

Rails:	Novice	to	Ninja

by	Glenn	Goodrich	and	Patrick	Lenz

Copyright	©	2016	SitePoint	Pty.	Ltd.
	

Product	Manager:	Simon	Mackie
English	Editor:	Kelly	Steele
Technical	Editor:	Enrique	Gonzalez
Cover	Designer:	Alex	Walker

Notice	of	Rights

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system	or
transmitted	 in	 any	 form	 or	 by	 any	 means,	 without	 the	 prior	 written	 permission	 of	 the
publisher,	except	in	the	case	of	brief	quotations	embodied	in	critical	articles	or	reviews.

Notice	of	Liability

The	author	and	publisher	have	made	every	effort	 to	ensure	 the	accuracy	of	 the	 information
herein.	 However,	 the	 information	 contained	 in	 this	 book	 is	 sold	 without	 warranty,	 either
express	or	implied.	Neither	the	authors	and	SitePoint	Pty.	Ltd.,	nor	its	dealers	or	distributors
will	 be	 held	 liable	 for	 any	 damages	 to	 be	 caused	 either	 directly	 or	 indirectly	 by	 the
instructions	contained	in	this	book,	or	by	the	software	or	hardware	products	described	herein.

Trademark	Notice

Rather	 than	 indicating	every	occurrence	of	a	 trademarked	name	as	 such,	 this	book	uses	 the
names	only	in	an	editorial	fashion	and	to	the	benefit	of	the	trademark	owner	with	no	intention
of	infringement	of	the	trademark.

Published	by	SitePoint	Pty.	Ltd.

48	Cambridge	Street	Collingwood
VIC	Australia	3066
Web:	www.sitepoint.com
Email:	business@sitepoint.com

ISBN	978-0-9943470-0-8	(print)

ISBN	978-0-9943470-6-0	(ebook)
Printed	and	bound	in	the	United	States	of	America

About	Glenn	Goodrich

Glenn	Goodrich	started	programming	when	he	was	12	and	hasn’t	really	stopped	since.	He	has
worked	for	large	enterprises,	startups,	and	everything	in	between.	Glenn	found	Ruby	in	2006
or	 so	 and	 (like	 so	 many	 other	 nerds)	 fell	 immediately	 in	 love.	 He	 can	 be	 found	 on	 the
SitePoint	Ruby	channel,	editing	and	writing	and	such.	Glenn	enjoys	writing	almost	as	much	as
coding,	and	he	sincerely	hopes	this	book	helps	at	least	one	new	Rubyist	on	their	path.

About	SitePoint

SitePoint	 specializes	 in	 publishing	 fun,	 practical,	 and	 easy-to-understand	 content	 for	 web
professionals.	Visit	http://www.sitepoint.com/	to	access	our	blogs,	books,	newsletters,	articles,
and	community	forums.	You’ll	find	a	stack	of	information	on	JavaScript,	PHP,	Ruby,	mobile
development,	design,	and	more.

I	would	like	to	dedicate	this	book	my	wife,	who	saw	past	 the	nerd	and	helps	me	see	the	life
beyond	the	code	every	day.

http://www.sitepoint.com/

Preface
When	 Simon	Mackie	 approached	me	 to	 update	 this	 book	 from	Rails	 2	 to	 Rails	 5,	 I	 didn’t
hesitate.	 For	 one,	 he	 said	 “Simon	 says	 ‘UPDATE	THIS	BOOK’!”	 (groan).	 For	 two,	 I	 love
writing	and	I	love	Rails,	so	this	opportunity	was	a	no-brainer.	Throughout	the	process,	I	have
remembered	why	Rails	 is	 such	 a	 paragon	 of	 productivity,	 and	 I've	 also	 discovered	much	 I
didn’t	know	about	 the	framework.	I	honestly	believe	there	is	no	better	way	to	be	productive
writing	a	web	application	than	to	write	about	the	technology.

I’d	be	remiss	 if	 I	didn’t	point	out	 the	 truly	excellent	work	done	by	Patrick	Lenz	on	the	first
two	editions	of	this	book.	Patrick	has	a	gift	for	explaining	technical	things	simply,	something
I	 leveraged	 over	 and	 over	 again	 in	 this	 update.	 Patrick’s	 work	 shines	 through,	 into	 this
version,	and	I	learned	much	from	both	his	content	and	his	style.	Finally,	I	have	always	enjoyed
writing.	I	have	written	many	blog	posts	in	my	technical	life,	always	with	two	goals:	Firstly,	to
solidify	 my	 own	 understanding	 of	 the	 topic,	 and	 secondly,	 to	 share	 my	 knowledge	 with	 a
community.	 The	 thought	 of	 someone	 getting	 better	 as	 a	 result	 of	 reading	 something	 I’ve
penned	is	exhilarating.	I	sincerely	hope	that	this	book	launches	you	on	a	career	as	rewarding
as	mine	has	been,	and	that	you	find	the	same	joy	in	sharing	your	knowledge.

Who	Should	Read	This	Book
This	book	is	for	web	developers	who	want	to	learn	Ruby	on	Rails.	You	don’t	need	any	prior
experience	with	Ruby,	 although	 some	 experience	with	 another	 programming	 language	will
probably	be	useful.

Conventions	Used

You’ll	 notice	 that	we’ve	used	certain	 typographic	 and	 layout	 styles	 throughout	 this	book	 to
signify	different	types	of	information.	Look	out	for	the	following	items.

Code	Samples
Code	in	this	book	is	displayed	using	a	fixed-width	font,	like	so:

<h1>A	Perfect	Summer's	Day</h1>

<p>It	was	a	lovely	day	for	a	walk	in	the	park.</p>

																								

If	the	code	is	to	be	found	in	the	book’s	code	archive,	the	name	of	the	file	will	appear	at	the	top
of	the	program	listing,	like	this:

example.css

.footer	{

		background-color:	#CCC;

		border-top:	1px	solid	#333;

}

																																

If	only	part	of	the	file	is	displayed,	this	is	indicated	by	the	word	excerpt:

example.css	(excerpt)

.footer	{

		background-color:	#CCC;

		border-top:	1px	solid	#333;

}

																																

Where	existing	code	is	required	for	context,	rather	than	repeat	all	of	it,	⋮	will	be	displayed:

function	animate()	{

		⋮
		new_variable	=	"Hello";

}

																								

Some	 lines	of	 code	 should	be	 entered	on	one	 line,	 but	we’ve	had	 to	wrap	 them	because	of
page	 constraints.	An	➥	 indicates	 a	 line	 break	 that	 exists	 for	 formatting	 purposes	 only,	 and
should	be	ignored:

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-

testing/?responsive1");

																								

																								

Tips,	Notes,	and	Warnings
Hey,	You!

Tips	provide	helpful	little	pointers.

Ahem,	Excuse	Me	...

Notes	are	useful	asides	that	are	related—but	not	critical—to	the	topic	at	hand.	Think	of	them
as	extra	tidbits	of	information.

EXTRA	CREDIT

EXTRA	CREDIT	notes	 contain	 additional	 homework	 exercises	 that	 you	 can	 do	 yourself	 to
further	your	knowledge	of	Ruby	on	Rails.	While	you	don't	have	to	complete	the	extra	credit
exercises	 in	order	 to	follow	the	book,	doing	so	will	greatly	enhance	your	understanding	of
Ruby,	Rails,	and	the	Rails	ecosystem,	so	they	are	recommended.

Make	Sure	You	Always	...

...	pay	attention	to	these	important	points.

Watch	Out!

Warnings	highlight	any	gotchas	that	are	likely	to	trip	you	up	along	the	way.

Supplementary	Materials
	

https://github.com/spbooks/rails3v5	 has	 the	 downloadable	 code	 archive	 and	 example
files	for	the	book.	Please	note	that	each	chapter	has	its	own	branch	in	the	repository.	If
you're	 unfamiliar	 with	 Git	 and	 GitHub,	 you	 can	 simply	 download	 the	 code	 for	 each
chapter	 as	 a	Zip	 file.	Go	 to	 https://github.com/spbooks/rails3v5/branches/all,	 select	 the
branch	 that	 corresponds	 with	 the	 chapter	 that	 you're	 reading,	 and	 the	 click	Clone	 or
download	>	Download	ZIP.
https://www.sitepoint.com/community/	are	SitePoint’s	forums,	for	help	on	any	tricky	web
problems.
books@sitepoint.com	 is	 our	 email	 address,	 should	you	need	 to	 contact	 us	 to	 report	 a
problem,	or	for	any	other	reason.

https://github.com/spbooks/rails3v5
https://github.com/spbooks/rails3v5/branches/all
https://www.sitepoint.com/community/

Chapter	1:	Introducing	Ruby	on	Rails
Since	Ruby	on	Rails	was	first	released,	it	has	become	a	household	name	(well,	in	developers'
households,	 anyway).	Hundreds	of	 thousands	of	 developers	 the	world	over	have	 adopted—
and	 adored—this	 framework.	 I	 hope	 that,	 through	 the	 course	 of	 this	 book,	 you'll	 come	 to
understand	 the	 reasons	why.	Before	we	 jump	 into	writing	any	code,	 let's	 take	a	 stroll	down
memory	lane	and	explore	a	little	of	the	history	of	Ruby	on	Rails.

First,	what	exactly	is	Ruby	on	Rails?

The	short-and	fairly	technical—answer	is	that	Ruby	on	Rails	(often	abbreviated	to	“Rails”)	is
a	 full-stack	 web	 application	 framework	 written	 in	 Ruby.	 That	 is	 a	 distinction	 worth
emphasizing.	Ruby	is	a	language	and	Rails	is	a	framework.	Say	that	last	sentence	out	loud	a
couple	of	times.	Rails	is	often	mentioned	as	if	it	is	a	language,	so	understanding	that	Ruby	is
the	language	and	Rails	is	the	framework	is	your	first	step	on	this	journey	of	learning.

However,	depending	on	your	previous	programming	experience	(and	your	mastery	of	tech-
jargon,	that	answer	might	make	little	sense	to	you.	Besides,	the	Ruby	on	Rails	movement—the
development	 principles	 it	 represents—really	 needs	 to	 be	 viewed	 in	 the	 context	 of	 web
development	in	general	if	it	is	to	be	fully	appreciated.

So,	let's	define	a	few	of	the	terms	in	the	definition	above	while	taking	in	a	brief	history	lesson
along	 the	way.	 Then	we'll	 tackle	 the	 question	 of	why	 learning	Rails	 is	 one	 of	 the	 smartest
moves	you	can	make	for	your	career	as	a	web	developer.

A	web	 application	 is	 a	 software	 application	 that's	 accessed	 using	 a	 web	 browser	 over	 a
network.	In	most	cases,	that	network	is	the	Internet,	but	it	could	also	be	a	corporate	intranet.
The	number	of	web	applications	being	created	has	increased	exponentially	since	Rails	came
into	being,	due	mostly	 to	 the	ubiquity	of	broadband	 internet	access	and	 the	proliferation	of
mobile	devices.	We	can	only	assume	that	you're	interested	in	writing	such	a	web	application,
given	that	you've	bought	this	book!

A	framework	can	be	viewed	as	the	foundation	of	a	web	application.	It	takes	care	of	many	of
the	low-level	details	that	can	become	repetitive	and	boring	to	code,	allowing	the	developer	to
focus	on	building	the	application's	functionality.

A	framework	gives	the	developer	classes	that	implement	common	functions	used	in	every	web
application,	including:
	

database	 abstraction	 (ensuring	 that	 queries	work	 regardless	 of	whether	 the	 database	 is
MySQL,	PostgreSQL,	MongoDB,	SQLite,	or	[insert	your	favorite	database	here])

templating	(reusing	presentational	code	throughout	the	application)

management	of	user	sessions

generation	of	clean,	search-engine-friendly	URLs

Classes?

The	reference	 to	classes	 above	can	be	 taken	 to	mean	 "collections	of	 code."	 I'll	 cover	more
about	classes	later,	so	hang	in	there.

A	 framework	 also	 defines	 the	 architecture	 of	 an	 application;	 that	 is,	 how	 the	 application	 is
physically	laid	out.	This	facility	can	be	useful	for	those	of	us	who	fret	over	which	file	is	best
stored	in	which	folder.

In	a	sense,	a	framework	is	an	application	that	has	been	started	for	you,	and	a	well-designed
application	 at	 that.	 The	 structure—plus	 the	 code	 that	 takes	 care	 of	 the	 boring	 stuff—has
already	been	written,	and	it's	up	to	you	to	finish	it	off.	You	are	truly	standing	on	the	shoulders
of	giants	when	you	start	building	a	Rails	app.

Full-stack	refers	to	the	extent	of	the	functionality	that	the	Rails	framework	provides.	You	see,
there	are	frameworks	and	then	there	are	frameworks.	Some	provide	great	functionality	on	the
server,	but	leave	you	high	and	dry	on	the	client	side;	others	are	terrific	at	enhancing	the	user
experience	in	the	browser,	but	don't	extend	to	the	business	logic	and	database	interactions	on
the	server.	Rails,	by	the	way,	gives	you	both.

If	you've	ever	used	a	framework	before,	chances	are	that	you're	familiar	with	the	model-view-
controller	(MVC)	architecture	(if	not,	don't	worry—we'll	discuss	it	in	Chapter	4.	Rails	covers
everything	 in	 the	 MVC	 paradigm,	 from	 database	 abstraction	 to	 template	 rendering,	 and
everything	in	between.

Ruby	is	an	open-source	object-oriented	scripting	language	invented	by	Yukihiro	Matsumoto
(affectionately	known	as	"Matz")	in	the	early	1990s.	We'll	be	learning	both	Ruby	and	Rails	as
we	progress	through	the	book	(remember,	Rails	is	written	in	Ruby).

Ruby	makes	programming	flexible	and	intuitive,	and	with	it	we	can	write	code	that's	readable
by	both	humans	and	machines.	Matz	designed	Ruby	to	make	programmers	happy,	as	you'll	see
as	we	move	through	this	book.

What	does	Ruby	syntax	look	like?

If	you're	experienced	 in	programming	with	other	 languages,	 such	as	PHP	or	 Java,	you	can
probably	make	sense	of	the	following	Ruby	code,	although	some	parts	of	it	may	look	new:

>	"What	does	Ruby	syntax	look	like?".reverse

=>	"?ekil	kool	xatnys	ybuR	seod	tahW"

>	8	*	5

=>	40

>	3.times	{	puts	"cheer!"	}

=>	cheer!

=>	cheer!

=>	cheer!

>	%w(one	two	three).each	{	|word|	puts	word.upcase	}

=>	ONE

=>	TWO

=>	THREE

																								

Don't	worry	too	much	about	the	details	of	programming	in	Ruby	for	now—we'll	cover	all	of
the	Ruby	basics	in	Chapter	3.

History

Ruby	on	Rails	originated	as	an	application	named	Basecamp,	 a	 hosted	 project-management
solution	created	by	Danish	web	developer	David	Heinemeier	Hansson	(affectionately	known
as	"DHH"	to	Rubyists)	for	former	design	shop	37signals.	Due	largely	to	Basecamp's	success,
37signals	 has	 since	 moved	 into	 application	 development	 and	 production,	 and	 Heinemeier
Hansson	has	become	a	partner	in	the	company.

When	I	say	“originated,”	I	mean	that	Rails	wasn't	initially	created	as	a	stand-alone	framework.
It	was	 extracted	 from	 an	 application	 already	 in	 use,	 so	 that	 it	 could	 be	 used	 to	 build	 other
applications	that	37signals	had	in	mind.	Heinemeier	Hansson	saw	the	potential	to	make	his	job
(and	 life)	 easier	 by	 extracting	 common	 functionality	 such	 as	 database	 abstraction	 and
templating	into	what	later	became	the	first	public	release	of	Ruby	on	Rails.

He	decided	to	release	Rails	as	open-source	software	to	remake	the	way	web	applications	are
built.	The	first	beta	version	of	Rails	was	initially	released	in	July	2004,	with	the	1.0	and	2.0
releases	 following	 in	 December,	 2005	 and	 2007	 respectively.	 A	 little	 over	 2	 years	 later,
version	 3.0	 of	 Rails	 was	 released	 and	 the	 number	 of	 contributors	 had	 ballooned	 to
approximately	1,600.	Rails	4	came	out	in	2013,	with	minor	releases	continuing	through	to	the
end	of	2014	with	4.2.	Rails	5.0,	which	is	the	focus	of	this	book,	was	released	in	mid-2016.

That	 the	 Rails	 framework	 was	 extracted	 from	 Basecamp	 (and	 is	 still	 the	 foundation	 of
Basecamp	 today)	 is	 considered	 by	 the	 lively	 Rails	 community	 to	 represent	 one	 of	 the
framework's	 inherent	 strengths:	 it	was	 already	 solving	 real	 problems	when	 it	was	 released.
Rails	 wasn't	 built	 in	 isolation,	 so	 its	 success	 wasn't	 a	 result	 of	 developers	 taking	 the
framework,	building	applications	with	it,	and	then	finding—and	resolving—its	shortcomings.
Rails	had	already	proven	itself	to	be	a	useful,	coherent,	and	comprehensive	framework.

While	 Heinemeier	 Hansson	 pioneered	 Rails	 and	 still	 leads	 the	 Rails-related	 programming
efforts,	 the	 framework	 has	 benefited	 greatly	 from	 being	 released	 as	 open-source	 software.

http://www.basecamphq.com/
http://www.37signals.com/

Over	time,	many	developers	working	with	Rails	have	submitted	thousands	of	extensions	and
bug	 fixes	 to	 the	 Rails	 development	 repository.The	 Rails	 repository,	 located	 at
https://github.com/rails/rails/,	is	used	to	track	bugs	and	enhancement	requests.	The	repository
is	 closely	 guarded	 by	 the	 Rails	 core	 team,	 which	 consists	 of	 about	 twelve	 highly	 skilled
professional	developers	seen	in	figure	1-1,	chosen	from	the	crowd	of	contributors,	and	led	by
Heinemeier	Hansson.

https://github.com/rails/rails/

The	Rails	Core	Team

There	is	also	a	"committer	 team"	made	up	of	eight	or	so	individuals	that	can	do	everything
except	set	policy	and	make	final	releases.	On	top	of	that,	there	is	the	community	at	large,	the
source	of	many	patches	and	plugins.	At	present,	Rails	has	accepted	contributions	from	over
4,600	programmers!

Finally,	a	framework	as	mature	as	Rails	should	have	some	good	documentation,	and	it	does.
The	 Rails	 Guides	 are	 an	 excellent	 resource	 on	 understanding	 the	 many	 pieces	 of	 Rails.
Bookmark	 these	guides,	 as	 you'll	 likely	 return	 to	 them	 throughout	 your	 journey	 as	 a	Rails
programmer.

So,	now	you	know	what	Rails	is,	how	it	came	about,	and	who	supports	it.	But	why	would	you
invest	your	precious	time	in	learning	how	to	use	it?

I'm	glad	you	asked.

Development	Principles

Rails	supports	several	software	principles	(a	doctrine,	if	you	will)	that	make	it	stand	out	from
other	web	development	frameworks.	Those	principles	are:
	

optimize	for	programmer	happiness
convention	over	configuration
the	menu	is	omakase
no	one	paradigm
exalt	beautiful	code
value-integrated	systems
progress	over	stability
push	up	a	big	tent

This	doctrine	has	grown	and	changed	as	Rails	has	grown	and	changed	in	the	last	decade	or	so.
The	principles	are	not	without	controversy,	and	understanding	them	will	help	you	understand
how	Rails	became	what	it	is.

Optimize	for	Programmer	Happiness
I've	mentioned	 that	Matz	 designed	Ruby	 to	make	 programmers	 happy,	 and	 this	 tenet	 of	 the
Rails	doctrine	 is	pulled	directly	 from	 that	 sentiment.	 Just	 as	Ruby	 replaces	complexity	with
easy	language	and	offers	many	ways	to	achieve	a	programmer's	goal,	so	does	Rails	aim	to
make	web	application	complexity	more	mundane.	You'll	see	 this	 immediately	when	we	start
coding	the	example	application	in	this	book.	Using	just	two	simple	commands	in	the	terminal,
Rails	is	serving	up	a	functional	web	application.	The	amount	of	complexity	that	is	abstracted

http://guides.rubyonrails.org/
http://rubyonrails.org/doctrine/

away	 from	 the	programmer	 is	quite	 amazing,	 so	 that	we	can	 focus	on	building	 the	desired
application	and	not	the	niggling	details	of	web	development.

Still,	if	hiding	complexity	was	all	Rails	did,	programmer	happiness	would	quickly	cease.	Not
all	web	applications	have	the	same	requirements,	which	means	Rails	developers	often	have	to
get	 behind	 the	 curtain	 and	 tweak	 the	 magic	 of	 Rails.	 Do	 you	 want	 to	 change	 the	 database
you're	using?	No	problem.	What	about	how	user	sessions	are	stored?	Go	for	 it.	Rails	hides
the	complex	items	until	you	need	to	alter	them,	then	it	makes	changing	complexity	sensible.
This	 aspect	 of	 Rails	 probably	 speeds	 up	 development	 of	 usable	 applications	 faster	 than
anything	else.

I	 should	also	mention	 that	creating	a	Rails	application	 is	as	good	an	experience	as	you	can
hope	for	in	your	development	life.	There	is	a	Rails	console	that	opens	the	guts	of	your	web
application,	allowing	you	to	poke	around	and	find	where	the	bugs	are	or	test	out	code.	Testing
is	built	into	Rails	better	than	any	other	web	development	framework	in	the	world,	hands	down.
When	I	develop	web	apps	in	other	languages	or	with	other	frameworks,	I	find	myself	pining
for	the	tools	and	environment	that	Rails	brings	to	the	table.

Convention	Over	Configuration
The	 concept	 of	 convention	 over	 configuration	 refers	 to	 how	 Rails	 assumes	 a	 number	 of
defaults	for	the	way	one	should	build	a	typical	web	application.

Many	other	frameworks	require	you	to	step	through	a	lengthy	configuration	process	before
you	can	make	a	start	with	even	the	simplest	of	applications.	The	configuration	information	is
usually	 stored	 in	 a	 handful	 of	 XML	 or	 JSON	 files,	 which	 can	 become	 quite	 large	 and
cumbersome	 to	 maintain.	 In	 many	 cases,	 you're	 forced	 to	 repeat	 the	 entire	 configuration
process	whenever	you	start	a	new	project.

While	 Rails	 was	 originally	 extracted	 from	 an	 existing	 application,	 extensive	 architectural
work	 went	 into	 the	 framework	 later	 on.	 DHH	 purposely	 created	 Rails	 in	 such	 a	 way	 that
there's	 no	 need	 for	 excessive	 configuration,	 as	 long	 as	 some	 standard	 conventions	 are
followed.	The	result	is	that	no	lengthy	configuration	files	are	required.	In	fact,	if	you	have	no
need	to	change	these	defaults,	Rails	really	only	requires	a	single	(and	short)	configuration	file
in	order	to	run	your	application.

Other	conventions	that	are	prescribed	by	Rails	 include	the	naming	of	database-related	items
and	the	process	by	which	controllers	find	their	corresponding	models	and	views.

MVC

The	model-view-controller	(MVC)	architecture	is	a	software	architecture	(also	referred	to	as
a	design	pattern)	that	separates	an	application's	data	model	(model),	user	interface	(view),	and
control	logic	(controller)	into	three	distinct	components.

Here's	 an	 example:	 when	 your	 browser	 requests	 a	 web	 page	 from	 an	 MVC-architected
application,	it's	talking	exclusively	to	the	controller.	The	controller	gathers	the	required	data
from	 one	 or	more	models	 and	 renders	 the	 response	 to	 your	 request	 through	 a	 view.	 This
separation	of	components	means	that	any	change	that's	made	to	one	component	has	minimal
effect	on	the	other	two.

We'll	talk	at	length	about	the	MVC	architecture	and	the	benefits	it	yields	to	Rails	applications
in	Chapter	4.

Rails	is	also	considered	to	be	opinionated	software,	a	term	coined	to	refer	to	software	that
isn't	 everything	 to	 everyone.	 DHH	 and	 his	 core	 team	 ruthlessly	 reject	 contributions	 to	 the
framework	that	fail	to	comply	with	their	vision	of	where	Rails	is	headed,	or	aren't	sufficiently
applicable	 to	 be	 useful	 for	 the	majority	 of	Rails	 developers.	This	 is	 a	 good	way	 to	 fight	 a
phenomenon	 known	 among	 software	 developers	 as	 bloat:	 the	 tendency	 for	 a	 software
package	to	implement	extraneous	features	just	for	the	sake	of	including	them.

The	Menu	is	Omakase
This	 principle	 is	 similar	 to	 the	 goal	 of	 optimizing	 for	 programmer	 happiness.	 "Omakase"
comes	from	the	restaurant	industry–sushi	restaurants,	to	be	more	specific–and	is	the	concept
of	 letting	 the	 chef	 pick	 your	 meal	 based	 on	 his	 sophisticated	 palette.	 If	 you	 are	 new	 to
ordering	sushi,	for	example,	using	an	omakase	method	can	help	you	figure	out	what	is	good.
As	such,	the	Rails	team	will	look	at	the	practices	and	tools	that	most	developers	are	using	and
evaluate	whether	they	deserve	inclusion	in	the	core	framework.	This	has	resulted	in	tools	such
as	 CoffeeScript	 (which	 we'll	 discuss	 in	 Chapter	 7)	 and	 Spring	 being	 included	 in	 the
framework.

It's	only	fair	to	point	out	that	this	is	probably	the	most	controversial	part	of	the	Rails	doctrine.
While	 those	 new	 to	 Rails	 may	 like	 being	 served	 a	 stack	 of	 tools	 to	 use,	 experienced
developers	are	different	beasts	altogether.	Often,	the	selected	tool	is	unpopular	with	a	part	of
the	community	that	is	highly	vocal	about	it.	The	good	news	is	that	these	tools	can	be	removed
or	swapped	out	for	other	tools	without	much	ceremony.

No	One	Paradigm
Rails	has	been	growing	and	changing	for	almost	a	decade.	In	that	decade,	the	languages,	tools,
approaches,	 and	 design	 patterns	 have	 exploded.	We	 know	much	more	 as	 an	 industry	 today
than	we	did	in	2007.	As	such,	the	design	concepts	and	paradigms	behind	Rails	that	have	been
altered	 or	 refined	 are	 based	 on	 new	 understanding.	 This	 kind	 of	 change	 and	 continued
learning	will	never	stop,	so	Rails	has	to	account	for	it.

When	DHH	describes	Rails	as	a	quilt,	he	means	it's	made	up	of	several	paradigms	and	ideas,
instead	of	a	single	idea	that	permeates	the	framework.	You'll	hear	about	design	patterns,	such
as	Active	Record,	that	is	foundational	to	Rails	models,	but	can	be	implemented	differently	or

even	completely	removed	(we’ll	discuss	Active	Record	in	Chapter	4).	Rails	is	not	pedantic	in
how	it	uses	design	patterns,	always	erring	on	the	side	of	being	practical.	As	you	dive	deeper
into	Rails,	 you'll	 be	presented	with	more	patterns	 and	 languages.	Do	you	need	 to	 refine	 an
SQL	query?	You	can	do	that	by	writing	the	SQL	yourself	or	leveraging	the	tools	of	Arel	and
Active	Record.	Does	 your	 client-side	 JavaScript	 need	 to	 perform	 some	 fancier	 stuff	 in	 the
browser?	 You	 can	 add	 front-end	 libraries	 or	 write	 the	 code	 yourself.	 Do	 you	 think	 the
Datamapper	pattern	is	better	than	Active	Record?	Okay,	swap	it	out.

The	 point	 is,	 not	 only	 is	 Rails	 a	 quilt,	 each	 Rails	 application	 is	 a	 different	 quilt.	 The
paradigms	presented	are	yours	to	use,	or	not.	The	downside	is	that	you	need	to	know	a	lot	of
design	 ideas	and	programming	concepts	 to	change	 these	paradigms.	But,	don't	worry,	Rails
will	take	you	a	long	long	way	before	you	need	to	know	about	this	stuff.	Rails	gets	you	excited
about	 doing	 things	 fast,	 then	 it	 revs	 you	 up	 by	 supporting	 your	 education	 and	 growth	 as	 a
programmer.

Exalt	Beautiful	Code
In	 my	 opinion,	 this	 is	 another	 concept	 that	 Rails	 has	 fully	 adopted	 from	 Ruby	 and	 its
community.	 Ruby	 was	 designed	 for	 humans	 to	 read,	 not	 computers.	 As	 such,	 it	 is	 quite
possible	to	write	"beautiful"	code.	As	with	any	beauty,	it	is	in	the	eye	of	the	beholder,	but	I'll
bet	we	can	agree	that	this	code	is	beautiful:

class	Person

		belongs_to	:family

		has_many	:pets

		validates	:name,	presence:	true

end

																								

Without	telling	you	anything	about	the	application	this	code	came	from,	you	can	still	surmise
much	 about	 what	 is	 happening.	 Ruby	 and	 Rails	 use	 the	 excellent	 design	 of	 Ruby's	 core
libraries	 along	 with	 some	 Domain	 Specific	 Languages	 (DSLs)	 to	 allow	 you,	 the	 happy
developer,	to	write	code	that	is	expressive	and	concise.	And	that	to	me	is	beautiful.

One	of	the	age-old	adages	that	fits	 into	this	principle	is	called	Don't	Repeat	Yourself,	also
known	as	the	DRY	principle.	Being	DRY	in	your	code	means	you	don't	copy/paste	the	same
code	all	over	your	codebase.	 Instead,	you	extract	common	code	and	 reuse	 it	where	needed.
This	leads	to	a	more	maintainable	and	beautiful	code	base.	I'll	reference	the	DRY	principle	a
few	times	throughout	the	book,	and	you'll	see	it	in	the	wild.

So	 what?	 You	 might	 be	 asking.	Well,	 when	 you	 are	 spending	 hours	 in	 a	 codebase	 that	 is
poorly	written	or	hard	to	read,	it's	exhausting.	Your	poor	brain	has	to	constantly	translate	the
code	and	its	abstractions.	If	the	code	is	not	expressive,	this	is	a	significant	mental	task.	If	the
code	 lacks	conciseness,	 it's	 tiring	 to	read.	Beautiful	code	 is	easier	 to	share	with	your	peers,
making	 collaboration	 enjoyable	 and	purposeful.	As	with	 anything	 in	 life,	 beauty	 in	 code	 is

https://en.wikipedia.org/wiki/Domain-specific_language

noble	and	meaningful.

Value-integrated	Systems
This	 particular	 principle	 is	 another	 of	 Rails'	 more	 controversial	 tenets.	 If	 you've	 read
anything	about	web	development	recently,	there's	a	lot	of	talk	about	splitting	applications	into
many	applications,	creating	microservices.	These	split-up	applications	are	a	reaction	to	large
web	 apps,	 called	monoliths.	 DHH	 and	 the	 Rails	 team	 believe	 in	 the	 value	 of	 keeping	 the
application	 in	 a	 single	 codebase.	 They	 certainly	 believe	 that	 the	 app	 should	 start	 that	 way,
rather	than	designing	a	suite	of	applications	and	services	up	front.	There	are	benefits	to	both
approaches,	 and	 what	 you	 do	 depends	 more	 on	 a	 particular	 use	 case	 than	 a	 Rails	 design
principle.

Having	said	that,	Rails	is	designed	to	build	a	complete	and	full-stack	web	application.	In	this
book,	that	is	what	we	will	do.

Progress	Over	Stability
When	talking	about	the	history	of	Rails,	I	mentioned	that	the	3.0	release	was	a	doozy.	It	took
two	years	and	had	many,	many	breaking	changes.	This	meant	 that	 applications	on	Rails	2.0
had	 a	 painful	 upgrade	 path.	 For	 a	 couple	 of	 years,	 it	 was	 impossible	 to	 swing	 a	 dead	 cat
without	 hitting	 someone	who	had	 abandoned	Rails	 rather	 than	 continue	 to	 try	 and	upgrade.
The	core	team	felt	that	the	changes	made	from	2.0	to	3.0	were	necessary	to	avoid	burdening
Rails	with	the	heavy	baggage	of	the	older	framework.	Rails	2.0	was	cracking	under	its	own
weight.	We	had	learned	much	about	better	design	and	new	approaches	to	the	problems	Rails
solves,	and	 the	changes	had	 to	be	made.	Looking	back,	 it's	hard	 to	argue	with	 the	decisions
made.	Rails	is	better	than	ever,	largely	due	to	the	decisions	made	for	that	3.0	release.

If	you	stick	around	and	become	a	Rails	developer	(and	I	sincerely	hope	you	do),	you'll	hear
about	 additions	 to	 Rails	 that	 rile	 parts—or	 even	 most—of	 the	 community.	 Tools	 such	 as
Spring,	Turbolinks,	CoffeeScript,	and	Action	Cable	were	all	brought	into	the	fold	in	the	name
of	 progress.	Many	 breaking	 changes	 have	 been	made	 to	 shave	 off	 the	 cruft	 of	 "old	ways,"
ensuring	that	the	future	of	Rails	doesn't	suffer	as	a	result	of	its	past.

Often	these	additions	are	the	right	thing	to	do,	but	they	need	the	community	to	chime	in	before
they	are	fully	cooked.	Hence,	they	are	introduced	to	the	framework	as	the	approach	or	tool	is
honed	 and	made	 better	 by	 the	 community	 and	 team.	 This	 is	 in	 the	 name	 of	 progress	 over
stability,	and	it's	likely	a	reason	why	Rails	is	as	active	as	ever	a	decade	after	its	birth.

Push	Up	a	Big	Tent
In	the	current	programming	environment,	this	tenet	may	be	the	most	important.	Rails	is	a	big
tent,	and	there	are	many,	many	folks	under	it	with	us.	There's	no	entry	admission	charged;	nor
will	 we	 demand	 that	 you	 produce	 immediately.	We	will,	 however,	 expect	 you	 to	 value	 the

community	 and	 its	 tools.	We'll	 expect	 you	 to	 express	 your	 opinions,	 and	 be	 respectful	 and
professional.

These	 are	 the	member	 traits	 that	 build	 a	 strong	 foundation	 for	 the	 larger	 community.	 The
people	in	the	Rails	tent	are	not	a	cult,	they	just	want	to	build	great	things.	They	are	people	that
want	 to	 learn	 from	others.	Rubyists	 are	not	 all	 cut	 from	 the	 same	cloth,	 and	 that's	why	 this
community	is	among	the	very	best	in	the	programming	world.

DHH	writes	of	his	disdain	for	microservices	or	certain	Ruby	libraries	that	are	very	popular.
Yet	 these	 libraries	 flourish,	 even	 without	 the	 endorsement	 of	 one	 of	 the	 most	 prominent
community	 members.	 He	 loves	 that,	 and	 so	 do	 I.	 I	 want	 a	 tent	 full	 of	 diverse,	 intelligent,
respectful,	and	fun	individuals,	and	that	is	what	the	Rails	community	is	today.

If	 your	 head	 is	 spinning	 from	 trying	 to	 digest	 these	 principles,	 don't	 worry—they'll	 be
reinforced	continually	throughout	this	book,	as	we	step	through	building	our	very	own	web
application	in	Ruby	on	Rails.

Building	the	Example	Web	Application

As	you	read	on,	I	expect	you'll	be	itching	to	put	the	techniques	we	discuss	into	practice.	For
this	reason,	I've	planned	a	fully	functional	web	application	that	we'll	build	together	throughout
the	 ensuing	 chapters.	 The	 key	 concepts,	 approaches,	 and	 methodologies	 we'll	 discuss	 will
have	a	role	to	play	in	the	sample	application,	and	we'll	implement	them	progressively	as	your
skills	improve	over	the	course	of	this	book.

The	 application	 we'll	 build	 will	 be	 a	 functional	 clone	 of	 part	 of	 the	 popular	 link-sharing
website,	Reddit:	namely,	 the	ability	to	share	a	link	and	vote	on	it.	I've	included	all	necessary
files	for	this	application	in	the	book's	code	archive.

Reddit	describes	its	functionality	as	follows:

The	global	Reddit	community	votes	on	which	stories	and	discussions	are	 important	by
casting	 upvotes	 or	 downvotes.	 The	 most	 interesting,	 funniest,	 impactful,	 or	 simply
amazing	stories	rise	to	the	top.

Basically,	if	you	want	to	tell	the	world	about	that	interesting	article	you	found	on	the	Internet
—be	it	a	blog	post	that's	right	up	your	street,	or	a	news	story	from	a	major	publication—you
can	submit	its	URL	to	Reddit,	along	with	a	short	summary	of	the	item.	Your	link	will	sit	there,
waiting	 for	 other	 users	 to	 "vote	 it	 up"	 (give	 your	 item	 a	 positive	 vote).	As	well	 as	 voting,
users	can	comment	on	the	story	to	create	often	lively	discussions	within	Reddit.

Reddit	was	launched	in	2005,	and	is	consistently	listed	in	the	Alexa	traffic	rankings	as	one	of
the	Internet's	top	50	websites.

http://www.reddit.com/
https://github.com/spbooks/rails3v5
https://about.reddit.com/
http://www.alexa.com/data/details/traffic_details/reddit.com

This	isn't	the	reason	why	you'll	be	developing	your	own	Reddit	clone,	though;	its	feature	set
is	not	particularly	complicated,	and	is	sufficient	to	allow	us	to	gain	firsthand	experience	with
the	most	important	and	useful	facets	of	the	Ruby	on	Rails	framework.

And	while	 your	 application	might	 be	 unable	 to	 compete	with	 the	 original	 site,	 reusing	 this
sample	 project	 to	 share	 links	 within	 your	 family,	 company,	 or	 college	 class	 is	 perfectly
conceivable.	With	any	luck,	you'll	learn	enough	along	the	way	to	branch	out	and	build	other
types	of	applications	as	well.

Features	of	the	Example	Application
As	I	mentioned,	we	want	our	application	to	accept	user-submitted	links	to	stories	on	the	Web.
We	 also	 want	 to	 allow	 other	 users	 to	 vote	 on	 the	 submitted	 items.	 In	 order	 to	 meet	 these
objectives,	we'll	implement	the	following	features	as	we	work	through	this	book:
	

A	database	back	end	that	permanently	stores	every	story,	user,	vote,	and	so	on.	This	way,
nothing	is	lost	when	you	close	your	browser	and	shut	the	application	down.

A	 link	 submission	 interface,	 which	 is	 a	 form	 that's	 available	 only	 to	 users	 who	 have
registered	and	logged	in.

A	simplistic,	responsive	layout	as	is	typical	for	today's	mobile-aware	applications.	We'll
style	it	with	Cascading	Style	Sheets	(CSS)	and	enhance	it	with	visual	effects.

Clean	URLs	 for	 all	 the	 pages	 on	 our	 site.	Clean	URLs	 (also	 known	 as	 search-engine-
friendly	URLs)	are	usually	brief	and	easily	read	when	they	appear	in	the	browser	status
bar.	An	example	of	a	clean	URL	 is	http://del.icio.us/popular/software,	which	 I'm
sure	 you'll	 agree	 is	 a	 lot	 nicer	 than	 http://www.amazon.com/gp/homepage.html/103-
0615814-1415024/.

A	 user	 registration	 system	 that	 allows	 users	 to	 log	 in	 with	 their	 usernames	 and
passwords.

The	ability	to	check	voting	history	on	a	peruser	and	per-story	basis.

It's	quite	a	list,	and	the	result	will	be	one	slick	web	application!	Some	of	the	features	rely	upon
others	being	in	place,	and	we'll	implement	each	feature	as	a	practical	example	when	we	look
at	successive	aspects	of	Rails.

Summary

Well,	here	we	are;	your	first	step	towards	Rails	is	complete.	This	chapter	walked	us	through

Rails'	beginnings—a	framework	born	as	a	way	to	solve	real	problems.	There	were	mentions
of	Ruby,	the	language	foundation	of	the	Rails	framework,	along	with	some	code	snippets	to
whet	your	whistle.	You	learned	that	Ruby	and	Rails	were	created	to	make	programmers	happy
and	more	productive.	We	looked	at	the	founders	and	many	contributors	to	Rails,	along	with
the	development	principles	that	serve	as	its	base.

These	ambitious	and	sensible	development	principles	drive	Rails	programmers,	and	you	are
about	to	be	amongst	their	ilk.	As	we	go	through	this	book	and	build	our	application	together,
try	to	keep	the	principles	in	mind.	You'll	build	habits	that	will	influence	your	work	for	your
entire	career.

Finally,	 we	 created	 a	 brief	 specification	 for	 the	 web	 application	 we’re	 going	 to	 build
throughout	 this	book.	We	described	what	our	app	will	do,	and	 identified	 the	 list	of	 features
that	we’re	going	to	implement.	We’ll	develop	a	lite	clone	of	the	link-sharing	website	Reddit
iteratively,	taking	advantage	of	some	of	the	Agile	development	practices	that	Rails	supports.

In	the	next	chapter,	we’ll	install	Ruby,	Rails,	and	the	SQLite	database	server	software	in	order
to	set	up	a	development	environment	for	the	upcoming	development	tasks.

Are	you	ready	to	join	in	the	fun?	If	so,	turn	the	page	…

Chapter	2:	Getting	Started
To	get	 started	with	Ruby	on	Rails,	we	 first	must	 install	 some	development	 software	on	our
systems.	The	packages	we'll	be	installing	are:

The	Ruby	language	interpreter
The	Ruby	 interpreter	 translates	 any	Ruby	 code,	 including	Rails	 itself,	 into	 a	 form	 the
computer	can	understand	and	execute.	At	the	time	of	writing,	Ruby	2.3.0	is	recommended
for	use	with	Rails,	so	that's	what	I've	used	here.

Found	in	Translation

There	 are	 many	 Ruby	 interpreters,	 but	 the	 most	 often	 used	 one	 is	 the	 Matz	 Ruby
Interpreter,	or	MRI	for	short.	You	may	also	hear	of	other	interpreters	such	as	JRuby	or
Rubinius.	Each	has	its	pros	and	cons,	but	as	it's	beyond	the	scope	of	this	book,	you	may
want	to	take	an	hour	or	so	and	do	some	reading	on	the	other	interpreters	and	why	they
exist.

RubyGems	package	manager
Many	languages	take	advantage	of	package	managers	to	help	the	community	manage	and
install	code	libraries.	Package	managers	allow	developers	to	create	libraries	that	can	be
shared	 easily	 and	 perform	 specific	 tasks.	 In	 fact,	 Rails	 itself	 comprises	 several
RubyGems	 (or	gems,	 as	 they	are	 called	by	Rubyists).	RubyGems	 is,	 arguably,	 the	best
package	manager	for	any	language	out	there,	and	we'll	use	it	to	install	gems	as	needed	in
the	book.	The	RubyGems	Guides	are	worth	perusing	for	an	idea	of	how	gems	work.

The	Ruby	on	Rails	framework
Once	we've	downloaded	Ruby,	we	can	install	the	Rails	framework	itself.	As	I	mentioned
in	Chapter	1,	Rails	is	written	in	Ruby.	At	the	time	of	writing,	version	5.0.0.1	was	the	most
recent	stable	version	of	the	framework.

The	SQLite	database	engine
The	SQLite	 database	 engine	 is	 a	 self-contained	 software	 library	 that	 provides	 an	 SQL
database	without	running	a	separate	server	process.	While	Rails	supports	plenty	of	other
database	servers	(MySQL,	PostgreSQL,	Microsoft	SQL	Server,	and	MongoDB,	to	name
a	few),	SQLite	is	easy	to	install,	requires	no	configuration,	and	is	the	default	database	for
which	a	new	Rails	application	is	configured	straight	out	of	the	box.	Oh,	and	it's	free!	At
the	 time	 of	writing,	 the	most	 recent	 stable	 release	 of	 the	 SQLite	 database	was	 version
3.14.1.

Instructions	 for	 installing	Rails	differ	ever	 so	slightly	between	operating	systems.	You	may
have	 to	 install	 some	additional	 tools	as	part	of	 the	process,	depending	on	 the	platform	you
use.	Here,	I'll	provide	installation	instructions	for	Windows,	Mac	OS	X,	and	Linux.

New	≠	Tried	+	Tested

http://jruby.org/
http://rubinius.com/
https://rubygems.org/
http://guides.rubygems.org/

It's	possible	that	by	the	time	you	read	this,	a	more	recent	version	of	Ruby,	SQLite,	or	another
package	mentioned	here	will	 have	been	 released.	Beware!	 Just	 because	 a	package	 is	newer,
doesn't	mean	 it	can	 reliably	be	used	 for	Rails	development.	While,	 in	 theory,	every	version
should	be	compatible	and	these	instructions	should	still	apply,	sometimes	the	latest	is	not	 the
greatest.	 In	 fact,	 the	Rails	 framework	 itself	has	a	 reputation	 for	experiencing	 large	changes
between	releases,	such	as	specific	methods	or	attributes	being	deprecated.	While	every	effort
has	 been	 made	 to	 ensure	 the	 code	 in	 this	 book	 is	 future-proof,	 there's	 no	 guarantee	 that
changes	 included	 in	 forthcoming	 major	 releases	 of	 Rails	 won't	 require	 this	 code	 to	 be
modified	in	some	way	for	it	to	work.	Such	is	the	fast-paced	world	of	web	development!

Feel	free	to	skip	the	sections	on	operating	systems	other	than	yours,	and	focus	only	on	those
that	address	your	specific	needs.

What	does	all	this	cost?

Everything	we	need	is	available	for	download	from	the	Web,	and	licensed	under	free	software
licenses.	 This	 basically	 means	 that	 everything	 you	 install	 is	 free	 for	 you	 to	 use	 in	 both
personal	and	commercial	applications.	 If	you're	curious	about	 the	differences	between	each
license,	check	out	each	package's	individual	license	file,	which	is	included	in	its	download.

Installing	 Ruby	 and	 Rails	 can	 be	 tricky,	 which	 is	 why	 there	 are	 entire	 sites	 devoted	 to	 it;
however,	it	is	way	better	than	it	used	to	be,	and	I	don't	think	you'll	have	any	issues.

Installing	on	Windows

Getting	Rails	up	and	running	on	Windows	consists	of	three	major	steps:
	

1.	 Install	Ruby
2.	 Install	the	Ruby	Development	Kit
3.	 Install	Rails
4.	 Install	Git
5.	 Install	NodeJS

Install	Ruby
Ruby	is	a	great	community	(you'll	hear	me	say	that	a	lot)	comprised	of	people	who	support
free	tools	to	help	others	get	started	with	the	language.	One	such	tool	is	the	RubyInstaller	 for
Windows.

http://installrails.com
http://rubyinstaller.org

RubyInstaller	website

If	you	head	over	to	the	Downloads	page,	the	current	latest	Ruby	version	is	2.3.1,	but	I	would
suggest	you	use	Ruby	2.2.5:

http://rubyinstaller.org/downloads/

Ruby	version

The	2.2	versions	of	Ruby	are	 stable	 and	gems	have	been	built	 and	 tested	against	 them.	The
download	page	 itself	 recommends	 the	2.2.X	versions	 for	 the	same	reason,	and	2.2.5	will	be
fine	for	everything	we	do	in	this	book.

Go	 ahead	 and	 click	 on	 the	 link	 for	 Ruby	 2.2.5	 and	 download	 that	 executable.	 You	 can	 use
either	 32	 or	 64-bit,	 depending	 on	 your	 needs.	 Double-click	 on	 that	 executable	 to	 start	 the
installation	process.

The	 install	 process	 is	 pretty	 normal.	 You	 can	 choose	 your	 language,	 and	 use	 the	 path	 the
installer	suggests	(C:\Ruby22,	in	my	case).	However,	I	would	recommend	that	you	check	the
box	that	says	Add	Ruby	executables	to	your	PATH,	shown	here:

Add	Ruby	to	Path

Click	Install	and	the	installation	will	complete.	RubyInstaller	adds	an	item	to	the	Start	Menu
called	Start	Command	Prompt	with	Ruby	which,	when	clicked,	will	open	a	Windows	command
prompt	with	the	Ruby	environment	variables	all	in	place:

Ruby	command	prompt

Great.	Ruby	is	 installed.	However,	 in	order	 to	 install	Rails	(and	other	gems),	we	need	some
build	tools	to	be	installed.	Thankfully,	again,	we	can	turn	to	the	folks	at	RubyInstaller	for	help.
The	Ruby	DevKit	for	Windows	installs	these	build	tools	for	us.

The	download	for	the	DevKit	is	on	the	same	Downloads	page	as	the	RubyInstaller:

http://rubyinstaller.org/add-ons/devkit/

Getting	the	DevKit

Be	sure	to	download	the	right	one	for	the	RubyInstaller	you	downloaded	above.	If	you're	like
me	 and	 you	 used	 the	 32-bit	 2.2.5	 installer,	 you	 can	 download	 DevKit-mingw64-32-4.7.2-
20130224-1151-sfx.exe.	Once	downloaded,	run	the	executable	and	it	will	ask	for	a	directory
to	install	the	DevKit.	I	choose	C:\RubyDevKit:

Installing	the	DevKit

Now,	roll	up	your	sleeves.	Remember	that	new	link	the	RubyInstaller	added	to	the	Start	menu?
Click	it	 to	open	a	Ruby-savvy	command	prompt	and	cd	C:\RubyDevKit.	You	need	 to	 type	a
couple	of	commands	to	make	the	DevKit	available	to	our	newly	installed	Ruby.	The	first	one
is	ruby	dk.rb	init	and	the	second	is	ruby	dk.rb	install.	The	output	is	below:

Making	DevKit	available	to	ruby

OK,	now	we	can	install	Rails.	At	that	same	command	prompt,	change	into	our	Ruby	directory
(cd	 c:\Ruby22)	 and	 type	 gem	 install	 rails.	 You	 will	 see	 many	 gems	 being	 built	 and
installed:

Rails	being	installed

When	the	install	is	complete,	you	should	see	something	like:

37	gems	installed

c:\Ruby22>

																								

Yay!	Rails	is	installed.	Enjoy	this	small,	but	significant,	victory.

There	are	still	a	couple	of	things	we	still	need	to	set	up.	First,	we	need	to	install	Git,	which	is	a
version	control	system.	If	you're	not	sure	what	 that	 is,	don't	worry	about	 it	 right	now.	We'll
cover	some	git	basics	later	in	the	chapter.	For	now,	let's	just	get	it	installed.

Open	 a	 browser	 and	 go	 to	 https://git-scm.com/downloads/win.	 This	 should	 kick	 off	 the
download	of	the	Git	installer.	If	not,	click	on	the	Download	for	Windows	button:

https://git-scm.com/downloads/win

Downloading	Git

Run	the	installer	once	the	download	completes.	You	can	(and	should)	follow	all	 the	defaults
offered	by	the	installer.	With	the	install	complete,	start	a	new	Ruby	Command	Prompt	(close
and	reopen	it)	and	check	the	git	version:

c:\Ruby22>	git	--version

git	version	2.9.2.version.1

																								

Next,	we	need	 to	 install	SQLite3,	which	 is	 the	default	database	 that	Rails	will	use	out	of	 the
box.	 Installing	 SQLite3	 is	 a	 matter	 of	 going	 to	 the	 SQLite3	 download	 page	 and	 scrolling
down	to	Precompiled	Binaries	 for	Windows.	Select	 the	first	 link,	which	 is	 the	SQLite3	DLL.
Unzip	the	downloaded	file	and	copy	its	contents	to	C:\Windows\System32.

Finally,	the	last	thing	we	need	to	install	is	a	JavaScript	Runtime,	as	Rails	expects	one	to	exist.
This	 is	accomplished	easily	enough	by	installing	NodeJS.	So,	head	over	 to	 the	NodeJS	site,
click	on	Downloads,	and	choose	the	Windows	installer	that	suits	your	needs	(either	32	or	64-
bit).	Run	the	installer,	accepting	all	the	defaults:

http://www.sqlite.org/download.html
https://nodejs.org

Installing	NodeJS

Once	the	Node	installation	completes,	restart	your	Ruby	Command	Prompt	and	type	node	-v:

$	node	-v

v4.4.7

																								

You	now	have	a	working	NodeJS	install.

Congratulations!	You	have	installed	Ruby,	Rails,	and	all	the	supporting	characters!	Feel	free
to	 take	 a	 break	 and	 high-five	 yourself.	 Oh,	 and	 you	 can	 skip	 the	 instructions	 for	Mac	 and
Linux.

Installing	on	Mac	OS	X

While	Mac	OS	X	isn't	usually	a	tricky	platform	to	manage,	installing	Rails	is	just	a	tad	harder
than	installing	a	regular	Mac	application.

Your	first	task	is	to	install	Xcode	from	the	Mac	App	Store,	as	shown	below.

Xcode	in	the	App	Store

The	good	news	is	Xcode	is	free.	The	bad	news	is	it's	huge	and	takes	a	while	to	install.	Use	this
time	to	thumb	through	the	Rails	Guides	and	get	coffee.

Done?	Excellent.	Now,	open	a	terminal,	which	can	be	found	in	Applications	=>	Utilities	=>
Terminal,	as	shown	in	Figue	2-12.

Terminal	App

This	will	launch	a	window	that	looks	a	bit	like	what	can	be	seen	below.

A	terminal	window

You're	now	in	your	home	directory.

Taking	Command

Much	 of	 working	 with	 Ruby	 and	 Rails	 is	 done	 at	 the	 command	 line	 in	 a	 terminal.	 Being
comfortable	with	basic	terminal	commands,	such	as	cd,	dir,	and	ls	is	all	but	required	to	be	an
effective	 Ruby	 and	 Rails	 developer.	 If	 necessary,	 take	 some	 time	 to	 research	 and	 practice
using	the	terminal	to	navigate	around	your	Mac.	You'll	be	glad	you	did.

Installing	Homebrew
I	 previously	mentioned	 RubyGems,	 a	 package	manager	 for	 Ruby.	Well,	 there	 are	 package
managers	for	operating	systems,	too,	and	Mac	OS	X	has	a	good	one	called	(Homebrew.	It	is
open	 source	 and	has	 a	bit	 of	 an	odd	 installation,	 but	 it's	 an	 excellent	 package	manager	 and
used	by	most	Mac	developers	to	install	the	items	they	need.

To	install	Homebrew,	go	to	your	terminal	and	type	(or	paste)	in	the	following:

usr/bin/ruby	 -e	 "$(curl	 -

fsSL	https://raw.githubusercontent.com/Homebrew/install/master/install)"

																								

Homebrew's	 installation	will	 be	 confirmed	 by	 a	 brew	 command	 becoming	 available	 in	 the
terminal,	as	depicted	in	Figure	2-14.

The	brew	terminal	command

With	Homebrew	in	place,	installing	Ruby	becomes	very,	very	easy;	however,	I	need	to	explain
the	sate	of	affairs	first.	I've	noted	the	somewhat	volatile	nature	of	Ruby	and	Rails.	With	several

http://mally.stanford.edu/~sr/computing/basic-unix.html
http://brew.sh

new	releases	every	year	for	each,	when	you're	developing	using	particular	versions	of	Ruby
and	 Rails,	 it	 can	 become	 complicated	 to	 install	 new	 versions	 without	 breaking	 your
environment	and	applications.	Rubyists,	being	the	problem-solving	pragmatists	that	they	are,
solved	this	problem	by	creating	a	"version	manager"	for	Ruby.	In	fact,	there	are	a	couple	of
version	 managers	 out	 there.	 The	 idea	 behind	 a	 version	 manager	 is	 that	 you	 can	 switch
between	 versions	 of	Ruby	without	 breaking	 your	 environment.	Now,	 it's	 easy	 to	 try	 a	 new
version	with	your	application	and	be	assured	 that	 it	won't	break	your	work.	 It	 is	 an	elegant
solution	to	a	sticky	problem.

Version	Managers:	Good	for	Developing	Developers!

While	 it	 is	 possible	 to	 install	 Ruby	 without	 using	 package	 managers	 and	 avoid	 jumping
through	these	small	hoops	to	set	up	our	environment,	it	is	not	recommended.	All	of	the	Ruby
developers	I	know	and	work	with	use	version	managers,	so	if	you're	going	to	become	a	real
Ruby	dev,	you	need	to	understand	the	how	and	why	of	version	managers.	If	I	were	a	parent,	I'd
say	"this	builds	character"	or	"you'll	thank	me	later".

So,	we're	 going	 to	 install	 a	 package	manager	 called	RVM,	which	 stands	 for	 Ruby	Version
Manager.	At	your	command	prompt,	type:

\curl	-sSL	https://get.rvm.io	|	bash	-s	stable

																								

When	the	script	completes,	close	your	terminal	window	and	open	a	new	one.	Then	type:

rvm	|	head	-n	1

																								

This	should	respond	with	=rvm,	as	shown	in	figure	2-15.

RVM	is	installed

Great!	Your	Ruby	Version	Manager	is	installed	and	ready	to	go.	Time	to	install	Ruby.

With	RVM,	installing	a	new	version	of	Ruby	is	a	walk	in	the	park.	In	your	terminal,	type:

https://rvm.io

rvm	install	2.3.0	

																								

This	tells	RVM	to	install	Ruby	2.3.0.	Oh,	and	it	will	take	a	while,	so	it's	time	for	another	break.
Go	for	a	walk	around	the	block.	It's	good	for	you.

Okay,	Ruby	is	now	installed,	but	we're	not	quite	done	yet.	With	version	managers,	you	have	to
specify	which	version	of	Ruby	you	want	to	use.	With	RVM,	that's	done	by	typing:

rvm	use	2.3.0	--default

																								

Figure	2-16	reveals	what	that	should	look	like.

Telling	RVM	which	Ruby	to	use

Why	default?

The	--default	option	in	 the	aforementioned	command	tells	RVM	to	use	2.3.0	as	 the	default
Ruby	for	your	computer.	Every	time	you	open	a	new	terminal	window,	Ruby	2.3.0	will	be	the
current	version	of	Ruby.	Without	 the	default,	you'll	have	 to	 type	rvm	use	2.3.0	every	 time
you	open	a	terminal.	It's	your	choice.

Boom,	now	we're	done	with	Ruby.

With	Ruby	in	place,	installing	Rails	is	just	a	matter	of	asking	our	awesome	package	manager,
RubyGems,	to	do	the	deed:

gem	install	rails

																								

This	will	crank	out	a	ton	of	text	in	the	terminal,	a	snippet	of	which	is	seen	below.

Installing	Rails

Now,	just	to	make	sure	Rails	is	ready,	type:

rails	--version

=>	Rails	5.0.0.1

																								

Excellent.	Now	we	just	need	to	install	SQLite3,	which	can	be	done	with	Homebrew:

brew	install	sqlite

																								

When	that	completes,	check	your	SQLite	version	to	make	sure	it's	there:

sqlite3	--version

=>	 3.8.10.2	 2015-05-

20	18:17:19	2ef4f3a5b1d1d0c4338f8243d40a2452cc1f7fe4

																								

And	now	we're	ready	to	go.

Help	on	Hand

Remember—if	you	get	really	stuck,	you	can	always	try	asking	for	help	on	SitePoint's	Ruby
forum.

Installing	on	Linux	(Ubuntu)

https://www.sitepoint.com/community/c/ruby

Thanks	to	the	hard	work	of	people	in	the	incredible	Ruby	and	Rails	communities,	 installing
Ruby	and	Rails	on	Linux	is	as	straightforward	as	can	be.	I	have	copied	a	script	from	the	Rails
Girls	guides	 to	 a	SitePoint	Github	 repository,	which	 enables	 you	 to	 run	 a	 single	 command
line	to	install	Ruby,	Rails,	Sqlite3,	and	Git.	This	is	a	far	cry	from	how	it	used	to	be,	and	I	am
soooo	thankful	that	Rails	Girls	put	this	together.

About	Rails	Girls

Rails	Girls	 is	a	group	whose	aim	 is	 to	"give	 tools	and	(create)	a	community	 for	women	 to
understand	 technology	 and	 to	 build	 their	 ideas."	 It	 is	 one	 example	 of	 the	 groups	 that	 have
formed	 to	 increase	 diversity	 and	 make	 people	 feel	 comfortable	 learning	 Ruby	 and	 Rails.
There	are	others	with	similar	aims	sprinkled	throughout	the	community	and	I	think	it's	great.
If	you	think	you'd	benefit	from	being	involved	with	Rails	Girls,	check	them	out.

The	script	you	need	to	run	is	located	on	GitHub.	The	following	command	will	pull	down	that
script	and	run	it	in	your	terminal.	Open	up	a	terminal	and	paste	in	the	following:

bash	 <	 <(curl	 -

sL	https://raw.githubusercontent.com/spbooks/rails3v5/master/scripts/install_linux.sh)

																								

You	will	be	prompted	for	your	password	and	you'll	require	an	account	with	sudo	level	access.
The	 script	 will	 then	 run	 through	 installing	 Ruby,	 RVM,	 Sqlite3,	 git,	 and	 Rails,	 as	 seen	 in
Figure	2-18.

http://guides.railsgirls.com/install#setup_for_linux
http://railsgirls.com
https://raw.githubusercontent.com/spbooks/rails3v5/master/scripts/install_linux.sh

Installing	on	Linux

When	the	script	completes,	type	in	the	following	to	validate	the	install:

source	~/.rvm/scripts/rvm

rails	-v

=>	Rails	5.0.0	

																								

Congratulations!	You	have	successfully	installed	Ruby	and	Rails	on	Linux.

Additional	Installation	Options

If,	 for	 some	 reason,	 none	 of	 the	 previous	 installation	 options	 fit	 your	 bill,	 there	 are	more
possible	solutions	 to	have	you	up	and	 running	with	Rails.	 I	am,	of	course,	 speaking	of	The
Cloud.	Some	companies	offer	a	full	Ruby	and	Rails	environment	that	you	access	solely	with
your	browser.	A	good	example	is	Nitrous.IO.

http://nitrous.io

Nitrous.IO

As	the	screenshot	declares,	Nitrous.io	allows	you	to	"create,	snapshot,	and	share	development
environments	in	the	cloud".	When	you	sign	up	for	Nitrous,	you	have	options	of	which	kind	of
application	 you	 want	 to	 create,	 one	 of	 which	 is	 Rails.	 Figure	 2-20	 shows	 what	 a	 Rails
application	looks	like	in	the	browser	on	Nitrous.

Creating	a	Rails	app	in	Nitrous

A	wizard	then	guides	you	through	the	process,	and	your	first	application	is	free.

If	you're	more	advanced	and	know	what	a	virtual	machine	is,	companies	such	as	Amazon	Web
Services	 or	Digital	Ocean	 provide	 Infrastructure	 as	 a	 Service	 (IaaS).	With	 an	 IaaS,	 you
basically	create	an	entire	computer	in	the	cloud	and	then	run	through	one	of	the	previous	sets
of	instructions	to	install	Ruby	and	Rails.

And	Now	the	Fun	Begins

Okay,	is	everyone	here?	Windows?	Check.	Mac?	Check.	Linux?	Check.	Great!	It's	time	to	set
the	foundation	for	the	application	we're	going	to	build	throughout	the	remainder	of	this	book.

One	Directory	Structure	to	Rule	Them	All
If	you	 remember	 from	 the	section	on	 the	Rails	doctrine,	one	of	 the	 tenets	was	"Convention
over	configuration".	One	of	the	conventions	of	Rails	is	its	directory	structure,	where	a	Rails
application	 always	 has	 the	 same	 base	 structure	 on	 disc.	 By	 gently	 forcing	 this	 directory
structure	upon	developers,	Rails	ensures	that	your	work	is	organized	in	the	Rails	way.

Figure	2-21	shows	what	the	structure	looks	like.	We'll	create	this	directory	structure	for	our
application	in	just	a	moment.

The	conventional	Rails	application	directory	structure

As	you	can	see,	 this	standard	directory	structure	consists	of	quite	a	 few	subdirectories	 (and
I'm	 yet	 to	 even	 show	 their	 subdirectories!).	 This	 wealth	 of	 subdirectories	 can	 be

http://aws.amazon.com
http://digitalocean.com

overwhelming	 at	 first,	 but	 we'll	 explore	 them	 one	 by	 one.	 A	 lot	 of	 thought	 has	 gone	 into
establishing	 the	 folders	 and	 naming	 them,	 and	 the	 result	 is	 an	 application	 with	 a	 well-
structured	file	system.

Before	you	go	and	manually	create	all	these	directories	yourself,	let	me	show	you	how	to	set
up	that	pretty	directory	structure	using	just	one	command—I	told	you	that	Rails	allows	us	to
do	less	typing!

Creating	the	Standard	Directory	Structure
It's	easy	to	generate	the	default	directory	structure	for	a	new	Rails	application	using	the	rails
command.

Before	we	start,	I'd	like	to	introduce	you	to	the	secret	under-the-hood	project	name	we'll	give
our	 Reddit-lite	 project	 clone:	Readit.	 It's	 exactly	 this	 kind	 of	 creativity	 that	 has	 companies
begging	me	to	run	their	marketing	departments.	Not.

Now,	let's	go	ahead	and	create	the	directory	structure	to	hold	our	application.

The	rails	command	takes	various	secondary	commands,	new	being	one	of	 them.	As	you've
probably	 guessed,	 the	rails	new	 command	 creates	 the	 directory	where	 you'd	 like	 to	 store
your	application,	along	with	all	the	files	required.	You	can,	and	are	encouraged	to,	execute	it
from	the	parent	directory	in	which	you	want	your	new	Rails	application	to	live.	I'll	do	this	in
my	home	directory.	If	you're	on	Windows,	you	may	want	to	do	this	inside	C:\Ruby22:

$	rails	new	readit

create

create		README.rdoc

create		Rakefile

create		config.ru

create		.gitignore

create		Gemfile

create		app

create		app/assets/javascripts/application.js

create		app/assets/stylesheets/application.css

create		app/controllers/application_controller.rb

create		app/helpers/application_helper.rb

create		app/views/layouts/application.html.erb

...

																								

Congratulations,	your	directory	structure	has	been	created!	You'll	need	 to	use	cd	readit	 to
ensure	 the	 active	 directory	 is	 the	 root	 of	 our	 new	 application.	 We	 will	 run	 all	 our	 Rails
commands	from	inside	the	application	root.

Starting	Our	Application

Even	before	we	write	any	code,	it's	possible	to	start	up	our	application	environment	to	check
that	our	setup	is	working	correctly.	This	exercise	should	give	us	a	nice	boost	of	confidence
before	we	progress	any	further.

Rails	 wants	 you	 to	 be	 productive	 as	 soon	 as	 possible,	 and	 if	 you	 can't	 look	 at	 your	 web
application	in	a	web	browser,	you	can't	be	productive.	So,	Rails	includes	a	development	web
server,	called	Puma,	that	you	can	fire	up	with	the	single	command:	rails	server,	as	shown	in
Figure	2-22.	Oh,	and	because	Rails	is	obsessed	with	making	you	efficient,	you	can	also	type
rails	s	for	the	same	result.

Firing	up	the	Rails	server

Choice	Gems:	A	Plethora	of	Web	Servers

It's	 worth	 noting	 that	 it	 is	 very	 easy	 to	 change	 the	 development	 web	 server,	 as	 the	 Ruby
community	has	created	many	web	server	gems;	however,	we	will	stick	with	good	ol'	Puma,	as
it	is	well-suited	to	our	needs.	We	will,	however,	discuss	some	other	options	in	Chapter	12,	on
deployment.

Well	done:	you	just	started	up	your	application	for	the	first	time.	Okay,	so	there's	little	it	can
do	at	this	stage—we're	yet	to	write	any	lines	of	code,	after	all—but	you	can	now	connect	to
your	application	by	entering	http://localhost:3000/	 into	your	web	browser's	address	bar.
You	should	see	a	similar	sight	to	Figure	2-23.

Rails'	default	page

The	 default	 page	 shows	 the	 versions	 of	 Ruby	 and	 Rails,	 along	 with	 providing	 a	 link	 to
http://rubyonrails.org.

So,	 you're	 up	 and	 running	on	Rails.	 Feels	 good,	 eh?	Before	we	keep	going	with	Rails,	we
need	to	take	a	quick	tangent.

Version	Control	and	Git

Writing	code	is	a	delicate	undertaking.	No	matter	how	experienced	you	are	as	a	programmer,
you	will	make	mistakes.	Lots	of	 them.	And	some	of	 these	mistakes	may	only	be	discovered
after	 days,	 weeks,	 or	 months.	 Once	 discovered,	 undoing	 the	 mistake	 can	 be	 troublesome,
especially	 if	 it's	been	buried	by	months	of	accumulated	code.	 It	would	be	nice	 if	you	could
store	versions	of	the	code	as	you	go,	in	case	you	need	to	return	to	an	old	version	to	fix	code,
or	see	what's	changed	between	versions.

Turns	out,	you	can	do	this	with	version	control	software.	Version	control	has	been	around	a
long	time,	evolving	over	decades.	In	the	current	software	landscape,	the	most	popular	version
control	software	is	Git.

Git	 is	 an	 open	 source,	 distributed	 version	 control	 software.	 If	 you	 do	 any	 development	 in
open	source,	you'll	need	to	learn	how	to	use	Git.	Space	only	permits	me	to	cover	the	basics
here,	but	you	should	definitely	spend	some	 time	getting	comfortable	with	Git.	The	 learning
curve	is	steep	at	first,	but	you'll	conquer	that	soon	enough	and	Git	will	become	one	of	your
most-used	tools.

EXTRA	CREDIT:	Get	Learning	Git

Seriously,	jump	on	the	Internet	and	run	through	some	basic	Git	tutorials	or	buy	a	book.	Here's
an	article	from	SitePoint	to	get	you	started.

Git	Basics
To	 use	Git,	 you	 need	 to	 create	 a	Git	 repository	 for	 your	 code.	 This	 is	 done	 by	 typing	 the
following	in	the	directory	of	the	code	you	wish	to	manage:

$	git	init	.

Initialized	empty	Git	repository	in	/current/path/.git/

																								

Once	you	have	a	Git	repository,	add	files	to	it.	You	can	add	these	one	by	one,	or	add	all	files
in	a	directory	as	shown	here:

git	add	.

http://rubyonrails.org
https://git-scm.com/
http://www.sitepoint.com/git-for-beginners/

																								

git	add	provides	no	feedback,	so	to	see	if	it	did	anything,	type:

$	git	status

On	branch	master

Initial	commit

Changes	to	be	committed:

		(use	"git	rm	--cached	<file>..."	to	unstage)

				new	file:			.gitignore

				new	file:			.ruby-gemset

				new	file:			.rubyversion

				new	file:			Gemfile

...	lots	more	files,	maybe...

																								

As	you	can	see,	Git	has	added	the	files	"to	be	committed".	So	we	need	to	commit	them:

git	commit	-m	"My	first	git	commit"

[master	(root-commit)	057e21f]	My	first	git	commit

	92	files	changed,	1410	insertions(+)

	create	mode	100644	.gitignore

	create	mode	100644	.ruby-gemset

	create	mode	100644	.rubyversion

	create	mode	100644	Gemfile

	...	lots	more	creates	...

																								

And	there	you	have	it.	Our	files	are	now	being	tracked	by	Git.	Not	so	bad,	eh?

To	check	the	status	of	your	Git	managed	files,	type:

$	git	status

nothing	to	commit,	working	directory	clean

																								

At	this	point,	you	can	happily	start	coding.	Git	will	keep	an	eye	on	what's	happening.	Here's
the	output	of	git	status	after	I	change	a	file:

$	git	status

On	branch	master

Changes	not	staged	for	commit:

		(use	"git	add	<file>..."	to	update	what	will	be	committed)

	 	 (use	 "git	 checkout	 -

-	<file>..."	to	discard	changes	in	working	directory)

				modified:			app/models/blorgh/article.rb

no	changes	added	to	commit	(use	"git	add"	and/or	"git	commit	-a")

																								

Git	tells	me	that	I	have	made	a	change	but	not	committed	it.	It	will	also	show	me	the	change:

$	git	diff

diff	 --

git	a/app/models/blorgh/article.rb	b/app/models/blorgh/article.rb

index	79a6664..9f936ae	100644

---	aappmodels/blorgh/article.rb

+++	bappmodels/blorgh/article.rb

@@	-1,5	+1,6	@@

	module	Blorgh

			class	Article	<	ActiveRecord::Base

					has_many	:comments

+				has_many	:likes

			end

	end

																								

The	+	sign	shows	the	line	I	added.	If	I	had	deleted	lines,	they	would	be	shown	with	a	-	sign.

I	now	follow	the	same	process	I	did	with	the	initial	commit:	add	the	files	to	be	committed	and
then	commit	them	with	a	message:

$	git	add	.

$	git	commit	-m	"Changed	article"

[master	bf8b89d]	Changed	article

1	file	changed,	1	insertion(+)

																								

The	"code,	add,	commit"	sequence	is	used	to	commit	your	changes	to	Git.	Again,	not	so	bad,
eh?

One	 last	 point	 to	 cover	 about	 Git	 are	 its	 "remotes".	 Git	 is	 a	 distributed	 version	 control
system,	which	means	there	is	no	central	server	to	hold	the	source	master.	Every	clone	of	a	Git
repository	 is	 the	 entire	 repository,	 including	 all	 history,	 branches,	 and	 so	 on.	 I	 can	 add	 a
reference	 to	another	user's	Git	 repository	and	push	or	pull	code	 to	or	 from	that	 repository.
The	other	coder's	repository	is	called	a	remote.

We	will	use	remotes	without	creating	one	explicitly	when	we	deploy	the	site	in	chapter	12.

There	is	so	much	more	to	Git:	branching,	partial	commits,	working	with	other	developers	on
Github,	and	so	on,	but	that's	all	beyond	our	scope.	We	need	to	move	on.

So	 now	 you're	 finally	 ready	 to	 write	 some	 code.	 But	 wait!	Which	 text	 editor	 will	 you	 be
using?

Which	Text	Editor?

The	question	of	which	 text	 editor	 is	 best	 for	web	development	has	 spawned	arguments	 that
border	 on	 religious	 fanaticism.	While	 it's	 certainly	 possible	 to	 develop	 Rails	 applications
using	the	default	text	editor	that	comes	bundled	with	your	operating	system,	I'd	stop	short	of
recommending	it.	The	benefits	provided	by	a	specifically	designed	programmer's	editor	can
prevent	 typing	 errors	 and	 increase	 your	 productivity	 immeasurably.	 In	 this	 section,	 I've
suggested	a	couple	of	alternatives	for	each	operating	system,	enabling	you	to	make	a	choice
that	suits	your	personal	preferences	and	budget.

Windows	and	Cross-platform	Text	Editors
The	best	 editors	 for	Windows	 are	 all	 cross-platform,	 in	my	opinion.	You'll	 notice	 that	 any
editor	 worth	 its	 salt	 has	 some	 kind	 of	 plugin-type	 framework,	 allowing	 the	 community	 to
write	 plugins.	 These	 plugins	 are	 almost	 always	 the	 best	 features	 of	 an	 editor,	 as	 they're
focused	on	making	specific	editing	tasks	simple.

Sublime	Text

One	of	the	most	popular	cross-platform	editors	is	Sublime	Text,	currently	on	version	3,	seen
in	Figure	2-24.	It	can	be	downloaded	for	free,	but	requires	a	 license	for	continued	use.	The
current	 price	 for	 a	 Sublime	 Text	 license	 is	 US$70.	 Sublime	 Text	 comes	 with	 a	 ton	 of
impressive	 core	 features,	 including	 a	 Plugin	 API	 resulting	 in	 a	 slew	 of	 plugins	 that	 make
development	more	efficient	and	enjoyable.

Sublime	Text

Atom

Atom,	seen	in	figure	2-25,	is	another	cross-platform	editor	with	a	robust	plugin	framework.	It
is	built	on	Electron,	a	framework	for	building	cross-platform	apps	using	web	technologies.
Atom	was	developed	by	 the	great	 folks	at	GitHub	and	 is	open-sourced,	meaning	 it	 is	100%
free	of	charge.	I	know	many	developers	that	use	Atom	and	they	say	nothing	but	great	things
about	it.

Atom	editor

https://atom.io

Visual	Studio	Code

The	 folk	 behind	Visual	Studio	 have	 created	 a	 very	 nice	 cross-platform	editor	 that	 supports
30+	languages	and	is	extensible.	Before	too	long,	someone	will	have	built	some	Rails	plugins
for	this	editor.	I'm	yet	to	use	it,	but	as	you	can	see	in	Figure	2-26,	it	does	look	awesome.

Visual	Studio	Code	editor

Linux	and	Mac	OS	X	Editors
A	number	of	development-centric	text	editors	that	run	on	a	variety	of	platforms	are	available
to	download	for	free.	The	following	editors	have	loyal	followings,	and	all	run	equally	well
on	Linux	and	Mac	OS	X.	Emacs	and	Vim	are	probably	the	two	editors	with	the	most	fervent
followings.	For	the	record,	I	happen	to	be	a	Vim	user.

Both	of	these	editors	have	a	steeper	learning	curve	than	the	Windows/cross-platform	editors,
but	 the	 long-term	 benefits	 are	 substantial.	 Mastering	 an	 editor	 that	 runs	 in	 the	 terminal	 is
invaluable	for	a	programmer,	but	it	is	also	something	one	grows	into.	If	you	choose	one	of
these	editors,	you'll	need	to	spend	time	getting	comfortable	with	them.

Emacs

Emacs	is	an	editor	created	in	the	1970s	by	the	GNU	Project,	and	can	be	seen	in	Figure	2-27.	It
claims	to	be	an	"extensible,	customizable	text	editor"	with	an	active,	robust	set	of	extensions
developed	 by	 the	 community.	 Several	 prominent	Rubyists	 use	 and	 love	 Emacs.	 The	 Emacs
Wiki	is	the	ideal	place	to	start	learning	about	Emacs.

http://www.emacswiki.org/

By	Emacs	development	team	-	Ferk	(user	who	took	this	screenshot),	CC	BY-SA	3.0,
https://commons.wikimedia.org/w/index.php?curid=6412319

Vim

Vim–or	 "VI	 Improved"–is	 the	 evolution	of	 a	 core	Unix	 editor	 called	 "vi".	Vim	also	 has	 an
enormous	set	of	community-developed	extensions	that	allow	you	to	make	Vim	do	just	about
anything	you	can	imagine.	The	best	place	to	start	learning	about	Vim	is	on	the	Vim	wiki,	or
take	one	of	the	many	online	tutorials,	such	as	OpenVim.

http://www.vim.org/
http://vim.wikia.com/wiki/Tutorial
http://www.openvim.com/

Vim

IDEs
Some	Ruby	programmers	choose	to	use	an	Integrated	Development	Environment,	or	IDE.
IDEs,	which	usually	come	with	a	price	tag,	are	complex	applications	that	try	to	do	it	all	for	the
programmer.	A	good	IDE	makes	your	application	code	easy	to	navigate,	runs	basic	tasks	with
simple	keystrokes,	automates	code	refactoring	and	tests,	and	offers	up	an	integrated	console.
As	you	might	imagine,	some	perform	these	tasks	better	than	others.	If	you're	interested	in	the
IDE	approach,	check	out	the	SitePoint	Ruby	channel	for	articles	on	which	IDEs	are	favored	by
Rubyists.

Summary

In	 this	 chapter,	 I	 showed	 you	 how	 to	 install	 all	 the	 necessary	 software	 to	 develop	 a	 web
application	in	Ruby	on	Rails.

We	 installed	 Ruby,	 Rails,	 and	 SQLite,	 and	 set	 up	 the	 standard	 directory	 structure	 for	 our
application,	which	we've	named	“ReadIt.”	Then	we	launched	the	application	for	the	first	time,
enabling	 us	 to	 check	 which	 versions	 we	 were	 running	 of	 the	 components	 involved.	 And
finally,	 we	 looked	 at	 some	 of	 the	 text	 editors	 that	 are	 available	 to	 help	 you	 build	 the
application.

All	this	work	has	been	in	preparation	for	Chapter	4,	where	we'll	start	to	write	our	first	lines	of
application	 code.	 But	 first,	 there's	 some	 theory	 we	 have	 to	 tackle.	 Hold	 on	 tight,	 we'll	 be
coding	soon	enough!

https://sitepoint.com/ruby
http://www.sitepoint.com/ides-rubyists-use/

Chapter	3:	Introducing	Ruby
While	 this	chapter	makes	no	attempt	 to	constitute	a	complete	guide	 to	 the	Ruby	language,	 it
will	 introduce	 you	 to	 some	 of	 its	 basics.	 We'll	 power	 through	 a	 crash	 course	 in	 object-
oriented	 programming	 that	 covers	 the	more	 common	 features	 of	 the	 language,	 leaving	 the
more	obscure	aspects	of	Ruby	for	a	dedicated	reference	guide.	I'll	also	point	out	some	of	the
advantages	that	Ruby	has	over	other	languages	when	it	comes	to	developing	applications	for
the	Web.

There	used	to	be	a	longstanding	axiom	(previously	known	as	"The	Rails	Newbie	Axiom")	that
one	 could	 learn	 Rails	 without	 first	 learning	 Ruby.	 This	 axiom	 has	 been	 challenged	 and,
rightly	 so,	 proven	 less	 true	 than	 originally	 thought.	 I	 came	 to	 Ruby	 through	 Rails	 many
moons	ago,	and	my	lack	of	Ruby	knowledge	caught	up	with	me	in	a	hurry.	As	I	mentioned
over	 and	over	 again	 in	Chapter	1,	Rails	 is	 a	 framework	written	 in	Ruby,	 the	 language.	 The
more	you	know	about	the	language,	the	better	you'll	be	using	the	framework.

However,	this	is	not	a	book	on	Ruby,	and	teaching	you	all	of	Ruby	and	then	Rails	is	too	much.
As	such,	I'm	going	to	modify	the	Axiom	to:

You	can	learn	just	enough	Ruby	to	be	productive	in	Rails.

This	fits	with	the	Rails	aim	of	making	you	productive	in	a	hurry.	But	you	have	to	promise	me
that	you'll	keep	learning	Ruby	as	you	continue	your	journey	with	Rails,	okay?	Pinky	promise?
Done.	Learning	Ruby	will	not	only	make	you	a	better	Rails	programmer,	it	will	make	you	a
better	overall	programmer.

Ruby	is	a	Scripting	Language

In	general,	programming	languages	fall	 into	one	of	 two	categories:	 they're	either	compiled
languages,	 or	 scripting	 languages.	 Let's	 explore	 what	 each	 of	 those	 terms	 means,	 and
understand	the	differences	between	them.

Compiled	Languages
The	language	in	which	you	write	an	application	is	not	actually	a	language	understood	by	your
computer.	Your	code	needs	 to	be	 translated	 into	bits	and	bytes	 that	can	be	executed	by	your
computer.	This	process	of	 translation	 is	called	compilation,	 and	 any	 language	 that	 requires
compilation	is	referred	to	as	a	compiled	language.	Examples	of	compiled	languages	include
C,	C#,	and	Java.

http://www.ruby-doc.org/stdlib/

For	a	compiled	language,	the	actual	compilation	is	the	final	step	in	the	development	process.
You	invoke	a	compiler—the	software	program	that	translates	your	final	handwritten,	human-
readable	code	into	machine-readable	code—and	the	compiler	creates	an	executable	file.	This
final	product	is	then	able	to	execute	independently	of	the	original	source	code.

Thus,	if	you	make	changes	to	your	code	and	you	want	those	changes	to	be	incorporated	into
the	application,	you	must	stop	the	running	application,	recompile	it,	then	start	the	application
again.

Scripting	Languages
On	the	other	hand,	a	scripting	language	such	as	Ruby,	Javascript,	or	Python	relies	upon	an
application's	source	code	all	the	time.	Scripting	languages	have	no	compiler	or	compilation
phase	per	 se;	 instead,	 they	use	 an	 interpreter—a	program	 that	 runs	on	 the	web	 server—to
translate	 handwritten	 code	 into	 machine-executable	 code	 on	 the	 fly.	 The	 link	 between	 the
running	application	and	your	handcrafted	code	is	never	severed,	because	that	scripting	code	is
translated	every	 time	 it's	 invoked;	 in	other	words,	 for	every	web	page	 that	your	application
renders.

As	you	might	have	gathered	from	the	name,	the	use	of	an	interpreter	rather	than	a	compiler	is
the	major	difference	between	a	scripting	language	and	a	compiled	language.

The	Great	Performance	Debate
If	you've	come	 from	a	compiled-language	background,	you	might	be	concerned	by	all	 this
talk	of	translating	code	on	the	fly—how	does	it	affect	the	application's	performance?

These	 concerns	 are	 valid.	 Translating	 code	 on	 the	 web	 server	 every	 time	 it's	 needed	 is
certainly	more	expensive	performance-wise	than	executing	precompiled	code,	as	 it	requires
more	effort	on	the	part	of	your	machine's	processor.	The	good	news	is	that	there	are	ways	to
speed	up	scripted	languages,	including	techniques	such	as	code	caching—caching	 the	output
of	a	script	for	reuse	rather	than	executing	the	script	every	time—and	persistent	interpreters
—loading	the	 interpreter	once	and	keeping	it	 running	instead	of	having	to	 load	it	 for	every
request.	However,	performance	topics	are	beyond	the	scope	of	this	book.

There's	 also	 an	 upside	 to	 scripted	 languages	 in	 terms	 of	 performance—namely,	 your
performance	while	developing	an	application.

Imagine	 that	you've	 just	compiled	a	shiny	new	Java	application	and	 launched	 it	 for	 the	 first
time,	and	then	you	notice	an	embarrassing	typo	on	the	welcome	screen.	To	fix	it	you	have	to
stop	your	application,	go	back	to	the	source	code,	fix	the	typo,	wait	for	the	code	to	recompile,
and	restart	your	application	to	confirm	that	it's	fixed.	And	if	you	find	another	typo,	you'll	need
to	repeat	that	process	again.	Lather,	rinse,	repeat.

In	a	 scripting	 language,	you	can	 fix	 the	 typo	and	 just	 reload	 the	page	 in	your	browser—no
restart,	no	recompile,	no	nothing.	It's	as	simple	as	that.

Choose	What	Works
The	landscape	of	languages	today,	both	compiled	and	scripting,	is	virtually	endless	with	more
coming	out	every	week.	 In	 the	 last	decade,	being	an	effective	programmer	has	become	less
about	completely	mastering	one	language	and	more	about	knowing	when	to	choose	the	right
language.	In	other	words,	languages	are	tools,	each	with	their	own	strengths	and	weaknesses.
Your	job	is	to	know	when	to	use	and—maybe	more	importantly—when	not	to	use	a	language.

But	 that's	all	academic	for	what	we're	here	 to	do,	which	is	 to	 learn	Rails.	Rails	 is	written	in
Ruby,	so	let's	choose	Ruby.	See?	You're	already	learning	how	to	choose	the	right	tool.

Ruby	is	an	Object	Oriented	Language

Ruby,	 from	 its	 very	 beginnings,	 was	 built	 as	 a	 programming	 language	 that	 adheres	 to	 the
principles	 of	 object-oriented	 programming	 (OOP).	 Before	 discussing	 Ruby	 specifics,	 let's
unpack	some	fundamental	concepts	of	OOP.	The	theory	can	be	a	bit	dry	when	you're	itching
to	start	coding,	but	we'll	cover	a	lot	of	ground	in	this	short	section.	It	will	hold	you	in	good
stead,	so	don't	skip	it.

OOP	is	a	programming	paradigm	that	first	surfaced	in	the	1960s,	but	didn't	gain	traction	until
the	1980s	with	C++.	Its	core	idea	is	that	programs	should	be	composed	of	individual	entities,
or	 objects,	 each	 of	 which	 has	 the	 ability	 to	 communicate	 with	 other	 objects	 around	 it	 by
passing	 messages.	 Additionally,	 each	 object	 may	 have	 the	 facility	 to	 store	 data	 internally
(called	state),	as	depicted	in	Figure	3-1.

Object	interaction	in	Ruby

Objects	 in	 an	 OOP	 application	 are	 often	 modeled	 on	 real-world	 objects,	 so	 even	 non-
programmers	can	usually	recognize	the	basic	role	that	an	object	plays.

And,	 just	 like	 the	 real	 world,	 OOP	 defines	 objects	 and	 classes	 with	 similar	 characteristics
belonging	to	the	same	classes	and	objects.	A	class	 is	a	construct	for	defining	properties	for
objects	that	are	alike	and	equipping	them	with	functionality.	For	example,	a	class	named	Car
might	 define	 the	 attributes	color	 and	mileage	 for	 its	 objects,	 and	 assign	 them	 functionality:
actions	such	as	open	the	trunk,	start	the	engine,	and	change	gears.	These	different	actions	are

known	 as	methods,	 although	 you'll	 often	 see	 Rails	 enthusiasts	 refer	 to	 the	 methods	 of	 a
controller	(a	kind	of	object	used	in	Rails	with	which	you'll	become	very	familiar)	as	actions;
you	can	safely	consider	the	two	terms	to	be	interchangeable.

Understanding	 the	 relationship	 between	 a	 class	 and	 its	 objects	 is	 integral	 to	 understanding
how	OOP	works.	For	instance,	one	object	can	invoke	functionality	on	another	object,	and	can
do	so	without	affecting	other	objects	of	the	same	class.	So,	if	one	car	object	was	instructed	to
open	its	trunk,	its	trunk	would	open,	but	the	trunk	of	other	cars	would	remain	closed—think
of	 KITT,	 the	 talking	 car	 from	 the	 television	 show	 Knight	 Rider,	 if	 it	 helps	 with	 the
metaphor.Knight	Rider	was	a	popular	1980s	series	that	featured	modern-day	cowboy	Michael
Knight	(played	by	David	Hasselhoff)	and	his	opinionated	black	Pontiac	Firebird	named	KITT.
If	you	missed	it	in	the	'80s,	you	may	be	more	familiar	with	the	Ford	Mustang	voiced	by	Val
Kilmer	 in	 the	 2008	 remake.	 Don't	 worry,	 having	 seen	 the	 show	 isn't	 a	 prerequisite	 to
understanding	 object-oriented	 programming!	 Similarly,	 if	 our	 high-tech	 talking	 car	 were
instructed	to	change	color	to	red,	it	would	do	so,	but	other	cars	would	not.

When	we	create	a	new	object	in	OOP,	we	base	it	on	an	existing	class.	The	process	of	creating
new	objects	from	a	class	is	called	instantiation.	Figure	3-2	illustrates	this	concept.

Instantiation	in	Ruby

http://en.wikipedia.org/wiki/Knight_Rider

As	 I've	 mentioned,	 objects	 can	 communicate	 with	 each	 other	 via	 messages,	 invoking
functionality	 (methods)	on	other	objects.	 Invoking	an	object's	methods	can	be	 thought	of	as
asking	the	object	a	question	and	getting	an	answer	in	return.

Consider	the	example	of	our	famous	talking	car	again.	Let's	say	we	ask	the	talking	car	object
to	report	its	current	mileage.	This	question	is	not	ambiguous:	the	answer	that	the	object	gives
is	called	a	return	value,	and	is	shown	in	Figure	3-3.

Asking	a	simple	question	in	OOP

In	some	cases,	the	question-and-answer	analogy	seems	ill-fitting.	In	these	situations,	we	might
rephrase	 the	 analogy	 to	 consider	 the	 question	 to	 be	 an	 instruction,	 and	 the	 answer	 a	 status
report	indicating	whether	or	not	the	instruction	was	executed	successfully.	This	process	might
look	like	the	diagram	in	Figure	3-4.

Sending	instructions

Sometimes	we	need	more	flexibility	with	our	instructions.	For	example,	if	we	wanted	to	tell
our	car	to	change	gear,	we	tell	it	not	only	to	change	gear,	but	also	which	gear	to	change	to.

The	process	of	asking	 these	kinds	of	questions	 is	 referred	 to	as	passing	an	argument	 to	 the
method.

An	argument	 (also	 called	 a	 "parameter")	 is	 an	 input	 value	 that's	 provided	 to	 a	method.	An
argument	can	be	used	to	influence:
	

how	a	method	operates

on	which	object	a	method	operates

An	 example	 is	 shown	 in	 Figure	 3-5	 below,	 where	 the	 method	 is	 “change	 gear,”	 and	 the
number	of	the	gear	to	which	the	car	must	change	(two)	is	the	argument.

Passing	arguments

A	more	general	view	of	 all	 these	different	 types	of	 communication	between	objects	 is	 this:
invoking	an	object's	methods	is	accomplished	by	sending	messages	to	it.	As	one	might	expect,
the	object	sending	 the	message	 is	called	 the	sender,	and	 the	object	 receiving	 the	message	 is
called	the	receiver.

Armed	 with	 this	 basic	 knowledge	 about	 object-oriented	 programming,	 let's	 look	 at	 some
Ruby	specifics.

Reading	and	Writing	Ruby	Code

Learning	the	syntax	of	a	new	language	has	the	potential	to	induce	the	occasional	yawn.	So,	to
make	things	more	interesting,	I'll	present	it	to	you	in	a	practical	way	that	lets	you	play	along	at
home.	We'll	use	the	interactive	Ruby	shell.

The	Interactive	Ruby	Shell	(irb)

You	can	fire	up	the	interactive	Ruby	shell	by	entering	irb	into	a	terminal	window:

$	irb

irb>	

																								

Windows	Users

Windows	users,	remember	to	use	the	Ruby	>	Start	Command	Prompt	with	Ruby	option	from
the	Ruby	2.3.1	menu	to	ensure	that	the	environment	you're	using	contains	the	right	settings.

irb	allows	you	to	issue	Ruby	commands	interactively,	one	line	at	a	time.	This	ability	is	great
for	playing	with	the	language,	and	it's	also	handy	for	debugging,	as	we'll	see	in	Chapter	11.

A	couple	of	points	about	the	irb	output	you'll	see	in	this	chapter	are	that	lines	beginning	with:
	

the	Ruby	shell	prompt	(irb>)	are	typed	in	by	the	user

the	=>	show	the	return	value	of	the	command	that	has	been	entered

We'll	start	with	a	really	brief	example:

irb>	1

=>	1

																								

Here,	I've	simply	thrown	the	number	1	at	the	Ruby	shell	and	received	back	what	appears	to	be
the	very	same	number.

Looks	can	be	deceiving,	though.	It's	actually	not	the	very	same	number.	What	has	been	handed
back	is	actually	a	fully-featured	Ruby	object.

Remember	our	discussion	about	object-oriented	programming	in	the	previous	section?	Well,
in	Ruby,	absolutely	everything	is	treated	as	an	object	with	which	we	can	interact;	each	object
belongs	to	a	certain	class,	 therefore	each	object	is	able	to	store	data	and	functionality	in	the
form	of	methods.

To	find	the	class	to	which	our	number	belongs,	we	call	the	number's	class	method:

irb>	1.class

=>	Fixnum

																								

We	touched	on	senders	and	receivers	earlier.	In	this	example,	we've	sent	the	class	message	to
the	1	object,	so	the	1	object	 is	 the	receiver	(there's	no	sender,	as	we're	sending	 the	message
from	the	interactive	command	line	rather	than	from	another	object).	The	value	that's	returned

by	the	method	we've	invoked	is	Fixnum,	which	is	the	Ruby	class	that	represents	integer	values.

Since	everything	in	Ruby	is	an	object	(including	a	class),	we	can	actually	send	the	very	same
message	to	the	Fixnum	class.	The	result	is	different,	as	we'd	expect:

irb>	Fixnum.class

=>	Class

																								

This	time,	the	return	value	is	Class,	which	is	reassuring—we	did	invoke	it	on	a	class	name,
after	all.

Note	that	the	class	method	is	all	lowercase,	yet	the	return	value,	Class,	begins	with	a	capital
letter.	A	method	in	Ruby	is	always	written	in	lowercase,	whereas	the	first	 letter	of	a	class	is
always	capitalized.

Constants,	Classes,	and	Capitals

Class	 names	 start	with	 a	 capital	 letter	 because	 they	 are	 constants.	 In	 programming-speak,	 a
constant	 is	 a	 value	 that,	 once	 set,	 does	 not	 change	 throughout	 the	 lifetime	 of	 the	 program.
Classes	 are	 considered	 constants,	 so	 they	 are	 capitalized.	 You'll	 see	 other	 constants	 in
ALL_CAPS,	 which	 is	 a	 Ruby	 convention	 that	 says	 "this	 value	 is	 a	 constant,	 but	 it	 is	 not	 a
class."	I'll	talk	more	about	this	soon.

Interacting	with	Ruby	Objects

Being	accustomed	to	thinking	in	terms	of	objects	can	take	some	time.	Let's	look	at	a	few	types
of	objects,	and	see	how	we	can	interact	with	them.

Literal	Objects
Literal	objects	are	character	strings	or	numbers	that	appear	directly	in	the	code,	such	as	the
number	1	returned	in	the	previous	section.	We've	seen	numbers	in	action,	so	let's	now	look	at
a	string	literal.

A	string	literal	is	an	object	that	contains	a	string	of	characters,	such	as	a	name,	an	address,	or
an	especially	witty	phrase.	In	the	same	way	that	we	created	the	1	literal	object	in	the	previous
example,	 we	 can	 easily	 create	 a	 new	 string	 literal	 object,	 then	 send	 it	 a	message.	 A	 string
literal	 is	 created	 by	 enclosing	 the	 characters	 that	 make	 up	 the	 string	 in	 single	 or	 double
quotes:

irb>	"The	quick	brown	fox"

=>	"The	quick	brown	fox"

																								

First,	we'll	confirm	that	our	string	literal	indeed	belongs	to	class	String:

irb>	"The	quick	brown	fox".class

=>	String

																								

This	String	object	has	a	wealth	of	embedded	functionality.	For	example,	we	can	ascertain	the
number	of	characters	that	our	string	literal	comprises	by	sending	it	the	length	message:

irb>	"The	quick	brown	fox".length

=>	19

																								

Easy	stuff,	eh?

Variables	and	Constants
Every	 application	 needs	 a	 way	 to	 store	 information.	 Enter	 our	 variables	 and	 constants.	 As
their	names	imply,	these	two	data	containers	have	unique	roles	to	play.

A	constant	 (which	 I	mentioned	 earlier)	 is	 an	 object	 that's	 assigned	 a	 value	 once,	 and	 once
only—usually	 when	 the	 application	 starts	 up.	 Constants	 are	 therefore	 used	 to	 store
information	that	won't	change	within	a	running	application.	As	an	example,	a	constant	might
be	used	to	store	the	version	number	for	an	application.	Constants	in	Ruby	are	always	written
using	uppercase	letters,	as	shown	below:

irb>	CONSTANT	=	"The	quick	brown	fox	in	a	constant"

=>	"The	quick	brown	fox	in	a	constant"

irb>	APP_VERSION	=	5.04

=>	5.04

																								

The	one	exception	to	the	ALL_CAPS	convention	is	class	constants,	but	you	already	knew	that,
didn't	you?

Variables,	in	contrast,	are	objects	that	are	able	to	change	at	any	time.	They	can	even	be	reset	to
nothing,	 freeing	 up	 the	 memory	 space	 that	 they	 previously	 occupied.	 Variables	 in	 Ruby
always	start	with	a	lowercase	character:

irb>	variable	=	"The	quick	brown	fox	in	a	variable"

=>	"The	quick	brown	fox	in	a	variable"

																								

There's	one	more	special	(and,	you	might	say,	evil)	side	to	a	variable:	scope.	The	scope	of	a
variable	is	the	part	of	the	program	to	which	a	variable	is	visible.	If	you	try	to	access	a	variable

from	outside	its	scope	(for	example,	from	a	part	of	an	application	to	which	that	variable	is	not
visible),	your	attempts	will	generally	fail.

Scoping	Scope

Scope	is	a	big	concept	in	most	programming	languages,	and	understanding	it	is	a	true	way	to
hone	 your	 craft.	 I	wish	 I	 could	 spend	more	 time	 on	 scope,	 but	 since	 I	 can't,	 check	 out	 this
article	on	SitePoint	in	your	spare	time.

The	 notable	 exception	 to	 the	 rules	 defining	 a	 variable's	 scope	 are	global	 variables.	 As	 the
name	implies,	a	global	variable	is	accessible	from	any	part	of	the	program.	While	this	might
sound	convenient,	using	global	variables	is	discouraged—that	they	can	be	written	to	and	read
from	any	part	of	the	program	introduces	security	concerns.

Watching	Your	G's	and	Q's

In	programming,	there	are	many	things,	like	globals,	whose	use	are	"discouraged."	What	this
really	means	is	that	you	should	only	use	them	when	you	really	understand	how	they	work	and
what	they	mean.	Think	of	them	like	swear	or	curse	words:	when	you're	young	in	your	Ruby
life,	you	aren't	supposed	to	use	them,	yet	you	hear	adults	using	them	all	the	time.	As	you	grow
up,	you'll	misuse	them	plenty	of	times,	but	eventually	you'll	know	when	to	drop	a	G-bomb	and
when	to	think	better	of	it.

Let's	return	to	the	string	literal	example	we	just	saw.	Assigning	a	String	to	a	variable	allows
us	to	invoke	on	that	variable	the	same	methods	we	invoked	on	the	string	literal	earlier:

irb>	fox	=	"The	quick	brown	fox"

=>	"The	quick	brown	fox"

irb>	fox.class

=>	String

irb>	fox.length

=>	19

irb>	fox.reverse

=>	"xof	nworb	kciuq	ehT"

																								

See?	Just	more	messages	and	 return	values,	but	now	on	our	variable.	And	 isn't	 the	reverse
method	cool?	I	love	that	one.

Basic	Punctuation	in	Ruby

Punctuation	in	Ruby	code	differs	greatly	from	other	languages	such	as	Perl	and	PHP,	so	it	can
seem	confusing	at	first	if	you're	used	to	programming	in	those	languages;	however,	once	you

http://www.sitepoint.com/understanding-scope-in-ruby/

have	 a	 few	 basics	 under	 your	 belt,	 punctuation	 in	 Ruby	 becomes	 quite	 intuitive,	 greatly
enhancing	the	readability	of	your	code.

Dot	Notation
One	 of	 the	most	 common	 punctuation	 characters	 in	 Ruby	 is	 the	 period	 (.).	 As	we've	 seen,
Ruby	uses	 the	period	 to	separate	 the	receiver	 from	the	message	 that's	being	sent	 to	 it	 in	 the
form	Object.receiver.

EXTRA	CREDIT:	Dot	Notation

There	are	other	uses	for	a	period	in	Ruby,	but	they	are	much	rarer.	One	example	is	in	ranges;
for	example,	(1..10).	I'd	suggest	you	Google	"Ruby	ranges"	and	figure	out	what	they	do.

You	can	"comment"	a	line,	either	to	temporarily	take	a	line	of	code	out	of	the	program	flow
or	for	documentation	purposes,	by	using	a	hash	mark	(#).	Comments	 in	a	 line	of	code	may
start	at	the	beginning	of	a	line,	or	they	may	appear	further	along	after	some	Ruby	code:

irb>	#	This	is	a	comment.	It	doesn't	actually	do	anything.

irb>	1	#	So	is	this,	but	this	one	comes	after	a	statement.

=>	1

irb>	fox	=	"The	quick	brown	fox"				#	Assign	to	a	variable

=>	"The	quick	brown	fox"

irb>	fox.class																						#	Display	a	variable's	class

=>	String

irb>	fox.length																					#	Display	a	variable's	length

=>	19

																								

Chaining	Statements	Together
Using	 characters	 to	 separate	 commands	 in	 Ruby	 is	 unnecessary,	 unless	 we	 want	 to	 chain
multiple	 statements	 together	 on	 a	 single	 line.	 In	 this	 case,	 a	 semicolon	 (;)	 is	 used	 as	 the
separator.	 However,	 if	 you	 put	 every	 statement	 on	 its	 own	 line	 (as	 we've	 been	 doing	 until
now),	the	semicolon	is	completely	optional.

If	 you	 chain	multiple	 statements	 together	 in	 the	 interactive	 shell,	 only	 the	output	 of	 the	 last
command	that	was	executed	will	be	displayed	to	the	screen:

irb>	fox.class;	fox.length;	fox.upcase

=>	"THE	QUICK	BROWN	FOX"	

																								

Don't	be	confused.	All	 the	messages	were	sent	and	methods	executed,	but	 irb	only	shows	us
the	last	one.

Use	of	Parentheses
If	you	ever	delved	into	the	source	code	of	one	of	the	many	JavaScript	libraries	out	there,	you
might	 have	 run	 screaming	 from	 your	 computer	when	 you	 saw	 all	 the	 parentheses	 that	 are
involved	in	the	passing	of	arguments	to	methods.

In	Ruby,	the	use	of	parentheses	for	method	calls	is	optional	in	cases	where	no	arguments	are
passed	to	the	method.	The	following	statements	are	therefore	equal:

irb>	fox.class()

=>	String

irb>	fox.class

=>	String

																								

It's	common	practice	(and	encouraged)	to	include	parentheses	for	method	calls	with	multiple
arguments,	such	as	the	insert	method	of	the	String	class:

irb>	"jumps	over	the	lazy	dog".insert(0,	'The	quick	brown	fox	')

=>	"The	quick	brown	fox	jumps	over	the	lazy	dog"

																								

This	call	inserts	the	second	argument	passed	to	the	insert	object	("The	quick	brown	fox	")
at	position	0	of	the	receiving	String	object	("jumps	over	the	lazy	dog").	Position	0	refers
to	the	very	beginning	of	the	string.

Method	Notation
Until	now,	we've	looked	at	cases	where	Ruby	uses	less	punctuation	than	its	competitors.	Yet,	in
fact,	 Ruby	 makes	 heavy	 use	 of	 expressive	 punctuation	 when	 it	 comes	 to	 the	 naming	 of
methods.

A	 regular	method	 name,	 as	we've	 seen,	 is	 a	 simple	 alphanumeric	 string	 of	 characters.	 If	 a
method	 has	 a	 potentially	 destructive	 nature	 (for	 example,	 it	 directly	modifies	 the	 receiving
object	 rather	 than	changing	a	copy	of	 it),	 it's	commonly	suffixed	with	an	exclamation	point
(!).

The	following	example	uses	the	upcase	method	to	illustrate	this	point:

irb>	fox.upcase

=>	"THE	QUICK	BROWN	FOX"

irb>	fox

=>	"The	quick	brown	fox"

irb>	fox.upcase!

=>	"THE	QUICK	BROWN	FOX"

irb>	fox

http://www.sitepoint.com/article/javascript-library/

=>	"THE	QUICK	BROWN	FOX"

																								

Here,	the	contents	of	the	fox	variable	have	been	modified	by	the	upcase!	method.

Punctuation	is	also	used	in	the	names	of	methods	that	return	Boolean	values.	A	Boolean	value
is	one	that's	either	true	or	false;	these	are	commonly	used	as	return	values	for	methods	that
ask	 yes/no	 questions.	 Such	methods	 end	 in	 a	 question	mark,	which	 nicely	 reflects	 that	 they
have	yes/no	answers:

irb>	fox.empty?

=>	false

irb>	fox.is_a?	String

=>	true

																								

Predicate	Method

A	method	that	returns	only	true	or	false	is	also	known	as	a	predicate	method.

These	naming	conventions	make	it	easy	to	recognize	methods	that	are	destructive	and	those
that	return	Boolean	values,	making	your	Ruby	code	more	readable.

Object-oriented	Programming	in	Ruby

Let's	 build	 on	 the	 theory	 covered	 at	 the	 start	 of	 this	 chapter	 as	 we	 take	 a	 look	 at	 Ruby's
implementation	of	OOP.

As	we	already	know,	 the	structure	of	an	application	based	on	OOP	principles	 is	 focused	on
interaction	 with	 objects.	 These	 objects	 are	 often	 representations	 of	 real-world	 objects;	 for
example,	 a	 Car.	 Interaction	 with	 an	 object	 occurs	 when	 we	 send	 it	 a	 message	 or	 ask	 it	 a
question.	If	we	really	did	have	a	Car	object	called	kitt,	starting	the	car	might	be	as	simple	as
doing	this:

irb>	kitt.start

																								

This	 short	 line	 of	 Ruby	 code	 sends	 the	 message	 start	 to	 the	 object	 kitt.	 Using	 OOP
terminology,	we	would	say	that	this	code	statement	calls	the	start	method	of	the	kitt	object.

As	 I've	 mentioned,	 in	 contrast	 to	 other	 object-oriented	 programming	 languages	 such	 as
Python	and	PHP,	everything	is	an	object	in	Ruby.	Especially	when	compared	with	PHP,	Ruby's
OOP	feels	far	from	being	like	a	tacked-on	afterthought—it	was	clearly	intended	to	be	a	core
feature	of	the	language	from	the	beginning,	which	makes	using	the	OOP	features	in	Ruby	a

real	pleasure.

As	we've	seen,	even	the	simplest	of	elements	in	Ruby	(such	as	literal	strings	and	numbers)	are
objects	to	which	you	can	send	messages.

Classes	and	Objects
As	in	any	other	OOP	language,	each	object	belongs	to	a	certain	class	in	Ruby	(for	example,
pontiac_firebird	might	be	an	object	of	class	Car).	We	know	that	a	class	can	group	objects	of
a	certain	kind,	and	equip	those	objects	with	common	functionality.	This	functionality	comes	in
the	 form	 of	 methods,	 and	 in	 the	 object's	 ability	 to	 store	 information.	 For	 example,	 a
pontiac_firebird	 object	might	 need	 to	 store	 its	mileage,	 as	might	 any	other	 object	 of	 the
class	Car.

In	Ruby,	the	instantiation	of	a	new	object	that's	based	on	an	existing	class	is	accomplished	by
sending	that	class	the	new	message.	The	result	is	a	new	object	of	that	class.	The	following	few
lines	 of	 code	 show	 an	 extremely	 basic	 class	 definition	 in	Ruby;	 the	 third	 line	 is	where	we
create	an	instance	of	the	class	that	we	just	defined:

irb>	class	Car

irb>	end

=>	nil

irb>	kitt	=	Car.new

=>	#<Car:0x75e54>

																								

Another	basic	principle	in	OOP	is	encapsulation.	According	to	this	principle,	objects	should
be	treated	as	independent	entities,	each	taking	care	of	its	own	internal	data	and	functionality.	If
we	need	to	access	an	object's	information—its	internal	variables,	for	instance—we	make	use
of	the	object's	interface,	which	is	the	subset	of	the	object's	methods	that	are	made	available	for
other	objects	to	call.

EXTRA	CREDIT:	Access	Levels	for	Object	Methods

Object	methods	can	have	different	access	levels,	meaning,	some	are	accessible	publicly,	while
others	are	accessible	only	by	the	object	itself.	A	method	can	have	one	of	three	access	levels
within	an	object:	public,	protected,	or	private.	Go	and	ask	Google	what	these	mean.

Ruby	 provides	 objects	 with	 functionality	 at	 two	 levels—object	 level	 and	 class	 level—and
adheres	to	the	principle	of	encapsulation	while	it's	at	it!	Let's	dig	deeper.

Object-level	Functionality

At	the	object	level,	data	storage	(state)	is	handled	by	instance	variables	(a	name	that's	derived
from	the	instantiation	process	mentioned).	Think	of	 instance	variables	as	storage	containers
that	are	attached	to	the	object,	but	to	which	other	objects	do	not	have	direct	access.

To	store	or	 retrieve	data	from	these	variables,	another	object	must	call	an	accessor	method
defined	 on	 the	 object.	 An	 accessor	method	 has	 the	 ability	 to	 set	 (and	 get)	 the	 value	 of	 the
object's	instance	variables.

Let's	 look	 at	 how	 instance	 variables	 and	 accessor	 methods	 relate	 to	 each	 other,	 and	 how
they're	implemented	in	Ruby.

Instance	Variables
Instance	variables	are	bound	to	an	object,	and	contain	values	for	that	object	only.

Revisiting	 our	 car	 example,	 the	 mileage	 values	 for	 a	 number	 of	 different	 Car	 objects	 are
likely	 to	differ,	 as	 each	 car	will	 have	 a	different	mileage.	Therefore,	mileage	 is	 held	 in	 an
instance	variable.

An	 instance	 variable	 can	 be	 recognized	 by	 its	 prefix:	 a	 single	 “at”	 (@)	 sign.	What's	 more,
instance	variables	don't	even	need	to	be	declared!	There's	only	one	issue:	we	don't	have	any
way	 to	 retrieve	 or	 change	 them	 from	 outside	 the	 object	 once	 they	 do	 exist.	 This	 is	 where
instance	methods	come	into	play.

A	Link	to	Social	Media

I	 like	 to	 think	 of	 instance	 variables	 as	 the	 inspiration	 for	 mentions	 on	 Twitter	 and	 social
media.	I	have	no	idea	if	this	is	true,	but	Twitter	did	start	life	in	Ruby.

Instance	Methods
Data	 storage	 and	 retrieval	 is	 not	 the	 only	 capability	 that	 can	 be	 bound	 to	 a	 specific	 object;
functionality	 can	 also	 be	 bound	 to	 objects.	 We	 achieve	 this	 binding	 through	 the	 use	 of
instance	methods	that	are	specific	to	an	object.	Invoking	an	instance	method	(in	other	words,
sending	a	message	that	contains	the	method	name	to	an	object)	will	invoke	that	functionality
on	the	receiving	object	only.

Instance	methods	are	defined	using	the	def	keyword,	and	end	with	the	end	keyword.	Enter	the
following	example	into	a	new	Ruby	shell:

$	irb

irb>	class	Car

irb>			def	open_trunk

irb>					#	code	to	open	trunk	goes	here

irb>			end

irb>	end

=>	nil

irb>	kitt	=	Car.new

=>	#<Car:0x75e54>

																								

What	you've	done	 is	define	a	class	called	Car,	which	has	an	 instance	method	with	 the	name
open_trunk.	 A	 Car	 object	 instantiated	 from	 this	 class	 will—possibly	 using	 some	 fancy
robotics	 connected	 to	 our	 Ruby	 program—open	 its	 trunk	 when	 its	 open_trunk	 method	 is
called.	 Ignore	 that	 nil	 return	 value	 for	 the	 moment;	 we'll	 look	 at	 nil	 values	 in	 the	 next
section.

Indentation	in	Ruby

While	the	indentation	of	code	is	a	key	element	of	the	syntax	of	languages	such	as	Python,	in
Ruby,	indentation	is	purely	cosmetic:	it	aids	readability	without	affecting	the	code	in	any	way.
In	fact,	while	we're	experimenting	with	the	Ruby	shell,	don't	worry	too	much	about	indenting
any	 of	 the	 code;	 however,	when	we're	 saving	 files	 that	will	 be	 edited	 later,	 you'll	want	 the
readability	benefits	that	come	from	indenting	nested	lines.

The	Ruby	 community	 has	 agreed	 upon	 two	 spaces	 being	 optimum	 for	 indenting	 blocks	 of
code	such	as	class	or	method	definitions.	We'll	adhere	to	this	indentation	scheme	throughout
this	book.

With	our	class	in	place,	we	can	make	use	of	this	method:

irb>	kitt.open_trunk

=>	nil

																								

Since	we	want	 to	 avoid	 having	 the	 trunks	 of	 all	 our	 cars	 to	 open	 at	 once,	we've	made	 this
functionality	available	as	an	instance	method.

I	know,	I	know—we	still	haven't	modified	any	data.	We'll	use	accessor	methods	for	this	task.

Accessor	Methods
An	accessor	method	is	a	special	type	of	instance	method,	used	to	read	or	write	to	an	instance
variable.	There	are	two	types:	readers	(sometimes	called	“getters”)	and	writers	(or	“setters”).

A	reader	method	will	look	inside	the	object,	fetch	the	value	of	an	instance	variable,	and	hand
this	value	back	to	us.	A	writer	method,	on	the	other	hand,	will	look	inside	the	object,	find	an
instance	variable,	and	assign	the	variable	the	value	that	it	was	passed.

Let's	add	some	methods	for	getting	and	setting	the	@mileage	attribute	of	our	Car	objects.	Once
again,	exit	from	the	Ruby	shell	so	that	we	can	create	an	entirely	new	Car	class	definition.	Our

class	definition	is	a	bit	longer	now,	so	enter	each	line	carefully.	If	you	make	a	typing	mistake,
exit	the	shell,	and	start	over:

$	irb

irb>	class	Car

irb>			def	set_mileage(x)

irb>					@mileage	=	x

irb>			end

irb>			def	get_mileage

irb>					@mileage

irb>			end

irb>	end

=>	nil

irb>	kitt	=	Car.new

=>	#<Car:0x75e54>

																								

Now,	we	can	finally	modify	and	retrieve	the	mileage	of	our	Car	objects:

irb>	kitt.set_mileage(5667)

=>	5667

irb>	kitt.get_mileage

=>	5667

																								

This	is	still	a	bit	awkward.	Wouldn't	it	be	nice	if	we	could	give	our	accessor	methods	the	same
names	as	 the	attributes	 that	read	and	control?	Luckily,	Ruby	contains	shorthand	notation	for
this	very	task.	We	can	rewrite	our	class	definition	as	follows:

$	irb

irb>	class	Car

irb>			def	mileage=(x)

irb>					@mileage	=	x

irb>			end

irb>			def	mileage

irb>					@mileage

irb>			end

irb>	end

=>	nil

irb>	kitt	=	Car.new

=>	#<Car:0x75e54>

																								

With	these	accessor	methods	in	place,	we	can	read	to	and	write	from	our	instance	variable	as
if	it	were	available	from	outside	the	object:

irb>	kitt.mileage	=	6032

=>	6032

irb>	kitt.mileage

=>	6032

																								

These	accessor	methods	form	part	of	the	object's	interface.	By	the	way,	since	Ruby	is	all	about
programmer	 productivity	 and	 happiness,	 the	 standard	 library	 supplies	 shortcut	 methods	 to
define	accessor	methods.	Check	it	out:

irb>	class	Car

irb>			attr_accessor	:mileage

irb>	end

=>	nil

irb>	kitt	=	Car.new

=>	#<Car:0x75e54>

irb>	kitt.mileage	=	6032

=>	6032

irb>	kitt.mileage

=>	6032

																								

Pretty	neat,	eh?

Class-level	Functionality

At	the	class	level,	class	variables	handle	data	storage.	They're	commonly	used	to	store	state
information,	or	as	a	means	of	configuring	default	values	for	new	objects.	Class	variables	are
typically	set	in	the	body	of	a	class,	and	can	be	recognized	by	their	prefix:	a	double	“at”	sign
(@@).

First,	enter	the	following	class	definition	into	a	new	Ruby	shell:

$	irb

irb>	class	Car

irb>			@@number_of_cars	=	0

irb>			def	initialize

irb>					@@number_of_cars	=	@@number_of_cars	+	1

irb>			end

irb>	end

=>	nil

																								

In	the	code,	the	class	definition	for	the	class	Car	has	an	internal	counter	for	the	total	number
of	Car	objects	that	have	been	created.	Using	the	special	instance	method	initialize,	which	is
invoked	 automatically	 every	 time	 an	 object	 is	 instantiated,	 this	 counter	 is	 incremented	 for

each	new	Car	object.

By	 the	 way,	 we've	 already	 used	 a	 class	method;	 I	 snuck	 it	 in	 there.	 The	 new	 method	 is	 an
example	of	a	class	method	that	ships	with	Ruby	and	is	available	to	all	classes,	whether	they're
defined	by	you	or	 form	part	 of	 the	Ruby	Standard	Library.The	Ruby	Standard	Library	 is	 a
large	collection	of	classes	that's	included	with	every	Ruby	installation.	The	classes	facilitate	a
wide	 range	 of	 common	 functionality,	 such	 as	 accessing	 websites,	 date	 calculations,	 file
operations,	and	more.

Custom	class	methods	are	commonly	used	to	create	objects	with	special	properties	(such	as	a
default	color	for	our	Car	objects—called	factory	methods),	or	 to	gather	statistics	about	 the
class's	usage.

Extending	the	earlier	example,	we	could	use	a	class	method	called	count	to	return	the	value	of
the	@@number_of_cars	class	variable.	Remember	that	this	is	a	variable	that's	incremented	for
every	new	Car	object	created.	Class	methods	are	defined	identically	to	instance	methods:	using
the	def	and	end	keywords.	The	only	difference	is	that	class	method	names	are	prefixed	with
self.	Enter	this	code	into	a	new	Ruby	shell:

$	irb

irb>	class	Car

irb>			@@number_of_cars	=	0

irb>			def	self.count

irb>					@@number_of_cars

irb>			end

irb>			def	initialize

irb>					@@number_of_cars	+=	1

irb>			end

irb>	end

=>	nil

																								

The	 following	 code	 instantiates	 some	 new	 Car	 objects,	 then	 makes	 use	 of	 our	 new	 class
method:

irb>	kitt	=	Car.new									#	Michael	Knight's	talking	car

=>	#<0xba8c>

irb>	herbie	=	Car.new							#	The	famous	Volkswagen	love	bug!

=>	#<0x8cd20>

irb>	batmobile	=	Car.new				#	Batman's	sleek	automobile

=>	#<0x872e4>

irb>	Car.count

=>	3

																								

The	method	tells	us	that	three	instances	of	the	Car	class	have	been	created.	Note	that	we	can't
call	 a	 class	 method	 on	 an	 object:Ruby	 actually	 does	 provide	 a	 way	 to	 invoke	 some	 class

methods	on	an	object	using	the	::	operator,	but	we	won't	worry	about	that	for	now.	We'll	see
the	::	operator	in	use	in	Chapter	4.

irb>	kitt.count

NoMethodError:	undefined	method	'count'	for	#<Car:0x89da0>

																								

As	implied	by	the	name,	the	count	class	method	is	available	only	to	the	Car	class,	not	to	any
objects	instantiated	from	that	class.

Avoid	the	CV	Word

Class	 variables	 are	 treated	 in	 much	 the	 same	 way	 as	 global	 variables	 in	 that	 they	 are
discouraged.	Think	of	them	as	the	"CV"	word	and	avoid	them.

I	sneakily	introduced	another	operator	in	there.	In	many	languages,	including	PHP	and	Java,
the	++	and	--	operators	are	used	to	increment	a	variable	by	one,	but	Ruby	doesn't	support	this
notation;	instead,	we	use	the	+=	operator.	Therefore,	the	shorthand	notation	for	incrementing
our	counter	in	the	class	definition	is:

irb>	@@number_of_cars	+=	1

																								

This	code	is	identical	to:

irb>	@@number_of_cars	=	@@number	of	cars	+	1

																								

Both	of	these	lines	can	be	read	as	“my_variable	becomes	equal	to	my_variable	plus	one.”

Inheritance
If	 your	 application	deals	with	more	 than	 the	 flat	 hierarchy	we've	 explored	 so	 far,	 you	may
want	to	construct	a	scenario	whereby	some	classes	inherit	from	other	classes.	Inheritance	is	a
tenet	of	object-oriented	programming	where	one	class	can	be	used	as	a	parent	(or	super)	class
of	another.	This	means	that	the	methods	and	variables	defined	on	the	super	class	are	available
on	the	child	class.	You	use	inheritance	when	one	class	is	a	kind	of	another	class.	The	example
code	will	make	this	more	clear.

Continuing	with	 the	car	analogy,	 let's	suppose	 that	we	have	a	green	 limousine	named	Larry
(this	 assignment	 of	 names	 to	 cars	 may	 seem	 a	 little	 strange,	 but	 it's	 important	 for	 this
example,	 so	 bear	 with	 me).	 In	 Ruby,	 the	 larry	 object	 would	 probably	 descend	 from	 a
StretchLimo	class,	which	could	in	turn	descend	from	the	class	Car	(a	StretchLimo	 is	a	Car).
Let's	implement	that	class	relationship	to	see	how	it	works:

$	irb

irb>	class	Car

irb>			WHEELS	=	4

irb>	end

=>	nil

irb>	class	StretchLimo	<	Car

irb>			WHEELS	=	6

irb>			def	turn_on_television

irb>					#	Invoke	code	for	switching	on	on-board	TV	here

irb>			end

irb>	end

=>	nil

																								

Now,	 if	we	were	 to	 instantiate	 an	object	 of	 class	StretchLimo,	we'd	 end	up	with	 a	 different
kind	of	car.	Instead	of	the	regular	four	wheels	that	standard	Car	objects	have,	this	one	would
have	six	wheels	(stored	in	 the	class	constant	WHEELS).	 It	would	also	have	extra	 functionality,
made	 possible	 by	 the	 presence	 of	 the	 extra	 method	 turn_on_television,	 which	 could	 be
called	by	other	objects.

However,	if	we	were	to	instantiate	a	regular	Car	object,	the	car	would	have	only	four	wheels,
and	 there	 would	 be	 no	 instance	 method	 for	 turning	 on	 an	 on-board	 television.	 Think	 of
inheritance	 as	 a	way	 for	 a	 class's	 functionality	 to	 become	more	 specialized	 the	 further	we
move	down	the	inheritance	path.

Don't	 worry	 if	 you're	 struggling	 to	wrap	 your	 head	 around	 all	 the	 aspects	 of	OOP.	You'll
become	accustomed	to	them	as	you	work	through	this	book.	It	may	be	useful	to	come	back	to
this	section,	though,	especially	if	you	need	a	reminder	about	a	certain	term	later	on.

Modules	and	Composition
Another	foundational	concept	is	composition,	which	is	basically	reusing	functionality	across
objects	 by	 including	 them	 in	 the	 class	definition.	 In	other	words,	 the	behavior	of	 a	 class	 is
composed	 of	 defined	 functional	 sets.	 These	 functional	 sets	 are	 not	 a	 part	 of	 the	 base	 class
definition,	 but	 are	 included	 in	 any	 class	 desiring	 that	 functionality.	 I	 like	 to	 think	 that	 if
inheritance	defines	"is	a",	then	composition	defines	"has	a".

Ruby	allows	 the	definition	of	 sets	of	 functionality	 in	modules.	A	module	 looks	 a	 lot	 like	 a
class	except	that	it	has	no	new	method,	which	means	it	can't	be	instantiated.	Here	is	an	example
module:

irb>	module	Nitrous

irb>			def	push_the_red_button	

irb>					#	Invoke	code	kicking	on	the	nitrous	here!	ZOOM!	

irb>					"ZOOM!"

irb>			end

irb>	end

																								

Not	all	cars	have	nitrous	installed,	but	for	cars	that	are	fast	and,	possibly,	furious,	nitrous	is	a
must.	Now	 that	we	have	a	module,	how	do	we	 include	 it	 in	 the	class	definition	of	our	 race
cars?	By	using	include.

Modules	are	included	in	a	class	using	the	include	keyword.	Let's	look	at	an	example:

irb>	class	Racer	<	Car

irb>		include	Nitrous	

irb>	end

=>	nil

irb>	race_car	=	Racer.new

irb>	race_car.push_the_red_button

=>	ZOOM!

irb>	limo	=	StretchLimo.new

irb>	limo.push_the_red_button

=>	 NoMethodError:	 undefined	 method	 `push_the_red_button'	 for	 #

<StretchLimo:0x007f89760c9188>

																								

As	we've	included	the	Nitrous	module	in	our	Racer	class,	the	push_the_red_button	method
is	available	to	instances	of	Racer.	The	limo,	however,	doesn't	have	nitrous.

One	 more	 quick	 point.	 You'll	 notice	 that	 includeing	 a	 module	 in	 a	 class	 creates	 instance
methods.	What	if	we	want	to	define	class	methods?	I'm	glad	you	asked.

There	is	another	keyword,	extend,	that	adds	the	methods	defined	in	a	module	as	class	methods
like	so:

irb>	module	Lemon

irb>			def	recalls	

irb>					"The	engine	explodes	if	you	switch	into	reverse"

irb>			end

irb>	end

irb>	class	Pinto	<	Car

irb>		extend	Lemon

irb>	end

=>	nil

irb>	pos	=	Pinto.new

irb>	pos.recalls

=>	NoMethodError	

irb>	Pinto.recalls

=>	"The	engine	explodes	if	you	switch	into	reverse"

																								

Modules	are	used	extensively	in	Ruby	and	Rails,	and	learning	how	to	use	them	effectively	can
make	your	code	much	more	maintainable.

Support	for	Methods

What	 if	 you	 wanted	 to	 add	 some	 methods	 from	 a	 module	 as	 instance	 methods,	 and	 other
methods	 in	 that	module	 as	 class	methods?	Googling	 "ActiveSupport	Concern"	will	 reward
you	with	the	answer	you	seek.

Much	of	the	core	Rails	functionality	is	implemented	via	modules,	so	we've	covered	enough	to
ensure	there	are	no	surprises.

Return	Values
It's	 always	 great	 to	 receive	 feedback.	 Remember	 our	 talk	 about	 passing	 arguments	 to
methods?	Well,	regardless	of	whether	or	not	a	method	accepts	arguments,	invoking	a	method
in	Ruby	always	results	in	feedback.	It	comes	in	the	form	of	a	return	value,	which	is	returned
either	explicitly	or	implicitly.

To	return	a	value	explicitly,	use	the	return	statement	in	the	body	of	a	method:

irb>	def	toot_horn

irb>			return	"toooot!"

irb>	end

=>	nil

																								

Calling	the	toot_horn	method	in	this	case	would	produce	the	following:

irb>	toot_horn

=>	"toooot!"

																								

However,	 if	no	 return	 statement	 is	used,	 the	 result	of	 the	 last	 statement	 that	was	executed	 is
used	as	the	return	value.	This	behavior	is	quite	unique	to	Ruby:

irb>	def	toot_loud_horn

irb>			"toooot!".upcase

irb>	end

=>	nil

																								

Calling	the	toot_loud_horn	method	in	this	case	would	produce:

irb>	toot_loud_horn

=>	"TOOOOT!"

																								

Standard	Output

When	 you	 need	 to	 show	 output	 to	 the	 users	 of	 your	 application,	 use	 the	 print	 and	 puts
statements.	Both	methods	will	display	 the	arguments	passed	 to	 them	as	 a	String;	puts	 also
inserts	a	carriage	return	at	the	end	of	its	output.	Therefore,	in	a	Ruby	program	the	following
lines:

print	"The	quick	"

print	"brown	fox"

																								

…	would	produce	this	output:

The	quick	brown	fox

																								

Yet,	using	puts	like	so:

puts	"jumps	over"

puts	"the	lazy	dog"

																								

…	results	in:

jumps	over

the	lazy	dog

																								

You	might	be	wondering	why	all	of	 the	 trial-and-error	code	snippets	 that	we	 typed	 into	 the
Ruby	 shell	 actually	 produced	 output,	 given	 that	 there's	 been	 no	 use	 of	 the	 print	 or	 puts
methods	 up	 to	 this	 point.	 It's	 because	 irb	 automatically	 writes	 the	 return	 value	 of	 the	 last
statement	 it	 executes	 to	 the	 screen	before	displaying	 the	irb	 prompt.	This	means	 that	 using
print	or	puts	from	within	the	Ruby	shell	might	in	fact	produce	two	lines	of	output:	the	output
that	 you	 specify	 should	 be	 displayed,	 and	 the	 return	 value	 of	 the	 last	 command	 that	 was
executed,	as	in	this	example:

irb>	puts	"The	quick	brown	fox"

"The	quick	brown	fox"

=>	nil

																								

Here,	 nil	 is	 actually	 the	 return	 value	 of	 the	 puts	 statement.	 Looking	 back	 at	 previous
examples,	you	will	have	encountered	nil	as	the	return	value	for	class	and	method	definitions,
and	you'll	have	received	a	hexadecimal	address	such	as	#<Car:0x89da0>	as	 the	return	value
for	object	definitions.	This	hexadecimal	value	showed	the	location	in	memory	that	the	object

we	instantiated	occupied.	Luckily	we	can	forget	about	bothering	with	such	geeky	details	any
further.

Having	met	the	print	and	puts	statements,	you	should	be	aware	that	a	Rails	application	has	a
completely	different	approach	to	displaying	output,	called	templates.	We'll	 look	at	 templates
in	Chapter	4.

Put	It	There

For	what	it's	worth,	99.99998%	of	the	times	you	want	to	write	to	standard	output,	use	puts.	It's
what	all	the	cool	kids	do.

Ruby	Core	Classes

We've	already	talked	briefly	about	the	String	and	Fixnum	classes	in	the	previous	sections,	but
Ruby	has	a	lot	more	under	its	hood.	Let's	explore!

Strings
The	typical	Ruby	String	object—yep,	that	very	same	object	we've	already	been	using—holds
and	manipulates	 sequences	 of	 characters.	Most	 of	 the	 time,	 new	String	 objects	 are	 created
using	string	literals	that	are	enclosed	in	single	or	double	quotes.	The	string	literal	can	then	be
stored	in	a	variable	for	later	use:

irb>	a_phrase	=	"The	quick	brown	fox"

=>	"The	quick	brown	fox"

irb>	a_phrase.class

=>	String

																								

If	 the	 string	 literal	 includes	 the	 quote	 character	 used	 to	 enclose	 the	 string	 itself,	 it	must	 be
escaped	with	a	backslash	character	(\):

irb>	'I\'m	a	quick	brown	fox'

=>	"I'm	a	quick	brown	fox"

irb>	"Arnie	said,	\"I'm	back!\""

=>	"Arnie	said,	\"I'm	back!\""

																								

An	easier	way	to	specify	string	literals	that	contain	quotes	is	to	use	the	%Q	shortcut,	like	this:

irb>	%Q(Arnie	said,	"I'm	back!")

=>	"Arnie	said,	\"I'm	back!\""

																								

String	additionally	supports	 the	substitution	of	Ruby	code	 into	a	string	 literal	via	 the	Ruby
expression	#{}:

irb>	"The	current	time	is:	#{Time.now}"

=>	"The	current	time	is:	Wed	Aug	02	21:15:19	CEST	2006"

																								

The	 String	 class	 methods	 also	 have	 rich	 embedded	 functionality	 for	 modifying	 String
objects.	Here	are	some	of	the	most	useful	methods:
	

gsub	substitutes	a	given	pattern	within	a	String:

irb>	"The	quick	brown	fox".gsub('fox',	'dog')

=>	"The	quick	brown	dog"

																								

	

include?	returns	true	if	a	String	contains	another	specific	String:

irb>	"The	quick	brown	fox".include?('fox')

=>	true

																								

length	returns	the	length	of	a	String	in	characters:

irb>	"The	quick	brown	fox".length

=>	19

																								

slice	returns	a	portion	of	a	String:

irb>	"The	quick	brown	fox".slice(0,	3)

=>	"The"

																								

The	 complete	 list	 of	 class	 methods	 and	 instance	 methods	 provided	 by	 the	 String	 class	 is
available	 via	 the	 Ruby	 reference	 documentation,	 which	 you	 can	 access	 by	 entering	 the	 ri
command	into	the	terminal	window	(for	your	operating	system,	not	the	Ruby	shell),	followed
by	the	class	name	you'd	like	to	look	up:

$	ri	String

																								

Oh,	and	ri	stands	for	ruby	interactive,	in	case	you're	wondering.	Don't	confuse	it	with	irb.

Ruby	Interactive	Documentation

If	ri	returns	nothing	or	errors,	or	says	Nothing	known	about	String,	you	need	to	install	the
ri	documentation.	If	you	are	using	RVM,	you	can	type	rvm	docs	generate-ri.	If	you	are	on
Windows,	try	this:

$	gem	install	rdoc-data

$	rdoc-data	--install

																								

That	should	do	the	trick.

Numerics
Since	there	are	so	many	different	types	of	numbers,	Ruby	has	a	separate	class	for	each—the
popular	Float,	 Fixnum,	 and	 Bignum	 classes	 among	 them.	 They're	 actually	 all	 subclasses	 of
Numeric,	which	provides	the	basic	functionality.

Just	like	Strings,	numbers	are	usually	created	from	literals:

irb>	123.class

=>	Fixnum

irb>	12.5.class

=>	Float

																								

Each	of	 the	specific	Numeric	 subclasses	comes	with	 features	 that	 are	 relevant	 to	 the	 type	of
number	it's	designed	to	deal	with;	however,	the	following	functionality	is	shared	between	all
Numeric	functionality:
	

integer?	returns	true	if	the	object	is	a	whole	integer:

irb>	123.integer?

=>	true

irb>	12.5.integer?

=>	false

																								

round	rounds	a	number	to	the	nearest	integer:

irb>	12.3.round

=>	12

irb>	38.8.round

=>	39

																								

zero?	returns	true	if	the	number	is	equal	to	zero:

irb>	0.zero?

=>	true

irb>	8.zero?

=>	false

																								

Additionally,	 there	 are	 ways	 to	 convert	 numbers	 between	 the	 Numeric	 subclasses.	 to_f
converts	a	value	to	a	Float,	and	to_i	converts	a	value	to	an	Integer:

irb>	12.to_f

=>	12.0

irb>	11.3.to_i

=>	11

																								

Symbols
In	 Ruby,	 a	 Symbol	 is	 a	 simple	 textual	 identifier.	 Like	 a	 String,	 a	 Symbol	 is	 created	 using
literals;	the	difference	is	that	a	Symbol	is	prefixed	with	a	colon	(:)	like	so:

irb>	:fox

=>	:fox

irb>	:fox.class

=>	Symbol

																								

The	main	benefit	of	using	a	Symbolover	a	String	 is	 that	 a	Symbol	 is	 immutable,	meaning	 it
doesn't	change.	This	is	different	from	Strings,	which	can	be	changed.	Immutability	is	a	big
subject,	 so	 let's	 focus	 on	 the	 biggest	 benefit:	memory.	 Each	 string	 you	 created	 is	 different
from	all	other	strings,	even	if	the	strings	have	the	same	characters.	Check	it	out:

irb>	"fox".object_id

=>	70114175443000

irb>	"fox".object_id

70114175426920

irb>	:fox.object_id

544488

irb>	:fox.object_id

544488

																								

In	Ruby,	every	object	has	an	object_id,	which	is,	in	essence,	where	that	object	sits	in	memory.
As	you	can	see	from	the	example,	every	time	you	type	"fox",	you	get	a	new	object_id,	a	new
object;	however,	when	you	type	:fox,	it's	the	same	object	every	time.

This	 can	 be	 an	 advantage	 in	 certain	 situations	 when	 we	 want	 to	 ensure	 we	 have	 the	 same
object.	For	example,	when	we	store	values	in	a	Hash	(which	we'll	cover	in	a	sec),	a	unique	key

is	important.	Otherwise,	we	could	store	several	values	with	the	same	key	value,	but	that	would
be	confusing.

Objects	of	class	String	can	be	converted	to	class	Symbol,	and	vice	versa:

irb>	"fox".to_sym

=>	:fox

irb>	:fox.to_s

=>	"fox"

																								

We'll	be	using	Symbol	frequently	as	we	deal	with	Rails	functionality	in	successive	chapters	of
this	book.

Arrays
We	use	Ruby's	Array	to	store	collections	of	objects.	Each	individual	object	that's	stored	in	an
Array	has	a	unique	numeric	key,	which	we	can	use	to	reference	it.	As	with	many	languages,
the	first	element	in	an	Array	is	stored	at	position	0	(zero).

To	create	a	new	Array,	 simply	 instantiate	 a	new	object	of	 class	Array	 using	 the	Array.new
construct.	You	can	(and	should)	also	use	a	shortcut	approach,	which	is	to	enclose	the	objects
you	want	to	place	inside	the	Array	in	square	brackets.

For	example,	an	Array	 containing	 the	mileage	 at	which	a	 car	 is	 due	 for	 its	 regular	 service
might	look	similar	to	this:

irb>	service_mileage	=	[5000,	15000,	30000,	60000,	100000]

=>	[5000,	15000,	30000,	60000,	100000]

																								

To	 retrieve	 individual	 elements	 from	 an	 Array,	 we	 specify	 the	 numeric	 key	 in	 square
brackets:

irb>	service_mileage[0]

=>	5000

irb>	service_mileage[2]

=>	30000

																								

Ruby	has	more	shortcuts	that	allow	us	to	create	an	Array	from	a	list	of	Strings:	the	%w()	and
%i()	 syntaxes.	Using	 these	 shortcuts	 saves	us	 from	 typing	a	 lot	of	double-quote	characters.
The	former	(%w)	creates	an	array	of	strings,	while	the	latter	(%i)	creates	an	array	of	symbols:

irb>	string_colors	=	%w(red	green	blue	black)

=>	["red",	"green",	"blue",	"black"]

irb>	string_colors[0]

=>	"red"

irb>	string_colors[3]

=>	"black"

irb>	symbol_colors	=	%i(red	green	blue	black)

=>	[:red,	:green,	:blue,	:black]

irb>	symbol_colors[0]

=>	:red

																								

In	addition	to	facilitating	simple	element	retrieval,	Array	comes	with	a	set	of	class	methods
and	instance	methods	that	ease	data	management	tasks	tremendously.
	

empty?	returns	true	if	the	receiving	Array	contains	no	elements:

irb>	available_colors.empty?

=>	false

																								

size	returns	the	number	of	elements	in	an	Array:

irb>	available_colors.size

=>	4

																								

The	 complete	 list	 of	 class	 methods	 and	 instance	 methods	 provided	 by	 the	 Array	 class	 is
available	via	the	Ruby	reference	documentation:

$	ri	Array

																								

Hashes
A	Hash	is	another	kind	of	data	storage	container	that	is	similar	conceptually	to	a	dictionary:	it
maps	one	object	(the	key;	for	example,	a	word)	to	another	(the	value;	a	word's	definition)	in	a
one-to-one	relationship.

A	 new	 Hash	 can	 be	 created	 either	 by	 instantiating	 a	 new	 object	 of	 class	 Hash	 (using	 the
Hash.new	construct)	or	by	using	the	curly	brace	shortcut	shown	in	the	code	that	follows.	When
defining	a	Hash,	we	must	specify	each	entry	using	one	of	two	syntaxes:	either	key:	value	or
key	 =>	 value.	The	 former	 is	 newer	 and,	 in	 this	writer's	 opinion,	 preferred	 but	 either	way
works.

In	the	following	example,	the	Hash	maps	car	names	to	a	color:

irb>	car_colors	=	{

irb>			kitt:		'black',

irb>			herbie:	'white',

irb>			batmobile:	'black',

irb>			larry:	'green'

irb>	}

=>	{"kitt"=>"black",	"herbie"=>"white",	"batmobile"=>"black",	"larry"=>"green"}

																								

To	query	 this	newly	built	Hash,	we	 pass	 the	 key	 of	 the	 entry	we	want	 to	 look	 up	 in	 square
brackets	as	a	symbol:

irb>	car_colors[:kitt]

=>	"black"

																								

All	sorts	of	useful	functionality	is	built	into	a	Hash,	including	the	following	methods:
	

empty?	returns	true	if	the	receiving	Hash	doesn't	contain	any	elements:

irb>	car_colors.empty?

=>	false

																								

size	returns	the	number	of	elements	in	a	Hash:

irb>	car_colors.size

=>	4

																								

keys	returns	all	keys	of	a	Hash	as	an	Array:

irb>	car_colors.keys

=>	["kitt",	"herbie",	"batmobile",	"larry"]

																								

values	returns	all	values	of	a	Hash	as	an	Array	in	the	order	they	were	added	to	the	Hash:

irb>	car_colors.values

=>	["black",	"white",	"black",	"green"]

																								

There	are	 lots	more	class	methods	and	 instance	methods	provided	by	 the	Hash	 class.	 For	 a
complete	list,	consult	the	Ruby	reference	documentation	by	typing:

ri	Hash

																								

nil	Values

I	promised	earlier	that	I'd	explain	nil	values—now's	the	time!

All	 programming	 languages	 have	 a	 value	 they	 can	 use	 when	 they	 actually	 mean	 nothing.
Some	use	undef;	others	use	NULL.	Ruby	uses	nil.	A	nil	value,	like	everything	in	Ruby,	is	also
an	object.	It	therefore	has	its	own	class:	NilClass.

Basically,	if	a	method	returns	nothing,	it	is	returning	the	value	nil.	And	if	you	assign	nil	to	a
variable,	you	effectively	make	 it	empty.	nil	 shows	up	 in	a	couple	of	other	places,	but	we'll
cross	those	bridges	when	we	come	to	them.

Running	Ruby	Files

For	 the	 simple	Ruby	 basics	 that	we've	 experimented	with	 so	 far,	 the	 interactive	Ruby	 shell
(irb)	 has	 been	 our	 tool	 of	 choice.	 I'm	 sure	 you'll	 agree	 that	 experimenting	 in	 a	 shell-like
environment	where	we	can	see	immediate	results	is	a	great	way	to	learn	the	language.

Now	we're	 going	 to	 be	 talking	 about	 control	 structures,	 and	 for	 tasks	 of	 such	 complexity
you'll	want	to	work	in	a	text	editor.	This	environment	will	allow	you	to	run	a	chunk	of	code
several	times	without	having	to	retype	it.

In	general,	Ruby	scripts	are	simple	text	files	containing	Ruby	code	and	a	.rb	extension.	These
files	are	passed	to	the	Ruby	interpreter,	which	executes	your	code:

$	ruby	myscript.rb

																								

To	work	with	the	examples	that	follow,	I'd	recommend	that	you	open	a	new	text	file	in	your
favorite	text	editor	(which	might	be	one	of	those	I	recommended	back	in	Chapter	2)	and	type
the	code	out	as	you	go—this	really	is	the	best	way	to	learn.

As	has	been	demonstrated,	 to	 run	 the	 files	 from	the	command	 line	you	simply	need	 to	 type
ruby,	followed	by	the	filename.

Control	Structures

Ruby	has	a	rich	set	of	features	for	controlling	the	flow	of	your	application.	Conditionals	are
keywords	that	are	used	to	decide	whether	or	not	certain	statements	are	executed	based	on	the
evaluation	of	one	or	more	conditions;	loops	are	constructs	that	execute	statements	more	than
once;	 and	 blocks	 are	 a	 means	 of	 encapsulating	 functionality	 (for	 example,	 so	 as	 to	 be

executed	in	a	loop).

To	demonstrate	these	control	structures,	 let's	utilize	some	of	 the	Car	classes	 that	we	defined
earlier.	 Type	 out	 the	 following	 class	 definition	 and	 save	 the	 file;	 we'll	 build	 on	 it	 in	 this
section	as	we	explore	some	control	structures:

class	Car

		WHEELS	=	4																#	class	constant

		@@number_of_cars	=	0						#	class	variable

		def	initialize

				@@number_of_cars	=	@@number_of_cars	+	1

		end

		def	self.count

				@@number_of_cars

		end

		def	mileage=(x)											#	instance	variable	writer

				@mileage	=	x												

		end

		def	mileage															#	instance	variable	reader

				@mileage

		end

end

class	StretchLimo	<	Car

		WHEELS	=	6																#	class	constant

		@@televisions	=	1									#	class	variable

		def	turn_on_television				

				#	Invoke	code	for	switching	on	on-board	TV	here

		end

end

class	PontiacFirebird	<	Car

end

class	VolksWagen	<	Car

end

																								

Conditionals
There	 are	 two	 basic	 conditional	 constructs	 in	 Ruby:	 if	 and	 unless.	 Each	 can	 be	 used	 to
execute	a	group	of	statements	on	the	basis	of	a	given	condition.

The	if	Construct

An	if	construct	wraps	statements	that	are	to	be	executed	only	if	a	certain	condition	is	met.	The
keyword	end	defines	the	end	of	the	if	construct.	The	statements	that	are	contained	between	the

condition	and	the	end	keyword	are	executed	only	if	the	condition	is	met:

if	Car.count.zero?

		puts	"No	cars	have	been	produced	yet."

end

																								

You	can	provide	a	second	condition	by	adding	an	else	block.	When	the	condition	is	met	the
first	block	is	executed;	otherwise,	the	else	block	is	executed.	This	kind	of	control	flow	will
probably	be	familiar	to	you.	Here	it	is	in	action:

if	Car.count.zero?

		puts	"No	cars	have	been	produced	yet."

else

		puts	"New	cars	can	still	be	produced."

end

																								

The	most	complicated	example	involves	an	alternative	condition.	If	the	first	condition	is	not
met,	a	second	condition	is	evaluated.	If	neither	conditions	are	met,	the	else	block	is	executed:

if	Car.count.zero?

		puts	"No	cars	have	been	produced	yet."

elsif	Car.count	>=	10

		puts	"Production	capacity	has	been	reached."

else

		puts	"New	cars	can	still	be	produced."

end

																								

If	the	count	method	returned	5,	this	code	would	produce	the	following	output:

New	cars	can	still	be	produced.

																								

An	 alternative	 to	 the	 traditional	 if	 condition	 is	 the	 if	 statement	 modifier.	 A	 statement
modifier	does	just	that:	it	modifies	the	statement	of	which	it	is	part.	The	if	statement	modifier
works	exactly	like	a	regular	if	condition,	but	it	sits	at	the	end	of	the	line	that's	affected,	rather
than	before	a	block	of	code:

puts	"No	cars	have	been	produced	yet."	if	Car.count.zero?

																								

This	 version	 of	 the	 if	 condition	 is	 often	 used	 when	 the	 code	 that's	 to	 be	 executed
conditionally	comprises	just	a	single	line.	Having	the	ability	to	create	conditions	such	as	this
results	 in	code	 that's	a	 lot	more	 like	English	 than	other	programming	 languages	with	more
rigid	structures.

The	unless	Construct

The	unless	 condition	 is	 a	 negative	 version	 of	 the	if	 condition.	 It's	 useful	 for	 situations	 in
which	you	want	to	execute	a	group	of	statements	when	a	certain	condition	is	not	met.

Let's	create	a	few	instances	to	work	with:Aficionados	of	comics	will	notice	that	I've	visualized
the	 Batmobile	 as	 a	 Pontiac	 Firebird.	 In	 fact,	 the	 caped	 crusader's	 choice	 of	 transport	 has
varied	over	the	years,	taking	in	many	of	the	automobile	industry's	less	common	innovations,
and	including	everything	from	a	1966	Lincoln	Futura	to	an	amphibious	tank.	But	we'll	stick
with	a	Pontiac	for	this	example.

kitt	=	PontiacFirebird.new

kitt.mileage	=	5667

herbie	=	VolksWagen.new

herbie.mileage	=	33014

batmobile	=	PontiacFirebird.new

batmobile.mileage	=	4623

larry	=	StretchLimo.new

larry.mileage	=	20140

																								

Now	if	we	wanted	to	find	out	how	many	Knight	Rider	fans	KITT	could	take	for	a	joyride,	we
could	check	the	class	of	the	kitt	object.	As	with	the	if	expression,	the	end	keyword	defines
the	end	of	the	statement:

unless	kitt.is_a?(StretchLimo)

		puts	"This	car	is	only	licensed	to	seat	two	people."

end

																								

Like	 the	if	condition,	 the	unless	condition	may	have	an	optional	else	 block	of	 statements,
which	is	executed	when	the	condition	is	met:

unless	kitt.is_a?(StretchLimo)

		puts	"This	car	is	only	licensed	to	seat	two	people."

end

																								

Since	KITT	is	definitely	not	a	stretch	limousine,	this	code	would	return:

This	car	only	has	room	for	two	people.

																								

Unlike	if	conditions,	unless	conditions	do	not	support	a	second	condition;	however,	like	the

if	 condition,	 the	unless	 condition	 is	 also	 available	 as	 a	 statement	modifier.	The	 following
code	shows	an	example	of	this.	Here,	the	message	will	not	display	if	KITT's	mileage	is	less
than	25,000:

puts	"Service	due!"	unless	kitt.mileage	<	25000

																								

Loops
Ruby	provides	 the	while	 and	for	 constructs	 for	 looping	 through	 code	 (that	 is,	 executing	 a
group	 of	 statements	 a	 specified	 number	 of	 times,	 or	 until	 a	 certain	 condition	 is	 met).	 A
number	of	instance	methods	are	also	available	for	looping	over	the	elements	of	an	Array	or
Hash;	we'll	cover	these	in	the	next	section.

while	and	until	Loops

A	 while	 loop	 executes	 the	 statements	 that	 it	 encloses	 repeatedly,	 as	 long	 as	 the	 specified
condition	is	met:

while	Car.count	<	10

		Car.new

		puts	"A	new	car	instance	was	created."

end

																								

This	simple	while	loop	executes	the	Car.new	statement	repeatedly,	as	long	as	the	total	number
of	cars	is	below	10.	It	exits	the	loop	when	the	number	reaches	ten.

Like	the	relationship	between	if	and	unless,	the	while	loop	also	has	a	complement:	the	until
construct.	If	we	use	until,	the	code	within	the	loop	is	executed	until	the	condition	is	met.	We
could	rewrite	the	prevous	loop	using	until	like	so:

until	Car.count	==	10

		Car.new

		puts	"A	new	car	instance	was	created."

end

																								

Assignment	and	Equation	Operators

It's	important	to	note	the	difference	between	the	assignment	operator	(=),	a	single	equal	sign,
and	the	equation	operator	(==),	a	double	equal	sign,	when	using	them	within	a	condition.

If	you're	comparing	two	values,	use	the	equation	operator:

if	Car.count	==	10

		⋮

end

																								

If	you're	assigning	a	value	to	a	variable,	use	the	assignment	operator:

my_new_car	=	Car.new

																								

If	you	confuse	the	two,	you	might	modify	a	value	that	you	were	hoping	only	to	inspect—with
potentially	disastrous	consequences!

for	Loops

for	loops	allow	us	to	iterate	over	the	elements	of	a	collection,	such	as	an	Array,	and	execute	a
group	of	statements	once	for	each	element.	Here's	an	example:

for	car	in	[kitt,	herbie,	batmobile,	larry]

		puts	car.mileage

end

																								

This	code	would	produce	the	following	output:

5667

33014

4623

20140

																								

This	simple	for	loop	iterates	over	an	Array	of	Car	objects	and	outputs	the	mileage	for	each
car.	 In	 each	 iteration,	 the	 car	 variable	 is	 set	 to	 the	 current	 element	 of	 the	 Array.	 The	 first
iteration	has	car	set	to	the	equivalent	of	kitt;	the	second	iteration	has	it	set	to	herbie,	and	so
forth.

In	practise,	 the	 traditional	while	 and	for	 loops	 covered	here	 are	 used	 rarely.	 Instead,	most
people	use	 the	 instance	methods	provided	by	 the	Array	and	Hash	 classes,	which	we'll	 cover
next.

Blocks,	Procs,	and	Lambdas.	Oh	my!
Blocks	are	probably	the	single	most	attractive	feature	of	Ruby;	however,	they	also	tend	to	take
a	while	to	drop	into	place	for	Ruby	newcomers.	Before	we	dig	deeper	into	creating	blocks,
let's	take	a	look	at	some	of	the	core	features	of	Ruby	that	use	blocks.

We	looked	at	some	loop	constructs	in	the	previous	section,	which	was	a	useful	way	to	explore
the	 tools	 that	 are	 available	 to	 us.	 Yet	 you'll	 probably	 only	 come	 across	 very	 few	 of	 these

constructs	in	your	work	with	other	Ruby	scripts,	simply	because	it's	almost	always	easier	to
use	a	block	to	perform	the	same	task.	A	block,	in	conjunction	with	the	each	method	provided
by	the	Array	and	Hash	classes,	is	a	very	powerful	way	to	loop	through	your	data.

Let	me	illustrate	this	point	with	an	example.	Consider	the	for	loop	we	used	a	moment	ago.	We
could	rewrite	that	code	to	use	the	each	method,	which	is	an	instance	method	of	the	Array,	and
a	block:

[kitt,	herbie,	batmobile,	larry].each	do	|car_name|

		puts	car_name.mileage

end

																								

Let's	analyze	this:	the	block	comprises	the	code	between	the	do	and	end	keywords.	A	block	is
able	 to	 receive	parameters,	which	are	placed	between	vertical	bars	 (|)	after	 the	do	 keyword.
Multiple	 parameters	 are	 separated	 by	 commas.	 Therefore,	 this	 code	 performs	 an	 identical
operation	to	the	for	loop	we	saw	before,	but	in	a	much	more	succinct	manner.

Let's	take	another	example.	To	loop	through	the	elements	of	a	Hash,	we	use	the	each	method
and	pass	two	parameters	to	the	block:	the	key	(car_name)	and	the	value	(color):

car_colors	=	{

		kitt:		'black',

		herbie:	'white',

		batmobile:	'black',

		larry:	'green'

}

car_colors.each	do	|car_name,	color|

		puts	"#{car_name}	is	#{color}"

end

																								

This	produces	the	following	output:

kitt	is	black

herbie	is	white

batmobile	is	black

larry	is	green

																								

The	Integer	class	also	sports	a	number	of	methods	that	use	blocks.	The	times	method	of	an
Integer	 object,	 for	 example,	 executes	 a	 block	 exactly	n	 times,	where	n	 is	 the	 value	 of	 the
object:

10.times	{	Car.new	}

puts	"#{Car.count}	cars	have	been	produced."

																								

Here's	the	resultant	output:

10	cars	have	been	produced.

																								

One	final	point	to	note	here	is	the	alternative	block	syntax	of	curly	braces.	Instead	of	the	do…
end	keywords	that	we've	been	using,	curly	braces	are	the	preferred	syntax	for	blocks	that	are
very	short,	as	in	the	previous	example.

Here's	 another	method	 of	 the	 Integer	 class.	 In	 the	 spirit	 of	 times,	 the	 upto	 method	 of	 an
Integer	object	counts	from	the	value	of	the	object	up	to	the	argument	passed	to	the	method:

5.upto(7)	{	|i|	puts	i	}

																								

And	here's	the	output:

5

6

7

																								

In	Ruby	parlance,	the	object	i	is	a	parameter	of	the	block.	Parameters	for	blocks	are	enclosed
in	vertical	bars,	and	are	usually	only	available	from	within	 the	block.	If	we	have	more	 than
one	parameter	we	 separate	 them	using	 commas,	 like	 so:	|parameter1,	parameter2|.	 In	 the
previous	 example,	 we	 would	 no	 longer	 have	 access	 to	 i	 once	 the	 block	 had	 finished
executing.

It's	worth	mentioning	that	there	are	a	couple	of	other	constructs	in	Ruby	that	are	very	similar
to	blocks:	procs	and	 lambdas.	The	difference	between	 these	 three	 items	 is	 subtle,	especially
for	the	needs	of	this	book.	For	what	we'll	cover,	it's	really	only	important	that	you	are	aware
of	the	syntactical	differences.	Here	are	some	examples:

10.times	{	Car.new	}	=>	Makes	10	cars

car_maker	=	Proc.new	{	Car.new	}

10.times(&car_maker)		=>	Makes	10	cars

competitor	=	lambda	{	|i|	Car.new	}

10.times(&competitor)	=>	Makes	10	cars

another_competitor	=	->(i){	Car.new	}	=>	Makes	10	cars

																								

The	first	example	is	a	block.	The	second	example	(Proc.new)	creates	a	Proc	object.	Procs	and
blocks	 are	 almost	 identical,	 except	 a	 proc	 is	 an	 object	 and	 a	 block	 is	 not.	 The	 last	 two
examples	(with	lambda	and	the	odd-looking	"stabby	lambda"	->()	create	lambdas	which	are
types	 of	 procs	with	 a	 couple	 of	 behavioral	 differences.	These	 differences	 are	 around	arity
(the	number	of	arguments)	and	how	the	 lambda	returns	when	 it	completes.	Again,	 it's	more
than	you	need	to	know	right	now,	so	you	know	what	that	means,	right?	It's	time	for	some	...

EXTRA	CREDIT:	Ruby	Rites

Learning	the	difference	between	procs,	blocks,	and	lambdas	is	a	Ruby	rite	of	passage.	To	help
you	 take	 yours,	 go	 check	 out	 this	 video	 on	 SitePoint	 Premium.	 It's	 a	 great	 little	 video	 ...	 I
recommend	you	make	popcorn	first.

As	we	work	through	this	book,	we'll	explore	many	more	uses	of	blocks,	procs,	and	lambdas
in	combination	with	the	Rails	core	classes.

Summary

Wow,	 we	 covered	 a	 lot	 in	 this	 chapter!	 First,	 we	 swept	 through	 a	 stack	 of	 object-oriented
programming	theory—probably	 the	equivalent	of	an	 introductory	computer	science	course!
This	gave	us	a	good	grounding	for	exploring	the	basics	of	the	Ruby	programming	language,
and	the	Interactive	Ruby	Shell	(irb)	was	a	fun	way	to	conduct	this	exploration.

We	 also	 investigated	 many	 of	 the	 Ruby	 core	 classes	 from	 within	 the	 Ruby	 shell,	 such	 as
String,	Symbol,	Array,	 and	Hash.	We	 then	moved	 from	 the	 shell	 to	 create	 and	 save	 proper
Ruby	 files,	where	we	experimented	with	 control	 structures	 such	 as	 conditionals,	 loops,	 and
blocks.

In	the	next	chapter,	we'll	look	at	the	major	cornerstones	that	make	up	the	Rails	framework.

https://www.sitepoint.com/premium/screencasts/discovering-the-differences-between-blocks-procs-and-lambdas

Chapter	4:	Rails	Revealed
As	we've	already	covered	in	Chapter	1,	quite	a	bit	of	thought	has	been	put	into	the	codebase
that	makes	 up	 the	 Rails	 framework.	Over	 time,	many	 of	 the	 internals	 have	 been	 rewritten,
items	have	been	added	and	 removed,	and	conventions	have	changed.	All	of	 this	change	has
improved	 speed	 and	 efficiency,	 allowing	 the	 implementation	 of	 additional	 features,	 but	 the
original	 architecture	 remains	 largely	 unchanged.	 This	 chapter	 will	 shed	 some	 light	 on	 the
inner	workings	of	Rails.

Three	Environments

Rails	 encourages	 the	 use	 of	 a	 different	 environment	 for	 each	 stage	 in	 an	 application's	 life
cycle	development,	testing,	and	production.	If	you've	been	developing	web	applications	for	a
while,	this	is	probably	how	you	operate	anyway;	Rails	simply	formalizes	these	environments.

In	 the	 development	 environment,	 changes	 to	 an	 application's	 source	 code	 are	 immediately
visible;	we	just	reload	the	corresponding	page	in	a	web	browser.	Speed	is	not	a	critical	factor
in	this	environment.	Instead,	the	focus	is	on	providing	the	developer	with	as	much	insight	as
possible	into	the	components	responsible	for	displaying	each	page.	When	an	error	occurs	in
the	development	environment,	we	are	able	to	tell	at	a	glance	which	line	of	code	is	responsible
for	 the	 error	 and	 how	 that	 particular	 line	 was	 invoked.	 This	 capability	 is	 provided	 by	 the
stack	trace—a	comprehensive	list	of	all	the	method	calls	leading	up	to	the	error—which	is
displayed	when	an	unexpected	error	occurs.

In	testing,	we	usually	refresh	the	database	with	a	baseline	of	dummy	data	each	time	a	 test	 is
repeated.	 This	 step	 ensures	 that	 the	 results	 of	 the	 tests	 are	 consistent	 and	 behavior	 is
reproducible.	Unit	 and	 functional	 testing	procedures	are	 fully	automated	 in	Rails.	When	we
test	 a	 Rails	 application,	we	 don't	 view	 it	 using	 a	 traditional	web	 browser.	 Instead,	 tests	 are
invoked	 from	 the	 command	 line,	 and	 can	 be	 run	 as	 background	 processes.	 The	 testing
environment	provides	a	dedicated	space	in	which	these	processes	can	operate.

By	the	 time	your	application	finally	goes	 live,	 it	should	be	sufficiently	 tested	 that	all—or	at
least	most—of	the	bugs	have	been	eliminated.	As	a	result,	updates	to	the	codebase	should	be
infrequent,	enabling	 the	production	environments	 to	be	optimized	 to	 focus	on	performance.
Tasks	 such	as	writing	extensive	 logs	 for	debugging	purposes	 should	be	unnecessary	at	 this
stage.	Besides,	 if	an	error	does	occur,	you	want	 to	avoid	scaring	your	visitors	away	with	a
cryptic	stack	trace;	that's	best	kept	for	the	development	environment.

As	 the	 requirements	 for	 each	of	 the	 three	 environments	 are	quite	different,	Rails	 stores	 the
configuration	for	each	environment	separately.	The	dependencies	for	each	environment	will
be	different;	the	data	for	each	environment	will	be	different.	You'll	likely	want	to	have	more

detailed	logs	in	development	than	production.	Rails	makes	handling	the	configuration	of	all
these	items	simple.

Application	Dependencies

One	of	the	great	aspects	of	Rails	is	its	community	and	all	the	gems	it	has	created	that	we,	as
Rails	 developers,	 can	 use	 in	 our	 apps.	 Each	 gem	 you	 use	 in	 your	 application	 becomes	 a
dependency,	meaning	that	your	app	depends	on	it.	It's	likely	that	your	apps	will	have	a	lot	of
dependencies.	 In	 fact,	 it's	 such	 a	 common	 occurrence	 that	 Rubyists	 created	 a	 tool	 to	make
managing	dependencies	easy.

Bundler

Rails	manages	application	dependencies	using	a	Ruby	gem	called	Bundler.	As	its	homepage
states,	Bundler:

"provides	a	consistent	environment	for	Ruby	projects	by	tracking	and	installing	the	exact
gems	and	versions	that	are	needed."

These	 dependencies	 are	 listed	 in	 the	 application	Gemfile,	which	 is	 found	 in	 the	 root	 of	 the
application	structure.	Gems	are	 listed	by	name	and	version.	Here	 is	part	of	 the	Gemfile	 that
Rails	created	with	our	application:

source	'https://rubygems.org'

#	Bundle	edge	Rails	instead:	gem	'rails',	github:	'rails/rails'

gem	'rails',	'~>	5.0.0'

#	Use	sqlite3	as	the	database	for	Active	Record

gem	'sqlite3'

#	Use	SCSS	for	stylesheets

gem	'sass-rails',	'/>	5.0'

...

group	:development,	:test	do

		#	Call	'byebug'	anywhere	in	the	code	to	stop	execution	and	get	a	debugger	console

		gem	'byebug',	platform:	mri

end

group	:development	do

		#	Access	an	IRB	console	on	exception	pages	or	by	using	<%=	console	%>	in	views

		gem	'web-console',	'/>	2.0'

end

http://bundler.io/

																								

As	 you	 can	 see,	 everything	 is	 a	 gem,	 including	 Rails	 itself!	 The	 first	 line	 (source
'https://rubygems.org')	 tells	Bundler	 to	 look	 for	gems	on	 the	RubyGems	website,	where
the	 community	 happens	 to	 publish	 gems.	 Did	 you	 notice	 that	 Bundler	 lets	 you	 define
dependencies	in	each	environment?

group	:development	do

		#	Access	an	IRB	console	on	exception	pages	or	by	using	<%=	console	%>	in	views

		gem	'web-console'

end

																								

The	 group	 :development	 block	 declaration	 tells	 Bundler	 to	 only	 load	 these	 gems	 in	 the
development	environment.	Neat,	huh?

Once	 the	 Gemfile	 includes	 all	 the	 app	 dependencies,	 running	 bundle	 install	 will	 make
Bundler	retrieve	all	the	gems	and	pull	them	into	the	current	environment:

$	bundle	install

Fetching	gem	metadata	from	https://rubygems.org/.........

Fetching	additional	metadata	from	https://rubygems.org/...

Resolving	dependencies...

Using	rake	10.3.1

Using	json	1.8.1

Installing	minitest	5.3.3

Installing	i18n	0.6.9

Installing	thread_safe	0.3.3

...

																								

Bundler	is	smart.	Really	smart.	It	checks	all	the	gems,	ensuring	that	their	dependencies	are	met
and	there	are	no	version	clashes.	A	version	clash	is	when	two	gems	require	different	versions
of	a	third	gem,	and	that	can	be	a	nightmare	to	handle.	Thankfully,	Bundler	does	that	for	you.

A	successful	bundle	install	creates	another	 file	called	Gemfile.lock,	which	 lists	 the	exact
gems	and	versions	used	in	the	last	successful	"bundle."	When	Rails	starts	up,	it	checks	this	file
to	load	all	the	gem	dependencies	so	that	your	app	is	ready	to	go.	Any	change	to	the	Gemfile
(meaning,	dependencies	added	or	removed)	requires	another	bundle	install.	Don't	worry,
though;	Bundler	is	smart	and	will	just	load	(or	remove)	the	changes,	check	that	everything	is
okay,	and	reuse	gems	from	previous	bundles.	Bundler	is	 like	your	Dependency	Compliance
Officer	ensuring	everyone	gets	along.

Finally,	Bundler	 is	 not	 a	Rails-only	 tool.	 It	 can	be	 (and	 is)	 used	 in	 other	Ruby	projects,	 so
you'll	see	it	all	over	the	Ruby	landscape.

EXTRA	CREDIT:	Bundler's	Brass	Tacks

There	 are	 a	 lot	 of	 details	 around	 using	Bundler	 that	 are	 outside	 the	 scope	 of	 this	 book.	 It
behooves	you,	as	an	aspiring	Ruby	developer,	to	read	up	on	all	the	things	Bundler	can	do	and
the	ways	it	can	do	them	on	the	Bundler	site.

Database	Configuration

By	 default,	 Rails	 creates	 a	 distinct	 database	 for	 each	 environment.	 At	 any	 given	 time,	 you
might	have:
	

live	data	with	which	real	users	are	interacting	in	the	production	environment

a	 partial	 copy	 of	 this	 live	 data	 to	 debug	 an	 error	 or	 develop	 new	 features	 in	 the
development	environment

a	set	of	testing	data	that's	constantly	being	reloaded	into	the	testing	environment

Configuring	 the	 database	 for	 a	 Rails	 application	 is	 incredibly	 easy.	 All	 the	 critical
information	is	contained	in	just	one	file:	config/database.yml.	We'll	take	a	close	look	at	this
database	configuration	file,	then	create	some	databases	for	our	application	to	use.

The	Database	Configuration	File
The	 separation	 of	 environments	 is	 reflected	 in	 the	 Rails	 database	 configuration	 file
database.yml.	An	example	of	this	was	created	when	we	used	the	rails	command	to	create	the
application.	Go	take	a	look—it	lives	in	the	config	subdirectory	of	our	Readit	application.

Yo	YAML!

The	format	of	many	configuration	files	in	Ruby	frameworks,	such	as	Rails,	is	"YAML	Ain't
Markup	Language"	or	YAML.	YAML	defines	data	structures	and	object	trees	in	a	very	human-
readable	fashion.	The	database.yml	 file	 that	follows	is	a	YAML	file,	and	you	can	see	that	 it
defines	 keys	 and	 their	 values	 using	 colons	 (:)	 and	whitespace	 (the	 environment	 values	 are
indented	under	the	environment	name.)	You	will	see	YAML	a	lot	in	your	Ruby	travels.

With	the	comments	removed,	the	file	should	look	like	this:

default:	&default

		adapter:	sqlite3

		pool:	5

		timeout:	5000

development:

http://bundler.io

		<<:	*default

		database:	db/development.sqlite3

test:

		<<:	default

		database:	db/test.sqlite3

production:

		<<:	default

		database:	db/production.sqlite3

																								

This	 file	 lists	 the	 minimum	 amount	 of	 information	 required	 in	 order	 to	 connect	 to	 the
database	 server	 for	 each	 environment	 (development,	 test,	 and	 production).	With	 the	 default
setup	 of	 SQLite	 that	 we	 installed	 in	 Chapter	 2,	 every	 environment	 is	 allocated	 its	 own
physically	 separate	database	 file,	which	 calls	 the	db	 subdirectory	 home.	Notice	 how	YAML
allows	us	to	define	defaults	and	pull	those	into	each	environment	configuration.

The	parameter	database	sets	the	name	of	the	database	that	is	to	be	used	in	each	environment.
As	 the	configuration	 file	 suggests,	Rails	 can	 support	multiple	databases	 (and	even	different
types	of	database	engines,	such	as	PostgreSQL	for	production	and	SQLite	for	development)
in	parallel.	Note	that	we're	talking	about	different	databases	here,	not	 just	different	 tables—
each	database	can	host	an	arbitrary	number	of	different	tables	in	parallel.	Figure	4-1	shows	a
graphical	representation	of	this	architecture.

The	database	architecture	we'll	use

Yet	 there's	 one	 startling	 aspect	 missing	 from	 our	 current	 configuration:	 looking	 at	 the	 db
subdirectory,	 the	 databases	 referenced	 in	 our	 configuration	 file	 are	 yet	 to	 exist!	 Fear	 not,
Rails	will	magically	create	them	as	soon	as	they're	required.	There's	nothing	we	need	to	do	as
far	as	they	are	concerned.

EXTRA	CREDIT:	Database	Engines

There	are	lots	of	database	engines	in	the	world;	for	example,	SQLite	and	PostgreSQL.	Rails
uses	SQLite	by	default	because	it's	the	easiest	to	set	up	to	get	you	going;	however,	almost	no
one	 uses	 SQLite	 as	 their	 production	 database.	 The	 reasons	 for	 eschewing	 SQLite	 in
production	have	to	do	with	the	way	it	stores	data	and	how	it	only	allows	a	single	writer	at	a
time.	Because	installing	another	database	is	beyond	the	scope	of	this	book,	however,	we	will
be	using	it.	Your	extra	credit?	Investigate	other	database	engines,	install	one,	and	hook	it	up	to
your	Rails	app.

The	Model-View-Controller	Architecture

The	model-view-controller	(MVC)	architecture	that	we	first	encountered	in	Chapter	1	 is	not
unique	 to	Rails.	 In	 fact,	 it	predates	both	Rails	 and	 the	Ruby	 language	by	many	years.	Rails,
however,	really	takes	the	idea	of	separating	an	application's	data,	user	interface,	and	control
logic	to	a	whole	new	level.

Let's	 take	a	 look	at	 the	concepts	behind	building	an	application	using	 the	MVC	architecture.
Once	we	have	the	theory	in	place,	we'll	see	how	it	translates	to	our	Rails	code.

MVC	in	Theory
MVC	is	a	pattern	for	the	architecture	of	a	software	application.	It	separates	an	application	into
the	following	components:
	

Models	for	handling	data	and	business	logic
Controllers	for	handling	the	user	interface	and	application
Views	for	handling	graphical	user	interface	objects	and	presentation

This	separation	results	in	user	requests	being	processed	as	follows:
	

1.	 The	browser	(on	the	client)	sends	a	request	for	a	page	to	the	controller	on	the	server.
2.	 The	 controller	 retrieves	 the	 data	 it	 needs	 from	 the	 model	 in	 order	 to	 respond	 to	 the

request.
3.	 The	controller	gives	the	retrieved	data	to	the	view.
4.	 The	view	is	rendered	and	sent	back	to	the	client	for	the	browser	to	display.

This	process	is	illustrated	in	Figure	4-2	below.

User	requests	being	processed

Separating	 a	 software	 application	 into	 these	 three	 distinct	 components	 is	 a	 good	 idea	 for	 a
number	of	reasons,	including:
	

improved	 scalability	 (the	 ability	 for	 an	 application	 to	 grow)–for	 example,	 if	 your
application	begins	experiencing	performance	issues	because	database	access	is	slow,	you
can	upgrade	the	hardware	running	the	database	without	other	components	being	affected

ease	of	maintenance—as	the	components	have	a	low	dependency	on	each	other,	making
changes	to	one	(to	fix	bugs	or	change	functionality)	does	not	affect	another

reusability—a	model	may	be	reused	by	multiple	views

If	 you're	 struggling	 to	 get	 your	 head	 around	 the	 concept	 of	MVC,	 don't	 worry.	 For	 now,
what's	 important	 to	 remember	 is	 that	 your	Rails	 application	 is	 separated	 into	 three	 distinct
components.	Jump	back	to	the	MVC	diagram	if	you	need	to	refer	to	it	later	on.

MVC	the	Rails	Way
Rails	 promotes	 the	 concept	 that	models,	 views,	 and	 controllers	 should	 be	 kept	 separate	 by
storing	the	code	for	each	element	as	separate	files	in	separate	directories.

This	is	where	the	Rails	directory	structure	that	we	created	back	in	Chapter	2	comes	into	play.
It's	time	to	poke	around	a	bit	within	that	structure.	If	you	take	a	look	inside	the	app	directory,
depicted	in	Figure	4-3,	you'll	see	some	folders	whose	names	might	start	to	sound	familiar.

The	app	subdirectory

As	you	can	see,	each	component	of	the	model-view-controller	architecture	has	its	place	within
the	app	subdirectory—the	models,	views,	and	controllers	subdirectories	respectively.	(We'll
talk	about	assets	in	Chapter	7,	helpers	in	Chapter	6,	and	mailers	later	on	in	this	chapter.	jobs
and	channels	are	beyond	the	scope	of	this	book.)

This	separation	continues	within	the	code	that	comprises	the	framework	itself.	The	classes	that
form	the	core	functionality	of	Rails	reside	within	the	following	modules:

ActiveRecord

ActiveRecord	is	the	module	for	handling	business	logic	and	database	communication.	It
plays	 the	 role	 of	 model	 in	 our	 MVC	 architecture.While	 it	 might	 seem	 odd	 that
ActiveRecord	 doesn't	 have	 the	 word	 “model”	 in	 its	 name,	 there	 is	 a	 reason	 for	 this:
Active	 Record	 is	 also	 the	 name	 of	 a	 famous	 design	 pattern—one	 that	 this	 component
implements	in	order	to	perform	its	role	in	the	MVC	world.	Besides,	if	it	had	been	called
ActionModel,	 it	 would	 have	 sounded	 more	 like	 an	 overpaid	 Hollywood	 star	 than	 a
software	component	…

ActionController

ActionController	 is	 the	 component	 that	 handles	 browser	 requests	 and	 facilitates
communication	between	the	model	and	the	view.	Your	controllers	will	inherit	from	this
class.	It	forms	part	of	the	ActionPack	library,	a	collection	of	Rails	components	that	we'll
explore	in	depth	in	Chapter	5.

ActionView

code>ActionView	is	the	component	that	handles	the	presentation	of	pages	returned	to	the
client.	Views	inherit	from	this	class,	which	is	also	part	of	the	ActionPack	library.

Let's	take	a	closer	look	at	each	of	these	components	in	turn.

The	ActiveRecord	Module

ActiveRecord	 is	 designed	 to	 handle	 all	 of	 an	 application's	 tasks	 that	 relate	 to	 the	 database,
including:
	

establishing	a	connection	to	the	database	server
retrieving	data	from	a	table
storing	new	data	in	the	database

ActiveRecord	has	a	few	other	neat	tricks	up	its	sleeve.	Let's	look	at	some	of	them	now.

Database	Abstraction

ActiveRecord	ships	with	database	adapters	to	connect	to	SQLite,	MySQL,	and	PostgreSQL.	A
large	number	of	adapters	are	available	 for	other	popular	database	server	packages,	 such	as
Oracle,	MongoDB,	and	Microsoft	SQL	Server,	via	RubyGems.

The	 ActiveRecord	 module	 is	 based	 on	 the	 concept	 of	 database	 abstraction.	 As	 a	 refresher
from	 Chapter	 1,	 database	 abstraction	 is	 a	 way	 of	 coding	 an	 application	 so	 that	 it	 isn't
dependent	upon	any	one	database.	Code	that's	specific	to	a	particular	database	server	is	hidden
safely	 in	ActiveRecord,	 and	 invoked	 as	 needed.	The	 result	 is	 that	 a	Rails	 application	 is	 not
bound	 to	 any	 specific	 database	 server	 software.	 Should	 you	 need	 to	 change	 the	 underlying
database	server	at	a	later	time,	no	changes	to	your	application	code	are	required.

The	Jury's	Out	on	ActiveRecord

As	I	said,	ActiveRecord	 is	an	 implementation	of	 the	Active	Record	pattern.	There	are	 those
that	disagree	with	the	approach	taken	by	ActiveRecord,	so	you'll	hear	a	lot	about	that,	too.	For
now,	 I	 suggest	 you	 learn	 the	 way	 ActiveRecord	 works,	 then	 form	 your	 judgement	 of	 the
implementation	as	you	learn.

Some	 examples	 of	 code	 that	 differ	 greatly	 between	 vendors,	 and	 which	 ActiveRecord
abstracts,	include:
	

the	process	of	logging	into	the	database	server
date	calculations
handling	of	Boolean	(true/false)	data
evolution	of	your	database	structure

Before	I	can	show	you	the	magic	of	ActiveRecord	in	action,	though,	a	little	housekeeping	is
necessary.

Database	Tables

Tables	 are	 the	 containers	 within	 a	 relational	 database	 that	 store	 our	 data	 in	 a	 structured
manner,	and	they're	made	up	of	rows	and	columns.	The	rows	map	to	individual	objects,	and
the	 columns	 map	 to	 the	 attributes	 of	 those	 objects.	 The	 collection	 of	 all	 the	 tables	 in	 a
database,	 and	 the	 relationships	 between	 those	 tables,	 is	 called	 the	 database	 schema.	 An
example	of	a	table	is	shown	in	Figure	4-4.

The	app	subdirectory

In	Rails,	 the	 naming	of	Ruby	 classes	 and	 database	 tables	 follows	 an	 intuitive	 pattern:	 if	we
have	a	 table	called	stories	 that	 consists	 of	 five	 rows,	 this	 table	will	 store	 the	data	 for	 five
Story	objects.	What's	nice	about	the	mapping	between	classes	and	tables	is	that	there's	no	need
to	write	code	to	achieve	it;	the	mapping	just	happens,	because	ActiveRecord	 infers	the	name
of	the	table	from	the	name	of	the	class.

Object	Relational	Mapper

The	Active	Record	pattern	is	a	way	of	mapping	the	rows	of	a	database	table	to	the	objects	of
our	 object-oriented	 application.	 The	 term	 for	 this	 is	 "Object	Relational	Mapper",	 or	ORM.
You'll	hear	the	term	"ORM"	a	lot	when	discussing	ActiveRecord,	so	I	thought	I'd	mention	it.

Note	that	the	name	of	our	class	in	Ruby	is	a	singular	noun	(Story),	but	the	name	of	the	table	is

plural	(stories).	This	relationship	makes	sense	if	you	think	about	it:	when	we	refer	to	a	Story
object	 in	 Ruby,	 we're	 dealing	 with	 a	 single	 story.	 But	 the	 SQL	 table	 holds	 a	 multitude	 of
stories,	 so	 its	 name	 should	 be	 plural.	 While	 you	 can	 override	 these	 conventions—as	 is
sometimes	necessary	when	dealing	with	legacy	databases—it's	much	easier	to	adhere	to	them.

The	close	 relationship	between	objects	and	 tables	extends	even	 further.	 If	our	stories	 table
were	to	have	a	link	column,	as	our	example	in	Figure	4-4	does,	the	data	in	this	column	would
automatically	be	mapped	to	the	link	attribute	in	a	Story	object.	And	adding	a	new	column	to	a
table	 would	 cause	 an	 attribute	 of	 the	 same	 name	 to	 become	 available	 in	 all	 of	 that	 table's
corresponding	objects.

So,	let's	create	some	tables	to	hold	the	stories	we	create.

For	the	time	being,	we'll	create	a	table	using	the	old-fashioned	approach	of	entering	SQL	into
the	SQLite	 console.	You	could	 type	out	 the	 following	SQL	commands,	 although	 typing	out
SQL	 is	 no	 fun.	 Instead,	 I	 encourage	 you	 to	 download	 the	 following	 script	 from	 the	 code
archive,	 and	 copy	 and	 paste	 it	 straight	 into	 your	 SQLite	 console	 that	 you	 invoked	 via	 the
following	command	in	the	application	directory:

$	sqlite3	db/development.sqlite3

																								

Once	your	SQLite	console	is	up,	paste	in	the	following:

CREATE	TABLE	stories	(

		"id"	INTEGER	PRIMARY	KEY	AUTOINCREMENT	NOT	NULL,

		"name"	varchar(255)	DEFAULT	NULL,

		"link"	varchar(255)	DEFAULT	NULL,

		"created_at"	datetime	DEFAULT	NULL,

		"updated_at"	datetime	DEFAULT	NULL

);

																								

You	 don't	 have	 to	 worry	 about	 remembering	 these	 SQL	 commands	 to	 use	 in	 your	 own
projects;	instead,	take	heart	in	knowing	that	in	Chapter	5	we'll	look	at	migrations.	Migrations
are	special	Ruby	classes	that	we	can	write	to	create	database	tables	for	our	application	without
using	any	SQL	at	all.

Seek	some	SQL	Smarts

Even	though	Rails	abstracts	away	the	SQL	required	to	create	tables	and	database	objects,	you'd
be	 doing	 yourself	 a	 favor	 if	 you	 become	 familiar	 with	 SQL	 and	 its	 syntax.	 SitePoint	 has
published	a	book	on	learning	SQL,	so	check	that	one	out.

Using	the	Rails	Console

https://www.sitepoint.com/premium/books/simply-sql

Now	that	we	have	our	stories	table	in	place,	let's	exit	the	SQLite	console	(simply	type	.quit)
and	open	up	a	Rails	console.	A	Rails	console	 is	 just	 like	 the	 interactive	Ruby	console	(irb)
that	we	used	in	Chapter	2,	but	with	one	key	difference.	In	a	Rails	console,	you	have	access	to
all	 the	 environment	 variables	 and	 classes	 that	 are	 available	 to	 your	 application	 while	 it's
running.	These	are	not	available	from	within	a	standard	irb	console.

To	 enter	 a	 Rails	 console,	 change	 to	 your	 readit	 folder,	 and	 enter	 the	 command	 rails
console	or	rails	c,	as	shown	in	the	code	that	follows.	The	>>	prompt	is	ready	to	accept	your
commands:

$	cd	readit

$	rails	console

Loading	development	environment	(Rails	5.0.0)

>>

																								

Saving	an	Object

To	start	using	ActiveRecord,	simply	define	a	class	that	inherits	from	the	ActiveRecord::Base.
We	 touched	on	 the	::	operator	very	briefly	 in	Chapter	3,	where	we	mentioned	 that	 it	was	a
way	 to	 invoke	 class	methods	 on	 an	 object.	 It	 can	 also	 be	 used	 to	 refer	 to	 classes	 that	 exist
within	a	module,	which	is	what	we're	doing	here.	Flip	back	to	the	section	on	object-oriented
programming	(OOP)	in	Chapter	3	if	you	need	a	refresher	on	inheritance.

Consider	the	following	code	snippet:

class	Story	<	ActiveRecord::Base

end

																								

These	two	lines	of	code	define	a	seemingly	empty	class	called	Story;	however,	 this	class	 is
far	from	empty,	as	we'll	soon	see.

From	the	Rails	console,	let's	create	this	Story	class	and	an	instance	of	the	class	called	story
by	entering	these	commands:

>>	class	Story	<	ActiveRecord::Base;	end

=>	nil

>>	story	=	Story.new

=>	#<Story	id:	nil,	name:	nil,	url:	nil,	created_at:	nil,

		updated_at:	nil>

>>	story.class

=>	Story(id:	integer,	name:	string,	link:	string,

		created_at:	datetime,	updated_at:	datetime)

																								

As	you	can	see,	the	syntax	for	creating	a	new	ActiveRecord	object	is	identical	to	the	syntax	we

used	to	create	other	Ruby	objects	in	Chapter	3.	At	this	point,	we've	created	a	new	Story	object;
however,	this	object	exists	in	memory	only—we're	yet	to	store	it	in	our	database.

We	can	confirm	that	our	Story	object	hasn't	been	saved	by	checking	 the	return	value	of	 the
new_record?	method:

>>	story.new_record?

=>	true

																								

Since	the	object	is	yet	to	be	saved,	it	will	be	lost	when	we	exit	the	Rails	console.	To	save	it	to
the	database,	we	invoke	the	object's	save	method:

>>	story.save

=>	true

																								

Now	that	we've	saved	our	object	 (a	 return	value	of	true	 indicates	 that	 the	save	method	was
successful),	our	story	is	no	longer	a	new	record.	It's	even	been	assigned	a	unique	ID:

>>	story.new_record?

=>	false

>>	story.id

=>	1

																								

Defining	Relationships	between	Objects

As	well	 as	 the	 basic	 functionality	 that	we've	 just	 seen,	 ActiveRecord	makes	 the	 process	 of
defining	 relationships	 (or	 associations)	between	objects	 as	 easy	as	 it	 can	be.	Of	 course,	 it's
possible	with	some	database	servers	to	define	such	relationships	entirely	within	the	database
schema.	In	order	to	put	ActiveRecord	through	its	paces,	let's	look	at	the	way	it	defines	these
relationships	within	Rails	instead.

Object	 relationships	can	be	defined	 in	a	variety	of	ways;	 the	main	difference	between	 these
relationships	is	the	number	of	records	that	are	specified	in	the	relationship.	The	primary	types
of	database	association	are:
	

one-to-one	associations
one-to-many	associations
many-to-many	associations

Let's	look	at	some	examples	of	each	of	these	associations.	Feel	free	to	type	them	into	the	Rails
console	 if	you	 like,	 for	 the	sake	of	practice.	Remember	 that	your	class	definitions	won't	be
saved,	though—I'll	show	you	how	to	define	associations	in	a	file	later.

Suppose	our	application	has	the	following	associations:
	

An	Author	can	have	one	Blog:

class	Author	<	ActiveRecord::Base

		has_one	:weblog

end

																								

An	Author	can	submit	many	Stories:

class	Author	<	ActiveRecord::Base

		has_many	:stories

end

																								

A	Story	belongs	to	an	Author:

class	Story	<	ActiveRecord::Base

		belongs_to	:author

end

																								

A	Story	has,	and	belongs	to,	many	different	Topics:

class	Story	<	ActiveRecord::Base

		has_and_belongs_to_many	:topics

end

class	Topic	<	ActiveRecord::Base

		has_and_belongs_to_many	:stories

end

																								

You're	no	doubt	growing	tired	of	 typing	class	definitions	 into	a	console,	only	 to	have	them
disappear	the	moment	you	exit	the	console.	For	this	reason,	we	won't	go	any	further	with	the
associations	 between	 our	 objects	 for	 now—instead	we'll	 delve	 into	 the	Rails	ActiveRecord
module	in	more	detail	in	Chapter	5.

The	ActionPack	Library

ActionPack	is	the	name	of	the	library	that	contains	the	view	and	controller	parts	of	the	MVC
architecture.	 Unlike	 the	 ActiveRecord	 module,	 these	 modules	 are	 more	 intuitively	 named:
ActionController	and	ActionView.

Exploring	application	 logic	and	presentation	 logic	on	 the	command	 line	makes	 little	 sense;
views	 and	 controllers	 are	 designed	 to	 interact	 with	 a	 web	 browser,	 after	 all!	 Instead,	 I'll

provide	a	brief	overview	of	the	ActionPack	components,	and	we'll	cover	the	hands-on	stuff	in
Chapter	5.

ActionController	(the	Controller)

The	 controller	 handles	 the	 application	 logic	 of	 your	 program,	 acting	 as	 glue	 between	 the
application's	 data,	 the	 presentation	 layer,	 and	 the	 web	 browser.	 In	 this	 role,	 a	 controller
performs	a	number	of	tasks	including:
	

deciding	how	to	handle	a	particular	request	(for	example,	whether	to	render	a	full	page
or	just	one	part	of	it)
retrieving	data	from	the	model	to	be	passed	to	the	view
gathering	information	from	a	browser	request	and	using	it	to	create	or	update	data	in	the
model

When	we	introduced	the	MVC	diagram	in	Figure	4-2	earlier	in	this	chapter,	it	might	not	have
occurred	to	you	that	a	Rails	application	can	consist	of	a	number	of	different	controllers.	Well,
it	can!	Each	controller	is	responsible	for	a	specific	part	of	the	application.

For	our	Readit	application,	we'll	create:
	

one	controller	for	displaying	story	links,	which	we'll	name	StoriesController
another	controller	for	handling	user	authentication,	called	SessionsController
a	controller	to	display	user	pages,	named	UsersController
a	controller	to	display	comment	pages,	named	CommentsController
a	final	controller	to	handle	story	voting,	called	VotesController

Every	 Rails	 application	 comes	 with	 an	 ApplicationController	 (which	 lives	 in
app/controllers/application_controller.rb)	 that	 inherits	 from	ActionController::Base.
All	 our	 controllers	will	 inherit	 from	 the	ApplicationController,There	will	 actually	 be	 an
intermediate	 class	 between	 this	 class	 and	 the	 ActionController::Base	 class;	 however,	 this
doesn't	 change	 the	 fact	 that	 ActionController::Base	 is	 the	 base	 class	 from	 which	 every
controller	inherits.	We'll	cover	the	creation	of	the	StoriesController	class	in	more	detail	in
Chapter	 5.	 but	 they'll	 have	 different	 functionality	 that	 is	 implemented	 as	 instance	 methods.
Here's	a	sample	class	definition	for	the	StoriesController	class:

class	StoriesController	<	ApplicationController

		def	index

		end

		def	show

		end

end

																								

This	 simple	 class	 definition	 sets	 up	 our	 StoriesController	 with	 two	 empty	 methods:	 the
index	method,	and	the	show	method.	We'll	expand	upon	these	methods	in	later	chapters.

Each	 controller	 resides	 in	 its	 own	Ruby	 file	 (with	 a	.rb	 extension),	which	 lives	within	 the
app/controllers	directory.	The	StoriesController	 class	 that	we	 just	defined,	 for	example,
would	inhabit	the	file	app/controllers/stories_controller.rb.

Naming	Conventions	for	Classes	and	Files

You'll	have	noticed	by	now	that	the	names	of	classes	and	files	follow	different	conventions:
	

Class	names	are	written	in	CamelCase	(each	word	beginning	with	a	capital	letter,	with	no
spaces	 between	 words).There	 are	 actually	 two	 variations	 of	 CamelCase:	 one	 with	 an
uppercase	 first	 letter	 (also	known	as	PascalCase),	and	one	with	a	 lowercase	 first	 letter.
The	Ruby	convention	for	class	names	requires	an	uppercase	first	letter.

Filenames	are	written	in	lowercase,	with	underscores	separating	each	word.

This	 is	 an	 important	 detail.	 If	 this	 convention	 is	not	 followed,	 Rails	will	 have	 a	 hard	 time
locating	your	files.	Luckily,	you	won't	need	to	name	your	files	manually	very	often,	if	ever,	as
you'll	see	when	we	look	at	generated	code	in	Chapter	5.

ActionView	(the	View)

As	discussed	earlier,	one	of	the	principles	of	MVC	is	that	a	view	should	contain	presentation
logic	only.	This	principle	holds	that	the	code	in	a	view	should	only	perform	actions	that	relate
to	 displaying	 pages	 in	 the	 application;	 none	 of	 the	 code	 in	 a	 view	 should	 perform	 any
complicated	 application	 logic,	 nor	 store	 or	 retrieve	 any	 data	 from	 the	 database.	 In	 Rails,
everything	that	is	sent	to	the	web	browser	is	handled	by	a	view.

Predictably,	views	are	stored	in	the	app/views	folder	of	our	application.

A	view	need	not	actually	contain	any	Ruby	code	at	all—it	may	be	 the	case	 that	one	of	your
views	 is	 a	 simple	 HTML	 file;	 however,	 it's	 more	 likely	 that	 your	 views	 will	 contain	 a
combination	 of	HTML	 and	Ruby	 code,	making	 the	 page	more	 dynamic.	 The	Ruby	 code	 is
embedded	in	HTML	using	embedded	Ruby	(ERb)	syntax.

ERb	allows	server-side	code	to	be	scattered	throughout	an	HTML	file	by	wrapping	that	code
in	special	tags.	For	example:

<%=	'Hello	World	from	Ruby!'	%>

																								

There	are	two	forms	of	the	ERb	tags	pair:	one	that	includes	the	equals	sign,	and	one	without	it:

<%=	…	%>

This	tag	pair	is	for	regular	output.	The	output	of	a	Ruby	expression	between	these	tags
will	be	displayed	in	the	browser.

<%	…	%>

This	tag	pair	is	for	execution.	The	output	of	a	Ruby	expression	between	these	tags	will
not	be	displayed	in	the	browser.

Here's	an	example	of	each	ERb	tag:

<%=	'This	line	is	displayed	in	the	browser'	%>

<%	'This	line	executes	silently,	without	displaying	any	output'	%>

																								

You	can	place	any	Ruby	code—be	it	simple	or	complex—between	these	tags.

Creating	 an	 instance	 of	 a	 view	 is	 a	 little	 different	 to	 that	 of	 a	model	 or	 controller.	While
ActionView::Base	(the	parent	class	for	all	views)	is	one	of	the	base	classes	for	views	in	Rails,
the	instantiation	of	a	view	is	handled	completely	by	the	ActionView	module.	The	only	file	a
Rails	developer	needs	to	modify	is	the	template,	which	is	the	file	that	contains	the	presentation
code	 for	 the	view.	As	you	might	have	guessed,	 these	 templates	 are	 stored	 in	 the	app/views
folder.

As	 with	 everything	 else	 Rails,	 a	 strict	 convention	 applies	 to	 the	 naming	 and	 storage	 of
template	files:
	

A	template	has	one-to-one	mapping	to	the	action	(method)	of	a	controller.	The	name	of
the	template	file	matches	the	name	of	the	action	to	which	it	maps.
The	folder	that	stores	the	template	is	named	after	the	controller.

The	extension	of	the	template	file	is	twofold	and	varies	depending	on	the	template's	type
and	the	actual	language	in	which	a	template	is	written.	By	default,	there	are	three	types	of
extensions	in	Rails:

html.erb

This	is	the	extension	for	standard	HTML	templates	that	are	sprinkled	with	ERb	tags.
xml.builder

This	extension	is	used	for	templates	that	output	XML	(for	example,	to	generate	RSS
feeds	for	your	application).

json.builder

This	 extension	 is	 used	 for	 templates	 that	 output	 JSON,	 which	 is	 a	 common	 data
integration	for	APIs.	We'll	talk	more	about	JSON	in	Chapter	9	on	advanced	topics.

This	 convention	 may	 sound	 complicated,	 but	 it's	 actually	 quite	 intuitive.	 For	 example,
consider	 the	 StoriesController	 class	 defined	 earlier.	 Invoking	 the	 show	 method	 for	 this
controller	 would,	 by	 default,	 attempt	 to	 display	 the	 ActionView	 template	 that	 lived	 in	 the
app/views/stories	 directory.	 Assuming	 the	 page	 was	 a	 standard	 HTML	 page	 (containing

some	ERb	code),	the	name	of	this	template	would	be	show.html.erb.

Rails	also	comes	with	special	 templates	such	as	 layouts	and	partials.	Layouts	 are	 templates
that	 control	 the	 global	 layout	 of	 an	 application,	 such	 as	 structures	 that	 remain	 unchanged
between	pages	(the	primary	navigation	menu,	for	instance).	Partials	are	special	subtemplates
(the	result	of	a	template	being	split	into	separate	files,	such	as	a	secondary	navigation	menu	or
a	 form)	 that	can	be	used	multiple	 times	within	 the	application.	We'll	cover	both	 layouts	and
partials	in	Chapter	7.

Communication	 between	 controllers	 and	 views	 occurs	 via	 instance	 variables	 that	 are
populated	 from	 within	 the	 controller's	 action.	 Let's	 expand	 upon	 our	 sample
StoriesController	class	to	illustrate	this	point	(no	need	to	type	any	of	this	out	just	yet):

class	StoriesController	<	ActionController::Base

		def	index

				@variable	=	'Value	being	passed	to	a	view'

		end

end

																								

As	you	can	see,	 the	 instance	variable	@variable	 is	being	assigned	a	 string	value	within	 the
controller's	 action.	Through	 the	magic	of	ActionView,	 this	 variable	 can	now	be	 referenced
directly	from	the	corresponding	view,	as	shown	in	this	code:

<p>The	instance	variable	@variable	contains:	<%=	@variable	%></p>

																								

This	 approach	 allows	 more	 complex	 computations	 to	 be	 performed	 outside	 the	 view—
remember,	it	should	only	contain	presentational	logic—and	allow	the	view	to	display	just	the
end	result	of	the	computation.

Rails	also	provides	access	to	special	containers,	such	as	the	params	and	session	hashes.	These
contain	such	information	as	the	current	page	request	and	the	user's	session.	We'll	make	use	of
these	hashes	in	the	chapters	that	follow.

RESTful-style

In	Chapter	1,	 I	 listed	common	development	principles	and	best	practices	 that	 the	Rails	 team
advises	 you	 to	 adopt	 in	 your	 own	 projects.	 One	 that	 I	 kept	 under	 my	 hat	 until	 now	 was
RESTful-style	 development,	 or	 resource-centric	 development.	REST	will	make	much	more
sense	 with	 your	 fresh	 knowledge	 about	 models	 and	 controllers	 as	 the	 principal	 building
blocks	of	a	Rails	application.

In	Theory
REST 	stands	for	Representational	State	Transfer	and	originates	from	the	doctoral	dissertation
of	Roy	Fielding,	a	co-founder	of	the	Apache	Software	Foundation	and	one	of	the	authors	of
the	HTTP	specification.

REST,	 according	 to	 the	 theory,	 is	 not	 restricted	 to	 the	World	Wide	Web.	 The	 basis	 of	 the
resource-centric	approach	is	derived	from	the	fact	that	most	of	the	time	spent	using	network-
based	applications	can	be	characterized	as	a	client	or	user	interacting	with	distinct	resources.
For	example,	in	an	ecommerce	application,	a	book	and	a	shopping	cart	are	separate	resources
with	which	the	customer	interacts.

Every	resource	in	an	application	needs	to	be	addressed	by	a	unique	and	uniform	identifier.	In
the	world	of	web	applications,	 the	unique	 identifier	would	be	 the	URL	by	which	a	 resource
can	be	accessed.	In	our	Readit	application,	each	submitted	link	is	able	to	be	viewed	at	a	unique
URL.

The	potential	 interactions	within	an	application	are	defined	as	a	set	of	operations	(or	verbs)
that	can	be	performed	with	a	given	resource.	The	most	common	are	create,	read,	update,	and
delete,	which	are	often	collectively	referred	to	as	"CRUD	operations."	If	you	relate	this	to	our
Readit	application,	you'll	 see	 that	 it	covers	most	of	 the	 interactions	possible	with	 the	Readit
links:	a	user	will	create	a	link;	another	user	will	read	the	link;	and	the	link	can	also	be	updated
or	deleted.

The	client	and	server	have	to	communicate	via	 the	same	language	(or	protocol)	 in	order	 to
implement	 the	 REST	 architecture	 style	 successfully.	 This	 protocol	 in	 resource-centric
applications	is	also	required	to	be	stateless,	cacheable,	and	layered.

Here,	stateless	means	that	each	request	for	information	from	the	client	to	the	server	needs	to
be	 completely	 independent	 of	 prior	 or	 future	 requests.	 Each	 request	 needs	 to	 contain
everything	 necessary	 for	 the	 server	 to	 understand	 the	 request	 and	 provide	 an	 appropriate
answer.

Cacheable	 and	 layered	 are	 architectural	 attributes	 that	 improve	 the	 communication	 between
client	and	server	without	affecting	the	communication	protocol.

REST	and	the	Web
As	 stated	 in	 the	 previous	 section,	 REST	 as	 an	 architecture	 pattern	 can	 be	 used	 in	 any
application	 domain;	 however,	 the	Web	 is	 probably	 the	 domain	 that	 implements	REST	most
often.	Since	this	is	a	book	that	deals	with	building	web	applications,	we'd	better	take	a	look	at
the	implementation	details	of	RESTful	style	development	for	web	applications.

HTTP	 (Hypertext	Transfer	Protocol:	 the	communication	protocol	used	on	 the	Web),	as	 the

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

astute	 reader	will	 know,	 also	makes	 heavy	use	 of	 verbs	 in	 its	 day-to-day	 operations.	When
your	browser	 requests	a	web	page	 from	any	given	web	server,	 it	will	 issue	a	so-called	GET
request.	 If	you	submit	a	web	page	form,	your	browser	will	do	so	using	a	POST	 request	 (not
always,	to	be	honest,	but	99%	of	the	time).

In	addition	to	GET	and	POST,	HTTP	defines	three	additional	verbs	that	are	less	commonly	used
by	web	browsers.	(Many	of	the	browsers	in	widespread	use	actually	implement	them.)	These
verbs	are	PUT,	PATCH,	and	DELETE.	 If	you	compare	 the	 list	of	HTTP	verbs	with	 the	verbs	of
CRUD,	they	line	up	fairly	nicely,	as	you	can	see	below.

HTTP	Verbs	versus
CRUD	Verbs

CRUD HTTP
CREATE POST
READ GET
UPDATE PUT,	PATCH
DELETE DELETE

EXTRA	CREDIT:	Verbalicious

There	 are	 even	 more	 HTTP	 verbs	 that	 we	 won't	 discuss	 here,	 such	 as	 OPTIONS	 and	 HEAD.
Sounds	like	a	good	homework	assignment,	eh?

The	language	in	which	client	(the	browser)	and	server	(the	web	server)	talk	to	each	other	is
obviously	 HTTP.	 HTTP	 is,	 by	 definition,	 stateless.	 This	 means	 that	 as	 soon	 as	 a	 browser
downloads	 all	 the	 information	 the	 server	 offered	 as	 a	 reply	 to	 the	 browser's	 request,	 the
connection	 is	 closed	 and	 the	 two	might	 never	 ever	 talk	 again.	 Or	 the	 browser	 could	 send
another	 request	 just	 milliseconds	 later	 asking	 for	 additional	 information.	 Each	 request
contains	 all	 the	 necessary	 information	 for	 the	 server	 to	 respond	 appropriately,	 including
potential	 cookies,	 the	 format,	 and	 the	 language	 in	which	 the	 browser	 expects	 the	 server	 to
reply.

HTTP	is	also	layered	and	cacheable,	both	of	which	are	attributes	the	REST	definition	expects
of	the	spoken	protocol.	Routers,	proxy	servers,	and	firewalls	are	only	three	(very	common)
examples	of	architectural	components	that	implement	layering	and	caching	on	top	of	HTTP.

REST	in	Rails
REST	and	Rails	not	only	both	start	with	the	letter	R,	they	have	a	fairly	deep	relationship.	Rails
comes	with	a	generator	for	resources	(see	Code	Generation	below	for	a	primer	on	this	topic)
and	 provides	 all	 sorts	 of	 assistance	 to	 easily	 construct	 the	 uniform	 addresses	 by	 which
resources	can	be	accessed.	In	fact,	Rails	encourages	the	RESTful	style	in	much	the	same	way	a
ski	 resort	encourages	you	 to	use	 the	chairlifts.	Sure,	you	can	reach	 the	 top	of	 the	mountain
without	them,	but	you	better	bring	your	own	tools	and	know	what	you're	doing.

Rails'	focus	on	the	MVC	architecture	(which	we'll	be	getting	our	hands	on	shortly,	in	Chapter
5)	 is	 also	 a	 perfect	 companion	 for	 RESTful	 style	 development.	 Models	 resemble	 the
resources	themselves,	while	controllers	provide	access	to	the	resource	and	allow	interaction
based	on	the	interaction	verbs	listed	earlier.

I've	mentioned	that	some	verbs	aren't	implemented	in	the	majority	of	browsers	on	the	market.
To	support	the	verbs	PUT,	PATCH,	and	DELETE,	Rails	uses	POST	requests	with	a	little	tacked-on
magic	 to	 simulate	 those	 verbs	 transparently	 for	 both	 the	 user	 and	 the	 Rails	 application
developer.	Nifty,	isn't	it?

We	 will	 gradually	 start	 implementing	 and	 interacting	 with	 resources	 for	 our	 Readit
application	over	the	course	of	the	next	chapters,	which	are	more	"hands	on",	so	let's	now	talk
about	yet	another	batch	of	components	that	make	up	the	Rails	framework.

Code	Generation

Rather	than	having	us	create	our	application	code	from	scratch,	Rails	gives	us	the	facility	to
generate	 an	 application's	 basic	 structure	 with	 considerable	 ease.	 In	 the	 same	 way	 that	 we
created	 our	 application's	 entire	 directory	 structure,	we	 can	 create	 new	models,	 controllers,
and	views	using	a	single	command.

To	generate	code	in	Rails,	we	use	the	rails	generate	command.	Give	it	a	try	now:	type	rails
generate	(or	rails	g)	without	any	command	parameters.	Rails	displays	an	overview	of	 the
available	parameters	for	the	command,	and	lists	the	generators	from	which	we	can	choose,	as
shown	here:

$	rails	generate

Usage:	rails	generate	GENERATOR	[args]	[options]

General	options:

		-h,	[--help]					#	Print	generator's	options	and	usage

		-p,	[--pretend]		#	Run	but	do	not	make	any	changes

		-f,	[--force]				#	Overwrite	files	that	already	exist

		-s,	[--skip]					#	Skip	files	that	already	exist

		-q,	[--quiet]				#	Suppress	status	output

Please	choose	a	generator	below.

Rails:

		assets

		controller

		generator

		helper

		integration_test

		jbuilder

		job

		mailer

		migration

		model

		resource

		scaffold

		scaffold_controller

		task

		[...content	elided...]

																								

There	are	many	core	Rails	generators,	and	some	gems	will	add	generators,	as	well.

Rails	 can	 generate	 code	 of	 varying	 complexity.	 At	 its	 simplest,	 creating	 a	 new	 controller
causes	a	 template	 file	 to	be	placed	 in	 the	appropriate	 subdirectory	of	your	application.	The
template	 itself	 consists	 of	 a	mainly	 empty	 class	 definition,	 similar	 to	 the	Story	 and	Author
classes	that	we	looked	at	earlier	in	this	chapter.

Code	 generation,	 however,	 can	 also	 be	 a	 very	 powerful	 tool	 for	 automating	 complex,
repetitive	 tasks;	 for	 instance,	 you	 might	 generate	 a	 foundation	 for	 handling	 user
authentication.	 We'll	 launch	 straight	 into	 generating	 code	 in	 Chapter	 5,	 when	 we	 begin	 to
generate	our	models	and	controllers.

Another	example	is	the	generation	of	a	basic	web-based	interface	to	a	model,	referred	to	as
scaffolding.	We'll	also	 look	at	scaffolding	in	Chapter	5,	as	we	make	a	start	on	building	our
views.

The	ActionMailer	Component

While	 not	 strictly	 part	 of	 the	Web,	 email	 is	 a	 big	 part	 of	 our	 online	 experience,	 and	Rails'
integrated	 support	 for	 email	 is	 worth	 a	mention.	Web	 applications	 frequently	make	 use	 of
email	 for	 tasks	 such	 as	 sending	 sign-up	 confirmations	 to	 new	 users	 and	 resetting	 a	 user's
password.

ActionMailer	 is	 the	 Rails	 component	 that	 makes	 it	 easy	 to	 incorporate	 the	 sending	 and
receiving	 of	 email	 into	 your	 application.	 ActionMailer	 is	 structured	 in	 a	 similar	 way	 to
ActionPack	in	that	it	consists	of	mailers	(instead	of	controllers)	and	actions	with	views.

While	 the	 creation	 of	 emails	 and	 the	 processing	 of	 incoming	 email	 are	 complex	 tasks,
ActionMailer	hides	these	complexities	and	handles	the	tasks	for	you.	As	a	result,	creating	an
outgoing	email	is	simply	a	matter	of	supplying	the	subject,	body,	and	recipients	of	the	email
using	templates	and	a	little	Ruby	code.	Likewise,	ActionMailer	processes	incoming	email	for

you,	 providing	 you	with	 a	Ruby	 object	 that	 encapsulates	 the	 entire	message	 in	 a	way	 that's
easy	to	access.

Adding	email	functionality	to	a	web	application	is	beyond	the	scope	of	this	book,	but	you	can
read	more	about	ActionMailer	in	the	Ruby	on	Rails	guides.

Testing	and	Debugging

As	mentioned	back	in	Chapter	1,	a	unit-testing	framework	is	already	built	into	Ruby	on	Rails.
It	also,	rather	helpfully,	supplies	a	full	stack	trace	for	errors	to	assist	with	debugging.

Testing
A	number	of	different	types	of	testing	are	supported	by	Rails,	including	unit	and	integration
testing.

Unit	Testing

The	concept	of	unit	testing	isn't	new	to	the	world	of	traditional	software	development,	and	this
is	certainly	the	case	in	web	application	development.	Having	a	comprehensive	set	of	unit	tests
can	help	you	sleep	easier	in	the	knowledge	that	some	simple	error	won't	bring	your	site	down.
Additionally,	developing	unit	tests	can	help	you	figure	out	if	your	objects	are	designed	well;
however,	 not	 everyone	 sees	 the	 value	 of	 unit	 testing.	 Although	 performing	 unit	 tests	 is
optional,	developers	may	decide	against	this	option	for	reasons	ranging	from	the	complexity
of	the	task	to	time	constraints.

We	 touched	 on	 this	 briefly	 in	 Chapter	 1,	 but	 it's	 worth	 stressing	 again:	 the	 fact	 that
comprehensive	unit	testing	is	built	into	Rails	and	is	dead	easy	to	implement	means	there's	no
longer	a	question	about	whether	or	not	you	should	test	your	apps.	Just	do	it!

The	rails	generate	 command	 that	we	 introduced	 a	moment	 ago	will	 automatically	 create
testing	templates	that	you	can	use	with	your	controllers,	views,	and	models.	(Note	that	Rails
just	assists	you	in	doing	your	job;	it's	not	replacing	you—yet!)

The	extent	to	which	you	want	to	implement	unit	testing	is	up	to	you.	It	may	suit	your	needs	to
wait	until	something	breaks,	then	write	a	test	that	proves	the	problem	exists.	Once	you've	fixed
the	 problem	 and	 the	 test	 no	 longer	 fails,	 you'll	 never	 again	 receive	 a	 bug	 report	 for	 that
particular	problem.

If,	on	the	other	hand,	you'd	like	to	embrace	unit	testing	completely,	you	can	even	write	tests	to
ensure	 that	 a	 specific	 HTML	 tag	 exists	 at	 a	 precise	 position	 within	 a	 page's	 hierarchy.The
hierarchy	 referred	 to	 here	 is	 the	 Document	 Object	 Model	 (DOM),	 a	 W3C	 standard	 for

http://wiki.rubyonrails.com/rails/pages/ActionMailer/

describing	the	hierarchy	of	an	(X)HTML	page.	Yes,	automated	tests	can	be	that	exact.

You've	probably	heard	of	test-driven	development	(TDD)	as	a	way	to	build	an	application.
When	you	build	an	app	using	TDD,	you	actually	write	the	tests	before	you	write	the	code.	This
serves	a	couple	of	purposes	in	that	it:
	

1.	 creates	tests	for	your	application	that	can	be	used	for	regression	so	you	know	your	app
works

2.	 forces	you	to	think	about	the	design	of	the	classes	in	your	application	from	the	outside
in,	which	can	lead	to	a	better	design

The	vast	majority	of	Rails	developers	are	TDD	fans,	but	we	won't	be	using	TDD	for	Readit.
However,	you	should	look	into	it,	which	means	...

EXTRA	CREDIT:	Test	Driving	TDD

Do	 some	 research	 on	 TDD	 and	 how	 it	works.	 Learn	what	 "red-green-refactor"	means	 and
how	that	cadence	can	help	you	build	an	app	with	a	good	design	and	strong	foundation.	A	great
book	to	investigate	is	Test	Driven	Development:	By	Example	by	Kent	Beck.	TDD	is	as	much
art	as	science,	so	it	requires	a	commitment	to	learning	how	to	do	it	right.

Integration	Testing

Rails'	testing	capabilities	also	include	integration	testing.

Integration	 testing	 refers	 to	 the	 testing	 of	 several	 website	 components	 in	 succession.
Typically,	 the	order	of	components	resembles	the	path	that	a	user	would	follow	when	using
the	 application.	 You	 could,	 for	 example,	 construct	 an	 integration	 test	 that	 reconstructs	 the
actions	of	a	user	clicking	on	a	link,	registering	for	a	user	account,	confirming	the	registration
email	you	send,	and	visiting	a	page	that's	restricted	to	registered	users.

We'll	 look	at	both	unit	 testing	and	integration	testing	in	more	detail	as	we	progress	through
the	development	of	our	application.

Debugging
When	 you're	 fixing	 problems,	 the	 first	 step	 is	 to	 identify	 the	 source	 of	 the	 problem.	 Like
many	languages,	Ruby	assists	this	process	by	providing	the	developer	(that's	you!)	with	a	full
stack	trace	of	the	code.	We	mentioned	earlier	in	Three	Environments	that	a	stack	trace	is	a	list
of	all	the	methods	that	were	called	up	to	the	point	at	which	an	exception	was	raised.	The	list
includes	not	only	the	name	of	each	method	but	also	the	classes	those	methods	belong	to,	and
the	names	of	the	files	they	reside	within.

Using	the	information	contained	in	the	stack	trace,	you	can	go	back	to	your	code	to	determine

http://www.amazon.com/Test-Driven-Development-By-Example/dp/0321146530

the	problem.	There	are	 several	ways	 to	 tackle	 this,	depending	on	 the	nature	of	 the	problem
itself:
	

If	you	have	a	rough	idea	of	what	the	problem	might	be,	and	are	able	to	isolate	it	to	your
application's	model	(either	a	particular	class	or	aspect	of	your	data),	your	best	bet	is	to
use	the	Rails	console	that	we	looked	at	earlier	in	this	chapter.	Type	rails	c	to	launch	the
console.	 Once	 inside,	 you	 can	 load	 the	 particular	model	 that	 you're	 interested	 in,	 and
poke	at	it	to	reproduce	and	fix	the	problem.

If	 the	problem	 leans	more	 towards	being	 related	 to	 the	user's	browser	or	 session,	you
can	add	a	debugger	statement	around	the	spot	at	which	the	problem	occurs.	With	this	in
place,	 you	 can	 reload	 the	 browser	 and	 step	 through	 your	 application's	 code	 using	 the
ruby-debug	tool	to	explore	variable	content	or	to	execute	Ruby	statements	manually.

In	 the	 last	 few	 years,	Rails	 has	 added	 some	 shiny,	 new	 tools	 to	make	 debugging	 even
easier.	We'll	explore	them	later	as	problems	arise.

We'll	be	covering	all	the	gory	details	of	debugging	in	Chapter	11.

Summary

In	this	chapter,	we	peeled	back	some	of	the	layers	that	comprise	the	Ruby	on	Rails	framework.
By	now	you	 should	 have	 a	 good	understanding	of	which	parts	 of	Rails	 perform	particular
roles	in	the	context	of	an	MVC	architecture.	We	also	discussed	how	a	request	that's	made	by	a
web	browser	is	processed	by	a	Rails	application.

We	looked	at	the	different	environments	that	Rails	provides	to	address	the	different	stages	in
the	life	cycle	of	an	application,	and	we	configured	databases	 to	support	 these	environments.
We	also	provided	Rails	with	the	necessary	details	to	connect	to	our	database.

We	 also	 had	 our	 first	 contact	 with	 real	 code,	 as	 we	 looked	 at	 the	 ActiveRecord	 models,
ActionController	 controllers,	 and	 ActionView	 templates	 for	 our	 Readit	 application.	 We
explored	 the	 REST	 style	 of	 application	 architecture,	 code	 generation,	 testing,	 as	 well	 as
debugging.

In	 the	next	chapter,	we'll	build	on	all	 this	knowledge	as	we	use	 the	code-generation	tools	 to
create	actual	models,	controllers,	and	views	for	our	Readit	application.	It's	going	to	be	a	big
one!

Chapter	5:	Models,	Views,	and	Controllers
In	 Chapter	 4,	 we	 introduced	 the	 principles	 behind	 the	 model-view-controller	 architectural
pattern,	 and	 saw	 how	 each	 of	 the	 components	 is	 implemented	within	 the	 Rails	 framework.
Now	we'll	 put	 this	 knowledge	 to	 good	 use	 as	we	 use	 Rails'	 code	 generation	 techniques	 to
create	these	components	for	our	own	Readit	application.

Generating	a	Model

As	our	application	will	be	used	to	share	links	to	stories	on	the	Web,	a	Story	is	the	fundamental
object	around	which	our	application	will	evolve.	Here,	we'll	use	the	Rails	model	generator	to
create	a	Story	model,	then	build	everything	else	around	it.

The	Model	Generator
The	model	generator	is	actually	driven	by	a	command	line	script	that	we	encountered	back	in
Chapter	4:	the	rails	generate	command.	This	makes	our	generation	of	a	Story	model	very
simple.

Running	the	generate	Command

rails	generate,	which	can	be	shortened	 to	rails	g,	can	be	called	from	the	command	 line
and	 takes	 several	 parameters.	 The	 first	 parameter	 is	 the	 type	 of	 component	 that's	 to	 be
generated.	 You	 can	 probably	 guess	 which	 value	 I'm	 going	 to	 suggest	 you	 use	 for	 this
parameter:	we're	creating	a	model,	so	the	parameter	to	pass	is	simply	model.	Let's	take	a	look
at	what	happens	when	we	pass	that	to	the	script:

$	cd	readit

$	rails	g	model

																								

Figure	5-1	below	shows	the	resulting	output.

the	output	from	the	rails	g	command

We	can	deduce	from	this	output	that	using	rails	g	to	create	a	new	model	for	our	application
in	its	simplest	form	won't	actually	do	very	much—some	stubs	(empty	files)	will	be	created	in
the	appropriate	directories,	but	that's	about	all.

The	 various	 examples	 in	 the	 aforementioned	 figure	 show	 the	 slightly	 more	 advanced
versions.	To	give	our	model	a	jump-start,	we'll	add	everything	necessary	to	start	playing	with
it	right	away:	we	tell	rails	g	the	names	and	types	of	attributes	the	model	is	going	to	have.	So
let's	go	ahead	and	create	the	Story	model	with	its	attributes	(and	their	respective	types),	then
examine	each	of	the	generated	files	in	turn.

From	the	readit	folder,	enter	the	following:

$	rails	g	model	Story	name:string	link:string

																								

As	you	can	see,	the	attributes	we	want	our	Story	model	to	have	are	specified	simply	as	space-
separated	 arguments	 to	 the	 rails	 g	 command	 using	 the	 notation	 attribute	 name:attribute
type.	 In	 this	 case,	 we	 specify	 that	 our	 Story	 model	 receives	 two	 attributes	 of	 type	 string
(Rails	defines	the	string	type	as	up	to	255	alphanumeric	characters):	one	named	name,	which
holds	the	title	of	our	stories,	and	one	named	link,	which	holds,	as	you	might	have	guessed,	a
link	to	the	story	on	the	Internet.

The	output	of	this	command	will	list	exactly	what	has	been	done:

$	rails	g	model	Story	name:string	link:string

Running	via	Spring	preloader	in	process	42036

				invoke		active_record

				create				db/migrate/20160313140034_create_stories.rb

				create				app/models/story.rb

				invoke				test_unit

				create				test/models/story_test.rb

				create				test/fixtures/stories.yml

																								

Let's	take	a	closer	look	at	what	the	generate	command	has	done	here.

Understanding	the	Output

generate	has	created	some	files	(indicated	by	the	word	create,	followed	by	the	name	of	the
file	that	was	created)	and	a	folder.	Let's	look	at	each	of	the	files:

app/models/story.rb

This	file	contains	the	class	definition	for	the	Story	model.	Locate	the	file	in	the	app/models
folder	and	examine	its	contents	in	your	text	editor—the	class	definition	is	identical	to	the	one
that	we	typed	out	in	Saving	an	Object	in	Chapter	4:

class	Story	<	ApplicationRecord

end

																								

What	 happened	 to	 the	 attributes	we	 specified?	They're	 nowhere	 to	 be	 found!	Don't	 panic—
Rails	has	used	the	information	we	provided	to	create	the	database	table	definition.	It	turns	out
Rails	doesn't	require	you	to	declare	each	attribute	of	a	model	explicitly	in	the	model's	class
definition.	Rails	determines	a	model's	attribute	by	reading	the	columns	of	the	database	table	to
which	 the	model	 is	mapped.	 This	 technique	 is	 called	 introspection,	which	we'll	meet	 again
later	on.

The	ApplicationRecord	class	can	be	found	 in	 the	app/models/application_record.rb	 file.
ApplicationRecord	is	an	"abstract"	class,	which	means,	in	this	case,	that	ApplicationRecord
is	not	 to	 be	 mapped	 to	 a	 database	 table.	 The	 ApplicationRecord	 class	 allows	 us	 to	 write
methods	and	include	code	that	will	be	inherited	by	all	of	our	models.

If	 the	 magic	 behind	 these	 attributes	 makes	 you	 uncomfortable,	 Rails	 5	 has	 added	 a	 new
Attributes	API	that	provides	the	ability	to	specify	attributes	and	their	types.	In	this	case,	if	you
wanted	add	an	attribute	called	is_published	to	Story	and	ensure	the	value	in	that	attribute	is	a
boolean	(true	or	false),	then	you	could	do:

class	Story	<	ApplicationRecord

		attribute	:is_published,	:boolean

end

																								

This	will	handle	type	conversion,	making	everything	a	string	that	is	assigned	to	name:

s	=	Story.new(name:	1023,	is_published:	"yes")

s.is_published

=>	true

																								

Above,	the	string	value	of	yes	was	converted	to	the	boolean	true.	So,	"truthy"	values	like	yes,
1,	and	t	all	are	converted	to	true.	If	you	like	specifying	types,	this	is	good	stuff.

Better	yet,	if	you	had	custom	types,	like	a	Money	type,	you	could	create	a	class	to	handle	the
type	conversion	of	that	type.	This,	however,	is	beyond	our	scope	today,	which	means:

EXTRA	CREDIT:	The	Attributes	API

Check	out	the	documentation	and	code	behind	the	new	Attributes	API.

Okay,	 being	 able	 to	 generate	 these	 two	 lines	 of	 code	 is	 far	 from	groundbreaking.	But	 stay
with	me	here!

test/models/story_test.rb

This	file	is	much	more	exciting:	it's	an	automatically	generated	unit	test	for	our	model.	We'll
look	at	it	in	detail	in	Chapter	6,	but,	briefly,	building	up	the	contents	of	this	file	allows	us	to
ensure	 that	all	of	 the	code	 in	our	model	 is	covered	by	a	unit	 test.	As	we	mentioned	back	 in
Chapter	1,	once	we	have	all	our	unit	tests	in	place,	we	can	automate	the	process	of	checking
that	our	code	behaves	as	intended.

test/fixtures/stories.yml

To	help	with	our	unit	 test,	 a	 file	 called	stories.yml	 is	 created.	This	 file	 is	 referred	 to	 as	 a
fixture.	Fixtures	are	files	that	contain	sample	data	for	unit	testing	purposes:	when	we	run	the
test	suite,	Rails	will	wipe	the	database	belonging	to	the	testing	environment	and	populate	our
tables	using	the	fixtures.	In	this	way,	fixtures	allow	us	to	ensure	that	every	unit	test	of	a	given
application	is	run	against	a	consistent	baseline.

The	 stories.yml	 fixture	 file	 will	 come	 prepared	 with	 two	 sample	 story	 records	 for	 our
stories	table,	prepopulated	with	values	for	each	of	the	attributes	we	defined.	You	can	see	that
it	is	another	YAML	file.	I	told	you	we'd	see	them	again.

db/migrate/xxxxx_create_stories.rb

This	file	is	what's	known	as	a	migration	file;	we'll	be	exploring	migrations	shortly.	It's	worth
noting	that	the	name	of	the	migration	file	is	based	on	the	time	the	rails	g	command	was	run.
As	a	result,	your	migration	filename	will	be	different.	 If	 it's	 the	same,	 it	means	we're	 in	 the
Twilight	Zone.

Understanding	YAML

https://github.com/rails/rails/blob/master/activerecord/lib/active_record/attributes.rb

YAML	 (a	 tongue-in-cheek	 recursive	 acronym	 that	 stands	 for	 YAML	 Ain't	 a	 Markup
Language)	is	a	lightweight	format	for	representing	data.	YAML	files	have	the	extension	.yml.
As	 they	employ	none	of	 the	confusing	tags	 that	XML	uses,	YAML	files	are	much	easier	for
humans	to	read,	and	are	just	as	efficiently	read	by	computers.

Rails	 uses	YAML	 files	 extensively	 to	 specify	 fixtures.	We've	 seen	 a	 couple	 of	 examples	 of
YAML	files	so	far:	 the	database.yml	 file	 that	we	used	to	configure	our	database	connection
was	 one;	 the	 stories.yml	 file	 that	 we	 just	 created	 with	 the	 rails	 generate	 command	 is
another.

Let's	 dissect	 the	 stories.yml	 file.	 Open	 it	 up	 in	 a	 text	 editor	 (you'll	 find	 it	 in	 the
test/fixtures	directory),	and	you'll	see	the	following	code:

one:

		name:	MyString

		link:	MyString

two:

		name:	MyString

		link:	MyString

																								

This	YAML	file	 represents	 two	separate	 records	(one	and	two).	Each	record	contains	values
for	 the	 two	 attributes	 we	 defined.	 These	 values	 are	 obviously	 made	 up	 and	 not	 exactly
descriptive.

Let's	expand	on	each	of	these	records	by	filling	in	meaningful	values	for	the	name	and	link
fields.	Edit	the	file	so	that	it	looks	like	this:

one:

		name:	My	old	weblog

		link:	http://ruprict.net/

two:

		name:	SitePoint	Forums

		link:	http://community.sitepoint.com

																								

As	you	can	see,	each	record	in	a	YAML	file	begins	with	a	unique	name	that	 is	not	 indented.
This	name	is	not	the	name	of	the	record,	nor	any	of	the	fields	in	the	database;	it's	simply	used
to	identify	the	record	within	the	file.	(It's	also	utilized	in	testing,	as	we'll	see	in	Chapter	11.)	In
our	expanded	stories.yml	file,	one	and	two	are	these	identifying	names.

After	the	unique	name,	we	see	a	series	of	key/value	pairs,	each	of	which	is	indented	by	one	or
more	 spaces	 (we'll	 be	 using	 two	 spaces,	 to	 keep	 consistent	 with	 our	 convention	 for	 Rails
code).	In	each	case,	the	key	is	separated	from	its	value	by	a	colon.

Now,	let's	take	a	look	at	the	last	file	that	was	generated:	the	migration	file.	If	your	experience
with	modifying	databases	has	been	limited	to	writing	SQL,	this	next	section	is	sure	to	be	an
eye-opener,	so	buckle	up!	This	is	going	to	be	an	exciting	ride.

Modifying	the	Schema	Using	Migrations

As	 we	 mentioned	 earlier,	 the	 last	 of	 the	 four	 files	 that	 our	 generate	 command	 created
—20160313140034_create_stories.rb—is	a	migration	file.	A	migration	file	is	a	special	file
that	can	be	used	to	adjust	the	database	schema	in	a	variety	of	ways	(each	change	that's	defined
in	the	file	is	referred	to	as	a	migration.	Perhaps	think	of	your	database	schema	as	flying	south
for	production).

Migrations	 can	 be	 a	 handy	 way	 to	 make	 alterations	 to	 your	 database	 as	 your	 application
evolves.	Not	only	do	 they	provide	you	with	a	means	 to	change	your	database	schema	 in	an
iterative	 manner,	 they	 let	 you	 do	 so	 using	 Ruby	 code	 rather	 than	 SQL.	 As	 you	 may	 have
gathered	by	now,	many	folk	are	far	from	excited	about	writing	lots	of	SQL,	and	migrations
are	a	great	way	to	avoid	it.

Migration	file	names	are	based	on	the	date	they	were	created,	as	I've	mentioned,	so	that	they
can	be	executed	sequentially.	 In	our	case,	 the	file	 for	creating	stories	was	created	on	March
13,	 2016	 at	 around	 10.00	 a.m.	 NAEST	 (North	 American	 Eastern	 Standard	 Time),	 so	 our
migration	file	has	the	number	20160313140034	in	its	name.

Like	SQL	scripts,	migrations	can	be	built	on	top	of	each	other,	which	reinforces	the	need	for
these	 files	 to	 be	 executed	 in	 order.	 Sequential	 execution	 removes	 the	 possibility	 of,	 for
example,	any	attempt	to	add	a	new	column	to	a	table	that	is	yet	to	exist.

Let's	examine	the	migration	file	that	was	generated	for	us.

Creating	a	Skeleton	Migration	File
Open	the	file	20160313140034_create_stories.rb	in	your	text	editor	(again,	remember	that
the	number	in	at	the	start	of	your	filename	will	be	different).	It	lives	in	db/migrate	and	should
look	like	this:

dbmigrate/20160701145643_create_stories.rb

class	CreateStories	<	ActiveRecord::Migration[5.0]

		def	change

				create_table	:stories	do	|t|

				t.string	:name

				t.string	:link

				t.timestamps	null:	false

								end

		end

end

																																

As	 you	 can	 see,	 a	 migration	 file	 contains	 a	 class	 definition	 that	 inherits	 from	 the
ActiveRecord::Migration[5.0]	 class.	 The	 class	 that's	 defined	 in	 the	 migration	 file	 is
assigned	a	name	by	the	generate	command,	based	on	the	parameters	that	are	passed	to	it.	In
this	case,	our	migration	has	been	given	 the	name	CreateStories,	which	 is	 a	 fairly	 accurate
description	of	 the	 task	 that	 it	will	perform:	we're	generating	a	new	model	 (a	Story),	 so	 the
code	in	the	migration	file	creates	a	stories	table	in	which	to	store	our	stories.

Migrations,	Compatibility,	and	5.0

You	may	be	wondering	what	the	[5.0]	signifies	in	ActiveRecord::Migration[5.0].	Rails	5.0
introduced	versioning	to	the	Migration	API	due	to	some	breaking	changes	between	versions	4
and	5	of	the	platform.	The	[5.0]	tells	Rails	to	use	a	compatibility	layer	with	the	migrations,
allowing	users	of	Rails	4	to	upgrade	more	easily.

The	class	contains	a	single	method:	change.	This	method	creates	the	table	when	the	migration
is	run,	and	drops	the	table	when	the	migration	is,	well,	undone.	That's	right,	a	migration	can
be	"run",	which	is	called	"migrate,"	and	can	be	"undone",	which	is	called	"rollback".	This	is
nifty,	because	if	we	want	 to	add	a	column	to	a	 table,	 it's	a	simple	matter	of	rolling	back	the
migration,	 adding	 the	column	 to	 the	change	method,	 and	 then	 running	 the	migration	 again.
Before	migrations,	changing	existing	database	tables	drove	many	a	programmer	to	insanity
and	middle	management.

What	may	come	as	a	surprise	is	that	the	change	method	already	does	what	we	need	it	 to	do.
Since	we	 took	 the	 time	 to	 tell	 the	generate	 command	which	 columns	 the	 generated	model
should	 have,	 the	 generator	 auto-filled	 the	 migration	 with	 instructions	 to	 create	 a	 table
including	(but	not	limited	to,	as	we'll	see	shortly)	the	two	attributes	to	hold	the	name	and	the
link	of	a	story.	But	let's	take	a	few	minutes	to	walk	through	the	generated	code	line	by	line.

Creating	the	stories	Table

In	 the	 generated	migration	 code	 in	 the	 change	 method,	 the	 first	 line	 includes	 a	 call	 to	 the
create_table	method,	into	which	we	pass	the	name	of	the	table	we'd	like	to	create	(stories)
as	a	symbol	(:stories).	The	method	is	also	being	passed	a	block	(jump	back	to	Blocks,	Procs,
and	Lambdas	in	Chapter	3	if	you	need	a	refresher),	used	to	define	the	individual	columns	in
the	table:

create_table	:stories	do	|t|

		⋮	block	body…

end

																								

Within	 the	 block,	 we	 have	 two	 lines	 to	 define	 the	 attributes	 we	 specified	 on	 the	 generate
command	 line	 as	 columns	 in	 our	 SQL	 table.	 Like	 an	 SQL	 script,	 each	 column	 in	 our
migration	 file	 should	have	a	name	and	a	 type	of	data	 storage	 (such	as	a	 string,	number,	or
date):

create_table	:stories	do	|t|

		t.string	:name

		t.string	:link

		⋮	block	body…

end

																								

Here,	 the	 first	 line	defines	 the	column	name	 as	 type	string,	 and	 the	 second	 line	defines	 the
column	link	also	of	type	string.	This	could	even	be	rewritten	in	shorthand	syntax,	as	you	see
here:

create_table	:stories	do	|t|

		t.string	:name,	:link

		⋮	block	body…

end

																								

The	third	line	in	the	block	is	a	little	special.	Instead	of	creating	a	single	timestamps	column	of
questionable	value,	the	timestamps	method	automatically	creates	two	“magic”	columns	in	the
stories	table	named	created_at	and	updated_at:

create_table	:stories	do	|t|

		⋮	block	body…

		t.timestamps

end

																								

We'll	take	an	in-depth	look	at	this	magic	functionality	in	Chapter	9.

In	addition	to	creating	completely	new	tables,	migrations	can	be	used	to	alter	existing	tables.
If	you	were	to	decide	tomorrow	that	your	stories	table	needed	to	store	a	description	for	each
story,	 it	would	be	a	painful	having	 to	 recreate	 the	whole	 table	 just	 to	add	 the	extra	column.
Once	again,	good	old	SQL	can	be	used	to	perform	this	job	efficiently,	but	to	use	it,	you'd	have
to	 learn	 yet	 another	 awkward	 SQL	 command.	 The	 migrations	 option,	 on	 the	 other	 hand,
allows	you	to	add	this	column	to	an	existing	table	without	losing	any	of	the	data	that	the	table
contains.

We'll	use	migrations	to	alter	 the	stories	 table	when	we	get	 to	Chapter	9.	For	now,	 let's	 just
add	one	minor	parameter	to	the	change	method:

def	change

		create_table	:stories,	force:	true	do	|t|

				t.string	:name

				t.string	:link

				t.timestamps

		end

end

																								

The	force:	true	at	the	beginning	of	the	block	isn't	usually	required;	we've	included	it	in	this
case	 because	we	 already	 created	 a	 table	 for	 this	model	 back	 in	 Chapter	 4	 using	 raw	 SQL.
Without	 it,	 our	 create_table	 call	 would	 fail,	 because	 the	 table	 already	 exists;	 however,
leaving	force:	true	in	this	migration	will	mean	that	Story	records	will	be	wiped	with	each
future	migration,	so	set	it	back	to	false	after	you've	performed	the	migration	to	prevent	this
from	happening.

In	addition	to	the	explicitly	named	columns	we've	talked	about	in	this	section,	this	code	will
also	create	a	column	named	id,	which	will	serve	as	the	primary	identifier	for	each	row	in	the
table.

This	approach	 to	schema	definitions	 reflects	 the	pure	Rails	method	of	creating	and	altering
database	tables	that	we	talked	about	earlier	in	this	section.

Now	that	we	have	a	migration	file	complete	with	methods	for	setting	up	and	tearing	down	our
schema,	we	just	need	to	make	the	migration	happen.	Yet	again,	we	use	the	rails	command	to
achieve	this	task.

Running	the	Migration
To	apply	the	migrations	in	the	migration	file	that	we	created	earlier,	we'd	type	the	following:

$	rails	db:migrate

																								

When	executed	without	any	other	arguments,	this	command	achieves	the	following	tasks:
	

1.	 checks	 the	 database	 for	 the	 unique	 number	 of	 the	 migration	 that	 was	 most	 recently
applied

2.	 steps	through	the	migrations	that	are	yet	to	be	applied,	one	by	one

3.	 for	each	migration,	executes	the	up	method	for	that	migration	class	to	bring	the	database
in	line	with	the	structure	specified	in	the	migration	files

Go	ahead	and	execute	our	database	migration	task	from	the	readit	 folder.	Here's	 the	output
you	should	receive:

$	rails	db:migrate

==	20160313140034	CreateStories:	migrating	====================================

--	create_table(:stories,	{:force=>true})

			->	0.0025s

==	20160313140034	CreateStories:	migrated	(0.0026s)	===========================

																								

As	the	output	indicates,	running	this	task	has	caused	the	CreateStories	migration	we	created
to	be	applied	 to	our	database.	Assuming	 it	was	 applied	 successfully,	you	 should	now	 (once
again)	have	a	stories	table	within	your	database.

With	this	table	in	place,	we	can	create	data	about	stories!

Rollbacks	up	Close

As	our	database	schema	evolves,	so	do	the	migration	files	that	represent	it.	Rolling	back	to	a
previous	version	of	the	schema	is	easy	with	migrations.	Simply	type	the	following	to	revert	to
a	previous	version	of	 the	database	(where	n	 represents	 the	version	number	 that	you	want	 to
restore):

$	rails	db:migrate	VERSION=n

																																								

The	following	command	would	undo	 the	stories	 table	 that	we	 just	created,	 resulting	 in	 the
blank	database	with	which	we	began:

$	rails	db:migrate	VERSION=0

																																								

If	you	simply	wish	to	roll	back	the	most	recent	migration,	it's	even	easier:

$	rails	db:rollback

																																								

And	the	last	migration	is	undone.

Managing	Data	Using	the	Rails	Console

While	we've	 developed	 a	 solid	 architecture	 for	 our	 application	 and	 created	 a	 table	 to	 store
data,	we're	yet	 to	have	a	nice	front-end	 interface	for	managing	 that	data.	We'll	start	 to	build
that	 interface	 in	Chapter	6,	but	 in	 the	meantime	we	need	 to	 find	a	way	 to	add	stories	 to	our

table.

That's	right—it's	the	Rails	console	to	the	rescue	once	again!

Creating	Records
We	can	use	two	approaches	to	create	records	from	the	console.	Let's	look	at	the	long-winded
approach	first.	We	create	the	object,	then	populate	each	of	its	attributes	one	by	one,	as	follows:

$	rails	c

Running	via	Spring	preloader	in	process	63637

Loading	development	environment	(Rails	5.0.0)

2.3.0	:001	>	s	=	Story.new

	 =>	 #

<Story	id:	nil,	name:	nil,	link:	nil,	created_at:	nil,	updated_at:	nil>

2.3.0	:002	>	s.name	=	"SitePoint"

	=>	"SitePoint"

2.3.0	:003	>	s.link	=	"https://sitepoint.com"

	=>	"https://sitepoint.com"

2.3.0	:004	>	s.save

			(0.2ms)		begin	transaction

		SQL	(1.1ms)		INSERT	INTO	"stories"	("name",	"link",	"created_at",	"updated_at")	VALUES	(?,	?,	?,	?)		[["name",	"SitePoint"],	["link",	"https://sitepoint.com"],	["created_at",	"2016-

03-13	14:43:29.351489"],	["updated_at",	"2016-03-13	14:43:29.351489"]]

			(0.7ms)		commit	transaction

	=>	true

2.3.0	:005	>

																								

Let's	 step	 through	what	we've	done	here.	After	 loading	 the	Rails	console,	we	created	a	new
Story	object.	We	assigned	this	object	to	a	variable	named	s	(the	s	is	for	Story—no	awards	for
creativity,	 I	 know).	We	 then	 assigned	 values	 to	 each	 of	 the	 columns	 that	 exist	 on	 a	 Story
object.	Finally,	we	called	the	save	method,	and	our	Story	was	stored	in	the	database.

By	default,	Rails	displays	the	SQL	that	was	run	in	order	to	save	the	story.	Aren't	you	glad	you
don't	have	to	type	 that	 in	every	time?	It's	a	constant	reminder	of	how	much	time	and	typing
Rails	is	saving	you.

How	 can	we	 be	 sure	 that	 the	 data	was	written	 successfully?	We	 could	 look	 at	 the	 raw	 data
using	a	trusty	SQL	database	console,	but	we're	trying	to	keep	our	distance	from	SQL.	Instead,
we	can	confirm	that	our	story	saved	correctly	by	checking	its	id	(the	unique	identifier	that	the
database	 generates	 automatically	when	 an	 object	 is	 saved).	We	 can	 do	 this	 from	within	 the
Rails	console:

>>	s.id

=>	1

																								

Our	object's	id	is	not	nil,	so	we	know	that	the	save	was	successful.	Of	course,	there's	another
way	to	ensure	that	the	data	was	written	successfully,	and	that	is	to	use	the	new_record?	method,
which	you	may	remember	from	the	Saving	an	Object	section	in	Chapter	4:

>>	s.new_record?

=>	false

																								

Hooray!	As	this	method	returns	false,	we	know	for	certain	that	the	object	was	written	to	the
database.	 Just	 in	 case	you	need	even	more	 reassurance,	 there's	one	more	check	 that	we	can
use:	the	count	class	method	of	the	Story	class.	This	method	allows	us	to	query	the	database	for
the	number	of	stories	it	currently	contains:

2.3.0	:007	>	Story.count

			(0.1ms)		SELECT	COUNT(*)	FROM	"stories"

	=>	1

2.3.0	:008	>

																								

Okay,	that	makes	sense.

Let's	create	another	Story	now,	this	time	using	the	second	technique:	this	one's	a	shortcut!	Oh,
and	from	now	on,	I	am	not	going	to	include	the	SQL	in	the	text:

2.3.0	:008	>	Story.create(

2.3.0	:009	>					name:	'SitePoint	Forums',

2.3.0	:010	>					link:	'http://community.sitepoint.com')

=>	 #

<Story	id:	2,	name:	"SitePoint	Forums",	link:	"http://community.sitepoint.com",	created_at:	"2016-

03-13	14:47:48",	updated_at:	"2016-03-13	14:47:48">

																								

The	create	class	method	achieves	the	same	task	as	the	long-winded	approach	we	just	saw,	but
it	only	uses	one	line	(not	counting	word	wrapping).	This	method	also—very	conveniently—
saves	the	record	to	the	database	once	the	object	has	been	created.	And	it	allows	us	to	assign
values	to	the	columns	of	the	record	(in	this	case,	in	the	columns	name	and	link)	at	the	same
time	as	the	record	is	created.

Hang	on—we	forgot	 to	assign	 the	object	 to	a	variable!	How	can	we	query	 it	 for	additional
information?

Retrieving	Records
It's	 all	 very	 well	 to	 be	 able	 to	 create	 and	 save	 new	 information,	 but	 what	 good	 is	 that
information	 if	 we're	 unable	 to	 retrieve	 it?	 One	 approach	 to	 retrieving	 a	 story	 from	 our
database	would	 be	 to	 guess	 its	 id;	 the	 ids	 are	 auto-incremented,	 so	we	 could	 anticipate	 the

number	of	the	record	that	we're	after.	We	could	then	use	the	find	class	method	to	retrieve	a
row	based	on	its	id:

2.3.0	:012	>	Story.find(2)

=>	 #

<Story	id:	2,	name:	"SitePoint	Forums",	link:	"http://community.sitepoint.com",	created_at:	"2016-

03-13	14:47:48",	updated_at:	"2016-03-13	14:47:48">

																								

This	approach	might	be	 fine	 for	our	 testing	setup,	but	once	our	application	has	deleted	and
created	more	than	a	handful	of	records,	it	will	fail	to	work.

Another	approach	is	to	retrieve	every	row	in	the	table.	We	can	do	this	by	using	the	all	class
method:

2.3.0	:014	>	Story.all

=>	 #<ActiveRecord::Relation	 [#

<Story	id:	1,	name:	"SitePoint",	link:	"https://sitepoint.com",	created_at:	"2016-

03-13	 14:43:29",	 updated_at:	 "2016-03-13	 14:43:29">,	 #

<Story	id:	2,	name:	"SitePoint	Forums",	link:	"http://community.sitepoint.com",	created_at:	"2016-

03-13	14:47:48",	updated_at:	"2016-03-13	14:47:48">]>

																								

This	process	returns	an	object	of	class	ActiveRecord::Relation.	I	bet	you're	wondering	what
this	is,	as	you're	probably	expecting	it	to	return	a	list	(or	Array)	of	all	the	stories.	Well,	back
in	the	olden	days	it	did	just	that,	which	was	good	when	we	had	two	records,	but	bad	the	rest	of
the	time.	Consider	in	the	future	when	Readit	is	crazy	popular,	the	site	to	share	all	things	web.
There	 are	 thousands,	 nay,	millions	 of	 stories	 in	 our	 database.	We	 then	 call	 Story.all	 and
everything	 grinds	 to	 a	 halt	while	millions	 of	 records	 are	 copied	 into	 application	memory.
This	 is	 a	 bad	 situation,	 and	 an	 example	 of	 what	 inspired	 the	 creation	 of
ActiveRecord::Relation.

ActiveRecord::Relation	 is	 an	 implementation	 of	 lazy	 loading,	 which	 is	 exactly	 what	 it
sounds	like.	When	records	are	lazily	loaded,	they	are	only	placed	into	memory	the	moment
they're	 needed.	 So,	Story.all	 doesn't	 hit	 the	 database	 or	 load	 any	 records	 into	memory.	 It
waits	until	you	tell	it	that	you	need	the	records	first.	You	tell	an	ActiveRecord::Relation	 the
records	are	needed,	basically,	by	telling	it	to	become	that	Array	we	were	expecting	before:

2.3.0	:014	>	Story.all.to_a

=>	 [#

<Story	id:	1,	name:	"SitePoint",	link:	"https://sitepoint.com",	created_at:	"2016-

03-13	 14:43:29",	 updated_at:	 "2016-03-13	 14:43:29">,	 #

<Story	id:	2,	name:	"SitePoint	Forums",	link:	"http://community.sitepoint.com",	created_at:	"2016-

03-13	14:47:48",	updated_at:	"2016-03-13	14:47:48">]

																								

to_a	tells	ActiveRecord::Relation	to	become	an	Array.	In	the	process	of	doing	so	it	hits	the

database,	 selects	 the	 records,	 and	 loads	 them	 into	 memory.	 Perhaps	 the	 best	 way	 to	 show
what's	happening	is	to	look	at	the	SQL	that's	being	executed	again:

2.3.0	:019	>	Story.all

Story	Load	(0.2ms)		SELECT	"stories".*	FROM	"stories"

	 =>	 #<ActiveRecord::Relation	 [#

<Story	id:	1,	name:	"SitePoint",	link:	"https://sitepoint.com",	created_at:	"2016-

03-13	 14:43:29",	 updated_at:	 "2016-03-13	 14:43:29">,	 #

<Story	id:	2,	name:	"SitePoint	Forums",	link:	"http://community.sitepoint.com",	created_at:	"2016-

03-13	14:47:48",	updated_at:	"2016-03-13	14:47:48">]>

2.3.0	:020	>	Story.all.first

Story	Load	(0.2ms)		SELECT		"stories".*	FROM	"stories"		ORDER	BY	"stories"."id"	ASC	LIMIT	1

	 =>	 #

<Story	id:	1,	name:	"SitePoint",	link:	"https://sitepoint.com",	created_at:	"2016-

03-13	14:43:29",	updated_at:	"2016-03-13	14:43:29">

																								

In	 the	first	case,	 the	SQL	selects	stories.*,	or,	all	 the	stories.	But	when	we	chain	 the	first
method	 onto	 the	 call,	 it	 adds	ASC	 LIMIT	 1	 to	 the	 SQL,	which	 tells	 the	 database	 to	 sort	 the
records	by	id	and	load	the	first	one.	As	you	can	imagine,	reducing	the	amount	of	data	that	the
database	retrieves	 is	good	for	performance	as	well	as	your	application	as	a	whole.	Oh,	and
there	is	a	corresponding	last	method	we	could	use	in	place	of	the	first	call	here.	Can	you
guess	what	it	does?

In	short,	ActiveRecord::Relation	 allows	 the	 record	 selection	process	 to	 be	handled	by	 the
database	itself.	There	are	many	other	methods	that	you	can	chain	onto	the	find	and	find_by
(which	we'll	see	soon)	methods	that	tell	the	database	to	do	your	bidding,	such	as	:order	and
:limit.

The	:order	argument	allows	us	to	specify	the	sort	order	of	the	returned	objects.

The	order	method	 should	 contain	 a	 tiny	 bit	 of	 SQL	 that	 tells	 the	 database	 how	 the	 records
should	be	ordered.	To	retrieve	the	last	element,	for	example,	we	would	call	order	with	a	value
of	id	DESC,	which	specifies	that	the	records	should	be	sorted	by	the	id	column	in	descending
order:

>>	Story.all.order('id	DESC').first

=>	#<Story	id:	2,	name:	"SitePoint	Forums",	…>

																								

The	object	that's	returned	is	identical	to	the	one	we	retrieved	if	we'd	used	last.

The	:limit	argument	allows	us	to	specify	the	number	of	objects	to	return.

The	:limit	method	takes	a	number	indicating	how	many	records	to	return.	To	obtain	the	first
two	stories,	for	example,	we	would	call	limit(2):

2.3.0	:029	>	Story.all.limit(2)

	 =>	 #<ActiveRecord::Relation	 [#

<Story	id:	1,	name:	"SitePoint",	link:	"https://sitepoint.com",	created_at:	"2016-

03-13	 14:43:29",	 updated_at:	 "2016-03-13	 14:43:29">,	 #

<Story	id:	2,	name:	"SitePoint	Forums",	link:	"http://community.sitepoint.com",	created_at:	"2016-

03-13	14:47:48",	updated_at:	"2016-03-13	14:47:48">]>

																								

Now,	while	 all	 of	 these	 retrieval	 techniques	 have	worked	 for	 us	 so	 far,	 any	 approach	 that
retrieves	an	object	on	the	basis	of	its	id	is	fundamentally	flawed.	It	assumes	that	no	one	else	is
using	 the	 database,	 which	 certainly	 won't	 be	 a	 valid	 assumption	 when	 our	 social	 news
application	goes	live!

What	we	 need	 is	 a	more	 reliable	method	 of	 retrieving	 records—one	 that	 retrieves	 objects
based	on	a	column	other	than	the	id.	What	if	we	were	to	retrieve	a	Story	by	its	name?	Easy:

>>	Story.find_by(name:	'SitePoint')

=>	#<Story	id:	1,	name:	"SitePoint",	…>

																								

We	can	even	query	the	database	using	the	link	column,	or	any	other	column	in	our	stories
table!	Cool,	huh?

Updating	Records
We	know	how	to	add	stories	to	our	database,	but	what	happens	when	someone	submits	a	story
riddled	with	typos	or	(gasp!)	factual	errors	to	our	Readit	application?	We	have	to	be	able	to
update	existing	stories,	 to	ensure	 the	 integrity	and	quality	of	 the	 information	on	Readit,	and
the	continuation	of	our	site's	glowing	reputation.

Before	we	 can	 update	 an	 object,	we	must	 retrieve	 it.	Any	 of	 the	 techniques	 outlined	 in	 the
previous	section	would	suffice,	but	for	this	example,	we'll	retrieve	a	Story	from	the	database
using	its	name:

>>	s	=	Story.find_by(name:	'SitePoint')

=>	#<Story	id:	1,	name:	"SitePoint",	…>

>>	s.name

=>	"SitePoint"

>>	s.name	=	'SitePoint.com'

=>	"SitePoint.com"

																								

As	 you	 can	 see,	 the	 task	 of	 changing	 the	 value	 of	 an	 attribute	 (name,	 in	 this	 case)	 is	 as
straightforward	as	assigning	a	new	value	to	it.	Of	course,	this	change	is	not	yet	permanent—
we've	simply	changed	the	attribute	of	an	object	in	memory.	To	save	the	change	to	the	database,
we	call	the	save	method,	just	as	we	did	when	we	learned	how	to	create	new	objects	earlier	in

this	chapter:

>>	s.save

=>	true

																								

Once	 again,	 there's	 a	 shortcut—update_attribute—which	 allows	 us	 to	 update	 the	 attribute
and	save	the	object	to	the	database	in	one	fell	swoop:

>>	s.update_attribute(name:	'A	weblog	about	Ruby	on	Rails')

=>	true

																								

This	is	straightforward	stuff.	Just	one	more	command,	then	we'll	leave	the	console	for	good.
(Well,	for	this	chapter,	anyway!)

Deleting	Records
To	destroy	a	database	record,	simply	call	the	destroy	method	of	the	ActiveRecord	object:

>>	s.destroy

=>	#<Story	id:	1,	name:	"SitePoint.com",	…>

																								

This	will	remove	the	record	from	the	database	immediately.

If	you	try	to	use	the	find	method	to	locate	an	object	that	has	been	destroyed	(or	never	existed
in	the	first	place),	Rails	will	throw	an	error:

>>	Story.find(1)

=>	ActiveRecord::RecordNotFound:	Couldn't	find	Story	with	'id'=1

																								

As	 you	 can	 see,	 deleting	 records	 is	 a	 cinch—at	 least,	 for	 Rails	 developers!	 In	 fact,	 SQL
happens	to	be	doing	a	good	deal	of	work	behind	the	scenes.	Let's	now	exit	the	Rails	console
and	 pull	 back	 the	 curtain	 for	 a	 closer	 look	 at	 the	 SQL	 statements	 resulting	 from	 our
commands.

Generating	a	Controller

Now	that	our	model	is	in	place,	let's	build	a	controller.	In	the	same	way	that	we	generated	a
model,	 we	 generate	 a	 controller	 by	 running	 the	 rails	 generate	 command	 from	 our
application's	root	folder.

Running	the	generate	Command

Run	the	rails	g	command	from	the	command	line	again,	but	this	time	pass	controller	as	the
first	parameter:

$	rails	g	controller

																								

The	output	of	this	command	is	depicted	below

The	output	of	the	rails	g	controller	command

As	you	may	have	deduced	from	the	output,	calling	the	rails	generate	command	to	create	a
controller	 requires	 us	 to	 pass	 the	 desired	 name	 of	 the	 controller	 as	 a	 parameter.	 Other
parameters	that	we	could	pass	include	any	actions	that	we'd	like	to	generate.

Let's	try	it	out.	Type	in	the	following:

$	rails	g	controller	Stories	index

Running	via	Spring	preloader	in	process	93557

		create		app/controllers/stories_controller.rb

		route		get	'stories/index'

		invoke		erb

		create				app/views/stories

		create				app/viewsstoriesindex.html.erb

		invoke		test_unit

		create				test/controllers/stories_controller_test.rb

		invoke		helper

		create				app/helpers/stories_helper.rb

		invoke				test_unit

		invoke		assets

		invoke				coffee

		create						app/assets/javascripts/stories.coffee

		invoke				scss

		create						app/assets/stylesheets/stories.scss

																								

The	output	 of	 the	generate	 command	 tells	 us	 exactly	what	 it's	 doing.	Let's	 analyze	 each	of
these	lines	of	output.

Understanding	the	Output
The	meaning	of	the	messages	output	by	the	controller	generator	should	be	quite	familiar	by
now.
	

The	generate	command	created	the	file	for	our	controller	and	a	route.	I'll	cover	routes
in	more	details	in	Chapter	7.
The	 app/views/stories	 folder	 was	 created.	 As	 mentioned	 when	 we	 first	 looked	 at
ActionView	in	Chapter	4,	the	templates	for	our	newly	created	StoriesController	will	be
stored	in	this	folder.
Controllers	have	 tests,	 as	well,	 and	 the	generator	 created	 a	 test	 file	 and	 folder	 for	 that
purpose.
Rails	 creates	 a	 helper	 file	 for	 each	 controller	 with	 the	 aim	 of	 reusing	 code	 in	 the
controller	and	the	views.	We'll	cover	helpers	in	Chapter	6.
Finally,	 each	 controller	 can	have	a	 set	 of	 assets.	Here	 a	CoffeeScript	 and	Sass	 file	 are
created.	 CoffeeScript	 and	 Sass	 are	 language	 abstractions	 of	 JavaScript	 and	 CSS
respectively.	We'll	cover	these	later,	so	don't	worry	about	those	files	right	now.

Let's	talk	about	the	items	created	by	generating	our	controller.

app/controllers/stories_controller.rb

This	 file	 houses	 the	 actual	 class	 definition	 for	 our	 StoriesController.	 It's	 mostly	 empty,
though;	all	it	comes	with	is	a	method	definition	for	the	index	action,	which	is	empty	as	well.
We'll	expand	on	it	shortly!

class	StoriesController	<	ApplicationController

		def	index

		end

end

																								

Astute	 readers	 will	 notice	 that	 our	 StoriesController	 doesn't	 inherit	 from	 the
ActionController::Base	 in	 the	way	we'd	expect.	The	ApplicationController	 class	 that	we
see	here	 is	actually	an	empty	class	 that	 inherits	directly	 from	ActionController::Base.	The
class	is	defined	in	the	application_controller.rb	 file,	which	lives	 in	 the	app/controllers
folder,	if	you're	curious.	The	resulting	StoriesController	has	exactly	the	same	attributes	and
methods	as	if	it	had	inherited	directly	from	ActionController::Base.	Using	an	intermediary

class	such	as	this	provides	a	location	for	storing	variables	and	pieces	of	functionality	that	are
common	to	all	controllers,	just	as	we	saw	with	our	models	and	ApplicationRecord.

route	get	'stories/index'

Remember,	 from	our	whirlwind	 tour	of	Rails,	 a	 controller	handles	 the	browser	 requests	 to
your	 application.	 In	 other	 words,	 when	 a	 user	 goes	 to	 http://readit.com/stories,	 for
example,	 Rails	 routes	 that	 request	 to	 the	 index	 method	 on	 StoriesController.	 When	 you
generate	 a	 controller	 with	 methods,	 each	 method	 receives	 a	 route	 in	 config/routes.rb
(known	as	the	"routes"	file.)	If	you	open	up	config/routes.rb,	you'll	see:

config/routes.rb	(excerpt)

Rails.application.routes.draw	do

		get	'stories/index'

		...lots	of	comments..

end

																																

The	get	'stories/index'	 line	tells	Rails	to	create	an	HTTP	GET	route	for	/stories	 to	 the
index	 method	 on	 the	 StoriesController.	 This	 is	 another	 Rails	 convention.	 Like	 I	 said,
routing	is	kind	of	a	big	deal,	and	I'll	talk	much	more	about	it	later.

app/helpers/stories_helper.rb

This	 is	 the	 empty	 helper	 class	 for	 the	 controller	 (helpers	 are	 chunks	 of	 code	 that	 can	 be
reused	throughout	your	application).	We'll	look	at	helpers	in	more	detail	in	Chapter	6.

app/views/stories/index.html.erb

This	file	is	the	template	that	corresponds	to	the	index	action	that	we	passed	as	a	parameter	to
the	generate	command.	For	the	moment,	it's	the	only	one	in	the	app/views/stories	directory,
but	 as	 we	 create	 others,	 they'll	 be	 stored	 alongside	 index.html.erb	 and	 given	 names	 that
match	 their	 actions;	 for	 example,	 the	 show	 action	 will	 eventually	 have	 a	 template	 named
show.html.erb.

test/controller/stories_controller_test.rb

This	file	contains	the	tests	for	our	controller.	We'll	skip	over	it	for	now,	but	expand	the	test
cases	that	this	file	contains	in	Chapter	6.

With	this	knowledge,	we're	finally	in	a	position	to	breathe	life	into	our	little	Rails	monster	in
the	true	spirit	of	Frankenstein.

Take	Care	When	It	Comes	to	Naming	Parameters

You'll	 notice	 the	 controller	 class	 that	 was	 created	 by	 the	 generate	 command	 is	 called

StoriesController,	 even	 though	 the	 first	parameter	we	specified	on	 the	command	 line	was
simply	Stories.	 If	 our	 parameter	 had	 been	 StoriesController,	 we'd	 have	 ended	 up	with	 a
class	name	of	StoriesControllerController!

Starting	Our	Application	…	Again
It's	 time	 to	 fire	 up	 our	 application	 again.	 While	 our	 previous	 experience	 with	 Puma	 was
somewhat	uneventful,	our	application	should	do	a	little	more	this	time.

Start	up	the	web	server	with	the	following	command:

$	rails	s

																								

Once	the	server	has	completed	its	startup	sequence,	type	the	following	address	into	your	web
browser:	 http://localhost:3000storiesindex.	 If	 everything	 goes	 to	 plan,	 you	 should	 be
looking	at	a	page	similar	to	the	one	in	Figure	5-5.

Accessing	our	`StoriesController`	from	a	browser

What	does	this	display	tell	us?	Well,	this	simple	(and	not	especially	pretty)	page	confirms	that:
	

The	 routing	between	controllers	 and	views	 is	working	correctly—Rails	has	 found	and
instantiated	our	StoriesController	based	on	the	URL	that	we	asked	it	to	retrieve.
Our	controller	is	able	to	locate	its	views—the	HTML	for	the	page	we	see	rendered	in	the
browser	 is	 contained	 in	 the	 file	 that's	 mentioned	 onscreen
(app/viewsstoriesindex.html.erb).

If	 you	 think	 about	 it,	 this	 is	 actually	 quite	 an	 accomplishment,	 given	 that	we've	 really	 only
executed	two	commands	for	generating	code	from	the	command	line.

So	 that	 we	 can	 complete	 the	 picture,	 let's	 pull	 some	 data	 from	 our	 model	 into	 our	 index
action.

Creating	a	View

We	can	use	two	approaches	to	build	views	for	our	Rails	application.	One	approach	is	to	make
use	of	scaffolding;	the	other	is	to	“go	it	alone.”

We'll	only	look	at	scaffolding	briefly	as	we	won't	be	using	it	much	in	the	development	of	our
Readit	application.	 It'll	be	 just	enough	 to	give	you	a	 taste	of	 the	 topic–then	 it's	up	 to	you	 to
decide	whether	or	not	you	use	it	in	your	own	projects.

After	that,	we'll	roll	up	our	sleeves	and	build	some	views	from	scratch.

Generating	Views	with	Scaffolding
In	the	early	days	of	Rails,	scaffolding	was	one	of	the	features	that	the	Rails	community	used
as	a	selling	point	when	promoting	the	framework.	This	feature	also	received	a	considerable
amount	 of	 criticism,	 though	 this	 was	 largely	 due	 to	 critics	 failing	 to	 fully	 understand	 its
intended	uses.

So	what	is	scaffolding,	anyway?

Scaffolding	is	a	tool	that	quickly	creates	a	web	interface	for	interacting	with	your	model	data.
The	interface	lists	the	existing	data	in	a	table,	providing	an	easy	way	to	add	new	records,	as
well	as	manipulate	or	delete	existing	ones.

While	there	used	to	be	a	way	to	use	scaffolding	in	a	temporary	fashion	(as	a	one-line	addition
to	one	of	your	controllers,	which	would	then	perform	all	sorts	of	behind-the-scenes	magic),
these	 days	 scaffolding	 is	 Yet	 Another	 Generator	 invoked	 through	 the	 rails	 generate

command.

When	a	scaffold	is	generated,	you	end	up	with	a	model,	a	controller	with	several	actions,	and
numerous	 view	 templates	 for	 these	 actions.	The	 generated	 code	 can	 then	 be	 built	 upon	 and
extended	over	time	as	you	progress	with	your	application.	Features	provided	by	the	template
code	can	be	tweaked	or	implemented	in	a	different	manner,	and	code	that's	unsuited	to	your
project	can	be	removed.

We	won't	be	generating	any	permanent	scaffolding	in	this	project,	but	I	do	encourage	you	to
experiment	with	 this	 approach	 in	your	own	projects,	 as	 there	may	be	 cases	 in	which	you'll
find	it	useful.	The	syntax	to	generate	a	model	with	scaffolding	code	is	as	follows:

$	rails	g	scaffold	Story	name:string	link:string

																								

The	inline	help	is	available	as	shown	below.

The	inline	help	for	script/generate	scaffold

When	You	Go	Off	the	Rails	...

If	you	ever	mess	up	a	call	to	rails	generate,	you	may	find	its	alter	ego	rails	destroy	(alias
rails	d)	very	helpful.	This	takes	exactly	the	same	arguments	as	rails	generate	but	attempts
to	reverse	what	it	did,	removing	newly	generated	files	and	modifications	to	existing	files.	To
undo	the	scaffold	we	created	above,	you	would	use	rails	d	scaffold	Story.	Pretty	cool,	eh?

An	example	screen	from	a	generated	scaffold	for	our	Story	model	is	shown	in	Figure	5-7.

Example	screen	from	a	generated	scaffold

A	Great	Tool–but	with	Limitations

Scaffolding	is	a	tool	designed	for	quick	interaction	with	models,	and	should	only	be	used	as
such.	It	is	by	no	means	intended	to	be	a	fully	automated	tool	for	generating	web	applications
(or	even	administration	interfaces).

Scaffolding	also	has	its	limits	in	providing	automated	access.	For	example,	it's	unable	to	cope
with	ActiveRecord	 associations	 such	 as	 “a	Story	 belongs	 to	 a	User,”	which	we'll	 see	 later.
Additionally,	 since	 most	 applications	 do	 require	 a	 fully	 fledged	 administrative	 interface,
you're	advised	to	just	create	the	real	thing	rather	than	fiddle	around	with	a	dummy	interface.

Scaffolding	is	certainly	a	powerful	feature	of	Rails,	and	it's	rewarding	to	gain	instant	visual

feedback	with	 the	views	created	for	us;	however,	 it's	now	time	 to	create	some	views	of	our
own,	which	will	give	us	a	much	better	insight	into	what	each	part	of	the	MVC	stack	does.

Creating	Static	Pages
Back	 in	 Chapter	 4,	 we	 looked	 briefly	 at	 the	 ActionView	 module,	 but	 only	 in	 theory.	 Let's
create	some	custom	views	that	we	can	use	a	web	browser	to	view.

As	 a	 quick	 refresher,	 ActionView	 represents	 the	 view	 part	 of	 the	 model-view-controller
architecture.	Files	that	are	used	to	render	views	are	called	templates,	and	they	usually	consist
of	HTML	code	interspersed	with	Ruby	code.	These	files	are	referred	to	as	ERb	templates.

One	of	these	templates	(albeit,	a	not	so	interesting	one)	has	already	been	created	for	us—it's
the	index.html.erb	file	that's	located	in	app/views/stories:

<h1>Stories#index</h1>

<p>Find	me	in	app/viewsstoriesindex.html.erb</p>

																								

Does	it	look	familiar?	This	is	the	HTML	code	that	we	viewed	in	our	web	browser	earlier	in
the	chapter.	As	you	can	see,	it's	a	static	page	(so	it's	without	any	Ruby	code).	Dynamic	pages
(which	pull	in	data	from	a	database	or	an	alternative	source)	are	much	more	interesting!	We'll
have	a	closer	look	at	dynamic	pages	now.

Creating	Dynamic	Pages
Let's	begin	our	adventure	in	building	dynamic	pages.	We'll	add	a	value—the	current	date	and
time—to	 the	 HTML	 output	 of	 our	 view.	 Although	 simple,	 this	 value	 is	 considered	 to	 be
dynamic.

Open	the	template	file	in	your	text	editor	and	delete	everything	that's	there.	In	its	place,	add	the
following	line:

<%=	Time.now	%>

																								

Here	we	call	the	class	method	that	lives	on	the	Time	class,	which	is	part	of	the	Ruby	Standard
Library.	This	method	call	is	wrapped	in	ERb	tags	(beginning	with	<%=	and	ending	with	%>).

You	may	remember	from	Chapter	4	that	the	equal	sign	attached	to	the	opening	ERb	tag	will
cause	the	return	value	of	Time.now	to	be	output	to	the	web	page,	instead	of	executing	silently.

If	you	refresh	your	browser	now,	the	page	should	display	the	current	time,	as	shown	in	Figure
5-8.	To	confirm	that	this	value	is	dynamic,	reload	your	page	a	few	times—you'll	notice	that
the	value	does	indeed	change.

Our	first	dynamic	page:	displaying	the	current	time

Passing	Data	Back	and	Forth
There's	one	fundamental	problem	with	what	we've	done	here.	Can	you	spot	it?

In	order	to	adhere	to	the	model-view-controller	architecture,	we	should	avoid	performing	any
hefty	 calculations	 from	 within	 any	 of	 our	 views—that's	 the	 job	 of	 the	 controller.	 Strictly
speaking,	our	call	 to	Time.now	 is	 one	 such	 calculation,	 so	 it	 should	 really	 occur	within	 the
controller.	But	what	good	is	the	result	of	a	calculation	if	we	can't	display	it?

We	 introduced	 the	 concept	 of	 passing	 variables	 between	 controllers	 and	 views	 briefly	 in
Chapter	 4,	 but	 at	 that	 point,	we	had	no	views	 that	we	 could	 use	 to	 demonstrate	 it	 in	 action.
Now's	our	chance	to	do	just	that!

We	learned	that	any	instance	variable	that's	declared	in	the	controller	automatically	becomes
available	 to	 the	 view	 as	 an	 instance	 variable.	 Let's	 take	 advantage	 of	 that	 now.	 Edit
appcontrollers/stories_controller.rb	so	that	it	contains	the	following	code:

class	StoriesController	<	ApplicationController

		def	index

				@current_time	=	Time.now

		end

end

																								

Next,	replace	the	contents	of	app/viewsstoriesindex.html.erb	with	the	following:

<%=	@current_time	%>

																								

I'm	sure	you	can	see	what's	happened	here:
	

1.	 We've	moved	the	“calculation”	of	the	current	time	from	the	view	to	the	controller.

2.	 The	result	of	the	calculation	is	stored	in	the	instance	variable	@current_time.

3.	 The	contents	of	this	instance	variable	are	then	automatically	made	available	to	the	view.

The	result	is	that	the	job	of	the	view	has	been	reduced	to	simply	displaying	the	contents	of	this
instance	variable,	rather	than	executing	the	calculation	itself.

Voilà!	Our	application	logic	and	our	presentation	logic	are	kept	neatly	separate.

Pulling	in	a	Model
All	we	do	now	is	pull	some	data	into	our	view,	and	we'll	have	the	entire	MVC	stack	covered.

In	case	you	deleted	all	of	your	model	records	when	we	experimented	with	scaffolding	earlier,
make	sure	you	create	at	least	one	story.	Type	the	following	into	a	Rails	console:

>>	Story.create(name:		'SitePoint	Forums',	link:	'http://community.sitepoint.com')

																								

To	display	this	model	data	within	a	view,	we	retrieve	it	from	within	the	controller,	like	so:

class	StoriesController	<	ApplicationController

		def	index

				@story	=	Story.find_by(name:	'SitePoint	Forums')

		end

end

																								

We'll	also	change	our	view	accordingly:

A	random	link:

<a	href="<%=	@story.link	%>"><%=	@story.name	%>

																								

Reload	the	page	to	see	the	result.	It	should	look	like	Figure	5-9.

MVC	in	action:	a	view	displaying	model	data	via	the	controller

Of	course,	Rails	would	be	failing	in	its	job	of	saving	you	effort	if	it	required	you	to	manually
create	 links	 the	way	we	just	did.	Instead	of	 typing	out	 the	HTML	for	a	 link,	you	can	use	the
link_to	function,	which	is	much	easier	to	remember	and	achieves	the	same	result.	Try	it	for

yourself:

A	random	link:

<%=	link_to	@story.name,	@story.link	%>

																								

One	other	point:	I'll	be	the	first	to	admit	that	the	text	on	the	page	is	a	little	misleading.	Our	link
is	hardly	random—it	simply	retrieves	the	same	link	from	the	database	over	and	over	again.

It's	 actually	 quite	 easy	 to	 make	 our	 application	 retrieve	 random	 stories,	 though.	 Simply
modify	the	part	of	the	controller	that	fetches	the	story	to	this:

@story	=	Story.order('RANDOM()').first

																								

This	modification	selects	a	single	story,	 just	 like	before	(using	 the	:first	 parameter).	This
time,	however,	the	database	is	being	instructed	to	shuffle	its	records	before	picking	one.	When
you	reload	your	page,	random	stories	should	now	appear—assuming	you	have	more	than	one
story	in	your	database,	that	is!	You	might	like	to	save	a	few	more	stories	(using	Story.create
in	a	Rails	console)	and	see	the	random	link	feature	of	our	Readit	application	in	action.

There	we	have	 it:	 the	beginnings	of	our	 story-sharing	application.	Admittedly,	displaying	a
random	story	from	our	database	is	only	a	small	achievement,	but	hey—it's	a	start!

Summary

This	chapter	saw	us	create	some	real	code	 for	each	component	of	an	MVC	application.	We
generated	a	model	with	a	corresponding	migration	 to	handle	 the	storage	of	our	stories;	we
generated	a	controller	 to	handle	communication	between	 the	models	and	 the	views;	and	we
created	a	view	that	dynamically	renders	content	supplied	by	our	controller.

With	the	functionality	provided	by	ActiveRecord,	we've	been	creating,	updating,	and	deleting
data	from	our	SQL	database	without	resorting	to	any	SQL.

I	also	 introduced	you	 to	 the	rails	 commands	 that	 can	be	used	 to	 run	migrations	 and	other
tasks.	And	we	 learned	about	 the	YAML	data	 representation	 language	 that's	used	 to	store	 test
fixture	data	for	our	application.

In	 the	 next	 chapter,	we'll	 add	 a	 layout	 to	 our	 application	 using	HTML	 and	CSS;	 talk	 about
associations	between	models;	and	extend	the	functionality	of	our	application.

Let's	get	into	it!

Chapter	6:	Helpers,	Forms,	and	Layouts
In	 the	 last	 chapter,	we	put	 in	place	 some	basic	architecture	 for	our	application—a	model,	 a
view,	and	a	controller—and	were	able	to	display	a	link	to	a	random	story	in	the	database.	The
foundation	of	our	application	is	sound,	but	users	are	unable	to	really	interact	with	it	yet.

In	this	chapter,	we'll	use	helpers	to	implement	the	basic	functionality	for	our	application:	the
capability	that	allows	users	to	submit	stories	to	the	site.

We'll	 also	 start	 to	 build	 our	 test	 suite,	 and	 create	 some	 functional	 tests	 to	 confirm	 that	 the
submission	 form	 is	working	 as	 intended.	We'll	 expand	 on	 this	 suite	 of	 tests	 in	 the	 coming
chapters.

Calling	upon	Our	Trusty	Helpers

And	I'm	not	talking	about	Santa's	little	helpers.	Let	me	explain.

In	Chapter	5,	we	discussed	the	importance	of	keeping	application	logic	in	a	controller,	so	that
our	 views	 contain	 only	 presentational	 code.	 Although	 not	 apparent	 in	 the	 basic	 examples
we've	used,	extracting	code	from	a	view	and	moving	it	into	a	controller	often	causes	clumsy
code	to	be	added	to	an	application's	controllers.

To	 address	 this	 problem,	 another	 structural	 component	 exists:	 the	 helper.	 A	 helper	 is	 a
module–a	 Ruby	 module–that	 can	 be	 reused	 throughout	 an	 application,	 and	 is	 stored	 in	 a
helper	file.	A	helper	usually	includes	methods	that	contain	relatively	complicated	or	reusable
presentation	logic.	Since	any	views	that	include	the	helper	are	spared	this	complexity,	the	code
in	 the	 view	 is	 kept	 simple	 and	 easy	 to	 read,	 reflecting	 our	 adherence	 to	 DRY	 principles.
Dozens	of	helpers	are	built	 into	Rails,	but	you	can	create	your	own	to	use	 throughout	your
application.

Code	that	renders	a	screen	element	on	a	page,	for	example,	is	a	good	candidate	for	a	helper.
Repeating	this	type	of	code	from	one	view	to	another	violates	the	DRY	principle,	but	sticking
it	all	into	a	controller	makes	no	sense	either.

As	we	saw	in	Generating	a	Controller	in	Chapter	5,	when	we	generate	a	controller	(using	the
generate	command	that	we've	come	to	know	and	love),	one	of	the	files	that's	created	is	a	new
helper	 file	 called	 controllername_helper.rb.	 In	 the	 case	 of	 our	 StoriesController,	 the
helper	file	associated	with	this	controller	is	stories_helper.rb,	and	lives	in	app/helpers.

We'll	be	relying	on	a	few	of	Rails'	built-in	helpers	for	much	of	the	story	submission	interface
we'll	be	building	in	this	chapter.

Enabling	Story	Submission

In	our	brief	foray	into	the	world	of	scaffolding	in	Chapter	5,	we	saw	that	it's	possible	in	Rails
to	create	a	quick	(and	dirty)	front	end	for	our	data;	however,	this	approach	doesn't	necessarily
constitute	best	practice.

In	this	section,	we'll	build	a	web	interface	for	submitting	stories	to	our	Readit	website	without
relying	on	scaffolding.	First,	we'll	create	a	view	template	that	contains	the	actual	submission
form;	 then	we'll	 add	 a	 new	method	 to	 our	StoriesController	 to	 handle	 the	 task	 of	 saving
submitted	 stories	 to	 the	 database.	We'll	 also	 implement	 a	 global	 layout	 for	 our	 application,
and	create	feedback	to	present	to	our	users,	both	when	they're	filling	out	the	form	and	after
they've	submitted	a	story.

Creating	a	Form
HTML	 forms	 is	 an	 area	 that	 even	 seasoned	 front-end	 developers	 have	 traditionally	 found
intimidating.	 While	 it's	 possible	 to	 create	 form	 elements	 manually,	 it's	 unnecessary:	 Rails
offers	plenty	of	helpers	and	shortcuts	that	make	creating	forms	a	breeze.	One	of	those	is	the
form_for	helper.

Introducing	the	form_for	Helper

Rails	offers	a	few	helper	functions	for	writing	forms.	form_for	is	the	most	common	among
these	 and	 is	 recommended	 when	 generating	 a	 form	 that's	 bound	 to	 one	 type	 of	 object.
“Bound”	 here	 means	 that	 each	 field	 in	 the	 form	maps	 to	 the	 corresponding	 attribute	 of	 a
single	 object,	 rather	 than	 to	 corresponding	 attributes	 of	multiple	 objects.	 In	 other	words,	 it
creates	a	form	for	an	object.	Clever	naming,	eh?	At	its	most	basic,	using	the	form_for	helper
to	bind	a	simple	form	to	a	Story	object	looks	like	this:

<%=	form_for	@story	do	|f|	%>

		<%=	f.text_field	:name	%>

		<%=	f.text_field	:link	%>

<%	end	%>

																								

This	form_for	helper	syntax	boasts	a	few	points	that	are	worth	highlighting:
	

The	last	 line	uses	the	ERb	tags	for	silent	output	(<%	…	%>),	while	 the	other	 lines	of	 the
helper	use	ERb	tags	that	display	output	to	the	browser	(<%=	…	%>).

The	parameter	that	immediately	follows	form_for	is	the	object	to	which	the	form	will	be
bound	(@story).	Can	you	guess	where	this	will	come	from?

The	 fields	 that	make	 up	 the	 form	 live	 inside	 a	 block.	As	 you'll	 no	 doubt	 remember,	 a
Ruby	block	is	a	statement	of	Ruby	code	that	appears	between	the	keywords	do	and	end,	or
between	curly	braces.	This	is	the	first	time	we've	encountered	a	block	within	an	ERb	file,
but	the	principle	is	the	same.

A	new	object–which	I've	named	f	as	shorthand	for	“form”	in	this	case–must	be	passed	as
a	 parameter	 to	 the	 block.	 This	 object	 is	 of	 type	 FormBuilder,	 which	 is	 a	 class	 that
contains	 instance	methods	 designed	 to	work	with	 forms.	Using	 these	methods,	we	 can
easily	 create	 the	 HTML	 form	 input	 elements	 such	 as	 text_field,	 password_field,
check_box,	and	text_area.

We	receive	a	number	of	benefits	in	exchange	for	following	this	syntax:
	

The	HTML	form	tags	that	signify	the	start	and	end	of	our	HTML	form	will	be	generated
for	us.

We	gain	access	to	a	number	of	instance	methods	via	the	FormBuilder	object	that	we	can
use	 to	create	 fields	 in	our	 form.	 In	 the	example,	we've	used	 the	text_field	method	 to
create	two	text	fields;	these	fields	will	be	mapped	to	our	@story	object	automatically.

Appropriate	name	and	id	attributes	will	be	applied	to	each	of	these	fields;	these	attributes
can	then	be	used	as	hooks	for	CSS	and	JavaScript,	as	we'll	see	later	in	the	chapter.

Rails	automatically	figures	out	to	which	URI	this	form	should	be	posted	when	submitted
by	 the	web	browser	 if	our	model	has	been	defined	as	a	 resource	 (a	 term	 that	you	will
recall	from	RESTful	Style	in	Chapter	4).	More	on	this	in	a	moment.

As	you	can	see,	using	form_for	and	the	FormBuilder	object	that	comes	with	it	is	a	powerful
way	to	create	comprehensive	forms	with	minimal	effort.

Help	on	Helpers

As	I	mentioned,	helpers	are	modules,	so	the	form_for	method	(as	well	as	the	rest	of	the	form
helper	methods)	are	all	defined	in	the	ActionView::Helpers::FormHelper	module,	which	you
can	read	all	about	on	the	Ruby	on	Rails	documentation.

Creating	the	Template

Now	that	we	have	a	handle	on	form_for,	let's	use	it	to	create	the	form	that	site	visitors	will	use
to	submit	stories	to	Readit.

A	form	is	a	presentational	concept,	which	means	it	should	be	stored	as	a	view.	Our	form	will
allow	users	to	submit	new	stories	to	Readit,	so	we'll	give	this	view	the	name	new.	Let's	make	a
template	 for	 it:	 create	 a	 new	 file	 called	 new.html.erb	 in	 the	 app/views/stories	 folder.	 It
should	contain	the	following:

http://api.rubyonrails.org/classes/ActionView/Helpers/FormHelper.html

<%=	form_for	@story	do	|f|	%>

		<div>

				<p><%=	f.label	:name		%></p>

				<%=	f.text_field	:name	%>

		</div>

		<div>

				<p><%=	f.label	:link		%></p>

				<%=	f.text_field	:link	%>

		</div>

		<%=	submit_tag	%>

<%	end	%>

																								

Let's	break	down	the	ERb	code	here:

<%=	form_for	@story	do	|f|	%>

																								

As	we	discussed,	the	form_for	helper	creates	a	form	that's	bound	to	a	specific	object—in	this
case,	it's	bound	to	the	@story	instance	variable.

<%=	f.label	:name	%>

<%=	f.text_field	:name	%>

																								

These	lines	create	a	label	and	text	field	called	"name,"	which	is	mapped	to	the	name	attribute
on	our	@story	object.	 It	will	display	a	 text	field	 in	which	the	user	can	enter	 the	name	of	 the
story	being	submitted.

<%=	f.label	:link	%>

<%=	f.text_field	:link	%>

																								

Here	we	have	another	 label	and	 text	field	combination,	 this	 time	named	link,	which	 is	also
mapped	to	our	@story	object.	It	will	display	a	text	field	in	which	the	user	can	enter	the	URL	of
the	story	being	submitted.

<%=	submit_tag	%>

																								

This	helper	generates	the	HTML	code	to	display	a	submit	button	in	our	form.	This	is	a	stand-
alone	helper	and	not	part	of	the	form_for	helper,	which	means	we	don't	need	the	FormBuilder
(f)	to	call	it.

Next,	make	sure	that	your	web	server	is	running	(refer	to	Chapter	2	if	you	need	a	refresher	on
starting	the	server).	Open	your	web	browser	and	type	the	following	URL	into	the	address	bar:
http://localhost:3000storiesnew.	You	should	see—yikes!—an	error	similar	to	the	below.

Error	resulting	from	having	no	route

The	Console	Is	Key

If	you	see	a	different	error	message	when	you	 try	 to	open	 this	URL,	I	 recommend	that	you
monitor	the	console	window	from	which	you	launched	your	web	server.	This	process	is	the
heart	of	our	application;	if	it's	not	beating,	you'll	be	unable	to	access	any	of	the	functionality
added	in	this	chapter.	Errors	that	appear	in	the	console	should	give	you	an	idea	of	what	went
wrong.

Now,	what	happened	here?	Well,	there's	no	route	for	storiesnew,	so	Rails	cannot	know	which
controller	and	method	to	invoke.	I'll	talk	a	bit	more	about	routing	in	a	minute.	For	now,	let's
add	the	route	to	config/routes.rb:

Rails.application.routes.draw	do

		get	'stories/index'

		get	'stories/new'

	

																								

Now	refresh	the	page	...	and	as	seen	in	Figure	6-2	we	have	another	error!

For	argument's	sake!	Another	error

So,	what's	up?	Well,	we	handed	the	form_for	helper	 the	 instance	variable	called	@story,	but
we	never	actually	assigned	an	object	to	that	variable,	so	it	ended	up	being	nil.	Adhering	to	the
MVC	principles,	we	must	turn	to	the	controller	as	being	responsible	for	putting	a	value	into
@story,	which	we'll	do	in	the	next	section.

Modifying	the	Controller

To	 create	 an	 action	 that	 will	 populate	 the	 @story	 instance	 variable,	 edit	 the	 file
app/controllers/stories_controller.rb	so	that	it	looks	as	follows	(the	method	to	be	added
is	in	bold):

app/controllers/stories_controller.rb	(excerpt)

class	StoriesController	<	ApplicationController

		def	index

				@story	=	Story.order("RANDOM()").first

		end

		def	new

				@story	=	Story.new

		end

end

																								

It	 doesn't	 matter	 whether	 you	 place	 this	 new	 method	 above	 or	 below	 the	 existing	 index
method.	 Some	 people	 prefer	 to	 sort	 their	methods	 alphabetically,	 while	 others	 group	 their
methods	 by	 purpose;	 the	 decision	 is	 entirely	 up	 to	 you	 and	 has	 no	 impact	 on	 your
application's	functionality.

The	 code	 that	 we've	 added	 to	 our	 new	method	 simply	 instantiates	 a	 new	 Story	 object	 and
places	 it	 in	 the	 @story	 instance	 variable.	 As	 it's	 an	 instance	 variable,	 @story	 will	 now	 be
available	to	our	view	and	thus	to	the	form_for	helper.

Reloading	the	page	in	your	browser	should	now	yield	...	yet	another	error!

Even	after	implementing	the	“new”	action,	we	still	receive	an	error	on	our	submission	form

As	 I	mentioned	 earlier	 in	 the	 chapter,	 a	 benefit	 of	 using	 the	form_for	 helper	 to	 set	 up	 our
form	 is	 that	 it	 automatically	 figures	 out	 where	 to	 submit	 the	 form.	 Now	 it's	 showing	 that
something's	missing	from	our	equation:	we're	yet	 to	declare	Story	as	a	 resource	anywhere.
Let's	do	that	now.

RESTful	Resources	in	Rails

As	covered	in	Chapter	4,	Rails	encourages	a	RESTful	architectural	approach	to	development,
especially	for	sites	that	create,	retrieve,	update,	and	delete	resources.	In	our	case,	a	Story	is	a
perfect	candidate	for	a	RESTful	resource.	Although	the	Rails	creators	would	prefer	that	every
model	generated	is	automatically	declared	a	RESTful	resource,	we're	yet	to	reach	that	stage—
and,	admittedly,	it	makes	no	sense	to	make	it	so	in	every	case.

Resources	 in	 Rails	 are	 declared	 in	 the	 file	 responsible	 for	 the	 routing	 configuration:
config/routes.rb.	 In	 Rails,	 the	 routing	 module	 is	 responsible	 for	 mapping	 URLs	 to
controllers	and	actions.	Take	the	following	URL,	for	example:stories/new

The	routing	module	maps	this	URL	to	the	new	action	of	StoriesController.	But	you	already
knew	that.	Here	are	the	contents	of	the	routes.rb	file	with	its	comments	removed:

Rails.application.routes.draw	do

		get	'stories/index'

		get	'stories/new'

end

																								

As	outlined	previously,	 the	first	part	of	 the	URL	is	mapped	to	 the	controller	and	the	second
part	is	mapped	to	the	action.

This	 being	 the	 default	 configuration,	 mapping	 RESTful	 resources	 is	 a	 little	 different.
Resources	always	consume	the	second	spot	in	the	URL—we're	talking	about	resource-centric
development,	after	all.	So	for	any	given	resource,	the	paths	along	with	their	respective	HTTP
verbs	outlined	in	Table	6.1	are	recognized.

The	Mapping	of	RESTful
URLs	to	Controller	Actions

URL Action
GET	/stories index

GET	/stories/new new

POST	/stories create

GET	/stories/1 show

GET	stories/1/edit edit

PUT	/stories/1 update

PATCH	/stories/1 update

DELETE	/stories/1 destroy

When	 you're	 looking	 at	 the	 table,	 the	 actions	 can	 be	 divided	 into	 two	 groups:	 actions	 that
operate	on	a	single,	existing	story	(show,	edit,	update,	and	destroy)	and	those	that	don't	(index,
new,	and	create).	The	actions	that	do	operate	on	a	single	story	use	the	second	part	of	the	URL
to	identify	the	resource	they're	operating	on	with	its	numeric	id.

That	leaves	us	with	seven	distinct	ways	to	interact	with	stories.	But	are	we	supposed	to	define
all	those	by	hand	for	every	resource	our	application	is	going	to	have?	Rails	wouldn't	be	Rails
if	 we	 had	 to	 jump	 through	 all	 those	 hoops.	 So	 let's	 take	 a	 look	 at	 the	magic	 that's	 behind
resources,	Rails'	method	for	automatically	mapping	RESTful	routes.

Mapping	a	New	Resource

We	 can	 discuss	 the	 theory	 of	 resources	 in	 Rails	 until	 we're	 blue	 in	 the	 face,	 but	 nothing
stimulates	the	brain	like	actually	doing	it	for	yourself.	In	the	config/routes.rb	file,	add	the
following	line:

config/routes.rb	(excerpt)

Rails.application.routes.draw	do

		resources	:stories

end

																								

This	one	line	of	code	will	give	us	all	sorts	of	exciting	features.	Among	them	is	a	working—
albeit	unstyled—story	submission	form	we	can	see	upon	reloading	 the	page	 in	 the	browser.
The	 result	 is	 shown	 in	 Figure	 6-6.	 We'll	 explore	 the	 remainder	 of	 those	 features	 in	 the
upcoming	chapters.

Our	unstyled	story	submission	form

Analyzing	the	HTML

The	 time	has	come	 to	 find	out	what	kind	of	HTML	the	Rails	helpers	have	generated.	Using
your	browser's	View	Source	option,	check	the	HTML	in	forms	for	this	page	and	you	should
see	the	following:

<form	 class="new_story"	 id="new_story"	 action="/stories"	 accept-

charset="UTF-8"	

method="post">

<input	name="utf8"	type="hidden"	value="✓">
<input	type="hidden"	name="authenticity_token"	value="J7MBWt...==">

		<div>

				<p><label	for="story_name">Name<label></p>

				<input	type="text"	name="story[name]"	id="story_name">

		</div>

		<div>

				<p><label	for="story_link">Link</label></p>

				<input	type="text"	name="story[link]"	id="story_link">

				<p></p>

		</div>

		<input	type="submit"	name="commit"	value="Save	changes"	

data-disable-with="Save	changes">

</form>

																								

This	 markup	 is	 basically	 what	 we	 would	 expect:	 two	 text	 fields,	 a	 couple	 of	 labels,	 and	 a
submit	 button	 have	 been	 created	 for	 us,	 and	 everything	 has	 been	 wrapped	 up	 in	 a	 form
element.	Rails	has	also	 figured	out	 the	correct	 target	URL	(the	action	 attribute	of	 the	 form
element)	to	create	a	new	Story	object	according	to	the	RESTful	URL	mapping	outlined	in	the
last	section.	Submission	of	the	form	will	lead	us	to	the	create	action	of	StoriesController,
which	we've	yet	to	implement.

Of	note	is	that	strange	hidden	<input>	element	named	authenticity_token	 inside	it.	This	is
one	 aspect	 of	 Rails'	 attempt	 to	 counteract	 so-called	Cross-Site-Request-Forgery	 (CSRF)
attacks,	ensuring	that	submitted	forms	originate	at	the	current	web	application	as	opposed	to	a
third	party.	The	content	of	authenticity_token	is	based	on	the	user's	session	and	is	verified
against	a	token	set	for	the	application	(in	config/secrets.yml,	if	you're	curious).	If	there	is	a
mismatch,	an	error	is	raised	and	the	form	submission	is	discarded.

So	our	markup	looks	fine.	But	if	you	were	to	submit	the	form	in	its	current	state,	you	would
be	less	than	thrilled	with	the	results:	we'd	receive	another	error,	because	the	create	method	in
StoriesController	is	yet	to	exist.	Let's	add	some	code	to	save	the	story	data	to	the	database.

Saving	Data	to	the	Database
Remembering	when	we	made	Story	a	resource,	submitting	the	form	will	POST	 the	form	data
to	the	create	action	of	the	StoriesController.	We'll	create	(heh)	that	now	by	adding	a	method
to	the	app/controllers/stories_controller.rb	file:

def	create

		@story	=	Story.new(params[:story])

		@story.save

end

																								

The	params	object	in	the	first	line	of	our	method	is	a	Hash	that	contains	all	of	the	content	that
the	user	submitted;	you	can	revisit	Hashes	in	Chapter	3	if	you'd	like	a	refresher.

All	of	the	form	data	passed	to	Rails	will	be	added	to	the	params	Hash.	If	you	look	again	at	the
HTML	source	of	the	submission	form,	you'll	notice	that	the	input	element	name	attributes	all
have	a	story[]	 prefix.	This	 prefix	 groups	 all	 the	 submitted	 form	 fields	 for	 the	 story	we're
creating	in	params[:story].

We	can	then	reference	individual	elements	within	the	Hash	by	passing	the	name	of	the	attribute
(as	a	symbol)	to	the	Hash.	For	example,	 the	value	of	the	name	attribute	could	be	accessed	as
params[:story][:name].	You	get	the	idea.

The	point	of	all	this	is	that	user	data	submitted	via	the	form	can	be	assigned	to	an	object	very
easily.	We	just	pass	the	params[:story]	Hash	to	the	Story.new	method,	and	we	have	ourselves
a	populated	@story	object.

Not	coincidentally,	this	is	exactly	what	we've	done	in	the	first	line	of	our	method:

@story	=	Story.new(params[:story])

																								

The	newly	created	@story	object	is	then	sent	the	save	method	to	store	it	permanently	into	our
database.

Now,	before	you	go	ahead	and	enter	some	data	into	your	form	and	click	Save,	let's	pause	for
a	second	and	 think	about	what	Rails	would	do	 if	you	submitted	 the	form.	Can	you	hazard	a
guess?	We'd	end	up	with	yet	another	error	screen	stating	 that	Rails	was	unable	 to	 locate	 the
create.html.erb	template.

After	 Rails	 has	 finished	 processing	 the	 code	 in	 the	 controller	 action,	 (unless	 instructed
otherwise)	it	will	try	to	render	a	template	named	after	the	controller	and	action.	In	this	case,	it
would	be	app/viewsstoriescreate.html.erb.

But	we	don't	actually	want	to	do	any	rendering.	We	have	saved	the	object	to	the	database	and
can	return	to	the	random	story	selector	that	we	created	in	Chapter	5,	located	within	the	index
action.

Redirecting	with	URL	helpers
If	we	don't	want	to	render	a	template	after	an	action	has	finished,	preferring	to	go	elsewhere

instead,	 we	 need	 to	 use	 the	 redirect_to	 method.	 This	 method	 takes	 a	 single	 argument,
namely,	the	destination	of	the	redirection.	What	is	the	destination	of	the	redirection?	Well,	we
know	we've	accessed	the	story	randomizer	at	http://localhost:3000/stories,	so	could	we
simply	redirect	there	with	the	following	command?

redirect_to	'http://localhost:3000/stories'

																								

We	certainly	could.	But	since	it's	likely	that	we'll	be	using	these	kinds	of	URLs	in	many	places,
it	seems	a	little	tedious	to	go	down	that	path.	And,	after	all,	form_for	was	able	to	figure	out
paths	on	its	own,	why	wouldn't	redirect_to,	too?

Albeit	a	lot	of	magic	and	mind-reading	on	the	part	of	Rails,	it	turns	out	in	this	case	that	we	do
need	to	tell	Rails	what	we	want	it	 to	do.	But	 to	ease	our	pain,	 there	are	quite	a	few	methods
provided	by	the	resources	call	in	the	config/routes.rb	file	that	we	use	to	define	our	stories
as	resources.	These	are	known	as	URL	helpers.

Table	6.2	shows	a	list	of	URL	helpers	that	are	being	defined	for	every	Story	resource.

URL	Helpers	for	the	Story	Resource
Helper URL

stories_path /stories

new_story_path /stories/new

story_path(@story) /stories/1

edit_story_path(@story) /stories/1/edit

URL	helpers	use	singular	or	plural	naming	conventions	depending	on	whether	they're	dealing
with	a	specific	story	(singular)	or	no	specific	story	(plural).

You	 may	 wonder	 why	 there's	 no	 such	 thing	 as	 a	 destroy_story_path(@story)	 or
create_stories_path.	It's	because	the	actual	URL	generated	from	these	wouldn't	differ	from
story_path(@story)	and	stories_path	respectively.	Remember	that	the	only	difference	is	the
actual	HTTP	verb	used	to	access	the	resource.	We'll	learn	in	the	forthcoming	chapters	how	to
specify	 a	 different	HTTP	 verb.	 This	HTTP	 verb/URL	 combination	 is	 the	 very	 heart	 of	Mr.
Fielding's	RESTful	vision.

Now	that	we	know	about	the	URL	helpers	available	to	us,	it's	easy	to	spot	the	helper	to	use	for
our	redirect_to	call	to	redirect	the	browser	back	to	the	story	index:	stories_path.	The	new
create	method	should	now	look	as	follows:

def	create

		@story	=	Story.new(params[:story])

		@story.save

		redirect_to	stories_path

end

																								

As	we	can	 see	 in	Figure	6-7,	 submitting	 the	 form	now—after	 filling	 in	 a	proper	name	and
story	link,	of	course!—should	...	result	in	yet	another	error.	Wait,	what?

Error	prone!

What	the	what?	Forbidden	attributes?	But,	we	only	submitted	the	name	and	link.	What's	going
on?

Well,	we've	hit	 another	 example	of	 a	Rails	 convention	 that's	put	 in	 to	protect	our	 site	 from
basic	security	problems.	The	security	issue	here	is	called	Mass	Assignment	Protection.	If	we
simply	 let	 all	 the	 keys	 of	 the	 params[:story]	 Hash	 be	 passed	 to	 Story.new,	 an	 inscrutable
person	could	pass	all	kinds	of	attributes.	For	example,	if	the	model	has	an	attribute	that,	say,
affects	 administrative	 privileges,	 a	 user	 could	 manual	 set	 that	 attribute	 to	 true	 and
compromise	our	site.

To	save	us	from	having	to	handle	this	every	time	we	want	to	create	(or	update)	a	model,	the
superheroes	 that	 make	 Rails	 created	 automatic	 Mass	 Assignment	 protection,	 which	 is
affectionately	known	as	"strong	parameters"	in	the	community.	To	make	this	error	go	away,
we	whitelist	 (or	permit)	 the	attributes	 that	are	on	 the	safe	 list.	The	conventional	way	 this	 is
done	is	by	creating	the	following	private	method	on	StoriesController:

def	story_params

		params.require(:story).permit(:name,	:link)

end

																								

Then,	change	the	create	action	to	this:

def	create

		@story	=	Story.new(story_params)

		@story.save

		redirect_to	stories_path

end

																								

EXTRA	CREDIT:	Going	Private

How	would	you	make	story_params	private?	If	you	did	your	extra	credit	 in	Chapter	3,	you
would	know	...

Simply	 add	 the	 keyword	 private	 above	 the	 method	 and	 all	 methods	 defined	 after	 that
keyword	will	be	private.

Now,	we	have	whitelisted	our	parameters,	 so	submitting	 the	new	Story	 form	will	create	 the
story	and	redirect	you	back	to	the	random	story	selector.	This	is	a	good	thing;	however,	our
application	does	look	a	little	sparse.	Let's	make	it	pretty.

Creating	a	Layout

In	Rails,	a	layout	is	a	specialized	form	of	a	view	template.	Layouts	allow	page	elements	that
are	repeated	globally	across	a	site	to	be	applied	to	every	view.	Examples	of	such	elements	are
HTML	headers	and	footers,	CSS	files,	and	Javascript	includes.

Layouts	can	also	be	applied	at	the	controller	level.	This	ability	can	be	useful	if,	for	example,
you	want	 to	apply	different	 layouts	 to	a	page	depending	on	whether	 it's	being	viewed	by	an
administrator	or	a	regular	user.

We'll	begin	our	foray	into	layouts	by	creating	a	global	layout	for	the	entire	application.

Establishing	Structure
Layouts	 should	be	 stored	 in	 the	app/views/layouts	 folder.	A	 layout	 template	 can	 have	 any
name,	 as	 long	 as	 the	 file	 ends	 in	 .html.erb.	 Rails,	 by	 convention,	 creates	 a	 "global"
application	layout	called—wait	for	it—application.html.erb.

Let's	 take	 advantage	 of	 that	 convention.	Open	 the	 file	 named	 application.html.erb	 in	 the
app/views/layouts	folder	and	add	the	content	where	indicated:

<!DOCTYPE	html>

<html>

		<head>

				<title>Readit</title>

				<%=	csrf_meta_tags	%>

				<%=	stylesheet_link_tag				'application',	media:	'all',	

'data-turbolinks-track':	'reload'	%>

				<%=	javascript_include_tag	'application',	

'data-turbolinks-track':	'reload'	%>

		</head>

		<body>

				<div	id="content">	

						<h1>Readit</h1>

						<%=	yield	%>	

				</div>

		</body>

</html>

																								

There's	 nothing	 too	 radical	 going	 on	 here—it's	 a	 regular	HTML5	document	with	 a	 proper
DOCTYPE	declaration;	however,	a	couple	of	ERb	calls	here	warrant	an	explanation.

The	 following	 code	 generates	 the	 HTML	 that	 includes	 the	 default	 external	 CSS	 stylesheet

called	application.css	in	the	appassetsstylesheets	folder:

<%=	stylesheet_link_tag				'application',	media:	'all',	

'data-turbolinks-track':	'reload'	%>

																								

Rails	(and	the	asset	pipeline,	which	we'll	talk	about	soon)	will	create	a	URL	for	this	stylesheet
that	looks	like	assetsapplication.css.

<%=	 javascript_include_tag	 'application',	 'data-turbolinks-

track':	'reload'	%>

																								

I	 bet	 you	 can	 guess	 what	 this	 does.	 Just	 as	 we	 have	 stylesheet_link_tag	 for	 CSS,
javascript_include_tag	 generates	 the	 <script>	 element	 for	 the	 default	 application
JavaScript	 file.	 This	 file	 is,	 as	 you've	 no	 doubt	 guessed,	 located	 at
appassetsjavascripts/application.js.

The	data-turbolinks-track	attribute	on	each	of	those	tags	tells	Rails	to	reload	the	files	only
when	they	change,	otherwise	they	will	be	cached.	Rails	is	so	smart!

Built-in	Abettors

Rails	 ships	 with	 a	 number	 of	 helpers	 similar	 to	 stylesheet_link_tag	 and
javascript_include_tag,	in	that	they	make	generating	HTML	pages	easy.	They	mostly	save
tedious	typing	and	thus	potential	errors.

I	mentioned	Cross-Site-Request-Forgery	earlier,	and	how	Rails	takes	measures	to	protect	our
site	from	basic	attacks.	csrf_meta_tags	is	one	of	those	measures,	as	it	creates	a	couple	of	meta
tags	that	hold	the	parameter	name	and	value	for	the	authenticity	token	in	our	forms:

<%=	csrf_meta_tags	%>

																								

This	line	is	the	point	at	which	the	content	for	our	specific	view	is	displayed:

<%=	yield	%>

																								

Telling	our	 layout	 to	"yield"	might	not	seem	intuitive	here,	but	 it	does	actually	make	sense.
Let	me	explain.

Remember	 that	our	 layout	will	be	used	by	many	different	view	 templates,	 each	of	which	 is
responsible	 for	 displaying	 the	 output	 of	 a	 specific	 action.	 When	 the	 layout	 receives	 the
command	yield,	 control	 is	handed	 to	 the	actual	 view	 template	being	 rendered—that	 is,	 the
layout	yields	to	the	view	template.	Once	that	template	has	been	rendered,	control	returns	to	the
layout,	and	rendering	is	resumed	for	the	rest	of	the	page.

Since	we've	linked	a	stylesheet,	we'd	better	make	use	of	it.

Adding	Some	Style
Let's	use	CSS	to	pretty	up	our	page.

CSS	Mastery	Not	Required

Fear	not	if	CSS	isn't	your	forte.	All	that's	required	for	this	project	is	to	type	out	the	CSS	rules
exactly	as	you	see	them—or,	even	better,	copy	and	paste	them	from	the	code	archive.	If	you're
interested	 in	 improving	your	CSS	 skills,	 a	 good	place	 to	 start	 is	with	Louis	Lazaris'	 book,
Jump	Start	CSS.

To	 apply	 a	 stylesheet	 to	 your	 application,	 open	 the	 file	 called	 application.css	 in	 the
appassetsstylesheets	folder	and	drop	in	the	following	code	after	the	comments	in	the	file:

appassetsstylesheets/application.css	(excerpt)

body	{

		background-color:	#666;

		margin:	15px	25px;

		font-family:	Helvetica,	Arial,	sans-serif;

}

p	{	margin:	0	}

input	{

		margin-bottom:	1em;

}

#content	{

		background-color:	#fff;

		border:	10px	solid	#ccc;

		padding:	10px	10px	20px	10px;

}

																								

Reload	 the	page	 in	your	browser.	You	should	see	a	slightly	prettier	version	of	 the	form,	as
shown	below.

https://www.sitepoint.com/premium/books/jump-start-css

Fully	functioning	form	styled	with	CSS

Excellent!	We	now	have	a	form	that	functions	correctly,	is	well	structured	under	the	hood,	and
looks	 good	 on	 the	 outside;	 however,	 our	 app	 is	 yet	 to	 deliver	 any	 feedback	 to	 the	 user	 to
confirm	whether	a	story	submission	was	successful.	Enter:	the	flash!

Enabling	User	Feedback	with	the	Flash

Yes,	you	read	that	correctly:	flash.

And	no,	we're	not	going	to	be	switching	to	Adobe's	Flash	technology	to	provide	submission
feedback.	The	flash	also	happens	to	be	the	name	for	the	internal	storage	container	(actually	a
kind	 of	 hash)	 that	Rails	 uses	 for	 temporary	 data.	 In	 this	 section,	we'll	 use	 the	 flash	 to	 pass
temporary	objects	between	actions.	We'll	then	apply	some	validation	to	the	data	that's	entered.

Adding	to	the	Flash
When	I	say	that	the	flash	is	used	to	store	temporary	items,	I'm	not	referring	to	items	that	exist
in	memory	only	without	 being	 saved	 to	 the	database.	 Items	 stored	 in	 the	 flash	 exist	 for	 the
duration	of	one	sole	request,	and	then	they're	gone.

What	 good	 is	 that?	 Well,	 using	 the	 flash	 allows	 us	 the	 convenience	 of	 communicating
information	 between	 successive	 actions	 without	 having	 to	 save	 information	 in	 the	 user's
browser	 or	 database.	 The	 flash	 is	 well	 positioned	 to	 store	 short	 status	 messages,	 such	 as

notifications	that	inform	the	user	whether	a	form	submission	or	login	attempt	was	successful.

Flash	 content	 is	 usually	 populated	 from	within	 a	 controller	 action.	Using	 the	 flash	 is	 very
easy;	 to	 place	 a	 message	 in	 the	 flash,	 simply	 pass	 it	 an	 identifying	 symbol	 and	 a
corresponding	message.	Here's	an	example:

flash[:error]	=	'Login	unsuccessful.'

																								

In	our	story-sharing	application,	we	want	to	place	a	message	into	the	flash	immediately	after
the	story	is	saved	to	confirm	to	the	user	that	the	submission	was	successful.	Add	the	following
line	to	the	create	action	of	your	StoriesController:

def	create

		@story	=	Story.new(story_params)

		@story.save

		flash[:notice]	=	'Story	submission	succeeded'

		redirect_to	stories_path

end

																								

Flash	Naming	Conventions

In	general,	Rails	applications	use	conventions	named	after	common	UNIX	logging	levels	to
indicate	a	message's	 level	of	severity.	The	common	area	names	are	:notice,	:warning,	and
:error.

As	the	message	is	not	critical	in	this	case,	we'll	use	:notice;	however,	the	name	of	the	flash
area	is	entirely	up	to	you.

Retrieving	Data	from	the	Flash
To	 retrieve	contents	 from	 the	 flash	 (usually	done	 in	 the	 successive	action),	 access	 the	 flash
from	a	view	in	the	same	way	that	you	would	access	any	other	hash	in	Rails.	There's	no	need	to
explicitly	populate	it	in	the	controller,	nor	purge	the	Flash	once	the	view	has	been	rendered—
Rails	takes	care	of	this	for	you.

Since	 flash	 content	 is	 universally	 applicable,	 we'll	 change	 our	 layout	 file	 (located	 at
app/views/layouts/application.html.erb)	 so	 that	 it	 renders	 a	notification	box	as	 long	as
there's	content	to	render.	Modify	your	layout	file	as	follows:

app/views/layouts/application.html.erb	(excerpt)

<div	id="content">

		<h1>Readit</h1>

		<%	unless	flash[:notice].blank?	%>

				<div	id="notification"><%=	flash[:notice]	%></div>

		<%	end	%>

		<%=	yield	%>

</div>

																								

The	condition	that	we've	added	here	checks	whether	the	flash[:notice]	variable	is	blank;	if
not,	the	code	renders	a	simple	HTML	div	element	to	which	an	id	is	attached.	Rails	considers
an	object	to	be	blank	if	it's	either	nil	or	an	empty	string.

Before	we	switch	to	the	browser	to	test	this	addition,	let's	add	a	few	rules	to	our	stylesheet	to
display	our	notification:

appassetsstylesheets/application.css	(excerpt)

#notification	{

		border:	5px	solid	#9c9;

		background-color:	#cfc;

		padding:	5px;

		margin:	10px	0;

}

																								

If	 you	 submit	 another	 story	 now,	 you	 should	 see	 a	 nice	 green	 box	 on	 the	 subsequent	 page
informing	you	that	the	submission	succeeded	as	shown	here.

Green	signals	success	with	flash

If	you're	curious,	reload	the	landing	page	to	make	sure	the	contents	of	the	flash	disappear.

Our	 form	 submission	 process,	 however,	 is	 still	 flawed;	 it's	 possible	 for	 a	 user	 to	 submit
stories	without	entering	a	name,	or	a	link,	or	both!

Applying	Validations
To	ensure	that	all	the	stories	submitted	to	Readit	contain	both	a	name	and	a	link	before	they're
saved,	we'll	make	use	of	the	ActiveRecord	functionality	called	validations.

Validations	come	in	a	variety	of	flavors:	the	simplest	flavor	says	“Check	that	this	attribute	(or
form	input)	is	not	empty.”	A	more	complex	validation,	for	example,	might	be	“Make	sure	this
attribute	(or	form	input)	matches	the	following	regular	expression.”A	regular	expression	is	a
string	 of	 characters	 that	 can	 be	 used	 to	 match	 another	 string	 of	 characters.	 The	 syntax	 of
regular	expressions	can	be	confusing,	with	particularly	long	expressions	looking	much	like
random	characters	 to	 a	 newcomer	 to	 the	 syntax.	One	 of	 the	most	 common	uses	 of	 regular
expressions	is	validating	whether	or	not	an	email	address	is	in	the	correct	format.	There	are
varying	 degrees	 of	 complexity	 in	 between.	A	more	 involved	 validation	might	 be	 used,	 for
example,	to	validate	an	email	address.

Validations	are	defined	 in	 the	model.	This	ensures	 that	 the	validation	 is	always	applied,	and
that	an	object	is	always	valid	before	its	data	is	saved	to	the	database.

Let's	look	at	a	simple	validation.	To	add	validations	to	our	Story	model,	edit	the	model	class
in	app/models/story.rb	so	that	it	looks	like	this:

app/models/story.rb

class	Story	<	ApplicationRecord

		validates	:name,	:link,	presence:	true

end

																								

You'll	note	that	the	line	we've	added	here	is	fairly	verbose,	so	it's	quite	readable	by	humans.
This	line	ensures	that	the	name	and	link	attributes	have	a	value	before	the	model	is	saved.

Tweaking	the	Redirection	Logic
We	want	to	ensure	that	the	user	will	only	be	redirected	to	the	story	list	if	the	model	passes	its
validation	checks.	To	do	so,	we	must	modify	the	create	action	in	our	controller	as	follows:

app/controllers/stories_controller.rb	(excerpt)

def	create

		@story	=	Story.new(story_params)

		if	@story.save

				flash[:notice]	=	"Story	submission	succeeded"

				redirect_to	stories_path

		else

				render	action:'new'

		end

end

																								

As	you	can	see,	we've	added	an	if	clause	so	that	it	checks	to	see	whether	@story.save	returns
true.

The	 validations	 we	 defined	 will	 be	 called	 before	 the	 save	 method	 writes	 the	 object	 to	 the
database.	 If	 the	validations	 fail,	 this	method	will	 return	false—the	object	will	not	be	saved,
and	the	user	will	not	be	redirected.

It's	quite	common	 to	use	Ruby	statements	directly	within	conditions,	as	we've	done	with	 the
save	method	here.	In	general,	many	of	the	methods	provided	by	the	Rails	core	classes	return
true	or	false,	making	them	an	excellent	choice	for	use	in	conditions.

In	 the	 else	 part	we	 instruct	 the	 controller	 to	 rerender	 the	 template	 associated	with	 the	 new
action,	 which	 is	 our	 story	 submission	 form.	 This	 enables	 the	 user	 to	 correct	 his	 or	 her
submission	and	resubmit	without	reentering	the	form	values.	Please	note	that	the	render	call
does	not	execute	any	of	the	controller	code	associated	with	the	new	action.

Fantastic!	Our	 logic	 for	processing	 the	 form	 is	 sound.	 If	you	were	 to	 try	 to	submit	a	blank
name	or	link	now,	our	app	would	not	allow	the	object	to	be	saved	nor	the	redirect	to	occur,
and	 the	 form	 would	 be	 rerendered;	 however,	 the	 user	 still	 requires	 some	 guidance	 for
correcting	any	errors	that	result	from	a	failed	validation.

Improving	the	User	Experience
The	generated	HTML	of	the	rerendered	form	provides	a	hint	as	to	how	we	might	implement
additional	feedback	for	the	user	when	a	validation	error	occurs:

<div	class="field_with_errors">

		<label	for="story_link">Link</label>

</div>

<div	class="field_with_errors">

		<input	type="text"	value=""	name="story[link]"	id="story_link">

</div>

																								

As	you	can	see,	using	the	Rails	form_for	helper	has	paid	off.	It	has	wrapped	our	label	and	text
field	in	div	elements,	and	assigned	them	a	class	called	field_with_errors.	It	has	also	given
them	a	custom	style,	making	the	background	red	to	indicate	an	error.	We	could	override	this
if	we	wanted	to,	so	let's	do	that.	Add	the	following	rule	to	the	application.css	file:

app.assets/stylesheets/example.css/application.css	(excerpt)

.field_with_errors	{

		color:	red;

		background:	transparent;

}

.field_with_errors	input	{

		border:	thin	solid	red;

}

																								

The	helper's	other	neat	trick	is	that	it	populates	each	field	with	values	that	the	user	entered	in
the	previous	submission,	as	shown	below.

Showing	errors	to	the	user

It's	also	good	practice	to	tell	our	users	what	exactly	is	wrong	with	a	particular	field.	Further
along,	we	may	want	 to	add	a	validation	 to	our	model	 to	ensure	 that	 each	URL	 is	 submitted
only	once.

Add	the	following	line	to	the	top	of	the	new.html.erb	template	(above	the	form_for	call):

apps/views/stories/new.html.erb	(excerpt)

<%	if	@story.errors.any?	%>

		<div	class="form_errors">

				<h3>Errors</h3>

				

						<%	@story.errors.full_messages.each	do	|message|	%>

								<%=	message	%>

						<%	end	%>

				

		</div>

<%	end	%>

																								

Then	add	a	CSS	rule	for	our	form_errors	into	appassetsstylesheets/application.css:

.form_errors	{	color:	red	}

																								

Now	 if	 a	 user	 submits	 the	 form	without	 entering	 content	 into	 every	 field,	 the	 browser	will
display:
	

a	useful	error	message	that	indicates	how	many	fields	are	blank
some	textual	hints	as	to	the	nature	of	the	error	for	each	field
a	red	border	that	clearly	highlights	which	fields	need	attention

See	Figure	6-18	for	an	example.

Story	submission	form	with	validation

A	fairly	functional	form	submission	process,	no?	And	it	doesn't	look	too	shabby,	either.

Before	we	begin	 loading	our	application	with	additional	 features,	we	should	add	some	unit
and	functional	test	coverage.	This	will	ensure	that	future	modifications	don't	break	any	of	our
existing	functionality.

Testing	the	Form

Making	a	habit	of	writing	tests	for	newly	added	code	is	more	than	just	a	good	idea—it	may
save	your	hide	in	the	future!

As	 I've	mentioned	 before,	 by	writing	 tests	 for	all	 of	 your	 code,	 you	 can	 evolve	 a	 suite	 of
automated	testing	facilities	as	your	application	evolves.	This	suite	can	then	be	run	periodically
or	on	demand	to	reveal	any	errors	in	your	application.

A	Rails	test	suite	can	be	split	into	three	fundamental	parts:
	

Unit	tests-also	called	model	tests-cover	model-level	functionality,	which	for	simple	apps
can	 encompass	 an	 application's	 core	 business	 logic.	 Unit	 tests	 can	 test	 validations,
associations	(which	we'll	cover	 in	Chapter	7),	and	generic	methods	 that	are	attached	 to
models.
Functional	 tests-also	called	controller	 tests-cover	controller-level	 functionality	and	 the
accompanying	views.	A	functional	test	can	be	quite	specific;	ensuring,	for	example,	that	a
certain	HTML	element	is	present	in	a	view,	that	a	variable	is	populated	properly,	or	that
the	proper	redirection	takes	place	after	a	form	has	been	submitted.	Functional	testing	of
controllers	has	fallen	out	of	favor	and	given	way	to	integration	testing.
Integration	 tests	 go	 beyond	 the	 relatively	 isolated	 approaches	 of	 functional	 and	 unit
testing.	An	 integration	 test	 allows	 you	 to	 test	 complete	 stages	 of	 user	 interaction	with
your	application.	The	registration	of	a	new	user,	and	the	story	submission	process	as	a
whole,	are	good	candidates	for	integration	testing.

We'll	look	at	functional	and	unit	testing	in	this	chapter	and	cover	integration	testing	in	Chapter
11.

Generally	 speaking,	 test	 cases	 in	 Rails	 exist	 as	 classes	 that	 descend	 from
ActiveSupport::TestCase;	 however,	 when	 we	 generated	 our	 models	 and	 controllers	 in
Chapter	5,	the	generate	command	created	some	skeleton	files	for	us.	These	are	located	in	the
test	folder,	which	is	where	all	the	files	that	make	up	our	testing	suite	reside.

EXTRA	CREDIT:	Minitest	versus	RSpec

While	our	test	cases	do	inherit	from	ActiveSupport::TestCase,	they	are	really	subclasses	of
Minitest::Test.	 Minitest	 is	 the	 default	 testing	 framework	 for	 Rails,	 but	 many	 people	 use
other	frameworks,	such	as	RSpec.	Your	extra	credit?	Do	a	bit	of	searching	around	the	web	on
Minitest	and	RSpec.

Testing	the	Model

While	 our	Story	model	 is	 still	 yet	 to	 have	 a	 great	 deal	 of	 functionality,	 it	 does	 have	 some
validations,	and	we	should	definitely	make	sure	that	they	operate	as	expected.	We'll	add	them
to	 the	 skeleton	 test	 file,	 then	 run	 the	 test	 to	 confirm	 that	 our	 validations	 are	 behaving
themselves!

Analyzing	the	Skeleton	File
The	 skeleton	 test	 file	 for	 our	Story	model	 is	 located	 at	test/models/story_test.rb.	 Upon
opening	it,	you	should	see	the	following	code:

require	'test_helper'

class	StoryTest	<	ActiveSupport::TestCase

		#	test	"the	truth"	do

		#			assert	true

		#	end

end

																								

That	first	line	aside,	what	we	have	here	is	a	basic	class	definition	by	the	name	of	StoryTest.
The	 name	 of	 this	 class,	 which	 was	 created	 when	 the	 file	 was	 generated,	 suggests	 that	 its
purpose	is	for	testing	our	Story	model—and	so	it	is.

The	require	command	at	the	top	of	the	file	is	a	simple	example	of	one	file	gaining	access	to
the	functionality	of	another	file;	the	external	file	in	such	arrangements	is	known	as	an	include
file.	By	including	this	file,	we	gain	access	to	a	large	amount	of	testing-related	functionality.

Of	 course,	 Rails	 includes	 other	 files	 all	 the	 time,	 but	 we	 don't	 see	 dozens	 of	 require
commands	littered	throughout	our	code.	Why	not?	The	Rails	conventions	allow	it	to	autoload
many	files	by	deducing	what	is	needed,	when	it's	needed,	and	where	it	can	be	found.	This	is
another	reason	why	following	Rails	conventions	is	so	important.

Using	Assertions
Code	is	tested	in	Rails	using	assertions.	Assertions	are	tiny	functions	that	confirm	that	an	item
is	 in	 a	 certain	 state.	 A	 simple	 assertion	may	 just	 compare	 two	 values	 to	 check	 that	 they're

identical.	A	more	complex	assertion	may	match	a	value	against	a	regular	expression,	or	scan
an	HTML	template	for	the	presence	of	a	certain	HTML	element.	We'll	look	at	various	types	of
assertions	in	this	section.

Once	written,	assertions	are	grouped	into	tests	(of	assertions).	A	test	is	an	instance	method	that
is	prefixed	with	test_.	An	example	of	a	 test	 is	 the	test_truth	method	 in	 the	previous	code
listing.	 These	 tests	 are	 executed	 one	 by	 one	 via	 the	 rails	 test	 command.	 If	 one	 of	 the
assertions	in	a	test	fails,	the	test	is	immediately	aborted	and	the	test	suite	moves	on	to	the	next
test.

Now	that	we	know	what	assertions	are	and	how	they	work,	let's	write	one!

Writing	a	Unit	Test
The	test	"the	truth"	test	in	our	unit	test	file	is	just	a	stub	that	was	created	by	the	generate
command.	Let's	replace	it	with	a	real	test:

test/models/story_test.rb	(excerpt)

test	"is	not	valid	without	a	name"	do

		s	=	Story.create(

				name:	nil,

				link:	'http://www.testsubmission.com/'

)

		assert	s.errors[:name].any?

		refute	s.valid?

end

																								

A	Choice	of	Syntaxes	for	Testing

It's	worth	noting	that	you	can	write	Minitest	tests	using	a	couple	of	different	syntaxes.	The	first
one	uses	the	test	method	and	a	block	that	runs	your	tests	and	assertions.	This	is	the	syntax	I
prefer	and	am	using.	The	other	syntax	involves	using	a	method	with	a	test_	prefixed	name,
such	 as	test_is_not_valid_without_a_name.	 So,	 the	 second	 syntax	 for	 the	 aforementioned
test	is:

def	test_is_not_valid_without_a_name

		s	=	Story.create(

				name:	nil,

				link:	'http://www.testsubmission.com/'

)

		assert	s.errors[:name].any?

		refute	s.valid?

end

																								

Pick	whichever	you	like,	or	use	both.	The	test	world	is	your	oyster.

The	test	method	allows	us	to	use	a	descriptive	string	to	specify	what	we	are	testing	here.	As
you	may	have	guessed,	 this	method	will	 test	 the	validation	of	 the	name.	Let's	 examine	each
line	within	the	method:

s	=	Story.create(

		name:	nil,

		link:	'http://www.testsubmission.com/'

)

																								

This	 line	creates	a	new	Story	 object—a	 task	 that	we	might	perform	 in	a	 regular	 controller
action.	 Note,	 however,	 that	 this	 time	we've	 purposely	 left	 the	 required	 name	 attribute	 blank
(nil).	As	the	create	method	will	attempt	to	save	the	new	object	immediately,	the	validations
that	we	defined	in	the	model	will	be	checked	at	the	same	time.	At	this	point,	we	can	check	the
result	of	the	validation	by	reading	the	errors	attribute	of	our	newly	created	object.

assert	s.errors[:name].any?

																								

Every	model	 object	 in	Rails	 has	 an	errors	 attribute,	which	 acts	 like	 a	Hash.	 This	 attribute
contains	the	results	of	any	validations	that	have	been	applied	to	it.	If	the	validation	failed,	the
errors	 attribute	will	 have	 a	 key	 for	 that	 attribute.	 In	 this	 case,	we	deliberately	 left	 the	name
attribute	 empty;	passing	 the	 symbol	:name	 to	errors[]	 to	 test	 for	any?	 error	 entries	 on	 the
name	attribute	should	therefore	return	true,	and	our	assert	statement	confirms	it.

refute	s.valid?

																								

Simply	 put,	 refute	 is	 the	 opposite	 of	 assert.	 Calling	 valid?	 on	 a	 model	 will	 run	 the
validations	and	return	true	if	they	all	pass	or	false	if	they	don't.

Errors	and	ActiveModel	Errors

I	 said	 that	 the	 errors	 attribute	 acts	 like	 a	 hash,	 which	 implies	 that	 it's	 not	 a	 hash.	 That's
because	it	isn't.	It's	an	ActiveModel::Errors.	Feel	free	to	do	some	more	research	on	what	that
is.

The	name	attribute	 is	not	 the	only	required	attribute	 for	our	Story	model,	 though—the	link
attribute	must	be	assigned	a	value	before	a	story	can	be	saved.	We've	already	added	one	test,
so	adding	a	second	should	be	straightforward.	Let's	add	a	test	that	covers	the	validation	of	the
link	attribute:

test/models/story_test.rb	(excerpt)

test	"is	not	valid	without	a	link"	do

		s	=	Story.create(name:	'My	test	submission',	link:	nil)

		assert	s.errors[:link].any?

		refute	s.valid?

end

																								

Easy,	huh?

Lastly,	 to	complete	our	 first	batch	of	 tests,	we'll	add	a	 test	 that	checks	whether	a	new	Story
object	 can	 be	 successfully	 created	 and	 saved	 when	 being	 instantiated	 with	 all	 the	 required
attributes,	thereby	passing	all	of	our	validations:

test/models/story_test.rb	(excerpt)

test	"is	valid	with	required	attributes"	do

		s	=	Story.create(

				name:	'My	test	submission',

				link:	'http://www.testsubmission.com/')

		assert	s.valid?

end

																								

In	this	 test,	a	new	Story	object	 is	created,	and	all	mandatory	attributes	are	assigned	a	value.
The	assertion	then	confirms	that	the	created	object	has	indeed	passed	all	validations	by	calling
its	valid?	method.

Running	Model	Tests
With	 the	 testing	code	 in	place,	 let's	 run	our	small	unit	 test	 suite.	From	 the	applications	 root
folder,	execute	the	following	command:

$	rails	test:models

																								

Ensure	the	Test	Database	is	Set	Up

If	you	get	an	error	that	says	"Migrations	are	pending",	be	sure	to	set	up	your	test	database	by
running

rails	db:migrate	RAILS_ENV=test

																								

before	running	the	tests.

This	command	will	execute	all	the	test	cases	located	in	the	test/models	folder	one	by	one,	and
alert	us	to	any	assertions	that	fail.	The	output	of	a	successful	test	execution	should	look	a	little
like:

$	rails	test:models

Run	options:	--seed	5658

#	Running:

...

Finished	in	0.026414s,	113.5773	runs/s,	189.2955	assertions/s.

3	runs,	5	assertions,	0	failures,	0	errors,	0	skips

																								

As	you	can	see,	rails	gives	us	a	nice	summary	of	our	test	execution.	The	results	suggest	that
a	total	of	three	test	cases	and	five	assertions	were	executed,	which	is	exactly	what	our	test	suite
contains	at	the	moment.

You'll	notice	some	dots	between	the	"Running"	and	the	"Finished"	lines	of	the	test	suite	output:
one	dot	 for	each	 test	passed.	Whenever	an	assertion	fails,	an	uppercase	F	will	be	displayed,
and	 if	 one	 of	 your	 tests	 contains	 an	 error,	 an	 uppercase	 E	 will	 be	 displayed,	 followed	 by
details	of	the	error	that	occurred.

Instead	of	boldly	assuming	that	our	tests	work	correctly,	let's	change	one	so	that	we	know	it's
going	to	fail.	In	our	test	"is	required	with	valid	attributes"	 test,	modify	the	last	line
so	that	its	output	is	reversed:

assert	!s.valid?

																								

Save	the	file	and	run	the	unit	testing	suite	again:

$	rails	test:models

Run	options:	--seed	53603

#	Running:

F..

Finished	in	0.022360s,	134.1698	runs/s,	223.6163	assertions/s.

		1)	Failure:

StoryTest#test_is_valid_with_required_attributes	

[/Users/ggoodrich/projects/sitepoint/readit/test/models/story_test.rb:23]:

Failed	assertion,	no	message	given.

3	runs,	5	assertions,	1	failures,	0	errors,	0	skips

																								

The	 output	 now	 displays	 an	 F,	 indicating	 a	 test	 failure,	 along	 with	 a	 description	 of	 the
assertions	that	may	have	caused	the	test	to	fail.

Armed	with	 this	 information,	 locating	 and	 fixing	 an	 error	 unit	 test	 is	 easy.	We're	 provided
with	 the	 name	 of	 the	 test	 that	 failed	 (test_is_valid_with_required_attributes),	 the	 test
case	 to	 which	 it	 belongs	 (StoryTest),	 and	 the	 line	 on	 which	 it	 failed	 (line	 23).	 Thus,	 the
(admittedly	forged)	culprit	is	easily	located	and	fixed.

For	 now,	 undo	 the	 change	 you	 made	 to	 the	 last	 line	 of	 test	 "is	 required	 with	 valid
attributes",	so	that	the	test	will	again	pass:

assert	s.valid?

																								

That's	 it—we've	 tested	 the	 model.	 We'll	 add	 more	 tests	 in	 later	 chapters	 as	 we	 add	 more
functionality	to	the	model.

Testing	the	Controller

The	 testing	 of	 controllers	 is,	 at	 first	 glance,	 fairly	 similar	 to	 testing	 models—it's	 just	 a
different	 part	 of	 the	 MVC	 stack;	 however,	 there	 is	 some	 extra	 housekeeping	 involved	 in
setting	up	the	environment	properly.

Analyzing	the	Skeleton	File
Once	 again,	 a	 skeleton	 integration	 test	 was	 created	 as	 a	 result	 of	 our	 generating	 the
StoriesController.	 This	 skeleton	 file	 resides	 in
test/controllers/stories_controller_test.rb:

require	'test_helper'

class	StoriesControllerTest	<	ActionDispatch::IntegrationTest

		test	"should	get	index"	do

				get	stories_index_url

				assert_response	:success

		end

end

																								

On	first	inspection,	this	looks	similar	to	the	StoryTest	class	from	the	previous	section.	Here,
however,	the	example	test	is	being	useful:	it's	actually	running	the	action	and	ensuring	that	it
returns	a	:success.

Writing	a	Controller	Test
Let's	modify	that	first	test	for	our	StoriesController	by	adding	the	following	code:

test	"should	get	index"	do

		get	stories_url

		assert_response	:success

end

																								

We'll	now	look	at	each	line	in	this	test:

test	"should	get	index"	do

																								

As	you	may	have	deduced	from	the	name	of	the	test,	we're	checking	that	the	index	action	 is
correctly	displayed	in	the	user's	browser	when	the	/index	path	is	requested.

The	next	line	simulates	a	user	requesting	the	index	action	of	the	StoriesController	class:

get	stories_url

																								

It	 uses	 the	HTTP	 request	method	 GET;	 similarly,	 the	methods	 post,	 put,	 patch,	 and	 delete
exist	for	testing	actions	requiring	that	respective	HTTP	verb.	Also,	we	use	Rails	route	helpers
(stories_url)	to	grab	the	correct	URL	when	running	the	test.

The	assert_response	assertion	checks	that	the	HTTP	response	code	we	receive	is	the	code	we
expect:A	 complete	 list	 of	 HTTP	 response	 codes	 can	 be	 found	 at
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

assert_response	:success

																								

HTTP	Code	Aliases

As	 HTTP	 codes	 are	 numeric,	 they're	 sometimes	 hard	 to	 remember.	 As	 a	 result,	 Rails	 has
implemented	 a	 few	 aliases	 for	 the	 more	 common	 codes.	 In	 this	 example	 we've	 used	 the
:success	symbol,	which	maps	internally	to	the	200	OK	 response	code	that's	returned	when	a
page	request	is	successful.	Other	mappings	that	can	be	used	with	the	assert_response	function
include	:redirect	for	HTTP	redirect	headers	and	:missing	for	the	all-too-common	404	Not
Found	error	when	there's	a	request	for	a	file	that	doesn't	exist.	Oh,	and	here	they	are	correlated
to	cats.

We	also	need	fixtures	for	this	test.	Fixtures	in	controller	tests	are	dummy	model	objects	that
provide	 a	 consistent	 data	 set	 against	which	 our	 tests	 can	 run.	 Fixtures	 are	model	 based,	 so

https://http.cat/

there's	 a	 fixture	 file	 for	 every	model	 class	 in	 our	 application.	 By	 default,	 Rails	 makes	 all
YAML	 files	 stored	 in	 test/fixtures/	 available	 to	 our	 tests,	 so	 there's	 no	 requirement	 to
specify	explicitly	which	fixtures	we	want	to	load	for	each	test.

Running	a	Controller	Test
Now	that	we've	created	our	test	case,	we	can	invoke	the	controller	test	suite.	Once	again,	we
turn	to	the	trusty	rails	tool	to	execute	controller	tests:

$	rails	test:controllers	

																								

Here's	the	output	that	results	from	the	successful	execution	of	our	test	suite:

$	rails	test:controllers

Run	options:	--seed	30514

#	Running:

.

Finished	in	0.254726s,	3.9258	runs/s,	11.7774	assertions/s.

1	runs,	3	assertions,	0	failures,	0	errors,	0	skips

																								

Writing	More	Controller	Tests
There	 are	 two	 actions	 for	which	we	 are	 yet	 to	write	 a	 test:	 the	new	 and	create	 actions.	We
should	create	a	few	different	tests	for	these	actions.	Let's	do	that	now.

For	the	purpose	of	testing	the	inner	workings	of	our	new	action	in	GET	mode,	we'll	use	a	test
case	that	we'll	name	test	"should	get	new".	Add	the	following	method	below	the	index	test
that	we	created	previously:

test	"should	get	new"	do

		get	:new

		assert_response	:success

		assert_template	'new'

		assert_not_nil	assigns(:story)

end

																								

Apart	 from	 a	 few	 textual	 differences,	 this	 test	 is	 almost	 identical	 to	 what	 we	 did	 for	 test
"should	get	index";	however,	our	work	isn't	done	yet!

There's	 a	 form	 element	 in	 the	 new	 template,	 so	 we	 should	 certainly	 test	 that	 it	 appears
correctly.	Here's	another	test	to	do	just	that:

test/controllers/stories_controler_test.rb	(excerpt)

test	"new	shows	new	form"	do

		get	new_story_path

		assert_select	'form	div',	count:	2

end

																								

This	 test	 starts	with	another	get	 request,	but	 this	 time	 to	 the	new_story_path.	 This	merits	 a
brief	sidenote	on	the	Rails	route	helpers.

The	 route	 helpers	 come	 in	 two	 flavors:	_url	 and	_path.	 The	 former	 (_url)	 is	 an	absolute
path,	meaning	it	includes	the	protocol	(like	http://)	and	the	domain	(like	example.com).	The
_path	helpers	are	relative,	meaning,	it	includes	just	the	path,	which	is	the	bit	after	the	domain,
like	storiesnew.	I	prefer	the	_path	helpers	for	these	tests,	but	it's	only	a	preference.

The	 assert_select	 helper	 assertion	 used	 here	 is	 a	 very	 flexible	 and	 powerful	 tool	 for
verifying	 that	 a	 certain	 HTML	 element	 is	 present	 in	 a	 document	 returned	 from	 a	 request.
assert_select	can	even	verify	the	hierarchy	of	the	HTML	element,	regardless	of	how	deeply
it's	nested.	It	can	also	test	the	element's	attributes:	for	example,	the	value	of	its	class	or	id.	In
fact,	it's	so	flexible	that	we	could	potentially	devote	an	entire	chapter	to	its	features	alone.

But	now	we're	getting	sidetracked.	Back	to	this	line!	assert_select	checks	for	the	existence	of
one	form	element	in	which	two	div	elements	are	nested;	the	count	is	supplied	using	the	:count
argument.	These	three	paragraphs	contain	the	fields	that	comprise	our	story	submission	form.

How	do	we	specify	an	element	in	this	hierarchy?	Easy:	by	following	the	simple	rules	of	CSS
selectors.

In	this	example,	we	want	to	reference	a	div	element	that	resides	within	a	form	element.	Now,	if
we	were	writing	a	CSS	rule	to	style	these	elements	in	bold,	it	would	look	like	this:

form	div	{

		font-weight:	bold;

}

																								

In	 the	 same	 way	 that	 we	 reference	 paragraphs	 in	 CSS,	 the	 parameter	 that	 we	 use	 with
assert_select	assertion	is	simply	'form	div'.	We'll	look	at	a	few	more	of	the	CSS	selector
features	of	assert_select	in	the	tests	we	write	in	later	chapters.

Lastly,	 to	 test	 the	 posting	 of	 a	 new	 story,	we'll	write	 a	 few	more	 short	 tests	 for	 the	create
action:

test/controllers/stories_controler_test.rb	(excerpt)

test	"adds	a	story"	do

		assert_difference	"Story.count"	do

				post	stories_path,	params:	{

						story:	{

								name:	'test	story',

								link:	'http://www.test.com/'

						}

				}

		end

		assert_redirected_to	stories_path

		assert_not_nil	flash[:notice]

end

																								

Let's	break	this	test	down	line	by	line.

The	test	uses	the	assert_difference	before-and-after	check	to	confirm	that	this	action,	which
is	supposed	to	modify	data,	is	indeed	doing	its	job.	The	first	line	sets	up	the	count	we	want	to
check	for	the	test	block:

assert_difference	"Story.count"	do

																								

assert_difference	 will	 confirm	 that	 the	 story	 we	 submitted	 was	 created	 successfully,	 by
counting	the	number	of	stories	before	and	after	the	code	in	the	block	is	run,	and	subtracting
the	difference.	It	defaults	to	checking	for	a	difference	of	1.

As	 I	 mentioned	 earlier	 in	 the	 chapter,	 post	 is	 another	 way	 to	 invoke	 an	 HTTP	 request
programmatically	from	a	test:

post	stories_path,	params:	{

		story:	{

				name:	'test	story',

				link:	'http://www.test.com/'

		}

}

																								

post	takes	a	few	parameters—in	this	case,	we're	simulating	the	submission	of	a	story.	To	do
this,	 we	 pass	 a	 hash	 of	 params	 that	 contains	 values	 for	 the	 required	 attributes	 of	 a	 story:
symbols	representing	the	name	and	link	attributes.

When	a	story	submission	has	been	successful,	our	application	issues	a	redirection.	We	can	test
that	this	redirection	occurs	using	assert_redirected_to:

assert_redirected_to	stories_path

																								

Lastly,	we	assert	that	the	contents	of	the	notice	flash	area	is	not	nil:

assert_not_nil	flash[:notice]

																								

Whew!	Our	rapidly	expanding	test	suite	is	evolving	to	the	point	where	we	can	be	confident	the
story	submission	process	is	functioning	correctly.

The	final	test	case	we'll	add	covers	the	scenario	in	which	posting	a	new	story	fails.	We'll	cause
the	submission	to	fail	by	omitting	one	of	the	required	fields:

test/controllers/stories_controler_test.rb	(excerpt)

test	"rejects	when	missing	story	attribute"	do

		assert_no_difference	"Story.count"	do

				post	stories_path,	params:	{

						story:	{	name:	'story	without	a	link'	}

								}

		end

end

																								

In	the	first	line	of	this	code,	we	attempt	to	post	a	story	without	a	link:

post	stories_path,	params:	{

		story:	{	name:	'story	without	a	link'	}

}

																								

That's	it!	We've	written	all	the	tests	we	need	for	the	time	being.	Now,	let's	run	the	suite.

Running	the	Complete	Test	Suite
Now	that	we	have	these	additional	tests	in	place,	we	have	to	run	all	our	tests	again.	This	time,
we'll	 use	 a	 slightly	 different	 approach:	 instead	 of	 invoking	 our	model	 and	 controller	 tests
separately,	we'll	use	a	rails	task	to	run	these	test	suites	in	succession:

$	rails	test

																								

The	output	of	a	successful	test	run	should	look	like:

$	rails	test

Run	options:	--seed	26531

#	Running:

........

Finished	in	0.310305s,	25.7811	runs/s,	54.7848	assertions/s.

7	runs,	13	assertions,	0	failures,	0	errors,	0	skips

																								

Congratulations!	Not	only	have	you	created	a	full	test	suite,	but	you've	found	upon	running	it
that	 your	 application	 is	 error-free—a	 discovery	 that	 should	 earn	 even	 the	 most	 seasoned
developer	 a	 self-pat	 on	 the	 back.	 To	 finish	 up,	 let's	 turn	 our	 thoughts	 to	 the	 application's
performance	as	we	inspect	the	log	files	generated	by	ActionPack.

Visiting	the	Logs

We	talked	briefly	about	logs	when	we	looked	at	the	structure	of	a	Rails	application.	You'll	be
glad	to	learn	that	ActionPack	is	a	prolific	logger,	with	a	full	record	of	user	activities	within
the	 application,	 complete	 with	 SQL	 statements,	 page	 redirections,	 page	 requests,	 templates
rendered,	time	taken,	and	more.

The	level	of	detail	in	Rails'	log	files	is	of	real	benefit	when	you're	hunting	down	a	problem
with	 your	 code—the	 logs	 provide	 insight	 into	 what's	 actually	 happening	 as	 a	 page	 is
requested.	The	same	level	of	detail	is	captured	for	unit	and	controller	tests	in	the	test	log	file,
which	is	located	in	log/test.log.

The	 timing	 values	 that	 are	 written	 to	 the	 log	 file	 are	 particularly	 interesting.	 Consider	 the
following	snippet:

(0.2ms)		begin	transaction

SQL	(0.6ms)		INSERT	INTO	"stories"	("name",	"link",	"created_at",	"updated_at")	VALUES	(?,	?,	?,	?)		[["name",	"Goodrichs.NET"],	["link",	"http://goodrichs.net"],	["created_at",	"2016-

03-20	16:54:50.285226"],	["updated_at",	"2016-03-20	16:54:50.285226"]]

	(0.6ms)		commit	transaction

Redirected	to	http://example.com/stories

																								

From	this	log	entry,	we	can	conclude	that:
	

0.6ms	(milliseconds)	were	burned	by	Rails	talking	to	the	database
the	whole	exercise	took	1ms

While	 this	 information	might	 seem	useless	 (after	all,	 it	only	 took	1	millisecond),	 there	will
definitely	come	a	time	when	performance	is	hurting	and	you	need	help	in	figuring	out	why.
Starting	with	the	logs	is	recommended.

We'll	skip	digging	any	deeper	into	the	logs	here,	but	be	aware	that	it's	worth	keeping	an	eye
on	your	 log	 files.	 Incidentally,	 this	 is	 the	 same	 information	 that	 has	 been	 flying	past	 in	 the
terminal	window	you	launched	your	web	server	from,	too.	This	is	another	way	that	you	can
check	your	application's	 log	entries	 in	 real	 time,	 although	you'll	probably	 find	using	a	 text
editor	more	practical.

We'll	revisit	the	log	files	once	more	when	we	reach	Chapter	11.

Summary

We	certainly	 increased	 the	 functionality	of	our	 application	 in	 this	 chapter;	we	even	made	 it
look	a	little	prettier.	We	used	the	Rails	form	helpers	to	create	a	fully	functional	web	interface
for	 submitting	 stories	 in	 a	RESTful	way,	 and	we	 added	 a	 global	 layout	 to	 our	 application,
complete	with	stylesheets.

Along	the	way,	we	looked	briefly	at	the	flash,	Rails's	short-term	memory	container	that	can	be
used	 to	 pass	 messages	 between	 successive	 actions.	 Some	 of	 the	 many	 ways	 that	 Rails'
conventions	 protect	 our	 site	 were	 explored,	 including	 strong	 parameters	 and	 CSRF
protection.	 We	 also	 added	 some	 validations	 to	 our	 Story	 model,	 to	 ensure	 that	 our	 story
submissions	adhere	to	our	own	high	standards—or	that,	at	the	very	least,	each	story	has	a	title
and	a	URL!

Finally,	we	wrote	our	first	unit	and	controller	test	cases,	which	we	used	to	automate	the	testing
of	our	models,	controllers,	and	views.	We	also	took	a	scroll	through	the	Rails	log	files	to	see
what	kind	of	logging	the	ActionPack	module	performs,	and	how	those	log	entries	are	useful
when	we	debug	our	application.

In	 the	 next	 chapter,	 we'll	 add	 the	 much	 anticipated	 voting	 feature	 to	 our	 story-sharing
application—and	we'll	do	it	using	cutting-edge	XHR	(XMLHttpRequest)	technology,	spiced	up
with	some	visual	effects.	Yes,	it's	going	to	be	one	good-looking	chapter!	On	with	the	show!

Chapter	7:	Ajax	and	Turbolinks
The	success	of	a	social	bookmarking	or	content-sharing	application	doesn't	rest	solely	on	the
submission	of	users'	stories;	 there	must	also	be	a	way	for	site	visitors	to	know	the	value	of
each	content	item.

Now,	in	the	world	of	social	bookmarking,	popular	opinion	rules.	That's	why	the	value	of	each
story	on	our	Readit	site	will	be	gauged	by	its	popularity–indicated	by	votes	the	story	receives
from	Readit	users.

In	 this	 chapter,	we'll	 expand	 the	 feature	 set	 of	 our	 story-sharing	 application	 to	 include	 this
crucial	 voting	 functionality.	 And,	 as	 you	 might	 expect,	 Rails	 comes	 with	 some	 client-side
technology	 to	 make	 this	 a	 good	 user	 experience.	 We'll	 also	 cover	 what's	 known	 as
"Turbolinks,"	as	well	as	 the	JavaScript	 library	 that	comes	with	Rails–jQuery–in	 the	coming
pages.

Generating	a	Vote	Model

At	 the	 core	 of	 our	 app's	 voting	 functionality	 lies	 a	 data	model—a	 Vote—which	 we'll	 now
create.	 Once	 that's	 in	 place,	 we'll	make	 the	 necessary	 changes	 to	 our	 database	 schema.	We
learned	how	to	do	this	using	migrations	in	Chapter	6,	so	there's	no	reason	to	return	to	the	old
ways	now!

Creating	the	Model
Using	the	rails	generate	command	(you	should	be	reasonably	at	home	with	 this	by	now),
let's	add	a	new	model	to	our	application:

$	rails	generate	model	Vote	story_id:integer

Running	via	Spring	preloader	in	process	65396

		invoke		active_record

		create				db/migrate/20160403175119_create_votes.rb

		create				app/models/vote.rb

		invoke				test_unit

		create						test/models/vote_test.rb

		create						test/fixtures/votes.yml

																								

Just	 like	 the	 last	 time	 we	 generated	 a	 new	 model,	 we	 gave	 the	 generate	 command	 some
insight	into	the	attributes	the	new	model	will	have,	which	we'll	explore	in	a	moment.	As	you
might	 expect,	 this	 command	 generates,	 among	 others,	 a	 new	 migration	 file:

db/migrate/20160403175119_create_votes.rb	 (remember,	 your	 file	 will	 have	 a	 slightly
different	name).	Let's	look	at	it	right	now.

Examining	the	Vote	Migration
The	migration	file	that	was	generated	for	us	contains	the	basic	code	to	create	a	votes	table	in
our	database.	Currently,	the	change	method	should	look	like	this:

db/vote/migrate/xxx_create_votes.rb

class	CreateVotes	<	ActiveRecord::Migration[5.0]

		def	change

				create_table	:votes	do	|t|

						t.integer	:story_id

						t.timestamps

				end

		end

end

																								

As	you	can	see,	we're	following	the	format	we	used	in	Chapter	5	to	create	the	schema,	but	this
time	the	column	types	are	different.	Let's	look	at	them	briefly:

t.integer	:story_id

																								

This	line	creates	a	story_id	column	of	type	integer.	It	will	be	used	to	store	the	numerical	ID
of	 a	 story	 that	 has	 received	 a	 vote	 from	 a	 user.	 The	 column	 will	 be	 populated	 using
associations,	which	we'll	talk	about	in	the	next	section.

Rails	 has	 a	 handful	 of	magical	 column	 names;	 two	 of	 the	most	 handy	 are	 created_at	 and
updated_at,	each	of	type	datetime.	Since	they're	so	useful,	Rails	has	a	shortcut	for	creating
those	 two	 columns	 in	 a	 migration.	 It	 even	 includes	 that	 shortcut	 by	 default	 every	 time	 we
create	a	new	migration:

t.timestamps

																								

Whenever	 a	 new	 model	 is	 saved	 to	 the	 database	 using	 the	 save	 method,	 Rails	 will
automatically	populate	the	column	called	created_at	with	the	current	date	and	time.

Its	 companion,	 updated_at,	 operates	 in	 a	 similar	 manner.	 It	 automatically	 populates	 the
column	with	the	current	date	and	time	of	any	successive	call	to	the	save	method,	although	we
won't	be	using	this	column	for	the	Vote	model.	(A	vote,	once	cast,	is	a	vote,	right?)

As	with	the	last	migration	we	created,	the	change	method	is	also	able	to	reverse	this	migration

by	simply	getting	rid	of	the	whole	table.

Applying	the	Migration
Our	migration	is	in	place,	so	let's	apply	it	using	the	rails	tool	once	more:

$	rails	db:migrate

Running	via	Spring	preloader	in	process	67380

==	20160403175119	CreateVotes:	migrating	======================================

--	create_table(:votes)

->	0.0013s

==	20160403175119	CreateVotes:	migrated	(0.0015s)	=============================

																								

Excellent!	Now,	I	suggest	you	sit	down	before	we	begin	the	next	topic,	because	matters	could
get	a	little	heavy.	It's	time	for	you	and	me	to	have	an	in-depth	talk	about	relationships.

Introducing	Relationships

Contrary	to	received	wisdom,	relationships	don't	have	to	be	hard	work.

I'm	not	talking	about	human	relationships—I'm	referring	to	the	relationships	(also	commonly
referred	to	as	associations)	between	objects	in	our	model.	We	touched	on	some	of	this	back	in
Chapter	4	when	we	discussed	the	features	of	ActiveRecord.	Now	we	have	a	practical	use	for
all	that	theory.

The	Vote	model	that	we	created	needs	to	be	associated	with	our	Story	model.	After	all,	what
good	is	a	vote	if	it's	unclear	which	story	it's	for?

As	we	saw	in	Chapter	4,	Rails	can	cater	to	a	variety	of	associations	between	models.	One	of
the	more	popular	associations	is	the	one-to-many	relationship,	which	we'll	add	to	our	model
now.

Introducing	the	has_many	Clause

A	one-to-many	relationship	 exists	when	a	single	 record	of	 type	A	 is	associated	with	many
records	of	type	B.

In	our	application,	a	single	story	is	likely	to	be	associated	with	many	votes.	This	relationship
is	shown	in	Figure	7-2.

Illustrating	a	one-to-many	relationship

Relationships	are	usually	declared	bidirectionally,	so	that	the	relationship	can	be	utilized	from
both	sides.	Let's	begin	by	examining	the	Story	model's	relationship	to	a	Vote;	we'll	look	at	the
reverse	relationship	later	in	the	chapter.

To	 define	 the	 first	 aspect	 of	 the	 relationship,	 edit	 the	 Story	 class	 (located	 in
app/models/story.rb)	by	adding	the	line	in	bold:

app/models/story.rb	(excerpt)

class	Story	<	ApplicationRecord

		validates	:name,	:link,	presence:	true

		has_many	:votes

end

																								

The	addition	of	this	one	line	has	ignited	a	flurry	of	activity	behind	the	scenes—fire	up	a	Rails
console,	 and	 I'll	 show	 you	 what	 I	 mean.	 First,	 retrieve	 an	 existing	 Story	 record	 from	 the
database:

$	rails	console

>>	s	=	Story.first

=>	#<Story	id:	2,	name:	"SitePoint	Forums",	…>

																								

Next,	invoke	this	object's	newly	acquired	votes	method:

>>	s.votes

=>	#<ActiveRecord::Associations::CollectionProxy	[]>

																								

The	name	of	 this	method	is	derived	directly	from	the	has_many	:votes	 relationship	 that	we
defined	 in	our	class	definition	 (we'll	discuss	declaring	associations	 in	Chapter	9).	 Invoking
the	method	grabs	all	votes	for	the	Story	and	returns	them	in	a	CollectionProxy.

Collection	Proxy	Helps	Efficiency

If	you	remember	from	Chapter	5,	ActiveRecord	does	all	it	can	to	not	execute	SQL	before	it's
needed.	The	CollectionProxy	exists	for	much	of	the	same	reason.	Rather	than	querying	the
database	 to	see	 if	our	story	has	any	votes,	ActiveRecord	returns	a	proxy	object.	A	proxy	 is
like	a	middleman	between	the	story	and	its	votes,	waiting	to	see	what	we	want	to	do	with	the
votes.	Do	we	want	an	array	of	all	the	votes?	Then	call	s.votes.to_a.	Do	we	want	to	know	how
many	votes	have	been	cast?	Call	s.votes.count.	These	two	options	require	sending	different
SQL	to	the	database,	and	the	proxy	ensures	that	the	most	efficient	SQL	query	is	used.

So,	 how	 do	we	 go	 about	 adding	 votes	 to	 this	 story?	 The	 easiest	 way	 is	 to	 call	 the	 create
method	of	the	object	returned	by	story.votes,	like	so:

>>	s.votes.create

=>	#<Vote	id:	1,	story_id:	2,	…>

																								

This	approach	instantiates	a	new	Vote	object,	and	saves	the	object	to	the	database	immediately.
It	works	because	we	have	yet	to	specify	any	validations	for	the	Vote	model,	so	there's	nothing
to	 prevent	 empty	 fields	 from	 being	 saved;	 however,	 if	 you	 assume	 that	 the	 record	we	 just
saved	to	the	database	is	completely	empty,	you'd	be	completely	off	the	mark.

Let's	look	at	the	number	of	votes	that	have	been	created.	Call	the	size	method	for	our	Story's
associated	votes:

>>	s.votes.size

=>	1

																								

This	is	another	method	to	which	we	gained	access	by	defining	the	has_many	relationship	and
our	good	 friend,	 the	CollectionProxy.	 It	 instructs	Rails	 to	 calculate	 the	number	of	 records
associated	with	 the	current	model	object.	A	result	of	1	 indicates	 that	 the	Vote	 object	we	 just

created	does	indeed	contain	some	information,	since	one	Vote	is	associated	with	the	Story	we
retrieved.

To	find	out	more,	let's	retrieve	the	same	Vote	object	independently	from	the	Story	with	which
it's	been	associated	and	inspect	its	attributes:

>>	v	=	Vote.first

=>	#<Vote	id:	1,	story_id:	2,	…>	

>>	v.attributes

=>	{"id"=>1,	"story_id"=>2,	"created_at"=>Sun,	03	Apr	2016	18:33:08	UTC	+00:00,	

"updated_at"=>Sun,	03	Apr	2016	18:33:08	UTC	+00:00}

																								

As	you	can	see,	not	only	has	our	Vote	object	automatically	been	populated	with	a	creation	and
update	 date	 (the	 two	 start	 out	 being	 the	 same	 value),	 but	 a	 value	 has	 been	 assigned	 in	 its
story_id	field.	This	value	was	obtained	from	the	id	attribute	of	the	Story	object	that	was	used
to	create	the	vote.	(In	this	case,	the	value	is	equal	to	2,	as	that's	the	id	of	the	first	Story	in	the
database.)	Figure	7-4	shows	this	relationship.

A	one-to-many	relationship

To	complete	our	relationship	definition,	we'll	add	its	counterpart—the	belongs_to	clause—to
the	Vote	model.

Introducing	the	belongs_to	Clause

As	in	life,	there	are	usually	two	sides	to	the	story	when	it	comes	to	relationships.	We'll	now
add	 the	 second	 part	 of	 our	 one-to-many	 relationship.	 First,	 edit	 the	 Vote	 model	 class	 (in
app/models/vote.rb)	as	follows:

class	Vote	<	ApplicationRecord

		belongs_to	:story

end

																								

Now	that	we've	defined	the	relationship	within	both	models	that	are	affected	by	it,	not	only	can
we	access	the	votes	of	a	Story,	we	can	also	access	the	story	of	a	Vote.	And	I'm	sure	you	can
guess	how	we	accomplish	the	latter—back	to	the	Rails	console!

>>	v	=	Vote.first

=>	#<Vote	id:	1,	story_id:	2,	…>

>>	v.story

=>	#<Story	id:	2,	name:	"SitePoint	Forums",	…>

																								

Revise,	Reload,	Revise,	Reload

If	you	make	a	change	to	your	models	or	controllers	while	you	have	a	running	Rails	console,
you'll	be	unable	to	call	any	of	your	new	code;	your	console	has	to	reload	your	models	and
controllers.	Doing	 this	 is	 as	 simple	 as	 issuing	 the	reload!	 console	 command,	where	you'll
then	see	the	following:

>>	reload!

Reloading...

=>	true

																								

You'll	 also	 have	 to	 recreate	 any	 existing	 instances	 of	 your	models,	 because	 they'll	 still	 be
using	the	old	class.

By	 adding	 just	 one	 line	 to	 our	Vote	 class	 definition,	we've	 gained	 access	 to	 the	 associated
Story	 object.	As	 the	code	 listing	 shows,	access	 to	 this	object	 is	possible	via	a	new	 instance
method	(story)	on	 the	model.	This	method	 is	available	as	a	direct	 result	of	 the	relationship
clause	 that	we	put	 in	place,	and	obtains	 its	name	from	the	first	parameter	of	 the	association
call:	belongs_to	:story.

Figure	7-5	shows	how	this	relationship	works.

Depiction	of	a	has	many,	belongs	to	relationship

How's	our	schema	looking?
Now	that	we've	established	both	sides	of	our	one-to-many	relationship,	let's	look	at	how	the
information	representing	this	relationship	is	stored	in	the	database.

If	you	 recall	 each	of	 the	migrations	 that	we've	created	and	applied	 so	 far,	you'll	notice	 that
although	the	Vote	model	contains	a	story_id	column,	the	Story	model	has	no	corresponding
vote_id	column.

In	fact,	this	column	is	unnecessary.	There's	no	need	to	store	association	information	in	both
models	when	 defining	 a	 one-to-many	 relationship;	 the	 information	 is	 always	 stored	 on	 the
“many”	side	of	the	relationship.	With	this	information	in	place,	Rails	is	intelligent	enough	to
query	the	correct	table	when	we	instruct	it	to	find	objects	with	an	association.

Notice	 also	 how	 the	 terminology	 used	 to	 define	 the	 relationship	 accurately	 reflects	 what's
going	 on:	 the	 Votes	 belong	 to	 the	 Story,	 hence	 the	 belongs_to	 call.	 And	 the	 Vote	 model
represents	 the	 "many"	 side	 of	 the	 relationship,	 so	 each	Vote	 stores	 its	 own	 reference	 to	 its
associated	Story.

Now	 that	we	understand	 the	data	 structures	 that	underlie	our	voting	 functionality,	 let's	 jump
into	building	some	user	interactivity.

Making	a	Home	for	Each	Story

In	terms	of	viewing	stories	that	have	been	submitted	to	Readit,	our	users	currently	only	have

access	to	a	page	displaying	a	random	story.	To	address	this	issue,	we'll	add	a	new	action	that
displays	a	single	story,	along	with	all	of	 its	details,	before	we	implement	 the	voting	actions
themselves.	The	story	page	will	serve	as	a	reference	point	for	any	given	story	on	the	Readit
site,	 as	 it	will	 contain	 a	 range	 of	 information—voting	 actions,	 voting	 history,	 and	 so	 on—
about	the	story.

Determining	Where	a	Story	Lives
The	first	step	in	displaying	our	stories	is	to	find	out	what	the	URLs	to	access	a	single	Story
should	look	like,	and	then	which	action	we	need	to	teach	StoriesController	 to	handle	these
requests.

If	you	flip	back	to	the	section	about	resources	in	Rails,	which	we	talked	about	 in	Chapter	6,
and	take	another	look	at	the	table	with	the	mappings	of	URLs	to	controller	actions,	you'll	find
the	promising	mention	of	a	show	action	to	handle	URLs	such	as	stories2.	This	is	the	action
we'll	implement	over	the	next	few	pages.

Before	we	implement	said	show	method	in	StoriesController,	let's	think	for	a	moment	about
what	 it	 will	 do.	 Our	 controller	 action	 has	 to	 retrieve	 a	 story	 with	 a	 specific	 ID	 from	 the
database.	This	 ID	 is	contained	 in	 the	URL;	Rails	 routing	extracts	 it	 from	there	and	makes	 it
available	 to	 us	 as	params[:id].	 The	 controller	 then	 needs	 to	 hand	 the	 object	 it	 finds	 to	 the
view,	which	is	in	turn	responsible	for	displaying	it.

We'll	start	by	adding	the	following	method	to	our	StoriesController	class.	Once	again,	 the
order	of	the	method	definitions	within	the	class	definition	is	of	no	importance:

app/controllers/stories_controller.rb	(excerpt)

def	show

		@story	=	Story.find(params[:id])

end

																								

The	 single	 line	 of	 code	 in	 our	 show	 method	 executes	 a	 find	 by	 passing	 the	 value	 of
params[:id]	to	it.	We're	instructing	ActiveRecord	to	retrieve	from	the	database	all	rows	with
an	ID	that's	equal	to	the	value	in	the	URL	requested	by	the	user;	there	should	only	ever	be	a
single	row	returned.

The	 result	 of	 the	find	 operation	 is	 then	 assigned	 to	 the	 instance	 variable	@story,	 which	 is
automatically	 made	 available	 by	 Rails	 to	 the	 corresponding	 view	 internally.	 Speaking	 of
which,	let's	create	that	view	now.

Displaying	Our	Stories
We	 need	 a	 template	 with	 which	 to	 display	 a	 story.	 Create	 a	 new	 template	 file	 at

app/views/stories/show.html.erb,	 and	 fill	 it	 with	 the	 following	 simple	 HTML	 and	 ERb
code:

<h2><%=	@story.name	%></h2>

<p><%=	link_to	@story.link,	@story.link	%></p>

																								

This	 displays	 the	name	of	 the	Story,	wrapped	 in	h2	 tags,	 and	 adds	 a	 link	 to	 the	URL	 that's
stored	as	part	of	the	story.

Let's	check	that	this	functionality	works	as	expected.	Open	the	following	URL	in	your	browser
(if	you've	deleted	some	of	your	stories,	substitute	a	higher	number	at	the	end	to	see	a	story):
http://localhost:3000/stories/2.

As	you	can	see	below,	our	story	now	has	its	own	page	that	displays	its	name	and	a	link	to	the
story	content.

The	Readit	story	page

Recap	on	Making	Sure	the	Server	Is	Up

As	with	all	of	our	examples,	connecting	to	your	application	requires	the	Rails	web	server	to
be	running.	If	you	need	a	refresher	on	how	to	launch	it,	flip	back	to	Starting	Our	Application
in	Chapter	2.

Improving	the	Story	Randomizer
While	we're	at	it,	let's	change	our	front	page	so	that	the	random	link	displayed	no	longer	uses
the	story's	external	URL.	Instead,	we'll	direct	users	to	the	story's	internal	page,	to	which	we'll
soon	add	some	voting	functionality.

Open	 up	 the	 template	 responsible	 for	 the	 index	 action	 of	 StoriesController	 (located	 at
app/views/stories/index.html.erb)	and	change	the	link_to	call	so	that	it	reads	as	follows:

<%=	link_to	@story.name,	story_path(@story)	%>

																								

That	a	story_path	function	exists	for	our	use	is	a	direct	result	of	the	resources	:stories	call
in	 the	 route	 configuration—this	 is	 another	 benefit	 of	 using	 Rails	 resources	 and	 following
their	 conventions,	 which	 include	 using	 the	 action	 show	 to	 display	 a	 single	 resource.	 The
story_path	function	accepts	a	Story	object	that's	used	dynamically	to	generate	the	URL	we're
looking	for.

Reload	the	index	page	at	http://localhost:3000/stories.	It	should	now	link	to	the	internal
story	page,	as	demonstrated	below.

The	index	page	is	now	linking	to	the	story	page

If	you	thought	that	was	a	simple	and	straightforward	way	to	generate	a	link	to	a	story,	it	gets
even	better!	The	aforementioned	link_to	call	can	be	shortened	to	just	the	following:

app/viewsstoriesindex.html.erb	(excerpt)

<%=	link_to	@story.name,	@story	%>

																								

Rails's	link_to	helper	will	automatically	invoke	the	story_path	helper	behind	the	scenes,	all
because	of	that	simple	one-line	declaration	that	made	Story	into	a	resource	in	the	first	place.

Well,	this	is	already	functional,	but	I	think	we	can	still	improve	in	terms	of	readability	within
the	URLs	we're	exposing	to	our	users.	Let's	look	at	the	concept	of	a	clean	URL.

Implementing	Clean	URLs
The	URLs	we	put	 to	 use	 in	 the	 last	 section	 are	 simple	 enough–	 and	definitely	 simpler	 than
some	we're	plagued	by	on	our	daily	travels	through	some	niches	of	the	Internet.	But	we	can
do	better!

To	recap,	we've	employed	the	following	URL	to	refer	to	a	single	story:	stories/1

This	is	all	well	and	good,	but	an	ID	of	1	is	hardly	meaningful	to	our	users;	they're	more	likely
to	remember	the	title	of	a	story.	Even	if	the	title	was	slightly	modified–with	special	characters
removed,	 escaped,	 or	 replaced–it	 would	 still	 make	 for	 a	 more	 usable	 URL,	 and	 be	 much
friendlier	to	our	search	engine	friends	as	well!

So,	 to	 refer	 to	 a	 story	 titled	 “My	 Shiny	 Weblog,”	 the	 following	 URL	 would	 be	 perfect:
stories/my-shiny-weblog

The	implementation	we're	about	to	commence	comes	close	to	this	ideal.	Soon	enough,	we'll
have	our	stories	found	at	URLs	such	as	this	one:	stories/1/my-shiny-weblog

As	you	can	see,	the	URL	still	has	the	ID	of	the	Story,	but	in	addition	it	contains	a	simplified
version	of	the	story	name.	To	implement	this	URL,	we'll	pull	a	 little	Ruby	trick	that's	worth
exploring	in	the	console	first.

Converting	from	Strings
We've	 talked	about	different	object	classes	 that	are	available	 in	Ruby,	and	more	or	 less	any
other	 programming	 language	 on	 the	 planet.	 There	 are	 ways	 to	 convert	 between	 them,	 and
there	 are	 some	 conversions	 that	 make	 sense	 and	 others	 that	 don't.	 We'll	 now	 look	 at	 the
conversion	of	a	String	object	into	an	Integer	object,	and	a	neat	side	effect	of	that.

First	off,	why	would	you	want	to	convert	an	object	to	a	different	class?	Well,	everything	our
web	 application	 receives	 from	 a	 user's	 browser	 is	 treated	 as	 a	 string,	 because	 the	 HTTP
protocol	doesn't	specify	values	with	a	class.	It's	better	to	be	safe	than	sorry,	given	that	String
is	the	most	universal	choice	and	able	to	represent	almost	everything.

With	that	established,	it's	fairly	clear	that	the	value	1	we	receive	in	params[:id]	from	a	URL
such	as	stories1	 is	 actually	not	 a	number,	but	 a	 string.	The	difference	 is	 illustrated	by	 the
following	Rails	console	output:

>>	1.class

=>	Fixnum

>>	"1".class

=>	String

																								

But	how	do	we	make	a	number	out	of	a	string	representation	of	a	number?	To	convert	a	string
into	an	integer	(that	is,	whole	numbers	without	a	decimal	component,	such	as	the	number	1),
every	String	object	ships	with	a	to_i	method:

>>	"1".to_i

=>	1

																								

The	flipside	of	this	is	the	to_s	method	provided	by	the	Fixnum	class:

>>	1.to_s

=>	"1"

																								

Armed	with	 that	 knowledge,	 here's	 the	 little	 trick	 that	will	make	our	 permalinks	work	with
minimal	effort:

>>	"1-my-shiny-weblog".to_i

=>	1

																								

So	how	does	this	work?	Strings	to_i	method	simply	discards	anything	after	the	first	numeric
content	 it	 encounters,	 leaving	us	 just	with	 the	 ID	of	 the	 story	nicely	 extracted.	Now	we	 just
have	to	put	that	simplified	title	into	our	story	URLs,	the	topic	of	the	next	section.

Investigating	Link	Generation
When	Rails'	URL	generation	helpers	need	to	create	URLs	that	point	to	specific	objects	such	as
Story,	they	ask	the	model	being	passed	in	how	it	wants	to	be	represented.

The	view	template	we	created	for	the	show	action	originally	included	a	call	to	the	story_path
helper.	This	is	like	a	shortcut	that	Rails	gives	us	for	declaring	Story	a	resource.	I	know	you've
come	 across	 this	 point	 a	 number	 of	 times	 now,	 but	 it's	 really	 important	 and	 well	 worth
repeating.

If	we	weren't	to	use	resources	and	had	to	do	without	story_path,	we'd	use	the	following	code

to	achieve	the	same	result:

url_for	controller:	'stories',	action:	'show',	id:	@story

																								

But	even	that	snippet	of	code	carries	a	bit	of	Rails	magic.	If	you	pass	an	ActiveRecord	model
to	 url_for,	 it	 will	 automatically	 call	 the	 to_param	 method	 of	 the	 model	 (@story	 in	 the
previous	example).	This	method,	by	default,	returns	the	value	of	the	id	attribute.

So	the	url_for	call	is	actually	equivalent	to:

url_for	controller:	'stories',	action:	'show',	id:	@story.to_param

																								

And	it's	this	to_param	method	that	we	can	use	to	our	advantage	in	getting	our	simplified	title
into	the	URL.

I	know	you're	champing	at	the	bit	to	make	a	start	with	the	nifty	Ajax	stuff,	so	quickly	throw
this	method	into	the	Story	class	definition	(stored	in	app/models/story.rb):

app/models/story.rb	(excerpt)

class	Story	<	ApplicationRecord

		...

		def	to_param

				"#{id}-#{name.gsub(/\W/,	'-').downcase}"

		end

end

																								

This	 rather	 cryptic	 snippet	 of	 code	 overrides	 the	 to_param	 method	 defined	 by	 the
ActiveRecord::Base	 class.	 Now	 it	 no	 longer	 returns	 just	 the	 ID,	 but	 includes	 a	 simplified
version	 of	 the	 story's	 name.	 It's	 this	 new	 return	 value	 that	 we'll	 use	 in	 URLs	 that	 point	 to
stories.

In	 the	 new	 to_param	 method,	 I'm	 using	 regular	 expressions	 to	 turn	 non-alphanumeric
characters	 (anything	 that's	 not	 a	 number	or	 alphabetical	 character)	 in	 the	 story	name	 into	 a
dash,	and	everything	else	to	lowercase.	This	string	is	then	appended	to	the	original	ID	of	the
story	to	generate	the	new,	more	representative	URL.	Of	course,	like	a	lot	of	methods	in	Rails,
you're	free	to	play	with	it	in	the	console	as	well:

>>	s	=	Story.first

=>	#<Story	id:	2,	name:	"SitePoint	Forums",	…>

>>	s.name

=>	"SitePoint	Forums"

>>	s.to_param

=>	"2-sitepoint-forums"

																								

At	this	point	we	can	let	Rails	go	and	do	its	magic.	There's	no	other	tasks	required	to	make	our
clean	 URLs	 work.	 Give	 it	 a	 try—reload	 the	 story	 index	 in	 your	 browser
(http://localhost:3000/stories)	and	marvel	at	your	sparkling	clean	URLs!

Now	we're	ready	to	start	implementing	the	app's	voting	functionality;	however,	as	we're	going
to	be	using	Ajax	techniques,	we'll	take	another	slight	detour	to	learn	a	bit	about	Ajax	and	see
how	it's	implemented	in	Rails.

Ajax,	Pjax,	and	Turbolinks

We	mentioned	back	in	Chapter	1	that	Rails	is	a	full-stack	framework,	encompassing	code	on
the	 client,	 the	 server,	 and	 everything	 in	 between.	 Ajax	 is	 a	 technique	 for	 communicating
between	 client	 and	 server,	 so	 the	Rails	 implementation	 of	Ajax	 is	 therefore	 one	 of	 the	 key
parts	making	up	this	full	stack.

Introducing	Ajax
Ajax	 stands	 for	 Asynchronous	 JavaScript	 and	 XML,	 but	 represents	 a	 technique	 that
encompasses	more	than	just	these	specific	technologies.	You	may	have	heard	of	the	term,	or
perhaps	you've	heard	of	Single-page	Applications	where	there	is	a	single	HTML	file	and	all
interactions	 between	 the	 browser	 client	 and	 the	 server	 are	 done	 using	 asynchronous
technology,	such	as	Ajax.	Strictly	speaking,	Ajax	is	not	a	new	invention—it's	actually	existed
for	quite	some	time.

Ajax	enables	a	web	browser	to	continue	to	communicate	with	a	web	server	without	having	to
completely	reload	the	page	it's	showing—a	technique	also	known	as	remote	scripting.	This
communication	 may	 include	 the	 exchange	 of	 form	 data,	 or	 the	 request	 of	 incorporating
additional	 data	 into	 a	 page	 that	 has	 already	 been	 displayed.	 The	 end	 result	 is	 that	 a	 web
application	using	Ajax	has	the	potential	to	compete	with	more	traditional	desktop	applications
by	providing	the	user	with	a	more	dynamic	and	responsive	experience.

At	the	heart	of	Ajax	is	the	XmlHttpRequest	object.	XmlHttpRequest	was	originally	 invented
by	 Microsoft	 in	 the	 late	 1990s	 for	 Internet	 Explorer	 5	 to	 improve	 and	 enhance	 the	 user
experience	 of	Microsoft's	 web-based	 email	 interface.	 It	 has	 since	 been	 implemented	 in	 all
modern	browsers.	 In	2005,	 a	 user-experience	designer	named	 Jesse	 James	Garrett	 invented
the	 term	 Ajax	 to	 describe	 the	 approach	 of	 using	 the	 XmlHttpRequest	 object–along	 with
HTML,	CSS,	and	the	Document	Object	Model	(DOM)–to	create	interactive	websites	that	feel
like	desktop	applications.	While	 compatibility	with	 certain	web	browsers	was	 lacking	when
the	 first	 applications	 using	 Ajax	 hit	 the	 Web,	 this	 is	 no	 longer	 an	 issue;	 all	 popular	 web
browsers	support	the	XmlHttpRequest	object,	including	Internet	Explorer,	Firefox,	Safari,	and

Chrome.

The	term	Ajax	itself	is	a	bit	dated,	and	there's	been	other	similarly	named	approaches,	such	as
Pjax.	 Pjax	 is,	 in	 some	 folk's	 opinion,	 an	 evolution	 of	 Ajax:	 when	 the	 user	 clicks	 on	 a
navigational	link,	the	browser	performs	the	request	in	the	background	and	replaces	all	or	part
of	the	HTML	content.	This	avoids	reloading	other	assets,	such	as	JavaScript,	CSS,	and	images
files.	 Additionally,	 Pjax	 handles	 well-known	 user	 experience	 items,	 such	 as	 the	 browser
history,	ensuring	that	going	back	and	forth	with	browser	buttons	still	works.	Before	Pjax,	the
developer	handled	the	history	manually:	adding	URLs	to	the	browser	history	included	some
rather	clunky	solutions	involving	iframes	and	third-party	libraries.	The	development	of	some
new	APIs	 in	HTML5	(namely,	 the	History	API),	 led	 to	Pjax	and	easier	development.	Again,
behind	 the	 scenes,	 Pjax	 is	 just	 doing	 what	 Ajax	 already	 did:	 asynchronously	 requesting
content	 from	 the	 server	 and	 replacing	 it	 in	 the	 browser,	 avoiding	 a	 full	 page	 load.	What's
different	 is	 that	 Pjax	 uses	 some	APIs	 and	 conventions	 to	 help	 programmers	 avoid	writing
boilerplate	code	to	do	the	same	task	over	and	over.

As	you	know	by	now,	Rails	is	all	about	reducing	boilerplate	code	with	convention.	As	such,
Rails	 ships	 with	 Turbolinks,	 which	 (some	 may	 say)	 is	 an	 evolution	 of	 Pjax.	 Turbolinks
automatically	takes	all	requests	to	the	same	domain	and	asynchronously	performs	the	request,
just	like	Pjax.	The	browser	history	is	maintained	and	updated	as	needed,	and	any	JavaScript	or
CSS	assets	are	merged.	And	guess	what	you,	as	the	Rails	developer,	have	to	do	in	order	to	use
Turbolinks?

Nothing.	It	just	works.

As	you	define	links	to	parts	of	the	app,	such	as	the	link	to	the	current	story	on	the	stories	page,
Turbolinks	 takes	 care	 of	A/Pjaxing	 them	up.	 If	 you	go	 to	http://localhost:3000/stories
for	a	random	story,	then	click	on	the	link	to	that	story,	Turbolinks	will	request	the	page	for
that	 story	 and	 load	 it	 in	 the	 background.	 If	 you	 look	 at	 the	 browser,	 you'll	 notice	 the
loading/reload	icon	never	changes,	meaning	a	full	page	load	was	avoided!	Superb!

In	fact,	the	excellent	Rails	team	has	enabled	a	cool	little	progress	bar	that	loads	along	the	top
of	the	page	so	that	the	user	knows	things	are	going	down,	as	seen	below.

The	progress	bar	in	action

Pretty	cool,	eh?	Now	your	users	won't	be	left	wondering	if	anything	is	happening.	It's	great	to
have	all	these	built-in	tools	in	our	Rails	toolbox.

An	 additional	 benefit	 of	 using	 Rails'	 built-in	 helpers	 to	 enable	 Ajax	 functionality	 in	 your
application	 (compared	with	writing	 all	 the	 code	 from	 scratch)	 is	 that	 they	make	 it	 easy	 to
provide	 a	 fallback	option	 for	browsers	not	 supporting	Ajax—a	concept	known	as	graceful
degradation.	 The	 browsers	 that	 fall	 into	 this	 category	 include	 older	 versions	 of	 web
browsers	 not	 supporting	Ajax,	 some	browsers	 on	 newer	 platforms	 such	 as	mobile	 phones,
and	 browsers	 for	 which	 the	 user	 has	 deliberately	 disabled	 JavaScript.	 Visitors	 using	 these
browsers	will	still	be	able	to	use	your	web	application.	It	won't	be	as	dynamic	as	it	is	for	other
users,	but	at	least	they	won't	be	faced	with	an	application	that	fails	to	work	at	all—a	scenario
that's	almost	guaranteed	to	drive	them	away	from	your	site.

Armed	 with	 this	 knowledge,	 we'll	 make	 use	 of	 the	 Rails	 Ajax	 helpers	 to	 implement
functionality	that	allows	users	to	vote	on	stories	in	our	Readit	application	without	waiting	for
page	reloads.	We'll	also	provide	those	users	with	a	nice	visual	effect	to	highlight	the	altered
element	after	their	vote	actions	are	successful.

Making	Stories

Okay,	we've	walked	through	the	ins	and	outs	of	Ajax/Pjax/Turbolinks.	We've	discussed	some
of	 the	 capabilities	of	Turbolinks	 and	 explored	one	of	 the	 tools	 it	 provides.	We're	now	 in	 a
good	position	to	add	voting	functionality	to	our	application	while	indicating	to	users	that	their
votes	have	been	recorded.	We'll	also	provide	a	fallback	option	for	users	whose	browsers	are
without	Ajax	support.

Controlling	Where	the	Votes	Go
Before	we	can	tackle	the	design	details	of	the	vote	button,	we	need	to	lay	down	the	foundation
of	where	the	votes	go	as	soon	as	they're	cast.	We	need	another	controller!

Here's	 the	 rails	 generate	 call	 for	 generating	 a	 new	 controller	 (VotesController)	 with	 a
single	action	(create):

$	rails	g	controller	Votes	create

																								

The	output	of	that	command	is	shown:

$	rails	g	controller	Votes	create

Running	via	Spring	preloader	in	process	59403

		create		app/controllers/votes_controller.rb

		route		get	'votes/create'

		invoke		erb

		create				app/views/votes

		create				app/views/votes/create.html.erb

		invoke		test_unit

		create				test/controllers/votes_controller_test.rb

		invoke		helper

		create				app/helpers/votes_helper.rb

		invoke				test_unit

		invoke		assets

		invoke				coffee

		create						app/assets/javascripts/votes.coffee

		invoke				scss

		create						app/assets/stylesheets/votes.scss

																								

Additionally,	 being	 RESTful	 citizens,	 we're	 going	 to	 declare	 a	 new	 set	 of	 resources	 in
config/routes.rb.	You	might	be	tempted	to	declare	Vote	as	a	stand-alone	resource.	But	what
good	is	a	vote	without	a	story?	It	turns	out	that	Rails	has	something	in	store	to	adapt	our	use
of	 a	 one-to-many	 relationship	 between	 a	 story	 and	 its	 votes	 to	 the	 resource	 declarations.
Change	the	routing	configuration	as	follows:

config/routes.rb

Rails.application.routes.draw	do

		resources	:stories	do

				resources	:votes	do

		end

		⋮	routes…

end

																								

Now,	what	do	we	have	here?	At	this	point,	it	makes	sense	to	introduce	a	task	that	provides	a
list	of	all	the	RESTful	routes	and	their	helper	names	that	Rails	generates	for	you,	based	on	the
configuration	in	config/routes.rb:

$	rails	routes

																								

Go	 ahead	 and	 run	 the	 command	 for	 yourself.	 See	 if	 you	 can	 spot	 what	 the	 declaration	 of
has_many:	:votes	in	the	routing	configuration	achieved	in	terms	of	URL	helpers.	The	result
of	the	command	run	locally	on	my	machine	is	as	follows:

Checking	out	the	routes

You've	guessed	right	if	you've	pointed	at	all	the	routes	with	a	declaration	of	votes#<method>
in	 them.	 What's	 interesting	 to	 see	 here	 is	 that	 the	 URLs	 look	 like	 this:
stories/:story_id/votes

What	we've	created	is	a	so-called	nested	route.	A	vote	object	is	nested	below	the	story	object
and	 cannot	 be	 accessed	 by	 simply	 going	 to	 a	 URL	 like	 /votes	 or	 /votes/1,	 but	 must	 be
accessed	with	a	prefix	naming	the	associated	story	first,	such	as	stories/1/votes.

Of	 note	 is	 the	 naming	 of	 the	 URL	 helpers.	 Instead	 of	 employing	 the	 standard	 votes_path
method	 to	 refer	 to	 the	 votes	 index,	 our	 nested	 route	 has	 provided	 us	 with	 the
story_votes_path	 method.	 Similarly,	 the	 helper	 to	 access	 a	 single	 vote	 would	 not	 be
vote_path	but	story_vote_path.	We'd	receive	an	error	 if	we	 tried	 to	use	 incorrectly	named
helpers.	In	addition,	we	must	specify	the	parent	story	of	the	vote	when	generating	vote	URLs.
Confused	yet?	Let's	see	it	in	practice!

The	Asset	Pipeline

First,	however,	we	have	to	perform	a	quick	side	step	to	discuss	how	JavaScript	and	CSS	assets
are	included	in	our	pages.

In	a	standard	HTML	page,	JavaScript	and	CSS	assets	are	included	via	tags	and	elements	in	the
head	 of	 the	HTML	page.	This	 is	Web	Development	101	and	 it's	 no	different	 for	pages	 in	 a
Rails	 application.	 By	 default,	 the	 generated	 application	 layout
(app/views/layouts/application.html.erb)	 has	 helpers	 for	 including	CSS	 and	 JavaScript
files.	If	you	open	up	that	layout	and	look	in	the	head	section,	you'll	see:

app/views/layouts/application.html.erb	(excerpt)

<%=	stylesheet_link_tag				'application',	media:	'all',	

'data-turbolinks-track':	'reload'	%>

<%=	 javascript_include_tag	 'application',	 'data-turbolinks-

track':	'reload'	%>

																								

These	are	the	two	helpers	I	was	talking	about.	Let's	break	down	the	attributes	of	each	helper.

stylesheet_link_tag:
	

application	tells	it	to	look	for	an	application.css	file.	By	default,	Rails	will	look	for
CSS	files	in	app/assets/stylesheets	and	vendor/assets/stylesheets.
media:	'all'	adds	an	attribute	to	the	link	tag	to	include	this	file	for	all	media.	This	is	a
CSS	setting.
'data-turbolinks-track':	 'reload'	 means	 that	 Turbolinks	 will	 track	 this	 asset	 and
reload	it	if	it	changes.

javascript_include_tag:
	

application	 tells	 it	 to	 look	for	an	application.js	 file.	By	default,	Rails	will	 look	for
JavaScript	files	in	app/assets/javascripts	and	vendor/assets/javascripts.
'data-turbolinks-track':	'reload'	 indicates	 that	Turbolinks	will	 track	 this	asset	and
reload	it	if	it	changes,	just	as	with	the	previous	tag.

To	confirm	that	the	helpers	are	indeed	doing	their	jobs,	take	a	look	at	the	source	of	any	of	the
pages	that	exist	in	our	application.	Remember,	since	we	added	these	files	to	the	application's
layout	 template,	 this	change	will	be	visible	on	every	page.	In	 the	header	of	 the	page	source,
you	should	find	script	tags	that	closely	resemble	the	following:

<link	 rel="stylesheet"	 media="all"	 href="assets/scaffolds.self-

d2f...6.css?body=1"	

data-turbolinks-track="reload"	/>

<link	 rel="stylesheet"	 media="all"	 href="assets/stories.self-

e3b0c...855.css?body=1"	

data-turbolinks-track="reload"	/>

<link	 rel="stylesheet"	 media="all"	 href=assets/votes.self-

e3b0c...855.css?body=1"	

data-turbolinks-track="reload"	/>

<link	 rel="stylesheet"	 media="all"	 href="assets/application.self-

116...4.css?body=1"	

data-turbolinks-track="reload"	/>

<script	src="assets/jquery.self-c64a7...da4.js?body=1"	

data-turbolinks-track="reload"></script>

<script	src="assets/jquery_ujs.self-d602b...b09.js?body=1"	

data-turbolinks-track="reload"></script>

<script	src="assets/turbolinks.self-c377...fff.js?body=1"	

data-turbolinks-track="reload"></script>

<script	src="assets/stories.self-877ae...c05.js?body=1"	

data-turbolinks-track="reload"></script>

<script	src="assets/votes.self-877ae...c05.js?body=1"	

data-turbolinks-track="reload"></script>

<script	src="assets/application.self-0c76c...75e.js?body=1"	

data-turbolinks-track="reload"></script>

																								

Whoa!	 What	 the	 what?	 So,	 each	 helper	 put	 out	 multiple	 tags	 with	 multiple	 scripts	 and
stylesheets.	 What's	 going	 on?	 And	 why	 does	 each	 file	 look	 like	 it	 was	 named	 to	 win	 a
Scrabble	game?

Relax.	 Take	 a	 deep	 breath.	 You're	 just	 seeing	 the	 output	 of	 one	 of	 Rails'	 tools:	 the	 asset
pipeline.

Geek	Etymology

The	asset	pipeline	comes	from	a	Ruby	gem	called	"sprockets",	which	is	why	you'll	often	hear
"asset	pipeline"	and	"sprockets"	used	interchangeably.

Why	do	we	need	an	asset	pipeline?
The	asset	pipeline	was	created	to	solve	a	few	problems	that	websites	can	have	with	external
static	assets,	such	as	JavaScript,	CSS,	and	image	files.	These	issues	comprise:
	

most	sites	using	more	than	one	JavaScript	or	CSS	file,	where	each	one	involves	a	call	to
the	server	from	the	browser
there	being	many	languages	that	make	CSS	and	JavaScript	more	developer-friendly,	but
requiring	a	preprocessor,	which	can	be	tedious	to	use

http://guides.rubyonrails.org/asset_pipeline.html

most	JavaScript	and	CSS	files	containing	comments	or	whitespace	that	are	unnecessary
for	the	production	site
browsers	wanting	to	cache	static	assets	to	save	on	bandwidth	and	improve	performance,
so	there	needs	to	be	an	easy	indicator	that	a	static	asset	is	different,	or	changes	will	never
make	it	to	the	browser

These	are	fairly	difficult	issues	to	solve,	or	used	to	be.	The	Rails	core	team	set	out	to	solve
them	with	the	asset	pipeline,	and	they	have	done	well.	Let's	talk	about	each	issue	and	how	it's
solved.

Multiple	Source	Files
Going	 back	 to	 the	 previously	 generated	 HTML,	 there	 are	 six	 JavaScript	 files:	 two	 from
jQuery,	one	for	Turbolinks,	and	three	from	our	application.	How'd	they	get	there?

The	asset	pipeline	uses	a	file	called	a	manifest	to	let	the	developer	list	the	files	to	be	included
in	 the	 application.	 There	 is	 a	 manifest	 file	 for	 both	 JavaScript	 and	 CSS.	 The	 JavaScript
manifest	file	is	located	in	app/assets/javascripts/application.js	and	looks	like	this:

app/assets/javascripts/application.js

//

//=	require	jquery

//=	require	jquery_ujs	

//=	require	turbolinks

//=	require_tree	.

																								

The	manifest	file	lists	all	the	JavaScript	files	we	want	to	use	in	our	application,	like	so:

//=	require	jquery

																								

This	 requires	 the	 jQuery	 source.	 jQuery	 is	 a	 popular	 JavaScript	 framework	 that	 ships,	 by
default,	with	Rails.	You	can	see	the	jquery_ujs	and	turbolinks	lines,	as	well.	That	last	line,
//=	 require_tree	 .	 tells	 the	 asset	 pipeline	 to	 look	 in	 the	 default	 directories
(app/assets/javascripts	 and	 vendor/assets/javascripts)	 and	 include	 all	 the	 JavaScript
(and	CoffeeScript)	files	it	finds.	The	Rails	generators	we	used	to	create	our	controllers	also
automatically	 create	 a	 CoffeeScript.	 Finally,	 the	 app/assets/javascripts/application.js
file	is	created	as	a	part	of	every	Rails	application.	That	accounts	for	the	six	files.

I	know	what	you're	thinking:	what	in	the	wide	wide	world	of	programming	is	CoffeeScript?
Don't	worry,	we'll	address	that	soon.	First,	though,	let's	quickly	cover	the	CSS	manifest.

The	CSS	manifest	is	located	in	app/assets/stylesheets/application.css	and	looks	like:

app/assets/stylesheets/application.css

	=	require_tree	.

=	require_self/

body	{

		background-color:	#666;

		margin:	15px	25px;

		font-family:	Helvetica,	Arial,	sans-serif;

}

p	{	margin:	0	}

input	{

		margin-bottom:	1em;

}

#content	{

		background-color:	#fff;

		border:	10px	solid	#ccc;

		padding:	10px	10px	20px	10px;

}

#notification	{

		border:	5px	solid	#9c9;

		background-color:	#cfc;

		padding:	5px;

		margin:	10px	0;

}

.field_with_errors	{

		color:	red;

		background:	transparent;

}

.field_with_errors	input	{

		border:	thin	solid	red;

}

.form_errors	{

		color:	red;

}

																								

This	 file	 plays	 the	 same	 role	 for	CSS	 that	application.js	 does	 for	 JavaScript.	 The	major
difference	is	the	comment	syntax	between	JavaScript	(//)	and	CSS	(/*...*/).	Going	back	to
the	link	tags	created	by	the	stylesheet_link_tag	helper,	there	are	four	files:	scaffolds.css,
stories.scss,	 votes.scss,	 and	 application.css.	 scaffolds	 and	 application	 are	 Rails
defaults,	 whereas	 the	 stories	 and	 votes	 files	 are	 SCSS	 files	 created	 by	 the	 controller

generator.	The	CSS	styles	in	the	manifest	are	added	by	Rails.

Now	I	know	what	you're	asking:	what	in	the	wide	wide	world	of	programming	is	SCSS?	Let's
find	out.

Asset	Preprocessors
Not	everyone	knows	or	 likes	JavaScript	and	CSS.	Both	of	 these	 languages	can	have	a	steep
learning	 curve	 and	 their	 syntax,	 to	 some,	 leaves	 much	 to	 be	 desired.	 As	 such,	 pragmatic
programmers	have	created	language	abstractions	for	both	JavaScript	and	CSS.	The	Rails	core
team	 has	 included	 a	 couple	 of	 these	 language	 abstractions	 in	 the	 framework,	 which	 we'll
discuss	now.

CoffeeScript

CoffeeScript	is	a	"little	language	that	compiles	into	JavaScript."	It	attempts	to	make	JavaScript
easier	 to	write	 by	 removing	 some	 syntax	 and	 adding	 other	 language	 features.	 Figure	 7-17
shows	 a	 side-by-side	 comparison	 of	 CoffeeScript	 (left)	 to	 JavaScript	 (right)	 from	 the
CoffeeScript	website.

http://coffeescript.org

CoffeeScript	and	JavaScript

As	you	can	see,	CoffeeScript	removes	semicolons	and	the	need	for	keywords	such	as	var	 to
declare	a	variable.	It	has	shortcut	syntax	for	creating	a	function	(square	=	(x)	->	x	*	x)
and	 uses	 whitespace	 to	 delineate	 blocks.	 It's	 less	 code	 for	 the	 same	 functionality.	We'll	 be
using	CoffeeScript	in	this	book,	as	needed,	so	you	might	want	to	spend	some	time	looking	at
its	syntax.

CoffeeScript	or	JavaScript?

While	Rails	encourages	the	use	of	CoffeeScript,	 it	does	not	mandate	it;	you’re	free	to	write
plain	 JavaScript	 for	 your	 site	 as	well.	The	 asset	 pipeline	will	 run	 any	 file	with	 the	.coffee
extension	 through	 the	CoffeeScript	 preprocessor,	 and	 leave	 .js	 files	 alone.	 If	 you	want	 to
know	more	about	CoffeeScript,	check	out	Jump	Start	CoffeeScript	by	Earle	Castledine.

Sass

Sass	stands	for	"Syntactically	Awesome	Style	Sheets"	and	is	an	extension	to	CSS.	It	allows	you
to	nest	CSS	selectors,	create	variables,	and	create	functions	in	your	CSS.	For	example,	if	you
use	 a	 color	 such	 as	 #333	 throughout	 your	 CSS	 files,	 you	 can	 define	 a	 variable	 called
$main_color	and	use	that	where	you'd	use	the	value.	This	allows	you	to	change	the	value	of
that	color	in	one	spot.	Here's	an	example	of	Sass:

$main_color:	#333

nav	{

		ul	{

margin:	0;

padding:	0;

list-style:	none;

		}

		li	{	display:	inline-block;	}

		a	{

display:	block;

padding:	6px	12px;

text-decoration:	none;

								color:	$main_color;

		}

}

																								

You	can	see	 the	nested	CSS	selectors:	 instead	of	nav	ul,	 the	ul	 tag	 is	nested	 inside	 the	nav
brackets.	 Sass	 has	 some	 excellent	 time-saving	 techniques,	 so	 it's	 worth	 becoming	 familiar
with	it.	(Did	someone	say	"EXTRA	CREDIT"?)

Syntactically	Awesome,	or	Simply	Cascading?

As	with	JavaScript,	you	can	write	.scss	 files	or	.css	 files,	of	which	 the	former	will	be	 run
through	the	Sass	preprocessor	by	the	asset	pipeline.	Sass	has	a	couple	of	flavors,	so	be	sure	to
use	 the	.scss	 extension.	A	 great	 book	 on	Sass	 I'd	 recommend	 is	 Jump	Start	 Sass	 by	Hugo
Giraudel	and	Miriam	Suzanne.

Asset	Compression	and	Minification

https://www.sitepoint.com/premium/books/jump-start-coffeescript
http://sass-lang.com/
https://www.sitepoint.com/premium/books/jump-start-sass

On	 the	 Internet,	 every	 ounce	 of	 bandwidth	 is	 sacred.	 The	 performance	 of	 your	 site	 can	 be
improved	greatly	by	reducing	the	size	of	the	assets	that	the	browser	retrieves.	As	a	result,	best
practice	 for	any	website	 is	 to	compress	and	minify	 the	static	assets–the	JavaScript	and	CSS.
The	asset	pipeline	does	that	for	you	in	the	right	environment.

Just	so	 that	we	understand	each	other,	minifying	and	compressing	an	asset	means	removing
all	of	its	whitespace	and	combining	it	with	other	assets	of	the	same	type.	All	JavaScript	files
are	given	a	whitespace-ectomy	and	combined	into	a	single	file	so	that	the	browser	receives	all
the	JavaScript	for	the	site	with	a	single	request.	It's	the	same	for	the	CSS.

The	JavaScript	files	undergo	more	complex	minification	where	the	code	is	changed	to	be	as
small	 as	 possible.	 For	 example,	 the	 development	 version	of	 a	 JavaScript	 file	may	have	 the
following	line:

var	orderAmount	=	0;

																								

When	minified,	this	looks	like:

var	o=0;

																								

The	asset	pipeline	will	 replace	all	 references	 to	orderAmount	with	o	when	 it	compresses	 the
file,	so	you	end	up	with	the	smallest	file	possible.	I	mentioned	that	this	compression	happens
in	 the	 "right	 environment,"	 meaning	 the	 "production	 environment."	 Remember	 back	 in
Chapter	1	that	Rails	has	a	development,	test,	and	production	environment?	The	assets	are	not
compressed	 in	 the	 development	 environment.	 A	 task	 has	 to	 be	 run	 for	 the	 compression	 to
happen,	which	we'll	discuss	when	we	deploy	our	app	in	Chapter	12.

Asset	Digests
The	last	aspect	we'll	cover	on	the	asset	pipeline	is	asset	digests.	As	I've	mentioned,	browsers
love	to	cache	static	assets;	this	is	great,	because	caching	assets	that	seldom	change	is	a	good
thing.	 But,	 how	 does	 the	 browser	 know	 when	 a	 cached	 asset	 has	 changed?	 This	 can	 be
especially	 dire	 if	 you	 are	 using	 a	 Content	 Delivery	Network	 (CDN)	 for	 your	 asset,	 which
expects	it	to	be	a	long-lasting	asset.

Let's	look	at	one	of	the	tags	from	the	generated	HTML:

<script	src="/assets/application.self-0c76c...75e.js?body=1"	

data-turbolinks-track="reload"></script>

																								

In	this	filename,	the	.self-0c76c1...	is	the	digest	of	the	asset.	A	digest	is	a	hashed	value	that	is
created	based	on	the	contents	of	the	file.	That	means	that	 the	value	of	 the	digest	will	change
when	the	contents	of	the	file	changes.	So,	the	easiest	way	to	invalidate	a	cached	file	is	to	stop

using	it.	By	making	the	name	of	the	file	dependent	on	its	content,	we	always	know	when	the
file	has	changed.

The	 asset	 pipeline	 is	 an	 incredibly	 useful	 tool	 that	 does	 a	 lot	 for	 the	 Rails	 developer.
Arguably,	an	entire	book	could	be	written	on	just	the	asset	pipeline	and	what	it	provides.	Alas,
we	have	votes	to	count	and	must	move	on	...

Get	Out	the	Vote

The	 next	 step	 is	 to	 change	 our	 existing	 show	 view	 (located	 at
app/views/stories/show.html.erb)	to	display	the	current	number	of	votes	that	the	story	has
received.	Then	we'll	add	a	link	that	allows	users	to	vote	on	stories.	Modify	your	view	so	that	it
looks	like	this:

<h2>

		

				Score:	<%=	@story.votes.size	%>

		

		<%=	@story.name	%>

</h2>

<p>

		<%=	link_to	@story.link,	@story.link	%>

</p>

<div	id="vote_form">

		<%=	form_tag	story_votes_path(@story),	remote:	true	do	%>

				<%=	submit_tag	'Vote	for	it'	%>

		<%	end	%>

</div>

Let's	take	a	look	at	what's	new	here:

<h2>

		

				Score:	<%=	@story.votes.size	%>

		

		<%=	@story.name	%>

</h2>

																								

The	heading	that	previously	displayed	just	the	name	of	the	story	now	also	contains	a	span	tag
that	 holds	 its	 vote	 score.	 To	 calculate	 this	 number,	 we	 use	 the	 size	 method	 on	 the	 votes
association	that	we	looked	at	earlier	 to	add	up	the	number	of	votes	submitted	for	 that	story.
We've	also	given	the	span	element	a	unique	ID,	which	we'll	use	later	as	a	hook	to	update	the
score	when	a	user	casts	a	vote.	We'll	add	some	CSS	to	float	this	span	to	the	right	of	the	page,

too.

We've	also	added	the	following:

<div	id="vote_form">

		<%=	form_tag	story_votes_path(@story),	remote:	true	do	%>

				<%=	submit_tag	'Vote	for	it'	%>

		<%	end	%>

</div>

																								

This	 is	 where	 the	 magic	 happens!	 The	 extra	 div	 houses	 a	 form	 created	 by	 the	 form_tag
helper,	complete	with	a	remote:	true	option.	This	generates	the	bits	of	HTML	and	Javascript
that	are	necessary	to	invoke	the	form	submission	using	Ajax,	rather	than	as	a	regular	page-
loading	form.

What	we	handed	to	form_remote_tag	is	a	call	to	one	of	the	nested	resource	helpers	we	talked
about	earlier	(the	ones	that	might	have	made	you	feel	a	little	dizzy,	remember?),	specifically
to	the	story_votes_path	helper.	This	helper	takes	@story	as	its	argument	to	specify	that	we're
dealing	with	votes	associated	with	that	given	story.

In	particular,	we'd	like	to	create	a	new	vote	for	this	story,	which	means	we	need	to	send	a	POST
request	to	/stories/1/votes.	Rails	then	routes	to	the	create	action	of	VotesController.

Styling	the	Scoreboard
Next,	 let's	 expand	 our	 CSS	 (it	 lives	 in	 the	 file	 located	 at
app/assets/stylesheets/stories.scss)	to	style	and	position	our	new	elements:

app/assets/stylesheets/stories.scss	(excerpt)

$vote_color:	#393;

#vote_score	{

		float:	right;

		color:	#9c9;

}

#vote_form	{

		margin:	10px	0;

}

#vote_form	input	{

		padding:	3px	5px;

		border:	3px	solid	$vote_color;

		background-color:	#cfc;

		text-decoration:	none;

		color:	$vote_color;

}

#vote_form	input:hover	{	

		background-color:	#aea;

}

																								

There's	 nothing	 too	mysterious	 happening	 here—it's	 all	 cosmetic.	 But	 who	 said	 cosmetics
weren't	important?

If	you	access	one	of	your	stories	through	your	browser	(using	the	link	to	a	random	story	on
http://localhost:3000/stories,	for	example),	you	should	see	a	page	similar	to	the	one	in
Figure	7-19;	however,	clicking	 the	Vote	 for	 it	 link	will	 do	very	 little	 right	now	 (except	 that
your	application	may	spit	out	some	weird	warnings	and	error	messages).

The	story	page

To	 store	 the	 votes	 that	 have	 been	 submitted,	 we'll	 implement	 the	 create	 method	 of	 our
VotesController	that	we	generated	earlier	in	the	chapter.	Here	it	is:

app/controllers/votes_controller.rb	(excerpt,	incomplete)

class	VotesController	<	ApplicationController

		def	create

				@story	=	Story.find(params[:story_id])

				@story.votes.create

		end

end

																								

This	 new	 method	 contains	 nothing	 we	 haven't	 seen	 before.	 In	 the	 first	 line,	 we	 find	 the
appropriate	story	record	using	the	unique	ID	of	Story	for	which	a	vote	has	been	cast.	This	ID
is	given	to	us	by	Rails	 in	the	form	of	params[:story_id],	 since	params[:id]	 is	 in	 this	case
reserved	 for	 a	 potential	 ID	 of	 a	Vote	 object.	You	 can	 also	 see	 this	 pattern	 displayed	 in	 the
routes	list	we	looked	at	earlier	(the	route	syntax	looked	like:	/stories/:story_id/votes).

The	second	line	creates	and	saves	a	new	Vote.	It	only	contains	auto-generated	values,	such	as
the	creation	date	and	the	IDs	that	receive	a	value	because	of	the	Votes	association	with	a	Story.

If	you	were	to	try	clicking	the	Vote	for	it	 link	on	your	story	page	now,	it	would	store	your
vote.	 But	 nothing	 on	 the	 page	would	 change	 yet—we	 can	 only	 perform	 so	much	magic	 at
once,	even	in	Rails	land.

To	update	 the	voting	score	 that's	displayed	on	 the	page	and	highlight	 it	with	a	visual	effect,
we’ll	use	a	different	(prepare	yourself	for	another	new	term)	response	format.

Response	Formats
One	of	the	tenets	of	REST	is	the	ability	to	request	a	resource	in	multiple	formats.	By	default,
requests	 that	 are	made	 for	dynamic	 content	 (and	 are	not	 static	 assets)	 are	 expected	 to	be	 in
HTML	format.	When	you	visit	http://localhost:3000/stories,	 the	 format	 is	 presumed	 to
be	HTML.	This	is	driven	by	the	Accept	header	on	a	request,	which	has	the	value	of	text/html
for	 that	 request;	 however,	when	we	 involve	 technologies	 such	 as	Ajax,	we	want	 a	 different
format.	 In	 this	 case,	when	we	 cast	 a	 vote	using	 the	form_tag,	 remote:	 true,	we	 are	 using
Ajax	to	submit	the	form	via	JavaScript,	so	it'd	be	great	if	we	could	get	a	JavaScript	response.
For	 the	 vote	 request,	 the	 Accept	 header	 has	 a	 value	 of	 application/javascript	 or
text/javascript,	which	tells	Rails	to	respond	using	JavaScript.	But	what	does	that	mean?

Since	 the	VotesController	 is	 receiving	 the	request	and	needs	 to	 formulate	a	 response	from
the	 create	 method,	 we	 can	 use	 a	 method	 on	 ActionController::Base	 (VotesController's
grandparent)	 called	 respond_to	 and	 tell	 it	 to	 handle	 HTML	 and	 JavaScript.	 Modify	 the
VotesController#create	method	to	look	like:

app/controllers/votes_controller.rb

class	VotesController	<	ApplicationController

		def	create

				@story	=	Story.find(params[:story_id])

				@story.votes.create

				respond_to	do	|format|

						format.html	{	redirect_to	@story,	notice:	'Vote	was	successfully	created.'	}

						format.js	{}

				end

		end

end

You	 can	 see	 that	 I've	 added	 a	respond_to	method	 call	 and	 passed	 in	 a	 block	with	 a	format
argument.	We	can	 tell	format	which	 formats	we	are	 interested	 in	by	calling	 the	appropriate
method	and	passing	in	a	block	to	handle	it:
	

html	 is	 handled	 by	 redirecting	 to	 the	 Story	 (story_path(vote.story))	 and	 putting	 a
message	in	the	flash.	The	redirect_to	function	will	be	familiar	to	you	from	Chapter	6.	It
also	uses	the	same	shorthand	syntax	we've	used	for	link_to	earlier	in	this	chapter.
js	 is	 handled	 by	 ...	 doing	 nothing.	 Just	 render	 the	 view	 for	 this	 format	 which,	 by
convention,	is	app/views/votes/create.js.erb.

Just	like	an	html.erb	file	has	HTML	to	render,	a	js.erb	 file	has	JavaScript	 to	execute.	Let's
look	at	create.js.erb:

app/views/stories/create.js.erb

$("#vote_score").html("Score:	"	+	<%=	@story.votes.size	%>)

$("#vote_score").css({backgroundColor:	"#ffffcc"});

setTimeout(function(){

		$("#vote_score").css({backgroundColor:	"#ffffff"});

},	2000);

																								

As	I've	said,	this	view	is	all	JavaScript,	specifically	jQuery.	The	view	grabs	the	#vote_score
element,	changes	its	content,	then	highlights	it	for	two	seconds.	We	won't	win	any	awards	for
it,	but	this	shows	how	easy	it	is	to	call	JavaScript	and	manipulate	the	page	based	on	the	results
of	an	action.

Furthermore,	 our	 respond_to	 block	 will	 handle	 HTML,	 so	 this	 approach	 degrades
gracefully–so	if	their	browser	isn't	using	JavaScript,	they	can	still	vote!	Isn't	it	amazing	how
much	you	can	do	with	as	little	code	as	this?

Shorthand	Awesomeness

Speaking	 of	 shorthand	 syntax,	 I	 have	 an	 even	 shorter	 version	 of	 our	 gracefully	 degraded
form.	This	is	just	in	case	you	were	wondering	why	you	suddenly	needed	to	type	in	all	these
characters	 to	 have	 such	 a,	 well,	 simple	 thing	 as	 a	 form	 that	 simultaneously	 caters	 to	 both
traditional	and	Ajax-enabled	browsers,	submits	to	a	nested	route,	and	looks	pretty.	Turns	out

you	don't!

<div	id="vote_form">

		<%=	form_for	[@story,	Vote.new],	remote:	true	do	|f|	%>

				<%=	f.submit	'Vote	for	it'	%>

		<%	end	%>

</div>

																								

Now	we're	using	form_for,	 a	 slightly	more	specialized	cousin	of	form_tag.	 If	we	hand	 that
helper	 an	array	containing	 the	parent	 story	and	a	new	Vote	 object,	we	get	 exactly	 the	 same
result	as	before,	only	with	a	little	less	typing.	You've	got	to	love	that!

Introducing	Partials

I've	mentioned	before	that	templates	ending	in	.html.erb	can	be	used	to	display	certain	pieces
of	the	page	independent	from	the	rest	of	the	page.	When	used	in	this	way,	these	files	are	called
partials.	 Partials	 can	 be	 helpful	 for	 dealing	with	 parts	 of	 a	 page	 that	 are	 constantly	 being
reused	(such	as	a	navigation	menu),	or	for	retrieving	and	formatting	the	items	in	a	collection
(such	as	a	list).

In	 this	section,	we'll	use	partials	 to	 implement	a	voting	history	box	for	our	story	page.	The
history	box	will	show	the	dates	and	times	at	which	each	vote	for	a	story	was	submitted.

Adding	Voting	History
We'll	 implement	the	voting	history	as	a	list,	using	the	HTML	elements	for	an	unordered	list
(ul).	Each	vote	will	be	represented	as	a	list	item	(li)	that	shows	the	voting	timestamp.	The	list
items	themselves	will	be	rendered	as	partials,	so	a	single	 template	 that	contains	a	single	 list
item	will	be	rendered	as	often	as	there	are	votes	for	a	given	story.

To	begin	with,	we'll	modify	the	show	template	located	at	app/views/stories/show.html.erb
to	render	an	unordered	list	of	the	votes	a	story	has	received.	To	accomplish	this,	we'll	add	to
the	template	code	right	above	the	paragraph	container	that	houses	the	story	link,	like	so:

app/views/stories/show.html.erb

<ul	id="vote_history">

		<%	if	@story.votes.empty?	%>

				No	votes	yet!

		<%	else	%>

				<%=	render	partial:'votes/vote',

								collection:	@story.votes	%>

		<%	end	%>

<p>

		<%=	link_to	@story.link,	@story.link	%>

</p>

																								

In	 this	 code,	we've	 started	 out	with	 a	 straightforward	ul	 element	 that	 has	 a	 unique	 ID,	 and
we've	added	a	condition	using	an	if	…	else	…	end	construct.	This	causes	 the	message	"No
votes	yet!"	to	be	displayed	whenever	a	story	without	any	votes	is	rendered:

<%	if	@story.votes.empty?	%>

				⋮	template	code…

		<%	else	%>

				⋮	template	code…

		<%	end	%>

																								

While	 the	if	 construct	 is	 familiar	 to	us	 from	Chapter	3,	 the	votes.empty?	 part	 is	 new.	The
empty?	 method	 brought	 to	 us	 by	 declaring	 the	 association	 between	 votes	 and	 stories	 will
return	false	if	a	story	has	associated	votes,	and	true	if	not.

It's	in	this	call	to	render	that	we	add	the	partial	to	our	page:

<%=	render	partial:	'votes/vote',

			collection:	@story.votes	%>

																								

We	instruct	Rails	to	render	a	template	for	every	Vote	added	to	a	story.	The	render	partial
syntax	can	be	used	to	render	a	partial	once	or	many	times	(as	in	this	case).	It's	the	addition	of
the	collection	argument	that	indicates	we'll	be	rendering	the	partial	multiple	times.

The	value	votes/vote	of	the	:partial	option	actually	asks	Rails	to	look	for	a	vote	partial	in
the	 votes/	 subdirectory	 of	 app/views/,	 since	 this	 is	 the	 place	 where	 we'll	 store	 the	 new
partial.

Creating	the	Partial
Partials,	 like	 regular	 full-page	 templates,	 have	 a	 .html.erb	 extension	 and	 are	 stored	 right
alongside	their	full-page	cousins	in	an	application's	directory	structure.	A	partial	is	identified
by	 an	 underscore	 (_)	 prefix	 in	 its	 filename.	 Let's	 create	 the	 new	 partial	 at
app/views/votes/_vote.html.erb,	and	populate	it	with	the	following	line	of	code:

app/views/votes/_vote.html.erb

><%=	vote.created_at.to_formatted_s(:short)	%>

																								

That's	all	there	is	to	it!	This	line	simply	wraps	the	date	on	which	a	vote	was	made–the	value	of
which	is	stored	in	the	created_at	attribute–in	a	pair	of	li	tags.

Note	that	we	have	access	to	an	object	named	vote.	Rails	has	created	this	object	for	us—it	does
so	 for	 every	 partial—and	 the	 object	 takes	 the	 name	 of	 the	 partial	 (vote,	 in	 this	 case).	 This
object	is	automatically	set	to	the	current	element	of	the	collection	that's	being	rendered.

The	upshot	of	all	this	is	that	a	partial	doesn't	concern	itself	with	determining	which	Vote	 it's
currently	processing,	or	where	that	Vote	sits	within	the	larger	collection	of	votes.	The	partial
simply	operates	on	a	single	vote	object	and	lets	Rails	take	care	of	the	rest.

Styling	the	Voting	History
If	 we	 printed	 the	 date	 and	 time	 exactly	 as	 they	 appear	 in	 the	 database,	 we'd	 produce	 this
regimental-looking	style:

2016-02-01	11:47:55

																								

To	 address	 this	 issue,	 we've	 made	 use	 of	 Rails'	 date-formatting	 helper.	 This	 helper,
appropriately	 named	to_formatted_s,	 is	 available	 as	 an	 instance	method	 for	 objects	 of	 the
classes	Date	and	Time.	The	helper	takes	a	single	argument,	one	of	several	predefined	symbols
representing	 the	 format	 that	 should	 be	 applied	 to	 the	 output.	 Some	 of	 the	 formats	 include
:short	and	:long;	for	a	Time	object,	these	render	as	01	Feb	11:47	and	February	01,	2016
11:47	respectively.

Again,	 to	 make	 this	 a	 little	 more	 pleasing	 to	 the	 eye,	 we'll	 add	 a	 few	 CSS	 rules	 to	 our
stylesheet	to	define	how	our	voting	history	box	should	look.	These	rules	arrange	our	voting
history	nicely,	but	they	also	introduce	some	minor	CSS	quirks	that	relate	to	floated	elements.
Thankfully,	we	can	rectify	these	problems	easily	by	adding	a	few	more	lines	to	our	stylesheet.
The	additions	are	marked	in	bold:	

app/assets/stylesheets/application.css

#content	{

		background-color:	#fff;

		border:	10px	solid	#ccc;

		padding:	10px;

		overflow:	hidden;	/*	added	*/

}

*	html	#content	{	/*	added	

		height:	1%;		added	

}		added	*/	

																								

app/assets/stylesheets/stories.scss

#vote_history	{

		padding:	5px;

		margin:	0;

		list-style:	none;

		border:	3px	solid	#ccc;

		background-color:	#eee;

		float:	right;

		color:	#999;

		font-size:	smaller;

}

																								

With	 all	 this	 code	 in	 place,	 go	 ahead	 and	 reload	 a	 story	 page	 in	 your	 browser—the	 result
should	 look	similar	 to	Figure	7-27	(depending	on	how	much	fun	you	had	clicking	 the	vote
link	earlier).

A	history	of	voting

While	the	page	is	looking	good,	there	are	a	few	more	details	to	add:	update	the	list	of	votes
with	a	new	vote,	sort	 the	votes	by	descending	ID	(so	that	 the	newest	 is	displayed	at	 the	top),
and	limit	the	number	of	votes	that	are	displayed.

We	can	achieve	the	first	task	easily	by	adding	a	single	line	of	code	to	our	JavaScript	template,

located	at	app/views/votes/create.js.ejb.	These	additions	will	deal	with	the	voting	actions:

app/views/votes/create.js.ejb

$("#vote_history").html('<%=	j(render	partial:	"votes/vote",

collection:	@story.votes)	%>')

																								

This	is	the	same	approach:	use	jQuery	to	grab	the	vote_history	list,	then	replace	its	content
with	the	output	of	our	partial	that	includes	the	new	vote.	That's	right,	we	reuse	the	same	partial
inside	our	JavaScript.	Because	our	ERb	partial	emits	HTML,	we	have	to	escape	it	so	that	the
JavaScript	 file	 can	 handle	 it.	 That's	 what	 the	 j	 function	 does.	 j	 is	 an	 alias	 for
escape_javascript,	which	allows	us	to	handle	the	output	of	the	partial	and	append	it	to	the	list.

Tweaking	the	Voting	History
Lastly,	we'll	add	an	instance	method	to	the	association	between	the	Vote	and	the	Story	model
to	return	a	 limited	number	of	votes	sorted	by	descending	ID.	Why	would	we	write	 this	as	a
separate	method,	 and	not	 just	 retrieve	 the	data	 from	within	 the	view?	Well,	 for	 a	 couple	of
reasons.	For	one,	MVC	principles	state	that	we	shouldn't	be	retrieving	any	data	from	our	view.
But	as	we'll	be	calling	this	method	from	a	couple	of	separate	places,	moving	it	to	the	model
makes	more	sense.

Let's	create	the	method	first,	then	add	the	references	to	it.	Edit	the	Story	class	so	that	it	looks
like	this:

app/models/story.rb	(excerpt)

class	Story	<	ApplicationRecord

		validates	:name,	:link,	presence:	true

		has_many	:votes	do

				def	latest

						order('id	DESC').limit(3)

				end

		end

																								

This	latest	method	will	 take	advantage	of	 the	 story's	 association	with	 the	Vote	model,	 and
will	 use	 a	 scope	of	 the	 records	we	want,	 up	 to	 a	 total	 of	 three	 records	 (as	 specified	by	 the
limit(3)	method).	The	order(‘id	DESC')	method	will	ensure	that	they're	ordered	so	that	the
newest	vote	is	located	at	the	top.

A	Methods	of	Sorts

In	 case	you're	 curious,	 the	argument	passed	 to	 the	order	method	 is	 actually	 a	 tiny	piece	of
SQL.	DESC,	 quite	obviously,	 stands	 for	descending;	 there's	 also	ASC	 for	 ascending,	which	 is

often	left	off	as	it's	the	default	for	ordering	records	in	Rails.

The	rest	of	the	argument	constitutes	a	column	name	by	which	the	records	will	be	ordered	(or
multiple	column	names	separated	by	commas—if	you	want	 to	order	by	multiple	columns—
like	so:	order(‘id,	created_at')).

Having	 added	 this	 new	 method	 to	 the	 Story	 class,	 you	 can	 go	 ahead	 and	 replace	 the	 two
occurrences	 of	@story.votes	 that	 are	 present	 in	 our	 views	with	 @story.votes.latest.	 The
first	occurrence	is	the	render	call	in	show.html.erb:

<%=	render	partial:	'votes/vote',

		collection:	@story.votes.latest	%>

																								

The	second	occurrence	is	the	last	line	of	the	JavaScript	template	create.js.erb:

$("#vote_history").html('<%=	j(render	partial:	"votes/vote",

		collection:	@story.votes.latest)		%>')

																								

Excellent.	Reloading	the	story	page	should	produce	the	expected	results,	with	the	number	of
votes	being	limited	to	three,	and	the	votes	ordered	by	descending	ID.	Hitting	the	vote	button
will	 update	 the	 voting	 history	 and	 place	 the	 new	 vote	 at	 the	 top	 of	 the	 list.	Have	 a	 look	 at
Figure	7-30	to	see	how	the	updated	page	looks.

An	evolved	history	of	voting

Testing	the	Voting	Functionality

In	Chapter	6,	we	mentioned	that	our	plan	is	to	provide	test	coverage	for	all	of	the	functionality
in	 our	 application.	Let's	 expand	 our	 growing	 test	 suite	 by	 adding	 some	 unit	 and	 functional
tests.

Testing	the	Model
While	most	of	 the	work	 in	 this	chapter	has	been	on	 the	controller	side,	we	still	made	some
changes	 to	 the	model:	modifying	 our	 Story	model,	 adding	 a	 Vote	 model,	 and	 defining	 an
association	between	the	two.	We	also	added	an	instance	method	called	latest	 to	 retrieve	 the
most	recent	votes	of	a	given	Story.	All	of	these	features	can	be	tested	programmatically,	so
let's	write	some	unit	tests	to	cover	them.

Before	 we	 begin,	 can	 you	 think	 of	 something	 we	 need	 to	 do?	 Maybe	 to	 prepare	 the	 test
environment?	No?	We	added	migrations	 in	 this	 chapter,	 so	we	have	 to	be	 sure	 to	 run	 them
against	the	test	database:

rails	db:migrate	RAILS_ENV=test

																								

Preparing	the	Fixtures
Before	we	write	any	tests,	we'll	add	some	test	data	to	the	fixtures	for	our	Vote	model,	which
resides	in	test/fixtures/votes.yml.	Actually,	Rails	has	already	done	this	for	you:

test/fixtures/votes.yml

one:

		story:	one

two:

		story:	one

																								

Check	One	Two

Make	sure	that	your	votes.yml	fixture	file	looks	like	this	one.	I've	seen	Rails	generate	faulty
fixture	files	that	break	the	tests.

We	generated	the	original	contents	of	this	file	using	the	rails	generate	command	earlier	in
this	chapter,	but	I've	made	some	small	changes.	Both	story	attributes	point	to	the	first	Story,
named	 one,	 in	 the	 stories.yml	 fixture	 file,	 illustrating	 the	 point	 that	 one	 Story	 can	 have
multiple	Votes.

Testing	a	Story's	Relationship	to	a	Vote

At	this	stage,	we're	ready	to	add	a	test	that	covers	the	Story's	relationship	to	the	Vote	model.
To	do	this,	open	the	file	test/models/vote_test.rb	and	change	the	VoteTest	class	to	read	as
follows:

class	VoteTest	<	ActiveSupport::TestCase

		test	"votes	have	a	story"	do

				assert_equal	stories(:one),	votes(:one).story

		end

end

																								

The	new	votes	have	a	story	test	undertakes	the	testing	of	the	relationship	between	the	Story
and	 the	 Vote	 model.	 While	 the	 underlying	 Rails	 association	 has	 very	 good	 internal	 test
coverage,	 it's	 good	 practice	 to	 test	 all	 associations	 that	 you	 create	 as	 you	 test	 your
application's	behavior.

The	 assert_equal	 assertion,	 as	 the	 name	 implies,	 confirms	 that	 two	 expressions	 are
absolutely	equal.	In	this	case,	we're	simply	comparing	the	return	values	of	two	methods:

assert_equal	stories(:one),	votes(:one).story

																								

What's	new	on	this	 line	 is	 the	stories(:one)	and	votes(:one)	 syntax,	which	references	our
fixture	 data	 by	 name.	 Making	 use	 of	 a	 fixture	 file	 in	 a	 test	 does	 more	 than	 just	 load	 the
contents	of	the	file	into	the	database,	it	also	gives	us	a	convenient	way	to	access	each	record	in
the	 fixture	 file	 without	 having	 to	 resort	 to	 manual	 retrieval	 methods	 (for	 example,	 using
Vote.find(1)	to	retrieve	the	first	vote).	The	records	we	defined	in	the	votes.yml	fixture	file
are	 named	 one	 and	 two.	 Simply	 passing	 these	 identifiers	 as	 symbols	 to	 the	 votes	 method
returns	the	corresponding	record.

To	give	an	example,	take	a	look	at	these	two	calls.	They	are	equal,	given	the	votes.yml	fixture
we	created	earlier:

Vote.find(1)

votes(:one)

																								

Incidentally,	 a	method	with	a	name	 identical	 to	 the	name	of	 the	 fixture	 file	 (minus	 the	.yml
extension)	is	made	available	for	every	fixture	we	include	in	a	test	case.	As	we've	created	two
fixtures	so	far,	we	have	access	to	both	the	votes	and	stories	methods.

In	our	assertion	line,	we	compare	the	Story	named	one	with	the	Story	object	that's	associated
with	the	Vote	named	one.	We	know	that	this	assertion	should	be	true,	because	we	associated
both	votes	in	the	fixture	file	with	the	first	story.

Testing	the	Voting	History	Order

To	test	the	functionality	provided	by	the	latest	method	we	added,	we'll	add	two	more	tests	to
the	story_test.rb	file	below	the	others:

test/models/story_test.rb	(excerpt)

test	"returns	highest	vote	first"	do

		highest_id	=	stories(:one).votes.map(&:id).max	

		assert_equal	highest_id,	stories(:one).votes.latest.first.id

end

test	"return	3	latest	votes"	do

		10.times	{	stories(:one).votes.create	}

		assert_equal	3,	stories(:one).votes.latest.size

end

																								

Let's	look	at	these	tests	line	by	line.

The	returns	highest	vote	first	test	confirms	that	the	:order	part	of	the	latest	method	is
indeed	 operating	 correctly.	We	 have	 to	 grab	 the	 highest	 vote	 ID	 for	 our	 story	 votes	 first,
because	we	have	no	control	over	when	or	in	what	order	the	fixtures	are	created:

highest_id	=	stories(:one).votes.map(&:id).max	

		assert_equal	highest_id,	stories(:one).votes.latest.first.id

																								

The	assertion	compares	the	first	element	of	the	array	returned	by	the	latest	method	with	the
highest	vote	ID,	to	which	we	expect	it	to	be	equal.

To	test	whether	the	limit	part	of	our	latest	method	does	indeed	do	its	job,	we	need	to	add	a
few	more	votes	to	the	database,	as	our	fixture	file	currently	contains	only	two	votes.	Because
it's	 unlikely	 that	 we'll	 be	 using	 a	 large	 number	 of	 votes	 in	 any	 other	 test,	 we'll	 create	 the
additional	votes	right	there	in	the	test,	using	a	simple	block	of	Ruby	code:

10.times	{	stories(:one).votes.create	}

																								

This	line	programmatically	creates	ten	votes	on	the	fly	by	calling	the	create	method	on	 the
votes	association	of	the	first	Story.

These	 dynamically	 created	 votes	will	 be	wiped	 from	 the	 database	 automatically	 before	 the
next	test	starts,	so	they	won't	affect	any	other	tests.

The	assertion	then	goes	ahead	and	compares	the	size	of	the	array	returned	by	latest	method
with	 the	 expected	 number	 of	 3,	which	 is	 the	maximum	 number	 of	 votes	 that	 latest`	 should
return.

Running	the	Unit	Tests
At	 this	 point,	 we're	 ready	 to	 run	 our	 model	 tests	 with	 all	 the	 newly	 added	 coverage.	 You
remember	how	to	do	that,	right?

The	output	should	look	similar	to	this:

$	rails	test:models

Running	via	Spring	preloader	in	process	52828

Run	options:	--seed	16833

#	Running:

......

Finished	in	0.083235s,	72.0847	runs/s,	96.1130	assertions/s.

6	runs,	8	assertions,	0	failures,	0	errors,	0	skips

																								

Testing	the	Controller

Now	that	we've	created	tests	that	cover	all	the	extra	functionality	we	added	to	our	model	in	this
chapter,	 we'll	 do	 the	 same	 for	 the	 new	 controller	 actions:	 show	 in	 StoriesController	 and
create	in	VotesController,	as	well	as	their	accompanying	views.

Testing	Page	Rendering
We'll	 add	 two	 tests	 for	 the	show	 action	 to	 test/controllers/stories_controller_test.rb;
the	first	will	be	a	test	that	deals	with	the	basics	of	displaying	a	story.	The	code	for	the	first	test
is	as	follows:

test/controllers/stories_controller_test.rb	(excerpt)

test	"show	story"	do

		get	story_path(stories(:one))

		assert_response	:success

		assert	response.body.include?(stories(:one).name)

end

																								

This	code	does	nothing	we	haven't	 seen	before.	We	 request	a	page	 (the	“show	story”	page)
using	 HTTP	 GET,	 and	 make	 sure	 that	 the	 page	 returns	 a	 code	 indicating	 that	 it	 displayed
successfully.	We	then	check	that	the	story	name	is	included	in	the	response,	indicating	we've

rendered	it	correctly.

The	next	test	we'll	create	will	cover	the	new	HTML	elements	that	we	added	to	the	story	page,
specifically	those	relating	to	the	voting	functionality.	Here's	the	test:

test/controllers/stories_controller_test.rb	(excerpt)

test	"show	story	vote	elements"	do

		get	story_path(stories(:one))

		assert_select	'h2	span#vote_score'

		assert_select	'ul#vote_history	li',	count:	2

		assert_select	'div#vote_form	form'

end

																								

This	is	quite	a	comprehensive	test.	It	checks	for	the	presence	of	correctly	nested	HTML	tags
on	the	rendered	page,	as	well	as	proper	element	attributes.	Let's	examine	it	one	line	at	a	time:

assert_select	'h2	span#vote_score'

																								

This	 assertion	 introduces	 more	 of	 the	 CSS	 selector	 syntax	 that	 can	 be	 used	 with
assert_select,	which	we	first	encountered	in	Chapter	6.	Just	as	you	would	regularly	style	an
element	on	a	page	by	referring	to	its	ID,	assert_select	allows	us	to	test	for	the	presence	of
an	element	with	a	given	ID	using	the	same	syntax	we'd	apply	to	style	an	element	on	the	page.

Here,	we're	 checking	 for	 a	 span	 tag	with	 an	 ID	of	vote_score	 nested	within	an	h2	 element.
This	 test	 confirms	 that	we	 have	 a	 proper	 story	 header	 in	 place,	 and	 that	 the	 current	 voting
score	appears	beneath	it.

The	next	assertion	also	uses	assert_select:

assert_select	'ul#vote_history	li',	count:	2

																								

Here,	we	check	for	the	presence	of	a	ul	element	that	has	a	unique	ID	of	vote_history	and	a
specific	number	of	li	elements	nested	within	it	(reflecting	the	entries	of	the	voting	history	for
this	particular	story).

Our	final	check	confirms	the	presence	of	a	div	element	with	a	unique	ID	of	vote_form	with	a
nested	form	inside	it:

assert_select	'div#vote_form	form'

																								

We	now	have	a	high	level	of	confidence	that	our	pages	are	displaying	everything	expected	of
them!	Now,	let's	add	some	tests	for	our	voting	functionality.

Testing	Vote	Storage
To	 test	 the	 basics	 of	 the	 vote-casting	 functionality,	 add	 the	 following	 test	 to
test/controllers/votes_controller_test.rb	 (and	while	you're	 in	 there,	delete	 the	 test	 that
Rails	generated.)	It	simply	confirms	that	new	votes	are	stored	correctly:

test/controllers/votes_controller_test.rb	(excerpt)

class	VotesControllerTest	<	ActionController::TestCase

		test	"creates	vote"	do

				assert_difference	'stories(:two).votes.count'	do

						post	story_votes_path(stories(:two))

				end

		end

end

																								

The	test	uses	the	assert_difference	before-and-after	check	to	confirm	that	this	action,	which
is	supposed	to	modify	data,	is	indeed	doing	its	job.	Let's	look	at	each	line	in	turn.

The	first	line	sets	up	the	count	we	want	to	check	for	the	test	block:

assert_difference	'stories(:two).votes.count'	do

																								

We	then	submit	the	vote	using	HTTP	POST:

post	story_votes_path(stories(:two))

																								

assert_difference	will	 confirm	 that	 the	 vote	we	 submitted	was	 stored	 successfully,	 and	 is
associated	with	our	story.

Okay,	we	 now	 have	 a	 test	 in	 place	 for	 the	 application's	 basic	 voting	 functionality.	 But	 our
voting	pages	are	far	from	being	basic—they	use	that	fancy	Ajax	stuff,	remember?	Can	we	test
that,	too?	You	bet	we	can!

Testing	Ajax	Voting
Let's	test	an	Ajax	voting	action.	Add	the	following	test	to	your	rapidly	expanding	collection	of
functional	tests:

test/controllers/votes_controller_test.rb	(excerpt)

test	"create	vote	with	ajax"	do

		post	story_votes_path(stories(:two)),	xhr:	true

		assert_response	:success

end

																								

>

Again,	let's	walk	through	each	line	of	this	test.

The	first	line	is	our	test's	way	of	pretending	to	perform	an	actual	Ajax	request:

post	story_votes_path(stories(:two)),	xhr:	true

																								

Obviously,	 this	 isn't	 really	 an	 Ajax	 request.	 It	 makes	 no	 use	 of	 a	 browser,	 and	 there's	 no
XmlHttpRequest	object	in	sight.	But,	by	adding	the	xhr:	true	parameter	to	the	POST	call,	our
request	 receives	 a	 header	 that	 fools	 the	 application	 into	 thinking	 that	 this	 is	 a	 real	 Ajax
request.

The	 next	 block	 of	 statements	 check	 for	 a	 proper	 response,	 and	 confirms	 that	 the	 correct
template	was	rendered:

assert_response	:success

																								

There's	nothing	here	that	we	haven't	seen	before,	so	let's	move	on	to	our	last	test.

EXTRA	CREDIT:	Make	a	Difference

Change	the	Ajax	test	to	use	assert_difference.

Testing	Regular	HTTP	Voting
We	still	must	 test	 the	process	of	vote	submission	using	regular	HTTP	POST	 (that	 is,	without
Ajax).	To	do	so,	we'll	add	one	more	test	to	the	votes_controller_test.rb	file:

test/controllers/votes_controller_test.rb	(excerpt)

test	"redirect	after	vote	with	http	post"	do

		post	story_votes_path(stories(:two))

		assert_redirected_to	story_path(stories(:two))

end

																								

Let's	examine	each	line	in	this	test.	The	first	line	casts	the	vote	with	a	simple	HTTP	POST:

post	story_votes_path(stories(:two))

																								

After	 the	 vote	 has	 been	 submitted,	we	 check	whether	 the	 user	 is	 properly	 redirected	 to	 the
story	page.	This	is	accomplished	with	an	assert_redirected_to	assertion:

assert_redirected_to	story_path(stories(:two))

																								

Excellent!	All	of	our	new	functionality	is	covered.	Time	to	run	the	tests.

Running	the	Full	Test	Suite

Invoking	 the	 full	 test	 suite	 (using	 the	rails	test	 command)	will	 run	 through	 a	 total	 of	 26
assertions	contained	 in	 ten	 tests.	The	results	of	a	successful	 test	suite	execution	should	 look
like	this:

$	rails	test

Running	via	Spring	preloader	in	process	56718

Run	options:	--seed	3298

#	Running:

................

Finished	in	0.385701s,	41.4829	runs/s,	82.9658	assertions/s.

15	runs,	25	assertions,	0	failures,	0	errors,	0	skips

																								

Summary

In	this	chapter,	we've	equipped	Readit	with	some	fully	fledged	voting	functionality,	and	we've
done	 it	 using	 cool	 technologies	 such	 as	 Ajax	 combined	 with	 some	 good-looking	 user-
interface	effects.

Along	 the	 way,	 we	 covered	 the	 principles	 of	 Rails	 routing	 helpers,	 and	 added	 to	 our
application	a	page	that	shows	the	details	of	a	story	that	has	already	been	submitted.

We	 took	 a	 long	 look	 at	 the	 asset	 pipeline	 and	 how	 it	 compresses	 and	minifies	 our	 assets,
generates	asset	digests,	and	handles	preprocessors	such	as	CoffeeScript	and	Sass.

Turbolinks	 supplied	 us	 with	 some	 great	 tools	 out	 of	 the	 box,	 such	 as	 asynchronous	 page
requests	and	a	progress	bar.

We	 also	 looked	 at	 using	 JavaScript	 templates	 to	 modify	 the	 contents	 of	 pages	 that	 have
already	been	rendered,	and	discussed	how	we	can	use	visual	effects	to	enhance	the	usability	of
our	application.	We	even	covered	partials:	mini	page	templates	that	help	reduce	the	amount	of
template	code	required	to	get	the	job	done.

Finally,	 we	 established	 test	 coverage	 for	 all	 the	 functionality	 we	 added	 to	 our	 Readit
application	 in	 this	 chapter,	 so	 that	 we'll	 know	 immediately	 if	 any	 future	 change	 to	 the
application	code	breaks	our	existing	functionality.

Whew!	We	covered	a	ton	in	this	chapter.	Take	a	break	and	get	some	coffee.	You	deserve	it.

In	 the	 next	 chapter,	 we'll	 implement	 some	 protective	 measures	 in	 Readit	 with	 user
authentication—with	some	additional	benefits!

Chapter	8:	Protective	Measures
Over	the	last	few	chapters,	we've	spent	a	good	deal	of	time	implementing	new	features	for	our
link-sharing	application;	however,	we've	yet	 to	put	any	effort	 into	preventing	 those	features
from	being	misused.

In	 this	 chapter,	 we'll	 implement	 some	 user	 authentication	 techniques	 that	 will	 allow	 us	 to
protect	certain	actions	from	being	used	by	individuals	failing	to	register	with	or	log	into	the
site.

Introducing	Sessions	and	Cookies

Before	we	write	 any	 code,	 let's	 learn	 a	 bit	more	 about	 the	 technology	 behind	 user	 logins,
including	sessions	and	cookies.

If	 you	 already	 have	 some	 experience	 with	 sessions	 and	 cookies,	 you	 may	 prefer	 to	 skim
through	this	section.

Identifying	Individual	Users
Generally	speaking,	HTTP—the	protocol	that	a	web	browser	uses	to	talk	to	an	application—
is	stateless.	This	means	 it	makes	no	 assumptions	 about,	 nor	 relies	 upon,	 previous	 requests
between	the	client	and	the	server.

This	 is	 the	 crucial	 difference	 between	 stateless	 protocols	 and	 other	 protocols,	 including
instant	messaging	systems	such	as	Skype	or	Internet	Relay	Chat	(IRC).	When	you	start	up	an
instant	messenger	client,	it	logs	in	to	the	instant	messaging	server	and	remains	connected	for
the	time	that	you	use	the	service.	Stateless	protocols,	such	as	HTTP,	request	only	a	single	item
—a	web	page,	an	image,	or	a	stylesheet,	for	example—during	each	connection.	Once	the	item
has	 been	 requested,	 the	 connection	 is	 closed.	 If	 the	 requested	 item	 is	 a	 web	 page,	 it's
impossible	for	the	application	to	tell	what	the	users	are	doing;	they	may	be	still	reading	the
page,	following	a	link	to	another	site,	or	shutting	down	the	machine	altogether.

In	the	world	of	HTTP,	it's	also	impossible	to	tell	whether	two	pages	requested	in	succession
were	 actually	 done	 so	 by	 the	 same	 user.	 We	 cannot	 rely	 on	 the	 IP	 address	 of	 the	 user's
computer,An	 IP	 address	 is	 a	 number	 that	 uniquely	 identifies	 a	 computer	 connected	 to	 the
Internet.	You've	no	doubt	encountered	 them	before–here's	an	example:	123.45.67.123.	as	 that
computer	might	sit	behind	a	proxy	server	or	firewall,	in	which	case	it's	entirely	possible	that
thousands	of	other	users	share	the	IP	address	displayed	by	that	machine.

Obviously,	we	need	another	technique	to	identify	individual	visitors.	Without	it,	we'd	have	to
force	every	user	to	log	in	to	each	and	every	page	of	our	Readit	application,	and	that's	just	not
cool.	This	is	where	sessions	and	cookies	come	into	play.

What's	a	cookie?
A	 cookie	 is	 a	 tiny	 snippet	 of	 information	 that	 a	 website	 places	 on	 a	 user's	 computer.	 The
cookie	is	bound	to	the	website	that	placed	it	there;	no	other	site	is	able	to	access	the	cookie.
You've	probably	encountered	cookies	when	using	the	Web	in	the	past,	possibly	without	even
knowing	it.

A	 cookie	 consists	 of	 a	 name/value	 pair.	 For	 example,	 a	 cookie	with	 the	 name	color	might
have	the	value	green.	Additionally,	the	cookie's	name	must	be	unique.	If	a	cookie	is	set	with
the	same	name	as	one	that	already	exists,	the	older	cookie	will	be	overwritten.

All	web	 browsers	 give	 users	 control	 over	 the	 cookies	 that	websites	 set	 on	 their	machines,
although	some	make	cookie	management	easier	than	others.	Firefox,	for	example,	provides	a
handy	tool	for	 inspecting—and	removing—the	cookies	 that	have	been	set	on	a	machine.	To
display	 the	 Firefox	 Storage	 Inspector	 shown	 in	 Figure	 8-1,	 select	Tools	 >	Web	 Developer,
click	Storage	Inspector.	The	top	item	in	the	list	is	called	"Cookies."	Select	the	address	of	the
current	site	under	"Cookies"	(www.google.com	in	the	figure)	to	show	you	the	cookies	for	that
site.	 Go	 take	 a	 look—chances	 are	 that	 many	 of	 the	 sites	 you've	 visited	 have	 left	 a	 cookie
without	even	telling	you	about	it.

The	Storage	Inspector

Cookies	 usually	 have	 an	 expiration	 date,	 with	 the	 browser	 deleting	 a	 cookie	 automatically
once	this	has	passed.	It	makes	sense	for	sites	to	set	expiration	dates	on	cookies,	as	they	occupy
space	on	the	user's	computer.	Additionally,	once	a	cookie	is	set,	it	cannot	be	modified	by	the
application	 that	 set	 it,	 so	 a	 cookie	 without	 an	 expiration	 date	 could	wind	 up	 sitting	 on	 the
user's	hard	disk	forever.

A	site	can	set	the	expiration	date	of	a	cookie	in	two	ways:
	

using	an	explicit	date	(for	example,	December	31,	2016)

making	the	cookie	expire	when	the	user	closes	the	browser

The	 latter	 is	 the	 default	 behavior	 for	Rails'	 session	 cookies	…	which	brings	 us	 to	 the	 next
topic.

What's	a	session?
Sessions	are	what's	needed	to	 identify	returning	visitors.	A	session	 is	 like	a	small	container
that's	stored	on	 the	server	for	each	user;	 it	can	be	used	as	a	 temporary	storage	 location	for
everything	 that	 needs	 to	 be	 remembered	 between	 successive	 page	 views	made	 by	 the	 user.
Though	a	session	is	a	less	permanent	storage	solution,	the	data	stored	in	the	session	shouldn't
be	treated	any	differently	from	data	in	the	application's	database.

As	an	added	bonus,	the	processes	of	creating	sessions	and	retrieving	information	from	them
occurs	without	us	having	to	write	any	code	or	provide	specific	instructions.

For	 our	Readit	 application,	we'll	 use	 a	 session	 to	 store	 information	 about	where	 users	 are
from;	 we'll	 use	 that	 information	 when	 users	 attempt	 to	 access	 pages	 or	 functionality	 to
determine	whether	we	should	allow	them	access,	or	redirect	them	to	the	login	form.	Sessions
can	 also	 be	 used	 to	 store	 shopping	 cart	 content,	 custom	 user	 preferences,	 and	 other
information	that	allows	us	to	enhance	and	customize	users'	experiences	of	a	site.

Rails	uses	a	session	cookie	to	identify	the	session	of	a	returning	visitor.	A	session	cookie,	by
default,	 will	 contain	 the	 actual	 session	 content	 in	 a	 safely	 encrypted	 fashion,	 although	 it's
possible	to	store	the	session	content	on	the	server	or	in	the	database	if	you	so	desire	later	on.

In	fact,	if	you've	been	following	the	code	in	this	book,	you	may	notice	that	a	session	cookie
has	been	set	by	our	application	already:	check	your	browser's	cookie	manager	for	a	cookie
set	 by	 localhost	 or	 localhost.local,	 with	 the	 name	 readitsession.	 This	 is	 a	 cookie	 that
Rails	sets	for	us	automatically,	providing	us	with	a	session	to	use	within	our	application.

Sessions	in	Rails

As	 I've	 previously	 noted,	 a	 session	 in	 Rails	 is	 automatically	 created	 for	 each	 of	 your
application's	users,	and	can	be	used	 to	store	and	 retrieve	data	without	 requiring	any	special
code.

The	session	container	for	a	user	is	accessed	just	like	any	other	hash.	To	add	a	new	value	to	the
session,	simply	assign	the	value	that	you	wish	to	store	to	a	hash	key	that's	yet	to	exist	in	the
session,	like	so:

session[:page]	=	'Index	page'

																								

The	result	of	this	assignment	is	that	a	cookie	will	be	written	to	the	user's	machine.	The	cookie
contains	 an	 encrypted	 representation	of	what	was	 stored	 in	 the	 session	previously.	With	 the
cookie	in	place,	any	data	stored	in	the	session	becomes	available	for	all	successive	pages	that
this	user	visits.

The	 retrieval	 of	 session	 values	 is	 equally	 simple.	 To	 access	 the	 value	 we	 stored	 in	 the
previous	code	snippet	and	display	it	in	a	view,	we'd	use	the	following	syntax:

<%=	session[:page]	%>

																								

It's	 possible	 to	 store	 data	 other	 than	 strings	 in	 a	 session	 container—you	 can	 actually	 use	 a
session	to	store	any	type	of	data	you	like.	The	only	prerequisite	for	such	storage	is	that	your
application	 has	 access	 to	 the	 class	 definition	 of	 the	 stored	 object;	 however,	 in	 practice,
sessions	should	only	be	used	to	store	simple	objects,	such	as	String	and	Fixnum.	And	since
anything	you	store	in	the	session	will	be	stored	in	the	user's	browser,	the	objects	you	store	had
better	be	small.

Session	Storage	Solutions

As	mentioned,	we	 can	 store	 the	 contents	of	 a	 session	on	 the	 server	or	 in	different	 types	of
databases,	as	well	as	the	default	location	of	the	session	cookie	itself.

While	 the	 default	 option	 is	 fine	 for	 local	 development,	 it	 may	 not	 work	 so	 well	 in	 a
production	environment.	It	lacks	some	control,	not	least	by	its	inability	to	purge	data	from	the
user's	session	and	thus	prevent	data	from	becoming	stale	(that	is,	out	of	sync	with	data	in	our
database).

An	 in-depth	discussion	on	 the	different	 session	 storage	options	 is	 beyond	 the	 scope	of	 this
book,	but	we'll	briefly	explore	some	of	the	alternatives	in	Chapter	12.

Modeling	the	User

Now	 that	 we've	 stepped	 through	 the	 theory,	 let's	 return	 to	 the	 topic	 at	 hand:	 protective
measures.	 In	 this	 section,	 we'll	 lay	 an	 architectural	 foundation	 for	 providing	 user
authentication	in	Readit.

The	first	step	is	to	generate	a	new	model	named	User.	Since	we've	covered	model	generation,
I'll	avoid	dwelling	on	this	step	for	long.	Let's	do	it.

Generating	a	User	Model
From	the	readit	 folder,	run	the	rails	generate	command	to	generate	 the	base	class	of	 the
User	model,	along	with	its	migration	files,	unit	tests,	and	fixtures:

$	rails	generate	model	User	password_digest:string	name:string	email:string

Running	via	Spring	preloader	in	process	61211

								invoke		active_record

								create				db/migrate/20160412173358_create_users.rb

								create				app/models/user.rb

								invoke				test_unit

								create						test/models/user_test.rb

																								

To	 create	 the	 database	 table	 for	 this	model,	modify	 the	 generated	migration	 file	 located	 at
db/migrate/xxx_create_users.rb	to	this:

db/migrate/xxx_create_users.rb

class	CreateUsers	<	ActiveRecord::Migration[5.0]

		def	change

								create_table	:users	do	|t|

										t.string	:password_digest

										t.string	:name

										t.string	:email

										t.timestamps

								end

								add_column	:stories,	:user_id,	:integer

								add_column	:votes,	:user_id,	:integer

		end

end

																								

We'll	 use	 this	 migration	 to	 create	 a	 brand	 new	 users	 table.	 The	 three	 columns	 we've	 just
defined	will	hold	users'	personal	 information:	password	digests	(I'll	get	 to	this),	names,	and
email	addresses.	Actually,	 the	table	has	six	columns	if	you	include	the	automatically	created
id	 column	 as	 well	 as	 the	 created_at	 and	 updated_at	 columns	 that	 are	 a	 result	 from	 the
t.timestamps	call.

As	you've	probably	 figured	out,	we're	going	 to	store	our	users	and	 their	credentials	 in	 this
table.	The	credentials	consist	of	the	email	and	password	attributes.	But,	you	must	be	shouting,
there	 is	no	password	 attribute	 in	 the	 table.	That's	 correct,	 and	 it's	 another	 example	 of	Rails
doing	right	by	you.	It	is	bad,	bad,	BAD	practice	to	store	a	password	in	clear	text	(that	is,	not
encrypted.)	So,	Rails	has	 a	 shortcut	 that	 allows	a	developer	 to	 configure	 a	model	 (the	User
model,	in	our	case)	to	accept	email	and	passwords	in	a	secure,	best	practices	kind	of	way.	It's
called	has_secure_password	and	I'll	walk	you	through	it	once	we	finish	with	this	migration.

In	addition	to	creating	this	table,	we'll	insert	a	new	column	into	each	of	the	existing	stories
and	votes	 tables,	which	will	 store	 the	 ID	of	 the	user	who	created	a	particular	 story	or	vote
respectively.

While	 we	 would	 normally	 split	 migrations	 into	 the	 components	 that	 handle	 small	 isolated
changes,	 in	 this	 case	 it	 makes	 sense	 to	 group	 the	 creation	 of	 the	 users	 table	 with	 the
modification	 of	 the	 two	 other	 tables.	 We'll	 keep	 our	 schema	 changes	 together	 as	 one
migration,	as	they're	so	closely	related.	We	use	the	good	old	rails	tool	to	apply	the	migration
we've	just	written:

$	rails	db:migrate

Running	via	Spring	preloader	in	process	63227

==	20160412173358	CreateUsers:	migrating	======================================

--	create_table(:users)

								->	0.0028s

--	add_column(:stories,	:user_id,	:integer)

								->	0.0003s

--	add_column(:votes,	:user_id,	:integer)

								->	0.0004s

==	20160412173358	CreateUsers:	migrated	(0.0037s)	=============================

																								

This	 snippet	 shows	 the	 result	of	a	 successful	migration.	We	now	have	 in	place	 the	database
structure	necessary	to	begin	writing	code	for	our	User	model.

Has	Secure	Password
As	we've	covered,	Rails	comes	with	a	method	called	has_secure_password	that	can	be	applied
to	our	User	model	to	give	us	a	solid,	practical	authentication	solution.	To	configure	it,	open
up	the	User	model	(app/models/user.rb)	and	change	it	to:

class	User	<	ApplicationRecord

		has_secure_password

end

																								

That	 one	 line	does	quite	 a	 bit.	 First,	 it	 adds	 two	methods	on	 the	User	model:	password	 and
password_confirmation.	 has_secure_password	 also	 adds	 validations	 to	 ensure	 that	 the

password	and	password_confirmation	attributes	match	when	creating	a	user.	Additionally,	the
password	value	is	encrypted	and	stored	in	the	password_digest	field	in	the	users	table	that	we
discussed	earlier.	Finally,	has_secure_password	adds	an	authenticate	instance	method	to	the
User,	model	which	we'll	use	to	authenticate	our	users.

There	is	one	small	chore	to	perform	to	get	all	 this	working.	has_secure_password	encrypts
the	password	value	using	a	RubyGem	called	bcrypt.	In	order	to	use	has_secure_password,	we
add	the	bcrypt	gem	to	our	Gemfile	and	update	our	bundle	via	bundle	install.

Open	up	the	Gemfile	and	search	for	bcrypt	(a	gem	I'll	explain	in	a	bit).	It	should	be	in	there,
but	commented	out:

#	Use	ActiveModel	has_secure_password

#	gem	'bcrypt',	'~>	3.1.7'

																								

Change	it	to:

#	Use	ActiveModel	has_secure_password

gem	'bcrypt',	'~>	3.1.7'

																								

Then	go	to	your	command	line	in	the	root	directory	of	readit	and	run	bundle	install:

$	bundle	install

Fetching	gem	metadata	from	https://rubygems.org/...........

Fetching	version	metadata	from	https://rubygems.org/...

Fetching	dependency	metadata	from	https://rubygems.org/..

Resolving	dependencies...

Using	rake	10.5.0

Using	i18n	0.7.0

Using	json	1.8.3

Using	minitest	5.8.4

Using	thread_safe	0.3.5

Using	builder	3.2.2

Using	erubis	2.7.0

Using	mini_portile2	2.0.0

Using	rack	1.6.4

Using	mime-types	2.99

Using	arel	6.0.3

Installing	bcrypt	3.1.11	with	native	extensions

...

Bundle	complete!	13	Gemfile	dependencies,	55	gems	now	installed.

Use	`bundle	show	[gemname]`	to	see	where	a	bundled	gem	is	installed.

																								

Now,	we	can	encrypt	passwords	and	feel	good	about	how	they	are	stored.

Server	Reboot	Required

If	your	web	server	running,	you'll	need	to	kill	it	(CTRL+C)	after	a	bundle	install	and	restart
it	to	see	the	changes.

Adding	Relationships	for	the	User	Class

Our	users	will	create	votes	and	stories,	so	we	need	a	way	to	track	which	user	created	or	voted
for	what	stories.	As	you've	probably	gathered	from	our	past	endeavors	with	ActiveRecord,	a
model	requires	little	code	in	order	to	track	relationships.

Open	the	User	class	definition	and	modify	it	as	follows:

app/model/user.rb

class	User	<	ActiveRecord::Base

		has_secure_password

		has_many	:stories

		has_many	:votes

end

																								

This	code	sets	up	a	one-to-many	relationship	between	the	User	class	and	each	of	the	Story	and
Vote	classes.

As	you	already	know,	relationships	can	(and	should)	be	defined	for	both	participating	models.
Our	next	step	is	to	add	complementary	relationship	definitions	to	the	Story	and	Vote	classes
(located	at	app/models/story.rb	and	app/models/vote.rb	respectively):

class	Story	<	ActiveRecord::Base

		belongs_to	:user

		⋮	class	definition…

end

																								

class	Vote	<	ActiveRecord::Base

		belongs_to	:user

		⋮	class	definition…

end

																								

These	bidirectional	relationship	definitions	allow	us	to	retrieve	not	only	the	Vote	and	Story
objects	associated	with	a	particular	User,	but	also	the	User	object	associated	with	a	particular
Story	or	Vote.

All	right,	enough	of	the	architectural	building	blocks—let's	create	a	user.	Then	we	can	start	to
protect	some	of	our	actions	from	users	not	logged	in.

Creating	a	User
Creating	a	User	object	is	no	different	from	creating	any	other	ActiveRecord	object.	It's	easily
accomplished	from	the	Rails	console–feel	free	to	create	an	account	for	yourself,	rather	than
using	my	name.

>>	u	=	User.new

=>	#<User	id:nil,	…>

>>	u.name	=	'Glenn	Goodrich'

=>	"Glenn	Goodrich"

>>	u.password	=	'sekrit'	#	You	should	choose	a	better	password

=>	"sekrit"

>>	u.password_confirmation	=	'sekrit'

=>	"sekrit"

>>	u.email	=	'glenn.goodrich@sitepoint.com'

=>	"glenn.goodrich@sitepoint.com"

>>	u.save

=>	true

																								

Excellent.	The	first	user	of	millions	(I	am	sure)	has	been	added	to	Readit.

Developing	Login	Functionality

In	order	 to	 handle	 login	 and	 logout	 actions	 (and	 cater	 for	 new	user	 registrations	down	 the
track),	 we'll	 need	 another	 controller	 to	 complement	 our	 existing	 controllers
StoriesController	 and	 VotesController.	 Once	 that's	 in	 place,	 we	 can	 create	 some
functionality	to	let	users	log	in	and	out.	It's	exciting	stuff.

Creating	the	Controller
We'll	name	 this	new	controller	SessionsController	 (since	 it's	dealing	with	 the	creation	and
deletion	of	sessions,	rather	than	users),	and	generate	it	using	the	rails	generate	command:

$	rails	generate	controller	Sessions	new	create	destroy

Running	via	Spring	preloader	in	process	78423

			create		app/controllers/sessions_controller.rb

			route		get	'sessions/destroy'

			route		get	'sessions/create'

			route		get	'sessions/new'

			invoke		erb

			create				app/views/sessions

			create				app/views/sessions/new.html.erb

			create				app/views/sessions/create.html.erb

			create				app/views/sessions/destroy.html.erb

			invoke		test_unit

			create				test/controllers/sessions_controller_test.rb

			invoke		helper

			create				app/helpers/sessions_helper.rb

			invoke				test_unit

			invoke		assets

			invoke				coffee

			create						app/assets/javascripts/sessions.coffee

			invoke				scss

			create						app/assets/stylesheets/sessions.scss

																								

Passing	 the	 additional	 new,	 create,	 and	 destroy	 parameters	 as	 arguments	 to	 the	 generate
command	 will	 automatically	 produce	 blank	 new,	 create,	 and	 destroy	 actions	 in	 our	 new
SessionsController,	which	saves	us	a	few	lines	of	typing.	It	will	also	form	empty	ActionView
templates	 in	 the	 app/views/sessions/	 folder,	 with	 the	 names	 new.html.erb,
create.html.erb,	and	destroy.html.erb.	Since	no	template	is	required	for	the	create	action
(this	action	is	destined	to	redirect	elsewhere	after	it	performs	its	job),	you're	free	to	remove
create.html.erb.

Before	 closing	 off	 this	 section,	 we'll	 revisit	 our	 routing	 configuration	 (stored	 in
config/routes.rb),	since	we	want	to	build	our	SessionsController	 in	a	RESTful	way.	Add
the	 following	 line	 to	 make	 sure	 Rails	 knows	 our	 intentions	 and	 provides	 the	 appropriate
helpers	to	generate	RESTful	URLs	for	the	session	that's	about	to	begin:

config/routes.rb

Rails.application.routes.draw	do

		⋮	more	routes…

		resource	:session

end

																								

Now	delete	all	the	get	lines	that	the	generate	command	added	for	sessions	in	that	file.

Please	 note	 that	 we've	 used	 the	 singular	 form	 of	 resource	 instead	 of	 the	 plural	 form
(resources),	as	well	as	the	singular	form	of	session,	unlike	what	we	did	for	stories.	When
using	the	singular	form,	Rails	knows	we're	talking	about	a	singleton	resource,	which	means
only	one	of	it	ever	exists	at	a	time.	This	is	true	here	in	the	context	of	a	User	object,	which	will
only	ever	have	a	single	session	at	a	time.	As	such,	all	the	RESTful	URLs	for	sessions	will	take
the	singular	 rather	 than	plural	 form	of	 the	model	name	we've	seen	so	far.	For	example,	 the
URL	that	creates	a	new	session	will	be:	session/new.

All	right,	let's	go	ahead	and	create	some	forms.

Creating	the	View
To	 better	 understand	 what	 happens	 when	 we	 use	 extra	 parameters	 to	 generate	 ActionView
templates,	type	http://localhost:3000sessionnew	into	your	web	browser.

The	result	you	see	should	be	similar	to	Figure	8-5.	It's	basically	a	friendly	message	to	inform
us	where	we	can	find	the	template	that's	displayed	in	the	browser.

The	generated	login	template

Start	Your	Engines...

As	always,	to	use	our	Readit	application,	you	must	have	the	web	server	running.	Flip	back	to
Starting	Our	Application	in	Chapter	2	if	you	need	a	refresher	on	this.

Let's	 modify	 this	 template	 and	 turn	 it	 into	 an	 actual	 login	 form.	 As	 Rails	 indicates	 in	 the
browser,	the	template	is	located	at	app/views/sessions/new.html.erb:

app/views/sessions/new.html.erb

<%=	form_tag	session_path	do	%>

		<p>Please	log	in.</p>

		<p>

				<label>Email:</label>

				<%=	email_field_tag	'email'	%>

		</p>

		<p>

				<label>Password:</label>

				<%=	password_field_tag	'password'	%>

		</p>

		<p><%=	submit_tag	'login'	%></p>

<%	end	%>

																								

Once	again,	we've	created	a	form	using	simple	HTML	markup	and	a	few	of	 the	Rails	 form
helpers.	This	time,	our	form	doesn't	deal	with	a	specific	model	object,	so	we're	unable	to	use
the	 form_for	 helper	 that	 we	 employed	 back	 in	 Chapter	 6.	 Instead,	 we	 use	 the	 standard
form_tag	helper	that	defines	the	surrounding	form	with	a	do	and	end	block:

<%	form_tag	session_path	do	%>

		⋮	login	form…

<%	end	%>

																								

This	generates	the	all-important	form	and	its	form	HTML	tags.	It	uses	the	session_path	URL
helper	 that	we	got	by	 telling	 the	Rails	 routing	configuration	 in	 the	 last	section	 that	we	want
RESTful	handling	of	the	session's	URLs.	To	check	that	they're	being	created	correctly,	reload
the	modified	page	in	your	browser	and	view	the	source	of	the	page.

The	email_field_tag	and	password_field_tag	helpers	generate	HTML	input	elements	with
the	type	attribute	set	to	email	and	password	respectively:

<p>

				<label>Email:</label>

				<%=	email_field_tag	'email'	%>

		</p>

		<p>

				<label>Password:</label>

				<%=	password_field_tag	'password'	%>

		</p>

																								

These	elements	will	 render	 the	 text	 fields	 into	which	our	visitors	will	 enter	 their	email	 and
password.	 The	 email	 and	 password	 parameters	 that	 we're	 passing	 to	 each	 of	 these	 helpers
assigns	a	name	to	the	HTML	tag	that's	generated;	 it	also	causes	this	value	to	show	up	in	the
params	hash,	which	will	prove	to	be	very	useful	as	we'll	see	later	on.

Now	that	we've	put	our	form	in	place,	we	can	establish	some	functionality	behind	it.

Adding	Functionality	to	the	Controller
We're	 ready	 to	 implement	 the	 actual	 login	 functionality	within	 the	create	 controller	 action.
You'll	find	the	controller	class	in	the	file	app/controllers/sessions_controller.rb.	Add	the
following	code	to	the	create	method	of	this	class:

app/controllers/sessions_controller.rb	(excerpt)

class	SessionsController	<	ApplicationController

		⋮	controller	code…

		def	create

				@current_user	=	User.find_by(email:	params[:email])

				if	@current_user	&&	@current_user.authenticate(params[:password])

						session[:user_id]	=	@current_user.id

						redirect_to	stories_path

				else

						render	action:	'new'

				end

		end

		⋮	controller	code…

end

																								

As	 Figure	 8-8	 shows,	 we've	 expanded	 the	 previously	 empty	 create	 action	 to	 handle	 the
submission	of	the	login	form.	We	attempt	to	fetch	a	user	using	the	email	and	password	values
that	the	visitor	provided.	Notice	that	we	use	one	of	the	ActiveRecord	dynamic	finder	methods
to	do	this:

@current_user	=	User.find_by(email:	params[:email)

if	@current_user	&&	@current_user.authenticate(params[:password])

																								

The	completed	login	form

If	 we're	 able	 to	 locate	 a	 user	 whose	 record	 matches	 the	 visitor-entered	 email	 (so
@current_user	 is	 not	 nil),	 we	 then	 use	 the	 authenticate	 method	 provided	 by
has_secure_password	 to	 compare	 the	 supplied	 password	 value	 with	 the	 encrypted
password_digest	value.	If	everything	is	successful,	store	 the	ID	of	 the	User	object	 retrieved
within	the	current	visitor's	session.	The	user	is	then	redirected	to	the	story	index,	 for	which
Rails	gave	us	the	shorthand	stories_path:

if	@current_user	&&	@current_user.authenticate(params[:password])

		session[:user_id]	=	@current_user.id

		redirect_to	stories_path

else

		⋮
end

																								

If	we	don't	 find	 a	 corresponding	 user	 in	 the	 database,	 it's	 best	 to	 rerender	 the	 login	 form.
Maybe	the	user	mistyped	the	password	or	forgot	the	email,	in	which	case	we'd	like	to	enable
him	or	her	to	try	again:

if	@current_user	&&	@current_user.authenticate(params[:password])

		⋮
else

		render	action:	'new'

end

																								

Be	Careful	When	Storing	ActiveRecord	Objects	in	a	Session

Be	 careful	when	 you're	 storing	 ActiveRecord	 objects	 in	 the	 session.	 ActiveRecord	 objects
may	change	at	any	time,	but	the	session	container	won't	necessarily	be	updated	to	reflect	the
changes.	For	example,	in	our	Readit	application,	a	story	object	might	be	viewed	by	one	user
and	modified	by	a	second	user	 immediately	afterwards.	 If	 the	entire	story	was	stored	 in	 the
session	container,	the	first	user's	session	would	contain	a	version	of	the	story	that	was	out	of
date	(and	out	of	sync	with	the	database).

To	ensure	 that	 this	 scenario	doesn't	 eventuate,	 it's	 best	 to	 store	only	 the	primary	key	of	 the
record	in	question—the	value	of	the	id	column—in	the	session	container.	Here's	an	example:

session[:user_id]	=	@current_user.id

																								

On	successive	page	loads,	we	retrieve	the	ActiveRecord	object	using	the	regular	Model.find
method,	and	pass	in	the	key	that	was	stored	in	the	session	container:

current_user	=	User.find	session[:user_id]

																								

This	 is	 all	 well	 and	 good,	 and	 if	 you	 were	 to	 try	 logging	 in	 at
http://localhost:3000sessionnew	 using	 the	 initial	 user	 that	we	created	a	 few	pages	back,
you	 would	 indeed	 be	 redirected	 to	 the	 story	 page.	 Go	 on,	 try	 it	 out—it	 works!	 However,
something	is	still	amiss.

Since	we've	stored	only	the	user's	ID	in	the	session	container,	we	need	to	ensure	that	we	fetch
the	User	object	for	that	user	before	we	hand	execution	control	to	another	controller	action.	If
we	 failed	 to	 fetch	 the	 rest	 of	 the	 user's	 details,	 we'd	 be	 unable	 to	 display	 the	 name	 of	 the
currently	logged-in	user,	which	we	aim	to	do	on	every	page	in	our	application.

So,	before	we	proceed	too	much	further,	let's	look	at	the	theory	behind	one	of	the	features	of
Rails	that	allows	us	to	execute	code	from	any	controller	action:	filters.

Introducing	Filters

A	filter	is	a	function	that	defines	code	to	be	run	either	before	or	after	a	controller's	action	is
executed.	Using	a	filter,	we	can	ensure	that	a	specific	chunk	of	code	is	run	regardless	of	which
page	 the	user	 is	 looking	at.	An	example	might	be	authenticating	 the	current	user	before	 the
action	is	run.

Once	we've	discussed	how	filters	work,	I'll	show	you	how	to	use	one	 to	fetch	a	User	object
from	the	database	when	a	user	logs	in.	We'll	use	another	filter	to	redirect	to	the	login	page	any
anonymous	visitors	who	attempt	to	access	a	protected	page.

Before	Filters
The	first	 type	of	 filter	we'll	 look	at	 is	 the	before	 filter.	As	you	might	expect,	a	before	 filter
executes	before	 the	code	 in	 the	controller	action	 is	executed.	The	method	used	for	a	before
filter	is	before_action,	meaning,	it	runs	before	the	action	runs.

Like	all	filters,	a	before	filter	is	defined	in	the	head	of	the	controller	class	that	calls	it.	Calling
a	before	filter	is	as	simple	as	invoking	the	before_action	method	and	passing	it	a	symbol	that
represents	the	method	to	be	executed.	The	filter	can	also	accept	a	snippet	of	Ruby	code	as	a
parameter,	which	is	used	as	the	filter	code;	however,	this	practice	is	discouraged,	as	it	makes
for	code	that's	difficult	to	maintain.

Here's	a	hypothetical	example	in	which	a	controller	method	is	called	using	a	symbol:

class	FoosController	<	ApplicationController

		before_action	:fetch_password

		def	fetch_password

				⋮	method	body…

		end

end

																								

In	this	example,	the	fetch_password	method	will	be	run	before	the	actions	of	FoosController.

After	Filter
Like	a	before	filter,	an	after	filter	is	defined	in	the	controller	class	from	which	it	is	called.	The
method	to	use	 is	appropriately	named	the	after_filter	method	and,	not	surprisingly,	 these
filters	are	executed	after	the	controller's	action	code	has	been	executed.	Here's	an	example:

class	FoosController	<	ApplicationController

		after_action	:gzip_compression

		def	gzip_compression

				⋮	method	body…

		end

end

																								

Here,	gzip_compression	runs	after	the	actions	of	FoosController.

Around	Filters
A	combination	of	before	and	after	filters,	the	around	filter	executes	both	before	and	after	the
controller's	action	code.

In	a	nutshell,	around	filters	are	separate	objects	with	before	and	after	methods.	These	methods
are	automatically	called	by	the	filter	framework.	Despite	being	a	combination	of	its	simpler
siblings,	the	around	filter	is	significantly	more	advanced	and,	as	such,	won't	be	covered	in	this
book.

EXTRA	CREDIT:	A	Filter	Field	Trip

Do	a	bit	of	research	about	around	filters	to	see	how	they	operate.	Can	you	think	of	how	the
code	of	an	around	filter	might	have	to	be	different	from	a	before	or	after	filter?

A	Word	on	Filter	Methods

As	we've	learned,	filters	take	a	symbol	as	a	parameter	that	represents	the	controller	method	to
be	executed.	Consider	the	hypothetical	example	of	our	FoosController	once	more:

class	FoosController	<	ApplicationController

		before_action	:fetch_password

		def	fetch_password

				⋮	method	body…

		end

end

																								

It	is	best	practice	to	make	filter	methods	private	or	protected.	This	practice	has	its	roots	in
good	object	oriented	programming	practices,	 specifically:	don't	 expose	more	methods	 than
necessary	to	your	callers.	Following	this	practice,	the	aforementioned	code	becomes:

class	FoosController	<	ApplicationController

		before_action	:fetch_password

		private

		def	fetch_password

				⋮	method	body…

		end

end

																								

Managing	User	Logins

Now	 that	 we've	 covered	 filter	 theory,	 let's	 modify	 our	 application	 to	 fetch	 the	 currently
logged-in	User	from	our	database.	Once	we've	done	that,	we'll	display	the	user's	name	on	the
page	and	provide	the	ability	for	the	user	to	log	out	again.

Retrieving	the	Current	User
We're	going	to	use	filters	to	fetch	the	current	user	for	each	and	every	page	of	the	Readit	site.
The	phrase	“each	and	every	page”	should	give	you	a	hint	as	 to	where	we'll	apply	 the	 filter.
Filters	can	be	inherited	from	parent	classes	and,	as	we	want	to	avoid	writing	numerous	filter
declarations,	 we'll	 stick	 our	 filter	 in	 the	 parent	 class	 for	 all	 our	 controllers:
ApplicationController.

Methods	and	filters	that	are	defined	in	this	class	are	available	to	all	classes	that	inherit	from
ApplicationController	 (located	 at	 app/controllers/application_controller.rb),	 which
is	what	we	want:

app/controllers/application_controller.rb	(excerpt)

class	ApplicationController	<	ActionController::Base

		⋮	controller	code…

		before_action	:current_user

		protected

		def	current_user

				return	unless	session[:user_id]

				@current_user	=	User.where(id:	session[:user_id]).first

		end

end

																								

Let's	take	a	look	at	each	of	the	lines	that	make	up	the	current_user	method:

return	unless	session[:user_id]

																								

This	line	is	fairly	straightforward.	There's	no	point	retrieving	a	User	object	if	the	user	is	yet
to	 log	in	(as	 there's	no	user_id	 stored	 in	 the	session).	We	can	simply	exit	 the	filter	method
without	executing	the	rest	of	the	code.

The	next	 line	 tries	 to	 fetch	from	the	database	a	User	object	with	an	ID	that's	equal	 to	 the	id
stored	in	the	visitor's	session	container:

@current_user	=	User.find(session[:user_id])

																								

The	fetched	object	will	be	assigned	to	 the	 instance	variable	@current_user,	which	will	 then
become	available	to	actions	in	our	controller,	as	well	as	our	views.

We've	purposely	used	the	where	method	here,	rather	than	find,	even	though	on	the	surface	it
appears	that	the	two	would	produce	the	same	results.	In	fact,	find	displays	an	error	if	it	can't
retrieve	a	record	that	matches	the	id	that's	passed	to	it,	while	where	exits	more	gracefully.	It's
conceivable	that	a	user	may	revisit	our	site	after	his	or	her	account	has	been	deleted	(perhaps
because	the	user	submitted	the	same	boring	stories	over	and	over	again),	so	we	need	to	make
sure	the	application	will	handle	these	cases	in	a	user-friendly	manner.	Spitting	out	a	bunch	of
technical-looking	errors	 is	best	avoided,	hence	our	use	of	where.	where	also	returns	all	 the
records	that	satisfy	the	query;	that	is,	an	Array.	We	have	to	grab	the	first	one,	as	we	know
there's	only	one	for	an	ID	query.	If	the	id	is	not	found,	first	will	return	nil.

Session	Security

As	we	 saw	 earlier,	 the	 value	 of	session[:user_id]	 is	 stored	 in	 an	 encrypted	 fashion.	This
means	 that	 a	 user	 can't,	 for	 example,	 impersonate	 another	 user	 by	 simply	 changing	 the
contents	of	a	session.

The	only	way	that	a	user	could	circumvent	the	security	measures	that	we've	put	in	place	so	far
would	be	either	 to	guess	 the	 session	 ID,	or	 to	 identify	 it	using	a	brute	 force	attack.A	brute
force	attack	involves	looping	through	a	list	of	every	possible	combination	of	alphanumeric
characters	 (or	 sometimes	 a	 list	 of	 dictionary-based	 passwords)	 until	 a	 matching	 phrase	 is
found.	Oh,	apart	from	grabbing	another	user's	laptop	while	they’re	in	the	bathroom.

As	 Rails	 uses	 a	 128-bit	 hash	 for	 the	 session	 ID.	 as	 well	 as	 a	 secret	 key	 set	 in	 the	 Rails
application	 itself	 (that	 is	never	exposed	 to	 the	site's	users)	 to	verify	 the	data	 integrity	of	 the
session	container	contents,	it's	highly	unlikely	that	a	malicious	user	could	gain	another	user's
ID	using	any	of	these	approaches.

Our	next	task	will	be	to	display	the	name	of	the	current	user	in	the	global	application	layout.

Displaying	the	Name	of	the	Current	User
Since	we	require	our	users	to	log	in	just	once	to	access	the	entire	application,	let's	add	code
that	will	display	the	name	of	the	currently	logged-in	user	to	our	global	application	layout.	The
file	is	located	at	app/views/layouts/application.html.erb.	Make	the	following	changes	to
this	file:

example.css	(excerpt)

<div	id="content">

		<div	id="login_logout">

				<%	if	@current_user	%>

						Logged	in	as:

						<%=	@current_user.name	%>

						<%=	link_to	"(Logout)",	session_path,

										method:	:delete	%>

								<%	else	%>

						Not	logged	in.

						<%=	link_to	'Login',	new_session_path	%>

				<%	end	%>

		</div>

		<h1>Readit</h1>

		⋮	page	body…

<div>

																								

Let's	step	through	these	changes.	Using	a	simple	if	condition,	we	display	a	link	to	the	action
that's	most	appropriate,	based	on	the	user's	login	status:

<%	if	@current_user	%>

																								

The	condition	checks	whether	the	instance	variable	@current_user	evaluates	to	nil.

Once	we've	ensured	that	the	user	is	actually	logged	in,	we	display	the	user's	name	along	with	a
link	 to	 log	 out	 again,	 which	we'll	 implement	 in	 the	 SessionsController	 in	 a	moment.	We
indicate	 that	we	want	 the	 link	 to	 use	 the	HTTP	DELETE	 request	 type	 by	 passing	 the	method:
:delete	argument	to	the	link_to	method.	We	wrap	the	link	in	an	em	tag	to	make	it	stand	out:

Logged	in	as:

<%=	@current_user.login	%>

<%=	link_to	"(Logout)",	session_path,

				method:	:delete	%>

																								

If	a	visitor	is	not	logged	in,	we	display	a	link	that	the	user	can	follow	to	the	login	form:

<%=	link_to	'Login',	new_session_path	%>

																								

As	you	can	see,	our	sessions	are	RESTful.	We've	been	using	the	bare	session_path	to	handle
both	 the	 login	 action	 (at	 POST	 /session)	 and	 the	 logout	 action	 (the	 code	 of	 which	 is	 still
missing,	but	it	will	live	at	DELETE	/session),	as	well	as	the	new_session_path	for	the	actual
login	form	(living	at	GET	/session/new).

To	make	the	page	look	a	little	nicer,	let's	add	a	snippet	of	CSS	to	the	global	stylesheet	that's
located	at	appassetsstylesheets/application.css:

appassetsstylesheets/application.css	(excerpt)

#login_logout	{

		float:	right;

		color:	#999;

		font-size:	smaller;

}

																																

This	code	dims	the	text	colors	a	little,	floats	the	container	to	the	right,	and	makes	the	font	size
smaller.	If	you	reload	the	page	after	logging	in,	you	should	see	the	results	shown	in	Figure	8-
12.	That's	much	better.

Prettying	up	our	page

Next,	we'll	implement	the	logout	functionality.

Allowing	Users	to	Log	Out
Providing	our	users	with	a	manual	logout	function	is	much	more	user-friendly	than	forcing
them	 to	 close	 their	 browsers	 to	 log	 out.	 We'll	 implement	 this	 method	 in	 our
SessionsController	class,	located	in	app/controllers/sessions_controller.rb:

app/controllers/sessions_controller.rb

class	SessionsController	<	ApplicationController

		⋮	controller	code…

		def	destroy

				session[:user_id]	=	@current_user	=	nil

		end

end

																								

Logging	a	user	out	of	the	application	is	a	matter	of	setting	two	variables	to	nil:
	

the	user_id	that's	stored	in	the	user's	session
the	instance	variable	that	holds	the	current	user

Both	of	those	tasks	are	completed	with	one	line	of	code:

session[:user_id]	=	@current_user	=	nil

																								

This	 line	 of	 code	 prevents	 our	 before	 filter	 (the	 current_user	 method)	 from	 retrieving
anything	from	the	database.	As	we're	setting	both	the	current	user	and	the	user	id	stored	in	the
session	to	nil,	no	more	User	objects	for	this	user	remain	in	memory.	The	user	has	therefore
been	logged	out	of	the	system.

I've	taken	this	opportunity	to	introduce	another	piece	of	shorthand	syntax	used	often	in	Ruby
code:	we've	assigned	nil	to	two	variables	at	once.	Strictly	speaking,	we're	assigning	the	result
of	the	statement	@current_user	=	nil	(which	happens	to	be	nil)	to	session[:user_id].

With	that	code	in	place,	adding	a	simple	message	to	app/views/sessions/destroy.html.erb
will	confirm	for	the	user	that	the	logout	was	successful:

<h2>Logout	successful</h2>

<%=	link_to	'Back	to	the	story	index',	stories_path	%>

																								

Let's	 check	 that	 this	 all	works	 as	we	 expect.	 Click	 that	 "Logout"	 link	 in	 the	 top	 right-hand
corner	of	the	page.	If	everything	goes	to	plan,	you	should	be	logged	out	of	the	application	and
presented	with	a	page	similar	to	the	one	shown	in	Figure	8-14.	Additionally,	the	name	that	was
previously	displayed	in	the	upper	right-hand	corner	should	not	be	present	on	any	successive
page	that	you	visit;	you	should	see	a	Login	link	instead.

Links	for	logging	in	and	logging	out

Now	that	users	are	able	to	log	in	and	out	of	the	application,	we're	in	a	position	to	make	certain
actions	available	only	to	logged-in	users;	however,	before	we	do	this,	let's	add	to	our	site	an
element	that	has	been	sorely	lacking	so	far:	navigation.

Adding	a	Navigation	Menu

You're	probably	growing	a	little	tired	of	typing	http://localhost:3000storiesnew	over	and
over	again.	Let's	create	a	diminutive	navigation	menu	at	the	bottom	of	every	page	so	we	can
move	easily	between	the	different	pages	we've	built.

To	 do	 so,	 modify	 the	 file	 app/views/layouts/application.html.erb.	 Above	 the	 closing
body	 tag	 at	 the	 bottom	 of	 the	 file,	 place	 the	 following	 unordered	 list	 containing	 our
navigation	menu:

app/views/layouts/application.html.erb	(excerpt)

<body>

		⋮	page	body…

		<ul	id="navigation">

				<%=	link_to	'Front	page	stories',	stories_path	%>

				<%=	link_to	'Submit	a	new	story!',	new_story_path	%>

		

</body>

																								

We	have	two	links	in	our	menu	at	this	point:
	

one	to	the	story	index	(which	currently	displays	a	random	story	from	the	pool)
one	to	the	story	submission	form

As	 usual,	 we'll	 also	 expand	 our	 stylesheet	 to	 make	 the	menu	 look	 attractive.	 The	 result	 is
shown	in	Figure	8-17:

appassetsstylesheets/application.css	(excerpt)

#navigation	{

		list-style:	none;

		padding:	5px	0;

		margin:	0;

		text-align:	center;

}

#navigation	li	{

		display:	inline;

		padding:	0	5px;

}

#navigation	li	a	{

		color:	#fff;

}

																								

Story	index	with	navigation

That's	 much	 better.	 With	 the	 navigation	 in	 place,	 moving	 around	 within	 our	 application
becomes	a	lot	easier.

Restricting	the	Application

All	 this	 login	 functionality	 would	 be	 wasted	 if	 a	 guest	 to	 our	 site	 had	 access	 to	 the	 same
feature	set	enjoyed	by	our	registered	users.	What	would	be	the	point	of	logging	in?

Now	 that	 our	 login	 functionality	 is	working,	we	 can	 restrict	 the	 use	 of	 certain	 parts	 of	 the
application	by	anonymous	guests	and	users	who	have	not	logged	in.

Protecting	the	Form
The	 first	 action	 to	 protect	 is	 the	 submission	 of	 stories.	While	we're	 adding	 this	 protection,
we'll	 also	 check	 that	 when	 a	 new	 story	 is	 submitted,	 the	 application	 correctly	 saves	 the
reference	to	the	User	who	submitted	it	(as	we	defined	in	the	relationship	between	a	User	and	a
Story).

The	 first	 step	 is	 to	 figure	 out	 how	 to	 intercept	 a	 request	 that	 comes	 from	a	 user	who's	 not
currently	logged	in	to	our	application.	Once	we've	achieved	this,	we	can	direct	the	visitor	to	a
login	form	instead	of	the	story	submission	form.	This	sounds	like	a	perfect	job	for	a	before
filter,	doesn't	it?

We'll	 add	our	new	 filter	 code	 to	 the	global	ApplicationController	 class	 so	 that	 all	of	our
controllers	can	benefit	from	this	addition,	since	the	filter	is	available	to	any	of	the	controllers
in	our	application.

The	filter	will	be	called	ensure_login,	which	is	suitably	descriptive.	As	we're	going	to	check
from	a	few	different	places	in	our	application	whether	or	not	a	user	is	logged	in,	we'll	extract
this	 code	 into	 a	 separate	 controller	 method	 before	 we	 create	 our	 new	 filter.	 (Writing
@current_user	is	not	the	most	declarative	thing	in	the	world,	anyway.)

Abstracting	Code	Using	helper_method

The	 reason	we're	placing	 this	 functionality	 into	 a	 controller	method	 (rather	 than	creating	 a
regular	helper	for	it)	is	because	it	provides	useful	functionality	to	both	controllers	and	views;
however,	 regular	 helpers	 are	 available	 only	 to	 views,	 and	 controller	methods	 are	 available
only	 to	 controllers.	 We	 need	 some	 sort	 of	 magic	 bridge	 to	 make	 this	 controller	 method
available	to	our	views.

This	 magic	 bridge	 happens	 to	 be	 the	 helper_method	 statement,	 which	 makes	 regular
controller	methods	available	to	views	as	if	they	were	regular	helper	methods.	We'll	add	this
snippet	 to	 the	 protected	 area	 of	 our	 ApplicationController	 (in
app/controllers/application.rb):

app/controllers/application.rb/

class	ApplicationController	<	ActionController::Base

		⋮	controller	code…

		protected

		def	current_user

				⋮	method	body…

		end

		def	logged_in?

				!@current_user.nil?

		end

				helper_method	:logged_in?

end

																								

Here,	 we've	 pulled	 our	 check	 of	 the	 current	 user's	 login	 status	 into	 a	 new	 method	 called
logged_in?.	Let's	pause	to	examine	an	interesting	aspect	of	the	single-line	method	body:

!@current_user.nil?

																								

The	exclamation	mark	reverses	the	actual	result	of	the	nil?	statement.	If	 the	@current_user
variable	 is	 nil	 (nil?	 returns	 true),	 our	 visitor	 is	 not	 logged	 in,	 so	 logged_in?	 needs	 to
return	 false.	 With	 the	 additional	 call	 to	 helper_method,	 we	 can	 now	 use	 logged_in?
throughout	our	application	to	replace	any	usage	of	if	@current_user.

Requiring	Users	to	Log	In

While	we're	 looking	at	 our	ApplicationController,	 let's	 add	 the	ensure_login	 filter	 to	 it.
This	will	mark	the	first	use	of	our	new	logged_in?	helper	method:

app/controllers/application.rb

def	ensure_login

		return	true	if	logged_in?

		session[:return_to]	=	request.fullpath

		redirect_to	new_session_path	and	return	false

end

																								

Let's	break	this	code	down.	The	first	line	of	the	filter	exits	the	method	with	the	value	true	 if
the	user	is	already	logged	in:

return	true	if	logged_in?

																								

If	the	logged_in?	helper	method	returns	false,	we	need	to:
	

1.	 prepare	to	redirect	users	to	a	location	at	which	they	can	log	in

2.	 remember	where	 the	user	came	 from,	 so	we	can	 send	 them	back	 to	 that	page	once	 the
login	is	complete

To	store	the	current	URL,	we	grab	it	from	the	request	object	and	add	it	to	the	user's	session,
so	that	we	can	retrieve	it	later:

session[:return_to]	=	request.fullpath

																								

Next,	 we	 redirect	 the	 user	 to	 the	 new_session_path,	 which	 is	 the	 new	 action	 of
SessionsController,	and	return	false:

redirect_to	new_session_path	and	return	false

																								

Good	Coding	Grammar

The	and	keyword	that's	used	here	is	optional:	the	logic	of	this	method	would	be	identical	if	the
return	was	placed	on	its	own	line;	however,	using	and	in	this	case	adds	to	the	readability	of
our	code—and	code	that	is	more	readable	is	more	maintainable.

A	return	value	of	false	is	crucial	here,	because	a	filter	that	returns	false	halts	the	processing
of	any	subsequent	filters	and	exits	the	current	controller	method.

Right!	 Now	 we're	 armed	 with	 the	 protection	 facility,	 it's	 time	 to	 restrict	 access	 to	 the
application's	story	submission	capabilities	to	users	who	are	logged	in.

Restricting	Access	to	Story	Submission
While	we	want	to	halt	anonymous	visitors	from	submitting	new	stories	to	our	site,	we	do	want
them	to	be	able	to	view	stories.	Restricting	user	access	to	certain	specific	actions	presents	the
perfect	opportunity	to	use	a	filter	condition.

Introducing	Filter	Conditions

A	 filter	 condition	 is	 simply	 a	 parameter	 that's	 passed	 to	 a	 filter	 to	 specify	 how	 the	 it	 is
applied.	The	parameter	can	control	whether	the	filter	is	applied	to	either:
	

every	method	except	those	listed
only	the	actions	listed

In	this	case,	the	:only	parameter	is	the	best	way	for	us	to	limit	the	filter	to	a	pair	of	actions,
new	and	create.	Both	of	 these	actions	are	needed	 to	 log	 in	a	user;	new	 to	display	 the	actual

form,	and	create	being	the	action	to	which	the	form	is	submitted.

Let's	 apply	 the	 ensure_login	 filter	 to	 the	 top	 of	 our	 StoriesController	 class,	 which	 is
located	at	app/controllers/stories_controller.rb.	The	:only	parameter	accepts	a	symbol
(or	array	of	symbols)	that	represents	the	methods	to	which	it	should	be	applied:

eapp/controllers/stories_controller.rb	(excerpt)

class	StoriesController	<	ApplicationController

		before_action	:ensure_login,	only:	[:new,	:create]

		⋮	controller	code…

end

																								

class	StoriesController	<	ApplicationController

		before_action	:ensure_login,	only:	[:new,	:create]

		⋮	controller	code…

end

																								

There,	that	was	easy.	But	we've	yet	to	make	use	of	that	:return_to	URL	that	we	stored	in	the
user's	session	previously.	Let's	put	it	to	work	next.

Redirecting	the	User

The	 part	 of	 our	 application	 that	 redirects	 users	 after	 they've	 successfully	 logged	 in	 is	 the
create	 method	 of	 the	 SessionsController	 class.	 This	 is	 located	 in
app/controllers/sessions_controller.rb.

Let's	modify	the	redirection	code	to	specify	the	location	to	which	a	user	is	redirected	based	on
whether	or	not	the	user's	session	actually	contains	a	:return_to	URL:

app/controllers/sessions_controller.rb	(excerpt)

def	create

		session[:user_id]	=	@current_user.id

		if	session[:return_to]

				redirect_to	session[:return_to]

				session[:return_to]	=	nil

		else

				redirect_to	stories_path

		end

end

																								

What's	really	worth	a	mention	about	this	code	is	that	we	reset	the	:return_to	URL	to	nil	after
a	successful	redirect.	After	all,	there's	no	point	in	carrying	around	old	baggage.

Now,	fire	up	your	web	browser	and	execute	the	following	steps	to	test	out	this	new	feature:
	

1.	 Log	out	of	the	application,	if	you're	currently	logged	in.
2.	 Click	 the	 "Submit	 a	 new	 story!"	 link,	 and	 confirm	 in	 your	 browser's	 address	 bar	 that

you're	redirected	to	/session/new.
3.	 Log	 in	 using	 the	 login	 form,	 and	 verify	 that	 you're	 redirected	 back	 to	 the	 story

submission	form.

All	good?	Great!

Associating	Stories	with	Users
The	 last	enhancement	 that	we'll	add	 in	 this	chapter	 is	 to	associate	a	story	with	 the	 ID	of	 the
user	who	submitted	it.	This	will	give	us	a	record	of	who	submitted	what	to	Readit.

Storing	the	Submitter

As	we	established	the	association	between	stories	and	user	ids	at	the	beginning	of	the	chapter,
we	simply	need	to	tell	Rails	what	we	want	to	store.	Change	the	first	line	of	the	create	action	of
the	StoriesController,	located	at	app/controllers/stories_controller.rb:

def	create

				@story	=	@current_user.stories.build	story_params

				⋮
		end

																								

Storing	the	submitter	is	as	simple	as	that.	We	know	that	the	currently	logged-in	user	is	stored
in	@current_user,	because	we	set	it	using	the	current_user	method	before	filter.	We're	using
the	 declared	 stories	 association	 (or,	more	 specifically,	 its	 build	method)	 to	 get	 us	 a	 Story
object	that	comes	preset	with	the	ID	of	the	current	user.

To	illustrate,	here's	another	example	of	this	in	action,	performed	straight	in	the	Rails	console
(rails	c):

$	rails	c

>>	u	=	User.first

=>	#<User	id:	1,	…>

>>	s	=	u.stories.build

=>	#<Story	id:	nil,	…>

>>	s.user_id

=>	1

																								

As	you	can	see,	the	story	that	is	built	using	the	build	method	is	completely	unsaved.	Yet	it	has

a	value	set	for	its	user_id	attribute	that	is	identical	to	the	ID	of	the	User	object	we	created.

But	of	what	use	is	storing	information	without	it	being	displayed?	You	guessed	it—displaying
the	submitter's	details	is	our	final	task	here.

Displaying	the	Submitter

We're	going	to	modify	each	story's	display	page	to	show	the	name	of	the	user	who	submitted
it.	This	page	corresponds	 to	 the	show	 action	of	our	StoriesController	 class	displaying	 the
submitter,	the	template	for	which	is	located	at	app/viewsstoriesshow.html.erb:

app/viewsstoriesshow.html.erb	(excerpt)

<ul	id="vote_history">

		⋮	vote	history	list	items…

<p	class="submitted_by">

		Submitted	by:

		<%=	@story.user.name	%>

</p>

<p>

		<%=	link_to	@story.link,	@story.link	%>

</p>

																								

Here	 we're	 using	 @story.user	 to	 fetch	 the	 user	 object	 that's	 associated	 with	 the	 currently
displayed	 story.	We	 then	display	 the	value	of	 the	user's	name	attribute	 to	produce	 the	 result
shown	in	Figure	8-23.

The	name	of	a	story's	submitter	displays	with	the	story

Complete	Data

One	of	 the	downsides	of	using	 an	 iterative	 approach	 to	development	 is	 that	 our	data	 is	 not
necessarily	 complete	 at	 each	 stage	of	 the	development	process.	For	 example,	 unless	you've
specifically	 added	user_id	 values	 to	 every	 Story	 object	 in	 your	 database,	 you're	 probably
seeing	the	odd	page	error.	You	could	use	either	of	these	approaches	to	rectify	this	issue:
	

Manually	add	the	missing	values	to	your	objects	from	the	Rails	console,	remembering	to
use	the	save	method	so	that	the	value	is	stored	permanently.

Delete	all	data	in	your	database	(via	the	Rails	console),	and	begin	to	add	your	data	from
scratch	via	the	application.

We	need	only	 two	or	 three	objects	at	 this	 stage	of	development,	 so	neither	of	 these	options
should	be	too	onerous	for	you.

One	Last	Thing:	Associate	Votes	to	Users
Just	like	we	did	with	the	stories,	the	votes	need	to	be	associated	with	the	current	user	as	well.
This	is	a	simple	change	to	the	create	method	in	VotesController,	as	shown	here:

app/controllers/vote_controller.rb	(excerpt)

def	create

		@story	=	Story.find(params[:story_id])

		@story.votes.create(user:	@current_user)

		respond_to	do	|format|

				format.html	{	redirect_to	@story,	notice:	'Vote	was	successfully	created.'	}

				format.js	{}

		end

end

																								

There,	now	the	vote	will	be	attributed	to	the	user.

We've	accomplished	quite	a	lot	in	this	chapter,	both	in	theory	and	in	code.	Being	professional
Rails	coders,	our	next	step	is	to	add	tests	for	all	of	these	cool	features.

Testing	User	Authentication

To	develop	our	testing	suite,	we'll	create	unit	tests	to	cover	changes	to	the	application's	model,

followed	by	functional	tests	for	each	of	our	controllers.

Testing	the	Model
We've	extended	our	models	very	little	in	this	chapter,	so	our	unit	tests	will	be	straightforward.
Basically,	we	have:
	

created	a	new	model	(User)
added	a	relationship	between	the	User	and	Story	model
added	a	relationship	between	the	User	and	Vote	model

Before	we	can	write	any	tests,	though,	we	need	to	make	sure	that	our	test	data	is	up	to	date.

Preparing	the	Fixtures

The	 User	 model	 didn't	 come	 with	 very	 meaningful	 fixture	 data,	 so	 let's	 address	 that	 now.
Replace	the	contents	of	the	model's	fixture	file	(located	at	test/fixtures/users.yml)	with	the
following	data:

test/fixtures/users.yml

glenn:

		password_digest:	<%=	BCrypt::Password.create("sekrit",	cost:	4)	%>

		name:	Glenn	Goodrich

		email:	glenn.goodrich@sitepoint.com

john:

		password_digest:	<%=	BCrypt::Password.create("passwrd",	cost:	4)	%>

		name:	John	Doe

		email:	john@doe.com

																								

Whoa,	that's	different.	Remember	when	I	went	on	about	not	storing	plain-text	passwords	in	the
database?	 As	 a	 result,	 the	 users	 table	 has	 a	 field	 called	 password_digest	 that	 stores	 an
encrypted	version	of	 the	password.	Our	user	fixtures,	 therefore,	have	 to	store	 the	encrypted
version	 of	 the	 password	 that	 we'll	 use	 in	 our	 tests,	 or	 authentication	 will	 fail.
has_secure_password	uses	the	BCrypt	library	to	create	the	secure	hash.	BCrypt	has	a	Password
class	that	creates	the	hash	using	the	password	value	and	a	cost,	which	simply	tells	BCrypt	how
long	 to	 take	 to	 generate	 the	 hash.	 BCrypt	 defaults	 cost	 to	 10,	 which	 is	 fine	 for	 web
authentication.	 Encryption	 is	 well	 beyond	 the	 scope	 of	 this	 book,	 but	 you	 know	 what	 that
means	...

EXTRA	CREDIT:	Break	the	Code	on	Encryption

Doing	some	basic	research	on	encryption	and	how	Rails	uses	it	to	keep	your	data	and	users
secure	is	a	good	idea.	There	are	many	articles	out	there,	 including	a	great	series	by	Engine

https://blog.engineyard.com/2014/password-security-part-1

Yard	on	password	security.

To	test	the	associations	between	the	three	models	properly,	we'll	need	to	modify	the	fixtures
for	both	our	Story	and	Vote	models.	Only	a	small	change	 is	 required:	 the	addition	of	some
data	for	the	user_id	attribute	that	we	inserted	at	the	start	of	this	chapter.

Make	the	following	changes	in	test/fixtures/stories.yml:

test/fixtures/stories.yml	(excerpt)

one:

		⋮	YAML	data…

		user:	glenn

two:

		⋮	YAML	data…

		user:	glenn

																								

And	make	these	alterations	in	test/fixtures/votes.yml:

example.css	(excerpt)

one:

		⋮	YAML	data…

		user:	glenn

two:

		⋮	YAML	data…

		user:	john

																								

Now	that	our	fixtures	contain	appropriate	data,	we	can	start	writing	some	unit	tests.

Testing	a	User's	Relationship	to	a	Story

The	 unit	 tests	 for	 our	 User	 belong	 in	 test/models/user_test.rb.	 First,	 we'll	 test	 the
relationship	between	a	User	and	a	Story.	Make	the	following	changes	to	this	file:

example.css	(excerpt)

class	UserTest	<	ActiveSupport::TestCase

		test	"has	a	story	association"	do

assert_equal	2,	users(:glenn).stories.size

assert	users(:glenn).stories.includes	stories(:one)

		end

end

																								

We	use	 two	 assertions	 to	 test	 the	 association	 between	 the	Story	 and	User	models.	 The	 first

assertion	 confirms	 that	 the	 total	 number	 of	Story	 objects	 associated	with	 the	 user	glenn	 is
indeed	2:

assert_equal	2,	users(:glenn).stories.size

																								

The	second	assertion	identifies	whether	or	not	the	:one	Story	is	associated	with	glenn:

assert	users(:glenn).stories.includes	stories(:one)

																								

With	this	in	place,	let's	add	a	test	for	the	inverse	of	this	relationship.

Testing	a	Story's	Relationship	to	a	User

By	now,	you're	no	doubt	very	familiar	with	 the	directory	and	filenaming	conventions	we're
using.	The	complementary	unit	 test	for	the	relationship	between	a	User	and	a	Story	 tests	 the
Story's	 relationship	 to	 a	 User,	 and	 belongs	 in	 test/models/story_test.rb.	 Make	 the
following	changes	to	this	file:

test/models/story_test.rb	(excerpt)

class	StoryTest	<	ActiveSupport::TestCase

		⋮	test	methods…

		test	"is	associated	with	a	user"	do

assert_equal	users(:glenn),	stories(:one).user

		end

end

																								

The	assertion	we've	written	here	simply	confirms	that	the	user	associated	with	the	first	story	is
the	user	we	expect,	based	on	our	fixture	data	(that	is,	glenn):

assert_equal	users(:glenn),	stories(:one).user

																								

Let's	add	some	similar	tests	for	the	other	relationship	that	our	User	model	has:	its	relationship
with	a	Vote.

Fixing	Broken	Story	Tests

Now	that	a	story	must	be	related	to	a	user,	the	following	test	will	fail:

test	"is	valid	with	required	attributes"	do

		s	=	Story.create(

				name:	'My	test	submission',

				link:	'http://www.testsubmission.com/')

		assert	s.valid?

end

																								

This	is	because	we	haven't	given	the	story	a	user	and	belongs_to	associations	are	required	by
default.	Thus,	s.valid?	is	false.	To	fix	it,	change	it	as	follows:

test/models/story_test.rb	(excerpt)

test	"is	valid	with	required	attributes"	do

		s	=	users(:glenn).stories.create(

				name:	'My	test	submission',

				link:	'http://www.testsubmission.com/')

		assert	s.valid?

end

																								

Here's	another	story	test	that	now	fails	for	the	same	reason:

test	"return	3	latest	votes"	do

		10.times	{	stories(:one).votes.create	}

		assert_equal	3,	stories(:one).votes.latest.size

end

																								

The	change	is	easy	(can	you	figure	it	out	before	I	show	you?):

test/models/story_test.rb	(excerpt)

test	"return	3	latest	votes"	do

		10.times	{	stories(:one).votes.create(user:	users(:glenn))	}

		assert_equal	3,	stories(:one).votes.latest.size

end

																								

All	better	now.

Testing	a	User's	Relationship	to	a	Vote

While	we've	 yet	 to	 add	 anything	 to	 our	 application's	 user	 interface	 to	 store	 or	 display	 the
details	of	users	associated	with	votes,	we've	put	the	infrastructure	in	place	to	do	so.	For	this
reason,	we	can	test	the	relationship	between	a	User	and	a	Vote	with	a	similar	approach	to	what
we	took	with	the	unit	tests	created	for	the	relationship	between	a	Story	and	a	User.

To	test	a	User's	relationship	to	a	Vote,	add	the	following	test	to	test/models/user_test.rb:

test/models/user_test.rb	(excerpt)

test	"has	a	votes	association"	do

		assert_equal	1,	users(:glenn).votes.size

		assert	users(:john).votes.includes	votes(:two)

end

																								

On	the	first	line,	the	assert_equal	assertion	compares	the	number	of	Vote	objects	associated
with	a	test	user	with	the	number	of	votes	that	the	same	user	was	assigned	in	our	fixture	data:

assert_equal	1,	users(:glenn).votes.size

																								

The	second	assertion	makes	sure	that	the	second	Vote	object	is	associated	with	the	user	john:

assert	users(:john).votes.includes	votes(:two)

																								

Now	there's	only	one	more	unit	test	to	write:	a	test	for	the	inverse	of	this	relationship.

Testing	a	Vote's	Relationship	to	a	User

The	test	 that	confirms	a	Vote's	relationship	to	a	User	belongs	 in	test/models/vote_test.rb.
Add	the	following	test	to	this	file:

test/models/vote_test.rb	(excerpt)

class	VoteTest	<	ActiveSupport::TestCase

		⋮	test	methods…

		test	"is	associated	with	a	user"	do

				assert_equal	users(:john),	votes(:two).user

		end

end

																								

This	 last	 test	confirms	 that	 the	user	associated	with	 the	second	vote	of	a	 story	 is	 indeed	 the
second	user	who	voted	for	the	story,	as	defined	by	our	fixture	data.

Clever	Cloning	by	Rails

You	 may	 be	 wondering	 how	 migrations	 are	 applied	 to	 the	 test	 database	 on	 which	 we're
running	 our	 tests.	 As	 you'll	 recall,	 this	 database	 is	 quite	 separate	 from	 the	 development
database	to	which	our	migrations	are	applied.

Rails	 is	 smart	 enough	 to	 figure	out	 that	 testing	 should	occur	on	a	database	with	a	 structure
that's	 identical	 to	 the	 one	 used	 for	 development.	 So	 Rails	 clones	 the	 structure	 of	 your
development	database,	and	applies	it	to	the	test	database	every	time	you	execute	your	unit	or
functional	tests.

Running	the	Unit	Tests

We	can	now	run	our	updated	suite	of	unit	tests	using	the	following	code,	the	results	of	which
are	also	shown:

$	rails	test:models

Running	via	Spring	preloader	in	process	49271

Run	options:	--seed	64460

#	Running:

..........

Finished	in	0.097536s,	102.5260	runs/s,	143.5364	assertions/s.

10	runs,	14	assertions,	0	failures,	0	errors,	0	skips

																								

Testing	the	Controllers
The	 majority	 of	 the	 functional	 code	 that	 we	 wrote	 in	 this	 chapter	 was	 in	 the
SessionsController,	 although	 we	 also	 made	 a	 few	 changes	 to	 the	 StoriesController.
Consequently,	we	have	quite	a	few	tests	to	write	to	ensure	that	all	of	this	new	functionality	is
covered.

Testing	the	Display	of	the	Login	Form

The	 first	 test	 we'll	 add	 to	 our	 functional	 test	 file
(test/controllers/sessions_controller_test.rb)	 is	 a	 simple	 HTTP	 GET	 operation	 that
looks	for	the	display	of	our	login	form:

test/controllers/sessions_controller_test.rb	(excerpt)

class	SessionsControllerTest	<	ActionDispatch::IntegrationTest

		test	"new	shows	a	login	form"	do

				get	new_session_path

				assert_response	:success

				assert_select	'form	p',	4

		end

end

																								

We've	encountered	before	most	of	what	we	can	see	here.	The	test	asserts	that:
	

the	page	request	was	successful
a	form	tag	is	contained	in	the	result,	with	four	<p>	tags	nested	below	it

Testing	a	Successful	Login

The	following	test,	to	be	added	to	the	same	file,	will	attempt	an	actual	login:

test/controllers/sessions_controller_test.rb	(excerpt)

test	"perform	user	login"	do

		post	session_path,	params:	{email:	'glenn.goodrich@sitepoint.com',	password:	'sekrit'}

		assert_redirected_to	stories_path

		assert_equal	users(:glenn).id,	session[:user_id]

end

																								

Let's	look	at	each	line	of	this	test	in	more	detail.

As	was	 the	 case	when	we	 tested	 the	 submission	 of	 stories,	 here	we	 need	 to	 pass	 additional
arguments	to	the	create	action—values	for	the	email	and	password	parameters:

post	session_path,	params:	{email:	'glenn.goodrich@sitepoint.com',	password:	'sekrit'}

																								

The	values	we've	used	here	match	the	values	in	our	users.yml	fixture	file.	If	you	added	your
own	user	to	that	file,	you'll	need	to	change	this	test	accordingly.

If	you	think	about	how	our	create	method	works,	you'll	recall	that	we	redirect	the	user	after
they've	 logged	 in	 successfully;	 however,	 the	 URL	 to	 which	 a	 user	 is	 redirected	 varies
depending	on	whether	or	not	the	user's	session	contains	a	URL.	In	this	test,	the	user's	session
is	empty,	so	we	expect	 the	user	 to	be	sent	 to	 the	/stories	 page.	The	assert_redirected_to
method	comes	in	handy	here:

assert_redirected_to	stories_path

																								

Lastly,	a	successful	login	means	that:
	

the	id	of	the	user	will	be	stored	in	the	user's	session
the	instance	variable	@current_user	will	be	set

Within	the	test,	we	have	access	to	the	session	of	the	hypothetical	user	who	just	logged	in,	so
we	 can	 compare	 both	 the	 session	 value	 and	 the	 instance	 variable	 with	 the	 corresponding
details	that	we	set	for	the	user	in	our	fixture	data:

assert_equal	users(:glenn).id,	session[:user_id]

																								

In	 a	 perfect	world,	 this	would	 be	 the	 last	 of	 the	 tests	 that	we	 need	 to	write.	But	 in	 the	 real

world,	not	every	login	attempt	is	successful.

Testing	a	Failed	Login

Login	attempts	fail	for	various	reasons:	users	may	type	their	passwords	incorrectly,	or	try	to
guess	 another	 person's	 login	 details.	When	 a	 login	 attempt	 fails,	 the	 application	 should	 not
reveal	any	content	that's	intended	for	users	who	have	logged	in.	As	such,	login	failures	need
to	be	tested	too.

Here's	the	test:

test/controllers/sessions_controller_test.rb	(excerpt)

test	"bad	login	fails"	do

		post	session_path,	params:	{email:	'noone@nowhere.com',	password:	'user'}

		assert_response	:success

		assert_nil	session[:user_id]

end

																								

If	 a	 user	 tries	 to	 log	 in	 to	 our	 application	 using	 a	 non-existent	 username,	 the	 login	 form
should	redisplay.	Our	first	assertion	confirms	that	the	page	loads	correctly:

assert_response	:success

																								

The	last	assertion	checks	the	user_id	value	that's	stored	in	the	user's	session	to	make	sure	it's
nil:

assert_nil	session[:user_id]

																								

Okay,	we've	tested	all	our	code	that	relates	to	our	login	procedures.	But	what	happens	after	a
user	logs	in?

Testing	Redirection	After	Login

To	trial	the	redirection	of	users	who	log	in	to	their	original	destination,	we'll	add	a	test	that
ensures	users	are	redirected	to	the	protected	path	once	they	login:

test/controllers/sessions_controller_test.rb	(excerpt)

test	"redirects	after	login	with	return	url"	do

		get	new_story_path

		assert_redirected_to	new_session_path

		post	session_path,

				params:	{

						email:	'glenn.goodrich@sitepoint.com',

						password:	'sekrit'

				}

		assert_redirected_to	new_story_path

end

																								

This	is	an	ideal	time	to	point	out	that	these	controller	tests	are	integration	tests.	This	means
that	code	is	"behind	the	curtain"	and	we	don't	manipulate	it.	We	simply	do	what	the	user	does
and	test	outcomes–the	purpose	of	this	test.	The	user	tries	to	access	the	new_story_path,	which
is	the	New	Story	form:

get	new_story_path

																								

If	 it	 goes	 the	 desired	 way,	 this	 unauthenticated	 user	 will	 be	 redirected	 to	 the
new_session_path,	which	is	just	the	login	form:

assert_redirected_to	new_session_path

																								

Now,	the	user	logs	in:

post	session_path,

		params:	{

				email:	'glenn.goodrich@sitepoint.com',

				password:	'sekrit'

		}

																								

And	we	test	that	the	user	is	redirected	to	their	original,	preferred	destination:

assert_redirected_to	new_story_path

																								

You,	 as	 the	 developer,	 understand	 that	 we	 are	 putting	 the	 original	 URL	 into
session[:return_to]	 and	 then	checking	 that	value	on	 login;	however,	 an	 integration	 test	 is
for	behavior,	not	internal	details.	If,	for	some	reason,	you	change	how	the	redirection	occurs
in	the	future	behind	the	scenes,	you	still	want	the	same	behavior.	This	test	accomplishes	this.

Integration	 testing	can	 sometimes	 feel	 like	an	art–it	 is	 certainly	 the	next	 level	up	 for	a	new
Rails	developer.	Pat	yourself	on	the	back,	you've	done	well.

Testing	a	Logout

The	last	part	of	the	SessionsController	that	we	test	is	the	destroy	action.	To	emulate	a	user
logging	 out,	 we	 actually	 need	 to	 create	 what	 resembles	 an	 integration	 test.	Why?	 Because
before	we	can	log	out,	we	must	log	in:

test/controllers/sessions_controller_test.rb	(excerpt)

test	"logout	and	clear	session"	do

		post(

				session_path,

				params:	{	email:	'glenn.goodrich@sitepoint.com',	password:	'sekrit'	}

)

		assert_not_nil	session[:user_id]

		delete	session_path

		assert_response	:success

		assert_select	'h2',	'Logout	successful'

		assert_nil	session[:user_id]

end

																								

This	test	is	longer	than	most	of	our	previous	tests,	but	with	the	number	of	tests	you	have	under
your	belt	at	this	stage,	you	should	be	able	to	comprehend	each	line	without	much	trouble.

First,	we	ensure	that	the	user_id	stored	in	the	session	is	populated	before	the	user	logs	out:

assert_not_nil	session[:user_id]

																								

Without	this	step,	we	can't	guarantee	that	the	destroy	action	is	really	doing	its	job.

The	crux	of	this	test	lies	in	its	last	line:

assert_nil	session[:user_id]

																								

Here	we're	confirming	that	the	all-important	variable	that	we	populated	when	the	user	logged
in	is	set	to	nil	once	the	user	has	logged	out.

Phew,	that	was	quite	a	number	of	tests.	We're	not	done	with	functional	testing	just	yet,	though.
You	may	like	to	fortify	yourself	with	a	strong	coffee	before	tackling	the	rest	of	the	functional
tests–we'll	 be	 testing	 the	 changes	 we've	 made	 to	 our	 StoriesController	 and
ApplicationController	classes.

Testing	the	Display	of	the	Story	Submitter

The	 following	 test	 checks	 that	 the	 name	 of	 the	 user	 who	 submitted	 a	 story	 is	 displayed
correctly	on	a	story's	page.	Add	it	to	test/controllers/stories_controller_test.rb:

test/controllers/stories_controller_test.rb	(excerpt)

class	StoriesControllerTest	<	ActionDispatch::IntegrationTest

		⋮	test	methods…

		test	"show	story	submitter"	do

				get	story_path(stories(:one))

				assert_select	'p.submitted_by	span',	'Glenn	Goodrich'

		end

end

We've	 seen	 all	 this	 before:	 confirming	 that	 an	 element	 containing	 our	 submitter's	 name	 is
present	is	simply	a	matter	of	scanning	the	HTML	code	for	a	p	element	of	class	submitted_by,
which	contains	the	name	of	the	submitter	inside	a	span.

Testing	the	Display	of	Global	Elements

To	test	the	global	elements	that	we	added	to	the	application.html.erb	layout	file,	we'll	add
two	 tests.	 For	 the	 sake	 of	 convenience,	 both	 tests	 will	 utilize	 the	 index	 action	 of	 our
StoriesController:

test/controllers/stories_controller_test.rb	(excerpt)

test	"indicates	not	logged	in"	do

		get	stories_path

		assert_select	'div#login_logout	em',	'Not	logged	in.'

end

test	"show	navigation	menu"	do

		get	stories_path

		assert_select	'ul#navigation	li',	2

end

																								

We've	covered	these	assert_select	statements	several	times	already,	so	we'll	skip	going	over
old	ground.	Instead,	let's	move	on	to	test	that	our	Readit	application	displays	the	name	of	the
logged-in	user	at	the	top	of	every	page.

Testing	the	Display	of	the	User's	Name

The	div	element	in	the	top-right	corner	of	the	browser	window	displays	the	name	of	the	user
who's	 currently	 logged	 in.	We've	 checked	 the	 contents	 of	 this	 element	 when	 a	 user	 hasn't
logged	in;	we	still	need	to	add	a	test	to	check	whether	the	login	has	been	successful.

Before	we	do	so,	though,	let's	add	two	methods	that	will	make	the	authoring	of	this	test	(and
others	 related	 to	 it)	a	whole	 lot	easier.	Since	 it's	 likely	 that	we'll	access	 this	 functionality	 in
more	than	one	place,	we'll	put	these	new	methods	inside	the	file	test/test_helper.rb.	This
file	is	to	tests	what	ApplicationController	is	to	our	controllers:	every	method	added	to	that
file	is	available	to	all	of	our	test	cases.

test/test_helper.rb	(excerpt)

class	ActiveSupport::TestCase

		⋮	class	body…

		def	login_user

				post	session_path,	params:	{	email:	users(:glenn).email,	password:	'sekrit'}

		end

		def	logout_user

				delete	session_path

		end

end

																								

As	 you	 can	 see,	 the	 utility	methods	 handle	 logging	 the	 user	 in	 and	 out	 of	 the	 application.
Using	 this	 approach,	we	 can	 test	 an	 action	 that	was	previously	 only	 available	 to	 users	who
were	 logged	 in,	 just	 by	 calling	 login_user	 before	 we	 call	 the	 authenticated	 action	 and
logout_user	when	done.	This	is	inline	with	the	integration	test	approach	I	mentioned	earlier.
We	are	simply	logging	in	just	like	the	user	would,	then	calling	the	action	we	want	to	test	with
the	logged	in	user.

Let's	 see	 them	 in	 action.	Before	 that	 little	 detour,	we	were	 on	 the	way	 to	writing	 a	 test	 that
confirms	the	contents	of	the	login_logout	div.	These	contents	should	include	a	(Logout)	link
as	well	as	the	user's	name,	which	is	set	by	our	before	filter	in	the	current_user	method:

test	"indicates	logged	in	user"	do

		login_user

		get	stories_path

		assert_select	'div#login_logout	em	a',	'(Logout)'

end

																								

By	employing	our	new	utility	method	login_user	to	login,	requesting	the	stories_path	route
of	our	StoriesController	class	is	the	same	as	it	ever	was:

get	stories_path

																								

Once	we've	gained	access	to	the	index	page,	it's	easy	to	use	some	assertions	(in	which	we're
now	absolutely	proficient)	to	confirm	that	the	contents	of	the	div	are	as	we	expect.

Testing	Redirection	After	Logout

Our	 next	 few	 tests	 will	 cover	 the	 changes	 we	 made	 to	 the	 new	 action	 of	 our
StoriesController.

First,	we'll	check	that	users	who	aren't	logged	in	are	correctly	redirected	to	the	login	page	if
they	try	to	access	our	story	submission	form:

test	"redirects	if	not	logged	in"	do

		get	new_story_path

		assert_response	:redirect

		assert_redirected_to	new_session_path

end

																								

This	 is	 a	 fairly	 straightforward	 test:	 the	get	 statement	 tries	 to	 request	 the	 story	 submission
form	without	first	logging	in:

get	new_story_path

																								

The	remainder	of	the	test	confirms	that	the	request	results	in	the	user	being	redirected	to	the
new	action	of	our	SessionsController:

assert_response	:redirect

assert_redirected_to	new_session_path

																								

Our	test	suite	is	certainly	expanding.	We	have	just	two	more	tests	to	write	in	this	chapter.

Testing	Story	Submission

If	you've	been	particularly	 eager	 and	 tried	executing	your	 functional	 test	 suite	prematurely,
you'll	 have	 noticed	 that	 a	 few	 tests	 that	 worked	 previously	 now	 fail.	 These	 failures	 occur
because	we	modified	our	story	submission	form;	it	now	requires	that	a	user_id	is	present	in
the	 session	 before	 a	 page	 request	 can	 be	 successful.	 Our	 old	 tests	 didn't	 account	 for	 this
change,	so	they	now	fail.

We	need	to	modify	the	four	tests	that	are	affected	so	that	each	of	them	includes	a	user	id	in	the
session.	At	 this	 point,	 it	 should	 become	 obvious	 that	 it	was	well	worth	 the	 effort	 for	 us	 to
create	the	login_user	and	logout_user	utility	methods:

class	StoriesControllerTest	<	ActionDispatch::IntegrationTest	

		⋮	class	methods…

		test	"gets	stories"	do

				login_user

				get	stories_path

				⋮	method	body…

		end

		test	"gets	new	story	form"	do

				login_user

				get	new_story_path

				⋮	method	body…

		end

		test	"adds	a	story"	do

				login_user

				assert_difference	'Story.count'	do

						post	stories_path,	params:	{

								⋮	story	attributes…

						}

				⋮	method	body…

		end

		test	"rejects	when	missing	story	attribute"	do

				login_user

				assert_no_difference	'Story.count'	do

						post	stories_path,	params:	{

								⋮	story	attributes…

						}

				⋮	method	body…

		end

		⋮	class	methods…

end

																								

As	you	 can	 see,	 the	 changes	 are	 very	 small.	The	login_user	method	 is	 added	 before	 each
action	that	performs	the	request.	Easy.

Testing	Storage	of	the	Submitter

The	last	test	we'll	add	checks	that	users	who	are	currently	logged	in	are	correctly	associated
with	any	stories	that	they	submit:

test	"stores	user	with	story"	do

		login_user

		post	stories_path,	params:	{

				story:	{

						name:	'story	with	user',

						link:	'http://www.story-with-user.com/'

								}

		}

		assert_equal	users(:glenn),	Story.last.user

end

																								

If	you've	made	it	this	far,	you're	probably	itching	to	see	the	results	of	executing	our	rapidly
expanding	test	suite.

Fixing	VotesController	Tests

Just	 like	 stories,	 votes	 belong	 to	 a	 user.	 So,	 it's	 very	 likely	 your	 votes	 controller	 tests	 are
failing	now	because	we	are	authenticating	before	we	submit	the	votes.	Time	to	fix	that.	Before
we	do,	however,	I	want	to	briefly	introduce	a	common	convention	of	unit	tests.

Programmers	have	been	writing	tests	for	a	long	time,	so	some	patterns	and	conventions	have
cropped	 up	 and	 are	 used	 to	 make	 test	 writing	 a	 bit	 more	 concise.	 A	 couple	 of	 these
conventions	deal	with	setup	and	teardown	methods.

Let's	start	with	the	setup	methods	first.	A	setup	method	is	run	before	every	test	in	it's	context.
The	 context,	 in	 our	 case,	 is	 the	 current	 test	 class.	 As	 such.	 The	 same	 is	 true	 of	 teardown
methods,	except	they	are	run	after	each	test.	An	example	will	clear	this	up.

We	 need	 to	 authenticate	 a	 user	 for	 every	 test	 in	 the	 VotesControllerTest	 class.	 Minitest
provides	setup	and	teardown	methods	that	allow	us	to	prepare	for	and	cleanup	after	our	tests,
respectively.	This	is	perfect	for	logging	in	and	logging	out.	Check	it	out:

test/controllers.votes_controller_test.rb	(excerpt)

class	VotesControllerTest	<	ActionDispatch::IntegrationTest

		setup	do

				login_user

		end

		teardown	do

				logout_user

		end

		test	"creates	vote"	do

				assert_difference	'stories(:two).votes.count'	do

						post	story_votes_path(stories(:two))

								end

		end

		test	"create	vote	with	ajax"	do

				post	story_votes_path(stories(:two)),	xhr:	true

				assert_response	:success

		end

		test	"redirect	after	vote	with	http	post"	do

				post	story_votes_path(stories(:two))

				assert_redirected_to	story_path(stories(:two))

		end

end

																								

Neat,	eh?	The	tests	are	exactly	the	same,	but	we've	added	setup	and	teardown	blocks	to	handle
logging	 in	 and	 logging	 out.	 I	 know	 what	 you're	 thinking:	 Why	 didn't	 we	 log	 out	 of	 the

StoryControllerTests?	Why	didn't	we	use	setup	and	teardown	for	them,	too?	Well,	we	didn't
want	to	run	the	login	for	every	test	in	that	file.	As	for	not	logging	out,	Rails	will	clean	up	the
session	 for	 you,	 so	 it	 isn't	 strictly	 required.	 However,	 it	 is	 a	 good	 practice,	 so	 you	 know
what's	coming...

EXTRA	CREDIT:	Exploring	Other	Ways	to	Run	Tests

There	are	other	ways	to	run	tests	that	allow	for	creating	nested	contexts	in	a	test	class,	but	I
won't	cover	them	here.	I	advise	you	to	lookup	Minitest::Spec	 to	start	or	checkout	RSpec,	a
very	popular	Ruby	gem	for	test	specifications.	Each	of	these	items	have	their	own	language
and	idioms	for	defining	contexts	and	other	items.	Exploring	them	will	raise	your	test	game	to
the	next	level.	Oh,	and	go	back	and	logout	of	each	StoriesControllerTest	 that	needs	it.	It'll
build	character.

Running	the	Full	Test	Suite
Run	the	full	test	suite	with	our	trusty	rails	command.	If	everything	has	gone	well,	you	should
see	results	similar	to	the	following:

$	rails	test

Running	via	Spring	preloader	in	process	34312

Run	options:	--seed	60092

#	Running:

..............................

Finished	in	1.062286s,	28.2410	runs/s,	49.8924	assertions/s.

29	runs,	53	assertions,	0	failures,	0	errors,	0	skips

																								

If	any	of	your	tests	failed,	the	error	message	that's	displayed	should	help	you	determine	where
it	went	wrong.	The	error	will	direct	you	 to	 the	 location	of	 the	erroneous	class	and	method,
and	 the	 exact	 line	 number	within	 that	method.	 And	 before	 you	 start	 pulling	 your	 hair	 out,
remember	that	you	can	double-check	your	code	against	the	code	archive	for	this	book.	It	went
through	considerable	testing	before	release,	so	you	can	count	on	the	code	in	it	to	work.

Even	more	 rewarding	 than	seeing	 the	number	of	 tests	and	assertions	 that	our	 test	 suite	now
covers	is	looking	at	the	output	of	the	stats	task.	This	command	displays	a	number	of	statistics
relating	to	the	architecture	of	our	application,	including	the	ratio	of	lines	of	application	code
to	 lines	of	 test	code.	We've	been	extremely	busy	writing	tests	 in	 this	chapter,	so	 let's	see	 the
results:

$	rails	stats

																								

My	application	reports	a	code-to-test	ratio	of	1:1.6,	as	the	screenshot	below	indicates.

My	code-to-test	ratio

This	means	we've	written	one-and-a-half	times	the	amount	of	code	to	test	our	application	than
we've	written	for	Readit	itself.	This	is	a	good	thing:	it	means	that	we	can	be	confident	that	our
application	is	of	high	quality.

Summary

In	 this	chapter,	we	explored	an	approach	 for	 sectioning	off	 the	parts	of	a	Rails	application.
This	was	so	that	some	features	are	available	to	everyone,	while	others	are	available	only	to
users	who	have	logged	in.

First,	we	discussed	some	theory	about	sessions	and	cookies.	We	then	created	a	new	model—
the	User—and	built	 a	 login	 form	 that	 allows	users	 to	 log	 in	 to	Readit.	We	 stored	 the	 login
functionality	 in	 a	 new	 SessionsController	 class,	 which	made	 extensive	 use	 of	 the	 session
container.	The	end	result	was	that	we	were	able	to	restrict	access	to	the	story	submission	form
to	users	who	were	logged	in,	and	direct	other	visitors	to	the	login	form.	And	to	top	it	all	off,
we	verified	that	the	changes	to	our	code	are	free	of	bugs	by	writing	a	number	of	tests.

The	 next	 chapter,	 in	which	we'll	 add	 the	 last	 of	 the	 features	 to	 our	Readit	 application,	will
cover	more	complex	ActiveRecord	associations.	Though	we're	moving	into	more	advanced
territory,	we'll	keep	moving	through	each	task	step	by	step,	so	don't	be	nervous.	Let's	go	add
the	finishing	touches	to	Readit.

Chapter	9:	Advanced	Topics
As	we	enter	the	final	quarter	of	this	book,	we'll	implement	the	last	of	the	features	that	we	listed
back	in	Chapter	1,	in	preparation	for	Readit's	much	anticipated	first	release.

Along	the	way,	we'll	cover	some	of	the	more	advanced	topics	that	are	involved	in	developing
web	applications	with	Ruby	on	Rails,	such	as	writing	your	own	helpers,	using	callbacks,	and
creating	complex	associations.

Promoting	Popular	Stories

To	start,	we'll	make	a	 change	 to	 the	way	our	users	view	our	 application.	We'll	 separate	 the
display	of	our	stories	into	two	pages:	one	for	stories	with	a	score	above	a	certain	threshold,
and	one	 for	 stories	with	 a	 score	below	 that	 threshold.	 This	will	 encourage	 readers	 to	 push
stories	 to	 the	 front	 page	 by	 voting	 for	 them.	 This	 functionality	 will	 replace	 the	 story
randomizer	 that	 currently	 appears	 on	 the	 index	 page	 of	 our	 StoriesController—it's
becoming	boring	and	falling	short	of	meeting	the	needs	of	our	application.

Before	we	can	start	hacking	away	at	these	new	pages,	we	should	refine	our	existing	models.	In
particular,	we	need	an	easy	way	to	select	stories	on	the	basis	of	their	voting	scores.

Using	a	Counter	Cache
We've	already	seen	how	we	can	count	 the	number	of	votes	associated	with	a	given	story	by
calling	the	size	method	on	the	associated	Vote	object:

>>	Story.first.votes.size

=>	3

																								

Behind	the	scenes,	this	snippet	performs	two	separate	SQL	queries.	The	first	query	fetches	the
first	 story	 from	 the	 stories	 table;	 the	 second	 query	 counts	 the	 number	 of	 Votes	 whose
story_id	attributes	are	equal	to	the	id	of	the	Story	object	in	question.

This	approach	to	counting	records	isn't	usually	a	problem	in	small	applications	that	deal	with
only	a	handful	of	records;	however,	when	an	application	needs	to	deal	with	several	thousand
or	more,	these	double	queries	can	significantly	impede	the	application's	performance.

One	option	for	tackling	this	issue	is	to	use	more	advanced	SQL	commands,	such	as	JOIN	and
GROUP	BY;	however,	like	you,	I	don't	really	enjoy	writing	SQL	queries.	Instead,	I'll	introduce
you	to	another	funky	Rails	feature:	the	counter	cache.

Introducing	the	Counter	Cache
The	counter	cache	is	an	optional	feature	of	ActiveRecord,	and	makes	counting	records	fast
and	 easy.	 The	 use	 of	 the	word	 “counter”	 here	 is	 as	 in	 “bean	 counter,”	 not	 as	 in	 “counter-
terrorism.”	The	name	“counter	cache”	is	intended	to	reflect	the	caching	of	a	value	that	counts
records.	You	can	enable	the	counter	cache	by	including	the	parameter	counter_cache:	true
when	defining	a	belongs_to	association.

From	a	performance	point	of	view,	the	counter	cache	is	superior	 to	an	SQL-based	solution.
When	we're	using	SQL,	the	number	of	records	for	an	object	associated	with	the	current	object
needs	to	be	computed	by	the	database	every	time	that	object	is	requested.	The	counter	cache,
on	the	other	hand,	stores	the	number	of	records	of	each	associated	object	in	its	own	column	in
the	database.	This	value	can	be	retrieved	as	often	as	is	needed,	without	requiring	potentially
expensive	computation	to	take	place.

When	It	Almost	Doesn't	Count

The	 counter	 cache	 doesn't	 actually	 go	 through	 the	 database	 to	 calculate	 the	 number	 of
associated	 records	 every	 time	 an	 object	 is	 added	 or	 removed,	 effective	 from	 the	 point	 at
which	 it	was	 turned	on.	 Instead,	 it	 increases	 the	 counter	 for	 every	object	 that's	 added	 to	 the
association,	and	decreases	 it	 for	every	object	 that's	 removed	from	the	association,	 from	the
point	at	which	it's	enabled.

As	 the	 counter	 cache	 needs	 to	 be	 stored	 somewhere,	we'll	 create	 room	 for	 it	 in	 our	Story
model	with	the	help	of	a	migration.

Making	Room	for	the	Cache
We'll	make	a	new	migration	 template	using	 the	rails	generate	migration	 to	 generate	 the
counter	cache:

$	rails	generate	migration	AddCounterCacheToStories	votes_count:integer

Running	via	Spring	preloader	in	process	10833

				invoke		active_record

				create				db/migrate/20160420164312_add_counter_cache_to_stories.rb

																								

As	 expected,	 our	 new	 migration	 template	 is	 stored	 in	 the	 file
db/migrate/xxx_add_counter_cache_to_stories.rb.	 This	 migration	 will	 be	 used	 to	 add	 a
new	 column	 to	 the	 stories	 table,	 where	 the	 column	 will	 store	 a	 value	 that	 represents	 the
number	of	Vote	objects	associated	with	each	Story.	The	name	of	the	column	should	match	the
method	that	we	would	normally	call	to	retrieve	the	object	count,	so	we'll	call	it	votes_count.
Modify	the	migration	file	so	that	it	looks	like	this:

class	AddCounterCacheToStories	<	ActiveRecord::Migration[5.0]

		def	change

				add_column	:stories,	:votes_count,	:integer,	default:	0

				Story.find_each	do	|s|

						Story.reset_counters	s.id,	:votes

				end

		end

end

																								

Let	me	 explain	what's	 going	 on	 here.	 Columns	 that	 store	 the	 counter	 cache	 need	 a	 default
value	of	0	 in	 order	 to	 operate	 properly.	 This	 default	 value	 can	 be	 provided	 to	add_column
using	the	:default	argument,	as	we've	done	in	the	first	line	of	our	change	method:

add_column	:stories,	:votes_count,	:integer,	default:	0

																								

In	the	past,	we've	used	migrations	to	make	schema	changes,	but	migrations	can	also	be	used	to
migrate	data.	As	mentioned	before,	the	number	of	objects	associated	with	the	model	using	the
counter	 cache	 is	 never	 actually	 calculated	 by	 Rails—values	 are	 just	 incremented	 and
decremented	 as	 records	 are	 modified.	 Consequently,	 the	 next	 line	 in	 our	 migration	 loops
through	 the	 Story	 objects	 in	 the	 database,	 and	 manually	 resets	 each	 Story's	 initial	 voting
score:

Story.find_each	do	|s|

		Story.reset_counters	s.id,	:votes

end

																								

Story.find_each	loops	over	of	all	stories	in	the	database	in	batches	of	1000.	The	block	resets
the	 voting	 score	 for	 the	 current	 story	 (which	 is	 held	 in	 the	 variable	s)	 by	 calling	 the	 class
method	Story.reset_counters	and	passing	in	the	story	ID	and	the	association	name.	In	effect,
this	is	the	same	as	counting	all	of	the	Vote	objects	associated	with	the	current	Story.	We	have
to	 update	 the	 counter	 this	 way	 because,	 by	 default,	 votes_count	 is	 readonly.	 ActiveRecord
supplies	reset_counters	for	just	this	purpose.

Right,	let's	make	use	of	this	migration.

Applying	the	Migration
Go	ahead	and	apply	this	migration	using	the	rails	command:

$	rails	db:migrate

																								

Once	 that's	 completed,	 there's	 just	 one	 more	 small	 change	 to	 make	 to	 ensure	 that	 our
association	between	a	Vote	and	a	Story	uses	 the	counter	cache	we've	 just	set	up.	Change	the

belongs_to	association	in	app/models/vote.rb	to	the	following:

belongs_to	:story,	counter_cache:	true

																								

It	 should	be	noted	 that	Rails	will,	 from	 this	 point	 forward,	 automatically	 refer	 to	 the	 value
stored	 in	 the	 votes_count	 column,	 even	 if	 we	 actually	 call	 votes.size.	 Because	 of	 this
behavior,	none	of	the	existing	code	in	our	project	needs	to	change.

Let's	now	make	that	new	front	page	happen!

Implementing	the	Front	Page

Let's	 implement	 a	 simple	 algorithm	 for	Readit:	 stories	with	 a	 voting	 score	 above	 a	 certain
threshold	will	appear	on	the	front	page,	while	stories	with	a	score	below	that	threshold	will
display	on	a	voting	page.

First,	we'll	make	all	 the	changes	 required	 to	get	our	 front	page	 running	smoothly,	utilizing
standard	 templates	 and	partials.	We	can	 then	make	use	of	 these	 templates	 to	 implement	 our
voting	bin.

Modifying	the	Controller
The	 first	 change	 we'll	 make	 is	 to	 our	 StoriesController.	We	 need	 to	 replace	 the	 current
index	 action	 (which	displays	 a	 random	story)	with	one	 that	 retrieves	 the	 list	 of	 stories	 that
have	 received	 enough	 votes	 to	 appear	 on	 the	 front	 page.	Modify	 the	 index	 method	 of	 the
StoriesController	class	located	in	app/controllers/stories_controller.rb	so	that	it	looks
like	the	following:

def	index

		@stories	=	Story.where('votes_count	>=	5').order('id	DESC')

end

																								

Let's	examine	the	code.

Story.where,	as	you	already	know,	fetches	from	the	database	all	stories	that	match	a	specified
criterion.	 To	 implement	 the	 voting	 threshold,	 we've	 specified	 a	 condition	 that	 the	 total
votes_count	must	 be	 greater	 than	 or	 equal	 to	 five,	 using	 the	 counter	 cache	 that	 we've	 jsut
created.	 The	 result	 of	 the	 where	 operation	 will	 then	 be	 stored	 in	 the	 @stories	 instance
variable.

In	addition,	we're	specifying	that	our	records	be	ordered	by	descending	id	here,	which	will

ensure	that	the	newest	stories	appear	at	the	top	of	the	results,	and	the	older	ones	at	the	bottom.

Ordering	by	id

We	could	also	use	created_at	DESC,	which	might	be	better	 in	 the	 long	run.	Ordering	by	id
means	we're	 dependent	 on	 the	id	 field	 being	 of	 type	integer,	 or	 something	 that's	 ordered
sequentially.	This	is	not	always	the	case,	especially	as	you	start	doing	more	complicated	work.
For	now,	though,	using	id	works	for	us.

Modifying	the	View
Now	 that	we've	 retired	 the	 story	 randomizer,	we	also	have	 to	 rip	 apart	 the	index.html.erb
template,	which	was	formerly	responsible	for	rendering	a	single	story	link.	Our	new	template
will	 render	a	collection	of	stories,	each	displaying	its	current	voting	score	and	the	name	of
the	user	who	submitted	it.

Modify	the	corresponding	index	template	(located	at	app/views/stories/index.html.erb)	so
that	it	resembles	this:

<h2>

		<%=	"Showing	#{	pluralize(@stories.size,	'story')	}"	%>

</h2>

<%=	render	partial:	'story',	collection:	@stories	%>

																								

The	first	line	of	ERb	code	outputs	the	number	of	stories	being	displayed:

<%=	"Showing	#{	pluralize(@stories.size,	'story')	}"	%>

																								

To	display	this	value,	we're	making	use	of	the	pluralize	helper	provided	by	Rails.	pluralize
displays	 the	 noun	 that	 is	 passed	 in	 as	 an	 argument,	 either	 in	 singular	 or	 in	 plural	 form.	 If
there's	only	one	story	 to	show,	 the	header	will	 read	"Showing	1	story";	 in	all	other	cases	 it
will	read	"Showing	x	stories",	where	x	is	the	number	of	stories	available.

Most	 of	 the	 time,	 Rails	 is	 smart	 enough	 to	 correctly	 pluralize	 the	 most	 common	 English
nouns	automatically.	If	this	fails	to	work	for	some	reason,	you	have	the	option	of	passing	both
singular	and	plural	forms,	like	so:	If	you	need	to	“train”	Rails	to	correctly	pluralize	a	noun	in
more	than	one	spot,	it	may	be	worth	adding	your	own	pluralization	rules	to	the	Rails	Inflector.
See	the	config/initializers/inflections.rb	file	for	an	example.

<%=	"Showing	#{	pluralize(@stories.size,	'story',	'stories')	}	%>

																								

To	 render	 each	 story	 in	 the	 collection	 that	 we	 retrieved,	 we're	 using	 a	 partial.	 We	 first
encountered	these	when	displaying	voting	history	back	in	Chapter	7:

<%=	render	partial:	'story',	collection:	@stories	%>

																								

As	this	is	the	advanced	topics	chapter,	here's	another	tip.	The	above	line	can	be	abbreviated	as
follows:

<%=	render	partial:	@stories	%>

																								

How	would	this	work?	Given	a	call	like	this,	Rails	looks	at	the	type	of	object	you	pass	in	by
checking	the	class	of	the	first	object	in	the	array,	which	happens	to	be	a	Story	object.	It	 then
assumes	a	straight	mapping	between	models	and	controllers,	and	looks	for	a	partial	template
in	app/views/stories/_story.html.erb.	Had	we	passed	 in	 a	 collection	of	 votes,	 as	we	did
back	 in	 Adding	 Voting	 History	 in	 Chapter	 7,	 Rails	 would	 look	 for	 a	 template	 in
app/views/votes/_vote.html.erb.	See	the	pattern?

The	next	item	on	our	list	is	the	creation	of	the	partial.

Creating	the	Partial
Create	the	file	app/views/stories/_story.html.erb,	and	edit	it	to	appear	as	follows:

app/views/stories/_story.html.erb

<div	class='story'>

		<h3><%=	link_to	story.name,	story	%></h3>

		<p>

				Submitted	by:	<%=	story.user.name	%>	|

				Score:	<%=	story.votes_count	%>

		</p>

</div>

																								

This	 partial	 is	 responsible	 for	 displaying	 the	 core	 facts	 of	 a	 story	 in	 the	 listings	 on	 the
application's	front	page	(and,	as	you'll	see	later,	in	the	voting	bin).	It's	a	fairly	straightforward
template	 that	you	should	have	no	 trouble	understanding.	We	wrap	our	story	 in	div	 tags	and
automatically	assign	a	class	of	"story".

Apart	from	the	div	tag,	the	title	of	the	story	is	displayed	in	an	h3	element,	which	links	directly
to	 the	 story	 page	 using	 the	link_to	 helper;	 the	 original	 submitter	 of	 the	 story	 and	 current
voting	score	are	displayed	underneath.

We'll	now	use	the	assigned	element	class	of	"story"	to	apply	some	CSS	styling.

Styling	the	Front	Page

Now	 that	 we	 have	 some	 new	 elements	 on	 the	 front	 page,	 let's	 add	 style	 rules	 for	 those
elements	to	our	stylesheet,	which	is	located	at	app/assets/stylesheets/stories.scss:

appassetsstylesheets/stories.scss	(excerpt)

.story	{

		float:	left;

		width:	50%;

}

.story	h3	{	margin-bottom:	0;	}

.story	p		{	color:	#666;	}

																								

While	we're	giving	our	front	page	an	overhaul,	let's	also	remove	the	default	Rails	welcome
page	that's	displayed	when	a	user	accesses	http://localhost:3000/,	and	make	our	new	front
page	the	default	page	instead.

Setting	the	Default	Page
To	 set	 the	 default	 page,	we	 once	 again	 need	 to	 alter	Rails'	 routing	 configuration,	which	 is
located	in	the	file	config/routes.rb.	If	you	look	closely,	you'll	notice	a	commented	line	(if
you	deleted	it	earlier,	don't	worry—you	can	just	type	out	the	line	you	need	in	a	moment):

#	root	'welcome#index'

																								

By	removing	the	first	#	character	(which	uncomments	the	line)	and	making	a	slight	change	to
the	route,	we	can	set	the	destination	for	requests	for	the	address	http://localhost:3000/	 to
be	the	index	action	for	our	StoriesController:

config/routes.rb	(excerpt)

root	"stories#index"

																								

Before	you	jump	into	your	browser	to	test	this	new	route,	you	should	be	aware	of	one	small
caveat:	 the	default	Rails	welcome	page	 is	a	 simple	HTML	page	 (it	contains	no	ERb	code	at
all).	It	will	be	displayed	if	the	root	route	is	not	defined	in	the	config/routes.rb	configuration
file.	So	in	order	to	display	our	story	index	as	the	default	page,	this	route	has	to	be	defined.

Let's	take	a	peek	at	our	new	front	page	(after	making	sure	our	web	server	is	running);	mine	is
shown	 in	 Figure	 9-4.	 How	 many	 stories	 you	 have	 listed	 will	 depend	 on	 how	 many	 votes
you've	given	your	stories.

Scoring	stories

If,	 like	mine,	your	front	page	is	 looking	rather	empty,	you're	probably	keen	to	start	voting!
Right	now,	none	of	our	stories	have	five	votes,	so	they're	sitting	in	the	bin	(as	in	"container	of

refuse”).	Let's	briefly	cover	the	implementation	of	the	voting	bin,	so	that	you	can	use	it	to	start
voting	on	stories	in	the	queue.

Implementing	the	Voting	Bin

To	 create	 a	 voting	 bin,	 create	 a	 new	 method	 called	 bin	 in	 the	 file
/app/controllers/stories_controller.rb:

class	StoriesController	<	ApplicationController

		⋮	controller	code…

		def	bin

				@stories	=	Story.where("votes_count	<	5").order("id	DESC")

				render	action:	"index"

		end

end

																								

Most	of	 this	 code	 looks	 straightforward	enough—but	what	 about	 that	render	 call	hiding	 in
there?

Before	I	explain	this,	 let	me	point	something	out,	 in	case	you	haven't	spotted	it	already:	this
code	 is	 almost	 identical	 to	what	we	wrote	 for	 our	index	 action—it	 just	 applies	 a	 different
condition	to	the	collection	of	stories.

This	 fact	 should	 trigger	 the	 realization	 that	 this	 is	 a	 good	opportunity	 to	 reuse	 some	 code.
Let's	extract	most	of	the	code	used	in	these	two	controller	methods	(index	and	bin)	and	place
it	 in	a	protected	controller	method	called	fetch_stories	method,	which	we'll	 then	use	from
both	locations	within	our	code.

As	we	 discussed	 earlier,	 protected	methods	 are	 only	 accessible	 from	within	 a	 class	 and	 its
subclasses;	they're	not	accessible	from	anywhere	outside	the	class.

Here's	that	extracted	method:

def	fetch_stories(conditions)

		@stories	=	Story.where(conditions).order('id	DESC')

end

																								

As	the	only	part	that	differs	between	the	index	and	bin	actions	is	the	condition,	we'll	allow	the
condition	to	be	passed	to	the	new	protected	method	as	an	argument.

Our	StoriesController	should	now	look	as	follows	(only	the	code	relevant	to	this	section	is
shown):

class	StoriesController	<	ApplicationController

		⋮	controller	code…

		def	index

				@stories	=	fetch_stories	"votes_count	>=	5"

		end

		def	bin

				@stories	=	fetch_stories	"votes_count	<	5"

				render	action:	"index"

		end

		⋮	controller	code…

		protected

		def	fetch_stories(conditions)

				@stories	=	Story.where(conditions).order("id	DESC")

		end

end

																								

This	 is	 one	 way	 to	 approach	 this	 scenario.	 A	 second	 and	 quite	 common	 way	 is	 to	 use
ActiveRecord	scopes.	Scopes	are	a	means	to	define	common	queries	for	a	model	that	can	be
called	in	the	same	way	as	methods.	As	with	anything,	an	example	will	make	it	clear.

In	this	controller	code,	we	have	two	scopes:	let's	call	them	"upcoming"	and	"popular".	Now,
open	up	app/models/story.rb	and	add	the	following:

class	Story	<	ApplicationRecord

		...associations...

		scope	:upcoming,	->	{	where("votes_count	<	5").order("id	DESC")	}

		scope	:popular,	->	{	where("votes_count	>=	5").order("id	DESC")	}

		...methods...

end

																								

With	our	scopes	in	place,	return	to	the	controller	and	change	the	index	and	bin	actions:

class	StoriesController	<	ApplicationController

		⋮	controller	code…

		def	index

				@stories	=	Story.popular

		end

		def	bin

				@stories	=	Story.upcoming

				render	action:	"index"

		end

		⋮	controller	code…

		protected

http://guides.rubyonrails.org/active_record_querying.html#scopes

		...removed	fetch_stories...

end

																								

Refresh	 the	page,	 and	 the	 app	 looks	 just	 the	 same.	Except	 that	 now	we're	using	 scopes.	So,
you're	probably	wondering	which	approach	you	should	use,	right?	Well,	at	the	end	of	the	day,
it's	a	matter	of	preference.	If	you	think	you'll	use	the	upcoming	and	popular	scopes	in	future
development,	scopes	probably	make	sense.	If	the	controller	is	the	only	place	we'll	ever	fetch
stories	 in	 this	way,	 a	 small	 controller	method	 is	 no	big	 sin.	 I	 prefer	my	 controllers	 to	 just
route	requests	to	models	(and	other	objects).	However,	I've	done	it	both	ways	in	my	Rails	life.

Now,	back	to	that	peculiar	render	call	in	the	bin	action:

render	action:	"index"

																								

I	mentioned	earlier	that	the	two	actions	we	have	for	listing	stories	(index	and	bin)	are	almost
identical;	well,	they	also	have	in	common	the	template	they	use.	The	aforementioned	line	of
code	makes	sure	of	that.	It	specifies	that	the	view	template	for	the	index	action	should	also	be
used	by	the	bin	action.	As	such,	we're	rendering	the	same	template	for	a	slightly	different	set
of	stories.

Before	we	go	ahead	and	give	our	 two	pages	sufficient	visual	distinction—such	as	headings
that	tell	our	users	where	they	are	in	the	application—let's	digress	to	add	yet	another	piece	to
our	routing	configuration.

Adding	Custom	Actions	to	RESTful	Routes

RESTful	routes,	as	you	may	remember	from	Mapping	a	New	Resource	in	Chapter	6,	give	us	a
defined	 set	 of	 routes	 and	 route	 generation	 helpers	 to	 refer	 to	 routes	 (or	URLs).	We've	 just
implemented	a	new	controller	action	not	contained	in	that	set	of	default	routes,	so	we	have	to
tell	Rails	what	we'd	like	to	do	with	this	new	action,	how	users	will	reach	it,	and	how	we	want
to	refer	to	it.

Back	 in	 config/routes.rb,	 here's	 the	 line	 that	 gives	 us	 all	 the	 RESTful	 goodness	 for
performing	regular	operations	on	stories,	as	well	as	votes:

resources	:stories	do

		resources	:votes

end

																								

You	may	be	able	to	tell	from	our	use	of	helpers	such	as	stories_path	and	story_path	in	the

past	 couple	 of	 chapters	 that	 there	 are	 routes	 operating	 on	 the	 stories	 in	 general	 (without
referring	to	a	specific	one	by	id,	such	as	stories_path,	for	instance)	and	those	that	operate
specifically	 on	 a	 story	 (for	 example,	 story_path).	 These	 latter	 ones	 need	 an	 actual	 story
object	to	be	passed	in	to	operate	properly.

We	need	to	discuss	this	distinction	in	order	to	add	a	custom	action	to	our	set	of	defined	routes
at	 the	 right	 spot.	Since	our	index	and	bin	 actions	are	 so	 similar	 in	 function,	we	can	 safely
presume	that	bin	would	be	another	action	that	will	operate	on	the	entire	collection	of	stories,
since	it	displays	an	arbitrary	set	of	stories	based	on	their	vote	count.

To	include	a	new	custom	route	that	operates	on	a	collection	of	objects,	add	the	following	to
the	routing	configuration	file:

config/routes.rb	(excerpt)

resources	:stories	do

		collection	do

				get	"bin"

		end

		resources	:votes

end

																								

In	addition	to	the	name	of	the	custom	action,	Rails	wants	us	to	tell	it	the	actual	HTTP	method
used	to	talk	to	this	action,	which	in	this	case	is	GET.	By	changing	our	routing	configuration	in
this	way,	we	obtain	 a	 newly	 defined	helper	method:	bin_stories_path,	which	 refers	 to	 the
stories	 in	 our	 submission	 bin.	We'll	 use	 this	 helper	 in	 a	moment,	when	we	modify	 the	 site
navigation	menu	to	include	a	link	to	the	bin.

Next	up,	though,	we'll	deal	with	the	missing	distinction	between	our	two	story-listing	pages	by
adding	 headings	 to	 the	 index.html.erb	 template,	 all	 with	 a	 little	 assistance	 from	 some
ActionView	helpers.

Breaking	the	RESTful	Rules

The	 RESTful	 interface	 that	 our	 Rails	 app	 exposes	 is	 now	 non-standard.	 REST	 is	 an
architectural	style	and	it	evokes	many,	many	opinions–some	pedantic,	some	pragmatic.	There
are	 those	who	argue	 that	adding	a	non-standard	operation,	such	as	bin,	breaks	 the	RESTful
nature	of	 the	application.	 In	my	view,	 it	gives	us	what	we	need	when	we	need	 it.	 If	you	feel
differently	 (many	 do),	 another	 great	 approach	 is	 described	 in	 this	 post	 about	 how	 DHH
himself	organizes	his	controllers.

Abstracting	Presentation	Logic

http://jeromedalbert.com/how-dhh-organizes-his-rails-controllers/

In	this	section,	we'll	look	at	a	way	to	abstract	any	presentation	logic	that	you	happen	to	add	to
your	view	templates.	First,	let's	discuss	why	we	need	to	bother	extracting	Ruby	code	from	our
views,	 even	 though	 view	 templates	 may	 appear	 to	 be	 the	 easiest	 place	 to	 implement
presentation	logic.

Avoiding	Presentation	Logic	Spaghetti
Recall	 that	 our	 intention	 is	 to	 display	 a	 heading	 that's	 appropriate	 in	 the	 index	 template,
depending	 on	 whether	 the	 list	 of	 stories	 being	 displayed	 contains	 frontpage	 stories	 or
upcoming	stories.

Of	 course,	 we	 could	 implement	 this	 functionality	 by	 adding	 the	 logic	 directly	 to	 the
app/views/stories/index.html.erb	 template	 as	 shown	 in	 this	 code	 (we're	 only	 looking	 at
this	stage–avoid	doing	anything	just	yet):

<h2>

		<%	if	controller.action_name	==	'index'	%>

				<%=	"Showing	#{	pluralize(@stories.size,

								'front	page	story')	}"%>

		<%	else	%>

				<%=	"Showing	#{	pluralize(@stories.size,	'upcoming	story')	}"	%>

		<%	end	%>

</h2>

																								

You'll	notice	that	this	solution	entails	a	fair	amount	of	duplication;	all	we're	changing	in	the
else	block	is	a	single	word.	Additionally,	that	Ruby	code	is	always	wrapped	in	ERb	tags	(<%
%>	and	<%=	%>)	in	view	templates	means	that	these	templates	can	begin	to	look	like	a	dish	of
spaghetti	containing	chained	method	calls,	nested	levels	of	parentheses,	if	clauses,	and	other
complexities.

When	your	own	code	starts	to	look	like	spaghetti,	it	may	be	time	to	consider	extracting	some
of	that	code	into	an	ActionView	helper.

Introducing	ActionView	Helpers

As	you've	heard	countless	times	now,	a	view	should	contain	presentational	code	only.	In	order
to	 adhere	 to	 the	MVC	 paradigm	 as	 strictly	 as	 possible,	 you	 should	 aim	 to	 place	 all	 logic
outside	 the	views:	 in	a	controller	 (for	application	 logic)	or	a	model	 (for	business	 logic).	A
third	option	for	presentation-related	logic	not	quite	belonging	in	a	controller	or	a	model	 is
the	ActionView	helper.

We	talked	about	making	helper	methods	available	to	views	in	Protecting	the	Form	in	Chapter
8,	when	we	implemented	the	logged_in?	helper	method;	however,	back	then	we	implemented
this	functionality	as	a	protected	controller	method,	then	made	available	to	our	views	using	the

helper_method	statement.

Native	ActionView	helpers	differ	from	protected	helper	methods	in	that	they're	not	available
to	controllers,	hence	 the	name.	An	ActionView	helper	 is	 a	 function	 that	helps	 to	 reduce	 the
clutter	in	your	view	templates.

Writing	an	ActionView	Helper

ActionView	helpers	are	available	in	two	basic	forms.

The	 first	 is	 the	 global	 helper,	 which	 is	 stored	 in	 the	 file
app/helpers/application_helper.rb.	You	can	think	of	a	global	ActionView	helper	as	being
the	 “view”	 equivalent	 to	 the	 ApplicationController	 class	 in	 the	 “controller”	 world.	 Any
helper	that	you	add	to	this	file	will	be	available	from	every	view	of	every	controller.

The	second	form	of	ActionView	helper	is	specific	to	the	views	of	a	particular	controller.	We'll
use	this	approach	for	our	ActionView	helper,	where	we'll	create	a	new	helper	method	for	our
StoriesController	in	the	file	app/helpers/stories_helper.rb.	That	way,	it	will	be	clear	that
it's	related	to	StoriesController.

Here's	the	helper	method	to	add:

app/helpers/stories_helper.rb

module	StoriesHelper

		def	story_list_heading

				story_type	=	case	controller.action_name

						when	"index"	then	"frontpage	story"

						when	"bin"	then	"upcoming	story"

						end

				"Showing	#{	pluralize(@stories.size,	story_type)	}"

		end

end

																								

Let's	step	through	this	code.	Its	first	task	is	populate	a	variable	story_type	using	a	Ruby	case
statement:

story_type	=	case	controller.action_name

		when	"index"	then	"frontpage	story"

		when	"bin"	then	"upcoming	story"

		end

																								

This	statement	compares	the	value	of	controller.action_name	(which	contains	the	text	value
of	 the	 controller	 action	 being	 executed,	 exactly	 as	 it	 appears	 in	 the	URL)	with	 a	 couple	 of
predefined	values–namely,	the	values	'index'	and	'bin'.

Next,	we	display	the	same	"Showing	…"	string	with	the	pluralize	helper	that	we	used	in	our
previous	attempt	at	writing	this	view:

"Showing	#{	pluralize(@stories.size,	story_type)	}"

																								

This	time,	however,	we're	passing	story_type	as	the	part	of	the	string	that's	being	pluralized.
This	string	is	either	set	to	frontpage	story	or	upcoming	story.If	we	wanted	 to	be	pedantic
about	reducing	code	duplication,	we	could	even	extract	the	word	“story”	from	that	string,	and
simply	set	the	story_type	variable	to	“front	page”	or	“upcoming.”	But	you	have	to	draw	the
line	 somewhere!	 While	 this	 isn't	 necessarily	 a	 shorter	 solution	 than	 the	 previous	 one,	 it
certainly	removes	a	lot	of	clutter	from	our	view,	which	we	now	reduce	to	a	single	line!

<h2><%=	story_list_heading	%></h2>

		<%=	render	partial:	@stories	%>

																								

Now	we	just	add	our	voting	bin	page	to	the	navigation	menu	in	the	footer	of	each	page,	and
we're	done	with	abstracting	presentation	logic.

Expanding	the	Navigation	Menu
To	add	a	link	to	our	navigation	menu,	we	simply	add	another	list	item	to	the	unordered	list	at
the	 bottom	 of	 the	 application	 layout.	 The	 layout	 is	 stored	 in
app/views/layouts/application.html.erb:

app/views/layouts/application.html.erb

<ul	id="navigation">

		<%=	link_to	'Front	page	stories',	stories_path	%>

		<%=	link_to	'Upcoming	stories',	bin_stories_path	%>

		<%=	link_to	'Submit	a	new	story!',	new_story_path	%>

																								

Now	 we	 can	 finally	 give	 our	 changes	 a	 whirl.	 Point	 your	 browser	 to
http://localhost:3000/	and	click	the	Upcoming	stories	link	at	the	bottom	of	the	page.

The	 resulting	 page,	 an	 example	 of	 which	 is	 depicted	 in	 Figure	 9-8,	 should	 contain	 all	 the
stories	in	your	database	that	have	a	voting	score	below	five.

The	story	voting	bin

Before	you	use	this	unique	opportunity	to	promote	the	first	story	to	Readit's	front	page,	we'll
require	that	users	be	logged	in	before	they	can	vote.	This	will	give	us	the	ability	to	check	a
user's	voting	history	later	on.

Our	application	is	looking	much	more	like	a	story-sharing	site.	Onto	the	next	feature!

Requiring	a	Login	to	Vote

The	 next	 enhancement	we'll	make	will	 ensure	 that	 users	 log	 in	 before	 they're	 able	 to	 vote.
First,	we	modify	VotesController	so	that	the	create	method	responds	only	to	users	who	are
logged	in.	We	then	store	the	id	of	the	current	user	as	part	of	the	new	vote.

The	 first	 step	 is	 to	 add	 a	 new	 before_action	 method	 in
app/controllers/votes_controller.rb,	like	so:

class	VotesController	<	ApplicationController

		before_action	:ensure_login

		⋮	controller	code…

end

																								

Since	the	VotesController	only	contains	a	single	action	at	this	stage,	there's	no	need	to	limit
the	before_action	by	using	the	:except	or	:only	options.

Now,	it	only	makes	sense	to	display	a	feature	to	visitors	if	they	can	make	use	of	it.	Let's	add	a
little	login	teaser	to	the	story	page,	to	suggest	visitors	log	in	if	they	want	to	vote	for	stories.
Make	the	following	changes	to	app/views/stories/show.html.erb:

app/views/stories/show.html.erb	(excerpt)

><%	if	logged_in?	%>

		<div	id="vote_form">

				<%=	form_for	[@story,	Vote.new],	remote:	true	do	%>

						<%=	submit_tag	'vote'	%>

								<%	end	%>

		</div>

<%	else	%>

		<p>

				

						You	would	be	able	to	vote	for	this	story	if	you	were

						<%=	link_to	'logged	in',	new_session_path	%>!

				

		</p>

<%	end	%>

																								

This	if	clause	decides	whether	or	not	to	display	the	vote	link	to	visitors,	depending	on	their
login	status.	If	the	user	isn't	logged	in,	that	person	is	presented	with	a	teaser	and	a	link	to	log
in,	as	shown	below.

The	front	page	with	a	teaser

To	complete	this	feature	addition,	we'll	modify	the	create	action	of	our	VotesController	 so
that	 it	 stores	 the	 current	 user	 with	 each	 vote.	 By	 the	 way,	 if	 you	 fixed	 the	 tests	 in	 the	 last

chapter	as	recommended,	you've	already	done	this:

class	VotesController	<	ApplicationController

		⋮	controller	code…

		def	create

				@story	=	Story.find(params[:story_id])

				if	@vote	=	@story.votes.create(user:	@current_user)

						respond_to	do	|format|

						format.html	{	redirect_to	@story,	notice:	'Vote	was	successfully	created.'	}

						format.js	{}

										end

								end

		end

end

																								

This	new	line	saves	the	reference	to	the	current	user	with	each	vote.

It's	now	time	to	create	some	additional	stories	and	start	submitting	votes,	if	you're	yet	to	do	so
already.

Visit	 the	 voting	 bin	 by	 selecting	 the	Upcoming	 stories	 link	 from	 the	 navigation	menu,	 and
click	on	a	story's	title	to	visit	the	story	page.	From	there,	click	the	vote	link	a	few	times	until
the	story	has	five	or	more	votes.	Visit	the	front	page,	and	you	should	see	your	story	appear.
The	result	of	my	serial	voting	is	shown	below.

The	front	page	with	some	upvoted	stories

That's	another	feature	crossed	off	the	list.	Next!

Auto-voting

Our	 next	 task	 is	 to	 hop	 into	 the	Story	model	 and	 remedy	 a	 piece	 of	 functionality	 that	will
indisputably	 aid	 in	 the	 promotion	 of	 stories	 to	 the	 front	 page.	 New	 stories	 will	 be
automatically	voted	for	by	yourself	as	soon	as	you	submit	 them.	To	implement	 this	feature,
I'll	introduce	you	to	a	feature	of	Rails	models	that	we've	yet	to	touch	on:	callbacks.	Callbacks
are	little	snippets	of	code	that	are	triggered	by	model	events—for	example,	when	a	model	is
created,	updated,	or	destroyed.

Introducing	Model	Callback
Callbacks	 in	 models	 can	 be	 called	 before	 or	 after	 certain	 actions,	 such	 as	 the	 creating,
updating,	or	destroying	of	a	model.	The	concept	of	a	callback	may	sound	similar	to	the	filters
we	applied	to	our	controllers	in	Introducing	Filters	earlier—that's	because	they	are	similar.

We've	already	encountered	a	callback	in	our	application.	It	was	used	to	apply	the	validation	we
implemented	 in	 Applying	 Validations	 in	 Chapter	 6.	 Internally,	 ActiveRecord	 prefixes
validation	methods	before	calling	the	save	method	that	writes	a	model	to	the	database.	If	the
callback	 result	 allows	 the	 request	 to	 continue—meaning	 the	 request	 has	 passed	 the	 defined
validations—the	save	operation	is	executed.

The	names	of	the	available	callback	methods	are	fairly	intuitive:	before_create,	before_save,
and	 before_destroy	 are	 called	 before	 the	model	 in	 question	 is	 created,	 saved,	 and	 deleted
respectively.	There	are	also	a	number	of	after_	callbacks	 that,	as	expected,	are	called	after
the	operation.

A	Combo	of	Callbacks

There	 are	 also	 around_	 callbacks	 and	 before/after_validation	 callbacks.	 For	 all	 the
available	callbacks,	check	out	the	Rails	Guides.

As	with	filters	 in	controllers,	callbacks	 in	models	are	usually	defined	as	protected	methods.
The	callback	 resides	 in	a	model	class,	and	 is	 referred	 to	by	 the	class	method	via	a	 symbol.
Here's	an	example:

class	Story	<	ApplicationRecord

		after_create	:create_initial_vote

		⋮	model	code…

		protected

http://guides.rubyonrails.org/active_record_callbacks.html

				def	create_initial_vote

						⋮	callback	method…

				end

end

																								

We'll	use	after_create,	 because	we'd	 like	 to	 create	votes	 for	 newly	 submitted	 stories	 only,
and	not	for	every	update	of	an	existing	story	(which	would	require	the	use	of	the	after_save
callback).

Defining	Callbacks

In	 your	 experimentation	with	Rails,	 you	may	 come	 across	 the	 following	 syntax	 for	model
callbacks.	Here	the	code	that's	to	be	executed	when	an	event	occurs	is	defined	as	an	instance
method	named	after	the	callback:

class	MyModel	<	ApplicationRecord

		after_save	do

				⋮	callback	method…

		end

end

While	 this	approach	is	 technically	correct,	 I	prefer	 to	define	my	callbacks	using	descriptive
method	names,	and	to	refer	to	them	using	the	after_save	:my_method	syntax	instead.	This	is
because	 it's	much	easier	 to	 see	what's	going	on:	you	can	glance	at	 the	header	of	 the	model
class	in	which	the	callbacks	are	declared,	then	look	at	each	of	the	callback	methods	separately.

The	reason	we're	using	after_create	instead	of	before_create	should	be	obvious:	if	we	were
to	create	the	vote	before	the	model	itself	had	been	saved	to	the	database,	we'd	risk	the	model's
failure	to	pass	the	validation	checks–hence,	we'd	have	created	a	vote	for	an	invalid	record!

Adding	a	Callback
Let's	 add	 a	 callback	 to	 our	 Story	 model.	 Add	 the	 following	 code	 to	 the	 file
app/models/story.rb:

app/models/story.rb	(excerpt)

class	Story	<	ApplicationRecord

		after_create	:create_initial_vote

		⋮	model	code…

		protected

				def	create_initial_vote

						votes.create	user:	user

				end

end

																								

Once	 again,	 just	 one	 line	 of	 Ruby	 code	 is	 sufficient	 to	 accomplish	 the	 task	 at	 hand.	 Let's
dissect	what	this	line	actually	does.

First,	you'll	notice	that	we're	able	to	directly	use	two	of	the	attributes	of	the	story:	the	votes
association	and	 the	user	 attribute.	As	 long	as	 a	method	doesn't	 carry	variables	of	 the	 same
name,	 executing	votes	 or	user	 will	 refer	 to	 the	methods	 of	 the	 story	 object.	We	 know	 the
submitter	of	the	story	is	stored	in	user,	so	we	can	refer	to	that	attribute	in	order	to	create	the
initial	vote:

votes.create	user:	user

																								

Before	we	 try	 out	 our	 newly	 implemented	 callback	 that	 creates	 the	 initial	 vote,	 let's	 add	 an
item	that's	been	missing	from	our	stories.

Adding	a	Description	to	Stories

In	the	next	enhancement	to	our	application,	we'll	add	an	extra	attribute	to	our	Story	model:	a
description	column	that	allows	users	to	write	a	few	paragraphs	about	their	submissions.

Adding	a	Model	Attribute
Since	 we're	 talking	 about	 adding	 an	 attribute,	 you've	 probably	 assumed	 there's	 a	 new
migration	ahead,	and	indeed	there	is.	Let's	generate	the	migration	file	that	will	store	the	code
we'll	use	to	add	the	description	column:

$	rails	generate	migration	AddDescriptionToStories	description:text

																								

The	contents	of	this	migration	(stored	in	db/migrate/xxx_add_description_to_stories.rb)
are	straightforward,	so	only	a	limited	explanation	is	needed:

db/migrate/xxx_add_description_to_stories.rb<

class	AddDescriptionToStories	<	ActiveRecord::Migration[5.0]

		def	change

				add_column	:stories,	:description,	:text

		end

end

																								

As	you	can	see,	we're	adding	a	 single	column	 to	 the	stories	 table.	We've	 specified	 that	 the
new	description	 column	must	be	of	 type	text,	 because	a	 column	of	 type	string	 can	only
store	up	to	255	characters,	and	it's	possible	that	story	descriptions	will	exceed	this	limit.

The	final	step	is	to	apply	this	migration	using	the	rails	command:

$	rails	db:migrate

Running	via	Spring	preloader	in	process	48184

==	20160422175022	AddDescriptionToStories:	migrating	==========================

--	add_column(:stories,	:description,	:text)

			->	0.0010s

==	20160422175022	AddDescriptionToStories:	migrated	(0.0010s)	=================

																								

Expanding	the	Submission	Form
Another	change	we'll	make	before	we	test	our	initial	vote	creation	code	is	to	add	another	field
to	 the	story	submission	form	(in	 the	file	app/views/stories/new.html.erb).	This	 field	will
accept	the	description	column	that	we	just	created:

app/views/stories/new.html.erb	(excerpt)

.footer	{

		background-color:	#CCC;

		border-top:	1px	solid	#333;

}

																																

<%=	form_for	@story	do	|f|	%>

		⋮	form	HTML…

<div>

		<p><%=	f.label	:description		%></p>

<%=	f.text_area	:description	%>

</div>

<div>

		<p><%=	submit_tag	%></p>

</div>

<%	end	%>

																								

Figure	9-15	shows	the	form	after	we	apply	this	change.

Enabling	users	to	add	a	story	description

We've	given	our	users	plenty	of	room	by	making	the	description	column	of	type	text.	To
accommodate	this	larger	story	description,	we're	using	a	textarea	element	instead	of	a	one-
line	input	field:

<%=	f.text_area	:description	%>

																								

We'll	also	display	the	description	on	the	story's	page,	just	above	the	submitted_by	paragraph
in	the	file	app/views/stories/show.html.erb:

app/views/stories/show.html.erb	(excerpt)

<ul	id="vote_history">

⋮	vote	history…

<p>

		<%=	@story.description	%>

</p>

<p	class="submitted_by">

⋮	submitted	by…

</p>

																								

Whitelisting	the	New	Attribute
There's	 one	 final	 item	 on	 the	 to-do	 list	 before	 we	 can	 test	 our	 new	 form:	 whitelisting	 the
description	 attribute.	 If	 you	 remember	 from	 Chapter	 6,	 Rails	 uses	 Mass	 Assignment
Protection	as	a	security	measure,	so	we	have	to	add	our	new	attribute	to	the	list	of	permitted
attributes	 in	 StoriesController	 (found	 in	 app/controllers/stories_controller.rb).
Change	the	story_params	method	to	this:

/app/controllers/stories_controller.rb	(excerpt)

def	story_params

		params.require(:story).permit(:name,	:link,	:description)

end

																								

Okay,	now	we	should	be	in	business.	Let's	hop	over	to	our	browser	and	submit	a	new	story	to
see	whether	the	automated	submission	of	the	first	vote	works	as	expected.	And	sure	enough,	it
does—as	Figure	9-18	shows!

Automated	submission	working	as	expected

Adding	User	Pages

To	 track	 the	 history	 of	 our	 site's	 usage	 on	 a	 peruser	 basis,	we'll	 create	 a	 place	where	 this
information	can	be	displayed.

We're	going	to	add	a	user	page,	which	will	list	the	six	stories	most	recently	submitted	by	the
logged-in	user,	 and	 the	 six	 stories	 for	which	 that	 person	most	 recently	voted.	To	 select	 the
most	recently	voted-for	stories,	we'll	make	use	of	another	type	of	relationship:	the	join	model.

Introducing	the	Join	Model	Relationship
A	 join	 model	 relationship	 is	 a	 relationship	 between	 two	 models	 that	 relies	 upon	 a	 third.
Without	the	third	model,	there's	no	direct	relationship	between	the	two	models	that	are	being
linked.

In	our	Readit	application,	an	association	only	exists	between	our	Story	and	User	models	when
we	talk	of	who	submitted	each	story.	Currently,	we	lack	the	ability	to	find	out	who	voted	 for
each	story.	This	is	where	the	join	model	comes	into	play:	the	Vote	model	is	already	associated
with	 both	 the	 User	 and	 the	 Story	 models;	 with	 the	 addition	 of	 the	 has_many	 :through

statement,	 the	 Vote	 can	 serve	 as	 the	 connecting	 element	 in	 this	 new	 relationship.	 This
relationship	is	illustrated	in	Figure	9-19.

The	name	of	a	story's	submitter	displays	with	the	story

The	Vote	model	is	the	join	model	because	it	joins	the	User	and	the	Story	models.

Introducing	the	has_many	:through	Association

The	code	that	implements	a	join	model	relationship	is	the	line	has_many	:through.	Let's	use	it
to	 add	 a	 join	model	 relationship	 to	 our	User	model.	Open	 the	 file	appmodels/user.rb	 and
make	the	changes	in	bold:

app/models/user.rb	(excerpt)

class	User	<	ApplicationRecord

		has_secure_password

		has_many	:stories

		has_many	:votes

		has_many	:stories_voted_on,

						through:	:votes,

						source:	:story

end

																								

Normally,	Rails	is	smart	enough	to	figure	out	associated	class	names	on	its	own,	so	long	as
the	association	class	names	are	given	a	name	that	matches	the	plural	form	of	the	class	name
(for	 instance,	 :stories);	 however,	 because	 our	 User	 model	 already	 has	 a	 has_many
relationship	 (has_many	 :stories),	 we	 must	 assign	 this	 new	 association	 a	 different	 name
(:stories_voted_on).	We	 also	 need	 to	 specify	 the	 model	 with	 which	 we're	 associating	 the
users,	which	is	exactly	what	the	source:	:story	argument	does.

The	code	 that	defines	 this	 relationship	as	a	 join	model	 relationship	 is	 the	through:	 :votes
argument,	which	can	be	read	as:	“a	User	has	many	Stories	through	the	Vote	model.”

With	 this	 association	 in	 place,	 we	 find	 that	 several	 new	 instance	 methods	 are	 available	 to
every	User	object:

>>	u	=	User.first

=>	#<User	id:	1,	…>

>>	u.stories_voted_on.size

=>	1

>>	u.stories_voted_on.first

=>	#<Story	id:	…>

																								

As	you	can	see,	this	association	behaves	like	a	regular	has_many	association,	and	if	you	were
none	the	wiser,	you'd	never	actually	know	that	 three	models	were	involved	in	retrieving	the
associated	data.

Adding	Another	Controller
Before	we	implement	our	user	page,	we	need	to	generate	another	controller,	since	we're	yet	to
deal	with	User	objects	to	date.

By	now,	you	should	be	ever	so	familiar	with	the	procedure	to	generate	a	controller	with	the
rails	 generate	 command,	 so	 I'll	 spare	 you	 the	 details.	 Enter	 the	 following	 command	 to
create	a	new	UsersController:

$	rails	generate	controller	Users	show

																								

Additionally,	 we'll	 add	 a	 resource	 declaration	 to	 the	 routing	 configuration	 stored	 in
config/routes.rb,	like	so:

resources	:users

																								

Here,	we	use	 the	plural	 for	both	resources	and	:user.	Can	you	 remember	why?	 (Hint:	The
answer	is	in	Chapter	8	where	we	added	sessions.)

The	actual	implementation	of	the	show	action	in	UsersController	is	as	follows:

app/controllers/user_controller.rb

class	UsersController	<	ApplicationController

		def	show

				@user	=	User.find(params[:id])

				@stories_submitted	=	@user.stories.

						limit(6).order("stories.id	DESC")

				@stories_voted_on		=	@user.stories_voted_on.

						limit(6).order("votes.id	DESC")

		end

end

																								

Let's	look	at	this	code.	Remember	that	the	params	hash	stores	the	various	parts	of	the	current
URL,	 as	 defined	 in	 the	 application's	 routing	 configuration.	 To	 retrieve	 the	 requested	 user
from	the	database,	we	employ	the	find	method:

@user	=	User.find(params[:id])

																								

The	data	we'll	display	on	the	user	page	is	fetched	by	the	associations	that	are	available	via	the
User	object.	We	then	populate	a	couple	of	instance	variables,	calling	methods	to	sort	the	items
in	the	desired	order	and	limit	the	number	of	items	retrieved:

@stories_submitted	=	@user.stories.

		limit(6).order("stories.id	DESC")

@stories_voted_on		=	@user.stories_voted_on.

		limit(6).order("votes.id	DESC")

																								

Since	multiple	tables	are	involved	in	retrieving	the	data	in	which	we're	interested,	we	have	to
be	more	explicit	with	our	ordering	instructions.	Here	we're	using	stories.id	and	votes.id	in
the	 order	 clause	 respectively.	 The	 part	 before	 the	 period	 actually	 specifies	 the	 table	 that
contains	 the	 id	 column	 by	which	 to	 sort.	 Since	most	 (if	 not	 all)	 of	 our	 tables	 have	 an	 id
column,	this	is	a	necessary	evil.

The	next	task	on	our	list	is	to	create	the	view	template	for	this	page.

Creating	the	View
The	view	template	for	our	user	page	has	been	generated	(with	fairly	non-spectacular	content)
in	 app/views/users/show.html.erb.	 This	 template	 will	 use	 the	 instance	 variables	 that	 we
created	 in	 our	 controller	 to	 display	 the	 recently	 submitted	 stories	 and	 votes.	 It	 does	 so	 by
rendering	a	collection	of	partials:

app/views/users/show.html.erb

<h2>Stories	submitted	by	<%=	@user.name	%></h2>

<div	id="stories_submitted">

		<%=	render	partial:	@stories_submitted	%>

</div>

<h2>Stories	voted	for	by	<%=	@user.name	%></h2>

<div	id="stories_voted_on">

		<%=	render	partial:	@stories_voted_on	%>

</div>

																								

The	partial	we're	rendering	with	this	code	already	exists.	We're	reusing	the	story	partial	from
StoriesController,	which	Rails	will	 know	 to	 use	 because	we're	 passing	 in	 a	 collection	 of
Story	objects	using	the	shorthand	notation	of	the	render	call:

<%=	render	partial:	@stories_submitted)	%>

																								

Next,	we'll	add	a	link	to	the	user	page	by	linking	the	name	of	the	submitter	as	it's	displayed	on
the	story	page	(app/views/stories/show.html.erb):

<p	class="submitted_by">

		Submitted	by:

		<%=	link_to	@story.user.name,	@story.user	%>

</p>

																								

Now	 we'll	 make	 a	 small	 addition	 to	 our	 stylesheet	 (stories.scss)	 for	 the	 sake	 of	 some
visually	pleasing	cosmetic	treatment:

app/asets/stylesheets/stories.scss	(excerpt)

.story	p	{

		color:	#666;

		font-size:	0.8em;

}

h2	{

		clear:	both;

		margin:	0;

		padding:	10px	0;

}

																								

Lastly,	we'll	add	the	login	of	the	user	in	question	to	the	links	generated	for	the	user	page	by
overriding	the	to_param	method	of	User,	just	as	we	did	with	the	Story	class:

app/models/user.rb	(excerpt)

class	User	<	ApplicationRecord

		⋮	model	code…

		def	to_param

				"#{id}-#{name}"

		end

end

																								

In	 practice,	 you	 should	 probably	 ensure	 that	 the	 name	 attribute	 contains	 only	 alphanumeric
characters.	You	can	accomplish	this	little	exercise	with	some	help	from	the	format	option	of
the	validates	method.

There	we	go!	As	Figure	9-25	shows,	we	now	have	a	user	page	that	makes	use	of	our	newly
added	has_many	:through	association,	listing	both	the	stories	that	were	submitted	by	a	given
user	and	the	stories	for	which	that	person	recently	voted.

Telling	stories

Testing	the	New	Functionality

As	is	standard	practice,	we'll	add	test	coverage	by	writing	unit	tests	and	then	adding	functional
tests	for	all	the	enhancements	we've	made.

Testing	the	Model
We	made	a	number	of	changes	 to	our	model	 in	 this	chapter,	 including	utilizing	 the	counter
cache	 and	 introducing	 the	 join	 model	 relationship.	 Let's	 write	 some	 unit	 tests	 for	 those
changes	now.

Testing	Additions	to	the	Counter	Cache

The	first	change	we	made	 in	 this	chapter	was	 to	modify	 the	Story	model	 so	 that	 it	uses	 the
counter	 cache	 to	 track	 the	 number	 of	 votes	 associated	 with	 any	 given	 Story.	 To	 test	 this
feature,	we'll	have	to	pull	a	few	tricks	out	of	the	box,	as	there	are	numerous	conditions	to	take
into	account.

To	begin	with,	 let's	add	a	test	 to	the	test	case	for	a	scenario	in	which	a	vote	is	cast.	The	test
case	is	located	in	testmodels/story_test.rb:

test/models/story_test.rb	(excerpt)

class	StoryTest	<	ActiveSupport::TestCase

		⋮	test	methods…

		test	"increments	vote	counter	cache"	do

				stories(:two).votes.create(user:	users(:glenn))

				stories(:two).reload

				assert_equal	1,	stories(:two).attributes['votes_count']

		end

end

																								

This	contains	a	method	we've	yet	to	encounter	(reload),	so	let's	dissect	the	code.

The	purpose	of	this	test	is	to	verify	that	the	cached	votes	count	is	properly	incremented	hen	a
new	 vote	 is	 added;	 however,	 there's	 a	 gotcha	when	 using	 counter	 caches	 and	 fixtures.	 The
fixtures	counter	cache	attributes	will	be	incorrect	when	you	first	grab	the	fixture.	This	is	due
to	fixtures	being	created	without	going	through	ActiveRecord,	instead	being	thrown	straight
into	the	database	with	SQL.	So	we	need	to	set	the	counters	for	the	records	we	want	to	use	in
the	fixtures	file.	Change	the	stories	fixtures	(in	testfixtures/stories.yml)	to:

test/fixtures/stories.yml	(excerpt)

one:

		name:	My	old	weblog

		link:	http://ruprict.net/

		user:	glenn

		votes_count:	2

two:

		name:	SitePoint	Forums

		link:	http://community.sitepoint.com

		user:	glenn

		votes_count:	0

																								

Now	we	can	explain	what	 is	happening	 in	 the	 test.	The	 first	 step	we	 take	 is	 to	 create	 a	new
vote:

stories(:two).votes.create(user:	users(:glenn))

																								

The	second	line	is	where	it	becomes	interesting.	We're	forcibly	reloading	the	model	from	the
database:

stories(:two).reload

																								

We	do	this	because	once	a	new	vote	has	been	added,	the	number	of	stories	that	are	cached	in
each	model's	attributes	is	suddenly	out	of	sync	with	the	database.

If	we	were	to	check	the	log	file	when	we	come	to	run	our	tests	later,	we'd	find	lines	such	as	the
following:

UPDATE	stories	SET	votes_count	=	votes_count	+	1	WHERE	(id	=	2)

																								

This	is	 the	SQL	statement	that	Rails	generates	 to	update	the	counter	cache.	You'll	notice	that
the	 statement	 doesn't	 bother	 to	 check	 the	 current	 value	 of	 votes_count—it	 just	 tells	 the
database	to	increment	votes_count	by	one.	And	with	good	reason.

You	see,	in	a	live	application	many	users	may	be	using	the	site	at	the	same	time,	and	some	of
them	might	even	be	casting	votes	in	parallel.	The	value	of	votes_count	would	be	negated	if
the	SQL	 for	 each	vote	 submission	 relied	upon	 its	own	copy	of	votes_count	 at	 the	 time	 the
statement	was	executed.

As	such,	you	have	 to	 reload	 the	model	 if	you	ever	 require	access	 to	 the	current	number	of
votes	 after	 a	 new	 vote	 is	 added.	 This	 situation	 is	 unlikely	 to	 occur	 often;	 normally	 you'd

redirect	 your	 user	 to	 a	 new	 page	 anyway.	 But	 when	 we're	 writing	 tests	 that	 simulate	 user
behavior,	it's	important	to	be	mindful	of	this	issue.

There's	also	something	special	about	the	assertion	in	this	test:	instead	of	comparing	the	return
value	of	the	votes_count	instance	method,	we	access	the	“raw”	attribute	as	it	comes	out	of	the
database:

assert_equal	1,	stories(:two).attributes['votes_count']

																								

If	we	had	used	 the	 instance	method,	 there'd	have	been	no	need	 to	enable	counter	caching	 in
order	for	our	test	to	pass;votes_count	would	simply	have	issued	a	second	database	query	to
count	the	votes.	By	using	the	attribute	itself,	we're	asserting	that	the	counter	cache	is	doing	its
job.

Testing	Deletions	from	the	Counter	Cache

With	 that	 first	 test	 out	of	 the	way,	 this	 second	 test	 covering	 the	deletion	of	votes	 should	be
straightforward.	Our	application	is	yet	to	allow	users	to	delete	votes,	but	we'll	include	this	test
for	the	sake	of	completeness:

test/models/story_test.rb	(excerpt)

class	StoryTest	<	ActiveSupport::TestCase

		⋮	test	methods…

		test	"decrements	votes	counter	cache"	do

				stories(:one).votes.first.destroy

				stories(:one).reload

				assert_equal	1,	stories(:one).attributes['votes_count']

		end

end

																								

This	test	is	basically	the	opposite	of	the	previous	one.	Again,	we	need	to	reset	the	counters	for
our	record.	Then	we	destroy	the	first	vote	from	the	first	story	and	then	reload	the	model	to
reflect	this	change:

stories(:one).votes.first.destroy

stories(:one).reload

																								

Finally,	we	compare	the	cached	votes_count	value	to	the	value	we	expect	it	to	have:

assert_equal	1,	stories(:one).attributes['votes_count']

																								

Testing	the	Creation	of	the	Initial	Vote

The	 next	 test	 covers	 the	 new	 functionality	 that	 we	 added	 to	 our	 model	 for	 the	 automatic
creation	of	a	vote	when	submitting	a	story:

test/models/story_test.rb	(excerpt)

class	StoryTest	<	ActiveSupport::TestCase

		⋮	test	methods…

		test	"casts	vote	after	creating	story"	do

				s	=	Story.create(

						name:	"Vote	SmartThe	2008	Elections",

						link:	"http://votesmart.org/",

						user:	users(:glenn)

)

				assert_equal	users(:glenn),	s.votes.first.user

		end

end

																								

You	should	be	able	to	follow	the	twists	and	turns	of	this	test	quite	easily.	To	test	the	creation	of
a	vote	after	a	story	has	been	saved	to	the	database,	a	new	story	is	created	(don't	forget	to	pass
in	a	user):

s	=	Story.create(

		name:	"Vote	SmartThe	2008	Elections",

		link:	"http://votesmart.org/",

		user:	users(:glenn)

)

																								

The	 assertion	 confirms	 that	 the	 user	 of	 the	 first	 vote	 attached	 to	 the	 newly	 created	 story	 is
indeed	the	user	we	passed	in	when	we	created	the	story	in	the	first	place:

assert_equal	users(:glenn),	s.votes.first.user

																								

This	establishes	that	there's	at	least	a	single	vote,	and	that	the	user	has	been	properly	inherited
from	the	story.

Testing	the	Join	Model	Relationship

Lastly,	 we	 need	 to	 add	 a	 test	 to	 deal	 with	 the	 new	 has_many	 :through	 association	 that	 we
added	 to	 our	 User	 model.	 Expand	 the	 test	 cases	 (located	 in	 test/models/user_test.rb)	 as
follows:

test/models/user_test.rb	(excerpt)

class	UserTest	<	ActiveSupport::TestCase

		⋮	test	methods…

		test	"voted	on	association"	do

				assert_equal	[stories(:one)],

				users(:glenn).stories_voted_on

		end

end

																								

This	test	relies	on	fixture	data,	so	we	can	assert	immediately	that	the	list	of	stories	for	which
our	test	user	voted	is	equal	to	the	list	that	we	expect:

assert_equal	[stories(:one)],	users(:glenn).stories_voted_on

																								

Now	we've	got	some	controller	tests	to	write.

Testing	the	StoriesController

In	 this	 chapter,	 we've	 added	 quite	 a	 bit	 of	 functionality	 to	 StoriesController	 that	 needs
testing.	This	is	a	little	more	complicated	than	in	previous	chapters,	so	the	corresponding	tests
will	 be	 more	 complex.	 Additionally,	 we've	 added	 a	 new	 UsersContoller	 with	 a	 relatively
simple	action,	which	also	needs	testing.

Testing	the	Story	Index	Pages

As	a	next	step,	we're	confirming	that	each	of	the	story-listing	actions	(index	and	bin)	picks	the
proper	 records	 from	 the	 database.	 To	 do	 this,	 let's	 add	 another	 story	 to	 the	 fixtures	 in
testfixtures/stories.yml:

test/fixtures/stories.ymls	(excerpt)

promoted:

		name:	What	is	a	Debugger?

		link:	http://en.wikipedia.org/wiki/Debugger/

		user:	john

		votes_count:	5

																								

As	you	can	see,	we're	cheating	a	bit	and	hardcoding	the	votes_count	to	five.

We'll	start	by	changing	an	existing	test	(test	"gets	index")	and	adding	one	more	basic	test	to
cover	correct	template	rendering:

test/controllers/stories_controller_test.rb	(excerpt)

class	StoriesControllerTest	<	ActionDispatch::IntegrationTest

		⋮	test	methods…

		test	"gets	stories"	do

				get	stories_path

				assert_response	:success

				assert	response.body.include?(stories(:promoted).name)

		end

		test	"gets	bin"	do

				get	bin_stories_path

				assert_response	:success

				assert	response.body.include?(stories(:two).name)

		end

		⋮	test	methods…

end

																								

Both	 tests	 are	 similar	 in	 nature	 and	 neither	 exposes	 any	 new	 functionality.	 Each	 calls	 its
respective	action,	checks	that	the	request	was	responded	to	successfully,	and	confirms	that	an
appropriate	story	is	rendered	(remember,	we're	using	exactly	the	same	template	for	both	the
index	and	bin	actions).	It	also	ensures	the	@stories	 instance	variable	doesn't	wind	up	being
nil.

Testing	the	Routing	Configuration

We	also	altered	the	routing	configuration	in	this	chapter,	so	let's	add	a	test	to	confirm	that	our
changes	are	working	properly:

test	"story	index	is	default"	do

		assert_recognizes({	controller:	"stories",

		action:	"index"	},	"/")

end

																								

The	assert_recognizes	assertion	confirms	that	a	given	request	is	translated	into	an	expected
set	of	parameters,	mostly	consisting	of	a	controller	and	an	action	name:

assert_recognizes({	controller:	"stories",	action:	"index"	},	"/")

																								

Our	assertion	here	confirms	 that	a	 request	 for	“/”	 (the	front	page	of	our	domain)	 is	 indeed
routed	to	the	index	action	of	StoriesController.

Testing	Page	Headings

The	 next	 pair	 of	 tests	 deals	 with	 the	 view	 side	 of	 the	 index	 action,	 and	 confirms	 that	 the
header	tag	contains	a	proper	heading,	complete	with	the	expected	number	of	stories:

test/controllers/stories_controller_test.rb	(excerpt)

test	"shows	story	on	index"	do

		get	stories_path

		assert_select	'h2',	'Showing	1	frontpage	story'

		assert_select	'div#content	div.story',	count:	1

end

test	"show	stories	in	bin"	do

		get	bin_stories_path

		assert_select	'h2',	'Showing	2	upcoming	stories'

		assert_select	'div#content	div.story',	count:	2

end

																								

The	second	assert_select	assertion	tests	for	an	appropriate	number	of	div	elements	with	a
class	 attribute	 of	 story.	 These	 divs	 come	 out	 of	 the	 _story.html.erb	 partial	 and,	 as	 such,
we're	looking	for	one	div	per	story.	Each	story	div	is	contained	in	the	all-encompassing	div
that	has	an	id	of	content.

Testing	the	Story	Submission	Form

We	 added	 to	 the	 story	 submission	 form	 a	 new	 field	 that	 allows	 users	 to	 submit	 story
descriptions.	To	test	this	functionality,	change	the	existing	test	"new	shows	new	form"	test	to
match	the	following:

test	"new	shows	new	form"	do

		login_user

		get	:new

		assert_select	'form	p',	count:	3

end

																								

In	this	 test,	 the	assert_select	call	counts	 the	number	of	p	elements	below	the	form	 tag,	and
checks	the	total	against	our	expected	number	of	3—three	form	fields	plus	a	Submit	button.

Testing	the	Story	Display	Page

Since	users	who	are	not	logged	in	no	longer	see	the	vote	button,	we	need	to	revise	an	existing
test	and	add	a	new	one.	(Again,	if	you	worked	ahead	last	chapter	as	recommended,	these	are
likely	to	be	fixed):

test/controllers/stories_controller_test.rb	(excerpt)

test	"show	story	vote	elements"	do

		login_user

		get	story_path(stories(:one))

		⋮	method	body…

end

test	"does	not	show	vote	button	if	not	logged	in"	do

		get	story_path(stories(:one))

		assert_select	'div#vote_link',	false

end

																								

We	pass	false	to	assert_select	to	confirm	that	there	are	no	elements	on	the	page	that	match
the	given	CSS	selector.

Testing	the	Navigation	Menu

We	added	an	item	to	our	navigation	menu,	so	we	should	increase	the	number	of	list	items	that
we	check	for	in	the	following	test	from	two	to	three:

test/controllers/stories_controller_test.rb	(excerpt)

test	"show	navigation	menu"	do

		get	stories_path

		assert_select	'ul#navigation	li',	3

end

																								

Testing	the	Story	Submitter	Link	Text

Lastly,	 let's	 change	 our	 existing	 test	 for	 the	 story	 submitter	 on	 the	 story	 page	 (test
"shows_story_submitter")	ensuring	that	it	now	links	to	the	story	submitter's	user	page:

test/controllers/stories_controller_test.rb	(excerpt)

test	"show	story	submitter"	do

		get	story_path(stories(:one))

		assert_select	'p.submitted_by	span	a',	'Glenn	Goodrich'

end

																								

Phew!	That	was	 quite	 a	 litany	 of	 tests.	Let's	 now	 turn	 our	 attention	 to	 the	 tests	 of	 the	 other
controllers	affected	by	the	goings-on	in	this	chapter.

Testing	the	VotesController

Since	we've	modified	the	voting	procedure	to	be	available	for	logged-in	users	only,	we	have
to	modify	some	existing	tests,	as	well	as	add	a	new	one	to	cover	storage	of	the	user	for	every
vote	cast.

Testing	User	Voting	History

Additionally,	we'll	add	a	test	to	confirm	that	the	vote	action	indeed	stores	the	current	user	with
the	submitted	vote:

test/controllers/votes_controller_test.rb	(excerpt)

test	"stores	user	with	vote"	do

		post	story_votes_path(stories(:two))

		stories(:two).reload

		assert_equal	users(:glenn),	stories(:two).votes.last.user

end

																								

Testing	the	UsersController

Without	 further	 ado,	we'll	 add	 three	 tests	 to	 cover	 the	 functionality	 encapsulated	within	 the
user	page	we	added	to	UsersController:

test/controllers/users_controller_test.rb	(excerpt)

class	UsersControllerTest	<	ActionController::TestCase

		test	"show	user"	do

				get	user_path(users(:glenn))

				assert_response	:success

				assert	response.body.include?(users(:glenn).name)

		end

		test	"show	submitted	stories"	do

				get	user_path(users(:glenn))

				assert_select	'div#stories_submitted	div.story',	count:	2

		end

		test	"show	stories	voted	on"	do

				get	user_path(users(:glenn))

				assert_select	'div#stories_voted_on	div.story',	count:	1

		end

end

																								

All	three	tests	use	basic	assertions	to	confirm	that	the	proper	user	is	found	by	the	show	action,
and	that	the	user's	story	submissions	and	votes	are	displayed	properly	on	the	page.

Running	the	Complete	Test	Suite
We've	made	a	massive	number	of	additions	to	our	suite	of	tests	in	this	chapter,	so	it	should	be
especially	rewarding	to	run	the	full	suite	now	using:

$	rails	test

Running	via	Spring	preloader	in	process	44037

Run	options:	--seed	14835

#	Running:

..

Finished	in	0.675667s,	65.1209	runs/s,	125.8017	assertions/s.

40	runs,	67	assertions,	0	failures,	0	errors,	0	skips

																								

Summary

Wow,	what	a	 journey!	 In	 this	chapter,	we've	added	a	 stack	of	 features	 to	Readit,	 such	as	 the
display	of	 popular	 story	 listings	on	 the	 front	 page,	 and	 the	 implementation	of	 a	 voting	bin
containing	stories	on	which	people	can	vote.

Along	the	way,	we	learned	that	the	counter	cache	offers	an	easy	way	to	store	the	number	of
records	associated	with	any	given	model,	and	we	used	ActiveRecord	callbacks	as	a	means	to
hook	into	certain	events	occurring	on	our	models.	We	used	a	after_create	callback	to	cast	an
initial	vote	for	submitted	stories,	and	we	also	tackled	ActionView	helpers	to	reduce	clutter	in
our	shared	view.

Lastly,	we	covered	an	additional	type	of	association:	the	join	model	relationship.	It	was	used
to	implement	a	user	page	showing	the	story	submissions	and	voting	history	of	each	registered
user.

After	numerous	tests	and	assertions,	we	can	attest	that	Readit	is	in	very	good	shape	indeed.	Of
course,	there	are	countless	enhancements	that	we	could	make	to	our	little	application;	some	of
the	functionality	that	comes	to	mind	includes:
	

creating	a	form	that	enables	new	users	to	register
sending	an	email	to	new	users	to	notify	them	of	their	passwords
allowing	users	to	comment	on	stories
restricting	users	to	vote	for	each	story	once	only

I'm	sure	your	mind	 is	 racing	with	 ideas	 for	a	number	of	 spectacular	 features	 that	 could	 set
your	application	apart	from	the	pack!	While	the	addition	of	all	these	features	is	more	than	we
could	possibly	cover	 in	 this	book,	you	now	have	a	solid	grounding—both	 in	 theory	and	 in
practice—on	which	you	can	build	to	further	develop	Readit	on	your	own.	Remember	to	keep
expanding	your	test	suite	to	include	all	the	cool	new	features	that	you	add.

In	the	next	chapter,	we'll	take	a	quick	look	at	the	Rails	plugin	architecture,	and	use	one	of	the
existing	 plugins	 to	 expand	Readit's	 feature	 set:	 implementing	 tagging	 functionality	 for	 our

story	submissions.

Chapter	10:	Rails	Plugins
While	this	book	is	unable	to	cover	all	of	the	built-in	functionality	that	ships	with	Rails—and
there's	plenty	of	functionality	for	you	to	discover	and	experiment	with	once	you're	beyond	the
last	chapter—the	plugins	architecture	of	Rails	warrants	our	attention.

What	is	a	plugin?

A	plugin	is	a	component	that	you	can	add	to	your	application	to	extend	its	functionality.	While
you	can	certainly	write	your	own	plugins,	we'll	 limit	 our	 discussion	here	 to	 using	 existing
plugins.	 Plugins	 have	 been	 developed	 for	 various	 parts	 of	 the	 Rails	 framework,	 adding
functionality	such	as:
	

extensions	to	ActiveRecord	functionality
helper	methods
new	template	engines	(for	coding	a	view	using	an	alternate	templating	language)

The	number	of	existing	Rails	plugins	is	enormous	and	grows	every	day.	Programmers	in	the
Ruby	 and	 Rails	 communities	 are	 excellent	 about	 sharing	 code	 and	 creating	 useful	 plugins
based	 on	 extensions	 they	 need.	A	good	 resource	 of	 existing	Rails	 plugins	 can	 be	 found	by
searching	for	"Rails"	on	the	Rubygems	site	or	on	the	Ruby	Toolbox	site.

Plugins	are	distributed	as	gems,	which	we	covered	in	Chapter	2.	Plugins	can	be	pulled	into	an
existing	Rails	application	by	adding	them	to	 the	Gemfile	and	running	bundle	install.	You
probably	remember	our	discussion	about	Bundler	from	Chapter	4,	where	its	job	is	to	manage
application	dependencies.	Bundler	makes	including	existing	plugins	into	our	app	a	breeze.

Finding	 a	 plugin	 that	 does	what	 you	 require	 is	 usually	 just	 a	Google	 or	RubyGems	 search
away.	As	seen	 in	Figure	10-1,	searching	for	"rails	 tagging"	brings	up	a	few	gems	that	have
been	created,	including	one	called	acts-as-taggable-on.

http://guides.rubyonrails.org/plugins.html
https://rubygems.org/search?utf8=%E2%9C%93&query=Rails
https://www.ruby-toolbox.com/
https://github.com/mbleigh/acts-as-taggable-on

Searching	for	a	plugin	on	"rails	tagging"

The	 overwhelming	 majority	 of	 gems	 keep	 their	 source	 on	 GitHub,	 including	 acts-as-
taggable-on	from	the	first	link	in	our	search	above.	Following	that	link	leads	to	the	source
on	GitHub,	as	shown	in	Figure	10-2.

https://github.com

The	GitHub	repository	for	'acts-as-taggable-on'

Most	GitHub	source	repositories	have	a	README	or	README.md	file	that	explains	what	the	gem

does,	 how	 to	 install	 and	 use	 it,	 and	 so	 on.	 acts-as-taggable-on	 follows	 this	 convention,
which	can	be	seen	in	Figure	10-3.	It	explains	the	object	of	the	gem,	the	supported	versions	of
Rails,	as	well	as	how	to	install	and	configure	the	gem.

A	standard	README	file

After	reading	through	the	README.md,	we	now	know	how	to	pull	the	gem	into	our	application
and	use	its	functionality.	You	may	feel	that	walking	through	the	topic	of	"how	to	find	and	learn
about	gems"	is	a	bit	tedious,	but	you	will	find	yourself	spending	loads	of	time	doing	just	that–
so	I	figured	it	was	tedium	well	spent.

No	Time	for	Name-calling

There	 are	 many	 ways	 to	 extend	 Rails;	 for	 example,	 by	 using	 a	 "plugin",	 "engine",	 and
"railtie",	 to	name	a	 few.	While	 there	are	 technical	differences	between	 these	 items,	 they	are
often	(incorrectly)	used	interchangeably.	Defining	these	terms	and	their	differences	is	beyond
the	scope	of	 this	book,	so	I'm	going	to	stick	to	 the	word	"plugin"	for	now.	As	you	grow	in
your	Rails-fu,	you'll	no	doubt	want	 to	do	some	research	around	Rails	extensibility.	Boom–I
just	turned	this	note	into	an	EXTRA	CREDIT!

Okay,	enough	theory!	Let's	go	ahead	and	install	our	first	plugin.

Adding	Tagging	to	Readit

Tagging	is	the	process	by	which	content	creators	attach	simple	textual	labels	to	their	data,	be	it
a	photo,	 a	 link,	or	 a	 restaurant	 review.	These	 tags	vary	widely	 in	 their	nature;	 they	may	be
related	to	location	or	content,	for	instance.	This	results	in	everyone	seeming	to	have	a	unique
system	 for	 tagging	 data.	 Currently,	 the	 hashtag	 (#)	 is	 probably	 the	 most	 popular	 form	 of
tagging	content	with	metadata,	thanks	to	Twitter!

Tags	are	definitely	more	flexible	than	a	category	tree,	as	they	allow	you	to	assign	as	many	or
as	few	tags	as	you	like	to	any	item	of	data.	The	convention	that	has	evolved	is	for	the	user	to
enter	tags	for	a	content	item	into	a	text	field.	Multiple	tags	should	be	separated	by	a	space	or	a
comma.

Introducing	the	acts-as-taggable-on	Gem

Instead	of	reinventing	the	wheel	and	implementing	our	own	tagging	system	for	Readit,	we'll
use	one	of	the	available	Rails	plugins	for	this	job,	the	aforementioned	acts-as-taggable-on.
You	may	be	wondering	what	kind	of	name	the	developer	originally	chose	for	his	plugin.	At
some	 point,	 David	 Heinemeier	 Hansson	 himself	 actually	 developed	 a	 plugin	 named
acts_as_taggable	 as	 a	 proof	 of	 concept	 for	 some	 then-new	 features	 for	 Rails.	 It	 wasn't
intended	for	production	use,	and	has	since	been	deprecated,	but	was	picked	up	again	because
tagging	 is	 such	 an	 essential	 component	 of	 today's	 websites	 with	 user-generated	 content.
Jonathan	 Viney,	 a	 Rails	 core	 contributor	 and	 all-round	 guru,	 took	 up	 where	 Heinemeier
Hansson	left	off	and	created	his	work	under	the	name	of	acts_as_taggable_on_steroids.	Yet
development	waned,	so	another	developer	name	Michael	Bleigh	formed	acts-as-taggable-
on,	and	has	been	developing	it	ever	since.	With	that	bit	of	family	history	out	of	the	way,	let's

have	a	look	at	what	this	plugin	can	do	for	us.

A	History	of	acts_as_*

As	this	is	far	being	from	an	obvious	name	for	a	plugin,	allow	me	to	explain	the	background
of	the	acts_as_*	naming	convention.

In	 Rails'	 own	 plugin	 repository	 can	 be	 found	 a	 number	 of	 acts,	 which	 are	 functional
extensions	to	an	ActiveRecord	model.	These	acts	equip	models	with	certain	functionality	that
usually	can	be	enabled	using	a	single	line	of	code.

As	 this	 functionality	 enables	 models	 to	 “act	 as	 something	 else,”	 the	 convention	 of	 calling
these	 functional	 additions	 “acts”	 arose,	 and	 the	 code	 that	 enables	 the	 functionality
acts_as_something	shortly	followed.

At	 the	 time	of	writing,	many	"acts	as"	gems	are	available	on	Rubygems.org:	acts_as_list,
acts_as_tree,	 and	 acts_as_paranoid,	 to	 name	 a	 few.	While	 some	 are	 more	 complex	 than
others,	 each	 of	 these	 acts	 apply	 a	 hierarchy	 to	 a	 set	 of	 model	 objects.	 In	 the	 case	 of
acts_as_list,	objects	are	positioned	in	a	flat	list;	with	acts_as_tree,	the	resulting	hierarchy
is	a	sophisticated	tree	system,	such	as	that	used	in	a	threaded	forum,	for	example.

But	what	about	acts-as-taggable-on?	As	the	name	suggests,	this	plugin	provides	a	simple	yet
effective	 means	 by	 which	 you	 can	 make	 your	 models	 taggable.	 It	 ships	 with	 its	 own
ActiveRecord	model	class	called	ActsAsTaggableOn::Tag,	as	well	as	functionality	for	parsing
a	list	of	tags	divided	by	spaces	into	separate	model	objects	of	class	ActsAsTaggableOn::Tag.

Namespacing	Safety	Measures

You	probably	noticed	that	the	Tag	class	is	namespaced	under	ActsAsTaggableOn.	Namespacing
classes	 inside	 a	 gem	 is	 a	 Ruby	 community	 best	 practice	 based	 on	 years	 of	 class	 names
stomping	all	over	each	other	from	different	gems	and	libraries.	Tag	is	a	fairly	common	name,
so	putting	it	in	the	ActsAsTaggableOn	namespace	ensures	we	avoid	loading	another	gem	that
clobbers	the	class.

Of	course,	before	we	can	play	with	this	plugin,	we'll	need	to	install	it.

Installing	the	acts-as-taggable-on	Gem

To	install	the	gem,	change	directory	to	the	application	root	folder	and	add	the	following	line
to	the	Gemfile:

gem	"acts-as-taggable-on",	"~>	4.0"

																								

The	~>	tells	Bundler	that	we	want	any	version	in	the	4.x	series.	If	4.2	is	the	latest,	that's	what

we'll	get;	however,	if	the	versions	went	4.2,	then	5.0,	we'd	still	end	up	with	4.2.	Make	sense?

Now	run	the	following:

$	bundle	install

Fetching	gem	metadata	from	https://rubygems.org/...........

Fetching	version	metadata	from	https://rubygems.org/...

Fetching	dependency	metadata	from	https://rubygems.org/..

Resolving	dependencies...

Using	rake	10.5.0

Using	i18n	0.7.0

Using	json	1.8.3

Using	minitest	5.8.4

...

Installing	acts-as-taggable-on	4.0.0.pre

...

Bundle	complete!	14	Gemfile	dependencies,	56	gems	now	installed.

Use	`bundle	show	[gemname]`	to	see	where	a	bundled	gem	is	installed.

Post-install	message	from	acts-as-taggable-on:

When	upgrading

																								

As	you	can	see,	Bundler	runs	through	all	the	dependencies	of	our	app,	including	installing	the
acts-as-taggable-on	into	the	application	"bundle".	There's	even	a	post-install	message	from
the	acts-as-taggable-on	gem	telling	us	what	to	do	next.

Creating	a	Migration	for	the	Plugin
Our	plan	is	to	allow	users	of	our	application	to	add	tags	to	stories	submitted	to	Readit,	so	our
Story	model	needs	to	be	taggable.	Both	the	tags	themselves	and	the	relationships	between	tags
and	stories	need	to	be	stored	somewhere,	so	we'll	use	a	migration	to	create	new	tables.	And
while	this	plugin	makes	use	of	a	new	model	(the	ActsAsTaggableOn::Tag	model	provided	by
the	acts-as-taggable-on	plugin),	the	model	wasn't	created	by	the	rails	generate	command,
so	we're	yet	to	have	a	migration	to	go	with	it.	Luckily,	the	plugin	does	come	with	a	convenient
generator	method	to	create	a	fitting	migration:

$	rails	acts_as_taggable_on_engine:install:migrations

Running	via	Spring	preloader	in	process	64781

Copied	migration	201...7_acts_as_taggable_on_migration.acts_as_taggable_on_engine.rb	from	acts_as_taggable_on_engine

Copied	migration	201...8_add_missing_unique_indices.acts_as_taggable_on_engine.rb	from	acts_as_taggable_on_engine

Copied	migration	2_add_taggings_counter_cache_to_tags.acts_as_taggable_on_engine.rb	from	acts_as_taggable_on_engine

Copied	migration	201...0_add_missing_taggable_index.acts_as_taggable_on_engine.rb	from	acts_as_taggable_on_engine

Copied	migration	201...1_change_collation_for_tag_names.acts_as_taggable_on_engine.rb	from	acts_as_taggable_on_engine

Copied	migration	201...2_add_missing_indexes.acts_as_taggable_on_engine.rb	from	acts_as_taggable_on_engine

																								

Rake'n'rails

The	message	received	after	we	bundled	instructed	you	to	use	rake	instead	of	rails.	Welcome
to	the	bleeding	edge.	In	previous	versions	of	Rails,	rake	was	used	to	run	tasks	 like	 this,	but
Rails	5	added	rails	as	an	alias.	This	was	 to	allow	devs	 to	use	rails	 for	all	generators	and
tasks.

This	task	copied	five	migrations	into	our	db/migrate	directory.	These	files	produce	the	tables
used	by	acts-as-taggable-on,	along	with	creating	some	database	indexes	and	other	database
artifacts.	The	acts-as-taggable-on	plugin	uses	two	tables:
	

The	 tags	 table	 stores	 the	 ActsAsTaggableOn::Tag	 model,	 which	 is	 just	 a	 regular
ActiveRecord	model.	This	table	contains	one	entry	for	each	tag.	So,	for	example,	if	you
tagged	two	or	more	Story	models	with	the	tag	ruby,	only	one	ActsAsTaggableOn::Tag
object	 (ruby)	 would	 be	 stored	 in	 the	 database.	 This	 approach	 makes	 it	 easy	 for	 our
application's	users	to	find	content;	if	users	were	interested	in	finding	stories	about	Ruby,
they	could	browse	through	all	the	stories	to	which	the	ruby	tag	was	applied.
The	 taggings	 table	 stores	 the	 actual	 mappings	 between	 the	 ActsAsTaggableOn::Tag
model	and	those	models	that	make	use	of	the	acts-as-taggable-on	functionality.

Following	is	the	migration	code	that	was	generated	for	us.	It	is	ready	to	use	as	is,	and	is	stored
in	the	db/migrate/xxxx_acts_as_taggable_on_migration.rb	file:

class	ActsAsTaggableOnMigration	<	ActiveRecord::Migration

		def	self.up

				create_table	:tags	do	|t|	

				t.string	:name

		end

		create_table	:taggings	do	|t|

				t.references	:tag

				#	You	should	make	sure	that	the	column	created	is

				#	long	enough	to	store	the	required	class	names.

				t.references	:taggable,	polymorphic:	true

				t.references	:tagger,	polymorphic:	true

				#	Limit	is	created	to	prevent	MySQL	error	on	index

				#	length	for	MyISAM	table	type:	http://bit.ly/vgW2Ql

				t.string	:context,	limit:	128

				t.datetime	:created_at

		end

		add_index	:taggings,	:tag_id

		add_index	:taggings,	[:taggable_id,	:taggable_type,	:context]

		end

		def	self.down

				drop_table	:taggings

				drop_table	:tags

		end

end

																								

This	 migration	 starts	 out	 simply	 enough.	 It	 creates	 the	 tags	 table	 that	 contains	 just	 one
column:	name	(in	addition	to	the	id	column	belonging	to	every	table).

While	 it	 may	 appear	 straightforward	 on	 the	 surface,	 the	 taggings	 table	 is	 a	 little	 more
complex	than	a	mere	list	of	objects	and	their	tags.	As	mentioned,	it's	possible	to	make	more
than	 one	 model	 in	 your	 application	 taggable;	 however,	 the	 mappings	 between	 the
ActsAsTaggableOn::Tag	 model	 and	 those	 models	 to	 which	 tagging	 functionality	 has	 been
added	use	a	single	table.

acts-as-taggable-on	uses	each	of	the	columns	created	in	the	taggings	table	as	follows:
	

tag_id	is	created	by	t.references	:tag	and	stores	the	id	of	the	ActsAsTaggableOn::Tag
taggable_id	is	created	by	t.references	:taggable,	polymorphic:	true	and	stores	the
id	of	the	object	that	is	being	tagged	(for	example,	the	ID	of	a	Story)
taggable_type	 is	created	by	t.references	:taggable,	polymorphic:	true	and	stores
the	class	of	the	object	that	is	being	tagged	(for	example,	Story)
tagger_id	is	created	by	t.references	:tagger	and	stores	the	id	of	the	user	that	created
the	tag	(for	example,	the	ID	of	a	User)
tagger_type	is	created	by	t.references	:tagger	and	stores	the	class	of	the	object	that	is
doing	the	tagging	(for	example,	User)

You	may	be	 asking	what	 "polymorphic"	means	 in	 our	migration.	Hold	 tight,	 I'll	 cover	 that
soon	enough.

Before	we	can	give	our	Story	model	a	little	acts-as-taggable-on	goodness,	we	need	to	apply
the	migration	just	generated,	as	shown	below.

Applying	the	generated	migration

Great!	 Now	 we	 can	 make	 our	 Story	 model	 taggable.	 Let's	 chat	 about	 polymorphic
associations.

Understanding	Polymorphic	Associations
We've	 looked	 at	 the	 underlying	 tables	 utilized	 by	 the	 acts-as-taggable-on	 plugin,	 and	 we
know	what's	stored	in	which	columns.	But	what	kind	of	association	is	this?

It's	not	a	one-to-many	relationship,	because	one	 tag	may	be	applied	 to	many	 items	and	 one
item	may	have	many	 tags.	 It's	 a	 kind	of	bidirectional,	 one-to-many	 relationship.	 In	 fact,	 it's
often	called	a	"many-to-many"	relationship.	Rails	features	a	type	of	relationship	that's	just	for
this	type	of	situation.	It's	called	a	polymorphic	association.

In	 a	 polymorphic	 association,	 a	model	 is	 associated	with	 objects	 of	more	 than	 one	model
class,	as	Figure	10-5	illustrates.	In	order	to	store	this	relationship	in	the	database	accurately,
the	object's	class	name	(or	"type")	and	ID	must	be	stored.	Check	out	the	migration	that	we	just
created,	and	you'll	see	this	is	exactly	what's	achieved	by	the	schema	created.

Two	models	are	assigned	the	same	tag

If	 the	 schema	 didn't	 save	 both	 the	 class	 name	 and	 ID	 of	 the	 object,	 we	 potentially	 face	 a
situation	in	which	a	tag	is	applied	to	both	a	User	object	with	an	ID	of	1	and	a	Story	object	also
with	an	ID	of	1.	The	chaos	that	would	result!

Fortunately,	Rails	automatically	and	transparently	handles	most	of	the	details	that	implement
this	relationship	for	you.

Making	a	Model	Taggable

To	 use	 acts-as-taggable-on,	 modify	 the	 Story	 class	 definition	 located	 in
app/models/story.rb	as	follows:

app/models/story.rb	(excerpt)

class	Story	<	ApplicationRecord

		acts_as_taggable

		⋮	Story	model…

end

																								

Yes,	that	is	it!	With	the	plugin	in	place,	it	takes	just	16	characters	to	make	a	model	taggable.
Please	note	 that	 the	function	name	is	still	acts_as_taggable	as	opposed	 to	 the	plugin	name,
which	is	acts-as-taggable-on.

Next,	we'll	hop	into	the	Rails	console	to	play	with	our	Story	model's	new	functionality.	The
acts-as-taggable-on	plugin	has	added	various	extra	methods	to	our	model.	Let's	take	a	look
at	some	of	them.

First,	retrieve	a	story	from	the	database:

>>	s	=	Story.first

=>	#<Story	id:	2,	name:	"SitePoint	Forums",	…>

																								

We	can	look	at	the	tags	already	assigned	to	this	story	by	using	the	tag_list	instance	method:

>>	s.tag_list

=>	[]

																								

By	simply	assigning	a	new	value	to	the	tag_list	attribute,	we	have	the	ability	to	tag	an	object.
In	its	simplest	form,	this	value	can	be	a	comma-separated	list	of	tags	to	apply:

>>	s.tag_list	=	'sitepoint,	forum,	community'

=>	"sitepoint,	forum,	community"

																								

When	the	model	is	then	saved	to	the	database,	we	can	use	the	tag_list	method	again	to	fetch
an	array	of	tags	assigned	to	the	model:

>>	s.save

=>	true

>>	s.tag_list

=>	["sitepoint",	"forum",	"community"]

																								

The	tag_list	method	is	in	fact	a	shortcut	to	the	association	data,	which	is	available	through

the	 tags	 instance	 method.	 This	 method	 provides	 access	 to	 an	 array	 of	 the
ActsAsTaggableOn::Tag	objects	with	which	this	particular	story	is	associated:

>>	s.tags.size

=>	3

																								

As	mentioned	earlier	in	the	chapter,	we	can	also	use	methods	of	the	ActsAsTaggableOn::Tag
class	 to	 retrieve	 a	 list	 of	 stories	 tagged	with	 a	 particular	word.	We	 load	up	 an	 existing	 tag
(which	we've	 just	 created	 through	 the	 assignment	 of	 a	 comma-separated	 list	 of	 tags	 to	 the
tag_list	attribute	of	the	Story	model)	using	a	standard	ActiveRecord	method:

>>	t	=	ActsAsTaggableOn::Tag.find_by(name:	"sitepoint")

=>	#<ActsAsTaggableOn::Tag	id:	1,	name:	"sitepoint">

																								

Each	ActsAsTaggableOn::Tag	 instance	 collects	 a	 list	 of	 all	 the	 objects	 to	which	 it	 has	 been
assigned—information	 that's	 available	 through	 the	 taggings	 instance	method.	 Let's	 request
the	size	of	the	array:

>>	t.taggings.size

=>	1

																								

Based	on	the	value	returned	by	the	size	method,	we	can	hazard	a	guess	that	the	object	available
in	this	array	is	the	Story	object	we	tagged	earlier.	Let's	use	the	first	method	to	be	sure:

>>	t.taggings.first

=>	#<ActsAsTaggableOn::Tagging	id:	1,	tag_id:	1,	taggable_id:	2,	

taggable_type:	"Story",	…>

																								

Yes,	we	were	right!

The	objects	contained	in	this	taggings	array	are	 the	fully	 functional	model	objects	of	class
ActsAsTaggableOn::Tagging.	 This	 is	 like	 an	 intermediate	 model	 between	 the	 Tag	 and	 the
object	being	tagged,	such	as	a	Story	object.	If	we	want	to	access	the	actual	tagged	model,	we
have	to	go	through	yet	another	association	that	the	acts-as-taggable-on	plugin	defined	for
us:	taggable.

>>	t.taggings.first.taggable

=>	#<Story	id:	2,	name:	"SitePoint	Forums",	…>

																								

This	property	retrieved	for	us	the	actual	story	object	to	which	we	applied	the	tag.	We're	now
free	 to	 invoke	the	same	methods	and	access	 the	same	attributes	 that	we	would	when	dealing
straight	with	 a	Story	 object.	 Let's	 request	 the	 name	 of	 the	 story	 that	we've	 tagged	with	 the

sitepoint	tag:

>>	t.taggings.first.taggable.name

=>	"SitePoint	Forums"

																								

Straightforward	stuff,	no?	I	have	to	admit,	there	are	a	lot	of	chained	method	calls	there.	Didn't
we	learn	about	a	new	type	of	association	that	connects	a	model	through	another	model	in	the
previous	chapter.	Feel	free	to	implement	that	on	your	own.

One	 last	point:	because	 it's	 conceivable	 that	 a	 tag	may	be	applied	 to	more	 than	one	 type	of
model,	 each	model	 is	 equipped	with	 a	 new	dynamic	 finder	 that	 fetches	 only	 objects	 of	 that
object's	class	assigned	a	certain	tag.	That	dynamic	finder	is	tagged_with:

>>	s	=	Story.tagged_with("sitepoint")

=>	 #<ActiveRecord::Relation	 [#

<Story	id:	2,	name:	"SitePoint	Forums",	...>

>>	s.size

=>	1

>>	s.first.name

=>	"SitePoint	Forums"

																								

Okay,	 enough	with	 the	 console.	 Let's	 now	 give	 users	 the	 ability	 to	 tag	 stories	 through	 our
application's	web	interface.

Enabling	Tag	Submission

Before	we	get	all	fancy	displaying	 tags	all	over	our	site,	we	need	a	way	for	users	to	submit
tags	with	a	new	story.	Let's	add	a	new	form	field	to	the	story	submission	form.

Modifying	the	View
To	 add	 the	 form	 field,	 modify	 the	 submission	 form	 located	 in	 the	 file
app/views/stories/new.html.erb:

app/views/stories/new.html.erb	(excerpt)

<%	form_for	@story	do	|f|	%>

		⋮	form	HTML…

		<p>

				Tags	(comma	separated):

								<%=	f.text_field	:tag_list	%>

		<p>

		<%=	submit_tag	%>

<%	end	%>

																								

Users	will	be	separating	each	tag	with	a	comma,	so	a	simple	text	field	for	tag	entry	will	do	the
job	nicely:

<%=	f.text_field	:tag_list	%>

																								

The	only	mind-bending	aspect	about	this	line	is	the	use	of	a	regular	text_field	method.	This
would	have	us	believe	that	our	Story	object	somehow	gained	a	database	column	for	tag_list,
which	 it	most	 certainly	did	not.	 In	 fact,	 this	 is	 exactly	why	 the	acts-as-taggable-on	 uses	 a
pragmatic	 approach	 for	 the	 implementation	 of	 tagging	 for	 specific	 objects.	 It	 provides	 the
tag_list	 and	 tag_list=	 methods	 for	 objects	 of	 classes	 that	 have	 been	 tag-enabled	 with
acts_as_taggable,	 thus	closely	resembling	what	ActiveRecord	provides	us	with	for	regular
database-backed	 attributes.	Behind	 the	 scenes,	 the	 plugin	 intercepts	what's	 being	 set	 for	 this
attribute	and	transparently	handles	creating	new	Tag	objects	and	Taggings	relationships.	Cool,
huh?

Modifying	the	Controller
To	 assign	 the	 submitted	 tags	 to	 the	 new	 story,	 you	 probably	 expected	 to	 modify	 the
story_params	method	of	the	StoriesController	class	to	allow	tag_list	 to	be	passed	 to	 the
model.	Well,	you're	right!	Open	up	app/controllers/stories_controller.rb	and	change	the
story_params	method	like	so:

app/controllers/stories_controller.rb	(excerpt)

def	story_params

		params.require(:story).permit(:name,	:link,	:description,	:tag_list)

end

																								

Now	our	users	can	submit	tags	with	their	stories.	Let's	display	them,	shall	we?

Enabling	Tag	Display

We	want	our	 tags	 to	appear	 in	a	 few	places.	First	of	all,	 they	should	be	visible	on	 the	story
page	itself.	It	would	also	be	nice	to	see	them	in	the	story	listings	on	the	front	page,	as	well	as
on	the	page	showing	stories	in	the	voting	bin.

Modifying	the	View

To	 display	 the	 assigned	 tags	 on	 the	 story	 page,	 modify	 the	 show	 template	 located	 at
app/views/stories/show.html.erb.	 Add	 the	 following	 code	 between	 the	 containers	 of	 the
story	link	and	the	voting	form	(vote_form):

<%	unless	@story.tag_list.empty?	%>

		<p	class="tags">

				Tags:

				<%=	@story.tag_list	%>

		</p>

<%	end	%>

																								

Once	again,	if	a	story	has	an	empty	list	of	tags,	we	don't	bother	listing	them;	so	we’ll	wrap	the
logic	in	an	unless	clause:

<%	unless	@story.tag_list.empty?	%>

		⋮	tag	HTML…

<%	end	%>

																								

If	tags	are	associated	with	a	story,	we	go	ahead	and	render	the	list	of	tags	for	now:

<%=	@story.tag_list	%>

																								

Updating	the	story	Partial

Now	we'll	display	tags	for	each	story	that	appears	in	the	story	listings	on	the	front	page	and	in
the	 voting	 bin.	 To	 add	 this	 information	 to	 the	 display,	 we	 modify	 the
app/views/stories/_story.html.erb	partial:

app/views/stories/_story.html.erb	(excerpt)

<%	div_for(story)	do	%>

		<h3><%=	link_to	story.name,	story	%></h3>

		<p>

				Submitted	by:	<%=	story.user.name	%>	|

				Score:	<%=	story.votes_count	%>

				Tags:	<%=	story.tag_list	%>

		<p>

<%	end	%>

																								

This	 code	 also	 prints	 a	 comma-separated	 list	 of	 the	 tags	 assigned	 to	 a	 story	 using	 the
tag_list	instance	method.

Assigning	Our	First	Tags

With	a	solid	foundation	in	place	for	the	assignment	and	display	of	tags	in	the	application,	you
can	now	start	experimenting	with	this	exciting	new	piece	of	functionality.	Submit	a	new	story
from	your	browser	using	 the	 story	 submission	 form,	 this	 time	 including	a	 few	 tags	 as	 I've
done	in	Figure	10-10.	If	your	web	server	is	still	running	from	the	previous	chapter,	you	may
need	to	restart	it	before	it	will	recognize	the	new	plugin.

Submitting	a	story	with	tags

When	you	view	the	front	page,	upcoming	page,	or	 individual	story	 listings,	you	should	see
the	tags	display	nicely	below	your	story,	as	in	Figure	10-11.

Tags	on	display

(Remember,	you	won't	have	any	tags	yet	for	the	existing	stories.)

Everything	 looks	good;	however,	we'd	 like	 to	 link	 those	 tags	 to	a	page	 showing	all	 stories
with	this	tag	in	common.	That's	our	next	task.

Viewing	Stories

At	this	stage,	it	may	seem	we're	taxing	ourselves	by	having	to	create	a	separate	controller	to
implement	the	view-by-tag	feature;	however,	as	you've	made	it	to	the	final	third	of	the	book,
creating	 a	 new	 controller	 shouldn't	 impose	 too	 much	 on	 your	 Rails	 development	 skills.
Besides,	 this	 will	 work	 nicely	 with	 the	 RESTful	 approach	 we're	 applying	 to	 Readit's
development.

Creating	the	Controller
Our	new	controller	is	supposed	to	deal	with	objects	of	class	Tag,	so	TagsController	will	be
an	excellent	fit.	You	can	create	it	as	follows:

$	rails	generate	controller	Tags	show

Running	via	Spring	preloader	in	process	67691

		create		app/controllers/tags_controller.rb

		route		get	'tags/show'

		invoke		erb

		create				app/views/tags

		create				app/views/tags/show.html.erb

		invoke		test_unit

		create				test/controllers/tags_controller_test.rb

		invoke		helper

		create				app/helpers/tags_helper.rb

		invoke				test_unit

		invoke		assets

		invoke				coffee

		create						app/assets/javascripts/tags.coffee

		invoke				scss

		create						app/assets/stylesheets/tags.scss

																								

To	 make	 our	 new	 controller	 adhere	 to	 RESTful	 principles,	 we	 require	 another	 entry	 in
config/routes.rb:

config/routes.rb	(excerpt)

Rails.application.routes.draw	do

		resources	:tags

		⋮	other	routes…

end

																								

Now	go	ahead	and	open	app/controllers/tags_controller.rb,	and	adjust	the	show	action	to
this:

app/controllers/tags_controller.rb

class	TagsController	<	ApplicationController

		def	show

				@stories	=	Story.tagged_with(params[:id])

		end

end

																								

There's	nothing	too	fancy	here;	we	simply	retrieve	all	the	stories	tagged	with	a	particular	tag
using	a	method	we	played	with	in	the	console	earlier	in	this	chapter—tagged_with:

@stories	=	Story.tagged_with(params[:id])

																								

The	last	task	required	by	this	page	is	the	creation	of	an	appropriate	heading	to	distinguish	it
from	our	other	story	lists.

Filling	in	the	View	Template
The	 view	 template	 for	 the	 show	 action	 is	 really	 very	 simple.	 We	 could	 almost	 reuse	 the
app/views/stories/index.html.erb	 template,	 but	 it's	 a	 little	 awkward	 to	 reuse	 action
templates	between	two	separate	controllers,	so	we	won't	do	that.	What	we	will	do,	however,	is
reuse	the	partial	to	render	a	list	of	stories.

To	do	so,	open	app/views/tags/show.html.erb	and	adjust	it	as	follows:

<h2>Stories	tagged	with	<%=	params[:id]	%></h2>

<%=	render	partial:	@stories	%>

																								

This	ends	up	being	similar	to	the	aforementioned	index	template,	but	retains	the	flexibility	of
dragging	in	additional	models	we	can	equip	with	tagging	functionality	in	the	future.

Displaying	Tagged	Stories
We	could	now	simply	construct	a	URL	to	a	tag	page	of	our	own,	seeing	we	know	what	kind	of
tag	we've	used	in	our	story	submissions;	however,	we	want	our	users	 to	be	able	to	click	on

tags	displayed	in	the	story	listings,	so	as	to	reach	the	respective	page	listing	all	stories	with
that	tag.

To	do	this,	we'll	change	the	app/views/stories/show.html.erb	template	slightly	to	render	a
partial	instead:

app/views/stories/show.html.erb	(excerpt)

<%	unless	@story.tag_list.empty?	%>

		<p	class="tags">

				Tags:

				<%=	render	partial:	"tags/tag",	collection:	@story.tags	%>

		</p>

<%	end	%>

																								

We	can't	use	here	the	shorthand	syntax	we	first	met	a	couple	of	chapters	ago	because	of	the
namespacing	of	the	Tag	class.	So	we	explicitly	tell	Rails	to	render	the	tag	partial	in	the	tags
view	directory.	This	render	call	will	search	for	a	partial	in	app/views/tags/_tag.html.erb,
so	let's	create	that	partial	now.

Creating	a	tag	Partial

To	 render	 a	 collection	 of	 tags	 assigned	 to	 a	 story,	 we	 need	 a	 tag	 partial.	 Create	 the	 file
app/views/tags/_tag.html.erb,	and	edit	the	contents	to	contain	this	single	line:

app/views/tags/_tag.html.erb

<%=	link_to	tag,	tag_path(id:	tag.name)	%>

																								

This	 link_to	 call	 departs	 slightly	 from	 the	 oh-so-comfortable	 convention-laden	 form	 that
we've	grown	to	love.	It's	because	we	actually	want	the	URL	for	our	tag	pages	to	look	like	this:

http://localhost:3000/tags/sitepoint

																								

While	we	 could	 certainly	 go	 ahead	 and	modify	 the	to_param	method	 of	 the	 Tag	 class,	 this
would	 require	 changing	 the	 contents	 of	 the	 acts-as-taggable-on	 plugin.	 Although	 this	 is
certainly	 possible,	 it's	 best	 discouraged,	 as	 a	 future	 update	 to	 the	 plugin	 could	 break	 our
changes.	This	is	the	reason	why	I	opted	to	construct	the	URL	by	explicitly	assigning	the	name
value	of	the	tag	to	the	id	part	of	the	URL.

Updating	the	Stylesheet
To	give	our	tag	links	a	little	room	to	breathe	on	the	page,	we'll	add	the	following	snippet	of

CSS	to	our	stylesheet,	located	at	app/assets/stylesheets/tags.scss:

app/assets/stylesheets/tags.scss	(excerpt)

.tags	a	{	padding:	0	3px;	}

																								

Excellent.	Let's	see	how	it's	all	looking	now,	shall	we?	Loading	up	a	page	of	a	story	with	tags
assigned	should	look	similar	to	Figure	10-17.

Story	page	with	tags

Clicking	 on	 any	 of	 the	 provided	 tags	 should	 reveal	 a	 list	 of	 stories	 that	 share	 this	 tag,	 an
example	of	which	can	be	found	in	Figure	10-18.	Lovely!

Testing	the	Tagging	Functionality

Testing	the	Tagging	Functionality

Some	plugins	come	bundled	with	complete	 test	coverage,	while	others	do	not.	The	original
acts_as_taggable	was	quite	bare-bones	in	that	regard.	The	makeover,	however,	is	extensive
in	its	test	coverage.	Still,	it's	good	practice	to	add	to	your	test	suite	to	ensure	that	you're	testing
your	 usage	 of	 the	 plugin,	 which	 definitely	 isn't	 covered	 by	 the	 standard	 test	 suite	 for	 the
plugin.

Testing	the	Model
To	test	 the	tagging	functionality	that	our	Story	model	has	inherited,	we're	going	to	add	two
more	unit	tests	to	the	StoryTest	test	case.

Before	we	commence,	we	need	to	ensure	that	Rails	has	applied	all	our	new	migrations	to	the
test	 database.	 This	 is	 done	 with	 the	 same	 db:migrate	 command,	 but	 we	 set	 the	 RAILS_ENV
variable	to	test,	which	tells	Rails	to	use	the	test	environment:

rails	db:migrate	RAILS_ENV=test

																								

A	Conventional	Environment

There	are	a	few	environment	variables	that	Rails	will	use	by	convention	(you	should	be	used
to	 the	 idea	 of	 convention	 by	 now).	 RAILS_ENV	 is	 one	 of	 them,	 and	 it	 determines	 which
environment	 is	 current.	You'll	 recall	 that	 by	 default,	 there	 are	 three	 possible	 environments:
development,	test,	and	production.

Testing	the	Assignment	of	Tags

The	first	test	we'll	add	to	the	test/models/story_test.rb	file	is	as	follows:

test/models/story_test.rb	(excerpt)

class	StoryTest	<	ActiveSupport::TestCase

		⋮	test	methods…

		test	"is	taggable"	do

				stories(:one).tag_list	=	'blog,	ruby'

				stories(:one).save

				assert_equal	2,	stories(:one).tags.size

				assert_equal	['blog',	'ruby'],	stories(:one).tag_list

		end

end

																								

This	 test	uses	 the	tag_list	 attribute	accessor	 to	 apply	 two	 tags	 to	one	of	 the	 stories	 in	our
fixture	data:

stories(:one).tag_list	=	'blog,	ruby'

																								

To	reflect	the	newly	added	tags,	we	save	the	object	in	question:

stories(:one).save

																								

The	 two	 assertions	 in	 this	 test	 confirm	 that	 the	 number	 of	 tags	 assigned	 to	 the	 story	meets
expectations,	 and	 that	 the	 list	 of	 tags	 returned	 by	 the	tag_list	method	 contains	 the	 correct
tags	in	the	form	of	an	array:

assert_equal	2,	stories(:one).tags.size

assert_equal	['blog',	'ruby'],	stories(:one).tag_list

																								

Testing	the	Finding	of	a	Story	by	Tag

The	next	unit	test	we	add	for	our	Story	model	is	this:

test/models/story_test.rb	(excerpt)

test	"finds	tagged	with"	do

		stories(:one).tag_list	=	'blog,	ruby'

		stories(:one).save

		assert_equal	[stories(:one)],

				Story.tagged_with('blog')

end

																								

This	 test	 confirms	 that	 the	 functionality	 for	 finding	 stories	by	 tag	works	 as	 expected.	After
tagging	a	story,	the	test	uses	the	tagged_with	class	method	to	retrieve	a	list	of	stories	with	the
blog	tag,	comparing	it	with	the	list	of	stories	that	we	expect	to	be	returned.

Great,	we're	done!	Let's	go	do	some	functional	testing.

Testing	the	Controller
We're	now	going	to	add	a	few	tests	to	our	StoriesControllerTest	to	confirm	that	our	tagging
feature	works	correctly	from	a	controller	perspective.

Testing	the	Submission	of	a	New	Story	with	Tags

The	first	test	confirms	that	the	process	of	adding	a	new	story	with	tags	works:

test/controllers/stories_controller_test.rb	(excerpt)

class	StoriesControllerTest	<	ActionDispatch::IntegrationTest

		⋮	test	methods…

		test	"add	story	with	tags"	do

				login_user

				post	:create,	story:	{

						name:	"story	with	tags",

						link:	"http://www.story-with-tags.com/",

						tag_list:	"rails,	blog"

				}

				assert_equal	['rails',	'blog'],	assigns(:story).tag_list

		end

end

																								

In	this	test,	we	specify	the	tags	as	part	of	the	:story	hash.	Remember,	tags	are	submitted	just
like	any	other	attribute	in	the	story	submission	form:

post	stories_path,	story:	{

		name:	"story	with	tags",

		link:	"http://www.story-with-tags.com/",

		tag_list:	"rails,	blog"

}

																								

The	assertion	then	ensures	the	tag_list	method	of	the	newly	added	Story	returns	the	tags	that
we	submitted:

assert_equal	['rails',	'blog'],	assigns(:story).tag_list

																								

Testing	the	Display	of	Tags	on	a	Story	Page

The	next	test	checks	whether	a	story's	individual	page	displays	its	tags	properly:

test/controllers/stories_controller_test.rb	(excerpt)

class	StoriesControllerTest	<	ActionDispatch::IntegrationTest

		⋮	test	methods…

		test	"show	story	with	tags"	do

				stories(:promoted).tag_list	=	'apple,	music'

				stories(:promoted).save

				get	story_path(stories(:promoted))

				assert_select	'p.tags	a',	2

		end

end

																								

In	 this	 test,	we	confirm	that	 the	container	element	on	the	story	page	contains	an	appropriate
number	of	elements.	We	do	this	by	counting	the	number	of	links	within	the	p	element	that	have
a	class	of	tags:

assert_select	'p.tags	a',	2

																								

Testing	the	Display	of	the	Story	Submission	Forms

Because	 we	 added	 a	 new	 field	 to	 the	 story	 submission	 form,	 we	 have	 to	 edit	 our
StoriesControllerTest	 class	 so	 that	 the	 "shows	 new	 form"	 test	 counts	 an	 additional
paragraph	element:

class	StoriesControllerTest	<	ActionDispatch::IntegrationTest

		⋮	test	methods…

		test	"shows	new	form"	do

				login_user

				get	new_story_path

				assert_select	'form	p',	count:	4

		end

end

																								

Let's	now	move	on	and	write	some	tests	for	our	TagsController.

Testing	the	show	Action	of	TagsController

To	test	our	newly	created	TagsController,	add	the	following	to	the	TagsControllerTest	 test
case	stored	in	test/controllers/tags_controller_test.rb:

test/controllers/tags_controller_test.rb

test	"renders	tagged	stories"	do

		stories(:one).tag_list	=	'blog,	ruby'

		stories(:one).save

		get	tag_path("ruby")

		assert_response	:success

		assert_select	'div#content	div.story',	count:	1	

end

																								

In	 this	 test,	 we	 put	 the	 template	 code	 through	 its	 paces.	 The	 assert_select	 assertion	 call
confirms	that	the	resulting	page	contains	the	expected	number	of	div	elements	with	a	class	of
story:

assert_select	'div#content	div.story',	count:	1

																								

And	that,	dear	reader,	is	the	last	test	I'll	make	you	write!	Well,	for	this	chapter,	anyway.

Running	the	Test	Suite	...	Again!

To	assure	ourselves	that	all	of	these	new	tests	pass	(as	well	as	our	existing	ones),	we'll	run	the
whole	suite	again	using	rake.

$	rails	test

Running	via	Spring	preloader	in	process	60620

Run	options:	--seed	20795

#	Running:

..

Finished	in	1.056509s,	49.2187	runs/s,	90.8653	assertions/s.

45	runs,	73	assertions,	0	failures,	0	errors,	0	skips

																								

If	all	of	your	tests	passed,	give	yourself	a	congratulatory	pat	on	the	back.	And	if	there	are	any
errors	or	failures,	double-check	your	code	against	the	code	in	the	book	and	the	book's	code
archive	 to	 see	 where	 you	might	 have	 gone	 wrong.	 The	 error	 messages	 displayed	 in	 your
console	will	 help,	 of	 course.	And	 if	 you	 get	 truly	 stuck,	 you	 could	 jump	 ahead	 to	 the	 next
chapter	to	read	about	debugging	your	Rails	application.

Summary

In	 this	 chapter,	 we	 looked	 at	 using	 an	 existing	 Rails	 plugin	 to	 extend	 our	 application's
functionality	 without	 reinventing	 the	 wheel.	 After	 installing	 the	 plugin	 and	 applying	 the
necessary	 migrations,	 we	 only	 had	 to	 add	 a	 single	 line	 of	 code	 to	 make	 use	 of	 the	 rich
functionality	 provided	 by	 the	 plugin.	 When	 we'd	 ascertained	 how	 the	 plugin	 worked,	 we
expanded	 the	 story	 submission	 form	 to	 take	 a	 comma-separated	 list	 of	 tags,	 and	 expanded
several	views	to	display	the	tag	data.

Our	 work	 is	 not	 done	 yet,	 though—we	 still	 have	 a	 bit	 to	 learn	 about	 debugging	 our
application,	running	integration	tests,	and	configuring	our	environment	for	production.	These
topics	will	be	the	focus	of	the	remaining	chapters.

Chapter	 11:	 Debugging,	 Testing,	 and
Benchmarking
Welcome	 to	 a	 chapter	 devoted	 to	 the	 very	 topics	 nobody	 likes	 to	 talk	 about:	 errors,	 bugs,
flaws,	and	exceptions.	These	topics,	however	dismaying,	are	de	rigeur	for	any	comprehensive
hands-on	 technical	guide—let's	not	pretend	 that	development	 is	perennially	easy	and	always
results	in	perfect,	error-free	code!

Once	you	begin	developing	applications	on	your	own,	the	first	lesson	you'll	learn—probably
the	 hard	 way—is	 that	 bugs	 arise	 all	 the	 time,	 regardless	 of	 how	 proficient	 you	 are	 as	 a
developer.	It's	your	job	to	find	and	fix	them,	so	you'd	better	be	good	at	it!

Of	course,	the	fun	doesn't	stop	at	bugs	and	errors.	It	may	be	that	your	finished	application	is
not	 as	 speedy	 as	 you'd	 like.	 If	 this	 is	 the	 case,	 you'll	 need	 tools	 on	 hand	 to	 profile	 your
application,	so	that	you	can	locate	the	bottlenecks	responsible	for	slowing	things	down.

In	this	chapter,	we'll	explore	all	of	these	issues.

Debugging	Your	Application

When	 you're	 building	 a	 web	 application,	 there	 are	 times	 when	 you	 immediately	 know	 the
exact	 cause	of	 a	 problem	and	how	 to	 fix	 it.	 For	 example,	 a	 broken	 image	on	your	website
instantly	indicates	that	you've	forgotten	to	upload	it,	or	that	the	path	to	the	image	is	incorrect.
With	other	bugs,	however,	you	may	fail	to	have	the	merest	ghost	of	an	idea	what's	happened.
It's	at	times	like	these	that	knowing	how	to	debug	your	code	comes	in	very	handy.

There	are	various	approaches	to	debugging.	The	simplest	involves	printing	out	the	values	of
some	of	the	variables	that	your	application	uses	while	it	runs,	to	gain	a	better	idea	of	what's
going	 on	 at	 each	 step	 in	 your	 code.	 A	 more	 complex	 approach	 involves	 complicated	 but
powerful	techniques:	setting	breakpoints,	hooking	into	the	running	application,	and	executing
code	in	the	context	in	which	you	suspect	it's	misbehaving.

We'll	 begin	 our	 discussion	with	 something	 simple:	 we'll	 look	 at	 the	 debug	 statement	 that's
available	within	ActionView	templates.	Over	the	course	of	the	next	two	sections,	we'll	work	to
squash	 a	 real	 live	 bug	 in	 our	Readit	 application;	 I've	 gone	 against	 the	 developer	 grain	 and
deliberately	introduced	problems	into	our	existing,	perfectly	working	application	code	so	that
we	can	get	our	hands	dirty	with	a	practical	application.	As	you	follow	along,	try	to	think	of
the	potential	causes	for	problems	we	encounter.

Are	you	ready?	Let's	try	our	hand	at	a	little	debugging.

Debugging	within	Templates
I've	deliberately	broken	our	 application	by	changing	a	 specific	 line	of	 code	 (obviously,	 I'll
avoid	 telling	 you	 which—that's	 the	 whole	 point	 of	 this	 exercise!).	 The	 result	 of	 this	 code
change	is	that	the	story	page	for	a	newly	submitted	story	throws	an	exception	and	no	longer
displays	the	story.	Figure	11-1	shows	how	this	bug	appears	in	the	browser.

A	mystery	bug	causing	an	error	to	display	when	we	view	a	story

To	 complete	 this	 exercise,	 you'll	 first	 need	 to	 follow	 these	 steps	 to	 set	 up	 the	 purposefully
buggy	version	of	Readit:
	

1.	 Copy	the	folder	named	readit-debug-01	from	the	code	archive,	and	place	it	alongside
your	existing	readit	application	folder.

2.	 Move	into	the	readit-debug-01	folder	and	run	rails	db:migrate	to	run	the	migrations.
3.	 Start	up	your	broken	version	of	 the	Readit	application	using	 the	now	familiar	rails	s

command.
4.	 Open	up	a	Rails	console	 (rails	c)	 and	add	a	new	user	as	 follows:	User.create(name:

"Glenn	 Goodrich",	 email:	 "glenn.goodrich@sitepoint.com",	 password:

"password",	password_confirmation:	"password")

5.	 Log	 in	 and	 add	 a	 new	 story	 to	 Readit.	 I've	 given	 my	 story	 the	 name	 "All	 About
Debuggers."

6.	 Once	 you've	 submitted	 your	 new	 story,	 point	 your	 browser	 to
http://localhost:3000/stories/1-all-about-debuggers.

When	your	browser	has	finished	loading	the	page,	you	should	see	a	similar	sight	 to	Figure
11-1.	 The	 line	 number	 may	 not	 match	 exactly,	 but	 as	 long	 as	 the	 error	 is	 the	 same,
everything's	working	as	expected.

How	 should	 we	 approach	 such	 an	 error?	 Let's	 begin	 by	 taking	 a	 closer	 look	 at	 the	 error
message:

Showing	Usersggoodrich/projects/sitepoint/readitappviewsstoriesshow.html.erb	where	line	#20	raised:

undefined	method	`name`	for	nil:NilClass

																								

The	obvious	deduction	is	that	our	application	tried	to	call	the	name	method	on	a	nil	object	in
our	show.html.erb	 template.	Understandably,	Rails	could	not	perform	such	an	action,	as	the
object	nil	is	without	a	name	method.

The	error	message	also	 includes	an	excerpt	of	 the	code	 that	Rails	believes	was	 responsible
for	the	exception:

Extracted	source	(around	line	#20):

18:	<p	class="submitted_by">

19:			Submitted	by:

20:			<%=	link_to	@story.user.name,	@story.user	%>

21:	</p>

22:	<p>

23:			<%=	link_to	@story.link,	@story.link	%>

																								

The	error	message	directs	us	 to	 line	20	of	 the	 template,	which	 is	where	 the	link_to	 helper
tries	to	assemble	a	link	to	the	user	page	associated	with	the	user	who	originally	submitted	the
story.	 This	 line	 also	 contains	 the	 call	 to	 the	 name	 method	 that	 raised	 the	 exception.	 We're
calling	 the	 name	method	 on	 the	 user	 object	 associated	with	 the	 story	 that's	 currently	 being
viewed:

20:			<%=	link_to	@story.user.name,	@story.user	%>

																								

Rereading	the	error	message,	we're	under	the	impression	that	@story.user	must	actually	be
nil.	But	what	 good	 are	 impressions	 in	web	 application	programming?	No	good	 at	 all.	We
require	cold,	hard	facts!

Let's	put	two	tasks	on	our	to-do	list:
	

Confirm	that	@story.user	is	indeed	nil.
Find	out	why	it	is	nil.

To	tackle	the	first	item	on	our	list,	let's	alter	the	parts	of	the	template	that	raised	the	exception,
in	 order	 to	 inspect	 the	 contents	 of	 @story.user.	 To	 do	 so,	 open	 the
app/viewsstoriesshow.html.erb	template	and	change	the	following	sections:

<p	class="submitted_by">

		Submitted	by:

		<%=	@story.user.class	%>

		<%#	link_to	@story.user.name,	@story.user	%>

</p>

																								

I	 made	 two	 changes	 to	 the	 template.	 First,	 I	 added	 a	 statement	 to	 print	 the	 class	 of	 the
@story.user	 variable	 to	 our	 browser.	 Then,	 I	 used	 the	 <%#	 %>	 syntax	 to	 comment	 out	 the
link_to	 statement.	 If	we	 fail	 to	 do	 this,	 the	 application	will	 continue	 to	 raise	 an	 exception
when	we	reload	the	page,	and	we	won't	 receive	 the	output	of	 the	 line	we	added.	This	 line	 is
now	 considered	 a	 comment	 rather	 than	 part	 of	 the	 working	 code,	 and	 as	 such	 it	 won't	 be
executed.

When	we	reload	the	page,	we	see	that	@story.user	is	indeed	NilClass,	which	is	the	class	of
nil	and	explains	the	exception	we're	seeing.	Figure	11-2	shows	the	results	of	our	work.	The
first	item	on	our	to-do	list	is	done.

Confirmation	of	our	nil	user

To	 find	 out	 why	 @story.user	 is	 nil,	 we'll	 have	 to	 follow	 the	 steps	 that	 led	 to	 the	 user
assignment	when	 submitting	 new	 stories.	Before	we	 proceed,	 though,	we	 should	 revert	 the
changes	that	we	just	made	to	the	show.html.erb	template.	Remove	the	statement	that	prints	the
class	name,	and	make	the	link_to	statement	active	again:

<p	class="submitted_by">

		Submitted	by:

		<%=	link_to	@story.user.name,	@story.user	%>

</p>

																								

When	we	 implemented	user	authentication	 in	Chapter	8,	we	populated	 this	variable	with	 the
currently	 logged-in	 user	 available	 in	 the	 @current_user	 instance	 variable.	 Let's	 check	 the
contents	of	this	variable	using	the	debug	helper.

Add	 the	 following	 statement	 to	 the	 template	 that's	 being	 rendered	 for	 the	 new	 action—it's
located	in	app/views/stories/new.html.erb:

<%	if	@story.errors.any?	%>

		⋮	error	HTML…

<%	end	%>

<%=	debug	@current_user	%>

<%=	form_for	@story	do	|f|	%>

		⋮	form	HTML…

<%	end	%>

																								

The	code	I	added	between	the	@story.errors.any?	block	and	the	form_for	 statements	 is	 the
debug	helper	provided	by	Rails:

<%=	debug	@current_user	%>

																								

The	debug	statement	instructs	Rails	to	output	a	YAML	representation	of	the	object	that	we	pass
as	a	parameter.	In	this	case,	because	we're	working	from	a	view	template,	this	output	will	be
sent	 directly	 to	 the	 browser.	 Load	 the	 story	 submission	 form
(http://localhost:3000storiesnew)	with	this	debugging	code	in	place,	and	you	should	see
a	resemblance	to	Figure	11-3.

Looking	at	a	YAML	representation	of	@story

The	 output	 should	 remind	 you	 of	 our	 test	 fixtures—it's	 formatted	 in	YAML,	 after	 all.	 The
debugging	content	that's	shown	in	addition	to	our	regular	template	output	is	a	representation
of	@current_user,	which	contains	the	currently	logged-in	user.

The	debug	helper	automatically	wraps	its	output	in	a	pre	element.	By	default,	the	contents	of	a
pre	element	are	displayed	by	the	browser	as	preformatted	text	in	a	monospace	font.

Within	 the	YAML	representation,	you	can	 tell	 that	what	we're	being	shown	 is	 indeed	a	 fully
fledged	user	object	appropriately	stored	in	the	referenced	instance	variable.	This	indicates	the
part	 of	 our	 code	 that	 fetches	 the	 user	 from	 the	 database	 via	 the	 ID	 stored	 in	 the	 session	 is
indeed	working	fine.

Web	Console
Another	 debugging	 option	 that	 ships	 with	 Rails	 is	 web	 console.	 The	 web_console	 gem,
included	 in	 the	development	 group	of	our	 application's	bundle,	 enables	us	 to	 create	 a	Rails
console	in	some	really	interesting	places.	In	this	example,	instead	of	using	debug	to	print	out
the	value	of	the	@current_user,	we	can	use	web_console	to	create	a	Rails	console	right	on	the
page	and	execute	arbitrary	Ruby	in	the	context	of	the	page.

In	order	to	use	web_console,	we'll	add	a	call	to	console	to	our	new	controller	action:

def	new

		console

		@story	=	Story.new

end

																								

Now	refresh	the	page	and	you'll	see	a	>>	prompt	in	the	area	at	the	bottom,	which	resembles	a
terminal,	as	shown	in	Figure	11-4.

A	web	console–right	on	the	page

As	I	mentioned,	you	can	execute	Ruby	commands	in	this	console	in	the	context	of	the	page.	So
we	can	check	the	value	of	@current_user	by	simply	typing	@current_user	as	seen	in	Figure
11-5.

Checking	the	value	of	@current_user

The	value	of	@current_user	is	clearly	printed	in	our	web	console.	We	can	check	the	value	of
anything	that's	in	the	current	scope,	such	as	session[:user_id]	or	@story	 (which	is	set	 to	a
new,	empty	Story).	Pretty	cool,	eh?	Incidentally,	the	console	is	also	available,	by	default,	on
any	error	pages	in	development.

Using	web_console	can	be	a	lifesaver–it's	a	very	quick	way	to	figure	out	what	is	happening
without	having	to	add	debug	statements	and	refresh	the	page	several	times.

The	last	place	to	check	is	where	it	actually	makes	use	of	@current_user	and	the	association
between	 the	User	and	Story	classes	 to	 instantiate	Story	 object	with	 a	prepopulated	user_id:
the	create	action	of	our	StoriesController.

At	 this	point,	 it's	 time	to	come	clean	about	what	causes	our	application	bug.	Here's	what	 the
aforementioned	controller	action	looks	like:

def	create

		@story	=	Story.new	story_params

		#	@story	=	@current_user.stories.build	story_params

		⋮	method	body…

end

																								

As	you	can	see,	 the	 line	 that	 instantiates	 the	new	Story	object	has	been	replaced	by	one	 that
uses	 the	 Story	 class	 directly,	 instead	 of	 going	 through	 the	 association	 available	 via	 the
@current_user	object.	As	a	result,	no	user	will	be	assigned	to	the	newly	submitted	story.

A	slight	change	to	the	Story	model	was	also	necessary	to	make	this	work.	I	set	the	belongs_to
:user	association	to	optional	in	app/models/story.rb:

belongs_to	:user,	optional:	true

																								

It's	an	ideal	time	to	point	out	that,	by	default,	belongs_to	associations	are	mandatory.	This	is	a
change	in	Rails	5	from	previous	versions	to	protect	us	from	unknowingly	creating	a	bunch	of
orphaned	objects.

“But	wait!”	you	might	be	thinking.	“Wouldn't	a	test	have	caught	this	problem?”

Of	course	it	would	have.

Running	 the	 functional	 tests	 (using	 rails	 test:controllers)	 with	 the	modified	 controller
action	in	place,	as	just	seen,	would	reveal	a	test	failure::

$	rails	test:controllers

Run	options:	--seed	38543

#	Running:

...............F

Failure:

StoriesControllerTest#test_stores_user_with_story	[Usersggoodrich/projects/sitepoint/readit-

debug-01testcontrollers/stories_controller_test.rb:106]:

---	expected

+++	actual

@@	-1	+1	@@

-#

<User	id:	61347656,	password_digest:	"$2a$04$YF6ypVtUFIzFiJCgZNkCI.4GIn/OuDBus410lcqN.IW...",	name:	"Glenn	Goodrich",	email:	"glenn.goodrich@sitepoint.com",	created_at:	"2016-

07-29	12:54:34",	updated_at:	"2016-07-29	12:54:34">

+nil

bin/rails	test	test/controllers/stories_controller_test.rb:99

................

Finished	in	1.915820s,	16.7030	runs/s,	29.2303	assertions/s.

32	runs,	56	assertions,	1	failures,	0	errors,	0	skips

																								

The	 test	 that	 fails	 verifies	 that	 the	 submission	 of	 a	 new	 story	 stores	 the	 current	 user;
obviously,	 it	 doesn't.	 The	 error	messages	 from	 the	 test	 even	 tell	 us	 that	 it	 expected	 a	 User
object	with	a	name	of	Glenn	Goodrich;	instead,	it	received	a	nil	object.

What	 lesson	can	we	 take	 from	 this	 exercise?	Well,	 if	you	equip	your	 code	with	proper	 test
coverage	from	the	beginning,	you'll	have	an	easy	and	efficient	way	to	spot	an	error	in	your
code	later	on.

If	you've	been	following	along	(you	have	been	following	along,	right?),	you'll	need	to	either
remove	 the	 story	with	 the	 broken	 user	 association,	 or	 fix	 the	 user	 association	 through	 the
console	by	changing	its	user_id	to	1.

Debugging	A	Slightly	Trickier	Bug
In	the	next	example,	we'll	look	at	another	problem	that	I've	secretly	introduced	to	our	existing
code.	 If	 you	 take	 a	 look	 at	 Figure	 11-6,	 you'll	 notice	 that	 although	 we've	 provided	 a
description	for	the	new	story	we	submitted,	it's	missing	from	the	final	story	page.

Story	description	missing	from	a	newly	submitted	story

If	 you'd	 like	 to	 follow	 along	with	 this	 example,	 copy	 the	 readit-debug-02	 from	 the	 code
archive,	and	set	it	up	using	the	steps	for	setting	up	readit-debug-01	(I'll	even	wait	for	you!).

“Ha!”	I	hear	you	laugh.	“I	learned	in	the	last	section	that	I	just	need	to	run	the	test	suite	and	it'll
tell	me	what's	wrong!”

While	 that's	 a	 great	 idea,	 the	 reality	 is	 that	when	we	 run	 the	 full	 test	 suite	with	rails	 test
from	 the	 application	 root,	 every	 single	 test	 passes,	 as	 if	 nothing	were	wrong.	Here	 are	 the
results	of	running	the	test	suite:

$	rails	test

Running	via	Spring	preloader	in	process	3965

Run	options:	--seed	63168

#	Running:

...

Finished	in	1.021801s,	49.9119	runs/s,	92.9731	assertions/s.

48	runs,	77	assertions,	0	failures,	0	errors,	0	skips

																								

What	happened	here?	We'll	need	to	find	out.	While	we	used	statements	to	investigate	specific
objects	and	attributes	in	the	previous	example,	in	this	case,	it's	unclear	where	to	begin.

Meeting	byebug

When	the	first	edition	of	this	book	was	published,	this	section	talked	about	a	gem	called	ruby-
debug	and	walked	through	how	to	set	up	it	up	in	Rails.	ruby-debug	is	still	a	viable	option,	but
the	 Rails	 guides	 now	 talk	 about	 a	 new	 gem	 called	 byebug.	 Rails	 includes	 byebug	 in	 the
development	 group	 of	 every	 Gemfile,	 so	 it's	 already	 in	 our	 bundle,	 so	 no	 installation	 is
required.

While	it	would	be	beyond	the	scope	of	this	chapter	to	explain	how	byebug	works	its	magic,
suffice	 to	 say	 that	 byebug	uses	 a	 natively	 compiled	Ruby	 extension	 that's	written	 in	C.	The
result	 is	 that	 it	 performs	 amazingly	 well,	 even	 with	 very	 large	 Ruby	 scripts.	 For	 further
reading	 on	 byebug	 and	 many	 helpful	 articles	 and	 links	 to	 Ruby	 resources,	 I	 thoroughly
recommend	 reading	 the	Rails	Guides	 on	 debugging	 along	with	 byebug's	markdown	 guide.
There	are	also	writings	about	byebug	on	the	SitePoint	Ruby	channel,	which	is	worth	checking
out.

byebug	provides	you	with	a	more	advanced	shell,	similar	to	that	provided	by	GDB,	the	GNU
debugger	for	the	C	programming	language..

http://guides.rubyonrails.org/debugging_rails_applications.html
https://github.com/deivid-rodriguez/byebug/blob/master/GUIDE.md
https://www.sitepoint.com/the-ins-and-outs-of-debugging-ruby-with-byebug/
http://sourceware.org/gdb/

In	this	shell	you	can:
	

step	forward	and	backward	in	your	code
execute	and	skip	lines	of	code	without	copying	and	pasting	them	from	your	code	editor
window
list	the	actual	source	context	at	which	you've	stopped	your	application
edit	the	current	code	while	it's	running
step	into	irb	mode	and	make	use	of	the	same	shell	used	by	byebug	(if	you	find	old	habits
difficult	to	shake)

Debugging	an	Application	with	byebug

Let's	crack	the	byebug	whip	at	this	problem.	First,	add	the	byebug	keyword	to	the	new	action	in
app/controllers/stories_controller.rb:

def	create

		@story	=	@current_user.stories.build	story_params

		if	@story.save

				byebug

				flash[:notice]	=	'Story	submission	succeeded'

				redirect_to	stories_path

		else

				render	action:	'new'

		end

end

																								

If	 you	 try	 to	 submit	 a	 new	 story	 now,	 you'll	 experience	 “hanging	 browser	 syndrome,”
indicating	that	your	byebug	statement	has	kicked	in	and	you're	ready	to	debug.

Bundler	byebug	Boo-boo

For	 you	Windows	 users	 out	 there,	 you	may	 see	 an	 error	 stating	 "undefined	 local	 variable
byebug",	which	means	that	byebug	has	not	been	installed	properly	by	Bundler.	It	seems	that	in
the	Rails	5	default	Gemfile,	the	line	that	pulls	in	byebug	looks	like:

gem	"byebug",	platform:	"mri"

																								

This	is	unfortunate,	because	the	Windows	platform	is	"mingw32",	so	byebug	is	not	loaded	by
Bundler.	 To	 fix	 this,	 remove	 the	 ,	 platform:	 "mri"	 from	 the	 Gemfile,	 stop	 your	 Rails
server,	and	bundle	install	again.	That	should	clear	it	right	up.

Instead	 of	 firing	 up	 a	 separate	 client	 to	 connect	 to	 the	 inner	workings	 of	 your	 application,
byebug	has	opened	this	debugger	shell	right	inside	the	terminal	window	with	your	application
server,	as	Figure	11-7	indicates.

The	ruby-debug	interactive	prompt	appears	within	the	server	console

From	this	prompt,	you	can	use	a	variety	of	commands	to	explore	your	application	while	it's
paused	mid-execution.	Throughout	 this	example,	 I'll	 indicate	 the	byebug	shell	prompt	using
the	characters	(bb),	while	commands	typed	at	this	prompt	will	appear	in	bold,	as	follows:

(bb)	list

																								

The	byebug	Commands

What	follows	is	a	quick	rundown	of	the	most	important	byebug	commands,	along	with	a	brief
description	of	what	they	do.	Don't	worry	too	much	about	remembering	every	last	detail—the

built-in	help	command	will	list	all	the	available	commands	for	you.	You	can	also	type	help
<commandname>	for	help	with	a	specific	command.

where

Displays	a	 trace	of	 the	execution	stack,	similar	 to	 that	displayed	when	your	application
raises	an	exception.

info	breakpoints

Displays	a	 trace	of	 the	execution	stack,	similar	 to	 that	displayed	when	your	application
raises	an	exception.

break

Sets	new	breakpoints	in	the	source	code	from	within	the	byebug	shell.
delete

Deletes	existing	breakpoints	from	within	the	byebug	shell.
continue

Leaves	the	current	debugger	shell	and	resumes	execution	of	the	application	until	the	next
breakpoint	is	encountered.

irb

Invokes	 an	 interactive	 Ruby	 interpreter—similar	 to	 the	 shell	 used	 by	 the	 breakpoint
library—at	the	current	point	of	execution.

list

Displays	the	code	fragments	surrounding	the	current	point	of	execution.	(We'll	make	use
of	this	command	in	a	moment.)

methods

Explores	the	available	class	methods	and	instance	methods	respectively.
next/step

Continues	 execution	 one	 step	 at	 a	 time.	next	will	 step	over	 the	 next	 line	 of	 execution,
while	step	will	step	into	the	next	line	of	execution.

var	all/global/const
all	will	show	all	variables	and	their	values	within	the	current	context.	global	will	show
the	global	variables,	and	const	will	show	the	constants.

quit

Exits	the	debugger.	Note	that	this	command	will	also	exit	the	application	server	if	it	was
invoked	 from	 the	 command	 line,	 as	 has	 been	 demonstrated.	 To	 exit	 just	 the	 current
debugging	session,	use	finish.

For	a	list	of	all	available	commands	and	options,	use	the	help	command.

Moving	Around	in	the	Shell

Now	that	we've	been	dropped	into	a	shell,	it's	time	to	make	use	of	some	of	these	commands	to
zero	in	on	the	root	of	our	problem—that	is,	our	stories	displaying	without	descriptions.

First	of	all,	let's	find	out	exactly	what	point	we're	at	in	the	execution	of	our	story	submission.
This	is	the	job	of	the	list	command,	as	shown	below.

The	list	command	displaying	the	current	location	in	a	paused	application

As	you	can	see,	the	list	command	displays	a	source	code	listing	showing	the	current	location
in	a	paused	application.

At	this	point,	we	can	examine	parts	of	the	working	environment,	such	as	the	@story	 instance
variable	or	the	params	hash,	from	the	shell.	Let's	investigate	the	description	attribute	of	the
Story	object	stored	in	our	@story	variable:

(bb)	@story.description

=>	nil

																								

Hmph.	I	wonder	if	we're	passing	description	in	the	params	hash.	Let's	check:

(bb)	params[:story][:description]

=>	nil

																								

As	you	can	see,	this	also	returns	nil:	an	empty	object.	So	as	a	last	resort,	let's	take	a	peek	at
the	full	params	hash,	which	contains	the	values	of	all	the	form	fields	that	have	been	submitted,
no	matter	which	scope	they	reside	in.

The	 section	 highlighted	 in	 Figure	 11-9	 is	 the	 root	 of	 the	 problem.	 As	 you	 can	 see,	 the
description	 is	 indeed	 present	 in	 the	 params	 hash,	 but	 it's	 not	 part	 of	 our	 story.	While	 the
Story's	 name	 and	 link	 attributes	 are	 sitting	 nicely	 together	 in	 the	 params[:story]	 hash,
description	sits	separately	in	params[:description].

Description	is	present,	but	apart

How	 did	 that	 happen?	 If	 we	 look	 at	 our	 form	 template	 (located	 at
app/viewsstoriesnew.html.erb),	 you'll	 see	 that	 I've	 "accidentally"	 used	 the	 wrong	 form
field	helper:

#	Wrong:

<p>

		description:

		<%=	text_area_tag	:description	%>

</p>

																								

Instead	of	going	through	the	FormBuilder	object	that	the	form_for	helper	provides	and	using
the	text_area	 helper,	my	 code	was	 calling	 text_area_tag.	 This	 resulted	 in	 the	 description
becoming	a	separate	entry	in	the	params	hash,	and	our	story	never	received	its	value.	This	is
what	it	should	look	like:

#	Right:

<p>

		description:

		<%=	f.text_area	:description	%>

</p>

																								

Discovering	All	the	Fancy	Tools	in	byebug

Admittedly,	 we	 haven't	 had	 to	 use	 any	 of	 byebug's	 more	 advanced	 features	 to	 debug	 this
example	problem.	But	when	we're	 forced	 to	debug	more	 complicated	 code,	 byebug's	 fancy
features	become	really	handy.

Let's	first	 take	a	look	at	 the	stepping	methods,	which	allow	us	to	step	through	the	code,	one
line	at	a	 time.	To	do	so,	we'll	move	our	byebug	 statement	 into	a	method	 that	contains	more
code	than	the	previous	example,	so	we	can	actually	step	through	each	line.	The	best	candidate
for	 this	 task	 is	 the	 create	 action	 of	 our	 VotesController	 found	 in	 readit-debug-
02/app/controllers/votes_controller.rb.	 Here's	 a	 version	 of	 this	 method	 to	 which	 I've
added	the	byebug	statement	(remember	to	remove	it	from	our	StoriesController):

def	create

		byebug

		@story	=	Story.find(params[:story_id])

		@story.votes.create(user:	@current_user)

		respond_to	do	|format|

				format.html	{	redirect_to	@story,	notice:	'Vote	was	successfully	created.'	}

				format.js

		end

end

																								

To	invoke	the	debugger	 in	 this	new	location,	exit	your	current	debugging	session	using	the
cont	command.	This	will	resurrect	your	stalled	browser	and	enable	you	to	continue	browsing
the	Readit	application.	Select	a	story	from	the	Upcoming	Stories	queue	and	click	the	Vote	for
it	button	to	engage	the	debugger	once	more.

Previously,	we	saw	that	the	list	command	could	give	us	an	indication	of	where	in	the	source
code	our	application	was	currently	paused.	When	it's	paused,	we	can	use	the	next	command	to
advance	to	the	next	line	of	code.	Typing	next	will	display	the	regular	Rails	log	output	for	the
following	line,	then	return	you	to	the	byebug	prompt.	From	here,	you	can	once	again	use	list
to	check	your	new	location	in	the	application,	as	I've	done	in	Figure	11-10.

Using	next	to	advance	one	line	of	code

To	 explore	 the	 methods	 provided	 by	 an	 object	 that	 you're	 curious	 about,	 you	 can	 use	 the
methods	method,	just	as	you	would	in	irb.	When	executed	with	the	optional	i	argument,	it	will
produce	 a	 list	 of	 the	 instance	 methods	 provided	 by	 the	 object	 you	 pass	 to	 it,	 sorted
alphabetically:

(bb)	@story.methods

																								

An	example	using	the	@story	object	is	shown	below.

Using	the	method	command	to	display	an	object's	instance	methods

Setting	Breakpoints	Mid-execution

While	 the	next	 command	can	be	useful	 if	you	know	exactly	where	 to	go	poking	around	 in
your	application,	it	can	be	less	practical	in	a	Rails	application.	The	level	at	which	the	stepping
occurs	can	in	some	circumstances	be	far	too	granular,	resulting	in	stepping	through	multiple
lines	of	core	library	files	instead	of	your	own	code.

To	gain	a	little	more	control	over	where	the	debugger	halts	execution,	you	can	manually	set
breakpoints	 without	 having	 to	 edit	 any	 files	 or	 stop	 the	 server.	 Breakpoints	 can	 be	 set	 by
specifying	either:
	

a	combination	of	filename	and	line	number
a	class	name	and	the	name	of	an	instance	method	or	class	method

As	an	example,	we're	going	to	set	a	manual	breakpoint	a	few	lines	from	the	current	location
(inside	the	create	action	of	VotesController).	We'll	do	all	of	this	without	having	to	open	a	text
editor,	or	step	over	every	line	between	the	current	point	of	execution.

Typing	 list	 at	 our	 current	 position	 (you	 may	 need	 to	 "vote"	 again	 to	 retrieve	 a	 byebug
prompt)	shows:

1:	class	VotesController	<	ApplicationController

2:			before_action	:login_required

3:			def	create

4:					byebug

=>		5:					@story	=	Story.find(params[:story_id])

6:					respond_to	do	|format|

7:							if	@vote	=	@story.votes.create(user:	@current_user)	then

8:									format.html	{	redirect_to	@story,	notice:	'Vote	was	successfully	created.'	}

9:									format.js	{}

10:							end

(byebug)

																								

We	can	manually	set	a	breakpoint	using	the	break	command:

(byebug)	break	app/controllers/votes_controller.rb:7

Successfully	created	breakpoint	with	id	1

(byebug)

																								

By	specifying	the	file	and	line	number,	byebug	creates	a	breakpoint.	It's	worth	noting	that	in
this	 case,	 specifying	 the	 file	 is	 superfluous	 because	 we	 are	 in	 the	 same	 file;	 however,	 I
included	it	for	completeness.

You	can	now	let	go	of	the	current	breakpoint	by	typing	the	continue	command	in	the	byebug
shell.	Execution	will	resume	until	line	7	is	reached,	at	which	point	the	application	will	pause
again,	as	shown	below.

Stopping	at	a	breakpoint	that	was	set	by	specifying	class	and	method	name

A	list	of	active	breakpoints	can	always	be	obtained	via	the	info	breakpoints	command.

Using	the	Rails	Logging	Tool

Rails	comes	with	an	internal	logging	tool	for	writing	custom	event-triggered	entries	to	your
application's	log	file.

While	 logging	 events	 can	 be	 useful	 for	 debugging	 purposes—especially	 in	 a	 production
environment,	where	you	want	to	avoid	scaring	your	users	with	the	output	of	debugging	code
—event	 logging	 can	 also	 be	 of	 general	 interest.	 For	 instance,	 log	 entries	 can	 reveal	 usage
patterns	for	your	application	such	as	the	times	at	which	maintenance	jobs	start	and	end,	or	the
frequency	with	which	external	services	are	accessed.

We'll	use	the	Rails	logging	tool	to	implement	an	access	log	for	our	application:	a	log	of	the
pages	requested	by	users	who	are	logged	in.	While	web	server	logs	allow	for	comprehensive
analysis,	they	lack	any	details	of	the	specific	user	requesting	the	page;	such	information	can
come	 in	 handy,	 either	 to	 the	marketing	 department	 (for	 their	mysterious	 purposes),	 or	 for
when	you're	trying	to	diagnose	a	problem	reported	by	a	particular	user.

To	implement	the	access	log,	we	need	to:
	

1.	 Create	a	call	to	the	Rails	internal	logging	system.

2.	 Place	this	call	in	an	appropriate	location	in	our	application	code	so	that	it's	executed	for
every	 page.	 This	 location	must	 allow	 the	 code	 to	 determine	 whether	 or	 not	 a	 user	 is
logged	in.

We	 have	 a	 location	 that	 meets	 both	 of	 these	 requirements:	 the	 current_user	 before	 filter,
which	lives	in	the	ApplicationController	class.

To	 document	 the	 page	 requests	 of	 our	 users,	 we	 use	 the	 Rails.logger	 object,	 which	 is
available	at	any	point	in	a	Rails	application.	Rails.logger	is	used	to	write	a	new	entry	to	the
environment-specific	log	file.	By	default,	we	operate	in	the	development	environment,	so	the
Rails.logger	 object	 will	 write	 new	 entries	 to	 the	 bottom	 of	 the	 log	 file
log/development.log.

As	with	logging	functionality	in	Java	or	other	platforms,	Rails	logging	can	deal	with	a	variety
of	 severity	 levels.	When	 you	 log	 an	 entry,	 it's	 up	 to	 you	 to	 decide	 how	 severe	 is	 the	 event
you're	logging.	The	most	common	severity	levels	are	debug,	info,	warn,	and	error.	It's	really
up	to	you	how	you	use	each	level.

Each	of	the	Rails	environments	has	different	default	settings	for	the	severity	levels	written	to
the	log	file.	In	the	production	environment,	which	we'll	cover	in	depth	in	the	final	chapter,	the
default	is	the	debug	level.

Here's	 the	 current_user	 action	 in	 app/controllers/application_controller.rb	 with	 an
added	Rails.logger	statement:

def	current_user

		return	unless	session[:user_id]

		@current_user	=	User.where(session[:user_id]).first

	 	 Rails.logger.info	 "#{@current_user.name}	 requested	 #

{request.fullpath}	on	#{Time.now}"

end

																								

EXTRA	CREDIT:	Six	Degrees	of	Severity

There	are	six	severity	levels:	unknown,	fatal,	error,	warn,	info,	and	debug.	We	won't	dig	too
far	into	the	logger,	but	you	can	use	the	Internet	to	learn	more.	This	post	by	Adam	Hawkins	is	a
great	start.

As	 you	 can	 see	 in	 the	 Rails.logger	 call,	 we're	 using	 the	 info	 severity	 level	 to	 log	 these
statements	in	all	environments,	including	production.	Specifying	the	severity	level	is	simply	a
matter	of	calling	the	appropriately	named	instance	method	of	the	logger	object.

The	string	written	 to	 the	 log	file	 is	actually	a	composite	of	 three	Ruby	statements.	First,	we
log	the	value	of	the	name	attribute	for	the	current	user:

Rails.logger.info	 "#{@current_user.name}	 requested	 #

{request.fullpath}	on	#{Time.now}"

																								

Then	we	add	the	URL	that	the	user	requested	(without	the	host	and	port;	you'll	see	an	example
in	a	second),	which	is	available	from	the	request	object	that	Rails	provides:

Rails.logger.info	 "#{@current_user.name}	 requested	 #

{request.fullpath}	on	#{Time.now}"

																								

Lastly,	the	current	date	and	time	are	added	to	the	string:

Rails.logger.info	 "#{@current_user.name}	 requested	 #

{request.fullpath}	on	#{Time.now}"

																								

With	these	details	in	place,	every	page	in	our	application	will	make	an	entry	to	the	application
log	file.	Here's	a	sample	session,	with	all	the	clutter	from	the	development	log	removed:

Started	GET	"/stories"	for	127.0.0.1	at	2016-05-05	13:10:16	-0400

Processing	by	StoriesController#index	as	HTML

User	Load	(0.1ms)		SELECT		"users".*	FROM	"users"	WHERE	"users"."id"	=	?	ORDER	BY	"users"."id"	ASC	LIMIT	?		[["id",	1],	["LIMIT",	1]]

Glenn	Goodrich	requested	stories	on	2016-07-31	14:04:38	-0400

		Rendering	storiesindex.html.erb	within	layouts/application

																								

The	current_user	method	exits	immediately	if	the	current	user	hasn't	logged	in;	as	a	result,
our	 log	 file	 displays	 only	 log	 entries	 from	 pages	 requested	 by	 users	who	were	 logged	 in
when	they	used	Readit.	Of	course,	you	can	customize	log	output	to	your	heart's	content	if	this

http://hawkins.io/2013/08/using-the-ruby-logger/

format	 fails	 to	 suit	 your	needs.	For	 example,	 you	 could	modify	 it	 to	be	more	 readable	 for
humans,	or	more	easily	parsed	by	a	Ruby	script.

Overcoming	Problems	in	Debugging

While	we've	added	a	considerable	number	of	tests	to	our	application	code	so	far,	we	certainly
have	yet	to	cover	every	aspect	of	the	application.

Whenever	you	fix	a	problem	during	the	development	of	your	application,	take	a	moment	to
add	a	test	to	your	test	suite	verifying	that	the	problem	has	been	fixed—just	as	we	did	in	the	last
section.	Following	this	approach	will	ensure	that	you	never	receive	another	bug	report	for	the
same	problem.

Another	approach	is	to	write	a	test	to	verify	the	problem	before	you	attempt	to	fix	it.	This	way,
you	 can	 be	 sure	 that	 as	 long	 as	 your	 test	 fails,	 the	 problem	 still	 exists.	 It's	 up	 to	 you	 to
determine	 your	 own	 approach	 to	 the	 task	 of	 debugging,	 but	 aim	 to	 not	move	on	 from	any
problem	without	having	added	a	new	test	for	it	to	your	test	suite.

Testing	Your	Application	Using	Integration	Tests
The	test	code	that	we've	written	so	far	for	Readit	has	dealt	mostly	with	the	isolated	testing	of
controller	actions	and	model	functionality.	To	test	scenarios	that	involve	multiple	controllers
and	models,	Rails	also	comes	with	a	more	thorough	testing	feature	called	integration	testing.

An	 integration	test	verifies	 the	behavior	of	a	number	of	controllers	and	models	as	a	user
interacts	 with	 the	 application.	 Integration	 tests	 tell	 a	 story	 about	 a	 fictitious	 user	 of	 our
application:	 the	user's	 login	process,	 the	 links	 that	person	 follows,	 and	 the	actions	 taken	by
that	user.	I	briefly	mentioned	integration	tests	in	Chapter	8.	As	of	Rails	5,	all	controller	tests
are	integration	tests	by	default.

Integration	tests	are	aimed	at	testing	behavior	of	a	use	case.	In	some	cases,	a	use	case	may	be
more	 than	 just	one	controller	 action	 (again,	we	did	 this	 for	one	of	our	 chapter	 eight	 tests).
Consider	these	examples:
	

A	visitor	wants	to	submit	a	story,	and	tries	to	access	the	story	submission	form.	As	he	is
yet	to	log	in,	he	is	redirected	to	the	login	form.	Once	logged	in,	he's	presented	with	the
submission	form	and	submits	a	story.
A	given	user	is	the	fifth	user	to	vote	for	a	particular	story.	She	knows	that	the	threshold
for	stories	 to	appear	on	 the	 front	page	 is	 five	votes,	 so	once	she's	voted,	 she	visits	 the
front	page	to	check	that	the	story	just	voted	for	appears	there.
A	user	submits	a	new	story	with	a	number	of	tags.	After	sending	in	her	submission,	she

proceeds	 to	 the	 tag	page	for	a	particular	 tag	used	on	her	submission,	checking	 that	 the
story	does	indeed	appear	in	the	list.

As	you	can	see,	integration	tests	can	be	quite	specific	and	detailed;	writing	Ruby	test	code	to
match	the	level	of	detail	specified	by	the	aforementioned	scenarios	is	perfectly	achievable.

Let's	write	a	slightly	more	involved	integration	test	from	scratch,	shall	we?

Creating	an	Integration	Test

Returning	 to	 our	 rocking	 Readit	 application	 (meaning,	 stop	 using	 the	 readit-debug-0x
versions	we've	been	playing	with	in	this	chapter),	the	first	step	we'll	take	is	to	generate	a	new
integration	test.	Then,	we'll	set	up	a	test	case	to	implement	the	first	of	the	scenarios	that	we	just
discussed:	a	user	who	is	not	logged	in	tries	to	submit	a	story.	This	scenario	will	be	translated
into	Ruby	code.

Every	integration	test	class	is	stored	in	the	readit/test/integration/	directory.	Generate	a
new	integration	test	called	StoriesTest	using	the	Rails	generator.	Can	you	guess	the	syntax?

$	rails	g	integration_test	stories

Running	via	Spring	preloader	in	process	74846

						invoke		test_unit

						create				test/integration/stories_test.rb

																								

As	 you	 can	 see,	 the	 generator	 created	 a	 file	 for	 our	 test	 at
test/integration/stories_test.rb.	Let's	create	a	test	for	our	scenario:

require	"test_helper"

class	StoriesTest	<	ActionController::IntegrationTest

		test	"story	submission	with	login"	do

				get	new_story_path

				assert_response	:redirect

				follow_redirect!

				assert_response	:success

				post	session_path,	params:	{

						email:	'glenn.goodrich@sitepoint.com',	password:	'sekrit'

				}

				follow_redirect!

				assert_response	:success

				post	stories_path,	params:	{

						story:	{

								name:	'Submission	from	Integration	Test',

								link:	'http://test.com/'

						}

				}

				assert_response	:redirect

				follow_redirect!

				assert_response	:success

		end

end

																								

On	 the	 surface,	 this	 resembles	 a	 regular	 functional	 test:	 the	 test	 performs	 an	 action,	 then
asserts	that	the	results	of	that	action	are	as	expected.	In	this	case,	the	first	action	is	to	request	a
page;	the	test	then	verifies	that	the	response	code	and	the	template	used	to	render	the	page	are
as	expected,	then	continues	with	the	rest	of	its	actions.

However,	 instead	 of	 the	 get	 and	 post	 calls	 being	 based	 on	 specific	 controllers	 and	 their
respective	 actions,	 page	 requests	 in	 an	 integration	 test	 take	 standard	URLs	 (we	use	 the	path
helpers	that	come	with	Rails	routes).	Why?	Well,	an	integration	test	such	as	this	doesn't	test	a
controller	 in	 complete	 isolation	 from	 its	 environment.	 Instead,	 it	 views	 the	 application	as	 a
whole,	so	other	elements	of	the	application–such	as	routing	and	the	handover	of	control	from
one	controller	 to	 another–are	 tested	as	well.	The	 first	 step	of	our	 test	 is	 to	 request	 the	new
Story	form	by	using	the	appropriate	URL	and	testing	the	response:

get	new_story_path

		assert_response	:redirect

		follow_redirect!

																								

At	 this	 point,	 the	 test	 assumes	 that	 a	 redirect	was	 issued	 after	 the	 last	get	 call,	which	we're
asserting	using	assert_response.	It	also	assumes	that	the	URL	to	which	a	user	is	redirected—
the	story	submission	page—is	followed	in	the	test.	This	introduces	another	new	tidbit	in	this
test	code:	the	follow_redirect!	statement.

Other	than	that,	the	test	consists	of	plain	old	functional	test	code.

Running	an	Integration	Test

Let's	 run	 this	 test	 to	 make	 sure	 it	 passes	 as	 expected.	 As	 with	 model	 and	 controller	 tests,
integration	tests	are	run	with	a	rails	command:

$	rails	test:integration

																								

Integration	tests	are	executed	along	with	your	unit	and	functional	tests	when	running	the	rails
test	command.	Here's	the	outcome	of	our	test:

$	rails	test:integration

Running	via	Spring	preloader	in	process	84542

Run	options:	--seed	59044

#	Running:

.

Finished	in	0.395582s,	2.5279	runs/s,	20.2234	assertions/s.

1	runs,	5	assertions,	0	failures,	0	errors,	0	skips

																								

As	you	can	see	from	this	basic	example,	an	integration	test	gives	you	the	assurance	that	your
application	 behaves	 independently	 of	 your	 functional	 and	 unit	 tests,	 and	 that	 all	 of	 your
application's	components	are	put	through	their	paces	in	an	automated	manner.

Using	Breakpoints	in	a	Test
Just	as	we	used	byebug	to	jump	into	the	running	application	at	a	predefined	point,	we	can	also
jump	into	the	application	from	within	a	test.	This	technique	can	be	useful	for	determining	why
a	test	is	failing,	or	for	gaining	insight	into	the	resources	available	when	we're	writing	tests.

Using	breakpoints	in	tests	is	equally	as	straightforward	as	using	them	in	regular	development
mode:	place	the	byebug	statement	at	the	point	at	which	you	want	execution	to	halt.	Just	as	it	did
in	development,	when	you're	using	breakpoints	in	tests,	byebug	presents	you	with	the	byebug
console	as	soon	as	a	byebug	statement	is	encountered.

Here's	an	example	of	a	breakpoint	in	action.	I	added	a	breakpoint	to	the	integration	test	that	we
built	in	the	previous	section	(stored	in	test/integration/stories_test.rb):

class	StoriesTest	<	ActionController::IntegrationTest

		test	"story	submission	with	login"

				get	new_story_path

				byebug

				⋮	test	method	body…

		end

end

																								

Fixing	the	Gemfile

Don't	 forget	 the	 Gemfile	 platform:	 "mri"	 issue	 that	 we	 ran	 into	 earlier	 in	 this	 chapter.
Remember,	that	was	in	a	different	folder	and	so	you	may	have	to	do	it	again.

Let's	 run	 our	 suite	 of	 integration	 tests	 using	 the	 command	rails	 test:integration.	We're
presented	with	the	byebug	console	immediately	after	 the	new	session	has	been	created—just
after	 the	 test	 requests	 the	 submission	 form	 for	 the	 first	 time.	 At	 this	 point,	 we're	 free	 to
explore	 the	environment;	below	are	examples	of	 the	characteristics	of	our	code	 that	can	be
revealed	using	the	console.

First,	let's	look	at	the	cookies	that	have	been	set	for	the	user	that	the	test	is	impersonating:

(byebug)	cookies	

=>	 #

<Rack::Test::CookieJar:0x007fb6b2cfa880	@default_host="www.example.com",	@cookies=

[#

<Rack::Test::Cookie:0x007fb6b1fdd210	@default_host="www.example.com",	@name_value_raw="

{"path"=>"/",	"HttpOnly"=>nil,	"domain"=>"www.example.com"}>]>

																								

At	the	point	at	which	the	debugger	appears,	the	user	has	yet	to	log	in,	so	no	user_id	value	has
been	stored	in	the	user's	session:

(byebug)	session[:user_id]

=>	nil

																								

We	can	 log	 in	with	 the	 same	 statement	 used	 by	 our	 test	 a	 few	 lines	 down;	 the	 return	 value
shown	 here	 is	 the	 numeric	HTTP	 response	 code	 for	 a	 redirect	 (which	 happens	 to	 be	302).
Enter	this	all	on	one	line:

(byebug)	post	session_path,	params:	{	email:	'glenn.goodrich@sitepoint.com',	password:	'sekrit'	}

=>	302

																								

The	user's	session	now	contains	a	user_id	value,	as	this	code	and	Figure	11-13	show:

irb>	session[:user_id]

=>	885306178

																								

A	breakpoint	used	in	a	test

Once	 again,	 byebug	 can	 be	 a	 great	 time	 saver	 if	 you	 need	 to	 explore	 the	 environment
surrounding	an	action	in	order	to	write	better	and	more	comprehensive	tests.	Without	using
breakpoints,	 exploring	 the	 environment	 would	 only	 be	 possible	 in	 a	 limited	 fashion;	 for
example,	by	placing	lots	of	puts	statements	 in	your	 tests	 to	output	debugging	messages	and
rerunning	them	countless	times	for	the	information	you	need.	Yes,	it	is	every	bit	as	laborious
as	it	sounds.

With	 the	 breakpoints	 provided	 by	 byebug,	 however,	 you	 can	 interact	 with	 your	 models	 as
your	application	is	being	run	without	modifying	huge	chunks	of	code.	This	process	couldn't
be	easier,	which	means	the	barriers	to	writing	tests	are	reduced	even	further.

Revisiting	the	Rails	Console
We've	used	the	rails	console	command	frequently	 in	previous	chapters,	mainly	 to	explore
features	as	they	were	being	introduced.

The	console	can	also	be	used	to	play	with	your	application	in	headless	mode.	"Headless",	in
this	context,	means	you	can	interact	with	your	application	from	the	console	just	as	a	browser
would	interact	with	it.	Using	headless	mode,	you	can	issue	requests	like	a	browser	and	see	the
response,	 including	status	codes	(200,	404,and	so	on)	and	 the	rendered	view.	 In	conjunction
with	 breakpoints	 in	 tests	 (covered	 in	 the	 last	 section),	 this	 technique	 can	 be	 a	 good	way	 to
explore	 your	 application,	 in	 the	 anticipation	 of	 creating	 a	 new	 integration	 test	 once	 you've
worked	out	what	you	want	to	do.

When	 the	 integration	 test	 was	 introduced	 to	 Rails,	 it	 came	 with	 a	 new	 object	 available	 by
default	 in	 the	 console:	 the	app	 object.	This	 object	 can	 be	 thought	 of	 as	 providing	 you	with
access	 to	 an	 empty	 integration	 test.	 You're	 able	 to	 GET	 and	 POSTto	 URLs,	 and	 you	 have
access	to	the	session	and	cookies	containers,	routing	helpers,	and	so	on—just	like	a	regular
integration	test.

Let's	 try	using	 the	app	 object	 from	 the	console.	You	 should	 recognize	a	 lot	of	 the	methods
we're	using	here	from	the	integration	test	that	we	built	earlier	in	this	chapter.

Go	ahead	and	open	the	Rails	console	(rails	c).	Initially,	we're	interested	to	know	what	kind
of	object	app	really	is:

>>	app.class

=>	ActionDispatch::Integration::Session

																								

Next,	let's	fetch	the	front	page	of	our	application	using	the	get	action:

>>	app.get	'/'

...Lots	of	output...

=>	200

																								

The	 return	value	 is	 the	HTTP	response	code	 that	 indicates	a	 successful	page	 request.	We've
been	using	the	:success	symbol	in	its	place	in	most	of	our	tests	until	now.

Now	we'll	check	to	see	what	the	current	controller	is:

>>	app.controller

=>	StoriesController

																								

Cool!	That's	what	we'd	expect.	So	can	we	dig	around	and	see	 if	 the	controller	assigned	our

stories	to	the	view?	We	can!	Granted,	I	had	to	dig	around	to	find	the	right	method,	but	here	it
is:

>>	app.controller.view_assigns["stories"].size

=>	2

																								

If	we	try	to	fetch	the	story	submission	form,	we	receive	a	redirect	(HTTP	code	302),	as	we're
yet	to	be	logged	in:

>>	app.get	'storiesnew'

=>	302

																								

When	we	receive	the	redirect,	we	can	look	at	the	URL	that	the	redirect	is	pointing	to	by	using
the	following	construct:

>>	app.response.redirect_url

=>	"http://www.example.comsessionnew"

																								

It's	easy	to	follow	the	redirect	that	was	just	issued	using	the	follow_redirect!	method:

>>	app.follow_redirect!

=>	200

																								

We	 can	 also	 use	 the	 post	 method	 to	 log	 in	 with	 an	 email	 and	 password,	 and	 follow	 the
resulting	 redirect;	 however,	 Rails	 imposes	 security-related	 restrictions	 on	 who	 can	 talk	 to
your	application,	even	in	the	development	environment.	For	that	reason,	we	need	to	explicitly
switch	 off	 a	 feature	 called	 “request	 forgery	 protection,”	 in	 order	 to	 allow	 the	 following
statement	 to	 succeed:See	 https://en.wikipedia.org/wiki/Cross-site_request_forgery	 for	 more
information	about	this	security	issue.

>>	ApplicationController.allow_forgery_protection	=	false

=>	false

																								

Now	it's	time	to	log	ourselves	in:

>>	app.post	'/session',	params:	{	email:	'glenn.goodrich@sitepoint.com',

➥				password:	=>	'sekrit'}
=>	302

>>	app.follow_redirect!

=>	200

																								

Note	 that	 we	 didn't	 look	 at	 the	 app.response.redirect_url	 before	 we	 accepted	 the
redirection.	Here's	how	you	can	check	the	last	URL	you	requested:

>>	app.request.original_fullpath

=>	"storiesnew"

																								

As	 it's	 an	 integration	 test,	 after	 all,	 headless	 mode	 also	 provides	 you	 with	 access	 to	 the
session	and	cookies	variables:

>>	app.cookies	

	 =>	 #

<Rack::Test::CookieJar:0x007ff5680f2548	@default_host="www.example.com",	@cookies=

[#

<Rack::Test::Cookie:0x007ff56187fb50	@default_host="www.example.com",	@name_value_raw="/readit/session=WmJIV...707",	@name="/readit/session",	@value="WmJIV...707",	@options=

{"path"=>"/",	 "HttpOnly"=>nil,	 "domain"=>"www.example.com"}>,	 #

<Rack::Test::Cookie:0x007ff56183d020	@default_host="www.example.com",	@name_value_raw="request_method=",	@name="request_method",	@value="",	@options=

{"path"=>"/",	 "max-

age"=>"0",	"expires"=>"Thu,	01	Jan	1970	00:00:00	-0000",	"domain"=>"www.example.com"}>]>

>>	app.session[:user_id]

=>	1

																								

As	you	can	see,	headless	mode	is	a	great	tool	for	checking	out	the	possible	ways	in	which	you
might	develop	an	integration	test.	Once	you're	satisfied	with	your	findings,	open	up	your	text
editor	and	transform	your	console	results	into	an	automated	test.	Easy!

A	Brief	Introduction	to	Pry
The	 debugging	 and	 introspection	 tools	 that	 come	 "out	 of	 the	 box"	 with	 Rails	 are	 great.	 I
remember	when	 I	was	 first	 using	Rails	 and	 realized	 I	 could	open	up	 the	Rails	 console	 and
execute	my	application	 code–it	was	 a	 game	 changer.	The	Rails	 console	 is	 incredible,	 and	 I
can't	 imagine	 writing	 an	 application	 without	 it;	 however,	 there	 is	 always	 room	 for
improvement.	Enter	Pry.

Pry	is	"a	powerful	alternative	to	the	standard	IRB	shell".	It	takes	introspection	to	the	next	level,
and	then	keeps	going.	When	using	Pry,	you	can:
	

change	the	current	context	as	if	you	are	changing	a	directory	at	a	command	prompt
search	your	command	history
edit	Ruby	files	in	place,	and	have	those	changes	loaded	automatically
list	the	methods	and	constants	for	a	given	object	or	class	very	easily

That's	 just	 the	 very	 beginning	 of	 what	 Pry	 can	 do.	 Furthermore,	 it	 has	 a	 robust	 plugin
architecture	 resulting	 in	numerous	plugins	 that	make	Pry	even	better.	One	of	 those	plugins,

http://pryrepl.org/

pry-rails,	replaces	the	current	Rails	console	with	a	Pry	REPL.

Nerd	Words

REPL	stands	for	read–eval–print	loop,	which	is	the	nerd	name	for	items	such	as	irb,	the	Rails
console,	and	Pry.

Let's	add	pry-rails	to	Readit	and	play	around	with	some	of	the	basic	features	of	Pry.	Add	gem
'pry-rails'	to	the	block	in	the	Gemfile	that	also	contains	byebug:

group	:development,	:test	do

		gem	'byebug'

		gem	'pry-rails'

end

																								

Run	bundle	install	to	add	pry-rails	to	the	bundle.	That's	it–now	we're	cooking	with	Pry.

The	 pry-rails	 gem	 replaces	 the	 Rails	 console	 with	 a	 Pry	 console.	 If	 you	 fire	 up	 a	 Rails
console	using	rails	c,	you'll	see	a	new	prompt:

$	rails	c

[1]	pry(main)>

																								

All	of	 the	commands	 that	work	 in	 the	standard	Rails	console	still	work	 in	Pry.	But	now	we
have	 even	 more	 awesome	 toys!	 Grab	 the	 first	 story,	 and	 we'll	 use	 some	 of	 Pry's	 tools	 to
navigate	around	and	through	the	object:

[1]	pry(main)>	s	=	Story.first

=>	#<Story:0x007fd72a3df6e0

	id:	2,

	name:	"SitePoint	Forums",

	link:	"http://community.sitepoint.com",

	created_at:	Sun,	13	Mar	2016	14:47:48	UTC	+00:00,

	updated_at:	Wed,	27	Apr	2016	16:48:55	UTC	+00:00,

	user_id:	1,

	votes_count:	8,

	description:	nil>

																								

Right	 off	 the	 bat,	 we	 see	 Pry	 making	 life	 a	 bit	 better.	 Our	 story	 is	 formatted	 much	 more
cleanly	than	in	the	Rails	console	and	it	includes	some	nice	color-formatted	text.	Let's	change
the	current	scope	to	that	story:

[2]	pry(main)>	cd	s

[3]	pry(#<Story>):1>

																								

So	what	just	happened?	Well,	the	prompt	changed	to	indicate	that	our	current	scope	is	a	Story
object.	The	cd	 command	went	 into	 the	 story.	 I	 can	 prove	 it	 by	 typing	 the	 name	 of	 a	 Story
attribute:

[3]	pry(#<Story>):1>	link

=>	"http://community.sitepoint.com"

																								

See,	I	didn't	have	to	type	s.link,	just	link.	That's	because	the	current	scope	is	s,	the	variable
holding	our	story.	Watch	this:

[4]	pry(#<Story>):1>	ls

								ActiveRecord::Core#methods:

										<=>		==		connection_handler		encode_with		eql?		freeze		frozen?		hash		init_with		inspect		pretty_print		readonly!		readonly?		slice

				ActiveRecord::Persistence#methods:

						becomes			decrement			delete				destroyed?		increment!			persisted?		toggle!		update!											update_attributes			update_column

						becomes!		decrement!		destroy!		increment			new_record?		toggle						update			update_attribute		update_attributes!		update_columns

				ActiveRecord::Scoping#methods:	initialize_internals_callback		populate_with_current_scope_attributes

				ActiveRecord::Sanitization#methods:	quoted_id

				ActiveRecord::AttributeAssignment#methods:	assign_attributes		attributes=

				ActiveModel::Conversion#methods:	to_model		to_partial_path

				ActiveRecord::Integration#methods:	cache_key

				ActiveModel::Validations#methods:	errors		invalid?		read_attribute_for_validation		validates_with

				ActiveSupport::Callbacks#methods:	run_callbacks

				ActiveModel::Validations::HelperMethods#methods:

						validates_absence_of					validates_confirmation_of		validates_format_of					validates_length_of								validates_presence_of

						validates_acceptance_of		validates_exclusion_of					validates_inclusion_of		validates_numericality_of		validates_size_of

								...

																								

Whoa!	That	was	a	ton	of	stuff	for	such	a	little	command.	As	you	may	have	guessed,	ls	 lists
the	methods	and	variables	for	the	current	scope	that	is	our	story.	I	bet	you	had	no	idea	that	our
little	 story	 had	 so	 many	 methods.	 Obviously,	 most	 of	 these	 methods	 are	 inherited	 from
ActiveRecord.	The	ls	command	takes	flags	to	help	pare	down	the	output.	For	example,	if	you
just	want	the	instance	and	class	variables	for	the	current	object,	use	ls	-i:

[5]	pry(#<Story>):1>	ls	-i

instance	variables:

		@_start_transaction_state		@association_cache		@destroyed																	@marked_for_destruction		@readonly											@txn

		@aggregation_cache									@attributes									@destroyed_by_association		@new_record														@transaction_state

class	variables:

		@@configurations															@@logger																			@@raise_in_transactional_callbacks		@@timestamped_migrations

		@@default_timezone													@@maintain_test_schema					@@schema_format

		@@dump_schema_after_migration		@@primary_key_prefix_type		@@time_zone_aware_attributes

																								

If	you	want	 to	 learn	about	an	object	and	 its	methods	and	variables,	using	Pry	 in	 this	way	 is
invaluable.	 We	 can	 even	 see	 the	 source	 of	 the	 methods.	 Remember	 how	 we	 changed	 the
to_param	 method	 to	 make	 our	 URLs	more	 friendlier?	 Type	 show-method	 to_param	 to	 see
exactly	what	we	did:

[6]	pry(#<Story>):1>	show-method	to_param

From:	Usersggoodrich/projects/sitepoint/readitappmodels/story.rb	@	line	13:

Owner:	Story

Visibility:	public

Number	of	lines:	3

def	to_param

		"#{id}-#{name.gsub(/\W/,	'-').downcase}"

end

																								

To	return	to	the	main	context,	simply	type	cd	...	If	you've	ever	used	a	command	prompt,	cd
should	make	perfect	sense	to	you.

I	 could	 spend	 all	 day	going	 through	 the	 features	 of	Pry	but,	 alas,	we	must	move	on.	 I	will
show	you	one	more	trick.	You	can	easily	access	the	ri	documentation	from	Pry:

[6]	pry(main):1>	ri	Array

Array	<	Object

--

Includes:

Enumerable	(from	ruby	site)

(from	ruby	site)

--

Arrays	are	ordered,	integer-indexed	collections	of	any	object.

...

																								

If	you've	loaded	the	ri	documentation,	it's	super	easy	to	read	it	from	Pry.

That's	some	of	what	Pry	offers,	but	there's	so	much	more.	You	know	what	that	means	...

Exploring	Pry

There	 are	 some	great	 screencasts	 on	 the	Pry	website,	 as	well	 as	 articles	 on	 using	Pry	with
Ruby	and	Pry	with	Rails	at	SitePoint.	Check	them	out,	and	you'll	be	very	glad	you	did.

If	you	want	 to	go	back	to	 the	standard	Rails	console	(but	I'd	have	to	ask:	why	would	you?),

http://pryrepl.org
http://www.sitepoint.com/rubyists-time-pry-irb/
http://www.sitepoint.com/pry-friends-rails/

simply	remove	pry-rails	from	the	Gemfile	and	run	bundle	install.

Benchmarking	Your	Application

As	software	developers,	it's	our	job	to	know	which	part	of	our	application	is	doing	what.	That
way,	when	an	error	arises,	we	can	jump	right	in	and	fix	it.	On	the	other	hand,	knowing	how
long	 each	 part	 of	 our	 application	 is	 taking	 to	 perform	 its	 job	 is	 a	 completely	 different
scenario.

Benchmarking	 in	software	terms	is	 the	process	of	measuring	an	application's	performance,
and	taking	steps	to	improve	it	based	on	that	initial	measurement.	The	benchmarking	process
usually	involves	profiling	the	application—monitoring	it	to	determine	where	bottlenecks	are
occurring—before	any	changes	are	made	to	improve	the	application's	performance.

While	 I	 won't	 cover	 the	 profiling	 and	 benchmarking	 of	 a	 Rails	 application	 in	 every	 gory
detail	 (it's	 a	 topic	 to	 which	 an	 entire	 book	 could	 easily	 be	 devoted),	 I'll	 give	 you	 an
introduction	 to	 the	 tools	 that	 are	 available	 for	 the	 job.	 Keep	 in	 mind	 that	 your	 first	 Rails
application	is	unlikely	to	have	performance	problems	in	 its	early	stages.	The	objective	with
your	 first	 application	 (or	 at	 least	 the	 first	version	 of	 your	 application)	 should	be	 to	 get	 the
functionality	right	the	first	time;	then	you	can	worry	about	making	it	fast.

Taking	Benchmarks	from	Log	Files
When	 it's	 running	 in	 development	 and	 testing	 modes,	 Rails	 provides	 a	 variety	 of
benchmarking	 information	 in	 its	 log	files,	as	we	saw	briefly	 in	Chapter	6.	For	each	request
that's	 served	 by	 the	 application,	 Rails	 notes	 all	 of	 the	 templates	 rendered,	 database	 queries
performed,	and	total	time	taken	to	serve	the	request.

Let's	examine	a	sample	request	to	understand	what	each	of	the	log	entries	mean.	This	example
deals	with	a	request	for	the	Readit	home	page:

Started	GET	"/stories"	for	127.0.0.1	at	2016-05-06	08:11:11	-0400

Processing	by	StoriesController#index	as	HTML

																								

These	 lines	represent	 the	start	of	 the	block	of	 logging	for	a	single	page	request.	 It	 includes
the:
	

names	of	the	controller	and	action
IP	 address	 of	 the	 client	 requesting	 the	 page	 (127.0.0.1	 being	 the	 equivalent	 of
localhost)
time	of	the	request

request	method	used	(GET	in	this	case)
format	requested	(HTML)

The	 next	 entries	 in	 our	 sample	 log	 file	 correspond	 to	 database	 queries	 issued	 by	 the
application.	 Each	 entry	 lists	 the	 time	 (in	 seconds)	 that	 the	 application	 took	 to	 execute	 the
query,	as	well	as	the	SQL	used.	Here's	a	snippet

User	Load	(0.3ms)		SELECT		"users".*	FROM	"users"	WHERE	(1)		ORDER	BY	"users"."id"	ASC	LIMIT	1

			(0.3ms)		SELECT	COUNT(*)	FROM	"stories"	WHERE	(votes_count	>=	5)

		Story	Load	(0.1ms)		SELECT	"stories".*	FROM	"stories"	WHERE	(votes_count	>=	5)		ORDER	BY	id	ASC

		User	Load	(0.2ms)		SELECT		"users".*	FROM	"users"	WHERE	"users"."id"	=	?	LIMIT	1		[["id",	1]]

		ActsAsTaggableOn::Tag	Load	(1.2ms)		SELECT	"tags".*	FROM	"tags"	INNER	JOIN	"taggings"	ON	"tags"."id"	=	"taggings"."tag_id"	WHERE	"taggings"."taggable_id"	=	?	AND	"taggings"."taggable_type"	=	?	AND	(taggings.context	=	'tags'	AND	taggings.tagger_id	IS	NULL)		[["taggable_id",	2],	["taggable_type",	"Story"]]

		CACHE	(0.0ms)		SELECT		"users".*	FROM	"users"	WHERE	"users"."id"	=	?	LIMIT	1		[["id",	1]]

		ActsAsTaggableOn::Tag	Load	(0.1ms)		SELECT	"tags".*	FROM	"tags"	INNER	JOIN	"taggings"	ON	"tags"."id"	=	"taggings"."tag_id"	WHERE	"taggings"."taggable_id"	=	?	AND	"taggings"."taggable_type"	=	?	AND	(taggings.context	=	'tags'	AND	taggings.tagger_id	IS	NULL)		[["taggable_id",	3],	["taggable_type",	"Story"]]

																								

In	 the	 first	of	 these	 log	entries,	Rails	has	asked	 the	database	 for	 stories	 (and	 their	users)	 to
display	 on	 the	 front	 page.	 The	 last	 few	 queries	 represent	 requests	 made	 by	 the
acts_as_taggable_on	plugin	to	retrieve	all	tags	for	a	particular	story.

Each	of	the	following	lines	correspond	to	a	rendered	template;	when	Rails	renders	a	layout
template,	it	explicitly	says	so	by	logging	within:

Rendered	stories/_story.html.erb	(52.8ms)

Rendered	stories/index.html.erb	within	layouts/application	(63.4ms)

																								

A	summary	entry	appears	at	the	end	of	each	page	request:

Completed	200	OK	in	325ms	(Views:	278.9ms	|	ActiveRecord:	3.1ms)

																								

This	 summary	 contains	 totals	 for	 the	 time	 spent	 by	 each	 of	 the	 areas	 of	 the	 application
responsible	for	serving	the	request.	Rails	tells	us	the	amount	of	time	that	was	spent	rendering
templates	and	talking	to	the	database	(both	listed	in	milliseconds).

You	don't	need	to	be	a	mathematician	to	figure	out	that	a	whopping	43	milliseconds	is	missing
from	 these	 numbers.	One	 reason	 for	 this	 difference	 is	 that	 serving	 the	 request	 took	 only	 a
couple	 of	milliseconds.	These	 numbers	 come	 from	my	 version	 of	Readit,	which	 is	 quite	 a
small	application,	and	the	benchmark	calculation	struggles	when	calculating	time	information
using	such	small	numbers.	In	the	meantime,	Figure	11-14	shows	the	log	file	from	a	complete
page	request.

For	all	the	comfort	and	speed	that	Rails	provides	developers,	it	does	have	its	drawbacks.	The
framework	certainly	 requires	a	 large	amount	of	CPU	time	 in	order	 to	make	your	 life	easy,
which	is	another	explanation	for	the	missing	milliseconds	in	the	previous	timing	calculation;

however,	the	good	news	is	that	your	framework's	overhead	won't	necessarily	increase	as	your
code	becomes	more	complicated.	With	 larger	applications,	 these	numbers	do	become	more
accurate.

Benchmarking	information	in	the	log	file

In	any	case,	 it's	 important	 to	 look	at	your	 log	 files	every	now	and	 then	 to	assess	how	your
application	 is	performing.	As	I	cautioned,	 take	 these	numbers	with	a	grain	of	salt—learn	 to
interpret	 them	 by	 changing	 your	 code	 and	 comparing	 the	 new	 numbers	 with	 previous
incarnations	of	 the	code.	This	will	help	you	develop	a	feel	for	how	your	changes	affect	 the
speed	of	your	application.	You	should	not,	however,	use	them	as	absolute	measures.

Manual	Benchmarking
While	the	default	information	presented	by	the	Rails	log	files	is	great	for	an	overview	of	how
long	 a	 certain	 action	 takes,	 the	 log	 files	 cannot	 provide	 timing	 information	 for	 a	 specific
group	of	code	statements.	For	this	purpose,	Ruby	provides	the	Benchmark	module,	which	can
be	wrapped	around	any	block	of	code	that	you'd	like	to	benchmark.

As	an	example,	let's	add	benchmarking	information	for	the	story	fetcher	implemented	in	the
fetch_stories	 method	 of	 our	 StoriesController	 class.	 It's	 located	 in
app/controllers/stories_controller.rb:

class	StoriesController	<	ApplicationController

		⋮	class	methods…

		def	fetch_stories(conditions)

				results	=	Benchmark.measure	do		

						@stories	=	Story.where(conditions).order("id	ASC")

				end

				Rails.logger.info	results

		end

end

																								

As	you	can	see,	the	Benchmark	class	includes	a	class	method	called	measure	that	simply	wraps
around	the	Story.where	statement:

results	=	Benchmark.measure	do

		⋮	code	being	benchmarked…

end

																								

The	result	of	the	measure	method	is	saved	in	a	results	variable	that	we	then	write	to	the	log
file:

Rails.logger.info	results

																								

When	you	request	Readit's	front	page	or	upcoming	stories	queue	now	(both	pages	make	use
of	 the	 fetch_stories	 method	 we	 just	 modified),	 you	 should	 find	 that	 the	 corresponding

benchmark	entries	are	added	to	the	log	file	at	log/development.log:

Started	GET	"/stories"	for	127.0.0.1	at	2016-05-06	08:39:05	-0400

Processing	by	StoriesController#index	as	HTML

		User	Load	(0.1ms)		SELECT		"users".*	FROM	"users"	WHERE	(1)		ORDER	BY	"users"."id"	ASC	LIMIT	1

		0.010000			0.000000			0.010000	(0.005202)

...

																								

Using	manual	benchmarks	 in	 this	way	gives	you	an	 idea	of	 the	amount	of	 time	 required	 to
execute	 certain	 parts	 of	 your	 code.	 Additionally,	 Benchmark	 has	 several	 methods	 for
measuring	blocks	of	code,	which	leads	to	...

EXTRA	CREDIT:	Master	the	Art	of	Benchmarking

Take	 a	 look	 at	 the	 Benchmark	 module	 in	 the	 Ruby	 documentation.	 Use	 one	 of	 its	 other
methods	to	measure	code	in	Readit.	Become	a	benchmarking	wizard.

Summary

In	 this	 chapter,	we've	 dealt	with	 some	 of	 the	 less	 glamorous—but	 very	 helpful—aspects	 of
software	 development.	 We	 used	 debug	 statements	 to	 inspect	 certain	 objects	 in	 our	 views,
created	a	web	console	on	the	page	to	execute	Ruby	commands	in	the	application,	utilized	the
log	files	written	by	Rails	 to	document	certain	occurrences	 in	Readit,	and	 looked	at	how	the
byebug	tool	can	be	employed	to	set	breakpoints	and	explore	our	application	at	runtime.

We	also	covered	the	topic	of	integration	tests—broad	scenario-based	tests	that	have	the	ability
to	go	beyond	the	isolated	testing	of	models	and	controllers.

Finally,	we	talked	briefly	about	the	benchmarks	that	Rails	provides	by	default,	and	explored	a
manual	approach	to	benchmarking	a	specific	group	of	statements.

In	the	next	and	final	chapter,	we'll	 take	Readit	 into	production	mode	and	discuss	 the	options
available	for	deploying	a	Rails	application	for	the	whole	world	to	use!

http://ruby-doc.org/stdlib-2.2.0/libdoc/benchmark/rdoc/Benchmark.html

Chapter	12:	Deployment	and	Production	Use
When	Rails	applications	start	to	fledge,	as	their	guardian	you	have	to	take	extra	care	to	make
sure	they	can	fly.	Admittedly,	though,	the	term	“roll”	would	be	more	appropriate	in	the	Rails
context!

In	 this	 final	 chapter,	 we'll	 review	 the	 variety	 of	 components	 involved	 in	 the	 process	 of
deploying	a	Rails	application	to	a	production	system.	Following	that,	we'll	look	at	fine-tuning
an	application's	deployment	so	that	it's	able	to	cope	with	a	moderate	amount	of	traffic.

The	Implications	of	“Production”

Back	in	Chapter	4,	we	discussed	the	different	environments	Rails	provides	for	each	stage	of
an	 application's	 life	 cycle.	Yet	we	 barely	 scratched	 the	 surface	 of	what	 it	means	 to	 flip	 the
switch	between	the	development	and	production	environments.

In	a	nutshell,	moving	to	the	production	environment	results	in	four	major	changes	to	the	way
in	which	our	application	is	run:
	

The	 Ruby	 classes	 that	 make	 up	 your	 application	 are	 no	 longer	 reloaded	 on	 each
request.	This	means	that	Ruby's	reloading	of	each	class	on	each	request	is	a	nice	feature
of	 the	development	 environment	 because	 it	 allows	you	 to	make	 rapid	 changes	 to	your
application	 code	 and	 see	 the	 effects	 immediately;	 however,	when	 your	 application's	 in
production	 mode,	 the	 primary	 requirement	 is	 that	 it	 is	 fast,	 which	 is	 impossible	 to
accomplish	when	reloading	Ruby	classes	over	and	over	again.	To	gain	the	effects	of	any
changes	you	make	to	code	while	the	application's	in	production	mode,	you	need	to	restart
the	application.
Your	application's	users	receive	short,	helpful	error	messages;	they're	not	presented
with	the	stack	trace.	Obviously,	the	beautifully	detailed	stack	trace	that	you	investigate
when	you	find	an	error	in	your	code	is	not	what	you	want	users	of	your	application	to
see.	 Fear	 not!	 Rails	 never	 throws	 stack	 traces	 at	 users	 while	 it's	 in	 production	 mode.
Instead,	you	can	use	the	Exception	Notification	gem	to	dispatch	an	email	to	the	system's
administrators,	notifying	them	of	a	potential	problem	in	the	code.	The	email	includes	the
same	detailed	stack	trace	you'd	see	in	your	browser	if	you	were	still	in	development.	In
fact,	 the	Exception	Notification	gem	has	many	notifiers,	 including	HipChat,	Slack,	 and
Webhooks	in	addition	to	email.	With	the	error	notification	dealt	with,	you	can	simply	use
a	generic	error	page	within	your	application	informing	users	that	an	error	has	occurred
and	the	administrators	have	been	notified.

EXTRA	CREDIT:	Utilizing	External	Gems

https://github.com/smartinez87/exception_notification

Using	 the	 procedure	 to	 pull	 in	 an	 external	 gem–as	 we	 did	 in	 Chapter	 10–add	 the
Exception	Notification	gem	to	Readit	and	configure	it	for	your	needs

Caching	 is	 available	 for	 pages,	 actions,	 and	 page	 fragments.	 To	 improve	 the
performance	of	your	application,	you	can	cache	its	pages,	actions,	and	even	fragments	of
pages.	This	means	that	the	fully	rendered	page	(or	fragment)	is	written	to	the	file	system,
as	well	as	being	displayed	in	the	user's	browser.	The	next	request	that's	responded	to	by
this	 page,	 action,	 or	 fragment	 is	 served	without	 the	 data	 that	 it	 contains	 needing	 to	 be
recalculated.	 Rails'	 caching	 features	 are	 especially	 useful	 in	 situations	 in	 which	 your
pages	have	no	user-specific	content,	and	everyone	sees	the	same	pages.
Rails	 expects	 your	 static	 assets	 to	 be	 "precompiled".	 Rails	 expects	 you	 to	 be	 smart
about	your	static	assets	(JavaScript,	CSS	files,	and	so	on)	and	compile	them	into	single
files	 per	 resource	 type.	 For	 example,	 all	 of	 the	 JavaScript	 files	 referenced	 in	 the
appassetsjavascripts/application.js	manifest	file	should	be	available	as	a	single	file
in	production.	Otherwise,	 the	browser	will	make	a	call	per	file,	which	is	expensive.	It's
the	same	for	the	CSS	files	and	applicaion.css.	Additionally,	Rails	wants	you	 to	digest
the	single	JavaScript	and	CSS	files,	which	makes	them	much	more	cachable.	We'll	cover
more	on	 this	process	 later	 in	 the	chapter,	but	 remember	 it's	all	about	performance	and
best	practices.

In	the	following	sections,	we'll	talk	about	the	server	software	components	that	are	well-suited
for	 production	 use,	 and	 look	 at	 what	 we	 can	 do	 to	 make	 Readit	 happy	 and	 healthy	 in	 a
production	environment.

Choosing	a	Production	Environment

In	 simple	 terms,	 a	 production	 deployment	 of	 Rails	 (or	 any	 server-side	 framework	 or
language)	boils	down	 to	 two	major	 components:	 the	web	 server	 and	 the	 application	 server.
Web	servers	have	always	been	very	good	at	delivering	static	content,	such	as	HTML	pages,
images,	 JavaScript	 and	 CSS	 files,	 and	 so	 on;	 however,	 they	 are	 ill-equipped	 to	 handle
dynamic	 content,	 such	 as	 that	 generated	 by	 a	 Rails	 application.	 As	 such,	 we	 also	 need	 an
application	server	that	can	accept	requests,	forward	them	to	our	Rails	application,	and	return	a
response	that	web	servers	and	browsers	will	understand.

To	put	 it	differently,	you	want	these	items	to	do	what	they're	good	at:	a	web	server	to	serve
static	files	and	an	application	server	to	talk	to	Rails.	The	web	server	will	be	on	the	front	lines
of	our	production	application,	which	means	it	will	forward	any	request	for	non-static	content
to	the	application	server.	The	following	figure	displays	this	procedure.

The	Production	Environment

For	years,	setting	up	a	production	environment	was	a	difficult,	 frustrating	 task.	Quite	often,
developers	 would	 have	 to	 turn	 to	 an	 army	 of	 system	 administrators	 for	 help.	 But	 as	 the
software	 that	powers	a	production	website	became	standardized	and	 the	environments	more
reproducible,	smart	people	commoditized	the	offering.	You've	heard	of	the	term	"Software-
as-a-Service"	(SaaS),	no	doubt.	The	Internet	is	rife	with	companies	offering	various	packaged
services	and,	luckily	for	us,	a	production	environment	for	Rails	applications	is	one	of	them.
These	 offerings	 use	 terms	 such	 as	 "Platform-as-a-Service"	 (PaaS)	 or	 "Infrastructure-as-a-
Service"	(IaaS),	riding	the	SaaS	wave	and	making	our	lives	much	easier.

So,	while	it's	important	for	you	as	a	Rails	developer	to	understand	the	high-level	components
involved	in	serving	a	Rails	application,	we'll	be	opting	for	the	easy	road.	I'll	explain	the	major
components	that	are	used,	but	we'll	use	a	SaaS	offering	to	deploy	the	site.

With	 that	 said,	 let's	 look	at	 two	web	server	 software	packages	 that	are	available	 to	use	with
Rails	applications	under	the	terms	of	various	free	software	licenses.	Several	commercial	web
servers	 that	 support	Rails	applications	are	also	available,	but	 for	 the	 sake	of	 simplicity	and
relevance,	we'll	only	look	at	open-source	options.

Web	Servers

Apache
With	more	than	30%	market	share,	the	free	Apache	web	server	written	and	maintained	by	the
Apache	 Software	 Foundation	 is	 certainly	 the	 de	 facto	 standard	 on	 the	web	 server	 software
market.	 Apache	 is	 a	 good	 all-purpose	 cross-platform	 web	 server.	 It's	 used	 by	 many	 web
hosting	providers.

Apache	has	many	strengths,	one	of	which	is	the	huge	number	of	extensions	that	are	available
to	 expand	 its	 feature	 set.	 It	 also	 has	 a	 robust	 interface	 for	 back-end	 services,	 a	 useful	URL
rewriter,	and	extensive	 logging	capabilities.	 It's	available	as	free	software	under	 the	Apache
license.

http://httpd.apache.org/
http://www.apache.org/licenses/

Nginx
Another	player	in	this	market	is	nginx	(pronounced	“engine	x”),	a	high-performance	HTTP
and	proxy	server	that	was	originally	developed	by	Igor	Sysoev	to	power	several	high-traffic
sites	in	Russia.

Many	performance	evaluations	have	revealed	that	nginx	is	the	leader	of	the	pack	in	terms	of
raw	 speed,	 with	 Apache	 scoring	 second.	 Apart	 from	 outstanding	 performance,	 nginx	 also
offers	 excellent	 proxy	 and	 caching	 capabilities,	 SSL	 support,	 and	 flexible	 configuration
options.	Nginx	is	available	under	the	BSD	license.

Application	Servers

We've	 briefly	 covered	 web	 servers,	 so	 it's	 time	 to	 move	 on	 to	 the	 next	 player	 in	 our
production	game:	application	servers.	As	mentioned,	application	servers	take	in	requests	and
transform	them	into	something	Rails	can	handle.	Rails	ships	with	an	application	server	called
Puma,	 by	 default.	You	may	have	 noticed	 it	whenever	 you	 fire	 up	Readit	with	rails	 s;	 for
example:

$	rails	s

	>	Booting	Puma

=>	Rails	5.0.0	application	starting	in	development	on	http://localhost:3000

=>	Run	`rails	server	-h`	for	more	startup	options

Puma	starting	in	single	mode...

/	Version	3.4.0	(ruby	2.3.0-p0),	codename:	Owl	Bowl	Brawl

/	Min	threads:	5,	max	threads:	5

/	Environment:	development

/	Listening	on	tcp://localhost:3000

Use	Ctrl-C	to	stop

																								

Puma	 starts	 up	Readit	 on	 port	 3000,	 and	we're	 in	 business.	Obviously,	 Puma	 is	 capable	 of
taking	 a	 standard	HTTP	 request	 and	 providing	 it	 to	 our	Rails	 application,	 since	we	 haven't
used	a	web	server	in	development.	In	fact,	most	Rails	developers	feel	there's	no	need	to	use	a
classic	web	server	in	development,	as	Puma	(or	another	app	server)	is	good	enough.	To	drive
this	point	home,	all	the	application	servers	we'll	discuss	in	this	book	are	also	web	servers.

As	you	might	imagine,	 there	are	many	application	server	options	out	 there	today,	each	with
their	 own	 strengths	 and	 weaknesses.	 Because	 Rails	 is	 awesome,	 it's	 very	 easy	 to	 switch
between	 them.	 Puma	 is	 a	 perfectly	 reasonable–if	 not	 preferred–option	 for	 a	 production
application	 server,	 so	we'll	 use	 it;	 however,	 before	we	 do	 that,	 let's	 talk	 about	why	 we	 can
switch	app	servers	so	easily.

http://nginx.net/

Rack
The	need	 to	easily	 switch	out	 application	 servers	 for	Rails	 applications	has	been	around	as
long	as	Rails	itself.	In	the	days	of	yore,	switching	to	a	new	application	server	could	be	tedious
and	 only	 for	 the	 technically	 experienced.	 As	 a	 result,	 a	 gentleman	 named	 Christian
Neukirchen	 decided	 to	 make	 a	 universal	 handler	 for	 connecting	 web	 servers	 to	 web
frameworks	 (such	 as	 Rails)	 and	 called	 it	 Rack.	 Rack	 is	 now	 the	 standard	 way	 that	 web
frameworks	expose	themselves	to	web	servers	in	Ruby.

By	 complying	 with	 the	 Rack	 interface,	 web/application	 servers	 can	 now	 presume	 they	 are
communicating	with	a	Rack-based	application.	Rails	 is	Rack-based,	as	are	most	of	the	other
Ruby-based	 web	 frameworks.	 Thanks	 to	 Rack,	 developers	 can	 write	 application	 servers
galore	without	worrying	if	it	will	work	with	Rails.	The	Ruby	community	is	incredible.

EXTRA	CREDIT:	Racking	Up	Your	Know-how

It	is	very	much	worth	your	while	to	read	up	on	Rack.	As	well	as	being	everywhere	in	the	Ruby
web	landscape,	its	design	is	dead	simple.	You	can	learn	a	lot	about	HTTP	by	looking	at	how
Rack	works.

So,	Puma	talks	to	Rack	and	Rails	is	a	Rack-compliant	web	framework.	This	means	that	all	the
application	servers	we	discuss	also	talk	to	Rack.	But	Rack	integration	is	just	one	part	of	what
application	servers	do.	Each	application	server	 takes	a	different	approach	 to	how	 it	 handles
web	requests.	Let's	talk	about	a	couple	of	pieces	of	terminology	that	will	help	you	understand
the	how	of	each	application	server	before	we	discuss	the	servers	themselves.

Terminology
Concurrency

When	 you	 start	 to	 read	 about	 web	 application	 servers,	 you'll	 see	 a	 lot	 about	 concurrency.
Concurrency	 is	 the	 ability	 to	manage	 many	 tasks	 simultaneously.	 Think	 of	 cooking	 a	 big
meal.	 If	 you	 had	 the	 chicken,	 the	 rice	 and	 the	 green	 beans	 all	 going	 on	 the	 stove,	 you	 are
cooking	 them	 concurrently,	 even	 if	 you	 aren't	 actively	 interacting	 with	 each	 all	 the	 time.
Concurrency,	 as	 you	 can	 surmise,	 is	 a	 boon	 for	 a	 web	 server.	 Handling	multiple	 requests
allows	a	web	server	to	be	more	performant,	and	better	performance	is	what	we	want	of	our
applications.

Note:	Concurrency	≠	Parallelism

void	 confusing	 concurrency	with	parallelism.	Parallelism	 is	 doing	multiple	 tasks	 at	 exactly
the	same	 time.	 In	 the	meal	analogy,	 it	means	 there's	another	chef	making	a	salad	while	you
cook	the	rest	of	the	meal.	It's	a	subtle	but	important	difference.

Threads

http://rack.github.io/

If	 you've	been	 around	computing	 for	 a	bit,	 you're	bound	 to	know	 (at	 least,	 at	 a	high	 level)
what	threads	are.	A	thread	is	an	execution	context	with	a	set	of	instructions.	In	other	words,
when	you	ask	Ruby	to	perform	a	task,	those	instructions	are	executed	on	a	thread.	A	process
can	own	multiple	threads,	which	affects	concurrency	and	parallelism.

If	an	application	server	is	multi-threaded,	it	spawns	a	thread	for	each	request	(or	has	a	pool
of	 threads	 from	which	 it	 draws.)	 Threads	 are	 very	 light,	 so	 a	 single	 instance	 of	 the	 Rails
application	can	handle	many	requests.

When	 you	 start	 dealing	 with	 threads,	 it	 can	 become	 complicated.	 There	 are	 fearsome-
sounding	terms	such	as	deadlocks	and	race	conditions,	which	mean	your	application	is	either
frozen,	or	has	corrupted	the	data.	When	an	application	is	thread-safe,	it	can	work	in	a	multi-
threaded	 environment	without	 any	of	 those	haunting	 side	 effects.	Unfortunately,	 since	Ruby
has	never	had	real	 threading,	many	Ruby	gems	fall	short	of	being	thread-safe,	which	means
running	a	Rails	app	in	a	truly	multi-threaded	environment	can	be	challenging.

Threading	 in	Ruby	 is	 a	massive	 topic	 and	well	 beyond	 the	 scope	of	 this	 book.	MRI,	which
stands	 for	Matz's	 Ruby	 Interpreter–Ruby's	 default	 interpreter,	 has	 a	 global	 interpreter	 lock
(GIL)	that	ensures	only	one	thread	is	executing	at	any	given	moment.	Ruby	switches	between
threads	as	needed,	but	only	one	is	being	executed.	This	avoids	a	lot	of	the	issues	with	multi-
threading,	but	has	its	limitations	when	it	comes	to	scalability.	Again,	this	is	a	big	topic,	so	I'm
going	to	suggest	you	do	some	...

EXTRA	CREDIT:	Avoid	Losing	the	Thread

While	MRI	Ruby	has	the	GIL,	there	are	Ruby	interpreters	with	"true"	threads,	such	as	JRuby
and	Rubinius.	Needless	to	say,	there's	a	lot	to	know	about	threads.	Jesse	Storimer	has	written	a
wonderful	 book	 on	 it	 called	Working	with	 Ruby	 Threads,	 which	 I	 can't	 recommend	 highly
enough.

Multi-process

Concurrent	 programming	 and	 threading	 are	 hard.	 Really	 hard.	 In	 fact,	 the	 first	 rule	 of
concurrent	programming	is	"Don't."	If	that's	the	case,	what	is	another	option?	Well,	one	is	to
run	multiple	processes,	each	with	its	own	copy	of	the	application.	Web	servers	that	run	in	this
manner	 are	 called	multi-process,	 and	 they	 run	 an	 instance	 of	 the	Rails	 application	 in	 each
process	they	spawn.	As	you	can	imagine,	this	requires	a	much	larger	footprint	than	a	multi-
threaded	server,	but	it	avoids	the	issues	of	concurrent	programming.

Evented	Programming

Yet	 another	 way	 to	 approach	 concurrency	 is	 with	 evented	 programming.	 In	 evented
programming,	the	server	fires	an	event	for	each	request,	supplying	a	callback	function	to	the
event	that	will	be	executed	when	the	request	completes.	This	is	how	Node.js	works.	The	main
process	can	then	handle	other	requests	while	the	events	are	doing	work.	If	your	mom	told	you

http://www.jstorimer.com/products/working-with-ruby-threads

to	go	 to	 the	store	 to	get	eggs,	and	 to	call	her	when	you	are	back	home,	she	has	 fired	off	a
"GET	 EGGS"	 event	 and	 the	 phone	 call	 is	 the	 callback	 function.	 This,	 in	 essence,	 is	 how
evented	programming	works.

Application	Servers	for	Rails
Now	that	you	have	a	basic	idea	of	some	of	the	terminology,	let's	cover	one	application	server
per	concurrency	approach.

Puma

Puma	 is	 "A	Modern,	 Concurrent	Web	 Server	 for	 Ruby."	 It	 is	 classified	 as	 multi-threaded,
which	 means	 Puma	 uses	 a	 pool	 of	 threads	 to	 handle	 web	 requests.	 Puma	 supports	 true
concurrency	due	to	the	way	it	uses	threads.	This	translates	as	Puma	having	a	small	footprint
but	 still	 being	 able	 to	 handle	 a	 true	multi-threaded	 environment.	 In	 essence,	 Puma	 has	 the
potential	 to	 be	 the	 most	 efficient	 server	 of	 the	 bunch,	 especially	 if	 you	 employ	 a	 Ruby
interpreter	that	uses	real	threads,	such	as	JRuby.

Puma	can	also	be	run	as	a	multi-process	server,	so	you	don't	have	to	have	a	thread-safe	Rails
app	 to	 use	 it.	 Even	 in	 its	 multi-process	 form,	 Puma	 is	 still	 the	 favorite	 of	 many	 a	 Rails
developer.

Thin

Thin	is	an	evented	web	server,	meaning	that	it	fires	events	for	HTTP	requests	that	are	handled
by	 a	 pool	 of	 application	 instances.	 The	 main	 process	 then	 handles	 the	 callbacks	 from	 the
applications	 and	 responds	 to	 the	 client.	 It	 does	 this	 with	 the	 "event	 loop",	 which	 accepts
requests,	 fires	 events,	 and	 responds	 to	 callbacks.	 In	 actuality,	 thin	 can	 handle	 requests	 in
chunks,	enabling	efficient	handling	of	streaming	requests.

Because	of	its	evented	nature,	thi	excels	at	handling	slow	clients	and	large	file	uploads	without
blocking	the	Rails	app.	When	a	user	wants	to	upload	a	1080i	HD	cat	video,	thin	will	hand	that
request	off	to	a	worker	and	return	to	accept	more	requests	in	the	meantime.

Unicorn

Unicorn	 is	 a	 multi-process	 server,	 so	 thread	 safety	 is	 not	 an	 issue.	 Unicorn	 has	 a	 master
process	 that	monitors	 "workers",	which	 are	 essentially	 instances	 of	 your	Rails	 application.
Unicorn	 is	designed	 to	handle	"fast	clients"	on	high	bandwidth	connections	and	 it	will	only
work	on	operating	systems	that	support	fork()	(which	excludes	Windows,	sorry.)

Unicorn	was	once	the	belle	of	the	application	server	ball,	but	the	Internet	is	not	always	full	of
high-bandwidth	 fast	 clients.	 Still,	 if	 your	 use	 case	matches	Unicorn's	 strengths,	 it's	 a	 great
piece	of	software.

http://puma.io/
http://code.macournoyer.com/thin/
http://unicorn.bogomips.org/

Proxying	Requests

In	the	vanilla	production	environment	that	consists	of	a	web	server	and	an	application	server,
requests	must	be	proxied	from	the	former	to	the	latter.	This	is	often	accomplished	in	the	web
server	configuration	files.	Each	web	server,	obviously,	has	a	different	way	to	configure	itself
as	a	proxy	server.	What's	 important	 to	understand	 is	 that	 the	proxying	must	happen,	and	 it's
usually	a	simple	configuration	step.

We'll	be	skipping	that	configuration	in	this	book,	as	we're	going	to	leverage	a	SaaS	provider
for	 our	 production	 needs	 instead.	 If	 you	 are	 curious	 about	 how,	 for	 example,	 Nginx	 is
configured	to	proxy	requests,	then	you	have	some	more	...	EXTRA	CREDIT.

Software	as	a	Service

As	has	been	mentioned,	the	creation	of	a	production	environment	has	evolved	to	the	point	that
companies	 can	 offer	 it	 as	 a	 service.	 As	 a	 result,	 we	 can	 use	 the	 tools	 offered	 by	 these
companies	to	easily	get	Readit	on	the	Internet.

Furthermore,	 these	 companies	 package	 the	 production	 environments	 with	 other	 bells	 and
whistles,	such	as	add-ons	for	various	databases,	analytics	services,	and	more.	Obviously,	there
is	a	cost	associated	with	these	services;	however,	there	is	also	a	free	plan	that	allows	you	to
get	started	without	burning	a	hole	in	your	wallet.

Let's	take	a	look	at	one	of	the	most	popular	IaaS	services	on	the	Internet:	Heroku.

Heroku
Heroku	 is	 an	 Infrastructure-as-a-Service	 offering	 that	 enables	 developers	 to	 create
sophisticated	 deployments	 for	 their	 applications.	 Apps	 are	 deployed	 using	 Git,	 which	 we
discussed	in	Chapter	2.	Revisiting	the	Git	basics	we	discussed	then,	when	you	install	Heroku's
tools	and	use	them	to	create	a	Heroku	application	for	Readit,	a	Git	remote	called	"heroku"	is
created.	Pushing	code	to	this	remote	will	deploy	the	application.	Here,	let	me	show	you	...

Sign	Up	for	a	Heroku	Account

Visit	 Heroku's	 sign-up	 page	 and	 create	 a	 free	 account.	 You	 can	 choose	 "Ruby"	 as	 your
primary	language.

Once	you've	confirmed	your	account,	sign	in	to	Heroku.

Install	the	Heroku	Toolbelt

https://www.heroku.com/
https://signup.heroku.com/?c=70130000001x9jFAAQ

In	order	to	deploy	to	Heroku,	we	need	the	Heroku	toolbelt.	Visit	the	download	page	and	install
the	Heroku	tools,	which	is	a	simple	download	and	executable.	Once	installed,	you	should	have
a	heroku	command	available	on	the	command	line:

$	heroku	--version

heroku-toolbelt/3.43.2	(x86_64-darwin10.8.0)	ruby/1.9.3

heroku-cli/5.1.7-0de2607	(darwin-amd64)	go1.6.2

																								

Log	in	to	Heroku	using	the	heroku	login	command:

$	heroku	login

Enter	your	Heroku	credentials.

Email:	glenn.goodrich@sitepoint.com

Password	(typing	will	be	hidden):

Logged	in	as	glenn.goodrich@sitepoint.com

																								

Awesome.

Prepare	Readit	for	Heroku

We	have	to	make	some	small	changes	to	our	application	so	that	it	can	be	deployed	to	Heroku.
Heroku	requires	us	to	use	some	gems	and	change	the	database	we	use	in	production.	Heroku
does	not	 support	SQLite	and	 requires	 that	we	use	PostgreSQL,	a	very	popular	open-source
database.

Open	up	the	Gemfile	in	our	Readit	application	and	add	the	following:

Gemfile	(excerpt)

...	rest	of	gems	...

gem	'rails_12factor'

group	:production	do	

		gem	'pg'

end

																								

We	also	need	to	move	our	gem	"sqlite3"	line	into	the	group	:test,	:development	block:

Gemfile	(excerpt)

group	:development,	:test	do

		gem	'byebug'

		gem	'pry-rails'

		gem	'sqlite3'

end

																								

https://toolbelt.heroku.com/
http://www.postgresql.org/

The	database	configuration	for	production	has	to	reflect	our	need	to	use	PostgreSQL.	Open
up	config/database.yml	and	change	the	production	key	to:

example.css	(excerpt)

production:

		adapter:	postgresql

		database:	readit_production

		encoding:	unicode

																								

Finally,	we	add	all	of	our	changes	to	our	local	Git	repository:

$	git	add	.

$	git	commit	-m	"Changes	for	Heroku"

[chapter12	469d64f]	Changes	for	Heroku

3	files	changed,	17	insertions(+),	6	deletions(-)

																								

Okay,	now	we're	ready	to	create	our	application	on	Heroku.

Create	and	Deploy	the	Heroku	Application

Using	the	Heroku	tools,	create	an	application	on	Heroku:

$	heroku	create

Creating	app...	done,	safe-temple-15085

https://safe-temple-15085.herokuapp.com/	|	https://git.heroku.com/safe-

temple-15085.git

																								

Here,	Heroku	just	created	an	application	called	"safe-temple-15085"	on	the	Heroku	platform
for	my	Readit	 application.	You	can	 see	 that	Heroku	 tells	me	where	 the	 app	will	 live	on	 the
Internet	 (https://safe-temple-15085.herokuapp.com/),	 as	 well	 as	 the	 address	 of	 the	 Git
remote	on	Heroku	(https://git.heroku.com/safe-temple-15085.git).

Heroku	Naming

The	name	of	your	Heroku	app	will	be	different,	as	it's	randomly	generated	for	each	heroku
create.

And	now,	the	moment	of	truth.	Let's	push	Readit	to	Heroku:

$	git	push	heroku	master

Total	0	(delta	0),	reused	0	(delta	0)

remote:	Compressing	source	files...	done.

...	lots	of	output	...

remote:	----->	Launching...

remote:								Released	v5

remote:	 	 	 	 	 	 	 	 https://safe-temple-

15085.herokuapp.com/	deployed	to	Heroku

remote:

remote:	Verifying	deploy....	done.

To	https://git.heroku.com/safe-temple-15085.git

																								

Boom!	 Readit	 is	 now	 on	 the	 Internet.	 If	 you	 look	 through	 all	 the	 output,	 you	 can	 see	 that
Heroku	installed	our	bundle,	ran	the	assets	precompile	task,	and	launched	our	site;	however,
our	database	still	needs	to	be	migrated,	so	run	the	following:

$	heroku	run	rails	db:migrate

Running	rails	db:migrate	on	safe-temple-15085...	up,	run.8163

			(10.7ms)		CREATE	TABLE	"schema_migrations"	("version"	character	varying	NOT	NULL)

			(4.5ms)		CREATE	UNIQUE	INDEX		"unique_schema_migrations"	ON	"schema_migrations"		("version")

		ActiveRecord::SchemaMigration	Load	(1.5ms)		SELECT	"schema_migrations".*	FROM	"schema_migrations"

...	the	rest	of	the	migrations	...

																								

Heroku	opens	up	a	session	on	the	platform	and	runs	our	migrations.	Now	we're	ready:

$	heroku	open

																								

This	command	will	open	your	Heroku	application	in	a	web	browser.

Readit	on	the	Internet

How	cool	is	that?	The	answer	is:	really	darn	cool!

I	know.	You're	sitting	there	wondering	how	you	can	use	it	without	having	a	login.	We	never
implemented	a	sign-up	page,	did	we?	(I	smell	EXTRA	CREDIT!)	Well,	we	can	create	a	user
the	same	way	we	did	locally–by	using	a	Rails	console:

$	heroku	run	rails	console

Running	rails	console	on	safe-temple-15085...	up,	run.6215

Loading	production	environment	(Rails	4.2.5.1)

irb(main):001:0>	User.create(email:	"glenn.goodrich@sitepoint.com",	name:	"Glenn	Goodrich",	password:	"password",	password_confirmation:	"password")

=>	 #

<User	id:	1,	password_digest:	"$2a$10$FOuQ8.0H/Tm9tZ7NWS09KuWJvyqQ7PEe25NqF9cq/er...",	na

																								

Now	you	can	log	in	as	that	user	and	submit	stories	to	your	heart's	content.

Services	such	as	Heroku	are	invaluable	to	programmers	such	as	us.	We	can	work	the	way	we
work	 ("code,	add,	commit,	push")	and	our	applications	are	deployed	 to	 the	 Internet	without
fuss.

Obviously,	 there	 is	much	more	 that	Heroku	 offers,	 as	well	 as	which	 there	 are	many	 other
considerations	around	deploying	an	app	to	the	world.	This	chapter	was	to	get	you	started	and
give	you	a	quick	win.	Now	it's	up	to	you	to	take	the	world	by	storm.

Free	Plan	Limitations

The	 free	 plan	 on	Heroku,	which	 is	what	we're	 using,	 constrains	 your	 application	 in	 a	 few
ways.	It	only	allows	you	to	have	a	single	application	process,	and	it	requires	your	application
to	"sleep"	for	six	out	of	every	24	hours.	So,	if	your	app	is	unresponsive,	or	you	are	receiving
messages	about	upgrading	your	plan,	that's	why.

EXTRA	CREDIT:	Explore	More	of	Heroku

Heroku	has	a	massive	offering.	You	can	append	logging	or	analytics	add-ons	to	your	app	with
just	a	few	mouse	clicks.	Explore	the	Heroku	Dashboard	and	the	various	add-ons	that	Heroku
offers.	You'll	be	amazed.

Alternatives	for	Session	Storage

Once	 your	 application	 is	 deployed,	 you'll	 probably	 start	 thinking	 about	 ways	 to	 improve
performance	and	security.	Some	low-hanging	fruit	here	are	how	Rails	stores	sessions.

https://dashboard.heroku.com/

As	we	discussed	in	Chapter	9,	Rails	creates	a	new	session	for	every	visitor–logged	in	or	not–
by	 default.	 Each	 session	 is	 stored	 in	 a	 cookie	 by	 default,	 which	 is	 contained	 in	 the	 user's
browser.	Cookies	are	not	the	best	way	to	store	session	data,	as	they	have	size	limits	(4KB),	are
insecure,	and	bloat	the	requests	to	and	responses	from	your	server.

As	a	result,	when	you	either	want	to	store	additional	information	in	the	session	(or	the	flash)
or	when	you	need	to	create	more	advanced	features	such	as	user	online	statistics	or	server-
side	session	expiration,	the	situation	becomes	a	bit	dicey	with	cookie-based	sessions.

For	this	reason,	Rails	supports	alternative	session	storage	containers,one	of	which	we'll	look
at	in	this	section.

The	Nitty	Gritty	on	Rails	Sessions

Justin	Weiss,	 a	well-known	Rubyist	 and	blogger,	wrote	 a	 fantastic	post	 on	 how	 sessions	 in
Rails	work.	I	recommend	you	read	it.

The	ActiveRecord	Store	Session	Container

One	 of	 the	most	 popular	 options	 after	 the	 cookie-based	 default	 is	 the	ActiveRecord	 Store
session	container,	which	stores	all	session	data	within	a	table	in	your	database.	While	this	is
not	as	fast	as	other	options,	using	ActiveRecord	Store	allows	sessions	to	be	accessed	from
multiple	 machines—an	 essential	 feature	 for	 applications	 large	 enough	 to	 require	 multiple
servers.	It's	also	straightforward	to	configure.	These	abilities	make	ActiveRecord	Store	 the
preferred	 option	 for	 applications	 that	 attract	 low-to-medium	 levels	 of	 traffic,	 so	 let's
configure	Readit	to	use	it	now.

The	ActiveRecord	Store	 used	 to	be	 a	 part	 of	 core	Rails,	 but	 it's	 been	moved	 to	 a	 separate
gem,	 so	we'll	 need	 to	 add	 it	 to	 our	 app.	Adding	 gems	 to	 your	Rails	 app	 should	 be	 second
nature	by	now,	so	add	the	following	to	the	Gemfile	and	run	bundle	install:

gem	'activerecord-session_store'

																								

Now	 we	 need	 to	 make	 room	 in	 our	 database	 for	 the	 session	 data.	 The	 activerecord-
session_store	 gem	provides	 a	 shortcut	 for	 this	 job	 in	 the	 form	of	 a	 generator	 to	 create	 a
sessions	table	migration:

$	rails	generate	active_record:session_migration

Running	via	Spring	preloader	in	process	10919

		create		db/migrate/20160515161105_add_sessions_table.rb

																								

This	 command	 will	 create	 a	 new	 migration	 file	 that	 contains	 the	 Ruby	 code	 necessary	 to
create	 an	 appropriate	 sessions	 table	 to	 hold	 our	 session	 data.	 The	 migration	 can	 then	 be
applied	using	the	regular	migration	task	db:migrate:

http://www.justinweiss.com/articles/how-rails-sessions-work/

$	rails	db:migrate

																								

Migrational	output

The	figure	above	shows	the	output	of	these	migrations	being	applied.

Next,	we	tell	Rails	that	we	want	to	use	the	ActiveRecord	Store	instead	of	the	default	file-based
session	 container.	 We	 can	 relay	 the	 good	 news	 via	 the
config/initializers/session_store.rb	 file;	 simply	 change	 the	 cookie_store	 value	 to
active_record_store:

#	Change

Rails.application.config.session_store	:cookie_store,	key:	'/readit/session'

#to

Rails.application.config.session_store	:active_record_store,	key:	'/readit/session'

																								

As	 soon	 as	 you	 restart	 the	 application	 (using	rails	s),	 sessions	will	 be	 stored	 in	 the	 SQL
database.

We'll	need	to	push	that	change	to	our	Heroku	application	so	that	it's	picked	up	in	production.
In	the	root	of	your	Readit	source,	commit	the	changes:

$	git	add	.

$	git	commit	-m	"Use	ActiveRecord	Session	Store"

$	git	push	heroku	master

...	redeploys	site	...

																								

Once	 the	 site	 is	 deployed,	 run	 the	 migration	 on	 our	 Heroku	 database	 to	 create	 the	 new
sessions	table:

$	heroku	run	rails	db:migrate

																								

The	result	is	shown	below.

Creating	the	new	sessions	table

Now	we're	using	the	ActiveRecord	Session	Store	in	production.	It's	worth	noting	that	there	are
other	 session	 storage	 options	 (such	 as	 the	 Cache	 Store),	 as	 well	 as	many	 authored	 by	 the
community.

Further	Reading

We've	done	it!	Our	application	is	ready	for	initial	public	consumption,	and	the	hands-on	parts
of	this	book	have	come	to	an	end.	I	would	still,	however,	like	to	alert	you	to	a	few	additional
Rails	 features	 and	 extensions	 that	may	 come	 in	 handy	 in	 your	 future	 encounters	with	Rails
applications.	Think	of	this	as	an	entire	section	of	EXTRA	CREDIT.

Caching

Depending	on	the	project	budget	and	the	availability	of	hardware,	every	Rails	application	can
only	serve	so	many	dynamic	pages	at	any	given	time.	If	your	app	happens	to	receive	traffic
numbers	 that	 exceed	 these	 limits,	you'll	 have	 to	 consider	options	 for	 tackling	 this	problem.
One	such	option	is	to	add	caching.	Caching	is	a	way	to	store	previously	generated	content	that
remains	 unchanged	 so	 it	 can	 quickly	 be	 served	 again.	 If	 you	 are	 looking	 at	 the	 list	 of
upcoming	stories,	and	it's	the	same	as	it	was	when	you	last	looked,	it's	better	to	see	the	same
rendered	view	than	to	rerender	the	view	again.	Caching	allows	this	to	happen.

Rails'	 built-in	 caching	 options	 vary	 in	 their	 levels	 of	 granularity.	 The	 simplest	 of	 all
possibilities	is	to	cache	whole	pages	in	the	form	of	HTML	files.	What	Rails	does	in	such	cases
is	to	take	the	output	that's	sent	to	the	browser,	and	store	it	in	a	file	on	the	server's	hard	disk.
This	file	can	then	be	served	directly	by	the	web	server	without	even	bothering	Puma,	provided
your	setup	is	configured	appropriately.	This	saves	Rails	from	regenerating	page	content	over
and	over	again,	even	 though	 the	content	may	not	have	changed	between	successive	requests
for	the	same	page.	Another	option	allows	you	to	cache	the	outputs	of	single	actions	and	even
fragments	of	views	(a	sidebar,	for	example).

Caching	can	do	wonders	 to	 improve	your	application's	performance;	however,	 take	care	 to
ensure	that	the	relevant	sections	of	the	cache	are	flushed	when	pages	change,	otherwise	your
users	will	 receive	outdated	content.	Additionally,	using	cached	pages	may	not	be	 feasible	 if
your	 application	 depends	 on	 a	 lot	 of	 user-specific	 content—for	 instance,	 in	 an	 application
whose	page	content	changes	depending	on	who's	using	it.

The	Rails	documentation	for	the	caching	feature	is	available	online.

ActionCable
One	of	the	more	exciting	changes	to	the	latest	version	of	Rails	(version	5)	is	the	addition	of
ActionCable.	 ActionCable	 brings	 WebSockets	 into	 your	 Rails	 application.	 What	 are
WebSockets,	 you	 ask?	 WebSockets,	 effectively,	 open	 a	 two-way	 communication	 channel
between	the	browser	and	the	server.	Traditionally,	the	only	way	the	client	and	server	interact
in	a	web	application	is	when	the	browser	posts	data	to	or	requests	data	from	the	server.	With
the	advent	of	AJAX	(which	we	discussed	in	Chapter	7),	a	one-way,	asynchronous	channel	from
the	browser	to	the	server	is	possible.	Using	AJAX,	if	the	browser	wanted	to	know	when	events
happen	on	the	server,	it	can	poll	in	the	background	and	it	feels	like	it's	real	time.	By	"poll"	I
mean	 that	 the	 browser	 has	 an	 infinite	 loop	 that	 runs	 at	 a	 certain	 interval	 (maybe,	 every	 10
seconds)	 and	 makes	 a	 request	 to	 the	 server.	 Polling	 for	 server-side	 changes	 is	 expensive,
error-prone,	and	ties	up	resources.	It	would	be	nice	if	the	server	could	simply	send	events	to
the	browser	when	they	happen,	without	the	browser	having	to	poll.

WebSockets	does	just	that.	A	two-way	communications	channel	is	opened	between	the	server
and	 client,	 and	 data	 can	 be	 sent	 in	 both	 directions.	 This	 opens	 up	 the	 realm	 of	 real-time
applications.	A	good	 example	 is	 a	 chat	 application,	where	 you	have	 a	 browser-based	 client
that	 subscribes	 to	 a	 WebSocket-based	 channel	 and	 the	 server	 sends	 new	 chat	 data	 on	 the

http://api.rubyonrails.org/classes/ActionController/Caching.html

channel	 as	 your	 fellow	 chatters	 chat.	 It	 feels	 like	 a	 "real"	 (meaning,	 not	 web-based)
application.	 ActionCable	 takes	 the	 convention-based	 approach	 of	 Rails	 to	 incorporate
WebSockets	into	your	application.	The	use	cases	are	endless.

When	you're	ready	to	look	into	WebSockets	and	ActionCable,	check	out	these	two	articles	on
SitePoint:
	

ActionCable	and	WebSockets
Creating	a	Chat	Application	in	Rails	5

Those	posts	will	get	you	well	on	your	way	to	real-time	application	fun.

Rails	API
Another	trend	in	current	web	application	development	is	the	proliferation	of	the	Application
Programming	 Interface,	 or	 API.	 An	 API	 is	 an	 application	 that	 exposes	 its	 data	 and
functionality	 for	other	 applications,	 as	 opposed	 to	 users.	An	API	 is	meant	 to	 be	 a	 building
block	for	a	 larger	application,	providing	functionality	 to	make	up	the	whole.	Almost	all	 the
services	you	use	on	 the	 internet	 today	expose	an	API,	 including	Twitter,	Facebook,	Google
Maps,	and	the	list	goes	on	and	on	(and	on.)

Before	Rails	5,	 in	order	 to	build	an	API	with	Rails	you	had	to	 include	some	external	gems,
remove	all	 the	view	libraries,	and	go	through	some	custom	configuration	to	get	your	Rails
app	 into	 an	API-friendly	 state.	 Since	 the	 Rails	 Core	 team	 is	 always	 looking	 to	make	Rails
useful	 for	 today's	 developers	 solving	 today's	 problems	with	 today's	 approaches,	 they	made
creating	an	Rails-based	API	application	much	easier.

You'll	 be	 happy	 to	 know	 that	 an	 API	 application	 uses	 many	 of	 the	 things	 we've	 already
discussed	in	this	book	(RESTful	routes,	JSON)	so	when	you're	ready	for	Shovell	to	expose	an
API-only	set	of	endpoints,	you	won't	have	much	new	to	learn.	Basically,	you	just	start	a	new
Rails	app	with	rails	new	readit-api	--api	and	you're	cooking	with	gas.

We've	talked	briefly	about	how	Rails	will	never	annoy	your	users	with	extensive	stack	traces
if	an	error	occurs	in	your	application.	Instead,	it	will	display	a	polite	message	to	the	user	that
the	request	couldn't	be	processed	successfully.	The	default	 templates	for	 these	messages	can
be	found	in	public/404.html	and	public/500.html.

But	what	if	you	want	to	fix	such	errors	instead	of	silently	ignoring	them?	You	could	certainly
comb	through	your	 log	files	every	day,	checking	for	unusual	activity.	Better	yet,	you	could
install	the	exception_notification	gem,	which	hooks	into	your	application	and	sends	you	an
email	whenever	some	unusual	activity	happens.

The	 gem	 can	 be	 installed	 using	 Bundler;	 that	 is,	 by	 adding	 it	 to	 the	 Gemfile	 and	 running
bundle	 install.	 Documentation	 that	 explains	 how	 to	 customize	 its	 behavior	 is	 available

https://www.sitepoint.com/action-cable-and-websockets-an-in-depth-tutorial/
https://www.sitepoint.com/create-a-chat-app-with-rails-5-actioncable-and-devise/
https://github.com/smartinez87/exception_notification

online.

Performance
Inevitably	as	a	developer,	you	will	need	to	optimize	your	application	for	performance.	Most
of	the	time,	performance	optimizations	focus	on	single	bits	in	the	larger	framework	of	your
application.	 Sometimes	 it's	 about	 making	 a	 SQL	 query	 run	 faster,	 other	 times	 it's	 about
caching,	and	still	other	times	it	might	be	a	change	in	the	Javascript.	I'll	give	you	a	nudge	on
one	potential,	 and	very	common,	optimization.	Back	 in	Chapter	10,	we	added	 stories	 to	 the
User	model,	and	in	the	Story	show	view,	we	called:

Submitted	by:	<%=	story.user.name	%>

																								

Since	story.user	walks	down	an	association,	it	must	access	a	second	 table	(the	users	 table.)
This	requires	a	second	SQL	query.	In	technical	terms,	this	is	what's	known	as	an	"N+1	Query"
and	it's	a	very,	very	common	source	of	performances	issues.	Ideally,	since	we	know	that	we
want	 to	display	 the	user,	we'd	 include	 the	Story's	user	 in	 the	 first	call	 to	 the	database,	along
with	 the	stories.	That	saves	us	one	round	trip/story,	which	can	be	significant	when	Readit	 is
huge	and	has	millions	of	stories.

That	is	just	one	example	of	a	performance	optimization.	There	are	many,	many	others,	so	you
know	 what's	 coming.	 But,	 before	 we	 get	 to	 that,	 here	 are	 a	 couple	 of	 rules	 of	 thumb	 for
performance	work:
	

1.	 Never	optimize	too	early.	Or,	more	commonly:	Performance	Optimization	is	the	Root	of
All	Evil.	This	means	that	you	should	not	optimize	unless	you	know	it's	going	to	have	an
effect.	This	leads	us	to...

2.	 Never	 optimize	 something	 you	 can't	 measure.	 If	 you	 can't	 take	 before	 and	 after
measurements	 around	 an	 optimization,	 then	 you're	 probably	wasting	 your	 time.	 Refer
back	to	our	section	on	Benchmarking	for	how	to	get	these	numbers.

EXTRA	CREDIT:	Getting	Rid	of	the	Query

Use	Google	to	figure	out	how	to	get	rid	of	our	N+1	query	in	the	story	show	view.

Summary

In	 this	 final	 chapter,	 we've	 plowed	 through	 the	 variety	 of	 options	 available	 for	 deploying
Rails	applications	to	production	systems.

We	 opted	 to	 use	 Heroku	 and	 its	 service	 offering	 to	 deploy	 Readit.	 We	 took	 the	 Readit

application	 code	 to	 the	 production	 system,	 initialized	 the	 production	 database,	 and	 started
serving	requests.	It	doesn't	get	much	easier	than	that!

Once	 Readit	 was	 running	 happily	 in	 its	 new	 environment,	 we	 looked	 at	 some	 alternative
session	storage	containers.	We	found	that	the	ActiveRecord	Store	suited	our	needs	by	storing
session	data	in	our	SQL	database.

Finally,	I	provided	a	few	pointers	to	more	advanced	information	on	some	relevant	aspects	of
Rails	application	development	and	deployment.

I	hope	you've	found	value	in	the	time	you've	spent	with	this	book,	and	that	you're	now	able	to
go	 forth	 and	build	upon	what	you've	 learned.	Now's	 the	 time	 to	get	 out	 there	 and	use	your
knowledge	 to	 build	 an	 application	 that	 changes	 the	 Internet!	Well,	 once	 you	 finish	 all	 your
EXTRA	CREDIT,	that	is	...

Table	of	Contents
Rails:	Novice	to	Ninja
Notice	of	Rights
Notice	of	Liability
Trademark	Notice
About	Glenn	Goodrich
About	SitePoint

Preface
Who	Should	Read	This	Book
Conventions	Used

Code	Samples
Tips,	Notes,	and	Warnings

Supplementary	Materials
Chapter	1:	Introducing	Ruby	on	Rails

History
Development	Principles

Optimize	for	Programmer	Happiness
Convention	Over	Configuration
The	Menu	is	Omakase
No	One	Paradigm
Exalt	Beautiful	Code
Value-integrated	Systems
Progress	Over	Stability
Push	Up	a	Big	Tent

Building	the	Example	Web	Application
Features	of	the	Example	Application

Summary
Chapter	2:	Getting	Started

What	does	all	this	cost?
Installing	on	Windows

Install	Ruby
Installing	on	Mac	OS	X

Installing	Homebrew
Installing	on	Linux	(Ubuntu)
Additional	Installation	Options
And	Now	the	Fun	Begins

One	Directory	Structure	to	Rule	Them	All
Creating	the	Standard	Directory	Structure

Starting	Our	Application
Version	Control	and	Git

Git	Basics
Which	Text	Editor?

Windows	and	Cross-platform	Text	Editors
Linux	and	Mac	OS	X	Editors
IDEs

Summary
Chapter	3:	Introducing	Ruby

Ruby	is	a	Scripting	Language
Compiled	Languages
Scripting	Languages
The	Great	Performance	Debate
Choose	What	Works

Ruby	is	an	Object	Oriented	Language
Reading	and	Writing	Ruby	Code

The	Interactive	Ruby	Shell	(irb)
Interacting	with	Ruby	Objects

Literal	Objects
Variables	and	Constants

Basic	Punctuation	in	Ruby
Dot	Notation
Chaining	Statements	Together
Use	of	Parentheses
Method	Notation

Object-oriented	Programming	in	Ruby
Classes	and	Objects

Object-level	Functionality
Instance	Variables
Instance	Methods
Accessor	Methods

Class-level	Functionality
Inheritance
Modules	and	Composition
Return	Values

Standard	Output
Ruby	Core	Classes

Strings
Numerics
Symbols
Arrays
Hashes
nil	Values

Running	Ruby	Files
Control	Structures

Conditionals
Loops
Blocks,	Procs,	and	Lambdas.	Oh	my!

Summary
Chapter	4:	Rails	Revealed

Three	Environments
Application	Dependencies
Bundler
Database	Configuration

The	Database	Configuration	File
The	Model-View-Controller	Architecture

MVC	in	Theory
MVC	the	Rails	Way
The	ActiveRecord	Module
The	ActionPack	Library
ActionController	(the	Controller)
ActionView	(the	View)

RESTful-style
In	Theory
REST	and	the	Web
REST	in	Rails

Code	Generation
The	ActionMailer	Component
Testing	and	Debugging

Testing
Debugging

Summary
Chapter	5:	Models,	Views,	and	Controllers

Generating	a	Model
The	Model	Generator

Modifying	the	Schema	Using	Migrations
Creating	a	Skeleton	Migration	File
Creating	the	stories	Table
Running	the	Migration

Managing	Data	Using	the	Rails	Console
Creating	Records
Retrieving	Records
Updating	Records
Deleting	Records

Generating	a	Controller
Running	the	generate	Command
Understanding	the	Output
Starting	Our	Application	…	Again

Creating	a	View
Generating	Views	with	Scaffolding
Creating	Static	Pages
Creating	Dynamic	Pages

Passing	Data	Back	and	Forth
Pulling	in	a	Model

Summary
Chapter	6:	Helpers,	Forms,	and	Layouts

Calling	upon	Our	Trusty	Helpers
Enabling	Story	Submission

Creating	a	Form
Saving	Data	to	the	Database
Redirecting	with	URL	helpers

Creating	a	Layout
Establishing	Structure
Adding	Some	Style

Enabling	User	Feedback	with	the	Flash
Adding	to	the	Flash
Retrieving	Data	from	the	Flash
Applying	Validations
Tweaking	the	Redirection	Logic
Improving	the	User	Experience

Testing	the	Form
Testing	the	Model

Analyzing	the	Skeleton	File
Using	Assertions
Writing	a	Unit	Test
Running	Model	Tests

Testing	the	Controller
Analyzing	the	Skeleton	File
Writing	a	Controller	Test
Running	a	Controller	Test
Writing	More	Controller	Tests
Running	the	Complete	Test	Suite

Visiting	the	Logs
Summary

Chapter	7:	Ajax	and	Turbolinks
Generating	a	Vote	Model

Creating	the	Model
Examining	the	Vote	Migration
Applying	the	Migration

Introducing	Relationships
Introducing	the	has_many	Clause
Introducing	the	belongs_to	Clause
How's	our	schema	looking?

Making	a	Home	for	Each	Story
Determining	Where	a	Story	Lives
Displaying	Our	Stories

Improving	the	Story	Randomizer
Implementing	Clean	URLs
Converting	from	Strings
Investigating	Link	Generation

Ajax,	Pjax,	and	Turbolinks
Introducing	Ajax

Making	Stories
Controlling	Where	the	Votes	Go

The	Asset	Pipeline
Why	do	we	need	an	asset	pipeline?
Multiple	Source	Files
Asset	Preprocessors
Asset	Compression	and	Minification
Asset	Digests

Get	Out	the	Vote
Styling	the	Scoreboard
Response	Formats

Introducing	Partials
Adding	Voting	History
Creating	the	Partial
Styling	the	Voting	History
Tweaking	the	Voting	History

Testing	the	Voting	Functionality
Testing	the	Model
Preparing	the	Fixtures
Testing	a	Story's	Relationship	to	a	Vote
Testing	the	Voting	History	Order
Running	the	Unit	Tests

Testing	the	Controller
Testing	Page	Rendering
Testing	Vote	Storage
Testing	Ajax	Voting
Testing	Regular	HTTP	Voting

Running	the	Full	Test	Suite
Summary

Chapter	8:	Protective	Measures
Introducing	Sessions	and	Cookies

Identifying	Individual	Users
What's	a	cookie?
What's	a	session?
Sessions	in	Rails

Modeling	the	User
Generating	a	User	Model
Has	Secure	Password

Adding	Relationships	for	the	User	Class
Creating	a	User

Developing	Login	Functionality
Creating	the	Controller
Creating	the	View
Adding	Functionality	to	the	Controller

Introducing	Filters
Before	Filters
After	Filter
Around	Filters

Managing	User	Logins
Retrieving	the	Current	User
Displaying	the	Name	of	the	Current	User
Allowing	Users	to	Log	Out

Adding	a	Navigation	Menu
Restricting	the	Application

Protecting	the	Form
Restricting	Access	to	Story	Submission
Associating	Stories	with	Users
One	Last	Thing:	Associate	Votes	to	Users

Testing	User	Authentication
Testing	the	Model
Testing	the	Controllers
Fixing	VotesController	Tests
Running	the	Full	Test	Suite

Summary
Chapter	9:	Advanced	Topics

Promoting	Popular	Stories
Using	a	Counter	Cache
Introducing	the	Counter	Cache
Making	Room	for	the	Cache
Applying	the	Migration

Implementing	the	Front	Page
Modifying	the	Controller
Modifying	the	View
Creating	the	Partial
Styling	the	Front	Page
Setting	the	Default	Page

Implementing	the	Voting	Bin
Adding	Custom	Actions	to	RESTful	Routes
Abstracting	Presentation	Logic

Avoiding	Presentation	Logic	Spaghetti
Introducing	ActionView	Helpers
Writing	an	ActionView	Helper

Expanding	the	Navigation	Menu
Requiring	a	Login	to	Vote
Auto-voting

Introducing	Model	Callback
Adding	a	Callback

Adding	a	Description	to	Stories
Adding	a	Model	Attribute
Expanding	the	Submission	Form
Whitelisting	the	New	Attribute

Adding	User	Pages
Introducing	the	Join	Model	Relationship
Introducing	the	has_many	:through	Association
Adding	Another	Controller
Creating	the	View

Testing	the	New	Functionality
Testing	the	Model
Testing	the	StoriesController
Testing	the	VotesController
Testing	the	UsersController
Running	the	Complete	Test	Suite

Summary
Chapter	10:	Rails	Plugins

What	is	a	plugin?
Adding	Tagging	to	Readit

Introducing	the	acts-as-taggable-on	Gem
Installing	the	acts-as-taggable-on	Gem
Creating	a	Migration	for	the	Plugin
Understanding	Polymorphic	Associations
Making	a	Model	Taggable

Enabling	Tag	Submission
Modifying	the	View
Modifying	the	Controller

Enabling	Tag	Display
Modifying	the	View
Updating	the	story	Partial

Assigning	Our	First	Tags
Viewing	Stories

Creating	the	Controller
Filling	in	the	View	Template
Displaying	Tagged	Stories
Creating	a	tag	Partial
Updating	the	Stylesheet

Testing	the	Tagging	Functionality
Testing	the	Model

Testing	the	Controller
Running	the	Test	Suite	...	Again!
Summary

Chapter	11:	Debugging,	Testing,	and	Benchmarking
Debugging	Your	Application

Debugging	within	Templates
Web	Console
Debugging	A	Slightly	Trickier	Bug

Using	the	Rails	Logging	Tool
Overcoming	Problems	in	Debugging

Testing	Your	Application	Using	Integration	Tests
Using	Breakpoints	in	a	Test
Revisiting	the	Rails	Console
A	Brief	Introduction	to	Pry

Benchmarking	Your	Application
Taking	Benchmarks	from	Log	Files
Manual	Benchmarking

Summary
Chapter	12:	Deployment	and	Production	Use

The	Implications	of	“Production”
Choosing	a	Production	Environment
Web	Servers

Apache
Nginx

Application	Servers
Rack
Terminology
Application	Servers	for	Rails

Proxying	Requests
Software	as	a	Service

Heroku
Alternatives	for	Session	Storage

The	ActiveRecord	Store	Session	Container
Further	Reading

Caching
ActionCable
Rails	API
Performance

Summary

	Rails: Novice to Ninja
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About Glenn Goodrich
	About SitePoint
	Preface

	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Chapter 1: Introducing Ruby on Rails
	History
	Development Principles
	Optimize for Programmer Happiness
	Convention Over Configuration
	The Menu is Omakase
	No One Paradigm
	Exalt Beautiful Code
	Value-integrated Systems
	Progress Over Stability
	Push Up a Big Tent

	Building the Example Web Application
	Features of the Example Application

	Summary

	Chapter 2: Getting Started
	What does all this cost?
	Installing on Windows
	Install Ruby

	Installing on Mac OS X
	Installing Homebrew

	Installing on Linux (Ubuntu)
	Additional Installation Options
	And Now the Fun Begins
	One Directory Structure to Rule Them All
	Creating the Standard Directory Structure

	Starting Our Application
	Version Control and Git
	Git Basics

	Which Text Editor?
	Windows and Cross-platform Text Editors
	Linux and Mac OS X Editors
	IDEs

	Summary

	Chapter 3: Introducing Ruby
	Ruby is a Scripting Language
	Compiled Languages
	Scripting Languages
	The Great Performance Debate
	Choose What Works

	Ruby is an Object Oriented Language
	Reading and Writing Ruby Code
	The Interactive Ruby Shell (irb)

	Interacting with Ruby Objects
	Literal Objects
	Variables and Constants

	Basic Punctuation in Ruby
	Dot Notation
	Chaining Statements Together
	Use of Parentheses
	Method Notation

	Object-oriented Programming in Ruby
	Classes and Objects

	Object-level Functionality
	Instance Variables
	Instance Methods
	Accessor Methods

	Class-level Functionality
	Inheritance
	Modules and Composition
	Return Values

	Standard Output
	Ruby Core Classes
	Strings
	Numerics
	Symbols
	Arrays
	Hashes
	nil Values

	Running Ruby Files
	Control Structures
	Conditionals
	Loops
	Blocks, Procs, and Lambdas. Oh my!

	Summary

	Chapter 4: Rails Revealed
	Three Environments
	Application Dependencies
	Bundler
	Database Configuration
	The Database Configuration File

	The Model-View-Controller Architecture
	MVC in Theory
	MVC the Rails Way
	The ActiveRecord Module
	The ActionPack Library
	ActionController (the Controller)
	ActionView (the View)

	RESTful-style
	In Theory
	REST and the Web
	REST in Rails

	Code Generation
	The ActionMailer Component
	Testing and Debugging
	Testing
	Debugging

	Summary

	Chapter 5: Models, Views, and Controllers
	Generating a Model
	The Model Generator

	Modifying the Schema Using Migrations
	Creating a Skeleton Migration File
	Creating the stories Table
	Running the Migration

	Managing Data Using the Rails Console
	Creating Records
	Retrieving Records
	Updating Records
	Deleting Records

	Generating a Controller
	Running the generate Command
	Understanding the Output
	Starting Our Application … Again

	Creating a View
	Generating Views with Scaffolding
	Creating Static Pages
	Creating Dynamic Pages
	Passing Data Back and Forth
	Pulling in a Model

	Summary

	Chapter 6: Helpers, Forms, and Layouts
	Calling upon Our Trusty Helpers
	Enabling Story Submission
	Creating a Form
	Saving Data to the Database
	Redirecting with URL helpers

	Creating a Layout
	Establishing Structure
	Adding Some Style

	Enabling User Feedback with the Flash
	Adding to the Flash
	Retrieving Data from the Flash
	Applying Validations
	Tweaking the Redirection Logic
	Improving the User Experience

	Testing the Form
	Testing the Model
	Analyzing the Skeleton File
	Using Assertions
	Writing a Unit Test
	Running Model Tests

	Testing the Controller
	Analyzing the Skeleton File
	Writing a Controller Test
	Running a Controller Test
	Writing More Controller Tests
	Running the Complete Test Suite

	Visiting the Logs
	Summary

	Chapter 7: Ajax and Turbolinks
	Generating a Vote Model
	Creating the Model
	Examining the Vote Migration
	Applying the Migration

	Introducing Relationships
	Introducing the has_many Clause
	Introducing the belongs_to Clause
	How's our schema looking?

	Making a Home for Each Story
	Determining Where a Story Lives
	Displaying Our Stories
	Improving the Story Randomizer
	Implementing Clean URLs
	Converting from Strings
	Investigating Link Generation

	Ajax, Pjax, and Turbolinks
	Introducing Ajax

	Making Stories
	Controlling Where the Votes Go

	The Asset Pipeline
	Why do we need an asset pipeline?
	Multiple Source Files
	Asset Preprocessors
	Asset Compression and Minification
	Asset Digests

	Get Out the Vote
	Styling the Scoreboard
	Response Formats

	Introducing Partials
	Adding Voting History
	Creating the Partial
	Styling the Voting History
	Tweaking the Voting History

	Testing the Voting Functionality
	Testing the Model
	Preparing the Fixtures
	Testing a Story's Relationship to a Vote
	Testing the Voting History Order
	Running the Unit Tests

	Testing the Controller
	Testing Page Rendering
	Testing Vote Storage
	Testing Ajax Voting
	Testing Regular HTTP Voting

	Running the Full Test Suite
	Summary

	Chapter 8: Protective Measures
	Introducing Sessions and Cookies
	Identifying Individual Users
	What's a cookie?
	What's a session?
	Sessions in Rails

	Modeling the User
	Generating a User Model
	Has Secure Password
	Adding Relationships for the User Class
	Creating a User

	Developing Login Functionality
	Creating the Controller
	Creating the View
	Adding Functionality to the Controller

	Introducing Filters
	Before Filters
	After Filter
	Around Filters

	Managing User Logins
	Retrieving the Current User
	Displaying the Name of the Current User
	Allowing Users to Log Out

	Adding a Navigation Menu
	Restricting the Application
	Protecting the Form
	Restricting Access to Story Submission
	Associating Stories with Users
	One Last Thing: Associate Votes to Users

	Testing User Authentication
	Testing the Model
	Testing the Controllers
	Fixing VotesController Tests
	Running the Full Test Suite

	Summary

	Chapter 9: Advanced Topics
	Promoting Popular Stories
	Using a Counter Cache
	Introducing the Counter Cache
	Making Room for the Cache
	Applying the Migration

	Implementing the Front Page
	Modifying the Controller
	Modifying the View
	Creating the Partial
	Styling the Front Page
	Setting the Default Page

	Implementing the Voting Bin
	Adding Custom Actions to RESTful Routes
	Abstracting Presentation Logic
	Avoiding Presentation Logic Spaghetti
	Introducing ActionView Helpers
	Writing an ActionView Helper
	Expanding the Navigation Menu

	Requiring a Login to Vote
	Auto-voting
	Introducing Model Callback
	Adding a Callback

	Adding a Description to Stories
	Adding a Model Attribute
	Expanding the Submission Form
	Whitelisting the New Attribute

	Adding User Pages
	Introducing the Join Model Relationship
	Introducing the has_many :through Association
	Adding Another Controller
	Creating the View

	Testing the New Functionality
	Testing the Model
	Testing the StoriesController
	Testing the VotesController
	Testing the UsersController
	Running the Complete Test Suite

	Summary

	Chapter 10: Rails Plugins
	What is a plugin?
	Adding Tagging to Readit
	Introducing the acts-as-taggable-on Gem
	Installing the acts-as-taggable-on Gem
	Creating a Migration for the Plugin
	Understanding Polymorphic Associations
	Making a Model Taggable

	Enabling Tag Submission
	Modifying the View
	Modifying the Controller

	Enabling Tag Display
	Modifying the View
	Updating the story Partial

	Assigning Our First Tags
	Viewing Stories
	Creating the Controller
	Filling in the View Template
	Displaying Tagged Stories
	Creating a tag Partial
	Updating the Stylesheet

	Testing the Tagging Functionality
	Testing the Model
	Testing the Controller

	Running the Test Suite ... Again!
	Summary

	Chapter 11: Debugging, Testing, and Benchmarking
	Debugging Your Application
	Debugging within Templates
	Web Console
	Debugging A Slightly Trickier Bug

	Using the Rails Logging Tool
	Overcoming Problems in Debugging
	Testing Your Application Using Integration Tests
	Using Breakpoints in a Test
	Revisiting the Rails Console
	A Brief Introduction to Pry

	Benchmarking Your Application
	Taking Benchmarks from Log Files
	Manual Benchmarking

	Summary

	Chapter 12: Deployment and Production Use
	The Implications of “Production”
	Choosing a Production Environment
	Web Servers
	Apache
	Nginx

	Application Servers
	Rack
	Terminology
	Application Servers for Rails

	Proxying Requests
	Software as a Service
	Heroku

	Alternatives for Session Storage
	The ActiveRecord Store Session Container

	Further Reading
	Caching
	ActionCable
	Rails API
	Performance

	Summary

