

Xavier says…
Although the Wikipedia entrya for Ajax does not specifically mention JSONP
and the request is not XHR by Rails’ definition, we’d like to think of it as Ajax
anyways—it is, after all, asynchronous JavaScript.

a
http://en.wikipedia.org/wiki/Ajax_(programming)

JSONP is one alternative for obtaining cross-domain data, avoiding the browser’s
same-origin policy. This introduces a pile of safety and security issues that are
beyond the scope of this book. However, if you need to use JSONP, the Rails
stack provides an easy way to handle JSONP requests (with Rack::JSONP) or
make JSONP requests (with UJS and jQuery).
To respond to JSONP requests, activate the Rack JSONPmodule from the rack-
contrib RubyGem in your environment.rb file:

class Application < Rails::Application
require 'rack/contrib'
config.middleware.use 'Rack::JSONP'
...

Then, just use UJS to tell jQuery it’s a JSONP call by altering the data-type to
jsonp:

= link_to 'Update draft timesheets count', counts_clients_path,
remote: true, data: { type: :jsonp }, id: 'update_draft_timesheets'

JQuery automatically adds the ?callback= and random function name to the
query string of the request URI. In addition to this it also adds the necessary
script tags to our document to bypass the same-origin policy. Our existing
event handler is bound to ajax:success so it is called with the data just like
before. Now, though, it can receive that data from another web application.

http://en.wikipedia.org/wiki/Ajax_(programming)

Ajax on Rails 801

jQuery also makes the request as if it is for JavaScript, so our Rails controller
needs to respond_to :js. Unfortunately, the Rails automatic rendering for
JavaScript responses isn’t there yet, so we add a special handler for JavaScript
in our controller:

respond_to :html, :js
...

def counts
respond_with(Client.all_with_counts) do |format|

format.html { redirect_to clients_path }
format.js { render json: Client.all_with_counts.to_json }

end
end

We still convert our data to JSON. The Rack::JSONPmodule then pads that JSON
data in a call to the JavaScript function specified in the query string of the
request. The response looks like this:

jsonp123456789([{"id":1,"draft_timesheets_count":0},
{"id":2,"draft_timesheets_count":1}])

When the Ajax response is complete, your Ajax event handler is called and the
JSON data is passed to it as a parameter.

Ajax on Rails 802

20.5 Conclusion

Rails’ baked-in support for Ajax is often credited as a big factor in its initial
surge in popularity. However, in recent times developers are choosing more
and more to break out browser clients into standalone “single-page apps”
(SPAs) that don’t even reside in the same source repository as their backend
Rails code. Still, going the SPA route introduces a boatload of potentially
unnecessary complexity. DHH has been an unrelenting proponent of the
“majestic monolith” style,1 made possible by the Ajax functionality described
in this chapter.

1https://m.signalvnoise.com/the-majestic-monolith-29166d022228

https://m.signalvnoise.com/the-majestic-monolith-29166d022228

21. Turbolinks
Turbolinks is JavaScript library that, when enabled, attaches a click handler
to all links of a HTML page. When a link is clicked, Turbolinks will execute an
Ajax request, and replace the contents of the current page with the response’s
<body> tag.
When Turbolinks is activated, it uses the HTML5 History API to dynamically
change the address of the current page, enabling users to bookmark a specific
page and use the back button as they normally would.
The biggest advantage of Turbolinks is that it enables the user’s browser
to only fetch the required stylesheets, javascripts, and even images once to
render the page. Turbolinks effectively makes your site appear faster and
more responsive.
Turbolinks is automatically included in new Rails 5 projects. To integrate
Turbolinks into an existing Rails application that doesn’t have it yet, include
the turbolinks gem in your Gemfile and run bundle install.

Gemfile
gem 'turbolinks'

Next, add “require turbolinks” in your JavaScript manifest file.

// app/assets/javascripts/application.js
//= require jquery
//= require jquery_ujs
//= require turbolinks

Despite the example above, Turbolinks does not depend on any particular
JavaScript framework, such as jQuery. Its creators have attempted to make
using it as unobtrusive as possible.

Turbolinks 804

21.1 Turbolinks Usage

Turbolinks intercepts all clicks on <a href> links to the same domain. When
you click an eligible link, Turbolinks prevents the browser from follow-
ing it. Instead, Turbolinks changes the browser’s URL using the [History
API],(https://developer.mozilla.org/en-US/docs/Web/API/History) requests the
new page using [XMLHttpRequest],(https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest)
and then renders the HTML response.
During rendering, Turbolinks replaces the current <body> element outright and
merges the contents of the <head> element. The JavaScript window and document
objects, and the HTML <html> element, persist from one rendering to the next.

Each Navigation Is a Visit

Turbolinks models navigation as a visit to a location (URL) with an action.
Understanding this abstraction is vital to understanding how Turbolinks
works overall.
Visits represent the entire navigation lifecycle from click to render. That
includes changing browser history, issuing the network request, restoring a
copy of the page from cache, rendering the final response, and updating the
scroll position.
There are two types of visit: an application visit, which has an action of
advance or replace, and a restoration visit, which has an action of restore.

Application Visits

Application visits are initiated by clicking a Turbolinks-enabled link or pro-
grammatically by calling [Turbolinks.visit(location)].(#turbolinksvisit)
An application visit always issues a network request. When the response
arrives, Turbolinks renders its HTML and completes the visit.
If possible, Turbolinks will render a preview of the page from a local cache
immediately after the visit starts. This improves the perceived speed of
frequent navigation between the same pages.
If the visit’s location includes an anchor, Turbolinks will attempt to scroll to
the anchored element. Otherwise, it will scroll to the top of the page.
Application visits result in a change to the browser’s history; the visit’s
action determines how. The default visit action is advance. During an advance
visit, Turbolinks pushes a new entry onto the browser’s history stack using
[history.pushState].(https://developer.mozilla.org/en-US/docs/Web/API/History/pushState)

Turbolinks 805

You may wish to visit a location without pushing a new history entry onto
the stack. The replace visit action uses history.replaceState1 to discard the
topmost history entry and replace it with the new location. To specify that
following a link should trigger a replace visit, annotate the link with data-
turbolinks-action="replace":
Edit
To programmatically visit a location with the replace action, pass the action:
"replace" option to Turbolinks.visit like this:
Turbolinks.visit(“/edit”, { action: “replace” })

Restoration Visits

Turbolinks automatically initiates a restoration visit when you navigate with
the browser’s Back or Forward buttons. If possible, it will render a copy of the
page from local cache without making a request. Otherwise, it will retrieve
a fresh copy of the page over the network. See the section “Understanding
Turbolinks Caching” for more details.
Turbolinks saves the scroll position of each page before navigating away and
automatically returns to this saved position on restoration visits.

Restoration visits have an action of restore, and Turbolinks reserves them for
internal use. You should not attempt to annotate links or invoke Turbolinks.visit
with an action of restore.

Canceling Visits Before They Start

Application visits can be canceled before they start, regardless of whether
they were initiated by a link click or a call to Turbolinks.visit.
Listen for the turbolinks:before-visit event to be notified when a visit is
about to start, and use event.data.url (or $event.originalEvent.data.url when
using jQuery) to check the visit’s location. Then cancel the visit by calling
event.preventDefault().

1https://developer.mozilla.org/en-US/docs/Web/API/History/pushState

https://developer.mozilla.org/en-US/docs/Web/API/History/pushState
https://developer.mozilla.org/en-US/docs/Web/API/History/pushState

Turbolinks 806

Restoration visits cannot be canceled and do not fire turbolinks:before-visit.
Turbolinks issues restoration visits in response to history navigation that has
already taken place, typically via the browser’s Back or Forward buttons.

Disabling Turbolinks on Specific Links

Turbolinks can be disabled on a per-link basis by annotating a link or any of
its ancestors with data-turbolinks="false".

Disabled

<div data-turbolinks="false">
Disabled

</div>

To re-enable when an ancestor has opted out, use data-turbolinks="true":
<div data-turbolinks=”false”>Enabled
</div>
Links with Turbolinks disabled will be handled normally by the browser.

Turbolinks 807

21.2 Building Your Turbolinks Application

Turbolinks is fast because it doesn’t reload the page when you follow a link.
Instead, your application becomes a persistent, long-running process in the
browser. This requires you to rethink the way you structure your JavaScript.
In particular, you can no longer depend on a full page load to reset your
environment every time you navigate. The JavaScript window and document
objects retain their state across page changes, and any other objects you leave
in memory will stay in memory.
With awareness and a little extra care, you can design your application to
gracefully handle this constraint without tightly coupling it to Turbolinks.

Running JavaScript when a Page Loads

You may be used to installing JavaScript behavior in response to the win-
dow.onload, DOMContentLoaded, or jQuery ready events. With Turbolinks, these
events will fire only in response to the initial page load—not after any
subsequent page changes.
In many cases, you can simply adjust your code to listen for the turbolinks:load
event, which fires once on the initial page load and again after every Tur-
bolinks visit.

document.addEventListener("turbolinks:load", function() {
// ...

})

When possible, avoid using the turbolinks:load event to add event listeners di-
rectly to elements on the page body. Instead, consider using event delegation2
to register event listeners once on document or window.

Working with Script Elements

Your browser automatically loads and evaluates any <script> elements present
on the initial page load. When you navigate to a new page, Turbolinks looks
for any <script> elements in the new page’s <head> that aren’t present on the
current page. Then it appends them to the current <head>where they’re loaded
and evaluated by the browser. You can use this to load additional JavaScript
files on-demand.

2https://learn.jquery.com/events/event-delegation/

https://learn.jquery.com/events/event-delegation/
https://learn.jquery.com/events/event-delegation/

Turbolinks 808

Turbolinks evaluates <script> elements in a page’s <body> each time it renders
the page. You can use inline body scripts to set up per-page JavaScript
state or bootstrap client-side models. To install behavior, or to perform more
complex operations when the page changes, avoid script elements and use the
turbolinks:load event instead.
Annotate <script> elements with data-turbolinks-eval="false" if you do not
want Turbolinks to evaluate them after rendering. Note that this annotation
will not prevent your browser from evaluating scripts on the initial page load.

Turbolinks 809

21.3 Understanding Turbolinks Caching

Turbolinks maintains a browser-based cache of recently visited pages. This
cache serves two purposes: to display pages without accessing the network
during restoration visits and to improve perceived performance by showing
temporary previews during application visits.
When navigating by history (via Restoration Visits), Turbolinks will restore the
page from cache without loading a fresh copy from the network, if possible.
Otherwise, during standard navigation (via Application Visits), Turbolinks will
immediately restore the page from cache and display it as a preview while
simultaneously loading a fresh copy from the network. This gives the illusion
of instantaneous page loads for frequently accessed locations.
Turbolinks saves a copy of the current page to its cache just before rendering a
new page. Note that Turbolinks copies the page using [cloneNode(true)],(https://developer.mozilla.org/en-
US/docs/Web/API/Node/cloneNode) which means any attached event listeners
and associated data are discarded.

Preparing the Page to be Cached

Listen for the turbolinks:before-cache event if you need to prepare the doc-
ument before Turbolinks caches it. You can use this event to reset forms,
collapse expanded UI elements, or tear down any third-party widgets so the
page is ready to be displayed again.

document.addEventListener("turbolinks:before-cache", function() {
// ...

})

Detecting When a Preview is Visible

Turbolinks adds a data-turbolinks-preview attribute to the <html> element when
it displays a preview from cache. You can check for the presence of this
attribute to selectively enable or disable behavior when a preview is visible.
The same attribute can be used in your CSS to change the appearance of the
page while it is inactive.

Turbolinks 810

if (document.documentElement.hasAttribute("data-turbolinks-preview")) {
// Turbolinks is displaying a preview

}

Opting Out of Caching

You can control caching behavior on a per-page basis by including a <meta
name="turbolinks-cache-control"> element in your page’s <head> and declaring
a caching directive.
Use the no-preview directive to specify that a cached version of the page should
not be shown as a preview during an application visit. Pages marked no-
preview will only be used for restoration visits.
To specify that a page should not be cached at all, use the no-cache directive.
Pages marked no-cache will always be fetched over the network, including
during restoration visits.

<head>
...
<meta name="turbolinks-cache-control" content="no-cache">

</head>

To completely disable caching in your application, ensure every page contains
a no-cache directive.

Turbolinks 811

21.4 Making Transformations Idempotent

Often you’ll want to perform client-side transformations to HTML received
from the server. For example, you might want to use the browser’s knowledge
of the user’s current time zone to group a collection of elements by date.
Suppose you have annotated a set of elements with data-timestamp attributes
indicating the elements’ creation times in UTC. You have a JavaScript function
that queries the document for all such elements, converts the timestamps to
local time, and inserts date headers before each element that occurs on a new
day.
Consider what happens if you’ve configured this function to run on tur-
bolinks:load. When you navigate to the page, your function inserts date
headers. Navigate away, and Turbolinks saves a copy of the transformed page
to its cache. Now press the Back button—Turbolinks restores the page, fires
turbolinks:load again, and your function inserts a second set of date headers.
To avoid this problem, make your transformation function idempotent. An
idempotent transformation is safe to apply multiple times without changing
the result beyond its initial application.
One technique for making a transformation idempotent is to keep track of
whether you’ve already performed it by setting a data attribute on each
processed element. When Turbolinks restores your page from cache, these
attributes will still be present. Detect these attributes in your transformation
function to determine which elements have already been processed.
A more robust technique is simply to detect the transformation itself. In the
date grouping example above, that means checking for the presence of a date
divider before inserting a new one. This approach gracefully handles newly
inserted elements that weren’t processed by the original transformation.

Turbolinks 812

21.5 Responding to Page Updates

Turbolinks may not be the only source of page updates in your application.
New HTML can appear at any time from Ajax requests, WebSocket connec-
tions, or other client-side rendering operations, and this content will need to
be initialized as if it came from a fresh page load.
You can handle all of these updates, including updates from Turbolinks page
loads, in a single place with the precise lifecycle callbacks provided by
MutationObserver3 and [Custom Elements]. (https://developer.mozilla.org/en-
US/docs/Web/Web_Components/Custom_Elements)
In particular, these APIs give you callbacks when elements are attached to
and removed from the document. You can use these callbacks to perform
transformations and register or tear down behavior as soon as matching
elements appear on the page, regardless of how they were added.
By taking advantage of MutationObserver, Custom Elements, and idempotent
transformations, there’s little need to couple your application to Turbolinks’
events.

3https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver

https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver

Turbolinks 813

21.6 Persisting Elements Across Page Loads

Turbolinks enables you to mark certain elements as permanent. Permanent
elements persist across page loads so that any changes you make to those
elements do not need to be reapplied after navigation.
Consider a Turbolinks application with a shopping cart. At the top of each
page is an icon with the number of items currently in the cart. This counter is
updated dynamically with JavaScript as items are added and removed.
Now imagine a user who has navigated to several pages in this application.
She adds an item to her cart, then presses the Back button in her browser.
Upon navigation, Turbolinks restores the previous page’s state from cache,
and the cart item count erroneously changes from 1 to 0.
You can avoid this problem by marking the counter element as permanent.
Designate permanent elements by giving them an HTML id and annotating
them with data-turbolinks-permanent.

<div id="cart-counter" data-turbolinks-permanent>1 item</div>

Before each render, Turbolinks matches all permanent elements by id and
transfers them from the original page to the new page, preserving their data
and event listeners.

Turbolinks 814

21.7 Advanced Turbolinks

In addition to what we’ve already covered, there are a number of advanced
Turbolinks techniques that you should know about.

Displaying Progress

During Turbolinks navigation, given its Ajax nature, the browser will not
display a native progress indicator. The lack of feedback can be disorienting
to the end user, so Turbolinks installs a CSS-based progress bar to provide
feedback while it does its thing.
The progress bar is enabled by default and appears automatically for any page
that takes longer than 500ms to load. It is implemented as a <div> element
with the class name turbolinks-progress-bar. Its default styles appear first in
the document and can be overridden by rules that come later.
For example, the following CSS will result in a thick green progress bar:

.turbolinks-progress-bar {
height: 5px;
background-color: green;

}
To disable the progress bar entirely, set its visibility style to hidden:

.turbolinks-progress-bar {
visibility: hidden;

}

Reloading When Certain Things Change

Turbolinks can track the URLs of asset elements in <head> from one page to
the next and automatically issue a full reload if they change. This ensures that
users always have the latest versions of your application’s scripts and styles.
Annotate asset elements with data-turbolinks-track="reload", and include a
version identifier in your asset URLs. The identifier could be a number, a
last-modified timestamp, or better, a digest of the asset’s contents, as in the
following example:

Turbolinks 815

<head>
...
<link rel="stylesheet" href="/application-258e88d.css" data-turbolinks-track="reload">
<script src="/application-cbd3cd4.js" data-turbolinks-track="reload"></script>

</head>

You can actually use this asset tracking behavior with any HTML element in
the head of the document, such as <link>, <script>, or even <meta>. An element
annotated with data-turbolinks-track="reload" will trigger a full reload if it
changes in any way, e.g. if its attributes are not identical, or if the element is
present on one page but not on the next.

Note that Turbolinks will only consider tracked assets in <head> and not
elsewhere on the page.

Setting a Root Location

By default, Turbolinks only loads URLs with the same origin—i.e., the same
protocol, domain name, and port—as the current document. A visit to any
other URL falls back to a full page load.
In some cases, you may want to further scope Turbolinks to a path on the same
origin. For example, if your Turbolinks application lives at /app, and the non-
Turbolinks help site lives at /help, links from the app to the help site shouldn’t
use Turbolinks.
Include a <meta name="turbolinks-root"> element in your pages’ <head> to scope
Turbolinks to a particular root location. Turbolinks will only load same-origin
URLs that are prefixed with this path.

<head>
...
<meta name="turbolinks-root" content="/app">

</head>

Following Redirects

When you visit location /one and the server redirects you to location /two, you
expect the browser’s address bar to display the redirected URL.

Turbolinks 816

However, Turbolinks makes requests using XMLHttpRequest, which transpar-
ently follows redirects. There’s no way for Turbolinks to tell whether a request
resulted in a redirect without additional cooperation from the server.
To work around this problem, Rails sends a Turbolinks-Location header in
response to a visit that was redirected using redirect_to, and Turbolinks will
replace the browser’s topmost history entry with the value provided. If for
some reason you are performing redirects manually (so-to-speak, without
using the redirect_to helper method), then you’ll have to take care of adding
the header yourself.

Redirecting After a Form Submission

Submitting an HTML form to the server and redirecting in response is a
common pattern in web applications. Standard form submission is similar to
navigation, resulting in a full page load. Using Turbolinks you can improve the
performance of form submission without complicating your server-side code.
Instead of submitting forms normally, submit them using XHR. In response
to an XHR submit on the server, return JavaScript that performs a Tur-
bolinks.visit to be evaluated by the browser.
If form submission results in a state change on the server that affects cached
pages, consider first clearing Turbolinks’ cache with Turbolinks.clearCache().
Rails actually performs this optimization automatically for non-GET XHR
requests that redirect with the redirect_to helper.

Setting Custom HTTP Headers

You can observe the turbolinks:request-start event to set custom headers
on Turbolinks requests. Access the request’s XMLHttpRequest object via
event.data.xhr, then call the setRequestHeader4 method as many times as you
wish.
For example, you might want to include a request ID with every Turbolinks
link click and programmatic visit.

document.addEventListener("turbolinks:request-start", function(event) {
var xhr = event.data.xhr
xhr.setRequestHeader("X-Request-Id", "123...")

})

4https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

Turbolinks 817

21.8 Turbolinks API Reference

The functions in the following sections are available for controlling Turbolinks
in your JavaScript code.

Turbolinks.visit

Performs an Application Visit to the given location (a string containing a URL
or path) with the specified action (a string, either "advance" or "replace").

Turbolinks.visit(location)
Turbolinks.visit(location, { action: action })

If location is a cross-origin URL or falls outside of the specified root (see
Setting a Root Location) or if the value of Turbolinks.supported is false,
Turbolinks performs a full page load by setting window.location.
If action is unspecified, Turbolinks assumes a value of "advance".
Before performing the visit, Turbolinks fires a turbolinks:before-visit event
on document. Your application can listen for this event and cancel the visit with
event.preventDefault() (see Canceling Visits Before They Start).

Turbolinks.clearCache

Removes all entries from the Turbolinks page cache. Call this when state has
changed on the server that may affect cached pages.

Turbolinks.clearCache()

Turbolinks.supported

Detects whether Turbolinks is supported in the current browser.

if (Turbolinks.supported) {
// ...

}

Turbolinks 818

21.9 Turbolinks Events

Turbolinks emits events that enable you to track the navigation lifecycle and
respond to page loading. Except where noted, Turbolinks fires events on the
browser’s document object.

• turbolinks:click fires when you click a Turbolinks-enabled link. The
clicked element is the event target. Access the requested location with
event.data.url. Cancel this event to let the click fall through to the
browser as normal navigation.

• turbolinks:before-visit fires before visiting a location, except when
navigating by history. Access the requested location with event.data.url.
Cancel this event to prevent navigation.

• turbolinks:visit fires immediately after a visit starts.
• turbolinks:request-start fires before Turbolinks issues a network request
to fetch the page. Access the XMLHttpRequest object with event.data.xhr.

• turbolinks:request-end fires after the network request completes. Access
the XMLHttpRequest object with event.data.xhr.

• turbolinks:before-cache fires before Turbolinks saves the current page to
cache.

• turbolinks:before-render fires before rendering the page. Access the new
<body> element with event.data.newBody.

• turbolinks:render fires after Turbolinks renders the page. This event
fires twice during an application visit to a cached location: once after
rendering the cached version and again after rendering the fresh version.

• turbolinks:load fires once after the initial page load and again after every
Turbolinks visit. Access visit timing metrics with the event.data.timing
object.

Turbolinks 819

21.10 Conclusion

Rails’ baked-in support for Ajax is often credited as a big factor in its initial
surge in popularity. However, in recent times developers are choosing more
and more to break out browser clients into standalone “single-page apps”
(SPAs) that don’t even reside in the same source repository as their backend
Rails code. Still, going the SPA route introduces a boatload of potentially
unnecessary complexity. DHH has been an unrelenting proponent of the
“majestic monolith” style,5 made possible by the Ajax functionality described
in this chapter.

5https://m.signalvnoise.com/the-majestic-monolith-29166d022228

https://m.signalvnoise.com/the-majestic-monolith-29166d022228

22. Action Cable
Action Cable provides an easy way of adding real-time, low-latency com-
munication between the browser and your Rails 5 server backend, using a
technology called web sockets. It eliminates the need for Ajax polling, or old-
school, brute-force methods like this classic webmaster technique:

<meta http-equiv="refresh" content="5" />

Most importantly, it is well integrated into the rest of Rails and follows its
conventions in a way that feels natural. DHH formally introduced it his 2015
Railsconf keynote, alongside Rails API mode–both innovations represent ways
that Ruby on Rails is staying relevant in the face of competition from the likes
of React, Angular and Firebase.

Action Cable 821

22.1 Web Sockets

Web sockets provide “full-duplex” communications over a single, stateful
HTTP connection between a web browser and a server. The protocol is gen-
eral-purpose enough be used with most any kind of client/server application,
but in this chapter we’re talking about using web sockets to establish real-time
communication between JavaScript code running in the browser and Ruby
code running on your Rails backend.

The WebSocket protocola was standardized by the IETF in 2011, and the
WebSocket APIb implemented in modern browsers is standardized by the
W3C; its documentation is maintained by the WHATWG community as part
of the HTML Living Standardc.

ahttps://tools.ietf.org/html/rfc6455
b
chttps://html.spec.whatwg.org/multipage/comms.html#network

Action Cable packages up client and server side handlers for web socket com-
munications, along with an implementation of a Publish-Subscribe (PubSub)
message queue pattern based on Redis.

https://tools.ietf.org/html/rfc6455
https://html.spec.whatwg.org/multipage/comms.html#network
https://html.spec.whatwg.org/multipage/comms.html#network
https://tools.ietf.org/html/rfc6455
https://html.spec.whatwg.org/multipage/comms.html#network

Action Cable 822

22.2 Publish-Subscribe Pattern

The Publish-Subscribe pattern is popular and well-documented, including
extensive explanations in books such as the modern classic Enterprise In-
tegration Patterns1. It models a way for applications to broadcast events to
interested listeners.

1http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html

http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html

Action Cable 823

22.3 Connections

Connections form the foundation of the client-server relationship. For every
WebSocket accepted by the server, a connection object is instantiated. This
object becomes the parent of all the channel subscriptions that are created
from there on. The connection itself does not deal with any specific application
logic beyond authentication and authorization, so you won’t find yourself
adding much code there.
The client of a WebSocket connection is called the consumer. An individual
user will create one consumer-connection pair per browser tab, window, or
device they have open.
In Action Cable, connections are instances of ApplicationCable::Connection. In
this class, you authorize the incoming connection, and proceed to establish it
if the user can be identified.

app/channels/application_cable/connection.rb
module ApplicationCable

class Connection < ActionCable::Connection::Base
identified_by :current_user

def connect
self.current_user = find_verified_user

end

private

def find_verified_user
if current_user = User.find_by(id: cookies.signed[:user_id])

current_user
else

reject_unauthorized_connection
end

end
end

end

This example relies on the fact that you will already have handled
authentication of the user somewhere else in your application, and that
a successful authentication sets a signed cookie with the user ID. Don’t
let the use of current_user fool you; this class has nothing to do with
Devise.

Action Cable 824

The macro-style identified_by is used to declare what property of the con-
nection instance will be used to find that particular connection instance later
on when needed. In the case of the preceding example, we use the actual
current_user instance. By identifying the connection by this same current
user, you’re also ensuring that you can later retrieve all open connections
by a given user (and potentially disconnect them all if the user is deleted or
unauthorized).

The preceding example also illustrates the fact that WebSocket connections
are sent cookies upon initialization just like normal HTTP requests.

Action Cable 825

22.4 Channels

A channel class encapsulates a logical unit of work, similar to the role played
by a controller in the familiar Model-View-Controller pattern.
The Rails generator script creates an abstract ApplicationCable::Channel class
for encapsulating shared logic between your channels.

app/channels/application_cable/channel.rb
module ApplicationCable

class Channel < ActionCable::Channel::Base
end

end

You extend this base class to create your own channel classes.

In this chapter we’ll be using example drawn from our Auction sample
codebase. Auction pages automatically update in real-time when new bids
are submitted.

class BidChannel < ApplicationCable::Channel
def subscribed

auction = Auction.find(params[:auction_id])
stream_for auction

end
end

Notice that (just like controllers), the subscribedmethod has access to a params
hash, containing parameters set by the client.

Action Cable 826

22.5 Subscriptions

Consumers (in the browser) subscribe to channels over a WebSocket con-
nection that is established using the following JavaScript, generated by the
default Rails application generator.

// app/assets/javascripts/cable.js
//= require action_cable
//= require_self
//= require_tree ./channels

(function() {
this.App || (this.App = {});

App.cable = ActionCable.createConsumer();
}).call(this);

The first half of this file should look familiar; it’s a manifest.

The preceding code will ready a consumer that’ll connect to an endpoint
on your server. (It connects to /cable by default.) Connection behavior lazy,
it won’t happen until you’ve also specified at least one subscription you’re
interested in having.

Subscribers

A consumer becomes a subscriber by creating a subscription to a given
channel:

App.cable.subscriptions.create { channel: "BidChannel", auction_id: 1},
connected: ->

console.log("connected")

received: (data) ->
console.log(data)
$("span#current_bid").html(data["price"])

A consumer can act as a subscriber to a given channel any number of times.
For example, a consumer could subscribe to multiple chat rooms at the same
time:

Action Cable 827

App.cable.subscriptions.create { channel: "ChatChannel", room: "1st Room" }
App.cable.subscriptions.create { channel: "ChatChannel", room: "2nd Room" }

Action Cable 828

22.6 Streams

Streams provide the mechanism by which channels route published content
(broadcasts) to subscribers. You establish a connection to a stream in the
subscribed handler of a channel using the stream_for method like this:

class BidChannel < ApplicationCable::Channel
def subscribed

auction = Auction.find(params[:auction_id])
stream_for auction

end
end

As you can see in the preceding example, if you have a stream that is related
to a model, then the broadcasting subscription can be generated directly from
an Active Record model instance.

Broadcasting

A broadcasting is a pub/sub link where anything transmitted by a publisher
is routed directly to the channel subscribers who are streaming that named
broadcasting. Each channel can be streaming zero or more broadcastings.
Broadcasting messages to a channel that has been configured in the way
shown previously is as easy as:

BidChannel.broadcast_to(auction, bid)

Broadcastings are time-dependent and should not be confused with an event
queue. If a particular consumer is not connected to a channel when a message
is sent, they will not get it when they connect later.

Action Cable 829

22.7 Subscriptions Revisited (Browser-Side)

We briefly mentioned earlier that consumers can pass parameters from the
client side to the server side when creating a subscription. An object passed
as the first argument to subscriptions.create becomes the params hash in the
cable channel. The keyword channel is required:

App.cable.subscriptions.create { channel: "BidChannel", auction_id: 1}

Action Cable 830

22.8 Rebroadcasting

A common use case for Action Cable, and the foundation of almost all Action
Cable tutorials on the internet is the rebroadcasting of a message sent by
one client to any other connected clients (aka “a chatroom”). WebSocket
connections are bi-directional—as we’re about to see, the consumer can invert
its role, and send data to the server to consume. When that happens, the
channel’s receive method is invoked.

app/channels/chat_channel.rb
class ChatChannel < ApplicationCable::Channel

def subscribed
stream_from "chat_#{params[:room]}"

end

def receive(data)
ActionCable.server.broadcast("chat_#{params[:room]}", data)

end
end

Notice that the subscription identifier string in the example code is "chat_-
#{params[:room]}", rather than being an Active Record object.

app/assets/javascripts/cable/subscriptions/chat.coffee
App.chatChannel = \
App.cable.subscriptions.create { channel: "ChatChannel", room: 1 },
received: (data) ->

data => { sent_by: "Paul", body: "This is a cool chat app." }

App.chatChannel.send({ sent_by: "Paul", body: "This is a cool chat app." })

The chat message sent using App.chatChannel.send will be received by all
connected clients, including the client that sent the message.

Action Cable 831

22.9 Channel Actions

The following example presents a channel that tracks whether a user is online
or not and what page they’re currently visiting. (This is useful for creating
presence features like showing a green dot next to a user name if they’re
online).

app/channels/appearance_channel.rb
class AppearanceChannel < ApplicationCable::Channel

def subscribed
current_user.appear

end

def unsubscribed
current_user.disappear

end

def appear(data)
current_user.appear(on: data['appearing_on'])

end

def away
current_user.away

end
end

When a subscription is initiated the subscribed callback gets fired and we take
that opportunity to say “the current user has indeed appeared”. Remember
that current_user has been set in ApplicationCable::Channel when the connec-
tion was established.
The appear/disappear API (exemplified as current_user.appear) could be backed
by Redis or a database, but explaining that part is out of scope for this chapter.
Notice that there are two methods that we haven’t seen before in this channel:
appear(data) and away. These aren’t part of Action Cable or anything, rather
they are arbitrary actions designed in much the same way that you might add
non-RESTful actions to a Rails controller class.
Here’s how those methods are invoked in the browser:

Action Cable 832

app/assets/javascripts/cable/subscriptions/appearance.coffee
App.cable.subscriptions.create "AppearanceChannel",

Called when the subscription is ready for use on the server.
connected: ->

@install()
@appear()

Called when the WebSocket connection is closed.
disconnected: ->

@uninstall()

Called when the subscription is rejected by the server.
rejected: ->

@uninstall()

appear: ->
Calls `AppearanceChannel#appear(data)` on the server.
@perform("appear", appearing_on: $("main").data("appearing-on"))

away: ->
Calls `AppearanceChannel#away` on the server.
@perform("away")

buttonSelector = "[data-behavior~=appear_away]"

install: ->
$(document).on "turbolinks:load.appearance", =>

@appear()

$(document).on "click.appearance", buttonSelector, =>
@away()
false

$(buttonSelector).show()

uninstall: ->
$(document).off(".appearance")
$(buttonSelector).hide()

Notice how the @perform function is used, along with the name of the action
and parameters in order to invoke a method on the connection class.

Action Cable 833

22.10 Configuration

Action Cable has two required configurations: a subscription adapter and
allowed request origins.

Subscription Adapter

By default, Action Cable looks for a configuration file in config/cable.yml. The
file must specify an adapter for each Rails environment. See the Dependencies
section for additional information on adapters.

development:
adapter: async

test:
adapter: async

production:
adapter: redis
url: redis://10.10.3.153:6381
channel_prefix: appname_production

Below is a list of the subscription adapters available.

Async Adapter

The async adapter is intended for development/testing and should not be used
in production.

Redis Adapter

Action Cable contains two Redis adapters: “normal” Redis and Evented Redis.
Both of the adapters require a URL pointing to the Redis server. Additionally,
a channel_prefix variable may be provided to scope the connection and avoid
channel name collisions when using the same Redis server for multiple
applications.

PostgreSQL Adapter

The PostgreSQL adapter uses Active Record’s connection pool, and thus the
application’s config/database.yml database configuration, for its connection.

Action Cable 834

Allowed Request Origins

Action Cable will only accept requests from specified origins, which are passed
to the server config as an array. The origins can be instances of strings or
regular expressions, against which a check for match will be performed.

By default, Action Cable allows all requests from localhost:3000 when
running in the development environment.

config.action_cable.allowed_request_origins = ['http://example.com']

You probably shouldn’t do this, but if you want to live dangerously you can
disable forgery protection and allow requests from any origin:

config.action_cable.disable_request_forgery_protection = true

Consumer Configuration

The URL that the browser side code of Action Cable will use to connect to your
server is specified using a call to action_cable_meta_tag in your HTML layout
HEAD. This uses a URL or path typically set via config.action_cable.url in the
environment configuration files.

Worker Count

Your server configuration must provide at least the same number of database
connections as you have Action Cable workers. The default worker pool size
is set to four (4), so you have to make at least that many available. Number
of data connections can be changed in config/database.yml through the pool
attribute.

Action Cable 835

22.11 Running Standalone Cable Servers

Action Cable can run alongside your Rails application instead of inside its
same process. For example, to listen for WebSocket requests on /websocket,
specify that path to config.action_cable.mount_path in an initializer:

Rails.application.action_cable.mount_path = '/websocket'

You can use App.cable = ActionCable.createConsumer() to connect to the cable
server as long as action_cable_meta_tag is invoked in the layout. Specify your
custom path as the first argument to createConsumer

App.cable = ActionCable.createConsumer("/websocket")

For every instance of your server you create and for every worker your server
spawns, you will also have a new instance of Action Cable, but the use of Redis
keeps messages synced across connections.
The cable servers can be separated from your normal application server. It’s
still a Rack application, but it is its own Rack application.

Separating your cable servers means that, for instance, on Heroku, your
cable servers would have their own line in the Procfile and their own set
of dynos.

The recommended basic setup is as follows:

cable/config.ru
require_relative '../config/environment'
Rails.application.eager_load!

run ActionCable.server

Then you start the server using a binstub in bin/cable ala:

#!/bin/bash
bundle exec puma -p 28080 cable/config.ru

Action Cable 836

22.12 Generator

Rails provides a generator script for creating new channels.

$ rails g channel
Usage:

rails generate channel NAME [method method] [options]

Options:
[--skip-namespace], [--no-skip-namespace] # Skip namespace (affects only isolated appli\

cations)
[--assets], [--no-assets] # Indicates when to generate assets

Default: true

Runtime options:
-f, [--force] # Overwrite files that already exist
-p, [--pretend], [--no-pretend] # Run but do not make any changes
-q, [--quiet], [--no-quiet] # Suppress status output
-s, [--skip], [--no-skip] # Skip files that already exist

Description:
============

Stubs out a new cable channel for the server (in Ruby) and client (in CoffeeScript).
Pass the channel name, either CamelCased or under_scored, and an optional list of chan\

nel actions as arguments.

Note: Turn on the cable connection in app/assets/javascript/cable.js after generating \
any channels.

Example:
========

rails generate channel Chat speak

creates a Chat channel class and CoffeeScript asset:
Channel: app/channels/chat_channel.rb
Assets: app/assets/javascript/channels/chat.coffee

Action Cable 837

22.13 Conclusion

This chapter provided you with a crash course in Action Cable and hopefully
piqued your interest in using it the next time you need some real-time client-
server communication in your project.
This chapter is licensed under a Creative Commons Attribution-ShareAlike 4.0
International2 License.

2https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

23. RSpec
I do not think there is any thrill that can go through the human heart
like that felt by the inventor as he sees some creation of the brain
unfolding to success.
—Nikola Tesla

RSpec is a Ruby domain-specific language for specifying the desired behavior
of Ruby code. Its strongest appeal is that RSpec scripts (or simply specs) can
achieve a remarkable degree of readability, letting developers communicate
their intention with greater readability and expressiveness than is achievable
using the standard Rails testing framework.

RSpec 839

23.1 Introduction

Since RSpec scripts are so readable, I can’t really think of a better way of
introducing you to the framework than to show part of a real-world spec. The
following code is excerpted and adapted from an old Hashrocket client project:

require 'rails_helper'

describe Timesheet, type: :model do
let(:timesheet) { build(:timesheet) }

describe "hours worked" do
it "expects a number" do

timesheet.hours_worked = 'abc'
expect(timesheet.error_on(:hours_worked).size).to eq(1)

end
end

context "when submitted" do
it "sends an email notification to the manager" do

expect(Notifier).to receive(:send_later).
with(:deliver_timesheet_submitted, timesheet)

timesheet.submit
end

end
end

Once you get adept at writing RSpec, the following lines of Ruby code

describe Timesheet do
describe "when submitted" do

it "sends an email notification to the manager" do

…should automatically coalesce in your mind into the statement: Timesheet
when submitted sends an email notification to the manager.
RSpec is an example of a Ruby-based Domain Specific Language, which is one
of the main reasons it feels like such a natural part of the Rails Way to me and
others. The building blocks of the RSpec DSL are very simple. The describe
method creates an ExampleGroup object, which is a shared context for a set
of specification examples defined using the it method, which itself creates
Example objects.

RSpec 840

You should pass sentence fragments to describe and it that succinctly identify
the context you’re about to specify. The better you get at writing RSpec, the
more your examples will read like natural language sentences.

RSpec’s describe method is aliased as context. Use the former to
describe things (like attributes) and the latter to describe situations.

RSpec 841

23.2 Behavior-Driven Development

We can’t talk about RSpec without mentioning Behavior-Driven Development
(or BDD for short), an offshoot of test-driven development (TDD). One of the
prime directives of BDD is to describe software in a [single notation which is
directly accessible to domain experts, testers and developers, so as to improve
communication].(https://www.agilealliance.org/glossary/bdd/)
RSpec syntax is an implementation of that single notation, in Ruby. The
intention is to make it easy to describe the desired behavior of a piece of
software, before implementing it. Given its roots in TDD, if you add RSpec
coverage after the fact, you’re doing it wrong.

The suite of specs you end up with when practicing BDD serves
to prevent regressions over time, but never forget that the main
purpose of BDD is to foster clean application design and speed up
implementation cycles.

Doing justice to the topic of BDD and RSpec would require a book, which
is why my friends David Chelimsky, Aslak Hellesoy, Dave Astels, and Bryan
Helmkamp wrote a great 400+ page reference bible for Pragmatic Program-
mers. In contrast, this chapter is purely an RSpec primer, with emphasis on
how to use it effectively with Rails.

“Up and down the stack…”

You can use RSpec to specify and test every part of your Rails application, from
models and controller classes, to view templates and routing configuration, all
in isolation. An isolated spec is basically the same as a unit test, and serves
the same purpose in a TDD sense.
If you add a gem called Capybara1 to the equation, then RSpec can also be
used to create integration tests that exercise the entire Rails stack from top
to bottom, like this:

1https://github.com/jnicklas/capybara

https://github.com/jnicklas/capybara
https://github.com/jnicklas/capybara

RSpec 842

require 'rails_helper'

feature "Search Documents" do
let(:user) { create(:user, name: 'Joe') }

let(:published_doc) do
create(:document, title: 'Global Equities 2016', status: 'published')

end

let(:private_doc) do
create(:document, title: 'Global Equities 2017', status: 'draft')

end

background { login_as user }

scenario "takes you to the search results page" do
search_for("Global")
expect(current_path).to include(search_results_path)

end

scenario "doesn't return draft docs" do
search_for("Global")
expect(page).to_not have_content(private_doc.title)

end

def search_for(term)
visit search_path
fill_in 'Search', with: term
click_button 'Search'

end
end

Use of methods such as visit and fill_in, as well the checking the contents
of objects such as page, hint at what this spec is doing: exercising your entire
Rails application from top to bottom.
But let’s take a step back and cover some RSpec basics first.

RSpec 843

23.3 Basic Syntax and API

This section contains a somewhat comprehensive, yet concise, rundown of
RSpec’s syntax and API methods. It assumes at least passing familiarity with
automated testing concepts.

Contexts (aka Example Groups)

The describe method and its alias context are used to group together related
examples of behavior and serve as factories for ExampleGroup objects. Capybara
adds an additional feature alias that serves the same purpose. All of these
methods take a string (or other object that can be cast to a string) as their
first argument and a block that bounds their scope.
The first and outermost example group almost always gets the class/object
under test as its argument, like this:

describe Timesheet, type: :model do

Immediately under that first example group declaration, you generally have
one or more let statements. What are they?

Shared Variables

The let method simplifies the creation of memoized variables for use in your
spec. (Memoizedmeans that the code block associated with the let is executed
once and stored for future invocations, increasing performance.)
The use of let eliminates the need for instance variables by creating a proper
interface for declaring significant shared variables needed in the spec.
Why use the let method instead of instance variables? Let’s step through a
typical spec coding session to understand the motivation. Imagine that you’re
writing a spec, and it all starts simply enough with a local blog_post variable.

describe BlogPost do
it "does something" do

blog_post = BlogPost.new title: 'Hello'
expect(blog_post).to ...

end
end

You continue on, writing another similar example, and you start to see some
duplication. The blog_post creation is being done twice.

RSpec 844

describe BlogPost do
it "does something" do

blog_post = BlogPost.new title: 'Hello'
expect(blog_post).to

end

it "does something else" do
blog_post = BlogPost.new title: 'Hello'
expect(blog_post).to ...

end
end

So, you refactor the instance creation into a before block and start using an
instance variable in the examples.

describe BlogPost do
before do

@blog_post = BlogPost.new title: 'Hello'
end

it "does something" do
expect(@blog_post).to ...

end

it "does something else" do
expect(@blog_post).to ...

end
end

And here comes the punchline: you replace the instance variables with a
variable described by a let expression.

describe BlogPost do
let(:blog_post) { BlogPost.new title: 'Hello' }

it "does something" do
expect(blog_post).to ...

end

it "does something else" do
expect(blog_post).to ...

end
end

RSpec 845

In case it’s not obvious, the advantage of using let is mostly in the realm of
readability. First of all, it gets rid of instance variables with their hideous
ampersands. Second, it gets variable initialization out of the before block,
which arguably has no business setting up a bunch of variables in the first
place.
Finally, let shows you who the players are in your spec.’ A set of let
declarations at the top of an example group reads like a cast of characters
in a playbill. You can easily refer to it when you’re deep in the code of an
example.
Note that let declarations are lazy. Their blocks do not get executed until you
refer to their objects elsewhere in your spec. That elsewhere can be another
let, like in this code:

let(:org) { create(:organization_with_network_and_users) }
let(:network) { org.networks.first }
let(:user1) { org.users.first }
let(:user2) { org.users.second }

let!(:name) { expression }

Sometimes the lazy evaluation of a let is not good enough.

describe Article do
let(:current_user) { create(:user) }
let(:article) { create(:article) }
let(:comment) { user.comment(article, 'first') }

describe "#clear_comments" do
it "removes all comments" do

expect {
article.clear_comments

}.to change {
article.comments.count

}

Since comment is never invoked, this spec will fail. The article never got any
comments, so the count didn’t change. Using let! ensures the initial comment
gets created and the spec passes:

let!(:comment) { user.comment(article, 'first') }

RSpec 846

Examples

The it method takes a description plus a block, similar to describe. As
mentioned already, the idea is to complete the thought that was started in
the describe method so that it forms a complete sentence.
Assertions (aka expectations) will always happen within the context of an it
block, and in most cases you should try to limit yourself to one expectation
per it block.

context "when there are no search results" do
before do

email_search_for(user, '123')
end

it "shows the search form" do
expect(current_url).to eq(colleagues_url)

end

it "renders an error message" do
expect(page).to have_selector('.error',

text: 'No matching email addresses found.')
end

end

The most reasonable exception that I’ve seen to the one expectation per exam-
ple guideline is when you’re testing interfaces to remote systems. Repeatedly
setting up and tearing down remote data can become time-consuming and
weigh down the performance of your entire test suite.

If every spec begins with “should”, then “should” is redundant every-
where and becomes noise. Use theshould_not gem2 if you need help
remembering or enforcing this rule.

specify

The specify method is used to remove duplication and improve readability.
Look at the following spec, which uses normal describe/it syntax:

2https://github.com/should-not/should_not

https://github.com/should-not/should_not
https://github.com/should-not/should_not

RSpec 847

describe BlogPost do
let(:blog_post) { create(:blog_post) }

it "to not be published" do
expect(blog_post).to_not be_published

end
end

Note how the example says “to not be published” in plain English, but the Ruby
code within it says essentially the same thing: expect(blog_post).to_not be_-
published. If you squint, you’ll realize that’s a DRY violation—we are repeating
ourselves.
Here’s an alternative implementation of the same spec, this time using specify:

describe BlogPost do
context "upon creation" do

let(:blog_post) { create(:blog_post) }
specify { expect(blog_post).to_not be_published }

end
end

The English phrase has been removed, and the Ruby code has been moved
into a block passed to the specifymethod. Since the Ruby block already reads
like English, there’s no need to repeat yourself, and we turned seven lines of
code into four.
RSpec automatically generates English output by introspecting on the expec-
tations created in the example blocks. Here’s what the RSpec output looks
like for the last spec:

BlogPost
upon creation

should not be published

To get this pretty output, run your spec with the documentation output
formatter (--format documentation).

pending

When you leave the block off of an example, RSpec treats it as pending.

RSpec 848

describe GeneralController do
describe "GET to index" do

it "will be implemented eventually"
end

end

RSpec prints out pending examples at the end of its run output, which makes
it potentially useful for tracking work in progress.

Pending:
GeneralController on GET to index will be implemented eventually

Not yet implemented
./spec/controllers/general_controller_spec.rb:6

Finished in 0.00024 seconds
1 example, 0 failures, 1 pending

Randomized with seed 31820

A quick and and easy way to mark existing examples as pending is to prepend
the it method with an x, like so:

describe GeneralController do
describe "on GET to index" do

xit "should be successful" do
get :index
expect(response).to be_successful

end
end

end

This is specially useful for debugging and refactoring.
You can also explicitly create pending examples by inserting a call to the
pending method anywhere inside of an example.

RSpec 849

describe GeneralController do
describe "on GET to index" do

it "is successful" do
pending("not implemented yet")

end
end

end

Interestingly, you can use pending with a block to keep broken code from
failing your spec. However, if at some point in the future the broken code
does execute without an error, the pending block will cause a failure.

describe BlogPost do
it "defaults to rating of 3.0" do

pending "implementation of new rating algorithm" do
expect(BlogPost.new.rating).to eq(3.0)

end
end

end

Pro-tip: You canmake all examples in a group pending simply by calling
pending once in the group’s before block.

describe 'Veg-O-Matic' do
before { pending }

it 'slices' do
will not run, instead displays "slices (PENDING: TODO)"

end

it 'dices' do
will also be pending

end

it 'juliennes' do
will also be pending

end
end

We’ve been talking a lot about how to set up examples, but now let’s actually
discuss how to set expectations that can pass or fail.

RSpec 850

Expectations

The preferred way to define positive and negative expectations is to use
expect(...).to and expect(...).to_not, respectively.

RSpec expectations used to be done using should and should_not meth-
ods mixed into Ruby’s Object method, but that syntax was deprecated
in RSpec 3.

You pass a parameter or block that you want to create an expectation for to the
expectmethod. Then you chain to or to_not to specify whether the expectation
is to be positive or negative. Finally, you must pass a matcher to the to (or
to_not) method, which is what makes the example pass or fail depending on
the behavior of the matcher.

expect(page).to have_selector('.error',
text: 'No matching email addresses found.')

In the preceding example, have_selector is the matcher. The full list of match-
ers available is dynamic and almost endless, covering all sorts of different
attributes and behaviors of objects.
There are several ways to generate expectation matchers and pass them to
expect(...).to (and expect(...).to_not):

expect(receiver).to eq(expected) # any value
Passes if (receiver == expected)

expect(receiver).to eql(expected)
Passes if (receiver.eql?(expected))

expect(receiver).to match(regexp)
Passes if (receiver =~ regexp)

expect(user.network).to be(organization.networks.first)
Passes if both references point to same exact object instance

Learning to write expectations is probably one of the meatier parts of the
RSpec learning curve. The full list of built-in matchers is available at https:
//github.com/rspec/rspec-expectations.

Commonly-used Matchers

Besides the equality matchers mentioned already, here are some other com-
monly used matchers.

https://github.com/rspec/rspec-expectations
https://github.com/rspec/rspec-expectations

RSpec 851

Comparisons
expect(actual).to be > expected
expect(actual).to be_within(delta).of(expected)

Types
expect(actual).to be_an_instance_of(Expected)
expect(actual).to be_a(ClassThatWasExpected) # alias
expect(actual).to be_an(ExpectedCass) # another alias

As you can hopefully tell from all these aliases, the authors of RSpec (and
Rubyists in general) take code readability very seriously.

Truthiness
expect(actual).to be_truthy # truthy means not `nil` or `false`
expect(actual).to be true
expect(actual).to be_falsy
expect(actual).to be false
expect(actual).to be_nil
expect(actual).to_not be_nil

Errors
expect { ... }.to raise_error
expect { ... }.to raise_error(ErrorClass)
expect { ... }.to raise_error("message")
expect { ... }.to raise_error(ErrorClass, "message")

Collection Membership
expect(actual).to include(expected) # works for strings too
expect(actual).to start_with(expected)
expect(actual).to end_with(expected)
expect(actual).to contain_exactly(individual, items)

Change
expect { expr }.to change(object, :method)
expect { expr }.to change { object.method }

Predicate Matchers

So-called predicate matchers are dynamic; that is, they operate based on
naming conventions for methods on the expected object.

expect(actual).to be_xxx # passes if actual.xxx?
expect(actual).to have_xxx(:arg) # passes if actual.has_xxx?(:arg)

In practice, this is what it looks like:

RSpec 852

expect(3).to be_odd
expect(feed).to have_unread_notifications
expect({foo: "foo"}).to have_key(:foo)
expect({bar: "bar"}).to_not have_key(:foo)

As an alternative to prefixing arbitrary predicate matchers with be_, you may
choose from the indefinite article versions be_a_ and be_an_, making your specs
read much more naturally:

expect("a string").to be_an_instance_of(String)
expect(3).to be_a_kind_of(Integer)
expect(3).to be_a_kind_of(Numeric)
expect(3).to be_an_instance_of(Fixnum)
expect(3).to_not be_instance_of(Numeric) #fails

Compound Matcher Expressions

You can create compound matcher expressions using and or or methods:

expect(alphabet).to start_with("a").and end_with("z")
expect(stoplight.color).to eq("red").or eq("green").or eq("yellow")

It’s even more common than that to chain matcher expressions together to
create richer expectations.
For example,

expect {
BlogPost.create title: 'Hello'

}.to change(BlogPost, :count).by(1)

The by method refines the change matcher. In our example, we’re making sure
that the record was saved to the database, thus increasing the record count
by 1.
There are a few different variations on the change syntax. Here’s one more
example, where we’re more explicit about before and after values by further
chaining from and to methods:

RSpec 853

describe "#publish!" do
let(:blog_post) { BlogPost.create title: 'Hello' }

it "updates published_on date" do
expect {

blog_post.publish!
}.to change {

blog_post.published_on
}.from(nil).to(Date.today)

end
end

The published_on attribute is examined both before and after invocation of the
expect block. This style of change assertion comes in handy when you want to
ensure a precondition of the value. Asserting from guarantees a known starting
point.
Besides expecting changes, the other common expectation has to do with code
that should generate exceptions:

describe "#unpublish!" do
context "when brand new" do

let(:blog_post) { BlogPost.create title: 'Hello' }

it "raises an exception" do
expect {

blog_post.unpublish!
}.to raise_error(NotPublishedError, /not yet published/)

end
end

end

In this example, we attempt to “unpublish” a brand new blog post that hasn’t
been published yet. Therefore, we expect an exception to be raised.

Metadata

Metadata is a somewhat esoteric topic, because it’s not used in usual day-to-
day Rails programming, but I wanted to at least touch on it before moving
forward. Specs have what is referred to as metadata.
The class or string description passed to a context declaration is the simplest
example and is accessed as described_class, like this:

RSpec 854

RSpec.describe Fixnum do
it "is available as described_class" do

expect(described_class).to eq(Fixnum)
end

end

Contexts and examples can also take optional arguments (called user-defined
metadata.) You simply enter symbols or a hash of options after the description
string. Symbols must come first and are the same as putting them as keys in
the hash, equal to true.
A super common example of metadata you’ll see on a regular basis is the way
that you tag different kinds of Rails specs.

RSpec.describe User, type: :model do
...

The type: :model portion of the context declaration in the preceding example
is metadata.
Hooks, lets, and example blocks yield a variable called example, which can be
used to read metadata explicitly.

RSpec.describe "a group with user-defined metadata", :basic, :foo => 17 do
it 'has access to the metadata in the example' do |example|

expect(example.metadata[:basic]).to be_true
expect(example.metadata[:foo]).to eq(17)

end

Hooks

The before and after hooks are akin to the setup and teardownmethods of xUnit
frameworks like MiniTest. They are used to set up the state as it should be
prior to running an example, and if necessary, to clean up the state after the
example has run.

Even though I do not like the practice, I would be remiss to not mention that
before hooks are often used to initialize instance variables. Instance variables
defined in context hooks are available in their own contexts and also nested
contexts.

A common use case for before hooks (that shows up elsewhere in this chapter)
is logging in a user.

RSpec 855

before(:each) do
sign_in(user)

end

Here is the entire list of hooks, in the order in which they are executed.

• before :suite
• before :context (aliased to :all)
• around (before example.run invoked)
• before :example (aliased to :each)
• after :example (aliased to :each)
• around (after example.run invoked)
• after :context (aliased to :all)
• after :suite

As you can see in the preceding list, RSpec also has an around hook. While
the other hooks are fairly self-explanatory, the around hook has some special
characteristics that bear mentioning.
First of all, one of the main reasons you might want to use the around hook,
given that its behavior is easy to replicate with before and after, is the way that
it takes its examples as Proc instances, which makes it trivial to pass examples
to Ruby methods that expect blocks.
An example, illustrated here in pseudo-code, is running an example inside of
a transaction:

class Database
def self.transaction

puts "open transaction"
yield
puts "close transaction"

end
end

RSpec.describe "around filter" do
around(:example) do |example|

Database.transaction(&example)
end

it "gets passed as a proc" do
puts "run the example"

end
end

RSpec 856

Run the preceding code and you’ll notice that the message “run the example”
prints inside the open and close transaction messages.
If you’re not passing the example block along to another method, you invoke
it using the run method. Here’s a real example, using the Database Cleaner
gem:

config.around(:each) do |example|
DatabaseCleaner.cleaning do

example.run
end

end

Global Hooks

As you can see in the preceding example, the hook is invoked on the RSpec
config object, rather than inside a particular spec file. Doing that defines
behavior for all example groups and examples in the whole suite.

Hook Gotchas

Here are some things to be aware of with hooks:

• Exceptions in before(:example) are captured and reported as failures
for their examples. Since before hooks serve as setup mechanisms,
exceptions equal failure.

• Exceptions raised in before(:context) are captured and reported as
failures for their context and nested contexts too. You should see failure
messages for any examples in the group with the failing hook, as well as
any examples in nested groups.

• Around hooks don’t share state the way that before and after hooks do.
If you try to set instance variables in an around hook, you’ll find that
they are not available elsewhere in your spec. State and expectations for
mocking do not work in around hooks either.

• Around hooks continue executing even if their nested examples raise
an exception. This behavior makes sense given their typical use case of
ensuring that some particular cleanup behavior always happens.

• All hooks execute in the order they are declared. They won’t overwrite
each other if you declare multiples of the same type.

RSpec 857

Implicit Subject

Whether you realize it or not, every RSpec example group has a subject. Think
of it as the thing being described. If you pass Rspec a class, then it will try
initializing it as its implicit subject.
Let’s start with an easy example:

describe BlogPost do
it { is_expected.to be_invalid }

end

By convention, the implicit subject here is a BlogPost.new instance. The is_-
expected call may look like it is being called off of nothing, but actually the call
is delegated by the example to the implicit subject. It’s just as if you’d written
the expression:

expect(BlogPost.new).to be_invalid

Explicit Subject

If the implicit subject of the example group doesn’t quite do the job for you,
you can specify a subject explicitly. For example, maybe we need to tweak a
couple of the blog post’s attributes on instantiation:

describe BlogPost do
subject { BlogPost.new(title: 'foo', body: 'bar') }
it { is_expected.to be_valid }

end

Here we have the same delegation story as with implicit subject. The is_-
expected.to be_valid call is delegated to the subject.
You can also call methods on the subject directly. For example, you may need
to invoke a method to change state before setting an expectation:

RSpec 858

describe BlogPost do
subject { BlogPost.new title: 'foo', body: 'bar' }

it "sets published timestamp" do
subject.publish!
expect(subject).to be_published

end
end

Here we call the publish! method off the subject. Mentioning subject directly
is the way we get ahold of that BlogPost instance we set up. Finally, we assert
that published? boolean is true.

Kevin says…
Although you can explicitly call subject within your specs, it’s not very
intention revealing. An alternative is to use “named subjects”, which
enables a subject to be assigned an intention revealing name (using an
alias for let).
To demonstrate, here is the preceding example using a “named sub-
ject”:

describe BlogPost do
subject(:blog_post) { BlogPost.new title: 'foo', body: 'bar' }

it "sets published timestamp" do
blog_post.publish!
expect(blog_post).to be_published

end
end

RSpec 859

23.4 Custom Expectation Matchers

When you find that none of the stock expectation matchers provide a natural-
feeling expectation, you can very easily write your own. All you need to do is
write a Ruby class that implements the following two methods:

• matches?(actual)
• failure_message

The following methods are optional for your custom matcher class:

• does_not_match?(actual)
• failure_message_when_negated
• description

The example given in the RSpec API documentation is a game in which players
can be in various zones on a virtual board. To specify that a player bob should
be in zone 4, you could write a spec like

expect(bob.current_zone).to eq(Zone.new("4"))

However, it’s more expressive to say one of the following, using the custom
matcher in Listing 21.1.

Listing 21.1: BeInZone custom expectation matcher class
expect(bob)to be_in_zone(4) and expect(bob).to_not be_in_zone(3)
class BeInZone

def initialize(expected)
@expected = expected

end

def matches?(actual)
@actual = actual
@actual.current_zone.eql?(Zone.new(@expected))

end

def failure_message
"expected #{@actual.inspect} to be in Zone #{@expected}"

end

def failure_message_when_negated
"expected #{@actual.inspect} not to be in Zone #{@expected}"

end
end

RSpec 860

In addition to the matcher class, you would need to write the following method
so that it’d be in scope for your spec.

def be_in_zone(expected)
BeInZone.new(expected)

end

This is normally done by including themethod and the class in amodule, which
is then included in your spec.

describe "Player behaviour" do
include CustomGameMatchers
...

end

Or you can include helpers globally in a spec_helper.rb file required from your
spec file(s):

RSpec.configure do |config|
config.include CustomGameMatchers

end

Custom Matcher DSL

RSpec includes a DSL for easier definition of custom matchers. The DSL’s
directives match the methods you implement on custom matcher classes. Just
add code similar to the following example in a file within the spec/support
directory.

require 'nokogiri'

RSpec::Matchers.define :contain_text do |expected|
match do |response_body|

squished(response_body).include?(expected.to_s)
end

failure_message do |actual|
"expected the following element's content to include
#{expected.inspect}:\n\n#{response_text(actual)}"

end

failure_message_when_negated do |actual|

RSpec 861

"expected the following element's content to not
include #{expected.inspect}:\n\n#{squished(actual)}"

end

def squished(response_body)
Nokogiri::XML(response_body).text.squish

end
end

Fluent Chaining

You can create matchers that obey a fluent interface using the chain method:

RSpec::Matchers.define(:tip) do |expected_tip|
chain(:on) do |tab|

@tab = tab
end

match do |person|
person.tip_for(@tab) == expected_tip

end
end

This matcher can be used as follows:

describe Customer do
it { is_expected.to tip(10).on(50) }

end

In this way, you can begin to create your own fluent domain-specific languages
for testing your complex business logic in a very readable way.

RSpec 862

23.5 Helper Methods

The let method is an example of a helper. You can define your own helper
methods simply by defining methods using normal Ruby def syntax, inside of
an example group. These helper methods will be available to examples in the
group in which they are defined and groups nested within that group but not
parent or sibling groups.

RSpec.describe "an example" do
def help

:available
end

it "has access to methods defined in its group" do
expect(help).to be(:available)

end
end

In the many years that I’ve been doing RSpec, I’ve never defined a helper
method this way. However, I have defined helper methods in a module and
included them using the config.include configuration option.
You would define these helper modules somewhere inside of the spec/support
directory, probably in their own file.

spec/support/helpers.rb
module Helpers

def help
:available

end
end

You can include this module in all example groups like this:

RSpec 863

RSpec.configure do |c|
c.include Helpers

end

RSpec.describe "an example group" do
it "has access to the helper methods defined in the module" do

expect(help).to be(:available)
end

end

Create macro-style helpers by mixing in your module using config.extend
instead of include. The methods in the module will be available in the example
groups themselves (but not in the actual examples).

RSpec.configure do |c|
c.extend Helpers

end

RSpec.describe "an example group" do
puts "Help is #{help}"

You can find a complete description of this topic in the official RSpec documen-
tation at https://relishapp.com/rspec/rspec-core/v/3-5/docs/helper-methods/define-
helper-methods-in-a-module.

https://relishapp.com/rspec/rspec-core/v/3-5/docs/helper-methods/define-helper-methods-in-a-module
https://relishapp.com/rspec/rspec-core/v/3-5/docs/helper-methods/define-helper-methods-in-a-module

RSpec 864

23.6 Shared Behaviors

Often you’ll want to specify similar behavior in multiple specs. It would be
silly to type out the same code over and over. Fortunately, RSpec has a feature
named shared behaviors that aren’t run individually but, rather, are included
into other behaviors; they are defined using shared_examples.

shared_examples "a phone field" do
it "has 10 digits" do

business = Business.new(phone_field: '8004567890')
expect(business.errors_on(:phone_field)).to be_empty

end
end

shared_examples "an optional phone field" do
it "handles nil" do

business = Business.new phone_field: nil
expect(business.attributes[phone_field]).to be_nil

end
end

You can invoke a shared example using the it_behaves_like method, in place
of an it.

describe "phone" do
let(:phone_field) { :phone }
it_behaves_like "a phone field"

end

describe "fax" do
let(:phone_field) { :fax }
it_behaves_like "a phone field"
it_behaves_like "an optional phone field"

end

You can put the code for shared examples almost anywhere, but the default
convention is to create a file named spec/support/shared_examples.rb to hold
them.

RSpec 865

23.7 Shared Context

When used in combination, shared_context and include_context enable you to
share before/after hooks, subject declarations, let declarations, and method
definitions across example groups. This is useful in cases when several
examples share some state. To define a shared context, supply a name and
block of code to the shared_context macro style method.

spec/support/authenticated_user.rb
RSpec.shared_context 'authenticated user' do

let(:current_user) { create(:user) }

before do
sign_in current_user

end
end

To include a shared context in your examples, use the include_context macro
style method.

context "user is authenticated" do
include_context 'authenticated user'
...

end

The recommended location to place shared_context definitions is in the spec/-
support directory.

RSpec 866

23.8 Mocks and Stubs

RSpec has mocking and stubbing facilities that are almost the same and
equally powerful as any competitors.

Confused about the difference between mocks and stubs? Read
Martin Fowler’s explanation at http://www.martinfowler.com/articles/
mocksArentStubs.html.

Test Doubles

A test double is an object that stands in for another in your system during a
code example. To create a test double object, you simply call the doublemethod
anywhere in a spec and give it a name as an optional parameter.

Although it’s not required, it’s a good idea to give test double objects
a name if you will be using more than one of them in your spec. If you
use multiple anonymous test doubles, you’ll probably have a hard time
telling them apart if one fails.

echo = double('echo')

With a test double, you can set expectations about what messages are sent to
your test double during the course of your spec (commonly known as a mock).
Mocks with message expectations will cause the spec to fail if its expectations
are not met. To set an expectation on a test double, we use the receivematcher.

expect(echo).to receive(:sound)

The chained method with is used to define expected parameters. If we care
about the return value, we chain and_return at the end of the expectation.

expect(echo).to receive(:sound).with("hey").and_return("hey")

http://www.martinfowler.com/articles/mocksArentStubs.html
http://www.martinfowler.com/articles/mocksArentStubs.html

RSpec 867

Note
In older versions of RSpec, you would define mock and stub objects via the
mock and stubmethods respectively. Although thesemethods are still available
in RSpec 3.0, they are available only for backwards compatibility and may be
removed in a future version.

Stubs

You can easily create a stub object in RSpec via the double factory method.
You pass stub a name, along with default attributes, and the method returns
values as a hash.

yodeler = double('yodeler', yodels?: true)

By the way, there’s no rule that the name parameter of a mock or stub needs
to be a string. It’s pretty typical to pass double a class reference corresponding
to the real type of object. However, that class is not used in any special way;
it’s just an identifier.

yodeler = double(Yodeler, yodels?: true)

Null Objects

Occasionally you just want an object for testing purposes that accepts any
message passed to it—a pattern known as null object. It’s possible to make
one using the as_null_object method with a test double object.

null_object = double('null').as_null_object

Partial Mocking and Stubbing

You can install or replace methods on any object, not just doubles, with a
technique called partial mocking and stubbing. Just use allow (instead of
expect) plus the usual receive syntax but on a “real” object instead of a test
double, like this:

RSpec 868

allow(invoice).to receive(:billed_expenses).and_return(543.21)

Note that the underlying method is not invoked. If you try to stub a method
on an object that doesn’t respond to that method, then RSpec will try to help
you out by raising an error. That precautionary measure can be turned on and
off in spec_helper.rb:

Prevents you from mocking or stubbing a method that does not exist on
a real object. This is generally recommended, and will default to
true in RSpec 4.
mocks.verify_partial_doubles = true

receive_message_chain

It’s really common to find yourself writing some gnarly code when you rely
on double to spec behavior of nested method calls.3 But, sometimes you
need to stub methods down a dot chain, where one method is invoked on
another method, which is itself invoked on another method, and so on. For
example, you may need to stub out a set of recent, unpublished blog posts in
chronological order, like BlogPost.recent.unpublished.chronological.
Try to figure out what’s going on in the following example. I bet it takes you
more than a few seconds!

allow(BlogPost).to receive(:recent).
and_return(double(unpublished: double(chronological: [double,

double, double])))

That example code can be factored to be more verbose, which makes it a little
easier to understand but is still pretty bad.

chronological = [double, double, double]
unpublished = double(chronological: chronological)
recent = double(unpublished: unpublished)
allow(BlogPost).to receive(recent).and_return(recent)

Luckily, Rspec gives you the receive_message_chainmethod, which understands
exactly what you’re trying to do here and dramatically simplifies the code
needed:

3ActiveRecord scopes are notoriously prone to causing this problem.

RSpec 869

allow(BlogPost)
.to receive_message_chain(:recent, :unpublished, :chronological)
.and_return([double, double, double])

However, just because it’s so easy to stub the chain, doesn’t mean it’s the
right thing to do. The question to ask yourself is, “Why am I testing something
related to methods so deep down a chain? Could I move my tests down to that
lower level?” Demeter would be proud.

RSpec 870

23.9 Running Specs

Specs are executable documents. Each example block is executed inside its
own object instance, to ensure that the integrity of each is preserved (with
regard to instance variables, etc.).
If I run a spec using the rspec command that should have been installed on my
system by the RSpec gem, I’ll get output similar to that of Test::Unit—familiar,
comfortable, and passing. Just not too informative.

$ rspec spec/models/colleague_import_spec.rb
.........

Finished in 0.330223 seconds
9 examples, 0 failures

RSpec is capable of outputting results of a spec run in many formats. The
traditional dots output that looks just like Test::Unit is called progress and, as
we saw a moment ago, is the default. However, if we add the -fd command-line
parameter to rspec, we can cause it to output the results of its run in a very
different and much more interesting format, the documentation format.

$ rspec -fd spec/models/billing_code_spec.rb
BillingCode

has a bidirectional habtm association
removes bidirectional association on deletion

Finished in 0.066201 seconds
2 examples, 0 failures

Nice, huh? If this is the first time you’re seeing this kind of output, I wouldn’t
be surprised if you drifted off in speculation about whether RSpec could help
you deal with sadistic PHB-imposed4 documentation requirements.
Having these sorts of self-documenting capabilities is one of the biggest wins
you get in choosing RSpec. It compels many people to work toward better
spec coverage of their project. I also know from experience that development
managers tend to really appreciate RSpec’s output, even to the extent of
incorporating it into their project deliverables.
Besides the different formatting, there are all sorts of other command-line
options available. Just type rspec --help to see them all.

4Pointy-Haired Boss, as per Dilbert comic strips.

RSpec 871

Failing and Skipping Examples

You can make an example fail by calling fail in it. (I don’t think this is
particularly useful.)
You can also skip an example, which is similar to pending, covered earlier in
the chapter, but with different semantics. I’ve never actually done that, but I
have used a neat trick for temporarily skipping examples—prefix it, specify,
or example with an x.

describe "accepting" do
let(:scheduled_at) { 2.days.from_now }

xit "a proposed time" do
skipped

Try the same trick, but with an f instead of an x and see what happens!

There are a huge number of ways to fail, make pending, and skip examples—
they’re all detailed in the official RSpec documentation at https://relishapp.
com/rspec/rspec-core/v/3-5/docs/pending-and-skipped-examples.

Filtering

Remember earlier in the chapter we covered metadata. One of the use cases
for it is to constrain which examples are run via filters. The most common
use case is to run a subset of examples belonging to a particular category.
Remember, you specify metadata using only symbols, meaning you can treat
them as tags.
For more information on filtering, refer to the official RSpec documentation
at https://relishapp.com/rspec/rspec-core/v/3-5/docs/filtering.

https://relishapp.com/rspec/rspec-core/v/3-5/docs/pending-and-skipped-examples
https://relishapp.com/rspec/rspec-core/v/3-5/docs/pending-and-skipped-examples
https://relishapp.com/rspec/rspec-core/v/3-5/docs/filtering

RSpec 872

23.10 Factory Girl

Throughout the examples in this chapter, we’ve been using a test data
generator gem by Thoughtbot called Factory Girl. It replaces the need for
Rails’ built-in test fixtures functionality and gives you the capability to easily
generate both saved and unsaved instances of Active Record objects. It also
offers support for multiple factories for the same class (representing different
roles and use cases), as well as factory inheritance. It’s a powerful and
extremely popular bit of software.

Setup

To use Factory Girl in Rails install the Rails-specific gem, not the core library.

gem 'factory_girl_rails'

Once the gem is installed, Rails generators will generate boilerplate Factory
Girl factory definition files instead of fixtures.
Since we’re using RSpec, we’ll keep our factory definitions in spec/factories.
You can put all your factory definitions into one big factory.rb file, or you can
have one factory definion file per Active Record model class. I prefer to use
one file on smaller projects.
Next, include Factory Girl’s methods in your RSpec scopes by adding the
following line to the configuration block in rails_helper.rb:

config.include FactoryGirl::Syntax::Methods

Factory Definitions

Factory Girl has its own DSL-like syntax for defining model factories. Each
factory has a name and a set of attributes. The name is used to guess the
class of the object by default, but it’s possible to explicitly specify it:

RSpec 873

FactoryGirl.define do
factory :user do

first_name "John"
last_name "Doe"
admin false

end

factory :admin, class: User do
first_name "Admin"
last_name "User"
admin true

end
end

It is highly recommended that you have one factory for each class that
provides the simplest set of attributes necessary to create an instance of that
class. If you’re creating ActiveRecord objects, that means that you should only
provide attributes that are required through validations and that do not have
defaults.
Other factories can be created through inheritance to cover common scenar-
ios for each class. For instance, we could refactor the previous code example
to be a little more concise using inheritance:

FactoryGirl.define do
factory :user do

name "John Doe"
admin false

factory :admin do
name "Admin"
admin true

end
end

end

Attempting to define multiple factories with the same name will raise
an error.

Assuming that one of your helper files contains the line FactoryGirl.find_-
definitions then factory definition files will be automatically loaded from the
following locations:

RSpec 874

test/factories.rb
spec/factories.rb
test/factories/*.rb
spec/factories/*.rb

Usage

factory_girl supports several different build strategies: build, create, at-
tributes_for, and build_stubbed:

Returns a User instance that's not saved
user = build(:user)

Returns a saved User instance
user = create(:user)

Returns a hash of attributes that can be used to build a User instance
attrs = attributes_for(:user)

Returns an object with all defined attributes stubbed out
stub = build_stubbed(:user)

Passing a block to any of the methods above will yield the return object
create(:user) do |user|

user.posts.create(attributes_for(:post))
end

No matter which strategy is used, it’s possible to override the defined
attributes by passing a hash following the symbolized name of the factory:

>> user = build(:user, first_name: "Joe")
>> user.first_name
=> "Joe"

Static versus Dynamic Attributes

Most factory attributes can be added using static values that are evaluated
when the factory is defined, but some attributes (such as associations and
other attributes that must be dynamically generated) will need values as-
signed each time an instance is generated. These “dynamic” attributes can
be added by passing a block instead of a parameter:

RSpec 875

factory :user do
first_name "John"
last_name "Doe"
activation_code { User.generate_activation_code }
date_of_birth { 21.years.ago }

end

Because of the block syntax in Ruby, defining hash attributes as Hashes (like
for populating serialized or JSON columns) requires two sets of curly brackets:

factory :user do
preferences { { marketing_emails: false, sms_alerts: true } }

end

Aliases

You can define aliases to existing factories to make them easier to re-use as
associations in other factories. This comes in handy when, for example, your
Post object has an author attribute that actually refers to an instance of a User
class.

factory :user, aliases: [:author, :commenter] do
first_name "John"
last_name "Doe"
date_of_birth { 18.years.ago }

end

factory :post do
author
title "How to read a book effectively"
body "There are five steps involved."

end

factory :comment do
commenter
body "Great article!"

end

Dependent Attributes

Attributes can be based on the values of other attributes using the evaluator
that is yielded to dynamic attribute blocks:

RSpec 876

factory :user do
first_name "Joe"
last_name "Blow"
email { "#{first_name}.#{last_name}@example.com".downcase }

end

Associations

It’s possible to set up associations within factories. As I’ve already shown you
in previous examples, if the factory name is the same as the association name,
the factory name can be left out.

factory :post do
author

end

You can also specify a different factory or override attributes:

factory :post do
association :author, factory: :user, last_name: "Writely"

end

The behavior of the association method varies depending on the build strategy
used for the parent object.

Builds and saves a User and a Post
post = create(:post)
post.new_record? # => false
post.author.new_record? # => false

{lang=ruby}
Builds and saves a User, and then builds but does not save a Post
post = build(:post)
post.new_record? # => true
post.author.new_record? # => false

To not save the associated object, specify strategy: :build in the factory:

RSpec 877

factory :post do
...
association :author, factory: :user, strategy: :build

end

Builds a User, and then builds a Post, but does not save either
post = build(:post)
post.new_record? # => true
post.author.new_record? # => true

Note that the strategy: :build option must be passed to an explicit call
to association and cannot be used with implicit associations.

Generating data for a has_many relationship is a bit more involved, depending
on the amount of flexibility desired.

FactoryGirl.define do
post factory with a `belongs_to` association for the user
factory :post do

title "Through the Looking Glass"
user

end

user factory without associated posts
factory :user do

name "John Doe"

factory :user_with_posts do
posts_count is declared as transient meaning it won't be
passed to the model as an attribute. However, it will be
available in the evaluator
transient do

posts_count 5
end

The after(:create) callback yields the user instance itself and the evaluator,
which stores all values from the factory (including transient attributes).
The create_list method takes a factory name, followed by the number of
records to create and any attributes you want to override.

RSpec 878

after(:create) do |user, evaluator|
create_list(:post, evaluator.posts_count, user: user)

This enables us to do the following:

create(:user).posts.length # 0
create(:user_with_posts).posts.length # 5
create(:user_with_posts, posts_count: 15).posts.length # 15

Sequences

Unique values in a specific format (for example, e-mail addresses) can be
generated using sequences. Sequences are defined by calling sequence in a
definition block, and values in a sequence are generated by calling generate:

Defines a new sequence
FactoryGirl.define do

sequence :email do |n|
"person#{n}@example.com"

end
end

generate :email
=> "person1@example.com"

generate :email
=> "person2@example.com"

Sequences can be used in dynamic attributes:

factory :invite do
invitee { generate(:email) }

end

Or (somewhat confusingly) as implicit attributes:

factory :user do
email # Same as `email { generate(:email) }`

end

It’s also possible to define an in-line sequence that is only used in a particular
factory, which I also find somewhat confusing in practice:

RSpec 879

factory :user do
sequence(:email) { |n| "person#{n}@example.com" }

end

You can also override the initial value:

factory :user do
sequence(:email, 1000) { |n| "person#{n}@example.com" }

end

Without a block, the value will increment itself, starting at its initial value
(which defaults to 1):

factory :post do
sequence(:position)

end

Sequences can also have aliases. The sequence aliases share the same counter
but make it easier to reuse succintly. It’s the same design approach used for
factory name aliases:

factory :user do
sequence(:email, 1000, aliases: [:sender, :receiver]){ |n|

"person#{n}@example.com"
}

end

Traits

Traits enable you to group attributes together and then apply them to any
factory. It’s a more fine-grained way to control factory creation, in contrast to
using separate factories or inheritance.

RSpec 880

factory :story do
title "My awesome story"
author

trait :published do
published true

end

trait :unpublished do
published false

end

trait :week_long_publishing do
start_at { 1.week.ago }
end_at { Time.now }

end

trait :month_long_publishing do
start_at { 1.month.ago }
end_at { Time.now }

end

factory :week_long_published_story,
traits: [:published, :week_long_publishing]

factory :month_long_published_story,
traits: [:published, :month_long_publishing]

factory :week_long_unpublished_story,
traits: [:unpublished, :week_long_publishing]

factory :month_long_unpublished_story,
traits: [:unpublished, :month_long_publishing]

end

Traits can be used as attributes:

factory :week_long_published_story_with_title, parent: :story do
published
week_long_publishing
title { "Publishing that was started at #{start_at}" }

end

Traits that define the same attributes won’t raise
AttributeDefinitionErrors; the trait that defines the attribute last
gets precedence.

RSpec 881

You can also override individual attributes granted by a trait in subclasses.

factory :user do
name "Friendly User"
login { name }

trait :male do
name "John Doe"
gender "Male"
login { "#{name} (M)" }

end

factory :brandon do
male
name "Brandon"

end
end

Traits can also be passed in as a list of symbols when you construct an instance
from factory_girl.

creates an admin user with gender "Male" and name "Jon Snow"
create(:user, :admin, :male, name: "Jon Snow")

This capability works with build, build_stubbed, attributes_for, and create. The
create_list and build_list methods are supported as well. Just remember to
pass the number of instances as the second parameter.

creates 3 admin users with gender "Male" and name "Jon Snow"
create_list(:user, 3, :admin, :male, name: "Jon Snow")

Traits can be used with associations easily too:

factory :post do
association :user, :admin, name: 'John Doe'

end

Traits can be used within other traits to mix in their attributes.

RSpec 882

factory :order do
trait :completed do

completed_at { 3.days.ago }
end

trait :refunded do
completed
refunded_at { 1.day.ago }

end
end

Finally, traits can accept transient attributes.

factory :invoice do
trait :with_amount do

transient do
amount 1

end

after(:create) do |invoice, evaluator|
create :line_item, invoice: invoice, amount: evaluator.amount

end
end

end

>> create :invoice, :with_amount, amount: 2

Callbacks

There are four distinct callbacks available when constructing objects with
Factory Girl:

after(:build)
Called after a factory is built (via FactoryGirl.build, FactoryGirl.create)

before(:create)
Called before a factory is saved (via FactoryGirl.create)

after(:create)
Called after a factory is saved (via FactoryGirl.create)

after(:stub)
Called after a factory is stubbed (via FactoryGirl.build_stubbed)

The following example defines a factory that calls the generate_hashed_password
method after it is built.

RSpec 883

factory :user do
after(:build) { |user| generate_hashed_password(user) }

end

Note that you’ll have an instance of the user passed to the block, in case you
need it. You can also define multiple types of callbacks on the same factory:

factory :user do
after(:build) { |user| do_something_to(user) }
after(:create) { |user| do_something_else_to(user) }

end

Factories can also define any number of the same kind of callback. These
callbacks will be executed in the order they are specified:

factory :user do
after(:create) { this_runs_first }
after(:create) { then_this }

end

Calling create will invoke both after_build and after_create callbacks. Also,
like standard attributes, child factories will inherit (and can also define)
callbacks from their parent factory.
Multiple callbacks can be assigned to run a block; this is useful when building
various strategies that run the same code (since there are no callbacks that
are shared across all strategies).

factory :user do
callback(:after_stub, :before_create) { do_something }
after(:stub, :create) { do_something_else }
before(:create, :custom) { do_a_third_thing }

end

To override callbacks for all factories, define themwithin the FactoryGirl.define
block:

RSpec 884

FactoryGirl.define do
after(:build) { |object| puts "Built #{object}" }
after(:create) { |object| AuditLog.create(attrs: object.attributes) }

...

You can also write callbacks that rely on Symbol’s to_proc behavior to invoke
methods on the object instance being built, like this:

app/models/user.rb
class User < ActiveRecord::Base

def confirm!
confirm the user account

end
end

spec/factories.rb
FactoryGirl.define do

factory :user do
after :create, &:confirm!

end
end

Building or Creating Multiple Records

Sometimes, you’ll want to create or build multiple instances of a factory at
once.

built_users = build_list(:user, 25)
created_users = create_list(:user, 25)

These methods will build or create a specific number of factories and return
them as an array. To set the attributes for each of the factories, you can pass
in a hash as you normally would to a normal factory.

twenty_year_olds = build_list(:user, 25, date_of_birth: 20.years.ago)

The build_stubbed_list method will give you fully stubbed out instances:

build_stubbed_list(:user, 25) # array of stubbed users

There’s also a set of *_pair methods for creating two records at a time:

RSpec 885

built_users = build_pair(:user) # array of two built users
created_users = create_pair(:user) # array of two created users

If for some reason you need multiple attribute hashes, attributes_for_listwill
generate them:

users_attrs = attributes_for_list(:user, 25) # array of attribute hashes

Factory Girl and Active Record

When you invoke a factory, your definitions are used to compile a list of
attributes that should be assigned to the resulting instance, as well as any
associated factories. Associations are saved first so that foreign keys can be
properly set on dependent models. To create a new model instance, Factory
Girl first calls new without any arguments and then assigns each attribute in
the order it is defined in the factory definition (including associations). Finally,
it calls save! (which means an exception will be raised if creation fails.)
Note that Factory Girl doesnâ€™t do anything special to create Active Record
model instances. It doesnâ€™t interact with the database directly or extend
Active Record or your models in any way.
As an example, take these factory definitions:

FactoryGirl.define do
sequence(:email) { |n| "person-#{n}@example.com" }

factory :user do
email

end

factory :post do
user
title "Hello"

end
end

If you call

post = create(:post)

it is roughly equivalent to writing the following:

RSpec 886

user = User.new
user.email = "person-1@example.com"
user.save!
post = Post.new
post.title = "Hello"
post.user = user
post.save!

If your model has a polymorphic association, then you need to specify which
factory to use to satisfy the association:

factory :post do
association :author, factory: :user
title "Hello"

end

A comprehensive explanation of Factory Girl (yes there’s more!) would take
much more room than what we can afford to use up in this chapter. Your best
place to find out about topics like using Factory Girl with non-Active Record
classes and testing factories is https://github.com/thoughtbot/factory_girl/
blob/master/GETTING_STARTED.md.

https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md
https://github.com/thoughtbot/factory_girl/blob/master/GETTING_STARTED.md

RSpec 887

23.11 RSpec and Rails

Throughout this chapter, we’ve been using the RSpec Rails gem, a drop-in
replacement for the Rails testing subsystem. It supplies verification, mocking,
and stubbing features customized for use with Rails models, controllers, and
views. To install it, add the rspec-rails gem to your Gemfile’s development
and test groups.

The reason you add rspec-rails to both the development and test
groups is so that it can be picked up by your generator scripts.

Here’s what that area of the Gemfile looks like in one of my typical projects:

group :development do
gem 'foreman'
gem 'listen', '~> 3.0.5'
gem 'web-console', '>= 3.3.0'

end

group :development, :test do
Call 'byebug' anywhere in the code to stop execution and get a debugger console
gem 'byebug', platform: :mri
gem 'figaro'
gem 'pry-rails'
gem 'rspec-rails', '~> 3.5'

end

group :test do
gem 'capybara'
gem 'database_cleaner'
gem 'factory_girl_rails'
gem 'launchy'
gem 'rspec-activemodel-mocks'
gem 'timecop'
gem 'vcr'
gem 'webmock'

end

After bundling, run rails g rspec:install to generate the necessary configu-
ration files and spec directory.

RSpec 888

$ rails g rspec:install
create .rspec
create spec
create spec/spec_helper.rb
create spec/rails_helper.rb

Note that the generated .rspec file contains --require spec_helper,
which will cause it to always be loaded, without the need for an explicit
require.

spec_helper.rb

The spec_helper script contains the basic configuration for an RSpec installa-
tion. It lets you tweak settings that affect how RSpec itself operates, from its
syntax, to the way that it communicates the results of spec runs, to the ways
that it lets you mock and stub dependent objects.
A lot of the more interesting RSpec options are commented by default in the
generated boilerplate file. Definitely dive in there and play with them for a
better experience. My favorite is the block of code that changes the result
formatter to be more verbose when you’re running a single spec.

Many RSpec users commonly either run the entire suite or an individual
file, and it's useful to allow more verbose output when running an
individual spec file.
if config.files_to_run.one?

Use the documentation formatter for detailed output,
unless a formatter has already been configured
(e.g. via a command-line flag).
config.default_formatter = 'doc'

end

rails_helper.rb

If you are specifying/testing “plain-old Ruby objects” that happen to live
in your Rails application, then you don’t need to drag in the entire Rails
environment. However, that’s the exception to the rule. Most of the time you
will want to initialize the Rails environment, as well as RSpec Rails features,
by requiring rails_helper at the top of your spec.
The top of this helper looks like the top of almost any other script that runs
Rails:

RSpec 889

ENV['RAILS_ENV'] ||= 'test'
require File.expand_path('../../config/environment', __FILE__)

The rest of the file is like a Rails-flavored layer of cake on top of what
was defined in spec_helper.rb. It includes things like settings related to
maintainance of test data in the database using fixtures and code to check
for pending migrations. It also has the following option:

RSpec Rails can automatically mix in different behaviours to your tests
based on their file location, for example enabling you to call `get` and
`post` in specs under `spec/controllers`.
#
You can disable this behaviour by removing the line below, and instead
explicitly tag your specs with their type, e.g.:
#
RSpec.describe UsersController, :type => :controller do
...
end
#
The different available types are documented in the features, such as in
https://relishapp.com/rspec/rspec-rails/docs
config.infer_spec_type_from_file_location!

Some people like to be explicit, some don’t. I won’t judge you either way.
The RSpec Rails gem provides four different contexts for specs, corresponding
to the four major kinds of objects you write in Rails. Along with the API support
you need to write Rails specs, it also provides code generators and a bundle
of Rake tasks.

$ rails -T spec
rails spec # Run all specs in spec directory (excluding plugin specs)
rails spec:controllers # Run the code examples in spec/controllers
rails spec:helpers # Run the code examples in spec/helpers
rails spec:models # Run the code examples in spec/models
rails spec:views # Run the code examples in spec/views

Model Specs

Model specs help you design and verify the domain model of your Rails
application, both Active Record and your own classes. RSpec Rails doesn’t
provide too much special functionality for model specs because there’s not
really much needed beyond what’s provided by the base library.
Let’s generate a Schedule model and examine the default spec that is created
along with it.

RSpec 890

$ rails generate model Schedule name:string
invoke active_record
create db/migrate/20131202160457_create_schedules.rb
create app/models/schedule.rb
invoke rspec
create spec/models/schedule_spec.rb

The boilerplate spec/models/schedule_spec.rb looks like

require 'spec_helper'

describe Schedule do
pending "add some examples to (or delete) #{__FILE__}"

end

Assume, for example, that our Schedule class has a collection of day objects.

class Schedule < ActiveRecord::Base
has_many :days

end

Let’s specify that we should be able to get a roll-up total of hours from schedule
objects. Instead of fixtures, we’ll mock out the days dependency.

require 'spec_helper'

describe Schedule do
let(:schedule) { Schedule.new }

it "should calculate total hours" do
days = double('days')
expect(days).to receive(:sum).with(:hours).and_return(40)
allow(schedule).to receive(:days).and_return(days)
expect(schedule.total_hours).to eq(40)

end
end

Here we’ve taken advantage of the fact that association proxies in Rails are
rich objects. Active Record gives us several methods for running database
aggregate functions. We set up an expectation that days should receive the
sum method with one argument—:hours—and return 40. We can satisfy this
specification with a very simple implementation:

RSpec 891

class Schedule
has_many :days

def total_hours
days.sum :hours

end
end

A potential benefit of mocking the days proxy is that we no longer rely on the
database5 in order to write our specifications and implement the total_hours
method, which will make this particular spec execute lightning fast.
On the other hand, a valid criticism of this approach is that it makes our code
harder to refactor. Our spec would fail if we changed the implementation
of total_hours to use Enumerable#inject, even though the external behavior
doesn’t change. Specifications are not only describing the visible behavior
of object but the interactions between an object and its associated objects as
well. Mocking the association proxy in this case lets us clearly specify how a
Schedule should interact with its Days.
Leading mock objects advocates see mock objects as a temporary design tool.
You may have noticed that we haven’t defined the Day class yet. So another
benefit of using mock objects is that they enable us to specify behavior in true
isolation and during design-time. There’s no need to break our design rhythm
by stopping to create the Day class and database table. This may not seem like
a big deal for such a simple example, but for more involved specifications it is
really helpful to just focus on the design task at hand. After the database and
real object models exist, you can go back and replace the mock days with calls
to the real deal. This is a subtle, yet very powerful, message about mocks that
is usually missed.

Mocking and Stubbing ActiveRecord

Once you start using mocking and stubbing in Rails, you’ll inevitably run into
situations where Active Record pushes back due to typemismatches. Themost
common scenario is trying to assign a double to an association proxy.

5Well, that’s not quite true. Active Record still connects to the database to get the column information for
Schedule.

RSpec 892

>> Bid.create!(auction: double('auction'))

=> ActiveRecord::AssociationTypeMismatch:
Auction expected, got RSpec::Mocks::Double

One solution is to always use real Active Record objects instead of doubles.
Another is to use the rspec-activemodel-mocks gem. It provides two methods for
creating fake Active Record objects, mock_model and stub_model.
The mock_model method creates a test double with the most common Active
Model and Active Record methods already stubbed out. The first argument
to mock_model is either the class that you’re mocking or a string representing
the name of a class. The second argument is a hash of attributes to stub out,
exactly like double.
Mocks created with mock_model slot right in to associations.

>> Bid.create!(auction: mock_model(Auction))
=> #<Bid id: 12, user_id: 1004, auction_id: 1003, ...>

Notice that the values of user_id and auction_id are a little suspicious? They
are fake.

You can even use mock_model to impersonate model classes that don’t
even exist yet, which makes it a great tool for real test-driven design.

The second method is stub_model(ActiveRecordClass), and it does require a real
Active Record class as its first parameter. It stubs out its own to_parammethod
to return a generated value that is unique to each object. If you want to mimic
a new record, chain the as_new_record method.

stub_model(Person)
stub_model(Person).as_new_record
stub_model(Person) {|p| p.first_name = "David"}

As you can see in the third example provided, you can use an Active Record-
style block to initialize stubbed attributes.

Routing Specs

One of Rails’ central components is routing. The routing mechanism is the way
Rails takes an incoming request URL and maps it to the correct controller
and action. Given its importance, it is a good idea to specify the routes in
your application. You can do this with by providing specs in the spec/routes
directory and have two matchers to use, route_to and be_routable.

RSpec 893

context "Messages routing" do
it "routes /messages/ to messages#show" do

expect(get: "/messages").to route_to(
controller: "articles",
action: "index"

)
end

it "does not route an update action" do
expect(post: "/messages").to_not be_routable

end
end

Controller Specs

RSpec gives you the capability to specify your controllers either in isolation
from their associated views or together with them, as in regular Rails tests.
According to the API docs:

Controller Specs support running specs for Controllers in two
modes, which represent the tension between the more granular
testing common in TDD and the more high-level testing built into
rails. BDD sits somewhere in between: we want to achieve a bal-
ance between specs that are close enough to the code to enable
quick fault isolation and far enough away from the code to enable
refactoring with minimal changes to the existing specs.

Setup

The controller class is passed to the describe method like this:

RSpec.describe MessagesController, type: :controller do

If your example requires an authenticated user, as is usually the case, you can
sign one in inside of a before block.

RSpec 894

let(:user) { create(:user) }

before(:each) do
sign_in(user)

end

The sign_in helper method is provided by Devise via the following two lines in
rails_helper.rb, which should have been added by the Devise installer script:

Enable Devise mocking
config.include Devise::Test::ControllerHelpers, type: :controller

Writing Examples

I typically organize my controller examples by action and HTTP method.
Depending on the application, I might have a high-level context entitled
“happy path”, where I avoid cluttering the examples with test for edge cases.
In the following example, I’ve written a basic spec for the index action. The
most fundamental expectation is that the response should be successful,
returning HTTP’s 200 OK response code.
I trigger execution of the controller action using a method matching the
desired HTTP method, such as get or post. (The others are patch, put, head,
and delete.)

it "is successful" do
get :index
expect(response.status).to eq(200)

end

If the action takes parameters, I supply them via a params hash option.

describe "accepting" do
let(:scheduled_at) { 2.days.from_now }

it "a proposed time" do
post :accept, params: { id: call_request.id,

scheduled_at: scheduled_at.to_s }

Besides params, you can also pass session, flash, and cookies to set those values,
respectively. You also have the capability to simulate request headers and CGI
variables.

RSpec 895

setting an HTTP Header
get :index, headers: "Content-Type" => "text/plain"

setting a CGI variable
get :index, headers: "HTTP_REFERER" => "http://example.com/home"

If you are trying to test an AJAX request, then you can set xhr: true.

post :decline, params: { id: call_request.id }, xhr: true

Expectations

If the controller action I’m testing is supposed to redirect, then I set an
expectation for a 302 status code and assert on the redirect location.

expect(response.status).to eq(302)
expect(response.headers["Location"]).to include("upcoming")

Other basic expectations that apply to most controller actions include check-
ing the template to be rendered and variable assignment.

it "renders the index template " do
get :index
expect(response).to render_template(:index)

end

it "assigns the found messages for the view" do
get :index
expect(assigns(:messages)).to include(@message)

end

You are given access to the controller instance under test via the method con-
troller. This gives you the capability to stub out helper methods. For instance,
let’s say you were using something other than Devise for authentication. Then
you might want to stub out current_user (or its equivalent) to return a user
instance.

RSpec 896

let(:user) { stub_model(User, name: "Quentin") }

before(:each) do
allow(controller).to receive(:current_user).and_return(user)

end

Isolation and Integration Modes

By default, RSpec on Rails controller specs run in isolation mode, meaning
that view templates are not involved. The benefit of this mode is that you can
spec the controller in complete isolation from the view, hence the name.

Maybe you can sucker someone else into maintaining the view specs? Just
kidding, but view specs for complicated user interfaces are known to be a
pain in the you-know-what. On the other hand, having separate view specs
provides much better fault isolation, which is a fancy way of saying that you’ll
have an easier time figuring out what’s wrong when something fails.

A section on View Specs is coming up soon, but if you prefer to exercise
your views in conjunction with your controller logic inside the same controller
specs, just as traditional Rails functional tests do, then you can tell RSpec on
Rails to run in integration mode using the render_views macro. It’s not an all-
or-nothing decision—you can specify the option at whatever context level you
want.

describe "Requesting /messages using GET" do
render_views

Specifying Errors

Ordinarily, Rails rescues exceptions that occur during action processing, so
that it can respond with a 501 error code and give you that great error
page with the stack trace and request variables and so on. In order to
directly specify that an action should raise an error, you bypass Rails’ default
handling of errors and those specified with rescue_from with RSpec method
bypass_rescue.
To illustrate, assuming the ApplicationController invokes rescue_from for the
exception AccessDenied and redirects to 401.html

RSpec 897

class ApplicationController < ActionController::Base
rescue_from AccessDenied, with: :access_denied

private

def access_denied
redirect_to "/401.html"

end
end

then we could test that an error was raised for a controller action using
bypass_rescue.

it "raises an error" do
bypass_rescue
expect { get :index }.to raise_error(AccessDenied)

end

If bypass_rescue was not included in the preceding example, the spec would
have failed due to Rails rescuing the exception and redirecting to the page
401.html.

View Specs

Controller specs let us integrate the view to make sure there are no errors
with the view, but sometimes we can do even better by specifying the views
themselves. RSpec will let us write a specification for a view, completely
isolated from the underlying controller. We can specify that certain tags exist
and that the right data is output in the user interface.
Assuming you have RSpec Rails installed and available to your development
environment, then among the boilerplate files that you will get when you
generate resources and/or controllers are view specs. This is what a default
one looks like:

require 'rails_helper'

RSpec.describe "messages/show.html.haml", type: :view do
pending "add some examples to (or delete) #{__FILE__}"

end

The type: :view option tells RSpec to expect the example group (describe or
context) to contain the path to a template.

RSpec 898

Let’s say we want to write a page that displays a private message sent
between members of an internet forum. RSpec creates the spec/views/messages
directory when we use the controller generator. The first thing we would do
is create a file in that directory for the show view, naming it show.html.haml_-
spec.rb. Next we would set up the information to be displayed on the page.

describe "messages/show.html.haml" do
before(:each) do

@message = build(:message, subject: "RSpec rocks!")

sender = build(:person, name: "Obie Fernandez")
expect(@message).to receive(:sender).and_return(sender)

recipient = build(:person, name: "Pat Maddox")
expect(@message).to receive(:recipient).and_return(recipient)

If you want to be a little more concise at the cost of one really long line of
code that you’ll have to break up into multiple lines, you can create the mocks
inline like this:

describe "messages/show.html.haml " do
before(:each) do

@message = build_stubbed(:message,
subject: "RSpec rocks!",
sender: FactoryGirl.build_stubbed(:person, name: "Obie Fernandez"),
recipient: FactoryGirl.build_stubbed(:person, name: "Pat Maddox"))

Either way, this is standard mock usage similar to what we’ve seen before.
Again, mocking the objects used in the view enables us to completely isolate
the specification.

Assigning Variables

We now need to assign the message to the view. The rspec_rails gem gives us
a method named assign method to do just that.

assign(:message, @message)

Fantastic! Now we are ready to begin specifying the view page.

RSpec 899

Rendering

To trigger rendering, we’ll use the render method, which picks up a path to a
template from its example group description. The rendermethod has the same
underlying code as render in a controller context, so the usual options such as
:partial and :collection will also work.)
The result of rendering the view template will be made available as rendered,
which is the object on which we will set our expectation.

it "displays the message subject" do
render
expect(rendered).to contain('RSpec rocks!')

end

Let’s get a little more specific and verify that the message subject is wrapped
in an <h1> tag.We’ll use Capybara’s have_selector, which takes two arguments—
a CSS-style selector and a hash of options such as :text.

it "displays the message subject as primary heading" do
render
expect(rendered).to have_selector('h1', text: 'RSpec rocks!')

end

Helper Specs

Helper specs are marked by :type => :helper or detected automatically based
on their location in spec/helpers if you have set config.infer_spec_type_from_-
file_location!. They expose a helper object, which includes the helper module
being specified, the ApplicationHelper module (if there is one) and all of the
helpers built into Rails. They do not include the other helper modules in your
app, only the one specified in the spec itself.
To access the methods you’re specifying, simply call them directly on the
helper object. Note that helper specs are for testing helper methods in
isolation, helper methods defined in controllers are not included.

RSpec 900

describe ProfileHelper, :type => :helper do
describe "#profile_photo" do

it "returns nil if user's photos is empty" do
user = mock_model(User, photos: [])
expect(helper.profile_photo(user)).to be_nil

end

It’s a bad practice, but if your helper method relies on a particular instance
variable being set, you can use the assignmethod, just like you would in a view
spec.

RSpec.describe ApplicationHelper, :type => :helper do
describe "#page_title" do

it "returns the instance variable" do
assign(:title, "My Title")
expect(helper.page_title).to eql("My Title")

end

RSpec and Generators

RSpec ensures that other generators in your project are aware that it is your
chosen test library. Subsequently, it will be used for command-line generation
of models, controllers, etc.

$ rails generate model Invoice
invoke active_record
create db/migrate/20100304010121_create_invoices.rb
create app/models/invoice.rb
invoke rspec
create spec/models/invoice_spec.rb

RSpec Options

The .rspec file contains a list of default command-line options. The generated
file looks like

--color
--format progress

You can change it to suit your preference. I like my spec output in color but
usually prefer the more verbose output of --format documentation.

RSpec 901

Tim says…
I go back and forth between preferring the dots of the progress
format and the verbose output of the documentation format. With the
more verbose output and long spec suites, it’s easy to miss whether
something failed if you look away from your screen. Especially on
terminals with short buffers.

Here are some additional options that you might want to set in your .rspec

--fail-fast Tells RSpec to stop running the test suite on the
first failed test

-b, --backtrace Enable full backtrace

-p, --profile Enable profiling of examples w/output of top 10 slowest
examples

Support Files

As mentioned already in the chapter, RSpec Rails has the notion of supporting
files containing custom matchers and any other code that helps set up
additional functionality for your spec suite, and you keep those files in the
spec/support directory.
If you want to load support files automatically, kind of how Rails handles its
initializers, find the following line in spec/rails_helper.rb and uncomment it.

Dir[Rails.root.join("spec/support/**/*.rb")].each { |f| require f }

RSpec 902

Tim says….
Traditionally a lot of extra helper methods were put into the spec_-
helper file, hence its name. However, nowadays it’s generally easier
to organize your additions in spec/support files, for the same reasons
config/initializers can be easier to manage than sticking everything
in config/environment.rb.
While we’re on the subject, keep in mind that any methods defined
at the top level of a support file will become global methods available
from all objects, which almost certainly not what you want. Instead,
create a module and mix it in, just like you’d do in any other part of
your application.

module AuthenticationHelpers
def sign_in_as(user)

...
end

end

Rspec.configure do |config|
config.include AuthenticationHelpers

end

RSpec 903

23.12 Feature Specs with Capybara

A well-written acceptance/integration test suite is an essential ingredient in
the success of any complex software project, particularly those run on Agile
principles and methodologies, such as Extreme Programming (aka “XP”). One
of the best definitions for an acceptance test is from the XP official website:

The customer specifies scenarios to test when a user story has been
correctly implemented. A story can have one or many acceptance
tests, what ever it takes to ensure the functionality works. http://
www.extremeprogramming.org/rules/functionaltests.html

Acceptance tests let us know that we are done implementing a given feature,
or user story, in XP lingo. Incidentally, Capybara adds a DSL to RSpec that
enables defining examples using the same XP lingo we are used to. Instead of
using the describe method to group together related examples of behavior,
we use feature. Instead of before we can describe common setup tasks as
background. And to specify a scenario for a given feature, we use the scenario
method with a description instead of it. Although these methods are simply
aliases for existing RSpec methods, they add a level of readability and provide
a visual differentiator from isolated RSpec examples.

feature "Some Awesome Feature" do
background do

Setup some common state for all scenarios
same as `before(:each)`

end

scenario "A feature scenario" do
...
end

end

Feature specs should be kept in the spec/features directory.

Capybara DSL

Besides feature, background, and scenario, the Capybara gem provides a DSL
that enables you to interact with your application as you would via a web
browser.

http://www.extremeprogramming.org/rules/functionaltests.html
http://www.extremeprogramming.org/rules/functionaltests.html

RSpec 904

require 'rails_helper'

RSpec.feature 'Authentication' do
let(:email) { 'bruce@wayneenterprises.com' }
let(:password) { 'i4mb4tm4n!!!' }

scenario "signs in with correct credentials" do
create :user, email: email, password: password
visit(new_user_session_path)
fill_in 'Email', with: email
fill_in 'Password', with: password
click_on 'Sign in'
expect(response.status).to eq(302)
expect(current_path).to eq(dashboard_path)
expect(page).to have_content('Signed in successfully')

end
...

end

Navigating to a web page using Capybara is done via the visitmethod, which
will perform a GET request on the supplied path.

visit('/dashboard')
visit(new_user_session_path)

To interact with a web page, Capybara provides action methods that enable
the clicking of buttons or links and the capability to fill-in forms. The following
are a listing of action methods you can expect to find in a Capybara feature
spec:

attach_file('Image', '/path/to/image.jpg')
check('A Checkbox')
choose('A Radio Button')
click_link('Link Text')
click_button('Save')
click_on('Link Text') # a link or a button
fill_in('Name', with: 'Bruce')
select('Option', from: 'Select Box')
uncheck('A Checkbox')

For a full reference of each action method, see the Capybara official doc-
umentation at http://rubydoc.info/github/jnicklas/capybara/master/Capybara/
Node/Actions.
Finally, Capybara provides various matchers to assert a page contains a CSS
selector, a XPath, or content.

http://rubydoc.info/github/jnicklas/capybara/master/Capybara/Node/Actions
http://rubydoc.info/github/jnicklas/capybara/master/Capybara/Node/Actions

RSpec 905

expect(page).to have_selector('header h1')
expect(page).to have_css('header h1')

expect(page).to have_selector(:xpath, '//header/h1')
expect(page).to have_xpath('//header/h1')

expect(page).to have_content('TR4W')

Capybara Drivers

By default, Capybara uses Rack::Test as a headless driver to interact with your
web application. It is best suited for acceptance tests that don’t require any
outside interaction or JavaScript testing. You can also override the driver that
Capybara uses through the default_driver configuration setting.

Capybara.default_driver = :selenium

If only some scenarios test JavaScript, you can keep :rack_test as the default
driver and explicitly set a driver for JavaScript.

Capybara.javascript_driver = :poltergeist

For any scenarios that require the JavaScript driver, add js: true following
the scenario description.

scenario "JavaScript dependent scenario", js: true do
...
end

These driver settings should be set in spec/spec_helper.rb

RSpec 906

23.13 Working with Files in Your Specs

Rails 5 introduced a neat little helpermethod called file_fixture, and in RSpec
it is configured by default to read files out of the spec/fixtures/files directory.

file_fixture("example.txt").read # get the file's content
file_fixture("example.mp3").size # get the file size

If you’re using the excellent Carrierwave gem (or doing any sort of file
manipulation in your app), then you might find yourself having to read files
into Factory Girl factory definitions.

FactoryGirl.define do
factory :star do

name "Cat Wrangler"
description "Excellence in project management of ADD people"
image { file_fixture('stars/cat-wrangler.jpg') }

end
end

Note that a side effect of using real files with Carrierwave in your specs is that
they might be repeatedly uploaded to AWS, slowing things down significantly
and spending money for no good reason. To avoid that situation, you must tell
Fog (the gem that interfaces Carrierwave to AWS) to operate in mock mode.

spec/support/mock_fog.rb
Fog.mock!
service = Fog::Storage.new({

:provider => 'AWS',
:aws_access_key_id => ENV.fetch('AWS_ACCESS_KEY_ID'),
:aws_secret_access_key => ENV.fetch('AWS_SECRET_ACCESS_KEY')

})
service.directories.create(:key => 'name_of_your_bucket')

RSpec 907

23.14 RSpec Tools

There are several open-source projects that enhance RSpec’s functionality
and your productivity or can be used in conjunction with RSpec and other
testing libraries.

Database Cleaner

The database_cleaner gemhttps://github.com/DatabaseCleaner/database_cleaner
enhances your ability to maintain a pristine data environment for your RSpec
examples. It has a set of strategies for cleaning the database on an ongoing
basis during spec runs and works with all sorts of databases and mapping
libraries, not just Active Record and relational databases.
A full explanation of how to use Database Cleaner is out of scope. However,
it is worth mentioning a common configuration issue related to integration
testing. When Capybara runs, it takes care of starting and stopping the HTTP
server that will used for testing the application in its own process. However,
drivers such as Selenium and Poltergeist require a separate, out-of-process
HTTP server. In those cases, you can’t use the default RSpec strategy of
running every example in a transaction and then rolling it back to maintain a
clean, isolated context. Database transactions are not shared across threads
(nevermind processes), which means if you were to run a Capybara driver like
Poltergeist in a transaction, any data you set in RSpec for the scenario would
not be visible. Changes provoked by the application code in Poltergeist would
not be visible to your spec either.
With the right combination of before hooks, we can configure RSpec to use
a truncation strategy just for those JavaScript dependent scenarios. Using
truncation, the entire database is emptied out after each test instead of
running in a transaction. The reason you don’t just want to use it by default is
because it is much, much slower than using transactions.

RSpec.configure do |config|
config.before(:suite) do

DatabaseCleaner.clean_with(:truncation)
end
config.before(:each) do

DatabaseCleaner.strategy = :transaction
end
config.before(:each, js: true) do

DatabaseCleaner.strategy = :truncation
end

https://github.com/DatabaseCleaner/database_cleaner

RSpec 908

config.before(:each) do
DatabaseCleaner.start

end
config.after(:each) do

DatabaseCleaner.clean
end

end

Guard-RSpec

Guard-RSpec is an automated testing framework that automagically runs
(parts of) your spec suite whenever spec files are modified. It can really
supercharge your red-green-refactor cycle!
https://github.com/guard/guard-rspec

Spring

As your application grows, an automated test suite can start to slow down your
workflow when writing specs at a frequent rate. This is due to the nature of
Rails needing to load the environment for each spec run. Spring alleviates this
problem by loading the Rails environment only once and having the remaining
specs use the preloaded environment. Spring is included in Rails by default
as of version 4.1.
https://github.com/rails/spring

Flatware

Flatware enables you to distribute the work of running a large spec suite over
all of the processors in your computer.

Long test suites plague the lives of many a Ruby on Rails developer.
For any project of significant size a massive test suite is needed to
verify the correctness of the system. This verification has upside of
course, but also a downside. Long test suites kill productivity.

Learnmore at https://hashrocket.com/blog/posts/true-parallel-processing-for-
ruby-tests-with-flatware

https://github.com/guard/guard-rspec
https://github.com/rails/spring
https://hashrocket.com/blog/posts/true-parallel-processing-for-ruby-tests-with-flatware
https://hashrocket.com/blog/posts/true-parallel-processing-for-ruby-tests-with-flatware

RSpec 909

Specjour

If you work in an office environment alongside many other developers using
Apple workstations, Specjour can significantly reduce the run time of your
entire spec suite by using your co-workers’ spare CPU cycles. It distributes
the work over a LAN via Bonjour, running the specs in parallel on however
many number of workers it finds available.
Get it at https://github.com/sandro/specjour.

SimpleCov

SimpleCov is a code coverage tool for Ruby. You can run it on your specs to
see how much of your production code is covered. It provides HTML output
to easily tell what code is covered by specs and what isn’t. The results are
outputted into a directory named coverage and contain a set of HTML files
that you can browse by opening index.html.
Get it at https://github.com/colszowka/simplecov.

Timecop

The Timecop gem provides “time travel” and “time freezing” capabilities, mak-
ing it dead simple to test time-dependent code in your specs. In other words,
it provides a unified method to mock Time.now, Date.today, and DateTime.now.
Get it at https://github.com/travisjeffery/timecop.

WebMock

WebMock is a library for stubbing and setting expectations on HTTP requests
in Ruby.
https://github.com/bblimke/webmock
I consider WebMock a must-have for serious development projects because
it shuts down access from your specs to the outside world. You absolutely
want that restriction because having your specs interacting with third-party
services during a test run introduces serious delays and unpredictability into
what should be an absolutely deterministic process.

https://github.com/sandro/specjour
https://github.com/colszowka/simplecov
https://github.com/travisjeffery/timecop
https://github.com/bblimke/webmock

RSpec 910

VCR

VCR is a gem that records your test suite’s HTTP interactions and replays
them during future test runs for fast, deterministic, accurate tests. It’s also
an essential companion to WebMock.
https://github.com/vcr/vcr
When you’re using VCR with FactoryGirl, you’ll want to configure RSpec in
such a way that the generated primary keys for your Active Record objects are
deterministic, which is a fancy way of saying that they’ll always start from 1
and therefore be the same for each spec suite run. Use the following Database
Cleaner configuration to get that effect:

config.before(:suite) do
DatabaseCleaner.strategy = :truncation, { pre_count: true }
DatabaseCleaner.clean_with :truncation

end

config.around(:each) do |example|
DatabaseCleaner.cleaning do

example.run
end

end

This configuration works because of the obscure pre_count: true option,
which makes Database Cleaner reset the database’s primary key sequence
generators for each example.

https://github.com/vcr/vcr

RSpec 911

23.15 Conclusion

Over the course of this huge chapter you’ve gotten a taste of the testing
experience delivered by RSpec Rails and its extensive ecosystem. At first
glance, RSpec may have seemed like the same thing as Rails’ native MiniTest
with somewords substituted and shifted around, but hopefully you now realize
that it is so much more.
Importantly, RSpec is the best tool out there for doing BDD/TDD in earnest.
It emphasizes that those philosophies are much more about code design
than code testing, a difficult lesson that world-class developers generally
learn through experience and mentoring. The way that RSpec embodies those
philosophies in its syntax and vocabulary makes the learning curve easier.

Active Model API Reference
Active Model is a Rails library containing various modules used in developing
frameworks that need to interact with the Rails Action Pack and Action View
libraries. It came about by extracting common functionality that was not
persistence specific out of Active Record, so that third party libraries would
not have to copy code from Rails or use monkey patching anymore.
Out of this extraction came extremely useful reusable functionality to devel-
opers of Rails compatible libraries, such as dirty attributes, validations, and
serialization into JSON or XML. And simply by using these modules developers
could be DRY and not need to rewrite what has already been done before.
Section headings reflect the name of the Class or Module where each Active-
Model API method is located and are organized in alphabetical order for easy
lookup. Sub-sections appear according to the name of the Ruby file in which
they exist within Active Model’s lib directory. Finally, the sub-sub-sections
are the API methods themselves.

Active Model API Reference 913

AttributeAssignment

Instance Public Methods

assign_attributes(new_attributes)

Enables you to set all the attributes by passing in a hash of attributes with
keys matching the attribute names.

class Cat
include ActiveModel::AttributeAssignment
attr_accessor :name, :status

end

cat = Cat.new
cat.assign_attributes(name: "Gorby", status: "yawning")
cat.name # => 'Gorby'
cat.status => 'yawning'
cat.assign_attributes(status: "sleeping")
cat.name # => 'Gorby'
cat.status => 'sleeping'

This method invokes permitted? on the new_attributes hash if it is defined. The
most notable object in rails that does not permit mass-assignment is ActionCon-
troller::Parameters (aka “strong parameters”). An ActiveModel::ForbiddenAttributesError
exception will be raised if assignment is prevented.

Active Model API Reference 914

AttributeMethods

This module adds the capability for your class to have custom prefixes and
suffixes on its methods. It’s used by adding the definitions for the prefixes
and suffixes, defining which methods on the object will use them, and then
implementing the common behavior for when those methods are called. An
example implementation is as follows:

class Record
include ActiveModel::AttributeMethods

attribute_method_prefix 'reset_'
attribute_method_suffix '_highest?'
define_attribute_methods :score

attr_accessor :score
attr_accessor :previous_score

private

def reset_attribute(attribute)
send("#{attribute}=", nil)

end

def attribute_highest?(attribute)
attribute > 1000 ? true : false

end
end

Instance Public Methods

alias_attribute(new_name, old_name)

This obscure, but super-useful, method enables you to easily make aliases for
attributes, including their reader and writer methods.

Active Model API Reference 915

class Person
include ActiveModel::AttributeMethods
attr_accessor :name
alias_attribute :full_name, :name

end

person = Person.new
person.name = "John Smith"
person.name # => "John Smith"
person.full_name # => "John Smith"

attribute_method_affix(*affixes)

Defines a prefix and suffix that when used in conjuction with define_at-
tribute_methods creates an instance method with the prefix and suffix wrap-
ping the previous method name.

attribute_method_prefix(*prefixes)

Defines a prefix that when used in conjuction with define_attribute_methods
creates an instance method with the prefix and the previous method name.

attribute_method_suffix(*suffixes)

Defines a suffix that when used in conjuction with define_attribute_methods
creates an instance method with the suffix and the previous method name.

define_attribute_method(attr_name)

Declares an attribute that will get prefixed and suffixed. The define_at-
tribute_method should be defined after any prefix, suffix, or affix definitions
or they will not hook in.

class Record
include ActiveModel::AttributeMethods

attribute_method_prefix 'reset_'
define_attribute_methods :score

attr_accessor :score

private

Active Model API Reference 916

def reset_attribute(attribute)
send("#{attribute}=", nil)

end
end

record = Record.new
record.score = 1
record.reset_score # => nil

define_attribute_methods(*attr_names)

Declares the attributes that will get prefixed and suffixed. Note that define_-
attribute_methods should be defined after any prefix, suffix or, affix definitions.

generated_attribute_methods

Returns whether or not the dynamic attribute methods have been generated.

undefine_attribute_methods

Removes all the attribute method definitions previously defined.

Active Model API Reference 917

Callbacks

This module gives any class Active Record style callbacks. It is used by first
defining the callbacks that the model will use, and then in your model running
the callbacks at the appropriate time. Once defined, you have access to before,
after, and around custom methods.

class BaseRecord
extend ActiveModel::Callbacks

define_model_callbacks :create
define_model_callbacks :update, only: :before

def create
run_callbacks :create do

Your create code here
end

end

def update
run_callbacks :update do

Your update code here
end

end
end

class Portfolio < BaseRecord
before_update :my_callback

...

private

def my_callback
code here will get run before update

end
end

Instance Public Methods

define_model_callbacks(*callbacks)

Defines the callback hooks that can be used in the model, which will dynami-
cally provide you with a before, after, and around hook for each name passed.

Active Model API Reference 918

Optionally, you can supply an :only option to specify which callbacks you want
created.

define_model_callbacks :create, only: :after

Defined callbacks can accept a callback class by passing the given callback an
object that responds to the name of the callback and takes the model object
as a parameter.

class Record
extend ActiveModel::Callbacks
define_model_callbacks :create

before_create SomeCallbackClass
end

class SomeCallbackClass
def self.before_create(obj)
obj is the Record instance the callback is being called on

end
end

When defining an around callback remember to yield to the block, otherwise
it won’t be executed:

around_create :log_status

def log_status
puts 'going to call the block...'
yield
puts 'block successfully called.'

end

Active Model API Reference 919

Conversion

A simple module that when included, gives the standard Rails conversion
methods to your model. A couple of its methods expect your class to have
an id attribute.

Instance Public Methods

to_model

Returns self. If your model does not act like an Active Model object, then
you should define to_model yourself, returning a proxy object that wraps your
object with Active Model compliant methods.

to_key

Returns an array containing your object’s id, if it has one.

to_param

Return a url friendly version of the object’s primary key or nil if the object is
not persisted.

to_partial_path

Returns a string identifying the path associated with the object.

record = Record.new
record.to_partial_path # => "records/record"

Used by Action View to find a suitable partial to represent the object.

Active Model API Reference 920

Dirty

Provides a way to track changes in your object in the same way as Active
Record does.
The requirements for implementing ActiveModel::Dirty are:

1. Include the ActiveModel::Dirty module in your object.
2. Call define_attribute_methods passing each method you want to track.
3. Call [attr_name]_will_change! before each change to the tracked attribute.
4. Call changes_applied after the changes are persisted.
5. Call clear_changes_information when you want to reset the changes infor-
mation.

6. Call restore_attributes when you want to restore previous data.

A minimal implementation could be:

class Person
include ActiveModel::Dirty

define_attribute_methods :name

def initialize(name)
@name = name

end

def name
@name

end

def name=(val)
name_will_change! unless val == @name
@name = val

end

def save
do persistence work

changes_applied
end

def reload!
get the values from the persistence layer

Active Model API Reference 921

clear_changes_information
end

def rollback!
restore_attributes

end
end

A newly instantiated Person object is unchanged:

person = Person.new("Uncle Bob")
person.changed? # => false

Change the name:

person.name = 'Bob'
person.changed? # => true
person.name_changed? # => true
person.name_changed?(from: "Uncle Bob", to: "Bob") # => true
person.name_was # => "Uncle Bob"
person.name_change # => ["Uncle Bob", "Bob"]
person.name = 'Bill'
person.name_change # => ["Uncle Bob", "Bill"]

Save the changes:

person.save
person.changed? # => false
person.name_changed? # => false

Reset the changes:

person.previous_changes # => {"name" => ["Uncle Bob", "Bill"]}
person.name_previously_changed? # => true
person.name_previous_change # => ["Uncle Bob", "Bill"]
person.reload!
person.previous_changes # => {}

Roll back the changes:

Active Model API Reference 922

person.name = "Uncle Bob"
person.rollback!
person.name # => "Bill"
person.name_changed? # => false

Assigning the same value leaves the attribute unchanged:

person.name = 'Bill'
person.name_changed? # => false
person.name_change # => nil

Which attributes have changed?

person.name = 'Bob'
person.changed # => ["name"]
person.changes # => {"name" => ["Bill", "Bob"]}

If an attribute is modified in-place, then make use of [attribute_name]_will_-
change! to mark that the attribute is changing. Otherwise Active Model can’t
track changes to in-place attributes.

Note that Active Record can detect in-place modifications automatically. You
do not need to call [attribute_name]_will_change! on Active Record models.

person.name_will_change!
person.name_change # => ["Bill", "Bill"]
person.name << 'y'
person.name_change # => ["Bill", "Billy"]

Instance Public Methods

changed

Returns an array of fields whose values have changed on the object.

changed?

Returns whether or not the object’s attributes have changed.
As of Rails 4.1, you can determine whether an attribute has changed from one
value to another by supplying hash options :from and :to.

Active Model API Reference 923

user.name_changed?(from: 'Prince', to: 'Symbol')

changed_attributes

Returns a hash of the fields that have changed, with their original values.

changes

Returns a hash of changes, with the attribute names as the keys and the values
being an array of the old and new value for that field.

previous_changes

Returns a hash of previous changes before the object was persisted, with the
attribute names as the keys and the values being an array of the old and new
value for that field.

Active Model API Reference 924

Errors

A Hash class that you can use in your objects to provide a common interface
for handling application error messages, in a way that is compatible with the
rest of Rails.

Note that including ActiveModel::Validations automatically adds
an errors method to your instances initialized with a new
ActiveModel::Errors object, so there is no need for you to do this
manually.

In order for your object to be compatible with the API with i18n and validations
support, it needs to extend ActiveModel::Naming, ActiveModel::Translation, and
include ActiveModel::Validations.

class User
extend ActiveModel::Naming
extend ActiveModel::Translation
include ActiveModel::Validations

attr_reader :errors
attr_accessor :name

def initialize
@errors = ActiveModel::Errors.new(self)

end
end

Class Public Methods

new(instance)

Passes in the instance of the object that is using the errors object.

class Person
def initialize

@errors = ActiveModel::Errors.new(self)
end

end

Active Model API Reference 925

Instance Public Methods

[](attribute)

Returns the errors for the supplied attribute as an array.

user.errors[:name] # => ["is invalid"]

[]=(attribute, error)

Adds the provided error message to the attribute errors.

user.errors[:name] = 'must be implemented'

add(attribute, message = nil, options = {})

Alternate (more comprehensive) way to add an error message for the supplied
attribute. More than one error can be added to the same attribute. If no
message is provided, :invalid is assumed. Options allowed are the following:

:strict
If set to true, will raise ActiveModel::StrictValidationFailed over adding
an error.

>> user.errors.add(:name)
=> ["is invalid"]

>> user.errors.add(:name, 'must be implemented')
=> ["is invalid", "must be implemented"]

If message is a symbol, it will be translated using the appropriate scope (see
generate_message).
If message is a proc, it will be called, enabling dynamic message generation.

>> person.errors.add(:name, -> { "Failed as of #{Time.now}" })
=> ["Failed as of 2016-01-02 12:12:54 -0500"]

If the :strict option is set to true, it will raise ActiveModel::StrictValidationFailed
instead of adding the error. To raise a different exception, pass its class as the
:strict parameter.

Active Model API Reference 926

>> person.errors.add(:name, :invalid, strict: true)
=> ActiveModel::StrictValidationFailed: name is invalid

>> person.errors.add(:name, :invalid, strict: NameIsInvalid)
=> NameIsInvalid: name is invalid

person.errors.messages # => {}

The attribute should be set to :base if the error is not directly associated with
a single attribute.

>> person.errors.add(:base, :username_or_email_blank,
message: "either username or email must be present")

>> person.errors.messages
=> {:base=>["either username or email must be present"]}

>> person.errors.details
=> {:base=>[{error: :username_or_email_blank}]}

Probably a bad idea to use base as an attribute name in Rails.

add_on_blank(attributes, options = {})

Convenience method that adds a validation-style “blank” error message for
each specified attribute that is blank.

user.errors.add_on_blank(:name)
user.errors[:name] # => ["can't be blank"]

add_on_empty(attributes, options = {})

Same as add_on_blank but for array-like objects.

user.errors.add_on_empty(:tags)
user.errors[:tags] # => ["can't be empty"]

added?(attribute, message = nil, options = {})

Returns true if an error on the attribute with the given message is present.

Active Model API Reference 927

user.errors.add :name, :blank
user.errors.added? :name, :blank # => true

If the error message requires an option, then it returns true with the correct
option or false with an incorrect or missing option.

>> person.errors.add :name, :too_long, { count: 25 }

>> person.errors.added? :name, :too_long, count: 25
=> true

person.errors.added? :name, "is too long (maximum is 25 characters)"
=> true

person.errors.added? :name, :too_long, count: 24
=> false

person.errors.added? :name, :too_long
=> false

person.errors.added? :name, "is too long"
=> false

as_json(options=nil)

Returns a hash that can be used as the JSON representation for this object.
Available options are the following:

:full_messages
Defaults to false. If set to true, returns full errors messages for each
attribute.

>> user.errors.as_json
=> {:name=>["can't be blank"]}

>> user.errors.as_json(full_messages: true)
=> {:name=>["Name can't be blank"]}

blank? / empty?

Returns true if there are no errors on the object, false otherwise.

clear

Clear the error messages.

Active Model API Reference 928

person.errors.full_messages # => ["name cannot be nil"]
person.errors.clear
person.errors.full_messages # => []

count

Returns the total number of error messages.

delete(key)

Delete all messages for specified key.

user.errors[:name] # => ["can't be blank"]
user.errors.delete(:name)
user.errors[:name] # => []

each

Iterates through the error keys, yielding the attribute and the errors for each.
If an attribute has more than one error message, it will yield for each one.

user.errors.each do |attribute, error|
...

end

full_message(attribute, message)

Returns a full message for a given attribute.

full_messages

Returns all the full error messages as an array.

full_messages_for(attribute)

Returns an array of all the full error messages for a given attribute.

Active Model API Reference 929

generate_message(attr, message = :invalid, options = {})

Generates a translated errormessage under the scope activemodel.errors.messages
for the supplied attribute. Messages are looked up via the following pattern:
models.MODEL.attributes.ATTRIBUTE.MESSAGE. If a translation is not found, Active
Model will then look in models.MODEL.MESSAGE. If that yields no translations, it
will return a default message (activemodel.errors.messages.MESSAGE).
When using inheritance in your models, it will check all the inherited models
too, but only if the model itself hasn’t been found. Say you have a class Admin
that extends User and you wanted the translation for the :blank error message
for the title attribute. This is how it looks up translations:

• activemodel.errors.models.admin.attributes.title.blank
• activemodel.errors.models.admin.blank
• activemodel.errors.models.user.attributes.title.blank
• activemodel.errors.models.user.blank
• any default you provided through the options hash (in the active-

model.errors scope)
• activemodel.errors.messages.blank
• errors.attributes.title.blank
• errors.messages.blank

get(key)

Returns an array of error messages for the given key.

user.errors.get(:name)

has_key?(attribute) / include?(attribute)

Returns true if the error messages include an error for the given attribute.

user.errors.include?(:name) # => true

keys

Return all message keys.

set(key, value)

Sets the messages for a key.

Active Model API Reference 930

user.errors.set(:name, ['must be implemented'])

size

Returns the total number of error messages.

to_a

Returns an array of all the error messages, with the attribute name included
in each.

to_hash(full_messages = false)

Returns a hash of all the error messages, with the attribute name set as the
key and messages as values. If full_messages is set to true, it will contain full
messages.

to_xml

Returns the errors hash as XML.

values

Returns all message values.

Active Model API Reference 931

ForbiddenAttributesError

Defines the ForbiddenAttributesError exception class, which is raised when
forbidden attributes are used for mass assignment.

params = ActionController::Parameters.new(name: 'Bob')
User.new(params) # => ActiveModel::ForbiddenAttributesError
params.permit!
User.new(params) # => #<User:0x007fefd4389020 ...>

Active Model API Reference 932

Lint::Tests

You can check whether an object is compatible with the Active Model API by
including ActiveModel::Lint::Tests in a test case. It contains assertions that
tell you whether your object is fully compliant.
Note that an object is not required to implement all APIs in order to work with
Action Pack. This module only intends to provide guidance in case you want
all features out of the box.
These tests do not attempt to determine the semantic correctness of the
returned values. For instance, you could implement valid? to always return
true, and the tests would pass. It is up to you to ensure that the values are
semantically meaningful.
Objects you pass in are expected to return a compliant object from a call to
to_model. It is perfectly fine for to_model to return self.

Instance Public Methods

test_errors_aref

Passes if the object’s model responds to errors and if calling [](attribute) on
the result of this method returns an array. Fails otherwise.
errors[attribute] is used to retrieve the errors of a model for a given attribute.
If errors are present, the method should return an array of strings that are the
errors for the attribute in question. If localization is used, the strings should
be localized for the current locale. If no error is present, the method should
return an empty array.

test_model_naming

Passes if the object’s model responds to model_name both as an instance method
and as a class method, and if calling this method returns a string with some
convenience methods: :human, :singular and :plural.

test_persisted?

Passes if the object’s model responds to persisted? and if calling this method
returns either true or false. Fails otherwise.
The persisted? method is used when auto-generating the URL for a form. If
the object is not persisted, a form for that object, for instance, will route to
the create action. If it is persisted, a form for the object will route to the update
action.

Active Model API Reference 933

test_to_key

Passes if the object’s model responds to to_key and if calling this method
returns nil when the object is not persisted. Fails otherwise.
The to_key method returns an enumerable of all (primary) key attributes of
the model and is used to a generate unique DOM id for the object.

test_to_param

Passes if the object’s model responds to to_param and if calling this method
returns nil when the object is not persisted. Fails otherwise.
The to_param is used to represent the object’s key in URLs. Implementers can
decide to either raise an exception or provide a default in case the record uses
a composite primary key. There are no tests for this behavior in lint because
it doesn’t make sense to force any of the possible implementation strategies
on the implementer.

test_to_partial_path

Passes if the object’s model responds to to_partial_path and if calling this
method returns a string. Fails otherwise.
The to_partial_path method is used for looking up partials. For example, a
BlogPost model might return "blog_posts/blog_post".

Active Model API Reference 934

MissingAttributeError

Raised when you try to access an attribute that is known, but not defined in
the current object. (This is a rare edge case.)

class User < ActiveRecord::Base
has_many :pets

end

>> user = User.first
>> user.pets.select(:id).first.user_id
=> ActiveModel::MissingAttributeError: missing attribute: user_id

Active Model API Reference 935

Model

Model is amodulemixin that includes the required interface for a Ruby object to
work with Action Pack and Action View. Classes that include Model get several
other Active Model features out of the box, such as:

• Model name introspection
• Conversions
• Translations
• Validations

Like Active Record objects, Model objects can also be initialized with a hash of
attributes.

class Contact
include ActiveModel::Model

attr_accessor :name, :email, :message

validates :name, presence: true
validates :email, presence: true
validates :message, presence: true, length: { maximum: 300 }

end

The implementation of Model (minus comments) is only about 20 lines of code.

module ActiveModel
module Model

extend ActiveSupport::Concern
include ActiveModel::AttributeAssignment
include ActiveModel::Validations
include ActiveModel::Conversion

included do
extend ActiveModel::Naming
extend ActiveModel::Translation

end

def initialize(attributes={})
assign_attributes(attributes) if attributes
super()

end

Active Model API Reference 936

def persisted?
false

end
end

end

Class Public Methods

new(attributes={})

Initializes a new model with the given params.

Instance Public Methods

persisted?

Indicates whether the model is persisted. Default is false.

Active Model API Reference 937

Name

The Name class wraps a bunch of logic around name information about your
object so that it can be used with Rails.
Howmuch name information could there be? Take a look at Name’s constructor.

def initialize(klass, namespace = nil, name = nil)
@name = name || klass.name

raise ArgumentError, "Class name cannot be blank. You need to supply a
name argument when anonymous class given" if @name.blank?

@unnamespaced = @name.sub(/^#{namespace.name}::/, '') if namespace
@klass = klass
@singular = _singularize(@name)
@plural = ActiveSupport::Inflector.pluralize(@singular)
@element = ActiveSupport::Inflector.

underscore(ActiveSupport::Inflector.demodulize(@name))
@human = ActiveSupport::Inflector.humanize(@element)
@collection = ActiveSupport::Inflector.tableize(@name)
@param_key = (namespace ? _singularize(@unnamespaced) : @singular)
@i18n_key = @name.underscore.to_sym

@route_key = (namespace ? ActiveSupport::Inflector.
pluralize(@param_key) : @plural.dup)

@singular_route_key = ActiveSupport::Inflector.singularize(@route_key)
@route_key << "_index" if @plural == @singular

end

All of this information is calculated and stored at initialization-time, presum-
ably since it’s used all over Rails repeatedly.

Class Public Methods

new(klass, namespace = nil, name = nil)

Returns a new ActiveModel::Name instance.

Active Model API Reference 938

module Foo
class Bar
end

end

ActiveModel::Name.new(Foo::Bar).to_s
=> "Foo::Bar"

Instance Public Attributes

cache_key / collection

Returns an underscored plural version of the model name.

element

Returns an underscored version of the model name.

i18n_key

Returns a symbol of the model name to be used as an i18n key.

param_key

Returns a version of the model name to be used for params names.

plural

Returns a pluralized version of the model name.

route_key

Returns a version of the model name to use while generating route names.

singular

Returns a singularized version of the model name.

singular_route_key

Returns a singularized version of the model name to use while generating
route names.

Active Model API Reference 939

Instance Public Methods

=∼(regexp) / !∼(regexp)

Equivalent to same methods on String. Matches whether class name does or
does not match given regexp.

<=>(other) / ==(other) / ===(other) / eql?(other)

Equivalent to same methods on String. Compares class name against other.

human(options={})

Returns a translated human readable version of the model name using i18n.
The basic recipe is to capitalize the first word of the name.

BlogPost.model_name.human # => "Blog post"

Active Model API Reference 940

Naming

Naming is the module that you extend in your class to get name type information
for your model.

Class Public Methods

param_key(record_or_class)

Returns string to use for params names, accounting for whether the class is
inside an isolated Rails Engine or not.

For isolated engine:
ActiveModel::Naming.param_key(Blog::Post) # => "post"

For shared engine:
ActiveModel::Naming.param_key(Blog::Post) # => "blog_post"

plural(record_or_class)

Returns the plural class name of a record or class.

ActiveModel::Naming.plural(post) # => "posts"
ActiveModel::Naming.plural(Highrise::Person) # => "highrise_people"

route_key(record_or_class) / singular_route_key(record_or_class)

Returns string to use for generating route names, accounting for whether the
class is inside an isolated Rails Engine or not.

singular(record_or_class)

Returns the singular class name of a record or class.

ActiveModel::Naming.singular(post) # => "post"
ActiveModel::Naming.singular(Highrise::Person) # => "highrise_person"

uncountable?(record_or_class)

Identifies whether the class name of a record or class is uncountable.

Active Model API Reference 941

ActiveModel::Naming.uncountable?(Sheep) # => true
ActiveModel::Naming.uncountable?(Post) # => false

Instance Public Methods

model_name

Returns an ActiveModel::Name instance for the object. Used by Action Pack and
Action View for naming-related functionality, such as routing.

Active Model API Reference 942

SecurePassword

Including the SecurePassword module adds a single macro style method has_-
secure_password to your class, which adds the capability to set and authenticate
against a BCrypt password.
A full explanation of how to use has_secure_password is provided in the Chapter
14 section “has_secure_password”.

Active Model API Reference 943

Serialization

Serialization is a module to include in your models when you want to
represent your model as a serializable hash. You only need to define an
attributes method and the rest is handled for you.

class User
include ActiveModel::Serialization
attr_accessor :first_name, :last_name

def attributes
{ 'first_name' => @first_name, 'last_name' => @last_name }

end
end

Instance Public Methods

serializable_hash(options = nil)

Returns the serializable hash representation of your model. Options provided
can be of the following:

:except
Do not include these attributes.

:methods
Include the supplied methods. The method name will be set as the key
and its output the value.

:only
Only include the supplied attributes.

Active Model API Reference 944

Serializers::JSON

Serializers::JSON is a module to include in your models when you want to
provide a JSON representation of your object. It automatically includes the
module and depends on the attributes and attributes=methods to be present.

class User
include ActiveModel::Serializers::JSON
attr_accessor :first_name, :last_name

def attributes
{ 'first_name' => @first_name, 'last_name' => @last_name }

end

def attributes=(attrs)
@first_name = attrs['first_name']
@last_name = attrs['last_name']

end
end

active_model/serializers/json.rb

as_json(options = nil)

Returns a hash representing the model. Some configuration can be passed
through options.
The option include_root_in_json controls the top-level behavior of as_json. If
true, as_json will emit a single root node named after the object’s type. The
default value for include_root_in_json option is false.

user = User.find(1)
user.as_json
=> { "id" => 1, "name" => "Konata Izumi", "age" => 16,
"created_at" => "2006/08/01", "awesome" => true}

Setting ActiveRecord::Base.include_root_in_json = true results in the addition
of a root node named accordingly.

Active Model API Reference 945

user.as_json
=> { "user" => { "id" => 1, "name" => "Konata Izumi", "age" => 16,
"created_at" => "2006/08/01", "awesome" => true } }

This behavior can also be achieved by setting the :root option to true as in:

user = User.find(1)
user.as_json(root: true)
=> { "user" => { "id" => 1, "name" => "Konata Izumi", "age" => 16,
"created_at" => "2006/08/01", "awesome" => true } }

Without any options, the returned hash will include all the model’s attributes.

>> user = User.find(1)
>> user.as_json
=> { "id" => 1, "name" => "Konata Izumi", "age" => 16,

"created_at" => "2006/08/01", "awesome" => true}

The :only and :except options can be used to limit the attributes included and
work similarly to the attributes method.

>> user.as_json(only: [:id, :name])
=> { "id" => 1, "name" => "Konata Izumi" }

>> user.as_json(except: [:id, :created_at, :age])
=> { "name" => "Konata Izumi", "awesome" => true }

To include the result of some method calls on the model use :methods

>> user.as_json(methods: :permalink)
=> { "id" => 1, "name" => "Konata Izumi", "age" => 16,

"created_at" => "2006/08/01", "awesome" => true,
"permalink" => "1-konata-izumi" }

To include associations use :include

Active Model API Reference 946

>> user.as_json(include: :posts)
=> { "id" => 1, "name" => "Konata Izumi", "age" => 16,

"created_at" => "2006/08/01", "awesome" => true,
"posts" => [{ "id" => 1, "author_id" => 1,

"title" => "Welcome to the weblog" },
{ "id" => 2, "author_id" => 1,

"title" => "So I was thinking" }] }

Second level and higher order associations work as well:

>> user.as_json(include: { posts: {
only: :title,
include: {
comments: { only: :body } },}})

=> { "id" => 1, "name" => "Konata Izumi", "age" => 16,
"created_at" => "2006/08/01", "awesome" => true,
"posts" => [{ "comments" => [{ "body" => "1st post!" },...

from_json(json)

Sets the model attributes from a JSON string. Returns self.

class Person
include ActiveModel::Serializers::JSON

attr_accessor :name, :age, :awesome

def attributes=(hash)
hash.each do |key, value|

send("#{key}=", value)
end

end

def attributes
instance_values

end
end

json = { name: 'bob', age: 22, awesome:true }.to_json
person = Person.new
person.from_json(json) # => #<Person:0x007fec5e7a0088 @age=22, @awesome=true, @name="bob">
person.name # => "bob"
person.age # => 22
person.awesome # => true

Active Model API Reference 947

The default value for include_root is false. You can change it to true if the given
JSON string includes a single root node.

>> json = { person: { name: 'bob', age: 22, awesome:true } }.to_json
>> person = Person.new
>> person.from_json(json, true)
=> #<Person:0x007fec5e7a0088 @age=22, @awesome=true, @name="bob">

Active Model API Reference 948

Translation

Provides integration between your object and the Rails internationalization
(i18n) translation framework.
A minimal implementation could be:

class TranslatedPerson
extend ActiveModel::Translation

end

>> TranslatedPerson.human_attribute_name('my_attribute')
=> "My attribute"

This also provides the required class methods for hooking into the Rails in-
ternationalization API, including being able to define a class based i18n_scope
and lookup_ancestors to find translations in parent classes.

Instance Public Methods

human_attribute_name(attribute)

Transforms attribute names into a more human format, such as “First name”
instead of “first_name”.

i18n_scope

Returns the i18n_scope for the class. Can be overridden if you want a custom
lookup namespace.

lookup_ancestors

Gets all ancestors of this class that support i18n. Used in ActiveModel::Name#human,
ActiveModel::Errors#full_messages, and thismodule’s human_attribute_namemethod.

Active Model API Reference 949

Type

Provides functionality for adding new types to the registry, enabling them to
be referenced as a symbol by ActiveModel::Attributes::ClassMethods#attribute.

Class Public Methods

register(type_name, klass = nil, **options, &block)

If your type is only meant to be used with a specific database adapter, you can
do so by passing adapter: :dbtype.
If your type has the same name as a native type for the current adapter, an
exception will be raised unless you specify an override option. Setting to true
will cause your type to be used instead of the native type. Setting to false will
cause the native type to be used over yours if one exists.

Active Model API Reference 950

ValidationError

Raised by validate!when themodel is invalid. Use the modelmethod to retrieve
the record which did not validate.

begin
complex_operation_that_internally_calls_validate!

rescue ActiveModel::ValidationError => invalid
puts invalid.model.errors

end

Active Model API Reference 951

Validations

Validations adds a fully-featured validations framework to your model. This
includes the means to validate the following types of scenarios, plus the
capability to create custom validators.

• Absence of a field
• Acceptance of a field.
• Confirmation of a field.
• Exclusion of a field from a set of values.
• Format of a field against a regular expression.
• Inclusion of a field in a set of values.
• Length of a field.
• Numericality of a field.
• Presence of a field.
• Size of a field.

See Chapter 8 Validationsa for a full explanation of how validations work.
a\protect\char”007B\relax#chapter8-validations\protect\char”007D\relax

The following minimal implementation would provide you with the full stan-
dard validation stack that you know from Active Record:

class User
include ActiveModel::Validations

attr_accessor :name

validates_each :name do |record, attribute, value|
record.errors.add(attribute, 'should be present') if value.nil?

end
end

Note that including ActiveModel::Validations automatically adds
an errors method to your instances initialized with a new
ActiveModel::Errors object, so there is no need for you to do this
manually.

Active Model API Reference 952

Options

Note that available base options for validation macros that use options are as
follows. If the specific validation has additional options they will be explained
separately.

:allow_nil
Specify whether to validate nil attributes.

:if Only run if the supplied method or proc returns true.

:on Define when the validation will run.

:strict
If set to true, will raise ActiveModel::StrictValidationFailed over adding
an error. It can also be set to any other exception.

:unless
Only run if the supplied method or proc returns false.

Class Public Methods

attribute_method?(attribute)

Returns true if a method is defined for the supplied attribute.

class User
include ActiveModel::Validations

attr_accessor :name
end

User.attribute_method?(:name) # => true

clear_validators!

Clears all of the validators and validations.

validate(*args, &block)

Adds a single validation to the model. Can be a method name as a symbol or
a block with options. Additional option is:

:allow_blank
Specify whether to validate blank attributes.

Active Model API Reference 953

validates(*attributes)

A method that enables setting all default validators and any custom validator
classes ending in “Validator”. To illustrate, with a single declaration to
validates, we can set an attribute to validate presence and uniqueness.

validates :username, presence: true, uniqueness: true

The hash supplied to validates can also handle arrays, ranges, regular
expressions, and strings in shortcut form.

validates :email, format: /@/
validates :gender, inclusion: %w(male female)
validates :password, length: 6..20

validates!(*attributes)

The validates! method enables setting all default validators and any custom
validator classes ending in “Validator”. The difference between validates and
validates! is that in the latter all errors are considered exceptions. Essentially,
it is the same as defining validates with the :strict option set to true.

validates_each(*attrs, &block)

Validates each of the attribute names against the supplied block. Options are
passed in as a hash as the last element in the attrs argument. Additional
options are

:allow_blank
Specify whether to validate blank attributes.

validates_with(*args, &block)

Passes the record off to the class or classes specified as args and enables them
to add errors based on conditions that have been custom defined in a reusable
fashion.

Active Model API Reference 954

class Person
include ActiveModel::Validations
validates_with MyValidator

end

class MyValidator < ActiveModel::Validator
def validate(record)

if some_complex_logic
record.errors.add :base, 'This record is invalid'

end
end

private
def some_complex_logic

...
end

end

You may also pass it multiple classes, like so:

class Person
include ActiveModel::Validations
validates_with MyValidator, MyOtherValidator, on: :create

end

Configuration options:

on Specifies the contexts where this validation is active. Runs in all val-
idation contexts by default (nil). You can pass a symbol or an array
of symbols (e.g., on: :create or on: :custom_validation_context or on:
[:create, :custom_validation_context]).

if Specifies a method, proc or string to call to determine whether the
validation should occur. Should return or evaluate to a true or false value.

unless
Specifies a method, proc or string to call to determine whether the
validation should not occur. Should return or evaluate to a true or false
value.

strict
Specifies whether validation should raise ValidationError on failure.

If you pass any additional configuration options, they will be passed to the
class and made available as an options attribute:

Active Model API Reference 955

class Person
include ActiveModel::Validations
validates_with MyValidator, my_custom_key: 'my custom value'

end

class MyValidator < ActiveModel::Validator
def validate(record)

options[:my_custom_key] # => "my custom value"
end

end

validators

List all validators that are being used to validate the model using the
validates_with method.

class Person
include ActiveModel::Validations

validates_with MyValidator
validates_with OtherValidator, on: :create
validates_with StrictValidator, strict: true

end

Person.validators
=> [
#<MyValidator:0x007fbff403e808 @options={}>,
#<OtherValidator:0x007fbff403d930 @options={on: :create}>,
#<StrictValidator:0x007fbff3204a30 @options={strict:true}>
]

validators_on(*attributes)

Get all the validators for the supplied attributes.

Instance Public Methods

errors

Returns the Errors object that holds all information about attribute error
messages.

Active Model API Reference 956

class Person
include ActiveModel::Validations

attr_accessor :name
validates_presence_of :name

end

person = Person.new
person.valid? # => false
person.errors # => #<ActiveModel::Errors:0x007fe603816640 @messages={name:["can't be blank\
"]}>

invalid?(context = nil)

Performs the opposite of valid?. Returns true if errors were added, false
otherwise.

valid?(context = nil)

Runs all the specified validations and returns true if no errors were added,
otherwise false. Aliased as validate.

class Person
include ActiveModel::Validations

attr_accessor :name
validates_presence_of :name

end

person = Person.new
person.name = ''
person.valid? # => false
person.name = 'david'
person.valid? # => true

Context can optionally be supplied to define which callbacks to test against
(the context is defined on the validations using the :on option).

Active Model API Reference 957

validates_presence_of :name, on: :new

>> person = Person.new
>> person.valid?
=> true

>> person.valid?(:new)
=> false

validate!(context = nil)

Runs all the validations within the specified context. Returns true if no errors
are found, raises ValidationError otherwise.
Validations with no :on option will run no matter the context. Validations with
:on option will only run in the specified context.

validates_with(*args, &block)

Passes the record off to the class or classes specified and enables them to add
errors based on their condition logic. Same as the class level method of the
same name but operating on an instance.

Callbacks

Provides an interface for any class to have before_validation and after_vali-
dation callbacks.
First, include ActiveModel::Validations::Callbacks into the class you are creat-
ing:

class MyModel
include ActiveModel::Validations::Callbacks

before_validation :do_stuff_before_validation
after_validation :do_stuff_after_validation

end

Like other before callbacks if before_validation raises :abort, then valid? will
not be called. The interface is the same as ActiveModel::Callbacks covered
earlier in this appendix.

Active Model API Reference 958

Validator

Validator provides a class that custom validators can extend to seamlessly
integrate into the ActiveModel::Validations API. It only requires that the new
class defines a validate method.
A full explanation of how to use Validator and EachValidator is provided in the
Chapter 8 section “Custom Validation Techniques”.

class ScoreValidator < ActiveModel::Validator
include ActiveModel::Validations

def validate(object)
Perform validations and add errors here.

end
end

Class Public Methods

kind

Returns the type of the validator, which is a symbol of the underscored class
name without “Validator” included.

Instance Public Methods

validate(record)

Override this method in subclasses with validation logic, adding errors to the
record’s errors array where necessary.

Active Support API Reference
Active Support is a Rails library containing utility classes and extensions to
Ruby’s built-in libraries. It usually doesn’t get much attention on its own—
you might even call its modules the supporting cast members of the Rails
ensemble.
However, Active Support’s low profile doesn’t diminish its importance in day-
to-day Rails programming. To ensure that this book is useful as an offline
programming companion, here is a complete, enhanced version of the Rails
Active Support API reference, supplemented in many cases with realistic
example usages and commentary. As you’re reviewing the material in this
appendix, note that many of the methods featured here are used primarily by
other Rails libraries and are not particularly useful to application developers.
Section headings reflect the name of the Class or Module where the API
method is located and are organized in alphabetical order for easy lookup.

Note that Active Support freely extends built-in Ruby classes such as Array
and Object with its own extra functionality.

Sub-sections are the API methods themselves, in alphabetical order (or the
order they appear in the file, depending on what we think is easier to
understand). Methods are also grouped according to the name of the Ruby file
in which they exist within Active Support’s lib directory. File name headers
are ommitted where a module is contained in a single file.

Active Support API Reference 960

Array

active_support/core_ext/array/access.rb

The following methods add extra functionality for accessing array elements.

from(position)

Returns the tail of the array starting from the position specified. Note that the
position is zero-indexed.

>> %w(foo bar baz quux).from(2)
=> ["baz", "quux"]

to(position)

Returns the beginning elements of the array up to position specified. Note
that the position is zero-indexed.

>> %w(foo bar baz quux).to(2)
=> ["foo", "bar", "baz"]

second

Equivalent to calling self[1].

>> %w(foo bar baz quux).second
=> "bar"

third

Equivalent to self[2].

fourth

Equivalent to self[3].

fifth

Equivalent to self[4].

Active Support API Reference 961

forty_two

Equivalent to calling self[41]—a humorous addition to the API by David. Also
known as accessing “the reddit”.

second_to_last

Equivalent to self[-2]

third_to_last

Equivalent to self[-3]

without(*elements)

Returns a copy of the Array without the specified elements.

>> people = ["David", "Rafael", "Aaron", "Todd"]
>> people.without "Aaron", "Todd"
=> ["David", "Rafael"]

The withoutmethod is an optimization of Enumerable#without that uses Array#-
instead of Array#reject for performance reasons.

active_support/core_ext/array/conversions.rb

The followingmethods are used for converting Ruby arrays into other formats.

to_formatted_s(format = :default)

Two formats are supported, :default and :db. The :default format delegates to
the normal to_smethod for an array, which just creates a string representation
of the array.

Active Support API Reference 962

>> %w(foo bar baz quux).to_s
=> "[\"foo\", \"bar\", \"baz\", \"quux\"]"

The much more interesting :db option returns "null" if the array is empty,
or concatenates the id fields of its member elements into a comma-delimited
string with code like this:

collect { |element| element.id }.join(",")

In other words, the :db formatting is meant to work with Active Record objects
(or other types of objects that properly respond to id). If the contents of the
array do not respond to id, a NoMethodError exception is raised.

>> %w(foo bar baz quux).to_s(:db)
NoMethodError: undefined method `id' for "foo":String

to_s

The to_s method of Array is aliased to to_formatted_s.

to_default_s

The to_default_s method of Array is aliased to to_s.

to_sentence(options = {})

Converts the array to a comma-separated sentence in which the last element
is joined by a connector word.

>> %w(alcohol tobacco firearms).to_sentence
=> "alcohol, tobacco, and firearms"

The following options are available for to_sentence:

:words_connector
The sign or word used to join the elements in arrays with two or more
elements (default: “, “).

:two_words_connector
The sign or word used to join the elements in arrays with two elements
(default: “ and “).

Active Support API Reference 963

:last_word_connector
The sign or word used to join the last element in arrays with three or
more elements (default: “, and “).

:locale
If i18n is available, you can set a locale and specify locale-specific
connector options in the support.array namespace, like this:
es: support: array: words_connector: “ o “ two_words_connector: “ y “
last_word_connector: “ o al menos “

The example locale (in Spanish) yields the following output:

>> ['uno', 'dos'].to_sentence(locale: :es)
=> "uno y dos"
>> ['uno', 'dos', 'tres'].to_sentence(locale: :es)
=> "uno o dos o al menos tres"

The locale feature can also be used to provide alternative sentence construc-
tion, like an or expression instead of and.
First, define a locale hash for the purpose (remembering that I18n.translate
can be used to do bulk lookups, not just individual strings):

en:
choices:

words_connector: ', '
two_words_connector: ' or '
last_word_connector: ', or '

Then use it like this:

>> [:this, :that].to_sentence(I18n.translate('choices'))
=> "this or that"
>> [:this, :that, :another].to_sentence(I18n.translate('choices'))
=> "this, that, or another"

to_xml(options = {}) |xml| ...

Create an XML collection by iteratively calling to_xml on its members, and
wrapping the entire thing in an enclosing element. If the array element does
not respond to to_xml, an XML representation of the object will be returned.

Active Support API Reference 964

>> ["riding","high"].to_xml
=> "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<strings type=\"array\">\n

<string>riding</string>\n <string>high</string>\n</strings>\n"

The following example yields the Builder object to an optional block so that
arbitrary markup can be inserted at the bottom of the generated XML, as the
last child of the enclosing element.

{foo: "foo", bar: 42}.to_xml do |xml|
xml.did_it "again"

end

outputs the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<hash>

<bar type="integer">42</bar>
<foo>foo</foo>
<did_it>again</did_it>

</hash>

The options for to_xml are:

:builder
Defaults to a new instance of Builder::XmlMarkup. Specify explicitly if
you’re calling to_xml on this array as part of a larger XML construction
routine.

:children
Sets the name to use for element tags explicitly. Defaults to singularized
version of the :root name by default.

:dasherize
Whether or not to turn underscores to dashes in tag names (defaults to
true).

:indent
Indent level to use for generated XML (defaults to two spaces).

:root
The tag name to use for the enclosing element. If no :root is supplied
and all members of the array are of the same class, the dashed, pluralized
form of the first element’s class name is used as a default. An empty array
will have nil-classes as its root. Otherwise the default :root is objects.

Active Support API Reference 965

Given how variable Rails default behavior is, it’s a good idea to always use
the :root option and know for sure what you’re going to get in the output.

:skip_instruct
Whether or not to generate an XML instruction tag by calling instruct!
on Builder.

:skip_types
Whether or not to include a type="array" attribute on the enclosing
element.

The options hash is passed downwards as XML is constructed:

>> Message.all.to_xml(skip_types: true)

<?xml version="1.0" encoding="UTF-8"?>
<messages>

<message>
<created-at>2008-03-07T09:58:18+01:00</created-at>
<id>1</id>
<name>1</name>
<updated-at>2008-03-07T09:58:18+01:00</updated-at>
<user-id>1</user-id>

</message>
</messages>

active_support/core_ext/array/extract_options.rb

Active Support provides a method for extracting Rails-style options from a
variable-length set of argument parameters.

extract_options!

Extracts options from a variable set of arguments. It’s a bang method because
it removes and returns the last element in the array if it’s a hash; otherwise,
it returns a blank hash and the source array is unmodified.

Active Support API Reference 966

def options(*args)
args.extract_options!

end

>> options(1, 2)
=> {}

>> options(1, 2, a: :b)
=> {:a=>:b}

active_support/core_ext/array/grouping.rb

Methods used for splitting array elements into logical groupings.

in_groups(number, fill_with = nil) { |group| ... }

The in_groups method splits an array into a number of equally sized groups. If a
fill_with parameter is provided, its value is used to pad the groups into equal
sizes.

%w(1 2 3 4 5 6 7 8 9 10).in_groups(3) { |group| p group }
["1", "2", "3", "4"]
["5", "6", "7", nil]
["8", "9", "10", nil]

%w(1 2 3 4 5 6 7).in_groups(3, ' ') { |group| p group }
["1", "2", "3"]
["4", "5", " "]
["6", "7", " "]

In the special case that you don’t want equally sized groups (in other words,
no padding) then pass false as the value of fill_with.

%w(1 2 3 4 5 6 7).in_groups(3, false) { |group| p group }
["1", "2", "3"]
["4", "5"]
["6", "7"]

in_groups_of(number, fill_with = nil) { |group| ... }

Related to its sibling in_groups, the in_groups_of method splits an array into
groups of the specified number size, padding any remaining slots. The fill_with
parameter is used for padding and defaults to nil. If a block is provided, it is
called with each group; otherwise, a two-dimensional array is returned.

Active Support API Reference 967

>> %w(1 2 3 4 5 6 7).in_groups_of(3)
=> [[1, 2, 3], [4, 5, 6], [7, nil, nil]

>> %w(1 2 3).in_groups_of(2, ' ') { |group| puts group.to_s }
=> ["1", "2"]

["3", " "]
nil

Passing false to the fill_with parameter inhibits the fill behavior.

>> %w(1 2 3).in_groups_of(2, false) { |group| puts group.to_s }
=> ["1", "2"]

["3"]
nil

The in_groups_of method is particularly useful for batch-processing model
objects and generating table rows in view templates.

split(value = nil, &block)

Divides an array into one or more subarrays based on a delimiting value:

>> [1, 2, 3, 4, 5].split(3)
=> [[1, 2], [4, 5]]

or the result of an optional block:

>> (1..8).to_a.split { |i| i % 3 == 0 }
=> [[1, 2], [4, 5], [7, 8]]

active_support/core_ext/array/inquiry.rb

Gives Array a Rails-style inquirer method.

inquiry

Returns the array wrapped in an ArrayInquirer object, which gives a friendlier
way to check string-like contents.

Active Support API Reference 968

pets = [:cat, :dog].inquiry
pets.cat? # => true
pets.ferret? # => false
pets.any?(:cat, :ferret) # => true
pets.any?(:ferret, :alligator) # => false

active_support/core_ext/array/prepend_and_append.rb

Aliases for basic Ruby array operations that are subjectively more human
according to DHH.

append

The append method of Array is aliased to <<.

prepend

The prepend method of Array is aliased to unshift.

active_support/core_ext/array/wrap.rb

Array.wrap(object)

Wraps the object in an Array unless it’s an Array. If nil is supplied, and empty
list is returned. Otherwise, the wrap method will convert the supplied object
to an Array using to_ary (assuming it implements that method). It differs with
the Kernel#Array method in that it does not try to call to_a on the argument if
it does not implement to_ary:
This last point is most easily demonstrated with an instance of a Ruby hash.

Active Support API Reference 969

Array(foo: :bar) # => [[:foo, :bar]]
Array.wrap(foo: :bar) # => [{:foo => :bar}] # to_a not called

Array("foo\nbar") # => ["foo\nbar"]
Array.wrap("foo\nbar") # => ["foo\nbar"]

Array(nil) # => []
Array.wrap(nil) # => []

Active Support API Reference 970

Autoload

When doing Ruby coding outside of Rails, you have to require every file in
your program in order for it to be executed. During development of a Rails
app, whenever you run rails console or a server, etc, your program files are
loaded lazily, on demand, as their constants are referenced. That behavior is
fine for development, but bad for production. In production, you want every
single program file in your Rails application to be “eager loaded” on startup,
so that even if it implies a longer startup time, you’ll get more consistent
performance.

Eager loading also tends to reveal syntax errors in your code that might
otherwise pop up unexpectedly in production use.

The Autoload module allows you to define autoloading behavior for your own
libraries based on Rails conventions (i.e. no need to define the path since it is
automatically guessed based on the filename). It also provides a way to define
a set of constants that you want to be eager loaded.

module MyLib
extend ActiveSupport::Autoload

autoload :Model

eager_autoload do
autoload :Cache

end
end

Given the preceding example, MyLib can be eager loaded by calling:

MyLib.eager_load!

Note that this module is primarily useful inside of Rails framework source
code and for writing Ruby libraries, versus your Rails application code, and
is included here mainly for the sake of completeness.

Active Support API Reference 971

autoload(const_name, path)

Declare that a particular constant should be autoloaded. Optionally provide
:path option.

autoloads

Returns a collection of files registered to be autoloaded.

autoload_at(path)

Sets an explicit path to autoload at.

module ActionView
extend ActiveSupport::Autoload

autoload_at "action_view/template/resolver" do
autoload :Resolver
...

end
...

end

autoload_under(path)

Set the name of a relative directory for all nested autoload declarations. For
example, if the current file was action_controller.rb, and we call autoload_-
under("metal"), the path used to autoload from is action_controller/metal.

module ActionController
extend ActiveSupport::Autoload

autoload_under "metal" do
autoload :Compatibility
...

end
...

end

eager_autoload

Eagerly autoload any nested autoload declarations.

Active Support API Reference 972

module ActionMailer
extend ::ActiveSupport::Autoload

eager_autoload do
autoload :Collector

end
...

end

eager_load!

Require each file defined in autoloads.

Active Support API Reference 973

BacktraceCleaner

Many backtraces include too much information that’s not relevant for the
context. This makes it hard to find the signal in the backtrace and adds
debugging time. With a custom BacktraceCleaner, you can setup filters and
silencers for your particular context, so only the relevant lines are included.
If you want to change the setting of Rails’ built-in BacktraceCleaner, to show
as much as possible, you can call BacktraceCleaner.remove_silencers! in your
console, specs or an application initializer. Also, if you need to reconfigure an
existing BacktraceCleaner so that it does not filter or modify the paths of any
lines of the backtrace, you can call BacktraceCleaner#remove_filters! These two
methods will give you a completely untouched backtrace.

bc = ActiveSupport::BacktraceCleaner.new
bc.add_filter { |line| line.gsub(Rails.root, '') }
bc.add_silencer { |line| line =~ /rubygems/ }

will strip the Rails.root prefix and skip non-app lines of code
bc.clean(exception.backtrace)

Inspired by the Quiet Backtrace gem by Thoughtbot.

Active Support API Reference 974

Benchmark

The following method provides additional functionality for returning in bench-
mark results in a human readable format.

ms

Benchmark realtime in milliseconds

>> Benchmark.realtime { User.all }
=> 8.0e-05

>> Benchmark.ms { User.all }
=> 0.074

Active Support API Reference 975

Benchmarkable

Benchmarkable allows you to measure the execution time of a block in a template
and records the result to the log.

benchmark(message = "Benchmarking", options = {})

Wrap this block around expensive operations or possible bottlenecks to get a
time reading for the operation. For example, let’s say you thought your file
processing method was taking too long; you could wrap it in a benchmark
block.

benchmark "Process data files" do
expensive_files_operation

end

That would add an entry like “Process data files (345.2ms)” to the log, which
can then be used to compare timings when optimizing your code.
You may give an optional logger level as the :level option. Valid options are
:debug, :info, :warn, and :error. The default level is :info.

benchmark "Low-level files", level: :debug do
lowlevel_files_operation

end

Finally, you can pass true as the third argument to silence all log activity inside
the block. This is great for boiling down a noisy block to just a single statement:

benchmark "Process data files", level: :info, silence: true do
expensive_and_chatty_files_operation

end

Active Support API Reference 976

BigDecimal

active_support/core_ext/big_decimal/conversions.rb

to_formatted_s(*args)

Emits a string representation of the number without any scientific notation
and without losing precision.

>> bd = BigDecimal.new("84394878749783498749834734987.839723497347")
=> #<BigDecimal:269fabc,'0.8439487874 9783498749 8347349878 3972349734 7E29',44(48)>
>> bd.to_s
=> "84394878749783498749834734987.839723497347"

to_s

The to_s method of BigDecimal is aliased to to_formatted_s.

active_support/json/encoding.rb

A BigDecimal would be naturally represented as a JSON number. Most
libraries, however, parse non-integer JSON numbers directly as floats. Clients
using those libraries would get in general a wrong number and no way to
recover other than manually inspecting the string with the JSON code itself.
The JSON literal is not numeric, but if the other end knows by contract that
the data is supposed to be a BigDecimal, it still has the chance to post-process
the string and get the real value.

as_json

Returns self.to_s.

Active Support API Reference 977

Cache::FileStore

A cache store implementation that stores everything on the filesystem. Se-
lected via configuration using the following code:

config.cache_store = :file_store, "/path/to/cache/directory"

The clear method deletes all items from the cache. In this case it
deletes all the entries in the specified file store directory except for
.keep or .gitkeep. Therefore, be careful which directory is specified in
your config file since everything in that directory will be deleted.

Active Support API Reference 978

Cache::MemCacheStore

A cache store implementation that stores data in Memcached6 and is easily
the most popular cache store for production Rails websites.
One can specify multiple memcached servers via configuration and MemCache-
Store will load balance between all available servers. If a server goes down,
then MemCacheStore will ignore it until it comes back up.

config.cache_store =
:mem_cache_store, "cache-1.example.com", "cache-2.example.com"

The write and fetch methods on this cache accept two additional options that
take advantage of features specific to memcached. You can specify :raw to
send a value directly to the server with no serialization. The value must be a
string or number. You can use memcached direct operations like increment and
decrement only on raw values. You can also specify :unless_exist if you don’t
want memcached to overwrite an existing entry.

6http://memcached.org

http://memcached.org/
http://memcached.org/

Active Support API Reference 979

Cache::MemoryStore

This cache store keeps entries in memory in the same Ruby process. The cache
store has a bounded size specified by sending the :size option to the initializer
(default is 32Mb). When the cache exceeds the allotted size, a cleanup will
occur and the least recently used entries will be removed.

config.cache_store = :memory_store, { size: 64.megabytes }

If you’re running multiple Ruby on Rails server processes (which is the case
if you’re using Phusion Passenger or puma clustered mode), then your Rails
server process instances won’t be able to share cache data with each other.
This cache store is not appropriate for large application deployments. How-
ever, it can work well for small, low traffic sites with only a couple of server
processes, as well as development and test environments.

Active Support API Reference 980

Cache::NullStore

This implementation is only meant to be used in development or test envi-
ronments and never stores anything. This can be very useful in development
when you have code that interacts directly with Rails.cache, but caching may
interfere with being able to see the results of code changes. All fetch and read
operations on this cache will result in a miss.

config.cache_store = :null_store

See Chapter 17, Caching and Performance for a full discussion of caching in
Rails. Also see the following section, Cache::Store, for full documentation of
caching methods included in Active Support.

Active Support API Reference 981

Cache::Store

An abstract cache store class. There are multiple cache store implementa-
tions, each having its own additional features. MemCacheStore is currently the
most popular cache store for large production websites.
Some implementations may not support all methods beyond the basic cache
methods of fetch, read, write,exist?, and delete.
ActiveSupport::Cache::Store can store any serializable Ruby object.

>> cache = ActiveSupport::Cache::MemoryStore.new
=> <#ActiveSupport::Cache::MemoryStore entries=0, size=0, options={}>
>> cache.read("city")
=> nil
>> cache.write("city", "Duckburgh")
=> true
>> cache.read("city")
=> "Duckburgh"

Keys are always translated into strings and are case-sensitive.

>> cache.read("city") == cache.read(:city)
=> true

When an object is specified as a key, its cache_key method will be called if it is
defined. Otherwise, the to_param method will be called.

>> r = Report.first
=> #<Report id: 1, name: "Special", created_at: ...>
>> r.cache_key
=> "reports/1-20131001152655016228000"
>> r.to_param
=> "1"

Hashes and Arrays can also be used as keys. The elements will be delimited
by slashes and hash elements will be sorted by key so they are consistent.

Active Support API Reference 982

>> cache.write ["USA","FL","Jacksonville"], "Obie"
=> true
>> cache.read "USA/FL/Jacksonville"
=> "Obie"

Nil values can be cached.
If your cache is on a shared infrastructure, you can define a namespace for
your cache entries. If a namespace is defined, it will be prefixed on to every
key. To set a global namespace, set the :namespace to the constructor of the
cache store. The default value will include the application name and Rails
environment.

cache = ActiveSupport::Cache::MemoryStore.new(namespace: 'tr5w')

All caches support auto expiring content after a specified number of seconds.
To set the cache entry time to live, you can either specify :expires_in as an
option to the constructor to have it affect all entries or to the fetch or write
methods for just one entry.

cache = ActiveSupport::Cache::MemoryStore.new(expire_in: 5.minutes)
cache.write(key, value, expires_in: 1.minute) # Set a lower value for one entry

It’s a recommended practice to set the :race_condition_ttl option in conjunc-
tion with :expires_in. When a cache entry is used frequently and the system
is under a heavy load, a dog pile effect can occur during expiration. During
this scenario, since the cache has expired, multiple processes will try to
read the data natively and all attempt to regenerate the same cache entry
simultaneously. Using :race_condition_ttl, one can set the number of seconds
an expired entry can be reused while a new value is being regenerated. The
first process to encounter the stale cache will attempt to write a new value,
while other processes will continue to use slightly state data for the period
defined in :race_condition_ttl. Like the :expires_in option, :race_condition_ttl
can be set globally or in the fetch or write methods for a single entry.
Caches can also store values in a compressed format to save space and reduce
time spent sending data. Since there is some overhead, values must be large
enough to warrant compression. To turn on compression either pass compress:
true in the initializer or to fetch or write. To specify the threshold at which to
compress values, set :compress_threshold. The default threshold is 16K.

Active Support API Reference 983

cleanup(options = nil)

Cleanup the cache by removing expired entries. Not all cache implementa-
tions may support this method. Options are passed to the underlying cache
implementation.

clear(options = nil)

Clear the entire cache. Not all cache implementations may support this
method. You should be careful with this method since it could affect other
processes if you are using a shared cache. Options are passed to the underly-
ing cache implementation.

decrement(name, amount = 1, options = nil)

Decrement an integer value in the cache. Options are passed to the underlying
cache implementation.

delete(name, options = nil)

Delete an entry in the cache. Returns true if there was an entry to delete.
Options are passed to the underlying cache implementation.

delete_matched(matcher, options = nil)

Delete all entries whose keys match a pattern. Options are passed to the
underlying cache implementation.

>> Rails.cache.write :color, :red
=> true
>> Rails.cache.read :color
=> :red
>> Rails.cache.delete_matched "c"
=> ["city", "color", "USA/FL/Jacksonville"]
>> Rails.cache.read :color
=> nil

exist?(name, options = nil)

Return true if the cache contains an entry with this name. Options are passed
to the underlying cache implementation.

Active Support API Reference 984

fetch(name, options = nil)

Fetches data from the cache, using the given key. If there is data in the cache
with the given key, then that data is returned.
If there is no such data in the cache (a cache miss occurred), then nil will be
returned. However, if a block has been passed, then that block will be run in
the event of a cache miss. The return value of the block will be written to the
cache under the given cache key, and that return value will be returned.

cache.write("today", "Monday")
cache.fetch("today") # => "Monday"

cache.fetch("city") # => nil
cache.fetch("city") do

"Duckburgh"
end
cache.fetch("city") # => "Duckburgh"

You may also specify additional options via the options argument. Setting
:force => true will force a cache miss:

cache.write("today", "Monday")
cache.fetch("today", force: true) # => nil

Setting :compress will store a large cache entry set by the call in a compressed
format.
Setting :expires_in will set an expiration time on the cache entry if it is set by
call.
Setting :race_condition_ttl will invoke logic on entries set with an :expires_-
in option. If an entry is found in the cache that is expired and it has been
expired for less than the number of seconds specified by this option and a
block was passed to the method call, then the expiration future time of the
entry in the cache will be updated to that many seconds in the and the block
will be evaluated and written to the cache.
This is very useful in situations where a cache entry is used very frequently
under heavy load. The first process to find an expired cache entry will
then become responsible for regenerating that entry while other processes
continue to use the slightly out of date entry. This can prevent race conditions
where too many processes are trying to regenerate the entry all at once. If
the process regenerating the entry errors out, the entry will be regenerated
after the specified number of seconds.

Active Support API Reference 985

Set all values to expire after one minute.
cache = ActiveSupport::Cache::MemoryStore.new(expires_in: 1.minute)

cache.write("foo", "original value")
val_1 = nil
val_2 = nil
sleep 60

Thread.new do
val_1 = cache.fetch("foo", race_condition_ttl: 10) do

sleep 1
"new value 1"

end
end

Thread.new do
val_2 = cache.fetch("foo", race_condition_ttl: 10) do

"new value 2"
end

end

val_1 => "new value 1"
val_2 => "original value"
sleep 10 # First thread extend the life of cache by another 10 seconds
cache.fetch("foo") => "new value 1"

Other options will be handled by the specific cache store implementation.
Internally, fetch calls read_entry, and calls write_entry on a cachemiss. Options
will be passed to the read and write calls.
For example, MemCacheStore’s write method supports the :raw option, which
tells the memcached server to store all values as strings. We can use this
option with fetch too:

cache = ActiveSupport::Cache::MemCacheStore.new
cache.fetch("foo", force: true, raw: true) do

:bar
end
cache.fetch("foo") # => "bar"

increment(name, amount = 1, options = nil)

Increment an integer value in the cache. Options are passed to the underlying
cache implementation.

Active Support API Reference 986

mute

Silence the logger within a block.

options

Get the default options set when the cache was created.

read(name, options = nil)

Fetches data from the cache, using the given key. If there is data in the cache
with the given key, then that data is returned. Otherwise, nil is returned.
Options are passed to the underlying cache implementation.

read_multi(*names)

Read multiple values at once from the cache. Options can be passed in the last
argument. Some cache implementation may optimize this method.
Returns a hash mapping the names provided to the values found.

>> cache.write :color, :red
=> true
>> cache.write :smell, :roses
=> true
>> cache.read_multi :color, :smell
=> {:color=>:red, :smell=>:roses}

silence!

Silences the logger.

write(name, value, options = nil)

Writes the given value to the cache, with the given key.
You may also specify additional options via the options argument. The specific
cache store implementation will decide what to do with options.

Active Support API Reference 987

CachingKeyGenerator

CachingKeyGenerator is a wrapper around KeyGenerator which avoids re-exe-
cuting the key generation process when it’s called using the same salt and
key_size.

initialize(key_generator)

Creates a new instance of CachingKeyGenerator.

generate_key(salt, key_size=64)

Returns a derived key suitable for use. The default key_size is chosen to be
compatible with the default settings of ActiveSupport::MessageVerifier, such
as OpenSSL::Digest::SHA1#block_length. Subsequent calls to generate_key will
return a cached key if the supplied salt and key_size are the same.

Active Support API Reference 988

Callbacks

Callbacks are hooks into the lifecycle of an object that allow you to trigger
logic before or after an alteration of the object state. Mixing in this module
allows you to define callbacks in your class.
For instance, assume you have the following code in your application:

class Storage
include ActiveSupport::Callbacks

define_callbacks :save
end

class ConfigStorage < Storage
set_callback :save, :before, :saving_message

def saving_message
puts "saving..."

end

set_callback :save, :after do |object|
puts "saved"

end

def save
run_callbacks :save do

puts "- running save callbacks"
end

end
end

Running the following code using

config = ConfigStorage.new
config.save

would output

saving...
- running save callbacks
saved

Active Support API Reference 989

Note that callback defined on parent classes are inherited.

active_support/callbacks

The following methods are used to configure custom callbacks on your
classes and are what Rails itself uses to create things such as before_action
in Action Pack and before_save in Active Record. Note that this is rather
advanced functionality which you typically won’t need in your day-to-day Rails
programming.

define_callbacks(*callbacks)

Define callbacks types for your custom class.

module MyOwnORM
class Base

define_callbacks :validate
end

end

The following options determine the operation of the callback:

:terminator
Indicates when a before callback is considered to be halted.

define_callbacks :validate, terminator: "result == false"

In the example above, if any before validate callbacks return false, other
callbacks are not executed. Defaults to false.

:skip_after_callbacks_if_terminated
Determines if after callbacks should be terminated by the :terminator
option. By default, after callbacks are executed no matter if callback
chain was terminated or not.

:scope
Specify which methods should be executed when a class is given as
callback.

Active Support API Reference 990

class Audit
def before(caller)

puts 'before is called'
end

def before_save(caller)
puts 'before_save is called'

end
end

class Account
include ActiveSupport::Callbacks

define_callbacks :save
set_callback :save, :before, Audit.new

def save
run_callbacks :save do

puts 'saving...'
end

end
end

Calling save in the above example will execute Audit#before. If the callback is
defined with a [:kind, :name] scope

define_callbacks :save, scope: [:kind, :name]

the method named "#{kind}_#{name}" would be invoked in the given class. In
this case, Audit#before_save would be invoked.
The :scope option defaults to :kind.

reset_callbacks(symbol)

Remove all set callbacks for the given event.

set_callback(name, *filter_list, &block)

Set callbacks for a given event.

Active Support API Reference 991

set_callback :save, :before, :before_method
set_callback :save, :after, :after_method, if: :condition
set_callback :save, :around,

->(r, &block) { stuff; result = block.call; stuff }

The second argument indicates the whether callback :before, :after, or :around
is to be run. By default, if nothing is set, :before is assumed. The first example
can also be expressed as:

set_callback :save, :before_method

The callback that the callback invokes can be specified as a symbol, that
references the name of an instance method, or as a proc, lambda, or block. If
a proc, lambda, or block is supplied, its body is evaluated in the context of the
current object. A current object can optionally be set.

skip_callback(name, *filter_list, &block)

Skip a previously defined callback for a given type. The options :if or :unless
may be passed in order to control when the callback is skipped.

Active Support API Reference 992

Class

Rails extends Ruby’s Class object with a number of class methods that then
become available on all other classes in the runtime, regardless of type.
active_support/core_ext/class/attribute.rb

class_attribute(*attrs)

Declare one or more class-level attributes whose value is inheritable and
overwritable by subclasses and instances, like so:

class Base
class_attribute :setting

end

class Subclass < Base
end

>> Base.setting = "foo"
=> "foo"

>> Subclass.setting
=> "foo"

>> Subclass.setting = "bar"
=> "bar"

>> Subclass.setting
=> "bar"

>> Base.setting
=> "foo"

To be clear, the attribute can be of any type, not just a string.

What makes class_attribute more than just an attribute accessor on a class is
that instances of the class get reader and writer methods for the attribute as
well. Continuing the previous example:

Active Support API Reference 993

>> b = Base.new
>> b.setting
=> "foo"

>> sub = Subclass.new
>> sub.setting
=> "bar"

To opt out of instance reader methods, pass instance_reader: false like this:

class Example
class_attribute :setting, instance_reader: false

end

>> e = Example.new
>> e.setting # => NoMethodError
>> e.setting? # => NoMethodError

To opt out of the instance writer method, pass instance_writer: false like this:

class Example
class_attribute :setting, instance_writer: false

end

>> e = Example.new
>> e.setting = "qux" # => NoMethodError: undefined method `setting='

The class_attribute method also works with singleton classes, as can be seen
in the following example.

class Example
class_attribute :setting

end

>> Example.singleton_class.setting = "foo"
=> "foo"

As hinted in previous examples, a predicate method is defined as well, which
allows you to see if an attribute has been set on a particular class instance.

Active Support API Reference 994

class Example
class_attribute :setting, instance_reader: false

end

>> e = Example.new
>> e.setting?
=> false

>> e.setting = "foo"
=> "foo"

>> e.setting?
=> true

To opt out of defining a predicate method, set instance_predicate to false.

active_support/core_ext/class/attribute_accessors.rb

Contains cattr_accessor, cattr_reader, and cattr_writer aliases to their mattr_-
counterparts in Module.

active_support/core_ext/class/subclasses.rb

Provides methods that introspect the inheritance hierarchy of a class. Used
extensively in Active Record.

descendents

Returns an array of all class objects found that are subclasses of self.

subclasses

Returns an array with the names of the subclasses of self as strings.

Integer.subclasses # => ["Bignum", "Fixnum"]

Active Support API Reference 995

Concern

active_support/concern.rb

The Concern module is only 26 lines of Ruby code. Using it, you can make your
code more modular and have less dependency problems than ever before.
You use Concern to define common behavior that you want to mix into other
application classes, or into Rails itself in the case of plugins.
A Concern module has two elements: the included block and the ClassMethods
module.

require 'active_support/concern'

module Foo
extend ActiveSupport::Concern

included do
self.send(:do_something_in_mixin_class)

end

module ClassMethods
def bar

...
end

end

def baz
...

end
end

To use your custom Concern module, just mix it into a class.

class Widget
include Foo

end

The included block will be triggered at inclusion time. Methods in ClassMethods
will get added to Widget as class methods. All other methods will get added to
Widget as instance methods.

Active Support API Reference 996

Configurable

The ActiveSupport::Configurable module is used internally by Rails to add
configuration settings to AbstractController::Base. You can use it yourself to
add runtime configuration to your classes.

require 'active_support/configurable'

class User
include ActiveSupport::Configurable

end

user = User.new

user.config.allowed_access = true
user.config.level = 1

user.config.allowed_access # => true
user.config.level # => 1

active_support/configurable.rb

Configurable is implemented as a Concern that can be mixed into other classes.

config

Return the configuration of the object instance.

Active Support API Reference 997

Date

Active Support provides a wide array of extensions to Ruby’s built-in date
and time classes to simplify conversion and calculation tasks in simple-to-
understand language.
active_support/core_ext/date/calculations.rb

The following methods enable the use of calculations with Date objects.

+(other) / -(other)

Rails extends the existing + and - operator so that a since calculation is
performed when the other argument is an instance of ActiveSupport::Duration
(the type of object returned by methods such as 10.minutes and 9.months).

>> Date.today + 1.day == Date.today.tomorrow
=> true

advance(options)

Provides precise Date calculations for years, months, and days. The options
parameter takes a hash with any of these keys: :years, :months, :weeks, and
:days.

>> Date.new(2006, 2, 28) == Date.new(2005, 2, 28).advance(years: 1)
=> true

ago(seconds)

Converts Date to a Time (or DateTime if necessary) with the time portion set to
the beginning of the day (0:00) and then subtracts the specified number of
seconds.

>> Time.utc(2005, 2, 20, 23, 59, 15) == Date.new(2005, 2, 21).ago(45)
=> true

at_beginning_of_day / at_midnight / beginning_of_day / midnight

Converts Date to a Time (or DateTime if necessary) with the time portion set to
the beginning of the day (0:00).

Active Support API Reference 998

>> Time.utc(2005,2,21,0,0,0) == Date.new(2005,2,21).beginning_of_day
=> true

at_beginning_of_month / beginning_of_month

Returns a new Date object representing the start of the month (1st of the
month). Objects will have their time set to 0:00.

>> Date.new(2005, 2, 1) == Date.new(2005,2,21).beginning_of_month
=> true

at_beginning_of_quarter / beginning_of_quarter

Returns a new Date object representing the start of the calendar-based quarter
(1st of January, April, July, and October).

>> Date.new(2005, 4, 1) == Date.new(2005, 6, 30).beginning_of_quarter
=> true

at_beginning_of_week

Alias for beginning_of_week.

at_beginning_of_year / beginning_of_year

Returns a new Date object representing the start of the calendar year (1st of
January).

>> Date.new(2005, 1, 1) == Date.new(2005, 2, 22).beginning_of_year
=> true

at_end_of_day / end_of_day

Converts Date to a Time (or DateTime if necessary) with the time portion set to
the end of the day (23:59:59).

at_end_of_month / end_of_month

Returns a new Date object representing the last day of the calendar month.

Active Support API Reference 999

>> Date.new(2005, 3, 31) == Date.new(2005,3,20).end_of_month
=> true

at_end_of_quarter / end_of_quarter

Returns a new Date object representing the end of the calendar-based quarter
(31st March, 30th June, 30th September).

at_end_of_week

Alias for end_of_week.

at_end_of_year / end_of_year

Returns a new Date object representing the end of the year.

>> Date.new(2013, 12, 31) == Date.new(2013, 10, 1).end_of_year
=> true

beginning_of_week

Returns a new Date object representing the beginning of the week. By default,
based on Date.beginning_of_week.

>> Date.new(2005, 1, 31) == Date.new(2005, 2, 4).beginning_of_week
=> true

Date.beginning_of_week

Returns the week start for the current request/thread.

>> Date.beginning_of_week
=> :monday

Can be set Date.beginning_of_week or configuration option beginning_of_week in
your Rails application configuration.

Active Support API Reference 1000

Date.beginning_of_week=(week_start)

Sets Date.beginning_of_week to a week start for current request/thread.
The method accepts the following symbols:

• :monday
• :tuesday
• :wednesday
• :thursday
• :friday
• :saturday
• :sunday

change(options)

Returns a new Date where one or more of the elements have been changed
according to the options parameter.
The valid options are :year, :month, and :day.

>> Date.new(2007, 5, 12).change(day: 1) == Date.new(2007, 5, 1)
=> true

>> Date.new(2007, 5, 12).change(year: 2005, month: 1) == Date.new(2005, 1, 12)
=> true

compare_with_coercion(other) / <=>

Allow Date to be compared with Time by converting to DateTime and relying on
the <=> from there.

Date.current

The preferred way to get the current date when your Rails application is time-
zone-aware. Returns Time.zone.today when config.time_zone is set, otherwise
just returns Date.today.

days_ago(days)

Returns a new Date object minus the specified number of days.

Active Support API Reference 1001

>> Date.new(2013, 10, 1).days_ago(5)
=> Thu, 26 Sep 2013

days_since(days)

Returns a new Date object representing the time a number of specified days
into the future.

>> Date.new(2013, 10, 5) == Date.new(2013, 10, 1).days_since(4)
=> true

days_to_week_start(start_day = Date.beginning_of_week)

Returns the number of days to the start of the week.

>> Date.new(2013, 10, 10).days_to_week_start
=> 3

end_of_week(start_day = Date.beginning_of_week)

Returns a new Date object representing the end of the week.

>> Date.new(2013, 10, 13) == Date.new(2013, 10, 10).end_of_week
=> true

Date.find_beginning_of_week!(week_start)

Returns the week start day symbol or raises an ArgumentError if an invalid
symbol is set.

>> Date.find_beginning_of_week!(:saturday)
=> :saturday
>> Date.find_beginning_of_week!(:foobar)
ArgumentError: Invalid beginning of week: foobar

future?

Returns true if the Date instance is in the future.

Active Support API Reference 1002

>> (Date.current + 1.day).future?
=> true

last_month / prev_month

Convenience method for months_ago(1).

last_quarter / prev_quarter

Convenience method for months_ago(3).

last_week(start_day = Date.beginning_of_week) / prev_week

Returns a new Date object representing the given day in the previous week.

last_year / prev_year

Convenience method for years_ago(1).

middle_of_day / noon / midday

Returns a new Date object representing the middle of the day.

monday

Convenience method for beginning_of_week(:monday).

months_ago(months)

Returns a new Date object representing the time a number of specified months
ago.

>> Date.new(2005, 1, 1) == Date.new(2005, 3, 1).months_ago(2)
=> true

months_since(months)

Returns a new Date object representing the time a number of specified months
into the past or the future. Supply a negative number of months to go back to
the past.

Active Support API Reference 1003

>> Date.today.months_ago(1) == Date.today.months_since(-1)
=> true

next_month

Convenience method for months_since(1).

next_quarter

Convenience method for months_since(3).

next_week(given_day_in_next_week = Date.beginning_of_week))

Returns a new Date object representing the start of the given day in the
following calendar week.

>> Date.new(2005, 3, 4) == Date.new(2005, 2, 22).next_week(:friday)
=> true

next_year

Convenience method for years_since(1).

past?

Returns true if Date is in the past.

>> (Date.current - 1.day).past?
=> true

since(seconds) / in(seconds)

Converts Date to a Time (or DateTime if necessary) with the time portion set to
the beginning of the day (0:00) and then adds the specified number of seconds.

>> Time.local(2005, 2, 21, 0, 0, 45) == Date.new(2005, 2, 21).since(45)
=> true

sunday

Convenience method for end_of_week(:monday).

today?

Returns true if the Date instance is today.

Active Support API Reference 1004

>> Date.current.today?
=> true

Date.tomorrow

Convenience method that returns a new Date (or DateTime) representing the
time one day in the future.

>> Date.tomorrow
=> Thu, 10 Oct 2013

tomorrow

Returns a new Date object advanced by one day.

>> Date.new(2007, 3, 1) == Date.new(2007, 2, 28).tomorrow
=> true

weeks_ago(weeks)

Returns a new Date object representing the time a number of specified weeks
ago.

>> Date.new(2013, 10, 1) == Date.new(2013, 10, 8).weeks_ago(1)
=> true

weeks_since(weeks)

Returns a new Date object representing the time a number of specified weeks
into the future.

>> Date.new(2013, 10, 8) == Date.new(2013, 10, 1).weeks_since(1)
=> true

years_ago(years)

Returns a new Date object representing the time a number of specified years
ago.

Active Support API Reference 1005

>> Date.new(2000, 6, 5) == Date.new(2007, 6, 5).years_ago(7)
=> true

years_since(years)

Returns a new Date object representing the time a number of specified years
into the future.

>> Date.new(2007, 6, 5) == Date.new(2006, 6, 5).years_since(1)
=> true

Date.yesterday

Convenience method that returns a new Date object representing the time one
day in the past.

>> Date.yesterday
=> Tue, 08 Oct 2013

yesterday

Returns a new Date object subtracted by one day.

>> Date.new(2007, 2, 21) == Date.new(2007, 2, 22).yesterday
=> true

active_support/core_ext/date/conversions.rb

The following methods facilitate the conversion of date data into various
formats.

readable_inspect

Overrides the default inspect method with a human readable one.

>> Date.current
=> Wed, 02 Jun 2010

to_formatted_s(format = :default) / to_s

Converts a Date object into its string representation, according to the prede-
fined formats in the DATE_FORMATS constant.
The following hash of formats dictates the behavior of the to_s method.

Active Support API Reference 1006

DATE_FORMATS = {
:short => '%e %b',
:long => '%B %e, %Y',
:db => '%Y-%m-%d',
:number => '%Y%m%d',
:long_ordinal => lambda { |date|

day_format = ActiveSupport::Inflector.ordinalize(date.day)
date.strftime("%B #{day_format}, %Y") # => "April 25th, 2007"

},
:rfc822 => '%e %b %Y'

}

Examples:

>> Date.today.to_s(:short)
=> "14 Jun"
>> Date.today.to_s(:long)
=> "June 14, 2017"
>> Date.today.to_s(:db)
=> "2017-06-14"
>> Date.today.to_s(:number)
=> "20170614"
>> Date.today.to_s(:long_ordinal)
=> "June 14th, 2017"
>> Date.today.to_s(:rfc822)
=> "14 Jun 2017"

Adding your own standard date formats

You can add your own formats to the Date::DATE_FORMATS hash. Use the format
name as the hash key and either a strftime string or Proc instance that takes
a date argument as the value.

config/initializers/date_formats.rb
Date::DATE_FORMATS[:month_and_year] = '%B %Y'
Date::DATE_FORMATS[:short_ordinal] =

-> (date) { date.strftime("%B #{date.day.ordinalize}") }

to_time(timezone = :local)

Converts a Date object into a Ruby Time object; time is set to beginning of day.
The time zone can be :local or :utc.

Active Support API Reference 1007

>> Time.local(2005, 2, 21) == Date.new(2005, 2, 21).to_time
=> true

Note that Active Support explicitly removes the Date#to_time method in Ruby
2.0, as it converts localtime only.

xmlschema

Returns a string that represents the time as defined by XML Schema within
the current time zone (also known as iso8601):

CCYY-MM-DDThh:mm:ssTZD

>> Date.today.xmlschema
=> "2017-06-14T00:00:00Z"

Note that Active Support explicitly removes the Date#xmlschemamethod in Ruby
2.0, as it converts a date to a string without the time component.

active_support/core_ext/date/zones.rb

in_time_zone

Converts Date object into a Ruby Time object in the current time zone. If
Time.zone or Time.zone_default is not set, converts Date to a Time via #to_time.

>> Time.zone = "Eastern Time (US & Canada)"
=> "Eastern Time (US & Canada)"
>> Thu, 10 Oct 2013 00:00:00 EDT -04:00

active_support/json/encoding.rb

as_json

Returns self as a JSON string. The ActiveSupport.use_standard_json_time_for-
mat configuration setting determines whether the date string is delimited with
dashes or slashes.

Active Support API Reference 1008

>> Date.today.as_json
=> "2010-06-03"

Active Support API Reference 1009

DateAndTime

Contains extended functionality common to Date, DateTime, and Time instances.
active_support/core_ext/date_time/calculations.rb

The following methods permit easier use of DateTime objects in date and time
calculations.

<=> compare_with_coercion

Layers additional behavior on DateTime so that Time and ActiveSupport::TimeWithZone
instances can be compared with DateTime instances.

advance(options)

Uses Date to provide precise Time calculations for years, months, and days. The
options parameter takes a hash with any of the keys :months, :days, and :years.

ago(seconds)

Returns a new DateTime representing the time a number of seconds ago. The
opposite of since.

at_beginning_of_day / at_midnight / beginning_of_day / midnight

Convenience method that represents the beginning of a day (00:00:00).
Implemented simply as change(hour: 0).

at_beginning_of_hour / beginning_of_hour

Returns a new DateTime object representing the start of the hour (hh:00:00).
Implemented simply as change(min: 0).

at_beginning_of_minute / beginning_of_minute

Returns a new DateTime object representing the start of theminute (hh:mm:00).
Implemented simply as change(sec: 0).

Active Support API Reference 1010

at_end_of_day / end_of_day

Conveniencemethod that represents the end of a day (23:59:59). Implemented
simply as change(hour: 23, min: 59, sec: 59).

at_end_of_hour / end_of_hour

Returns a new DateTime object representing the end of the hour (hh:59:59).
Implemented simply as change(min: 59, sec: 59).

at_end_of_minute / end_of_minute

Returns a new DateTime object representing the end of the minute (hh:mm:59).
Implemented simply as change(sec: 59).

change(options)

Returns a new DateTimewhere one or more of the elements have been changed
according to the options parameter. The valid date options are :year, :month,
:day. The valid time options are :hour, :min, :sec, :offset, and :start.

DateTime.current

Timezone-aware implementation of Time.now returns a DateTime instance.

future?

Tells whether the DateTime is in the future.

middle_of_day / noon

Returns a new DateTime object representing the middle of the day (12:00:00).
Implemented simply as change(hour: 12).

past?

Tells whether the DateTime is in the past.

Active Support API Reference 1011

seconds_since_midnight

Returns how many seconds have passed since midnight.

seconds_until_end_of_day

Returns how many seconds left in the day until 23:59:59.

since(seconds) \ in(seconds)

Returns a new DateTime representing the time a number of seconds since the
instance time (Aliased as in). The opposite of ago.

utc

Returns a new DateTime with the offset set to 0 to represent UTC time.

utc?

Convenience method returns true if the offset is set to 0.

utc_offset

Returns the offset value in seconds.

active_support/core_ext/date_and_time/zones.rb

The following method allows conversion of a dates/times into different time
zones.

in_time_zone(zone = ::Time.zone)

Returns the simultaneous time in Time.zone

>> Time.zone = 'Hawaii'
>> DateTime.new(2000).in_time_zone
=> Fri, 31 Dec 1999 14:00:00 HST -10:00

This method is similar to Time#localtime, except that it uses the Time.zone
argument as the local zone instead of the operating system’s time zone. You
can also pass it a string that identifies a TimeZone as an argument, and the
conversion will be based on that zone instead. Allowable string parameters
are operating-system dependent.

Active Support API Reference 1012

>> DateTime.new(2000).in_time_zone('Alaska')
=> Fri, 31 Dec 1999 15:00:00 AKST -09:00

Active Support API Reference 1013

DateTime

The following methods extend Ruby’s built-in DateTime class.

active_support/core_ext/date_time/acts_like.rb

Duck-types as a DateTime-like class. See Object#acts_like? for more explana-
tion.

class DateTime
def acts_like_date?

true
end

def acts_like_time?
true

endd
end

active_support/core_ext/date_time/calculations.rb

The following methods permit easier use of DateTime objects in date and time
calculations.

<=> compare_with_coercion

Layers additional behavior on DateTime so that Time and ActiveSupport::TimeWithZone
instances can be compared with DateTime instances.

advance(options)

Uses Date to provide precise Time calculations for years, months, and days. The
options parameter takes a hash with any of the keys :months, :days, and :years.

ago(seconds)

Returns a new DateTime representing the time a number of seconds ago. The
opposite of since.

Active Support API Reference 1014

at_beginning_of_day / at_midnight / beginning_of_day / midnight

Convenience method that represents the beginning of a day (00:00:00).
Implemented simply as change(hour: 0).

at_beginning_of_hour / beginning_of_hour

Returns a new DateTime object representing the start of the hour (hh:00:00).
Implemented simply as change(min: 0).

at_beginning_of_minute / beginning_of_minute

Returns a new DateTime object representing the start of theminute (hh:mm:00).
Implemented simply as change(sec: 0).

at_end_of_day / end_of_day

Conveniencemethod that represents the end of a day (23:59:59). Implemented
simply as change(hour: 23, min: 59, sec: 59).

at_end_of_hour / end_of_hour

Returns a new DateTime object representing the end of the hour (hh:59:59).
Implemented simply as change(min: 59, sec: 59).

at_end_of_minute / end_of_minute

Returns a new DateTime object representing the end of the minute (hh:mm:59).
Implemented simply as change(sec: 59).

change(options)

Returns a new DateTimewhere one or more of the elements have been changed
according to the options parameter. The valid date options are :year, :month,
:day. The valid time options are :hour, :min, :sec, :offset, and :start.

DateTime.current

Timezone-aware implementation of Time.now returns a DateTime instance.

Active Support API Reference 1015

future?

Tells whether the DateTime is in the future.

middle_of_day / noon

Returns a new DateTime object representing the middle of the day (12:00:00).
Implemented simply as change(hour: 12).

past?

Tells whether the DateTime is in the past.

seconds_since_midnight

Returns how many seconds have passed since midnight.

seconds_until_end_of_day

Returns how many seconds left in the day until 23:59:59.

since(seconds) \ in(seconds)

Returns a new DateTime representing the time a number of seconds since the
instance time (Aliased as in). The opposite of ago.

utc

Returns a new DateTime with the offset set to 0 to represent UTC time.

utc?

Convenience method returns true if the offset is set to 0.

utc_offset

Returns the offset value in seconds.

active_support/core_ext/date_time/conversions.rb

The following methods permit conversion of DateTime objects (and some of
their attributes) into other types of data.

Active Support API Reference 1016

formatted_offset(colon = true, alternate_utc_string = nil)

Returns the utc_offset as an HH:MM formatted string.

datetime = DateTime.civil(2000, 1, 1, 0, 0, 0, Rational(-6, 24))

>> datetime.formatted_offset
=> "-06:00"

The options provide for tweaking the output of the method by doing things
like ommitting the colon character.

>> datetime.formatted_offset(false)
=> "-0600"

nsec

Returns the fraction of a second as nanoseconds.

readable_inspect

Overrides the default inspect method with a human-readable one that looks
like this:

Mon, 21 Feb 2005 14:30:00 +0000

to_date

Converts self to a Ruby Date object, discarding time data.

to_datetime

Returns self to be able to keep Time, Date, and DateTime classes interchangeable
on conversions.

to_f

Converts self to a floating-point number of seconds since the Unix epoch. Note
the limitations of this methods with dates prior to 1970.

Active Support API Reference 1017

>> Date.new(2000, 4,4).to_datetime.to_f
=> 954806400.0
>> Date.new(1800, 4,4).to_datetime.to_f
=> -5356627200.0

to_formatted_s(format=:default)

See the options on to_formatted_s of the Time class. The primary difference is
the appending of the time information.

>> datetime.to_formatted_s(:db)
=> "2007-12-04 00:00:00"

to_i

Converts self to an integer number of seconds since the Unix epoch. Note the
limitations of this methods with dates prior to 1970.

>> Date.new(2000, 4,4).to_datetime.to_i
=> 954806400
>> Date.new(1800, 4,4).to_datetime.to_i
=> -5356627200

usec

Returns the fraction of a second as microseconds.

active_support/json/encoding.rb

as_json

Returns self as a JSON string. The ActiveSupport.use_standard_json_time_for-
mat configuration setting determines whether the output is formatted using
:xmlschema or the following pattern:

strftime('%Y/%m/%d %H:%M:%S %z')

Active Support API Reference 1018

Dependencies

This module contains the logic for Rails’ automatic class loading mechanism,
which is what makes it possible to reference any constant in the Rails varied
load paths without ever needing to issue a require directive.
This module extends itself, a cool hack that you can use with modules that you
want to use elsewhere in your codebase in a functional manner:

module Dependencies
extend self
...

As a result, you can call methods directly on the module constant, à la Java
static class methods, like this:

>> ActiveSupport::Dependencies.search_for_file('person.rb')
=> "/Users/obie/work/time_and_expenses/app/models/person.rb"

You shouldn’t need to use this module in day-to-day Rails coding—it’s mostly
for internal use by Rails and plugins. On occasion, it might also be useful to
understand the workings of this module when debugging tricky class-loading
problems.

active_support/dependencies.rb

autoload_once_paths

The set of directories from which automatically loaded constants are loaded
only once. Usually consists of your plugin lib directories. All directories in this
set must also be present in autoload_paths.

autoload_paths

The set of directories from which Rails may automatically load files. Files
under these directories will be reloaded on each request in development
mode, unless the directory also appears in load_once_paths.

Active Support API Reference 1019

>> ActiveSupport::Dependencies.load_paths
=> ["/Users/kfaustino/code/active/example_app/app/assets",

"/Users/kfaustino/code/active/example_app/app/controllers",
"/Users/kfaustino/code/active/example_app/app/helpers",
"/Users/kfaustino/code/active/example_app/app/mailers",
"/Users/kfaustino/code/active/example_app/app/models",
"/Users/kfaustino/code/active/example_app/app/controllers/concerns",
"/Users/kfaustino/code/active/example_app/app/models/concerns"]

constant_watch_stack

An internal stack used to record which constants are loaded by any block.

explicitly_unloadable_constants

An array of constant names that need to be unloaded on every request. Used
to allow arbitrary constants to be marked for unloading.

history

The set of all files ever loaded.

loaded

The Set of all files currently loaded.

log_activity

Set this option to true to enable logging of const_missing and file loads.
(Defaults to false.)

mechanism

A setting that determines whether files are loaded (default) or required.
This attribute determines whether Rails reloads classes per request, as in
development mode.

Active Support API Reference 1020

>> ActiveSupport::Dependencies.mechanism
=> :load

warnings_on_first_load

A setting that determines whether Ruby warnings should be activated on the
first load of dependent files. Defaults to true.

associate_with(file_name)

Invokes depend_on with swallow_load_errors set to true. Wrapped by the re-
quire_association method of Object.

autoload_module!(into, const_name, qualified_name, path_suffix)

Attempts to autoload the provided module name by searching for a directory
matching the expected path suffix. If found, the module is created and
assigned to into’s constants with the name +const_name+. Provided that the
directory was loaded from a reloadable base path, it is added to the set of
constants that are to be unloaded.

autoloadable_module?(path_suffix)

Checks whether the provided path_suffix corresponds to an autoloadable
module. Instead of returning a Boolean, the autoload base for this module
is returned.

autoloaded?(constant)

Determines if the specified constant has been automatically loaded.

clear

Clear all loaded items.

constantize(name)

Gets the reference for a specified class name. Raises an exception if the class
does not exist.

Active Support API Reference 1021

depend_on(file_name, message = "No such file to load -- %s.rb")

Searches for the file_name specified and uses require_or_load to establish a
new dependency. If the file fails to load, a LoadError is raised. Setting message,
one can replace the error message set by LoadError.

hook!

Includes Rails specific modules into some Ruby classes.

• Object includes Loadable
• Module includes ModuleConstMissing
• Exception includes Blamable

load?

Returns true if mechanism is set to :load.

load_file(path, const_paths =
loadable_constants_for_path(path))

Loads the file at the specified path. The const_paths is a set of fully qualified
constant names to load. When the file is loading, Dependencies will watch for
the addition of these constants. Each one that is defined will be marked as
autoloaded, and will be removed when Dependencies.clear is next called.
If the second parameter is left off, Dependencies will construct a set of names
that the file at path may define. See loadable_constants_for_path for more
details.

load_once_path?(path)

Returns true if the specified path appears in the load_once_path list.

load_missing_constant(from_mod, const_name)

Loads the constant named const_name, which is missing from from_mod. If it is
not possible to load the constant from from_mod, try its parent module by calling
const_missing on it.

Active Support API Reference 1022

loadable_constants_for_path(path, bases = autoload_paths)

Returns an array of constants, based on a specified filesystem path to a Ruby
file, which would cause Dependencies to attempt to load the file.

mark_for_unload(constant)

Marks the specified constant for unloading. The constant will be unloaded on
each request, not just the next one.

new_constants_in(*descs, &block)

Runs the provided block and detects the new constants that were loaded
during its execution. Constants may only be regarded as new once. If the block
calls new_constants_in again, the constants defined within the inner call will not
be reported in this one.
If the provided block does not run to completion, and instead raises an
exception, any new constants are regarded as being only partially defined
and will be removed immediately.

qualified_const_defined?(path)

Returns true if the provided constant path is defined?

qualified_name_for(parent_module, constant_name)

Returns a qualified path for the specified parent_module and constant_name.

reference(klass)

Store a reference to a class.

remove_constant(const)

Removes an explicit constant.

remove_unloadable_constants!

Removes the constants that have been autoloaded, and those that have been
marked for unloading.

Active Support API Reference 1023

require_or_load(file_name, const_path = nil)

Implements the main classloading mechanism. Wrapped by the require_or_-
load method of Object.

safe_constantize(name)

Gets the reference for class named name if one exists. It returns nil when the
name is not in CamelCase or is not initialized.

search_for_file(path_suffix)

Searches for a file in the autoload paths matching the provided path_suffix.

to_constant_name(desc)

Convert the provided constant description to a qualified constant name.

will_unload?(constant)

Returns true if the specified constant is queued for unloading on the next
request.

unhook!

Exclude module ModuleConstMissing from Module and Loadable from Object.

Active Support API Reference 1024

DescendantsTracker

A module used internally by Rails to track descendants, which is faster than
iterating through ObjectSpace.

active_support/descendants_tracker.rb

DescendantsTracker.clear

Clears all descendants.

DescendantsTracker.descendants(klass)

Returns a set of all the descendants of a class.

descendants

A convenience method for returning the descendants of a class. Implemented
simply as DescendantsTracker.descendants(self).

DescendantsTracker.direct_descendants(klass)

Returns a set of the direct descendants of a class.

direct_descendants

A convenience method for returning the direct descendants of a class. Imple-
mented simply as DescendantsTracker.direct_descendants(self).

inherited(base)

Sets a class as a direct descendant of another base class. Implemented simply
as DescendantsTracker.store_inherited(base, self).

DescendantsTracker.store_inherited(klass, descendant)

Adds a direct descendant to a class. Warning this method is not thread safe,
but is only called during the eager loading phase.

Active Support API Reference 1025

Digest::UUID

Contains convenience methods for generating UUIDs (Universally Unique
IDentifiers) also known as GUIDs (Globally Unique IDentifier). A UUID is 128
bits long, and can guarantee uniqueness across space and time.

Digest::UUID.uuid_from_hash(hash_class,
uuid_namespace, name)

Generates the same UUID for a given name and namespace combination.

Digest::UUID.uuid_v3(uuid_namespace, name)

Convenience method for uuid_from_hash using Digest::MD5.

Digest::UUID.uuid_v4

Convenience method for SecureRandom.uuid.

Digest::UUID.uuid_v5(uuid_namespace, name)

Convenience method for uuid_from_hash using Digest::SHA1.

Active Support API Reference 1026

Duration

Provides accurate date and time measurements using the advance method
of Date and Time. It mainly supports the methods on Numeric, such as in this
example:

1.month.ago # equivalent to Time.now.advance(months: -1)

+ (other)

Adds another Duration or a Numeric to this Duration. Numeric values are treated
as seconds.

>> 2.hours + 2
=> 7202 seconds

- (other)

Subtracts another Duration or a Numeric to this Duration. Numeric values are
treated as seconds.

>> 2.hours - 2
=> 7198 seconds

ago(time = Time.current)

Calculates a new Time or Date that is as far in the past as this Duration
represents.

>> birth = 35.years.ago
=> Tue, 10 Oct 1978 16:21:34 EDT -04:00

from_now(time = Time.current)

Alias for since, which reads a little bit more naturally when using the default
Time.current as the time argument.

Active Support API Reference 1027

>> expiration = 1.year.from_now
=> Fri, 10 Oct 2014 16:22:35 EDT -04:00

inspect

Calculates the time resulting from a Duration expression and formats it as a
string appropriate for display in the console. (Remember that IRB and the
Rails console automatically invoke inspect on objects returned to them. You
can use that trick with your own objects.)

>> 10.years.ago
=> Fri, 10 Oct 2003 16:23:10 EDT -04:00

since(time = Time.current)

Calculates a new Time or Date that is as far in the future as this Duration
represents.

expiration = 1.year.since(account.created_at)

until(time = Time.current)

Alias for ago. Reads a little more naturally when specifying a time argument
instead of using the default value, Time.current.

membership_duration = created_at.until(expires_at)

Duration.parse(iso8601duration)

Parses an ISO 8601 formatted string representing the duration.

>> ActiveSupport::Duration.parse "PT24H"
=> 24 hours

iso8601(precision: nil

Returns an ISO 8601 formatted string representing the duration.

Active Support API Reference 1028

>> 24.hours.iso8601
=> "PT24H"

Active Support API Reference 1029

Enumerable

Extensions to Ruby’s built-in Enumerable module, which gives arrays and other
types of collections iteration abilities.

exclude?

The negative of the Enumerable#include?. Returns true if the collection does not
include the object.

index_by(&block)

Converts an enumerable to a hash, based on a block that identifies the keys.
The most common usage is with a single attribute name:

>> people.index_by(&:login)
=> { "nextangle" => <Person ...>, "chad" => <Person ...>}

Use full block syntax (instead of the to_proc hack) to generate more complex
keys:

>> people.index_by { |p| "#{p.first_name} #{p.last_name}" }
=> {"Chad Fowler" => <Person ...>, "David Hansson" => <Person ...>}

many?

Returns true if the enumerable has more than one element.
Use full block syntax to determine if there is more than one element based on
a condition:

people.many? { |p| p.age > 26 }

pluck(*keys)

Convert an enumerable to an array/tuple based on the given key(s).

Active Support API Reference 1030

>> [{ name: "David" }, { name: "Rafael" }, { name: "Aaron" }].pluck(:name)
=> ["David", "Rafael", "Aaron"]

>> [{ id: 1, name: "David" }, { id: 2, name: "Rafael" }].pluck(:id, :name)
=> [[1, "David"], [2, "Rafael"]]

sum(identity = 0, &block)

Calculates a sum from the elements of an enumerable, based on a block.

payments.sum(&:price)

It’s easier to understand than Ruby’s clumsier inject method:

payments.inject { |sum, p| sum + p.price }

Use full block syntax (instead of the to_proc hack) to do more complicated
calculations:

payments.sum { |p| p.price * p.tax_rate }

Also, sum can calculate results without the use of a block:

[5, 15, 10].sum # => 30

The default identity (a fancy way of saying, “the sum of an empty list”) is 0.
However, you can override it with anything you want by passing a default
argument:

[].sum(10) { |i| i.amount } # => 10

without(*elements)

Returns a copy of the enumerable without the specified elements.

Active Support API Reference 1031

>> ["David", "Rafael", "Aaron", "Todd"].without "Aaron", "Todd"
=> ["David", "Rafael"]

>> {foo: 1, bar: 2, baz: 3}.without :bar
=> {foo: 1, baz: 3}

Active Support API Reference 1032

ERB::Util

A collection of utility methods added to ERB processing in Rails.

html_escape(s)

A utility method for escaping HTML tag characters. This method is also aliased
as h.
In your templates, use this method to escape any unsafe (often, anything user-
submitted) content, like this:

= h @person.name

The method primarily escapes angle brackets and ampersands.

>> puts ERB::Util.html_escape("is a > 0 & a < 10?")
=> "is a > 0 & a < 10?"

html_escape_once(s)

A utility method for escaping HTML without affecting existing escaped enti-
ties.

>> puts ERB::Util.html_escape_once('1 < 2 & 3')
=> "1 < 2 & 3"

json_escape(s)

A utility method for escaping HTML entities in JSON strings.
In your ERb templates, use this method to escape any HTML entities:

= json_escape @person.to_json

The method primarily escapes angle brackets and ampersands.

>> puts ERB::Util.json_escape("is a > 0 & a < 10?")
=> "is a \\u003E 0 \\u0026 a \\u003C 10?"

Active Support API Reference 1033

EventedFileUpdateChecker

Used by Rails development mode to “listen” to file system changes (like I18n
locale files). Does not hit disk when checking for updates, but rather uses
platform-specific file system events to trigger state changes. Depends on the
listen7 Ruby gem.
If youwant to use this class with your own code, you can pass EventedFileUpdat-
eChecker#initialize an array of files to watch or a hash specifying directories
and file extensions to watch. It also takes a block that is called when Event-
edFileUpdateChecker#execute is run or when EventedFileUpdateChecker#execute_-
if_updated is run and there have been changes to the file system.
Example:

>> spy = ActiveSupport::EventedFileUpdateChecker.new ["/tmp/efu"] { puts "changed" }
=> #<ActiveSupport::EventedFileUpdateChecker:0x007fdfaa898690...

>> spy.updated?
=> false

>> spy.execute_if_updated
=> nil

>> FileUtils.touch("/tmp/foo")

>> spy.updated?
=> true

>> spy.execute_if_updated
=> "changed"

See also FileUpdateChecker
7https://github.com/guard/listen

https://github.com/guard/listen
https://github.com/guard/listen

Active Support API Reference 1034

FalseClass

active_support/core_ext/object/blank.rb

blank?

Returns true.

active_support/json/encoding.rb

as_json

Returns "false".

Active Support API Reference 1035

File

Provides an atomic_write method to Ruby’s File class.

atomic_write(file_name, temp_dir = Dir.tmpdir)

Writes to a file atomically, by writing to a temp file first and then renaming
to the target file_name. Useful for situations where you need to absolutely
prevent other processes or threads from seeing half-written files.

File.atomic_write("important.file") do |file|
file.write("hello")

end

If your temp directory is not on the same filesystem as the file you’re trying
to write, you can provide a different temporary directory with the temp_dir
argument.

File.atomic_write("/data/something.important", "/data/tmp") do |f|
file.write("hello")

end

Active Support API Reference 1036

FileUpdateChecker

Specifies the API used by Rails to watch files and control reloading. The API
depends on four methods:

initialize
Expects paths to watch and a block of code to execute on changes.

updated?
Returns a boolean reporting if there were updates in the filesystem or
not.

execute
Executes the given block on initialization and updates the latest watched
files and timestamp.

execute_if_updated
Executes the initializer block if file(s) updated.

After initialization, a call to execute_if_updated must execute the block only if
there was really a change in the filesystem.
The following code is used by Rails to reload the I18n framework whenever
locale files are changed.

i18n_reloader = ActiveSupport::FileUpdateChecker.new(paths) do
I18n.reload!

end

ActiveSupport::Reloader.to_prepare do
i18n_reloader.execute_if_updated

end

initialize(files, dirs = {}, &block)

The first parameter files is an array of files and the second is an optional
hash of directories. The hash must have directories as keys and the value is
an array of extensions to be watched under that directory.
This method must also receive a block that will be called once a path
changes. The array of files and list of directories cannot be changed after
FileUpdateChecker has been initialized.

Active Support API Reference 1037

updated?

Check if any of the entries were updated. If so, the watched and/or updated_at
values are cached until the block is executed via execute or execute_if_updated
methods.

execute

Executes the given block and updates the latest watched files and timestamp.

execute_if_updated

Execute the block given if updated. If a block is provided to this method, it
will be executed first before calling execute to invoke the block passed to the
initializer.

Active Support API Reference 1038

Gzip

A wrapper for the zlib standard library that allows the compression/decom-
pression of strings with gzip.

Gzip.compress(source, level=Zlib::DEFAULT_COMPRESSION,
strategy=Zlib::DEFAULT_STRATEGY)

Compresses a string with gzip.

>> gzip = ActiveSupport::Gzip.compress('compress me!')
=> "\x1F\x8B\b\x00\x9D\x18WR\x00\x03K\xCE\xCF-

(J-.V\xC8MU\x04\x00R>n\x83\f\x00\x00\x00"

Gzip.decompress(source)

Decompresses a string that has been compressed with gzip.

>> ActiveSupport::Gzip.
decompress("\x1F\x8B\b\x00\x9D\x18WR\x00\x03K\xCE\xCF-
(J-.V\xC8MU\x04\x00R>n\x83\f\x00\x00\x00")

=> "compress me!"

Active Support API Reference 1039

Hash

Many additions and enhancements to Ruby’s hash object.
active_support/core_ext/array/extract_options.rb

extractable_options?

If a Hash is marked as extractable using this method, Array#extract_options!
pops it from the Array when it is the last element.
By default, only instances of Hash itself are extractable. Subclasses of Hash
may implement the extractable_options? method and return true to declare
themselves as extractable.

class MyFancyOptions < Hash
def extractable_options?

true
end

active_support/core_ext/hash/compact.rb

compact

Returns a hash with non nil values.

hash = { name: 'Marisa', email: nil }

=> hash.compact
>> { name: 'Marisa' }

compact!

Replaces current hash with non nil values.

active_support/core_ext/hash/conversions.rb

Contains code that adds the ability to convert hashes to and from xml.

Active Support API Reference 1040

Hash.from_trusted_xml(xml)

Builds a Hash from XML just like Hash.from_xml, but also allows Symbol and
YAML.

Hash.from_xml(xml)

Parses arbitrary strings of XML markup into nested Ruby arrays and hashes.
Works great for quick-and-dirty integration of REST-style web services.
Here’s a quick example in the console with some random XML content. The
XML only has to be well-formed markup.

>> xml = %(<people>
<person id="1">

<name><family>Boss</family> <given>Big</given></name>
<email>chief@foo.com</email>

</person>
<person id="2">

<name>
<family>Worker</family>
<given>Two</given></name>
<email>two@foo.com</email>

</person>
</people>)
=> "<people>...</people>"

>> h = Hash.from_xml(xml)
=> {"people"=>{"person"=>[{"name"=>{"given"=>"Big", "family"=>"Boss"},
"id"=>"1", "email"=>"chief@foo.com"}, {"name"=>{"given"=>"Two",
"family"=>"Worker"}, "id"=>"2", "email"=>"two@foo.com"}]}}

Now you can easily access the data from the XML:

>> h["people"]["person"].first["name"]["given"]
=> "Big"

An exception DisallowedType is raised if the XML contains attributes with
type="yaml" or type="symbol". If for some reason you want to be able to accept
YAML and symbols as valid attributes then use the variant from_trusted_xml
instead.

to_xml(options={})

Collects the keys and values of a hash and composes a simple XML represen-
tation.

Active Support API Reference 1041

print ({greetings: {
english: "hello",
spanish: "hola"}}).to_xml

<?xml version="1.0" encoding="UTF-8"?>
<hash>

<greetings>
<english>hello</english>
<spanish>hola</spanish>

</greetings>
</hash>

active_support/core_ext/hash/deep_merge.rb

Enhancements to Ruby’s built-in hash merging. Both methods accept a block
to be invoked when merging values:

>> h1 = { a: 100, b: 200, c: { c1: 100 } }
>> h2 = { b: 250, c: { c1: 200 } }
>> h1.deep_merge(h2) { |key, this_val, other_val| this_val + other_val }
=> { a: 100, b: 450, c: { c1: 300 } }

deep_merge(other_hash)

Returns a new hash with self and other_hash merged recursively.

deep_merge!(other_hash)

Modifies self by merging in other_hash recursively.

active_support/core_ext/hash/except.rb

except(*keys)

Return a hash that includes everything but the given keys. This is useful for
limiting a set of parameters to everything but a few known toggles.

Active Support API Reference 1042

person.update(params[:person].except(:admin))

If the receiver responds to convert_key, the method is called on each of the
arguments. This allows except to play nice with hashes with indifferent access.

>> {a: 1}.with_indifferent_access.except(:a)
=> {}
>> {a: 1}.with_indifferent_access.except("a")
=> {}

except!(*keys)

Removes the keys specified from the hash.

>> hash = { a: true, b: false, c: nil }
>> hash.except!(:c) # => { a: true, b: false }
>> hash # => { a: true, b: false }

active_support/core_ext/hash/indifferent_access.rb

with_indifferent_access

Converts a hash into an ActiveSupport::HashWithIndifferentAccess.

>> {a: 1}.with_indifferent_access["a"]
=> 1

active_support/core_ext/hash/keys.rb

Provides methods that operate on the keys of a hash. The stringify and
symbolize methods are used liberally throughout the Rails codebase, which is
why it generally doesn’t matter if you pass option names as strings or symbols.
You can use assert_valid_keys method in your own application code, which
takes Rails-style option hashes.

assert_valid_keys(*valid_keys)

Raises an ArgumentError if the hash contains any keys not specified in valid_-
keys.

Active Support API Reference 1043

def my_method(some_value, options={})
options.assert_valid_keys(:my_conditions, :my_order, ...)
...

end

Note that keys are NOT treated indifferently, meaning if you use strings for
keys but assert symbols as keys, this will fail.

>> { name: "Rob", years: "28" }.assert_valid_keys(:name, :age)
=> ArgumentError: Unknown key(s): years

>> { name: "Rob", age: "28" }.assert_valid_keys("name", "age")
=> ArgumentError: Unknown key(s): name, age

>> { name: "Rob", age: "28" }.assert_valid_keys(:name, :age)
=> {:name=>"Rob", :age=>"28"} # passes, returns hash

deep_stringify_keys

Return a copy of the hash with all keys converted to strings. This includes the
keys from the root hash and from all nested hashes.

deep_stringify_keys!

Destructively converts all keys in the hash to strings. This includes the keys
from the root hash and from all nested hashes.

deep_symbolize_keys

Returns a new hashwith all keys converted to symbols, as long as they respond
to to_sym. This includes the keys from the root hash and from all nested hashes.

deep_symbolize_keys!

Destructively converts all keys in the hash to symbols, as long as they respond
to to_sym. This includes the keys from the root hash and from all nested hashes.

deep_transform_keys(&block)

Return a copy of the hash with all keys converted by the block operation. This
includes the keys from the root hash and from all nested hashes.

Active Support API Reference 1044

deep_transform_keys!(&block)

Destructively converts all keys in the hash by the block operation. This
includes the keys from the root hash and from all nested hashes.

stringify_keys

Returns a new copy of the hash with all keys converted to strings.

stringify_keys!

Destructively converts all keys in the hash to strings.

symbolize_keys and to_options

Returns a new hashwith all keys converted to symbols, as long as they respond
to to_sym.

symbolize_keys! and to_options!

Destructively converts all keys in the hash to symbols.

transform_keys(&block)

Return a copy of the hash with all keys converted by the block operation.

transform_keys!(&block)

Destructively converts all keys in the hash by the block operation.

active_support/core_ext/hash/reverse_merge.rb

Allows for reverse merging where the keys in the calling hash take precedence
over those in the other_hash. This is particularly useful for initializing an
incoming option hash with default values like this:

Active Support API Reference 1045

def setup(options = {})
options.reverse_merge! size: 25, velocity: 10

end

In the example, the default :size and :velocity are only set if the options
passed in don’t already have those keys set.

reverse_merge(other_hash)

Returns a merged version of two hashes, using key values in the other_hash as
defaults, leaving the original hash unmodified.

reverse_merge!(other_hash) and reverse_update

Destructive versions of reverse_merge; both modify the original hash in place.

active_support/core_ext/hash/slice.rb

extract!(*keys)

Removes and returns the key/value pairs matching the given keys.

>> { a: 1, b: 2 }.extract!(:a, :x)
=> {:a => 1}

slice(*keys)

Slice a hash to include only the given keys. This is useful for limiting an options
hash to valid keys before passing to a method:

def search(criteria = {})
assert_valid_keys(:mass, :velocity, :time)

end

search(options.slice(:mass, :velocity, :time))

If you have an array of keys you want to limit to, you should splat them:

Active Support API Reference 1046

valid_keys = %i(mass velocity time)
search(options.slice(*valid_keys))

slice!(*keys)

Replaces the hash with only the given keys.

>> {a: 1, b: 2, c: 3, d: 4}.slice!(:a, :b)
=> {:c => 3, :d =>4}

active_support/core_ext/object/to_query.rb

to_param(namespace = nil) / to_query

Converts a hash into a string suitable for use as a URL query string. An
optional namespace can be passed to enclose the param names (see example
below).

>> { name: 'David', nationality: 'Danish' }.to_param
=> "name=David&nationality=Danish"

>> { name: 'David', nationality: 'Danish' }.to_param('user')
=> "user%5Bname%5D=David&user%5Bnationality%5D=Danish"

active_support/json/encoding.rb

as_json

Returns self as a string of JSON.

active_support/core_ext/object/blank.rb

blank?

Alias for empty?

Active Support API Reference 1047

HashWithIndifferentAccess

A subclass of Hash used internally by Rails. Implements a hash where keys set
as a string or symbol are considered to be the same. Probably one of the oldest
and most iconic examples of Rails “magic”.

>> hash = HashWithIndifferentAccess.new
=> {}
>> hash[:foo] = "bar"
=> "bar"
>> hash[:foo]
=> "bar"
>> hash["foo"]
=> "bar"

Although this class is compatible with non-string keys, this class is intended
for use cases where strings or symbols are the expected keys and it is
convenient to understand both as the same, the most common example being
the params in Rails controllers.

Active Support API Reference 1048

Inflector

Methods in this module covered in String inflections.

Active Support API Reference 1049

Inflector::Inflections

The Inflections class transforms words from singular to plural, class names
to table names, modularized class names to ones without, and class names to
foreign keys.
This API reference lists the inflections methods themselves in the modules
where they are actually used: Numeric and String. The Inflections module
contains methods used for modifying the rules used by the inflector.
The default inflections for pluralization, singularization, and uncountable
words are kept in activesupport/lib/active_support/inflections.rb and repro-
duced here for reference.

module ActiveSupport
Inflector.inflections(:en) do |inflect|

inflect.plural(/$/, "s")
inflect.plural(/s$/i, "s")
inflect.plural(/^(ax|test)is$/i, '\1es')
inflect.plural(/(octop|vir)us$/i, '\1i')
inflect.plural(/(octop|vir)i$/i, '\1i')
inflect.plural(/(alias|status)$/i, '\1es')
inflect.plural(/(bu)s$/i, '\1ses')
inflect.plural(/(buffal|tomat)o$/i, '\1oes')
inflect.plural(/([ti])um$/i, '\1a')
inflect.plural(/([ti])a$/i, '\1a')
inflect.plural(/sis$/i, "ses")
inflect.plural(/(?:([^f])fe|([lr])f)$/i, '\1\2ves')
inflect.plural(/(hive)$/i, '\1s')
inflect.plural(/([^aeiouy]|qu)y$/i, '\1ies')
inflect.plural(/(x|ch|ss|sh)$/i, '\1es')
inflect.plural(/(matr|vert|ind)(?:ix|ex)$/i, '\1ices')
inflect.plural(/^(m|l)ouse$/i, '\1ice')
inflect.plural(/^(m|l)ice$/i, '\1ice')
inflect.plural(/^(ox)$/i, '\1en')
inflect.plural(/^(oxen)$/i, '\1')
inflect.plural(/(quiz)$/i, '\1zes')

inflect.singular(/s$/i, "")
inflect.singular(/(ss)$/i, '\1')
inflect.singular(/(n)ews$/i, '\1ews')
inflect.singular(/([ti])a$/i, '\1um')
inflect.singular(/((a)naly|(b)a|(d)iagno|(p)arenthe|(p)rogno|(s)ynop|(t)he)(sis|ses)$/\

i, '\1sis')
inflect.singular(/(^analy)(sis|ses)$/i, '\1sis')

Active Support API Reference 1050

inflect.singular(/([^f])ves$/i, '\1fe')
inflect.singular(/(hive)s$/i, '\1')
inflect.singular(/(tive)s$/i, '\1')
inflect.singular(/([lr])ves$/i, '\1f')
inflect.singular(/([^aeiouy]|qu)ies$/i, '\1y')
inflect.singular(/(s)eries$/i, '\1eries')
inflect.singular(/(m)ovies$/i, '\1ovie')
inflect.singular(/(x|ch|ss|sh)es$/i, '\1')
inflect.singular(/^(m|l)ice$/i, '\1ouse')
inflect.singular(/(bus)(es)?$/i, '\1')
inflect.singular(/(o)es$/i, '\1')
inflect.singular(/(shoe)s$/i, '\1')
inflect.singular(/(cris|test)(is|es)$/i, '\1is')
inflect.singular(/^(a)x[ie]s$/i, '\1xis')
inflect.singular(/(octop|vir)(us|i)$/i, '\1us')
inflect.singular(/(alias|status)(es)?$/i, '\1')
inflect.singular(/^(ox)en/i, '\1')
inflect.singular(/(vert|ind)ices$/i, '\1ex')
inflect.singular(/(matr)ices$/i, '\1ix')
inflect.singular(/(quiz)zes$/i, '\1')
inflect.singular(/(database)s$/i, '\1')

inflect.irregular("person", "people")
inflect.irregular("man", "men")
inflect.irregular("child", "children")
inflect.irregular("sex", "sexes")
inflect.irregular("move", "moves")
inflect.irregular("zombie", "zombies")

inflect.uncountable(%w(equipment information rice money species series fish sheep jean\
s police))

end
end

As per the API documentation: These are the starting point for new projects
and are not considered complete. The current set of inflection rules is frozen.
This means, we do not change them to becomemore complete. This is a safety
measure to keep existing applications from breaking.

A singleton instance of Inflections is yielded by Inflector.inflections, which
can then be used to specify additional inflection rules in an initializer.

Active Support API Reference 1051

ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.plural /^(ox)$/i, '\1en'
inflect.singular /^(ox)en/i, '\1'
inflect.irregular 'person', 'people'
inflect.uncountable %w(fish sheep)

end

New rules are added at the top. So in the example, the irregular rule for
octopus will now be the first of the pluralization and singularization rules that
are checked when an inflection happens. That way Rails can guarantee that
your rules run before any of the rules that may already have been loaded.

acronym(word)

Specifies a new acronym. An acronym must be specified as it will appear
in a camelized string. An underscore string that contains the acronym will
retain the acronym when passed to camelize, humanize, or titleize. A camelized
string that contains the acronym will maintain the acronym when titleized
or humanized, and will convert the acronym into a non-delimited single
lowercase word when passed to underscore. An acronym word must start
with a capital letter.

ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.acronym 'HTML'

end

>> 'html'.titleize
=> "HTML"

>> 'html'.camelize
=> "HTML"

>> 'MyHTML'.underscore
=> "my_html"

The acronym must occur as a delimited unit and not be part of another word
for conversions to recognize it:

Active Support API Reference 1052

ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.acronym 'HTTP'

end

>> 'HTTPS'.underscore
=> "http_s" # => 'http_s', not 'https'

Alternatively
ActiveSupport::Inflector.inflections(:en) do |inflect|

inflect.acronym 'HTTPS'
end

>> 'HTTPS'.underscore
=> "https"

clear(scope = :all))

Clears the loaded inflections within a given scope. Give the scope as a symbol
of the inflection type: :plurals, :singulars, :uncountables, or :humans.

ActiveSupport::Inflector.inflections.clear
ActiveSupport::Inflector.inflections.clear(:plurals)

human(rule, replacement)

Specifies a humanized form of a string by a regular expression rule or by
a string mapping. When using a regular expression based replacement, the
normal humanize formatting is called after the replacement. When a string is
used, the human form should be specified as desired (example: “The name”,
not “the_name”)

ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.human /_cnt$/i, '\1_count'
inflect.human "legacy_col_person_name", "Name"

end

inflections(locale = :en)

Yields a singleton instance of ActiveSupport::Inflector::Inflections so you can
specify additional inflector rules. If passed an optional locale, rules for other
languages can be specified.

Active Support API Reference 1053

ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.uncountable "rails"

end

irregular(singular, plural)

Specifies a new irregular that applies to both pluralization and singularization
at the same time. The singular and plural arguments must be strings, not
regular expressions. Simply pass the irregular word in singular and plural
form.

ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.irregular 'octopus', 'octopi'
inflect.irregular 'person', 'people'

end

plural(rule, replacement)

Specifies a new pluralization rule and its replacement. The rule can either be
a string or a regular expression. The replacement should always be a string and
may include references to the matched data from the rule by using backslash-
number syntax, like this:

ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.plural /^(ox)$/i, '\1en'

end

singular(rule, replacement)

Specifies a new singularization rule and its replacement. The rule can either
be a string or a regular expression. The replacement should always be a string
and may include references to the matched data from the rule by using
backslash-number syntax, like this:

ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.singular /^(ox)en/i, '\1'

end

uncountable(*words)

Adds uncountable words that should not be inflected to the list of inflection
rules.

Active Support API Reference 1054

ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.uncountable "money"
inflect.uncountable "money", "information"

Active Support API Reference 1055

Integer

Extensions to Ruby’s built-in Integer class.
active_support/core_ext/integer/inflections.rb

ordinal

Returns the suffix used to denote the position in an ordered sequence, such
as 1st, 2nd, 3rd, 4th.

1.ordinal # => "st"
2.ordinal # => "nd"
1002.ordinal # => "nd"
1003.ordinal # => "rd"

ordinalize

Turns an integer into an ordinal string used to denote the position in an
ordered sequence, such as 1st, 2nd, 3rd, 4th.

1.ordinalize # => "1st"
2.ordinalize # => "2nd"
1002.ordinalize # => "1002nd"
1003.ordinalize # => "1003rd"

active_support/core_ext/integer/multiple.rb

multiple_of?(number)

Returns true if the integer is a multiple of number.

9.multiple_of? 3 # => true

Active Support API Reference 1056

JSON

The JSON module adds JSON decoding and encoding support to Rails which
takes advantage of the JSON gem.

decode(json)

Parses a JSON string or IO object and converts it into a hash.

encode(value, options = nil)

Dumps object in JSON.

>> ActiveSupport::JSON.encode({a: 1, b: 2})
=> "{\"a\":1,\"b\":2}"

Active Support API Reference 1057

Kernel

Methods added to Ruby’s Kernel class are available in all contexts.
active_support/core_ext/kernel/reporting.rb

capture(stream)

Captures the given stream and returns it.

stream = capture(:stdout) { puts 'notice' }
stream # => "notice\n"

enable_warnings

Sets $VERBOSE to true for the duration of the block provided and back to its
original value afterward.

quietly(&block)

Silences both STDOUT and STDERR, even for subprocesses.

silence_stream(stream)

Silences any stream for the duration of the block provided.

silence_stream(STDOUT) do
puts 'This will never be seen'

end

puts 'But this will'

silence_warnings

Sets $VERBOSE to false for the duration of the block provided and back to its
original value afterward.

Active Support API Reference 1058

suppress(*exception_classes)

A method that should be named swallow. Suppresses raising of any exception
classes specified inside of the block provided. Use with caution.

active_support/core_ext/kernel/singleton_class.rb

class_eval

Forces class_eval to behave like singleton_class.class_eval.

Active Support API Reference 1059

KeyGenerator

KeyGenerator is a simple wrapper around OpenSSL’s implementation of
PBKDF2. It can be used to derive a number of keys for various purposes from
a given secret. This lets Rails applications have a single secure secret, but
avoid reusing that key in multiple incompatible contexts.

initialize(secret, options = {})

Creates a new instance. The :iterations option defaults to 2**16–a number
much higher than necessary key derivation usages–just in case someone
decides to use this code for password storage.

generate_key(salt, key_size=64)

Returns a derived key suitable for use. The default key_size is chosen to be
compatible with the default settings of ActiveSupport::MessageVerifier, such
as OpenSSL::Digest::SHA1#block_length.

>> key_generator = ActiveSupport::KeyGenerator.new('my_secret_key')
=> #<ActiveSupport::KeyGenerator:0x007fde6788b5d8

@secret="my_secret_key", @iterations=65536>
>> key_generator.generate_key('my_salt')
=> "\xB6o5\xB2v\xBA\x03\x8E\xE0\xA0\x06[7<>\x81\xBB\xD6B\xB6,

\xF3@a\x153\xB5\xC1\x8C\x8B\xEF\x04\x1C\xB9\x8D\x93I~`\
xCD\xCB\"IKw\\u\xE9v\x15\xEEl\x99\"\xBD\xC7a\x92Y\x1EY\x94d\xFB"

Active Support API Reference 1060

LazyLoadHooks

Allows Rails to lazily load a lot of components in order to make the app boot
process faster. This feature eliminates the need to require ActiveRecord::Base
at boot time purely to apply configuration. Instead a hook is registered that
applies configuration once ActiveRecord::Base is loaded.
Here is an example where on_load method is called to register a hook:

initializer 'active_record.initialize_timezone' do
ActiveSupport.on_load(:active_record) do

self.time_zone_aware_attributes = true
self.default_timezone = :utc

end
end

When the entirety of ActiveRecord::Base has been evaluated then run_load_-
hooks is invoked. The very last line of ActiveRecord::Base is: ActiveSup-
port.run_load_hooks(:active_record, ActiveRecord::Base).

on_load(name, options = {}, &block)

Declares a block that will be executed when a Rails component is fully loaded.
Set :yield option to true if you want the block to be called with base as an
argument, otherwise block will be instance_eval in base.

File activesupport/lib/active_support/lazy_load_hooks.rb, line 41
def execute_hook(base, options, block)

if options[:yield]
block.call(base)

else
base.instance_eval(&block)

end
end

run_load_hooks(name, base = Object)

Run block registered with a given name.

Active Support API Reference 1061

Locale

This section reproduces the standard Active Support locale file for reference
purposes.

en:
date:

formats:
Use the strftime parameters for formats.
When no format has been given, it uses default.
You can provide other formats here if you like!
default: "%Y-%m-%d"
short: "%b %d"
long: "%B %d, %Y"

day_names: [Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday]
abbr_day_names: [Sun, Mon, Tue, Wed, Thu, Fri, Sat]

Don't forget the nil at the beginning; there's no such thing as a 0th month
month_names: [~, January, February, March, April, May, June, July, August, September, \

October, November, December]
abbr_month_names: [~, Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec]
Used in date_select and datetime_select.
order:

- year
- month
- day

time:
formats:

default: "%a, %d %b %Y %H:%M:%S %z"
short: "%d %b %H:%M"
long: "%B %d, %Y %H:%M"

am: "am"
pm: "pm"

Used in array.to_sentence.
support:

array:
words_connector: ", "
two_words_connector: " and "
last_word_connector: ", and "

number:
Used in NumberHelper.number_to_delimited()

Active Support API Reference 1062

These are also the defaults for 'currency', 'percentage', 'precision', and 'human'
format:

Sets the separator between the units, for more precision (e.g. 1.0 / 2.0 == 0.5)
separator: "."
Delimits thousands (e.g. 1,000,000 is a million) (always in groups of three)
delimiter: ","
Number of decimals, behind the separator (the number 1 with a precision of 2 gives\

: 1.00)
precision: 3
If set to true, precision will mean the number of significant digits instead
of the number of decimal digits (1234 with precision 2 becomes 1200, 1.23543 becom\

es 1.2)
significant: false
If set, the zeros after the decimal separator will always be stripped (eg.: 1.200 \

will be 1.2)
strip_insignificant_zeros: false

Used in NumberHelper.number_to_currency()
currency:

format:
Where is the currency sign? %u is the currency unit, %n the number (default: $5.\

00)
format: "%u%n"
unit: "$"
These five are to override number.format and are optional
separator: "."
delimiter: ","
precision: 2
significant: false
strip_insignificant_zeros: false

Used in NumberHelper.number_to_percentage()
percentage:

format:
These five are to override number.format and are optional
separator:
delimiter: ""
precision:
significant: false
strip_insignificant_zeros: false
format: "%n%"

Used in NumberHelper.number_to_rounded()
precision:

format:

Active Support API Reference 1063

These five are to override number.format and are optional
separator:
delimiter: ""
precision:
significant: false
strip_insignificant_zeros: false

Used in NumberHelper.number_to_human_size() and NumberHelper.number_to_human()
human:

format:
These five are to override number.format and are optional
separator:
delimiter: ""
precision: 3
significant: true
strip_insignificant_zeros: true

Used in number_to_human_size()
storage_units:

Storage units output formatting.
%u is the storage unit, %n is the number (default: 2 MB)
format: "%n %u"
units:
byte:

one: "Byte"
other: "Bytes"

kb: "KB"
mb: "MB"
gb: "GB"
tb: "TB"
pb: "PB"
eb: "EB"

Used in NumberHelper.number_to_human()
decimal_units:

format: "%n %u"
Decimal units output formatting
By default we will only quantify some of the exponents
but the commented ones might be defined or overridden
by the user.
units:
femto: Quadrillionth
pico: Trillionth
nano: Billionth
micro: Millionth
mili: Thousandth
centi: Hundredth

Active Support API Reference 1064

deci: Tenth
unit: ""
ten:
one: Ten
other: Tens
hundred: Hundred
thousand: Thousand
million: Million
billion: Billion
trillion: Trillion
quadrillion: Quadrillion

Active Support API Reference 1065

LogSubscriber

Consumes ActiveSupport::Notifications events with the sole purpose of log-
ging them. The log subscriber dispatches notifications to a registered object
based on its given namespace. Every Rails component has its own implemen-
tation of a LogSubscriber.
For example, here is the Active Record log subscriber responsible for logging
queries:

module ActiveRecord
class LogSubscriber < ActiveSupport::LogSubscriber

def sql(event)
"#{event.payload[:name]} (#{event.duration}) #{event.payload[:sql]}"

end
end

end

It’s registered as:

ActiveRecord::LogSubscriber.attach_to :active_record

Since we need to know all instance methods before attaching the log sub-
scriber, the line above should be called after your ActiveRecord::LogSubscriber
definition.
After configured, whenever a sql.active_record notification is published, it will
properly dispatch the event (ActiveSupport::Notifications::Event) to the sql
method.
Log subscriber also has some helpers to deal with logging and automatically
flushes all logs when a request cycle finishes.
The colormethod, available inside your own subclasses of LogSubscribermakes
highlighting terminal output using ANSI character sequences very easy.

color(text, color, bold = false)

The text parameter is the text to format. The color parameter is one of the
following constant values: BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA,
CYAN, or WHITE. Finally, indicate whether output should be bold or not with
a boolean value.
Here’s the previous example, dressed up for Christmas.

Active Support API Reference 1066

def sql(event)
"#{color(event.payload[:name],GREEN,true)} (#{color(event.duration, RED, true}) #{color(\

event.payload[:sql], WHITE, true)}"
end

ActiveSupport::LogSubscriber::TestHelper

Provides some helpers to deal with testing log subscribers by setting up
notifications. Include the module in your test case or spec, and the test helper
will take care of setting up the queue, subscriptions and turning colors in
logs off. You’ll get a @logger instance variable in your test cases or examples
containing anything logged.

class SyncLogSubscriberTest < ActiveSupport::TestCase
include ActiveSupport::LogSubscriber::TestHelper

setup do
ActiveRecord::LogSubscriber.attach_to(:active_record)

end

def test_basic_query_logging
Developer.all.to_a
wait
assert_equal 1, @logger.logged(:debug).size
assert_match(/Developer Load/, @logger.logged(:debug).last)
assert_match(/SELECT * FROM "developers"/, @logger.logged(:debug).last)

end
end

Active Support API Reference 1067

Logger

Accessible via the logger property in various Rails contexts such as Active
Record models and controller classes. Always accessible via Rails.logger. Use
of the logger is explained in Chapter 1, “Rails Environments and Configura-
tion”.

active_support/logger.rb

Logger.broadcast(logger)

Generates an anonymous module, that is used to extend an existing logger,
which adds the behavior to broadcast to multiple loggers. For instance, when
initializing a Rails console, Rails.logger is extended to broadcast to STDERR,
causing Rails to log to both a log file and STDERR.

console = ActiveSupport::Logger.new(STDERR)
Rails.logger.extend ActiveSupport::Logger.broadcast(console)

active_support/logger_silence.rb

silence(temporary_level = Logger::ERROR, &block)

Silences the logger for the duration of the block.

Active Support API Reference 1068

MessageEncryptor

A simple way to encrypt values which get stored somewhere you don’t trust.
The cipher text and initialization vector are base64 encoded and returned to
you.
Can be used in situations similar to the MessageVerifier, but where you don’t
want users to be able to determine the value of the payload.
active_support/message_encryptor.rb

MessageEncryptor.new(secret, *signature_key_or_options)

Creates a new instance of MessageEncryptor. The supplied secret must be at
least as long as the cipher key size. By default, the cipher is aes-256-cbc, which
would require a cipher key size of at least 256 bits. If you are using a user-en-
tered secret, you can generate a suitable keywith OpenSSL::Digest::SHA256.new(user_-
secret).digest.
Available options are:

:cipher
The cipher to use. Can be any cipher returned by OpenSSL::Cipher.ciphersDefault
is ‘aes-256-cbc’.

digest
String of digest to use for signing. Default is SHA1. Ignored when using an
AEAD cipher like ‘aes-256-gcm’.

:serializer
Object serializer to use (Default is Marshal).

MessageEncryptor.key_len(cipher = default_cipher)

Given a cipher, returns the key length of the cipher to help generate a key of
the desired size.

encrypt_and_sign(value)

Encrypt and sign a value. The value needs to be signed to avoid padding
attacks.

Active Support API Reference 1069

decrypt_and_verify(value)

Decrypts and verifies a value. The value needs to be verified to avoid padding
attacks.

Active Support API Reference 1070

MessageVerifier

MessageVerifier makes it easy to generate and verify signed messages to
prevent tampering. This is useful for cases like remember-me tokens and auto-
unsubscribe links where the session store isn’t suitable or available.

>> msg = v.generate([1, 2.weeks.from_now])
=> "BAhbB2kGVTogQWN0aXZlU3VwcG9ydDo..."
>> id, time = v.verify(msg)
=> [1, Fri, 25 Oct 2013 18:03:27 UTC +00:00]

active_support/message_verifier.rb

MessageVerifier.new(secret, options = {})

Creates a new MessageVerifier with the supplied secret.
Available options are:

:digest
Default is ‘SHA1’.

:serializer
Object serializer to use (Default is Marshal).

generate(value)

Generate a signed message.

cookies[:remember_me] = verifier.generate([user.id, 2.weeks.from_now])

verify(signed_message)

Verify a signed message.

id, time = @verifier.verify(cookies[:remember_me])
if time < Time.now

self.current_user = User.find(id)
end

Active Support API Reference 1071

Module

Extensions to Ruby’s Module class, available in all contexts.
active_support/core_ext/module/aliasing.rb

alias_attribute(new_name, old_name)

This super-useful method allows you to easily make aliases for attributes,
including their reader, writer, and query methods.
In the following example, the Content class is serving as the base class for Email
using STI, but e-mails should have a subject, not a title:

class Content < ActiveRecord::Base
has column named 'title'

end

class Email < Content
alias_attribute :subject, :title

end

As a result of the alias_attribute, you can see in the following example that
the title and subject attributes become interchangeable:

>> e = Email.find(:first)

>> e.title
=> "Superstars"

>> e.subject
=> "Superstars"

>> e.subject?
=> true

>> e.subject = "Megastars"
=> "Megastars"

>> e.title
=> "Megastars"

Active Support API Reference 1072

alias_method_chain(target, feature)

This method is deprecated. Please use Module#prepend that comes with Ruby
2.0 or newer instead.

active_support/core_ext/module/anonymous.rb

anonymous?

Returns true if self does not have a name.
A module gets a name when it is first assigned to a constant. Either via the
module or class keyword

module M
end

>> M.name
=> "M"

m = Module.new

>> m.name
=> ""

or by an explicit assignment

m = Module.new

>> M = m # m gets a name here as a side-effect

>> m.name
=> "M"

active_support/core_ext/module/attribute_accessors.rb

Extends Module with class-level and instance accessors for attributes, just like
the native attr* accessors do on instances. Aliased as cattr_methods on Class.
Also available in per-thread versions, as defined in active_support/core_ext/-
module/attribute_accessors_per_thread.rb.

Active Support API Reference 1073

mattr_accessor(*syms) / thread_mattr_accessor(*syms)

Creates both reader and writer methods for supplied method names syms.

class Person
mattr_accessor :hair_colors

end

>> Person.hair_colors = [:brown, :black, :blonde, :red]

>> Person.new.hair_colors
=> [:brown, :black, :blonde, :red]

mattr_reader(*syms) / thread_mattr_reader(*syms)

Creates class and instance reader methods for supplied method names syms.

mattr_writer(*syms) / thread_mattr_writer(*syms)

Creates class and instance writer methods for supplied method names syms.

active_support/core_ext/module/attr_internal.rb

attr_internal

Alias for attr_internal_accessor.

attr_internal_accessor(*attrs)

Declares attributes backed by internal instance variables names (using an @_-
naming convention). Basically just a mechanism to enhance controlled access
to sensitive attributes.
For instance, Object’s copy_instance_variables_from will not copy internal in-
stance variables.

attr_internal_reader(*attrs)

Declares an attribute reader backed by an internally named instance variable.

Active Support API Reference 1074

attr_internal_writer(*attrs)

Declares an attribute writer backed by an internally named instance variable.

active_support/core_ext/module/delegation.rb

delegate(*methods)

Provides a delegate class method to easily expose contained objects’methods
as your own. Pass one or more methods (specified as symbols or strings) and
the name of the target object via the :to option (also a symbol or string). At
least one method name and the :to option are required.
Delegation is particularly useful with Active Record associations:

class Greeter < ActiveRecord::Base
def hello

"hello"
end

def goodbye
"goodbye"

end
end

class Foo < ActiveRecord::Base
belongs_to :greeter
delegate :hello, to: :greeter

end

Foo.new.hello # => "hello"
Foo.new.goodbye # => NoMethodError: undefined method `goodbye' for #<Foo:0x1af30c>

Multiple delegates to the same target are allowed:

Active Support API Reference 1075

class Foo < ActiveRecord::Base
belongs_to :greeter
delegate :hello, :goodbye, to: :greeter

end

Foo.new.goodbye # => "goodbye"

Methods can be delegated to instance variables, class variables, or constants
by providing them as a symbols:

class Foo
CONSTANT_ARRAY = [0,1,2,3]
@@class_array = [4,5,6,7]

def initialize
@instance_array = [8,9,10,11]

end
delegate :sum, to: :CONSTANT_ARRAY
delegate :min, to: :@@class_array
delegate :max, to: :@instance_array

end

Foo.new.sum # => 6
Foo.new.min # => 4
Foo.new.max # => 11

Delegates can optionally be prefixed using the :prefix option. If the value is
true, the delegate methods are prefixed with the name of the object being
delegated to.

Person = Struct.new(:name, :address)

class Invoice < Struct.new(:client)
delegate :name, :address, to: :client, prefix: true

end

john_doe = Person.new("John Doe", "Vimmersvej 13")
invoice = Invoice.new(john_doe)
invoice.client_name # => "John Doe"
invoice.client_address # => "Vimmersvej 13"

It is also possible to supply a custom prefix.

Active Support API Reference 1076

class Invoice < Struct.new(:client)
delegate :name, :address, to: :client, prefix: :customer

end

invoice = Invoice.new(john_doe)
invoice.customer_name # => "John Doe"
invoice.customer_address # => "Vimmersvej 13"

If the delegate object is nil an exception is raised, and that happens no matter
whether nil responds to the delegated method. You can get a nil instead with
the :allow_nil option.

class Foo
attr_accessor :bar
def initialize(bar = nil)

@bar = bar
end
delegate :zoo, to: :bar

end

Foo.new.zoo # raises NoMethodError exception (you called nil.zoo)

class Foo
attr_accessor :bar
def initialize(bar = nil)

@bar = bar
end
delegate :zoo, to: :bar, allow_nil: true

end

Foo.new.zoo # returns nil

active_support/core_ext/module/deprecation.rb

deprecate(*method_names)

Provides a deprecate class method to easily deprecate methods. Convenience
wrapper for ActiveSupport::Deprecation.deprecate_methods(self, *method_names).

Active Support API Reference 1077

deprecate :foo
deprecate bar: 'message'
deprecate :foo, :bar, baz: 'warning!', qux: 'gone!'

active_support/core_ext/module/introspection.rb

local_constants

Returns the constants that have been defined locally by this object and not in
an ancestor.

parent

Returns the module that contains this one; if this is a root module, such as
::MyModule, then Object is returned.

>> ActiveRecord::Validations.parent
=> ActiveRecord

parent_name

Returns the name of the module containing this one.

>> ActiveRecord::Validations.parent_name
=> "ActiveRecord"

parents

Returns all the parents of this module according to its name, ordered from
nested outwards. The receiver is not contained within the result.

Active Support API Reference 1078

module M
module N
end

end
X = M::N

>> M.parents
=> [Object]

>> M::N.parents
=> [M, Object]

>> X.parents
=> [M, Object]

active_support/core_ext/module/remove_method.rb

redefine_method(method, &block)

The method define_method in Ruby allows the definition of methods dynami-
cally. However, define_method doesn’t check for the existence of the method
beforehand, which issues a warning if it does exist. The method redefine_-
method resolves this by first removing the method definition if it exists, and
internally calling define_method.

remove_possible_method(method)

Removes a method definition if it exists.

remove_possible_singleton_method(method)

Removes a singleton method definition if it exists.

active_support/dependencies.rb

const_missing(const_name)

The const_missing callback is invoked when Ruby can’t find a specified con-
stant in the current scope, which is what makes Rails autoclass loading
possible. See the Dependencies module for more detail.

Active Support API Reference 1079

Module::Concerning

Proposed as a natural, low-ceremony way to separate bite-sized concerns.
Include, then call concerning in the class context.

concerning(topic, &block)

Equivalent to defining an inline module within a class, having it extend
ActiveSupport::Concern, and then mixing it into the class.

class Todo
concerning :EventTracking do

included do
has_many :events
before_create :track_creation
after_destroy :track_deletion

end

private
def track_creation

...
end

end
end

>> Todo.ancestors
=> [Todo, Todo::EventTracking, Object]

If a class is big enough to merit this technique, then it’s probably violating
traditional object-oriented guidelines such as the Single Responsibility Prin-
ciple.

concern(topic, &module_definition)

Shorthand form of defining an ActiveSupport::Concern.

Active Support API Reference 1080

concern :Bar do
...

end

equivalent to

module Bar
extend ActiveSupport::Concern
...

end

Active Support API Reference 1081

Multibyte::Chars

The chars proxy enables you to work transparently with multibyte encodings
in the Ruby String class without having extensive knowledge about encoding.
active_support/multibyte/chars.rb

A Chars object accepts a string upon initialization and proxies String methods
in an encoding-safe manner. All the normal String methods are proxied
through the Chars object, and can be accessed through the mb_chars method.
Methods that would normally return a String object now return a Chars object
so that methods can be chained together safely.

>> "The Perfect String".mb_chars.downcase.strip.normalize
=> #<ActiveSupport::Multibyte::Chars:0x007ffdcac6f7d0

@wrapped_string="the perfect string">

Chars objects are perfectly interchangeable with String objects as long as no
explicit class checks are made. If certain methods do explicitly check the class,
call to_s before you pass Chars objects to them, to go back to a normal String
object:

bad.explicit_checking_method("T".chars.downcase.to_s)

The default Chars implementation assumes that the encoding of the string is
UTF-8. If you want to handle different encodings, you can write your own
multibyte string handler and configure it through ActiveSupport::Multibyte.proxy_-
class

class CharsForUTF32
def size

@wrapped_string.size / 4
end

def self.accepts?(string)
string.length % 4 == 0

end
end

ActiveSupport::Multibyte.proxy_class = CharsForUTF32

Note that a few methods are defined on Chars instead of the handler because
they are defined on Object or Kernel and method_missing (the method used for
delegation) can’t catch them.

Active Support API Reference 1082

<=> (other)

Returns -1, 0, or +1 depending on whether the Chars object is to be sorted
before, equal to, or after the object on the right side of the operation. In other
words, it works exactly as you would expect it to.

capitalize

Converts the first character to uppercase and the remainder to lowercase.

>> 'über'.mb_chars.capitalize.to_s
=> "Über"

compose

Performs composition on all the characters.

decompose

Performs canonical decomposition on all the characters.

downcase

Converts characters in the string to lowercase.

>> 'VĚDA A VÝZKUM'.mb_chars.downcase.to_s
=> "věda a výzkum"

grapheme_length

Returns the number of grapheme clusters in the string.

limit(limit)

Limits the byte size of the string to a number of bytes without breaking
characters.

Active Support API Reference 1083

method_missing(m, *a, &b)

Tries to forward all undefined methods to the enclosed string instance. Also
responsible for making the bang (!) methods destructive, since a handler
doesn’t have access to change an enclosed string instance.

normalize(form = nil)

Returns the KC normalization of the string by default. NFKC is considered the
best normalization form for passing strings to databases and validations.
A normalization form can be one of the following:

• :c
• :kc
• :d
• :kd

Default is ActiveSupport::Multibyte::Unicode#default_normalization_form.

reverse

Reverses all characters in the string.

>> 'Café'.mb_chars.reverse.to_s
=> 'éfaC'

slice!(*args)

Works like like String’s slice!, with the exception that the items in the
resulting list are Char instances instead of String.

split(*args)

Works just like the normal String’s split method, with the exception that the
items in the resulting list are Chars instances instead of String, which makes
chaining calls easier.

Active Support API Reference 1084

>> 'Café périferôl'.mb_chars.split(/é/).map { |part| part.upcase.to_s }
=> ["CAF", " P", "RIFERÔL"]

swapcase

Converts characters in the string to the opposite case.

>> "El Cañón".mb_chars.swapcase.to_s
=> "eL cAÑÓN"

tidy_bytes(force = false)

Replaces all ISO-8859-1 or CP1252 characters by their UTF-8 equivalent
resulting in a valid UTF-8 string.
Passing true will forcibly tidy all bytes, assuming that the string’s encoding is
entirely CP1252 or ISO-8859-1.

> "obie".mb_chars.tidy_bytes
=> #<ActiveSupport::Multibyte::Chars:0x007ffdcb76ecf8

@wrapped_string="obie">

Active Support API Reference 1085

Multibyte::Unicode

Contains methods handling Unicode strings.
The NORMALIZATION_FORMS constant contains an array of all available normal-
ization forms. See http://www.unicode.org/reports/tr15/tr15-29.html for more
information about normalization.
Change the default normalization used for operations that require normaliza-
tion by setting the value of default_normalization_form to any of the normaliza-
tions in NORMALIZATION_FORMS.

ActiveSupport::Multibyte::Unicode.default_normalization_form = :c

Unicode.compose(codepoints)

Compose decomposed characters to the composed form.

Unicode.decompose(type, codepoints)

Decompose composed characters to the decomposed form. The type argument
accepts :canonical or :compatability.

Unicode.downcase(string)

Converts a unicode string to lowercase.

Unicode.in_char_class?(codepoint, classes)

Detect whether the codepoint is in a certain character class. Returns true
when it’s in the specified character class and false otherwise. Valid character
classes are: :cr, :lf, :l, :v, :lv, :lvt and :t.

Unicode.normalize(string, form = nil)

Returns the KC normalization of the string by default. NFKC is considered
the best normalization form for passing strings to databases and validations.
The form specifies the form you want to normalize in and should be one of
the following: :c, :kc, :d, or :kd. Default is form is stored in the ActiveSup-
port::Multibyte.default_normalization_form attribute and is overridable in an
initializer.

http://www.unicode.org/reports/tr15/tr15-29.html

Active Support API Reference 1086

Unicode.pack_graphemes(unpacked)

Reverse operation of unpack_graphemes.

Unicode.reorder_characters(codepoints)

Re-order codepoints so the string becomes canonical.

Unicode.swapcase(string)

Swapcase on a unicode string.

Unicode.tidy_bytes(string, force = false)

Replaces all ISO-8859-1 or CP1252 characters by their UTF-8 equivalent
resulting in a valid UTF-8 string.

Unicode.unpack_graphemes(string)

Unpack the string at grapheme boundaries. Returns a list of character lists.

>> ActiveSupport::Multibyte::Unicode.unpack_graphemes('ffff')
=> [[102], [102], [102], [102]]

>> ActiveSupport::Multibyte::Unicode.unpack_graphemes('Café')
=> [[67], [97], [102], [233]]

Unicode.upcase(string)

Converts a unicode string to uppercase.

Active Support API Reference 1087

NameError

Small enhancements to Ruby’s built-in NameError exception.

missing_name

Extract the name of the missing constant from the exception message.

begin
HelloWorld

rescue NameError => e
e.missing_name

end
=> "HelloWorld"

missing_name?(name)

Was this exception raised because the given name was missing?

begin
HelloWorld

rescue NameError => e
e.missing_name?("HelloWorld")

end
=> true

Active Support API Reference 1088

NilClass

Remember that everything in Ruby is an object, even nil, which is a special
reference to a singleton instance of the NilClass.
active_support/core_ext/object/blank.rb

blank?

Returns true.

active_support/core_ext/object/try.rb

try(*args)

Calling try on nil always returns nil. It becomes especially helpful when
navigating through associations that may return nil.

nil.try(:name) # => nil

Without try:

@person && @person.children.any? && @person.children.first.name

With try:

@person.try(:children).try(:first).try(:name)

try!(*args)

Calling try! on nil always returns nil.

nil.try!(:name) # => nil

active_support/json/encoding.rb

as_json

Returns "null".

Active Support API Reference 1089

Notifications

Provides a “pub/sub” instrumentation API for Ruby.

Instrumenters

To instrument something of interest, wrap it in a call to ActiveSupport::Notifications.instrument
like this:

ActiveSupport::Notifications.instrument('render', extra: :information) do
render plain: 'Foo'

end

In the example above, 'render' is the name of the event, and the rest is called
the payload. The payload is a mechanism that allows instrumenters to pass
extra information to subscribers. Payloads consist of a hash whose contents
are arbitrary and generally depend on the event.
First the block is executed, then subscribers to the ‘render’ event are notified.

Subscribers

You can consume Notifications events and the information they provide by
registering a subscriber.

ActiveSupport::Notifications.subscribe('render') do |name, start, finish, id, payload|
name # => String, name of the event (such as 'render' from above)
start # => Time, when the instrumented block started execution
finish # => Time, when the instrumented block ended execution
id # => String, unique ID for this notification
payload # => Hash, the payload

end

For instance, let’s store all 'render' events in an array. We’ll make use of
the ActiveSupport::Notifications::Event class to encapsulate the event payload
data in a clean fashion:

Active Support API Reference 1090

events = []

ActiveSupport::Notifications.subscribe('render') do |*args|
events << ActiveSupport::Notifications::Event.new(*args)

end

That code returns right away, you are just subscribing to events. The block is
saved and will be called whenever someone instruments ‘render’:

ActiveSupport::Notifications.instrument('render', extra: :information) do
render plain: 'Foo'

end

>> event = events.first
>> event.name
=> "render"
>> event.duration
=> 10 (in milliseconds)
>> event.payload
=> { extra: :information }

The block in the subscribe call gets the name of the event, start timestamp,
end timestamp, a string with a unique identifier for that event (something like
“535801666f04d0298cd6”), and a hash with the payload, in that order.

The duration information is what makes this more than just a generic pub/sub
event channel.

If an exception happens during a particular instrumentation the payload will
get a key called :exception with an array of two elements: a string with the
name of the exception class, and the exceptionmessage. The :exception_object
key of the payload will have the exception itself as the value.
As the previous example depicts, the class ActiveSupport::Notifications::Event
is able to take the arguments as they come and provide an object-oriented
interface to that data.
It is also possible to pass an object which responds to call method as the
second parameter to the subscribe method instead of a block:

Active Support API Reference 1091

module ActionController
class PageRequest

def call(name, started, finished, unique_id, payload)
Rails.logger.debug ['notification:', name, started, finished, unique_id, payload].jo\

in(' ')
end

end
end

ActiveSupport::Notifications.subscribe('process_action.action_controller', ActionControlle\
r::PageRequest.new)

The event processing of PageRequest in the example will result in the following
output within the logs (including a hash with the payload):

notification: process_action.action_controller 2012-04-13 01:08:35 +0300 2012-04-13 01:08:\
35 +0300 af358ed7fab884532ec7 {

controller: "Devise::SessionsController",
action: "new",
params: {"action"=>"new", "controller"=>"devise/sessions"},
format: :html,
method: "GET",
path: "/login/sign_in",
status: 200,
view_runtime: 279.3080806732178,
db_runtime: 40.053

}

You can also subscribe to all events whose name matches a certain regular
expression:

ActiveSupport::Notifications.subscribe(/render/) do |*args|
...

end

Calling subscribe without arguments will subscribe to all events.

Temporary Subscriptions

Sometimes you do not want to subscribe to an event for the entire life of the
application. There are two ways to unsubscribe.

Active Support API Reference 1092

The instrumentation framework is designed for long-running sub-
scribers. Use temporary subscriptions sparingly, because it wipes
some internal caches causing a negative impact on overall perfor-
mance.

Subscribe While a Block Runs

You can subscribe to some event temporarily while some block runs. For
example, in

callback = lambda {|*args| ... }
ActiveSupport::Notifications.subscribed(callback, "sql.active_record") do

...

The callback lambda will be called for all sql.active_record events instru-
mented during the execution of the block. The callback is unsubscribed
automatically after that.

Manual Unsubscription

The subscribe method returns a subscriber object that can be used later to
unsubscribe.

subscriber = ActiveSupport::Notifications.subscribe("render") do |*args|
...

end

ActiveSupport::Notifications.unsubscribe(subscriber)

You can also unsubscribe by passing the name of the subscriber object. Note
that this will unsubscribe all subscriptions with the given name:

ActiveSupport::Notifications.unsubscribe("render")

For a fantastic writeup on how to integrate
ActiveSupport::Notifications with 3rd-party metrics collection services
such as Datadog8 or Librato9, read this blog post from Ken Collins10.

8
https://www.datadoghq.com/
9https://www.librato.com/
10http://metaskills.net/2013/12/15/instrumenting-your-code-with-activesupport-notifications/

https://www.datadoghq.com/
https://www.librato.com/
http://metaskills.net/2013/12/15/instrumenting-your-code-with-activesupport-notifications/
https://www.datadoghq.com/
https://www.librato.com/
http://metaskills.net/2013/12/15/instrumenting-your-code-with-activesupport-notifications/

Active Support API Reference 1093

Notifications::Fanout

The default queue implementation that powers ActiveSupport::Notifications
by default. It just pushes events to all registered log subscribers in a thread-
safe manner.
It’s possible to replace Fanout with a different queue implementation by
changing the value of Notifications.notifier in an initializer like this:

ActiveSupport::Notifications.notifier = MySpecialQueue.new(OPTS)

Active Support API Reference 1094

NumberHelper

See NumberHelper in Chapter 11 “All About Helpers”.

Active Support API Reference 1095

Numeric

Extensions to Ruby’s Numeric class.
active_support/core_ext/object/blank.rb

blank?

Returns false.

active_support/json/encoding.rb

as_json

Returns self.

encode_json

Returns self.to_s.

active_support/core_ext/numeric/bytes.rb

Enables the use of byte calculations and declarations, like 45.bytes + 2.6.megabytes.

Constants

The following constants are defined in bytes.rb.

class Numeric
KILOBYTE = 1024
MEGABYTE = KILOBYTE * 1024
GIGABYTE = MEGABYTE * 1024
TERABYTE = GIGABYTE * 1024
PETABYTE = TERABYTE * 1024
EXABYTE = PETABYTE * 1024
...

end

Active Support API Reference 1096

byte / bytes

Returns the value of self. Enables the use of byte calculations and declara-
tions, like 45.bytes + 2.6.megabytes.

kilobyte / kilobytes

Returns self * 1024.

megabyte / megabytes

Returns self * 1024.kilobytes.

gigabyte / gigabytes

Returns self * 1024.megabytes.

terabyte / terabytes

Returns self * 1024.gigabytes.

petabyte / petabytes

Returns self * 1024.terabytes.

exabyte / exabytes2

Returns self * 1024.petabytes.

active_support/core_ext/numeric/conversions.rb

to_formatted_s(format = :default, options = {})

Generates a formatted string representation of a number. Options are pro-
vided for phone numbers, currency, percentage, precision, positional nota-
tion, file size and pretty printing.
Aliased as to_s.

Active Support API Reference 1097

:currency

Formats a number into a currency string. The :currency formatting option can
be combined with the following additional options:

:delimiter
Sets the thousands delimiter, defaults to ",".

:format
Sets the format for non-negative numbers, defaults to "%u%n".

:locale
Sets the locale to be used for formatting, defaults to current locale.

:negative_format
Sets the format for negative numbers, defaults to prepending an hyphen
to the formatted number.

:precision
Sets the level of precision, defaults to 2.

:separator
Sets the separator between the units, defaults to ".".

:unit
Sets the denomination of the currency, defaults to "$".

>> 1234567890.50.to_s(:currency)
=> $1,234,567,890.50

>> 1234567890.506.to_s(:currency)
=> $1,234,567,890.51

>> 1234567890.506.to_s(:currency, precision: 3)
=> $1,234,567,890.506

>> 1234567890.506.to_s(:currency, locale: :fr)
=> 1 234 567 890,51 €

>> -1234567890.50.to_s(:currency, negative_format: '(%u%n)')
=> ($1,234,567,890.50)

>> 1234567890.50.to_s(:currency, unit: '£', separator: ',',
delimiter: '')

=> £1234567890,50

Active Support API Reference 1098

:delimited

Formats a number with grouped thousands using delimiter. The :delimited
formatting option can be combined with the following additional options:

:delimiter
Sets the thousands delimiter, defaults to ",".

:locale
Sets the locale to be used for formatting, defaults to current locale.

:separator
Sets the separator between the units, defaults to ".".

>> 12345678.to_s(:delimited)
=> 12,345,678

>> 12345678.05.to_s(:delimited)
=> 12,345,678.05

>> 12345678.to_s(:delimited, delimiter: '.')
=> 12.345.678

:human

Formats a number that is more readable to humans. Useful for numbers that
are extremely large.The :human formatting option can be combined with the
following:

:delimiter
Sets the thousands delimiter, defaults to "".

:format
Sets the format for non-negative numbers, defaults to "%n %u". The field
types are:

• %u: The quantifier
• %n: The number

:locale
Sets the locale to be used for formatting, defaults to current locale.

:precision
Sets the level of precision, defaults to 3.

Active Support API Reference 1099

:separator
Sets the separator between fractional and integer digits, defaults to ".".

:significant
If true, precision will be the number of significant_digits, otherwise the
number of fractional digits are used. Defaults to true.

:strip_insignificant_zeros
Setting to true removes insignificant zeros after the decimal separator,
defaults to true.

:units
A hash of unit quantifier names, or a string containing an i18n scope
where to find this hash. It might have the following keys:

• integers: :unit, :ten, *:hundred, :thousand, :million, *:billion, :tril-
lion, *:quadrillion

• fractionals: :deci, :centi, *:mili, :micro, :nano, *:pico, :femto

>> 123.to_s(:human)
=> "123"

>> 1234.to_s(:human)
=> "1.23 Thousand"

>> 1234567.to_s(:human)
=> "1.23 Million"

>> 489939.to_s(:human, precision: 4)
=> "489.9 Thousand"

:human_size

Formats a number of bytes into a more understandable string representation.
Useful for reporting file sizes to users. The :human_size formatting option can
be combined with the following additional options:

:delimiter
Sets the thousands delimiter, defaults to "".

:format
Sets the format for non-negative numbers, defaults to "%u%n".

Active Support API Reference 1100

:locale
Sets the locale to be used for formatting, defaults to current locale.

:precision
Sets the level of precision, defaults to 3.

:prefix
Setting to :si formats the number using the SI prefix, defaults to :binary.

:separator
Sets the separator between fractional and integer digits, defaults to ".".

:significant
If true, precision will be the number of significant_digits, otherwise the
number of fractional digits are used. Defaults to true.

:strip_insignificant_zeros
Setting to true removes insignificant zeros after the decimal separator,
defaults to true.

:raise
Setting to true raises InvalidNumberError when the number is invalid.

>> 123.to_s(:human_size)
=> 123 Bytes

>> 1234.to_s(:human_size)
=> 1.21 KB

>> 12345.to_s(:human_size)
=> 12.1 KB

>> 1234567.to_s(:human_size)
=> 1.18 MB

>> 1234567.to_s(:human_size, precision: 2)
=> 1.2 MB

:percentage

Formats a number as a percentage string. The :percentage formatting option
can be combined with the following additional options:

:delimiter
Sets the thousands delimiter, defaults to "".

Active Support API Reference 1101

:format
Sets the format of the percentage string, defaults to "%n%".

:locale
Sets the locale to be used for formatting, defaults to current locale.

:precision
Sets the level of precision, defaults to 3.

:separator
Sets the separator between the units, defaults to "."

:significant
If true, precision will be the number of significant_digits, otherwise the
number of fractional digits are used. Defaults to false.

:strip_insignificant_zeros
Setting to true removes insignificant zeros after the decimal separator,
defaults to false.

>> 100.to_s(:percentage)
=> 100.000%

>> 100.to_s(:percentage, precision: 0)
=> 100%

>> 1000.to_s(:percentage, delimiter: '.', separator: ',')
=> 1.000,000%

>> 302.24398923423.to_s(:percentage, precision: 5)
=> 302.24399%

>> 1000.to_s(:percentage, locale: :fr)
=> 1 000,000%

>> 100.to_s(:percentage, format: '%n %')
=> 100 %

:phone

Formats a number into a US phone number. The :phone formatting option can
be combined with the following additional options:

:area_code
Adds parentheses around the area code.

Active Support API Reference 1102

:country_code
Sets the country code for the phone number.

:delimiter
Specifies the delimiter to use, defaults to "-".

:extension
Specifies an extension to add to the end of the generated number.

>> 5551234.to_s(:phone)
=> 555-1234

>> 1235551234.to_s(:phone)
=> 123-555-1234

>> 1235551234.to_s(:phone, area_code: true)
=> (123) 555-1234

>> 1235551234.to_s(:phone, delimiter: ' ')
=> 123 555 1234

>> 1235551234.to_s(:phone, area_code: true, extension: 555)
=> (123) 555-1234 x 555

>> 1235551234.to_s(:phone, country_code: 1)
=> +1-123-555-1234

>> 1235551234.to_s(:phone, country_code: 1, extension: 1343, delimiter: '.')
=> +1.123.555.1234 x 1343

:rounded

Formats a number with the specified level of precision.The :rounded formatting
option can be combined with the following additional options:

:delimiter
Sets the thousands delimiter, defaults to "".

:locale
Sets the locale to be used for formatting, defaults to current locale.

:precision
Sets the level of precision, defaults to 3.

Active Support API Reference 1103

:separator
Sets the separator between the units, defaults to ".".

:significant
If true, precision will be the number of significant_digits, otherwise the
number of fractional digits are used. Defaults to false.

:strip_insignificant_zeros
Setting to true removes insignificant zeros after the decimal separator,
defaults to false.

>> 111.2345.to_s(:rounded)
=> 111.235

>> 111.2345.to_s(:rounded, precision: 2)
=> 111.23

>> 13.to_s(:rounded, precision: 5)
=> 13.00000

>> 389.32314.to_s(:rounded, precision: 0)
=> 389

>> 111.2345.to_s(:rounded, significant: true)
=> 111

>> 111.2345.to_s(:rounded, precision: 1, significant: true)
=> 100

active_support/core_ext/numeric/inquiry.rb

Adds a couple of predicates to numbers.

positive?

Returns true if the number is positive.

Active Support API Reference 1104

>> 1.positive? # => true
>> 0.positive? # => false
>> -1.positive? # => false

negative?

Returns true if the number is negative.

active_support/core_ext/numeric/time.rb

Enables the use of time calculations and declarations, like 45.minutes + 2.hours
+ 4.years.
These methods use Time#advance for precise date calculations when using
from_now, ago, etc. as well as adding or subtracting their results from a Time
object. For example:

equivalent to Time.now.advance(months: 1)
1.month.from_now

equivalent to Time.now.advance(years: 2)
2.years.from_now

equivalent to Time.now.advance(months: 4, years: 5)
(4.months + 5.years).from_now

While these methods return instances of Duration that provide precise calcu-
lation when used as in the examples above, care should be taken to note that
this is not true if the result of ‘months’, ‘years’, etc is converted before use:

equivalent to 30.days.to_i.from_now
1.month.to_i.from_now

equivalent to 365.25.days.to_f.from_now
1.year.to_f.from_now

It’s totally unclear to us why you would ever want to convert the result
of a duration expression to integer or float values, especially to use in a
calculation.

Active Support API Reference 1105

ago and until

Appends to a numeric time value to express a moment in the past.

10.minutes.ago

day / days

A duration equivalent to self * 24.hours.

fortnight / fortnights

A duration equivalent to self * 2.weeks.

from_now(time = Time.current) / since(time = Time.current)

An amount of time in the future, from a specified time (which defaults to
Time.current).

hour / hours

A duration equivalent to self * 3600.seconds.

in_milliseconds

An equivalent to self * 1000. This value can be set in JavaScript functions like
getTime().

minute / minutes

A duration equivalent to self * 60.seconds.

month / months

A duration equivalent to self * 30.days.

second / seconds

A duration in seconds equal to self.

Active Support API Reference 1106

week / weeks

A duration equivalent to self * 7.days.

year / years

A duration equivalent to self * 365.25.days.

Active Support API Reference 1107

Object

Rails mixes quite a few methods into the Object class, meaning they are
available via every other object at runtime.
active_support/core_ext/kernel/agnostics.rb

“(command)‘

Makes backticks behave (somewhat more) similarly on all platforms. Onwin32
nonexistent_command raises Errno::ENOENT, but on Unix, the spawned shell prints
a message to stderr and sets $?.

active_support/core_ext/object/acts_like.rb

acts_like?(duck)

A duck-type assistant method. For example, Active Support extends Date to
define an acts_like_date? method, and extends Time to define acts_like_time?.
As a result, we can do x.acts_like?(:time) and x.acts_like?(:date) to do duck-
type-safe comparisons, since classes that we want to act like Time simply need
to define an acts_like_time? method.

active_support/core_ext/object/blank.rb

blank?

An object is blank if it’s false, empty, or a whitespace string. For example, “”,
“ “, nil, [], and {} are blank.
This simplifies:

if !address.nil? && !address.empty?

to

Active Support API Reference 1108

unless address.blank?

presence

Returns object if it’s present? otherwise returns nil. The expression ob-
ject.presence is equivalent to object.present? ? object : nil

This is handy for any representation of objects where blank is the same as
not present at all. For example, this simplifies a common check for HTTP
POST/query parameters:

state = params[:state] if params[:state].present?
country = params[:country] if params[:country].present?
region = state || country || 'US'

becomes

region = params[:state].presence || params[:country].presence || 'US'

present?

An object is present if it’s not blank?.

active_support/core_ext/object/deep_dup.rb

Returns a deep copy of object if it’s duplicable. If it’s not duplicable, returns
self.

active_support/core_ext/object/duplicable.rb

Classes may signal their instances are not duplicable by removing dup and
clone or raising exceptions from them. The normal Ruby idiom for calling dup
on an arbitrary object is to be ready to rescue an exception:

arbitrary_object.dup rescue object

That rescue is very expensive (around 40 times slower than calling an extra
predicate method), which is why the Rails team decided to check duplicable?
instead of using the rescue idiom mentioned above.

Active Support API Reference 1109

duplicable?

Answers the question: “Is it possible to safely duplicate this object?”
Returns false for nil, false, true, symbols, numbers, class and module objects,
true otherwise.

active_support/core_ext/object/inclusion.rb

in?(object)

Returns true if this object is included in the argument. The argument must
respond to include?.

characters = %w(Hulk Thor Hawkeye)

>> "Thor".in?(characters)
=> true

presence_in(another_object)

Returns the receiver if it’s included in the argument otherwise returns nil.
Argument must be any object that responds to include? (else ArgumentError is
raised.)

params[:bucket_type].presence_in %w(project calendar)

active_support/core_ext/object/instance_variables.rb

instance_values

Returns a hash that maps instance variable names without “@” to their
corresponding values. Keys are strings both in Ruby 1.8 and 1.9.

Active Support API Reference 1110

class C
def initialize(x, y)

@x, @y = x, y
end

end

C.new(0, 1).instance_values # => {"x" => 0, "y" => 1}

instance_variable_names

Returns an array of instance variable names including “@”.

class C
def initialize(x, y)

@x, @y = x, y
end

end

C.new(0, 1).instance_variable_names # => ["@y", "@x"]

active_support/core_ext/object/json.rb

to_json

A basic definition of to_jsonwhich prevents calls to to_json from going directly
to the json gem on the following core classes:

• Object
• Array
• FalseClass
• Float
• Hash
• Integer
• NilClass
• String
• TrueClass

active_support/core_ext/object/to_param.rb

Active Support API Reference 1111

to_param

Calls to_param on all of its elements and joins the result with slashes. This is
used by the url_for method in Action Pack.

>> ["riding","high","and","I","want","to","make"].to_param
=> "riding/high/and/I/want/to/make"

active_support/core_ext/object/to_query.rb

to_query(key)

Converts an object into a string suitable for use as a URL query string, using
the given key as the param name.

active_support/core_ext/object/try.rb

try(*a, &block)

Attempts to call a public method whose name is the first argument. Unlike
public_send, if the object does not respond to themethod, nil is returned rather
than an exception being raised.
This simplifies:

@person ? @person.name : nil

to

@person.try(:name)

If try is invoked without arguments, it yields the receiver unless it’s nil.

Active Support API Reference 1112

@person.try do |p|
...

end

Arguments and blocks are forwarded to the method if invoked:

@posts.try(:each_slice, 2) do |a, b|
...

end

try!(*a, &block)

The hipster alternative to try raises a NoMethodError exception if the receiver
is not nil and does not implement the tried method.

>> "a".try!(:upcase)
=> "A"

>> nil.try!(:upcase)
=> nil

>> 123.try!(:upcase)
=> NoMethodError: undefined method `upcase' for 123:Integer

active_support/core_ext/object/with_options.rb

with_options(options)

An elegant way to refactor out common options. Each method called in the
block, with the block variable as the receiver, will have its options merged with
the default options hash provided. Each method called on the block variable
must take an options hash as its final argument.

Active Support API Reference 1113

class Post < ActiveRecord::Base
with_options(dependent: :destroy) do |post|

post.has_many :comments
post.has_many :photos

end
end

active_support/dependencies.rb

load(file, *extras)

Rails overrides Ruby’s built-in load method to tie it into the Dependencies
subsystem.

require(file, *extras)

Rails overrides Ruby’s built-in require method to tie it into the Dependencies
subsystem.

require_dependency(file_name, file_name, message = "No such
file to load -- %s")

Used internally by Rails. Invokes Dependencies.depend_on(file_name).

require_or_load(file_name)

Used internally by Rails. Invokes Dependencies.require_or_load(file_name).

unloadable(const_desc)

Marks the specified constant as unloadable. Unloadable constants are re-
moved each time dependencies are cleared.
Note that marking a constant for unloading need only be done once. Setup
or init scripts may list each unloadable constant that will need unloading;
constants marked in this way will be removed on every subsequent Dependen-
cies.clear, as opposed to the first clear only.
The provided constant descriptor const_descmay be a (nonanonymous) module
or class, or a qualified constant name as a string or symbol.
Returns true if the constant was not previously marked for unloading, false
otherwise.

Active Support API Reference 1114

OrderedOptions

A subclass of Hash that adds a method-missing implementation so that hash
elements can be accessed and modified using normal attribute semantics, aka
dot-notation.
Usually key value pairs are handled something like this:

h = {}
h[:boy] = 'John'
h[:girl] = 'Mary'
h[:boy] # => 'John'
h[:girl] # => 'Mary'
h[:dog] # => nil

Using OrderedOptions, the above code could be reduced to:

opts = ActiveSupport::OrderedOptions.new(h)
opts.boy = 'John'
opts.girl = 'Mary'
opts.boy # => 'John'
opts.girl # => 'Mary'
opts.dog # => nil

To raise an exception when the value is blank, append a bang to the key name,
like this:

opts.dog! # => raises KeyError: key not found: :dog

Active Support API Reference 1115

ProxyObject

A class with no predefined methods that behaves similarly to Builder’s
BlankSlate. Used for proxy classes and can come in handy when implementing
domain-specific languages in your application code.
The implementation of ProxyObject inherits from BasicObject, and un-defines
two methods, and allows exceptions to be raised. The implementation is
reproduced here for your reference.

class ProxyObject < ::BasicObject
undef_method :==
undef_method :equal?

Let ActiveSupport::ProxyObject at least raise exceptions.
def raise(*args)

::Object.send(:raise, *args)
end

end

Active Support API Reference 1116

Railtie

Contains Active Support’s initialization routine for itself and the I18n subsys-
tem.
If you’re depending on Active Support outside of Rails, you should be aware
of what happens in this Railtie in case you end up needing to replicate it in
your own code.

module ActiveSupport
class Railtie < Rails::Railtie # :nodoc:

config.active_support = ActiveSupport::OrderedOptions.new

config.eager_load_namespaces << ActiveSupport

initializer "active_support.deprecation_behavior" do |app|
if deprecation = app.config.active_support.deprecation

ActiveSupport::Deprecation.behavior = deprecation
end

end

Sets the default value for Time.zone
If assigned value cannot be matched to a TimeZone, an exception will be raised.
initializer "active_support.initialize_time_zone" do |app|

require 'active_support/core_ext/time/zones'
zone_default = Time.find_zone!(app.config.time_zone)

unless zone_default
raise 'Value assigned to config.time_zone not recognized. ' \
'Run "rake -D time" for a list of tasks for finding appropriate time zone names.'

end

Time.zone_default = zone_default
end

Sets the default week start
If assigned value is not a valid day symbol
(e.g. :sunday, :monday, ...), an exception will be raised.
initializer "active_support.initialize_beginning_of_week" do |app|

require 'active_support/core_ext/date/calculations'
beginning_of_week_default = Date.

find_beginning_of_week!(app.config.beginning_of_week)

Date.beginning_of_week_default = beginning_of_week_default
end

Active Support API Reference 1117

initializer "active_support.set_configs" do |app|
app.config.active_support.each do |k, v|

k = "#{k}="
ActiveSupport.send(k, v) if ActiveSupport.respond_to? k

end
end

end
end

Active Support API Reference 1118

Range

Extensions to Ruby’s Range class.
active_support/core_ext/enumerable.rb

sum(identity = 0)

Optimize range sum to use arithmetic progression if a block is not given and
we have a range of numeric values.

active_support/core_ext/range/conversions.rb

to_formatted_s(format = :default)

Generates a formatted string representation of the range.

>> (20.days.ago..10.days.ago).to_formatted_s
=> "Fri Aug 10 22:12:33 -0400 2007..Mon Aug 20 22:12:33 -0400 2007"
>> (20.days.ago..10.days.ago).to_formatted_s(:db)
=> "BETWEEN '2007-08-10 22:12:36' AND '2007-08-20 22:12:36'"

You can add your own formats to the Range::RANGE_FORMATS hash. Just use the
format name as the hash key and a lambda as the value.

config/initializers/range_formats.rb
Range::RANGE_FORMATS[:short] = ->(start, stop) { "Between #{start.to_s(:db)} and #{stop.to\
_s(:db)}" }

active_support/core_ext/range/include_range.rb

include?(value)

Extends the default Range#include? to support range comparisons.

Active Support API Reference 1119

>> (1..5).include?(1..5)
=> true

>> (1..5).include?(2..3)
=> true

>> (1..5).include?(2..6)
=> false

The native include? behavior is untouched.

>> ("a".."f").include?("c")
=> true

>> (5..9).include?(11)
=> false

active_support/core_ext/range/overlaps.rb

overlaps?(other)

Compare two ranges and see if they overlap each other

>> (1..5).overlaps?(4..6)
=> true

>> (1..5).overlaps?(7..9)
=> false

Active Support API Reference 1120

Regexp

Extensions to Ruby’s Regexp class.

active_support/core_ext/regexp.rb

multiline?

Returns true if a multiline regular expression.

active_support/json/encoding.rb

as_json

Returns self.to_s.

Active Support API Reference 1121

Rescuable

The Rescuable module is a Concern that adds support for easier exception
handling. Used within Rails primarily in controller actions, but potentially
useful in your own libraries too.

rescue_from(*klasses, &block)

The rescue_from method receives a series of exception classes or class names,
and a trailing :with option with the name of a method or a Proc object to be
called to handle them. Alternatively a block can be given.
Handlers that take one argument will be called with the exception, so that the
exception can be inspected when dealing with it.
Handlers are inherited. They are searched from right to left, from bottom
to top, and up the hierarchy. The handler of the first class for which excep-
tion.is_a?(klass) returns true is the one invoked, if any.
Here’s some example code taken from Action Controller.

class ApplicationController < ActionController::Base
rescue_from User::NotAuthorized, with: :deny_access
rescue_from ActiveRecord::RecordInvalid, with: :show_errors

rescue_from 'MyAppError::Base' do |exception|
render xml: exception, status: 500

end

protected
def deny_access

...
end

def show_errors(exception)
exception.record.new? ? ...

end
end

rescue_with_handler(exception, object: self,
visited_exceptions: [])

Matches an exception to a handler based on the exception class.

Active Support API Reference 1122

If no handler matches the exception, check for a handler matching the
(optional) exception.cause. If no handler matches the exception or its cause,
this method returns nil.

Don’t forget the possibility of having to re-raise unhandled exceptions.

begin
…

rescue => exception
rescue_with_handler(exception) || raise

end

Active Support API Reference 1123

SecureRandom

base58(n = 16)

Generates a random base58 string. The argument n specifies the length, of
the random string to be generated. The result may contain alphanumeric
characters except 0, O, I and l

p SecureRandom.base58 # => "4kUgL2pdQMSCQtjE"
p SecureRandom.base58(24) # => "77TMHrHJFvFDwodq8w7Ev2m7"

Active Support API Reference 1124

SecurityUtils

secure_compare(a, b)

Used internally by Rails to do constant-time string comparison in authentica-
tion and message verification routines.
If you’re going to use this method in your own secure applications, make sure
that the values compared are of fixed length, such as strings that have already
been processed by HMAC. This method should not be used on variable length
plaintext strings because it could leak length info via timing attacks.

Active Support API Reference 1125

String

Extensions to Ruby’s String class.
active_support/json/encoding.rb

as_json

Returns self.

encode_json

Returns JSON escaped version of self.

active_support/core_ext/object/blank.rb

blank?

Returns true if the string consists of only whitespace.

class String
def blank?

self !~ /\S/
end

end

active_support/core_ext/string/access.rb

at(position)

Returns the character at position, treating the string as an array (where 0
is the first character). Returns nil if the position exceeds the length of the
string.

Active Support API Reference 1126

>> "hello".at(0)
=> "h"

>> "hello".at(4)
=> "o"

>> "hello".at(10)
=> nil

first(number)

Returns the first number of characters in a string.

"hello".first # => "h"
"hello".first(2) # => "he"
"hello".first(10) # => "hello"

from(position)

Returns the remaining characters of a string from the position, treating the
string as an array (where 0 is the first character). Returns nil if the position
exceeds the length of the string.

"hello".at(0) # => "hello"
"hello".at(2) # => "llo"
"hello".at(10) # => nil

last(number)

Returns the last number of characters in a string.

"hello".last # => "o"
"hello".last(2) # => "lo"
"hello".last(10) # => "hello"

to(position)

Returns the beginning of the string up to the position treating the string as
an array (where 0 is the first character). Doesn’t produce an error when the
position exceeds the length of the string.

Active Support API Reference 1127

"hello".at(0) # => "h"
"hello".at(2) # => "hel"
"hello".at(10) # => "hello"

active_support/core_ext/string/conversions.rb

to_date

Uses Date.parse to turn a string into a Date.

to_datetime

Uses Date.parse to turn a string into a DateTime.

to_time(form = :local)

Uses Date.parse to turn a string into a Time either using either :utc or :local
(default).

active_support/core_ext/string/exclude.rb

exclude?(other)

The inverse of include?. Returns true if self does not include the other string.

active_support/core_ext/string/filters.rb

remove(pattern)

A convenience method for gsub(pattern, ''). It returns a new string with all
occurrences of the pattern removed.

remove!(pattern)

Performs a destructive remove. See remove.

Active Support API Reference 1128

squish

Returns the string, first removing all whitespace on both ends of the string,
and then changing remaining consecutive whitespace groups into one space
each.

>> %{ Multi-line
string }.squish

=> "Multi-line string"

>> " foo bar \n \t boo".squish
=> "foo bar boo"

squish!

Performs a destructive squish. See squish.

truncate(length, options =)

Truncates a given text after a given length if text is longer than length. The
last characters will be replaced with the :omission (which defaults to “…”) for
a total length not exceeding :length.
Pass a :separator to truncate text at a natural break.

>> "Once upon a time in a world far far away".truncate(30)
=> "Once upon a time in a world..."

>> "Once upon a time in a world far far away".truncate(30, separator: ' ')
=> "Once upon a time in a world..."

>> "Once upon a time in a world far far away".truncate(14)
=> "Once upon a..."

>> "And they found that many people were sleeping better.".
truncate(25, omission: "... (continued)")

=> "And they f... (continued)"

active_support/core_ext/string/indent.rb

indent(amount, indent_string=nil, indent_empty_lines=false)

Indents a string by the given amount.

Active Support API Reference 1129

>> "foo".indent(2)
=> " foo"

=> "foo\nbar"
>> " foo\n bar"

The second argument indent_string specifies what indent string to use. If no
indent_string is specified, it will use the first indented line, otherwise a space
is used. If indent_empty_lines is set to true, empty lines will also be indented.

indent!

Performs a destructive indent. See indent.

active_support/core_ext/string/inflections.rb

String inflections define new methods on the String class to transform names
for different purposes. For instance, you can figure out the name of a database
from the name of a class:

>> "ScaleScore".tableize
=> "scale_scores"

If you get frustrated by the limitations of Rails inflections, try the most
excellent Linguistics library by Michael Granger at https://github.com/ged/
linguistics Linguistics. It doesn’t do all of the same inflections as Rails, but
the ones that it does do, it does better. (See titleize for an example.)

camelcase

Alias for camelize.

camelize(first_letter = :upper)

By default, camelize converts strings to UpperCamelCase. If the argument
to camelize is set to :lower, then camelize produces lowerCamelCase. Also
converts “/” to “::”, which is useful for converting paths to namespaces.

https://github.com/ged/linguistics
https://github.com/ged/linguistics

Active Support API Reference 1130

>> "active_record".camelize
=> "ActiveRecord"

>> "active_record".camelize(:lower)
=> "activeRecord"

>> "active_record/errors".camelize
=> "ActiveRecord::Errors"
>> "active_record/errors".camelize(:lower)
=> "activeRecord::Errors"

classify

Creates a class name from a table name; used by Active Record to turn table
names to model classes. Note that the classify method returns a string and
not a Class. (To convert to an actual class, follow classify with constantize.)

>> "egg_and_hams".classify
=> "EggAndHam"

>> "post".classify
=> "Post"

constantize

The constantize method tries to find a declared constant with the name
specified in the string. It raises a NameError if a matching constant is not
located.

>> "Module".constantize
=> Module

>> "Class".constantize
=> Class

Also available in a safe_constantize version that returns nil instead of raising
NameError.

dasherize

Replaces underscores with dashes in the string.

Active Support API Reference 1131

>> "puni_puni"
=> "puni-puni"

demodulize

Removes the module prefixes from a fully qualified module or class name.

>> "ActiveRecord::CoreExtensions::String::Inflections".demodulize
=> "Inflections"

>> "Inflections".demodulize
=> "Inflections"

foreign_key(separate_class_name_and_id_with_underscore = true)

Creates a foreign key name from a class name.

"Message".foreign_key # => "message_id"
"Message".foreign_key(false) # => "messageid"
"Admin::Post".foreign_key # => "post_id"

humanize(options = {})

Capitalizes the first word of a string, turns underscores into spaces, and strips
_id. Similar to the titleize method in that it is intended for creating pretty
output.

>> "employee_salary".humanize
=> "Employee salary"
>> "author_id".humanize
=> "Author"

Setting the :capitalize option to false results in the string being humanized
without being capitalized.

>> "employee_salary".humanize(capitalize: false)
=> "employee salary"

parameterize(sep = '-')

Replaces special characters in a string with sep string so that it may be used
as part of a pretty URL.

Active Support API Reference 1132

pluralize

Returns the plural form of the word in the string.

"post".pluralize # => "posts"
"octopus".pluralize # => "octopi"
"sheep".pluralize # => "sheep"
"words".pluralize # => "words"
"the blue mailman".pluralize # => "the blue mailmen"
"CamelOctopus".pluralize # => "CamelOctopi"

safe_constantize

The safe_constantize method tries to find a declared constant with the name
specified in the string. It returns nil when the name is not in CamelCase or is
not initialized.

singularize

The reverse of pluralize; returns the singular form of a word in a string.

"posts".singularize # => "post"
"octopi".singularize # => "octopus"
"sheep".singluarize # => "sheep"
"word".singluarize # => "word"
"the blue mailmen".singularize # => "the blue mailman"
"CamelOctopi".singularize # => "CamelOctopus"

tableize

Creates a plural and underscored database table name based on Rails conven-
tions. Used by Active Record to determine the proper table name for a model
class. This method uses the pluralize method on the last word in the string.

"RawScaledScorer".tableize # => "raw_scaled_scorers"
"egg_and_ham".tableize # => "egg_and_hams"
"fancyCategory".tableize # => "fancy_categories"

titlecase

Alias for titleize.

Active Support API Reference 1133

titleize

Capitalizes all the words and replaces some characters in the string to create
a nicer-looking title. The titleize method is meant for creating pretty output
and is not used in the Rails internals.

>> "The light on the beach was like a sinus headache".titleize
=> "The Light On The Beach Was Like A Sinus Headache"

It’s also not perfect. Among other things, it capitalizes words inside the
sentence that it probably shouldn’t, like “a” and “the”.

underscore

The reverse of camelize. Makes an underscored form from the expression in
the string. Changes “::” to “/” to convert namespaces to paths.

"ActiveRecord".underscore # => "active_record"
"ActiveRecord::Errors".underscore # => active_record/errors

active_support/core_ext/string/inquiry.rb

inquiry

Wraps the current string in the ActiveSupport::StringInquirer class, providing
an elegant way to test for equality.

env = 'production'.inquiry
env.production? # => true
env.development? # => false

active_support/core_ext/string/multibyte.rb

Defines a mutibyte safe proxy for string methods.

mb_chars

The mb_charsmethod creates and returns an instance of ActiveSupport::Multibyte::Chars
encapsulating the original string. A Unicode safe version of all the String
methods are defined on the proxy class. If the proxy class doesn’t respond
to a certain method, it’s forwarded to the encapsulated string.

Active Support API Reference 1134

>> name = 'Claus Müller'

>> name.reverse
=> "rell??M sualC"

>> name.length
=> 13

>> name.mb_chars.reverse.to_s
=> "rellüM sualC"
>> name.mb_chars.length
=> 12

All the methods on the Chars proxy which normally return a string will return
a Chars object. This allows method chaining on the result of any of these
methods.

>> name.mb_chars.reverse.length
=> 12

The Chars object tries to be as interchangeable with String objects as possible:
sorting and comparing between String and Char work like expected. The
bang! methods change the internal string representation in the Chars object.
Interoperability problems can be resolved easily with a to_s call.
For more information about the methods defined on the Chars proxy see
ActiveSupport::Multibyte::Chars. For information about how to change the
default Multibyte behavior see ActiveSupport::Multibyte.

is_utf8?(suffix)

Returns true if the string has UTF-8 semantics, versus strings that are simply
being used as byte streams.

active_support/core_ext/string/output_safety.rb

html_safe

Returns an html-escaped version of self. See ERB::Util#html_escape for more
information.

active_support/core_ext/string/starts_ends_with.rb

Provides String with additional condition methods.

Active Support API Reference 1135

starts_with?(prefix)

Alias for start_with?.

‘ends_with?(suffix)

Alias for end_with?.

active_support/core_ext/string/strip.rb

strip_heredoc

Strips indentation in heredocs. For example,

if options[:usage]
puts <<-USAGE.strip_heredoc

This command does such and such.

Supported options are:
-h This message
...

USAGE
end

would cause the user to see the usagemessage aligned against the left margin.

active_support/core_ext/string/in_time_zone.rb

in_time_zone(zone = ::Time.zone)

Converts the string to a TimeWithZone in the current zone if Time.zone or
„,Time.zone_default are set. Otherwise returns String#to_time.

Active Support API Reference 1136

StringInquirer

Wrapping a string in this class gives you a prettier way to test for equality. The
value returned by Rails.env is wrapped in a StringInquirer object so instead
of calling this:

Rails.env == "production"

you can call this:

Rails.env.production?

This class is really simple, so you only really want to do this with strings that
contain no whitespace or special characters.

>> s = ActiveSupport::StringInquirer.new("obie")
=> "obie"
>> s.obie?
=> true

Active Support API Reference 1137

Subscriber

The ActiveSupport::Subscriber object is used to consume ActiveSupport::Notifications.
The subscriber dispatches notifications to a registered object based on its
given namespace.
For example, a subscriber could collect statistics about Active Record queries:

module ActiveRecord
class StatsSubscriber < ActiveSupport::Subscriber

def sql(event)
Statsd.timing("sql.#{event.payload[:name]}", event.duration)

end
end

end

To attach a subscriber to a namespace, use the attach_to method.

ActiveRecord::StatsSubscriber.attach_to :active_record

Active Support API Reference 1138

TaggedLogging

Wraps any standard Logger object to provide tagging capabilities.
active_support/tagged_logger.rb

flush

Clear all tags and invoke the parent definition if it exists.

tagged(*tags, &block)

Prefix tags to each log message in the yielded block.

logger = ActiveSupport::TaggedLogging.new(Logger.new(STDOUT))
logger.tagged("tr5w") { logger.info "Stuff" } # [tr5w] Stuff

Active Support API Reference 1139

TestCase

Inheriting from MiniTest::Unit::TestCase, adds Rails specific testing methods
and behavior.

active_support/test_case.rb

assert_no_match

Alias for refute_match for Test::Unit backwards compatibility.

assert_not_empty

Alias for refute_empty for Test::Unit backwards compatibility.

assert_not_equal

Alias for refute_equal for Test::Unit backwards compatibility.

assert_not_in_delta

Alias for refute_in_delta for Test::Unit backwards compatibility.

assert_not_in_epsilon

Alias for refute_in_epsilon for Test::Unit backwards compatibility.

assert_not_includes

Alias for refute_includes for Test::Unit backwards compatibility.

assert_not_instance_of

Alias for refute_instance_of for Test::Unit backwards compatibility.

assert_not_kind_of

Alias for refute_kind_of for Test::Unit backwards compatibility.

Active Support API Reference 1140

assert_not_nil

Alias for refute_nil for Test::Unit backwards compatibility.

assert_not_operator

Alias for refute_operator for Test::Unit backwards compatibility

assert_not_predicate

Alias for refute_predicate for Test::Unit backwards compatibility

assert_not_respond_to

Alias for refute_respond_to for Test::Unit backwards compatibility

assert_not_same

Alias for refute_same for Test::Unit backwards compatibility

assert_nothing_raised(*args)

Tests if the block doesn’t raise an exception.

assert_raise

Alias for assert_raises for Test::Unit backwards compatibility

Active Support API Reference 1141

Testing::Assertions

active_support/testing/assertions.rb

Rails adds a number of assertions to the basic ones provided with MiniTest.

assert_changes(expression, message = nil, from:, to:, &block)

Asserts that the result of evaluating an expression is changed before and after
invoking the passed in block.

assert_changes 'Status.all_good?' do
post :create, params: { status: { ok: false } }

end

You can pass the block as a string to be evaluated in the context of the block.
A lambda can be passed for the block as well.

assert_changes -> { Status.all_good? } do
post :create, params: { status: { ok: false } }

end

The assertion is useful to test side effects. The passed block can be anything
that can be converted to string with to_s.

assert_changes :@object do
@object = 42

end

The keyword arguments :from and :to can be given to specify the expected
initial value and the expected value after the block was executed.

assert_changes :@object, from: nil, to: :foo do
@object = :foo

end

An optional error message can be specified.

Active Support API Reference 1142

assert_changes -> { Status.all_good? }, 'Expected the status to be bad' do
post :create, params: { status: { incident: true } }

end

Inverse version available as assert_no_changes.

assert_difference(expressions, difference = 1, message = nil,
&block)

Tests whether a numeric difference in the return value of an expression is a
result of what is evaluated in the yielded block. (Easier to demonstrate than
to explain!)
The following example eval’s the expression Article.count and saves the
result. Then it yields to the block, which will execute the post :create and
return control to the assert_difference method. At that point, Article.count is
eval’d again, and the difference is asserted to be 1 (the default difference).

assert_difference 'Article.count' do
post :create, article: {...}

end

Any arbitrary expression can be passed in and evaluated:

assert_difference 'assigns(:article).comments(:reload).size' do
post :create, comment: {...}

end

Arbitrary difference values may be specified. The default is 1, but negative
numbers are okay too:

assert_difference 'Article.count', -1 do
post :delete, id: ...

end

An array of expressions can also be passed in—each will be evaluated:

assert_difference ['Article.count', 'Post.count'], 2 do
post :create, article: {...}

end

A lambda or a list of lambdas can be passed in and evaluated:

Active Support API Reference 1143

assert_difference ->{ Article.count }, 2 do
post :create, article: {...}

end

assert_difference [->{ Article.count }, ->{ Post.count }], 2 do
post :create, article: {...}

end

A error message can be specified:

assert_difference 'Article.count', -1, "Article should be destroyed" do
post :delete, id: ...

end

assert_no_difference(expressions, message = nil, &block)

Tests that the return value of the supplied expression does not change as a
result of what is evaluated in the yielded block.

assert_no_difference 'Article.count' do
post :create, article: invalid_attributes

end

assert_not(object, message = nil)

Assert that an expression is not truthy.

assert_not nil # => true
assert_not false # => true
assert_not 'foo' # => 'foo' is not nil or false

assert_nothing_raised()

Assertion that the block should not raise an exception. Passes if evaluated
code in the yielded block raises no exception.

assert_nothing_raised do
perform_service(param: 'no_exception')

end

active_support/testing/declarative.rb

Active Support API Reference 1144

test(name, &block)

Helper to define a test method using a String ala RSpec. Under the hood, it
replaces spaces with underscores and defines the test method.

test "verify something" do
...

end

active_support/testing/file_fixtures.rb

Adds simple access to sample files called file fixtures. File fixtures are normal
files stored in ActiveSupport::TestCase.file_fixture_path.
File fixtures are represented as Pathname objects. This makes it easy to extract
specific information:

file_fixture("example.txt").read # get the file's content
file_fixture("example.mp3").size # get the file size

file_fixture(fixture_name)

Returns a Pathname to the fixture file named fixture_name. Raises ArgumentEr-
ror if it can’t be found.

active_support/testing/setup_and_teardown.rb

Adds support for setup and teardown callbacks. These callbacks serve as
a replacement to overwriting the #setup and #teardown methods of your
TestCase.

Active Support API Reference 1145

class ExampleTest < ActiveSupport::TestCase
setup do

...
end

teardown do
...

end
end

active_support/testing/time_helpers.rb

Mostly eliminates the need for 3rd-party time management gems such as
TimeCop11.

travel(duration, &block)

Changes the current time to the time in the future or in the past by a given
time difference. This is accomplished by stubbing Time.now and Date.today.

Time.current # => Sat, 09 Nov 2013 15:34:49 EST -05:00
travel 1.day
Time.current # => Sun, 10 Nov 2013 15:34:49 EST -05:00
Date.current # => Sun, 10 Nov 2013

travel_to(date_or_time, &block)

Changes the current time to the supplied date or time. This is accomplished
by stubbing Time.now and Date.today.

11
https://github.com/travisjeffery/timecop

https://github.com/travisjeffery/timecop
https://github.com/travisjeffery/timecop

Active Support API Reference 1146

Thread

Extensions to Ruby’s built-in Thread class.
active_support/core_ext/thread.rb

freeze

Freeze thread local variables.

thread_variable?(key)

Returns true if the given string (or symbol) exists as a thread local variable.

>> current_thread = Thread.current
=> #<Thread:0x007fd2c08c0da8 run>

>> current_thread.thread_variable?(:tr5w)
=> false

>> current_thread.thread_variable_set(:tr5w, 'is awesome')
=> "is awesome"

>> current_thread.thread_variable?(:tr5w)
=> true

thread_variable_get(key)

Returns the value of a thread local variable that has been set.

thread_variable_set(key, value)

Set a thread local variable .

>> Thread.current.thread_variable_set(:tr5w, 'is awesome')
=> "is awesome"

thread_variables

Returns an array of thread local variables represented as symbols.

Active Support API Reference 1147

>> Thread.current.thread_variables
=> [:tr5w]

Active Support API Reference 1148

Time

Extensions to Ruby’s built-in Time class.

active_support/json/encoding.rb

as_json

Returns self as a JSON string. The ActiveSupport.use_standard_json_time_for-
mat configuration setting determines whether the output is formatted using
:xmlschema or the following pattern:

%(#{strftime("%Y/%m/%d %H:%M:%S")} #{formatted_offset(false)})

>> Time.now.as_json
=> "2017-06-14T12:43:36.881-04:00"

active_support/core_ext/time/acts_like.rb

Duck-types as a Time-like class. See Object#acts_like? for more explanation.

class Time
def acts_like_time?

true
end

end

active_support/core_ext/time/calculations.rb

Contains methods that facilitate time calculations.

===(other)

Overriding case equalitymethod so that it returns true for ActiveSupport::TimeWithZone
instances.

+ (other)

Implemented by the plus_with_durationmethod. It allows addition of times like
this:

Active Support API Reference 1149

expiration_time = Time.now + 3.days

- (other)

Implemented by the minus_with_duration method. It allows addition of times
like this:

two_weeks_ago = Time.now - 2.weeks

<=>

Implemented by the compare_with_coercionmethod. Layers additional behavior
on Time#eql? so that ActiveSupport::TimeWithZone instances can be compared
with Time instances.

advance(options)

Provides precise Time calculations. The options parameter takes a hash with
any of the keys :months, :days, :years, :hours, :minutes, and :seconds.

ago(seconds)

Returns a new Time representing the time a number of seconds into the past;
this is basically a wrapper around the Numeric extension of the same name. For
the best accuracy, do not use this method in combination with x.months; use
months_ago instead!

all_day

Convenience method for beginning_of_day..end_of_day. Returns a Range rep-
resenting the whole day of the current time.

all_month

Convenience method for beginning_of_month..end_of_month. Returns a Range
representing the whole month of the current time.

all_quarter

Conveniencemethod for beginning_of_quarter..end_of_quarter. Returns a Range
representing the whole quarter of the current time.

Active Support API Reference 1150

all_week(start_day = Date.beginning_of_week)

Conveniencemethod for beginning_of_week(start_day)..end_of_week(start_day).
Returns a Range representing the whole week of the current time.

all_year

Convenience method for beginning_of_year..end_of_year. Returns a Range
representing the whole year of the current time.

at_beginning_of_day / at_midnight / beginning_of_day / midnight

Returns a new Time object representing the “start” of the current instance’s
day, hard-coded to 00:00 hours.

at_beginning_of_hour / beginning_of_hour

Returns a new Time object representing the start of the hour (hh:00:00).
Implemented simply as change(min: 0).

at_beginning_of_minute / beginning_of_minute

Returns a new Time object representing the start of the minute (hh:mm:00).
Implemented simply as change(sec: 0).

at_beginning_of_quarter / beginning_of_quarter

Returns a new Time object representing the start of the calendar quarter (1st
of January, April, July, October, 00:00 hours).

at_beginning_of_week

Alias for beginning_of_week.

at_beginning_of_year / beginning_of_year

Returns a new Time object representing the start of the year (1st of January,
00:00 hours).

Active Support API Reference 1151

at_end_of_day / end_of_day

Returns a new Time object representing the end of a day (23:59:59). Imple-
mented simply as change(hour: 23, min: 59, sec: 59).

at_end_of_hour / end_of_hour

Returns a new Time object representing the end of the hour (hh:59:59).
Implemented simply as change(min: 59, sec: 59).

at_end_of_minute / end_of_minute

Returns a new Time object representing the end of the minute (hh:mm:59).
Implemented simply as change(sec: 59).

at_end_of_month / end_of_month

Returns a new Time object representing the end of the month (last day of the
month at 23:59:59 hours).

at_end_of_quarter / end_of_quarter

Returns a new Time object representing the end of the quarter (31st of March,
30th June, 30th September, 31st December, at 23:59:59 hours)

at_end_of_week

Alias for end_of_week.

at_end_of_year / end_of_year

Returns a new Time object representing the end of the year (last day of the
year at 23:59:59 hours).

beginning_of_week(start_day = Date.beginning_of_week)

Returns a new Time object representing the “start” of the current instance’s
week, defaulting to Date.beginning_of_week.

Active Support API Reference 1152

change(options)

Returns a new Time where one or more of the elements have been changed
according to the options parameter. The valid date options are :year, :month,
:day. The valid time options are :hour, :min, :sec, :offset, and :start.

Time.current

Returns Time.zone.now when Time.zone or config.time_zone are set, otherwise
returns Time.now.

days_ago(days)

Returns a new Time object minus the specified number of days.

Time.days_in_month(month, year = nil)

Returns the number of days in the given month. If a year is given, February
will return the correct number of days for leap years. Otherwise, this method
will always report February as having 28 days.

>> Time.days_in_month(7, 1974)
=> 31

days_since(days)

Returns a new Time object representing the time a number of specified days
into the future.

days_to_week_start(start_day = Date.beginning_of_week)

Returns the number of days to the start of the week.

end_of_week(start_day = Date.beginning_of_week)

Returns a new Time object representing the “end” of the current instance’s
week, with the week start_day defaulting to Date.beginning_of_week.

Active Support API Reference 1153

future?

Returns true if the Time instance is in the future.

middle_of_day / noon

Returns a new Time object representing the middle of the day (12:00:00).
Implemented simply as change(hour: 12).

last_month / prev_month

Convenience method for months_ago(1).

last_quarter / prev_quarter

Convenience method for months_ago(3).

last_week(start_day = Date.beginning_of_week) / prev_week

Returns a new Time object representing the given day in the previous week,
with the week start_day defaulting to Date.beginning_of_week.

last_year / prev_year

Convenience method for years_ago(1).

monday

Convenience method for beginning_of_week(:monday).

months_ago(months)

Returns a new Time object representing the time a number of specified months
into the past.

months_since(months)

The opposite of months_ago. Returns a new Time object representing the time a
number of specified months into the future.

Active Support API Reference 1154

next_month

Convenience method for months_since(1).

next_quarter

Convenience method for months_since(3).

next_week(given_day_in_next_week = Date.beginning_of_week)

Returns a new Time object representing the start of the given day in the
following calendar week.

next_year

Convenience method for years_since(1).

seconds_since_midnight

Returns the number of seconds that have transpired since midnight.

seconds_until_end_of_day

Returns how many seconds left in the day until 23:59:59.

since(seconds) / in(seconds)

Returns a new Time representing the time a number of seconds into the future
starting from the instance time. This method is basically a wrapper around the
Numeric extension of the same name. For best accuracy, do not use this method
in combination with x.months; use months_since instead!

sunday

Convenience method for end_of_week(:monday).

today?

Returns true if the Time is today.

Active Support API Reference 1155

tomorrow

Returns a new Time object advanced by one day.

weeks_ago(weeks)

Returns a new Time object representing the time a number of specified weeks
ago.

weeks_since(weeks)

Returns a new Time object representing the time a number of specified weeks
into the future.

years_ago(years)

Returns a new Time object representing the time a number of specified years
into the past.

years_since(years)

The opposite of years_ago. Returns a new Time object representing the time a
number of specified years into the future.

yesterday

Returns a new Time object subtracted by one day.

active_support/core_ext/time/conversions.rb

Extensions to Ruby’s Time class to convert time objects into different conve-
nient string representations and other objects.

Date Formats

The DATE_FORMATS hash constant holds formatting patterns used by the to_-
formatted_s method to convert a Time object into a string representation:

Active Support API Reference 1156

DATE_FORMATS = {
:db => '%Y-%m-%d %H:%M:%S',
:number => '%Y%m%d%H%M%S',
:nsec => '%Y%m%d%H%M%S%9N',
:time => '%H:%M',
:short => '%d %b %H:%M',
:long => '%B %d, %Y %H:%M',
:long_ordinal => lambda { |time|

day_format = ActiveSupport::Inflector.ordinalize(time.day)
time.strftime("%B #{day_format}, %Y %H:%M")

},
:rfc822 => lambda { |time|

offset_format = time.formatted_offset(false)
time.strftime("%a, %d %b %Y %H:%M:%S #{offset_format}")

}
}

formatted_offset(colon = true, alternate_utc_string = nil)

Returns the UTC offset as an HH:MM formatted string.

Time.local(2000).formatted_offset # => "-06:00"
Time.local(2000).formatted_offset(false) # => "-0600"

to_formatted_s(format = :default)

Converts a Time object into a string representation. The :default option
corresponds to the Time object’s own to_s method.

>> time = Time.now
=> Thu Jan 18 06:10:17 CST 2007

>> time.to_formatted_s(:time)
=> "06:10"

>> time.to_formatted_s(:db)
=> "2007-01-18 06:10:17"

>> time.to_formatted_s(:number)
=> "20070118061017"

>> time.to_formatted_s(:short)
=> "18 Jan 06:10"

Active Support API Reference 1157

>> time.to_formatted_s(:long)
=> "January 18, 2007 06:10"

>> time.to_formatted_s(:long_ordinal)
=> "January 18th, 2007 06:10"

>> time.to_formatted_s(:rfc822)
=> "Thu, 18 Jan 2007 06:10:17 -0600"

to_s

Aliased to to_formatted_s.

active_support/core_ext/time/marshal.rb

Rails layers behavior on the _dump and _loadmethods so that utc instances can
be flagged on dump, and coerced back to utc on load.
Ruby 1.9.2 adds utc_offset and zone to Time, but marshaling only preserves
utc_offset. Rails preserves zone also, even though it may not work in some
edge cases.

active_support/core_ext/time/zones.rb

Extensions to Time having to do with support for time zones.

find_zone(time_zone)

Returns a TimeZone instance or nil it does not exist.

>> Time.find_zone("Eastern Time (US & Canada)")
=> #<ActiveSupport::TimeZone:0x007fd2c0bc49c8

@name="Eastern Time (US & Canada)", ...>

find_zone!(time_zone)

Same as find_zone, except it raises an ArgumentError if an invalid time_zone is
provided.

in_time_zone(zone = ::Time.zone)

Returns the simultaneous time in the supplied zone.

Active Support API Reference 1158

>> Time.zone = 'Hawaii'
=> "Hawaii"
>> Time.utc(2000).in_time_zone
=> Fri, 31 Dec 1999 14:00:00 HST -10:00

use_zone(time_zone, &block)

Allows override of Time.zone locally inside supplied block; resets Time.zone to
existing value when done.

>> Date.today
=> Wed, 02 Jun 2010

>> Time.use_zone(ActiveSupport::TimeZone['Hong Kong']) { Date.today }
=> Thu, 03 Jun 2010

zone

Returns the TimeZone for the current request, if this has been set (via Time.zone=).
If Time.zone has not been set for the current request, returns the TimeZone
specified in config.time_zone.

zone=(time_zone)

Sets Time.zone to a TimeZone object for the current request/thread.
This method accepts any of the following:

• A Rails TimeZone object.
• An identifier for a Rails TimeZone object (e.g., “Eastern Time (US &
Canada)”, -5.hours).

• A TZInfo::Timezone object.
• An identifier for a TZInfo::Timezone object (e.g., “America/New_York”).

Here’s an example of how you might set Time.zone on a per request basis.
The code assumes that current_user.time_zone returns a string identifying the
user’s preferred TimeZone:

Active Support API Reference 1159

class ApplicationController < ActionController::Base
before_action :set_time_zone

def set_time_zone
Time.zone = current_user.time_zone

end
end

Active Support API Reference 1160

TimeWithZone

A Time-like class that can represent a time in any time zone. Necessary because
standard Ruby Time instances are limited to UTC and the system’s ENV['TZ']
zone.
You shouldn’t ever need to create a TimeWithZone instance directly via new. Rails
provides the methods local, parse, at and now on TimeZone instances, and in_-
time_zone on Time and DateTime instances, for a more user-friendly syntax.

>> Time.zone = 'Eastern Time (US & Canada)'
=> 'Eastern Time (US & Canada)'

>> Time.zone.local(2007, 2, 10, 15, 30, 45)
=> Sat, 10 Feb 2007 15:30:45 EST -05:00

>> Time.zone.parse('2007-02-01 15:30:45')
=> Sat, 10 Feb 2007 15:30:45 EST -05:00

>> Time.zone.at(1170361845)
=> Sat, 10 Feb 2007 15:30:45 EST -05:00

>> Time.zone.now
=> Sun, 18 May 2008 13:07:55 EDT -04:00

>> Time.utc(2007, 2, 10, 20, 30, 45).in_time_zone
=> Sat, 10 Feb 2007 15:30:45 EST -05:00

TimeWithZone instances implement the same API as Ruby Time instances,
so that Time and TimeWithZone instances are interchangeable. See Time and
ActiveSupport::TimeZone for further documentation of these methods.

>> t = Time.zone.now
=> Sun, 18 May 2008 13:27:25 EDT -04:00

>> t.class
=> ActiveSupport::TimeWithZone

>> t.hour
=> 13

>> t.dst?
=> true

Active Support API Reference 1161

>> t.utc_offset
=> -14400

>> t.zone
=> "EDT"

>> t.to_s(:rfc822)
=> "Sun, 18 May 2008 13:27:25 -0400"

>> t + 1.day
=> Mon, 19 May 2008 13:27:25 EDT -04:00

>> t.beginning_of_year
=> Tue, 01 Jan 2008 00:00:00 EST -05:00

>> t > Time.utc(1999)
=> true

>> t.is_a?(Time)
=> true

Active Support API Reference 1162

TimeZone

The TimeZone class serves as a wrapper around TZInfo::Timezone instances. It
allows Rails to do the following:

• Limit the set of zones provided by TZInfo to a meaningful subset of 146
zones

• Retrieve and display zones with a friendlier name (e.g., “Eastern Time
(US & Canada)” instead of “America/New_York”)

• Lazily load TZInfo::Timezone instances only when they’re needed
• Create ActiveSupport::TimeWithZone instances via TimeZone’s local, parse,

at and now methods.

If you set config.time_zone in an initializer, you can access this TimeZone object
via Time.zone:

config.time_zone = "Eastern Time (US & Canada)"

Time.zone # => #<TimeZone:0x514834...>
Time.zone.name # => "Eastern Time (US & Canada)"
Time.zone.now # => Sun, 18 May 2008 14:30:44 EDT -04:00

active_support/values/time_zone.rb

The version of TZInfo bundled with Active Support only includes the definitions
necessary to support the zones defined by the TimeZone class. If you need to
use zones that aren’t defined by TimeZone, you’ll need to install the TZInfo gem.
If a recent version of the gem is installed locally, this will be used instead of
the bundled version.

This file also contains the mapping of Rails time zones to TZInfo identifiers
as a hash assigned to MAPPING.

<=> (other)

Compares this timezone to the parameter. The two are compared first based
on their offsets, and then by name.

Active Support API Reference 1163

=∼(re)

Compare name and TZInfo identifier to a supplied regexp. Returns true if a
match is found.

TimeZone[] (arg)

Locates a specific timezone object. If the argument is a string, it is interpreted
to mean the name of the timezone to locate.

>> ActiveSupport::TimeZone['Dublin']
=> #<TimeZone:0x3208390 @name="Dublin", @utc_offset=nil ...>

If it is a numeric value it is either the hour offset, or the second offset, of the
timezone to find. (The first one with that offset will be returned.)
Returns nil if no such timezone is known to the system.

TimeZone.all

Returns an array of all 146 TimeZone objects. There are multiple TimeZone
objects per timezone (in many cases) to make it easier for users to find their
own timezone.

>> ActiveSupport::TimeZone.all
=> [#<ActiveSupport::TimeZone:0x551c34...

at(seconds)

Creates a new ActiveSupport::TimeWithZone instance in time zone of self from
the number of seconds since the Unix epoch.

Time.zone = 'Hawaii' # => "Hawaii"
Time.utc(2000).to_f # => 946684800.0
Time.zone.at(946684800.0) # => Fri, 31 Dec 1999 14:00:00 HST -10:00

TimeZone.create(name, offset)

Creates a new TimeZone instance with the given name and offset.

Active Support API Reference 1164

>> ActiveSupport::TimeZone.create("Atlanta", -5.hours)
=> #<ActiveSupport::TimeZone:0x007fd2c136b118 @name="Atlanta",

@utc_offset=-18000 seconds, @tzinfo=#<TZInfo::TimezoneProxy: Atlanta>,
@current_period=nil>

TimeZone.find_tzinfo(name)

Returns a TZInfo instance matching the specified name.

formatted_offset(colon=true, alternate_utc_string = nil)

Returns the offset of this timezone as a formatted string, in the format HH:MM.
If the offset is zero, this method will return an empty string. If colon is false,
a colon will not be inserted into the output.

initialize(name, utc_offset = nil, tzinfo = nil)

Create a new TimeZone object with the given name and offset. The offset is the
number of seconds that this time zone is offset fromUTC (GMT). Seconds were
chosen as the offset unit because that is the unit that Ruby uses to represent
time zone offsets (see Time#utc_offset). The tzinfo parameter can be explicitly
passed in, otherwise the name will be used to find it: TimeZone.find_tzinfo(name)

local(*args)

Creates a new ActiveSupport::TimeWithZone instance in time zone of self from
given values.

local_to_utc(time, dst=true)

Adjust the given time to the simultaneous time in UTC. Returns a Time.utc()
instance.

now

Returns Time.now adjusted to this timezone.

Active Support API Reference 1165

>> Time.now
=> 2013-10-16 17:45:49 -0400
>> ActiveSupport::TimeZone['Hawaii'].now
=> Wed, 16 Oct 2013 11:46:05 HST -10:00

parse(str, now=now)

Creates a new ActiveSupport::TimeWithZone instance in time zone of self from
parsed string.

>> Time.zone = 'Hawaii'
=> "Hawaii"
>> Time.zone.parse('1999-12-31 14:00:00')
=> Fri, 31 Dec 1999 14:00:00 HST -10:00

period_for_local(time, dst=true)

Method exists so that TimeZone instances respond like TZInfo::Timezone.

period_for_utf(time)

Method exists so that TimeZone instances respond like TZInfo::Timezone.

TimeZone.seconds_to_utc_offset(seconds, colon = true)

Assumes self represents an offset from UTC in seconds (as returned from
Time#utc_offset) and turns this into an +HH:MM formatted string.

ActiveSupport::TimeZone.seconds_to_utc_offset(-21_600) # => "-06:00"

to_s

Returns a textual representation of this timezone.

ActiveSupport::TimeZone['Dublin'].to_s # => "(GMT+00:00) Dublin"

today

Returns the current date in this timezone.

Active Support API Reference 1166

>> Date.today
=> Wed, 16 Oct 2013
>> ActiveSupport::TimeZone['Darwin'].today
=> Thu, 17 Oct 2013

TimeZone.us_zones

A convenience method for returning a collection of TimeZone objects for
timezones in the USA.

>> ActiveSupport::TimeZone.us_zones.map(&:name)
=> ["Hawaii", "Alaska", "Pacific Time (US & Canada)", "Arizona",
"Mountain Time (US & Canada)", "Central Time (US & Canada)", "Eastern
Time (US & Canada)", "Indiana (East)"]

utc_offset

Returns the offset of this time zone from UTC in seconds.

utc_to_local(time)

Adjust the given time to the simultaneous time in the timezone.

Active Support API Reference 1167

TrueClass

active_support/core_ext/object/blank.rb

blank?

Returns false.

active_support/json/encoding.rb

as_json

Returns "true".

Active Support API Reference 1168

XmlMini

The XmlMinimodule contains code that allows Rails to serialize/deserialize and
parse XML using a number of different libraries.

• JDOM (requires JRuby)
• LibXML (fast native XML parser)
• Nokogiri (requires nokogiri gem)

active_support/xml_mini.rb

If you’re doing anything of significance with XML in your application, you
should definitely use the super-fast native libxml parser. Install the binaries
(instructions vary depending on platform) then the Ruby binding:

gem 'libxml-ruby', '=0.9.7'

Set XmlMini to use libxml in application.rb or an initializer.

XmlMini.backend = 'LibXML'

Constants

The TYPE_NAMES constant holds a mapping of Ruby types to their representation
when serialized as XML.

TYPE_NAMES = {
"Symbol" => "symbol",
"Fixnum" => "integer",
"Bignum" => "integer",
"BigDecimal" => "decimal",
"Float" => "float",
"TrueClass" => "boolean",
"FalseClass" => "boolean",
"Date" => "date",
"DateTime" => "dateTime",
"Time" => "dateTime",
"Array" => "array",
"Hash" => "hash"

}

The FORMATTING constant holds a mapping of lambdas that define how Ruby
values are serialized to strings for representation in XML.

Active Support API Reference 1169

FORMATTING = {
"symbol" => Proc.new { |symbol| symbol.to_s },
"date" => Proc.new { |date| date.to_s(:db) },
"dateTime" => Proc.new { |time| time.xmlschema },
"binary" => Proc.new { |binary| ::Base64.encode64(binary) },
"yaml" => Proc.new { |yaml| yaml.to_yaml }

}

The PARSING constant holds a mapping of lambdas used to deserialize values
stored in XML back into Ruby objects.

PARSING = {
"symbol" => Proc.new { |symbol| symbol.to_sym },
"date" => Proc.new { |date| ::Date.parse(date) },
"datetime" => Proc.new {

|time| Time.xmlschema(time).utc rescue ::DateTime.parse(time).utc },
"integer" => Proc.new { |integer| integer.to_i },
"float" => Proc.new { |float| float.to_f },
"decimal" => Proc.new { |number| BigDecimal(number) },
"boolean" => Proc.new {

|boolean| %w(1 true).include?(boolean.strip) },
"string" => Proc.new { |string| string.to_s },
"yaml" => Proc.new { |yaml| YAML::load(yaml) rescue yaml },
"base64Binary" => Proc.new { |bin| ::Base64.decode64(bin) },
"binary" => Proc.new { |bin, entity| _parse_binary(bin, entity) },
"file" => Proc.new { |file, entity| _parse_file(file, entity) }

}

PARSING.update(
"double" => PARSING["float"],
"dateTime" => PARSING["datetime"]

)

Rails API
I kind of somehow get carried away sometimes, and get fired up
about integrated software, but at the same time, if [microservices
is] what you want to do, if that floats your boat, fantastic! Rails 5
[is] the mother of frameworks for microservices. Woo-hoo!!! If you
wanna use Rails to make that setup and have a lot of different things
that derive off of one API base and its really neat and structured
that’s wonderful, we’re gonna bake it into Rails 5 and you’re gonna
love it on day 5 and you’re gonna hate it on Year 2, but it’s all good
because in themeantime youwon’t be blamingme, and umm,we can
still work together! That’s the thing I really love about the Ruby and
the Rails community—even if we feel so passionate about certain
things, and I feel so passionate about the majestic monolith and
integrated software, I can also think: “That’s fine, but if someone
wants to collaborate on Active Record, I don’t give a hoot what deity
they pray to at night, whether it’s the altar of microservices or the
‘one true monolith’, we can still work together and it can still be
wonderful.”
DHH—2015 Railsconf Keynote https://youtu.be/KJVTM7mE1Cc?t=
25m12s

First, let’s review some context and history. It’s become incredibly popular
in the last few years to write rich client applications using React or Angular
(instead of just Javascript-enriched, server-rendered HTML). These kinds of
projects still need application server back-ends but dispense with the need for
server-based view templating and a whole lot of the kind of controller logic
that goes into more traditional web applications.
Taken a step further, these rich client applications may not even have a
monolithic backend anymore, instead being serverless (one of my favorite
topics, actually12) or relying on a constellation of microservices that provide
functionally-isolated chunks of business logic, communications, and data
persistence.

12
http://leanpub.com/serverless

https://youtu.be/KJVTM7mE1Cc?t=25m12s
https://youtu.be/KJVTM7mE1Cc?t=25m12s
http://leanpub.com/serverless

Rails API 1171

Rails API Mode

Now Rails is undoubtedly the king of traditional web applications, but even
I have to admit that it has lost mindshare for newer architecture patterns to
competing technologies such Node.js and others. That’s why DHH, despite his
avowed aversion to these trends, used a chunk of his 2015 Railsconf keynote
to announce a new feature called Rails API Mode—easy bootstrapping of
applications meant to function as microservices.
Want to see what the fuss is about? Invoke API mode by adding an --api flag
to the main rails generator command.

$ rails new microservice --api

The generated application will be configured to start with a more limited
set of middleware than usual. It leaves out middleware meant for browser
applications (like cookies support).

$ rails middleware
use Rack::Sendfile
use ActionDispatch::Static
use ActionDispatch::Executor
use ActiveSupport::Cache::Strategy::LocalCache::Middleware
use Rack::Runtime
use ActionDispatch::RequestId
use Rails::Rack::Logger
use ActionDispatch::ShowExceptions
use ActionDispatch::DebugExceptions
use ActionDispatch::RemoteIp
use ActionDispatch::Reloader
use ActionDispatch::Callbacks
use ActiveRecord::Migration::CheckPending
use Rack::Head
use Rack::ConditionalGet
use Rack::ETag
run Microservice::Application.routes

Signficantly, ApplicationController will inherit from ActionController::API in-
stead of ActionController::Base, again leaving out functionality that is primar-
ily meant for traditional web applications.

Rails API 1172

class ApplicationController < ActionController::API
end

Finally, the generators will default to skipping creation of view templates,
helpers, and assets whenever you generate a new resource.

$ rails g resource Purchase total_cents:integer status shipping_address:text
Expected string default value for '--jbuilder'; got true (boolean)

invoke active_record
create db/migrate/20170214004746_create_purchases.rb
create app/models/purchase.rb
invoke rspec
create spec/models/purchase_spec.rb
invoke factory_girl
create spec/factories/purchases.rb
invoke controller
create app/controllers/purchases_controller.rb
invoke rspec
create spec/controllers/purchases_controller_spec.rb
invoke resource_route
route resources :purchases

Serving JSON by Default

The term media type in the HTTP 1.1 specification is what we refer to as
format in Rails. If the Rails router is not provided with a format (i.e., .html
or .json), it will usually pick HTML. However, a request that doesn’t specify
a format in Rails API mode will get served JSON by default. It’s one of the
bigger differences between the two modes.

Rails API 1173

JSON

The dominant lingua franca of single-page applications and microservices
is undoubtedly JSON (JavaScript Object Notation). Thanks to the work of
Ruby Heroes such as Steve Klabnik and Yehuda Katz, it even has its own API
specification.

JSON API is a specification for how a client should request that
resources be fetched or modified, and how a server should respond
to those requests.
JSON API is designed to minimize both the number of requests and
the amount of data transmitted between clients and servers. This
efficiency is achieved without compromising readability, flexibility,
or discoverability.
“Introduction” http://jsonapi.org/format/

Adopting the JSON API specification on your project gives you a set of
conventions to work with so that you don’t have invent them yourself and
is highly recommended.
Of course, creating JSON API-based applications means needing to generate
JSON. There are two major options available: Jbuilder and, of course, creating
JSON API-based applications means needing to generate JSON and Active-
Model Serializers.

Jbuilder

Rails API nudges you in the direction of its sister project: Jbuilder https://
github.com/rails/jbuilder. Note that it’s included in the boilerplate Gemfile
but commented out.

Use Puma as the app server
gem 'puma', '~> 3.0'
Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder
gem 'jbuilder', '~> 2.5'

Uncomment and bundle to enable the generation of JSON data structures
using a Ruby-based Domain-Specific Language (DSL). You can use the DSL
directly in your Ruby code or to write templates in the app/views directory
tree, much as you would do in a normal Rails application.
Here’s what a template looks like:

http://jsonapi.org/format/
https://github.com/rails/jbuilder
https://github.com/rails/jbuilder

Rails API 1174

app/views/messages/show.json.jbuilder
json.(auction, :final_price_cents, :created_at, :updated_at)

json.item do
json.name auction.item.name
json.url url_for(auction.item, format: :json)

end

json.number_of_bids auction.bids.count

json.bids auction.bids, :bid_amount, :created_at

You might be wondering about that weird “dot-parens” syntax used in
Jbuilder. It’s shorthand syntax for Proc#call. See http://stackoverflow.com/
questions/19108550/how-does-rubys-operator-work formore information about
it.

The preceding sample code would generate JSON looking something like this:

{
"final_price": 12400,
"created_at": "2011-10-29T20:45:28-05:00",
"updated_at": "2011-10-29T20:45:28-05:00",

"item": {
"name": "Beats by DRE (2014 Edition, Red)",
"url": "http://example.com/items/7305434b2308-beats-by-dre.json"

},

"number_of_bids": 15,

"bids": [
{ "bid_amount_cents": 12400, "created_at": "2011-10-29T20:45:28-05:00" },
{ "bid_amount_cents": 3400, "created_at": "2011-10-29T20:47:28-05:00" },
... // and so on

],
}

Top-level, unnamed arrays can be handled directly in a way that’s useful for
index and other collection actions.

http://stackoverflow.com/questions/19108550/how-does-rubys-operator-work
http://stackoverflow.com/questions/19108550/how-does-rubys-operator-work

Rails API 1175

json.array! comments do |c|
next if c.marked_as_spam_by?(current_user)

json.body markdown(c.body)
json.author do

json.first_name c.author.first_name
json.last_name c.author.last_name

end
end

=> [{ "body": "great post...", "author": { "first_name": "Joe", "last_name": "Bloe" }}]

The use of markdown to transform c.body in the preceding example
illustrates that it’s possible to call helper methods, just like you would
in a regular Rails view template.

Partials

Continuing the similarities to view templates, Jbuilder gives you the capability
to break complicated JSON rendering tasks into sub-components using par-
tials.
The following example codewill render the file views/comments/_comments.json.jbuilder,
and set a local variable comment with all of the message comments, to use
inside the partial.

json.partial! 'comments/comments', comments: message.comments

It’s also possible to render collections of partials. Both lines of code in the
following example do the same thing:

json.array! posts, partial: 'posts/post', as: :post
json.partial! 'posts/post', collection: posts, as: :post

You can also pass a partial as an argument to a normal builder method call:

json.comments @post.comments, partial: 'comments/comment', as: :comment

Just like their view template counterparts, Jbuilder partials accept variables
with or without :locals option.

Rails API 1176

json.partial! 'settings', locals: { user: user }
json.partial! 'settings', user: user

Null Values

You can explicitly make Jbuilder object return null if you want:

json.extract! @post, :id, :title, :content, :published_at
json.author do

if @post.anonymous?
json.null! # or json.nil!

else
json.first_name @post.author_first_name
json.last_name @post.author_last_name

end
end

To prevent Jbuilder from including null values in the output, you can use the
ignore_nil! method:

json.ignore_nil!
json.foo nil
json.bar "bar"
=> { "bar": "bar" }

Caching

One of the most powerful features of the Jbuilder Rails integration, at least for
high-traffic deployments, is support for fragment caching. Again, it should be
very familiar to those of you familiar with how it works in view templates—it
uses Rails.cache under the covers.

json.cache! ['v1', @person], expires_in: 10.minutes do
json.extract! @person, :name, :age

end

You can also conditionally cache a block by using cache_if! like this:

json.cache_if! !admin?, ['v1', @person], expires_in: 10.minutes do
json.extract! @person, :name, :age

end

If you are rendering fragments for a collection of objects, have a look
at the jbuilder_cache_multi gem. It uses fetch_multi to fetch multiple
keys from the cache at once.

Rails API 1177

ActiveModel Serializers

If you don’t like Jbuilder, a different (perhaps slightly more popular) option
is called ActiveModel Serializers (AMS). It claims to adhere to Rails’ conven-
tion over configuration philosophy and, according to some of its advocates,
encourages consistency in a way that results in easier to maintain code than
Jbuilder.
https://github.com/rails-api/active_model_serializers
Contrary to Jbuilder’s templating approach, with AMS you define classes that
extend ActiveModel::Serializer. They look kind of like Active Record models
and have similar macro methods for defining attributes and associations.

class AuctionSerializer < ActiveModel::Serializer
attributes :name, :description, :ends_at
has_many :bids

end

Once you define serializers, Rails will use them by convention whenever you
render JSON in your controllers.

Unfortunately, a couple of factors came together to prevent us from doing
much than mentioning AMS in The Rails 5 Way. One is that the API is
somewhat in flux, which made us worry that the information would get
outdated quickly. The second factor is that it is a large library and would
take many pages to even scrape the surface. Your best bet at the moment
is to start by studying the guides provided by the project authors at https:
//github.com/rails-api/active_model_serializers/tree/master/docs.

https://github.com/rails-api/active_model_serializers
https://github.com/rails-api/active_model_serializers/tree/master/docs
https://github.com/rails-api/active_model_serializers/tree/master/docs

	Table of Contents
	Foreword
	Foreword (to The Rails 4 Way)
	Foreword (to The Rails 3 Way)
	Foreword (to The Rails Way)
	Acknowledgments
	About the Author
	Introduction
	About This Book
	David Heinemeier Hansson (aka DHH)
	Goals
	Prerequisites
	Required Technology
	Licenses, Attributions and Trademark Notice

	Rails Configuration and Environments
	Bundler
	Startup Scripts
	Default Initializers
	Other Common Initializers
	Spring Application Preloader
	Development Mode
	Test Mode
	Production Mode
	Configuring a Database
	Configuring Application Secrets
	Logging

	Routing
	The Two Purposes of Routing
	The routes.rb File
	Route Globbing
	Named Routes
	Scoping Routing Rules
	Listing Routes
	Conclusion

	REST, Resources, and Rails
	REST in a Rather Small Nutshell
	Resources and Representations
	REST in Rails
	Routing and CRUD
	The Standard RESTful Controller Actions
	Singular Resource Routes
	Nested Resources
	Routing Concerns
	RESTful Route Customizations
	Controller-Only Resources
	Different Representations of Resources
	The RESTful Rails Action Set
	Conclusion

	Working with Controllers
	Rack
	Action Dispatch: Where It All Begins
	Render unto View…
	Additional Layout Options
	Redirecting
	Controller/View Communication
	Action Callbacks
	Streaming
	Variants
	Conclusion

	Working with Active Record
	The Basics
	Macro-Style Methods
	Defining Attributes
	CRUD: Creating, Reading, Updating, Deleting
	Database Locking
	Querying
	Ignoring Columns
	Connections to Multiple Databases in Different Models
	Using the Database Connection Directly
	Custom SQL Queries
	Other Configuration Options
	Conclusion

	Active Record Migrations
	Creating Migrations
	Defining Columns
	Transactions
	Data Migration
	Database Schema
	Database Seeding
	Database-Related Tasks
	Conclusion

	Active Record Associations
	The Association Hierarchy
	One-to-Many Relationships
	Belongs to Associations
	Has Many Associations
	Many-to-Many Relationships
	One-to-One Relationships
	Working with Unsaved Objects and Associations
	Association Extensions
	The CollectionProxy Class
	Conclusion

	Validations
	Finding Errors
	The Simple Declarative Validations
	Common Validation Options
	Conditional Validation
	Short-form Validation
	Custom Validation Techniques
	Skipping Validations
	Working with the Errors Hash
	Testing Validations with Shoulda
	Conclusion

	Advanced Active Record
	Scopes
	Callbacks
	Attributes API
	Serialized Attributes
	Enums
	Generating Secure Tokens
	Calculation Methods
	Batch Operations
	Single-Table Inheritance (STI)
	Abstract Base Model Classes
	Polymorphic has_many Relationships
	Foreign-key Constraints
	Modules for Reusing Common Behavior
	Value Objects
	Non-Persisted Models
	Modifying Active Record Classes at Runtime
	PostgreSQL
	Conclusion

	Action View
	Layouts and Templates
	Partials
	Conclusion

	All About Helpers
	ActiveModelHelper
	AssetTagHelper
	AssetUrlHelper
	AtomFeedHelper
	CacheHelper
	CaptureHelper
	ControllerHelper
	CsrfHelper
	DateHelper
	DebugHelper
	FormHelper
	FormOptionsHelper
	FormTagHelper
	JavaScriptHelper
	NumberHelper
	OutputSafetyHelper
	RecordTagHelper
	RenderingHelper
	SanitizeHelper
	TagHelper
	TextHelper
	TranslationHelper and the I18n API
	UrlHelper
	Writing Your Own View Helpers
	Wrapping and Generalizing Partials
	Conclusion

	Haml
	Getting Started
	The Basics
	Doctype
	Comments
	Evaluating Ruby Code
	Helpers
	Filters
	Haml and Content
	Configuration Options
	Conclusion

	Session Management
	What to Store in the Session
	Storage Mechanisms
	Cookies
	Conclusion

	Authentication and Authorization
	Warden
	Devise
	has_secure_password
	Pundit
	Conclusion

	Security
	Password Management
	Log Masking
	SSL (Secure Sockets Layer)
	Model Mass-assignment Attributes Protection
	SQL Injection
	Cross-Site Scripting (XSS)
	XSRF (Cross-Site Request Forgery)
	Session Fixation Attacks
	Keeping Secrets
	Conclusion

	Action Mailer
	Mailer Models
	Previews
	Receiving Emails
	Testing Email Content
	Sending via API
	Configuration
	Conclusion

	Caching and Performance
	View Caching
	Data Caching
	Control of Web Caching
	ETags
	Conclusion

	Background Processing
	Active Job
	Queueing Backends
	Rails Runner
	Conclusion

	Asset Pipeline
	Introduction to Asset Management
	Organization. Where Does Everything Go?
	Manifest Files
	Custom Format Handlers
	Post-Processing
	Helpers
	Fingerprinting
	Serving the Files
	Rake Tasks
	Webpack
	Conclusion

	Ajax on Rails
	Unobtrusive JavaScript
	Ajax and JSON
	Ajax and HTML
	JSONP Requests
	Conclusion

	Turbolinks
	Turbolinks Usage
	Building Your Turbolinks Application
	Understanding Turbolinks Caching
	Making Transformations Idempotent
	Responding to Page Updates
	Persisting Elements Across Page Loads
	Advanced Turbolinks
	Turbolinks API Reference
	Turbolinks Events
	Conclusion

	Action Cable
	Web Sockets
	Publish-Subscribe Pattern
	Connections
	Channels
	Subscriptions
	Streams
	Subscriptions Revisited (Browser-Side)
	Rebroadcasting
	Channel Actions
	Configuration
	Running Standalone Cable Servers
	Generator
	Conclusion

	RSpec
	Introduction
	Behavior-Driven Development
	Basic Syntax and API
	Custom Expectation Matchers
	Helper Methods
	Shared Behaviors
	Shared Context
	Mocks and Stubs
	Running Specs
	Factory Girl
	RSpec and Rails
	Feature Specs with Capybara
	Working with Files in Your Specs
	RSpec Tools
	Conclusion

	Active Model API Reference
	AttributeAssignment
	AttributeMethods
	Callbacks
	Conversion
	Dirty
	Errors
	ForbiddenAttributesError
	Lint::Tests
	MissingAttributeError
	Model
	Name
	Naming
	SecurePassword
	Serialization
	Serializers::JSON
	Translation
	Type
	ValidationError
	Validations
	Validator

	Active Support API Reference
	Array
	Autoload
	BacktraceCleaner
	Benchmark
	Benchmarkable
	BigDecimal
	Cache::FileStore
	Cache::MemCacheStore
	Cache::MemoryStore
	Cache::NullStore
	Cache::Store
	CachingKeyGenerator
	Callbacks
	Class
	Concern
	Configurable
	Date
	DateAndTime
	DateTime
	Dependencies
	DescendantsTracker
	Digest::UUID
	Duration
	Enumerable
	ERB::Util
	EventedFileUpdateChecker
	FalseClass
	File
	FileUpdateChecker
	Gzip
	Hash
	HashWithIndifferentAccess
	Inflector
	Inflector::Inflections
	Integer
	JSON
	Kernel
	KeyGenerator
	LazyLoadHooks
	Locale
	LogSubscriber
	Logger
	MessageEncryptor
	MessageVerifier
	Module
	Module::Concerning
	Multibyte::Chars
	Multibyte::Unicode
	NameError
	NilClass
	Notifications
	NumberHelper
	Numeric
	Object
	OrderedOptions
	ProxyObject
	Railtie
	Range
	Regexp
	Rescuable
	SecureRandom
	SecurityUtils
	String
	StringInquirer
	Subscriber
	TaggedLogging
	TestCase
	Testing::Assertions
	Thread
	Time
	TimeWithZone
	TimeZone
	TrueClass
	XmlMini

	Rails API
	Rails API Mode
	JSON

