

Learning Python by Building
Games

A beginner's guide to Python programming and game
development

Sachin Kafle

BIRMINGHAM - MUMBAI

Learning Python by Building Games
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Kajal Bhagure
Content Development Editor: Aamir Ahmed
Senior Editor: Hayden Edwards
Technical Editor: Jinesh Topiwala
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Alishon Mendonsa

First published: October 2019

Production reference: 1111019

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78980-298-6

www.packt.com

http://www.packt.com

Dedicated to mom and dad, for all your love and support.
And, to Sonu and Susaan, for the wonderful memories of growing up.

– Sachin Kafle

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Foreword
I have known and worked with Sachin Kafle for more than four years. Sachin is one of the
most well-known individuals among Nepal-based cyber and Python experts. In this book,
Learning Python by Building Games, Sachin takes you on a learning journey of core and
advanced Python programming paradigms with the help of hands-on examples. For more
than 15 years, Python has continued to evolve to meet the needs of developers around the
world. For the majority of this time, Sachin has been a key team member in initiating
projects by creating and reusing modular programs.

In his presentations and examples, Sachin shows you how easy it is to create a wide range
of applications/games using different Python libraries, such as Pygame, Pymunk, and
PyOpenGL. Sachin has also helped developers to create a game with a taste for AI.

With Learning Python by Building Games, you'll learn the best practices for writing high-
quality, reliable, and maintainable code with Python, a general-purpose language. After
you have completed Sachin's book, you'll understand how to create and deploy your own
mobile/computer games and apps.

Beyond developing apps for desktops and smartphones, you'll learn how to use the Python
programming paradigm to accomplish architecture based on AI and simulation.

In Learning Python by Building Games, Sachin encapsulates the knowledge gained through
years as an academic specialist and Python developer, a Python cybersecurity analyst, and
a passionate advocate. Through his words, step-by-step instructions, screenshots, source
code snippets, examples, and links to additional sources of information, you will learn how
to continuously enhance your skills and apps.

Become a proficient Python developer and build stunning cross-platform apps with
Python.

Prof. Dr. Subarna Shakya

Chairman, Computer Engineering Subject committee, Ministry of Education, National
Curriculum Development Center (Nepal)

Contributors

About the author
Sachin Kafle is a computer engineer from Tribhuvan University, Nepal, and a
programming instructor currently living in Kathmandu. He is the founder of Bitfourstack
Technologies, a software company that provides services including automation for real-
time problems in businesses. One of his courses, named Python Game Development, is the
best seller on many e-learning websites. His interests lie in software development and
integration practices in the areas of computation and quantitative fields of trade. He has
been utilizing his expertise in Python, C, Java, and C# by teaching since 2012. He has been a
source of motivation to younger people, and even his peers, regardless of their educational
background, who are embarking on their journey in programming.

I would like to acknowledge the amazing staff and editorial team at Packt Publishing:
without their talent and dedication, this book would not be such a valuable asset. In
particular, I would like to thank Aamir Ahmed and Mohammed Yusuf Imaratwale for
having faith in this book from the beginning. Adapting Aamir's many insightful
comments and suggestions really uplifted the quality of this book, and I am grateful for all
the time and effort he put into this book.
I'd also like to thank the technical reviewer, Jose Angel Munoz, and the technical editor,
Jinesh Topiwala, for their thorough attention to the programming aspect of this book. Their
detailed labels and understanding of target audiences, along with their invaluable
comments, greatly improved the clarity of this book.
Finally, a special thanks to all of my students for their support and zeal for having this
book published. Your voracity toward learning game development using Python is what
inspired me to write this book.

About the reviewer
Jose Angel Munoz is a system engineer and architect with multiple years of IT
infrastructure and infrastructure-as-code development experience. He is an expert in a
variety of technologies, has collaborated with different open source projects, including
Ansible, Microsoft, Inspec by Chef, Pimoroni, and XLDeploy, and has published different
articles in Linux specialised magazines. For Packt, he has reviewed two PowerShell-related
books. You can find him on GitHub (@imjoseangel).

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting to Know Python - Setting Up Python and the Editor 8
Technical requirements 9
Introducing programming with Python 9

Explaining code procedures 11
Conversing with Python 12

Installing Python 13
For the Windows platform 13
For the Mac platform 17
Introducing the Python Shell and IDLE 19

Particulars of the Python Shell 20
Building blocks of Python 21
Installing the PyCharm IDE 23
Programming code without Hello World 25
Summary 26

Chapter 2: Learning the Fundamentals of Python 27
Technical requirements 28
Handling values and data 28
Variables and keywords 31

Rules for naming variables 33
Operators and operands 35

Order of operations 36
Modulus operator 37
Using the math module 37

Writing comments in code 42
Requesting user input 45

Typecasting or type conversion 47
String operations 48

String formatting 53
Building your first game – tic-tac-toe 54

Brainstorming and information gathering 54
Choosing proper code editor 55
Programming model or modelling 56
User interaction – user input and manipulation 58

Possible errors and warnings 60
Game testing and possible modifications 61
Summary 63

Table of Contents

[ii]

Chapter 3: Flow Control - Building a Decision Maker For Your Game 64
Technical requirements 65
Understanding Boolean logic and logical operators 65

Comparison operators 66
Logical operators 67

Conditionals 70
Iteration 73

Th for loop 74
While loop 76
Loop pattern 77
The break and continue statements 80
Handling exceptions using try and except 81

Making a game controller for our tic-tac-toe game 83
Brainstorming and information gathering 84
Modifying the model 84
Handling the exceptions of the game 86
Toggling the player's turn 87
Making a player the winner 90

Summary 93

Chapter 4: Data Structures and Functions 95
Technical requirements 96
Why do we need data structures? 96
The four structural pillars of Python – lists, dictionaries, sets, and
tuples 98
Lists 98

Accessing list elements 100
List operations and methods 103
Slicing the list 106
String and list objects 107

Dictionaries 109
Looping through dictionaries 111
Dictionary methods 112
Tuples 113
Tuples and dictionaries 115

Sets 116
Set methods 117

Functions 119
Default arguments 123
Packing and unpacking arguments 124
Packing and unpacking keyword arguments 126
Anonymous function 127
Recursive functions 128
Built-in functions 130

Adding intelligence into our game 130

Table of Contents

[iii]

Brainstorming and information gathering 131
Implementation of models for intelligence 134
Controlling program flow with main function 140

Game testing and possible modifications 144
Summary 146

Chapter 5: Learning About Curses by Building a Snake Game 147
Technical requirements 148
Understanding curses 148
Starting the curses application 149

New screen and window objects 151
User input with curses 155
Making a snake game with curses 158

Brainstorming and information gathering 158
Inception 160
Handling user key events 161
Game logic – updating the head position of the snake 162
Game logic – when the snakes eats the food 164

Game testing and modification 165
Summary 168

Chapter 6: Object-Oriented Programming 169
Technical requirements 170
Overview of OOP 170
Python classes 172
Encapsulation 175
Inheritance 177
Polymorphism 181
Snake game implementation 183

Brainstorming and information gathering 183
Declaring constants and initializing the screen 184
Creating the snake class 186
Handling user events 189
Handling collisions elp of decorator property. 193
Adding the food class 193

Game testing and possible modification 195
Summary 197

Chapter 7: List Comprehension and Properties 198
Technical requirements 199
Overview of code complexities 199
For loop versus list comprehension 203

List comprehension pattern 203
Map function 206

Decorators 207

Table of Contents

[iv]

Python property 211
Refining the snake game with LC and property 214
Summary 215

Chapter 8: Turtle Class - Drawing on the Screen 216
Technical requirements 217
Understanding the turtle module 217
Introduction to turtle commands 219
Exploring turtle events 223
Drawing shapes with turtle 228
Summary 231

Chapter 9: Data Model Implementation 233
Technical requirements 234
Understanding operator overloading 234

Using data models in custom classes 236
Dealing with two-dimensional vectors 239

Exploring vectors 240
Modeling for vectored motion 242

Vector addition 243
Vector subtraction 244
Vector multiplication and division 245
Vector negation and equality 246

Summary 247

Chapter 10: Upgrading the Snake Game with Turtle 248
Technical requirements 249
Exploring computer pixels 249
Understanding simple animation using the Turtle module 253
Upgrading the snake game using Turtle 262
Exploring the Pong game 267
 Understanding the flappy bird game 271
Game testing and possible modifications 277
Summary 281

Chapter 11: Outdo Turtle - Snake Game UI with Pygame 282
Technical requirements 283
Understanding pygame 283
Pygame objects 289

Subsurfaces 290
Blitting your objects 291
Drawing with the pygame draw module 293

Initializing the display and handling events 295
Handling user events 298
Mouse control 303

Table of Contents

[v]

Object rendering 306
Initializing the display 308
Working with colors 308
Making game objects 309
Using the frame rate concept 311
Handling directional movements 312
Adding food to the game 315
Adding snake sprites 319

Adding a menu to the game 321
Converting into executables 324

Using py2exe 324
Game testing and possible modifications 325
Summary 326

Chapter 12: Learning About Character Animation, Collision, and
Movement 327

Technical requirements 328
Understanding game animation 328

Animating sprites 332
Animation logic 336

Scrolling background and character animation 338
Understanding random object generation 345
Detecting collision 351
Scoring and end screen 355
Game testing 356
Summary 357

Chapter 13: Coding the Tetris Game with Pygame 359
Technical requirements 360
Understanding Tetris essentials 360

Creating the shapes format 363
Creating a grid and random shapes 366
Setting up the window and game loop 368

Understanding rotations 371
Converting the shape format 374
Modifying the game loop 377
Clearing the rows 381
Game testing 386
Summary 388

Chapter 14: Getting to Know PyOpenGL 390
Technical requirements 391
Understanding PyOpenGL 391

Installing PyOpenGL 392
Making objects with PyOpenGL 395

Table of Contents

[vi]

Understanding PyOpenGL methods 398
Understanding color properties 401

Brainstorming grids 403
Understanding the GLU library 404

Summary 407

Chapter 15: Getting to Know Pymunk by Building an Angry Birds
Game 409

Technical requirements 410
Understanding pymunk 411

Exploring pymunk's built-in classes 414
Exploring the pymunk Body class 415
Exploring the pymunk Shape class 416

Creating a character controller 418
Creating the Polygon class 421
Exploring Pythonic physics simulation 427
Implementing the sling action 431
Addressing collisions 436
Creating levels 439
Handling user events 442
Possible modifications 449
Summary 452

Chapter 16: Learning Game AI - Building a Bot to Play 453
Technical requirements 454
Understanding AI 454

Implementing states 455
Starting snake AI 457
Adding a computer player 462
Adding intelligence to a computer player 464
Building the game and frog entities 466
Building the surface renderer and handler 467
Game testing and possible modifications 471
Summary 473

Appendix A: Other Books You May Enjoy 474
Leave a review - let other readers know what you think 476

Index 477

Preface
In September of 2018, I was teaching some of my students about game programming and
automation using Python. Then, I realized that it was time to create a book that not only
offers information on the rich content of game programming using Python but also
shows how to make and deploy games that mimic real, world-famous games such as
Flappy Bird and Angry Birds. I wanted to equip you with all the essentials and primitives
of game programming to become a real-world Python game developer. This book is not
your usual and traditional Python theoretical book; our approach will be as practical as
possible. Each chapter will contain a single, yet powerful, real-world game example that
will not only be interesting but will also edify you with programming paradigms, which
will be your first step to becoming a proficient Python developer.

Python is one of the most widely used programming languages of 2018/19, according to a
survey conducted by Stack Overflow and TIOBE, and its rate of popularity growth is not
expected to decrease any time soon. If you observe what big tech companies use for
handling their businesses, you can see that they depend highly upon Python because of its
easy usage and rapid prototyping. Not only that, but you can also see that Python can be
used to develop a variety of applications ranging from data science to high-end web
applications, and as you proceed to learn the basics of Python, you will be ready to create
almost anything you want.

There are many reasons to learn Python, and a big one is the Python community. Many of
the world's greatest developers contribute incessantly to this Python community by adding
new libraries/modules and functionalities. These libraries prove to be extremely helpful if
you want to create something new and rapidly. As such, Python is focused on products
rather than being bogged down in the routines and complexities of low-level programming,
which makes it the most loved programming language of beginners.

In this book, we will start by introducing some important programming concepts, such as
variables, numbers, Boolean logic, conditionals, and looping. After building a solid
foundation of core programming concepts, we will hop into advanced sections such as data
structures and functions. The pace of learning will be increased with the difficulty of the
chapters. After finishing Chapter 7, List Comprehension and Properties, we will be fully
equipped with all the basics to be applied while creating advanced things such as flappy
bird emulators, angry bird emulators, and AI players. In each chapter, there will be a game
testing and possible modification topic to compel you to think about how errors should be
handled and how programs should be refined.

Preface

[2]

Requirements for this book
To get a good grasp of each of the topics written about in this book, I encourage you to
follow along with the source code and examples. To write code properly, you will need to
install Python on your machine. I have used Python's latest version (as of September 2019),
version 3.7, but you can use any version newer than 3.5+. The thorough installation process
of Python is covered in the first chapter for your machine, based on the OS (Linux, macOS,
or Windows) you're using. You will also need an internet connection up and running to
download GitHub code and Python third-party libraries. We will be installing different
Python libraries, including PyGame, Pymunk, and PyOpenGL later in this book. For each of
them, the installation process will be covered in the chapter concerned. While using such
modules, our programs will tend to become lengthier, so we strongly encourage you to use
a good Python text editor. I will be using the PyCharm IDE to create complex games using
Python, and its installation is also covered in the first chapter. Apart from these software
requirements, there are no specific requirements for this book.

Who this book is for
This book is for anyone who wants to learn Python. You can be a beginner or someone who
has tried learning it previously, but a boring course or book set you off track, or someone
who wants to brush up on their skills. This book will help you gain core knowledge and
advance your skills in the most interesting way: by building games. It primarily focuses on
GUI programming using the Python modules PyGame, PyOpenGL, and Pymunk. No
programming skills are expected from learners as we will cover everything you need to
know about Python in this book. We will study the turtle module by building three mini-
games, and you will learn how to create your very own 2D games, even if you are a
complete beginner. If you ever wanted to explore game development with Python's
PyGame module, this book is for you.

What this book covers
Chapter 1, Getting to Know Python – Setting Up Python and the Editor, covers the background
of game development and the scope of Python in game development. We will set up
Python on our local machine and install the appropriate editor. We will also become
familiar with the project settings and the interface of the editor. We will see how to install
modules in PyCharm. We will execute our first Python program in this chapter.

Preface

[3]

Chapter 2, Learning the Fundamentals of Python, takes us through the invigorating stuff of
the Python ecosystem, giving us knowledge about the basic concepts of programming such
as variables, numbers, and modules. This chapter will give us with knowledge of values,
types, and type-casting techniques. We will make a simple tic-tac-toe game using concepts
learned in this chapter. This will teach us how to track data in Python programs.

Chapter 3, Flow Control – Building a Decision Maker for Your Game, covers the concepts of
Boolean logic, conditionals, and looping. This chapter will be life-changing for any learning
developer. This chapter will provide mainly deal with how things can be automated with
logic. We will also see looping patterns and debugging. Some practical examples will be
covered in this section. We will refine our tic-tac-toe game by incorporating game logic and
flow controls.

Chapter 4, Data Structures and Functions, covers lists, dictionaries, sets, and tuples. This
chapter will help programmers to distinguish between, and choose among, different built-
in storage solutions based on different situations. We will learn how to create each of these
data structures and how to perform different operations, including adding, deleting, and
traversing. We will make use of advanced data structures such as trees and queues in our
tic-tac-toe game, which will make our game more rugged.

Chapter 5, Learning About Curses by Building a Snake Game, covers terminal-independent
screen-painting and keyboard-handling facilities for text-based terminals; such terminals
include VT100s, the Linux console, and the simulated terminals provided by various
programs. We will make a snake game using curses events and screen painting. We will
make simple snake game logic using curses properties.

Chapter 6, Object-Oriented Programming, deals with creating and using objects in your
project. We will learn how to wrap data using properties and restrict data access using
specifiers. We will also learn how to use the built-in methods of Python to execute
overloading. This chapter will mainly deal with the terminologies of object-oriented
programming (OOP), such as classes, encapsulation, inheritance, and polymorphism. We
will use the OOP paradigm to make our snake game made with curses more robust and
reusable.

Chapter 7, List Comprehension and Properties, targets making our code simpler and faster in
execution. This chapter will teach us how to work with conditions and logic to implement
more understandable single-line code. We will see list comprehension and properties in
action with our snake game.

Chapter 8, Turtle Class – Drawing on the Screen, deals with the turtle module of Python.
This chapter will give a detailed explanation of how to use Python's turtle to draw all over
the screen with simple forward/backward commands. We will learn how to make basic
objects with turtle and build some skeleton code with Python in this chapter.

Preface

[4]

Chapter 9, Data Model Implementation, covers base class implementation. The base class
makes use of operator overloading using special built-in Python methods. We will make
use of vectors to specify the positions of objects and we will manipulate them with some
algebraic operations. Special functions such as __add__(), __mul__(), __str__(),
and __repr__() will be used to overload operators.

Chapter 10, Upgrading the Snake Game with Turtle, shows us how to create our first 2D game
with a Python script. We will make use of the turtle module to create animations on the
screen. This will be a simple game, but we will learn how to use the methods of the turtle
module to move a pen and draw all over our canvas. We will modify our snake game,
made following simple OOP concepts, to one that contains simple animations made with
turtle. In addition to the snake game, we will also see how to make games such as Pong and
Flappy Bird with turtle.

Chapter 11, Outdoing Turtle – Snake Game UI with PyGame, covers the installation of
PyGame on your machine, and we will also cover how to make the basic skeleton code of
our game containing display initialization, game loops, states, events, and colors. We will
modify our snake game, made with the turtle module, by using a sprite and a game
controller library named PyGame.

Chapter 12, Learning About Character Animation, Collision, and Movement, covers game
animation, game character movement (such as jumping and walking), random object
generation, game loops, collision and hit pipes, scrolling backgrounds, and scoreboards.

Chapter 13, Coding the Tetris Game with PyGame, deals with basic PyGame graphics, multi-
dimensional list processing, increasing game speed and difficulty, the menu for a game, the
creation of a game grid, and shapes and valid space determination.

Chapter 14, Getting to Know PyOpenGL, covers the installation of PyOpenGL on your
machine. We will see how to create an OpenGL window. We will make a simple rectangle
to begin with, and then look at PyOpenGL and see how the draw() method of PyOpenGL
works. We will also learn how to draw objects from vertices and edges, adding views for
object and clipping parameters.

Chapter 15, Getting to Know Pymunk by Building an Angry Birds Game, covers Pythonic 2D
physics simulation. We will create a space that contains the simulation and sets its gravity,
create a body with mass and moment, set the position of the body, create a box shape and
attach it to the body, and then add both the body and shape to the simulation. We will
create a complete Angry Birds game clone with Pymunk, dealing with sprite sheets and 2D
physics.

Preface

[5]

Chapter 16, Learning Game AI – Building a Bot to Play, shows how to create game AI. In this
game (snake), both the computer and you play as a snake, and the computer snake tries to
catch you. The opponent AI tries to determine and go to the destination point based on
your location on the board.

To get the most out of this book
To make the most of the information presented in this book, you are encouraged to follow
along with the examples. Prior knowledge of Python is not required, but experience of
mathematical concepts such as arithmetic and logical operations is essential for
understanding the code thoroughly. Python-based applications are not limited to any
particular OS, so all that is required is a decent code editor and a browser. Throughout the
book, we have used the PyCharm Community 2019.2 editor, which is an open source editor
and is free to download.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Learning-Python-by-building-games. In case
there's an update to the code, it will be updated on the existing GitHub repository.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learning-Python-by-building-games

Preface

[6]

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Code in Action
Visit the following link to check out videos of the code being run:

http://bit.ly/2oE9mHV

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The screenshot shows the edited python_ex_1.py file."

A block of code is set as follows:

n = int(input("Enter any number"))
for i in range(1,100):
 if i == n:
 print(i)
 break

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

def fun(b):
 print("message")
 a = 9 + b
 move_player(a)

fun(3)

Any command-line input or output is written as follows:

>>> cd Desktop

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In the installer, make sure you check the Add Python to PATH box."

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://bit.ly/2oE9mHV
http://bit.ly/2oE9mHV
http://bit.ly/2oE9mHV
http://bit.ly/2oE9mHV
http://bit.ly/2oE9mHV
http://bit.ly/2oE9mHV
http://bit.ly/2oE9mHV
http://bit.ly/2oE9mHV
http://bit.ly/2oE9mHV

Preface

[7]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Getting to Know Python -

Setting Up Python and the
Editor

Python is notorious in the data and analytics industry, but it is still a hidden artifact in the
gaming industry. While making games using other gaming engines such as Unity and
Godot, we tend to combine our design logic with core programming principles. But in the
case of Python, it is mostly the analysis of problems and programming paradigms that
coalesce together. A program flow or structure is a sequence that is dovetailed with its
programming paradigms. A programming paradigm, as its name suggests, facilitates the
programmer to write a solution to a problem in the most economical and efficient way
possible. For instance, writing a program in two lines of code instead of ten lines is an
outcome of using a programming paradigm. The purpose of program flow analysis or
structural analysis is to uncover information about procedures that need to be invoked for
various design patterns.

In this chapter, we will learn about the following topics:

Introducing programming with Python
Installing Python
The building blocks of Python
Installing the PyCharm IDE
Programming code without Hello World

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[9]

Technical requirements
The following is a list of the minimum hardware requirements you'll need for this book:

A working PC with a minimum of 4GB RAM
An external mouse adapter (if you are using a laptop)
A minimum of 5GB of hard disk space to download an external IDE and Python
packages

You will need the following software to get the most out of this book (we will download all
of them in this chapter):

Various open source Python packages like pygame, pymunk and pyopenGL
The Pycharm IDE (community version), which you can find at https:/ /www.
jetbrains. com/ pycharm/

Various open source packages, such as pygame and pycharm
The code for this chapter, which can be found in this book's GitHub
repository: https:/ /github. com/PacktPublishing/ Learning- Python- by-
building- games/ tree/ master/ Chapter01

Check out the following video to see the code in action:

http://bit.ly/2o2pVgA

Introducing programming with Python
The old adage of programming states the following:

"Coding is basically the computer language that's used to develop apps, websites, and
software. Without it, we'd have none of the major technology we've come to rely on such
as Facebook, our smartphones, the browser we choose to view our favorite blogs on, or even
the blogs themselves. It all runs on code."

We couldn't agree more with this. Computer programming can be both a rewarding and
tedious activity. Sometimes, we might be in a situation where we can't find the tweaks of
the exception (unexpected behavior of the program) that we caught in the program and,
later, we find that the error was because of wrong modules or bad practices. Writing
programs is similar to writing essays; first, we have to learn about the patterns of an essay;
then, we analyze the topics and write them; and finally, we check the grammar.

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter01
http://bit.ly/2o2pVgA
http://bit.ly/2o2pVgA
http://bit.ly/2o2pVgA
http://bit.ly/2o2pVgA
http://bit.ly/2o2pVgA
http://bit.ly/2o2pVgA
http://bit.ly/2o2pVgA
http://bit.ly/2o2pVgA
http://bit.ly/2o2pVgA

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[10]

Similar to the process of writing an essay, when writing code, we have to analyze the
patterns or grammar of the programming language, then we analyze the problems, and
then we write a program. Finally, we check its grammar, which we normally do with alpha
and beta testing.

This book will try to turn you into a person who can analyze a problem, build noble logic,
and come up with an idea that will solve that problem. We won't make this journey
monotonous; instead, we will learn about Python syntax by building games in each chapter.
By the end of this book, you will be thinking like a programmer—maybe not a professional
one, but at least you will have developed the skill to make your own programs using
Python.

There are two crucial things you'll learn about in this book:

Firstly, you will learn about the vocabulary and grammar of Python. I don't mean
learning about Python theory or history. First, we have to learn about Python
syntax; then, we will see how we can create statements and expressions with that
syntax. This step includes collecting data and information and storing it in an
appropriate data structure.
Then, you will learn about the procedures that come with the idea of calling the
appropriate methods. This process includes using the data that was collected in
the first step to get the intended output. This second step is not specific to any
programming language. This is going to teach us about various programming
prototypes rather than just Python.

Learning any other programming languages after learning about Python is a lot easier. The
only difference you will observe in other programming language is syntax complexities and
program debugging tools. In this book, we will try to learn about as many programming
paradigms as possible so that we can start a programming career.

Are you still unsure about Python?

Let's take a look at some of the products that have been made with Python:

No list starts without mentioning Google. They use it in their web search system
and page rank algorithm.
Disney uses Python for its creative processes.
BitTorrent and DropBox are written in Python.

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[11]

Mozilla Firefox uses it to explore content and is a major contributor to Python
packages.
NASA uses it for scientific purposes.

The list goes on and on!

Let's take a look at how code procedures work in simple terms.

Explaining code procedures
To explain how code procedures work in simple terms, let's take the example of making an
omelet. You start by learning the basics from a recipe book. First, you gather some utensils
and make sure they are clean and dry. After that, you beat the eggs, salt, and pepper until
it's all blended. Then, you add butter to your non-stick pan, add your egg mixture, and
cook it or even tilt the pan to check whether every part of the omelet is cooked or not.

In terms of programming, first, we talk about collecting our tools, such as the utensils and
eggs, which relates to collecting data that will be manipulated by the instructions we write
in our programs. After that, we talk about cooking the eggs, which is your methods. We
normally manipulate data in methods to get output in a form that is meaningful to the user.
Here, the output is an omelet.

Giving instructions to a program is the job of a programmer. But let's distinguish between a
client and a programmer. If you are using a product where you give instructions to the
computer to perform tasks for you, then you are a client, but if you design instructions that
will complete tasks for a product you've created for everyone, this indicates that you are a
programmer. It is only a matter of for one or for everyone to determine whether a user is a
client or programmer.

Some of the instructions we will use in our Windows Command Prompt or Linux Terminal
will be for opening the directory of our machine. There are two ways of performing this
action. You can either do it using a GUI, or you can use the Terminal or command prompt.
If you type in the dir command in the respective field, you are now telling the computer to
display the directories in that location. The same thing can be done in any programming
language. In Python, we have modules to do this for us. We have to import that module
before we can use it. Python provides a lot of modules and libraries to perform such
operations. In a procedural programming language such as C, which allows low-level
interaction with memory, this makes it harder to code, but with Python, it is easier to use
the standard library, which makes the code shorter and readable. David Beazley, the author
of How to Think Like a Computer Scientist Learning Python, was once asked, why Python? He
simply replied, Python is simply a lot of fun and more productive.

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[12]

Conversing with Python
Python has been around for many years (nearly 29), and regardless of all of the upgrades it
has had to go through, it's still standing as the easiest language for beginners to learn. The
primary reason for this is that it can be correlated to the English vocabulary. Similar to how
we make statements with English words and vocabulary, we can write statements and
operations with Python syntax that commands can interpret, execute, and provide us with
a result. We can make a sentence such as go there as a command to reflect the position of
something with conditionals and flow controls. Learning the syntax of Python is pretty
easy; the actual task is to use all of the resources provided by Python to build brand new
logic to solve intricate problems. Just learning the basic syntax and writing a couple of
programs is never enough; you have to practice enough so that you can come up with
revolutionary ideas to solve real-world problems.

We have a lot of vocabulary in the English dictionary. Unlike the English dictionary,
Python only contains a few words in its container, which we normally call reserved words.
There are 33 of them in total. They are instructions that tell the Python interpreter to
perform specific operations. Modifying them isn't possible—they can only be used to
perform specific tasks. In addition, when we call a print statement and write some text in it,
it is expected that it prints out that message. If you want to make a program that takes
input from the user, calling the print statement is useless; the input statement has to be
called to achieve that. The following table shows our 33 reserved words:

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

Each of the preceding words can be found in our English dictionary. In addition, if we
search for the word return in the dictionary, it simply gives us the verb meaning of
coming or going back to the original place. The same semantics are used in Python; when
you use the return statement with functions, then you are pulling out something from the
function. In the upcoming chapters, we will see all of these keywords in action.

Now that we have started to learn how to converse in Python by examining its keywords,
we will install Python. Gear yourself up and open your machine for some fun.

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[13]

Installing Python
In this section, we will look at installing Python on Windows and macOS.

For the Windows platform
Python doesn't come pre-installed on Windows. We have to download it manually from its
official website and then install it. Let's look at how to do this:

First of all, open your favorite browser and open the following URL: https:/ /1.
www.Python. org/ .
You will be directed to the page that's shown in the following screenshot. Once2.
you have been redirected to Python's official website, you will see three
sections: Download, Docs, and Jobs. Click on the Download section at the
bottom of the page:

You will see a list of files, as shown in the following screenshot. Pick the file3.
that's appropriate for your platform. We're looking at the installation for
Windows in this section, so we will click on the Windows executable link. This is
highlighted in the following screenshot:

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[14]

 After clicking on that, you will get a file that needs to be downloaded. After4.
opening that downloaded file, you will get the installer, as follows:

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[15]

In the installer, make sure you check the Add Python to PATH box. This will put5.
the Python library files in our environment variables so that we can execute our
Python programs. Afterward, you will get a message about its successful
installation:

Press the Windows key + R to open Run and type cmd in the Run tab to open6.
your Windows Command Prompt. Then, type Python in the command shell:

If you get the Python version that's displayed in the preceding screenshot, then Python has
been successfully installed on your machine. Congratulations! Now, you can get your
hands dirty by writing your first program with Python.

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[16]

If you get an error saying Python is not recognized as an internal or external command,
you have to explicitly add Python to the path environment variable. Follow these steps to
do so:

Open the Control Panel, navigate to System and Security, and then go1.
to System to view the basic information about your system.
Open your Advanced system settings and then Environment Variables....2.
In the Variable section, search for Path. Select the Path variable and press3.
the Edit... tab.
Click New in the Edit Environment Variable tab.4.
Add this path so that it's pointing to your Python installation directory, that5.
is, C:\Users\admin\AppData\Local\Programs\Python\Python37\.
Click on the OK button to save these changes:6.

Now, we have successfully installed Python for Windows. If you are using a Mac, the next
section will help you to access Python too.

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[17]

For the Mac platform
Python comes pre-installed with Mac OS X. To check the version of Python you have
installed, you should open your command line and type Python --version. If you get a
version number of 3.5 or newer, you don't need to go through the installation process, but if
you have version 2.7, you should follow these instructions to download the latest available
version:

Open your browser and type in https:/ /www. Python. org/ downloads/ . You will1.
be sent to the following page:

Click on the macOS 64-bit/32-bit installer. You will be provided with a .pkg file.2.
Download it. Then, navigate to that installed directory and click on that installer.
You will see the following tab. Press Continue to initiate the installer:

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[18]

Whenever you download Python, a bundle of packages will be installed on your computer.
We can't use those packages directly, so we should call them individually for each
independent task. To write programs, we need an environment where we can call Python
so that it can complete tasks for us. In the next section, we will explore the user-friendly
environment provided by Python where we can write our own programs and run them to
view their output.

Now that you have installed Python version 3.7 on Mac OS X, you can open your Terminal
and check the version of Python you have with the python --version command. You
will see Python 2.7.10. The reason for this is that Mac OS X comes preinstalled with version
2.7+ of Python. To use the newer version of Python, you have to use the python3
command. Type the following command into your Terminal and observe the result:

python3 --version

Now, to make sure Python uses the interpreter with the newer version that you just
installed, you can use an aliasing technique that will replace the current working Python
version with Python3. To perform aliasing, you have to follow these steps:

Open your Terminal and type in the nano ~/.bash_profile command to open1.
a bash file using the nano editor.
Next, go to the end of the file (after import PATH) and type in the alias2.
python=python3 command. To save a nano file, press Ctrl + X and then Y to
save.

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[19]

Now, open your Terminal again and type in the same command that we used previously to
check the Python version we have. It will be updated to the newer version of Python. From
now on, in order to run any Python file from your Mac, you can use this Python command,
followed by the signature of the file or filename.

Introducing the Python Shell and IDLE
The Python Shell is similar to Command Prompt for Windows and the Terminal for Linux
and Mac OS X where you write commands that will be executed in the filesystem. The
results of these commands are printed instantly within the shell. You can also get direct
access to this shell using a Python command (> python) in any Terminal. The result will
contain an exception and an error due to the improper execution of the code, as follows:

>>> imput("Enter something")
Traceback (most recent call last):
 File "<pyshell#5>", line 1, in <module>
 imput()
NameError: name 'imput' is not defined

>>> I love Python
SyntaxError: invalid syntax

As you can see, we ran into an error and the Python IDE is explicitly telling us the name of
error we ran into, which in this case is NameError (a type of syntax error). SyntaxError
occurs due to an incorrect pattern of code. In the preceding code example, when you write
the I love Python syntax, this implies nothing to the Python interpreter. You should
write proper commands or define something properly if you want to rectify that problem.
Writing imput instead of input is also a syntax error.

Logic errors or semantic errors occur even if your program syntax is correct. However, this
doesn't solve your problem domain. They are dangerous as they are hard to track. The
program is perfectly correct but does not solve any problem that it's intended to.

When you download the Python package on your machine, a Python Integrated
Development Environment (IDE) called IDLE (Python's built-in IDE) is downloaded
automatically onto your machine. You can type IDLE into the search bar to navigate to this
environment. IDLE is a free open source program that provides two interfaces where you
can write code. We can write scripts and Terminal commands in IDLE.

Now that we are familiar with what not to do in the Python Shell, let's talk about the
particulars of the Python Shell—an environment where you can write your Python code.

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[20]

Particulars of the Python Shell
As we mentioned previously, in this section, we are going to take a tour of the particulars of
Python. This includes Python's built-in shell, Python's text editor (usually called Python
script), and the Python documentation page.

Follow these steps to learn about the particulars of the Python Shell:

When you open Python Shell, you will see the following window. The first thing1.
you will see in the shell is Python's current version number:

In the Python shell, there are three angular brackets placed next to each other,2.
like this: >>>. You can start writing your code from there:

Press F1 to open the Python documentation or go to the Help tab and click3.
Python Docs F1 (on a Windows machine). To get access the documentation
online, please go to https:/ /docs. python. org/ 3/:

I hope that you are now familiar with the Python Shell. We are going to write a lot of code
in the shell, so make sure you get familiar with it by customizing or playing with this
environment a bit longer. After you are done with it, you can proceed to the next section,
where you are going to learn about what you need to know before you write your first
Python program.

https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/
https://docs.python.org/3/

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[21]

Building blocks of Python
There are some conventional patterns that we make use of while writing programs in
Python. Python, being a high-level language, doesn't care about low-level routines, but has
the capability to interact with them. Python is made up of six building blocks. Every
program that is made with Python revolves around them. These building blocks are input,
output, sequential execution, conditionals, recursion, and reuse. Let's go over them now:

Input: Input is everywhere. If you make an application with Python, it mainly
deals with formatting the input of the user in a way that would harvest
meaningful results. There is an built-in input() method in Python so that we
can get data input from the user.
Output: After we have manipulated the data that was entered by a user, it's time
for us to present it. In this layer, we make use of design tools and presentation
tools to format meaningful output and send it to the user.

Sequential execution: This preserves the sequence of execution of statements. In
Python, we normally use indentation, which is spaces that denotes scopes. Any
commands that are at zero-level indentation are executed first.
Conditionals: These provide flow control to programs. Based on comparisons,
we make logic that will make a flow of the code and will either execute or skip it.
Recursion: This is anything that needs to be done until some condition is met.
We normally call them loops.
Reuse: Write code once, use it a million times. Reuse is a paradigm where we
write a set of code, give it a reference, and use it whenever required. Functions
and objects provide reusability.

Writing a program in Python Shell may be easy to debug for most programmers, but it can
create overhead in the long run. If you want to save your code for future reference or you
want to write multi-line statements, you will probably be overwhelmed with the deficit
feature of the Python interpreter. To solve this problem, we have to create a script file. They
are called scripts because they allow you to write multi-line statements in single files that
you can run immediately. This comes in handy when we have multiple data storage and
files to deal with. You can distinguish a Python file from other files by its extension, that
is, .py. You should also save your Python script files with the .py extension.

To run your script file from a Terminal or Windows Command Prompt, you have to tell
your Python interpreter to run that file by its filename, like so:

$ Python Python_file_name.py

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[22]

In the preceding command, $ is an operating system prompt. First, you have to call the
Python interpreter with the Python command and tell it to execute the file name next to it.

If you want to see the content of the Python file within the Terminal, use the following
command:

$ cat Python_file_name.py
$ nano Python_file_name.py

To exit the Python Terminal, write the exit() command in the Terminal.

Now that we've learned how to open and exit the interface of the Python environment, we
have to learn about its building blocks. Many beginners make a fallacious assumption that
a program has only two building blocks: input and output. In the next section, we will see
how to debunk this assumption by employing six building block of programming.

The toughest part of programming is learning the art of programming paradigms such as
object-oriented programming, DRY principles, or the linear time complexity model. If you
get a good grasp of these prototypes, learning any new programming language will be a
piece of cake. Having that said, learning all of these paradigms with Python is a lot easier
than Java or C# as, in Python, the code will be shorter and the syntax is English-friendly:

Before we write our first program, we will install one more IDLE for the upcoming chapters
where we will be writing program-intricate games. In those types of games, the features
that are provided by IDLE are not enough, and so we will see how to install
PyCharm—an advance IDLE—in the next section.

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[23]

Installing the PyCharm IDE
Earlier in this chapter, we discovered IDLE. We have already seen an environment where
we can write code and get output straightaway. However, you can probably imagine what
happens if we have lots of code to be executed at once, maybe 1,000 lines of code, one by
one. We have to solve this problem by writing a script, which is a collection of Python code.
This will be executed at once instead of being executed line by line in the shell of IDLE.

If you want to write a script, follow these steps:

Open the Search tab from your PC and type IDLE.1.
Click on the File tab.2.

Press on New File.3.
A new file will be generated. You can write multiple expressions, statements, and4.
commands in that single file. The left-hand side of the following screenshot
shows the Python script where you can write multi-line statements, while the
right-hand side of the following screenshot shows the Python Shell, where you
will execute your script and get instant results:

After you've finished writing your scripts, you have to save it before
running it. To save your file, go to File and click on Save. Provide the
appropriate filename for your script by placing the .py extension at the
end of it, for example, test.py. Press F5 to execute your script file.

We will build many games throughout this book where we will have to deal with images,
physics, rendering, and the installation of Python packages. This IDE, that is, IDLE, is not
capable of providing smart IDE features such as code completion, integration and plugins,
and branching of packages. Hence, we have to upgrade to the best Python text-enriched
IDE, that is, the PyCharm IDE. Let's get started:

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[24]

Visit https:/ / www. jetbrains. com/ pycharm/ to download the PyCharm1.
environment. The installation of PyCharm is as simple as the installation of any
other program. After you've downloaded the installer from the website, click on
that installer. You should see the following window:

Click on the Next> button and install it on the appropriate drive. After you've2.
installed it, search for PyCharm in the search bar and open it. You should see the
following window:

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[25]

Now, click +Create New Project and give your project a name. To create a new3.
Python file, left-click on your project name, click on New, and then click
the Python File tab:

Now, we have everything that we need to master this book—I mean the tools, but
obviously, we have to learn every possible paradigm of Python to master the concept of
Python. Now that you are fully equipped with these tools, let's write our first effective
Python program, No Hello World.

Programming code without Hello World
There is a tradition in the programming world to print Hello World as our first program.
Let's break the mold and make our first program one that takes input from the user and
prints it to the console. Follow these steps to execute your first program:

Open your IDLE and type in the following commands:1.

 >>> print(input("Enter your Name: "))

Getting to Know Python - Setting Up Python and the Editor Chapter 1

[26]

Press Enter to execute the command. You will get a message saying Enter your2.
Name:. Type in your name and hit Enter. You will see the output print the name
that you just passed.

We made use of two commands here, also known as functions We will learn about them in
the upcoming chapters. Let's go over these two functions now:

input() is a built-in function of Python that will take input from the user.
Spaces are also included as characters.
print() is a built-in function of Python that will print whatever is passed inside
the parentheses.

Now that we have started to code our first program with Python using Python's built-in
IDLE, it's your turn to test the working of IDLE. Since we are going to be building lots of
games using IDLE, make sure you get familiar with its interface. The core programming
modules that we learned about in this chapter, such as Python keywords and the input-
print function, are important as they help us to build programs that can take input from
users and display it.

Summary
In this chapter, we took a tour of the basics of Python and learned how similar its
vocabulary is to English. We installed the Python package on our machine and viewed the
pre-installed IDE of Python, known as IDLE. We saw how scripts can be written on the
Python IDE and how we can execute them. Then, we installed the feature-rich Python text
editor known as PyCharm IDE on our machine. We wrote our first Python program, which
is able to take input from the user and display it on the screen.

The skills that you have acquired in this chapter are fundamental for building the flow of a
program. For instance, our program was able to take input/output data. Any game that's
made in Python has to be interactive for the users or players, and this is done through the
input and output interface. In this chapter, we looked at how to take input from a user and
display it. As we continue with this book, we will explore various ways to build a program
that handles user events such as taking input from the mouse, keyboard, and screen-taps.

The next chapter will be crucial as we will look at Python essentials such as values, types,
variables, operators, and modules. We will also start to build a tic-tac-toe game.

2
Learning the Fundamentals of

Python
Python doesn't need in-game development, design, and analysis are considered the steps
that are done before programming. Designing and analysis require that we brainstorm for
ideas, model the procedures, and format the input. All of these procedures have something
to do with data. Data can be something as simple as a list of numbers or as complex as
weather history. This data has its own types and structures. Data needs to have its own
storage location so that we can reference it. Python provides an abstraction of data in the
form of objects that facilitate us to create a nested data structure.

This chapter will give you a roller-coaster ride of the core programming paradigm within
Python. We will begin by learning about the different data types that are available and
ways to capture them in variables or storage units. We will learn about different
mathematical operations (arithmetic and trigonometric) using the math module. By the end
of this chapter, we will have made our first game, tic-tac-toe, by using the knowledge that
we have learned in this chapter.

In this chapter, we are going to cover the following topics:

Handling values and data
Variables and keywords
Operators and operands
Writing comments in the code
Requesting User Inputs
String Operations
Building your first game – tic-tac-toe
Possible errors and warnings
Game testing and possible modifications

Learning the Fundamentals of Python Chapter 2

[28]

Technical requirements
You will need the following requirements to get the full benefits of this chapter:

You'll need the Python IDLE
The code assets for this chapter can be found in this book's GitHub
repository: https:/ /github. com/PacktPublishing/ Learning- Python- by-
building- games/ tree/ master/ Chapter02

Check out the following video to see the code in action:

http://bit.ly/2o6Kto2

Handling values and data
Software is evaluated as good or bad based on its capability to handle data. Every program
has its own database design and implementation. A database is a schema where data is
stored in such a way that it can be retrieved fast and securely so that it can be manipulated.
It is assumed that social networks such as Facebook and Twitter collect 1.7 billion people's
data each day. Such huge amount of data, which is collected on a daily basis, should be
addressed properly because we don't have enough memory to store and process it. Hence,
Python provides flexible built-in methods to map, filter, and reduce these datasets so that
they can be stored and fetched faster for processing.

Python is lightning-fast when it comes to storing data as a schema. Its integration with big
data platforms such as Hadoop, which inherits its compatibility, is the main reason we use
Python in big datasets. Powerful packages such as NumPy, pandas, and scikit-learn
provide data support for today's data and analytical needs.

A value is the representation of data for some attributes that are computed by programs.
Here, attributes are the properties of any object. For example, when we talk about a person,
we reference them by name, age, and height. These attributes have an r-value (the content
of the attribute) and an l-value (memory location) attached to them. The content of the
attribute refers to the value that is stored as the content of the variable, while the memory
location refers to the physical place where the value is stored. For example, name =
"Python" has a name variable as an attribute; its r-value is Python and its l-value is a
unique ID that is assigned by the Python parser automatically as a memory location for the
name attribute.

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter02
http://bit.ly/2o6Kto2
http://bit.ly/2o6Kto2
http://bit.ly/2o6Kto2
http://bit.ly/2o6Kto2
http://bit.ly/2o6Kto2
http://bit.ly/2o6Kto2
http://bit.ly/2o6Kto2
http://bit.ly/2o6Kto2
http://bit.ly/2o6Kto2

Learning the Fundamentals of Python Chapter 2

[29]

In Python, values are stored in the form of objects. Objects have four particulars: ID,
namespace, type, and value. Let's look at a simple example to uncover the particulars of an
object:

>>> player_age = 90

When the player_age variable is created, its instance is created, which we call an object.
Whenever an object is created, it receives a unique memory storage location, that is, a
unique ID number, and assigns a type dynamically, that is, an integer, because we are
assigning 90 to it. After that, the player variable is added to the namespace so that we can
retrieve its value, that is, 90. The following diagram attempts to simplify this explanation:

Whenever any assignment statement is executed, the parser creates an object, which gets a
unique memory ID from where we can reference the value of the variable. Since Python is a
dynamically typed language, it assigns a type of variable dynamically by analyzing the
value that's been assigned to the variable. Eventually, it adds that variable to a global
namespace so that whenever you want to fetch that variable, you can use the variable
name. Here, memory_ID is the location that points to the value of an object. Some
programming languages, such as C, call this a pointer.

Each of these values has a type associated with it. 1 is an integer, a is a character, and
Hello World is a string. Hello World is a collection of characters and it is called a string
since it defines a string of characters. In the previous chapter, we saw an example where we
asked a user for input. Whenever a user types something as input, it is considered a string.
These values define objects in programming. Let's use a parrot as an example. It will have a
name as a string, its age as an integer, and its sex as male or female, denoted by M or F,
which are characters. In Python, a character is also represented as a string. To verify that,
we have the type method. The type method is represented as follows:

>>> type('a')

Learning the Fundamentals of Python Chapter 2

[30]

The output of the preceding command will be <class 'str'>, which implies that the
character is also part of a string. To check the type of any value, we can use the same type
method:

>>> type(1)
>>> type('Hello World')

The preceding commands will show class as int and str, respectively.

Now, let's talk about numbers. Numbers are of two types: whole numbers and decimal
numbers. As we saw, a whole number is an integer, but a decimal number is a float. We call
decimal numbers floating numbers in Python as they are represented in floating-point
format, like so:

>> type(3.4)

The output of the preceding command is <class 'float'>.

You can print these values in the Terminal using the print method. The print method
takes values within parenthesis and gives the result in the interpreter, like so:

>>> print(1)

If you put 1 within the print statement, it will print 1 as a number. However, when you
put 1 within double quotes, it will print 1 as a string, like so:

>> print("1")
<class 'str'>

Any number, text, or special symbols, such as @, $, %, or * you put inside
a single quote or double quote will eventually be a string. The following is
an example of a string: 1, Hello, False, #$(#.

When you put a comma between two values in a print statement, it puts a space between
them, like so:

>>> print("abc","abc")

The preceding code will give you the output of abc abc, but they are no longer considered
strings. This is the first semantic error we've seen in Python. We passed abc as a string, but
the result is a non-type:

>>> type(print("abc","abc"))
<class 'NoneType'>

Learning the Fundamentals of Python Chapter 2

[31]

This is a perfect example of a semantic error. We got the output without any errors, but we
didn't get the result we wanted.

You can also check integers. It's not possible to print integers with a comma between them.
The Python interpreter converts commas into spaces between each value that's passed:

>>> print(0,000,000)

This command will give us a result of 0 0 0. Each comma was converted into spaces and
printed. If you check the type of the value that is returned from the function, it will also
be NoneType.

Now that we know about value and types, let's get ourselves familiar with variables and
keywords.

Variables and keywords
Programming is all about accepting and manipulating values that we've learned about. We
make use of variables while accepting and manipulating those values so that we can
reference them for future use. Variables are like boxes, where you put in different things
and fetch them whenever they're required. A variable is created with a name and a value
assigned to it.

We use the equal to sign (=) to make an assignment statement. Variables are created with
assignment statements; for example:

>>> myAge = 24
>>> info = "I love Python"
>>> isHonest = True

Here, we created three variables with assignment statements. In the first command, we
made the myAge variable and assigned an integer to it. You do not have to specify types of
variables explicitly in Python since Python does it internally. This is what makes Python a
dynamically typed language. In the second command, we made the info variable and
assigned a string to it. Finally, we made the isHonest variable and assigned a Boolean to
it.

Boolean types are logic types. They are either True or False. Creating a
Boolean variable is the same as creating other variables, for example,
is_hungry = True.

Learning the Fundamentals of Python Chapter 2

[32]

Variables are basic pieces of data storage. We can assign one value to a variable at a time.
Whenever you assign another value to the same variable name, it will overwrite the
original one. For example, here, we made the info variable a string, but if I replace it with
another value, say, integer, this is valid:

>>> info = 23

If you make variables in Python, it will create separate memory references for each variable.
So, any time you replace the same variable in another value, the value at that particular
position will be retrieved and overwritten with the new one. Variable names are pointers to
the value in the reserved memory location. You can't store multiple values in a variable.
You have to use advanced data structures to do this. We will cover this in the upcoming
chapters (CHAPTER 4: Data Structures and Functions: Refine Your Game with Taste of AI).

Assigning multiple variables to different variables can be done in a single line of code. We
can assign them with a single assignment statement. The variable's name should be given at
the left-hand side and they should have commas between them. You can create as many
variables with distinct data types in a single line as you want with the following command:

>>> even, odd, num = 2, 3, 10

You can see the value of your variable by directly writing the variable's name in the
Terminal:

>>> even

If you only write the name of a variable in the script, the value won't be printed. Instead, it
will terminate. If you want to print something on the screen, you have to use the print()
method. To print the value of any variable, type print(variable_name) in your shell or
script, like so:

>>> print(even)

If you want to see the type of the value that's stored in the variable, you can call the type()
method. To do this, pass the variable's name inside parentheses:

>>> type(even)

The preceding command will give us the output of <class 'int'>, which implies that
integer values can be stored in variables.

We can also assign the same value to multiple variables in Python. In the preceding
command, instead of assigning multiple values, we assigned a single value to it, like so:

>>> even, num = 10

Learning the Fundamentals of Python Chapter 2

[33]

In the preceding command, we assigned an integer value of 10 to two different
variables, even and num.

Python doesn't need variable instantiation and declaration. Hence, there is no need for
reserved memory space in Python. Python does this internally when we create variables
with assignment statements.

Python has reserved 33 words as keywords for specific functionality. We cannot use them
to name variables. Python checks the name of the variable with these keywords internally
with its in-built script. Whenever it detects one of those words, it will throw a syntax error,
as in the following example:

>>> and = 23

The preceding command isn't executed and cannot be used as a variable name because it is
a keyword. Python uses it to do some logical operations. However, if you create a variable
called And and assign a value to it, Python will create the And variable for you. For Python,
And and and are not the same. It is a case-sensitive language.

To avoid any issues with your variable names, we can follow a few simple rules. We'll go
over these rules in the following section.

Rules for naming variables
We normally choose meaningful variable names because, in the long run, there may be
cases where we completely forget about code sequence and flow, and variables that don't
have a proper name can create confusion. Although you can create variables with any name
by following some rules, it is highly suggested to create variable names that make sense.
Let's say you are making a game where you want to create a variable for the player's health;
naming that variable a is not good practice. Instead, you should name it player_Health
so that it's clear to you and those who may look at your code what the code in this variable
does.

Usually, from a programming perspective, there are two ways of giving a variable a name
effectively. Two of them are famously known as CamelCase and PascalCase. Observing
the naming convention of the previously defined variable, playerHealth, the first
character of the variable should be lowercase and all of the others should be in uppercase.
Similarly, in the case of PascalCase, every first character of the variable should be in
uppercase. Hence, using PascalCase, the previously defined variable can be written
as PlayerHealth. You can use either of them to name your variable.

Learning the Fundamentals of Python Chapter 2

[34]

Your variable name can be any length. It can contain a combination of uppercase
alphabetical letters (A-Z), lowercase letters (a-z), digits (0-9), and an underscore (_). An
underscore is used in-between two words to distinguish two entities in a variable. For
example, the player_Health variable is made up of two words. We use the underscore in-
between them. Alternatively, you can also use camelCase, where you start your first word
in lowercase and the first letter of the second word in uppercase, for
example, playerHealth.

We can also use an underscore at the start of the variable's name. We use them in our code
if it's being used as a library for others. We can use them in recursive statements, too, as in
the example:

>>> _age = 34

There are some rules we need to follow while naming a variable, otherwise Python will
declare it illegal and throw a syntax error. The following screenshot shows some illegal
assignment statements:

To remove the preceding errors, we have to follow a few rules. Some are mandatory while
some are just good practices:

We give the variable a name that makes sense. Naming the age variable age is
more meaningful than naming it a.
We cannot use special symbols (@, #, $, and %) while naming variables. For
example, n@me is not a valid variable name.
A variable name should not start with digits. 45 age is not a proper variable name
and Python will throw an error.
Declare constants with an uppercase name, for example, >>> PI = 3.14.
It's good practice to use camelCase to create variables name, for example, >>>
myCountry = "USA".

We have now seen what variables and keywords are and some rules to follow when
naming them. Now, let's move on and see what operators and operands are.

Learning the Fundamentals of Python Chapter 2

[35]

Operators and operands
Math and programming are two distinct fields that are closely related. The former deals
with theory and provides formulated principles to solve any problem domain, while the
latter deals with using those principles to solve a business domain. Programming is all
about accepting data using models and manipulating it with the appropriate mathematical
operations. Operators are used to perform those operations. We have arithmetic and logical
operators in Python.

Operators are symbols that perform computations such as addition, multiplication,
division, and so on. Symbols such as +, -, and / are used to perform those operations. The
values that operators are applied to are called operands. Some examples of operators are
shown in the following code:

>>> 3 + 4
>>> 14 - 5 - 9
>>> 2 * 4

In the preceding examples, the result of the first operation is 7, the result of the second
operation is 0, and the result of the last operation is 8. You can add or subtract as many
numbers as you like within the shell. Here, all of the numbers are operands, and symbols
such as +, -, and * are operators.

Another important operator in Python is division (/). In Python 3.x, the division operation
results in floating-point numbers, as in the example:

>>> 10 / 4

The preceding operation gives you a result of 2.5. This is the same result that we get using a
calculator.

In Python 2.x, the interpreter would truncate the decimal part and give us a result of 2. If
you want to get the same result in Python 3.x, you should use floor division (//); for
example:

>>> 10 // 4

The preceding operation will give us a result of 2 instead of 2.5.

Let's go over what we've learned so far, that is, values, variables, and operators. Let's
combine all of these into one statement. This is known as an expression:

>>> x = 10 + 2 * 5
>>> x

Learning the Fundamentals of Python Chapter 2

[36]

You can combine all of these to make any type of expression. The assignment operation is
the simplest expression to use. We saw the assignment operation while creating variables.

When there are multiple operators being used in an expression, the order of these
operations becomes important to solve the expression. We'll go over the order of operations
in the following section.

Order of operations
Let's recall the basic math that we mostly learned in our school days. You may have heard
of the BODMAS rule or the PEDMAS rule. Whenever more than one operator is used in our
expression, an operation is performed with this rule of precedence. Operations
in brackets/parenthesis, exponentiation, division, multiplication, addition, and subtraction
are performed in this order:

Parentheses/brackets: This symbol has the highest precedence, which means that
operations within parentheses are completed first. With the use of parentheses in
your expression, you are telling the interpreter to explicitly execute a certain
expression forcefully. For example, in (10 - 5) + 5 * 6, the operation within
the parentheses is done first, that is, 10 - 5, and then multiplication is done.
Exponential/of: Th exponential operation is done after operations within
parentheses are completed. The output of 9**0+1 is not 9; instead, it is 1.
Exponential is done first, and then addition is done.
Division: Division operations are done after exponential if operations, including
division if it's not inside parentheses. For example, 10 / 2 + 3 + 9 / 3 is 11
but not 5. If the expression was 10 / (2 +3) + 9 /3, the output would be 5.
Multiplication: It has also the same precedence as that of division. However, if
the expression has both division and multiplication, operations are done
sequentially from left to right. Scanning from left to right, if we get multiplication
before division, it is done first. For example, the output of 3*4 / 3 is 4 but not
3.999.
Addition and subtraction: These two operations also have the same level of
precedence. Thus, we perform these operations according to what comes first
while scanning from left to right. For example, in terms of 5 - 5 + 6, we
subtract first as it comes first and then add, which gives us 6.

If you are still confused about the BODMAS/PEDMAS rule, you can simply use parentheses
to make sure you get the intended result. In the next section, we will learn about two
important operators: // and %. The former is known as floor division, while the latter is
known as the modulus operator.

Learning the Fundamentals of Python Chapter 2

[37]

Modulus operator
Earlier, we saw how to use floor division (//) and how it provides us with only
the quotient of the division operation. But if you want the remainder of your division, use
the modulus operator. The modulus operator yields the remainder of when the first
operand was divided by the second operand. The symbol for the modulus operator is the
percentage sign (%). The following screenshot shows two operations: the first one is a floor
division, which will result in a quotient, while the next one is a modulus operation, which
will result in the remainder of the division:

The modulus operator is very useful when we want to search number patterns and make
programs that can divide numbers based on that pattern. For example, we can check the
remainder of division between any number and 2 to find whether the number is even or
odd:

>>> 5 % 2

Since the preceding operation gives the remainder as 1, 5 can be considered an odd
number.

All of the preceding operations are pretty basic and don't need any hard work to calculate.
However, we know that computers are known for processing complex tasks. Hence, in the
next section, we will learn about the math module, which is capable of performing intricate
mathematical operations such as calculating trigonometric and complex equations.

Using the math module
Math is not only limited to addition and multiplication. So far, we have learned about
various arithmetic operations. We haven't at logical operators and comparisons yet as those
will be covered in the next chapter. To incorporate many domains of mathematics, Python
has given us one powerful library, called the math module. We call the file that contains the
code a module. These libraries are also called in-built libraries because they come
prepackaged whenever we install Python.

Learning the Fundamentals of Python Chapter 2

[38]

They are made by Python and we can call them whenever we want in our code without
having to install it manually. If you want to use the code of any in-built library, you have to
call it first. Calling them means importing them. To import and use that in-built library, we
use the import keyword. As you may recall from the previous chapter, it's a reserved word
that has a specific purpose in Python. Hence, the import keyword imports any library into
your code. If you want to import the math module, for example, just write the following:

>>> import math

You will instantly see the next line with an empty shell, like this: >>>.

That just specifies that you are importing it. Import statements are not the same as print or
input methods, which give us an instant response. We should call something from that
module in order to see any response or result. The math module provides us with
numerous operations. These can be accessed by following these steps:

Open your IDLE and press F1 to open the documentation. You will see the1.
following window:

Learning the Fundamentals of Python Chapter 2

[39]

Now, click on modules. You will see a new window containing a list of modules:2.

Search for the math module from that tab or simply press M on your keyboard if3.
you want to navigate through the list of modules that starts with the letter m:

Learning the Fundamentals of Python Chapter 2

[40]

There are so many methods to use! Don't get overwhelmed with the term methods; we
have dedicated a section to object-oriented programming where we will learn how to create
our own methods. Right now, just think of a method as operations we use to create
expressions. The methods that are provided by the math module are also going to perform
simple arithmetic operations and many other complex ones. If you want to get a square
root, we don't have specific operators to do that, nor can we perform complex mathematical
operations; instead, you have to use a math module. We'll look at square roots in the
following example.

To get the square root of a number, we can use the sqrt method. Check out the
documentation for the sqrt method to find out more about it and learn how to call it. It's
super easy! First of all, we write math, then a period (.), which signifies that we want to use
something from the math module and use the sqrt method:

>>> import math
>>> math.sqrt(49)

The square root of 49 is 7. Our interpreter prints 7.0 as sqrt performs a floating-point
operation.

If you didn't import the math module and instead called sqrt directly, you will receive the
following error:

As you may recall when we discussed the print() function, we didn't call it using any
module because it was an in-built function. However, this sqrt() function is not in-built. It
is from an in-built library of Python. Although we don't have to install it like any other
third-party modules, we have to import it before using any of the features provided by it.
All of the modules that are provided by Python are in lowercase.

We can call a range of functions and constants from math modules. This allows us to do
numerous operations that support complex mathematical computations. If you want to
print the value of PI, you can do so with the math module, like so:

Learning the Fundamentals of Python Chapter 2

[41]

Firstly, we import it with >>> import math.1.
Then, we use module_name and provide a period (.) to specify we want to use2.
that module and the type operations we want to perform, for example, >>>
math.pi.

You can perform algebraic, logarithmic, trigonometric, hyperbolic, and a wide range of
other operations with math functions. However, this module cannot perform math
operations for complex numbers, for example, z = a + ib.

For those types of complex numbers, we have to import the cmath module. Importing and
working with this module is also similar to that of the math module.

If you want to use the functions provided by the math module with calls to print() or
input() without putting a dot, you can use the following command:

>>> from math import *

In the preceding command, * implies that you want to import everything. It is canonically
saying From the math module, import everything. Now, if you want to call any functions from
the math module, you can call it directly, similar to what we do with the input and print
functions:

>>> factorial(4)

The preceding function will be executed perfectly and give us a result of 24.

You may be wondering why the concept of modules wasn't explained at the beginning of
this book. It's simple! We just learned about operators, operations, and expressions, which
means it's easy to relate to the math module. Every function we call from the math module
contains operators, operands, and expressions, but its implementation is hidden from our
eyes. For example, we simply use the sqrt function to perform a square root operation, but
we don't know how the square root is done with expressions and logic. We will learn about
this in the upcoming chapters when we cover flow controls and functions. Hence, modules
provide us with a way to perform high-level operations without having to know how they
work. However, if you want to make your own libraries and modules, then the upcoming
chapters will help you.

If you want to learn more about modules and functions, you can simply use the help
command. The Python help command will give you a complete list of documentation for
built-in functions, modules, and keywords, as in the following example:

>>> help([object])
>>> help(input)
Help on built-in function input in module builtins:

Learning the Fundamentals of Python Chapter 2

[42]

input(prompt=None, /)
 Read a string from standard input. The trailing newline is stripped.

 The prompt string, if given, is printed to standard output without a
 trailing newline before reading input.

 If the user hits EOF (*nix: Ctrl-D, Windows: Ctrl-Z+Return), raise
 EOFError.

 On *nix systems, readline is used if available.

That's enough talk about values and types. Now, let's look at how we can make our code
more readable and reusable, that is, others should be able to read our code easily. We
talked about the rules and conventions that should be followed while naming the variable,
which also leads to readability. There are two ways of making code readable:

Write notes within the program.
The Pythonic way is to make a function.

We can add notes to the program via commenting, which will be covered in the next
section.

Writing comments in code
Even if you are making a normal piece of software, it has to interact with data in one way
or another. Eventually, your code will become lengthier and complicated and becomes hard
to manage, read, and understand. Although we will eventually understand the code we've
written, it will be harder in the long run. If you have 50,000 lines of code and want to debug
the semantic and logic errors in it, it would be hard for you to search and index them.
Hence, comments come in handy. Comments are a way of writing notes along with your
code so that anyone who tries to read your code knows what that program is doing.
Comments are not interpreted by Python, which means whenever the Python parser sees
that the statement starts with a hash symbol (#), its execution will be skipped.

Python design patterns can be convoluted, which makes it difficult for any naive
programmer to look at the code and understand what it is doing. Hence, we add simple
notes about the program in our native language that explains why we are writing a
particular piece of code. Comments that start with # are single-line comments. If you write
something below the line containing hash, it won't be considered a comment. This is shown
in the following code:

>>> # this is single line comment
>>> but this is not comment

Learning the Fundamentals of Python Chapter 2

[43]

In Python, there are no multi-line comments. People usually think that triple double quotes
(""" """) are used for multi-line comments, but that's not true. Using hashes is the only
way of commenting in Python. In Python 3.x, a string inside triple quotes is considered a
regular string. You can use triple double quotes to remove the broken string. Strings are
considered to be broken when the scope of the string is not totally enclosed, as in the
example:

>>> 'Hey it's me'

The preceding string was created with a single quote. An apostrophe was used in the
string, which creates confusion for the interpreter as it thinks hey it is a string and it
ignores s me. This is a broken string. Not every piece of text you encounter will be in a
string. If you run this code in IDLE, you will get the following syntax error:

To eradicate this error, you can use a triple quote. A triple quote will remove the broken
string, even if a double quote or single quote appears on your string:

>>> """ Hey! it's me """
>>> """ He said, "How may I help you" """

Many people think that the preceding line of code represents a multi-line comment, and do
something like this:

Learning the Fundamentals of Python Chapter 2

[44]

You can clearly see that, instead of ignoring to execute that command, it has reflected our
command by creating a string for us. If we do not assign a value enclosed in triple double
quotes to the variable, it is treated as a garbage collector and gives us a string. Many people
confuse it as a multi-line comment because of its behavior as a docstring. Docstrings are
strings that are placed at the top of functions, modules, or classes. For example, this is the
function that performs the add operation:

def add:

Obviously, we haven't learned how to create functions yet, but you can get the idea that a
triple-double quote is used to provide some information about functions, classes, and
modules. Hence, some people think of it as a multi-line comment. You can tell it is not a
multi-line comment because the notes inside the triple quote can be accessed with a special
function of Python.

Since this is docstring, we can access it through obj.__doc__. Since it can be accessed by a
method and it is not ignored by the interpreter, it cannot be considered a multi-line
comment. Due to this, we can conclude that there are only single-line comments in Python.
If we do want multi-line comments, it should be done using triple double quotes, but we
have to make sure that we place them above the definition of the function, class, or module.

In the following code, \n represents a new line. This will cause a line break in the code. As
we can see, the following code prints hey in the first line and it's me on the next line:

>>> print("hey \n it's me")
hey
it's me

From this, we can conclude the following about comments:

Comments are redundant. They simply tell us what every line of code is doing:

 >>> print(customer_info) # printing customer information

 Comments may contain useful information about the code – even some critical
information that we cannot extract by looking at the code:

 >>> d = (400, 200) # d is for display of game console 400*200
 >>> TEMP = 23 # temperature is in Celsius

As we discussed in the previous chapter, we have to follow a convenient pattern while
creating programs. Although this is not mandatory, it is always good practice. In
the Building blocks of Python section, the first block was requesting user input, which will be
our next topic of discussion.

Learning the Fundamentals of Python Chapter 2

[45]

Requesting user input
One of the building blocks of programming is to make the user input data with their
keyboard. Any application, whether it be for management tools or games, all should take
input from the user. In a user management application, we gather user information such as
their name, address, and age, and insert it into a database. In games, we take user input
from the keyboard to make movements. Based on the key that's pressed by the user, we can
make our character perform some actions. For example, pressing the Shift key on the
keyboard will make the character jump. Thus, every application has to be user-friendly,
which means it has to make the user interact with the application.

Letting a user input something on their keyboard and storing it in a variable so that we can
process it further when required is a common practice. Python has in-built functions to get
input from users, which means you don't have to import or install anything to use this
function. The input() function is used to take input from a user:

>>> input()

When you enter the preceding command, it will give you a place to write something. The
interpreter holds its other execution until the user presses a button on their keyboard and
presses Enter. On pressing the Enter key, the program resumes and gives us the text input
of the user.

The following screenshot shows how the input() function works in Python:

In the preceding screenshot, we used the input() method and entered the string 'I love
Python'. The black text color is input from the user, and the interpreter instantly gave us
some output, which was the same input string from user. You can store input text into
variables so that we can perform computations on it:

>>> message = input()

Now, we have seen how to input data from the user. It is always good practice to provide a
message or prompt to the user telling them what they need to enter in that field. A message
or prompt should be given as a string within the parentheses of the input method, like so:

>>>user_name = input(" \n Enter your name? : \n")
Enter your name? :

Learning the Fundamentals of Python Chapter 2

[46]

John Doe #this is input from user
'John Doe' #printing content of user_name

In the preceding example, when the user inputs something and hits Enter, our program
takes the input from the user and does the specified task. But if you want to make an
application where you want to take data from the user continuously, we have to make use
of loops. We will study loops in the upcoming chapters:

>>> while True:
 input("Enter user_names: \n")

The preceding statement takes input from the user continuously. It doesn't stop, even after
pressing Enter or typing in the return keyword. In the preceding command, while is used
for looping. True is a Boolean type that represents the truth value of the logic and Boolean
algebra. Boolean types are either True or False. Hence, the while True statement implies
that the code inside it should run infinitely, which asks the user to make input infinitely.
The result of this is as follows:

Anything you enter on your keyboard while calling input() method will be in string form,
even you input it as integers, as in the example:

>>> a = input()
1 #store integer 1 to the variable a

If you check the type of the a variable by using the type method, that is, >>> type(a),
you will see some unexpected results. We input 1 from the user and stored it in a variable,
a. When we check the type of value that's stored in the a variable, it won't be an integer.
Instead, it will show str class: <class 'str'>, which means anything that you enter
on your keyboard by calling the input() method will be of the string type. But sometimes,
it may be the case that we want the integer that was input by the user to remain an integer.
In such a case, we have to perform typecasting, which will be covered in the next section.

Learning the Fundamentals of Python Chapter 2

[47]

Typecasting or type conversion
There may be times where you want to use the input data of a user as an integer. We saw
that the input data from a user will be a string, even if it is an integer, as in the example:

>>> age = input("Enter your age? \n")
>>> Enter your age?
29
>>> type(age)
<class 'str'>
>>> age
'29'

Age is represented in terms of numbers. However, in the preceding code, it's a string.
Hence, we have to convert it into an integer so that information entered by the user will be
meaningful for computation. This type of conversion is called typecasting. However, if you
do some computation in this value without casting it to the appropriate type, your result
will be undesirable. For example, if you want to change the value of age by adding 2 to 29,
you cannot change it from 29 to 31. This is because strings do not support increments;
instead, they support concatenation:

>>> age
'29'
>>> age + 2
Traceback (most recent call last):
 File "<pyshell#3>", line 1, in <module>
 age + 2
TypeError: can only concatenate str (not "int") to str

Hence, if you want to use the age that was entered as an integer, we have to use typecasting
methods. These methods are also in-built functions of Python. Some of them are as follows:

int(arg1, base): This method converts any other data type into an integer. If
you put a string inside the parentheses of the int function, it will convert it into
an integer. arg1 is the string to be converted and the base argument indicates the
base of the data is a string:

 >>> a = int("10101", 2)
 >>> a
 21 #conversion from string to integer

 >>> b = int("255")
 >>>b
 255

Learning the Fundamentals of Python Chapter 2

[48]

float(): This method converts any integer into a floating-point number, as in
the example:

 >>> float(3)
 3.0 #this is floating point number

 str(): This method converts any other data types into a string, as in the
example:

 >>> str(255)
 '255'

ord(): This method converts a character type into integer and gives back its
ASCII value, as in this example:

 >>> ord('a')
 97 #ASCII value of a is 97

Other functions such as tuple(), list(), set(), and dict() will be covered in the
upcoming chapters.

Now that you are familiar with the first building block of Python, that is, inputting data
from the user, let's see how we can format this data using different features provided by
Python. In the next section, we will look at string operations that will, in turn, call different
methods provided by Python to manipulate the input entered by the user.

String operations
Any data type, be it text, an integer, or a Boolean, written either in double quotes (" ") or
single quotes (' ') is considered a string by Python. String values uncover the broad
meaning of data. Data that's stored as strings can be easily accessed but cannot be changed.
Hence, it is considered as immutable data types. Let's take a look at the following code:

>>> msg = "happy birthday"
>>> msg.upper() # upper() is inbuilt method of string class that converts
string to upper case
'HAPPY BIRTHDAY'
>>> msg
'happy birthday'

Learning the Fundamentals of Python Chapter 2

[49]

In the preceding code, we created the msg variable and stored a string in it. We used the
built-in method of the string class to manipulate that string and when we printed the msg
variable back, it was unchanged. This implies that strings are immutable data types. If you
want to change the content of a string, you should completely overwrite it, as in this
example:

>>> msg = msg.upper()
>>> msg
'HAPPY BIRTHDAY'

Strings do not support item assignment. If you want to add an item to the string, you have
to make a completely new string. Hence, this feature of Python makes it immutable, as in
this example:

>>> str1 = "John"
>>> str1[0] = "Hello"
Traceback (most recent call last):
 File "<pyshell#30>", line 1, in <module>
 str1[0] = "Hello"
TypeError: 'str' object does not support item assignment

To use the built-in functions of a string, you have to call a method on the string. Let's look
at a pattern we can use in the in-built method, that is, "String".method_name():

>>> "Python".capitalize() #capitalize first letter of string
Python
>>> "xyz".join("pqr") #joins every letter of string "pqr" with xyz except
for first and last letter
'pxyzqxyzr'

#len function does not have to call like this, call simply len() with
string passed inside parenthesis
>>> len("Python") #prints length of string
6

You can access every element of a string by using square brackets. We should put the
position inside the square brackets. These positions are called indexes in Python. The index
of a string starts from 0 and increases by 1 from left to right:

>>> info = "Python"
>>> info[2]
t
>>> info[0]
P

Learning the Fundamentals of Python Chapter 2

[50]

You can observe the indexing pattern in the following diagram. Here, we have
a Python string. The index of the string starts from 0. For each element right next to it that
has an index, a unit is incremented to that of the previous element. This is called positive
indexing:

Strings also support negative indexing. If you want the last digits from a string, you can
give a -1 index, as follows:

>>> info = "Python"
>>> info[-1]
n
>>> info[-3]
h

Now, we have learned how to extract the particular elements of a string based on indexing.
But if you want to extract more than one element from a string, you can use string slicing
operation. The slicing operation is the same as a pizza slice, which represents we are taking
out some parts of the string in a sequential order. String slicing can be done with the same
square brackets that we used for extracting a single character from a string. The difference
between these two operations is seen when we extend our square brackets with a colon and
provide start, end (exclusive), and step indexes to it. Although the theory of string slicing
may seem complicated, it is easy to program. Let's take a look at an example to clarify this:

>>> email = "johndoe@gmail.com"

Learning the Fundamentals of Python Chapter 2

[51]

Suppose we want to extract the name of a person from this email address. We have to track
all of the indexes to do so:

Since we are slicing some parts of that string, we have to imagine it as a container where
each character resides with its index so that referencing them would be easier. To achieve
string slicing, follow these steps:

Use name_of_string[start: stop: We use the [step]] command for string1.
slicing. Here, start is the starting index and stop is an exclusive position,
which means if you put an index on it, the element of - 1 will be included but the
element at the stop index will be excluded. Here, step is optional. We will talk
about the step index position in an upcoming chapter (Chapter 3: Flow Controls:
Build Decision Maker For Your Game)
Decide what needs to be extracted first. You cannot extract any part of a string2.
randomly. It should be done sequentially. For example, you cannot extract jo
and mail with a single command. We can extract johndoe because every
element is in a sequential manner. Let's try to extract it from our code:

 >>> email = "johndoe@gmail.com"
 >>> email[0:7:] # 0 is starting position, 7 is stopping position and it
is not included
 'johndoe'
 >>> email[:7:] #empty starting position also means start from 0 index
 'johndoe'

In the preceding code, email[0:7:] or email[:7:] tells us that the first index, 0, is
starting an index of a string, which means we want to print from start. Instead of 0, you
can also put nothing, which represents the default state, and start will print from the
start. The second index, 7, is the stopping position, but it is an exclusion position which
means the interpreter will print until the e character but not @ because @ is at position 7.
Finally, the third index position is for step. We put an empty space here to represent the
value it should hold by default, which means we are printing without skipping any
numbers. If you put step as >>> email[0:7:2], you will get jhde as the output; it will
skip one character between each of them.

Learning the Fundamentals of Python Chapter 2

[52]

We can also perform addition and multiplication operations with strings. Adding two
strings together is called concatenation. We make use of operators such as + and * to
perform string operations, as in this example:

>>> "-" * 50 #this will create 50 hyphen or dashes (-)
'--'

>>> "a" * 4
'aaaa'

However, you cannot multiply two string types. One must be a string and the other must
be an integer if we wish to perform multiplication operations with strings:

>>> "a" * "b"
Traceback (most recent call last):
 File "<pyshell#22>", line 1, in <module>
 "a" * "b"
TypeError: can't multiply sequence by non-int of type 'str'

If you also want to add strings, both of the operands must be strings. Otherwise, it will
throw a type error:

>>> str1 = "Happy"
>>> str2 = "Birthday"
>>> str3 = "John"
>>> str1 + str2 + str3
'HappyBirthdayJohn'

>>> str1 + 45 # YOU CANNOT ADD STRING AND INTEGER
Traceback (most recent call last):
 File "<pyshell#28>", line 1, in <module>
 str1 + 45
TypeError: can only concatenate str (not "int") to str

Now that we have learned about the fundamentals of string operations, such as
assignment, concatenation, and assignment, we will learn about string formatting. This is
an important concept if we need to change the format of the text based on the input.

Learning the Fundamentals of Python Chapter 2

[53]

String formatting
String formatting is where we build our string by replacing placeholders with the content
of variables. We apply % (the modulus operator) to perform string formatting. If you want
to specify a digit as a placeholder, %d is used. If it is string, %s is used as the placeholder.
The result of string formatting is also a string. Let's look at a small example:

>>> key = "love"
>>> value = 13

#lets use string formatting technique
>>> print(" I %s number %d"%(key,value))
'I love number 13'

In the preceding code, the position of %s was replaced by the value of the key variable and
the position of %d was replaced by the value of the value variable. Hence, %d and %s are
placeholders. You cannot assign a string value in place of %d and cannot assign an integer
value in %d.

The number of values that are passed must match the number of format sequences used in
a string. Otherwise, it will throw a type error, like so:

>>> '%s %d %s'%("Hello",1)
Traceback (most recent call last):
 File "<pyshell#19>", line 1, in <module>
 '%s %d %s'%("Hello",1)
TypeError: not enough arguments for format string

You can also format your string using Python's built-in format function. It is relatively
easier to format using this function. Instead of using placeholders or format sequences such
as %d and %s, we can use curly braces {} as placeholders. We can also assign numbers
inside curly braces so as to format with a particular value, like so:

>>> print(" I love {}".format("Python"))
'I love Python'

>>> print(" I love {0} and I hate {1}".format("Python", "Java"))
'I love Python and I hate Java'

>>> print(" I love {1} and I hate {0}".format("Python","Java"))
'I love Java and I hate Python'

Now that we are familiar with the core programming paradigms of Python, let's hop over
to the next section, where we will learn to make our first game: tic-tac-toe.

Learning the Fundamentals of Python Chapter 2

[54]

Building your first game – tic-tac-toe
The Python language is a cross-platform language, which means we can make games for
any device. However, here, we will focus more on the logic and its implementation rather
than coding for a specific platform. Coding games with Python is simple compared to other
languages as its syntax is shorter and it provides rich-content libraries that make
production faster. With that being said, it isn't that easy if you don't make plans before
coding. We have to break our game entity into parts so that each entity can be debugged
easily. We will follow these general steps while making games from now on:

Brainstorming and information gathering
Choosing a proper code editor
Programming model
User interaction—user input/manipulation

So far, we have covered a variety of topics, including variables, operators, expressions,
taking input from a user, and printing it to a user. Let's apply all of these techniques now to
make our first game.

Brainstorming and information gathering
Before we start coding, let's think about the design and interface of our game. Pull out your
pen and paper and start thinking about the interface of the game! Did we learn anything
about the GUI so far? Obviously not! That means we have to make use of a simple interface
for our first game. We will modify it later, after we learn about some advance concepts of
Python. Tic-tac-toe is a game that takes input from a user and places either X or O based on
the player's movement. Hence, our interface should be a placeholder for these symbols. We
will make a simple interface containing _ for now. An underscore (_) will be our
placeholder where we will put either X or O based on player selection:

_ | _ | _
_ | _ | _
_ | _ | _

The preceding code shows the simple layout of our game. It contains _ (underscores) as
placeholders and | to separate the symbols:

_ | _ | O
_ | X | _
_ | _ | X

Learning the Fundamentals of Python Chapter 2

[55]

As you can see, whenever the player takes a step, we replace that underscore with a symbol
corresponding to that user's decision. Now, we have a basic interface for our game.

Now that we have planned the interface, we need to work out how to track the position of
the underscore and how to find out where to replace the underscores with the appropriate
symbols. We can assign numbers to each of these underscores and tell the user to choose a
number. Then, based on that number, we can assign its symbol to that location, like so:

0 | 1 | 2
3 | 4 | 5
6 | 7 | 8

Now, we have gathered enough information to start our simple game. In complex real-
world games, the brainstorming and information gathering process would take around 6
months. Now, let's look at choosing a code editor.

Choosing proper code editor
We have already installed Python On our machine, and we took a look at the pre-installed
editor of Python, IDLE. We will use that editor for this project. Let's get started:

Search for IDLE in your search bar and open it. You will get the following Shell:1.

This Terminal or Shell is normally used to interpret commands instantly
within the Shell. This means that one command will execute at a time, but we
have to write many lines of code to make our game. Hence, writing a game
with this Shell is not possible. We have to create a file where we can write
many lines of code and execute them all at once. Python provides us with
scripts to facilitate this problem.

Click on File and then New File, or press Ctrl + N. A new script file will open2.
where we can write multiple lines of code.

Learning the Fundamentals of Python Chapter 2

[56]

At the top of the window, we will see Untitled, which means we haven't saved3.
our file yet. Let's save it first because we have to save it anyway afterward. Press
Ctrl + S to save it. I have saved it as first_game.py.

Now that we have selected the proper IDE for development, let's start developing our
model for the game.

Programming model or modelling
In programming, a model is a way to represent the flow of data in your program. In our
game, it is about how to use data that's been obtained as user input. We uncovered some
information in the Brainstorming and information gathering section, where we talked about
positions and how each number was assigned to the position that represents player
selection. The model does not contain presentation logic; instead, it will deal with data
logic. The computer doesn't care about layouts or interfaces. The user, on the other hand,
requires an interface in order to react. Thus, every program has a frontend and a backend.
The frontend is everything that you see in the application, whether it be an aesthetic or
visible part of the application. User experience (UX) designers work mostly on frontends in
big projects. The backend doesn't care about designs—it only cares about the algorithms
and security that are applied to the data layer for the transaction of data. Models are used
as a way of communication between the frontend and the backend.

Learning the Fundamentals of Python Chapter 2

[57]

The computer does not care how the model presents data, but the user should get data out
of the model in an informative and pretty way. Due to this, we made simple layouts that
look as follows:

_ | _ | _
_ | _ | _
_ | _ | _

Let's start creating our model for the presentation layer:

#this code is written as scripts
game_board = ['_'] * 9 #this will create 9 underscores
print(game_board[0] + '|' + game_board[1] + '|' + game_board[2])
print(game_board[3] + '|' + game_board[4] + '|' + game_board[5])
print(game_board[6] + '|' + game_board[7] + '|' + game_board[8])

The preceding code represents the layout for our game. It is displayed to the user. Let's
break it down line by line:

game_board = ['_'] * 9: This statement creates 9 underscores, which is the
placeholder for our game characters. It is stored in the game_board variable. As
you may recall, a variable cannot store multiple values. If we perform multiple
assignments to the same variable, the variable will store the latest value that was
added to it. Hence, this board is not a simple type of variable. This is a list
variable. We can store multiple pieces of data in a list. Let's print the value of the
board:

 >>> board = ['_'] * 9
 >>> board
 ['_', '_', '_', '_', '_', '_', '_', '_', '_'] # 9 underscores is
 stored in board list

 >>> print(game_board[0] + '|' + game_board[1] + '|' +
game_board[2]): The preceding command prints the first line of the layout. We
have learned about the print statement earlier in this chapter. Anything inside
parentheses (either a string or variable value) is printed as it is by the print
statement . We passed board[0] to get the first element of the board, which is
the first underscore (_) We print a separator (|) between each underscore. The
output of the preceding statement is _ | _ | _ .
We have to print the preceding layouts two more times, which means we have to
use two more print statements:

 >>> print(game_board[3] + '|' + game_board[4] + '|' + game_board[5])
 >>> print(game_board[6] + '|' + game_board[7] + '|' + game_board[8])

Learning the Fundamentals of Python Chapter 2

[58]

 The number that's inserted in the square brackets is the position that we
normally call an index in programming. This refers to a certain position of the
list variable. The list index always starts with zero indexes:

 >>> board = [1,2,3,4,5,6]
 >>> board[0] # this will give value 1 from "board" list
 >>> board[5] # this will give value 6 from "board" list

The following code shows the final layout for our tic-tac-toe game. Make sure
you write the program as a script and press F5 to run it:

 game_board = ['_'] * 9
 print(game_board[0] + '|' + game_board[1] + '|' + game_board[2])
 print(game_board[3] + '|' + game_board[4] + '|' + game_board[5])
 print(game_board[6] + '|' + game_board[7] + '|' + game_board[8])

 #output
 """
 _ | _ | _
 _ | _ | _
 _ | _ | _

 """

In the preceding code, we did two things: first, we printed underscore in every
position of our layout, and then we assigned a number to each of those positions:

 0th | 1st | 2nd
 3rd | 4th | 5th
 6th | 7th | 8th

Now that we've developed the programming model that represents the basic layout of our
game, it's time to make an interaction between the programming model and player of the
game. In the next section, we will learn how to take user input and manipulate it so that we
can interact with the model of our game.

User interaction – user input and manipulation
We're making games for our users to play. Hence, we should make an interface so that we
can make our application user-friendly. We did this in the previous section. Now, we have
to take some input from the user and place it to the layout through the model. We know
that a simple way to take the input from the user is by using the input() method. Let's use
it now.

Learning the Fundamentals of Python Chapter 2

[59]

To do this, we will think of this problem: what should we input from the user? Is it a symbol,
like X/O, or is it positions?

Taking input as a symbol is useless because after taking it, we should know where to place
it. Hence, we can take the positions from the user and place the symbol into our code
automatically:

#code from models

#...

#code for user input

while True:
 pos = input(" Enter any position you want from (0-8): \n")
 pos = int(pos)
 game_board[pos] = 'X'
 print(game_board[0] + '|' + game_board[1] + '|' + game_board[2])
 print(game_board[3] + '|' + game_board[4] + '|' + game_board[5])
 print(game_board[6] + '|' + game_board[7] + '|' + game_board[8])

Let's break this down part by part:

while True: This will run an infinite amount of times. We saw this happen in
the Requesting user input section. Therefore, we will take the input data from the
user an infinite amount of times, which means our game loop has no
termination.
pos = input(" Enter any position you want from (0-8): \n"): This
statement will take input from the user as a position from 0 to 8 and store it in
the pos variable.
The data that's stored in the pos variable will be a string, but the position should
be an integer. Due to this, we have to typecast it as an integer using the int
method. Then, we store the integer in the pos variable as x = int(x).
game_board[pos] = 'X': This statement assigns X to the position that's
selected by the user. The pos variable contains a position from 0 to 8 that was
selected by the user in the previous command. Now, we are assigning X to that
position in place of an underscore, like so:

 0th | 1st | 2nd
 3rd | 4th | 5th
 6th | 7th | 8th

Learning the Fundamentals of Python Chapter 2

[60]

If the user enters, 4 then we will put X in 4th position, as follows:

 0th | 1st | 2nd
 3rd | X | 5th
 6th | 7th | 8th

After we assign a player symbol to the specified position, we have to print the
board again with those three print statements. It should be kept inside the loop
because we have to print the board every time the user enters a new position
from the keyboard.

Now that we have finished making models for rendering layouts and user input, we can
run the game and observe the output. The game you are going to see won't be appealing
because it doesn't have a proper layout and it won't have as many features that our tic-tac-
toe game should have. We will try to make the game as playable as possible while learning
more Python in the upcoming chapter. For now, we will take a look at the possible errors
and warnings that may be encountered in our game.

Possible errors and warnings
We've only covered the basic fundamentals of Python so far, so you won't have found
many semantic errors until now. However, you are likely to be accustomed to the syntax
error. First and foremost, an error can be caused while naming a variable. If you do not
follow the rules or conventions for naming a variable, you are likely to get the following
errors:

>>> my name = "John Doe"
SyntaxError: invalid syntax

The preceding name is invalid because you cannot provide spaces while creating variable
names. You can put an underscore between them to specify that it consists of two words.
my_name is a valid name for a variable.

If you spell your variable name incorrectly, you are going to get an error instantly. Suppose
you created a variable called Msg and used it as msg. An error will be returned, stating that
this is the wrong definition. Python is case-sensitive, which means that True and true are
different in Python. If you name a variable True, it will be illegal because it is one of the
keywords of Python.

Learning the Fundamentals of Python Chapter 2

[61]

However, you can call a variable true:

>>> True = 45
SyntaxError: can't assign to keyword
>>> true = 45
>>> true
45

The same rule goes for naming modules. In this chapter, we looked at how to import the
math module and use its methods. However, if you spell the module's name wrong, it will
cause many problems in the long run. You won't see an instant error on IDLE; you have to
compile your script to see it. Thus, debugging is a lot harder with IDLE. Because of this,
make sure you spell all of your modules and their methods correctly.

>>> import math will successfully import the math module into your project, but if you
use the wrong module name, you will get the following error:

>>> import Math
Traceback (most recent call last):
 File "<pyshell#6>", line 1, in <module>
 import Math
ModuleNotFoundError: No module named 'Math'

There's also another type of error that's more dangerous than a syntax error; these are
called semantic errors. A semantic error occurs when we didn't get the intended results.
They won't be detected by the interpreter, and so they are hard to debug. We can get
semantic errors due to executing expressions incorrectly. If we didn't care enough for the
rule of precedence, we will end up making wrong statements for the program.

The output of the 1 + 3**2 expression is 10, not 16. However, we can force our interpreter
to make this statement print 16 by enclosing the statement with parenthesis. (1 + 3) **2
will give us 16.

Now that you've learned how to rectify errors that are encountered in your program, let's
learn about the possible ways to modify our very first tic-tac-toe game.

Game testing and possible modifications
There are several ways to find errors in your game. First of all, you can reach out to your
friends and make them play your game. The suggestions that you gather the first time you
test your game is known as alpha testing and it is an essential part of any game
development life cycle. After collecting enough information through interviewing, you can
start modifying your game.

Learning the Fundamentals of Python Chapter 2

[62]

The things we have learned so far will not be enough to make our game
more appealing. We will learn about several topics in upcoming chapters
and modify our tic-tac-toe game accordingly.

The game that we made in this section is bland and does not galvanize our user to play, but
we have learned so many things by making it. We looked at the basic process of creating
games using the concepts of models and views. View refers to layouts where we render
data that helps us to interact with the user through the interface, while model refers to the
way we communicate data between our program and user. We haven't covered advanced
Python language paradigms yet and so we have limited power. This means that the game
in this chapter is simple. However, we will make changes to this game after we cover
conditionals, looping, and functions.

The following are some possible modifications we could make to our game:

Let's analyze our code and see its limitations. We told the user to explicitly enter
a number from 0 to 8 to specify the movements of the user. What if the user
didn't input a number and input a string? Our program will terminate the loop
and crash with an exception. Hence, the first modification we would make is to
restrict the user to entering only numbers. If they enter anything else, we can
print a user-friendly message instead of crashing the program. This concept is
called exception handling and will be covered in the next chapter.
Currently, this game only works with one player, but tic-tac-toe is a multi-player
game. Hence, we have to learn about conditionals and flow controls that will
help us to achieve transition between players. We will do this in the next chapter.
When a user captures an entire row, column, or diagonal, then they should be
considered the winner of the game and the game should complete its execution.
However, we haven't created any logic to make a player a winner. What we've
learned so far is not enough, but after we complete the next chapter, we will be
able to make drastic changes to our game.

By looking at the modifications we can make to our game, we can see that we have bigger
things to come in the next chapter. Although the knowledge that we acquired in this
chapter was enough to create a programming model and allow us to interact with a single
player, this was not enough for us to interact with multiple players, which requires a good
understanding of looping and conditional structures. We'll cover these concepts in the next
chapter.

Learning the Fundamentals of Python Chapter 2

[63]

Summary
In this chapter, we covered the two basic building blocks of Python: inputting and
providing formatted output. We looked at Python's built-in data types in this chapter and
started by learning about the different data values and their types, such as integer, string,
float, Boolean, and none. We took a tour of the Python ecosystem by learning about
variables, numbers, and the math module. We saw how to use the math module and got a
good grasp of topics such as the rules and conventions that need to be followed while
creating variables and using modules. These topics are essential if you want to start your
programming career with Python. These topics not only make for a strong foundation in
Python but also teach you what good and bad practices in programming need to be
followed and removed, even if you are a proficient Python programmer. Coding is not only
writing code—it's about presenting information in a readable and usable way. Hence, we
saw how we can use comments in programming to make our code more readable and
reusable for other programmers.

Making the user input data and then using it in our program is the only way to make an
application user-friendly. Hence, we learned how to make the user input data and store it
in the structure so that accessing it will be easier for further manipulation. We eventually
looked at the unusual working behavior of the input() method, which converts our
integer or Boolean input data into strings. Due to this, we learned about typecasting
methods and we saw how easy it was to perform data conversion with Python's built-in
methods.

A string is the most fundamental and primitive data type and stores text. We dedicated an
entire section to the creation and manipulation of strings. We learned how to access
elements of strings. We also learned that string assignment isn't possible, and so we
concluded that strings are immutable. We learned about the basic methods of the string
class such as capitalize, join, upper, lower, and len. We looked at two formatting techniques
for strings, that is, %s and %d, which are used as placeholders and format the method. You
can use either of them, although it's better to have knowledge of each before you do so.

Then, we built our first game. We saw the building games is not only about coding. We
need to go through a variety of processes, such as brainstorming, modeling, and user
interaction. We learned how model and view work together. Then, we made a simple game
and had the chance to revise everything we'd learned so far. Finally, we suggested some
modifications that we could make to that tic-tac-toe game. Every modification will be
covered as we progress through this book. In the next chapter, we will learn about flow
control and how to build a decision-maker for our game.

3
Flow Control - Building a

Decision Maker For Your Game
One of the greatest blessings of Python is automation. When we talk about automation,
there is no staggering logic; it's all about the power of conditionals and branching. They
control sequencing when it comes to the execution of programs. Any program at its
rudimentary stage is made with a simulation. Whenever we deploy such programs in a
real-world environment, we are overwhelmed by various noises and unexpected behaviors.
To preclude such behavior, conditionals play a major role. Flow controls decide how to
execute a specific part of a program based on the Boolean logic that's present. We covered
topics such as statements and operators in the previous chapter, both of which are useful
when it comes to creating Boolean logic. Such statements are used to perform arithmetic
computation. In this chapter, we will see how to manipulate such statements, which will
result in true or false Boolean logic.

Mid-way through this chapter, we will learn about looping, an important technique that
will make us competent enough to make code shorter and more powerful. This chapter will
be a package that's complete with core programming, conditionals, and recursive
programming. We will refine the tic-tac-toe game we made in the previous chapter by
incorporating Boolean logic and flow controls.

The following topics will be covered in this chapter:

Boolean logic and logical operators
Conditionals
Iteration
for and while loops
Making a game controller for our tic-tac-toe game

Flow Control - Building a Decision Maker For Your Game Chapter 3

[65]

Technical requirements
You will need the following requirements to be able to complete this chapter:

Python script and IDLE
The code assets for this chapter, which can be found at https:/ / github. com/
PacktPublishing/ Learning- Python- by-building- games/ tree/ master/
Chapter03

Check out the following video to see the code in action:

http://bit.ly/2pvpBas

Understanding Boolean logic and logical
operators
There won't be a day that goes by without us stating that a Boolean type is either True or
False. We use these keywords to make logic that determines whether we are going to
execute a certain portion of code. Let's talk about the bool type in terms of a real-life
scenario. If we are hungry, we eat something. If we are tired, we rest. Let's convert these
scenarios into the appropriate Boolean statements:

is_hungry = True: eat something || is_hungry = False: don't eat
is_tired = True: take rest || is_tired = False: do your work

You perform these quotidian tasks based on the Boolean logic at hand. Now, let's relate this
to programming; you can use two sets of code based on Boolean data types:

(True): Do something || (False): Do something

We use Boolean expressions to make such types of logic. We look at how to create
expressions in the previous chapter. Combining a variable and an operator will give us a
simple form of expression, as in this example:

>>> y
>>> x = y + 6 * 7

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter03
http://bit.ly/2pvpBas
http://bit.ly/2pvpBas
http://bit.ly/2pvpBas
http://bit.ly/2pvpBas
http://bit.ly/2pvpBas
http://bit.ly/2pvpBas
http://bit.ly/2pvpBas
http://bit.ly/2pvpBas
http://bit.ly/2pvpBas

Flow Control - Building a Decision Maker For Your Game Chapter 3

[66]

Boolean expressions, however, are a bit different. Instead of giving a result as an integer,
they provide an outcome of either True or False. The simplest form of a Boolean
expression can be made with a double equal to operator (==). Don't confuse it with a single
equal sign (=). This is used for assignment, while a double equal sign (==) is used to check
whether they are equal, as in the example:

>>> 5 == 5
True
>>> "Python" == "Java"
False

If you compare the data of two different types, the result is always False:

>>> "5" == 5 # String(5) not equal to int(5)

You can always type-caste it to make your logic True:

>>> int("5") == 5
True
>>> "5" == str(5)
True

To check the type of any Boolean variable, you can use the type() method and get the
output of <class 'bool'>, which implies that True or False are values of the bool type:

>>> logic = False
>>> type(logic)
'<class 'bool'>'

Boolean logic can also be used with comparison operators. We will learn how to create
statements using comparison operators in the next section.

Comparison operators
Any expression that results in either True or False is a Boolean expression. These Boolean
expressions cannot be made without comparison and logical operators. We've already
looked at the basic comparison operator (==); however, there are six more we need to learn
about (<, >, <=, >=, !=, and is). Let's take a look at them in action:

5 < 10: 5 is less than 10, which results in True.
5 > 10: 5 is greater than 10, which results in False.
10 <= 5: 10 is less than or equal to 5, which results in False. 10 is neither less than
nor equal to 5.

Flow Control - Building a Decision Maker For Your Game Chapter 3

[67]

10 >= 5: 10 is greater than or equal to 5, which results in True. 10 is greater than 5.
10 != 10: 10 is not equal to 10, which results in False. 10 is equal to 10.
5 is 5: 5 is the same as 5, so this results in True. However, 5 is 5, and so this
results in False.

You can store the preceding numbers in different variables and try the same Boolean
expression on the IDLE to get the following results:

>>> v1 = 5
>>> v2 = 10
>>> v1 < v2
True
>>> v1 > v2
False
>>> v2 <= v1
False
>>> v2 >= v1
True
>>> v2 != v2
False
>>> v1 is v2
False
>>> v1 is v1
True

In order to make logic that's applicable to the real world, we need operators that can
combine different comparison operations at once and provide results instantly. These types
of operators are called logical operators. In the next section, we will learn about the
different types of logical operators and the ways we can use them.

Logical operators
Operators are widely categorized as arithmetic operators, comparison operators, and
logical operators. We've already covered the arithmetic and comparison operators; now, it's
high time to cover logical operators.

You can relate logical operators with a logic gate (and, or, and not), which is the basic
building block of any digital circuit. They have two inputs, but with certain circuit
computations, we only get one output. Circuit processing is done by and, or, and not
gates. Similar to the digital circuits of a logic gate, logical operators can have many
conditions passed with it, but the output will eventually be either True or False. Here,
conditions refer to our Boolean expression, which we make using comparison operators.
The working principles of these three elementary logical operators are as follows:

Flow Control - Building a Decision Maker For Your Game Chapter 3

[68]

and: Two conditions are attached with a single and operator, that is,
condition_one and condition_two. The entire condition will be True when
each of these conditions is also True. If either of the conditions that are attached
to the and operator is False, the result will be False. Let's take a look at an
example:

 >>> condition_one = 5 > 2 #True
 >>> condition_two = 6 < 10 #True
 >>> condition_one and condition_two
 True
 >>> condition_two = 6 > 10
 >>> condition_one and condition_two
 False

The truth table for the and operator, which sets out the functional value as either
True or False based on a combination of Boolean or logical expressions, is as
follows:

or: The same as the and operator—two conditions are attached with a single or
operator. You can add more or operators if you want to add more conditions. In
the case of the or operator, if both of the conditions that are attached to it
are False, the result will be False; otherwise, it will be True. Let's look at an
example:

 >>> 4 < 10 or 5 == 5
 True
 >>> 4 <= 10 or 100 < 50
 True
 >>> 10 <= 4 or 100 < 50
 False

Flow Control - Building a Decision Maker For Your Game Chapter 3

[69]

The truth table for the or operator, which sets out the functional value to either True or
False based on a combination of Boolean or logical expressions, is as follows:

not: This operator inverses the type of the logic. It changes False to True and
vice versa. Hence, it is called known as a logical inverter. It only takes one
condition with it, as follows:

 >>> not (5 < 4) # condition 5 < 4 is False
 True
 >>> not True
 False

The truth table for the not operator, which sets out the functional value as either True or
False based on a combination of Boolean or logical expressions, is as follows:

You can also represent True and False with 1 and 0 in Python. Hence, we can conclude
that any non-zero integers can be used alone to make a condition with logical operators, as
in the example:

>>> 1 and 1
1
>>> 1 and 0
0
>>> 1 or 0
1
>>> 49 or True
49

Learning about the different types of operators was quite fun, but now we are going to hop
over to the section, where you will learn how to use these conditions (made by comparison
and logical operators) to make several decisions. Conditionals are highly practical in any
real-world scenario. I'm excited to learn about them—are you?

Flow Control - Building a Decision Maker For Your Game Chapter 3

[70]

Conditionals
So far, we've learned about making conditions with comparison and logical operators.
Now, we'll talk about how we can evaluate these conditions. Conditionals are tools that
come in handy when we want to compute the result of those conditions and control the
flow of the program accordingly. As we already know, the results of these conditions are
going to be either True or False. So, based on the type of bool we use, the conditionals are
going to execute some part of the code. We use if statements in Python to perform
conditionals. After writing the if keyword, we put conditions next to it. The condition can
be singular or a combination of many with logical operators. We end an if statement with
a colon; subsequent statements are indented property. Take a look at the following
example:

#filename: conditionals.py

if (True):
 #Do something

The following figure represents a boolean logic for implementing conditional statements:

Flow Control - Building a Decision Maker For Your Game Chapter 3

[71]

Take note of the following while using Python:

Colon (:): If you want to declare scope in Python, inside where you can write
more than one statement, you need to use a colon (:) to specify it. Most of the
programming language uses curly braces ({ }) for this, but Python is strange
when it comes to defining scope and the extent of block statements for features
such as functions, if statements, classes, and loops. However, once you get
familiar with using this, you will find it amusing and be able to distinguish code
written in Python from any other language within a second.
Indentation (whitespaces): After we define the scope with a colon, we can enter
its scope. Any subsequent statements that are written within its scope should
start with uniform white spaces, which we call indents. You can press the Tab key
to give each statement a uniform indentation. Most of the errors that beginners
make are due to improper indentation. If you don't provide the proper
indentation, you will get the following warning from the Python interpreter:

If statements evaluate logical statements. Whenever that statement is true, its indented
statement will be executed; otherwise, it will be skipped. You can also add
the pass keyword to tell the interpreter not to execute anything inside the indented block,
as in this example:

>>> if (4 == 4):
 pass
>>> #does not print anything

As we already know, Boolean statements will either will result in True or False. Indented
code inside an if statement will be executed if the condition is True, but if the condition is
False, the indented code inside the else part will be executed. Let's take a look at an
example:

>>> number = 1
>>> if number > 0:
 print("Number is positive")
 else:
 print("Number is negative")
Number is positive
>>>

Flow Control - Building a Decision Maker For Your Game Chapter 3

[72]

Following figure represents the flowchart for implementing program to check whether
number is positive or negative using conditional statements:

You can see that we have created two branches of conditions for the True or False logic.
Based on the result of the Boolean logic, flow control is transferred to either side of a
program. Hence, conditionals are also called branching.

Although our code is able to execute the code with two branches, there is a little gap in our
code. If the number variable contains zero, it is neither positive or negative. Therefore, we
have to add one more condition to this conditional. Whenever we need more than two
branches for the computation of logic, we can make chained conditionals. We can add as
many conditions as we like with a chained sequence. To perform chained conditionals with
any other programming language, we use the else if command. Python improvises by
making different commands with elif. Let's take a look at an example:

>>> number = input("Enter any number: ")
>>> number = int(number) #converting string to integer
>>> if number > 0:
 print("Number is Positive")
 elif number == 0:
 print("Number is Zero")
 else:
 print("Number is Negative")

Flow Control - Building a Decision Maker For Your Game Chapter 3

[73]

Enter any number: 0
Number is Zero
>>>

We can put any number of conditionals within one conditional statement. We call these
nested conditionals. Let's take a look at an example:

>>> number = 10
>>> if number > 0:
 if number % 2 == 0:
 print("Number is positive and even")
 else:
 print("Number is positive and odd")
Number is positive and even

In the preceding example, the outer conditional contains two sub-branch conditions where,
in the first branch, we check for an even number. The next default condition is checked for
an odd number. We use a simple single statement to make a condition in this example, but
conditions in nested conditionals can be made complex with logical operators, as in this
example:

>>> number = 4
>>> if number > 0:
 if number % 2 == 0 and number < 10:
 print("Number {} is small even & positive
number".format(number))
Number 4 is small even & positive number

Now that you know how to make decisions with several conditional statements, we will
take a look at a highly practical topic known as iteration. This allows us to execute a
sequence of instructions. This is repeated until a certain condition is reached.

Iteration
Let's say you want to write a program where you have to print your name 100 times. What
we have learned so far dictates that the easiest way to do this is to use the print statement
100 times. But what if you want to print your name 10,000 times? Writing a print statement
for 2/3 pages continuously is not good programming. We have to use loops in such a case.
Loops will help us to iterate over datasets until a condition is met. In each iteration, a part
of the code is executed and we have to update the iterating variable each time. The
following is an example of iterating over a variable:

>>> i = 0
>>> i = i + 1

Flow Control - Building a Decision Maker For Your Game Chapter 3

[74]

We update the iterating variable with an increment and decrement unit. Here, we update
the value of i by adding 1 to it. This is known as incrementing. You can also subtract 1
from it, which is known as decrementing. Each time we execute code inside indented loops,
we update the iteration using either increment or decrement statements.

Similarly, there is a comparatively easier and faster way of implementing increment and
decrement statements. You can use the following statements to perform multiple
operations:

+= adds a number to the variable and changes the variables in its process.
-= subtracts the variable with a value and sets the new value to its resulting
variable.
*= multiplies the variable by a value and changes the outcome of the variable.
/= divides the variable with the value and places the result on the resulting
variable.

Let's look at an example to see its effect:

>>> value = 4
>>> value += 5
>>> print(value)
9

The effectiveness of the increment and decrement operators can be seen with looping,
where we repeat a set of operations multiple times. Let's take a look at looping in action
with for and while loops. We will begin by learning about the for loop.

Th for loop
Whenever you want to loop within a dataset, let's say, within a range of numbers, within a
certain file, or within some definite word sets, we use a for loop. It is also referred to as a
definite loop. Until and unless there is certain item left in your bucket of items, it will
iterate. The for loop is terminated at the end of the bucket. Here, bucket is a metaphor for a
list of items, such as a list of numbers, words, or sequences, as in this example:

>>> for i in range(10):
 print(i, " John Doe") #range(10) gives [0,1,2,3,4,5,6,7,8,9]
0 John Doe
1 John Doe
2 John Doe
3 John Doe
4 John Doe
5 John Doe

Flow Control - Building a Decision Maker For Your Game Chapter 3

[75]

6 John Doe
7 John Doe
8 John Doe
9 John Doe

In the preceding code, the range() method is used to create a list of numbers. range(10)
provides a list of numbers from 0 to 9. It is stored as [0,1,2,3,4,5,6,7,8,9].

In the first iteration, the i value becomes 0, it executes code within the block of the for
loop, and changes the value of i to the next element of that list automatically, as follows:

>>> for i in [6,7,8]:
 print(i)
6
7
8

You can also loop within data that contains words or text. The iterating variable will
contain a value as a word each time we loop within that list, as in this example:

>>> for name in ['Tom','Harry','Ricky','Matt']:
 print(name)
Tom
Harry
Ricky
Matt

In the preceding example, the iterating variable is a name variable and, every time it iterates
through that list, it fetches its value and stores it in name. Hence, we can only use the name
variable inside the body of our for loop. No other variable can be used except the iterating
variable inside the for loop. This is shown in the following code:

>>> person_names = ['Tom','Harry','Ricky','Matt']
>>> for name in person_names:
 print(person_names)
Traceback (most recent call last):
 File "<pyshell#26>", line 1, in <module>
 for name in person_name:
NameError: name 'person_name' is not defined

In the preceding example, person_names is a type of variable where we can store an array
of items. This variable is called a list. We will cover lists in the next chapter. Here, the
iterating variable is name, which is declared with a for loop. However, inside the body of a
for loop, we didn't use the name variable. Instead, we used person_names, which gave us
NameError. Hence, iterating variables can be only used inside the body of a for loop.

Flow Control - Building a Decision Maker For Your Game Chapter 3

[76]

The next type of loop we will cover is the while loop, which will perform operations
similar to the for loop but with some tweaks. The while loop is known to be used in
scenarios where we don't care about the terminating point of loops.

While loop
Another form of iteration in Python can be performed using a while loop. Let's recall the
features of a for loop: it's used to iterate over a finite sequence of elements, either as a list
of numbers, words, or files. There has to be a termination point if you want to use a for
loop. We also don't care about the terminating condition while using for loops. It's
terminated when it reaches to end of the items or sequences. Now, what if we want to
terminate the loop based on custom conditions? The while loop is the most appropriate
loop in such cases. We can make a custom condition where we can terminate recursion with
the help of a while loop.

Both the while and for loops are going to perform incessant looping. At each iteration,
they are going to execute body of loop. The main difference between the for and while
loop is that the while loop has to declare the update statement and terminating condition
with its declaration. First of all, we have to make an iterating variable, and then we have to
make a terminating condition in order to specify a stopping point for the loop. At each
iteration, we have to update the iterating variable, like so:

>>> i = 0
>>> while (i < 10):
 print("John Doe")
 i = i + 1
John Doe
John Doe
John Doe
John Doe
John Doe
John Doe
John Doe
John Doe
John Doe
John Doe

In the preceding example, we created an iterating variable, i, and assigned a value of 0 to it.
After that, we made use of a while loop. To use this loop, we used the while keyword and
followed that by its terminating condition. We tell the interpreter we want to run this loop
until i is less than 10. If i is equal to or greater than 10, we want to terminate this loop.

Flow Control - Building a Decision Maker For Your Game Chapter 3

[77]

After that, we put a colon to specify the scope for our loop. Then, we added a simple print
statement to it, which will be executed each time this loop runs. Finally, we added an i = i +
1 statement to specify the updating condition. This is going to change the value of i into the
new one with an increment of one. This is important so that we don't end up using an
infinite loop. If you remove your updating condition, the loop is going to run an infinite
amount of times and the Python Terminal isn't going to be interactive to a user's response.
One way of creating an infinite loop is by using a condition that has no endpoint,as in this
example:

>>> while True:
 print("Infinite loop")

The preceding loop is an infinite loop as there is no endpoint or termination point attached
to the while keyword. If we are able to change the True keyword to False, only this loop
is going to terminate:

>>> condition = True
>>> while condition:
 print("This will run only one time")
 condition = False
This will run only one time

In the next section, we'll learn about the looping pattern so that we can find out about how
loop works under the hood.

Loop pattern
There may be trade-offs between the for and while loops, but both work well when we
want to loop around a known list of elements or the content of files. We can arrange or sort
the elements out of the list or file using these loops. A for loop cannot be made to loop an
infinite amount of times, but a while loop can do so using a condition that is never going
to be. The main purpose of looping is to get items from particular files or lists so that we
can process them further. We can sort these items based on smallest and largest or
important and superfluous while scanning datasets.

The construct of the loop pattern contains the following three pinpoints:

Making an iterating variable. There can be one or more. They are used to make
the conditions that represent the loop's terminating point.

Flow Control - Building a Decision Maker For Your Game Chapter 3

[78]

Some computation is done inside the body of the loop so that we can manipulate
the data items that are fetched with the loop one by one. We can also change the
value of the iterating variable inside the loop's body, which we normally do in
the case of a while loop.
Look for the possible base condition so that the loop can be terminated.
Otherwise, it will result in an infinite loop. We have to observe the resulting
variable after the loop ends.

If you want to demonstrate the construct and working paradigm of loop patterns, it's
always a good idea to use loops with a list of items. In the following example, we are going
to make a program where we will take a list of numbers and check for the smallest number
in the list.

We can do this in two ways. Python makes programming easy for both types of people: the
naive or the professional. They have various ways of implementing the same logic, but the
most common is to use Python's built-in methods, such as min() and max(). These get the
smallest and largest number from the list of numbers in Python, respectively:

>>> numbers = [113,115,55,66,65,90]
>>> min(numbers)
55
>>>max(numbers)
115

The second way to write program is by making our own logic. We should instantly make a
decision to use loops as there are many items in this list, which means we have to do some
comparison repeatedly. Hence, it's always better to use looping if you want to perform a
task repeatedly. Now, we need to decide on what to use: a for or a while loop. It's better
to use a for loop here because for loops work on finite lists. Each time we iterate over an
iterating variable, it will contain an element from the list so that we can compare them with
the previous element repeatedly. At first, we won't have anything to be the smallest
number. Hence, we have to make a variable that will contain a None value. This means we
won't have any value. After the first iteration, we will assign its value to the first element of
the list. Let's see how it works:

>>> smallest_number = None
>>> for item in [113,115,55,66,65,90]:
 if smallest_number is None or item < smallest_number:
 smallest_number = item
>>> print("Smallest:", smallest_number)
Smallest: 55

Flow Control - Building a Decision Maker For Your Game Chapter 3

[79]

Let's break down the preceding code into the following segments:

In the first statement, smallest_number = None is assigning None to that
comparing variable. We assigned None instead of any other number so that we
don't miss any numbers while comparing.
In the second statement, we made item an iterating variable, which is going to
read a list of numbers. At each iteration, it is going to store elements from that
list. In the first iteration, the value of the item is 113. In the second iteration, the
value of the item is 115; at the third iteration, the value is 55; and so on.
We are now inside the body of our for loop, where we have to build a
comparison statement. First, we need to check whether the smallest number is
None to make sure we are starting from the base. After that, we are going to
check whether the current item from the list is smaller than smallest_number.
The first iteration's second condition is False, but the first condition, that
is, smallest_number, is None, that is, True, which means we are going inside
the body of the conditionals. We will assign smallest_value to the first item of
the list, that is, 113.
In the second iteration, the item is 115. We are going inside the for loop and
checking whether 115 is smaller than the value of smallest_numbe, which is
113. This is False, and so it doesn't go inside the conditional's body; instead, it
jumps to the third iteration.
In the third iteration, the item is 55. We are going to check for the condition,
which is going to check whether the value of the item, that is, 55, is less than that
of smallest_number, which is 113. The condition (55 < 113) is True, and so it
changes the value of the smallest_number variable to 55. The for loop is going
to iterate until the last number of that list. It is going to use the same comparison
operation at each iteration to give us the smallest value, that is, 55.

With just a change in the comparison operator, we can make a program that will print the
largest number from the list. Instead of using the item < smallest_number statement,
we can use the item > largest_number statement to get the largest number as follows:

>>> largest_number = None
>>> for item in [113,115,55,66,65,90]:
 if largest_number is None or item > largest_number:
 largest_number = item
>>> print("Largest: ",largest_number)
Largest: 115

In the next section, we'll look at how to use two different statements, break and continue,
in order to change or skim the sequence of iteration.

Flow Control - Building a Decision Maker For Your Game Chapter 3

[80]

The break and continue statements
While writing programs, sometimes, you want to skip the execution of statements or stop
the iteration forcefully. These operations are handled by the continue and break statements.
They can be powerful in multiple use cases where you want to make a program sort the
elements of a list or to break the loop when an if condition is met. The continue
statement is used to skip the execution of the program. We use these statements inside the
body of loops. We can sort elements out of lists using these statements. We can't use both of
these statements in a single loop, even if we use both of them together since the break is
going to stop the loop, which will make the continue statement useless. We can use these
statements with conditionals. Whenever a condition is met, we are going to either break or
skip the iteration. Let's make a program that can sort the elements of a list:

>>> items = [1,5,7,8,"Free","spam",False,89,90,11,"Python"]
>>> refined_items = []
>>> for item in items:
 if type(item) != int:
 continue
 else:
 refined_items.append(item)
>>> print(refined_items)
[1,5,7,8,89,90,11]

In the preceding code, we are refining the elements of a list by keeping the integer numbers
in the output list. Other data values, such as strings and Booleans are removed. First, we
looped an entire list and at each iteration, the element is stored in the item variable. We
check the type of data that are stored in the item variable with the type() method. If the
type of the value that's stored in the item is not an integer, we are using the continue
statement to infer that we won't do anything if it is not an integer. If the type of item is a
Boolean or string, we are skipping that iteration with the continue statement. However, if
the type of the value that's stored in an item variable is an integer, we are going to execute
the statement that's inside the else part of the code. We are going to take that integer item
and add it to the new output list, which is called refined_items. After each element is
checked, we print the refined list, which is the ultimate collection of numbers.

If you use a break statement instead, things will be the same until element 8. But instead of
printing other elements from [89,90,11], our output will be limited to [1,5,7,8]. This is
because the break statement is going to stop iteration after appending element 8 to the list.
Hence, we can conclude that whenever the Python interpreter triggers a break statement,
the loop is going to be terminated:

>>> items = [1,5,7,8,"Free","spam",False,89,90,11,"Python"]
>>> refined_items = []
>>> for item in items:

Flow Control - Building a Decision Maker For Your Game Chapter 3

[81]

 if type(item) != int:
 break
 else:
 refined_items.append(item)
>>> print(refined_items)
[1,5,7,8]

We know that, while deploying programs in a real-world environment, such programs will
be accustomed to a different scenario that our code won't be able to handle. In such a case,
our program will terminate, which will have a negative impact on the user or player of the
game. Hence, we have to code in such a way that our code can be applied to any scenario,
even when it encounters unexpected errors or exceptions. This type of powerful technique
in programming is known as exception handling and is what we will cover in the next
section.

Handling exceptions using try and except
In the preceding chapter, we created a simple tic-tac-toe game. We talked about making
some modifications at the end of that chapter. One of the modifications was suggested due
to the deficiency of the code, which was unable to handle the input of a user other than an
integer. What if our user enters a string as input to the position variable of our game? The
following exception will be thrown:

In the preceding screenshot, we can see that our code was unable to handle a string as input
by the user. Our code is going to perform well if—and only if—we enter an integer. If the
user mistakenly enters any other data values, the program will crash. The aim of this topic
is to handle this type of error. We have two types of error: syntax errors and exception
errors. The following code shows examples of both:

>>> print("Hey! it's me")))
SyntaxError: invalid syntax

Flow Control - Building a Decision Maker For Your Game Chapter 3

[82]

Whenever you type in the wrong statement, it is going to throw an error message, that is, a
syntax error. Here, we used two more parentheses than normal to enclose the print
statement, which is incorrect. Due to this, the Python parser throws a syntax error. Remove
those extra two parentheses to eradicate the syntax error:

>>> a = 34
>>> a / 0
Traceback (most recent call last):
 File "<pyshell#2>", line 1, in <module>
 a / 0
ZeroDivisionError: division by zero

Now, the Python parser has thrown an exception error. This type of error occurs even if
your Python syntax is correct. This can be either a mathematical or logical error. In
mathematics, you cannot divide any number by zero. This results in an infinite, which has
not been defined by Python. Hence, we ran into an exception. There are different types of
exceptions. If you want to know the name of the exception you ran into, check the last
statement of your code after received the exception. In our error message, the last statement
says ZeroDivisionError. Hence, we ran into a ZeroDivisionError exception. If you
run into any of these exceptions, then it's likely that your code has crashed. Hence, our
game tic-tac-toe has also crashed because it was unable to handle input data other than
integers.

Now, our main aim is to make our code reliable so that even if our code runs into an
exception, instead of crashing, it gives the user a friendly message. In the preceding
example, instead of terminating the program, we can send the user a message saying You
cannot divide any number by zero. This process is called exception handling. These
are done within try and except blocks in Python.

If you are unsure about the code regarding whether it gave you an error, you should
always use try and except blocks. Your main code, which is likely to run into exceptions,
should be kept inside a try block. Then, if it runs into an exception, the Python parser
should execute the code that's inside the except block. The following example should
make this clearer to you:

>>> a = 34
 #INSIDE TRY BLOCK: put code that can give you error or exception
>>> try:
 print(a/0) #this will give you exception
 except:
 print("You cannot divide any number by Zero. It is Illegal!")
#message to user

You cannot divide any number by Zero. It is Illegal!

Flow Control - Building a Decision Maker For Your Game Chapter 3

[83]

The preceding code shows how easy it is to handle these kinds of errors. You put your
main code inside a try block and if it ran into an exception, the main code won't be
executed. Instead, the code inside of the except block will be executed, which in this case is
a user-friendly message. You can also use pass so that you terminate the program without
providing the user with a message.

With the except keyword, you can also pass the name of an exception explicitly. However,
make sure you know the proper exception name you are going to run into. In this case, we
know we are going to run into ZeroDivisionError, and so we can write the exception
name with an except block, like so:

>>> a = 34
 #INSIDE TRY BLOCK: put code that can give you error or exception
>>> try:
 print(a/0) #this will give you exception
 except ZeroDivisionError:
 pass

Now, let's see how we can refine our tic-tac-toe game with everything we have learned
about so far. We will use conditionals, looping, and exception handling to modify the code
that we wrote in the previous chapter.

Making a game controller for our tic-tac-toe
game
In the preceding chapter, we build a simple tic-tac-toe game. Since we have learned about
conditionals and looping in this chapter we are now able enough to make some
advancement on our game. We will make the following changes to our game:

We have to make the game multiplayer, which means we have to make
modifications to the program so that two players can play our game. We can
make conditions that can toggle who's playing when.
When we talked about exception handling, we saw that our game was unable to
handle string data that was inputted by a user. We can use try and except
blocks to handle that exception.
We were unable to determine the winner of our game with the code that we
wrote in the previous chapter. Now that we have learned about if conditionals,
we can come up with some logic to check whether the player is the winner.

We will start our game development process by brainstorming in order to gather some
critical information about the game.

Flow Control - Building a Decision Maker For Your Game Chapter 3

[84]

Brainstorming and information gathering
One of the important features our code lacks is readability. In the game code from the
preceding chapter, we didn't have a proper way to track the positions of the game board.
The first thing we can do with our code is make a choices list, which will contain all of the
choices that can be made by the player. Here, the choices are for the tic-tac-toe board
position. In the tic-tac-toe game, the player can choose between 0 and 8 numbers, which are
placeholders if they're not occupied by another player.

The second thing we have to add in our code is a way we can toggle whose turn it is. Since
we have only two players, we can make player 1 play first and make the first move of the
game. Hence, making logic would be easier. We will make one Boolean variable and
change its value from True to False so that we can make a condition to change the player's
turn, as follows:

playerOne = True will make sure it's player 1's turn.
playerOne = False will allow player 2 to make a move on our game board.

We have to go through the rules of the tic-tac-toe game to make any player a winner based
on the positions they occupy on the game board. If a player, either X or O, occupies entire
rows, columns, or diagonals of the tic-tac-toe board, that player will be considered the
winner. This is depicted in the following screenshot:

Modifying the model
The program we wrote in the previous chapter was only able to make one player play the
game. Since tic-tac-toe is a multiplayer game, modifications should be made so that
multiple players can play this game. For that, we have to do two things:

Track empty places on the board.
Make a condition to toggle the player's turn.

Flow Control - Building a Decision Maker For Your Game Chapter 3

[85]

For both of those modifications, we have to make one variable that can track every empty
and occupied position on the game board:

#code is written in same previous file

choices = []
for pos in range(0,9):
 choices.append(str(pos+1))

If you use the >>> print(choices) variable, this will result in a list of values: ['1',
'2', '3', '4', '5', '6', '7', '8', '9']. They are positions for our board game.

Now, if you want to print the board's layout, you cannot use code from the previous
chapter. Instead of using the game_board variable, we are going to use the choices
variable. This works in the same way it did in the previous example. We are going to add a
single line of dashes in-between each row:

#board layout
print('\n')
print('|' + choices[0] + '|' + choices[1] + '|' + choices[2] + '|')
print('----------')
print('|' + choices[3] + '|' + choices[4] + '|' + choices[5] + '|')
print('----------')
print('|' + choices[6] + '|' + choices[7] + '|' + choices[8] + '|')

#output
'''
|1|2|3|

|4|5|6|

|7|8|9|

'''

The main problem in our game may arise when the user inputs something other than a
number. For example, if the player enters a string, the game will be terminated with an
exception—we don't want that situation to happen. As you may recall, we use exception
handling to avoid such a scenario. We will add this to our game in the next section.

Flow Control - Building a Decision Maker For Your Game Chapter 3

[86]

Handling the exceptions of the game
Let's run the game that we've made so far and input a string into the input field instead of
an integer value. You will get the following exception:

We don't want our program to crash whenever the user makes a mistake while interacting
with our game. Instead, we can send them a user-friendly message saying This is not
valid, press integer only. Let's handle this type of exception by using a try and
catch block, as follows:

while True:
 print('\n')
 print('|' + choices[0] + '|' + choices[1] + '|' + choices[2] + '|')
 print('----------')
 print('|' + choices[3] + '|' + choices[4] + '|' + choices[5] + '|')
 print('----------')
 print('|' + choices[6] + '|' + choices[7] + '|' + choices[8] + '|')
 #above code is to print board layouts

 try:
 choice = int(input("> ").strip())
 except:
 print("Please enter only valid fields from board (0-8)")
 continue

Flow Control - Building a Decision Maker For Your Game Chapter 3

[87]

When we run our program this time, we will get the following output:

Here, we entered a Python string value into the input field. Instead of it crashing the
program, we got a message saying Please enter only valid fields from board.
This is a convenient way of handling exceptions using try and except blocks. We used the
same main loop from the previous chapter, which was going to loop an infinite amount of
times. Inside the body of the try block, we kept the code that might throw an exception.
strip() is a string method that is going to remove white spaces from the user's input. We
have to type-cast user input using the int method so that the input data, which will be in
the form of a string, is converted into an integer. If we get an exception, we are going to
execute the code that's inside the body of the except block. The continue keyword is
going to make the main loop run again from the beginning if we run into an exception.

The main feature that must be added to our tic-tac-toe game is multiplayer so that two
players can play the same game turn by turn. This toggling feature will be added in the
next section.

Toggling the player's turn
Writing programs to make two players play the game is easy with Python—all you need to
do is create one Boolean variable that will denote who the current player is. Then, based on
the two values of the Boolean, either True or False, we can change who's playing the
game. However, if you want to add more than two players, this idea isn't going to work.
We are going to use the following Booleans:

Is_Current_One = True: The current player is player 1 or X.
Is_Current_One = False: The current player is player 2 or O.

Flow Control - Building a Decision Maker For Your Game Chapter 3

[88]

This is shown in the following code:

#creating Boolean variable
Is_Current_One = True #default player is player X

#first move is done by player X
while True:
 #put code of board layouts here
 if Is_Current_One:
 print("Player X")
 else:
 print("Player O")
 #put try and except block here
 #---
 #code to put either X or O on position selected by user
 if Is_Current_One:
 choices[choice-1] = 'X'
 else:
 choices[choice-1] = 'O'
 #code to toggle between True and False
 Is_Current_One = not Is_Current_One

Let's break the preceding code into segments so that we can understand it better:

We have our main loop, which is going to run an infinite amount of times until it
triggers a break statement. We've already learned that the break keyword was
going to terminate our loop. In the body of the main loop, we print whether it's
player X's or O's turn to make the player aware of their turn.
We have created a Boolean variable called Is_Current_One, which was
assigned a value of True. This means that the first player to make a move will be
player X. If we make this variable False, then the default player to make the first
move will be player O.
Inside the main loop, we created a condition to check whether player X or player
O has placed either X or O on the board layout accordingly. The choices[]
variable reflects the board's position. choice is the user's input, which we
subtract by 1 because our choices variable is a list type. We know that list indexes
start from index 0, but we have entered user input from 1 to 9. Hence, we
subtract the choice input variable with 1 to accommodate this list variable.
The >>> Is_Current_One = not Is_Current_One statement is going to
toggle between the players. As we mentioned previously, if Is_Current_One is
True, the player is X, Now, we've also made a condition so that we can change
True to False in the next iteration so that player O can make the next move.

Flow Control - Building a Decision Maker For Your Game Chapter 3

[89]

Let's see what we are up to now by running our script file. You will see the following result
printed in the shell:

Now, we have created our game, which can take some input from a user and place it on the
tic-tac-toe board. We've created some logic to change whose turn it is. We were also able to
handle exceptions that might appear in our game using try and catch blocks.

We have been progressing at a rapid pace, but our game is still incomplete. We haven't
made any logic to make a player the winner if they occupy either a row, a column, or three
diagonal cells. We will do this in the next section.

Flow Control - Building a Decision Maker For Your Game Chapter 3

[90]

Making a player the winner
Tic-tac-toe is an easy game to make, but the main purpose of building this game is to cover
almost every core programming paradigm of Python, such as variables, numbers, models,
built-in methods, looping, branching, and exception handling. Now, our game is good
enough to be played by two players, but a multiplayer game can only have one winner at
the end of it. Therefore, we have to make brand new logic that will reward the player if
they win. We need to cover three use cases, as follows:

If an entire row of the tic-tac-toe board is occupied by a player, that player will be
the winner.
If an entire column of the board is occupied by a player, that player will be the
winner.
If an entire diagonal of the board is occupied a player, that player will be the
winner.

Let's print our game board layouts, along with their positions, so that we can track all of the
positions of the board while making the preceding conditions:

| 1 | 2 | 3 |

| 4 | 5 | 6 |

| 7 | 8 | 9 |

Since we have to loop through all of these positions from 1 to 9, we need to use a for loop.
Since we have a finite list of numbers, a for loop is easy to use. We have to make two
conditions to check whether a player occupies an entire row or column. After dealing with
row and column, we will examine diagonal conditionals with isolation:

For row: If any user occupies [1,2,3], [4,5,6], [7,8,9], that particular player will be
considered the winner.
For column: If any user occupies [1,4,7] , [2,5,8], [3,6,9], that particular player will
be considered the winner.

However, the position inside the choice variable ranges from 0 to 8, that is,
['0','1','2','3','4','5','6','7','8'], and so index 0 references the first position of the board, an index
of 1 indicates the second position of the board, and so on.

Flow Control - Building a Decision Maker For Your Game Chapter 3

[91]

We have been using a while True statement for our main loop. Let's modify that so that our
code will run until we a player is the winner. We will run our main loop until won= False.
If we get a winner of the game, we will change the value of the won variable to True so that
the main loop will end:

won = False #at first we don't have any winner
while not won:
 #code from previous topics
 #logic to make any player winner:
 for pos_x in range(0,3):
 pos_y = pos_x * 3

 #for row condition:
 if (choices[pos_y] == choices[(pos_y + 1)]) and (choices[pos_y]
 == choices[(pos_y + 2)]):
 #code to change won to True
 won = True #main loop will break
 #column condition:
 if (choices[pos_x] == choices[(pos_x + 3)]) and (choices[pos_x]
 == choices[(pos_x + 6)]):
 won = True #main loop will break

In the preceding code, we made two conditions to check whether the player is the winner.
We made the won variable to track whether any player has won. If any player occupies an
entire row or column, we are making the won variable's value True and our loop will break,
which means we will end our game. However, we haven't given the user a message about
being the winner. Let's write some code that will tell the user they're the winner after we
check for the row and column condition:

while not won:
 #code from previous topic
 for pos_x in range(0,3):
 pos_y = pos_x * 3

 #add condition for row and column here

#print who is winner
print("Player " + str(int(Is_Current_One + 1)) + " won, Congratulations!")

Flow Control - Building a Decision Maker For Your Game Chapter 3

[92]

The statement we've written with the print method may create confusion because of
the str(int(Is_Current_One + 1)) command. Here, Is_Current_One is either True
or False. However, it also corresponds to 1 or 0, where 1 is for True and 0 is for False. If
player X is the winner, then it's player 1 who won, but the turn will have changed over to
player O, that is, player 2.

Hence, we have to add this to 1 so that the current player is determined the winner, rather
than the player who goes next. Since this is a two-player game, this makes sense. Let's run
our code to examine the result:

We haven't finished yet—we also have to add one more condition to check whether the
diagonals are also occupied by a player. Let's add that condition now:

| 1 | 2 | 3 |

| 4 | 5 | 6 |

| 7 | 8 | 9 |

If any player occupy positions [1,5,9] or [3,5,7], they will be regarded as the winner.
However, our choices variable is a list that contains all of the positions. Its index starts
from 0, which means if you want to locate the position for player 1, you should pass this as
choices[0], like so:

while not won:
 #code from previous topic
 for pos_x in range(0,3):
 pos_y = pos_x * 3
 #add condition for row and column here

 #diagonal condition here:
 if ((choices[0] == choices[4] and choices[0] == choices[8]) or
 (choices[2] == choices[4] and choices[4] == choices[6])):

Flow Control - Building a Decision Maker For Your Game Chapter 3

[93]

 won = True

#print who is winner
print("Player " + str(int(Is_Current_One + 1)) + " won, Congratulations!")

Now, let's run our game one more time to check whether this condition works properly:

Finally, we have completed our game! We were able to include many features in our game,
such as exception handling, multiplayer mode, and logic to make a player a winner.
However, we still have to refine this game by adding user-defined functions so that we can
print our board layout. This will follow the DRY principle and will be covered in the next
chapter.

Summary
This chapter has given us a roller-coaster ride of all of the core topics of programming
paradigms with Python. We have covered flow controls and how to achieve them using
branches and loops. We learned how to make conditions and fed them to the conditionals.
Then, based on those conditions, we were able to make a switch between the execution of
statements. We saw how to automate things using Python looping and branching. We fed
multiple possible conditions with the if keyword and, based on the result of the Boolean
expressions, the flow of the program was controlled. We also learned about the different
types of looping and saw how to use them to iterate a list of items or objects. Then, we saw
how to handle exceptions using try and except block.

Flow Control - Building a Decision Maker For Your Game Chapter 3

[94]

Finally, we made our tic-tac-toe game more playable than ever before by incorporating the
different paradigms we learned about in this chapter. We added try and except blocks so
that any exception will be caught and handled properly. We also added features such as
multiplayer mode and logic to make a player the winner. This makes the game highly
interactive. Finally, we made a game controller using conditionals and looping. However,
we won't stop here; more modifications will be made in the upcoming chapters.

The next chapter will be life-changing for us. Up until now, we have only been using the
built-in functions of Python, such as min(), max(), and input(). In the next chapter, we
will see how to make our own functions and to use them so that we can make our game
more readable and reusable. We will cover data structures such as list, set and, dictionary
so that we know how to manage and store more complex datasets. Don't be overwhelmed
by all of these statements, though. You have come this far, and are now on the brink of
becoming a proficient Python programmer. Before moving on to the next chapter, make
sure you are comfortable with all of the topics that we have learned about so far.

4
Data Structures and Functions

In this chapter, we are going to traverse through the concept of data structures and
functions, two primary building blocks of Python. Normal variables are a good way to
store singular units of data of any type, but for arrays of data, we should always use data
structures. Python has a raft of data structures available that you can use to represent and
manipulate your datasets, or even to combine them in order to make your own data
structures. We have already seen built-in data types, such as integers, Booleans, floating
numbers, strings, and characters. They are called built-in because they come as a dovetail
with Python. Now, we are going to explore built-in data structures, such as lists,
dictionaries, tuples, and sets. Combinations of these built-in data types result in data
structures that are implemented independently. For example, if we put different integers in
one place, they are arrays of numbers. Python call them lists, which are widely used data
structures.

In order to become proficient programmers, first we have to learn about core programming
paradigms, such as variables, numbers, modules, and built-in functions, before then diving
into the data structures and algorithms. This book is not any different. We have already
covered the basics of Python; now, it's time to delve into the data structures and the method
that is used to access and manipulate data. In the previous chapter, we modified our game
with conditionals and looping.Now, let's extend our knowledge of Python to include the
broad concept of data structures and functions so that we can refine our game decide the
most fa
further.

The following topics will be covered in this chapter:

Why do we need data structures?
The four structural pillars of Python—lists, dictionaries, sets, and tuples
Functions
Adding AI to a tic-tac-toe game
Game testing and possible modifications

Data Structures and Functions Chapter 4

[96]

Technical requirements
The following are the requirements that you will need to understand this chapter properly:

The Python IDLE
The code assets for this chapter can be found at https:/ /github. com/
PacktPublishing/ Learning- Python- by-building- games/ tree/ master/
Chapter04

Check out the following video to see the code in action:

http://bit.ly/2oNoxOL

Why do we need data structures?
As a programmer or computer scientist, we always search for ways to optimize our code.
Optimization is a way of refining code in order to improve code efficiency and quality.
Data structures are a shrewd way of organizing data in a computer, therefore making it
easier to retrieve and access data, which results in code optimization.

So far, we have learned how to use conditionals to make conditions, and how to make flow
controls with normal variables. However, real-world data is not limited to one unit. We
may collect profuse amounts of data, which would have the highest level of intricacies. It
may contain thousands of integers, hundreds of Booleans, or a combination of these. Thus,
storing them into a single, normal variable with an assignment statement is not possible.
Take a look at the following example:

In the preceding code, we tried to assign two values to a single variable. It produced a
syntax error. We even tried to put two string values into a single variable, a, but instead it
performed a concatenation, and assigned it as a single value. Thus, storing multiple values
in a normal variable is not possible. However, we can easily convert this normal variable
into a data structure, as shown in the following snippet of code:

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter04
http://bit.ly/2oNoxOL
http://bit.ly/2oNoxOL
http://bit.ly/2oNoxOL
http://bit.ly/2oNoxOL
http://bit.ly/2oNoxOL
http://bit.ly/2oNoxOL
http://bit.ly/2oNoxOL
http://bit.ly/2oNoxOL
http://bit.ly/2oNoxOL

Data Structures and Functions Chapter 4

[97]

>>> a = 8 , 9
>>> a
(8,9)
>>> type(a)
<class 'tuple'>

We have converted the normal a variable into a tuple, which is a built-in data structure of
Python. We will cover this in detail in the upcoming sections.

This variable was only able to store a single unit of data, but if we carry out multiple
assignments, the preceding value would be overwritten. However, if you want to preserve
all the data in one placeholder, data structures are a way of doing this.

As a programmer, our primary responsibility is to perform some sort of manipulation on
input datasets. Input can be anything, such as emails or passwords, or maybe a request to
enter into a system or location for Google Maps, where we can use the data to perform
some sort of computation using algorithms. In addition, the haversine algorithm (refer to
the following URL to learn more about this algorithm: https:/ /rosettacode. org/ wiki/
Haversine_formula) gives you the exact distance between your location and your
destination. Thus, input data can have a wide range, but the main task is to manipulate it.
Our systems and processors are not powerful enough to handle the manipulation of several
terabytes of data all at once. Thus, choosing a proper data structure is a major optimization
that can be carried out by the programmer. If we are able to store such inputs into faster
data structures in any organized form, we can perform even complex tasks with ease. Data
structures are just places or storage that provide structure to such complex data, but
processes such as fetch and manipulation are performed using algorithms.

Still in doubt? Let's make things clear by taking an example of a library in order to
understand data structures and algorithms. First of all, imagine a scenario where we don't
have proper management in a library. Books are not properly placed in their relevant
sections. Now, searching for a book in a particular section is useless, because it won't be
there. The best-case scenario is that you may find your book within a few minutes, but the
worst-case scenario is that you may have to search the entire library to find a book about
history, for example. However, if the library is properly organized and managed, you will
be able to go directly to the relevant section where history books are stored, and search for
your book in that section only. Here, the library represents the data structure and the book
is the data that you are searching for. Whenever you need data, you go to the data
structure, and if it is properly managed, you will be easily be able to retrieve it. The steps
that define how you are going to search for the books are called algorithms.

Enough of the theory—let's get our hands dirty by coding and learning about the four
pillars of data structures of Python—lists, dictionaries, sets, and tuples.

https://rosettacode.org/wiki/Haversine_formula
https://rosettacode.org/wiki/Haversine_formula
https://rosettacode.org/wiki/Haversine_formula
https://rosettacode.org/wiki/Haversine_formula
https://rosettacode.org/wiki/Haversine_formula
https://rosettacode.org/wiki/Haversine_formula
https://rosettacode.org/wiki/Haversine_formula
https://rosettacode.org/wiki/Haversine_formula
https://rosettacode.org/wiki/Haversine_formula
https://rosettacode.org/wiki/Haversine_formula
https://rosettacode.org/wiki/Haversine_formula
https://rosettacode.org/wiki/Haversine_formula

Data Structures and Functions Chapter 4

[98]

The four structural pillars of Python – lists,
dictionaries, sets, and tuples
In Chapter 2, Learning the Fundamentals of Python, we learned about strings, and we called
them immutable data types because they do not allow assignment operation. This is shown
in the following code:

>>> name = "Python"
>>> name[0] = 'hey'
TypeError: 'str' object does not support item assignment

However, data structures must be flexible, which means that we should be able to store and
extract elements of data from any position. Thus, most of the built-in data structures of
Python are mutable, which means that they can be changed and manipulated with proper
indexing. The proper categories for the four data structures are as follows:

List and tuple: Mutable data structures
Dictionary: Mapped data structure
Set: Mutable and unordered data structure

Each category exists because of its uniqueness, and you will see how easy it is to
distinguish them as superior or inferior to one another in the upcoming sections. However,
remember that they are all superior at some point; it's up to us to choose a data structure
that is appropriate to the situation. For example, we say that dictionaries are the king of
data structures, but we may come across a situation where tuples may be the faster way to
store data, which is usually the case when we make programs in Python using databases
such as SQLite and MySQL. Now, let's take a look at each of these built-in data structures of
Python, starting with a basic mutable data structure, which is known as a list.

Lists
Just like a string is a sequence of characters, a list is a sequence of values. Values can be a
combination of any type. The values in a list are called items of that list. Lists are mutable
and ordered data structures, and elements of lists can be extracted using indexes. Like
strings, we can extract multiple elements from a list using the slicing technique. Lists are
notorious for storing homogeneous data types, but they also support heterogeneous data
types. We are not confined to creating lists using only a single method; there are multiple
ways of doing this. Let's look at some of basic ways of creating lists in Python:

Data Structures and Functions Chapter 4

[99]

>>> first_list = []
>>> type(first_list)
<class 'list'>

The simplest way of creating lists is using square brackets—[]. You can add multiple
elements inside these brackets, and there are multiple ways of doing this:

Firstly, we can add elements to the list at the moment of its declaration, as shown
in the following example:

 >>> numbers = [1,2,3,4,5,6,7,8,9]

You can also add elements to lists using the built-in methods within Python. For
example, the append method can be used to insert elements into the list.
Elements are added to the last position of the list, as follows:

 >>> numbers.append(10)
 >>> print(numbers)
 [1,2,3,4,5,6,7,8,9,10]

We can also make a list containing multiple types of values, as shown in the following
example:

>>> [3,7,9,"odd",True]
[3,7,9,"odd",True]

Here, we made a list containing numbers, strings, and Booleans. Thus, we stored
heterogeneous data types in a single list. We can also add multiple lists within a single list,
and these are known as nested lists. As the term suggests, one list is nested within another
list, as shown in the following example:

>>> [1,2,3,[4,5,6],7,["hey","Python"]]

In the previous example, we created a single list containing six elements. We have integers
and two whole lists ([4,5,6] and ["hey","Python"]) within that primary list. Thus,
these types of list are called nested lists.

Whenever you assign those lists to variables, the variable type eventually becomes the list
type. Now, the type of variable has been changed from a built-in data type such as int,
str, or bool, to a built-in data structure, which is the list.

Data Structures and Functions Chapter 4

[100]

Another way of creating lists is by using the built-in Python method—the list()
method—but it is redundant in the preceding process because we have to pass the whole
list as an argument of this list method. This is known as the type-casting method. If you
want to convert any other data structure into a list, we use the list() method, as shown in
the following example:

>>> list([1,2,3,4,5])
[1,2,3,4,5]

Inside the list() method, we have to pass an argument in the form of the list that contains
the elements, which are enclosed using square brackets. You must have guessed by this
point that every built-in data structure that is available in Python must have one built-in
method in order to create its data structures. We use the dict() method to create
dictionaries, the set() method to create sets, and tuple() to create tuples in the same way
that the list() method creates lists.

Since we have uncovered the different ways of creating a simple, yet powerful, data
structure that goes by the name of list in this section, let's see how we can access and
manipulate its stored data.

Accessing list elements
If you recall the way that we access the elements of a string, you can also replicate this
process in the case of lists. We use square brackets in lists in order to indicate the position
inside it so that we can extract and interact with particular elements. We call this the index,
and it is added inside this [] bracket symbol. It is same when creating new lists. Indexes of
lists start from 0 and increase in unit digits, while also traversing from left to right. Like
strings, lists also support negative indexing:

>>> winner_names = ["Chandler","Joey","Monica","Racheal","Ross"]
>>> winner_names[0] #0 is first index
'Chandler'
>>> winner_names[-1] #-1 is last element
'Ross'

When we tried to assign elements to the string, it was not valid. Unlike strings, lists provide
reassigned items to the list. Thus, we can say that lists are mutable, which means that they
are changeable and modifiable. This feature makes the list the simplest and most flexible
data structure of all. We can assign elements using the append method, which we saw in
the preceding section, but this method only allows us to add elements to the end of the list.
If you want to add elements to any particular position, you can explicitly tell the Python
parser to do this through indexing and assignment statements.

Data Structures and Functions Chapter 4

[101]

For example, if you want to add loves in-between two elements of the list, you can do the
following:

>>> msg = ["Joey","Monica","Racheal"]
>>> msg[1] = "loves"
>>> msg
['Joey','loves','Racheal']

Thus, we can see that the element at position one, Monica, has been replaced by loves,
which shows that we can change the order of the elements and reassign any other element
to the list.

While dealing with data structures, it's always good practice to observe them
hypothetically. We can consider them as a mapping process, where every element on the
list is mapped to certain indexes. Indexes are positions, and whenever we backtrack the list
through the indexes, we are able to access elements of these indexes. Even if you have a
nested list, that is, one or multiple lists inside the single list, they will be also mapped to an
index, as shown in the following example:

>>> web_dev = [["Django","Flask"],["Laravel","Symfony"],"Nodejs","GOLang"]
>>> web_dev[0]
['Django','Flask']
>>> web_dev[1]
['Laravel','Symfony']

We know that square brackets are used to access elements of a list, but if we want to access
elements of a nested list, we have to add another square bracket in order to specify the level
of indexes that are needed to access these elements, as shown in the following example:

>>> web_dev[0][0]
'Django'
>>> web_dev[1][1]
'Symfony'

We can check whether the element is in the list or not by using the in keyword. The syntax
that's used in the statement's results give a Boolean value that is either True or False:

>>> names = ["John","Jack","Cody"]
>>> "Cody" in names
True
>>> "Harry" in names
False

Data Structures and Functions Chapter 4

[102]

Accessing the elements of the list is easier, but sometimes if you make mistakes when
counting proper indexes, it may give an unintended result. Thus, you must count the
elements of the list from the index, 0. If you put indexes inside the square brackets that do
not map to any value, you will run into an error, known as IndexError, as shown in the
following example:

>>> odd = [1,3,5,7,9]
>>> odd[20]
IndexError: list index out of range

The IndexError message pretty much explains why we ran into this error. The index of
the list named odd stops at 4. However, we passed 20, which is the position that has no
mapping to the values, or simply, we don't have any elements in this position. Thus, while
working with lists, we have to track every position of the inserted values so that we don't
run into any exceptions. However, we have a solution to prevent such conditions—just
recall the exception handling mate! That's what you need to call in order to handle these
exceptions so that our code runs properly instead of crashing.

Since we have learned how to access these elements using the indexing technique, let's dive
into how to traverse the entire list, which is part of accessing the entire list. First and
foremost, the thing that you must be aware of is looping. Since we are dealing with a list
that has multiple pieces of data items stored in it—which means accessing multiple data,
multiple times—we just need to recall the method that we would usually use if we want to
do things repeatedly. There is nothing better than looping that suits this condition perfectly.
Thus, the for loop is the most appropriate method if you want to read the entire elements
of the list; for example:

>>> for number in [1,2,3,4]:
 print(number)
1
2
3
4

We can also update and refine our list within a for loop. The following example is among
one of the most important examples that we have learned about so far; make sure you
grasp every teeny-tiny piece of information from it:

>>> even_num, odd_num = [], []
>>> for i in range(0,10):
 if i % 2 == 0:
 even_num.append(i)
 else:
 odd_num.append(i)

Data Structures and Functions Chapter 4

[103]

>>> print(even_num)
[0,2,4,6,8]
>>> print(odd_num)
[1,3,5,7,9]

As always, let's break up the preceding code into segments. First of all, we declared two
empty lists, which will be our output lists of even and odd numbers. Then, we used looping
to access the elements of the list. The statement range (0, 10) will yield a list that contains
numbers from 0 to 9. Here, 10 is the exclusion position. Thus, we have looped an entire list
of elements one by one. If you have any difficulty in understanding the concept of recursion
programming, recall the Looping through dictionaries section. After taking every element of
the list at each iteration, we enter the body of the loop and check for the condition that will
determine whether the elements are even or not. If it is even, we append it, which means
that we insert that element into the even_num list, and we do a similar thing in the case of
odd numbers.

Wow, do you realize what you just did? You have used a simple yet powerful data
structure and carried out a linear search. Although we have many more topics to cover, this
is the best thing that we have done so far. Now, gear yourself up to learn more about list
operations and methods.

List operations and methods
Can you recall the type-casting method of Python from the preceding chapter? It is surely
the best way to convert one data type into another. We have looked at strings, its slicing
techniques, and methods. However, we came to realize that it was immutable. This
restriction is so robust that we can't change any of the elements of that string. However,
now we have come to the most flexible data structure, which goes by the name of list. So,
why not convert the string into a list so that we can make it mutable too. Let's use the
following example to clarify this:

>>> name = "python"
>>> type(name)
<class 'str'>
>>> name = list(name) #list() method converts any data type to list
>>> type(name)
<class 'list'>
>>> name[0] = 'c'
>>> name
['c', 'p', 'y', 't', 'h', 'o', 'n']

Data Structures and Functions Chapter 4

[104]

Now, we can manipulate the preceding list however we like; maybe using built-in methods.
However, most of the operation, apart from the assignment, is quite similar to that of
strings. We learned so much in the string section, such as slicing, addition, and
multiplication operations, and even some of the string methods. Strings and list
manipulation are quite similar-they even start with same index, 0. That said, the built-in
methods that are provided by Python for strings and lists are not quite as similar, and why
would they be? They are different types of data or structures.

You can do arithmetic operations with a list, such as addition and multiplication.
Remember, though, that addition can only be done between two lists, whereas
multiplication must be done between a list and any integer number, as shown in the
following examples:

>>> even = [0,2,4,6,8]
>>> odd = [1,3,5,7,9]
>>> number = even + odd
>>> number
[0,1,2,3,4,5,6,7,8,9]

>>> ["john"] * 3
['john','john','john']

In the first example, we performed concatenation between the lists using the addition
operator. In the second example, we multiplied the list by three, and the effect of the
multiplication can be observed within the content of that list. In our case, john has been
multiplied by three to create three john values.

The built-in methods that are provided by Python are used to manipulate the values of the
list. They act upon the list by creating an object of it. Let's not confuse ourselves by talking
about objects here; we have a dedicated chapter for that.

There are a lot of built-in methods available that can manipulate list structures, but we are
going to cover the most important ones here. I find them useful because most developers
use only a few of these when carrying out big projects. However, if you want to discover
more, it's always good practice to take a tour of the documentation page.

We have already seen how we can use the append method to insert elements into the list.
This method adds elements to the end of the list. But if you want to insert more than one
element into the list, we can use the extend method, as shown in the following example:

>>> list_1 = [1,2,3]
>>> list_1.append(4)
>>> list_1
[1,2,3,4]
>>> list_2 = [5,6,7]

Data Structures and Functions Chapter 4

[105]

>>> list_1.extend(list_2)
>>> list_1
[1,2,3,4,5,6,7]

In the preceding code, the extend method takes the list as an argument, and appends all
the elements of the list that are being called upon. When we print list_2, we will see that
the list will remain unchanged.

In the same way that there is a method to add elements to the list, we also have a method
that can delete elements from the list. Actually, there are two methods that can be used to
delete elements. One works by passing an argument as an index, while the other works by
passing an argument directly as an element that needs to be deleted. When we use the pop
method, we have to pass the index of the element that needs to be deleted from the list; but
when we use the remove method, we have to pass the element to it in order to specify that
this particular element needs to be deleted. Take a look at the following snippet of code for
an example:

>>> fruits = ["Apple","Banana","Orange","Mango"]
>>> fruits.pop(1)
"Banana"
>>> fruits
["Apple","Orange","Mango"]
>>> fruits = ["Apple","Banana","Orange","Mango"]
>>> fruits.remove('Orange')
>>> fruits
["Apple","Banana","Mango"]

There is another way of deleting elements in a list, which is by using the simple del
keyword. Warning: if you write >>> del fruits , the entire list will be deleted. Make
sure you explicitly specify the elements that need to be deleted. Specific elements can be
fetched in a similar way to how we access elements using square brackets, as shown in the
following example:

>>> fruits = ["Apple","Banana","Orange","Mango"]
>>> del fruits[-1]
>>> fruits
["Apple","Banana","Orange"]

There are a bunch of built-in functions that are available in Python that can perform
arithmetic and logical operations on a list. Using these functions inevitably makes code
cleaner and readable, and we can perform numerous tasks within a single line. Some of the
important built-in functions for a Python list are as follows:

>>> prime = [2,3,5,7,11,13,17]
>>> sum(prime)

Data Structures and Functions Chapter 4

[106]

58
>>> min(prime)
2
>>> max(prime)
17
>>> len(prime)
7

Here, the sum function will give us a result of addition between the elements of the list. This
method works only on the integers and floating values. Next, the min and max functions
give the minimum and maximum values of the list, respectively. Another important
function is len(), which will give us the length of the list. This len function works on any
of the objects. In addition, we can use it with strings in order to find the number of
characters in the list.

Sometimes, you may only want to extract particular portions or slices of the list, for
example, only the first four items stored in a list that contains 1,000 items. In such cases,
you have to use the slicing technique, which will be covered in the next section.

Slicing the list
Before learning the technique of slicing a list, let's recall how we sliced parts of a string. We
used the square brackets operator to specify the start and endpoint for the slicing. It is quite
similar in the case of lists, as shown in the following example:

>>> book = "Python Games"
#lets extract Games
>>> book[7:]
'Games'

Slicing a list can be done by adding a start index and a stop index within square brackets. In
the preceding example, the stop index element is excluded from the resulting slices. Let's
make a simple example that can slice parts of the element of our list:

>>> info = ["I","Love","Python","Java","NodeJS","C"]
>>> info[:3:]
["I","Love","Python"]

Data Structures and Functions Chapter 4

[107]

The second colon given in the info[:3:] statement is optional. The first semicolon
separates two blocks as the start and end positions, but the second colon would be
unnecessary if you don't want to add step. To learn more about [start:stop:step],
check out the String slicing technique section in Chapter 2, Learning the Fundamentals of
Python. Take the following code as an example:

>>> info[:3] #same result as previous
["I", "Love", "Python"]

In the preceding code, >>> info[:3:], we have added a colon (:) separator within square
brackets to specify the indexes of the list. The space before the first colon is the starting
index for slicing; here, we passed the empty index, which means it is the default, and it will
start to slice from the beginning of that list. We passed index three to the next placeholder
after the first colon in order to specify the end index for the slicing procedure. Here, the
element at index three is Java, but it is in the exclusion position, which means it will slice
from the beginning of list until the element at index two. The last placeholder after the
second colon specifies the steps that need to be included in the slicing. Its value is empty,
which means it's the default;, thus, we get a result without skipping any of the elements in-
between those indexes. It works in the same way as the string slicing technique.

Now, let's learn about the needs of lists by examining the pitfalls of string objects. We will
see how a list is considered superior and more prevalent than a string in the next section.

String and list objects
So far, we have covered multiple topics about lists; we saw how to create one for ourselves,
and we saw how to add, delete, and manipulate elements of lists using built-in methods.
Now, let's talk about another important concept of string and list-objects. Whenever we
create any string, an object is created and stored in a particular memory reference. For any
string that's created in a program, the Python parser creates one object for them, as shown
in the following example:

>>> name_1 = "Python"
>>> name_2 = "Python"
>>> name_1 is name_2
True

Data Structures and Functions Chapter 4

[108]

In the preceding examples, both name_1 and name_2 point to same object. Thus, we can say
that they are equivalent and identical. Two variables were created with the same Python
string. These two assignment operations do not create two objects; instead, a single object is
created and mapped into a global namespace. We can see that both of these variables,
which have the same content, create a single object:

But in the case of a list, even if the contents is the same, they create two distinct objects, as
shown in the following example:

>>> list_1 = ['a',1,2]
>>> list_2 = ['a',1,2]
>>> list_1 is list_2
False

You can clearly see that we get a result of False in the preceding code, which means that
these two list are two different objects. They are not similar, although their contents are
similar. Thus, whenever we create list variables, we term them as a list object, and its
content is the value of that object.

Finally, we have covered our elemental and powerful list data structure in this section.
Although we have not discovered the power of list yet, we have been using it from
Chapter 2, Learning the Fundamentals of Python. Do you remember that we used list to
represent the positions of the tic-tac-toe board game? Thus, we can conclude that, even
when we have more robust and complex data structures such as dictionaries, trees, and
queues, lists are considered the Queen of data structures because of their usefulness in
holding complex data types within simple structures. Now, let's learn about dictionaries,
which are considered the King of the data structures.

Data Structures and Functions Chapter 4

[109]

Dictionaries
Any discovery of a new data structure occurs because of the deficits in the preceding ones.
Let's recall the demerits of the list. We have stored elements in the list structure that follow
some order, and we must use indexes to retrieve those values. However those indexes are
imaginary. Whenever you want to work with the list, you will have the overhead of
remembering the order of that sequence, otherwise you will run into an IndexError
exception.

Now, let's learn about more of the sturdy data structure that is available in Python.
Dictionary, as the term implies, involves working the data structure in a way that is quite
similar to our Oxford Dictionary. In our real-world dictionary, we have key and value
pairs. Key refers to the word that you want to search for in the dictionary, while value
refers to the meaning of that word. Similar to the Oxford Dictionary, we have key and value
pairs in our dictionary data structure, and we call them elements or items, collectively. In
the case of lists, we also have key and value pairs. Key was imaginary, which was the
index, and the value was the element of that list, as shown in the following example:

>>> my_list = ["python","java"]

Here, the python string is the value and index zero is its key. In the case of lists, keys are
only integers. In the case of dictionaries, keys can be of any type. We need to explicitly
specify keys within the dictionary structure. Between each key and value pair, we need to
put a single colon (:). Let's create one dictionary to make things clear:

>>> my_dict = {}
>>> type(my_dict)
<class 'dict'>

We used square brackets, [], to create lists. But now, we will use curly braces, {}, to create
dictionaries. We have to add items to the dictionary using the key:value pair. Let's create
a simple dictionary, which will contain the names of people as keys, and their ages as
values:

>>> info = {"Monica" : 32, "Joey" : 29, "Ross" : 55 }
>>> info
{'Monica': 32, 'Ross': 55, 'Joey': 29}

You can imagine a dictionary as a mapper between a set of indexes and a set of values.
Here, indexes can be of any type, unlike integers for lists. In our info dictionary, we made
keys as sets of strings and values as integers.

Data Structures and Functions Chapter 4

[110]

Now, let's observe the info dictionary that was printed in the preceding code. We can
clearly see that the output sequence is not printed in the same order to that of the input.
The element positions have been exchanged. In this case, where there are fewer elements,
this might not be an issue. However, if we create a dictionary with 1,000 of items in it, you
will clearly observe that the order of the output dictionary won't be the same to that of the
input. In our example, we add the Ross key at the end of the dictionary, but while printing
the same dictionary, we got Ross: 55 added in the second position. So, you might be
wondering, will it make any difference while accessing the elements of that dictionary? Not
at all! dictionaries are arranged without an order, unlike that of a list. To access the
elements of the dictionary, we have to use keys as an identifier. Accessing elements of the
dictionary is quite similar to that of a list, but instead of putting indexes inside the square
brackets, we put keys into it. For example, if you want to fetch the age of Monica, we use
the following code:

>>> info["Monica"]
32
>>> info["Joey"]
29
>>> info["Chandler"]
KeyError: 'Chandler'

Instead of IndexError, we will get KeyError, which specifies that there is no such
element inside the dictionary that has a key named Chandler. Thus, accessing the list can
be an overhead because we have to track every possible index of that list. It won't be a
problem for lists that are smaller in length, but imagine a list containing 10,000 or more
elements. To overcome this expense, it's better to use dictionaries, since they are easier to
access and the chances of running into exceptions is also meager. That being said,
dictionaries are also not perfect data structures, and we will see the reason why most
people prefer lists over dictionaries in the upcoming sections.

There is also another way of creating a dictionary, which is using the dict() method. Let's
see how it is used:

>>> info = dict()
>>> info
{}

Data Structures and Functions Chapter 4

[111]

We have created an empty dictionary using the built-in dict() method. Now, let's see how
we can add elements to that dictionary:

>>> info["Python"] = 1990
>>> info["C"] = 1973
>>> info["Java"] = 1970
>>> info
['Python': 1990, 'C': 1973, 'Java': 1970]

Since we have seen how to create our own dictionary using two methods, let's see how we
can fetch every element of that dictionary. Since our data structure may contain many
values, we must use loops to iterate over it. We'll look at how, w can loop through
dictionaries in the next section.

Looping through dictionaries
Since dictionaries contain a finite number of keys and values, we can use a for loop to
iterate over it. A for loop will traverse through the keys of the dictionary. The value of a
particular key can be extracted by using square brackets, [], and passing keys inside it.
Let's see how this works:

>>> info = {'Python': 1990, 'C': 1973, 'Java': 1970}
>>> for key in info:
 print(key,info[key])

Python 1990
C 1973
Java 1970

In the preceding code, info[key] is going to extract the value of that key. The for loop
will traverse through the keys of the dictionary, and iterating the key variable will store the
key of the dictionary in each iteration. However, if we want to extract the key and value
within the for loop, we will get ValueError. Let's see what I mean by this:

>>> for key,value in info:
 print(key,value)
ValueError: too many values to unpack (expected 2)

We get the preceding error because dictionaries are not iterables. However, we can convert
it into another data structure, such as a tuple or lists so that we can fetch keys and values
directly within the definition of the for loop. We will make this dictionary iterable by
converting it into a tuple, which will be covered in the upcoming section about tuples.

Data Structures and Functions Chapter 4

[112]

Python provides a bunch of built-in methods in order to manipulate dictionaries according
to your needs. For example, if you want to delete an item or insert an item to the dictionary,
you don't have to make your custom logic to implement it; instead, Python has built-in
functions for this. We will cover some of the most important dictionary methods in the next
section.

Dictionary methods
Adding elements to the dictionary is easier, and we have already seen a couple of examples
of this. Now, let's see how we can remove an element from the dictionary using the pop()
method. For the argument that's given as a key to pop(), this method removes and returns
an element from that dictionary. Let's look at a simple example:

>>> info = {'Python': 1990, 'C': 1973, 'Java': 1970}
>>> info.pop('C')
1973
>>> info
{'Python':1990, 'Java': 1970}

If you want to retrieve a particular value of the key, we can use the get method:

>>> info.get('Python')
1990

We can call the values method into the dictionary, which will return an object view that
will represent all the values of the dictionary. Similar to values(), we can use the keys()
method to print dictionary objects, which will represent all the keys of the dictionary:

>>> info.values()
dict_values([1990, 1970])
>>> info.keys()
dict_keys(['Python', 'Java'])

We can also use the len() method, which will return the number of items that are stored in
the dictionary, as shown in the following example:

>>> len(info)
2

Data Structures and Functions Chapter 4

[113]

If you want to print a shallow copy of your dictionary, the copy() method can be used, as
shown in the following example:

>>> old = { "Zero" : 0 , "One" : 1}
>>> new = old.copy()
>>> new
{'Zero': 0, 'One': 1}

Now,we have looked at some examples that have given us the knowledge to create our
own dictionary and showed us how to access them using various dictionary methods.
Now, let's explore tuples—another immutable data structure.

Tuples
Tuples are quite similar to lists in terms of processing, but they are immutable, unlike lists,
which are mutable or changeable. We can store sequence of values within the tuple in a
fashion that is similar to a list. Like we used [] to create a list, and {} to create a dictionary,
we use use() to create tuples. The values that are stored in the tuple can be of any type,
and each of these values are mapped by indexes in the same way as a list. The index of the
first element of a tuple is zero, and it starts to increment with one, while at the same time,
traversing from left to right. One of the merits of tuples is that they are iterables. Thus, we
can convert non-iterable data structures, such as dictionaries, into tuple, so that we can
extract key and value pairs within the loop declaration.

Let's create a simple tuple:

>>> numbers = (1,2,3,4,5)
>>> type(numbers)
<class 'tuple'>

We can also use the built-in method in Python to create tuples. We can create empty tuples
using the tuple() method:

>>> numbers = tuple()
>>> numbers
()
>>> numbers = tuple('abcde')
>>> numbers
('a','b','c','d','e')

Data Structures and Functions Chapter 4

[114]

If you want to create a tuple with a single element in it, you have to add a comma after
adding this element, otherwise Python treats it as a built-in data type, such as an integer or
a string, as shown in the following code:

>>> odd = (1,)
>>> type(odd)
<class 'tuple'>
>>> even = (2)
>>> type(even)
<class 'int'>

Another way to create tuples is to add a comma between each item:

>>> numbers = 1,2,3,4,5,6,7
>>> type(numbers)
<class 'tuple'>

Most of the operations that we perform for lists also work in the case of tuples. In order to
access the elements of a tuple, we use the square bracket operator and pass the index to it,
as shown in the following example:

>>> numbers[0]
1
>>> numbers[-1]
7

Slice operations can be also performed for tuples in the same way as for lists. This operation
will result in a range of values that can be extracted from the tuple. Have a look at the
following example:

>>> numbers[3:]
(4,5,6,7)
>>> numbers[::2]
(1,3,5,7)

Tuples do not support item assignment, which makes it an immutable data structure, as
shown in the following example:

>>> names = ("Jack","Cody","Hannah")
>>> names[0] = "Perry"
TypeError: 'tuple' object does not support item assignment

Now that you have learned about dictionaries and tuples, let's see how we can convert
them from one to another. Because all the available data structures are not perfect, they
have some pitfalls; therefore, the following section will be one of the most important
sections that we have covered so far. This is where we will perform conversions between
dictionaries and tuples.

Data Structures and Functions Chapter 4

[115]

Tuples and dictionaries
Dictionaries are not perfect iterables, which means we cannot use a for loop to extract keys
and values directly from them. We can only extract keys from a dictionary, but if you want
to extract the key:value pair, we have to convert it into another iterable data structure.
Let's look at an example and observe the result, which shows the conversion from a
dictionary into a list:

>>> person_address = {"Carl": "London", "Montana": "Edinburgh"}
>>> list(person_address)
["Carl","Montana"]

The direct conversion of a dictionary into a list does not preserve the values of the
dictionary. It gives an object that contains only the keys of the dictionary. This information
is useless due to a lack of values. Let's try to convert it into the tuple and see the result:

>>> tuple(person_address)
("Carl","Montana")

Instead of using the tuple() method to convert a dictionary into a tuple, there is another
effective way. We can perform the same task using the items() method. This is used to
return the dictionary object that contains the list of where the keys and values are stored in
the nested tuples, as shown in the following example:

>>> person_address.items()
dict_items([('Carl', 'London'), ('Montana', 'Edinburgh')])

Now, we can iterate in this object using a for loop and fetch the keys and values in the
same step of its declaration, as shown in the following example:

>>> for key,value in person_address.items():
 print(key,value)
Carl London
Montana Edinburgh

We have covered three powerful data structures up until now—lists, dictionaries, and
tuples. Next is sets; an unordered structure that is considered iterable and mutable, but
does not store duplicate elements.

Data Structures and Functions Chapter 4

[116]

Sets
Let's make things simple by comparing this data structure with the well-known concept of
mathematics, which is a set. In mathematics, sets are considered a collection of distinct
entities, which are normally considered objects. The numbers 1, 2, and 3 are objects
independently, but when they are combined, they form a single set, which has a size of 3.
They are no different in Python. A set in Python is a collection of objects, which are neither
ordered nor indexed.

Python sets can be created using two different methods:

The first one is similar to the way in which dictionaries are created; instead of
key and value pairs, we will pass objects in their own right, as shown in the
following example:

 >>> num = {1,2,3,4,5}
 >>> type(num)
 <class 'set'>

Another way is by using a Python built-in method, that is, set(), where you
have to pass your sequence of objects in the form of list, as shown in the
following example:

 >>> set(['a','b','c'])
 {'c','a','b'}

In the preceding code, we can see that the elements inside the curly braces are unordered.
The order of objects, which we passed while creating the sets, is not preserved. They also
do not support duplicate items in the sets. If there is repetition of the same elements
multiple times within the set, only one element will be kept, and all the others will be
removed from the structure, as shown in the following example:

>>> {"laptop","mobile","mouse","laptop","mobile"}
{'mouse', 'laptop', 'mobile'}

Sets are also non-indexed, unlike lists and tuples. If you want to access the elements of sets,
you cannot use the indexing technique, as it will throw a TypeError:

>>> names = {"Ariana","Smith","David"}
>>> names[0]
TypeError: 'set' object is not subscriptable

Data Structures and Functions Chapter 4

[117]

Since sets are iterables, we can only access them through loops. The appropriate loop will
be the for loop because we do not have to worry about the terminating point while using it:

>>> names = {"Ariana","Smith","David"}
>>> for name in names:
 print(name)

Ariana
Smith
David

Now that we have seen how to create and access sets of our own, let's delve into the basic
methods of sets that are available so that we can manipulate their structure.

Set methods
Sets are mutable, but once they have been created, you cannot change their items; rather,
you can add or delete items from that set. It is quite similar to a list, but it is ordered. Now,
let's start this topic with the most commonly used methods of Python sets:

We can add single and multiple items to the list, and there are two ways of doing
this. The add() method will insert only a single item into the set at any time. On
the other hand, the update() method will add multiple items to the set at the
same time. The addition of the elements will be unordered, and they may be
inserted at any position:

 >>> favorite = {"Java","C","C#"}
 >>> favorite.add("Python")
 >>> favorite
 {'Java','C#','Python','C'}
 >>> #for update method
 >>> favorite.update(["Python","JavaScript","R"])
 >>> favorite
 {'Python','Java','R','C#','C','JavaScript'}

There are many ways of removing elements of sets. Methods such as remove(),
discard(), and pop() can be used. If the item that you want to remove from
the set does not exist, remove() will throw an exception, which goes by the
name of KeyError, but in the case of the discard() method, our code won't run
into any errors, as shown in the following example:

 >>> favorite.remove('C')
 >>> favorite
 {'Python','R',"JavaScript','Java','C#'}

Data Structures and Functions Chapter 4

[118]

 >>> favorite.remove("NodeJS")
 KeyError: 'NodeJS'
 >>> favorite.discard("NodeJS")
 >>> #no error

We can also use the pop() method to remove elements from a set. pop() will
remove only the last element from the set. However, we don't know which
element will be the last in the set, since it is unordered and non-indexed. Thus,
using pop() will be dangerous, as we won't know about the removal of specific
items. pop() will return an item that is removed from the set, as shown in the
following example:

 >>> favorite.pop()
 'R'

If you want to delete each and every element from the set, two methods can be
used, but the results of these operations are slightly different. The del keyword
can be used, along with the name of the set, in order to remove an entire element
of a set along with the set, structure. On the other hand, the clear() method is
used to empty the set, but its structure won't be completely removed:

 >>> favorite.clear()
 >>> favorite
 set()
 >>> del favorite
 >>> favorite
 NameError: name 'favorite' is not defined

We can also perform operations such as union, an intersection between sets, just
like we do in mathematics. The union operation returns a set that contains all the
elements from the original set, and all the items from the specified set. The set
removes duplicate items. If any item is present in more than one set, it will be
added only once in the resulting set. You can perform union between multiple
sets by separating each of them with a comma:

 >>> set_1 = {1,2,3}
 >>> set_2 = {3,4,5}
 >>> set_1.union(set_2)
 {1,2,3,4,5}
 >>> set_3 = {4,5,6,7}
 >>> set_1.union(set_2,set_3)
 {1,2,3,4,5,6,7}

Data Structures and Functions Chapter 4

[119]

We have the intersection() method, which will result in a set of items that is
common between multiple sets, as shown in the following example:

 >>> set_1 = {'a','b','c'}
 >>> set_2 = {'b','c','d'}
 >>> set_1.intersection(set_2)
 {'b','c'}

In the previous sections, we covered the fundamentals of Python. We have established a
strong foundation of core programming up to this point, but we are not capable of building
an advanced game yet.

In the upcoming sections, we will delve into the most important concept, not only for
Python, but for programming in general, that is, functions. After that section, you will
possess procedural programming power, which will be helpful when we cover every
advanced game that we will build from that point onward.

Functions
First of all, let's recall all the topics that we have learned so far and observe procedural
programming functions and why they are needed in the first place. We learned how to
create multiple lines of statements using variables, numbers, modules, conditionals, and
looping. However, we didn't stop there; we covered all the fundamental data structures of
Python, such as lists, dictionaries, tuples, and sets. This programming paradigm will result
in an abundance in lines of code, and sometimes we may need to call the same code again
and again. Have a look at the following example:

>>> 3 + 5
8
>>> 6 + 7
13

In the preceding code, we are adding two digits. Every time we perform an addition, we
need to write two digits, followed by addition operators. Instead of doing the same task for
many addition operations, why not make a single statement, which can perform addition,
and put that statement into the scope where we can call it multiple times? This scope
represents functions. We can invoke the execution of this statement multiple times by
calling these functions. Let's make a function that can add any two numbers:

>>> def add(a,b):
 print(a + b)

Data Structures and Functions Chapter 4

[120]

In the preceding code, we defined the function with add. The def keyword, along with a
name, is used to specify the Python parser in order to create functions. Inside the scope of
the function, we can add multiple statements. Now, instead of manually adding two digits
every time, we can call this add function to perform addition between any digits. So, this
part of code is usable for operations that can add any two digits. The first task is to declare
the function, which is what we just did; the next task is to call that function. You won't
execute any operation that is inside that function until you call that function. You have to
use the same function name in order to invoke that function. Now, if you want to perform
an add operation, you need to call it with same the signature, add, and pass two values as
an argument to it. If you pass a number, it will be passed as an argument to that function
call:

>>> add(4,5)
9
>>> add(10,11)
21

In the preceding result, each digit that is inside parentheses is passed to the function
argument: a and b. At the first operation, add(4,5), 4 is passed as a value to variable a,
and 5 is passed as a value to variable b.

Let's compare these functions with the following coffee machine. We feed raw materials
such as coffee beans, sugar, and water to the coffee machine, which will process those
materials, and provide us with a coffee. In the same way as a coffee machine, functions also
take raw arguments containing values as input. These arguments will be used for
processing, which is done inside the function, and gives us meaningful results. Sometimes,
functions do not return anything; we call these void:

Data Structures and Functions Chapter 4

[121]

We have look at couple of examples where we called the functions by name, but their
declaration was carried out internally by Python. For instance, take the example of the
print() method. We used this function to print any messages to the user on the Terminal,
but we didn't define it using the def keyword; we simply called it because it's a built-in
function. Thus, if you are using any functions such as print(), input(), or type(), you
are calling that function by passing an argument inside its parentheses. You can see the
implementation of print(), or any other built-in method of Python, by taking a tour of the
official Python documentation. While calling input() or print(), we pass a string as an
argument inside its parenthesis. Let's look at an example of a function call:

>>> type('a')
<class 'str'>

Data Structures and Functions Chapter 4

[122]

In the preceding code, we made a call to the function with type. The arguments are passed
inside the parenthesis of the function. We can pass as many arguments as we like as an
expression inside the parenthesis, but we have to make sure that we pass only the required
positional arguments. In the function declaration, if we made a function with two
parameters, while calling, we should pass the same amount of arguments. Otherwise, it
will throw us an error, as shown in the following example:

>>> def add(a,b):
 print(a+b)
>>> add(3)
TypeError: add() missing 1 required positional argument: 'b'

>>> add(3,4,5)
TypeError: add() takes 2 positional arguments but 3 were given

Thus, we can conclude that functions take an argument, execute some statements based on
that argument, and return a result. In our add(a,b) function, we printed the result inside
the function, but instead of printing it inside the scope of the function, we used the return
keyword in order to return a result from the function:

>>> def add(a,b):
 c = a + b
 return c

>>> result = add(3,5)
>>> result
8

Thus, we have two types of functions. One prints the results inside the scope of a function,
rather than returning results from it which are normally void. Although Python has
nothing nomenclature for void functions, other programming languages call these void
functions, which means they return nothing. Another type will yield a return value of the
function. Those return values should be captured when a function is called, just like in the
code: result = add(3,5). The value of result is the return value of the function.

You may encounter a situation where a function has to return multiple value. We can use
the tuple structure to return multiple values from the function. Let's take a look at the
following simple example:

>>> def result(a,b):
 print("Before Swapping: ")
 print(a,b)
 print("After Swapping: ")
 return b,a
>>> result(4,5)
Before Swapping:

Data Structures and Functions Chapter 4

[123]

4 5
After Swapping:
(5, 4)

We'll learn about the concept of default arguments in the next section. Learning about this
will help us build more flexible functions and so this is an important topic.

Default arguments
During the function call, we usually pass a value as a positional argument to the respective
parameters. However, if we make a mistake by passing one less or one more than is
required, our program will run into an exception. Thus, it is always good practice to specify
some arguments as default:

>>> def msg(str1,str2):
 print("I love {} and hate {}".format(str1,str2))

>>> msg("Python")
TypeError: msg() missing 1 required positional argument: 'str2'

Now, let's look at the power of default arguments. Before using them, you should
remember that default arguments must be placed at the end of the argument order. The
syntax for creating a default argument is argument_name = value. In the preceding
example, if you want to make str1 the default argument, it should be placed after str2,
otherwise you will get a syntax error from the Python interpreter, as shown in the
following example:

>>> def msg(str1 = "Python",str2):
 print("I love {} and hate {}".format(str1,str2))

SyntaxError: non-default argument follows default argument

As the error message clarifies, we cannot specify a default argument to the left positional
one. They should be followed by non-default arguments, as shown in the following
example:

>>> def msg(str1,str2 = "Java"):
 print("I love {} and hate {}".format(str1,str2))

>>> msg("Python")
I love Python and hate Java

Data Structures and Functions Chapter 4

[124]

In the preceding example, have a look at the part where we called the function with only
one argument in it. Now, that argument is a positional argument. As it is in position one, it
will be passed to the first parameter of the function. Thus, the Python value will be passed
to the str1 parameter. After the Python value, we passed nothing. Instead of running into
TypeError, we were able to get a proper result. This is the power of default arguments.
However, if you pass another value to that default argument at the time of the function call,
the default argument value will be overwritten with a new one:

>>> msg("Python","C")
I love Python and hate C

Up until now, we were able to call the function with a few positional arguments, such as a
and b. But what if we have to make a function that can add 200 numbers? Calling a function
such as add(a,b,c,d,..), in which each variable represents one number, is not possible.
We will have a shortage of variables, too, because for 200 numbers, we have to maintain 200
variables. So, the most efficient way would be to pack all of those arguments into one, and
pass it as a single argument to the function. Then, the function will unpack that variable
and perform the relevant operations. We can use the list data structure as a variable to store
those multiple values. We'll look at how to pack and unpack normal and keyword
arguments in the next section.

Packing and unpacking arguments
Let's take a simple example that will help us understand why we need this method of
packing and unpacking in the first place. In this example, we are going to add numbers:

>>> def add(a,b):
 result = a + b
 return result

>>> print(add(4,5))
9

Our code works fine for fewer numbers, maybe up to 10 values. Little modification should
be done with a small increase in numbers, but that's fine. However, what if we have 100
numbers? Tracking each of these numbers into variables is not possible and not effective.
Our code would also look unprofessional. Now, here comes the crazy feature of Python
that goes by the name of packing the arguments. Here, we are taking about arguments, that
is, normal arguments such as list and tuple. We can make a list that contains multiple
numbers. Let's see how we can make a function that can add multiple numbers using the
case of packing the arguments:

Data Structures and Functions Chapter 4

[125]

>>> def add(*args):
 result = 0
 for item in arg:
 result = result + item
 print(result)

>>> add(1,2,3,4,9,4,2,5,5,8)
43

Let's observe the code that we have written here. The *arg convention is used for packing
the arguments. Here, args refers to arguments, which is the default naming convention for
arguments in Python, but you can name it anything as long as you follow the rules and
conventions of the variable naming pattern. A single asterisk (*) is essential, which shows
that we are packing into a single argument. We are packing every item into args; therefore,
args will be built as a list. We know that the lists are iterable, which allows us to loop
within it using for loop. Now, while calling the function, we do not have to worry about
any positional arguments or even parameters that contain values. Every piece of data that is
passed during the function call will be packed into the list using this method. Now, we are
not restricted to using parameters that assign values to specified positional arguments. We
can perform these packing argument techniques for every data type, or even for structures.

Unpacking arguments also works in a similar way to that of packing. We use a single
asterisk abreast of the argument to specify that we are using the unpacking technique.
Here, the argument must be a list, a string, or another structure that represents collections
of items. Have a look at the following example:

>>> print(*"Python")
P y t h o n

Since the argument is passed as a string (Python), we unpacked it so that every element is
printed separately, with some spaces. You can also unpack elements of a list structure as
follows:

>>> numbers = [1,2,3,4]
>>> print(*numbers)
1 2 3 4

So, we can pack and unpack normal arguments using a single asterisk, but in order to pack
and unpack keyword arguments, we have to use a double asterisk. The syntax that is used
for packing and unpacking a keyword argument is **kwargs. Just remember to use a
single asterisk for normal arguments, and a double asterisk for keyword arguments. args
represent arguments and kwargs is the naming convention for keyword arguments. We'll
see some examples of packing and unpacking keyword arguments in the next section.

Data Structures and Functions Chapter 4

[126]

Packing and unpacking keyword arguments
Keyword arguments refer to dictionaries. Dictionaries cannot be packed and unpacked in a
similar way to normal arguments such as lists or tuples. Dictionaries contain key and value
pairs; thus, they cannot be packed and unpacked in the normal way. To distinguish them
from normal arguments, we use a double asterisk. **kwargs is used to pack all the
elements of a dictionary into a single argument. However, we know that dictionaries are
not iterable, or in other words, we cannot loop inside dictionaries and fetch key and value
pairs directly. In order to retrieve key and value pairs, we need to convert kwargs into a
tuple using the items() method. We have seen its implementation in the preceding
section. Let's look at a simple example of how to implement packing keyword-arguments:

#code is written as script
pack_keyword_args.py

def about(name,age,like):
 info = "I am {}. I am {} years old and I like {}.
".format(name,age,like)
 return info

dictionary = {"name": "Ross", "age": 55, "like": "Python"}
print(about(**dictionary))

>>>
I am Ross. I am 55 years old and I like Python

In the preceding example, we did two things: we made a dictionary that will be packed into
a single argument using **dictionary, and passed each value to the positional arguments
of function. In the dictionary definition, the keys of the dictionary must be the same as the
parameters that are used while making the function, that is, name, age, and like. Even
single typos will result in TypeError.

Now, it's time to cover unpacking keyword arguments. The syntax will be similar, which
contains a double asterisk and is followed by the dictionary name, or kwargs. Since we are
unpacking, we have to add **kwargs as a parameter of function, because unpacking has to
be done inside the function. Let's look at the a simple example to clarify this:

#unpacking_key_args.py
def about(**kwargs):
 for key, value in kwargs.items():
 print("{} is {}".format(key,value))

about(Python = "Easy", Java = "Hard")

>>> #output

Data Structures and Functions Chapter 4

[127]

Python is Easy
Java is Hard

While calling the about function, we passed a value to the argument, like we normally pass
in the case of a normal function. For example, Python is the argument and it has a value of
string. Now, this value is passed to the parameter of the about function. However, there is
no parameter with the name of Python or Java within the function parenthesis. Instead,
there is **kwargs, which is going to convert these argument_name = value formats into
the dictionary. This is a form of packing the argument. Now, while inside the function, we
have to unpack it. At this time, we know that kwargs is a dictionary, which is not iterable.
We cannot fetch its key:value pair without converting it into a tuple or a list. One easy
way to convert a dictionary into a tuple is by using the items() method. Now, after
converting a dictionary into a tuple object using the items() method, kwargs looks like
this:

>>> kwargs.items()
dict_items([('Python', 'Easy'), ('Java', 'Hard')])

Now, we are looping around these items of the tuple object, and each object contains a key
and a value separated by a comma. Thus, for each iteration, we get key and value pairs, and
we print it by formatting it properly.

Now, we possess the knowledge that will not only help us create our own functions, but
also modify them according to our needs. If you want to make your program more reusable
and sturdy, methods such as packing and unpacking arguments must be used. After this
broad concept of functional programming, it's time to explore three important functions in
Python: the anonymous, recursive, and built-in functions. Let's take a look at each of them
one by one. We will begin with the Anonymous function.

Anonymous function
As the name suggests, these functions do not have any name or signature. In the same way
that we used the name of the add(a,b) function to carry out an addition operation
between two numbers, this add signature is invalid in the case of the anonymous function.
If you recall the way we created a normal function using the def keyword, in the case of an
anonymous function, we use the lambda keyword. Thus, anonymous functions are also
called lambda functions. We need to remember two things while creating any function:
arguments and expressions. Arguments are the independent and specific input to the
function, whereas expressions are embedded inside the body of the function. In the case of
the lambda function, we can pass any number of arguments, but only one expression. This
implies that only one operation can be done with the lambda function.

Data Structures and Functions Chapter 4

[128]

Let's make a simple lambda function in order to grasp this information easily:

>>> square = lambda x: x**2
>>> square(8)
64

In this example, square is the container for the result. Since the lambda function does not
contain a unique signature or name, we should pass an argument as a value using this
container, that is, square. Here, the syntax to use for the lambda function is as follows:

lambda arguments: expression

Notice the arguments and expression names; we cannot add multiple statements inside
the lambda function. If we try to execute multiple statements inside the lambda function,
we will run into the following error:

>>> result = lambda x, y: x//y, x%y
Traceback (most recent call last):
 File "<pyshell#0>", line 1, in <module>
 result = lambda x, y: x//y, x%y
NameError: name 'x' is not defined

We passed x,y, that is, multiple arguments, which is completely valid, but two
expressions, x//y and x%y, are not executed by lambda. We will use these lambda
functions for creating games in the upcoming chapters. Since we have many things to cover
in this chapter, and we are running out of space, I would like to end this topic right here;
however, I highly urge you to practice these types of functions a little more. You can always
use the Python documentation to help.

Let's look at another type of function: recursion—a computer programming technique
involving the use of a procedure, subroutine, function, or algorithm that calls itself in a
step, has a termination condition, and when the terminating condition is met, the program
also terminates.

Recursive functions
In this section, we are going to uncover another programming paradigm, known as
recursive programming. Recursion is a way of programming where a function will call
itself multiple times until a particular condition is met. Inside the body of the function, we
will call the same function itself, which makes it a recursion. It is somewhat similar to
nested conditionals, where we have another scope of if..else inside single if
conditionals.

Data Structures and Functions Chapter 4

[129]

Recursion should have a base or a terminating condition in order to specify the stopping
criterion for the program. Without a base condition, our recursive program is not going to
operate viably. If the base condition is not met at the point of program execution, the
recursive program will result in an infinite loop. Let's jump to a simple programming
example to observe the working principle of recursion:

>>> def factorial(number):
 if number == 1:
 return 1
 else:
 return number*factorial(number-1)

>>> factorial(4)
24

Let's explore the preceding example to uncover interesting facts about recursive
programming. Printing a factorial of any number is a simple example that we can refer to
while learning about recursive programming. In the preceding program, we have a base or
terminating condition: when the number is one, we return one. This is not a random
statement; rather, it is a mathematical pattern for finding a factorial number. Have a look at
the following example:

To find factorial of 5= 5! = 5*4*3*2*1! = 5*4*3*2*1 = 120

For any number, the process of finding a factorial ends after we encounter one. Thus, it is a
base condition, and whenever our program triggers it, we can terminate our program.
Inside the scope of the else part of the program, we are calling the factorial function again,
but with a different argument. You can observe the example where we found a factorial of
five; each time we go to the next step, we are decreasing that number by one and
multiplying it with the current number, which represents this statement:

>>> number*factorial(number-1). This condition is called a recursive case, which
leads to recursion.

So, there are two ways of making logic with Python: with fundamental logic using loops
and conditionals, or with recursion. Sometimes, it will be hard to get a solution using brand
new logic, and in such situations we give recursion a try. Although recursion code looks
simpler and cleaner, it is an expensive call in comparison to other code, because it takes a
lot of time and space during computation. Now, let's talk about a faster and cheaper way to
execute an operation using built-in functions. We have covered so many built-in functions
already, such as max(), min(), and len(). Thus, this section will be rather easier to
follow.

Data Structures and Functions Chapter 4

[130]

Built-in functions
Python comes with multiple built-in functions that are available for us to use directly in our
programs. We shouldn't have to import them, or make any extra effort to execute them. For
example, we have print(). We have unknowingly used so many built-in functions before,
but they are also a type of function. The only difference is that they are made by Python
creators. They are fast, and more importantly, using them makes our code simpler and
cleaner. Just think like this: adding two numbers using our own custom method may take a
minimum of three lines of code, but using a built-in function, we can do it in a single line,
using the sum() function.

You can check each and every built-in function by taking a tour of the Python official
documentation. Secondly, we can also get information containing a list of built-in functions
within our Python shell. You can type the following >>> dir(__builtins__) command
in order to get a list containing 68 built-in functions. We have already seen a few of the
most important among them., for example, the type() method and the type-casting
techniques. They all are achieved using built-in functions.

I won't be covering every built-in function in this section, as that is not the actual motive of
this book; instead, we will be going directly to the next topic, which will be an interesting
one since we are going to modify our tic-tac-toe game using the functions and data
structures that we have learned about so far. However, I highly encourage you to take a
prudent step forward by learning about a few built-in functions on your own. They may
not be important just yet, but they will surely come in handy at some point during your
career.

Now that we have learned about data structures and functions, we will use them to modify
the previously built tic-tac-toe game by adding intelligence to it. We will cover this in the
next section.

Adding intelligence into our game
We have made multiple modifications throughout this chapter, such as adding conditionals
and looping to enhance code structure and processing. However, this not isn't perfect yet.
In this section, we are going to modify our tic-tac-toe game using the functions and data
structures that we have learned about in this chapter.

Data Structures and Functions Chapter 4

[131]

Since the function is going to make our code smaller in length by eliminating the repetition
of code, and also debugging it, it will be also easier to make changes in the code at a later
stage; you can simply redirect to a specific function instead of traversing the entire
program. So, these two features will be helpful for us while printing the game board into
the terminal. If you recall the code that we wrote in the previous chapter, code for printing
board layouts was used repeatedly. Now, we can create a function that will have all the
code we need inside it so that we can print the layout of the board, and we can call it any
time and anywhere within the code.

The next implementation on our code will be subsuming intelligence for our tic-tac-toe
game. Until this moment, if you run your tic-tac-toe game, you will find that it can be
played by two players. However, both players should be using the same computer, and
they should play it by toggling their turn. Now, we are going to add computer intelligence
that can play our game as one player. We are literally making a game where the player can
play against the computer.

As usual, we will start by brainstorming the essentials of the game, and we will gather
critical information about the game layout and models.

Brainstorming and information gathering
The term artificial intelligence is very notorious in the tech world, but if you inspect the
depth of it, it is a bunch of modules and conditionals that determine the flow of agents.
Here, agents can be anything that make decisions, such as machines, humans, and robots.
All these agents perform actions that can produce the most desirable results. In our game of
tic-tac-toe, the agent is a computer player, and it should take actions that can beat our
player in the game. We have a dedicated chapter to learning about AI and its rational
agents, which will be covered after we finish learning basic game programming. However,
in this section, we are going to create a simple AI that can decide on the most favorable
move in order to beat a human player, or even end the game in a tie most of the time.

We are going to take on the approach of procedural programming in order to add
intelligence to the system. Don't get overwhelmed with the term procedural
programming—it is just a way of making and using functions to achieve a goal. One thing
you must remember is that every function should perform only one task. For example, we
can make the print_board() function, which will just print the layout of the game every
time we call it. This print_board() function is not going to take input from a user, or
make any player a winner. Thus, the existence of functions should be preserved by
performing only one modular task. We can also make the is_winner() function, which
will check whether any player is the winner.

Data Structures and Functions Chapter 4

[132]

The following diagram shows how a simple algorithm can be made for our game. Here, we
can see how we can check for the positions on the tic-tac-toe board so that the computer's
next move will produce the best result; something closer to winning the game, or in the
worst case, making the game be a draw instead of the computer losing:

The following diagram show the procedures that we need to complete in order to
implement the second part of the algorithm, where we will track every occupied position of
the human player and check whether they could win with their next move. If they can win,
we will block those positions. We will also occupy the center and side positions so that no
human player can win the game easily:

Data Structures and Functions Chapter 4

[133]

Now, we have formed the basic algorithm so that we can start writing the code that can
implement basic intelligence in our game. We will use this knowledge in the next section,
Implementation of models for intelligence, in order to address the model for intelligence.

Data Structures and Functions Chapter 4

[134]

Implementation of models for intelligence
First of all, let's refine our code using functions; let's create a function named
printBoard().This function will contain lines of code that will print the board layout of
our tic-tac-toe game:

#tic_tac_toe_AI.py

def printBoard(board):
 print(' | |')
 print(' ' + board[7] + ' | ' + board[8] + ' | ' + board[9])
 print(' | |')
 print('---------------')
 print(' | |')
 print(' ' + board[4] + ' | ' + board[5] + ' | ' + board[6])
 print(' | |')
 print('---------------')
 print(' | |')
 print(' ' + board[1] + ' | ' + board[2] + ' | ' + board[3])
 print(' | |')

The previous code will print board's layout; if you want to execute the statements that are
inside the function you have to call it. Here, we have to call it using the board argument,
which is the list containing all the positions of the board, that is, ten empty places, [' ']
*10. Let's call this function and observe the result:

>>> board = [' ']*10
>>> #calling the function:
>>> printBoard(board)

 | |
 | |
 | |

 | |
 | |
 | |

 | |
 | |
 | |

Data Structures and Functions Chapter 4

[135]

Now, it's time to make a function that can check whether any player is the winner or not.
We are not making any brand new logic here; instead, we are putting all the statements that
we made in the preceding chapters inside the scope of the function. Now, each time any
user makes a move in the board, we can call this function to check whether that particular
player is the winner or not. Thus, functions can remove repetition or duplication of code.
Let's use the isWinner() method to check whether any user satisfies the condition to
become the winner:

#tic_tac_toe_AI.py
#after printBoard(board) function

def isWinner(board, current_player):
 return ((board[7] == current_player and board[8] == current_player and
board[9] == current_player) or
 (board[4] == current_player and board[5] == current_player and board[6]
== current_player) or
 (board[1] == current_player and board[2] == current_player and board[3]
== current_player) or
 (board[7] == current_player and board[4] == current_player and board[1]
== current_player) or
 (board[8] == current_player and board[5] == current_player and board[2]
== current_player) or
 (board[9] == current_player and board[6] == current_player and board[3]
== current_player) or
 (board[7] == current_player and board[5] == current_player and board[3]
== current_player) or
 (board[9] == current_player and board[5] == current_player and board[1]
== current_player))

In the preceding code, the parameter to the isWinner function is board, which contains
the positions of the board layout and the player's letter; either X or O. We are reusing the
same code that we wrote in the previous chapter, with small modifications. This method is
going to return a Bool type of either True or False, and we will call it every time the
player makes a new move in the game. We are checking entire rows, columns, and diagonal
positions of the board layout using this method, and if any user occupies it, this will return
True or False.

In the game of tic-tac-toe, we get to move the player in the form of the position and we
assign the player's character's either X or O, to it. We have seen its implementation in the
previous chapter. Here, we are going to make a separate function that will assign a value to
the position. In the following code, the board represents the layout of the game containing
the positions; current_player is either X or O and move is the input from the user:

def makeMove(board, current_player, move):
 board[move] = current_player

Data Structures and Functions Chapter 4

[136]

Now, it's time to make the computer play our game. Let's recall the algorithm that we made
in the preceding section. We are going to perform multiple checks: whether the computer
can win in the next move or not, and whether a human player could win in the next move.
If so, we will block the winning position. We cannot perform these operations in the real
board layout game, because we don't want our board layout to be populated. Thus, we are
going to make a copy of the board layout so that we can perform these checking operations
in the new clone board layout. Let's make a function to copy the original board layout:

def boardCopy(board):
 cloneBoard = []
 for pos in board:
 cloneBoard.append(pos)
 return cloneBoard

After we clone the original board, we have to check whether there are free spaces available
for the computer to make a move. Let's make a function to check the available free spaces
inside the board layout:

def isSpaceAvailable(board, move):
 return board[move] == ' '

isSpaceAvailable returns a Bool type: either True or False. It will return True if the
move is available on the passed board layout. If the position is already occupied by any
player, it will return False.

Now, it's time to get into the main part of our topic: making the computer play our game.
Let's create a function named makeComputerMove() and pass the board argument and a
computerPlayer character to it. Here, the board represents our board layout containing all
the positions, and computerPlayer is a character, either X or O:

#tic_tac_toe_AI.py

 def makeComputerMove(board, computerPlayer):
 #part 1
 for pos in range(1,10):
 #pos is for position of board layout
 clone = boardCopy(board)
 if isSpaceAvailable(clone, pos):
 makeMove(clone, computerPlayer, pos)
 if isWinner(clone, computerPlayer):
 return pos

Data Structures and Functions Chapter 4

[137]

In the preceding code, #part1, we checked if the computer can win in the next move or
not. At first, we looped into the entire position of the board layout and made a clone of the
board using the boardCopy function. After that, we passed every position from 1 to 10 to
check for space availability. We checked if that move was going to make the computer
player the winner or not by using the isWinner function, and returned that specific move
as the position if that was the case. This part of the code makes our computer player
intelligent enough to decide the next move, based on its favorable prediction.

In the process of adding intelligence to our computer player, the next step is to keep track
of the human player's movements. On doing so, we can make a smart move on the board so
that the player won't win the game easily. In addition, if the human player has occupied
two positions on the row of the board, we can make our move to block the third position.
Let's write #part2 of our makeComputerMove() function. In order to check whether the
human player is going to win, we have to play the game as a human, but virtually. We can
do this without affecting the original board because we can play as a human within the
copy of the board. Now, to check whether the human player is going to win, we have to get
a player letter, that is, either X or O. We can make a condition to check whether the human
player is X or O. After getting that letter, we can play as a human virtually on the copy of
board game, but remember that we are coding for the computer player:

def makeComputerMove(board, computerPlayer):
 if computerPlayer == 'X':
 humanPlayer = 'O'
 else:
 humanPlayer = 'X'

 #add part1 code here
 #now check if human player will win on next move or not in part2:
 #part2
 for pos in range(1,10):
 clone = boardCopy(board)
 if isSpaceAvailable(clone, pos):
 makeMove(clone, humanPlayer, pos)
 if isWinner(clone, humanPlayer):
 return pos

The code that we have just written is going to add a smart move for the computer player.
We are making the computer play the tic-tac-toe game as a human, but virtually. We are
checking if the human will win on the next move or not. If it they are, we will return that
move so that the computer will place its letter in that position to block the human from
winning the game.

Data Structures and Functions Chapter 4

[138]

During the brainstorming and information gathering processes, we made a flowchart to
track the activities that will embed intelligence into our computer player. We executed two
of them: checking the best move to win, and blocking the next best move of the human
player. We can also make the computer player smarter by making an initial move, which
the human player would normally do. For example, when we play tic-tac-toe, we start by
taking the center position, because we think it is the best position to start with. So, why not
make the computer to do that too? Let's write some code where the computer will check the
availability of the center position on the board and reserve that position accordingly:

def makeComputerMove(board, computerPlayer):
 #add part1
 #add part2
 #Occupy center position if it is available
 #part3
 if isSpaceAvailable(board, 5):
 return 5

We can make this computer player even smarter by checking the availability of the corner
positions, too. The corner positions on the board are [1,3,7,9]. Since there are four
corners on our board, we maintained the list to track them. Now, let's create a new
getRandomMove() function, which will take the board and moves as arguments. The
moves argument will be in the form of a list, such as the corner positions:

#tic_tac_toe_AI.py
 import random
 def getRandomMove(board, moves):
 availableMoves = []
 for move in moves:
 if isSpaceAvailable(board, move):
 availableMoves.append(move)
 if availableMoves.__len__() != 0:
 return random.choice(availableMoves)
 else:
 return None

A lot of things are going on in the preceding code, so let's break things down to make it
simpler. First of all, this method is going to take moves which will be in the form of a list,
that is, [1,2,3,4,5]; among them, we have to choose only one element using this
function. However, the elements of this list are not only numbers; they are moves or
positions of the board layout. Thus, we have to check for the availability of spaces for each
move of that list. If there are available spaces, we append that move to a new list called
availableMoves. After the filtering is done, we perform conditionals to check whether
there are any available moves or not.

Data Structures and Functions Chapter 4

[139]

The >>> availableMoves.__len__() != 0 expression is the same as
len(availableMoves), which is going to return the length of the list. We call these
implementations (__len__()) data models, and we have an upcoming dedicated chapter
that will cover them. If the length of availableMoves is zero, we are going to return None.
But if it is not zero, we will execute an expression. Let's break this expression down into
fragments:

import random: If you recall the topics of Chapter 2, Learning the Fundamentals
of Python, where we imported the math modules to perform mathematical
computations such as square root and factorials, we imported math modules
using the import math command. Now, we are importing a random module,
which means that we can use methods that are defined inside it using this
module. The syntax for calling a method from a random module is
random.method_name().
random.choice(): The choice method is going to pick up one random element
from the list of elements that it has been called upon with. For example, the
execution of the following command will give one random value from the range
of values that's been passed into it:

 >>> import random
 >>> random.choice([1, 2, 4, 5, 6])
 5
 >>> random.choice([1, 2, 4, 5, 6])
 2

We passed availableMoves into it so that the choice method would pick any3.
one of the moves randomly. This is essential for our gameplay because
sometimes the computer must make decisions randomly.

Now, let's call this getRandomMove function within the makeComputerMove function. If
you take a look through the code of the makeComputerMove function, we have added a
statement that will help the computer occupy the center position. What about corner
positions? They are also an important position of the tic-tac-toe game. If we occupy the
center and corner positions of the board, our computer will have a high chance of winning
the game. Thus, we have to enhance our code, which will make the computer player
capture the corner positions. Since the corner positions are [1, 3, 7, 9] we have to pass
this as a list argument to the getRandomMove function, which we have just created:

#tic_tac_toe_AI.py
 def makeComputerMove(board, computerPlayer):
 #add part1
 #add part2
 #add part3

Data Structures and Functions Chapter 4

[140]

 #code to occupy corner positions
 move = getRandomMove(board, [1, 3, 7, 9])
 if move is not None:
 return move

 #moves for remaining places ==> [2, 4, 6, 8]
 return getRandomMove(board, [2, 4, 6, 8])

In the preceding code, we added code that will get random moves on any of the corner
positions. We have covered the player moves for the center position [5], and for corner
positions [1,3,7,9]; now, we are left with the side positions, [2,4,6,8]. We made a call
to the getRandomMove function, which will choose any one random move from the passed
list.

We have learned so many things in the preceding sections such as loops, conditionals, and
many more. In the next section, we are going to write some code that will use them to
control program flow. We will call it, the main function.

Controlling program flow with main function
We have written a bunch of functions such as makeComputerMove, isWinner, and many
more, but they have not been called anywhere. We know that the function is not going to
execute code inside it until we call it. Thus, we will make new function, that will take care
of the flow of the program. We normally name it the main function, but you can literally
name it anything you like. The code that we have wrote in the previous chapters, such as
for the main game loop or toggling player turn, will be embedded inside this main
function. The only function that needs to be called explicitly is this main function. Let's
create one now:

#tic_tac_toe_AI.py
 def main():
 while True:
 board = [' '] * 10
 player, computer = 'X', 'O'
 turn = "human"
 print("The " + turn + " will start the game")
 isGameRunning = True
 while isGameRunning:
 if turn == "human":
 printBoard(board)
 move = ' '
 while move not in '1 2 3 4 5 6 7 8 9'.split() or not
 isSpaceAvailable(board, int(move)):
 print('What is your next move? (choose between 1-9)')

Data Structures and Functions Chapter 4

[141]

 move = int(input())
 makeMove(board, player, move)
 if isWinner(board, player):
 printBoard(board)
 print("You won the game!")
 isGameRunning = False
 else:
 #computer turn

We have written the preceding code multiple times before, such as when printing the
board, toggling the players, and creating a winner. The difference is, here, we are using
functions. We have one task related to one function, such as isWinner, which checks if a
player is the winner or not, and instead of writing an entire piece of code to check the
winner, we write it once and use it in our main function. You can see that we have written
some code take input from a user as a move value to the board game. We can make a
function to take an input from a user. Let's make it now, and make the main function
cleaner and more readable:

def makePlayerMove(board):
 move = ' '
 while move not in '1 2 3 4 5 6 7 8 9'.split() or not
 isSpaceAvailable(board, int(move)):
 print('What is your next move? (choose between 1-9)')
 move = int(input().strip())
 return move

Now, let's add this newly created function to the main function. We will also complete the
else part of the code, which will make the computer play our game:

def main():
 while True:
 board = [' '] * 10
 player, computer = 'X', 'O'
 turn = 'human'
 print("The " + turn + " will start the game")
 isGameRunning = True
 while isGameRunning:
 if turn == 'human':
 printBoard(board)
 move = makePlayerMove(board)
 makeMove(board, player, move)
 if isWinner(board, player):
 printBoard(board)
 print("You won the game!")
 isGameRunning = False
 else:
 printBoard(board)

Data Structures and Functions Chapter 4

[142]

 turn = 'computer'
 else:
 move = makeComputerMove(board, computer)
 makeMove(board, computer, move)
 if isWinner(board, computer):
 printBoard(board)
 print('You loose!')
 isGameRunning = False
 else:
 turn = 'human'
 main() #calling main function

Now, let's run our game and play against our custom-made AI agent. The following
illustration show the output of our game, and shows the new tic-tac-toe board layout. This
is made with the function call to printBoard:

The following illustration depicts the gameplay where the human player is playing against
the computer AI. You can see that the human is defeated by the computer player:

Data Structures and Functions Chapter 4

[143]

Now, we have made a layout that is appealing enough to entice any player to play the
game. However, there are a few modifications that can be done, which will be covered in
the next section.

Data Structures and Functions Chapter 4

[144]

Game testing and possible modifications
The game that we have made in this chapter is playable enough against a computer. Using
AI in the game is all about addressing all the probable situations that a game can face while
interacting with the environment. In our tic-tac-toe game, we don't have many moves
compared to Chess or Go, and so making an AI agent is easier. We were able to compete
with the human by making an AI that was able to make two smart moves, such as checking
for the next best move to win or blocking the human from winning through simulation. If
you are wondering what simulation is, you will have to recall the algorithm that we have
just implemented in order to check whether the human player is going to win in the next
move. In addition, the computer player was acting as a human player on the clone board
and played virtually, like a human. This is called simulation, where we made the computer
imitate the real-world process or behavior of the system.

After predicting the best move to make through simulation, our program was returning the
best possible next move for our computer player. Let's extrapolate this technique further.
What we just did in our game was make an AI that can make a simulated environment to
predict the next best move. The same technique is applied to a whole range of AI
applications, for instance, a self-driving car; we make a simulated environment within the
computer where the car is an agent, and will make decisions either to turn left or right
based on obstacles. Tic-tac-toe is simple while interacting with the environment because of
its lesser number of moves or situations, but programming a self-driving a car simulation
requires us to acknowledge a whole range of situations that may arise while driving car on
the road. Thus, we can conclude that AI is all about creating a program where the agent
must consider all the situations it may face while interacting with the environment and
respond to each of those situations.

Our competitor is smart enough to make this game harder for the player to win, but
humans also possess the ultimate power to make the computer player hamstrung. Human
players won't let a computer have an easy win. Thus, most of the time, our game will end in
a tie. However, if you run the game, you'll see we haven't addressed those cases. Now,
whenever our game is a tie, instead of stopping the game, our game will incessantly ask for
input from the user. Instead, we have to give the user a message saying, try again, and
facilitate the user to play our game again. In order to check for a tie condition, we have to
check whether the board is full. When the board positions are fully occupied and nobody is
the winner, we have a tie condition. We can make another function to check whether the
board is full:

def isBoardOccupied(board):
 for pos in range(1,10):
 if isSpaceAvailable(board,pos):
 return False
 return True

Data Structures and Functions Chapter 4

[145]

The preceding isBoardOccupied() function is going to return a Bool type, either True or
False, based on the check, which will determine if the board is full or not. If the board is
full, it will return True and if it is not, it will return False. We are using the
isSpaceAvailable() function that we created in the preceding section, which will check
whether there are any empty spaces on the board. Now, let's refine our code with this new
function:

def main():
 while True:
 # add the code here from part1
 while isGameRunning:
 if turn == 'human':
 move = makePlayerMove(board)
 makeMove(board, player, move)
 if isWinner(board, player):
 printBoard(board)
 print("You won the game!")
 isGameRunning = False
 else:
 if isBoardOccupied(board):
 print("Game is a tie")
 break
 else:
 turn = 'computer'
 else:
 move = makeComputerMove(board, computer)
 makeMove(board, computer, move)
 if isWinner(board, computer):
 printBoard(board)
 print('You loose!')
 isGameRunning = False
 else:
 if isBoardOccupied(board):
 print("Game is tie")
 break
 else:
 turn = 'human'
 main() #calling main function

Data Structures and Functions Chapter 4

[146]

Summary
This chapter was concise and terse, containing an abundance of information, ranging from
data structures to functions. These topics are the building blocks of any complex program,
and so on, we will use them in every game that we will cover from the next chapter
onward. We started this chapter by learning the necessity of data structures, and we delved
into the fundamental data structures of Python such as lists, dictionaries, tuples, and sets.
We covered the ways in which we can create those data structures and manipulate them.

We learned about ways to create user-defined functions, call them, and document them. We
also saw that functions are like machines, where you can feed raw data in, and get output
back as meaningful information. We saw the ways of inputting data to the functions using
positional and default arguments. Then, we looked at saw the ways of modifying our
functions by packing and unpacking of normal and keyword arguments in order to achieve
the best performance from them.

We also modified our game further using functions and data structures, and we made
simple algorithms that can address different possible situations of gameplay. We made our
computer player smart enough to beat our human player. Then, we also made a simulation
environment where an agent can test and train itself in order to predict the next best
possible move. Although our game was simple to make, it has given us a broad range of
ideas about the processes that need to be undertaken, such as brainstorming, designing,
coding essentials, and analysis, before we actually start writing modular code.

Finally, we covered procedural programming, which refers to using functions to build
programs. In the next chapter, we will cover procedural programming in terms of curses.
We will create programs using terminal-independent, screen painter, and text-based
terminals. We will make a snake game using a curses event and a screen painter and then
use curses properties in order to make logic for playing the snake game.

Are you excited to hop into the next chapter? It will take you through an adventurous tour
of game programming with the curses module, and we will learn how to handle user
events and game consoles with it. Before that, I highly suggest that you refer to the official
Python documentation and take a tour of the Python built-in data structures and modules;
and practice with them without any additional help. The knowledge that we have gained
so far will be used throughout the chapters of this book, so it's high time that revise the
topics that we have learned about so far.

5
Learning About Curses by

Building a Snake Game
Whenever any developer writes games or applications, it is likely that they need to reuse
some parts of the code repeatedly. For example, when we want a player to move within the
game console, they use the left and right arrow keys multiple times. Thus, we need the code
that can handle such events and process them. Writing the same code multiple times to
handle the same action does not support don't repeat yourself (DRY) principles, so we
need to use functions that can be called multiple times to perform the same action time and
again.

To facilitate this, these functions are bundled into containers known as modules. As you
may recall from the preceding chapter, we have used modules in most of our programs. For
example, by using the random module functions, we were able to get a random number
between the specific range; math modules, on the other hand, allowed us to perform
different mathematical computations. In this chapter, we are going to cover another
module, known as curses. It will provide us with an interface where we can handle the
curses library, which contains functions that directly interact with the Python terminal. This
means we can make a simple Terminal-based game.

The following topics will be covered in this chapter:

Understanding curses
Starting the curses application
User input with curses
Making a Snake game with curses
Game testing

Learning About Curses by Building a Snake Game Chapter 5

[148]

Technical requirements
You will require the following to get the full benefit of this chapter:

Python IDLE (integrated development kit)
The code assets for this book, which can be found in this book's GitHub
repository: https:/ /github. com/PacktPublishing/ Learning- Python- by-
building- games/ tree/ master/ Chapter05

Check out the following video to see the code in action:

http://bit.ly/2oG1CVO

Understanding curses
Curses is a Terminal controller library that allows us to write text-based applications. The
word Terminal is independent to any platform, and so curses can be used on any operating
system. With curses, developers will be able to write applications directly without
interacting with the Terminals. The curses library is the medium that sends the commands
in the form of control characters while determining the operating system or Terminal it
should be executed on.

In Python, we have two libraries called windows-curses and unicurses. Both of these
libraries provide the functions that can set up the desired look for the output Terminal
screen. They are updated using control sequences. In short, developers will design the
appearance of the output window screen and call the functions to make curses do its work.
Thus, in curses-based applications, we won't get output that's a user-friendly as we expect
it to be because we will be only able to write text-based applications with the curses library.
Thus, any game you write with curses will run in the Terminal, that is, the command
prompt of Windows or the Terminal of Linux.

Python's curses library will allow us to write text-based user interfaces and control the
screen with user inputs. The library that we are using in this chapter will help us control the
screen movements and handle user events or inputs. The programs that will be built from
curses will not have features that will resemble modern GUI applications or Android
applications, which have widgets such as text view, label, slider, graphs, and templates.
Instead, it will provide simple widgets and tools such as the command-line interface (CLI),
most of which are found in text-only applications.

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter05
http://bit.ly/2oG1CVO
http://bit.ly/2oG1CVO
http://bit.ly/2oG1CVO
http://bit.ly/2oG1CVO
http://bit.ly/2oG1CVO
http://bit.ly/2oG1CVO
http://bit.ly/2oG1CVO
http://bit.ly/2oG1CVO
http://bit.ly/2oG1CVO

Learning About Curses by Building a Snake Game Chapter 5

[149]

The curses module of Python is an adaptation of the curses of the C-programming
language. The only difference is using Python; everything can be done without us having
deep knowledge of low-level routines. We can call the interfaces to invoke functions that
will, in turn, call the curses to handle user operations.

While dealing with curses, the window screen is considered a character matrix. Each
window interface is set up by the programmers, and includes height, width, and border.
After setting such coordinates, the programmer will invoke Python curses to update that
screen. Working with widgets such as the text view, button, and label is also done in the
same manner; that is, we will initialize the coordinates where it should be placed in the
window and call curses to update it accordingly. To handle user input from curses, we
have to import it. We can easily import actions such as RIGHT, LEFT, UP, and DOWN and
handle their behavior according to the program's needs. In most games, these events are
going to provide movement to the game characters. The game we are going to cover at the
end of this chapter will be the Snake game, and the snake itself will be our main character.
This means that actions such as LEFT, RIGHT, UP, and DOWN will move the snake to a
new position. The Windows version of Python does not have an inbuilt curses module and
is not available with the same name. However, there's are two compatible modules
available that do the same thing. These are called unicurses and windows-curses. We are
going to use the latter in this chapter.

Let's start learning about curses by making a simple application. We will make a simple
hello program that's printed in the curses Terminal.

Starting the curses application
We are going to build the application using a module that does not come pre-packaged
with Python. Therefore, we have to install that package manually on our machine. With the
installation of Python, a package management system should have been installed
automatically on your machine known as pip. This management tool is used to install and
organize the libraries that are written with Python. Thus, if you want to use any third-party
libraries or dependencies on your program, you have to install them using the pip tool. The
method to install any package is simple. You simply have to write the pip install
command, followed by the name of the library you wish to install. The name of the library
is case-sensitive, and so no mistakes should be made while writing the name of the library.
If you want to check the code that is written inside the library, simply search for the
documentation of that library. You will get information about the library, as well as the
functions that are available to be used inside your programs.

Learning About Curses by Building a Snake Game Chapter 5

[150]

We are going to use the windows-curses library to write text-based programs, and so we
have to install that package using the pip command. The pip command should be executed
in the command prompt if your machine is Windows, and in the Terminal of your machine
if you're using Mac OS X or Linux. The following screenshot shows how we need to execute
the pip command:

Similarly, to install curses in your Linux machine, you can open your Terminal and run the
following command:

$ sudo apt-get install libncurses5-dev libncursesw5-dev

Now, we will be able to write programs using the curses module. At this point, the curses
module that we have installed will be available in the same way that other built-in modules
such as math or random and available. Similar to built-in modules, we can simply import
the curses module and start invoking the functions that are defined within it. The following
steps explain the roadmap for creating any curses applications:

Let's start by importing curses and seeing if it was installed properly or not. The1.
command we use to import any module is import followed by the module's
name. Our module name is curses. Thus, the command would be as follows:

 >>> import curses
 >>> #no any error

 We can conclude that it is imported successfully as the Python parser hasn't2.
thrown an error. Now, we can use this module to write programs. Let's write a
simple program to observe the working procedure of the curses module:

 #program is written as Scripts
 # curser_starter.py

 import curses
 import time
 window_screen = curses.initscr()
 window_screen.clear()

 time.sleep(10)

Learning About Curses by Building a Snake Game Chapter 5

[151]

We cannot run any curses applications directly from Python IDLE. To run
it, you have to navigate to the folder where you have stored the Python
file and double-click on that file to open it. You will get a blank screen
with a cursor at the top, which will remain there for 10 seconds. After 10
seconds, the same blank window screen will pop out from the screen. That
screen will yield the text-based application that can be written with curses.

Let's look at our preceding code and uncover the interesting functions of curses:

First of all, as always, we imported the module that we wanted to use in our
program. We imported two modules here: curses and time. The curses module
has different functions available for us which can be used to write text-based
applications, while the time module has different functions available that can be
used to update our output screen behavior. In this program, we called the sleep
method of the time module, which will hold the output of the screen for the
amount of time that was passed within its parenthesis (10 seconds, in our case).
After 10 seconds, our output screen will disappear.
Before writing any code with curses, it should be initialized. The invocation of
the initscr() function is going to initialize curses. Thus, for any curses
application, we should initialize curses at the first line of the code. This
initialization code is going to return us a window object that represents the
output screen of our program. Here, this initialization is captured by the window
object named window_screen, which represents the screen of our output
Terminal. Thus, any function call to the curses API should be done
with window_screen. The first invocation is done with the clear() function.

We successfully created a game screen and held it with a method call. However, the current
screen is not modifiable enough. We, as programmers, may want to customize the screen
by specifying the height and width explicitly. Fortunately, Python's curses module provides
another method to accomplish this, that is, the newwin method. We will learn about it in the
next section.

New screen and window objects
The window object that's returned from the invocation of the initscr() function
represents the entire screen of the output window. This window object also supports
different methods that can display text to the window, alter it, take events from the user
and update positions, and so on. The only demerit with this initscr() function is that we
cannot a pass custom height or width of the screen to it. It only represents the default whole
screen of the output Terminal.

Learning About Curses by Building a Snake Game Chapter 5

[152]

Sometimes, we might want the screen of the game to be customized so that it has a height
of 20 and a width of 60, for example. Here, height and width can be considered as column
and row, where each unit represents a line within that matrix. Since we have passed a
width of 60, there will be 60 horizontal lines. The same goes for our height of 20; there will
be 20 vertical lines. You can represent them as pixels too. To create a new screen, which is
probably what we are going to do while making a curses application since the initscr()
function isn't going to do this for us, we have to call the new function. This function is
going to divide the bigger window screen into a new one based on the coordinates
specified. The name of this function is newwin(), which literally means new window, and
it takes four arguments, that is, Height, Width, Y, and X. The order these are passed in is Y,
X which is unusual compared to other libraries. The Y value is for the column's position
while the X value is for the row's position. Take a look at the following diagram, which
explains the values of Y and X:

Thus, by increasing the value of Y, we are going downward, which is the same as the
column in a matrix. Similarly, by increasing the value of X, we are toward the right-hand
side of the screen, which is the same as the row in a matrix. As we can see, curses stores a
window screen in the form of the character matrix. We can use those coordinates to
represent the position of the game's display, as well as the game characters. For example, if
you want to make your player move in the position of (5,0), as shown in the preceding
diagram, you would call the move(5,0) function to achieve that. Remember the order in
which the argument is passed. The value of Y is followed by X, which may confuse you if
you have a background in game programming from any other library.

Learning About Curses by Building a Snake Game Chapter 5

[153]

As an example, we are going to create a program where we will make a new screen inside a
big screen using the newwin() function. The four arguments inside this function
are height, width, y, and x. Remember this order as we have to pass it in a similar fashion:

height = 20
width = 60
y = 0
x= 0

screen = curses.newwin(height, width, y, x)

Now, it's time to write a simple program that can add some text to our curses application:

text_app.py
import curses
import time

screen = curses.initscr()
curses.noecho()
curses.cbreak()
screen.keypad(True)
screen.addstr(0,0, "Hello")
screen.refresh()
time.sleep(10)
curses.endwin()

Let's observe the preceding code line by line and learn about each of the methods we used,
as follows:

 First of all, we imported the two important modules: curses and time. After that,
we initialized the window object with the initscr() function.
The noecho() function will turn off the automatic echoing process in our
application. This is essential because while the user is playing the game, we don't
want them to show us what they pressed; instead, we want them to perform an
action based on that event. The next function call is cbreak(). This mode will
help our program react instantly to the user's input. For example, in the case of
the input() method of Python, until and unless we are going to press Enter on
our keyboard, this method won't perform any action. However, in the case of
the cbreak() function, it is going to help the application react to any input keys
instantly without the need for pressing Enter. This is important because we have
to make a game where the user will get a response without any delay. For
example, if the user presses the DOWN key, the character of the game must
move in downward instantly. This is different to a buffered input function,
which is going to take all the input and store it in a buffer that's going to react
only if the user presses Enter.

Learning About Curses by Building a Snake Game Chapter 5

[154]

The next function call is the keypad() function. We have enabled keypad mode
by passing True as an argument. Whenever we press any key in the Terminal, it
returns data in the form of a multibyte escape sequence. For example, Esc sends
\x1b. That is 1 byte. Page Up sends \x1b[H. That is 3 bytes. To handle such data
that is returned by the Terminal, curses uses a special value that can be imported
manually. For example, to handle the DOWN key being pressed on the
keyboard, we can import it as curses.KEY_DOWN. This is done by enabling
keypad mode.
After that, we called the addstr() function. This function will add a string to the
output screen in the position specified during its call. We passed three arguments
to it. Remember that the first two arguments are in the order y, x. The last
argument that's passed is a string that needs to be added to the position of (y,x).
We have passed a value of (0,0), which means the string will be added to the
uppermost left corner of the output window. The next method that we called
was refresh(), which is going to update the character matrix of the window
object screen. If you take a look at the code carefully, you will see that whenever
we are adding or refreshing the content of the screen, we are doing it using a
window curses object, which was initialized using the initscr() function.
However, the behavior of the Terminal has been altered by the curses module.
For example, to change the default echoing behavior of the Terminal, we made a
direct call to the noecho() function from the curses module instead of from the
window cursor object.

Now, let's run our code to observe the result. Make sure you run your application from
your Terminal or command prompt with filename.py:

You can change the position from (0,0) to any other value, for example, (5,5), to observe the
windows and padding format.

Finally, we have made our first program with curses. Now, it's time to explore another
feature of curses, which is based on the ability to handle user input.

Learning About Curses by Building a Snake Game Chapter 5

[155]

User input with curses
In any game, user input is one of the most crucial pieces of information that needs to be
handled properly. We cannot make any delay while handling these types of actions. In the
case of curses, we have two ways to take input from the user. These two methods are as
follows:

getch(): If you have any programming background of languages such as C or
C++, this should not be new to you. The getch() function, just like in C, is used
to make a listener that will listen to the user key continuously. It returns an
integer from 0 to 255 which represents the ASCII code of the key that was
pressed. For example, the ASCII code for a is 097. Values that are greater than
255 are special keys, for example, the Page Up and navigation keys, that is, UP,
DOWN, LEFT, and RIGHT. We can compare the values of such keys with
constants stored in curses; for example, curses.UP, curses.DOWN,
curses.LEFT, and curses.RIGHT.
getkey(): getch and getkey do the same thing, but the getkey function
converts the returned integer into a string. Normal keys such as a-z or A-Z will
be returned as a 1 character string that can be compared with the ord() function.
However, special keys or functional keys will be returned as a longer string
containing a key and representing the type of action, such as KEY_UP.

Let's write a program that can handle keyboard events:

#program3.py
import curses as c

screen = c.initscr()
win = c.newwin(20, 60, 0, 0)

c.noecho()
c.cbreak()
screen.keypad(True)
while True:
 char = screen.getch() #takes input
 if char == ord('q'):
 break
 if char == ord('p'):
 win.addstr(5,10, "Hello World")
 win.refresh()
screen.endwin()

Learning About Curses by Building a Snake Game Chapter 5

[156]

We discussed this code when we talked about using a True loop. Make sure you revise the
preceding topics if you are confused about any of these commands. One strange thing you
might observe in this code is that we have imported curses and gave it an alias of c. This is
the process of renaming your module. Now, instead of using curses.method_name at
every method call, we can simply call it using c.method_name(), which certainly removes
the overhead of writing the same module name every time. Inside the loop, we used
the getch() function to take input from the user. After that, the character is retrieved in
the char variable and we compare it with the returned value of the ord function.
Remember that the getch function was going to return a value in Unicode? The same is
done by the ord function. It takes an argument as a character and returns the Unicode
value of that character. We use conditionals to make a condition. So, if the user presses q on
their keyboard, we will end the program, and if the user presses p on their keyboard, we
will print Hello World to the output window at the position of (y,x). Let's run our Python
file, C:\User\Desktop> python program3.py, and take a look at the output:

Press q on your keyboard to terminate the loop and close the application.

Note that q is not the same as Q because the ASCII code for these
characters isn't the same.

Our code is running perfectly but is becoming lengthier, even though the application is so
simple. We are calling so many methods already, such as noecho(), cbreak(), keypad(),
and endwin(). To remove the overhead of calling so many functions, we can use the
wrapper function from the curses module. All of these functions, including the
initialization of curses objects, is done automatically by the wrapper function. Just
remember that the wrapper function as a call to the bundle that wraps all of these methods
inside of it.

Similarly, we can also handle mouse events using the curses module. Let's make a program
using the wrapper function and handle the events of the mouse buttons in the same
program:

#mouse_events.py

import curses as c
def main(screen):
 c.curs_set(0) #hides the cursor

Learning About Curses by Building a Snake Game Chapter 5

[157]

 c.mousemask(1)
 inp = screen.getch()
 if inp == c.KEY_MOUSE:
 screen.addstr(17,40, "Mouse is clicked")
 screen.refresh()
 screen.getch()

c.wrapper(main)

Let's take a look at the preceding code in detail:

We will start from the last line, where we called the wrapper function with some
callable object as an argument. We've already learned about the objectives of
wrapper(); it eliminates multiple function calls such as initscr(), noecho(),
and so on. Thus, debugging is easier using the wrapper function. Not only that,
but this function also handles exceptions internally by using try and catch blocks.
Whenever you run into an unknown exception that you might not have caught,
you can always trust the wrapper function to do so. This will identify the bugs of
your program and provide you with an exception message without crashing the
application. The argument to the wrapper function will be a callable object,
which, in this case, is the main function. This main function has
a screen argument, which is the curses window object. We didn't initialize the
curses object anywhere in the program with the initscr() function because this
was done internally by the wrapper function.
Inside the scope of the main function, we made a call to two methods:
curs_set(0), which is going to hide the cursor in the output screen, and
mousemask(1), which is going to accept the mouse events. Here, mouse events
will be special symbols or functional characters that will be different from normal
alphabetical characters. Thus, curses has made constants to address those
functional characters. This is the same for the UP keyboard key; we have
the KEY_UP constant; in the case of mouse events, we have the KEY_MOUSE
constant. These should be invoked from the curses module, for
example, curses.KEY_MOUSE. After we get such mouse events, we are going to
print Mouse is clicked to the output Terminal. The getch() method is going
to input any events that can be either mouse-related or keyboard buttons. Let's
run our program to achieve the following output:

Learning About Curses by Building a Snake Game Chapter 5

[158]

Now that we have gained enough knowledge to make games using curses, let's proceed to
the next section, which will give us an idea about how gaming logic is made under the
hood. We will be making a simple Snake game.

Making a snake game with curses
We already know that the process of writing games is not as easy as it seems. We have to
follow many procedures to make a game playable because, while exposing the game to the
environment, we can be overwhelmed by many unwanted and unexpected exceptions.
Thus, following the proper order of execution is always essential, even if it may take more
time than usual. In this section, we are going to create a Sake game using curses. We will be
modifying it into a more appealing game in the upcoming chapters. A good game does not
always mean a good user interface because the interface provides value to the user but not
the programmer. We have to make a habit of writing proper code along with making good
interfaces, which requires us to follow each of the steps we will go over in this section. We
are going to use the curses module to make the initial Snake game. Then, in the next
chapter, we will modify it using object-oriented programming.

Before we code, we have to gather information about the model and the interface of the
game. While modeling, we have to extract critical information, such as how to render the
game characters into the screen, how to make an event listener, and how to make logic that will
allow the game characters to move. We will cover all of this in the next section.

Brainstorming and information gathering
As we have been doing up until now, the first step is to brainstorm and gather critical
information about the game layouts and game models. In the Snake game, we have two
characters: the snake (the player) and its food. Whenever the snake eats food, its length
should be increased. That's the basic idea, anyway. Now, let's revise the resources that are
available to us. Obviously, the resources that are provided by Python are more abundant,
but we haven't learned how to make graphical characters and use them in our game yet. All
we've learned to do is make games with text-based Terminals. We can use characters such
as A-Z to specify game objects. For example, we can make the snake XXXXXXX, which is a
combination of Xs. The food can be represented by O. Let's see what this would look like in
our game console:

Learning About Curses by Building a Snake Game Chapter 5

[159]

We also have to decide on the screen for the game. The initscr() method is going to
create the entire screen as a curses object. We don't want that; instead, we want to make a
game screen that can be customized by the height, width, and y, x positions. As you may
recall, we can divide the screen into a new one, using the newwin() method.

The most important thing to remember is to track the coordinates because we have to make
a boundary for our gameplay. We can make certain rules that specify the boundary position
of the game character and, if they touch that boundary, we can terminate our game.

We have to make logic for two things:

Whenever the snake eats the food, we have to generate new food in a new
position.
Whenever the snake eats the food, we have to increase the speed of the snake to
make the game more difficult. We should also track collisions between the
snake's head and its body.

In terms of the former point, we can use the random module, which provides a random
coordinate position of (y, x) that we can assign food to. For the latter point, we have to use a
curses method called timeout. We have to pass the value of the delay as an argument to
that function. According to Python's official documentation, the timeout function sets
blocking or non-blocking read behavior for the window. If delay is negative, a blocking read
is used (which will wait indefinitely for the input). If delay is zero, then a non-blocking read
is used, and -1 will be returned by getch() if no input is waiting. If delay is positive, then
getch() will block for delay milliseconds and return -1 if there is still no input at the end of
that time. Thus, we can change the speed of the game based on the delay when it is zero or
positive.

So, in terms of the curses.timeout(delay) command, if you make delay negative, your
snake will move at a rapid pace. However, we need to remember that we have some
constraints here; the speed of the snake should be increased, along with the length of the
snake. First of all, what is a snake? How it is made in our game? We learned about lists in
the previous chapter. Let's use that to make a snake. We have already seen the structure of
our snake, which is a bunch of X characters. But at the beginning of the game, we should
only provide a small length for the snake, maybe a length of 3, that is, XXX. We will store
each of these X's in the list, which represents coordinates such as [[4,10], [4,9], [4,8]]. Here,
each of these lists represents one X, that is, at the position of [4,10], we will have one X and
another X at 4,9. Remember that these should be y, x positions and that they should be next
to each other because they represent the body of the snake.

Learning About Curses by Building a Snake Game Chapter 5

[160]

Let's say our delay is 100 which would be constant. Thus, our command to represent speed
will be curses.timeout(100), which will be the snake's constant speed throughout the
game. However, we can change the speed of the game by incrementing the length of the
snake. For now, let's proceed to the next section, where we will make a boundary for our
game.

Inception
In this section, we will start writing the code for our game. We will use the curses module
to do this. First, we will initialize the screen for the game and make some game characters.
Take a look at the following code:

#snake_game.py
import curses as c

c.initscr()
win = c.newwin(20,60,0,0)
win.keypad(1)
c.noecho()
c.curs_set(0)
win.border(0)
win.nodelay(1)

snake = [[4,10], [4,9], [4,8]]
food = [10,20]

win.addch(food[0],food[1], 'O')

There's nothing new in the preceding code. You can also eliminate all of the function calls
using the wrapper() function. We can see that we have two list variables, snake and food,
which contain the coordinates that represent their positions in our game console. We also
made a call to the addch function. It will work in a similar fashion to the addstr function.
We passed the position of the food and added the O character to that position.

Making computer games require two steps: the first step is to make a visual that must be
naturally attractive, while the second step is to make the player interact with the game. To
make games interactive, we have to handle the events provided by the player. This is what
we will do in the next section.

Learning About Curses by Building a Snake Game Chapter 5

[161]

Handling user key events
We've started to build the basic layout of our game. Now, let's write some code that can
handle user keyboard events. Snake is a simple game. We can make it work by handling
only four keys of the keyboard, that is, UP, DOWN, LEFT, and RIGHT. We can use
getch() to get user input. But remember, these are not alphabetical characters, they are
functional characters. Thus, we have to import constants such as KEY_UP, KEY_DOWN,
KEY_LEFT, and KEY_RIGHT to fetch those ASCII values. Let's start writing the code that will
handle user events:

from curses import KEY_UP, KEY_DOWN, KEY_LEFT, KEY_RIGHT
#CODE FROM PREVIOUS TOPIC

key = KEY_RIGHT #default key

#ASCII value of ESC is 27
while key != 27:
 win.border(0)
 win.timeout(100) #speed for snake
 default_key = key
 event = win.getch()
 key = key if event == -1 else event
 if key not in [KEY_LEFT, KEY_RIGHT, KEY_UP, KEY_DOWN, 27]:
 key = default_key

The code that we have written may seem complicated, but all of these things have been
covered already. Let's take a look at what we've done:

In the first statement, we made the default key KEY_RIGHT. This is important
because we don't want to make the snake move if the user hasn't pressed a key.
So, our snake character will move right automatically when the game is started.
After that, we made a game loop. This loop is going to be executed until we press
Esc since the ASCII value for Esc is 27. Inside the loop, we made a call to the
timeout method, which will represent the speed of our snake character. In the
next line, we get the event of the user using the getch() method. Remember
that, if you press any key event, its value is going to be -1. Thus, we can compare
it and put the key that was pressed by the user into the key variable. However,
the key can be anything, such as an alphabetical character or a special symbol
such as [!,@,#,$], and so we have to filter them with the appropriate keys, for
example, LEFT, RIGHT, UP, and DOWN. If the key that's pressed by the user is
not among these, we are going to make the key have a default value of
KEY_RIGHT.

Learning About Curses by Building a Snake Game Chapter 5

[162]

Now, we can communicate our program with input devices such as a keyboard or joystick.
It's time to move on to the next section, where we will create our first logic to update the
head position of the snake characters when the user presses the LEFT, RIGHT, UP, and
DOWN keys.

Game logic – updating the head position of the
snake
In the previous section, we were able to handle user events using constants provided by
curses. Just like movement, the head of the snake can also be changed. We have to make
brand new logic that will update the position of the snake's head. Our snake is a
composition of coordinates that are stored in the list. The first element of that nested list is
the position of the snake's head. Thus, we only need to update the first element of the list.
Let's see how we are going to do this:

while key != 27:
 #code from preceding topic
 snake.insert(0, [snake[0][0] + (key == KEY_DOWN and 1) +
 (key == KEY_UP and -1), snake[0][1] + (key == KEY_LEFT and -1) +
 (key == KEY_RIGHT and 1)])

This may seem like it's a little difficult to understand, so let me make this clear.

The snake variable is a list. Thus, we can use the insert() method to manipulate that list
element. The insert() method will take two arguments: one will be the index and the
other will be the element to be inserted. In the preceding code, index is 0, which means we
want to insert an element in the first element of the list, which represents the head of the
snake. The next argument is the element, which needs to be added to index 0. We can see a
comma (,) in-between two statements: snake[0][0] + (key == KEY_DOWN and 1) +
(key == KEY_UP and -1) and snake[0][1] + (key == KEY_LEFT and -1) + (key
== KEY_RIGHT and 1). The first statement represents the y coordinate of the snake's
head, while the second statements represents the x coordinate of the snake's head. In the y
part of the snake's head, which can be represented as a column, we can have two
movements: either DOWN or UP. While going down, we have to add 1 to the current head
position y element and while going up, we have to decrease 1 in the current y position. For
the x part of the snake's head, we have the LEFT and RIGHT movements.

Learning About Curses by Building a Snake Game Chapter 5

[163]

On pressing the LEFT key, we are going to decrease the coordinate of x with 1 and on
pressing the RIGHT key, we are going to add 1 to x. Still confused? Taking a look at the
following diagram should make things clearer for you:

Remember that this update has to be done in the order of (y,x). For every UP and DOWN
key that's pressed, a decrement or increment of 1 is done in the coordinate of y, which is
snake[0][0] for the head. For x, this is snake[0][1], which is the same increment and
decrement that we used previously, but for when the user presses the RIGHT and LEFT
keys.

Now that we have made some logic to update the position of the snake, we need to make
the snake eat the food. The logic we are going to cover is simple: when the snake's head
position is the same as the food's position, we can say that the snake ate the food. Let's go
over this now.

Learning About Curses by Building a Snake Game Chapter 5

[164]

Game logic – when the snakes eats the food
Let's make the next bit of logic for our game. In this section, we are going to make the snake
eat the food. This is quite simple to implement. Whenever the snake's head touches the
food, we will assume that the snake has eaten the food. Thus, the snake's head coordinates
and the food's coordinates will be the same. We also have to make some logic that will
generate food in the next location as soon as the snake eats the current piece of food. The
location for the next piece of food should be random. We can use the random module to
create such an arbitrary location. Let's start writing the code:

from random import randint

This is a new way of importing any function from the module. While calling this function,
we don't have to write something like random.randint(). Instead, we can call it directly
in our program. The arguments inside the randint() method must be the range of values.
For example, randint(2,8) returns a number between 2 to 8, like so:

while key != 27:
#add the following code after updating head position
 if snake[0] == food:
 food = []
 while food == []:
 food = [randint(1,18), randint(1,58)]
 if food in snake:
 food = []
 win.addch(food[0], food[1], 'O')
 else:
 last = snake.pop()
 win.addch(last[0], last[1], ' ')
 win.addch(snake[0][0], snake[0][1], 'X')

c.endwin()

Inside the if part of the code, we have added the logic that will put the food in a new
position. Remember that, at the beginning of the game, we initialized the new window
height to be 20 and the width to be 60. Thus, we can only generate food within this
boundary. In the else part of the code, we pop out the last element if the user is unable to
eat the food. In the second to last line, we added the snake's head position with
the 'X' character.

Learning About Curses by Building a Snake Game Chapter 5

[165]

Let's run our game and see what it looks like so far:

Now, our game is playable enough. We learned about so many things while making this
game, such as how to make game logic while working with the methods and coordinates of
the game console. Now, let's proceed to the next section, where we will learn how to test
and modify our game.

Game testing and modification
To uncover the deficit of any program, its always a good idea to run and test it. Just like our
previous games, we can also make modifications to the Snake game. The following points
explain some of the modifications we could make to our game:

When you run the game, the first thing you will notice is that our game does not
have logic to decide whether the snake has collided with itself or not. If it does
collide with another part of its body, we have to stop the game. Let's add that
logic inside the while loop:

 if snake[0] in snake[1:]:
 break

In the preceding code, snake[0] represents the head of the snake while snake[1:]
represents the body of the snake. Thus, the preceding condition means that the
head coordinates are inside the body of the snake, which means a collision
occurred. In this case, we use a break statement to get out of the loop and
terminate the game.

Learning About Curses by Building a Snake Game Chapter 5

[166]

Let's say we want to add the score of the player. Adding a score is simple; the
number of food that has been eaten by the snake is equivalent to the player's
score. We can initialize the value of the score as 0 to start with:

 score = 0
 while key != 27:
 # CODE TO ADD SCORE IN THE SCREEN
 win.border(0)
 win.addstr(0, 2, 'Score : ' + str(score) + ' ')
 win.addstr(0, 27, ' SNAKE ')
 if snake[0] == food:
 food = []
 #AFTER EATING EVERY FOOD SCORE = FOOD
 score += 1
 while food == []:
 food = [randint(1,18), randint(1,58)]
 if food in snake: food = []
 win.addch(food[0], food[1], 'O')
 else:
 end = snake.pop()
 win.addch(last[0], last[1], '')
 win.addch(snake[0][0], snake[0][1], 'X')
 c.endwin()

In the preceding code, we have added some statements with the addstr method that will
provide the score of the player at the specified position. Now, let's run our game:

Learning About Curses by Building a Snake Game Chapter 5

[167]

After running the game, you can see that we are able to play within the interface of curses.
However, you will encounter an exception as soon as your snake hits the boundary line,
and your game will be terminated automatically. We will learn how to handle boundary
collisions in the upcoming chapters in detail (to be specific, Chapter 11, Outdo Turtle –
Snake Game UI with Pygame), but, for now, let's learn about the easiest method we can use to
handle and get rid of triggering an exception. First of all, observe the dimension of the
boundary screen and take note of the actual height and width at which the boundary
resides. Consider looking at the win variable to get an idea about the size of the boundary
screen. Now, looking at the height of 20, we might assume that whenever the snake touches
the top boundary, that is, he head position of the snake at 0, the snake's head must enter
through the own boundary, which has a y coordinate of 19. Remember that, in the upper
and lower boundaries, only the y-coordinate changes. The code for this will be as follows:

if snake[0][0] == 0:
 snake[0][0] = 18 #regenerate snake from lower boundary line
if snake[0][0] == 19:
 snake[0][0] = 1 #regenerate snake from upper boundary line

Similarly, we have to address the case where the snake hits either the right or left
boundary. Since the height remains the same for either case, we are only interested in the
width (x-position). Since the width of the screen that's declared by the win variable is 60,
we can expect the snake hitting a boundary at around 0 (for the right) and 59 (for the left) to
cause the snake to be regenerated accordingly. You have to add the following line of code
to handle collisions that occur at the left and right boundaries:

if snake[0][1] == 0:
 snake[0][1] = 58 #regenerate from left
if snake[0][1] == 59:
 snake[0][1] = 1 #regenerate from right

Finally, we have completed the snake game. It is appealing enough to make any user play
this game. We also learned how to create programs with our own brand new logic. This
was the first simple module we have used to make text-based games. Even though it's
playable, we haven't added any graphics to it, and so it looks quite bland. We will make it
more scintillating by learning about a new Python paradigm named Object Oriented
Programming. We have successfully made some modifications to our game. Now, it's time
to learn about the most important concept of Python: object-oriented programming.

Learning About Curses by Building a Snake Game Chapter 5

[168]

Summary
In this chapter, we started to uncover the world of game programming with curses.
Obviously, it wasn't the perfect game as it had no amazing animations or a fantastic
interface. We barely touched on these topics since curses provides applications that are text-
based and run on a plain Terminal. Even the game characters, such as snake and food for
the Snake game were made out of alphabetical letters. Even though we didn't put extra
effort in to make the game more appealing, we have learned about how to make the game
logic. Two of the pieces of logic that we made in the Snake game were important: the first
was the interaction of the coordinates of the game console with the player's positions, and
the second was making the characters collide. The coordinate system's order that's
supported by curses was strange. In most libraries, such as pygame and pyopengl, we have
a coordinate system represented in the order (x,y), but in curses, it's (y,x). The collision
between two characters is confirmed if they are in the same coordinate point (y,x). To do
this, we have to check the collision between the snake's head and its body. This logic might
sound simple, but it will come in handy in the long run. For example, in upcoming games
such as Flappy Bird or Angry Birds, we are going to check the collision between the
characters with the same logic.

The code that we've written for the Snake game is meticulous and thorough because the
game was written with procedural programming in mind. In the next chapter, we will learn
about the most important concept of Python, object-oriented programming, and modify our
code accordingly, which will make our code more readable and reusable.

6
Object-Oriented Programming

Programming is not only about writing programs—it's just as important to understand
them so that we can fix the bugs and errors in them, if there are any. Thus, we say that
programmers are born to read and understand code. However, as programs become more
and more complicated, it becomes more difficult to write programs that maintain
readability. We have written both aesthetic and messy code in this book. We made a tic-tac-
toe game with sequential programming that had less readability. We can consider these
programs as inelegant because we will have a hard time reading and understanding their
code and sequential flow. After writing those programs, we modified them using functions,
which upgraded our messy code so that it was more elegant. However, if you are working
on programs containing thousands of lines of code, it's hard to write a program within the
same file and understand each and every behavior of the functions you're using. Thus,
discovering and fixing the bugs of programs written in a procedural manner is also
difficult. Due to this, we need a way in which we can easily break multi-line programs into
smaller modules or parts so that discovering and fixing these bugs is easier. There are many
ways of achieving this, but the most efficient and popular way is using the object-oriented
programming (OOP) approach.

As it turns out, we have been using objects since the beginning of this book, but haven't
understood how precisely they are made and used. This chapter will help you to learn
about the terminology and concepts of object-oriented programming through some simple
examples. We will also modify our Snake game code that we wrote using functions in the
preceding chapters in line with the OOP approach at the end of this chapter.

Object-Oriented Programming Chapter 6

[170]

The following topics will be covered in this chapter:

Overview of OOP
Python classes
Encapsulation
Inheritance
Polymorphism
Snake game implementation using OOP
Possible errors and modifications

Technical requirements
You will require the following in order to get the most out of this chapter:

Python version 3.5 or newer
Python IDLE (Python's inbuilt IDE)
A text editor
A web browser

The files for this chapter can be found in this book's GitHub repository at https:/ /github.
com/PacktPublishing/ Learning- Python- by-building- games/ tree/ master/ Chapter06

Check out the following video to see the code in action:

http://bit.ly/2oKD6D2

Overview of OOP
Everything in Python is an object. We have been eloquently stating this remark from the
beginning of this book and we have been proving this statement in every chapter.
Everything is an object. Objects can be a collection of elements, properties, or functions.
Data structures, variables, numbers, and functions are objects. OOP is a programming
paradigm that provides an elegant way of structuring programs with the help of objects.
The behavior and properties of the objects are bundled together into templates, which we
call a class. That behavior and their properties can be called from the different objects of
that class. Don't get confused by the terms behavior and properties. They are just different
names for methods and variables, respectively. Functions that are defined inside some
classes are referred to as methods.

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter06
http://bit.ly/2oKD6D2
http://bit.ly/2oKD6D2
http://bit.ly/2oKD6D2
http://bit.ly/2oKD6D2
http://bit.ly/2oKD6D2
http://bit.ly/2oKD6D2
http://bit.ly/2oKD6D2
http://bit.ly/2oKD6D2
http://bit.ly/2oKD6D2

Object-Oriented Programming Chapter 6

[171]

We will dig into the concepts of classes and methods later in this chapter, but for now, let's
learn more about objects before actually making a template for them.

We have been using objects unknowingly from the beginning of this book. We have used
methods from different classes before, such as the randint() method. This method was
used by importing a module named random. This method is also a built-in Python class. A
class is a template where we can write functions of objects. For example, a man can be
represented as an object. A man has different characteristics, such as a name, age, and
hair_color, which are unique properties. However, the actions that the man performs,
such as eating, walking, and sleeping, are behaviors or methods. We can make as many
objects as we like from these templates. But for now, let's visualize two objects:

Object 1: Stephen : name = "Stephen Hawking", age= 56, hair_color= brown,
eating, walking, sleeping

Object 2: Albert: name = "Albert Einstein", age = 77, hair_color= black,
eating, walking, sleeping

In the preceding two objects, name, age, and hair_color are unique. All of the objects will
have unique properties, but the behavior or method that they perform is the same as eating,
walking, and sleeping. Thus, we can conclude that the data model that interacts with the
input and output is a property since it will be fed into the methods. Based on the unique
properties of each object, the methods of the classes will produce different results.

Thus, we can say that OOP is the approach of modeling real-world entities as objects that
have unique data associated with them and can execute certain functions. Functions that
are defined inside classes are called methods, and so we just have to switch from functions
to methods. Note, however, that the way methods work is similar to that of functions. Just
like functions are called with the names or signs of it, methods also need to be called with
their names. However, this call should be initiated with objects. Let's look at a simple
example to clarify this:

>>> [1,2,3].pop()
3

We looked at these methods in the preceding chapters. But if you take a good look at this
code, you will find that we are making a method call from the object. We used the pop
method and called it on the list-objects. This is a simple prototype of object-oriented
programming. One of the advantages of OOP is that it hides the inner complexity of the
method call. As you may recall, we called the randint method with the random module.
We didn't even look at the content of the random library. Thus, we obviate the working
complexities of the library. This feature of OOP will allow us to focus only on the important
parts of the program rather than the internal working of the methods.

Object-Oriented Programming Chapter 6

[172]

The two main entities of object-oriented programming are objects and classes. We can
remember a class by emulating it with templates where methods and attributes are
mapped. Methods are a synonym for functions, while attributes are the properties that
distinguish each object from another. Let's get a good grasp of this terminology by making
a simple class and object.

Python classes
As we discussed in the previous section, objects inherit all the code that's written inside the
classes. Thus, we can use methods and attributes that are mapped inside the body of class.
A class is a template from which instances can be created. Take a look at the following:

In the preceding, the Bike class can be considered a template from which objects can be
instantiated. In the Bike class, there are attributes that uniquely represent objects that are
created from this class. Each object that is created will have different properties, such as
name, color, and price, but they will invoke the same methods. This method should be
invoked with the instance of the class. Let's see how classes can be created in Python:

>>> class Bike:
 pass

Object-Oriented Programming Chapter 6

[173]

We create a class in Python with a class keyword, followed by the name of the class.
Usually, the first letter of the class name is written in uppercase; here we have written
Bike, with a capital B. Now globally, we have created the Bike class. Instead of methods
and attributes, we have written a pass inside the body of the class. Now, let's make the
object of this class:

>>> suzuki = Bike()
>>> type(suzuki)
<class '__main__.Bike'>

In the preceding code, we made an instance named Suzuki from the Bike class. The
instantiation expression looks similar to the function call. Now, if you check the type of the
Suzuki object, it is a type of the Bike class. Thus, the type of any object will be the class
type because objects are an instance of classes.

It's now time to add a couple of methods to this Bike class. This is similar to the declaration
of the function. The def keyword, followed by the names of the methods, is the best way to
declare the methods of a class. Let's take a look at the following code:

#class_ex_1.py
class Bike:
 def ride_Left(self):
 print("Bike is turning to left")

 def ride_Right(self):
 print("Bike is turning to right")

 def Brake(self):
 print("Breaking......")

suzuki = Bike()
suzuki.ride_Left()
suzuki.Brake()

>>>
Bike is turning to left
Breaking......

We have added three methods to the Bike class. The parameter that we used while
declaring these methods was the self variable. This self variable or keyword is also an
instance of the class. You can compare this self variable with the pointer, which is
pointing to the current object. At each instantiation, the self variable represents the
pointer object that is pointing to the current class. We will clarify the usage and importance
of the self keyword shortly, but before that, take a look at the preceding code, where we
created a Suzuki object and called the methods of the class with it.

Object-Oriented Programming Chapter 6

[174]

The preceding code is similar to the code where we called the randint method from the
random module. This is because we are using methods of the random library.

When any classes are defined, only the representation for the object is defined with it,
which eventually reduces memory loss. In the preceding example, we made a prototype
with the name Bike. Different instances can be made out of it, las follows:

>>> honda = Bike() #first instance
>>> honda.ride_Right()
 Bike is turning to right

 >>> bmw = Bike() #second instance
 >>> bmw.Brake()
 Breaking......

Now that we've looked at how to create objects and use the methods that are defined inside
the class, we will add attributes to the class. The attributes or properties define the unique
features of each object. Let's add some attributes, such as name, color, and price, to our
class:

class Bike:
 name = ''
 color= ' '
 price = 0
 def info(self, name, color, price):
 self.name = name
 self.color = color
 self.price = price
 print("{}: {} and {}".format(self.name,self.color,self.price))

 >>> suzuki = Bike()
 >>> suzuki.info("Suzuki", "Black", 100000)
 Suzuki: Black and 100000

There's a lot of jargon in the preceding code. Under the hood, this program is about the
creation of classes and objects. We have added three attributes: name, color, and price. To
use those properties of the class, we have to reference them with the self keyword. The
name, color, and price arguments are passed into the info function and are assigned to
the corresponding name, color, and price properties of the Bike class. The self.name,
self.color, self.price = name,color,price statement is going to initialize the
class variables. This process is called initialization. We can also do initialization using a
constructor, like so:

class Bike:
 def __init__(self,name,color,price):
 self.name = name

Object-Oriented Programming Chapter 6

[175]

 self.color = color
 self.price = price

 def info(self):
 print("{}: {} and {}".format(self.name,self.color,self.price))

>>> honda = Bike("Honda", "Blue", 30000)
>>> honda.info()
Honda: Blue and 30000

In Python, the special init method is going to simulate the constructor. A constructor is a
method or function that's used to initialize the attributes of the class. The definition of the
constructor is executed when we make instances of the class. Depending on the init
definition, we can provide any number of arguments while creating the objects of the class.
The first method of the class should be a constructor, and it must initialize the members of
the class. The basic format of the class should have an attribute declaration at the beginning
and the methods after it.

Now that we've created our own class and declared some methods of it let's explore some
essential features of the object-oriented paradigm. We will start with encapsulation, which
is used to embed the access permissions of the methods and variables that are declared
within the classes.

Encapsulation
Encapsulation is a way of binding data with the code into a single unit known as a capsule.
This way, it provides security so that no unwanted modifications can be made to the code.
The code that's written with the object-oriented paradigm will have critical data in the form
of attributes. Thus, we have to prevent that data from being corrupted or becoming
vulnerable. This is known as data hiding, and is the prime feature of encapsulation. To
prevent data from being modified accidentally, encapsulation plays a vital role. We can
make members of the class private members in order to embrace encapsulation. Private
members, either methods or properties, can be made using double underscores at the
beginning of their signature. In the following example, __updateTech is a private method:

class Bike:
 def __init__(self):
 self.__updateTech()
 def Ride(self):
 print("Riding...")
 def __updateTech(self):
 print("Updating your Bike..")

Object-Oriented Programming Chapter 6

[176]

>>> honda = Bike()
Updating your Bike..
>>> honda.Ride()
Riding...
>>> honda.__updateTech()
AttributeError: 'Bike' object has no attribute '__updateTech'

In the preceding example, we were unable to invoke the updateTech method from the
object of the class. This is due to encapsulation. We made this method private using a
double underscore at the beginning of it. But sometimes we may need to modify the value
of these attributes or behaviors. We can modify this using getters and setters. These
methods will get the value and set the value for the attributes of the class. Thus, we can
conclude that encapsulation is a feature of OOP that will prevent us from modifying and
accessing data accidentally, but not intentionally. The private members of the class are not
actually hidden; instead, they are just made unique from other members so that the Python
parser will interpret them uniquely. The updateTech method is made unique and private
using a double underscore (__) at the beginning of its name. The attributes of the class can
also be made private using the same technique. Let's take a look at this now:

class Bike:
 __name = " "
 __color = " "
 def __init__(self,name,color):
 self.__name = name
 self.__color = color
 def info(self):
 print("{} is of {} color".format(self.__name,self.__color))

>>> honda = Bike("Honda", "Black")
>>> honda.info()
Honda is of Black color

We can clearly see that the name and color attributes are private as they begin with double
underscores. Now, let's try to modify those values using an object:

>>> honda.__color = "Blue"
>>> honda.info()
Honda is of Black color

We tried to modify the color attribute of the Bike class, but nothing happened. This shows
us that encapsulation will prevent accidental changes from being made. But what if we
need to change it intentionally? This can be done with getters and setters. Take a look at the
following example to find out more about getters and setters:

class Bike:
 __name = " "

Object-Oriented Programming Chapter 6

[177]

 __color = " "
 def __init__(self,name,color):
 self.__name = name
 self.__color = color
 def setNewColor(self, color):
 self.__color = color
 def info(self):
 print("{} is of {} color".format(self.__name,self.__color))

>>> honda = Bike("Honda", "Blue")
>>> honda.info()
Honda is of Blue color
>>> honda.setNewColor("Orange")
>>> honda.info()
Honda is of Orange color

In the preceding program, we defined a Bike class with some private members, such as
name and color. We used the init constructor to initialize the values of the attributes
while creating the instance of the class. We tried to modify its value. However, we couldn't
change its value because the Python parser treats these attributes as private. Thus, we used
the setNewColor setter to set a new value for that private member. By providing these
getters and setter methods, we can make a class either read-only or write-only, which
prevents accidental data modification and intentional theft.

Now, it's time to take a look at another important feature of the object-oriented paradigm
known as inheritance. Inheritance helps us write classes that will inherit each and every
member from its parent class and also allows us to modify them.

Inheritance
Inheritance is the most important and well-known feature of the object-oriented
programming paradigm. Do you remember the reusability feature of functions? Inheritance
also provides reusability but with a lot of code. To use inheritance, we must have an
existing class with some code inside it. This must be inherited by a new class. Such an
existing class is called a Parent or Base class. We can create a new class as a Child class,
which will acquire and access all the properties and methods of the parent class, so that we
don't have to write the code from scratch. We can also modify the definitions and
specifications of the methods that are inherited by the child class.

Object-Oriented Programming Chapter 6

[178]

In the following illustration, we can see that the Child class, or the Derived class, is
pointing to the Base or Parent class, which implies that there is a single inheritance:

In Python, it is easy to use inheritance. A Child class can inherit from a Parent class by
mentioning the name of the Parent class within the brackets after the Child class. The
following code shows how we can implement single inheritance:

class Child_class(Parent_class):
 <child-class-members>

A single class can also inherit multiple classes. We can achieve this by writing all of those
classes' names within the brackets:

class Child_class(Base_class1, Base_class2, Base_class3):
 <child-class-members>

Let's write a simple example so that we can understand inheritance a little more. In the
following example, Bike will be the Parent class and Suzuki will be the Child class:

class Bike:
 def __init__(self):
 print("Bike is starting..")
 def Ride(self):
 print("Riding...")

class Suzuki(Bike):
 def __init__(self,name,color):
 self.name = name
 self.color = color
 def info(self):
 print("You are riding {0} and it's color is
 {1}".format(self.name,self.color))

#Save above code in python file and Run it

>>> suzuki = Suzuki("Suzuki", "Blue")

Object-Oriented Programming Chapter 6

[179]

>>> suzuki.Ride()
Riding...
>>> suzuki.info()
You are riding Suzuki and it's color is Blue

Let's have a look at the preceding code and be amazed by inheritance. First, we created
a Base class with two methods in it. After that, we created another class, that is, the child or
derived class, called Suzuki. It is a child class because it has inherited the members of its
parent Bike class with the class Suzuki(Bike) syntax. We added a couple of methods
to the child class too. After creating these two classes, we created an object of the child class.
We know that, when an object is created, the method that is going to be invoked
automatically is a constructor, or init. Thus, we passed a value that was demanded by the
constructor while creating the object of that class. After that, we made a call to the Ride
method from the object of the Suzuki class. You can check the Ride method inside the
body of the Suzuki class. It isn't there—instead, it's inside the suite of the Bike class. Due
to inheritance, we were able to call the methods of the Base class as if they were inside the
Child class. We can also use every property that's defined inside the Base class in the
Child class.

However, not all features are inherited inside the child class. When we create instances of
the child class, the init method of the child class was called, but not those of the Parent.
However, there is a way to call that constructor: by using the super method. This is shown
in the following code:

class Bike:
 def __init__(self):
 print("Bike is starting..")
 def Ride(self):
 print("Riding...")

class Suzuki(Bike):
 def __init__(self,name,color):
 self.name = name
 self.color = color
 super().__init__()

>>> suzuki = Suzuki("Suzuki", "Blue")
Bike is starting..

The super() method refers to the superclass or Parent class. Thus, after the instantiation
of the superclass, we made a call to the init method of that superclass.

Object-Oriented Programming Chapter 6

[180]

It is similar to Bike().__init__(), but in this case Bike is starting.. will be printed twice
because the Bike() statement is going to create an object of the Bike class. This means that
the init method will be called automatically. The second call is made with the object of the
Bike class.

In Python, multi-level inheritance is available. This is a chained sequence that's created
when any child class inherits from another child class. There are no limits regarding how a
multi-level inheritance chain can be created. The following diagram depicts multiple classes
inheriting features from their parent class:

The following code shows the features of multi-level inheritance. We have made three
classes, with each one inheriting the features of the preceding one:

class Mobile:
 def __init__(self):
 print("Mobile features: Camera, Phone, Applications")
class Samsung(Mobile):
 def __init__(self):
 print("Samsung Company")
 super().__init__()
class Samsung_Prime(Samsung):
 def __init__(self):
 print("Samsung latest Mobile")
 super().__init__()

>>> mobile = Samsung_Prime()
Samsung latest Mobile
Samsung Company
Mobile features: Camera, Phone, Applications

Object-Oriented Programming Chapter 6

[181]

Now that we've looked at inheritance, it's time to have a look at another feature, known as
polymorphism. In a literal sense, polymorphism is the ability to accommodate different
forms. Thus, this feature is going to help us use the same code in a different form so that
multiple tasks can be carried out with it. Let's take a look.

Polymorphism
In the object-oriented paradigm, polymorphism allows us to define methods in the Child
class with the same signature that's defined in the Parent class. As we know, inheritance
allows us to use every method of the Parent class as if it were inside the Child class with
the help of child class objects. However, we may encounter a situation where we have to
modify the specification of the method that is defined inside the parent class so that it is
executed independently of the Parent class. This technique is called method overriding. As
the name suggests, we are overriding the existed method of the Base class with the new
specification inside the Child class. Using method overriding, we can call both of the
methods independently. If you have overridden a method of the parent class in the child
class, then any version of that method (either the new one of the child or the old one of the
parent) will be called based on the type of object it is being used to call. For example, if you
want to call the new version of the method, you should call it with the Child class object.
Speaking of the Parent class method, we have to use a Parent class object to call it. Thus,
we can visualize that the two sets of methods have been developed but with the same name
and signature, which signifies basic polymorphism. In programming, polymorphism is
where the same function or method is used in different forms or types.

We can start thinking about examples of polymorphism from what we have learned so far.
Do you remember the len() function? This is a built-in Python function and takes an
object as a parameter. Here, an object can be anything; it can be a string, list, tuple, and so
on. Even if it has the same name, it is not limited to performing a single task—it can be used
in different forms, as shown in the following code:

>>> len(1,2,3) #works with tuples
3
>>> len([1,2,3]) #works with lists
3
>>> len("abc") #works with strings
3

Object-Oriented Programming Chapter 6

[182]

Let's look at an example to demonstrate polymorphism with inheritance. We will write a
program that will create three classes; one will be a Base class while the other two will be
Child classes. The two Child classes will inherit each and every member of the Parent
class, but each of them will have one method implemented independently. This will be the
application of method overriding. Let's look at an example of polymorphism using the
concept of polymorphism with inheritance:

class Bird:
 def about(self):
 print("Species: Bird")
 def Dance(self):
 print("Not all but some birds can dance")

class Peacock(Bird):
 def Dance(self):
 print("Peacock can dance")
class Sparrow(Bird):
 def Dance(self):
 print("Sparrow can't dance")

>>> peacock = Peacock()
>>> peacock.Dance()
Peacock can dance
>>> sparrow = Sparrow()
>>> sparrow.Dance()
Sparrow can't dance
>>> sparrow.about() #inheritance
Species: Bird

The first thing you see is that the Dance method is common among all three classes. But in
each of these classes, we have different specifications for the Dance method. This feature is
particularly useful because, in some cases, we may want to customize the method that is
inherited from the Parent class, which may not have any significance in the Child class. In
such cases, we redefine this method with the same signature that's inside the Child class.
This technique of reimplementing a method is known as method overriding, and the
different methods it creates using this process enable polymorphism.

Now that we've learned about the important concepts of object-oriented programming and
their prime features, such as encapsulation, inheritance, and polymorphism, it's time to use
this knowledge to modify the Snake game that we made using curses in the previous
chapter. Since we can't use these object-oriented principles to make the code from the
previous chapter less messy and abstruse, we will make our code more reusable and
readable. We will start modifying our game with OOP in the next section.

Object-Oriented Programming Chapter 6

[183]

Snake game implementation
We've explored various features of object-oriented programming in this chapter, including
inheritance, polymorphism, data hiding, and encapsulation. One feature that we didn't
cover, known as method overloading, will be covered in Chapter 9, Data Model
Implementation. We have learned enough about OOP to make our code more readable and
reusable. Let's start this section by following the conventional pattern, that is,
brainstorming and information gathering.

Brainstorming and information gathering
As we have already discussed, object-oriented programming is not related to game
interface programming; instead, it is a paradigm that makes code sturdier as well as more
lucid. Thus, our interface will be similar to that of programs that are made by the curses
module—text-based terminals. However, we will use the object-oriented paradigm to refine
our code, and we will focus on the object rather than the actions and logic. We know that
OOP is a data-driven methodology. Thus, our program must accommodate the game
screen and user events data.

The main aims of using the object-oriented principle in our game are as follows:

To divide programs into smaller parts, called objects. This will make programs
more readable and allow us to track bugs and errors easily.
To be able to communicate between objects through functions.
Data is secure as it cannot be used by outer functions. This is called
encapsulation.
We will put more emphasis on the data rather than the methods or procedures.
Making modifications to the program, such as adding properties and methods,
can be done easily.

Now, let's start brainstorming and gather some information about the game model.
Obviously, we have to use the same code from the previous chapter for the game layout
and its characters, that is, Snake and Food. Thus, we have to take two classes for each of
them. The Snake and Food classes will have methods defined in them that will control
game layouts and user events.

Object-Oriented Programming Chapter 6

[184]

We have to use curses events such as KEY_DOWN, KEY_UP, KEY_LEFT, and KEY_RIGHT to
handle the movement of the snake character. Let's visualize the essential classes and
methods:

First, we have to import curses to initialize the game screen and handle user key1.
movements.
Then, we have to import the random module as we have to generate food in a2.
random position once the snake has eaten it.
After that, we initialize the constants, such as screen height, width, default snake3.
length, and timeout.
Then, we declare eh Snake class with a constructor, which will initialize the4.
default position of the snake, window, head position, and the body of the snake.
Inside the Snake class, we will add a couple of methods, as follows:5.

eat_food will check whether the snake has eaten the food. If it has, the
length of the snake will increase.
collision will check whether the snake has collided with itself.
update will be invoked every time the user makes a move and changes the
position of the Snake character.

Finally, we declare the Food class and define the render and reset methods to6.
generate and delete the food from a random position.

Now, let's start writing the program by declaring the constants and importing the essential
modules. This is no different from the previous chapter—we will use curses to initialize the
game screen and handle user events. We will use the random module to generate a random
position on the game console so that we can generate new food at that position.

Declaring constants and initializing the screen
Similar to the preceding chapter, we are going to import the curses module so that we can
initialize the game screen and customize it by specifying the height and width. We have to
declare the default snake length and its position as constants. The following code will be
familiar to you, except for the name == "__main__" pattern:

import curses
from curses import KEY_RIGHT, KEY_LEFT, KEY_DOWN, KEY_UP
from random import randint

WIDTH = 35
HEIGHT = 20

Object-Oriented Programming Chapter 6

[185]

MAX_X = WIDTH - 2
MAX_Y = HEIGHT - 2
SNAKE_LENGTH = 5
SNAKE_X = SNAKE_LENGTH + 1
SNAKE_Y = 3
TIMEOUT = 100

if __name__ == '__main__':
 curses.initscr()
 curses.beep()
 curses.beep()
 window = curses.newwin(HEIGHT, WIDTH, 0, 0)
 window.timeout(TIMEOUT)
 window.keypad(1)
 curses.noecho()
 curses.curs_set(0)
 window.border(0)

In the preceding code, we have declared a bunch of constants to specify the height, width,
default snake length, and timeout. We are familiar with all of these terms, except for
the __name__ == "__main__" pattern. Let's talk about it in detail:

By looking at this pattern, we can conclude that the assignment of the "main" string is
done in the name variable. Just like __init__() was a special method, __name__ is a
special variable. Whenever we execute our script file, the Python interpreter will execute
the code that is written at the zero indentation level. But in Python, there is no main()
function like there is in C/C++, which is invoked automatically. Thus, the Python interpreter
will set the special __name__ variable with the __main__ string. Whenever the Python
script is executed as a main program, the interpreter sets the special variable with the
string. But when the file is being imported from another module, the value of the name
variable will be set to that module name. Thus, we can conclude that the name variable will
determine the current working module. We can evaluate how this pattern works as follows:

When the current source code file is the main program: When we run the
current source file as the main program, that is, C:/> python example.py, the
interpreter will assign the"__main__" string to the special name variable known
as name == "__main__".

Object-Oriented Programming Chapter 6

[186]

When another program is importing your module: Suppose any other program
is the main program and it is importing our module. The >>> import
example statement will import the example module into the main program.
Now, the Python interpreter will refine the name of the script file by removing
the .py extension and setting that module name to the name variable, that
is, name == "example". Due to this, the code that is written in the example
module will be available for the main program. After the special variable has
been set up, the Python interpreter will execute the statements line by line.

Thus, the __name__ == "__main__" pattern can be used to execute the code that's written
inside it if the source file is executed directly, and is not imported. We can conclude that the
code that's written inside this pattern is the code that will be executed. Functions, classes,
and the code inside them that isn't defined aren't going to run until they are called from the
zero indentation level. This is due to the lack of a main() function in Python, which is
automatically invoked in low-level programming languages.

In this case, the top-level code starts with an if block that's followed by the pattern's name,
which evaluates the current working module. If the current program is main, we are going
to execute the code that's written inside the if block, which initializes the game screen and
creates a new window for the game by using curses.

Now that we have started writing a program that's initialized the game screen and declared
some constants, it's time to create some classes. We have two characters in the game: Snake
and Food. We will begin by creating two classes for now and modify them according to our
needs. Let's start by creating the Snake class.

Creating the snake class
After creating the screen for our game, our next focus will be on rendering the game
character in our screen. We will start off by creating the Snake class. We know that classes
will have different members, that is, attributes and methods. As we mentioned in the
previous chapter, while creating the Snake character, we have to track the x and y positions
of the snake in the game window. To track the body position of the snake, we have to
extract the x and y coordinates of the snake. We should use alphabetical characters to make
up the body of the snake as curses only supports text-based Terminals. Let's start creating
the Body class, which will provide us with the position of the snake and provide the
character for the body of the snake:

class Body(object):
 def __init__(self, x, y, char='#'):
 self.x = x

Object-Oriented Programming Chapter 6

[187]

 self.y = y
 self.char = char

 def coor(self):
 return self.x, self.y

In the preceding program, # is used to make up the body structure of the snake. We have
defined two members inside the Body class: the constructor and the coor method. The
coor method is used to extract the current coordinates of the snake body.

Now, let's create a class for the game characters. We will start with the Snake class. We
should maintain a listed data structure so that we can store the body position of the snake.
Initializing these properties should be done using a constructor. Let's start writing the
constructor for the Snake class:

class Snake:
 REV_DIR_MAP = {
 KEY_UP: KEY_DOWN, KEY_DOWN: KEY_UP,
 KEY_LEFT: KEY_RIGHT, KEY_RIGHT: KEY_LEFT,
 }

 def __init__(self, x, y, window):
 self.body_list= []
 self.timeout = TIMEOUT
 for i in range(SNAKE_LENGTH, 0, -1):
 self.body_list.append(Body(x - i, y))
 self.body_list.append(Body(x, y, '0'))
 self.window = window
 self.direction = KEY_RIGHT
 self.last_head_coor = (x, y)
 self.direction_map = {
 KEY_UP: self.move_up,
 KEY_DOWN: self.move_down,
 KEY_LEFT: self.move_left,
 KEY_RIGHT: self.move_right
 }

Inside the Snake class, we made a dictionary. Each of the keys and values represents a
reverse direction. If you are confused about how the direction on the screen is represented,
go back to the previous chapter. The positions of the characters are represented in the
coordinates. We declared the constructor, which allows us to initialize the properties of the
classes. We made body_list to hold the snake body; a window object that represents the
game screen for the snake game; the default direction of the snake, which is the RIGHT
direction; and a direction map, which accommodates the movement of the character with
curses constants such as KEY_UP, KEY_DOWN, KEY_LEFT, and KEY_RIGHT.

Object-Oriented Programming Chapter 6

[188]

For every direction map, we make a call to the move_up, move_down, move_left, and
move_right functions. We will create these methods shortly.

The following lines of code are declared inside the Snake class and will add the coordinates
of the snake body to body_list. The Body(x-i,y) statement is the instance of Body class
that will specify the coordinates of the snake's body. In the constructor of the Body class, #
is used to specify the layout of the snake's body:

for i in range(SNAKE_LENGTH, 0, -1):
 self.body_list.append(Body(x - i, y))

Let's take a look at the preceding code and explore it. This code is going to extend the
characteristics of the Snake class:

First, we have to begin by adding some new members inside the Snake class. We1.
start by adding a simple method that will extend the body of the snake:

 def add_body(self, body_list):
 self.body_list.extend(body_list)

Now, we have to create another method that will render game objects onto the2.
screen. One of the important steps of this program is to render the snake's body
onto the game screen. Since we have to represent the snake with#, we can use
curses for this and use the addstr method. In the following render method, we
looped the entire body_list of the snake and added '#' to each instance:

 def render(self):
 for body in self.body_list:
 self.window.addstr(body.y, body.x, body.char)

Now, let's create the object of the Snake class. We can create it inside the name3.
== '__main__' pattern:

 if __name__ == '__main__':
 #code from preceding topic
 snake = Snake(SNAKE_X, SNAKE_Y, window)
 while True:
 window.clear()
 window.border(0)
 snake.render()

Object-Oriented Programming Chapter 6

[189]

In the preceding program, we created a snake object. Since the constructor of the Snake
class will be automatically invoked while creating an object of it, we passed in
the SNAKE_X and SNAKE_Y arguments, which provide the default position of the snake and
window, The window object screen is created by the newwin method from curses. Inside
the while loop, we used the snake object to invoke the render method, which will add a
snake in the game screen.

Although we have successfully rendered the snake into the game console, our game isn't
ready to test yet because the program is unable to address certain actions, for example,
whenever the user presses the LEFT, RIGHT, UP, and DOWN keys on the keyboard to
move the Snake character. We know that the curses module provides us with a method so
that we can get input from the user, and we can handle it accordingly.

Handling user events
As we saw in the previous chapter, it is really easy to take input from the user and handle it
using the curses module. In this section, we are going to add those methods inside the
Snake class because methods related to the user's actions are related to the movement of
the Snake character. Let's add a couple of methods inside the Snake class:

def change_direction(self, direction):
 if direction != Snake.REV_DIR_MAP[self.direction]:
 self.direction = direction

The preceding method is going to change the direction of the snake. Here, we have
initialized the REV_DIR_MAP directory, which contains the key and value that represent
their opposite directions. Thus, we pass the current direction to this method to change it
based on the event that's pressed by the user. The direction argument is inputted from the
user.

Now, it's time to extract the head and coordinates for the head of snake. We know that the
head position of the snake changes while the snake moves. Even when crossing the
boundary of the snake, we must make the snake appear from the other side. Thus, the
snake's head position will change according to the user's movements. We need to create a
method that can accommodate these changes. We can use the property decorator for this,
which will treat changing the head properties of the Snake class as a method. This works
like a getter. Don't be overwhelmed by these terms, as we will cover these in a later chapter
(List Comprehension and Properties). This being said, let's take a look at the following
example. This example will help you understand the @property decorator:

class Person:
 def __init__(self,first,last):

Object-Oriented Programming Chapter 6

[190]

 self.first = first
 self.last = last
 self.email = '{0}.{1}@gmail.com'.format(self.first, self.last)

per1 = Person('Ross', 'Geller')
print(per1.first)
print(per1.last)
print(per1.email)

#output
Ross
Geller
Ross.Geller@gmail.com

Now, let's change the value of the first attribute and print all those values:

per1.first = "Rachel"
print(per1.first)
print(per1.email)

#output
Rachel
Ross.Geller@gmail.com

You can clearly see that the change has not been reflected in the email. The name for the
email has been preserved from the previous value of Ross. Thus, in order to make the
program accommodate changes spontaneously, we need to make the attributes property
decorators. Let's make the email a property and observe the result:

class Person:
 def __init__(self,first,last):
 self.first = first
 self.last = last

 @property
 def email(self):
 return '{0}.{1}@gmail.com'.format(self.first,self.last)

The following code is executed in the Python shell:

>>> per1 = Person('Ross', 'Geller')
>>> per1.first = "Racheal"
>>> per1.email()
Racheal.Geller@gmail.com

The change we have made to the attribute has been reflected spontaneously in the attribute
of the class with the help of the decorator property. We will learn about this in detail in the
next chapter. This was just a quick introduction.

Object-Oriented Programming Chapter 6

[191]

We only covered it because it's an essential part of making the head attribute of the snake a
property decorator:

 @property
 def head(self):
 return self.body_list[-1]

 @property
 def coor(self):
 return self.head.x, self.head.y

The head method is going to extract the last element of the list, which indicates the head of
the snake. The coor method is going to return a tuple containing the (x,y) coordinates,
which represent the head of the snake.

Let's add one more function that will update the direction of the snake:

 def update(self):
 last_body = self.body_list.pop(0)
 last_body.x = self.body_list[-1].x
 last_body.y = self.body_list[-1].y
 self.body_list.insert(-1, last_body)
 self.last_head_coor = (self.head.x, self.head.y)
 self.direction_map[self.direction]()

The preceding update method is going to pop out the last part of the body and insert it
with the head position before updating the new head position.

Now, let's handle the user events using the curses module:

if __name__ == '__main__':
 #code from preceding topic
 #snake is object of Snake class
 while True:
 event = window.getch()
 if event == 27:
 break

 if event in [KEY_UP, KEY_DOWN, KEY_LEFT, KEY_RIGHT]:
 snake.change_direction(event)

 if event == 32:
 key = -1
 while key != 32:
 key = window.getch()

 snake.update()

Object-Oriented Programming Chapter 6

[192]

We learned about the working mechanism in the preceding code in the previous chapter, so
you shouldn't have any problems grasping it. Now, let's make the snake move in a certain
direction. Previously, in the Snake class, we added the direction_map attribute, which
held the dictionary mapping to different functions, such as move_up, move_down,
move_left, and move_right. These functions will change the position of the snake based
on the user's action:

#These functions are added inside the Snake class
 def move_up(self):
 self.head.y -= 1
 if self.head.y < 1:
 self.head.y = MAX_Y

 def move_down(self):
 self.head.y += 1
 if self.head.y > MAX_Y:
 self.head.y = 1

 def move_left(self):
 self.head.x -= 1
 if self.head.x < 1:
 self.head.x = MAX_X

 def move_right(self):
 self.head.x += 1
 if self.head.x > MAX_X:
 self.head.x = 1

We made this logic in the previous chapter and will make the snake move either up, down,
left, or right. We can imagine the screen as a matrix containing rows and columns. With the
up action, the snake will move in the Y-axis, and so the y position should be decreased;
similarly, with the down action, the snake will move to down the Y-axis, and so we need to
increment the y coordinate. For the LEFT and RIGHT movements of the snake, we will
have to decrement and increment the X-axis, respectively.

Now, that we have handled user events, this concludes the Snake class. It's time to handle
the collision, if there is one. We also have to add another character to the game, that
is, Food, which will be made by creating a new class.

Object-Oriented Programming Chapter 6

[193]

Handling collisions elp of decorator property.
No noble logic will be created in this section. We have to check whether the head of the
snake has collided with the body part of the snake. This should be done by checking the
coordinates of the head (y,x) against any of the coordinates of the snake's body. Thus, let's
make a new method, @property, which will check for the collision:

 @property
 def collided(self):
 return any([body.coor == self.head.coor
 for body in self.body_list[:-1]])

In the preceding example, any function will return True if any item in the iterable is True;
otherwise, it will return False. The statement inside the any function is a list
comprehension statement that checks whether the coordinates for the head of the snake are
the same as the coordinates for any part of the body of the snake.

Now, let's invoke this method with the snake object in our main loop:

if __name__ == "__main__":
 while True:
 #code from preceding topics
 #snake is Snake class object
 if snake.collided:
 break

Adding the food class
The next character we need to add to our game is Food. As we have already said, we have
to make a different class for each character because they should have different behaviors
and attributes. Let's create another class for the Food character. We will call this
the Food class:

class Food:
 def __init__(self, window, char='&'):
 self.x = randint(1, MAX_X)
 self.y = randint(1, MAX_Y)
 self.char = char
 self.window = window

 def render(self):
 self.window.addstr(self.y, self.x, self.char)

 def reset(self):

Object-Oriented Programming Chapter 6

[194]

 self.x = randint(1, MAX_X)
 self.y = randint(1, MAX_Y)

If you read the Python classes section in this chapter carefully, this section should not create
any confusion for you. To create a class in Python, we use the class keyword, followed by
the class name. However, we have to use parentheses to show inheritance. If you left the
parentheses empty, they will throw an error. Thus, we have added an object inside the
parentheses, which is optional. You can simply remove the parentheses and they will work
perfectly. We used the randint method from the random module to create food in a
random position. The render method is going to add the X character to the specified (y,x)
position.

Now, let's create the object of the Food class and render the food on the screen by invoking
the render method:

if __name__ == '__main__':
 food = Food(window, '*')
 while True:
 food.render()

As you may recall, the logic that we've created to make the snake eat the food is the same
logic that we used for the snake head coordinate colliding with the food coordinate. Before
we actually make that logic, we will make another method for the Snake class that will add
the logic for the aftermath of eating the food:

def eat_food(self, food):
 food.reset()
 body = Body(self.last_head_coor[0], self.last_head_coor[1])
 self.body_list.insert(-1, body)

The preceding logic is going to be called after the snake eats the food. After eating the food,
we will reset it, which means the food will be generated in the next random position. We
will then make an increment in the body position by adding the last coordinate of the food
to the body of the snake.

Object-Oriented Programming Chapter 6

[195]

Now, let's add some logic that will make sure we invoke this method. As we have already
discussed, the logic will be simple: whenever the head of the snake collides with the
position of the food, we will invoke the eat_food method:

if __name__ == '__main__':
#snake is object of Snake class
#food is object of Food class
 while True:
 if snake.head.x == food.x and snake.head.y == food.y:
 snake.eat_food(food)

curses.endwin()

Let's run our game and observe the output:

Finally, we have modified the game with the object-oriented paradigm. You might feel that
working with classes and objects is more complicated and lengthy, but with more practice,
you will become more comfortable with it. That being said, OOP has provided more
readability and reusability features in our program. As an example, if you find a bug in the
Snake character, you can simply track it down by overlooking the unnecessary code for the
food. Now, let's hop over to the next section, where we will test the game and make the
necessary modifications to it.

Game testing and possible modification
The curses application cannot be run directly from the Python script by pressing F5. Thus,
we have to run it externally from the command prompt with the filename.py command.

Object-Oriented Programming Chapter 6

[196]

Now, let's add the score to our game:

First of all, we have to initialize the score value as 0 at the Snake class. We will1.
also add a score method in the Snake class:

 class Snake:
 self.score = 0
 @property
 def score(self):
 return 'Score : {0}'.format(self.score)

Now, we have to increase this score every time the snake eats the food. The2.
method that will be called after the snake eats food is the eat_food method.
Thus, we will increase the score inside this method:

 def eat_food(self, food):
 food.reset()
 body = Body(self.last_head_coor[0], self.last_head_coor[1])
 self.body_list.insert(-1, body)
 self.score += 1

Now, let's render the score with the addstr method of the curses window object:3.

 while True:
 window.addstr(0, 5, snake.score)

The preceding statement will call the score method from the snake object and4.
add the score at the (0,5) position. Remember that, in curses, the first position is y
and the second is x.

Let's run our game one more time:

Object-Oriented Programming Chapter 6

[197]

Summary
In this chapter, we learned about one of the most important paradigms in
programming—object-oriented programming. We covered all the concepts of classes and
objects to make it easier for you to read and write your own code. We also explored how to
define the members of a class and access them. We got familiar with the features of the
object-oriented approach by implementing hands-on examples. We also learned about
inheritance, encapsulation, polymorphism, and method overriding. These features will be
used in upcoming chapters too, so make sure you have a good grasp of each of these topics.

In the next chapter, we will learn about list comprehension and properties. The aim of the
next chapter is to find a way to optimize code to make the program shorter and faster in
terms of its execution. We will look at how to work with conditions and logic in order to
implement one-line code that will be more readable and easier to debug. We will also use
that concept to modify our Snake game.

7
List Comprehension and

Properties
Necessity is the Mother of Invention is a popular English proverb which means that any
pioneer ideas that have been invented so far or will be invented are because of their need.
For instance, the giant video hosting platform YouTube became popular not only because
of its business model but also because of the time it was introduced. Many creative artists
such as video editors, singers, dancers, and gamers wanted the platform to be recognized
globally without any initial investments, and audiences wanted a platform where they
could learn and be entertained free of charge. Thus, the need is the driving force for any
new invention. However, this doesn't mean that every revolutionary idea that was created
at the right time succeeded. Some of them have failed miserably because they didn't
address the limitations that were posed by the technology. Our quixotic imagination is
fettered by these technologies, and, although we have been progressing, we are not there
yet.

Thus, in order to make any revolutionary ideas successful, we have to know our
limitations. Our primary limitations are memory space and processing power. Taking care
of these limitations, this chapter will teach us to write an elegant program that will save
memory storage and running time to some extent. We will learn about the comprehension
and generation that are provided by Python. They will make the program run faster while
maintaining its readability.

The following topics will be covered in this chapter:

Overview of code complexities
For loop versus list comprehension
Decorators
Python property
Refining the snake game with LC and property

List Comprehension and Properties Chapter 7

[199]

Technical requirements
You will need the following requirements to complete this chapter:

Python version 3.5 or newer
Python IDLE (Python's built-in IDE)
A text editor
A web browser

The files for this chapter can be found in this book's GitHub repository: https:/ / github.
com/PacktPublishing/ Learning- Python- by-building- games/ tree/ master/ Chapter07

Check out the following video to see the code in action:

http://bit.ly/2pzX8Au

Overview of code complexities
So far, we have been learning about the basics of Python, such as functions, data structures,
and object-oriented programming. Now, we are able to create our own logic and even
program some games too. As we continue to add features for these games, we are expected
to have millions of lines of code. Those huge lines of code (LOC) will be hard to
understand, interpret, and process. For example, in some cases, we may have to make a
trade-off between code maintainability and optimization. Let's suppose you maintain the
code for a shopping website and one day you got millions of hits on your website, which is
beyond the processing speed of your server. Now, you have to accommodate a situation in
which you must either serve the page without a delay and give the customers no proper
recommendations about products or serve the page with little delay and give proper
recommendations.

On the other hand, we may want to achieve some amount of code optimization. If any
program takes seconds to execute, then after optimization, we may want to run it within a
millisecond. Now, we may think this time is negligible, which it is on the first run.
However, when we have to run the same program a thousand times, we may cut off some
seconds and this could be potentially useful for any real-time applications.

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter07
http://bit.ly/2pzX8Au
http://bit.ly/2pzX8Au
http://bit.ly/2pzX8Au
http://bit.ly/2pzX8Au
http://bit.ly/2pzX8Au
http://bit.ly/2pzX8Au
http://bit.ly/2pzX8Au
http://bit.ly/2pzX8Au
http://bit.ly/2pzX8Au

List Comprehension and Properties Chapter 7

[200]

In this chapter, we will focus on the ways we can modify our code to improve its quality
and efficiency. Any original program can be said to have been optimized if we managed to
make its code shorter, reduce memory consumption and increase its execution speed and
the interaction of fewer input/output instructions. The basic canonization followed by
optimization is that the outcome of the optimization must have the same output and
consequences as that of the non-optimized one.

However, these requirements may be insignificant whenever the achieved optimized
program has favorable results over the non-optimized one in terms of time and space
complexities. For example, in the rocket-launch activities, we may want the real-time data
of the surrounding area while trading for the accuracy of the data. Thus, optimization is
important in such cases even though it might affect the system's output in one way or
another.

Before we learn about optimization, we will look at the necessity for it. In order to check the
room for optimization, we have to analyze the code first, and the prime way to analyze it is
by using complexity analysis. Algorithm complexity analysis is a tool that will explain the
behavior of the program as the size of the program increases. The size increases when input
to the program increases. Thus, we have to check the program against the
mathematical f(n) function, where n represents the input to the programs. Now, you may
be wondering whether running this algorithm may cause a difference in time units,
depending on the different computers that are used by companies such as NASA or Apple
Inc. as they will have higher processing power than our simple computer. Therefore, it
might be an injustice to judge the algorithm that is running on our PC. If you're ever faced
with such ambiguity, just pat on yourself on the back as you are thinking like a
programmer. To test whether the algorithm is independent of processing speed, disk
power, and powerful software, scientists have developed something called symptotic
analysis. This analysis will check the algorithm against the size of the input and without
recording the time it took to execute it. We call this time complexity, and it allows us to
check how the algorithm runs with respect to the size of the input data. To observe the time
complexity of the algorithm, the best and well-known notation we should use is Big-Oh
notation. This notation will help us analyze the worst-case scenario of the algorithm and
help us optimize it. Let's analyze the following complexities using some simple examples:

O(1): This notation is used to define the algorithms that are independent of
input size. Increasing or decreasing any sets of data from the input might not
affect the execution speed of the algorithm:

arr = [1,2,3,4,5]
for i in arr:
 print(arr[0])

List Comprehension and Properties Chapter 7

[201]

The preceding program is going to print the first element of the array, no matter
what data is in it. Thus, it has a time complexity of O(1). This is considered a
best-case scenario and is hard to achieve in a real-life scenario.

O(n): This notation describes the algorithm that will have a linear increase in
running time as the size of the input data, (n), increases. For example, in the
following program, the worst-case scenario may lead us to iterate over the whole
list. Thus, performance depends on the size of the input:

 n = int(input("Enter any number"))
 for i in range(1,100):
 if i == n:
 print(i)
 break

O(n2): This notation specifies the performance of algorithms, which is
proportional to the square size of the input data. It is highly common in nested
loops.

There are a few more notations, such as O(2N) and O(log N), but we don't need to go any
further as we have already learned enough so that we can differentiate between good and
bad code.

Now that we have gained enough information about optimization and the way we can
analyze algorithms, it's time to look at some examples to clarify the differences between
non-optimized and optimized code. Before diving into the algorithmic analysis of the
following code, we will learn how to analyze the complexities of the programs. Since this
book is not going to teach advanced algorithmic concepts, we will take a look at the basic
ideas to evaluate performance and optimization. This will provide you with a tool that will
help you write programs that are shorter, readable, and don't waste memory resources.
Thus, this practice will make us able to make proper decisions while differentiating
between the algorithms in terms of their efficient use of resources, which means time and
memory, depending on the scenario. Let's get started by taking a look at the following code:

for i in range(1, 10):
 for j in range(i):
 print(i, end='')
 print()

#output
1
22
333
4444

List Comprehension and Properties Chapter 7

[202]

55555
666666
7777777
88888888
999999999

In the preceding code, we used two nested for loops to get the desired output. In the case
of the first for loop, it takes all the elements of the range one by one and for each iteration,
we make a second for loop. For the second loop, we will have a range of the same elements
with the same number of counts. For example, for element 2, we will have [2,2] for the
second j loop, thus printing the same number multiple times. If you followed the preceding
chapters properly, this code shouldn't be hard to understand. Now, let's observe the fun
part. We know that the first i-loop is going to iterate into the whole range of datasets, which
will lead to the time complexity of O(n). The same goes for the j-loop. Thus, the total time
complexity will be O(n) * O(n), which will result in O(n2). This represents an expensive
algorithm. We have to try and convert the programs with nested loops into single loops, as
follows:

for i in range(1, 10):
 print (str(i) * i)

#output
1
22
333
4444
55555
666666
7777777
88888888
999999999

The preceding program contains a single for loop, and so it will loop the entire datasets
once, which will result in only O(n) and not O(n2).

You may be wondering why these things are so important and why we covered them in
this chapter. The answer is simple. Although in some applications written by Python, that
is, Android applications or websites, saving some milliseconds would be unnecessary. But,
in a large application that's handling gigantic amounts of data, this time measurement can
be increased. For example, let's think about an application calling a function to predict
whether the news is fake or not. Let's say the non-optimized code would take a few seconds
to make a prediction and that optimization would take some milliseconds. Here, the
quantity would seem small but imagine we are calling the same function 1 million times.
Now, calculate the time that would be saved as a whole: 277.5 hours.

List Comprehension and Properties Chapter 7

[203]

That's cumbersome, isn't it? Python provides two constructs to facilitate faster and efficient
processing of these huge data collections: comprehension and generators. There are three
types of comprehensions, that is, list, dict, and set. First, we will delve into learning about
list comprehension. Then, we will explore the other two (dict and set) by relating to them.

For loop versus list comprehension
Since we've been coding our program with loops since Chapter 3, Flow Control – Building a
Decision Maker For Your Game, we are quite familiar with looping patterns, especially for
loops. They are going to iterate through some items and, at each iteration, the iterating
variable is going to perform some manipulation. The power of for loops can be alleviated
by combining it with the appropriate data structure, like so:

new_list = []
for i in range(10):
 new_list.append(i)
print(new_list)

#output
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Python has another easier way of doing the same thing, and is known as list
comprehension. The output of list comprehension will always be a list, which will be the
result of the evaluation of the expression in the context of the for loop. This is followed by if
conditionals. The code that emulates the for loop with expressions and conditionals by
using list comprehension will be single-line code. Thus, code that's written using list
comprehension is shorter and easily maintainable. To understand how list comprehension
works, we have to be familiar with its pattern. We'll learn about the list comprehension
pattern in the next section.

List comprehension pattern
In this section, we will use list comprehension to modify the preceding code that was
written by a for loop. The result of list comprehension is a list. The pattern inside the square
bracket is an expression followed by a loop, as follows:

new_list = [i for i in range(10)]
print(new_list)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

List Comprehension and Properties Chapter 7

[204]

In the preceding code, the left-hand side object, that is, new_list represents the output list
that stores the result of list comprehension. On the right-hand side expression, the
statement enclosed by square brackets will result in list comprehension. First, we pass the
expression to be performed, then the loop and conditionals (if any). The following
illustration represents the pattern for list comprehension:

Let's take a look at a simple example to explain the preceding pattern:

even_power = [i * i for i in range(5) if i % 2 == 0]
print(even_power)
[0, 4, 16]

The first statement inside the square brackets represents an expression. There can only be a
single expression while we use list comprehension, unlike the body of a for loop. After the
expression, we apply spaces and provide iteration. We can add nested loops too. After
adding the iterations, we have to specify the conditionals, if there are any. List
comprehension is widely used to concatenate the elements of two lists and create a new
one, like so:

numbers = [1,2,3,4,5]
alphabets = ['a','b','c','d','e']

new_list = [[n,a] for n in numbers for a in alphabets]
print(new_list)

[[1, 'a'], [1, 'b'], [1, 'c'], [1, 'd'], [1, 'e'], [2, 'a'], [2, 'b'], [2,
'c'], [2, 'd'], [2, 'e'], [3, 'a'], [3, 'b'], [3, 'c'], [3, 'd'], [3, 'e'],
[4, 'a'], [4, 'b'], [4, 'c'], [4, 'd'], [4, 'e'], [5, 'a'], [5, 'b'], [5,
'c'], [5, 'd'], [5, 'e']]

The preceding code was able to create a complex list of lists. The comprehensions are not
only limited to lists; there's also dict and set comprehensions. As for the list, we used square
brackets to perform comprehension. For set and dict comprehension, we need to use curly
braces {}. Note, however, that the patterns will be similar for all of these comprehensions.
Let's take a look at an example:

dict_comp = {x:chr(65+x) for x in range(1, 6)}
print(dict_comp)
{1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}

List Comprehension and Properties Chapter 7

[205]

The preceding code represents the usage of dict comprehension. The pattern is similar to
list comprehension except we use curly braces to perform comprehension. The result of dict
comprehension will be a dictionary. Similarly, in the case of set comprehension, the result
of comprehension will be set. This is shown in the following code:

set_comp = {x ** 2 for x in range(5) if x % 2 == 0}
type(set_comp)
print(set_comp)

#output
<class 'set'>
{0, 16, 4}

Before wrapping up this section, we have to cover two powerful built-in functions of
Python that manipulate the data of collections faster than ever. If you ever got a chance to
learn about big data, you should have heard these two words: zip and map. Python has
provided these two functions in order to work with a high amount of data with minimal
load and faster computation. Let's look at a simple example to understand the concepts of
zip and map. Let's say we have two lists containing limited integers. Now, you have to
write a program to create a new list that will store the smallest number from each of them.
A comparison will be made between the elements that have the same indexes:

Input: a = [2,3,4,5,6,7] and b = [0,3,2,1,3,4]
Output: [0, 3, 2, 1, 3, 4]

The most simple and conventional approach is shown in the following code:

a = [2,3,4,5,6,7]
b = [0,3,2,1,3,4]
result = []
length = len(a)
for i in range(length):
 result.append(min(a[i],b[i]))
print(result)
#output
[0, 3, 2, 1, 3, 4]

Now, let's learn about the other way we can perform the preceding computation. This is
done with a single line of code which is made by using the zip and map functions. The zip
function is a simple Python built-in function that takes two objects of equal length and
merges them together. If you pass two lists of equal length to the zip function, it will
merge it into a single one so that computation can be performed within a single object. This
is shown in the following code:

>>> numbers = [1,2,3]
>>> letters = ['a','b','c']

List Comprehension and Properties Chapter 7

[206]

>>> list(zip(numbers,letters))
[(1, 'a'), (2, 'b'), (3, 'c')]

We know that the comparison between the numbers should be made since they have the
same indexes. Thus, we can combine the original array of numbers with the zip function so
that we can store tuples of numbers in the single list, like so:

>>> list(zip(a,b))
[(2, 0), (3, 3), (4, 2), (5, 1), (6, 3), (7, 4)]

Map function
The prime task of programming is to perform a computation. The operation that's done on
elements can be done independent of one another; that is, we can perform a comparison on
lists a and b separately, like we did in the preceding code, or simply merge them so that
comparison can be done faster. The zip method is able to merge two objects that are the
same length into a new iterable. Now, the major task is to create a comparison operation
and use it on each element of the iterable, which is done by using the map function. The map
function takes some function and applies it to each of the elements of the iterable.

According to Python's official documentation, map can be described as follows:

Map applies a function to every item of iterable and returns a list of the results. If additional iterable
arguments are passed, the function must take that many arguments and is applied to the items from
all the iterables in parallel. If one iterable is shorter than another, it is assumed to be extended with
None items. If the function is None, the identity function is assumed; if there are multiple
arguments, map() returns a list consisting of tuples containing the corresponding items from all the
iterables (a kind of transpose operation). The iterable arguments may be a sequence or any iterable
object; the result is always a list.

The argument that's passed when we call map function is a function that's followed by
iterables. Normally, we use an anonymous or lambda function, such as some_function,
which takes some positional arguments and returns them as a tuple. This is shown in the
following code:

map(some_function, some_iterables)

Let's create a simple example to illustrate the use of the map function:

>>> map(lambda x: x*2, (1,2,3,4))
<map object at 0x057E9AF0>

List Comprehension and Properties Chapter 7

[207]

The preceding code was not fruitful as the map function doesn't return any iterables or
objects. Instead, it prints the string representing the map object. To achieve a desirable
result, we have to wrap the map method with a list constructor, like so:

>>> list(map(lambda x: x*2, (1,2,3,4)))
[2, 4, 6, 8]

Now, we will use the concepts of the map and zip functions to find the list of minimum
elements from the two lists. The following code is pretty simple; we started by defining two
arrays. After that, we used the map function, which will take the lambda function
containing the comparison operation and zip method and merge the two arrays into the
list of tuples. Each pair of tuples made by the zip method are passed to lambda functions
for comparison:

>>> a = [2,3,4,5,6,7]
>>> b = [0,3,2,1,3,4]
>>> list(map(lambda pair: min(pair), zip(a,b)))
[0, 3, 2, 1, 3, 4]

With the power of map and zip, we can do anything, similar to list comprehension. With
the preceding program complete with list comprehension, the map function, and a for loop,
we can see the following runtime performance:

For Loop: 4.56s
List comprehension: 2.345s
Map: 2..11s

Thus, these three features of Python primarily enable the manipulation of collections faster
than anything. But in terms of code maintainability and readability, list comprehension
tops the list as it provides us with a way to customize the inner workings of programs
effectively. Now, it's time to learn about another feature of Python, known as decorators.
These allow us to modify the functionality of an existing object without modifying its
current structure.

Decorators
A decorator is a design pattern that adds new functionality to an existing object without
deferring its original structure. We must be comfortable with the fact that everything in
Python is an object – even functions. The different names that are used for defining these
objects are just their identifiers. Let's run the following code:

def fun1(info):
 print(info)

List Comprehension and Properties Chapter 7

[208]

fun1("Good Morning")
fun2 = fun1
fun2("Good Morning")

When we run the preceding code, the fun1 and fun2 functions print the same output of
"Good Morning" as both refer to the same objects (functions). Thus, functions are just
objects with attributes. Let's get back to decorators. In a basic sense, a decorator is a
construct where a part of the program tries to change the behavior of another part of the
program at compile time. In the case of functions, the decorator takes a function, adds
unique functionality to it, and eventually returns it, as follows:

def decorate_it(func):
 def inner():
 print("Decorated")
 func()
 return inner

def non_Decorated():
 print("Not-Decorated")

Now, let's try to run the preceding code from the Python shell:

>>> non_Decorated()
Not-Decorated

#now try to decorate the above function
>>> decorate = decorate_it(non_Decorated)
>>> decorate()
Decorated
Not-Decorated

In the preceding example, decorate_it() is a decorator that takes a non-decorated
function as an argument. The decorate = decorate_it(non_Decorated) statement is
an assignment, where the Non_Decorated function was passed to the decorator and it
returned the function called decorate. Thus, we can conclude that decorators are callables
that return a callable. In the preceding example, we can see that
the decorate_it() decorator added some functionality to the non_Decorated or
ordinary function. When decorators started getting famous, the introduced design pattern
was based on decorating the function first and returning to the name of the second callable,
just like we did in this example. However, programmers found this job to be redundant.
Thus, they developed another syntax that simplified the preceding construct: using the@
symbol.

List Comprehension and Properties Chapter 7

[209]

To decorate an ordinary function, we use the @ symbol, along with the decorator's name,
and place it at the top of the non-decorated function, like so:

@decorate_it
def non_Decorated():
 print("Not-Decorated")

The preceding code is auxiliary to the following code, which we wrote earlier:

def non_Decorated():
 print("Not-Decorated")

decorate = decorate_it(non_Decorated)

Let's look at another example. We want to make a decorator that acts like an exception
handler that throws error messages whenever unusual activity is encountered by the
programs. The preceding decorator was simple since it wasn't concerned about the
argument that was passed to the inner function. Now, we are going to make a program that
will multiply any two numbers but also handle the error if any other data is passed, such as
a string or complex numbers:

def multiply(a,b):
 print(a*b)

>>> multiply(2,5)
10
>>> multiply('c', 'f')
TypeError: can't multiply sequence by non-int of type 'str'

Now, we will try to make a decorator that will check whether we got an exception, like in
the preceding code, and handle it automatically:

def smart_multiply(func):
 def inner(a,b):
 if (a.isdigit() and b.isdigit()):
 a = int(a)
 b = int(b)
 print("multiplying",a," with ",b)
 return func(a,b)
 else:
 print("Whoops!! Not valid multiplication")
 return
 return inner

@smart_multiply
def multiply(a,b):
 print(a*b)

List Comprehension and Properties Chapter 7

[210]

a = input("value of a: ")
b = input("value of b: ")
multiply(a,b)

As soon as you run the previous code, you will be asked for entries in the Python Shell. You
have to enter two entities for a and b, and then the code does the rest:

value of a: 4
value of b: 5
multiplying 4 with 5
20

Let's run the preceding code one more time. This time, we will input the values of a and b
as strings:

value of a: t
value of b: y
Whoops!! Not valid multiplication

As you can see, the inner function of the decorator has the same number of arguments as
those that were passed in by the non-decorated function. Thus, generalization can be done
with inner(*args, **kwargs), where args is the tuple of positional arguments and
kwargs represents the dictionary of keyword arguments. Now, we can make decorators
that will work with any number of arguments, as follows:

def universal(func):
 def inner(*args, **kwargs):
 print("It works for any function")
 return func(*args,**kwargs)
 return inner

Thus, at compile time, decorators modify the operations of the original function, methods,
or even classes without altering the code of the objects being decorated. This ultimately
leads to the use of don't repeat yourself (DRY) technique. In the next section, we are going
to learn about the @property decorator – a built-in decorator of Python for implementing
the property() function. As you may recall from the previous chapter, this construct of
@property has already been used and it was defined as a Pythonic way of implementing
getters and setters. Now, we will learn about it in detail.

List Comprehension and Properties Chapter 7

[211]

Python property
To understand the usage of the property in the first place, we have to recall one of the
principles of the object-oriented paradigm: data encapsulation. This bundles the data with
the methods as a single capsule. The methods that are going to get and set the attributes of
the classes are getters and setters. This principle of OOP infers that the attributes of the
class must be made private so that accident modification or theft is prevented. Let's look at
a simple example to begin:

class Speed:
 def __init__(self, speed = 0):
 self.speed = speed

 def change_to_mile(self):
 return (self.speed*0.6213,"miles")

In the preceding code, we made a class called Speed that stores the speed of the vehicle in
kilometers. It has members as a method that converts kilometers into miles. Now, we can
make the objects of the Speed class and manipulate the members of this class as we like.
We will use the Python Shell for this, like so:

>>> car = Speed()
>>> car.speed = 45
>>> car.speed
45
>>> car.change_to_mile()
(27.958499999999997, ' miles')

Whenever assignment is done to the attributes of the class, the Python interpreter maintains
the dictionary where the attributes and their values are maintained as key and value. In the
case of the Speed class, we can retrieve any attributes of the object, that is, speed, with
__dict__ attributes:

>>> car.__dict__
{'speed': 45}

Thus, whenever we execute the car.speed operation, the Python interpreter makes a
search in the preceding dictionary and fetches the value as car.__dict__['speed'].

Now, let's assume that the preceding code became popular worldwide in the field of traffic
control. One day, traffic police argued that there should be constraints in terms of the speed
of a vehicle so that law can be enforced. Now, we have to modify the code in such a way
that, if any driver drives too fast, the program provides them with a warning message. We
can do this using getters and setters. Inside the setter method, we can explicitly check the
maximum speed of the vehicle using conditionals. This can be done as follows:

List Comprehension and Properties Chapter 7

[212]

class Speed:
 def __init__(self, speed = 0):
 self.set_speed(speed)

 def change_to_mile(self):
 return (self.get_speed*0.6213," miles")
#new updates are made as follows using getter and setter
 def get_speed(self):
 return self._speed
 def set_speed(self, km):
 if km > 50:
 raise ValueError("You are liable to speeding ticket")
 self._speed = km

In the preceding code, two major modifications were done and we are familiar with them.
They are the getter: get_speed method and setter: set_speed method. Another
change that was made in the code is the signature of the attribute. The speed attribute
begins with a single underscore, which makes it private (data encapsulation). Try the
following code in the Python Shell:

>>> car = Speed(30)
>>> car.get_speed()
30
>>> car.set_speed(38)
>>> car.get_speed()
38
>>> car.set_speed(70)
ValueError: You are liable to speeding ticket

The update to the original program was successfully reflected with new ranges of
restriction. The driver is not allowed to drive their vehicle at a speed of more than 50km/hr.

Now, let's run the preceding code and observe the overhead that might be caused by the
new updates. We can simply compare the code that was written with the getter and the
setter with the code that was written without them. A major headache will arise when you
try to accommodate the original code with the new changes as you have to modify your
code from calling the attributes of the car.speed object to calling the attributes
of car.get_speed(). The constructor must be changed to car.set_speed (speed). We
might find it easier to make changes in this program, but imagine if the program had
10,000+ lines of code. It would be a hard time for any programmer to update and
synchronize it with the new code. Now, here comes the property decorator in action. The
following code solves this problem for us:

class Speed:
 def __init__(self, speed = 0):
 self.speed = speed

List Comprehension and Properties Chapter 7

[213]

 def change_to_mile(self):
 return (self.speed*0.6213," miles")

 @property
 def speed(self):
 return self._speed
 @speed.setter
 def speed(self,km):
 if km > 50:
 raise ValueError("You are liable to speeding ticket")
 self._speed = km

Since we are familiar with decorators, the preceding construct should be familiar to us.
Now, let's run our code in the Python Shell:

>>> car = Speed(40)
>>> car.speed
40

Using the property construct, we modified our original class and provided some
constraints too. But this time, we removed the changes we made, such as get_speed and
set_speed, that were added by the getter and the setter. Thus, the traffic control system
can use this new code without making any changes to the original code, which leads to
backward compatibility.

We also have another way of implementing the preceding code, which is by using
the property() function. The following code is equivalent to the preceding code being
written with the @ property construct:

class Speed:
 def __init__(self, speed = 0):
 self.speed = speed

 def change_to_mile(self):
 return (self.speed*0.6213," miles")
 def get_speed(self):
 return self._speed
 def set_speed(self, km):
 if km > 50:
 raise ValueError("You are liable to speeding ticket")
 self._speed = km
 #using property
 speed = property(get_speed,set_speed)

List Comprehension and Properties Chapter 7

[214]

The last line of the preceding code makes an object of the speed property. Remember that
the property must be made out of those attributes, which are likely to be changed. We
added some code that creates the object of property and inside parenthesis, we passed the
getter and setter method. Now, any program that uses the value of speed will invoke the
get_speed method automatically and any program that assigns the value of speed will
invoke the set_speed method without having to look up dictionary(obj.__dict__),
which is managed by class.

Now, let's use our knowledge of list comprehension and property that we learned about in
this chapter to modify our snake game.

Refining the snake game with LC and
property
This section will be kept as concise as possible because there is nothing new to cover. Now
that we have learned about list comprehension and property in detail, we should be able to
cover this topic quickly, as we discussed in the summary of the previous chapter. Just as a
recap: list comprehension is a technique that is used to create a new list of elements from
other iterables. A list comprehension statement consists of square brackets containing
transformation that must be made for each element, along with a for loop. This is followed
by some conditions. On the other hand, the @property or property() constructs are the
Pythonic way of implementing getters and setters.

Let's go over some of the refinements we can make to our snake game:

First, we can make a function that will check the collision of the snake with the1.
boundary or with itself. For example, if the coordinate (x,y) for the head of the
snake is the same as the coordinate for its body, we have a collision. This logic
can be made with list comprehension: [body.coor == self.head.coor for
body in self.body_list[:-1]]. The following expression is going to store a
Boolean that's either True or False in the result list. The body.coor ==
self.head.coor comparison is going to be made for every position
representing the body of the snake. The following lines of code represent a
function that returns either True or False based on the check for collision:

 def collided(self):
 return any([body.coor == self.head.coor
 for body in self.body_list[:-1]])

List Comprehension and Properties Chapter 7

[215]

Secondly, we can decorate the preceding method with the @property construct.2.
Since we've covered it in detail, this should not create any confusion for us. If
there is, let me enlighten you. The main use of @property is to support
backward compatibility. We can modify the specifications of classes and
implement the constraints without actually modifying the code of the previous
versions that are distributed to the clients. Similarly, we can decorate a score
function with @property since we need to update its time value. Thus, in order
to continually access the score method as an attribute, we can add the property
we decorated previously, like so:

 @property
 def score(self):
 return 'Score : {0}'.format(self.score)

The preceding implementation of property and list comprehension is both an easy and
efficient way of making code more readable and maintainable. We are going to find these
types of constructs more often while programming with Python at an enterprise level.

Summary
This chapter has uncovered the advanced concepts of comprehension and generation,
followed by some examples and its applications in the real-world. We saw the usage of
comprehension and some of the built-in functions of Python such as map and zip, which
over-shadowed the performance of for loops. Although these concepts of comprehension
and mapping may seem overrated, we usually find it helpful if we have gigantic lines of
code where performance matters rather than code readability. We also explored decorators
in this chapter, which added some extra functionality to the existing code without affecting
its original substance. Then, we learned about the concepts of the property decorator,
which is a Pythonic way of implementing getters and setters while maintaining backward
code compatibility.

From the next chapter onward, our main goal will likely be lean toward game
programming. We have successfully learned about the essentials of Python in order to
become proficient game programmers. Now, we will learn about the graphical user
interface and ways of making it using modules provided by Python, such as turtle and
pygame. But before we hop over to the next chapter, make sure you are playing with the
code we've written so far properly. It is a very important thing for any programmer to be
able to read the code by breaking it line by line. If you already have enough confidence in
your skills, proceed to the next chapter, where we will look at the turtle module, which is a
basic way of drawing shapes into the game screen.

8
Turtle Class - Drawing on the

Screen
Not so long ago, programmers, especially game programmers, would face many intricacies
while building programs. No wonder! Back then, there wasn't enough assistance from the
internet portal, including no stack overflow, but more than that, there were no universal
tools that programmers could use; they had to create one first and use it in the programs.
The tools they created would handle some game specifics (specific drivers for sound and
graphics). Programmers had to create games using assembly language due to the meager
resources available, which would be trade-offs for processing power, display, sound, and
control routines. Even the worst scenario would be encountered at the time of debugging.
They would need complex and expensive machines in order to replicate their programs,
and they would also have logging and debugging extensions. The main goal of this chapter
will be to make us familiar with two-dimensional (2D) space drawing using turtle, along
with the event handling method of turtle, and to create simple 2D idle animations.

At the time of writing, we have made gargantuan progress in the gaming industry. We
have created tools that allow us to use any programming language in order to make games,
such as Python and C (low-CPU-demanding games). All of the low-level routines are
hidden by higher-level software due to the communication of device drivers. The high-level
languages such as Python are abstract; they provide less access to the lower-level functions.
We can group multiple things together as classes that can inherit characteristics from
another class, which removes the duplication of code. Python provides modules such as
turtle and Pygame, which contain a bunch of methods for designing game characters and
handling user events. In this chapter, we will learn about the turtle module. Each of the
things that will be built from this chapter onward will use techniques from the preceding
chapters—with the addition of a few notable characteristics.

Turtle Class - Drawing on the Screen Chapter 8

[217]

The following topics will be covered in this chapter:

Overview of turtle
Technical requirements
Introduction to turtle commands
Turtle events
Drawing shapes with turtle

Technical requirements
This section takes you through the basic Python graphical programming module and its
working. Therefore, you are expected to have the following resources:

Python 3.5 or later; refer to Chapter 1, Getting to Know Python – Setting Up Python
and the Editor
Python IDLE
A text editor
A keyboard
A mouse (a laptop's touchpad won't work)

The files for this chapter can be found here: https:/ /github. com/ PacktPublishing/
Learning-Python- by- building- games/ tree/ master/ Chapter08

Check out the following video to see the code in action:

http://bit.ly/2pAmrCs

Understanding the turtle module
Just like the different components of a computer are equally important in order to provide a
better computing experience, we also need the different components of a computer to work
together in order to provide a better gaming experience. The video card of the computer is
responsible for computing the visual images of the screen and then modularizing the image
signal before sending it to the monitor. The input devices such as the mouse, keyboard, and
joysticks are required to handle user events according to the programs. The audio card is
required to process the audio signals and then send them to output devices such as the
speaker. At the early age of game programming, programmers needed to read the technical
manual for each of these devices separately and code each of them in isolation. This meant
making communication between them would take a single year, even for simple games.

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter08
http://bit.ly/2pAmrCs
http://bit.ly/2pAmrCs
http://bit.ly/2pAmrCs
http://bit.ly/2pAmrCs
http://bit.ly/2pAmrCs
http://bit.ly/2pAmrCs
http://bit.ly/2pAmrCs
http://bit.ly/2pAmrCs
http://bit.ly/2pAmrCs

Turtle Class - Drawing on the Screen Chapter 8

[218]

However, with advancements in technology—and drivers in particular—programmers
obviated the headache of making communication between these devices and the operating
system manually.

Although we developed a simple program known as drivers, which acts as a common
interface to communicate with different devices, different hardware and version
incompatibilities made programmers' lives harder when they were developing games that
could be played across multiple platforms. Luckily, we have Python, a language that has
the adept capability to make programs that can be platform independent. Turtle is the
Python module that provides the drawing board that can be used to create pictures and
packets. It is believed that the turtle module is the sister of another popular programming
language from the 90s—Logo—which had an imaginary icon of a turtle, and a pen, which
was used to draw over the screen. Python's standard library, turtle, is similar to the Logo
programming language. In order to use the turtle module, we have to import it. Importing
it is easier as it comes packed as a standard Python library and it does not need to be
installed manually. The following steps explain how to make any turtle application:

Import the turtle module with the import command. If you ignore this step,1.
there won't be any interface to control turtle.

Create a turtle to control. This step is used to instantiate turtle in order to create a2.
new turtle controller, for example, game = turtle.Turtle().
After creating a control, we use the new turtle to draw and carry out multiple3.
tasks in the drawing screen by calling the methods of the turtle module.
We need to call one important method explicitly, which holds the game screen,4.
that is, turtle.done(). This method will pause the program. You need to close
the window manually in order to close the application.

In a turtle package, when we run the program that is made by calling the methods of the
turtle module, a new window will appear with a pen, along with the shapes that are drawn
by the turtle commands. Let's learn about a few important turtle commands.

Turtle Class - Drawing on the Screen Chapter 8

[219]

Introduction to turtle commands
The turtle module comes with multiple commands in the form of methods that can be used
independently. There are methods to make the pen move forward and backward, and some
to create shapes. Take a look at the following table to find out about the most important
turtle commands. You can read about them in detail on their official Python documentation
pages:

Method Parameter Description
Turtle() None Creates and returns a new turtle object.
forward() Distance Moves the turtle forward by the specified amount.
backward() Distance Moves the turtle backward by the specified amount.
right() Angle Turns the turtle clockwise.
left() Angle Turns the turtle counter-clockwise.
penup() None Picks up the turtle's pen.
pendown() None Puts down the turtle's pen.
up() None Picks up the turtle's pen.
down() None Puts down the turtle's pen.
color() Color name Changes the color of the turtle's pen.
fillcolor() Color name Changes the color that the turtle will use to fill a polygon.
heading() None Returns the current heading.
position() None Returns the current position.
goto() x, y (positions) Move the turtle to position x, y.
begin_fill() None Remembers the starting point for a filled polygon.
end_fill() None Closes the polygon and fills it with the current fill color.
dot() None Leaves the dot in the current position.

stamp() None Leaves an impression of a turtle shape at the current
location.

shape() Shape name Should be arrow, classic, turtle, or circle.

In the preceding table, we can guess the result of calling those methods by observing the
literal meaning of the method's name. For example, the forward(amount) method is going
to move the pen forward with the amount specified as the argument. All of these methods
are used to plot different shapes into the drawing canvas of turtle. Observe the first >>>
Turtle() method. This will return the object of turtle, which must be used in order to
invoke these methods. As an example, we are going to make a program that will draw a
line onto the screen. The following is the code for this example:

Turtle Class - Drawing on the Screen Chapter 8

[220]

import turtle

pacman = turtle.Turtle()
pacman.forward(100)

turtle.done()

We can observe the following output by running the preceding code:

Along with the Python shell, the new screen, like the preceding one, should pop out, and
this represents the turtle drawing board. Initially, the pen attached to the imaginary turtle
will reside at the center of the drawing board. Any method call from the turtle object must
manipulate the movement of the pen. The preceding code can be explained in the following
steps:

First, we have to import turtle, which is a first step that will make sure all the1.
commands that reside inside the turtle class will be available for us to use.
The second step is to create a turtle controller, and we refer to it as pacman.2.
Then, we make a movement of 100 pixels from the point that pacman is facing.3.
Initially, the pacman turtle controller was facing toward the right; thus, the pen
moved 100 pixels to the right from the center, creating the straight line.
Finally, turtle.done() is going to pause the turtle drawing board screen so4.
that we can observe the output clearly. In order to close the turtle screen, we
have to manually close the Python shell or the turtle graphics screen.

Turtle Class - Drawing on the Screen Chapter 8

[221]

We've just learned how to create a straight line, but the lines look boring and do not add
any aesthetics to the program. It's time to learn how to use another method, which is going
to turn the pen in another direction. For example, we may want to change the direction of
the pen from where it was originally facing to another direction:

import turtle

pacman = turtle.Turtle()

pacman.forward(50)
pacman.right(90)

pacman.forward(50)
pacman.right(90)

pacman.forward(50)
pacman.right(90)

pacman.forward(50)
pacman.right(90)

turtle.done()

We are already familiar with the forward method, and alongside it, we have now
introduced the right() method. If you have a look at the previous table of methods, you
will see that the right method and angle have been passed as arguments. Thus, this
method is going to perform some rotation, accompanied by the angle that was passed along
with it. Since we passed 90 degrees to it, this method is going create a 90-degree clockwise
rotation. If you want to rotate the pen anticlockwise, we have to call the left method and
specify the angle of rotation. In the preceding program, we rotated it by 90 degrees. The
geometrical shape that has all angles of 90 degrees is either the square or the rectangle.
However, we know that the forward method will result in a straight line, which is the
same as the sides of geometrical shapes. The sides that are created by the forward method
will be equal in length, which is 50, and this is passed as an argument with the forward
method. With all this evidence, we can surely expect the square shape to be drawn in the
turtle board. Let's run the preceding code to observe the output. As expected, the square
shape is drawn:

Turtle Class - Drawing on the Screen Chapter 8

[222]

Have a closer look at the preceding code; did you see some repetition of code? Obviously,
the invocation of the forward and left methods is done multiple times, which ultimately
disrespects the DRY principles. This epiphany does not come without practicing the
paradigm of Python. Thus, we can say that practice is what differentiates good and bad
programmers. Now, recall what we need in order to eliminate the redundancy of the code;
we should use either loops or functions. We will use a loop here:

import turtle

pacman = turtle.Turtle()
for i in range(4):
 pacman.forward(50)
 pacman.right(90)

turtle.done()

I guess we won't have any problems in reading and understanding this code. As we
mentioned in Chapter 3, Flow Control - Building a Decision Maker For Your Game, we can
create an iteration level with a range of functions. Since we need to run these methods four
times, we have created four iterations using the range function. Anything that needs to be
repeated is indented by four blocks inside the scope of the for loop.

One thing to notice in this example is that we have multiple methods for handling the
movements of the pen in the drawing screen. The two turtle commands that we have
learned so far are forward(amount), which moves the turtle forward in the direction it is
facing with some amount, and right(degree), which makes the turtle turn clockwise by a
specified degree. Notice here that the right and left commands are not going to write
anything on the screen; instead, they are used for rotation only.

Turtle Class - Drawing on the Screen Chapter 8

[223]

Following the patterns of everything that we have learned so far, we can predict that the
backward method is going to move the pen in the backward direction from the original
direction that it was facing by a specified amount. I recommend that you try modifying the
preceding code a little bit—by refactoring the forward method using backward, and by
refactoring right using left—and observe the result accordingly. I would like to take the
time to conclude this topic here, without covering other functions, because we will go
through each of them while making games in the upcoming chapters. We will make
multiple games, such as the Snake game, the Pong game, and Flappy Bird using the turtle
module. Now, we will explore the ways we can connect input devices, such as a mouse and
a keyboard, to our game so that players can interact with the turtle environment.

Exploring turtle events
As we mentioned in the previous chapters, handling the events of a user is one of the prime
building blocks for creating any game. The event represents the action that needs to be
performed at any time during the game. Have you ever wondered how the events are
handled by programs at the low levels? When a user executes any event using the keyboard
or mouse, that request is stored in a queue-like structure. The queue structure is important
because the order of handling these events must be on a first come, first served basis. Then,
according to the behavior of the user actions, events are handled by the program. These two
tasks of rendering and action handling are performed independently by the programs. For
example, in a counter strike game, the user can shoot from their gun, even when enemies
are not around them. Here, the event is the user pressing a key to fire the gun and the
rendering task is spawning the enemies around the player. These two tasks are not
executed independently unless we write programs to make them. In this section, we are
going to learn how to take a user action as an input, and handle it accordingly. Handling
the user actions means serving the actions that are stored in the queue structure.

Most of the events are based on the use of a mouse or a keyboard, but some events must be
predicted automatically by the program and handled accordingly, such
as the ontimer(fun, time) method. This method takes two arguments: function and
time in milliseconds. This method sets a timer that calls the fun function after time in
milliseconds. Let's make a simple program to understand this:

import turtle
star = turtle.Turtle()

exit = False
def main():
 if not exit:
 for i in range(100):

Turtle Class - Drawing on the Screen Chapter 8

[224]

 star.forward(i)
 star.right(144)
main()
turtle.mainloop()

The last line of code (turtle.mainloop()) simply performs the same operations that are
carried out while looping. Until, and unless, the user exits the window screen explicitly, the
call to the main function will not be terminated. Its importance can be observed when the
program has a while loop, which is used to listen to the incoming connection, but we don't
want the computer to be constantly focused on the one case:

def draw_objects():
 #statements
 draw_objects() #may be you want to call it within the time interval
 of 100ms

draw_objects()
turtle.mainloop()

The previous code works in exactly the same way as a while loop, but now the Python
parser is not dedicated to performing only one task constantly. Instead, for every 100
milliseconds, draw_objects() tasks will be performed, and for the remaining 99.99
milliseconds, the Python parser is free to carry out any other tasks.

Interestingly, the preceding code represents the proper outcome of any turtle program.
Although calling a different function would make a different character on the screen, the
main aim of using turtle is to render the game character onto the screen. Let's break down
the preceding code into the following points:

The first couple of steps represent importing turtle and creating a turtle
controller, which will allow us to call all the turtle methods through it.
We have created a main function, and inside it, we have some code to create a
star pattern. The iteration is 100 times, which means we will have 100 stars
printed onto the output screen, but remember, they will be closely spaced.

The best way to render the characters properly in the screen is by using the ontimer
method. Let's modify the same program with the ontimer method. Let's see how we can
use it in the program:

import turtle
star = turtle.Turtle()

exit = False
def main():
 if not exit:

Turtle Class - Drawing on the Screen Chapter 8

[225]

 star.forward(50)
 star.right(144)
 turtle.ontimer(main,500)
main()

Unlike before, the preceding program is not going to print multiple stars; instead, it prints a
single one. However, the ontimer method removes the overhead of calling the for loop
since it sets the timer to call the same function again and again. In this program, we passed
the main function and 500 as arguments, which means that the main function should be
called in every 500 milliseconds. Running the preceding program will yield the following
output:

It's time to learn how to handle keyboard and mouse events. As always, there are methods
that have been defined to handle keyboard events and methods that have been defined to
handle mouse events. But, before handling user events, turtle must launch a listener, which
continuously remains awake to listen to any events. Such a listener controller is created
using the listen method, that is, >>> turtle.listen(). The following table depicts the
methods that are used to handle keyboard events:

Method Name Parameters Description

turtle.onkeypress(function, key
= None)

Function: A
function with no
arguments or None.
Key: A key in the
form of strings or
symbols, for
example, q or
space.

It is used to bind the
function to any key events
that are pressed on a
keyboard. If no key is
specified, any key will work.

Turtle Class - Drawing on the Screen Chapter 8

[226]

turtle.onkeyrelease(function,
key)

Function: A
function with no
arguments or None.
Key: A key in the
form of string, a, or
symbols, enter.

It is used to bind the
function to key-release
events that are performed
by key actions. If the
function is None, the
binding of events is
removed.

Let's make a simple program in order to grasp the idea of using these methods of handling
keyboard actions:

import turtle
star = turtle.Turtle()
def main():
 for i in range(30):
 star.forward(100)
 star.right(144)
turtle.onkeypress(main,"space")
turtle.listen()
turtle.mainloop()

Let's run the program and observe the output. After pressing F5, you will observe two
screens, one of which will have the turtle graphics board and pen at the center of it. Now,
press the Spacebar key on the keyboard. As soon as you press it, it starts to draw a star onto
the screen.

Inside the main function, we have added some code that will make a star. However, as you
can see, the main function has not been called explicitly, as we normally do while calling
functions; instead, it is called using the onkeypress method. This method binds the key to
the function, and whenever the key is pressed, the function is called automatically. If you
remove the last line from the preceding code, the listener controller is not going to work.
The listen method is used to make a controller for listening incessantly to these types of
actions.

In a similar fashion, we can call the onkeyrelease method. Replace onkeypress with
onkeyrelease in the preceding code and observe the output. The output is going to be the
same. The onkeyrelease method is used to bind the function to be called with the key-
release event of the key.

Turtle Class - Drawing on the Screen Chapter 8

[227]

Similarly, the ways of handling mouse events are not too different—they are also handled
by method calls. The following table depicts the methods that can be used to handle mouse
events:

Method Parameter Description

onclick(function, button
= 1, add = None)

Function: A function is called
with two arguments (x, y),
which represent the
coordinates of the clicked
position by mouse or pointer.
Button: It represents the
mouse button, default = 1,
which means the left mouse
button.
Add: It is used to add
multiple bindings. If True is
passed, a new binding will be
added, otherwise it will stick
to the current one.

Binds functions to mouse-
click events. If the user
clicks on any position of the
turtle canvas, the
coordinates of the clicked
position will be used to call
the function.

onrelease(function,
button = 1, add = None)

Function: A function is called
with two arguments (x, y),
which represent the
coordinates of the clicked
position on the drawing board
of turtle.
Button: Default = 1 means
that the left mouse button is
used. It is used to add a
number for mouse-button.
Add: According to its value of
True or False, it decides
whether to add a new binding
or not.

Binds functions to mouse-
button release event.

ondrag(function, button
= 1, add = None)

Function: A function with two
arguments, which represent
the coordinates of the clicked
point into the game screen.
Button: Adds a number to
indicate the mouse button
listener.

Binds functions to mouse
move events on the current
turtle controller. If the
function is None, the
current binding will be
removed.

Turtle Class - Drawing on the Screen Chapter 8

[228]

Let's make a simple program to grasp the idea of using the preceding methods for handling
mouse events:

import turtle
pacman = turtle.Turtle()
def move(x,y):
 pacman.forward(180)
 print(x,y)

turtle.onclick(move) #calling move method
#turtle.onclick(None) #to remove event-binding

You can see that the onclick method was called with only the move function, which in
turn calls the move method with the x and y coordinates representing the clicked point onto
the canvas. Running the preceding program does not draw any lines on the screen until
you click on the drawing canvas. When you click on any point of the screen, you will see its
coordinate printed in the Python shell, and a straight line will appear on the canvas. We
will cover the remaining turtle methods in the upcoming chapter, along with how to
make some mini games. Before that, we will try to make some shapes using the turtle
module and the Python design patterns that we have learned about so far.

Drawing shapes with turtle
The process of making shapes may seem like a boring and tedious task for a human being,
but it's not for computers. Imagine making a hexagonal shape with exact geometrical
measurements while taking care of angles and sides. The process itself overwhelms most of
us. On the other hand, computers are considered to work sedulously; we can throw as
many tasks as we like at it, and it will perform them gracefully.

As we have mentioned previously, two critical pieces of information while drawing any
shape are the angle and length of each side. We can make variables to store them so that we
can refer to them in the program whenever they are needed. For any shape, there will be a
different number of sides. For example, a triangle has three sides, while a hexagon has six
sides. We need to specify the number of sides explicitly in the program. In this section, we
are going to make two shapes, a hexagon and a star shape, with some added colors. The
main aim of this section is to help you understand how the programming paradigm is used,
along with a particular module, in order to make appealing games.

Turtle Class - Drawing on the Screen Chapter 8

[229]

The following list of steps depicts the roadmap that is needed in order to create two shapes,
one by one. The first shape that we will create is a hexagon: a shape that has six sides, with
a custom length. After that, we will make a star pattern again, but this time, we will add
color properties to it:

Hexagon: We will create this shape by defining specific variables, such as the
number of sides, interior angle, and length of sides. After that, we will use the for
loop to create six iterations because we have to call the line rendering method six
times (since a hexagon has six sides). We will use the forward method to draw a
straight line and the right method to turn the turtle clockwise by a specific
angle:

 import turtle
 hexagon = turtle.Turtle()
 num_of_sides = 6
 length_of_sides = 70
 angle = 360.0 / num_of_sides
 for i in range(num_of_sides):
 hexagon.forward(length_of_sides)
 hexagon.right(angle)
 turtle.done()

You can see how convenient it is to draw the shapes onto the canvas using the
turtle module. We are already familiar with these methods and the usage of
loops in order to remove the repetition of multiple lines of code; thus, it won't be
hard to grasp the code that we have written over here.
Star: Making a star shape with Turtle is easier than using any other module. We
have already made it using two methods of turtle, that is forward and left.
But in this section, we are going to color the star shape using the color method
provided by the turtle module. We will start by defining the color palette, that
is, different color names, and we will make a method call of begin_fill and
begin_end, which will add the color to the shapes. The following table shows
three methods that can be used for coloring shapes in turtle:

Method Parameter Description

 color(*args)

Args represents the color's name. The current
color is used for drawing lines using
the forward or backward methods. The color
name can be given as single value:
color(“blue”), double value:
color(“black”,”green”), or rgb float
values.

Used to change the color
of the turtle pen.

Turtle Class - Drawing on the Screen Chapter 8

[230]

begin_fill() None
This method will
remember the starting
point for filled polygons.

end_fill() None

It will close the shape
drawn in the turtle canvas
and fill it with the current
fill color.

As an example, we will write a program that will use these methods to color the star
pattern. We will use the color combination of red and yellow to make the star more
attractive. We have been using the import turtle command to make turtle methods
available for the program to use. Instead of doing it this way, we can import everything
from turtle with the from turtle import * command. Now, instead of calling the
turtle method with >>> turtle.forward(100), we can call it directly, that is,
forward(100). Let's write a program to create such a star pattern:

from turtle import *

color('red', 'yellow')
begin_fill()
while True:
 forward(200)
 left(170)
 if abs(pos()) < 1:
 break
end_fill()
done()

I just love the way that turtle works with Python. Being able to bind every function to the
programming paradigm of Python makes the turtle module effective to use. In the
preceding code, we might not have any confusion with the first line of code, which simply
imports everything from the turtle module—every attribute and member. We made a
color palette of red and yellow using the color method. Inside the main loop, we will
encounter two methods, which we have been using from the beginning of this chapter. In
addition, we have added a conditional to indicate the stopping point for the turtle pen. The
abs() method is used to return the absolute value of the number, that is, >>> abs(-4),
which yields 4. Inside the abs() function, we called the pos() method of the turtle
module, which will return the position of turtle as a two-element list. We checked for the
current position, and if it's less than 1, for example, 0, then it must represent the center
position, because (0,0) represents the center position. If we encounter the center position
after an iteration, that means we can terminate the program because at this point, we must
have already drawn a star. If we proceed further, the turtle pen will draw another star on
the same position, therefore overriding the old one.

Turtle Class - Drawing on the Screen Chapter 8

[231]

Thus, in order to prevent this continuous iteration, we have added a conditionals line: if
abs(pos()) < 1.

Executing the preceding programs yields the following output. One thing you must
remember here is that, from the color palette, at the beginning, we used a red pen to draw
the star, and after finishing it, we used yellow to fill the inner part of the star shape:

Now that you know everything about the ways of using turtle methods for creating
shapes and coloring them, we will wrap this chapter up here. We will be using the concepts
we've learned in this chapter, such as creating patterns and handling user events, in the
upcoming chapters by making simple mini games such as Snake, Pong, and Flappy Bird.

Summary
The Python turtle module is a powerful platform for building 2D mini games. It contains a
variety of methods in order to facilitate the design process of game characters. We have
written a bunch of programs in this chapter, and also handled user events. We started this
chapter by introducing the key features of the turtle module, and built a universal
prototype for any game that can be made with the Python turtle module. This chapter
taught us about animating a 2D canvas using the turtle module. Along with animating
game characters, we learned how to create interfaces that communicate between the game
interface and the user controller by handling user events.

Turtle Class - Drawing on the Screen Chapter 8

[232]

Following the completion of this chapter, you will be well equipped to create simple 2D
games using the turtle module. You will also be able to handle the user actions that are
provided by the mouse and the keyboard, which allows us to make user-interactive games.
Now that you have learned how to create simple animations using the 2D Turtle canvas,
you can create any geometrical shape; try a few more before hopping into the next chapter.

We didn't cover any games in this chapter, because in order to create games with the
turtle module, we need to explore vectors first—creating vectors, storing vectors, finding
the magnitude of vectors, vector additions, negations, diagonal movements, and many
more. We will cover all of these concepts in the next chapter.

The topic of vectors is undoubtedly the most essential topic for any game developer's
toolkit. Vectors are mathematical terms that represent the magnitude and direction of our
game character that appears on the screen. Magnitude represents the modulus of the
current coordinates of a point in which the character resides, while direction represents a
course that the game character moves on. Now would be the perfect time for you to play
around with the turtle module and grasp the idea of handling user events and building
appealing shapes and characters.

9
Data Model Implementation

Games are a medium that try to emulate, or at least simulate, real-world environments
through the use of interplay, where players use motions and movements in order to control
the game characters. As we know, there are a variety of ways in which players can interact
with the game, mostly with input devices such as a keyboard, a mouse, or a joystick. In
order to translate these input signals into meaningful information, we need to address the
signals with corresponding actions. In most games, we use keyboard keys to make
movements for the game character, but internally, the signals are handled by mathematical
objects called vectors. This is extremely important for any game, regardless of how the
graphics appear, as it causes players to create actions and address them with appropriate
reactions.

In this chapter, we will be introduced to 2D vectors—ways of manipulating the positions of
game characters. The change in the coordinates of vectors (x, y) represents the movement
that's specified by the game player. This chapter will be life-changing for any programming
beginner as this will teach us how to use mathematical concepts such as addition,
subtraction, multiplication, rotation, and reflection with a programming paradigm, which
we know as data model implementation. The end goal of this chapter is to make you
familiar with the concept of operator overloading using Python, the usage of Python built-
in methods in order to manipulate vectored positions, and the implementation of data
models or magic functions.

The following topics will be covered in this chapter:

Overview of operator overloading
Technical requirements
Dealing with 2D vectors
Data model for vectored motion

Data Model Implementation Chapter 9

[234]

Technical requirements
This chapter will give us a roller coaster ride of Python's simple, yet powerful, concept of
operator overloading. Therefore, you are expected to be equipped with the following tools:

Python 3.5 or newer
Python IDLE (Python's inbuilt IDE)
A text editor
A web browser

The files for this chapter can be found here: https:/ /github. com/ PacktPublishing/
Learning-Python- by- building- games/ tree/ master/ Chapter09

Check out the following video to see the code in action:

http://bit.ly/2psS6pd

Understanding operator overloading
This is a new concept, and may be ambiguous to naive programmers, but it is obligatory to
have this knowledge. In the programming nomenclature, everything that is defined with a
programming language has a specific usage. For example, we cannot use the sum() method
to find the difference between elements. We can extend the meaning of any operation
beyond its normal usage or predefined operational usage. Take a simple example of an
addition (+) operator; this operator can be used to add simple integers, concatenate two
independent strings, and even merge the two lists. This is possible because the addition
operator is overloaded in different classes, that is, it has different implementations defined
in the string and integer classes. This is the power of operator overloading.

Another factor that must be kept in mind is that the same function or built-in operator
depicts different behaviors for the objects of several classes, as shown in the following
example:

>>> 6 + 6
12
>>> "Python" + " is " + "best"
'Python is best'
>>> [1,2,3] + [4,5]
[1,2,3,4,5]

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter09
http://bit.ly/2psS6pd
http://bit.ly/2psS6pd
http://bit.ly/2psS6pd
http://bit.ly/2psS6pd
http://bit.ly/2psS6pd
http://bit.ly/2psS6pd
http://bit.ly/2psS6pd
http://bit.ly/2psS6pd
http://bit.ly/2psS6pd

Data Model Implementation Chapter 9

[235]

Several methods support operator overloading; these are known as data models, or
sometimes, magic methods. They are called so because these special methods extend the
functionality of methods, which in turn adds magic to our classes. These data models
should not be invoked by us; rather it happens internally from the classes. For example,
when we perform an addition operation with the + operator, the Python parser internally
invokes the __add__() method. Different built-in classes of Python such as str, int,
list, and many more, have different internally defined magic functions. We can print the
list of magic functions that are dedicated to a particular class using the dir function. For
example, the following list indicates several methods and attributes that are defined in the
str class:

>>> dir(str)
['__add__', '__class__', '__contains__', '__delattr__', '__dir__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__getitem__', '__getnewargs__', '__gt__', '__hash__', '__init__',
'__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mod__',
'__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', 'capitalize', 'casefold', 'center', 'count', 'encode',
'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index',
'isalnum', 'isalpha', 'isascii', 'isdecimal', 'isdigit', 'isidentifier',
'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper',
'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition', 'replace',
'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split',
'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate',
'upper', 'zfill']

As shown in the preceding list of methods and attributes of the str class, we can observe
several methods that start and end with a double underscore. For example, the __add__()
method is used to concatenate two strings using the + operator:

>>> first_name = "Ross"
>>> first_name.__add__(" Geller")
'Ross Geller'

In the preceding example, we can see that the __add__() function works in a similar way
as +. These data models are meant to be used to extend the predefined meaning with
overloaded behavior. Based on mathematical canonization, we normally use operators such
as +, -, /, and * with numeric objects. However, with the overloading technique, we use the
same operator for multiple objects, such as strings and lists. We can conclude that the
addition operator (+) is overloaded. Similarly, different data models are defined by Python
for different operators, that is, __sub__() for the - operator, __mul__() for the * operator,
and __div__() for the / operator.

Data Model Implementation Chapter 9

[236]

Now that we have learned how to use data models in the most basic form of an add
function, we will implement some examples of custom-made classes.

Using data models in custom classes
Now that we know how to implement the __add__() magic function with various data
types such as integer and string, let's observe how it can be used in custom-made (user-
defined) Python classes. We will consider the following example to illustrate the usage of
data models in our custom class:

class Base:
 def __init__(self, first):
 self.first = first

 def add(self, other):
 print(self.first + other)

We will make the objects of the preceding class with the following code. This code is
executed in the Python shell:

>>> obj1 = Base(1)
>>> obj2 = Base(2)
>>> obj1.add(obj2)
TypeError: unsupported operand type(s) for +: 'int' and 'Base'

As expected, we get an error saying unsupported operands for different types, which
implies that the + operator is not functional for adding the objects of custom classes. As
mentioned previously, to solve such problems, we can use operator overloading. We can
explicitly define such special methods inside our class in order to make objects compatible
with built-in methods and operators. For example, in the case of the addition operation, we
have to define the __add__() method explicitly inside the class, which looks something
like this:

class Base:
 def __init__(self, first):
 self.first = first

 def __add__(self, other): #operator '+' is overloaded
 print(self.first + other.first)

Let's check whether this works by making different objects of the Base class:

>>> obj1 = Base(1)
>>> obj2 = Base(2)
>>> obj1.__add__(obj2)

Data Model Implementation Chapter 9

[237]

3
#for strings as add method is defined internally inside str class
>>> obj3 = Base("Hello ")
>>> obj4 = Base("World")
>>> obj3.__add__(obj4)
'Hello World'

Thus, the magic function, or the __add__() data model, is overridden, which successfully
performs the addition operation between two integers and two strings. We can also check
this for other data objects such as lists and tuples. Now, we can clearly predict the pattern;
if we want to overload any mathematical operator and implement it differently in our
custom-made classes, we have to define data models in our classes. I hope you get the idea!
Now, we can predict the __mul__() pattern so that we can perform multiplication between
different objects, __sub__() to perform subtraction, and so on.

Let's observe another powerful, yet less frequently used, magic method of Python, before
actually learning about the importance of using these magic functions. Let's talk about
the __new__() data model. You can easily observe the working of these methods; just
remove the underscore and parentheses that surround the method name and you will come
up with the new keyword. If you have a programming background from any high-level
language such as Java and C#, you will already understand my point. For those who are
new to the concept of the new keyword, this operator is used to create instances of the
classes. For example, in Python, we have object = class_name(), while in Java, we
have object = new class_name().

Thus, the __new__() magic method is the first method to be called while creating objects of
classes—even before the __init__() constructor is called—and it is called implicitly. The
__new__() method is responsible for creating new objects, and it returns the object that's
initialized using the constructor's __init__() method. Do you remember, in object-
oriented chapter, we referred to the __init__() method as a special method, which is, in
fact, a magic method. Let's consider the following example to learn about the __new__()
magic method:

class Base:
 def __new__(cls):
 print("This is __new__() magic method")
 obj = object.__new__(cls)
 return obj
 def __init__(self):
 print("This is __init__() magic method")
 self.info = "I love Python"

Data Model Implementation Chapter 9

[238]

The following code is executed inside the Python shell. We are creating an object of the
Base class, and observing that the new method is called before the init method:

>>> obj = Base()
This is __new__() magic method
This is __init__() magic method

Note that in the preceding code, we passed cls as an argument while defining the
new magic method and the self variable as an argument while defining the
init constructor. The distinction between these two variables—cls and self—is defined
in PEP 8, which defines the style guide for Python code. This coding style is not mandatory,
but according to PEP 8, we should always do the following:

Always use self for the first argument to instance methods.
Always use cls for the first argument to class methods.

I think that we are now capable enough to predict the working internals of any built-in
function. Let's take the example of the len() method. If there is any built-in fun()
function in Python, it corresponds to __fun__(). The Python parser makes an internal call
as object.__fun__(), where the object is the instance of a class. Considering this analogy,
for the len() function, the Python parser interprets its call as object.__len__(), and it
returns the length of the object. We have seen how it works internally; however, since the
main topic we want to cover is how to override it, let's define this magic method inside our
custom-made classes (in a similar way to the preceding example, where we used the add
magic function to add objects of a class). In the case of __len__(), consider the following
example:

>>> info = "I love Python"
>>> len(info)
13
>>> info.__len__()
13

Therefore, when we define such magic methods or data models in our own class, we
override the behavior of the functions that are originally defined by Python; thus, we are
now no longer calling the original method. When you override the original method with
your new one, we refer to this as method overriding. Up to this point, we have been
learning about data models and ways of using them in our own classes. Now, let's learn
about why they are essential in game programming. We will do this by exploring vectors in
the next section.

Data Model Implementation Chapter 9

[239]

Dealing with two-dimensional vectors
Before actually exploring vectors, let's start with the basic overview of motion and how
characters are moved in a straight line. To move any object or image, we have to make a
slight change to the frames by a fixed amount. The movement must be fixed for each frame
in order to make it symmetrical. To make an object move in a horizontal direction, we carry
out an addition of a fixed amount to the x position, and to make it move in a vertical
direction, we add the same amount to the y position. Thus, motion in 2D games can be
represented as (x, y). Let's consider the following example to illustrate the usage of these
coordinates on order to draw any shape into the game environment:

def line(a, b, x, y):
 "Draw line from `(a, b)` to `(x, y)`."
 import turtle
 turtle.up()
 turtle.goto(a, b)
 turtle.down()
 turtle.goto(x, y)

We are using the turtle module, which we used in the previous chapter to draw a line
using the (a, b) and (x, y) positions. The goto() method is used to move the pen to
the passed positions. These coordinates—(x, y) or (a, b)—clearly show the importance
of knowing the positions in order to create game characters (we use line as a metaphor for
any game character).

We can deem that the usage of a straight line motion is pretty useful, but looking at it from
a different perspective, a game that only supports vertical or horizontal motions may seem
dull and unexciting. For example, in the Pacman game, where a player would move either
in a vertical or horizontal direction, this may be appropriate, but in the case of a car-racing
game, where users can move in any direction, this motion doesn't work properly. We must
be able to move in any direction by adjusting the positions of x and y for each frame. We
will use the same two positions, x and y, to generate both straight and diagonal motions: a
rate that indicates speed for the x and y positions. The form that represents (x, y) is
known as a vector, but more importantly, vectors signify direction, unlike scalar. We will
explore vectors in more detail in the following subsection.

Data Model Implementation Chapter 9

[240]

Exploring vectors
As the mathematical adage says:

" Vector refers to any quantity that has magnitude as well as direction, especially for
determining the position of one point in space relative to another."

We couldn't agree more. This concept is taken from mathematics, and is the most well-
known topic for any game programmer, naive to suave. Vectors are the proper
representation of any position of an object, with the critical information of the direction
attached to it. Vectors have similar representations as a straight line motion in the form of x
and y coordinates (2D), but they are not restricted to only providing information about
magnitude; they have a specific purpose. For example, vector (4, 5) represents the next
position, where 4 is added to the x coordinate of the current position and 5 is added to the y
coordinate of the current position; something like this—(0 + 4, 0 + 5)—where (0, 0) is the
origin or center position. Let's examine vectors figuratively with the following examples:

In the preceding diagram, vector (4,5) has magnitude and direction. The green line
indicates magnitude and the orange line indicates direction. Thus, a vector is incomplete
without the information of its previous direction. Let's look at another simple example to
clarify this further:

Data Model Implementation Chapter 9

[241]

The preceding diagram says it all. The vector AB is the subtraction of the x and y positions
from the target with the initial position. Suppose a Pacman is at position (30, 20), and he has
to reach the target, that is, (50, 45). Vector AB is the critical information which indicates that
Pacman has to move 20 units more in the x direction, and 25 more in the y direction.

It is well-known that Python does not have a built-in vector data structure. If you think
there is, perform a quick internet search on it; you will get the basic idea. However, we
didn't cover vectors as built-in data structures in the preceding chapters. Although we don't
have vectors as built-in data types, we can make one for ourselves. As we know, vectors
constitute two different positions (x, y), and our main aim is to use other built-in data
structures to make them. For example, we can use lists to make vectors, but indicating each
point with indexes such as [0] and [1] adds unwanted overheads. The same goes for
using tuples. Probably the best way of creating vectors would be by making our own vector
class. In doing so, we can reference points as x and y instead of indexes. Furthermore, the
best exploits can be made by using data models with vectors. We can use __add__(),
__mul__(), and many more magic functions inside the vector class, which will introduce
motion to the game characters. As an example, we will create a simple vector class and
make use of the __str__() method, along with a constructor, which will provide a proper
representation of positions with vectors:

class Vector(object):
 def __init__(self, x = 0, y = 0):
 self.x = x
 self.y = y
 def __str__(self):
 return "(%s, %s)"%(self.x, self.y)

Data Model Implementation Chapter 9

[242]

In the preceding program, we created a Vector class and defined two members in it: one
being the constructor, and the other being the magic method. Now, when we create any
object of this class, such as > pos = Vector(10,40), the init() method will perform
initialization so that we can reference each component of the vector as >>> pos.x and >>>
pos.y. The __str__() method is the magic method that is used as the overriding method
and it has a custom definition in our Vector class, which is used as a representation of the
components of vector in the form of the x and y positions. Let's see how it works by
running the following code and creating a Vector class object:

>>> pos = Vector(10, 40)
>>> pos.__str__()
'(10, 40)'

Apart from the __str__() method, we have a bunch of magic functions that are applicable
for manipulating vectors. We can use __add__() to perform addition between vectors,
__sub__() to perform subtraction, __neg__() to perform negation, and so on. We will
learn about these data models and ways of using them to modify vectors in the next section.

Modeling for vectored motion
As we know, vectors are the quantity that constitute both magnitude and direction. These
two pieces of information can be extremely critical when determining the next position for
game characters, based on a user's action. For example, a game character, Steve (a Minecraft
character), can use vectors to determine the units he has to travel further using magnitude
(AB) and direction (→AB) in order to track his goal. Although we can change both of these
sources of information one by one, we are primarily concerned with magnitude because
magnitude is responsible for providing motion in 2D games. In this section, we will
uncover the techniques that will teach us how to add and subtract vectors, and even
perform multiplication and division. These types of operations will be added as logic in the
game, along with user events, so that whenever the user presses any keys on the keyboard,
it is addressed by a particular event. The techniques that can be used while performing this
operation mathematically are as follows:

 Performing operations (subtracting/adding) on vectors with known components
Performing operations by finding components, or simply using head/tail
methods

Let's learn about the use of these techniques by hopping over to the next section, where we
will perform vectored operations using magic functions or data models.

Data Model Implementation Chapter 9

[243]

Vector addition
Similar to numeric addition, we can overload the + operator using the __add__() data
model, which will add two different vectors and combine its effect in order to produce a
new single vector. Using this method, we can make diagonal motions with the game
characters. We need two vectors to perform addition; the first one will be the current
position of the game character, and next one will be a predefined fixed amount for each
component of the vector that needs to be added when the user presses any key on the
keyboard. The following diagram illustrates the addition of vectors in detail:

Never perform addition operation of vectors with the + operator when
you have a vector that's represented by tuples or lists. [1,2] + [3,4] does not
add individual digits like this: [4, 6]. Instead, it will concatenate two lists
into one, like so: [1,2,3,4].

The following code uses the __iadd__() magic function to add two vectors. The iadd and
add methods work in a similar way, but the main difference between them is that
__iadd__() stores its result into the memory location, unlike __add__(). You can use
either of these to write the following code:

def __iadd__(self, other):
 if isinstance(other, Vector):
 self.x += other.x
 self.y += other.y
 else:
 self.x += other
 self.y += other
 return "(%s, %s)"%(self.x, self.y)

Data Model Implementation Chapter 9

[244]

Make sure that the preceding code is included inside the previously made Vector class.
The __iadd__() method takes the argument, other, which represents a second vector that
needs to be added to the vector that it is called upon. Inside the magic function, we have
made conditionals to check whether the passed other vector is a type of Vector class. If it is,
we are adding matching components of the first vector with the second vector, which is
first.x to second.x, and first.y to second.y, where first and second are vectors. Let's
make the instances of the Vector class and check the output of the vector addition:

>>> a1 = Vector(10,20)
>>> a2 = Vector(30,40)
>>> a1.__iadd__(a2)
'(40, 60)'

Now that we have successfully used the magic method to implement vector addition, it's
time to learn a few more of them in order to implement vector subtraction and vector
negation.

Vector subtraction
Just like the addition of vectors implies the forward motion for game characters, vector
subtraction suggests the opposite direction from where it is currently facing. We can use
either __sub__() or __isub__() to implement vector subtraction. We normally prefer
isub because it stores a result before returning it and it can be perfectly used in order to
clone the vector objects so that we can perform different manipulation in the duplicate
objects, without harming original one. Vector subtraction is quite similar to addition;
instead of adding each components of a vector, we are simply going to subtract them. This
motion is useful in games such as Pacman, where users have to reverse their direction
spontaneously without disturbing the gameplay. Let's write the following code inside the
Vector class in order to perform vector subtraction:

def __isub__(self, other):
 if isinstance(other, Vector):
 self.x -= other.x
 self.y -= other.y
 else:
 self.x -= other
 self.y -= other
 return "(%s, %s)"%(self.x, self.y)

Data Model Implementation Chapter 9

[245]

Let's run the preceding code in the Python shell in order to observe the result of vector
subtraction:

>>> a1 = Vector(10,20)
>>> a2 = Vector(30,40)
>>> a1.__isub__(a2)
'(-20, -20)'

Vector multiplication and division
Operations such as multiplication and division will make vectors larger and smaller,
respectively. The change of motion due to multiplication can be linear when a vector is
multiplied by any scalar number. For example, when we multiply any vector by two, its
magnitude will be twice than before, but the direction will remain unchanged. Similarly,
when we multiply the same vector with a negative number, let's say, -2, its direction will be
opposite to the direction it was originally facing. Multiplication operations are normally
used for scaling vectors. We can multiply and divide two vectors as follows:

def __imul__(self, other):
 if isinstance(other, Vector):
 self.x *= other.x
 self.y *= other.y
 else:
 self.x *= other
 self.y *= other
 return "(%s, %s)"%(self.x, self.y)

def __itruediv__(self, other):
 if isinstance(other, Vector):
 self.x /= other.x
 self.y /= other.y
 else:
 self.x /= other
 self.y /= other
 return "(%s, %s)"%(self.x, self.y)

Similar to vector multiplication and division, we can perform a scaling process using scalar
quantity. We will pass a number, instead of the second vector, as a parameter to the magic
methods. It can be done as follows:

def __mul__(self, scalar):
 return (self.x * scalar, self.y * scalar)
def __div__(self, scalar):
 return (self.x / scalar, self.y / scalar)

Data Model Implementation Chapter 9

[246]

Vector negation and equality
Since we have covered the most important operations of vectors, such as addition,
multiplication, and subtraction, we will now learn the easy, yet important, vector
manipulation technique, which is known as vector negation and equality. Vector negation
is important when a player wants to reach out to the preceding state from the current one
(since AB = -BA), which implies that negating any vector creates another vector of the same
magnitude but in the opposite direction. In order to negate a vector, we can simply add
the - negative operator to each component of the vector. As an example, we can consider
the following lines of code:

def __neg__(self):
 return (–self.x, –self.y)

We can check whether two vectors are equal by checking each of the components of the
vector. For example, first.x should be compared with second.x, and first.y should
be compared with second.y. For example, the following method will return True if two
vectors are equal:

def __eq__(self, other):
 """v.__eq__(w) -> v == w
 >>> v = vector(1, 2)
 >>> w = vector(1, 2)
 >>> v == w
 True
 """

 if isinstance(other, vector):
 return self.x == other.x and self.y == other.y
 return NotImplemented

According to the Python official documentation:

("NotImplemented signals to the runtime that it should ask someone else to satisfy the operation.
In the expression a == b, if a.__eq__(b) returns NotImplemented, then Python
tries b.__eq__(a). If b knows enough to return True or False, then the expression can succeed.
If it doesn't, then the runtime will fall back to the built-in behavior (which is based on the identity of
== and !=)").

Data Model Implementation Chapter 9

[247]

Summary
We have covered a wide range of topics in this chapter, starting from data models to the
creation and manipulation of vectors. Vectors are undoubtedly the most essential topic for
any game developer; they help to create motion for the game characters and sprites so that
the game will be more user interactive. We have learned about different operations, such as
addition, subtraction, division, negation, and many more. We also manipulated our vector
components using these operations and magic methods. Magic methods are a part of
method overriding, which should have been covered in Chapter 6, Object-Oriented
Programming. However, I reserved it until this chapter because it makes more sense to learn
about it while exploring vectors.

As the mathematical logic concerning vectors is a primary building block for the expedition
of character movements in the game, you have learned how to implement operator
overloading using magic functions. The vector manipulation skills we've learned in this
chapter are important because they specify the position of an object and help us perform
manipulation with some algebraic operations.

This chapter has introduced us to two-dimensional vectors—a mathematical concept that
makes the motion of game characters possible in a game. To implement this, we had to use
the concepts of data overloading using magic functions. To overload any operator— that is,
change the implementation of any operator such as + or -—we extend the usage of such
operators from primitive data types to complex data structures. The main goal of this
chapter was to introduce you to the ways you can accomplish mathematical concepts such
as 2D vectored operations using the Python programming paradigm.

In the next chapter, we will take a roller coaster ride of game programming using the turtle
module by applying our knowledge from this chapter. We will make multiple games such
as Snake, Pong, and Flappy Bird. Now, it's time for you to start experimenting with vectors;
try to mix them together and develop various kinds of movements for the vector.

10
Upgrading the Snake Game

with Turtle
Most computer gamers regard games as exciting and appealing due to their appearance. To
some extent, this is true. Computer games must be visually attractive so that the player
feels like they are physically participating in them. Most game developers and game
designers spend a profuse amount of time developing game graphics and animations so as
to provide a better experience to the player.

This chapter will teach you how to build the basic layout of games from scratch using the
Python turtle module. As we know, the turtle module allows us to make games with a
two-dimensional (2D) motion; thus, we will only be making 2D games such as flappy bird,
pong, and snake in this chapter. The concept that we will be covering in this chapter is
extremely important in order to bind movements with user actions for the game character.

By the end of this chapter, you will have learned how to implement data models by
creating 2D animations and games. Consequently, you will learn how to deal with the
different components of game logic, such as defining collisions, boundaries, projections,
and screen tap events. By learning about such aspects of game programming, you will be
able to learn how to define and design game components using the turtle module.

The following topics will be covered in this chapter:

Overview of computer pixels
Simple animation using the Turtle module
Upgrading the snake game using Turtle
The pong game
The flappy bird game
Game testing and possible modifications

Upgrading the Snake Game with Turtle Chapter 10

[249]

Technical requirements
You are expected to have the following resources:

Python 3.5 or newer
Python IDLE (Python's inbuilt IDE)
A text editor
A web browser

The files for this chapter can be found here: https:/ /github. com/ PacktPublishing/
Learning-Python- by- building- games/ tree/ master/ Chapter10

Check out the following video to see the code in action:

http://bit.ly/2oJLeTY

Exploring computer pixels
When you observe the computer screen closely, you might find small dots forming rows
and columns. From a certain distance, the matrix of dots represents images, which we
normally see when we look at the screen. These dots are called pixels. Since computer
games should be made to be pleasantly visual in nature, we have to work with these pixels
in order to create and customize the game screen, and even use them to make a player
move in the game, which will be shown on the screen. Whenever a player presses any key
on the keyboard, changes in movement must be reflected in the pixels of the screen. For
example, when a player presses the RIGHT key, a specific character must move a number
of units in pixels to the right on the screen in order to represent motion. We discussed
vectored motion in the previous chapter, which is able to override the methods of some
classes in order to implement motion. We will use the technique of vectors to make pixel
movement for the game characters. Let's observe the following outline, which we are going
to adapt for making any games using vectors and the turtle module:

Make a Vector class, which will have methods such as __add__(), __mul__(),1.
and __div__(), which will perform arithmetic operations on our vector points.
Use the Vector class to instantiate a player on the game screen, with its aiming2.
target or movements.
Make a game boundary using the turtle module.3.

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
http://bit.ly/2oJLeTY
http://bit.ly/2oJLeTY
http://bit.ly/2oJLeTY
http://bit.ly/2oJLeTY
http://bit.ly/2oJLeTY
http://bit.ly/2oJLeTY
http://bit.ly/2oJLeTY
http://bit.ly/2oJLeTY
http://bit.ly/2oJLeTY

Upgrading the Snake Game with Turtle Chapter 10

[250]

Draw game characters using the turtle module.4.

Operations such as rotate, forward, and move should be used from the Vector5.
class in order to make a game character move.
Handle user events using the main loop.6.

We will learn about pixel representation by making a simple Mario pixel art. The following
code shows the representation of pixels in the multi-dimensional list, which is a list of lists.
We have stored each pixel on a single line using the multi-dimensional list:

>>> grid = [[1,0,1,0,1,0],[0,1,0,1,0,1],[1,0,1,0,1,0]]

The preceding grid consists of three lines that represent the pixel positions. Similar to the
list element extract method, the >>> grid[1][4] statement returns a positional value of '0'
from the second list (that is, [0,1,0,1,0,1]) of the grid. (Refer to Chapter 4, Data Structures and
Functions, to learn more about list operations.) Thus, we can access any cell within the grid.

The following code should be written inside the Python script. By creating a mario.py file,
we will use it to create Mario pixel art:

 Start by importing turtle—import turtle—the only module we are going to1.
use.
Instantiate the turtle module using the >>> Pen = turtle.Turtle()2.
command.
Specify two properties for the pen using speed and color attributes: 3.

 Pen.speed(0)
 Pen.color("#0000000") #or Pen.color(0, 0, 0)

We must make a new function, named box, which will draw a box by drawing4.
the square shape using turtle methods. This box size represents the dimension
for the pixel art:

 def box(Dimension): #box method creates rectangular box
 Pen.begin_fill()
 # 0 deg.
 Pen.forward(Dimension)
 Pen.left(90)
 # 90 deg.
 Pen.forward(Dimension)
 Pen.left(90)
 # 180 deg.
 Pen.forward(Dimension)
 Pen.left(90)
 # 270 deg.

Upgrading the Snake Game with Turtle Chapter 10

[251]

 Pen.forward(Dimension)
 Pen.end_fill()
 Pen.setheading(0)

 We must position the pen to start painting from the top-left position of the5.
screen. These commands should be defined outside of the box() function:

 Pen.penup()
 Pen.forward(-100)
 Pen.setheading(90)
 Pen.forward(100)
 Pen.setheading(0)

Define the box size, which represents the dimension of the pixel art that we are6.
going to draw:

 boxSize = 10

In the second phase, you have to declare pixels in the form of multi-dimensional7.
lists, which represents the position of each pixel. The following
grid_of_pixels variable represents the grid of lines that represent the
positions of the pixels. The following line of code must be added outside the box
function definition. (Refer to https:/ /github. com/ PacktPublishing/ Learning-
Python-by- building- games to locate the game file, that is, mario.py.):

Remember that a combination of pixels in a single form represents a
straight line.

 grid_of_pixels = [[1,1,1,1,2,2,2,2,2,2,2,2,1,1,1,1]]
 grid_of_pixels.append([1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,1])
 grid_of_pixels.append([1,1,1,0,0,0,3,3,3,3,3,0,3,1,1,1])
 grid_of_pixels.append([1,1,0,3,0,3,3,3,3,3,3,0,3,3,3,1])
 grid_of_pixels.append([1,1,0,3,0,0,3,3,3,3,3,3,0,3,3,3])
 grid_of_pixels.append([1,1,0,0,3,3,3,3,3,3,3,0,0,0,0,1])
 grid_of_pixels.append([1,1,1,1,3,3,3,3,3,3,3,3,3,3,1,1])
 grid_of_pixels.append([1,1,1,0,0,2,0,0,0,0,2,0,1,1,1,1])
 grid_of_pixels.append([1,1,0,0,0,2,0,0,0,0,2,0,0,0,1,1])
 grid_of_pixels.append([0,0,0,0,0,2,2,2,2,2,2,0,0,0,0,0])
 grid_of_pixels.append([3,3,3,0,2,3,2,2,2,2,3,2,0,3,3,3])
 grid_of_pixels.append([3,3,3,3,2,2,2,2,2,2,2,2,3,3,3,3])
 grid_of_pixels.append([3,3,3,2,2,2,2,1,1,2,2,2,2,3,3,3])
 grid_of_pixels.append([1,1,1,2,2,2,1,1,1,1,2,2,2,1,1,1])
 grid_of_pixels.append([1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1])
 grid_of_pixels.append([0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0])

https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games
https://github.com/PacktPublishing/Learning-Python-by-building-games

Upgrading the Snake Game with Turtle Chapter 10

[252]

Define the color palette for the pixel art using colors. We will use color code to8.
define the colors for the art, as shown in the following code. The hexadecimal
color code (HEX) represents the color combination of red, green, and blue
(#RRGGBB). Refer to https:/ /htmlcolorcodes. com/ in order to analyze the
different codes for different colors:

 palette = ["#4B610B" , "#FAFAFA" , "#DF0101" , "#FE9A2E"]

Next, we should start drawing the pixel art using a grid of pixels and the color9.
palette that we defined in steps 7 and step 8. We have to use the box class that we
made previously using the box() function to make the pixel art. The pixel art
consists of rows and columns; thus, we have to declare two loops for drawing
art. The following code calls different functions from the turtle module, such as
forward(), penup(), and pendown(). We studied them in the previous
chapter; they will make use of the pen to draw, based on the list of lists that were
defined by the grid of pixels:

 for i in range (0,len(grid_of_pixels)):
 for j in range (0,len(grid_of_pixels[i])):
 Pen.color(palette[grid_of_pixels[i][j]])
 box(boxSize)
 Pen.penup()
 Pen.forward(boxSize)
 Pen.pendown()
 Pen.setheading(270)
 Pen.penup()
 Pen.forward(boxSize)
 Pen.setheading(180)
 Pen.forward(boxSize*len(grid_of_pixels[i]))
 Pen.setheading(0)
 Pen.pendown()

Let's digest the previous code snippet. It contains a for loop, which loops from an initial
value of 0 to the length of the grid of pixels that represent positions in the canvas. Each
pixel represents one position, where we must draw using the pen; thus, we loop on each of
those pixels, one at a time. Inside the 2D for loop, we fetch the color from the palette and
call the box method, which creates a rectangular box where our Mario art should be
rendered. We draw inside this box with the turtle pen by using the forward() function.
We do the same operation in the rows of pixels, as indicated by the ith loop.

https://htmlcolorcodes.com/
https://htmlcolorcodes.com/
https://htmlcolorcodes.com/
https://htmlcolorcodes.com/
https://htmlcolorcodes.com/
https://htmlcolorcodes.com/
https://htmlcolorcodes.com/
https://htmlcolorcodes.com/

Upgrading the Snake Game with Turtle Chapter 10

[253]

Once we have finished combining the preceding code, that is, we have carried out the box
method, initialization, and two main for loops, we are ready to run the code and observe
the following Mario pixel art. After running our code, the pen from the turtle module
will start drawing, and eventually it will give us the following art:

Since we are familiar with the concept of pixels and vectored motion, it's time to make
games using 2D graphics. We will be using the turtle module, along with data models, in
order to create game characters and make them move. We will start this adventure by
making a simple animation in the next section.

Understanding simple animation using the
Turtle module
By now, we are probably familiar with the different methods of the turtle module. This
means we won't have any problem creating characters for the game. Similarly, motions for
game characters are provided using vectored movements. Operations such as vectored
addition and subtraction provide linear movement in a straight line through the rotation of
objects (refer to Chapter 9, Data Model Implementation, for more information). The move
operation that is defined in the following code snippet will provide random movements to
game characters. The move method will take another vector as a catalyst and will perform
mathematical operations in order to update the current position, while also considering the
direction of the game character:

>>> v = (1,2) #vector coordinates
>>> v.move(3,4) # vector addition is done (1,2) + (3,4)
>>> v
(4,6)

The rotate method will rotate the vector counter-clockwise by a specific angle (in-place).
The following sample represents the rotate method call:

>>> v = vector(1, 2)
>>> v.rotate(90)
>>> v == vector(-2, 1)
True

Upgrading the Snake Game with Turtle Chapter 10

[254]

We have to define the preceding two methods inside the Vector class. Follow this
procedure to implement the Vector class:

You have to start by defining the Vector class with the class keyword. We will1.
define slots as class attributes, which will contain three attributes. The slots
represent an attribute, which contains three pieces of critical information: x, y,
and hash. The values x and y are the current position of the game character,
while hash is used to locate the data record. For instance, if the Vector class is
instantiated with x and y coordinates, then the hash attribute will be activated.
Otherwise, it remains deactivated.
The coordinates of the vectored elements, that is, (5,6), are represented by x and2.
y, where x = 5 and y = 6, and the hash variable represents whether the slot is
empty. The hash variable is used to locate the data records and to check whether
the Vector class is instantiated. If the slot attribute already contains x and y, this
hash attribute will restrain from further assignment to the slots. We will also
define the PRECISION attribute (user-defined), which will round the coordinates
of x and y to a certain level. In order to make things clear, several examples have
been added inside the code, and you can observe this inside three-line comments:

 #following class will create vector
 #representing current position of game character
 class vector(collections.Sequence):
 """Two-dimensional vector.
 Vectors can be modified in-place.
 >>> v = vector(0, 1)
 >>> v.move(1)
 >>> v
 vector(1, 2)
 >>> v.rotate(90)
 >>> v
 vector(-2.0, 1.0)
 """
 PRECISION = 6 #value 6 represents level of rounding
 #for example: 4.53434343 => 4.534343
 __slots__ = ('_x', '_y', '_hash')

Upgrading the Snake Game with Turtle Chapter 10

[255]

Next, we need to define the first member of the class. We know that the first3.
member of the class is the __init__() method. We will define it in order to
initialize the class attributes, which are x and y. We have rounded the values of x
and y to a certain level of precision, as indicated by the PRECISION attribute.
round() is a built-in function of Python. The following line of code contains a
constructor, where we initialize the vector coordinates (x, y) using the round
method:

 def __init__(self, x, y):
 """Initialize vector with coordinates: x, y.
 >>> v = vector(1, 2)
 >>> v.x
 1
 >>> v.y
 2
 """
 self._hash = None
 self._x = round(x, self.PRECISION)
 self._y = round(y, self.PRECISION)

You might have observed that you have made x and y attributes as private4.
attributes, as they begin with a single underscore (_x, _y). Thus, direct
initialization cannot be done in these types of attributes, which leads to data
encapsulation, which we covered back in the object-oriented paradigms topic.
Now, in order to fetch and set the values of these attributes, you have to use the
getter and setter methods. These two methods will be a property of the
Vector class. The following code represents how to implement getter and
setter for our Vector class:

 @property
 def x(self):
 """X-axis component of vector.
 >>> v = vector(1, 2)
 >>> v.x
 1
 >>> v.x = 3
 >>> v.x
 3

 """
 return self._x
 @x.setter
 def x(self, value):
 if self._hash is not None:
 raise ValueError('cannot set x after hashing')

Upgrading the Snake Game with Turtle Chapter 10

[256]

 self._x = round(value, self.PRECISION)

 @property
 def y(self):
 """Y-axis component of vector.
 >>> v = vector(1, 2)
 >>> v.y
 2
 >>> v.y = 5
 >>> v.y
 5
 """
 return self._y

 @y.setter
 def y(self, value):
 if self._hash is not None:
 raise ValueError('cannot set y after hashing')
 self._y = round(value, self.PRECISION)

Along with the getter and setter methodologies, you may have observed5.
_hash, which represents if the slot is already allocated or not. In order to check
whether the slot is already appropriated, we have to implement a data model,
that is, __hash__().

Just a quick review: data models, or magic functions, allow us to change
the implementation of a method that is provided by one of its ancestors.

Now, we will define the hash method on our Vector class and implement it
differently:

 def __hash__(self):
 """v.__hash__() -> hash(v)
 >>> v = vector(1, 2)
 >>> h = hash(v)
 >>> v.x = 2
 Traceback (most recent call last):
 ...
 ValueError: cannot set x after hashing
 """
 if self._hash is None:
 pair = (self.x, self.y)
 self._hash = hash(pair)
 return self._hash

Upgrading the Snake Game with Turtle Chapter 10

[257]

Finally, you have to implement two main methods in the Vector class: move()6.
and rotate(). We will start with the move method. The move method will move
the vector by other (in-place). Here, other is the argument that is passed to the
move method. For example, (1, 2).move(2, 3) will result in (3, 5). Remember:
movement is done by any of the vectored arithmetic operations, that is, add,
multiply, divide, and so on. We will use the __add__() magic function (refer to
Chapter 9, Data Model Implementation) in order to create movement for the
vector. Before that, we have to make a copy method that will return the copy of
the vector. The copy() method is essential because we don't want the operations
to harm our original vector; instead, we will perform arithmetic operations on
the copy of the original vector:

 def copy(self):
 """Return copy of vector.
 >>> v = vector(1, 2)
 >>> w = v.copy()
 >>> v is w
 False
 """
 type_self = type(self)
 return type_self(self.x, self.y)

You have to implement the iadd magic function before implementing the add7.
function. We use the __iadd__ method to implement the extended add operator
assignment. We can implementing the __iadd__() magic function inside the
Vector class as follows. We saw its implementation in the previous chapter
(Chapter 9, Data Model Implementation):

 def __iadd__(self, other):
 """v.__iadd__(w) -> v += w
 >>> v = vector(1, 2)
 >>> w = vector(3, 4)
 >>> v += w
 >>> v
 vector(4, 6)
 >>> v += 1
 >>> v
 vector(5, 7)
 """
 if self._hash is not None:
 raise ValueError('cannot add vector after hashing')
 elif isinstance(other, vector):
 self.x += other.x
 self.y += other.y
 else:

Upgrading the Snake Game with Turtle Chapter 10

[258]

 self.x += other
 self.y += other
 return self

Now, you have to make a new method, __add__, which will call the preceding8.
__iadd__() method on the copy of the original vector. The last
statement, __radd__ = __add__, has significant meaning. Let's observe the
following diagrammatic relationship between radd and add. It works like this:
Python tries to evaluate the expression, Vector(1,4) + Vector(4,5). First, it calls
int.__add__((1,4), (4,5)), which raises an exception. After this, it will try
to invoke Vector.__radd__((1,4), (4,5)):

It's easy to recognize that the implementation of __radd__ is analogous to add:
(refer to the example code defined inside the comments in the __add__()
method):

 def __add__(self, other):
 """v.__add__(w) -> v + w
 >>> v = vector(1, 2)
 >>> w = vector(3, 4)
 >>> v + w
 vector(4, 6)
 >>> v + 1
 vector(2, 3)
 >>> 2.0 + v
 vector(3.0, 4.0)

 """
 copy = self.copy()
 return copy.__iadd__(other)
 __radd__ = __add__

Upgrading the Snake Game with Turtle Chapter 10

[259]

Finally, we are ready to make the first movement sequence for our animation.9.
We will start by defining the move method in our class. The move() method will
take a single argument as a vector and add it to the current vector that represents
the current position of the game character. The move method will implement a
straight line addition. The following code represents the definition of the move
method:

 def move(self, other):
 """Move vector by other (in-place).
 >>> v = vector(1, 2)
 >>> w = vector(3, 4)
 >>> v.move(w)
 >>> v
 vector(4, 6)
 >>> v.move(3)
 >>> v
 vector(7, 9)
 """
 self.__iadd__(other)

Next, we need to create the rotate() method. This method is quite tricky to10.
create, as it will rotate the vector counter-clockwise by a specified angle (in-
place). This method will use trigonometric operations such as the sine and cosine
of the angle; thus, we have to import a math module first: import math.
The following code depicts the way of defining the rotate method; inside it, we11.
have added comments to make this operation clear to you. At first, we have
converted the angle into a radian with the: angle*π/ 180.0 command/formula.
After that, we fetched x and y coordinates of the vector class and performed the x
= x*cosθ - y*sinθ and y = y*cosθ + x*sinθ operations:

 import math
 def rotate(self, angle):
 """Rotate vector counter-clockwise by angle (in-place).
 >>> v = vector(1, 2)
 >>> v.rotate(90)
 >>> v == vector(-2, 1)
 True

 """
 if self._hash is not None:
 raise ValueError('cannot rotate vector after hashing')
 radians = angle * math.pi / 180.0
 cosine = math.cos(radians)
 sine = math.sin(radians)
 x = self.x

Upgrading the Snake Game with Turtle Chapter 10

[260]

 y = self.y
 self.x = x * cosine - y * sine
 self.y = y * cosine + x * sine

The mathematical formula, x = x*cosθ - y*sinθ, is significant in vectored motion. This
formula is used to provide rotational movements to the game characters. x*cosθ represents
the base x-axis movements, while y*sinθ represents the vertical y-axis movements. Thus,
this formula facilitates the rotation of a point in a 2D plane with an angle of θ.

Finally, we have completed two methods: move() and rotate(). These two methods are
completely unique, but they both represent vectored motion. The move() method has
implemented the __iadd_() magic function, while the rotate() method has its own
custom trigonometric implementation. The combination of these two methods can form
complete movement for game characters on the canvas or game screen. To construct any
type of 2D game, we have to implement similar kinds of movements. Now, we will make a
simple animation of an ant game in order to begin our tour of our gaming adventure.

The following steps depict the procedure of making any animation for 2D games:

Firstly, you have to import the necessary module. Since we have to give random1.
vector coordinates to the previously made move() method, we can predict that
we will need a random module.
After that, we need another module—a turtle module—which will allow us to2.
call methods such as ontimer and setup. We also need the methods of a vector
class, that is, move() and rotate().
We have to import it if that class is maintained in any other module or file.3.
Create two files: base.py for vector movements and animation.py for
animation. Then, import the following statements:

 from random import *
 from turtle import *
 from base import vector

The first two statements are going to import everything from the random and4.
turtle modules. The third statement is going to import the vector class from the
base file or module.
Next, we need to define the initial position for the game character, along with its5.
aim. It should be initialized as an instance of the vector class:

 ant = vector(0, 0) #ant is character
 aim = vector(2, 0) #aim is next position

Upgrading the Snake Game with Turtle Chapter 10

[261]

Now, you have to define the wrap method. This method takes x and y positions6.
as an argument that is referred to as value and returns it. In the upcoming
games, such as flappy bird and Pong, we will extend this function and make it
wrap the value around certain boundary points:

 def wrap(value):
 return value

The main controlling unit of the game is the draw() function, which calls a7.
method to make game character move. It also draws a screen for the game. From
the Vector class, we are going to call the move and rotate methods. From the
turtle module, we are going to call the goto, dot, and ontimer methods. The
goto method will move the turtle pen to a specified position on the game screen,
the dot method will create a small dot of a specified length when called, and the
ontimer(function, t) method will install a timer, which calls that function
after t milliseconds:

 def draw():
 "Move ant and draw screen."
 ant.move(aim)
 ant.x = wrap(ant.x)
 ant.y = wrap(ant.y)
 aim.move(random() - 0.5)
 aim.rotate(random() * 10 - 5)
 clear()
 goto(ant.x, ant.y)
 dot(10)
 if running:
 ontimer(draw, 100)

In the preceding code, the running variable was not declared. We will do it now,8.
outside the definition of the draw() method. We will also set up the game screen
using the following code:

 setup(420, 420, 370, 0)
 hideturtle()
 tracer(False)
 up()
 running = True
 draw()
 done()

Upgrading the Snake Game with Turtle Chapter 10

[262]

Finally, we have completed a simple 2D animation. It consists of a simple dot of a length of
10 pixels, but more importantly, it has motion attached to it, which is the result of
implementing magic functions inside the Vector class. The next section will teach us how
to use the magic functions that we implemented in this section in order to make a more
robust game, which is the Snake game. We will make a Snake game using the turtle module
and magic functions.

Upgrading the snake game using Turtle
As it turns out, we have been building the snake game in the previous chapters of this
book: in Chapter 5, Learning About Curses by Building a Snake Game, using the curses
module; in Chapter 6, Object-Oriented Programming; and in Chapter 7, List Comprehension
and Properties, by refining it using properties and list comprehension. We started with the
curses module (Chapter 5, Learning About Curses by Building a Snake Game), and modified it
using an object-0riented paradigm. The curses module was able to provide a character-
based Terminal game screen, which eventually made the game character look awful.
Although, we learned how to build logic using OOP and curses, along with making the
Snake game, it should be noted that games are primarily concerned with visuals: how a
player sees and interacts with the characters. Thus, our primary concern is to make games
visually appealing. In this section, we will try to upgrade the Snake game using both the
turtle module and vectored movements. Since there is only one possible movement in the
case of the Snake game, which is a straight-line movement by pressing the LEFT, RIGHT,
UP, or DOWN key, we don't have to define anything new inside the vector class of the base
file. The move() method, which we made previously, is enough to provide the movements
for the snake game.

Let's start coding the Snake game using the turtle module and Vector class, by following
these steps:

As usual, start by importing the necessary modules, as shown in the following1.
code. It is not compulsory for you to import everything first; we can do it along
with coding other stuff too, but it's good practice to import everything at once so
that we don't forget anything afterward:

 from turtle import *
 from random import randrange
 from base import vector

Upgrading the Snake Game with Turtle Chapter 10

[263]

Now, let's brainstorm a little bit. We can't use sprites or images yet. We will learn2.
about these in the upcoming chapters, after we get started with Pygame. For
now, we have to make a shape that represents a 2D snake, which is our main
character. You have to open the base.py file, where we created a Vector class
and defined a Square method. Note that the Square method is declared outside
the Vector class. The following code is a simple implementation of the turtle
methods that will create square shapes using the turtle pen:

 def square(x, y, size, name):
 """Draw square at `(x, y)` with side length `size` and fill color
 `name`.
 The square is oriented so the bottom left corner is at (x, y).
 """
 import turtle
 turtle.up()
 turtle.goto(x, y)
 turtle.down()
 turtle.color(name)
 turtle.begin_fill()
 for count in range(4):
 turtle.forward(size)
 turtle.left(90)

 turtle.end_fill()

Next, import this newly made method inside the Snake game module. Now, we3.
can call the square method inside our Snake game's Python file:

 from base import square

After importing everything, we will declare variables such as food, snake, and4.
aim. The food represents the vector coordinates, which is an instance of the
Vector class, for example, vector(0,0). The snake represents the initial vectored
position for the snake character, that is, (vector(10,0)), while the body of the
snake must be a list of representations for the vector, that is, (vector(10,0),
vector(10,1), and vector(10,2)) for a snake of length 3. The aim vector represents
the unit that must be added or subtracted to the current snake vector, based on
the user's keyboard actions:

 food = vector(0, 0)
 snake = [vector(10, 0)]
 aim = vector(0, -10)

Upgrading the Snake Game with Turtle Chapter 10

[264]

Inside the snake-Python file (the main file), after importing everything and5.
declaring its attributes, we will start by defining the boundary for the Snake
game, as follows:

 def inside(head):
 "Return True if head inside boundaries."
 return -200 < head.x < 190 and -200 < head.y < 190

You should also define another important method of the Snake game, which is 6.
known as move(), since this will take care of the movement of the Snake
character on the game screen, as follows:

 def move():
 "Move snake forward one segment."
 head = snake[-1].copy()
 head.move(aim)

 if not inside(head) or head in snake:
 square(head.x, head.y, 9, 'red')
 update()
 return
 snake.append(head)

 if head == food:
 print('Snake:', len(snake))
 food.x = randrange(-15, 15) * 10
 food.y = randrange(-15, 15) * 10
 else:
 snake.pop(0)
 clear()
 for body in snake:
 square(body.x, body.y, 9, 'black')

 square(food.x, food.y, 9, 'green')
 update()
 ontimer(move, 100)

Let's start by understanding the code line by line:7.

At the beginning of the move method, we fetched snakehead and
performed a copy operation, which is defined inside the Vector class, and
we made a snake move one segment ahead automatically because we want
the snake to move automatically as soon as the user starts playing the game.
After that, the if not inside(head) or head in snake statement is
used to check for any collisions. If there are any, we will return by rendering
the Red color to the snake.

Upgrading the Snake Game with Turtle Chapter 10

[265]

In the next line of the statement, head == food, we checked whether the
snake was able to eat food or not. As soon as the player eats the food, we
will make food appear in another random position, as well as print the score
in the Python console.
In the for body in snake: .. statement, we looped into the entire body
of the snake and rendered the black color to it.
The square method, which is defined inside the Vector class, is called to
create food for the game.
At the last statement of the code, the ontimer() method was called, which
takes the move() function, and it will install a timer that will call in the
move method every 100 milliseconds.

After defining the move() method, you have to set up the game screen and8.
handle the turtle screen. The parameters that are passed with the setup method
are the width, height, setx, and sety positions:

 setup(420, 420, 370, 0)
 hideturtle()
 tracer(False)

The last part of our game is to handle the user events. We have to make the user9.
play the game; thus, we must call the appropriate functions whenever a
keyboard input is received from the user. As Snake is simple game, consisting of
only a few movements, we will address it in the next section. As soon as the user
presses any key, we have to handle it by changing the snake's direction. Thus, we
have to make one quick method for handling the user's actions. The following
change() method is going to change the snake's direction, based on the user
events. Here, we've used the listen interface provided by the turtle module,
which will listen for any incoming user events or keyboard inputs. onkey()
takes the function, which will call the change method based on the user events.
For example, when Up is pressed, we will make changes in the y coordinate by
increasing the current y value by 10 units:

 def change(x, y):
 "Change snake direction."
 aim.x = x
 aim.y = y

 listen()
 onkey(lambda: change(10, 0), 'Right')
 onkey(lambda: change(-10, 0), 'Left')
 onkey(lambda: change(0, 10), 'Up')
 onkey(lambda: change(0, -10), 'Down')

Upgrading the Snake Game with Turtle Chapter 10

[266]

 move()
 done()

It's time to run our game, but before that, remember to keep both files (the file containing
the vector and the square class, and the file containing the Snake game) in the same
directory. The output of the game looks something like this:

Along with the turtle graphics, we can look at the score printed right next to it within the
Python terminal:

Now that we have covered the Snake game by making use of several methods provided by
the Python module and the OOP paradigm, we can reuse these things over and over again
in the upcoming games. The Vector class that was defined in the base.py file can be
revisited time and again for many 2D games. Thus, the reutilization of code is one of the
prime merits that is provided by OOP. We will make several games, such as Pong and
flappy bird, in the upcoming sections using only the Vector class. In the next section, we
are going to build the Pong game from scratch.

Upgrading the Snake Game with Turtle Chapter 10

[267]

Exploring the Pong game
Now that we have covered the Snake game (although it's cliche, it's perfect to grasp the
knowledge of 2D game programming) now, it's time to make another interesting game. The
game we are going to cover in this section is the Pong game. If you have played it before,
you might find it easier to grasp the concept that we will cover in this section. For those
who haven't played it before, don't worry! We will cover everything in this section, which
will help you make your very own Pong game and play it or even share it with your
friends. The following diagram is the pictorial representation of the Pong game:

The preceding diagram depicts the playground for the Pong game, where two players are
two rectangles. They can move up and down, but not left to right. The dot in the center is
the ball, which has to be hit by either player. We have to address two types of motion for
the game characters in this game:

For the ball, which can move in any position, but if the player on either side fails
to receive the ball, they lose, and the opposing player wins.
For the player, they should only move either up or down: four keyboard key
actions should be handled for two players.

Apart from the motion, it is even trickier to specify the boundary for the game. The
horizontal line, which can move up and down, is the position from where the ball must be
hit and reflected in the other direction, but if the ball hits either the left or right vertical
boundary, the game should be halted and the player who missed the ball will lose. Now,
let's brainstorm so that we know about the essentials before actually starting to code:

Create a random function, which may return a random value but within the
same range that is determined by the screen's height and width. The value that is
returned from this function might be useful to make it aim, which is a random
movement for the ball in the game.

Upgrading the Snake Game with Turtle Chapter 10

[268]

Create a method that will draw two rectangles on the screen, which are, in fact,
our players of the game.
The third function should be declared, which will draw the game and move the
Pong ball across the screen. We can use the move() method, which is defined
inside the previously made Vector class, which will move the vector by other
(in-place).

Now that we are done with the logistics, we can start to code. Follow these steps in order to
make your own Pong game:

Start by importing the necessary modules, that is, random, turtle, and our1.
custom-made module, named base, which has a bunch of methods for vectored
motion:

 from random import choice, random
 from turtle import *
 from base import vector

The following code represents the definition for the value() method, and three2.
assignments of variables. The value() method will randomly generate values
between (-5, -3) and (3, 5). The three assignment statements are understandable
by their names:

The first statement represents the initial position of the ball.
The second statement is the further aim of the ball.
The third statement is the state variable, which tracks the status of the two
players:

 def value():
 "Randomly generate value between (-5, -3) or (3, 5)."
 return (3 + random() * 2) * choice([1, -1])
 ball = vector(0, 0)
 aim = vector(value(), value())
 state = {1: 0, 2: 0}

The next function is an interesting one; this will render the rectangular shape3.
onto the game screen. We can use the turtle module and its method to render any
shape, as follows:

 def rectangle(x, y, width, height):
 "Draw rectangle at (x, y) with given width and height."
 up()
 goto(x, y)
 down()

Upgrading the Snake Game with Turtle Chapter 10

[269]

 begin_fill()
 for count in range(2):
 forward(width)
 left(90)
 forward(height)
 left(90)
 end_fill()

After we make the function to draw a rectangle, we need to make a new method4.
that can call the methods that were defined in the preceding steps. Along with
this, the new method should also move the Pong ball flawlessly onto the game
screen:

 def draw():
 "Draw game and move pong ball."
 clear()
 rectangle(-200, state[1], 10, 50)
 rectangle(190, state[2], 10, 50)
 ball.move(aim)
 x = ball.x
 y = ball.y

 up()
 goto(x, y)
 dot(10)
 update()

Now, it's time to address the main riddle of the game: what happens when the5.
ball hits the horizontal and vertical boundaries, or when it hits the player's
rectangular bat ? We can use the setup method to create the game screen with a
custom height and width. The following code should be added within the
draw() function:

 #when ball hits upper or lower boundary
 #Total height is 420 (-200 down and 200 up)
 if y < -200 or y > 200:
 aim.y = -aim.y
 #when ball is near left boundary
 if x < -185:
 low = state[1]
 high = state[1] + 50
 #when player1 hits ball
 if low <= y <= high:
 aim.x = -aim.x
 else:
 return
 #when ball is near right boundary

Upgrading the Snake Game with Turtle Chapter 10

[270]

 if x > 185:
 low = state[2]
 high = state[2] + 50
 #when player2 hits ball
 if low <= y <= high:
 aim.x = -aim.x
 else:
 return
 ontimer(draw, 50)

Now that we've addressed the movement for the game characters, we have to6.
make the game screen and find a way to handle user events. The following code
will set up the game screen, which is called in from the turtle module:

 setup(420, 420, 370, 0)
 hideturtle()
 tracer(False)

After we make a game screen, we have to listen to and handle the user's key7.
events by making a custom function. We will make the move() function, which
will move the player's position by a certain number of units that are passed while
calling this function. This move function will take care of the up and down
movements of the rectangular bat:

 def move(player, change):
 "Move player position by change."
 state[player] += change

Finally, we will use the listen interface that is provided by the turtle method to8.
handle incoming key events. Since there are four possible movements, that is, up
and down for each player, we will reserve four keyboard keys [W, S, I, and K],
which will have the listener attached internally by turtle, as shown in the code
that follows:

 listen()
 onkey(lambda: move(1, 20), 'w')
 onkey(lambda: move(1, -20), 's')
 onkey(lambda: move(2, 20), 'i')
 onkey(lambda: move(2, -20), 'k')
 draw()
 done()

Upgrading the Snake Game with Turtle Chapter 10

[271]

The previous steps are quite simple to understand, but let's grasp the concepts we defined
in step 4 and step 5 more eloquently. In step 4, the first two lines of code after the clear()
method will create a rectangular geometrical shape of a specified height and width.
state[1] represents the first player, while state[2] represents the second player. The
ball.move(aim) statement is a call to the move method that is declared inside the vector
class.

This method call will perform the addition between the specified vectors, which results in a
straight line of motion. The dot(10) statement will create a ball of a width of 10 units.

Similarly, in step 5, we used the >>> setup(420, 420, 370, 0) statement to create a
screen that has a width of 420px and a height of 420px. There must be a change in direction
when the ball hits the upper and lower boundaries by some amount, and the amount is
exactly the negative of the current y (-y reverses the direction). However, when the ball hits
either the left or right boundary, the game must terminate. After we check for the upper
and lower boundaries, we make a comparison for the x coordinate and check for low and
high states. If the ball is under these values, it must have collided with the bat, otherwise
we return the from function. Make sure you add this code inside the previously defined
draw() function.

When you run your Pong game file, you will observe two screens; one screen will have a
turtle graphics screen consisting of two players ready to play your very own Pong game.
The output will be similar to the diagram we saw previously when brainstorming the Pong
game. Now that you know a lot about the ways of handling keyboard actions, and making
a call to the custom functions with the turtle ontimer function, let's make something new,
which will have a controller. It will listen for screen tap actions and provide responses to
them. We need this in games such as flappy bird, where the user taps on the screen and
changes the position of the bird.

 Understanding the flappy bird game
Whenever we talk about games having a screen-tap action or onscreen click action, flappy
bird comes to mind. If you haven't played it before, make sure you check it out at https:/ /
flappybird.io/ in order to get familiar with it. Although the interface that you see in this
website won't be the same as the flappy bird game we are going to make in this section,
don't worry—we will emulate its interface after we learn about Python's GUI module,
known as Pygame. But for now, we will make a simple 2D flappy bird game using the
Python turtle module and vectored motion. We have been using the onkey method to
handle keyboard actions, and in the preceding section, we used the onkey method to
embed a listener to the specific keyboard keys.

https://flappybird.io/
https://flappybird.io/
https://flappybird.io/
https://flappybird.io/
https://flappybird.io/
https://flappybird.io/
https://flappybird.io/

Upgrading the Snake Game with Turtle Chapter 10

[272]

However, there are also games that can be played using mouse actions—by clicking onto
the game screen. In this section, we are going to follow these steps in order to create Flappy,
a game inspired by flappy bird:

First of all, you should define a boundary for the gameplay. You can make a1.
function that takes an argument as a vector point and checks if it is inside the
boundary or not and accordingly returns True or False.

You have to make a rendering function that will draw game characters onto the2.
screen. As we know, turtle is unable to handle many images or sprites in the
GUI; therefore, your game character will resemble geometrical shapes. You can
represent your bird character by making any shape. If possible, try to make it
small.
After making a render function, you have to create a function that will be able to3.
update the objects' positions. This function should be able to handle the
tap action.

We can use the predefined Vector blueprint throughout the coding of the flappy bird
game. The previous roadmap clearly implies that we can make a simple flappy bird game
by defining three functions. Let's define each of these functions, one by one:

Firstly, you have to set up the screen. This screen represents the output game1.
console where you will play our flappy bird game. You can create a game screen
using the turtle module by using setup(). Let's create a screen which has a
width of 420 pixels and a height of 420 pixels:

 from turtle import *
 setup(420, 420, 370, 0)

You should define a function that will check whether the user has tapped or2.
touched inside the boundary. This function should be a Boolean and should
return True if the tapped-point is inside the boundary; otherwise, it should
return False:

 def inside(point):
 "Return True if point on screen."
 return -200 < point.x < 200 and -200 < point.y < 200

Upgrading the Snake Game with Turtle Chapter 10

[273]

I have already recommended that you take a tour of the flappy bird game if you3.
haven't played it before. While playing it, you will observe that the goal of the
game is to protect the bird character from the obstacles. In a real-world game, we
have obstacles in the form of vertical pipes. Since we don't have enough
resources to use while coding with the turtle module, we won't be able to use
such sprites or interfaces in this section. As I have already told you, we are going
to make cool interfaces by ourselves while learning about Pygame, but for now,
instead of the GUI, we will be focusing highly on the game logic. Thus, we will
give some random shapes to the game character; small round shapes for the bird
character and big round shapes for the obstacles. The bird will be instantiated
from the vector class, which represents its initial position. The ball (obstacles)
must be made as a list because we want obstacles to be in the path of the bird:

 bird = vector(0, 0)
 balls = []

Now that you are familiar with the game characters, you can render them by4.
creating some functions. In the function, we have passed alive as a variable,
which will be a Boolean, and this will check whether the player is dead or not. If
the bird is alive, we jump to that position using goto() and render a dot with a
green color to it. If the bird is dead, we render the dot with a red color. The for
loop in the following code will render a number of obstacles:

 def draw(alive):
 "Draw screen objects."
 clear()
 goto(bird.x, bird.y)
 if alive:
 dot(10, 'green')
 else:
 dot(10, 'red')
 for ball in balls:
 goto(ball.x, ball.y)
 dot(20, 'black')
 update()

Upgrading the Snake Game with Turtle Chapter 10

[274]

As we discussed in the previous blueprint, next up is the main controller of the5.
game. This function must perform multiple tasks, but all of them will be related
to updating the objects' position. It will be hard for the users who haven't played
flappy bird before to understand the following code; that is why I had
encouraged you to take a tour of original flappy bird game. If you inspect the
movement of the bird in the game, it is restricted to moving in only the y-axis,
that is, either up or down. Similarly for the obstacles, they must move from right
to left, the same as vertical pipes in the real-world game. The following move()
function consists of the initial motion for the bird. Initially, we want it to fall by 5
units, and decrease it accordingly. For the part of bird as obstacles, we want it to
move from right to left by 3 units:

 from random import *
 from base import vector #for vectored motion
 def move():
 "Update object positions."
 bird.y -= 5
 for ball in balls:
 ball.x -= 3

You have to explicitly create numbers of obstacles inside the move function. Since6.
obstacles should spawn randomly, we can use a random module to create it:

 if randrange(10) == 0:
 y = randrange(-199, 199)
 ball = vector(199, y)
 balls.append(ball) #append each obstacles to list

Next, we need to check whether the player is able to prevent the bird from7.
touching the obstacles. The method to check this is simple. If the ball, or obstacle,
is out of the left vertical boundary, we can remove it from the list of balls.
Initially, we made the inside function to check whether any point is within the
boundary; now, we can use it to check whether the obstacle is within the
boundary. It should look something like this:

 while len(balls) > 0 and not inside(balls[0]):
 balls.pop(0)

Notice that we have added a condition for the obstacles; now, it's time to add a8.
condition to check whether the bird is alive. If the bird falls down and touches
the lower boundary, the program should be terminated:

 if not inside(bird):
 draw(False)
 return

Upgrading the Snake Game with Turtle Chapter 10

[275]

Now, we will add another condition—one that will check whether the obstacle9.
has collided with the bird. There are several ways of doing this, but for now, we
will do this by checking the position of the ball and the obstacle. Firstly, you have
to check the size of the obstacle and the bird: the obstacle or ball has a size of 20
pixels, and the bird has a size of 10 pixels (defined at point number 4); thus, we
can assume that they have collided when the distance between them is 0. Thus,
the >>> if abs(ball - bird) < 15 expression will check whether the
distance between them is less than 15 (considering the width of the ball and the
bird):

 for ball in balls:
 if abs(ball - bird) < 15:
 draw(False)
 return
 draw(True)
 ontimer(move, 50) #calls move function at every 50ms

Now that we are done updating the object's position, we need to handle user10.
events—this is what should be implemented when the player taps the game
screen. When the user taps the screen, we want the bird to rise up by a certain
number of pixels. The argument that is passed to the tap function (x,y) is the
coordinates of the clicked point on the game screen:

 def tap(x, y):
 "Move bird up in response to screen tap."
 up = vector(0, 30)
 bird.move(up)

Finally, it's time to add a listener using the turtle module. We will use the11.
onscreenclick() function, which will take any user-defined function as an
argument (in our case, it is the tap() function), which will be called with the
coordinates of the clicked point (x, y) on the canvas. We have used the tap
function to call this listener:

 hideturtle()
 up()
 tracer(False)
 onscreenclick(tap)
 move()
 done()

Upgrading the Snake Game with Turtle Chapter 10

[276]

This seems like a lot of work, right? It is indeed. We have covered so many things in this
section: ways to define boundaries, rendering game objects, updating object positions, and
handling tap events or mouse events. I feel that we have already studied a lot about 2D
game architecture using the turtle module. Although the games that are made by using the
turtle module are not very appealing, the logic we learned about by building these games
will be used repeatedly in the upcoming chapters. In these types of games, we don't care
about the interface too much, but we will run our game into the Python shell and observe
how it looks. The outcome of the preceding program will be something like this:

Error message: No module named 'base'. This is because you haven't
added your Base module (the Python file that contains the Vector class,
which we made in the Simple animation using Turtle module section) and the
Python game file to the same directory. Make sure you create a new
directory and store the two files together, or grab the code from the
following GitHub link: https:/ /github. com/ PacktPublishing/
Learning- Python- by- building- games/ tree/ master/ Chapter10.

There is little place for modifying the games that are made out of Turtle. However, I
strongly suggest that you to go through it, test the game, and uncover the possible
modifications by yourself. If you get any, try to implement them. In the next section, we
will cover how to test the game properly and apply modifications so that these games will
become more sturdy than before.

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter10

Upgrading the Snake Game with Turtle Chapter 10

[277]

Game testing and possible modifications
The fallacious misconception that many people believe is that, in order to become a
proficient game tester, you should be a gamer. This may be true to some extent, but mostly,
game testers don't care about the frontend design of the game. They primarily focus on the
backend part, which deals with data communicating between game servers and client
computers. I will take you through the game testing and modification process for our Pong
game, while covering the following points:

Enhancing game characters: The following code represents the new model for1.
the game characters. We implement it solely using the turtle module. The
Paddle is the rectangular box, which represents the player of the pong game.
There are two of them, namely paddle A and paddle B:

 import turtle
 # Paddle A
 paddle_a = turtle.Turtle()
 paddle_a.speed(0)
 paddle_a.shape('square')
 paddle_a.color('white')
 paddle_a.penup()
 paddle_a.goto(-350, 0)
 paddle_a.shapesize(5, 1)

 # Paddle B
 paddle_b = turtle.Turtle()
 paddle_b.speed(0)
 paddle_b.shape('square')
 paddle_b.color('white')
 paddle_b.penup()
 paddle_b.goto(350, 0)
 paddle_b.shapesize(5, 1)

Adding the main character in the game (a ball): Similar to the creation of the A2.
and B paddles, we will use the turtle module along with commands such
as speed(), shape(), and color() to create a ball character and add such
functionalities to it:

 # Ball
 ball = turtle.Turtle()
 ball.speed(0)
 ball.shape('circle')
 ball.color('white')
 ball.penup()
 ball.dx = 0.15
 ball.dy = 0.15

Upgrading the Snake Game with Turtle Chapter 10

[278]

Adding a score interface to the game: We will use the turtle pen to draw an3.
interface for the points scored by each player. The following code consists of a
method call from the turtle module, that is, the write() method, which writes
text. It puts the string representation of arg in the specified position:

 # Pen
 pen = turtle.Turtle()
 pen.speed(0)
 pen.color('white')
 pen.penup()
 pen.goto(0, 260)
 pen.write("Player A: 0 Player B: 0", align='center',
 font=('Courier', 24, 'bold'))
 pen.hideturtle()
 # Score
 score_a = 0
 score_b = 0

Keyboard binding with proper actions: In the following code, we have bound4.
the keyboard with proper functions. Each keyboard key, when pressed, will call
the specified function by using onkeypress; this is known as event handling.
Confused with methods such as paddle_a_up and paddle_b_up? Be sure to
revise The Pong game section:

 def paddle_a_up():
 y = paddle_a.ycor()
 y += 20
 paddle_a.sety(y)

 def paddle_b_up():
 y = paddle_b.ycor()
 y += 20
 paddle_b.sety(y)
 def paddle_a_down():
 y = paddle_a.ycor()
 y += -20
 paddle_a.sety(y)

 def paddle_b_down():
 y = paddle_b.ycor()
 y += -20
 paddle_b.sety(y)

 # Keyboard binding
 wn.listen()
 wn.onkeypress(paddle_a_up, 'w')
 wn.onkeypress(paddle_a_down, 's')

Upgrading the Snake Game with Turtle Chapter 10

[279]

 wn.onkeypress(paddle_b_up, 'Up')
 wn.onkeypress(paddle_b_down, 'Down')

Turtle screen and main game loop: The following couple of method calls5.
represent the setup for the turtle screen: the screen size and title for the game.
The bgcolor() method will render the background of the turtle canvas with a
specified color. Here, the background of the screen will be a black color:

 wn = turtle.Screen()
 wn.title('Pong')
 wn.bgcolor('black')
 wn.setup(width=800, height=600)
 wn.tracer(0)

The main game loop looks a bit trickier, but if you take a look, you will see that we have
already learned about this concept. The main loop starts by setting the ball in motion. The
values of dx and dy are constant units for its movement. For the part of #border checking,
we start by checking the condition if the ball hits the upper or lower wall. If so, we reverse
its direction so that the ball comes back into the gameplay. For #2: For RIGHT boundary,
we check if the ball hit the right-hand side vertical boundary, and if so, we write the score
to another player and we end the game. The same goes for the LEFT boundary:

while True:
 wn.update()

 # Moving Ball
 ball.setx(ball.xcor() + ball.dx)
 ball.sety(ball.ycor() + ball.dy)

 # Border checking
 #1: For upper and lower boundary
 if ball.ycor() > 290 or ball.ycor() < -290:
 ball.dy *= -1
 #2: for RIGHT boundary
 if ball.xcor() > 390:
 ball.goto(0, 0)
 ball.dx *= -1
 score_a += 1
 pen.clear()
 pen.write("Player A: {} Player B: {}".format(score_a, score_b),
 align='center', font=('Courier', 24, 'bold'))

 #3: For LEFT boundary
 if ball.xcor() < -390:
 ball.goto(0, 0)
 ball.dx *= -1
 score_b += 1

Upgrading the Snake Game with Turtle Chapter 10

[280]

 pen.clear()
 pen.write("Player A: {} Player B: {}".format(score_a, score_b),
 align='center', font=('Courier', 24, 'bold'))

Now, we have to address the condition where the ball hits the paddle of the player. The
following two conditions represent the collision between the paddle and the ball: the
former one is for paddle B and the latter for paddle A. Since paddle B is at the right-hand
side of the screen, we check whether the ball's coordinate is the same as the paddle's
coordinate, plus its width. If so, we reverse the ball's direction using the ball.dx *= -1
command. The setx method will change the first coordinate of the ball to 340, and leaves
the y coordinate unchanged. The logic here is similar to the logic that we used while
making the Snake game, when the snake's head collided with the food:

Paddle and ball collisions
 if (ball.xcor() > 340 and ball.xcor() < 350) and (ball.ycor()
 < paddle_b.ycor() + 60 and ball.ycor() > paddle_b.ycor() -60):
 ball.setx(340)
 ball.dx *= -1

 if (ball.xcor() < -340 and ball.xcor() > -350) and (ball.ycor()
 < paddle_a.ycor() + 60 and ball.ycor() > paddle_a.ycor() -60):
 ball.setx(-340)
 ball.dx *= -1

The benefit of implementing such a rigorous modification is to not only enhance the game
characters, but also to control the inconsistent frame rate—the rate at which consecutive
images, frames, appear on our display screen. We will learn about this in detail in the
upcoming chapter about Pygame, where we will customize the turtle-based Snake game by
using our own sprites. Before summarizing this chapter, let's run the customized Pong
game and observe the result, as follows:

Upgrading the Snake Game with Turtle Chapter 10

[281]

Summary
In this chapter, we explored the world of 2D turtle graphics, along with vectored motions.

I tried to make this chapter as comprehensive as I can, especially when dealing with
vectored motion. We have created two separate files; one for the Vector class and another
for the game file itself. The Vector class provided a way to represent the 2D coordinates in
the x and y positions. We performed multiple operations, such as move and rotation using
data models—overriding its actual behavior in our custom-made Vector class. We briefly
observed a way of working with computer pixels by creating Mario pixel art. We made a
grid of pixels (list of lists) to represent the positions of the pixels, and eventually used turtle
methods to render the pixel art. After that, we made a simple animation using the turtle
module by defining a separate Vector class which represents the position of the game
characters. We used the turtle module and our custom-made Vector class throughout the
game. Although I feel that you are ready to begin your career as a 2D game programmer, as
we say, Practice makes Perfect, and you need to experiment with it a lot before you get
comfortable with it.

This chapter was a breakthrough for all of us who want to become game programmers. We
learned the basics of building games with Python using the turtle module, and we learned
how to handle different user events such as a mouse and a keyboard. Finally, we also
learned how to create different game characters using the turtle module. As you continue to
work through this book, you will find out how extremely important these concepts of turtle
are, so make sure that you revise them before moving on.

In the next chapter, we will learn about the Pygame module—the most important platform
for building interactive games with Python. From the next chapter onward, we will delve
into topics about where you can load images or sprites and making your own game
animations. You will also find out how easy it is to build games with Python in comparison
to C or C++.

11
Outdo Turtle - Snake Game UI

with Pygame
Python game development, in one way or another, is related to the pygame module. We
have learned about a variety of topics and techniques regarding Python so far because we
have to know about them before we progress to the pygame module. And all of these
concepts will be used as apportioned techniques while build a game using Pygame. We can
now start to use object-oriented principles, vectored movements for event handling,
rotation techniques to rotate the images or sprites used in th e game, and even use things
that we learned about in the turtle module. In the turtle module, we learned how to create
objects (refer to Chapter 6, Object-Oriented Programming), which can be used to debug
different features at the rudimentary stages of the game that we may build using Pygame.
Thus, whatever we have learned so far will be used, along with the additional features of
the Pygame module, which can help us make more appealing games.

In this chapter, we are going to cover multiple things, starting with learning the basics of
Pygame—the installation, building blocks, and different features. After that, we are going
to learn about different objects of Pygame. They are the modules that can be used for
several functionalities, such as drawing shapes into the screen, handling mouse and
keyboard events, loading images into the Pygame projects, and many more. At the end of
this chapter, we will try to make our snake game visually attractive by adding multiple
features, such as a custom-made snake image, apples as food, and a menu screen for the
game. Finally, we will convert our snake game into executable files so that you can
distribute your game with your friends and family and get responses from them. The
following topics will be covered in this chapter:

Pygame basics
Pygame objects
Initializing display and handling events
Object rendering—making the snake game
Menu for the game

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[283]

Converting into an executable
Game testing and possible modifications

Technical requirements
You will need the following requirements to complete this chapter:

Python—3.5 or higher
PyCharm IDE—refer to Chapter 1, Getting to Know Python – Setting Up Python
and the Editor, for the download procedure

The files for this chapter can be found at https:/ /github. com/ PacktPublishing/
Learning-Python- by- building- games/ tree/ master/ Chapter11.

Check out the following video to see the code in action:

http://bit.ly/2o2GngQ

Understanding pygame
Writing games with the pygame module requires pygame to be installed on your machine.
You can download it manually from the official Pygame library by visiting the website
(www.pygame.org.), or install it by using the Terminal with the pip install
pygame command.

The pygame module is free to download from the aforementioned website, so we can
download it by following a similar process to what we do for any other Python module.
However, we can remove the headache of downloading pygame manually by using a
visually more attractive and effective alternative IDE, PyCharm, which we downloaded
back in Chapter 1, Getting to Know Python – Setting Up Python and the Editor. We are
became familiar with the techniques that are used to download and install third-party
packages within PyCharm in that chapter.

Once you have downloaded the pygame package into PyCharm, give it some time to load.
Now, we can test it by writing the following code. The following two lines of code check if
the pygame module is downloaded or not, and if it is, it will print its version:

import pygame
print(pygame.version.ver) #this command will check pygame version installed
print(pygame.version.vernum) #alternate command

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
http://bit.ly/2o2GngQ
http://bit.ly/2o2GngQ
http://bit.ly/2o2GngQ
http://bit.ly/2o2GngQ
http://bit.ly/2o2GngQ
http://bit.ly/2o2GngQ
http://bit.ly/2o2GngQ
http://bit.ly/2o2GngQ
http://bit.ly/2o2GngQ
http://www.pygame.org

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[284]

If pygame is successfully installed onto your machine, you will observe the following
output. The version may vary, but at the time of writing this book, it is version 1.9.6 (the
latest version of 2019). The contents of this book works for any version of pygame because
of its backward compatibility. Make sure that you have a pygame version that is newer
than 1.9+:

pygame 1.9.6
Hello from the pygame community. https://www.pygame.org/contribute.html
1.9.6

Pygame is a utopia for many Python game developers; it contains a surfeit amount of
modules, ranging from making an interface to handling user events. All of these modules
that are defined within pygame can be used independently, according to our needs. Most
importantly, you can also make games using pygame, which may or may not be platform-
specific. Invoking the modules of pygame is similar to invoking the methods of the class.
You can always access these classes using the pygame namespace, followed by the class
that you want to use. For instance, pygame.key will read the key that is pressed on the
keyboard. Thus, the key class is responsible for handling keyboard actions. Similarly, the
pygame.mouse module is used to manage mouse events. These, and many other modules
of pygame, can be called independently from one another, which makes our code more
manageable and readable. You can search for the list of modules that are available in the
pygame module from its official documentation page, but almost 80 percent of the games
require only four to six modules. If you want to learn more about them, it's always good to
explore its official documentation page. Among them, we mostly use two classes in each
and every game, that is, the display module, in order to access and manipulate the game
display; and the mouse and key or joystick module, in order to handle input events for the
game. I won't say that the others are less important, but these modules are the building
blocks of games. The following table has been extracted from the Python pygame official
documentation; it gives us a succinct idea about the pygame modules and their usages:

Module name Description
pygame.draw Draws shapes, lines, and points.
pygame.event Deals with external events.
pygame.font Deals with system fonts.
pygame.image Loads the image into the project.
pygame.joystick Deals with joystick movements/events.
pygame.key Reads key presses from the keyboard.
pygame.mixer Mixing, loading, and playing sound.
pygame.mouse Reads mouse events.
pygame.movie Plays/runs movie files.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[285]

pygame.music Plays streaming audio files.
pygame Bundled as high-level pygame functions/methods.
pygame.rect Deals with rectangular areas and can create a box structure.

There are also a few more, such as surface, time, and transform. We will explore each of
them in this and the upcoming chapters. All of the preceding modules are platform-
independent, which means that they can be evoked, regardless of the operating system that
is used by the machines. But there are some OS-specific errors, and errors due to hardware
incompatibilities or improper device drivers. If any module is not compatible with any
machine, the Python parser returns it as None, which means we can check beforehand to
make sure that the game works properly. The following line of code will check whether any
specified module (pygame.module_name) is present, and if not, it will return a custom
message in the print statement, which in this case is, No such module! Try other one:

if pygame.overlay is None:
 print("No such module! Try other one")
 print("https://www.pygame.org/contribute.html")
 exit()

To completely grasp the concept of pygame, we have to make a habit of observing the code
that is written by other pygame developers. In doing so, you will learn the pattern for
building games with pygame. If, like me, you only check documentation if you are at an
impasse, then we can make a simple program to help us understand the concept of
pygame and the ways that we can call its different modules. We are going to write a simple
code to illustrate this:

import pygame as p #abbreviating pygame with p

p.init()
screen = p.display.set_mode((400, 350)) #size of screen
finish = False

while not finish:
 for each_event in p.event.get():
 if each_event.type == p.QUIT:
 finish = True
 p.draw.rect(screen, (0, 128, 0), p.Rect(35, 35, 65, 65))
 p.display.flip()

Before discussing the preceding code, let's run it and observe the output. You will get a
geometrical shape—a green rectangular box that will be rendered inside the screen of a
certain height and width. Now, it's time to make a quick mental note of the building blocks
of the pygame module. To make things simpler, I have listed them in the following points:

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[286]

import pygame: The import statement that we have been with familiar from the
beginning of this book. This time, we are importing the pygame framework into
our Python file.
pygame.init(): This method is going to initialize a bundle of modules/classes
that are embedded inside pygame. This means that we can call pygame's other
modules with its namespace.
pygame.display.set_mode((width, height)): The size passed as a tuple
(width, height) is the desired screen size. This size represents our games console.
The returned object will be a window screen, or surface, on which we will
perform different graphical computations.
pygame.event.get(): This statement is going to handle the event queue. The
queue, as we discussed in previous chapters, is going to store different events of
the user. If this statement is not called explicitly, the game will be hindered by
overwhelming Windows messages, and eventually it will become unresponsive.
pygame.draw.rect(): We will be able to draw into the screen using the draw
module. Different shapes can be drawn with this module. More on this will be
covered in the next section—Pygame objects. Taking a screen object, color, and
position as arguments, the rect() method draws a rectangle. The first argument
represents the screen object, which is the returned object of the display class; the
second is the color code that is passed as a tuple in the form of RGB (red, green,
blue) code; and the third is the dimensions of a rectangle. In order to manipulate
and store rectangular areas, pygame uses Rect objects. Rect() can be created by
combining four different values—height, width, left, and top.
pygame.QUIT: This event is invoked whenever you explicitly close the pygame
screen, which is done by pressing the close(X) button at the top-most right
corner of the games console.
pygame.display.flip(): This is same as the update() function, which makes
any new updates on the screen visible. While making or blitting shapes or
characters, this method must be invoked at the end of the game in order to
ensure that all the objects are rendered properly. This will swap the pygame
buffer, as pygame is a double-buffered framework.

The aforementioned code renders the green rectangular shape when executed. As we
mentioned previously, the rect() method is responsible for creating the rectangular area,
and the color code (0, 128, 0) represents the green color.

Don't get overwhelmed with this jargon; you will learn about it in detail in the upcoming
chapters. While you read this chapter, make sure that you make a habit of making a logical
connection between the code: something like a blueprint that maps the game from one
position to another, that is, the display screen, to rendering characters, to handling events.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[287]

If you get into a situation where you are unable to close the pygame
Terminal, it's surely because you haven't handled the event queue
properly. In such cases, you can always stop Python from the Terminal by
pressing Ctrl + C.

Before hopping over to the next section, I want to discuss the rather simple but abyss
working of commands—pygame initialization—which is done by the pygame.init()
statement. This is just a single line of command, but it carries out more tasks than we can
imagine. As the name suggests, it is the initialization of pygame. Thus, it must initialize
each of the sub-modules of the pygame package, that is, display, rect, key, and so on.
Not only that, but it is also going to load all the essential drivers and queries of the
hardware components in order to communicate.

If you want to load any submodules quicker, you can explicitly initialize the specific ones,
and avoid all the unnecessary ones. For example, pygame.music.init() will only
initialize the music sub-module from the bucket of submodules that is maintained by
Pygame. For most of the games that we are going to cover in this book, the pygame module
requires more than three submodules. Thus, we can use the universal pygame.init()
method to perform initialization. After making the preceding call, we will be well-equipped
to use all of the specified submodules of the pygame module.

After the process of initialization, it's good practice to start creating a display screen. The
dimension of the display screen depends on the demand of the game. Sometimes, you may
have to provide full-screen resolution to the games in order to make it fully interactive and
appealing. The manipulation of the screen size can be done via the pygame surface object.
The method call of set_mode on the display class returns the object, which represents the
entire window screen. You can also set the caption to the display screen if you want; the
caption will be added to the top navigation bar, which is along with the close button. The
following code represents a way of adding captions or game names to the game screen:

pygame.display.set_caption("My First Game")

Now, let's talk about the argument that is passed with the set_mode method. The
first—and an most important–argument is the dimension of the screen's surface. The size
should be passed as a tuple, that is, in terms of width and height, and it is mandatory. The
others are optional (in the previous program, we didn't even bother using them); they are
called flags. We need them because the information related to width and height sometimes
won't be enough to make an appropriate display.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[288]

We may want a fullscreen or resizable display, and in such cases, flags can be better suited
for display creation. Speaking of flags, it is a feature that can be turned on and off, based on
the situation, and sometimes working with it may be time-saving, relatively speaking. Let's
observe some of the flags in the following table, though we are not going to use them any
time soon, but covering them here obviates the unnecessary introduction in the upcoming
sections:

Flag Purpose

FULLSCREEN
Creation of a display that covers the entire screen. Windowed screen
recommended for debugging.

DOUBLEBUF
Used in the creation of a double-buffered display. It is highly recommended for
HWSURFACE or OPENGL, which simulates a 3D display.

HWSURFACE
Used in creating a hardware-accelerated display, that is, it uses video card
memory instead of main memory (must be combined with the FULLSCREEN
flag).

RESIZABLE Creates a resizable display.
NOFRAME Display without frame or border, along with no title bar.
OPENGL Creates an OpenGL renderable display.

You can use the bitwise OR operator to combine multiple flags together, which facilitates a
better experience in terms of the screen surface. In order to create a double-buffered
OpenGL rendered display, you can set an optional flag parameter to DOUBLEBUF|OPENGL;
here, (|) is the bitwise OR operator. Even if pygame is not able to render the perfect display
that we asked for, which may be due to the lack of the appropriate graphics card, pygame
will make a decision for us in terms of choosing a display that is compatible with our
hardware.

One of the most important aspects of game development is handling a user event, and it is
normally done within the game loop. Inside the main game loop, we usually have another
loop to handle user events—an event loop. An event is a course of messages that inform
pygame of what to expect outside the periphery of the code. Events may vary from the user
pressing the key events, to any information transferred through a third-party library, for
example, the internet.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[289]

The events that are created as a chunk are stored in the queue, and remain there until we
explicitly address them. While there are different functions in event modules from pygame
that provide a way to capture the events, get() is the most reliable, and is also easy to use.
After getting the gamut of actions, we can address them using the pygame event
handler—using functions such as pump or get. Remember that if you are only addressing
specific actions, the event queue may infuse with other superficial events that you might
not be interested in. Thus, the handling of events must be done explicitly using event
attributes, similar to what we did in the preceding example using the QUIT event attribute.
You may also get full access to the event object's attributes through the
eventType.__dict__ attribute. We will learn about them thoroughly in the
upcoming Event handling section.

Before learning how to upgrade our own previously made snake game using pygame, we
have to learn about a few important concepts of pygame—Pygame objects, Drawing into the
screen, and Handling User Events. We will learn about these concepts in detail, one by one.
We will start with Pygame objects, where we will learn about surface objects, creating
surfaces, and rectangular objects. We will also learn how to draw shapes using pygame.

Pygame objects
The pygame module, which is made by internally using classes, makes code readable and
reusable by allowing us to create objects and use their properties. As we mentioned earlier,
there are several classes that are defined in the pygame module that can be called
independently to perform independent tasks. For instance, the draw class can be used to
draw different shapes such as rectangles, polygons, circles, and many more; the event class
can call functions such as get or pump in order to handle user events. These invocations can
be done using objects, by creating them first for each action. In this section, you are going to
explore the concepts that will help you learn about accessing surface objects, rectangular
objects, and drawing to the screen.

The most basic way to create a blank surface of customized dimensions is by calling
a Surface constructor from the pygame namespace. While creating objects of the Surface
class, tuples containing width and height information must be passed. The following line of
code creates a blank surface of 200 by 200 pixels:

screen_surface = pygame.Surface((200,200))

We can specify a few more optional parameters that can ultimately affect the screen visuals.
You can set the flag parameter to one or more of the following parameters:

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[290]

HWSURFACE: Creates a hardware surface. This is not very important in the context
of games because it is done internally by pygame.
SRCALPHA: It uses alpha information for the conversion of the background, which
refers to a process that makes the background of the screen transparent. It creates
a surface with alpha conversion. The alpha information will make a part of your
surface transparent. If you are using this as an optional flag, you have to specify
one more mandatory parameters, including depth, and assign its value to 32,
which is standard for alpha information.

Furthermore, if you want to create a surface that contains an image as a background, you
can call up the image class from the pygame module. The image class contains the load
method, which can be called with the argument of the background image filename that
needs to be rendered. The filename that is passed should be the full name, with its original
extension:

background_surface = pygame.image.load(image_file_name.extension).convert()

The load function that is called from the image class reads an image file from your machine
and then returns the surface containing an image. Here, the screen dimension will be
determined by the image size. The convert() member function of the Surface object will
convert the specified image into the format that is supported by your display screen.

Now, let's learn how to create multiple surfaces inside a single one, which is normally
called a subsurface.

Subsurfaces
As the name suggests, subsurfaces are a list of nested surfaces inside the single main
surface. The main surface can be referenced as the parent surface. The parent surface can be
created with any of the aforementioned methods using the Surface constructor,
set_mode, or image. When you draw onto the subsurface, it is also going to draw onto the
parent one, as subsurfaces are part of the parent, too. Creating a subsurface is easy; you just
need to call the subsurface method from the Surface object, and the argument that is
passed should indicate the position of the parent class to be covered. Normally, the
coordinate that is passed should create a small rectangle inside the parent screen. The
following code shows how a subsurface can be created:

screen = Pygame.load("image.png")
screen.subsurface((0,0),(20,20))
screen.subsurface((20,0),(20,20))

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[291]

You can store these subsurfaces into data structures such as a dictionary so that you can
reference them easily. You can observe the position that is passed inside the subsurface
method—they are heretic from the others. The point (0, 0) always means that a subsurface
starts from the top-left corner of the parent screen.

There are several methods available with subsurfaces, all of which you can pry from its
official documentation. One of the most useful methods is get_parent(), which returns
the parent surface of the subsurface. It will return None if the get_parent method is not
called with any subsurface.

Now, we will learn about the next method regarding surface objects that you will
frequently use while making any game with pygame, which is blit, which stands for bit
block transfer.

Blitting your objects
While the term blitting may not have been defined in the Oxford dictionary, it has greater
significance while making games with pygame. Often referred to as bit-boundary block
transfer, or Block Information Transfer, blit is a way of copying the image from one
surface to another, usually by cropping or shifting. Let's asume you have Surfaceb(your
screen), and you would like to draw a shape, let's say, a rectangle onto the screen. So, what
you have to do is draw a rectangle and then transfer a rectangular block of the buffer to the
screen buffer. This process is called blitting. When we cover games using pygame, you will
find it being used for drawing backgrounds, fonts, characters, and everything that you can
imagine.

In order to blit the surface, you can call the blit method from the resulting surface
object, which is often the display object. You have to pass your source surface, such as
characters, animations, and images, along with the coordinate to blit in as arguments. The
invocation of the blit method is rather simple, compared to what it sounds like,
theoretically. The following line of code shows how to blit the background image in the
specified position (0,0), which is the top-most corner of the screen:

screen.blit(image_file_name.png, (0,0))

Let's say you have a collection of images that needs to be rendered, based on different
frame rates. We could also do this using the blit method. We can change the value of the
frame number and blit in a different area of the resulting screen to make an animation of
the images. This is normally done in the case of static images. For example, we are going to
create a clone of the flappy bird game, using Pygame, in the next chapter.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[292]

In that game, we have to blit the pipes and the bird (characters for the flappy game) on
the different position, out of the static image, which we normally call sprites. These sprites
are nothing but images that can be used directly from the internet, or we can make one for
ourselves, according to our needs. The following code shows a simple way to blit images,
based on the different frame rates:

screen.blit(list_of_images, (400, 300), (frame_number*10, 0, 100, 100))

In the case of the flappy bird game, a list of images contains the images of the bird in two
positions: flying and falling. Based on the user events, we will render each of them using
the blit method.

Before jumping into the next section, let's learn about the maybe paltry, but must-know
topic, of frame rates. It is the term that is often used as the benchmark for measuring game
performance. The frame rate in a video game infers the resultant simulation movements, or
motions of how many times the images that you observe in the screen, are refreshed or
fetched. The frame rate is a measurement that is done in frames per second or FPS (do not
be confuse this with the term first person shooter).

There are many factors that go into determining a game's frame rate, but contemporary
game players want anything but lag, or a sluggish game. Therefore, the higher rate is
always better. Low frame rates may develop a hapless situation at an inopportune time. An
example may be in games where users are able to jump or are chopped from a certain
height; low FPS causes a lag in the system, and often makes the screen Frozen, which makes
the user unable to interact with the game. Many modern games, for example, first-person
shooter games such as Pubg and Fortnite, are developed with the intention of approaching
a frame rate of around 60 FPS. But in a simple game developed by Pygame, anywhere from
15 to 30 FPS is considered acceptable. Some critics argue that anything below 30 FPS will
create choppy animation and unrealistic motion, but as we know, pygame allows us to
create mostly mini games. Therefore, anything between 15 to 30 FPS will be sufficient for
us.

Let's hop into the next section, in which we will learn how to draw different shapes using
the pygame draw module.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[293]

Drawing with the pygame draw module
One of the most used modules is draw, which has plenty of methods declared, and can be
used to draw shapes onto the game screen. The aim of using this module is to draw lines,
circles, and polygons—in fact, any geometrical shape. You might be wondering about the
importance of using it—it has a broad range of uses. We might have to create shapes so as
to perform cropping, or to blit the sprites or images onto the screen. Sometimes, you may
want to use these shapes as characters for your game; games such as Tetris, which is one of
the most popular games, is a perfect example. Even though you might not find it very
useful while creating the games, and you would use sprites instead, it may be helpful while
testing your game animation. You don't have to go anywhere to understand the importance
of these shapes in game development; you can observe the games that we have created so
far. Up until now, in the snake game, we have been using simple rectangular shapes to
denote the snake's body and head. Although it might not be very appealing, at the incipient
stage of games, we can always make games using such shapes.

Creating such shapes using pygame is easier than with any other module. We can call up
the draw module, along with the function name. The function name will be the name of the
shape that you want to draw. For example, for a circle, we would
use pygame.draw.circle(), and for a rectangle, we would use: pygame.draw.rect().
The first two parameters for the functions in pygame.draw are the surface on which you
want to draw, followed by the color with which you want to draw it. The first parameter
for drawing the function is the Surface object, which represents the screen in which you
want to draw. The next parameter represents the position of the screen on which you want
to draw your shapes.

These three arguments are mandatory for each of the geometrical shapes, but the last one
depends on the shapes. The last argument of the method represents the mathematical
quantity that is used while drawing such shapes, such as the radius or diameter of a circle.
Normally, the third argument that is passed should represent the coordinate position in the
form of x and y coordinates, where the point (0, 0) represents the top-most left area of the
screen. The following table lists the number of methods that are available inside the draw
module, which can be used to draw any geometric shape:

Function Description
rect Draws a rectangle

polygon
Draws a regular polygon (geometrical shape that has three or more enclosed
sides)

line Draws a line
lines Draws several lines

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[294]

circle Draws a circle
ellipse Draws an ellipse

As an example, let's use the circle method and observe the pygame draw module in
action. We need to know the value of the radius in order to draw a circle. The radius is the
distance from the center of the circle to the edge of the circle, which is the arc of the circle.
The arguments that should be passed while calling the circle functions are screen, which
represents the surface object; the color of the circle; the position where the circle should be
drawn; and finally, the radius of the circle. Since we used the random module to generate
random values of the radius for the circle, instead of giving specific values, the following
code creates multiple circles, with random widths in a random position, and blatantly with
a random color. If you type specific values for each parameter, a shape will be drawn:

import pygame as game
from pygame.locals import *
from random import *
import sys

game.init()
display_screen = game.display.set_mode((650, 470), 0, 32)
while True:
 for eachEvent in game.event.get():
 if eachEvent.type == QUIT:
 sys.exit()
 circle_generate_color = (randint(0,255), randint(0,255),
 randint(0,255))
 circle_position_arbitary = (randint(0,649), randint(0,469))
 circle_radius_arbitary = randint(1,230)
 game.draw.circle(display_screen, circle_generate_color,
 circle_position_arbitary, circle_radius_arbitary)
 game.display.update()

The code, which will be written from this chapter onward, is in the
PyCharm Community IDE, which was downloaded in Chapter 1, Getting
to Know Python - Setting Up Python and the Editor. Make sure that pygame is
installed on the interpreter main directory so that pygame can be used
universally on any newly created Python file.

One of the important features that can be noted while using the PyCharm IDE is that it can
give us information about all the modules that come with the installation of the pygame
module. To determine which functions reside in the draw module, select the circle or
draw keyboard from your code and press Ctrl + B on the keyboard, which will, in turn,
redirect you to the declaration file of the draw module.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[295]

While talking about the code, it is simple to understand. The main three lines of code are
highlighted so that you can directly observe the importance of them. Mostly, the third line,
which calls the circle method, is declared within the draw module, which takes the
arguments, screen object, color, position, and radius in order to draw a circle. The output of
the preceding program will print the circle with a random radius and a random color
incessantly, until and unless the user closes the screen manually, which is due to the event
handler, and is done by the pygame.event.get method.

Similarly, you can draw polygons of many shapes and sizes, which may range from a three-
sided triangle to a 9999-sided polygon. Just like we have used the pygame.draw.circle
function to create a circle, we can use pygame.draw.polygon to draw any kind of
polygon. A call to the polygon function takes the argument in the form of a list of points,
and will draw a polygon shape using these points. We can draw different geometrical
shapes using a specific appellation in a similar fashion.

In the next section, we are going to learn about the different ways of initializing the display
screen and handling keyboard and mouse events using the pygame module.

Initializing the display and handling events
Primarily, the game developer will be focusing on how to make the game more interactive
by making players feel like they are engaged. The two things that must be tied as dovetail
in such cases is a visually attractive display and handling the events of the player. We don't
want our player to be overwhelmed with a deplorable display screen and a game that lags
in movement. In this section, we are going to address the two primary things that the
developer must take into account while making games: different ways of initializing the
display by accommodating the available optional parameters and handling the user action
events, such as when a keyboard key or a mouse button is pressed. The type of the display
that you want to create depends on the type of game that you are planning to develop.

One thing that you have to remember while making games with the pygame module is that
adding more actions to the game will affect the smoothness of the game, which means that
if you add multiple features into the game, the more the game will lag in interactivity.
Thus, we will primarily focus on making mini games with the pygame module. There are
more advanced Python modules on the market that can be used for making high-feature
games, and we will explore them in the upcoming chapters. For now, we will see how to
initialize the display, which is done by selecting a lower resolution, because we don't want
our game to lag in any way.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[296]

Any games that will be made from now on will have a fixed and low resolution, but you
can experiment on your own by making the user choose their own customized display. The
following code is a simple way of creating a pygame window, and we have also seen this in
the previously written code:

displayScreen = pygame.display.set_mode((640, 480), 0, 32) #standard size

The first parameter of set_mode() will be the dimension of the screen. The value in the
tuple (640, 480) represents the height and width of the screen. This dimension value will
create a small window box, which is compatible with most desktop screens. We might,
however, encounter a situation where a game must have a FULLSCREEN, instead of a small
screen. In such cases, we can use an optional parameter, giving the value of FULLSCREEN.
The code that displays the fullscreen looks something like this:

displayScreen = pygame.display.set_mode((640, 480), FULLSCREEN, 32)

We might, however, observe the performance difference between using fullscreen mode
versus a customized display. While opening the game in fullscreen mode will run faster, as
it doesn't interact with other background desktop screens, the other screen, with a
customized display, may become incorporated with other running display screens on your
machine. Apart from that, debugging games with a small display screen is easier than
games with a fullscreen because you should address alternative ways of closing the game in
fullscreen mode as the close button will not be visible. To check the different resolutions of
display that are supported by your PC, you can call the list_modes() method, which will
return tuples containing a list of the resolutions, which appear like this:

>>> import pygame as p
>>> p.init()
>>> print(p.display.list_modes())
[(1366, 768), (1360, 768), (1280, 768), (1280, 720), (1280, 600), (1024,
768), (800, 600), (640, 480), (640, 400), (512, 384), (400, 300), (320,
240), (320, 200)]

Sometimes, you may feel that there is slight decrease in the quality of the image that is
displayed in your screen. This is primarily due to a graphics card with fewer features,
which doesn't provide the color of the image that you have requested . This is compensated
for by pygame, who converts the image into one that is appropriate for your device.

In some games, you might want the user to decide on choosing the size of the display
screen. The trade-offs are concerned with whether a player chooses either high-quality
visuals or making the game run smoothly. Our main goal will be to handle the event, which
can toggle a screen between a resizable screen and a fullscreen. The following code
illustrates a switch between a windowed screen to a fullscreen, and vice versa. When the
user presses F on the keyboard, it will toggle between screens.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[297]

As you run the program, the toggling process between the windowed screen and the
fullscreen is not spontaneous. This is because pygame takes some time to check the features
of the graphics card, and handles the quality of images itself if the card is not capable
enough:

import pygame as p #abbreviating pygame module as p
from pygame.locals import *
import sys
p.init()
displayScreen = p.display.set_mode((640, 480), 0, 32)

displayFullscreen = False
while True:
 for Each_event in p.event.get():
 if Each_event.type == QUIT:
 sys.exit()
 if Each_event.type == KEYDOWN:
 if Each_event.key == K_f:
 displayFullscreen = not displayFullscreen
 if displayFullscreen:
 displayScreen = p.display.set_mode((640, 480),
 FULLSCREEN, 32)
 else:
 displayScreen = p.display.set_mode((640, 480), 0,
 32)

 p.display.update()

Let's learn about the display toggling process, line by line:

You must begin by importing the pygame module. The second import statement1.
is going to import constants that are used by Pygame. However, its contents are
automatically placed in the pygame module namespace, and we can use
pygame.locals to include only the pygame constants. Examples of constants
include: KEYDOWN, Keyboard k_constants, and so on.
You will set the default display mode at the start of the game. This display will2.
be a default display, whenever you run your program for first time; the current
customized display will be rendered. We have a passed display screen of (640,
480) by default.
To toggle the display screen, you have to make a Boolean variable,3.
Fullscreen, which will be either True or False, and based on that, we will set
the mode for the screen.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[298]

Inside the main loop, you must handle the event for keyboard key actions.4.
Whenever the user presses F on the keyboard, we will change the value of the
Boolean variable, and if the value of the FULLSCREEN variable is True, we have
to change the display to fullscreen. The extra flag, FULLSCREEN, is added as a
second argument to the add_mode() function with a depth of 32.
In the else part, if the value of fullscreen is False, you have to display the screen5.
in the windowed version. The same key, F, is used to toggle the screen between
the windowed and the fullscreen.

Now that we have learned how to modify the windowed visuals using the different
available flags, let's hop into the next section, where we will discuss accepting user input
and controlling the game, which is often referred as handling user events.

Handling user events
On conventional PC games, we normally see the player playing games using just the
keyboard. Even today, most games fully rely on keyboard actions. With the advancement
of the game industry, we can accept user input from several input devices, such as the
mouse and joysticks. Often, the mouse is used to handle the action, which gives a
panoramic view of the game visuals. If you have ever played counter strike, or any first
person shooter game, the mouse allows the player to rotate the view in several angles,
whereas keyboard actions handle the player movements, such as moving left, right,
jumping, and so on. The keyboard is normally used to trigger actions such as firing and
dodging, because its action is pretty much like a switch. A switch only has two possibilities:
on or off; keyboard keys are also either pressed, or not, which generalizes the technique for
handling the keyboard actions. In typical 19th-century games, we used to spawn the game
enemy by checking the actions of the keyboard. When a user presses a keyboard key
relentlessly, we used to generate the enemy in a greater quantity.

The combination of the two input devices, that is, the mouse and the keyboard, works
perfectly for these games because the mouse is capable of handling directional movements
and does it in a smooth manner. For instance, when you play a first-person shooter game,
you rotate the player using the keyboard and the mouse. Whenever any enemy is behind
you, you normally use the mouse to rotate quickly to that position, rather than using the
keyboard to rotate.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[299]

In order to detect and listen to (capture) all of the keyboard keys, you have to use the
pygame.key module. This module is capable of detecting whether any key is pressed or
not, and even supports directional movements. This module is also capable of handling any
keyboard actions. Basically, there are two ways of handling key presses in pygame:

By handling KEYDOWN events, which are triggered when a key is pressed on
the keyboard.
By handling KEYUP events, which are triggered or issued when a key on the
keyboard is released.

While these event handlers are a great way to check for the key presses, handling the
keyboard input for movement is not appropriate with them. We need to know beforehand
if the keyboard key is being pressed or not in order to draw the next frame. Thus, using the
pygame.key module directly will give us the power to handle keyboard keys effectively.
The keys of the keyboard (a-z, 0-9, and F1-F12) have key constants which are predefined by
pygame. These key constants can be referred to as keycode, which is used to identify them
uniquely. Keycode always starts with K_. For every possible key, the keycode looks
something like (K_a to K_z), (K_0 to K_9), and contains other constants such as K_SPACE,
K_LEFT, and K_RETURN. Some keyboard keys cannot be handled by pygame due to
hardware incompatibility. This anomaly is discussed in "Keyboards are Evil," by several
developers online. You might want to refer to them to understand this in more detail.

The most basic way of handling any keyboard action is by using the pygame.key
get_pressed function. This method is quite powerful as it assigns Boolean values to all
the keyboard constants; either True or False. We can check this by using if conditionals:
is the value of the keyboard constant True or False? If it is True, it is obvious that a key is
being pressed. The get_pressed method call returns a dictionary of the key constants,
where the key of the dictionary is the key constants of the keyboard and a value of the
dictionary is boolean, dictionary_name[K_a] = True. Let's say you are making a
program that will use an up movement as a jump button. You would have to write the
following code:

import pygame as p
any_key_pressed = p.key.get_pressed()
if any_key_pressed[K_UP]:
 #UP key has been pressed
 jump()

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[300]

Let's learn about the pygame.key module in more detail. Each of the following functions
are going to handle keyboard keys, but with different approaches:

pygame.key.get_pressed(): As we saw in the preceding code, this method
returns a dictionary containing Boolean values for each key of the keyboard. You
have to check the value of the keys to determine if it has been pressed or not. In
other words, if any value for the keyboard key is set to True, the key for that
index is said to be pressed.
pygame.key.name(): As the name suggests, this method call will return the
name of the pressed key. For example, if I get a KEY_UP event for a key that has a
value of 115, you can use key.name to print out the name of the key, which in
this case is a string, s.
pygame.key.get_mods(): This will determine which modifier key has been
pressed. Modifier keys are normal keys combined with Shift, Alt, and Ctrl. In
order to check if any modifier key is being pressed or not, you have to call the
get_mods method first, followed by K_MOD. The method call and constants are
separated by a bitwise AND operator, for example, event.key ==
pygame.K_RIGHT and pygame.key.get_mods() & pygame. The
KMOD_LSHIFT method can be used to check for the LEFT Shift key.
pygame.key.set_mods(): You can also automatically set the modifier key
temporarily to observe the effect of the modifier key being pressed. To set
multiple modifier keys, we normally combine them using the bitwise OR
operator (|). For instance, pygame.key.set_mods(KMOD_SHIFT |
KMOD_LSHIFT) will set the SHIFT and LEFT Shift modifier keys.
pygame.key.get_focused(): To grab every pressed key from the keyboard,
the display must focus on the keyboard actions. This method call will return a
Boolean value by checking if the display is receiving keyboard input from the
system or not. In the case of games where there may be a customized screen, and
the game screen is not focused because you may be using other application; this
will return False, which means that the display is not active or focused to listen
to keyboard actions. But in the case of a fullscreen display mode, you will be
fully focused on the single screen, and in such cases, this method will always
return True.

There are couple more pygame key functions, such as get_repeat and set_repeat, they
are useful in cases where you want the repeated action to occur when you continously hold
down any key on the keyboard. For instance, open your notepad and press the s key,
continuously. You will see that the character s will be printed several times. This feature
can be embedded using the pygame.key set_repeat function. This function will take
two arguments: delay and interval in milliseconds.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[301]

The first delay value is for the initial delay before a key repeats, while the next interval
value is for the delay between repeated keys. You can disable these key-repeating features
by using the calling set_repeat method with no parameter. By default, when pygame
is initialized, the key-repeat feature is disabled. Thus, you need not have to disable it
manually. Go to the following website for the pygame official documentation in order to
learn more about pygame's key functions: https:/ /www. pygame. org/ docs/ ref/ key.html.

You can set a movement for a sprite/image/object of the game screen with the keyboard by
assigning a key of Up, Down, Left, or Right. Up until now, we have been doing this using
different modules such as Python turtle and curses. However, we were unable to handle
the movement of static sprites or images. We were only handling up, down, left, right, and
key events for geometrical objects, but now pygame allows us to use more intricate
graphics and handle them accordingly.

We can allocate any keyboard key to perform directional movements, but following
conventional methods, we can appropriate cursor keys or arrow keys as they are perfectly
placed on the keyboard, which allows the player to play easily. But in some complex
multiplayer games, such as first-person shooter games, the A, W, S, and D keys are
allocated for directional movements. Now, you might be wondering what you have to do in
order to make any arrow key behave in such a way that it can be used for directional
movements. Just recall the power of vectors: the mathematical concept that is useful for
game development, irrespective of whatever language or module you use. The technique
for moving any geometrical shapes and images is the same; we need to create a vector that
points in the direction that we might want to head in. Representing the position of a game
character is quite simple: you can represent it in 2D using the (x, y) position, and in 3D
using (x, y, z) position. The directional vector, however, is the unit quantity that must be
added to the current vectored position in order to change to the next frame. For instance, by
pressing the down key on the keyboard, we have to move downward with no change in the
x position, but with a unit increment in the y coordinates. The following table explains the
directional movement for four directions:

Position Directional vector
Up (0, -1)
Down (0, 1)
Left (-1, 0)
Right (1, 0)

We may also want the player to allow diagonal movements, as shown in the following
illustration:

https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html
https://www.pygame.org/docs/ref/key.html

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[302]

The preceding illustration represents a vectored motion for the up and right keyboard keys.
Suppose, at the beginning of the game, the player is at position (0, 0), which means they are
at the center. Now, when the user presses the up (arrow key) keyboard key, there will be
addition of (0, 0) with the up directional vectors (0, -1), and the resulting vector will be the
player's new position. The diagonal movement (the combination of two keys, in this case,
up and right), will give an addition of (0.707, -0.707) to the current vectored position of the
player. We can use this technique of vectored motion in order to provide the directional
movement to any game objects, either sprites/static images or geometrical shapes. The
following code represents the vectored movement using pygame event handling
techniques:

import pygame as p
import sys
while True:
 for anyEvent in p.event.get():
 if anyEvent.type == QUIT:
 sys.exit()
 any_keys_pressed = p.key.get_pressed()
 movement_keys = Vector2(0, 0) #Vector2 imported from gameobjects
 #movement keys are diectional (arrow) keys
 if any_keys_pressed[K_LEFT]:
 movement_keys.x = –1
 elif any_keys_pressed[K_RIGHT]:
 movement_keys.x = +1
 if any_keys_pressed[K_UP]:
 movement_keys.y = -1
 elif any_keys_pressed[K_DOWN]:
 movement_keys.y = +1
 movement_keys.normalize() #creates list comprehension
 [refer chapter 7]

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[303]

Although it is worth knowing how to make things move in eight directions (four basic
directions and four diagonal movements), using all eight of these won't make the game
smoother. Hypothetically, it is a little artificial to make things go in eight directions.
However, games nowadays allow game players to observe a view with a 360-degree
facility. Thus, in order to make games with such features, instead of using eight keyboard
actions, we can make rotational movements with the keys. To calculate the resultant vector
from the rotation, we must calculate the sine and cosine of the angle using math modules.
The sine of the angle is responsible for the movement in the x-component, while cosine is
responsible for the movement in the y-component. Both of these functions take angles in
radians; if the rotation angle is in degrees, you have to convert it into radians using
(degree*pi/180):

resultant_x = sin(angle_of_rotational_sprite*pi/180.0)
#sin(theta) represents base rotation about x-axix
resultant_y = cos(angle_of_rotational_sprite*pi/180.0)
#cos(theta) represents height rotation about y-axis
new_heading_movement = Vector2(resultant_x, resultant_y)
new_heading_movement *= movement_direction

Now, let's learn about implementing mouse control and observe how it can be used in
game development.

Mouse control
Having mouse control, along with keyboard control, comes in handy if you want to make
games more interactive. Sometimes, handling eight directional keys is not enough, and in
such cases, you also have to handle mouse events. For example, in games such as flappy
bird, users have to essentially be able to play with a mouse, and although it uses screen taps
in mobile games, on a PC, you have to be able to provide mouse actions. Drawing a mouse
cursor into the display screen is quite simple; you need to get the coordinates of the mouse
from MOUSEMOTION events. Similar to the keyboard get_pressed function, you can call up
the pygame.mouse.get_pos() function in order to obtain the position of the mouse.
Mouse movements are extremely helpful in the game—if you want to make the game
characters rotate, or make a screen tap game, or even if you want to look up and down the
game screen.

In order to understand the ways of handling mouse events, let's look at a simple example:

import pygame as game #now instead of using pygame, you can use game

game.init()
windowScreen = game.display.set_mode((300, 300))
done = False

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[304]

Draw Rect as place where mouse pointer can be clicked
RectangularPlace = game.draw.rect(windowScreen, (255, 0, 0),(150, 150, 150,
150))
game.display.update()
Main Loop
while not done:
 # Mouse position and button clicking.
 position = game.mouse.get_pos()
 leftPressed, rightPressed, centerPressed = game.mouse.get_pressed()
 #checking if left mouse button is collided with rect place or not
 if RectangularPlace.collidepoint(position) and leftPressed:
 print("You have clicked on a rectangle")
 # Quit pygame.
 for anyEvent in game.event.get():
 if anyEvent.type == game.QUIT:
 done = True

I have highlighted some important parts of the code. The focus is primarily on those parts
that help us understand the implementation of mouse events. Let's look at the code, line by
line:

First of all, you have to define an object—an area that will have the mouse event1.
listener set to capture it. In this case, you have to declare the area as a rectangle
using the pygame.draw.rect method call.
Inside the main loop, you have to get the position of the mouse, which will2.
represent the current cursor coordinates using the pygame.mouse.get_pos()
function.
Then, you have to call the get_pressed() method from the pygame.mouse3.
module. A list of Boolean values will be returned. A Boolean True value for
LEFT, RIGHT, or CENTER means that, at a particular instance, a specific mouse
button is pressed, and the remaining two are not. Here, we captured three
Boolean values for three mouse buttons.
Now, to check if the user has pressed in the rectangle or not, you have to call the4.
collidepoint method and pass a position value to it. The position represents
the current cursor position. pressed1 is going to be True if the mouse is clicked
at the current position.
When both of these statements are True, you can perform any action5.
accordingly. Remember that this program is not going to print a message, even if
you clicked in the window screen, which is not part of the rectangle.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[305]

Similar to the pygame.key module, let's learn about the pygame.mouse module in detail.
This module contains eight functions:

pygame.mouse.get_rel(): It will return the relative mouse movement as a
tuple, with the x and y relative movement.
pygame.mouse.get_pressed(): It will return three Boolean values, which
represent the mouse buttons, and if any one is True, the corresponding button is
assumed as pressed.
pygame.mouse.set_cursor(): It will set the standard cursor image. This is
rarely needed since better results can be achieved by blitting an image to the
mouse coordinate.
pygame.mouse.get_cursor(): Two different tasks are performed: firstly, it
sets the cursor standard image, and secondly, it fetches the deterministic data
regarding the system cursor.
pygame.mouse.set_visible(): It changes the visibility of the standard mouse
cursor. If False, the cursor will be invisible.
pygame.mouse.get_pos(): It returns a tuple containing the x and y values of
the position in the canvas where the mouse is clicked.
pygame.mouse.set_pos(): It will set the mouse position. It takes an argument
in the form of a tuple containing the coordinates of x and y in the canvas.
pygame.mouse.get_focused(): This Boolean function result is based on the
condition of whether the window screen is getting input from mouse or not. It is
similar to the key.get_focused function. When pygame is running in the
current window screen, the window will get the input from the mouse, but only
if the pygame window is selected and is running at the front of the display. If
another program is running in the background and is selected, then the pygame
window won't get an input from the mouse, and the output of this method call
will be False.

You might have played games where you fly an airplane or destroy tanks where the mouse
is used as an aiming device and the keyboard is used for movement and firing actions.
These games are highly interactive. Therefore, you have to try to make a game that can
combine both of these events as much as possible. These two types of events are very useful
and are important for any game development I suggest that you take the time to
experiment with these events. If possible, try to make your own game using only
geometrical objects. Now, we are going to learn how to make a game using pygame, and
our own sprites.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[306]

This game will be a modified version of the snake game that was made by the turtle
module in the previous chapter. All the concepts will be same, but instead of dull and
bland-looking game characters, we will make visually appealing characters, and we will
handle events using pygame.

Object rendering
Computers store images in the form of grids of colors. Mostly, RGB (red, green, and blue)
are enough to provide information for pixels. But apart from RGB values, there is another
component of an image that is useful when dealing with pygame game development,
which is alpha information (usually known as attribute components). The alpha
information represents image transparency. This extra bit of information is quite useful;
what usually happens in the case of pygame is that we normally draw or place one image
on top of another with the alpha property activated. By doing this, we can see part of the
background through it. We normally use third-party software such as GIMP in order to
make an images' background transparent.

Apart from knowing how to make an images' background transparent, we have to know
how to import them into our project so that we can use them. Importing any static images
or sprites into the Python project is easy, and pygame makes it even easier. We have an
image module, which provides a load method to import images. While calling the load
method, you have to pass an image with the full filename, including the extensions. The
following code represents a way of importing images into Python projects:

gameBackground = pygame.image.load(image_filename_for_background).convert()
Image_Cursor =
pygame.image.load(image_filename_mouseCursor).convert_alpha()

The image that you want to import into the game project should be in the
same directory where the game project resides. For example, if the Python
file is saved in the snake directory, the image that is loaded by the Python
file should also be saved inside the snake directory.

In the image module, the load function will load a file from your hard drive and return a
newly generated surface that contains the image that you want to load. The first call to
pygame.image.load will read the image file, and then an immediate call to the convert
method takes place, which will convert the image into the same format as our display. Due
to the conversion of the image and the display screen being in the same depth level,
drawing into the screen is relatively faster.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[307]

The second statement is to load the mouse cursor. Sometimes, you might want to load a
custom-made mouse cursor into game, and a second line of code is the way to do this. In
the case of loading mouse_cursor, convert_alpha is used instead of the convert
function. This is because the image of the mouse cursor contains special information
regarding transparency, which is termed as alpha information, and makes part of the image
invisible to detect. By disabling the alpha information, our mouse cursor would be besieged
by rectangular or square shapes, and thus would make the cursor look unprepossessing.
Essentially, the alpha information is used to denote images that will have a transparent
background.

Now that we have learned how to import images into the Python projects, let's learn how to
rotate these images. This is an extremely useful technique because, while building games,
we may have to rotate images by a certain degree in order to make the game appealing. For
instance, let's say that we are making a snake game, and we are using an image for the head
of the snake. Now, when the user presses up key on the keyboard, the head of the snake
should rotate, and must move smoothly upward. This is done by the pygame.transform
module. The Rotate method can be called from the transform module in order to facilitate
rotation. The rotate method takes the image surface, which is loaded from the
image.load() function and specifies the degrees by which the rotation must be done.
Usually, the operation of transformation would resize, or move part of the pixel, in order to
make the surface look compatible with the display screen:

pygame.transform.rotate(img, 270) #rotation of image by 270 degree

Before we begin to develop our own visually appealing snake game, you have to learn
about the Pygame time module. Follow this link to learn more about it: https:/ /www.
pygame.org/docs/ ref/ time. html#pygame. time. Clock. The Pygame.time module is used
for monitoring time. The time-clock also provides several functions to help control a game's
frame rate. The term frame rate is the rate or frequency at which consecutive images appear
on a display screen. Whenever you call the Clock() constructor of the time module, it will
create an object, which can be used to track time. There are a variety of functions that are
defined internally by Pygame developers inside the Pygame time module. However, we are
only going to use the tick method, which will update the clock.

Pygame.time.Clock.tick() should be called once per frame. Between two successive
calls of the function, the tick() method tracks the time between each call in milliseconds.
By calling Clock.tick(60) once per frame, programs are limited to running within the
boundary of 60 FPS, and cannot exceed it, even if the processing power is higher. Thus, it
can be used to limit the runtime speed of the game. This is important in the case of games
that are developed by Pygame because we want to run the game smoothly, instead of
compensating with CPU resources. The value of frames per second (frame rate) can be
anywhere from 15 to 40 in the games that are developed by Pygame.

https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock
https://www.pygame.org/docs/ref/time.html#pygame.time.Clock

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[308]

Now, we have enough information to make our very own game using Pygame, which will
have sprites and smooth movements for game characters. We will start by initializing the
display in the next section. We are going to update our snake game using the Pygame
module.

Initializing the display
Initializing the display is pretty basic; you can always start by importing the essential
modules and providing specific dimensions of the display to the set_mode() method in
order to create a windowed screen. Apart from that, we are going to declare a main loop.
Refer to the following code to observe the declaration of the main loop:

import pygame as game
from sys import exit
game.init()

DisplayScreen = game.display.set_mode((850,650))
game.display.set_caption('The Snake Game') #game title

game.display.update()

gameOver = False

while not gameOver:
 for anyEvent in game.event.get():
 print(event)
 exit()

game.quit()
quit()

After the initialization, you can run your program to check if everything works. If you get
an error saying No pygame module, make sure that you follow the aforementioned steps
for installing Pygame on your PyCharm IDE. Now, we will learn how to work with colors.

Working with colors
The basic principle that works with computer color is color addition, which is a technique
that will add the three primary colors in order to create a new one. The three primary colors
are red, green, and blue, and often referred to as the RGB value. Whenever Pygame
requires any color to be added into a game, you have to pass it in the tuple of three integers,
one for each of the components referring to either red, green, or blue.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[309]

The order in which you pass the integer value to the tuple matters, with a small change
being made in integer resulting in different colors. The value of each of the components of
color must range from 0 to 255, where 255 represents a color having absolute intensity, and
0 represents that color having no intensity at all. For example, (255, 0, 0) represents a red
color. The following table indicates the color codes for different colors:

Color name Hex code
#RRGGBB

Decimal code
(R,G,B)

Black #000000 (0,0,0)
White #FFFFFF (255,255,255)
Red #FF0000 (255,0,0)
Lime #00FF00 (0,255,0)
Blue #0000FF (0,0,255)
Yellow #FFFF00 (255,255,0)
Cyan/Aqua #00FFFF (0,255,255)
Magenta/Fuchsia #FF00FF (255,0,255)

Now, let's add some color to our snake game project:

white = (255,255,255)
color_black = (0,0,0)
green = (0,255,0)
color_red = (255,0,0)

while not gameOver:
 #1 EVENT GET
 DisplayScreen.fill(white) #BACKGROUND WHITE
 game.display.update()

Now, in the next section, we will learn how to create game objects using the pygame
module.

Making game objects
In order to begin the creation of game objects, we won't use snake sprites or images
directly. Instead, we will start by using a small rectangular box, and later we will replace it
with a snake image. This needs to be done in most game because we have to test multiple
things at the beginning of game development, such as frame rate, collisions, rotations, and
so on. After we deal with all of these, it is easy to add images to the pygame project. Thus,
in this section, we will make game objects that resemble the rectangular box. We will make
the head and body of the snake, which will be a small rectangular box. We will initially
make one box for the head of the snake and another for the food, and then add color to it:

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[310]

while not gameOver:
 DisplayScreen.fill(white) #background of game
 game.draw.rect(DisplayScreen, color_black, [450,300,10,10]) #1. snake
 #two ways of defining rect objects
 DisplayScreen.fill(color_red, rect=[200,200,50,50]) #2. food

We will now add movement to the game objects. We have been talking about these a lot in
the previous chapters, such as while handling directional movements using vectors::

change_x = 300
change_y = 300
while not gameOver:
 for anyEvent in game.event.get():
 if anyEvent.type == game.QUIT:
 gameOver = True
 if anyEvent.type == game.KEYDOWN:
 if anyEvent.key == game.K_LEFT:
 change_x -= 10
 if anyEvent.key == game.K_RIGHT:
 change_x += 10

 DisplayScreen.fill(white)
 game.draw.rect(DisplayScreen, black, [change_x,change_y,10,10])
 game.display.update()

In the preceding code, change_x and change_y denote the initial position for the snake.
Whenever start playing our game, the default position for the snake will be (change_x,
change_y). By pressing either the left or the right key, we change its position.

When you run the game at this moment, you might observe that your game will move only
one step, and will eventually stop when you press, and then immediately release, the
keyboard key. This anomaly can be corrected by handling multiple movements. In this
case, we will create lead_x_change, this will change according to the main change_x
variable. Remember that, we are not handling key events for up and down; thus,
lead_y_change is not needed:

lead_x_change = 0

while not gameOver:
 for anyEvent in game.event.get():
 if anyEent.type == game.QUIT:
 gameOver = True
 if anyEvent.type == game.KEYDOWN:
 if anyEvent.key == game.K_LEFT:
 lead_x_change = -10
 if anyEvent.key == game.K_RIGHT:
 lead_x_change = 10

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[311]

 change_x += lead_x_change
 DisplayScreen.fill(white)
 game.draw.rect(DisplayScreen, black, [change_x,change_y,10,10])
 game.display.update()

Since, in the new line of code, we added extra information, lead_x_change, it will be
called as a change in the x coordinates, and every time the user hits the left and right
keyboard keys, the snake will move automatically. The highlighted part of the code
(change_x += lead_x_change) is responsible for giving the snake continuous
movement, even if the user doesn't press any keys (the rule of the snake game).

Now, when you press one key, you might see another unusual behavior in the game. In my
case, I ran my game, and as soon as I started to press the left key, the snake began to move
quickly, and continuously, from left to right. This is due to leniency in the frame rate; we
now have to explicitly indicate the frame rate for the game so that it limits the runtime
speed of the game. We will cover this in the next section.

Using the frame rate concept
This topic is not foreign to us; I have tried my best to introduce this topic as early as I could.
We learned about the concept of frame rate while discussing the clock module, too. In this
section, we will look at the concept of frame rate in action. Up until now, we have made a
game that can run, but that has no restraint in its movements. It is continuously moving in
one direction or another, with high speed, and we certainly don't want that. What we really
want is to make the snake move continuously, but within a certain frame rate. We will use
pygame.time.Clock to create an object, that will track the time on our game. We will use
the tick function to update the clock. The tick method should be called once per frame. By
calling Clock.tick(15) once per frame, the game will never run at more than 15 FPS:

clock = game.time.Clock()
while not gameOver:
 #event handling
 #code from preceding topic
 clock.tick(30) #FPS

It is important to understand that FPS is not the same as the speed of a sprite in the game.
Developers make games in such a way that they can be played on both high- and low-end
devices. You would see that the game is a little sluggish and jerky in a low-featured
machine, but sprites or characters in both devices will move at an average speed. We are
not denying that machines that use time-based motion games with slow frame rates will
have a less appealing visual experience, but it won't slow down the speed of the actions.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[312]

Thus, to make a game that is visually appealing, and even compatible in pervasive devices,
it is usually good practice to offer a frame rate of between 20 to 40 FPS.

In the upcoming sections, we will handle the remaining directional movements. Handling
these movements is no different; they can be handled by vectored motion.

Handling directional movements
We have already handled movements for a change in the x-axis. Now, let's add some code
that will handle movements in the y-axis. To make continuous movements of the snake, we
have to make lead_y_change, which represents the directional quantity that is added
continuously to the current position, even if the user doesn't press any keyboard keys:

lead_y_change = 0
while not gameOver:
 if anyEvent.type == game.KEYDOWN:
 if anyEvent.key == game.K_LEFT:
 lead_x_change = -10
 lead_y_change = 0
 elif anyEvent.key == game.K_RIGHT:
 lead_x_change = 10
 lead_y_change = 0
 elif anyEvent.key == game.K_UP:
 lead_y_change = -10
 lead_x_change = 0
 elif anyEvent.key == game.K_DOWN:
 lead_y_change = 10
 lead_x_change = 0

 change_x += lead_x_change
 change_y += lead_y_change

Now that we have handled every possible movement for the snake, let's define the
boundary for the snake game. The values of change_x and change_y represent the current
position of the head. If the head hits the boundary, the game will be terminated:

while not gameOver:
 if change_x >= 800 or change_x < 0 or change_y >= 600 or change_y < 0:
 gameOver = True

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[313]

Now, we will learn about another concept of programming, that will make our code look
cleaner. Until now, we have been using numerical values for many components, such as the
height, width, FPS, and so on. But what happens if you have to change one of these values?
There will be a lot of overheads in searching the code and debugging it again. Now, instead
of using those numerical value directly, we can create constant variables, in which we store
the values and retrieve them whenever they are needed. This process is called the removal of
hardcoding. Let's create a variable for each of these numeric values with an appropriate
name. The code should look like something like this:

#variable initialization step
import pygame as game

game.init()

color_white = (255,255,255)
color_black = (0,0,0)
color_red = (255,0,0)

#display size
display_width = 800
display_height = 600

DisplayScreen = game.display.set_mode((display_width,display_height))
game.display.set_caption('') #game title

gameOver = False

change_x = display_width/2
change_y = display_height/2

lead_x_change = 0
lead_y_change = 0

objectClock = game.time.Clock()

pixel_size = 10 #box size
FPS = 30 #frame rate

After removing the hardcoding from the variable initialization steps, we will move onto the
main game loop. The following code represents the main game loop (add it after the
initialization step):

#main loop
while not gameOver:
 for anyEvent in game.event.get():
 if anyEvent.type == game.QUIT:
 gameOver = True

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[314]

 if anyEvent.type == game.KEYDOWN:
 if anyEvent.key == game.K_LEFT:
 lead_x_change = -pixel_size
 lead_y_change = 0
 elif anyEvent.key == game.K_RIGHT:
 lead_x_change = pixel_size
 lead_y_change = 0
 elif anyEvent.key == game.K_UP:
 lead_y_change = -pixel_size
 lead_x_change = 0
 elif anyEvent.key == game.K_DOWN:
 lead_y_change = pixel_size
 lead_x_change = 0

 #step 3: adding logic which will check if snake hit boundary or not

Now that we have added ways to handle user events inside the main loop, let's refractor
the code that represents logic, such as what happens when the snake hits boundary of
game, or when the snake changes its speed. The following code should be added inside the
main loop after handling the user events:

 if change_x >= display_width or change_x < 0 or change_y >= display_height
 or change_y < 0:
 gameOver = True

 change_x += lead_x_change
 change_y += lead_y_change
 DisplayScreen.fill(color_white)
 game.draw.rect(DisplayScreen, color_black,
 [change_x,change_y,pixel_size,pixel_size])
 game.display.update()

 objectClock.tick(FPS)

All of the preceding code has been described briefly already and what we actually did in
the preceding three blocks of code is refract the variable to some meaningful names so as to
remove hardcoding; for instance, adding a variable name to display the width, adding a
variable name to the color code, and so on.

In the following section, we are going to add a food character to the screen, and create some
logic to check if the snake has eaten the apple or not.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[315]

Adding food to the game
Adding a character to the screen is pretty simple. First of all, create a position for the
character, and eventually, blit the character to that position. In the case of the snake game,
the food must be rendered in the arbitrary position. Therefore, we will use a random
module to create the random position. I have created a new function, gameLoop(), which
will use the code from the preceding section. I have used apple as the food. Later, I will
add an apple image to it. The following line of code defines the main loop for the game:

def MainLoopForGame():
 global arrow_key #to track which arrow key user pressed

 gameOver = False
 gameFinish = False
 #initial change_x and change_y represent center of screen
 #initial position for snake
 change_x = display_width/2
 change_y = display_height/2

 lead_x_change = 0
 lead_y_change = 0

After defining some initials for the game display and the characters, let's add some logic to
add the apples (food) for the snake game (this should be inside the MainLoopForGame
function):

 XpositionApple = round(random.randrange(0, display_width-pixel_size))
 YpositionApple = round(random.randrange(0, display_height-pixel_size))

The two lines of code will create random positions for x and y. Make sure that you import
the random module.

Next up, we need to define the main game loop inside the MainLoopForGame function. The
code that is added inside the main loop will handle multiple things, such as handling user
events, drawing game characters, and so on. Let's start by getting the user events from the
following code:

 while not gameOver:

 while gameFinish == True:
 DisplayScreen.fill(color_white)
 game.display.update()

 #game is object of pygame
 for anyEvent in game.event.get():
 if anyEvent.type == pygame.KEYDOWN:

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[316]

 if anyEvent.key == pygame.K_q:
 gameOver = True
 gameFinish = False
 if anyEvent.key == pygame.K_c:
 MainLoopForGame()

The preceding code will be easy to grasp, as we did this earlier in this chapter. We start by
filling background screen of the game with a white color, and then we get the event using
the event class of the pygame module. We check if the user entered the q key, and if they
did, then we quit the game. Similarly, now that we have an event from the user, let's handle
the events that make the movements for snake game—the arrow keys such as the left and
right keys. The following code must be added after getting the user events:

 #event to make movement for snake based on arrow keys
 for anyEvent in game.event.get():
 if anyEvent.type == game.QUIT:
 gameOver = True
 if anyEvent.type == game.KEYDOWN:
 if anyEvent.key == game.K_LEFT:
 arrow_key = 'left'
 lead_x_change = -pixel_size
 lead_y_change = 0
 elif anyEvent.key == game.K_RIGHT:
 arrow_key = 'right'
 lead_x_change = pixel_size
 lead_y_change = 0
 elif anyEvent.key == game.K_UP:
 arrow_key = 'up'
 lead_y_change = -pixel_size
 lead_x_change = 0
 elif anyEvent.key == game.K_DOWN:
 arrow_key = 'down'
 lead_y_change = pixel_size
 lead_x_change = 0

The preceding code was already written, so make sure you follow the sequence of the
program. Refer to the code asset that is provided at the https:/ /github. com/
PacktPublishing/Learning- Python- by- building- games/ tree/ master/ Chapter11. Let's
add the remaining code inside the main loop, which handles the logic to render the snake's
food. The following code should be added after handling the user events:

 if change_x >= display_width or change_x < 0 or change_y >=
 display_height or change_y < 0:
 gameFinish = True
 change_x += lead_x_change
 change_y += lead_y_change
 DisplayScreen.fill(color_white)

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter11

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[317]

 Width_Apple = 30
 game.draw.rect(DisplayScreen, color_red, [XpositionApple,
 YpositionApple, Width_Apple, Width_Apple])
 game.draw.rect(DisplayScreen, color_black,
 [change_x,change_y,pixel_size, pixel_size])
 game.display.update()

 objectClock.tick(FPS)
 game.quit()
 quit()

MainLoopForGame()

In the highlighted part of the code, we will draw a rectangle that is red, and render it in the
position that is defined by the random modules of the height and width of pixel_size=
10.

Now that we have added food for the snake, let's make a function which that make the
body of the snake. Up until now, we have only been working with the head of the snake;
now, it's time to make a function that will increase the snake's body by unit blocks.
Remember, this function is only going to be called if the snake eats the food:

def drawSnake(pixel_size, snakeArray):
 for eachSegment in snakeArray:
 game.draw.rect(DisplayScreen, color_green
[eachSegment[0],eachSegment[1],pixel_size, pixel_size])

Inside the main game loop, we have to declare multiple things. To begin with, we will
declare snakeArray, which will contain the body of the snake. The snake length's will be
one at the beginning of the game. We will increase it whenever the snake eats the food:

def MainLoopForGame():
 snakeArray = []
 snakeLength = 1

 while not gameOver:
 head_of_Snake = []
 #at the beginning, snake will have only head
 head_of_Snake.append(change_x)
 head_of_Snake.append(change_y)

 snakeArray.append(head_of_Snake)

 if len(snakeArray) > snakeLength:
 del snakeArray[0] #deleting overflow of elements

 for eachPart in snakeArray[:-1]:

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[318]

 if eachPart == head_of_Snake:
 gameFinish = True #when snake collides with own body
 drawSnake(pixel_size, snakeArray)
 game.display.update()

The name of the variable tells you everything that you need to know. We have done this
many times previously, that is, making lists for the snake's head and checking if it collides
with the snake's body. The snake method call takes pixel_size, which is the snake
dimension, and the snake's list, which contains a list of positions that relate to the snake's
body. The snake will be blit, according to these lists, by drawing statements that are
defined inside the snake function.

Next, we need to define the logic to make the snake eat the food. This logic has been
repeatedly used, and it is no different in the case of pygame. Whenever the snake's head
position is the same as the food position, we will increase the length of the snake by one
and generate food in a new, random position. Make sure that you add the following code
inside the main game loop, after updating the display:

#condition where snake rect is at the top of apple rect
if change_x > XpositionApple and change_x < XpositionApple + Width_Apple or
change_x + pixel_size > XpositionApple and change_x + pixel_size <
XpositionApple + Width_Apple:

 if change_y > YpositionApple and change_y < YpositionApple +
 Width_Apple:
 #generate apple to new position
 XpositionApple = round(random.randrange(0,
 display_width-pixel_size))
 YpositionApple = round(random.randrange(0,
 display_height-pixel_size))
 snakeLength += 1

 elif change_y + pixel_size > YpositionApple and change_y + pixel_size
 < YpositionApple + Width_Apple:

 XpositionApple = round(random.randrange(0, display_width-
 pixel_size))
 YpositionApple = round(random.randrange(0, display_height-
 pixel_size))
 snakeLength += 1

Since we are able to add some logic that will check if the snake has eaten the food or not,
and respond accordingly, it's time to add a sprite or image to the characters. As we
mentioned earlier, instead of using dull rectangular shapes, we are going to add our own
snake head. Let's start creating one.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[319]

Adding snake sprites
Finally, we can start making our game more appealing—we are going to make the snake's
head. We don't need any extra knowledge to create images for game characters. You can
also download images from the internet and use them instead. However, here, I will show
you how to create one for yourself, and how to use it in our snake game.

Follow these steps, line by line:

Open any paint application, or search paint in the search tab, and open the1.
application.
Press Ctrl + W to resize and skew the picture that you have selected, or simply2.
use the resize button on the upper menu bar. It will open a new resize window.
Resizing can be done by percentage and pixels. Use percentage resize and
maintain an aspect ratio of 20 by 20, that is, horizontal: 20 and vertical: 20.
After that, you will get a draw screen. Choose the color of the snake head that3.
you want to make. While making the game, we created a snake body that was
green; therefore, I will also choose green for the snake's head. I will use a pen and
draw something like the following image. You can take your time and create an
even better one if you wish. After completing it, save the file:

Now, you have to make the background of the image transparent. You can use4.
several online tools too, but I am going to use GIMP software, which we have
talked about before. You have to download it from its official website. It is open
source, and freely available to use. Go to the website and download
GIMP: https:/ / www. gimp. org/ downloads/ .
Open your previously made snake head with the GIMP software. Go to the Layer5.
tab from the upper-most menu, select Transparency, and click on Add alpha
channel. This will add a channel, which can be used to make the background of
our image transparent.

https://www.gimp.org/downloads/
https://www.gimp.org/downloads/
https://www.gimp.org/downloads/
https://www.gimp.org/downloads/
https://www.gimp.org/downloads/
https://www.gimp.org/downloads/
https://www.gimp.org/downloads/
https://www.gimp.org/downloads/
https://www.gimp.org/downloads/
https://www.gimp.org/downloads/
https://www.gimp.org/downloads/
https://www.gimp.org/downloads/

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[320]

Click on the Color tab from the menu screen. A drop-down menu will appear.6.
Click on Color to Alpha to make the background transparent. Export that file in
the same directory as where your Python file is stored.

Now that we have a sprite of the snake head, let's use it and render it using the blit
command in the Python file. As you know, before using any image, you have to import it.
Since I have saved the snake head image in the same directory where the Python file is
saved, I can use the pygame.image.load command:

image = game.image.load('snakehead.png')

Inside the body of the drawSnake method, you have to blit the image; something like this:

DisplayScreen.blit(image, (snakeArray[-1][0], snakeArray[-1][1]))

Now, when you run the game, you will observe one strange thing. As we press any one
arrow key, the head won't rotate accordingly. It will remain in its default position. Thus, in
order to make the sprite rotate, based on the directional movements, we have to use the
transform.rotate function. Observe the snake method, as it has a way to blit images
without rotation. Now, we will add couple of lines of code that will make the sprites rotate:

def drawSnake(pixel_size, snakeArray):

 if arrow_key == "right":
 head_of_Snake = game.transform.rotate(image, 270) #making rotation of 270

 if arrow_key== "left":
 head_of_Snake = game.transform.rotate(image, 90)

 if arrow_key== "up":
 head_of_Snake = image #default

 if arrow_key== "down":
 head_of_Snake = game.transform.rotate(image, 180)

 DisplayScreen.blit(head_of_Snake, (snakeArray[-1][0], snakeArray[-1][1]))
 for eachSegment in snakeArray[:-1]:
 game.draw.rect(DisplayScreen, color_green,[eachSegment[0],eachSegment[1],
 pixel_size, pixel_size])

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[321]

Now, instead of using a rectangular box for the apple, let me download a sample of an
apple from internet, in the form of a PNG (transparent background), and blit that, too:

appleimg = game.image.load('apple.png')
#add apple.png file in same directory of python file
while not gameOver:
 #code must be added before checking if user eats apple or not
 DisplayScreen.blit(appleimg, (XpositionApple, YpositionApple))

Let's run the game and observe the output. Although the snake head looks bigger, we can
always resize it:

In the next section, we will learn how to add a menu to our game. The menu is a screen that
is seen whenever you open a game, and it is generally a welcome screen.

Adding a menu to the game
Adding an introductory screen to any game requires us to have the knowledge of working
with fonts using the pygame module. pygame provides a feature so that we can use
different types of fonts, including a feature to change the size of them. The pygame.font
module is used to add fonts to games. Fonts are used to add text to the game screen. Since
the intro or welcome screen requires a player to show a screen containing fonts, we have to
use this module. The SysFont method is called to add a font to the screen. The SysFont
method takes two arguments: the first is the name of the font, and the second one is size of
the font. The following line of code initializes three different sizes of the same font:

font_small = game.font.SysFont("comicsansms", 25)
font_medium = game.font.SysFont("comicsansms", 50)
font_large = game.font.SysFont("comicsansms", 80)

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[322]

We will use the text_object function first in order to create a surface for the small,
medium, and large fonts. The text object function will create a rectangular surface using the
text. The text that is passed to this method is added to the box-shaped object and is
returned from it, as follows:

def objects_text(sample_text, sample_color, sample_size):
 if sample_size == "small":
 surface_for_text = font_small.render(sample_text, True, sample_color)
 elif sample_size == "medium":
 surface_for_text= font_medium.render(sample_text, True, sample_color)
 elif sample_size == "large":
 surface_for_text = font_large.render(sample_text, True, sample_color)

 return surface_for_text, surface_for_text.get_rect()

Let's create a new function in the Python file, which will add a message to the screen using
the aforementioned fonts:

def display_ScreenMessage(message, font_color, yDisplace=0,
font_size="small"):
 textSurface, textRectShape = objects_text(message, font_color, font_size)
 textRectShape.center = (display_width/ 2), (display_height/ 2) + yDisplace
 DisplaySurface.blit(textSurface, textRectShape)

The message to the screen method will create a rectangular surface to blit the text that is
passed as a msg to it. The default font size is small, and the text is aligned at the center of
the rectangular surface. Now, let's create a game intro method for our game:

def intro_for_game(): #function for adding game intro
 intro_screen = True

 while intro_screen:

 for eachEvent in game.event.get():
 if eachEvent.type == game.QUIT:
 game.quit()
 quit()

 if eachEvent.type == game.KEYDOWN:
 if eachEvent.key == game.K_c:
 intro_screen = False
 if eachEvent.key == game.K_q:
 game.quit()
 quit()

 DisplayScreen.fill(color_white)
 display_ScreenMessage("Welcome to Snake",

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[323]

 color_green,
 -99,
 "large")

 display_ScreenMessage("Made by Python Programmers",
 color_black,
 50)

 display_ScreenMessage("Press C to play or Q to quit.",
 color_red,
 180)

 game.display.update()
 objectClock.tick(12)

This game intro method is called before the game loop method call. For example, look at
the following code:

intro_for_game()
MainLoopForGame()

Finally, the output of the welcome menu should look like this:

Finally, our game is ready to be distributed. You might see that our game is a Python file
with the extension of .py, and it cannot be executed in a machine that doesn't have Python
installed. Thus, in the next section, we will learn how to convert a Python file into
executables so that we can distribute our game globally on Windows machines.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[324]

Converting into executables
If you have got to the point of making your own game with pygame, it's obvious that you
would like to share it with your friends and family. In the world of the internet, sharing a
file is pretty easy, but problems arise when a user on the other side doesn't have Python
preinstalled. It is not possible for everybody to install Python for the sole purpose of testing
your game. A better idea is to make executables that can be executed on many of these
machines. We will learn how to convert into .exe in this section—other versions (Linux
and Mac) will be covered in the upcoming chapters.

The conversion of Python files into executables is easier if you use the modules that are
provided by Python. There are a couple of them—them—py2exe and cx_Freeze. We will
use the first one in this section.

Using py2exe
To convert Python files into executables, we can use another Python module, which is
named py2exe. The py2exe module is not preinstalled in pygame—it's not a standard
library—but it can be downloaded by using the following command:

pip install py2exe
OR
py -3.7 -m pip install py2exe

After downloading the py2exe module, navigate to the folder that contains your Python
file. Open a Command Prompt or Terminal in that position and run code.. It will package
your Python file into an .exe file, or into executables. The following command will search
for and copy all the files that are used by the script to a folder called dist. Inside dist will
be a snake.exe file; this file will be the output simulation of the Python code, which can be
executed without Python being installed on the machine. For example, your friend might
not have installed Python on their machine, but he or she can still run this file. In order to
distribute the games to any other Windows machine, you can simply send the content of
the dist folder or snake.exe file. Just run the following command:

python snake.py py2exe #conversion command

This will create your game with the name, snake and an extension of .exe. You can
distribute these files across Windows platforms and get a response from them.
Congratulations! You have finally made it. Now, let's learn about game testing using
pygame.

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[325]

Game testing and possible modifications
Sometimes, there may be a case of memory shortage in your machine. If you run out of
memory and you try to load more images into the game, even with pygame's best efforts,
this process will be aborted. pygame.image.load must be accompanied by some memory
in order to perform tasks properly. In the case of memory shortages, you can predict that
you are surely going to trigger some kind of exception. And even if there is enough
memory, if you try to load an image that is not in your hard drive, or say, you made a typo
when writing the name of the file, you are likely to get an exception. Therefore, it's better to
handle them beforehand so that we won't have the trouble of debugging them afterward.

Secondly, let's check what happens when we provide unusual dimensions of the screen to
the set_mode method. Recall that set_mode, is a method that we use to create a Surface
object. For instance, let's say we forget to add two values to set_mode and we carried on
adding only one. We are going to trigger an error in such cases, too:

screen = pygame.display.set_mode((640))
TypeError: 2 argument expected

Let's say that, instead of forgetting to add proper dimensions for the height and width,
what happens if we add a height value of 0? This problem does not create any exception in
the case of PyCharm IDE. Instead, the program will run infinitely, causing your machine to
break down. However, these programs will normally throw an exception of
pygame.error: cannot set 0 sized display. Now that you know the areas where
pygame could go wrong, you can catch those exceptions and handle them accordingly:

try:
 display = pygame.display.set_mode((640,0))
except pygame.error:
 print("Not possible to create display")
 exit()

So, it's better to choose your display screen sensibly in order to remove any unwanted
exceptions. But, more likely, you can get the exception of the pygame error if you try to load
an image that is not in your hard drive. Thus, it's good practice to handle the exceptions so
that the sprites or images for the game are loaded properly .

Outdo Turtle - Snake Game UI with Pygame Chapter 11

[326]

Summary
In this chapter, we looked at the pygame module and discovered the reasons for using it in
game development. Most of the games that we are covering from the next chapter onwards
will be somehow based on the pygame module. Thus, make sure that you make one simple
game using pygame by yourself, before moving on.

We began by learning about how to use pygame objects to make games. We learned
various things, including handling user key events that involve input devices such as the
mouse and the keyboard; we made a sprite animation; we learned about color properties;
and we handled different diagonal and directional movements using vectored motion. We
have created our own sprites using a simple paint application, and added alpha properties
using the GIMP application. We tried to make a game more interactive by incorporating an
interactive game screens, that is, the menu screen. Finally, we learned how to convert
Python files into executables using py2exe modules.

The main goal of this chapter was to make you familiar with the usage of sprites so that you
can build 2D games. You have also learned how to handle user events and different
movements, including diagonal movements. You also learned how to create custom sprites
and images using external software, and also the ways of using them in the game. Not only
that, but you were made familiar with the concepts of color and rect objects, and learned
how to use them to make games more user-interactive, by deploying menu and score
screens.

In the next chapter, we are going to use the concepts that we have learned in this chapter to
make our own flappy bird clone. In addition to whatever we have learned in this chapter,
we will learn about game animation, character animation, collision principles, random
object generation, adding scores, and many more concepts.

12
Learning About Character
Animation, Collision, and

Movement
Animation is an art. This raises questions about how we can create a virtual world that
imitates the physical behavior of a person or objects by adding a texture or skin to each
character or by maintaining an impeccable graphical user interface. While creating
animation, we do not require knowledge of how controllers or physical devices work, yet
animation is a medium between the physical devices and the characters of the games.
Animation instructs players by guiding them with proper shading and movements in a
pictorial view, and thus it is an art. We, as programmers, are accountable for where and
why game characters move in certain directions, while animators are accountable for how
they look and move.

In the Python pygame module, we can create animation and collision using sprites—a two-
dimensional image that is part of the larger graphical scene. Maybe we can make one for
ourselves or download one from the internet. After loading such sprites with pygame, we
are going to learn about two fundamental blocks for building games: handling user events
and building animation logic. Animation logic is a simple yet powerful logic that makes
sprites or images move in a particular direction that is governed by user events.

By the end of this chapter, you will be familiar with the concepts of the game controller and
ways of using it to create animations for game characters. Along with this, you will also
learn about collision principles and ways of dealing with them using the pygame masking
method. Not only that, but you will also learn about ways to handle movements for game
characters, such as jumping, tapping, and scrolling while making games such as flappy
bird.

Learning About Character Animation, Collision, and Movement Chapter 12

[328]

In this chapter, we are going to cover the following topics:

Overview of game animation
Scrolling background and character animation
Random object generation
Detecting collisions
Scoring and end screen
Game testing

Technical requirements
You will need the following list of requirements to be able to complete this chapter:

Pygame editor (IDLE) version 3.5 or higher.
Pycharm IDE (refer to Chapter 1, Getting to Know Python – Setting Up Python and
the Editor, for the installation procedure).
The code assets and sprites for the Flappy Bird game are available in this book's
GitHub repository: https:/ / github. com/ PacktPublishing/ Learning- Python-
by-building- games/ tree/ master/ Chapter12

Check out the following video to see the code in action:

http://bit.ly/2oKQQxC

Understanding game animation
Like just about everything you see in computer games, animation mimics the real world or
tries to create one in which players can feel that they are interacting with it. Drawing a
game with two-dimensional sprites is fairly simple, as we saw in the previous chapter
while making the snake character for our Snake game. Even with the 2D characters, we can
create three-dimensional movements with proper shading and motion. Animating single
objects is easier with the pygame module; we saw a bit of this in action in the previous
chapter when we created a simple animation for the Snake game. In this section, we are
going to animate a number of objects using the pygame module. We will make a simple
program that will create a snowfall animation. To begin, we will use some shapes to fill in
the snowflakes (in this program, we are using a circular geometrical shape, but you can
choose any shape) and then create some animation logic that will make the snowflake move
within a milieu.

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
http://bit.ly/2oKQQxC
http://bit.ly/2oKQQxC
http://bit.ly/2oKQQxC
http://bit.ly/2oKQQxC
http://bit.ly/2oKQQxC
http://bit.ly/2oKQQxC
http://bit.ly/2oKQQxC
http://bit.ly/2oKQQxC
http://bit.ly/2oKQQxC

Learning About Character Animation, Collision, and Movement Chapter 12

[329]

Before we write the code, make sure you brainstorm a little bit. Since we coded some
advanced logic in the previous chapter too, this section might be easier for you, but make
sure you learn about what we do here too as it is extremely useful for the next section, in
which we will start making a clone of the Flappy Bird game.

As we know, the snowflakes animation requires a location (x, y) to render snow on it. This
location can be chosen arbitrarily, and so you can use a random module to choose such
locations. The following code shows how any shape can be drawn in a random location
using the pygame module. Since a for loop is used for iteration, we will be using it to
create a range for an iteration of at 50 calls at the most (the value of eachSnow ranging from
0 to 49). Recall the previous chapter, where you learned how to use pygame's draw module
to draw any shape into the screen. Considering this, let's take a look at the following code:

#creates snow
for eachSnow in range(50):
 x_pos = random.randrange(0, 500)
 y_pos = random.randrange(0, 500)
 pygame.draw.circle(displayScreen, (255,255,255) , [x_pos, y_pos], 2)
#size:2

Imagine that we made animation using the preceding code which will, in turn, draw
circular snowflakes. After running this, you will observe something odd in the output. You
may have guessed this already, but let me shed some light on this. The preceding code
makes a circle—in some random position—and the previously made circle vanishes as soon
as the new circle is created. Instead of that, we want our code to generate numbers of snow
and must make sure that the previously made circle is on the right-hand position instead of
vanishing. Did you discover that the preceding code was kind of buggy? Now that you
know what causes that error, take your time and think about how to solve this error. One
ubiquitous idea that might occur to you is solving this using a data structure. I prefer to use
lists. Let's make some modifications to the preceding code:

for eachSnow in range(50):
 x_pos = random.randrange(0, 500)
 y_pos = random.randrange(0, 500)
 snowArray.append([x_pos, y_pos])

Now, in the snowArray list, we have added the position of the randomly created snow at
position x and y. For multiple x_pos and y_pos values of snow, a nested list will be
formed. For instance, a list might look something like [[20,40],[40,30],[30,33]] for
three randomly made circular pieces of snow.

Learning About Character Animation, Collision, and Movement Chapter 12

[330]

For each of piece of snow made by using the preceding for loop, you have to render it
using another loop. Getting the length of the snow_list variable might be helpful as this
will give us an idea about how much snow should be drawn. For the number of positions
indicated by snow_list, we can use the pygame.draw module to draw any shape, as
follows:

for eachSnow in range(len(snowArray)):
 # Draw the snow flake
 pygame.draw.circle(displayScreen, (255,255,255) , snowArray[i], 2)

Can you see how easy it is to make drawings with the pygame module? Even though it is
not alienating stuff for you, this concept will come handy in a little while. Next, we will
look at how to make the snow fall downward. Follow these steps to create a downward
movement for the circular snow:

To begin, you have to make the snow move downward with unit pixels. You1.
only have to make changes to the y_pos coordinates of the snowArray elements,
like so:

 color_WHITE = (255, 255, 255)
 for eachSnow in range(len(snowArray)):
 # Draw the snow flake
 pygame.draw.circle(displayScreen, color_WHITE, snow_Array[i], 2)
 # moving snow one step or pixel below
 snowArray[i][1] += 1

Secondly, you have to make sure that, whenever snow falls out of sight, it is2.
created continuously. In Step 1, we have created a downfall for the circular snow.
At some point, it is going to strike with a lower horizontal boundary. If it hits
this, you have to reset it to render it from the top. By adding the following code,
the circular snow will be rendered at the top of the screen using a random
library:

 if snowArray[i][1] > 500:
 # Reset it just above the top
 y_pos = random.randrange(-50, -10)
 snowArray[i][1] = y_pos
 # Give it a new x position
 x_pos = random.randrange(0, 500)
 snowArray[i][0] = y_pos

Learning About Character Animation, Collision, and Movement Chapter 12

[331]

The full code for this animation is as follows (code that's written with comments is self-
explanatory):

To begin, the preceding code that we wrote needs to be redefined and refactored1.
so that the code looks good. Let's start by initializing it:

 import pygame as p
 import random as r
 # Initialize the pygame
 p.init()
 color_code_black = [0, 0, 0]
 color_code_white = [255, 255, 255]
 # Set the height and width of the screen
 DISPLAY = [500, 500]
 WINDOW = p.display.set_mode(DISPLAY)
 # Create an empty list to store position of snow
 snowArray = []

Now, add your for loop, right below the initialization:2.

 # Loop 50 times and add a snow flake in a random x,y position
 for eachSnow in range(50):
 x_pos = r.randrange(0, 500)
 y_pos = r.randrange(0, 500)
 snowArray.append([x_pos, y_pos])
 objectClock = game.time.Clock()

Similarly, we will end the logic by creating the main loop, which loops until the3.
user clicks the Close button explicitly:

 # Loop until the user clicks the close button.
 finish = False
 while not finish:
 for anyEvent in p.event.get(): # User did something
 if anyEvent.type == p.QUIT: # If user clicked close
 finish = True # Flag that we are done so we
 exit this loop
 # Set the screen background
 WINDOW.fill(BLACK)
 # Process each snow flake in the list
 for eachSnow in range(len(snowArray)):
 # Draw the snow flake
 p.draw.circle(WINDOW, color_code_white, snowArray[i], 2)
 # One step down for snow [falling of snow]
 snowArray[i][1] += 1

Learning About Character Animation, Collision, and Movement Chapter 12

[332]

Finally, check if snow is within the boundary or not:4.

 # checking if snow is out of boundary or not
 if snowArray[i][1] > 500:
 # reset if it from top
 y_pos = r.randrange(-40, -10)
 snowArray[i][1] = y_pos
 # New random x_position
 x_pos = r.randrange(0, 500)
 snowArray[i][0] = x_pos

Finally, update the screen with whatever has been drawn:5.

 # Update screen with what you've drawn.
 game.display.update()
 objectClock.tick(20)
 #if you remove following line of code, IDLE will hang at exit
 game.quit()

The preceding code consists of many fragments of code: the initialization of game variables,
followed by creating game models. In Step 3, we created some simple logic that governs the
animation of the game. We built two models of code in Step 3, which make our game
interactive for the user (handling user events) and make a game object (circular snowfall)
that it renders with a for loop. Although we are going to create more intricate animations
in upcoming chapters, this is a good animation program to start with. You can clearly see
that, under the hood, the creation of animations requires the use of looping, conditionals,
and game objects. We use Python programming paradigms such as if-else statements,
looping, arithmetic, and vectored manipulation to create game-object animations.

Apart from animating geometrical shapes, you can even animate sprites or images. To do
this, you have to make your own sprites or download some from the internet. In the next
section, we are going to animate sprites using the pygame module.

Animating sprites
Animating sprites is no different from animating geometrical shapes, but they are
considered complex because you have to write extra bits of code to blit such images using
animation logic. This animation logic, however, won't be the same for every image you
load; it differs from game to game. Thus, you must analyze what type of animation is
suitable for your sprites beforehand so that you can code it accordingly. In this section, we
aren't going to create any custom images; instead, we will be downloading some (thanks to
the internet!). We are going to embed animation logic into those sprites so that our program
will facilitate adequate shading and movement.

Learning About Character Animation, Collision, and Movement Chapter 12

[333]

Just to give you a flavor of how easy it is to animate static images or sprites, we are going to
create a simple program that will load about 15 images of a character (moving left and
right). We will blit (render) them whenever the user presses the LEFT or RIGHT key on
their keyboard. Perform the following steps to learn how to create an animated sprite
program:

To begin, you should start by creating a base template for the pygame program.1.
You must import some important modules, create a surface for the animation
console, and declare the idle friendly quit() function:

 import pygame
 pygame.init()
 win = pygame.display.set_mode((500,480))
 pygame.quit()

Secondly, you must load all the sprites and images listed in the images directory.2.
This directory contains several sprites. You must download it and save it in the
directory where your Python file is stored (the sprites/images file can be found
on GitHub at https:/ / github. com/ PacktPublishing/ Learning- Python- by-
building- games/ tree/ master/ Chapter12):

 #walk_Right contains images in which character is turning towards
 Right direction
 walkRight = [pygame.image.load('Right1.png'),
 pygame.image.load('Right2.png'), pygame.image.load('Right3.png'),
 pygame.image.load('Right4.png'), pygame.image.load('Right5.png'),
 pygame.image.load('Right6.png'), pygame.image.load('Right7.png'),
 pygame.image.load('Right8.png'), pygame.image.load('Right9.png')]

 #walk_left contains images in which character is turning towards
 left direction
 walkLeft = [pygame.image.load('Left1.png'),
 pygame.image.load('Left2.png'), pygame.image.load('Left3.png'),
 pygame.image.load('Left4.png'), pygame.image.load('Left5.png'),
 pygame.image.load('Left6.png'), pygame.image.load('Left7.png'),
 pygame.image.load('Left8.png'), pygame.image.load('Left9.png')]
 #Background and stand still images
 background = pygame.image.load('bg.jpg')
 char = pygame.image.load('standing.png')

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12

Learning About Character Animation, Collision, and Movement Chapter 12

[334]

Next, we need to declare some essential variables, such as the initial position of3.
the character and its velocity, that is, the distance traveled per unit keystroke by
the game sprites. In the following code, I have declared the velocity as five units,
which suggests that the game character will move a fixed 5 pixels from the
current position:

 x = 50
 y = 400
 width = 40
 height = 60
 vel = 5
 clock = pygame.time.Clock()

You have to declare a few more variables in order to track the movement of4.
sprites based on what the user is pressing on the keyboard. If the LEFT arrow key
is pressed, the left variable will be True, while if the RIGHT arrow key is
pressed, the right variable will be False. The walkCount variable will track the
number of times the key is pressed:

 left = False
 right = False
 walkCount = 0

Here, we have completed the basic layout for any pygame program—importing
appropriate modules, declaring variables to track movements, loading sprites, and so on.
The two remaining parts of the program are the most important ones, so make sure you
understand them. We will start by creating a main loop, as usual. This main loop will
handle user events, that is, what to do when a user presses the LEFT or RIGHT key.
Secondly, you have to create some animation logic, which will determine what image to
blit at what point of time based on user events.

We will start by handling user events. Follow these steps to do so:

To begin, you must declare a main loop, which much be an infinite loop. We will1.
provide FPS for the game using the tick method. As you may recall, this
method should be called once per frame. It will compute how many milliseconds
have passed since the previous call:

 finish = False
 while not finish: clock.tick(27)

Secondly, start by handling critical user events. In simple sprite animations, you2.
can start by handling two basic movements: LEFT and RIGHT. In upcoming
sections, we will make games by handling the JUMPING/TAPPING action. This
code should be written inside a while loop:

Learning About Character Animation, Collision, and Movement Chapter 12

[335]

 while not finish:
 clock.tick(27)
 for anyEvent in pygame.event.get():
 if anyEvent.type == pygame.QUIT:
 finish = True
 keys = pygame.key.get_pressed()
 #checking key pressed and if character is at x(boundary) or not?
 if keys[pygame.K_LEFT] and x > vel:
 x -= vel #going left by 5pixels
 left = True
 right = False

 #checking RIGHT key press and is character coincides with
 RIGHT boundary.
 # value (500 - vel - width) is maximum width of screen,
 thus x should be less
 elif keys[pygame.K_RIGHT] and x < 500 - vel - width:
 x += vel #going right by 5pixels
 left = False
 right = True
 else:
 #not pressing any keys
 left = False
 right = False
 walkCount = 0
 Animation_Logic()

Observe the last line of the preceding code—the call to the Animation_Logic() function is
complete. However, this method hasn't been declared yet. This method is a central block for
any game that's made out of sprites or images. Code written inside the animation logic will
perform two different tasks:

Blit or render images from the list of images defined while loading the sprites. In
our case, these are walkRight, walkLeft, bg, and char.
Redraw the game window based on the logic, which will check which image to
select from the pool of images. Note that walkLeft contains nine different
images. This logic will make a selection from these images.

Now that we have handled user events, let's learn how to make animation logic for our
previously loaded sprites.

Learning About Character Animation, Collision, and Movement Chapter 12

[336]

Animation logic
Sprites are static images that contain characters and have a transparent background. Extra
alpha information for these sprites is essential because, in 2D games, we want the user to
only see the characters and not their background. Imagine a game that has a character blit
with a bland background. It would leave the players with a bad impression of the game.
For instance, the following sprites are Mario characters. Let's say you are making a Mario
game and you crop a character from the following sprites and forget to remove its blue
background. The character, along with its blue background, will be rendered in the game,
making the game awful. Thus, we have to manually remove (if any) the character
background using online tools or offline tools such as GIMP. An example of a sprite sheet is
as follows:

Now, let's continue with our sprite animation. Up until now, we have declared a template
for handling events using pygame; now, let's write our animation logic. As we previously
affirmed, Animation logic is simple logic that will make a selection between the images and blit it
accordingly. Let's make that logic now:

def Animation_Logic():
 global walkCount
 win.blit(background, (0,0))
 #check_1
 if walkCount + 1 >= 27:
 walkCount = 0
 if left:
 win.blit(walkLeft[walkCount//3], (x,y))
 walkCount += 1
 elif right:
 win.blit(walkRight[walkCount//3], (x,y))
 walkCount += 1
 else:
 win.blit(char, (x, y))
 walkCount = 0
 pygame.display.update()

Learning About Character Animation, Collision, and Movement Chapter 12

[337]

The first thing you will see is the global variable. The walkCount variable was initially
declared inside the main loop and counts the number of times the user has pressed any
keys. However, if you remove the global walkCount statement, you won't be able to
change the value of walkCount inside the Animation_Logic function. If you only want to
access or print the value of walkCount inside the function, you don't need to define it as
global. However, if you want to manipulate its value inside a function, you must declare it
as a global variable. The blit command is going to take two arguments: one is the sprite
that needs to be rendered while the other is the position at which the sprite must be
rendered onto the screen. In the preceding code, the code that's written after #check_1 is to
qualify the character whenever it reaches extreme positions. It is a check for which we have
to render a char image, which is a still image of a character.

Rendering the sprites begins with our checking whether the left movement is active or not.
If True, blit the images at the (x, y) position. The value of (x, y) is manipulated by the
event handler. Whenever the user presses the LEFT arrow key, the x value will be
decreased by five units from its previous value and the image will be rendered to it. Since
this animation allows the character to move only in a horizontal direction on either the
positive X-axis or negative X-axis, there is no change in the y-coordinates. Similarly, for the
right movement, we are going to render images from the pool of walkRight at the position
specified by (x, y). In the else part of the code, we blit a char image, which is an idle image
of the character with no movements. Thus, walkCount is equal to zero. After we blit
everything, we have to update it to reflect the changes. We do this by calling the
display.update method.

Let's run the animation and observe the output:

Learning About Character Animation, Collision, and Movement Chapter 12

[338]

In the console, if you press the LEFT arrow key, the character will begin moving to the left,
and if you press the RIGHT arrow key the character will move to the right. Since there is no
change in y coordinates and we are not handling any events in the main loop to facilitate
vertical movements, the character is restricted to moving in a horizontal direction. I
strongly urge you to experiment with these sprites and try handling vertical movements by
changing y-coordinates. Although I have provided you with a list of resources containing a
list of images, if you want to use any other sprites for your game, you can go over to the
following site and download any of the sprites from there: https:/ /www. spriters-
resource.com/. This website is a paradise for any pygame developer, so make sure you
visit it and download any game sprites you want so that you can experiment with this
(Mario would be better to experiment with).

From the next section onward, we will start making a clone of the Flappy Bird game. We
will learn about techniques such as a scrolling background and character animation,
random object generation, collision, and scoring.

Scrolling background and character
animation
Now that you know enough about pygame sprites and animation, you are capable of
making a game that contains intricate sprite animations that contain multiple objects. In this
section, we are going to learn about scrolling backgrounds and character animation by
making a Flappy Bird game. This game contains multiple objects, with Bird being the main
character for the game and a pipe pair for the obstacles in the game. If you haven't played
this game before, give it a go by visiting its official website: https:/ /flappybird. io/.

Speaking of the game, it isn't that hard to make, but by taking care of multiple aspects of
game programming it can be an arduous task for beginners. Having said that, we aren't
going to make any sprites ourselves—they are freely available on the internet. This makes
our task even easier. Since the designs of the game characters are open source, we can
directly focus on the coding part of the game. But if you want to design your game
characters from scratch, start making them using any simple Paint application. For this
Flappy Bird game, I am going to use sprites that are freely available.

https://www.spriters-resource.com/
https://www.spriters-resource.com/
https://www.spriters-resource.com/
https://www.spriters-resource.com/
https://www.spriters-resource.com/
https://www.spriters-resource.com/
https://www.spriters-resource.com/
https://www.spriters-resource.com/
https://www.spriters-resource.com/
https://www.spriters-resource.com/
https://www.spriters-resource.com/
https://flappybird.io/
https://flappybird.io/
https://flappybird.io/
https://flappybird.io/
https://flappybird.io/
https://flappybird.io/
https://flappybird.io/
https://flappybird.io/

Learning About Character Animation, Collision, and Movement Chapter 12

[339]

I have added resources in the GitHub links. If you open the images folder and then open
the background image file, you will see that it contains background images of a specific
height and width. But in the Flappy Bird game, you can observe that background images
are rendered continuously. Thus, using pygame, we can make a scrolling background so
that we can blit the background image continuously. Thus, instead of using thousands of
copies of the same images for the background, we can use one image and blit it
continuously.

Let's start by making a character animation, along with a scrolling background. The
following steps show us how to use object-oriented programming to make a class for each
game character:

To begin, you must start declaring modules such as math, os (for loading images1.
with a specified filename), random, collections, and pygame. You must also
declare some variables representing the frames-per-second setting, animation
speed, and the game console's height and width:

 import math
 import os
 from random import randint
 from collections import deque
 import pygame
 from pygame.locals import *

 Frame_Rate = 60 #FPS
 ANIMATION_SPEED = 0.18 # pixels per millisecond
 WINDOW_WIDTH = 284 * 2 # Background image sprite size: 284x512 px;
 #our screen is twice so to rendered twice: *2
 WINDOW_HEIGHT = 512

Now, let's load all the images from the image folder into the Python project. I will2.
also make two more methods that will perform the conversion between frames to
milliseconds and vice versa.
Let's see how the loading_Images function works by using the following code:3.

 def loading_Images():
 """Function to load images"""
 def loading_Image(image_name):

 """Return the sprites of pygame by create unique filename so that
 we can reference them"""
 new_filename = os.path.join('.', 'images', image_name)
 image = pygame.image.load(new_filename) #loading with pygame
 module
 image.convert()

Learning About Character Animation, Collision, and Movement Chapter 12

[340]

 return image
 return {'game_background': loading_Image('background.png'),
 'endPipe': loading_Image('endPipe.png'),
 'bodyPipe': loading_Image('bodyPipe.png'),
 # GIF format file/images are not supported by Pygame
 'WingUp': loading_Image('bird-wingup.png'),
 'WingDown': loading_Image('bird-wingdown.png')}

In the preceding program, we defined the loading_Image function, which loads/extracts
all the images from a certain directory and returns them as a dictionary containing name as
key and image as value. Let's analyze how the keys and values will be stored in such a
dictionary via the following arguments:

background.png: The background image for the flappy bird game.
 img:bird-wingup.png: This image of the flappy bird has one wing pointing
upward and is rendered when the screen is tapped in the game.
img:bird-wingdown.png: This part of the image is used when the flappy bird
has free fall, that is, when a user is not tapping the screen. This image has the
flappy bird's wing pointing downward.
img:bodyPipe.png: This contains the discrete body parts that can be used to
create a single pipe. For instance, in the Flappy Bird game, there should be two
discrete slices of the pipe rendered from the top and bottom, leaving a gap
between them.
img:endPipe.png: This part of the image is the base of the pipe pair. There are
two types of such images: the small pipe-end for the small pipe pair and the big
pipe-end image for the larger pipe pair.

Similarly, we have a nested loading_Image function that creates a filename for each sprite
that's being loaded. It loads images from /images/ folder. After loading each image
successively, they are called with the convert() method to speed up the blitting
(rendering) process. The argument that's passed to the loading_Image function is the
filename of the image. image_name is the filename that's given (along with its extension;
.png is preferred) to load it via the os.path.join method, along with the convert()
method to speed up the blitting (rendering) process.

Learning About Character Animation, Collision, and Movement Chapter 12

[341]

After loading the images, we need to make two functions that perform conversions of
frame rates (please go to Chapter 10, Upgrading the Snake Game with Turtle to find out more
about frame rates). These sets of functions primarily perform conversion from frames to
milliseconds at the specified frame rates and vice versa. This conversion of frames to
milliseconds is important because we have to use milliseconds for the movement of the
Bird character, that is, the number of milliseconds left to climb, where a complete climb
lasts Bird.CLIMB_DURATION milliseconds. Use this if you want the bird to make a (small)
climb at the very beginning of the game. Let's make such two sets of functions (an
exhaustive description of the code is also available on GitHub at https:/ /github. com/
PacktPublishing/Learning- Python- by- building- games/ tree/ master/ Chapter12) in the
following code:

def frames_to_msec(frames, fps=FPS):
 """Convert frames to milliseconds at the specified framerate.

 Arguments:
 frames: How many frames to convert to milliseconds.
 fps: The framerate to use for conversion. Default: FPS.
 """
 return 1000.0 * frames / fps

def msec_to_frames(milliseconds, fps=FPS):
 """Convert milliseconds to frames at the specified framerate.

 Arguments:
 milliseconds: How many milliseconds to convert to frames.
 fps: The framerate to use for conversion. Default: FPS.
 """
 return fps * milliseconds / 1000.0

Now, declare a class for the bird character. Recall Chapter 6, Object-Oriented Programming
where we learned that each entity should be represented by a single class. In the
Flappy Bird game, the entity or model representing the PipePair (obstacles) is different
from another entity, let's say, Bird. Thus, we have to make a new class to represent another
entity. This class will represent the bird that will be controlled by the player. Since the bird
is the "hero" of our game, any movements that are defined for the Bird character are only
allowed by the user who's playing the game. The player can make the bird climb (ascend
quickly) by tapping the screen; otherwise, it will sink (descend slowly). The bird must pass
through the space in-between the pipe-pair, and for every pipe that's passed, one point will
be rewarded. Similarly, if the bird crashes into a pipe, the game ends.

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter12

Learning About Character Animation, Collision, and Movement Chapter 12

[342]

Now, we can start coding our main character. Do you remember how to do this? This is one
of the most important characteristics of any good game programmer—they brainstorm too
much and write small but optimized code. So, let's brainstorm and predict how we want to
build the bird character beforehand so that we can code flawlessly afterward. The following
are some essentials attributes and constants that must be defined as Bird class members:

Attributes of the class: x is the bird's X coordinates, y is the bird's Y coordinates,
and msec_to_climb represents the number of milliseconds left to climb, where a
complete climb lasts Bird.CLIMB_DURATION milliseconds.
Constants:

WIDTH: The width, in pixels, of the bird's image.
HEIGHT: The height, in pixels, of the bird's image.
SINK_SPEED: The speed at which, in pixels per millisecond, the bird
descends in one second while not climbing.
CLIMB_SPEED: The speed at which, in pixels per millisecond, the bird
ascends in one second while climbing, on average. See the Bird.update
doc-string for more information.
CLIMB_DURATION: The number of milliseconds it takes the bird to execute a
complete climb.

Now that we have enough information about the Bird character in our game, we can start
writing the code for it. The following line of code represents the Bird class, which has
members defined as class attributes and constants:

class Bird(pygame.sprite.Sprite):

 WIDTH = HEIGHT = 50
 SINK_SPEED = 0.18
 CLIMB_SPEED = 0.3
 CLIMB_DURATION = 333.3

 def __init__(self, x, y, msec_to_climb, images):
 """Initialize a new Bird instance."""

 super(Bird, self).__init__()
 self.x, self.y = x, y
 self.msec_to_climb = msec_to_climb
 self._img_wingup, self._img_wingdown = images
 self._mask_wingup = pygame.mask.from_surface(self._img_wingup)
 self._mask_wingdown = pygame.mask.from_surface(self._img_wingdown)

Learning About Character Animation, Collision, and Movement Chapter 12

[343]

Let's talk about the constructor, or initializer, that's defined inside the Bird class. It contains
many arguments that might overwhelm you, but they are rather easy to grasp. In the
constructor, we normally define the attributes of the class, in this case, variables such as the
x and y coordinates that represent the bird's position, as well as other arguments. Let's go
over these now:

x: The bird's initial X coordinates.
y: The bird's initial Y coordinates.
msec_to_climb: The number of milliseconds left to climb, where a complete
climb lasts Bird.CLIMB_DURATION milliseconds. Use this if you want the bird to
make a (small) climb at the very beginning of the game.
images: A tuple containing the images used by this bird. It must contain the
following images, in the following order:

 Bird wing when flying up
 Bird wing when falling down

Finally, three important properties should be declared. These properties are image, mask,
and rect. Imagine properties are what the bird is essentially doing in the game. It can fly
up and down, which is defined inside the image property. However, the other two
properties of the bird class are quite different. The rect property will get the bird's
position, height, and width as a Pygame.Rect (in the form of a rectangle). Remember that
pygame can track every game character with the rect property, and something like an
invisible rectangle will be drawn around the sprites. The mask property gets a bit-mask that
can be used in collision detection with obstacles:

@property
def image(self):
 "Gets a surface containing this bird image"
 if pygame.time.get_ticks() % 500 >= 250:
 return self._img_wingup
 else:
 return self._img_wingdown

@property
def mask(self):
 """Get a bitmask for use in collision detection.

 The bitmask excludes all pixels in self.image with a
 transparency greater than 127."""
 if pygame.time.get_ticks() % 500 >= 250:
 return self._mask_wingup
 else:
 return self._mask_wingdown

Learning About Character Animation, Collision, and Movement Chapter 12

[344]

@property
def rect(self):
 """Get the bird's position, width, and height, as a pygame.Rect."""
 return Rect(self.x, self.y, Bird.WIDTH, Bird.HEIGHT)

Since we are already familiar with the concepts of the rect and mask properties, I won't
bother repeating myself here, so let's learn about the image property in detail. The image
property gets the surface that points to the current image of a bird. This will decide
whether to return an image where the bird's visible wing is pointing upward or where it is
pointing downward based on pygame.time.get_ticks(). This will animate the Flappy
Bird, even though pygame doesn't support animated GIFs.

The time has come to wrap up the Bird class, but before that, you have to declare one more
method, which will update the bird's position. Ensure that you read the description that
I've added inside the triple quote as a comment:

def update(self, delta_frames=1):
 """Update the bird's position.

 One complete climb lasts CLIMB_DURATION milliseconds, during which
 the bird ascends with an average speed of CLIMB_SPEED px/ms.
 This Bird's msec_to_climb attribute will automatically be
 decreased accordingly if it was > 0 when this method was called.

 Arguments:
 delta_frames: The number of frames elapsed since this method was
 last called.
 """
 if self.msec_to_climb > 0:
 frac_climb_done = 1 - self.msec_to_climb/Bird.CLIMB_DURATION
 #logic for climb movement
 self.y -= (Bird.CLIMB_SPEED * frames_to_msec(delta_frames) *
 (1 - math.cos(frac_climb_done * math.pi)))
 self.msec_to_climb -= frames_to_msec(delta_frames)
 else:
 self.y += Bird.SINK_SPEED * frames_to_msec(delta_frames)

The mathematical cosine(angle) function is used to make a smooth
climb for the bird. Cosine is an even function, which means it is an even
climb and a fall movement is given to the bird: when the bird is in the
middle of the screen, a high jump can be performed, but when the bird is
near the top/bottom boundary, only a slight jump can be made (this is a
basic principle for the Flappy Bird's movement).

Learning About Character Animation, Collision, and Movement Chapter 12

[345]

Let's run the game to check how the bird has been rendered. However, we haven't created
any logic to enable the player yo play the game (we will do this soon). For now, let's run
our game and observe what the interface looks like:

In the light of the preceding code, you must be able to make a complete Bird class that has
properties for masking, updating, and getting the position, that is, the height and width,
using rect. The bird character in our Flappy Bird game is only associated with
motion—moving either up or down, vertically. The next character in our game is Pipes
(obstacles for the bird), which is quite complex to deal with. We have to blit pipe pairs
randomly and continuously. Let's see how we can do this.

Understanding random object generation
We've already covered the Bird character's animation in the previous sections. It consists
of a list of properties and attributes that deal with the vertical motion of the bird. Since
the Bird class is restricted to performing movements for the bird character only, we can't
add any other character attributes to it. For instance, if you want to add attributes for
obstacles (pipes) in the game, they can't be added to the Bird class. You have to create
another class to define the next object. This concept is called encapsulation (we learned
about this back in Chapter 6, Object-Oriented Programming) in which code and data are
wrapped together within a single unit so that no other entity can harm it.

Learning About Character Animation, Collision, and Movement Chapter 12

[346]

Let's make a new class to spawn obstacles for the game. You must start by defining a class,
along with some constants. I have added comments along with the code so that you can
understand the primary use of this class:

class PipePair(pygame.sprite.Sprite):
 """class that provides obstacles in the way of the bird in the form of
pipe-pair."""

 WIDTH = 80
 HEIGHT_PIECE = 32
 ADD_INTERVAL = 3000

Before we actually write this PipePair class, let me give you some pithy information about
this class so that you can grasp each of the following concepts. We will use different
attributes and constants, as follows:

PipePair class: A pipe pair (a combination of two pipes) is inserted to form two
pipes, and only a small gap is provided between them so that the Flappy Bird can
pass through them. Whenever the bird touches or collides with any of pipe-pairs,
the game will be over.
Attributes: x is the X-position for pipePair. This value is a float to make
movement smoother. There is no Y-position for pipePair as it doesn't change in
the y-direction; it always remains 0.

 image: This is the surface provided by the pygame module and is used to
blit the pipePair.
mask: There is a bitmask that excludes all the pixels in self.image with a
transparency greater than 127. This can be used for collision detection.
top_pieces: A combination of top-pipes along with an end-piece, which is
the base for the top pieces of the pipe (this is a one-pair consisting of the top-
pieces of the pipe).
bottom_pieces: A combination of down-pipes (tunnel pointing upward)
with an end-piece, which is the base for the bottom pipes.

Constants:
WIDTH: The width, in pixels, of a pipe piece. Because a pipe is only one-
piece wide, this is also the width of a PipePair image.
PIECE_HEIGHT: The height, in pixels, of a pipe piece.
ADD_INTERVAL: The interval, in milliseconds, between adding new pipes.

Learning About Character Animation, Collision, and Movement Chapter 12

[347]

As we already know, the first thing that we need to do for any class is the initialization of a
class or constructor. This method will initialize the new random pipe pair. The following
screenshot shows how the pipe pair should be rendered. There are two parts of the pipe,
that is, the top and the bottom, and a small space is inserted between them:

Let's make an initializer for the PipePair class that will blit the bottom and top parts of
the pipe, as well as mask it. Let's learn about the arguments that need to be initialized in
this constructor:

end_image_pipe: Image representing the base of the pipe (end-piece)
body_image_pipe: Image representing the vertical piece of the pipe (one-slice of
pipe)

The pipe pair only has an x-attribute and the y-attribute is 0. Therefore,
the value of the x attribute is assigned as WIN_WIDTH, that
is, float(WIN_WIDTH - 1).

Learning About Character Animation, Collision, and Movement Chapter 12

[348]

The following steps represent the code that needs to be added to the constructor to create a
random pipe pair in the game's interface:

Let's initialize a new random pipe pair for PipePair:1.

 def __init__(self, end_image_pipe, body_image_pipe):
 """Initialises a new random PipePair.
 """
 self.x = float(WINDOW_WIDTH - 1)
 self.score_counted = False
 self.image = pygame.Surface((PipePair.WIDTH, WINDOW_HEIGHT),
 SRCALPHA)
 self.image.convert() # speeds up blitting
 self.image.fill((0, 0, 0, 0))
 #Logic 1: **create pipe-pieces**--- Explanation is provided after
 the code
 total_pipe_body_pieces = int((WINDOW_HEIGHT - # fill window from
 top to bottom
 3 * Bird.HEIGHT - # make room for bird to fit through
 3 * PipePair.HEIGHT_PIECE) / # 2 end pieces + 1 body piece
 PipePair.HEIGHT_PIECE # to get number of pipe pieces
)
 self.bottom_pipe_pieces = randint(1, total_pipe_body_pieces)
 self.top_pipe_pieces = total_pipe_body_pieces -
 self.bottom_pieces

Next, we need to define two types of pipe pair—the bottom pipe and the top2.
pipe. The code that adds the pipe pair blits the pipe image and only cares about
the y-position for the pipe pair. No horizontal coordinates are required for pipe
pairs (they should be rendered vertically):

 # bottom pipe
 for i in range(1, self.bottom_pipe_pieces + 1):
 piece_pos = (0, WIN_HEIGHT - i*PipePair.PIECE_HEIGHT)
 self.image.blit(body_image_pipe, piece_pos)
 end_y_bottom_pipe = WIN_HEIGHT - self.bottom_height_px
 bottom_end_piece_pos = (0, end_y_bottom_pipe -
 PipePair.PIECE_HEIGHT)
 self.image.blit(end_image_pipe, bottom_end_piece_pos)

 # top pipe
 for i in range(self.top_pipe_pieces):
 self.image.blit(body_image_pipe, (0, i *
 PipePair.PIECE_HEIGHT))
 end_y_top_pipe = self.top_height_px
 self.image.blit(end_image_pipe, (0, end_y_top_pipe))

Learning About Character Animation, Collision, and Movement Chapter 12

[349]

 # external end pieces are further added to make compensation
 self.top_pipe_pieces += 1
 self.bottom_pipe_pieces += 1

 # for collision detection
 self.mask = pygame.mask.from_surface(self.image)

Although the comments that were provided alongside the code are helpful when it comes
to understanding the code, we need to learn about the logic in a more pithy way. The
total_pipe_body_piece variable stores the height for the number of pipe pieces that can
be added in one frame. For example, it infers the number of bottom pipes and top pipes
that can be inserted into the current instance. We typecast it to the integer since pipe pairs
will be always integers. The bottom_pipe_piece class attribute represents the height of
the bottom pipe. It may range anywhere from 1 to the maximum width supported by
total_pipe_piece. Similarly, the height of the top pipe piece depends on the total pipe
piece. For example, if the total height of the canvas is 10 and the height of the bottom pipe
is 1, then by leaving a gap between the two pipe pairs (let's say, 3), the remaining height
should be that of the top pipe (that is, its height is 10 - (3+1) = 6) which means that, except
from the gap between the pipe pair, no other gap must be provided.

Everything that is written in the preceding code is self-explanatory. Although the code is
simple, I want you to focus on the last line of code, which we used to detect a collision. This
process of detection is significant because, in the Flappy Bird game, we have to check if the
bird is colliding with the pipe pair or not. This is usually done by adding a mask using
the pygame.mask module.

Now, it's time to a add few properties to the PipePair class. We will add four properties:
visible, rect, height_topPipe_px, and height_bottomPipe_px. The rect property
works similarly to the Bird class' rect call—it returns the rectangle that contains the
PipePair. The visible property of the class checks if the pipe pair is visible in the screen
or not. The two other properties return the top and bottom pipe's height in pixels. The
following is the code for the preceding four properties of the PipePair class:

@property
def height_topPipe_px(self):
 """returns the height of the top pipe, measurement is done in pixels"""
 return (self.top_pipe_pieces * PipePair.HEIGHT_PIECE)

@property
def height_bottomPipe_px(self):
 """returns the height of the bottom pipe, measurement is done in pixels"""
 return (self.bottom_pipe_pieces * PipePair.HEIGHT_PIECE)

@property

Learning About Character Animation, Collision, and Movement Chapter 12

[350]

def visible(self):
 """Get whether this PipePair on screen, visible to the player."""
 return -PipePair.WIDTH < self.x < WINDOW_WIDTH

@property
def rect(self):
 """Get the Rect which contains this PipePair."""
 return Rect(self.x, 0, PipePair.WIDTH, PipePair.HEIGHT_PIECE)

Now, it's time to add two more methods to the PipePair class before wrapping it. The first
method, collides_with, is going to check whether the bird collides with a pipe in the
pipe pair or not:

def collides_with(self, bird):
 """check whether bird collides with any pipe in the pipe-pair. The
 collide-mask deploy a method which returns a list of sprites--in
 this case images of bird--which collides or intersect with
 another sprites (pipe-pair)

 Arguments:
 bird: The Bird which should be tested for collision with this
 PipePair.
 """
 return pygame.sprite.collide_mask(self, bird)

The second method, update, will update the pipe pair's positions:

def update(self, delta_frames=1):
 """Update the PipePair's position.

 Arguments:
 delta_frames: The number of frames elapsed since this method was
 last called.
 """
 self.x -= ANIMATION_SPEED * frames_to_msec(delta_frames)

Now that we know how every method works, let's see the code in action. You won't
understand any flaws in your game until you run it. Take the time to run your game and
observe the output:

Learning About Character Animation, Collision, and Movement Chapter 12

[351]

Okay, so the game is appealing enough to play. The tapping events are working perfectly,
and the background image is rendered along with the bird images and the physics for
climbing and sinking actions. However, one strange thing you might have observed (if not,
take a look at the preceding screenshot), is that, after colliding with the pipe pair, our bird
was able to move forward. This is a big flaw in our game, and we don't want it. Instead, we
want to close the game when this happens. Thus, to overcome such an error, we have to use
concepts of collision (a technique that handles the event when multiple game objects collide
with each other).

Now that we have completed the two game character classes, that is, Bird and PipePair,
let's move toward making the physical part of the game: initializing the display and
handling collisions.

Detecting collision
The process of handling collisions is done by figuring out what actions must be performed
when two independent objects touch each other. In the preceding section, we added a mask
for each object to check whether two objects collide or not. The pygame module makes
checking the process of collisions extremely easy; we can simply use
sprite.collide_mask to check if two objects are touching or not. However, the argument
that this method takes is the masking object. In the previous section, we added the
collides_with method to check if the bird collides with one of the pipes in the pipe pairs
or not. Now, let's use that method to check for collision.

Learning About Character Animation, Collision, and Movement Chapter 12

[352]

Along with detecting collisions, we will make a physical layout/template for the game. I am
not emphasizing the basic pygame layout in this section because it should be self-
explanatory for you since we have been doing this for a long time now. The following steps
depict the layout for making a model that detects game characters collisions (Bird with
pipePairs):

Start by defining the main function, which will be externally called afterward:1.

 def main():
 """Only function that will be externally called, this
 is main function

 Instead of importing externally, if we call this function from
 if name == __main__(), this main module will be executed.
 """

 pygame.init()

 display_surface = pygame.display.set_mode((WIN_WIDTH,
 WIN_HEIGHT)) #display for screen
 objectClock = pygame.time.Clock()
 images = loading_Images()

Let's create some logic that will make the bird appear at the center of the screen.2.
If you have played the Flappy Bird game, you will know that the bird is placed at
the center of the canvas and that it can move either vertically upward or
downward:

 #at any moment of game, bird can only change its y position,
 so x is constant
 #lets put bird at center
 Objectbird = Bird(50, int(WIN_HEIGHT/2 - Bird.HEIGHT/2), 2,
 (images['WingUp'], images['WingDown']))

 pipes = deque()
 #deque is similar to list which is preferred otherwise
 if we need faster operations like
 #append and pop
 frame_clock = 0 # this counter is only incremented
 if the game isn't paused

Learning About Character Animation, Collision, and Movement Chapter 12

[353]

Now, we have to add pipe pair images to the pipes variable since a pipe is3.
formed by concatenating pipe-body with pipe-end. This concatenation is done
inside the PipePair class, so that, after creating the instances, we can append
the pipe pair to the pipes list:

 done = paused = False
 while not done:
 clock.tick(FPS)
 # Handle this 'manually'.
 If we used pygame.time.set_timer(),
 # pipe addition would be messed up when paused.
 if not (paused or frame_clock %
 msec_to_frames(PipePair.ADD_INTERVAL)):
 pipe_pair = PipePair(images['endPipe'],
 images['bodyPipe'])
 pipes.append(pipe_pair)

Now, handle the user's actions. Since the Flappy Bird game is a tapped game, we4.
will handle mouse events (refer to the Mouse control section we covered in
Chapter 11, Outdo Turtle – Snake Game UI with Pygame):

 #handling events
 #Since Flappy Bird is Tapped game
 #we will handle mouse events
 for anyEvent in pygame.event.get():
 #EXIT GAME IF QUIT IS PRESSED
 if anyEvent.type == QUIT or (anyEvent.type == KEYUP and
 anyEvent.key == K_ESCAPE):
 done = True
 break
 elif anyEvent.type == KEYUP and anyEvent.key in
 (K_PAUSE, K_p): paused = not paused
 elif anyEvent.type == MOUSEBUTTONUP or
 (anyEvent.type == KEYUP and anyEvent.key in
 (K_UP, K_RETURN, K_SPACE)): bird.msec_to_climb =
 Bird.CLIMB_DURATION
 if paused:
 continue #not doing anything [halt position]

Finally, here's what you've been waiting for: how to build a collision interface5.
with the help of Python's pygame module. The highlighted part of the following
code will be discussed in detail after we've completed the rest of these steps:

 # check for collisions
 pipe_collision = any(eachPipe.collides_with(bird)
 for eachPipe in pipes)
 if pipe_collision or 0 >= bird.y or

Learning About Character Animation, Collision, and Movement Chapter 12

[354]

 bird.y >= WIN_HEIGHT - Bird.HEIGHT:
 done = True

 #blit background
 for position_x_coord in (0, WIN_WIDTH / 2):
 display_surface.blit(images['game_background'],
 (position_x_coord, 0))
 #pipes that are out of visible, remove them
 while pipes and not pipes[0].visible:
 pipes.popleft()

 for p in pipes:
 p.update()
 display_surface.blit(p.image, p.rect)

 bird.update()
 display_surface.blit(bird.image, bird.rect)

Finally, end the program with some superfluous steps, such as rendering the6.
game with an update function, giving an extraneous message to the user, and so
on:

 pygame.display.flip()
 frame_clock += 1
 print('Game Over!')
 pygame.quit()
 #----------uptill here add it to main function----------
 if __name__ == '__main__':
 #indicates two things:
 #In case other program import this file, then value of
 __name__ will be flappybird
 #if we run this program by double clicking filename
 (flappybird.py), main will be called
 main() #calling main function

The highlighted parts in the preceding code are important, so ensure that you understand
them. Here, the any() function returns a Boolean by checking whether the bird collides
with the pipe pair or not. Based on that check, if it is True, we exit the game. We will also
check whether the bird is touching the lowest horizontal or upper horizontal boundary or
not and exit from the game if it is.

Let's run the game and observe the output:

Learning About Character Animation, Collision, and Movement Chapter 12

[355]

The game is playable enough, so let's add one more feature to the game that tells the player
how well they're scoring.

Scoring and end screen
Adding a score to the Flappy Bird game is quite simple. The player's score will be the
number of pipes or obstacles a player has passed through. If the player passes through 20
pipes—their score will be 20. Let's add a score screen to the game:

score = 0
scoreFont = pygame.font.SysFont(None, 30, bold=True) #Score default font:
WHITE

while not done:
 #after check for collision
 # procedure for displaying and updating scores of player
 for eachPipe in pipes:
 if eachPipe.x + PipePair.WIDTH < bird.x and not
 eachPipe.score_counted:
 #when bird crosses each pipe
 score += 1
 eachPipe.score_counted = True

 Surface_Score = scoreFont.render(str(score),

Learning About Character Animation, Collision, and Movement Chapter 12

[356]

 True, (255, 255, 255)) #surface
 x_score_dim = WIN_WIDTH/2 - score_surface.get_width()/2
 #to render score, no y-position
 display_surface.blit(Surface_Score, (x_score_dim,
 PipePair.HEIGHT_PIECE)) #rendering

 pygame.display.flip() #update
 frame_clock += 1
print('Game over! Score: %i' % score)
pygame.quit()

Now, the game looks more appealing:

In the next section, we'll look at how we can test everything out and even try to apply some
modifications.

Game testing
Although there are fewer areas where Flappy Bird can be modified, you can always test the
game by modifying some game character attributes in order to change the difficulty of the
game. In the previous section, we ran our game and saw that there was a huge space
between a pipe pair. This will make the game extremely easy for many users to play, and so
we need to increase the difficulty by narrowing down the space between the two pipe pairs.
For instance, inside the Bird class, we have declared four attributes. Change them to
different values to observe the effect:

Learning About Character Animation, Collision, and Movement Chapter 12

[357]

WIDTH = HEIGHT = 30 #change it to make space between pipe pairs
 smaller/bigger
SINK_SPEED = 0.18 #speed at which bird falls
CLIMB_SPEED = 0.3 #when user taps on screen, it is climb speed
 #make it smaller to make game harder
CLIMB_DURATION = 333.3

You can also vary the values of game attributes to give your game a unique look. Some of
the different game attributes that are used in Flappy Bird are frames per second and animation
speed. You can alter these values to implement the necessary changes. Although you can
change the value of the animation speed, a value of 60 for FPS is adequate for the Flappy
Bird game.

Instead of debugging and searching for possible modifications manually, you can simply
run your program in debug mode to test it faster. Assuming that you have coded the
Flappy Bird game in Pycharm's IDE (I recommend this), you can run your program in
debug mode by pressing Shift + F9 or simply clicking on the Run tab and running it in
debug mode from there. After you run it, try to play the game and try to make it fit every
possible situation that the user might encounter. Any errors will be located in the Terminal
of the program, from which you can jump to a location in the program that has multiple
errors.

Summary
In this chapter, we explored the concepts of sprite animations and collision more deeply.
We looked at how to make a simple animation for geometrical shapes and create complex
sprite animations, and learned which works best in certain scenarios. We combined
pygame's event handling method with animation logic, which renders the images based on
the current game state. Essentially, animation logic maintains a queue in which user events
will be stored. Fetching one action at a time renders the image to a position.

Game prototypes that are made by using pygame have three central blocks: loading ant
sprites (the original sprites or those downloaded from the internet), handling user events,
and animation logic, which governs the movement of game characters. Sometimes, instead
of having independent sprite images, you might have sprite sheets—sheets containing
images of characters. You can crop them by using online tools or even pygame's rect
method. After getting the proper images or sprites for the game, we handled user events
and created animation logic to make the game sprites move. We also looked at pygame's
masking properties, which can be used to detect collisions between objects.

Learning About Character Animation, Collision, and Movement Chapter 12

[358]

After completing this chapter, you now understand game controllers and animation, have
learned about the collision principle (including pygame's masking property), have learned
about sprite animations (creating a running animation of a character), and have learned
about adding an interactive score screen to make the game more user-friendly.

The wide range of areas where you can apply the knowledge you have gained in this
chapter is pure gold to most Python pygame developers. Handling sprites is important for
almost all pygame-based games. Although simple yet powerful concepts, character
animation, collision, and movements are three primary aspects of Python games that make
them appealing and interactive. Now, experiment by creating a simple role-playing game
(RPG) game such as Junction Jam (if you haven't heard of it, Google it) and try to embed
the concepts of collision and sprite movement in it.

In the next chapter, we are going to learn about pygame's primitive graphics programming
by creating game grids and shapes. We will learn about multi-dimensional list processing
and valid space determination by coding a Tetris game.

13
Coding the Tetris Game with

Pygame
Think out of the box, an old adage that for the game developer might sound cliche, but is still
very applicable. Most of the games that have revolutionized the gaming industry contain
some unique elements and represent the taste of general audiences. But this worldwide
assumption overestimates by discarding approaches that might be common among most
game developers. After all, mathematical paradigms, object-rendering tools, and software
remain the same. Thus, in this chapter, we are going to explore some of the advanced
mathematical transformations and paradigms that every game programmer must know.

In this chapter, we will learn how to create one of the most played and downloaded games
of the century that's very recognizable among 90s kids—Tetris. We will learn how to create
it from scratch by building shapes that have been formatted from multi-dimensional lists.
We will learn how to draw primitives and game grids, which will help us to locate the
game objects. We will also learn how to implement rotational transformations of
geometrical shapes and figures. Although this concept might sound simple, the application
of these concepts ranges from different 2D to 3D role-playing games (RPGs).

By the end of this chapter, you will be familiar with different concepts such as creating grid
(virtual and physical) structures to locate game objects based on the position and color
code. Then, you will learn about multi-dimensional list processing by using list
comprehension. Furthermore, readers will also learn about the different shifting
transformations and collision-checking principles. In the previous chapter, we implemented
collision checks with the help of masking using pygame. However, in this chapter, we will
do it in a programmer's way—it may be little complicated but it contains a profuse amount
of knowledge.

Coding the Tetris Game with Pygame Chapter 13

[360]

In this chapter, we are going to cover the following topics:

Understanding Tetris essentials
Creating a grid and random shapes
Setting up the windows and game loops
Converting the shape format
Modifying the game loop
Clearing the rows
Game testing

Technical requirements
You will need the following requirements in order to complete this chapter:

Pygame editor (IDLE)—version 3.5+ is recommended.
PyCharm IDE—refer to Chapter 1, Getting to Know Python – Setting Up Python
and the Editor, for the installation procedure.
The Code assets for the Tetris game can be found on GitHub at https:/ /github.
com/PacktPublishing/ Learning- Python- by- building- games/ tree/ master/
Chapter13

Check out the following video to see the code in action:

http://bit.ly/2oDbq2J

Understanding Tetris essentials
Incorporating pygame sprites and images into our Python game is a straightforward
process. It requires a built-in Python module—os—that will load files from your machine.
In the previous chapter, while building the Flappy Bird game, we learned how to make
rotations, translations, and collisions of the sprites, and dealt with them one by one. Such
transformations are not merely applied to images, but also to different geometrical figures
and shapes. Tetris is a game that comes to everyone's mind when we talk about using such
transformation operations—where a player is allowed to change the shape and size of the
geometrical shapes through periodic motion. This periodic motion will create a realistic
rotational transformation of the geometrical shapes, in both anticlockwise and clockwise
directions. For those who are not familiar with Tetris, check out https:/ / www.freetetris.
org/game.php and observe the grid and the environment of the gameplay.

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
http://bit.ly/2oDbq2J
http://bit.ly/2oDbq2J
http://bit.ly/2oDbq2J
http://bit.ly/2oDbq2J
http://bit.ly/2oDbq2J
http://bit.ly/2oDbq2J
http://bit.ly/2oDbq2J
http://bit.ly/2oDbq2J
http://bit.ly/2oDbq2J
https://www.freetetris.org/game.php
https://www.freetetris.org/game.php
https://www.freetetris.org/game.php
https://www.freetetris.org/game.php
https://www.freetetris.org/game.php
https://www.freetetris.org/game.php
https://www.freetetris.org/game.php
https://www.freetetris.org/game.php
https://www.freetetris.org/game.php
https://www.freetetris.org/game.php
https://www.freetetris.org/game.php
https://www.freetetris.org/game.php

Coding the Tetris Game with Pygame Chapter 13

[361]

By observing the environment of the gameplay, you will notice three primary things:

Geometrical shapes, such as L, T, S, I, and square: These geometrical shapes will
be presented in the form of alphabetical characters, and to distinguish between
them, each shape will have different colors.
Grid: This will be the place where the geometrical shapes can move. This will be
the game canvas, where geometrical shapes will fall from the top to the bottom.
The player cannot control this grid, but they can control the shapes.
Rotate the shapes: As shapes/blocks will be falling downwards, players can use
the arrow keys from the keyboard in order to alter the structure of the shapes
(remember that only rotation transformation is allowed).

The following diagram shows the shapes that we will be using for our game:

If you've played the game in the aforementioned link, you will have seen that the preceding
shapes move within the grid (canvas) of the game. The respective letters represent each
the geometrical shape they resemble. Players can only use the arrow key to rotate such
shapes. For instance, when shape I is falling to the grid, players can switch between a
vertical I and a horizontal I. But in the case of the square shapes, we do not have to define
any rotations since the square (due to its equal sides) looks exactly the same after a rotation.

Now that you are familiar with the game characters for our Tetris game (geometrical
shapes), let's brainstorm further in order to extract some critical information about the
game. Let's talk about the essentials of Tetris. Since Tetris requires the creation of different
geometrical shapes, it is undoubtedly true that we will require the pygame module. The
pygame module can be used to create grids, borders, and game characters. Do you
remember the draw module (from Chapter 11, Outdo Turtle – Snake Game UI with Pygame)
of pygame? Obviously, you cannot make good games without using the pygame draw
module. Similarly, to handle user action events such as keyboard actions, we need pygame.

Coding the Tetris Game with Pygame Chapter 13

[362]

The blueprint of functions represents the top-level view of Tetris that can be built by the
Python pygame module:

build_Grid(): This function will draw the grid into the game canvas. The grid
is the place where we can render geometrical shapes with different colors.
create_Grid(): This function will create different horizontal lines into the grid
so that we can track each shape for rotational transformation.
rotating_shapes: This technique will rotate the geometrical shapes within the
same origin. This means that rotation will not alter the dimension (length and
height) of an object.

Now that we've completed the brainstorming process, let's dive into the fundamental
concepts of Tetris. The environment of Tetris is simple, yet powerful. We have to draw
grids into it so that we can track each (x,y) position of the different shapes. Similarly, for
tracking each geometrical shape, we need to create a dictionary, which will store the
position of an object as key and the color of an object as value.

Let's start by writing the template code for our game:

import pygame
import random

#declare GLOBALS
width = 800
height = 700

#since each shape needs equal width and height as of square
game_width = 300 #each block will have 30 width
game_height = 600 #each block will have 30 height
shape_size = 30

#check top left position for rendering shapes afterwards

top_left_x, top_left_y = (width - game_width) // 2, height - game_height

Now that we have finished declaring the global for our game, which mostly takes care of
the width and height of the screen, we can start defining the shapes format for the game
objects. In the next section, we will define a nested list, which we can use to define the
multiple structures of the game objects (mostly for geometrical shapes).

Coding the Tetris Game with Pygame Chapter 13

[363]

Creating the shapes format
The upcoming information is tricky. We are going to declare the shapes format (all the
essential geometrical shapes) for Tetris. Let's look at a simple example, as follows:

#Example for creating shapes I
I = [['..0..',
 '..0..',
 '..0..',
 '..0..',
 '.....'],
 ['.....',
 '0000.',
 '.....',
 '.....',
 '.....']] #each 0 indicates block for shapes

Observe the shapes format from the preceding code. It is a nested list, and we require it
because I supports one rotation, which will change the vertical I into a horizontal I.
Observe the first element of the preceding list; it contains a period (.), along with an
identifier (0), to indicate null and block placement. In the place of the dot or period, we
won't have anything, and so it will remain empty. But in the place of 0, we will store the
block. To do this, remove the dot from the preceding code, and observe only element 0. You
will see vertical I in the zeroth index and horizontal I in the first index. In the case of square
shapes, we don't need an extra rotation, and so we will end up declaring only one element
inside the list for the square shape. It will be something like this:

#for square shapes
square = [['.....',
 '.....',
 '.00..',
 '.00..',
 '.....']]

Now that we know how to create a format for the geometrical shapes, let's create the starter
piece of code for different shapes:

#following is for shape I
""" first element of list represents original structure,
 Second element represents rotational shape of objects """

I = [['..0..',
 '..0..',
 '..0..',
 '..0..',

Coding the Tetris Game with Pygame Chapter 13

[364]

 '.....'],
 ['.....',
 '0000.',
 '.....',
 '.....',
 '.....']]
#for square shape
O = [['.....',
 '.....',
 '.00..',
 '.00..',
 '.....']]

#for shape J
J = [['.....',
 '.0...',
 '.000.',
 '.....',
 '.....'],
 ['.....',
 '..00.',
 '..0..',
 '..0..',
 '.....'],
 ['.....',
 '.....',
 '.000.',
 '...0.',
 '.....'],
 ['.....',
 '..0..',
 '..0..',
 '.00..',
 '.....']]

Similarly, let's define the shape format for another few geometrical shapes, like we did
previously:

#for shape L
L = [['.....',
 '...0.',
 '.000.',
 '.....',
 '.....'],
 ['.....',
 '..0..',
 '..0..',
 '..00.',

Coding the Tetris Game with Pygame Chapter 13

[365]

 '.....'],
 ['.....',
 '.....',
 '.000.',
 '.0...',
 '.....'],
 ['.....',
 '.00..',
 '..0..',
 '..0..',
 '.....']]
#for shape T
T = [['.....',
 '..0..',
 '.000.',
 '.....',
 '.....'],
 ['.....',
 '..0..',
 '..00.',
 '..0..',
 '.....'],
 ['.....',
 '.....',
 '.000.',
 '..0..',
 '.....'],
 ['.....',
 '..0..',
 '.00..',
 '..0..',
 '.....']]

Now that we have successfully defined the characters for our game, let's make a data
structure to hold these objects, along with their color. Let's write the following code to
implement this:

game_objects = [I, O, J, L, T] #you can create as many as you want
objects_color = [(255, 255, 0), (255, 0, 0), (0, 0 , 255), (255, 255, 0),
(128, 165, 0)]

Since we have completed the basic starter file, that is, we have understood and created our
game objects, in the next section, we will start creating a grid for our game, as well as
render the game objects onto the screen.

Coding the Tetris Game with Pygame Chapter 13

[366]

Creating a grid and random shapes
Now that we have defined the format of the shapes, it is time to give actual characteristics
to them. The way that we provide characteristics to the shapes is by defining dimensions
and color. Previously, we defined the dimension of the block as being 30 in size, which is
not arbitrary; the dimension of the shapes must be equal in height and width. Every
geometrical shape that we are going to draw in this chapter will resemble at least square
shapes. Confused? Look at the code where we defined the shape format, including period
(.) and character (0). If you observe each element of the list closely, you will see the format
of the square, with equal numbers of dots arranged in rows and columns.

As we mentioned in the Understanding Tetris essentials section, the grid is the place or
environment where our game characters will reside. The player control, or action, will be
activated only within the grid area. Let's talk about how the grid can be used in our game.
The grid is the division of the screen in the form of vertical and horizontal lines, which will
make up each row and column. Let's make one for ourselves and observe the result:

#observe that this is not defined inside any class
def build_Grid(occupied = {}):
 shapes_grid = [[(0, 0, 0) for _ in range(10)] for _ in range(20)]
 for row in range(len(shapes_grid)):
 for column in range(len(shapes_grid[row])):
 if (column, row) in occupied:
 piece = occupied[(column, row)]
 shapes_grid[row][column] = piece
 return shapes_grid

The preceding code is complex, but it is an essential building block for most of the games
that are made out of pygame. The preceding code will return a grid, which is obviously the
environment for our Tetris game, but it can also be used for multiple purposes, such as
building tic-tac-toe with little modification, or Pac-Man, and so on. The argument to the
build_Grid() function is a single argument—the occupied dictionary. This dictionary will
be passed to this function from the place where this function is called. Mainly, this function
will be called inside the main function, which will initiate the process of creating a grid for
the game.

The occupied dictionary that is passed to build_Grid will contain a key and a value (as it
is a dictionary). The key will represent the position where each block or shapes resides. The
value will contain the color code of each shape that is represented by the key. For example,
in your print dictionary, you will see something like {position: color_code}.

Coding the Tetris Game with Pygame Chapter 13

[367]

The next line of the operation should be a gotcha moment for you. If not, you are missing
something! This can be found in Chapter 7, List Comprehension and Properties. With the help
of one line of code, we defined an arrangement of rows and columns (multi-dimensional
list). It will provide us with a range of values that can be used to create a grid of lines. Of
course, lines will be drawn later in the main function, with the help of the pygame draw
module. We will create a list of 10 rows and a list of 20 columns. Now, let's talk about the
last couple of lines of code (the highlighted part). These lines of code will loop through each
occupied position and add that to the grid by modifying it.

After defining the environment for our game, the next thing we need to do is define the
shapes for our game. Remember that each shape will have attributes like these:

Row and column position: The grid-specific position will be specified as a
certain row and column of shapes or geometrical pieces.
Shape name: The identifier for a shape, which indicates which shapes to render.
We will add alphabetical characters for each shape, for example, character S for
shape S.
Color: The color of each shape.
Rotation: The angle of rotation for each shape.

Now that we are aware of the available attributes for each shape, let's define the class for
shape and attach each attribute to it. Write the following code in order to create Shape
class:

class Shape:
 no_of_rows = 20 #for y dimension
 no_of_columns = 10 #for x dimension
 #constructor
 def __init__(self, column, row, shape):
 self.x = column
 self.y = row
 self.shape = shape
 #class attributes
 self.color = objects_color[game_objects.index(shape)]
#get color based on character indicated by shape name or shape variable
 self.rotation = 0

The objects_color and game_objects variable was defined
previously, and is two different lists that contain alphabetical characters in
one list. The color code for each of them in the other list.

Coding the Tetris Game with Pygame Chapter 13

[368]

At this moment, if you run your game, you won't see anything except for an empty black
screen, which is because our grid background was rendered with the color code of black.
We know that, if we want anything to draw, it can be done with the help of the Python
pygame module. Furthermore, we are drawing shapes from the top to the bottom of the
grid, and so we have to generate shapes randomly. Since we have five shapes, that is, I, O, J,
L, and T, we need to render them randomly, one by one. Let's make a function to
implement in the following code snippet. Remember, we already imported a random
module at the beginning:

def generate_shapes():
 global game_objects, objects_color
 return Shape(4, 0, random.choice(game_objects)) #creating instance

The preceding backend logic is vital for any game that has something to do with
geometrical shapes and pieces. The scope of this knowledge is much broader than you will
have expected. Many RPG games, including Minecraft, have the player interact with
different geometrical shapes. Thus, creating a grid is vital so that we can reference the
position and color of each piece. Now that we have created some general logic that will
create pieces of different shapes and color, we need a tool that can render such shapes into
the grid, which is normally done by either OpenGL or pygame (PyOpenGL will be covered
in the upcoming Chapter 14, Getting to Know PyOpenGL). However, the superior tool will
be pygame, in the case of Python. Thus, we will make the Tetris game shapes and
characters with the help of the pygame module.

In the next section, we will create some logic that will set up a game window for the grid
structure. We will also try to run our game and observe its environment.

Setting up the window and game loop
The next big thing in our game, after setting up the game objects, is to render the grid.
Don't get confused by thinking that we have already created the grid, after we defined the
build_Grid() method. Although it is a valid point, the grid that we built is virtual up to
this point. If you simply call the build_Grid method, you won't see anything but a black
screen, which is the background of the grid. Here, we are going to provide a structure to
this grid. Using each position, specified by row and column, we are going to create a
straight line using the pygame module.

Let's make a simple function to draw a window for our game (the main window) in which
the grid will reside:

def create_Grid(screen_surface, grid_scene):
 screen_surface.fill(0, 0, 0) #black background

Coding the Tetris Game with Pygame Chapter 13

[369]

 for i in range(len(grid_scene)):
 for j in range(len(grid_scene[i])):

 #draw main rectangle which represents window
 pygame.draw.rect(screen_surface, grid_scene[i][j], (top_left_x +
 j* 30, top_left_y + i * 30, 30, 30), 0)
 #above code will draw a rectangle at the middle of surface screen
 build_Grid(screen_surface, 20 , 10) #creating grid positions
 pygame.draw.rect(screen_surface, (255, 0, 0), (top_left_x, top_left_y,
 game_width, game_height), 5)
 pygame.display.update()

The preceding line of code will create the physical structure of the grid, which will have
different rows and columns. After looping through the entire grid scene or positions of the
grid, we will enter the grid scope in order to draw a rectangle and a grid border with the
previously highlighted part of the code.

Similarly, let's provide a physical structure to this grid by defining borders for it. Each row
and column will be distinguished by creating lines within it. Since we can draw lines with
the pygame draw module, we will use it to write the following function:

"""function that will create borders in each row and column positions """

def show_grid(screen_Surface, grid):
 """ --- following two variables will show from where to
 draw lines---- """
 side_x = top_left_x
 side_y = top_left_y
 for eachRow in range(grid):
 pygame.draw.line(screen_Surface, (128,128,128), (side_x, side_y+
 eachRow*30), (side_x + game_width, side_y + eachRow * 30))
 # drawing horizontal lines (30)
 for eachCol in range(grid[eachRow]):
 pygame.draw.line(screen_Surface, (128,128,128), (side_x +
 eachCol * 30, side_y), (side_x + eachCol * 30, side_y +
 game_height))
 # drawing vertical group of lines

The preceding function has one main loop, which loops into several rows, as determined by
the build_Grid method. After going into each row of the grid structure, it will use the
pygame draw module to draw lines with a color code of (128, 128, 128), starting from
(side_x, side_y) and then pointing to the next coordinate (side_x + game_width,
side_y + eachRow *30). The starting point (side_x, side_y) is the left-most corner of
the grid, while the next coordinate value of (side_x + game_width, side_y +
eachRow *30) represents the coordinate of the right-most corner of grid. Thus, we will a
draw line from the left-most corner of the grid to the right-most corner.

Coding the Tetris Game with Pygame Chapter 13

[370]

After you explicitly call the previous function, you will see the following output:

After setting up the aforementioned grid or environment, we will hop into the fun stuff,
which is creating the main function. The main function will have a different bunch of stuff
in it, mostly for calling up and setting the grid, and handling user events or actions, such as
what happens when the user presses quit or presses an arrow key on the keyboard. Let's
define it with the following code:

def main():
 occupied = {} #this refers to the shapes occupied into the screen
 grid = build_Grid(occupied)

 done = False
 current_shape = generate_shapes() #random shapes chosen from lists.
 next_shape = generate_shapes()
 clock = pygame.time.Clock()
 time_of_fall = 0 #for automatic fall of shapes

 while not done:
 for eachEvent in pygame.event.get():
 if eachEvent.type == pygame.QUIT:
 done = True
 exit()

Coding the Tetris Game with Pygame Chapter 13

[371]

Since we have started defining the main function, which is the director of our game, let's
define what things it must do, as follows:

Call multiple functions, such as build_Grid() and create_Grid(), which will
set up the environment for games
Define a method that will perform rotations for a shape that represents characters
Define some logic that will add fall time constraints to the game, that is, the
speed at which objects fall
Change a shape in, after one shape fall to the ground
Create some logic to check the occupied position of the shapes

The aforementioned processes are the main function capabilities, and we should address
them. We will address the first two in this section, but the remaining two will be covered in
the upcoming sections. So, the first operation of the main function is to call some essential
functions that will create the grid for the game. If you look at the aforementioned line of
code, you will see that we have already called the build_Grid method, which is
responsible for creating the virtual positions for rows and columns of a grid-like structure.
Now, the remaining task is to only call the create_Grid() method, which will give a
proper physical structure to this virtual grid, using the pygame draw module. We have
already defined both of these functions.

In the next section, we'll learn about one of the important mathematical paradigms of
transformation, which is known as rotation, and will add the feature of rotating game
objects to our Tetris game.

Understanding rotations
Before we continue to code and modify the main function, let's get into the mathematical
stuff. Games are nothing if they are not related to a mathematical paradigm. Movement,
motions, shapes, characters, and controls are all handled by mathematical expressions. In
this section, we are going to cover another important concept of math: transformations.
Although transformations is a nebulous concepts in math, we will try our best to learn this
concept. Specifically, there are different types of transformations: rotation, translation,
reflection, and enlargement. In most games, we will need only two types of transformation:
rotation and enlargement. In this chapter, we will implement rotational transformations
using Tetris, and then we will implement the enlargement transformation (while building
an Angry Birds game in Chapter 16, Learning Game AI – Building a Bot to Play).

Coding the Tetris Game with Pygame Chapter 13

[372]

The term rotation is a mathematical concept which states that When an object is rotated, it
means that it is turned either clockwise or anticlockwise with a certain amount of specified degree.
Consider the following example:

In the preceding example, we have a rectangular shape, which represents the alphabetical I
character of our Tetris game. Now, imagine that the player presses the up arrow key on the
keyboard. In such an event, the rectangular shape of I must be rotated with an angle of 90
degrees and placed as the horizontal I character, as shown in the preceding diagram. Thus,
these rotations are done to change the shape of the figure, but not the dimensions.
Horizontal I and vertical I have the same dimensions (height and width). Now that you
know a little bit about rotations, you can go back to the code where we defined the shape
format for each character (I, O, J, L, and T) and observe the multi-dimensional list. In the
case of I, you could observe that it has two elements. The first element of the list is the
original shape of the game object, I, and the second element of the list is a distorted shape
after a rotation of about 90 degrees. Observe the same for the O character, which is square.
The square will remain the same, even after a rotation by any degree. Thus, in the case of
the square shape, we have only one element in the list.

Coding the Tetris Game with Pygame Chapter 13

[373]

Although we've learned this trivia about rotations, and how they are attached with the each
shape format, the question still remains that: when can we render each shape, and when
should the operation of rotations be carried out? The answer is simple. While a player
presses any arrow key on the keyboard, we are going to perform rotations. But where is the
code that implies that the user is pressing a keyboard key? Obviously, it is done inside the
event handling process! In the main function, we started to capture the event, and we
handled the actions for the QUIT key. Now, let's perform the rotations for any arrow key
with the following code:

The code should be added inside the event handling steps, right after
handling the QUIT key. Make sure that you provide a proper indentation
for the code. The code will be available at https:/ /github. com/
PacktPublishing/ Learning- Python- by-building- games/ tree/ master/
Chapter13.

 if anyEvent.type == pygame.KEYDOWN:
 if anyEvent.key == pygame.K_LEFT:
 current_shape.x -= 1 #go left with shape

 elif anyEvent.key == pygame.K_RIGHT:
 current_shape.x += 1 #go right with shape
 elif anyEvent.key == pygame.K_UP:
 # rotate shape with angle of rotation
 (rotation variable)
 current_shape.rotation = current_shape.rotation + 1 %
 len(current_shape.game_objects)
 if anyEvent.key == pygame.K_DOWN:
 # moving current shape down into the grid
 current_shape.y += 1

If you want to learn more about how the rotation of objects works under the hood, make
sure that you check out the following URL: https:/ /mathsdoctor. co. uk.

In order to set up the window canvas or game screen, we can simply call the pygame
set_mode method and render the window of the grid accordingly. The following line of
the method call should be added within the main function, right after you have set up the
user handling events:

 create_Grid(screen_surface) #screen surface will be initialized with
 pygame below

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter13
https://mathsdoctor.co.uk
https://mathsdoctor.co.uk
https://mathsdoctor.co.uk
https://mathsdoctor.co.uk
https://mathsdoctor.co.uk
https://mathsdoctor.co.uk
https://mathsdoctor.co.uk
https://mathsdoctor.co.uk
https://mathsdoctor.co.uk

Coding the Tetris Game with Pygame Chapter 13

[374]

Now that we have created a grid for the screen, let's set up the main screen and call up the
main function:

screen_surface = pygame.display.set_mode((width, height))
main() #calling only

We have covered almost all of the important things, including rendering the display,
rotating objects, creating grids, and rendering borders for grids; but one question still
remains: how do we render the shapes into the grid? Obviously, our computer is not smart
enough to understand the multi-dimensional list that we created earlier to define the
shapes format. Still confused? Check the multi-dimensional list that we created for each
character, such as I, O, J, L, and T—our computer won't understand such a list. Thus, we
have to convert these list values or attributes into the dimensions that will be recognized by
our computer for further processing. The dimensional value that our computer will
understand refers to the positional value. Since we have established the grid already, we
can use rows and columns from the grid structure to give positional value to the computer.
Thus, let's make a function to implement it.

Converting the shape format
Our computer doesn't have the capability to understand the obscure content of data
structures, such as the content that is stored inside the multi-dimensional list. For example,
take a look at the following code:

#for square shapes
square = [['.....',
 '.....',
 '.00..',
 '.00..',
 '.....']]

In the previous square-shaped pattern, we have coupled a list of periods (.) with 0. The
computer won't recognize what 0 means, and what the period refers to. We only have the
knowledge that the period is in a position that is an empty place, which means its position
can be ignored, and the position where 0 resides is the position for the block. Thus, we need
to write a program to tell the computer to extract the position from the grid where only 0
resides for each of the pieces. We will implement it by defining the following function:

def define_shape_position(shape_piece):
 positions = []
 list_of_shapes = shape_piece.game_objects[shape_piece.rotation %
 len(shape_piece.shape)]

Coding the Tetris Game with Pygame Chapter 13

[375]

 for i, line in enumerate(list_of_shapes):
 row = list(line)
 for j, column in enumerate(row):
 if column == '0':
 positions.append((shape_piece.x + j, shape_piece.y + i))

 for p, block_pos in enumerate(positions):
 positions[p] = (block_pos[0] - 2, block_pos[1] - 4)

 return positions

Let's look at the previous code in detail:

To begin with, this function returns the position of the block of the objects. Thus,1.
we start by creating a block dictionary.
Secondly, we store several lists of shapes, as defined by a multi-dimensional list2.
of characters, which are defined by game_objects (I, O, J, L, and T) with
rotations.
Now, the important part: what are the positions that must be returned by this3.
function? These positions are the position of 0, placed in the grid.
Observe the multi-dimensional list again. You will see a bunch of dots (.) and 04.
placed as elements. We only want the position where 0 resides, and not where
the period or dot resides.
After we check each column for 0 with the if column == \'0\' command, we5.
only store such positions into the positions dictionary, and return it from the
function.

When operations such as rotation and movements are done, it is often the case that the user
might trigger some invalid movements, such as rotating the objects outside of the grid.
Thus, we have to check such invalid movements and prevent them from happening. We
will create the check_Moves() function to implement this. The argument to this function
will be the shape and grid position; shape is essential to check if a specific rotation is
allowed or not within the position that is indicated by the grid argument. If the current
position specified by the grid in which shape resides is already occupied, then we will get
rid of such moves. There are different ways to implement it, but the quickest and easiest
way is to check the color of the grid background. If the color of the particular position in the
grid is anything other than black, it means that the position is occupied. Thus, you can
make an articulated reference from this logic as to why we made the background color of
the grid black. By doing so, we can check if the objects are already in the grid or not. If any
new object comes down to the grid, we should not pass it through the object that is already
present in the grid.

Coding the Tetris Game with Pygame Chapter 13

[376]

Now, let's make a function to check if the position is occupied or not:

def check_Moves(shape, grid):
 """ checking if the background color of particular position is
 black or not, if it is, that means position is not occupied """

 valid_pos = [[(j, i) for j in range(10) if grid[i][j] == (0,0,0)]
 for i in range(20)]
 """ valid_pos contains color code in i variable and
 position in j variable--we have to filter to get only
 j variable """
 valid_pos = [j for p in valid_pos for j in p]
 """ list comprehension --same as writing
 for p in valid_pos:
 for j in p:
 p
 """
 """ Now get only the position from such shapes using
 define_shape_position function """
 shape_pos = define_shape_position(shape)

 """check if pos is valid or not """
 for eachPos in shape_pos:
 if eachPos not in valid_pos:
 if eachPos[1] > -1: #eachPos[1] represents y value of shapes
 and if it hits boundary
 return False #not valid move
 return True

Up until now, we were building the backend logic for our game, which refers to rendering
the grid, manipulating the grid, changing grid positions, implementing logic that
determines what happens when two objects collide, and so on. Even though we have done
so much already, when you run your game, you will still see only the formation of the grid,
and nothing more. This is because our main loop is the director of our game—it will
sequentially order the other functions, but inside the main loop, we have nothing except the
code that handles the user events. Thus, in the next section, we will the modify main loop
for the game and observe the output.

Coding the Tetris Game with Pygame Chapter 13

[377]

Modifying the game loop
As we mentioned previously, our main game loop is accountable for performing many
tasks, including handling user events, handing the grid, checking possible moves, and so
on. We have been making functions that will check such actions, movements, and
environments, but we have not called them once, which we will do in this section. If you
observe the main game loop from a high-level perspective, it will contain four primary
architectural building blocks:

Creating the grid and handling movements of the game objects. For instance,
what should be the speed of the objects that will fall down into the grid?
Handling user events. We have already done this, when we checked the events
and rotated the objects accordingly. But the preceding code didn't accommodate
the check_Moves() function, which will check if the moves are valid or not.
Thus, we will modify the preceding code accordingly.
Adding color to the game objects (unique color). For instance, the color of
S should be different to I.
Adding the logic that will check what happens when the object hits the ground of
the grid.

We will implement each of the aforementioned steps one by one. Let's start by adding
speed to the object. Speed refers to the free-falling speed of the objects in the grid structure.
The following code should be added inside the main function:

 global grid

 occupied = {} # (x pos, y pos) : (128, 0, 128)
 grid = build_Grid(occupied)
 change_shape = False
 done = False
 current_shape = generate_shapes()
 next_shape = generate_shapes()
 clock = pygame.time.Clock()
 timeforFall = 0

 while not done:
 speedforFall = 0.25

 grid = build_Grid(occupied)
 timeforFall += clock.get_rawtime()
 clock.tick()

 # code for making shape fall freely down the grid
 if timeforFall/1000 >= speedforFall:

Coding the Tetris Game with Pygame Chapter 13

[378]

 timeForFall = 0
 current_shape.y += 1 #moving downward
 #moving freely downward for invalid moves
 if not (check_Moves(current_shape, grid)) and current_shape.y > 0:
 current_shape.y -= 1
 change_shape = True

Suppose that the player tries to make an invalid move. Even in that case, the game objects
(shapes) must fall freely downwards. Such an operation is done in the last three lines of the
previous code. Other than that, the code is self-explanatory; we have defined the speed for
the object to fall into the grid and used a clock module to implement the time constraints.

To implement the next logic, this is relatively easier. We have already discussed handling
user events in Tetris while considering details such as rotating objects and performing
simple left-to-right movements. However, in those lines of code, we didn't check if the
moves that the user tried to make were valid or not. We have to check this first in order to
make sure that users are prevented from making any invalid moves. To implement this, we
are going to call the check_Moves() method, which we created previously. The following
code will handle user events:

if anyEvent.type == pygame.KEYDOWN:
 if anyEvent.key == pygame.K_LEFT:
 current_shape.x -= 1
 if not check_Moves(current_shape, grid):
 current_shape.x += 1 # not valid move thus
 free falling shape

 elif anyEvent.key == pygame.K_RIGHT:
 current_shape.x += 1
 if not check_Moves(current_shape, grid):
 current_shape.x -= 1
 """ ROTATING OBJECTS """
 elif anyEvent.key == pygame.K_UP:
 current_shape.rotation = current_shape.rotation + 1 %
 len(current_shape.shape)
 if not check_Moves(current_shape, grid):
 current_shape.rotation = current_shape.rotation - 1
 % len(current_shape.shape)

"""Moving faster while user presses down action key """
 if anyEvent.key == pygame.K_DOWN:
 current_shape.y += 1
 if not check_Moves(current_shape, grid):
 current_shape.y -= 1

Coding the Tetris Game with Pygame Chapter 13

[379]

Firstly, focus on the code that is highlighted. The first highlighted part of the code refers to
whether the move is valid into the grid, which is checked by the check_Moves() function.
We are allowing the current shapes to move to the right corner, which is toward the
positive x-axis. Similarly, regarding the up key, it is responsible for checking if rotation of
the object is allowed or not (only the up key will rotate the objects; the left and right keys
will move the objects from left to right, and vice versa). In the case of rotation, we are
rotating it through pixel transformations, which is done by selecting one of the positions
indicated by the multi-dimensional list. For example, in the case of shape I, we have two
elements in the list: one original shape and another rotational shape. Thus, to use another
rotational shape, we will check if the move is valid or not, and if it is, we will render the
new shape.

The third piece of code that should be added into the main function will deal with the
technique that will add the color to the shapes in the grid for drawing. The following line of
code will add the color to each of the objects that is inside the scope of the game:

 position_of_shape = define_shape_position(current_shape)
 """ define_shape_function was created to return position of blocks of
 an object """

 # adding color to each objects in to the grid.
 for pos in range(len(position_of_shape)):
 x, y = position_of_shape[pos]
 """ when shapes is outside the main grid, we don't care """
 if y > -1: # But if we are inside the screen or grid,
 we add color
 grid[y][x] = current_shape.color #adding color to the grid

Finally, the last piece of logic that must be added to the main function will address the
situation of when an object hits the ground. Let's add the following code into the main
function in order to implement it:

 if change_shape:
 for eachPos in position_of_shape:
 pos = (eachPos[0], eachPos[1])
 occupied[pos] = current_shape.color
 current_shape = next_shape
 next_shape = generate_shapes()
 change_shape = False

Coding the Tetris Game with Pygame Chapter 13

[380]

In the preceding code, we are checking whether the objects are falling freely or not by
checking the contents of the Boolean variable, change_shape. Then, we are checking the
current position of the shapes and creating (x, y), which will represent the occupied
position. We then add such a position to the dictionary named occupied. You must
remember that the value of this dictionary is the color code of the same object. After
assigning the current object to the grid scope, we will generate a new shape with the help of
the generate_shapes () method.

Finally, let's end our main function by calling the create_Grid() function with the
argument of the grid and surface objects that were initialized by the pygame set_mode()
method in the following code (we initialized the pygame surface object previously):

create_Grid(screen_surface, grid)

Let's run our game and observe the output for it:

Coding the Tetris Game with Pygame Chapter 13

[381]

Now, you can clearly see that we are able to make a Tetris game where the users are able to
transform the objects and play accordingly. But wait! We are missing one important piece
of logic in our game. How do we incentivize our player to play this game? If the game was
all about making rotations of objects, and filling up grids with the objects, it would not have
been the historical game that it is (the game that revolutionized the 90s gaming industry).
Yes! There is some logic that must be added into the game, and when this logic is called, we
will observe that whenever the row positions are occupied by the blocks, we have to clear
such rows and shift the row one step down, which will leave us with fewer rows than
before. We will implement this in the next section.

Clearing the rows
As we mentioned previously, in this section, we will check if every position, of all the rows,
is entirely occupied or not. If they are occupied, we will delete such rows from the grid, and
this will create a shift in each row by one step down into the grid. This logic is simple to
implement. We will check whether or not the entire row is occupied and delete such rows
accordingly. Do you remember the case of creating the check_Moves() function? If this
function checked the background color of each row, and if in each row there is no black
background color, it means that such a row is occupied. But even if we have one position
empty, this means that the background color of such a position will be black, and will be
considered as not occupied. Thus, we can use a similar type of technique in the case of
clearing the rows: if, in any row, the background color of any position is black, it means
that the position is not occupied, and such rows cannot be cleared.

Let's make a function to implement the logic of clearing the rows:

def delete_Row(grid, occupied):
 # check if the row is occupied or not
 black_background_color = (0, 0, 0)
 number_of_rows_deleted = 0
 for i in range(len(grid)-1,-1,-1):
 eachRow = grid[i]
 if black_background_color not in eachRow:
 number_of_rows_deleted += 1
 index_of_deleted_rows = i
 for j in range(len(eachRow)):
 try:
 del occupied[(j, i)]
 except:
 continue

Coding the Tetris Game with Pygame Chapter 13

[382]

Let's digest the preceding code. It is quite a complex piece of logic, so make sure that you
learn everything about it; these concepts are not only suitable for game creation but are also
asked many times in a technical interview. The question lies in how to shift the values of
the data structure by creating logic, and not by using the Python built-in function. I wanted
to teach you this in this way instead of using any built-in method because knowing this
might be helpful in any technical field of programming. Now, let's observe the code. It
starts with creating a number_of_rows_deleted variable, which indicates the number of
rows that have been deleted from the grid. The information regarding the number of
deleted rows is important because after deleting that number of rows, we need to shift the
rows which reside above the deleted row(s) by an equal number down the grid. For
example, look at the following diagram:

Similarly, now that we know what to delete with the if black_background_color not
in eachRow expression, we can determine whether or not each row of the grid has empty
places or not. If there are empty places, this means that the rows are not occupied, and if
yes, then a black background color, that is, (0, 0, 0), won't be within any row. If we didn't
find a black background color, then we can be sure that the rows are occupied, and we can
delete them by checking further conditions. In the highlighted part of the code, you can
observe that we are taking only the jth element, which is only a column. This is because,
while deleting row, the value of I remains the same, but the jth column value differs. Thus,
we loop on an entire column within a single row and use the del command to delete the
occupied position.

From the preceding line of code, we were able to delete entire rows if any rows were
occupied, but we didn't address what should happen after we delete it, and this is the
tricky part. After we delete every occupied row, not only the blocks will be deleted—the
entire grid containing rows will be deleted. Thus, in place of deleted block, we won't have
empty rows; instead, whole rows containing the grid will be deleted. Thus, to make sure
that we do not decrease the count of the actual grid, we need to add another row from the
top to compensate for it. Let's write some code to implement this:

Coding the Tetris Game with Pygame Chapter 13

[383]

#code should be added within delete_Row function outside for loop
if number_of_rows_deleted > 0: #if there is at least one rows deleted
 for position in sorted(list(occupied), position=lambda x:
 x[1])[::-1]:
 x, y = position
 if y < index_of_deleted_rows:
 """ shifting operation """
 newPos = (x, y + number_of_rows_deleted)
 occupied[newPos] = occupied.pop(position)

return number_of_rows_deleted

Okay! Let's digest it. This is quite complex but extremely powerful information. The
preceding code will implement shifting the block of rows from the top, down into the grid.
Firstly, the shift is required only if we have deleted any row; if yes, we enter into the logic
to perform shifting. First of all, let's only observe the code that involves the lambda
function, that is, list(occupied), position=lambda x: x[1]. The code will create a
list of all the positions of the grid and then use the lambda function to take the y-part of the
position only. Remember, taking the x position of the block is superfluous—for each row,
the value of x remains constant, but the y values differs. Thus, we will take the value of the
y-position and then sort it with the sorted(x) function. The sorted function will sort the
position based on the value of the y-coordinates.

Firstly, the sorting will be done based on the lower value of y to the upper value of y. For
example, look at the following diagram:

Coding the Tetris Game with Pygame Chapter 13

[384]

Calling the sorted method and then reversing the list (refer to Chapter 4, Data Structures
and Functions, to learn more about how to reverse lists) is important because sometimes the
bottom part of the grid won't be occupied, and only the upper layer will. In such cases, we
don't want the shifting operation to cause any harm to the bottom rows, which are not
occupied.

Similarly, after taking track of the position of each row, we will check if there are any rows
above the deleted row with the if y < index_of_deleted_rows expression. Again, in
this case, the value of x is irrelevant because it will be the same within the single row; after
we check if there is any row above the row that is deleted, we perform the shifting
operation. The operation of shifting is quite simple; we will try to assign the new position
for each of the rows that reside just above the deleted row. We can create a new position by
increasing the value of y with the number of deleted rows. For instance, if there are two
rows being deleted, we need to add two to the value of y so that the block just above the
deleted rows, and the subsequent ones, will shift two rows down. After we shift the rows
down into the grid, we have to pop the blocks out from the previous position.

Now that we have defined a function that will clear the entire row if it is occupied, let's call
it from the main function to observe its effect:

def main():
 ...
 while not done:
 ...
 if change_shape:
 ...
 change_shape = False
 delete_Row(grid, occupied)

Finally, with this protracted and tedious day of coding, we have a very productive result.
When you run your module where the main function is declared, you will see the following
output:

Coding the Tetris Game with Pygame Chapter 13

[385]

The game looks appealing, and I have tested everything in the code. The code looks
thorough and exhaustive, with no loop holes. Similarly, you can play it and share it with
your friends and uncover the possible modifications that can be done with this game. This
is an advanced game and it adequately raises its bar, when it is coded with Python from
scratch. We have learned so many things while building this game. We learned how to
define the shapes format (we have done even more complicated stuff before, such as the
transformation of sprites, and handling the collision of sprites), but this chapter was
challenging on different aspects. For example, we had to take care of things such as invalid
moves, possible collisions, shifting, and so on. We implemented some logic that determined
if an object is placed in a certain position or not by comparing two distinct color objects: the
background color of the grid or surface against the game-object color.

We are not done yet; we will try to implement some more logic in the next section. We will
see what other modifications we can make to our game. We will try to build some logic that
will increase the difficulty level of our game as we proceed.

Coding the Tetris Game with Pygame Chapter 13

[386]

Game testing
Several modifications can be made to our game, but the most important ones will be to add
a welcome screen, an increased difficulty level, and a score screen. Let's start with the
welcome screen, since it is easy to implement. We can use the pygame module to create a
window, and a text surface to provide a message to the user. The following code shows
how to create a main screen for our Tetris game:

def Welcome_Screen(surface):
 done = False
 while not done:
 surface.fill((128,0,128))
 font = pygame.font.SysFont("comicsans", size, bold=True)
 label = font.render('Press ANY Key To Play Tetris!!', 1, (255, 255,
 255))

 surface.blit(label, (top_left_x + game_width /2 -
 (label.get_width()/2), top_left_y + game_height/2 -
 label.get_height()/2))

 pygame.display.update()
 for eachEvent in pygame.event.get():
 if eachEvent.type == pygame.QUIT:
 done = True
 if event.type == pygame.KEYDOWN:
 main(surface) #calling main when user enters Enter key

 pygame.display.quit()

After you run the game, you will see the following output, in which the welcome screen
will be rendered. After pressing any key, you will be redirected to the Tetris game:

Coding the Tetris Game with Pygame Chapter 13

[387]

Similarly, let's add some logic that will increase the difficulty of the game. There are two
ways of implementing this logic. Firstly, you can create a timer, and if a player plays more
than the range of the associated timer, we can decrease the fall speed so that shapes will fall
faster than before (increase speed):

timeforLevel = 0

while not done:
 speedforFall = 0.27 - timeforLevel
 ...
 if timeforLevel / 10000 > 0.5:
 timeforLevel = 0
 if timeforLevel > 0.15:
 timeforLevel += 0.05
 ...

""" ---
 speedforFall = 0.24 will make object to fall faster comparative
 to speedforFall = 0.30

 --- """

Similarly, we can implement another piece of logic to increase the difficulty of the game.
This method is better one than the preceding one. In this method, we will use score to
increase the difficulty of the game. The following code represents a blueprint of how to
implement the score of the player in order to increase the level of the game:

def increaseSpeed(score):
 game_level = int(score*speedForFall)
 speedforFall = 0.28 - (game_level)
 return speedforFall

In the preceding code, we implemented the relationship between the score and the speed of
objects. Let's suppose a player's score is higher. This means that the user has been playing a
less difficult level, and thus, such a high score value will be multiplied with the higher
speed of fall value, resulting in an increase in speedforFall, which will be then
subtracted from the speed of the objects, which will create a faster fall motion. In contrast, a
player playing on a higher level will have a lower score, which will be multiplied with a
lower value of the speed of objects, resulting in a lower number, which will be then
subtracted from the speedforFall variable. This will result in less change in the speed for
the player who is playing the harder level. But let's say a player is a pro and has scored
higher in a harder level. In this case, the speed of the fall of an object is increased
accordingly.

Coding the Tetris Game with Pygame Chapter 13

[388]

We have finally completed a fully functional Tetris game. We have learned several
advanced concepts of game programming using Python in this chapter. In the process of its
creation, we revised a few of the concepts that we learned about previously while
discovering the fundamental concepts of Python, such as manipulating multi-dimensional
lists, list comprehensions, object-oriented paradigms, and mathematical transformations.
Along with revising those concepts, we uncovered several novel concepts such as
implementing rotations, implementing shifting operations, creating a shape format from
scratch, creating a grid (virtual and physical) structure, and populating objects within the
grids.

Summary
In this chapter, we have explored the Pythonic way of implementing multi-dimensional list
processing. We have created a multi-dimensional list to store the format for different
geometrical shapes, and manipulated it using mathematical transformations.

We have used the simple example of Tetris to demonstrate the usage of several data
structures in the game, along with its manipulation. We have implemented a dictionary to
store key as a position and value as the color code of those objects. Building such a
dictionary is a life-saver for games such as Tetris. While making logic to check the collisions
and shifting operations, we used the dictionary to observe whether the background color of
any object is the same as the background of any position. Although Tetris is only one case
study, the techniques that are used in this game are also used in many real-world games,
including Minecraft, and in almost every RPG game.

The operations involving mathematical transformation were vital for us. We used rotational
principles in this chapter in order to change the structure of the objects without changing
their dimensions. The knowledge that you will have grasped from this chapter is
enormous. Concepts such as the manipulation of a multi-dimensional list can be extended
to data applications, and is termed as a 2D Numpy array, which is used in creating
different analogies, such as street analogy, the multiple travelers problem, and so on.
Although it is considered that the dictionary is the king of the data structures, processing a
multi-dimensional list is not too far behind as it is combined with the simplicity of list
comprehensions. Along with the implementation of such complex data structures, we
learned how to implement mathematical transformations, that is, the rotational movement
of game objects. This feature is extremely useful in any 3D game as it will provide the user
with a 360-dimensional view of the scene. Similarly, we have learned how to create a grid
structure.

Coding the Tetris Game with Pygame Chapter 13

[389]

A grid structure is used to track the positions of the objects. In complex games such as
WorldCraft, it is a mandatory task of any game developer to track the objects and resources
for the game, and in such cases, the grid works perfectly. Invisible grids can be
implemented as a dictionary, or as any complex collection.

The main goal of this chapter was to familiarize you with 2D game graphics, that is,
drawing primitives and game grids. Similarly, you learned about another way of detecting
collisions between game objects (in the Flappy Bird game, we used the pygame masking
technique to detect collisions). In this chapter, we implemented a universal and traditional
way of implementing collision checks: by checking the background color attributes with the
object color attributes. Similarly, we learned how to create different objects (that differed in
structure) by using rotations. This technique can be used to spawn multiple enemies into
games. Instead of designing multiple different objects for each character (which can be
time-consuming and costly), we used transformations to change the structures of objects.

The next chapter is about Python OpenGL, which is often termed PyOpenGL. We will see
how we can create different geometrical structures using openGL, and observe how to use
PyOpenGL and pygame together. We will primarily focus on different mathematical
paradigms. We will see how attributes such as vertices and edges are used to create
different complex mathematical shapes. Furthermore, we will see how we can implement
ZOOM IN and ZOOM OUT features in the game using PyOpenGL.

14
Getting to Know PyOpenGL

Geometrical shapes and figures play a vital role in game development. We tend to neglect
their importance when it comes to the development of advanced graphics technologies.
However, many popular games still use these shapes and figures to render game
characters. Mathematical concepts such as transformations, vectored movements, and
ZOOM IN and ZOOM OUT capabilities add weight when it comes to the manipulation of
game objects. Python has several modules to support such manipulations. In this chapter,
we are going to learn about one such powerful Python feature—the PyOpenGL module.

While exploring PyOpenGL, we will learn how to create complex geometrical shapes using
primitives (that is, vertices and edges). We will start by installing Python PyOpenGL and
start drawing with it. We will make several objects, such as triangles and cubes, with it. We
won't be using pygame to create such shapes; instead, we will use pure mathematical
concepts for defining rectangular coordinate points for vertices and edges. We will also
explore different PyOpenGL methods such as clipping and perspective. We will cover each
of them to gain knowledge about how PyOpenGL can be used to create appealing game
characters.

By the end of this chapter, you will be familiar with the traditional and mathematical ways
of creating primitives. This way of creating shapes provides programmers and designers
with the ability to manipulate their game objects and characters. You will also learn how to
implement ZOOM-IN and ZOOM-OUT capabilities in the game, as well as how to use color
properties by drawing geometric primitives.

The following topics will be covered in this chapter:

Understanding PyOpenGL
Making objects with PyOpenGL
Understanding PyOpenGL methods
Understanding color properties

Getting to Know PyOpenGL Chapter 14

[391]

Technical requirements
You will need the following list of requirements to complete this chapter:

Pygame editor (IDLE) version 3.5+ is recommended.
You will need the Pycharm IDE (refer to Chapter 1, Getting to Know Python –
Setting Up Python and the Editor, for the installation procedure).
The code assets for this chapter can be found in this book's GitHub
repository: https:/ /github. com/PacktPublishing/ Learning- Python- by-
building- games/ tree/ master/ Chapter14

Check out the following video to see the code in action:

http://bit.ly/2oJMfLM

Understanding PyOpenGL
In the past, graphical programs containing three-dimensional scenes that had been
processed with 3D-accelerated hardware was something every game programmer wanted.
Even though this is normal by today's standards, the hardware is not the same as it was
years ago. Most of the game's graphics had to be rendered with the software that resided in
the low-processing devices. Hence, apart from creating such scenes, rendering would also
take quite a bit of time and would ultimately make the game slow. The advent of gaming
interfaces, also known as graphics cards, created a revolution in the gaming industry;
programmers were now only bound to making interfaces, animation, and autonomous
gaming logic rather than concerning themselves with processing power. Hence, games that
have been created post-90s have richer gameplay and a touch of artificial intelligence
(multiplayer games).

It is well-known that graphics cards can handle three-dimensional capabilities such as
rendering and optimizing scenes. However, to use such features, we need a programming
interface that communicates between our project and such interfaces. The Application
Programming Interface (API) we are going to use in this chapter is OpenGL. OpenGL is a
cross-platform (the program runs on any machine) API that is generally used to render 2D
and 3D graphics. The API is analogous to libraries that are used to facilitate interaction with
a graphics processing unit, and it accelerates the graphics rendering method by using
hardware-accelerated rendering. It comes pre-installed on most machines as part of a
graphics driver, though you can check its version by using the GL view utility. Before we
start writing programs so that we can draw geometrical shapes and figures using
PyOpenGL, we need to install it on our machine.

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter14
http://bit.ly/2oJMfLM

Getting to Know PyOpenGL Chapter 14

[392]

Installing PyOpenGL
Even if OpenGL is already present on your system, you need to install the PyOpenGL
module separately so that the required OpenGL drivers and Python frameworks can
communicate with each other. The Pycharm IDE provides a service that can locate Python
interpreters and install PyOpenGL, which removes the overhead of installing it manually.
Follow these steps to install PyOpenGL in the Pycharm IDE:

Click on File from the top navigation bar and then Settings. Then, hover over the1.
left-hand side navigation window and select the project:interpreter option.
Select the current project Python interpreter, that is, Python 3.8+ (followed by2.
your project name), and press the to add (+) button from the menu screen next to
the Interpreter drop-down menu.
Search for PyOpenGL in the search bar and press the Install package button.3.

Alternatively, if you want to install PyOpenGL externally, you can download it as a Python
egg file.

A Python egg is a logical structure embodying the release of a specific
version of a Python project, comprising its code, resources, and metadata.
There are multiple formats that can be used to physically encode a Python
egg, and others can be developed. However, a key principle of Python
eggs is that they should be discoverable and importable. That is, it should
be possible for a Python application to easily and efficiently find out what
eggs are present on a system and ensure that the desired eggs' contents
are importable.

These types of files are bundled together to create Python modules that can be downloaded
from the Python Enterprise Application Kit (PEAK) with the help of an easy install
procedure. To download a Python egg file, you have to download the Python
easy_install module. Go to http:/ /peak. telecommunity. com/ DevCenter/ EasyInstall
and then download and run the ez_setup.py file. After successfully installing easy install,
run the following command in your command shell/Terminal to install PyOpenGL:

easy_install PyOpenGL

Easy install is not only used for installing PyOpenGL—you can download
or upgrade a large range of Python modules with its help. For example,
the easy_install SQLObject is used to install SQL PyPi packages.

http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall

Getting to Know PyOpenGL Chapter 14

[393]

As usual, when we need to use packages, we need to import them into our project. In this
case, you can make a demo project (demo.py) to start testing the OpenGL project. So that
we can use features such as code maintainability and debugging, we will make a
PyOpenGL project using the Pycharm IDE rather than using Python's built-in IDE. Open
any new project and follow these steps to check whether PyOpenGL is running or not:

Start by importing every class of PyOpenGL with the following command:1.

 from OpenGL.GL import *

Now, import the required OpenGL functions using the following command:2.

 from OpenGL.GLU import *

Next, you should import pygame into your project:3.

 from pygame.locals import *

Initialize the display for your project with the pygame command: 4.

 import pygame
 from pygame.locals import *
 window_screen = pygame.display.set_mode((640, 480),
 HWSURFACE|OPENGL|DOUBLEBUF)

Run your project and analyze the result. If a new screen appears, you can5.
continue making projects. However, if the prompt says PyOpenGL is not
installed, make sure to follow the preceding installation procedure.

The preceding four lines are easy to follow. Let's discuss them one by one. The first step
was quite simple—it tells the interpreter to import PyOpenGL along with its multiple
classes, which can be used for different functions. Importing in such a way reduces the
effort of importing each class of PyOpenGL one by one. The first import is mandatory as
this line imports different OpenGL functions that begin with the gl keyword. For example,
we can use a command such as glVertex3fv(), which can be used to draw different 3D
shapes (we'll cover this later).

The next line of the import statement, that is, from OpenGL.GLU import *, is used so that
we can use commands that start with glu, for example, gluPerspective(). These types
of commands are useful in making changes to the view of the display screen, along with the
objects it rendered. For example, we can make conversions such as cropping and clipping
using such glu commands.

Getting to Know PyOpenGL Chapter 14

[394]

Similar to the PyOpenGL GL library, GLU is a Python library that is used to explore the
relationships within or between related datasets. They are mostly used to make changes on
the display screen while affecting the shapes and dimensions of the rendered objects. To
learn more about the internals of GLU, check out its official documentation page: http:/ /
pyopengl.sourceforge. net/ pydoc/ OpenGL. GLU. html.

The next line simply imports pygame into our project. While the surface that was created
using OpenGL is 3D, it needs the pygame module to render it. Before using any commands
from the gl or glu modules, we need to call the pygame module to create a display using
the set_mode() function (feel the power of the pygame module). The display that's created
by the pygame module will be 3D rather than 2D while using the set_mode function with
the OpenGL library. After this, we are telling the Python interpreter to create an OpenGL
surface and return it as a window_screen object. The tuple (height, width) that's passed
inside the set_mode function represents the surface size.

In the final step, I want you to focus on the optional parameters, which are as follows:

HWSURFACE: It creates the surface in the hardware. It is primarily used for
creating an accelerated 3D display screen, but it is only used in FULL SCREEN.
OPENGL: It makes a suggestion to pygame regarding the creation of an OpenGL
rendered surface.
DOUBLEBUF: It stands for double buffering, and is recommended for HWSURFACE
and OPENGL by pygame. It reduces the flickering (the phenomena of burning and
shining colors in the screen unsteadily).

There are a few more optional parameters, as follows:

FULLSCREEN: This will make the display of the screen rendered to a fullscreen
view.
RESIZABLE: This allows us to resize the window screen.
NOFRAME: This will make the window screen borderless, controlless, and so on.
For more information regarding pygame optional parameters, please go
to https:/ /www. pygame. org/ docs/ ref/display. html#pygame. display. set_
mode.

Now that we have started installing PyOpenGL on our machine and set a window for
screen objects, we can start drawing objects and primitives.

http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
http://pyopengl.sourceforge.net/pydoc/OpenGL.GLU.html
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode

Getting to Know PyOpenGL Chapter 14

[395]

Making objects with PyOpenGL
OpenGL is primarily known for drawing different geometrical shapes or primitives, all of
which can be used in the creation of scenes for a 3D canvas. We can make multiple-sided
shapes (polygons), such as a triangle, quadrilateral, or hexagon. Several pieces of
information, such as vertex and edges, should be given to the primitives so that PyOpenGL
can render them accordingly. Since the information that's related to the vertex and edges is
different for each shape, we have different functions to create different primitives. This is
different compared to pygame's 2D function (pygame.draw), which was used to create
multiple shapes using the same single function. For example, a triangle has three vertices
and three sides, whereas a quadrilateral has four vertices.

If you have a mathematical background, knowledge of vertices and edges will be a piece of
cake for you. But for those of you who are not, the vertices of any geometrical shapes are
the corners or points in which two or more lines meet. For example, a triangle has three
vertices. In the following illustration, A, B, and C are vertices of the triangle ABC. Similarly,
edges are the line segments on the boundary joining one vertex to another. In the following
triangle, AB, BC, and AC are edges of the triangle ABC:

To draw such geometrical shapes with PyOpenGL, we need to start by invoking some basic
OpenGL primitives, which are listed as follows:

First of all, call the glBegin() function with any of the primitives you want to1.
draw. For example, glBegin(GL_TRIANGLES) should be invoked to inform the
interpreter about the triangular shapes we are going to draw.
The next piece of information regarding the vertices (A, B, C) is critical for2.
drawing shapes. We send information regarding the vertices using
the glVertex() function.

Getting to Know PyOpenGL Chapter 14

[396]

Apart from information about vertices and edges, you can provide additional3.
information, such as the color of the shapes, using the glColor() function.
After providing enough essential information, you can invoke the glEnd()4.
method to inform OpenGL that enough information has been provided. Then, it
can start drawing the specified shapes, as indicated by the constants that are
provided by the glBegin method.

The following code is the pseudocode for drawing triangular shapes using PyOpenGL
(reference the preceding illustration to understand the operation of PyOpenGL functions):

#Draw a geometry for the scene
def Draw():
 #translation (moving) about 6 unit into the screen and 1.5 unit to left
 glTranslatef(-1.5,0.0,-6.0)
 glBegin(GL_TRIANGLES) #GL_TRIANGLE is constant for TRIANGLES
 glVertex3f(0.0, 1.0, 0.0) #first vertex
 glVertex3f(-1.0, -1.0, 0.0) #second vertex
 glVertex3f(1.0, -1.0, 0.0) #third vertex
 glEnd()

The following illustration shows the normal of the triangle. A normal is a mathematical
term that means a unit vector (has a magnitude of 1 and has a direction—please refer to
Chapter 10, Upgrading the Snake Game with Turtle, to find out more about vectors). This
piece of information (normal) is essential because it tells PyOpenGL where each vertex
resides. For example, glVertex3f(0, 1, 0) will put a vertex on the y-axis. Therefore, (x,
y, z) represents the magnitude in the x-axis, y-axis, and z-axis, like so:

Getting to Know PyOpenGL Chapter 14

[397]

Now that we know how to create basic triangular primitives, let's take a look at the
following table to understand the other different types of primitives that can be drawn
using PyOpenGL:

Constants keywords Shapes

GL_POINTS Draws dots or points to the screen

GL_LINES Draws lines (individual ones)

GL_TRIANGLES Draws triangles

GL_QUADS Draws quadrilaterals (four-sided polygons)

GL_POLYGON Draws polygons (any edges or vertices)

We are now capable of drawing any primitives using primitive constants, provided that we
have information about their vertices. Let's create the following quadrilateral:

The following is the pseudocode for drawing the preceding cube primitive:

glBegin(GL_QUADS)
glColor(0.0, 1.0, 0.0) # vertex at y-axis
glVertex(1.0, 1.0, 0.0) # Top left
glVertex(1.0, 1.0, 0.0) # Top right

Getting to Know PyOpenGL Chapter 14

[398]

glVertex(1.0, 1.0, 0.0) # Bottom right
glVertex(1.0, 1.0, 0.0) # Bottom left
glEnd()

In the preceding line of code, we started by defining the GL_QUADS constants to inform
PyOpenGL about the name of the primitives we are drawing. Then, we added the color
attributes with the glColor method. Similarly, we defined the four primary vertices of the
cube using the glVertex method. The coordinates that were passed as an argument to
the glVertex method represent the x, y, and z-axes in the plane.

Now that we are able to draw different geometrical shapes using PyOpenGL, let's learn
about the different rendering functions/premiers of PyOpenGL so that we can make other
complex structures.

Understanding PyOpenGL methods
It is well-known that a computer screen has a two-dimensional view (its height and width).
In order to display the three-dimensional scene created by OpenGL, the scene must go
through several matrix transformations, which are commonly known as projections. This
allows the 3D scene to be rendered in a 2D view. Among the various transformation
methods, two are commonly used for projections (clipping and normalization). These
matrix transformations are applied to the 3D coordinate system and reduced to a 2D
coordinate system. The GL_PROJECTION matrix is frequently used for performing the
transformation associated with projections. The mathematical deduction of projection
transformation is another story and we are never going to use those, but understanding
how it works is important for any game programmer. Let's go over how
GL_PROJECTION works:

Clipping: This transforms the coordinates of the vertex of the scene to the clip
coordinates of the scene. Clipping is a process that resizes the length of the scene
so that some parts are clipped from viewport (a window display).
Normalization: This process is known as Normalized Device
Coordinates (NDC), which transforms the clip coordinates into device
coordinates by dividing by the w components of the clipping coordinates. For
instance, the clip coordinates xc, yc, and zc are tested by comparing with wc.
Vertices that does not lie in the range of -wc to +wc are discarded. Here the
subscript c represents the clipping coordinate system.

Getting to Know PyOpenGL Chapter 14

[399]

Hence, it is easier to infer that the process of matrix transformation, including
GL_PROJECTION, includes two steps: clipping, which is immediately followed by
normalization to device coordinates. The following diagram illustrates how clipping is
done:

We can clearly observe that the process of clipping (sometimes called culling) is only
performed in the clipping coordinates, which are defined by the size of the 2D viewport. To
find out which clip coordinates have been discarded, we need to look at an example. Let's
assume that x, y, and z are clipping coordinates and that their values are compared with the
coordinates of w (x, y), which decides whether any vertex (or part of shapes) remains in the
screen or discarded. If any of the coordinates lie below the value of -wc and above the value
of +wc, that vertex is discarded. In the preceding diagram, vertex A lies above +wc while
vertices B and C lie below -wc, and so both vertices are discarded. Moreover, vertices D and
E lie within the value of (-wc, +wc), and so they remain in the view. The value of wc is
determined by the width of the viewport. Hence, the projection matrix of OpenGL
(GL_PROJECTION) takes the 3D coordinates and performs projection, which converts it into
2D coordinates that can be rendered into the 2D computer display screen. Although some
information might be lost, it is considered one of the most effective methods of rendering
3D scenes into a 2D screen.

We are not done yet, though—after projection is performed, we have to convert the 3D
scene into 2D, which requires the use of another OpenGL matrix transformation known
as GL_MODELVIEW. The step of this transformation is, however, quite different. Firstly,
matrix transformation is done, which multiplies the coordinate system by view distance.

Getting to Know PyOpenGL Chapter 14

[400]

To convert them into 2D components, z-components is provided for each of them. To
understand the model-view matrix, we have to understand the two matrices that are a part
of its composition: the model matrix and the view matrix. The model matrix performs
several transformations such as rotation, scaling, and translations in the model world,
whereas the view matrix adjusts the scene that's relative to the camera's position. The view
matrix takes care of what the object looks like to the player who is watching the scene,
something like the first player character screen/viewpoint.

Now that we are aware of the transformation matrices of OpenGL, let's make a simple
program (resize.py) that can resize the display accordingly:

Start by importing OpenGL:1.

 from OpenGL.GL import *
 from OpenGL.GLU import *

Make a simple function, change_View(), that takes the size of the display2.
screen, as follows:

 def change_View():
 pass

The code that's stated in from Step 3 to Step 6 should be added inside3.
the change_View() function. Add a function call to ViewPort, which takes the
initial values and size of the display as follows:

 glViewport(0, 0 , WIDTH, HEIGHT)

Now, it's time to add a projection matrix. To add GL_PROJECTION, we have to4.
call the glMatrixMode() method, which checks the mode of matrices being
called, as follows:

 glMatrixMode(GL_PROJECTION) #first step to apply projection matrix

Immediately after applying the projection matrix, two important methods should5.
be invoked, that is, glLoadIdentity() and gluPerspective(), which set the
"touchstone" for the projection matrix:

 aspect_ratio = float(width/height)
 glLoadIdentity()
 gluPerspective(40., aspect_ratio, 1., 800.)

Getting to Know PyOpenGL Chapter 14

[401]

After setting up the projection matrix, the next step is to set the model-view6.
matrix. The model view matrix mode can be activated by calling
the GL_MODELVIEW transformation matrix with the glMatrixMode() method:

 glMatrixMode(GL_MODELVIEW)
 glLoadIdentity()

The preceding six steps show us how we can resize the display screen in which a 3D scene
is displayed in a 2D display screen. Step 1 and Step 2 are focused on importing openGL. In
Step 3, we called the glViewport() method and passed an argument that ranges from (0,
0) to (width, height), which informs OpenGL that we want to use the entire screen to
display the scene. The next step calls the glMatrixMode() method, which tells OpenGL
that every matrix transformation will apply the projection matrix in every successive
function call.

Step 5 calls two new methods which, as the glLoadIdentity() signature states, are used
to make the projection matrix identity, which means that all of the coordinates of the
projection matrix should be changed to 1. Eventually, we call another method,
gluPerspective(), which sets the categorical/standard projection matrix. You may have
noticed that the gluPerspective() method starts with glu and not gl; hence, this
function is called from the GLU library. Four float arguments are passed with the
gluPerspective method, that is, the field perspective of the camera viewpoint, the aspect
ratio, and two clipping plane points (near and farther). Hence, clipping is done via
the gluPerspective function. To observe how clipping is done, refer to the example of
star geometrical shape that we discussed at the beginning of this topic.

Now, it's time to put what we've learned to the test by making a program that interacts
with PyOpenGL structures. We will also define another attribute that will make objects
more appealing. This is known as color properties. We will define a cube, along with
mathematical information regarding vertices and edges.

Understanding color properties
In real-world scenarios, there are profuse amounts of colors associated with objects, but
computer devices are not intelligent or capable enough to distinguish and capture all of
them. Hence, to accommodate every possible color in digital form is nearly impossible. Due
to this, scientists have provided us with a way to represent different colors: the RGB
pattern. This is a combination of three major color components: red, green, and blue.
Combining these components, we can create almost every color possible. The value of each
component ranges from 0 to 255; changes to each component's code results in a new color.

Getting to Know PyOpenGL Chapter 14

[402]

The color properties that are used in OpenGL are quite similar to the real-world color
reflection property. The color of the object that we observe is not actually its color; rather, it
is the color that's reflected by the object. The object can have some properties of a
wavelength, in which the object can absorb a certain color and might reflect a different one.
For example, trees absorb sunlight except for green. We perceive and assume that it is
green, but actually objects have no color. This concept of light reflection is fairly applied in
OpenGL—we usually define a light source that might have a definite color code.
Furthermore, we will also define the object's color code and then multiply it with the light
source. The resultant color code or light is the result of reflection from the object, which is
considered the color of the object.

In the case of OpenGL, color is given in the form of a tuple containing four components in
which three are red, green, and blue. The fourth component represents alpha information,
which indicates the level of transparency of the object. Instead of providing values of 0 to
255 for RGB components, we provide a value ranging from 0 to 1 in the case of OpenGL.
For example, yellow is a combination of red and green, and so its alpha information is (1, 1,
0). Refer to https:/ /community. khronos. org/ t/color- tables/ 22518 to find out more
about OpenGL's color code.

The following functions/features are available in OpenGL's color properties:

glClearColor(): This function sets a clear color, which means that it fills the
color on a part of the area that hasn't been drawn. The value of the color code can
be given as a tuple containing a value ranging from 0 to 1. For example,
glClearColor(1.0, 1.0, 1.0, 0.0) represents filling with white.
glShadeModel(): This function enables the lightening features of OpenGL.
Usually, the argument that's passed to glShadeModel is GL_FLAT, which is used
for shading the faces or edges of shapes such as cubes and pyramids. If you want
to shade curved objects rather than faceted ones, you can use GL_SMOOTH.
glEnable(): This is not actually a method related to color properties, but it is
used to enable them. For instance, glEnable(GL_COLOR_MATERIAL) will
enable materials, which allows us to interact with the surface and light source.
Furthermore, by adjusting the settings, the properties of the materials are mostly
used to make any object lighter and sharper.

Now that we are familiar with the concepts of color properties and ways of creating color
attributes, let's make a simple program that will draw a cube using the color properties of
PyOpenGL.

https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518
https://community.khronos.org/t/color-tables/22518

Getting to Know PyOpenGL Chapter 14

[403]

Brainstorming grids
Before we start to code, it's always good practice to brainstorm a little bit and acquire the
necessary information so that we can create a program. Since we are going to create a
program that will render a cube—a surface that has eight vertices, 12 edges, and six
faces—we need to define such information explicitly. We can define each of these attributes
as nested tuples—tuples inside a single tuple.

Taking one vertex as a reference, we can simultaneously get the positions of other vertices.
Let's assume that a cube has one vertex at (1, -1, -1). Now, assuming that all of the edges
of a cube have a length of 1 unit, we can get the coordinates of the vertices. The following
code shows a list of the vertices of the cube:

cube_Vertices = (
 (1, -1, -1),
 (1, 1, -1),
 (-1, 1, -1),
 (-1, -1, -1),
 (1, -1, 1),
 (1, 1, 1),
 (-1, -1, 1),
 (-1, 1, 1),
)

Similarly, there are 12 edges (edges are the lines that are drawn from one vertex to another).
Since there are eight vertices (0 to 7), let's write some code that defines the 12 edges using
eight vertices. The identifiers that are passed as tuples in the following code represent the
edges or sides that are drawn from one vertex to another. For example, tuple (0, 1) indicates
the edge that was drawn from vertex 0 to vertex 1:

cube_Edges = (
 (0,1),
 (0,3),
 (0,4),
 (2,1),
 (2,3),
 (2,7),
 (6,3),
 (6,4),
 (6,7),
 (5,1),
 (5,4),
 (5,7),
)

Getting to Know PyOpenGL Chapter 14

[404]

Finally, the last piece of information that must be provided is about surfaces. A cube has six
faces, each of which contains four vertices and four edges. We can provide this information
like so:

cube_Surfaces = (
 (0,1,2,3),
 (3,2,7,6),
 (6,7,5,4),
 (4,5,1,0),
 (1,5,7,2),
 (4,0,3,6)
)

Note that the order in which the vertices, edges, and surface are provided
matters. For example, in the cube_Surfaces data structure, if you
swapped the second item of the tuple with the first one, the shape of the
cube will deteriorate. This is because each piece of information is linked
with vertex information, that is, surface (0, 1, 2, 3) contains the first,
second, third, and fourth vertices.

Now that we've finished brainstorming and gathered some useful information about the
shape we are going to draw, it's time to start rendering the cube using PyOpenGL and its
library, which is often referred to as the GLU library.

Understanding the GLU library
Now that we've collected information about the edges, sides, and vertices of our shape, we
can start coding the model. We have already studied how we can draw shapes with
OpenGL using methods such as glBegin() and glVertex3fv(). Let's use them and
create a function that can draw a cube structure:

Start by importing OpenGL and the GLU library. Right after importing the1.
library, add the information we acquired regarding the vertices, edges, and
surfaces that we defined while brainstorming to the same file:

 from OpenGL.GL import *
 from OpenGL.GLU import *

Getting to Know PyOpenGL Chapter 14

[405]

Next, define the function and fetch the surfaces and vertex. This process is quite2.
simple; we will start by drawing the surfaces for the cube. We should use
the GL_QUADS property to draw four-sided surfaces (confused? Refer to
the Making objects with OpenGL section of this chapter for more information):

 def renderCube():
 glBegin(GL_QUADS)
 for eachSurface in cube_Surfaces:
 for eachVertex in eachSurface:
 glColor3fv((1, 1, 0)) #yellow color code
 glVertex3fv(cube_Surfaces[eachVertex])
 glEnd()

Finally, inside the renderCube() method, write some code that can draw a line3.
segment. The GL_LINES parameter is used to draw a line segment:

 glBegin(GL_LINES)
 for eachEdge in cube_Edges:
 for eachVertex in eachEdge:
 glVertex3fv(cube_Vertices[eachVertex])
 glEnd()

This three-line procedure is enough to create even complex geometrical shapes. Now, you
can perform multiple operations on these cubes. For example, you can perform operations
such as the rotation of objects by using mouse trackpads. As we know, handling such user
events requires a pygame module. Hence, let's define a function that will take care of event
handling, along with some of the characteristics of PyOpenGL. Begin your code with
the import pygame statement and add the following code:

def ActionHandler():
 pygame.init()
 screen = (800, 500)
 pygame.display.set_mode(screen, DOUBLEBUF|OPENGL) #OPENGL is essential
 #1: ADD A CLIPPING TRANSFORMATION
 gluPerspective(85.0, (screen[0]/screen[1]), 0.1, 50)
 # 80.0 -> field view of camera
 #screen[0]/screen[1] -> aspect ration (width/height)
 #0.1 -> near clipping plane
 #50 -> far clipping plane
 glRotatef(18, 2, 0, 0) #start point

Getting to Know PyOpenGL Chapter 14

[406]

The preceding code snippet is quite simple to understand since we have been doing this
from the beginning of this chapter. Here, we've used the pygame module, which sets the
game screen with an OpenGL scene or interface. We have added a transformation matrix,
which performs clipping using the gluPerspective() function. Finally, we added the
initial position of the cube before actual rotation (where we might be at the beginning).

Now that we have addressed the basic primers of OpenGL, let's use pygame's event
handling method to manipulate the structure of the cube, like so:

while True:

 for anyEvent in pygame.event.get():
 if anyEvent.type == pygame.QUIT:
 pygame.quit()
 quit()

 if anyEvent.type == pygame.MOUSEBUTTONDOWN:
 print(anyEvent)
 print(anyEvent.button) #printing mouse event
 #mouse button 4 and 5 are at the left side of the mouse
 #mouse button 4 is used as forward and backward navigation
 if anyEvent.button == 4:
 glTranslatef(0.0,0.0,1.0) #produces translation
 of (x, y, z)
 elif anyEvent.button == 5:
 glTranslatef(0.0,0.0,-1.0)

After handling the events that are based on mouse button navigation, let's use some of the
methods provided by PyOpenGL to render the cube. We will use methods such
as glRotatef(), which will perform matrix transformation. Write the following code just
after where we handled the events:

 glRotatef(1, 3, 1, 1)
#The glRotatef is used to perform matrix transformation which performs a
rotation
#of counterclockwise with an angle of degree about origin through the point
#provided as (x, y, z).
 #---
 #indicates the buffer that needs to be cleared
 #GL_COLOR_BUFFER_BIT: enabled for color drawing
 #GL_DEPTH_BUFFER_BIT: depth buffer which needs to be cleared
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
 #render cube
 renderCube()
 pygame.display.flip()
 pygame.time.wait(12)

Getting to Know PyOpenGL Chapter 14

[407]

#call main function only externally
ActionHandler()

The highlighted part of the preceding code denotes a resize transformation, which
ultimately leads to the ZOOM-UP and ZOOM-DOWN features being used. Now, you can
run the program and observe the cube being rendered at the center of the pygame screen, in
yellow. Try using an external mouse and using the navigation buttons (buttons 4 and 5) to
zoom in and zoom out. You can also observe how clipping is used in the project: whenever
we make a cube so big that it exceeds the clipping plane, some parts of the cube are
removed from the viewport.

In this way, we can combine two powerful Python gaming modules, that is, pygame and
PyOpenGL, to make 3D scenes and interfaces. We have only skimmed the ways of creating
some shapes and how to transform them. Now, it's up to you to discover more about
PyOpenGL and try to make a game that's much more user-friendly and attractive by
providing rich textures and content.

Summary
We have covered many interesting topics in this chapter, mostly regarding surfaces and
geometrical shapes. Although we used the term matrix in this chapter, we didn't bother
performing matrix computation using a mathematical approach because Python has
everything built-in to perform such operations. Still, we should remember the old adage,
game programmers don't need to have a PhD in mathematics, since knowing a basic level of
math is enough if we want to make games. Here, we only learned about translation, scaling,
and rotation, which are enough if we want to make a 3D scene. We didn't get bogged down
by learning about the concepts of translations or scaling using the mathematical
approach—instead, we learned about using the programming approach.

We started off by learning how to set up the OpenGL display screen by using pygame's
setting method. Since OpenGL is a vast and profound field of study, covering everything
in a single chapter was impossible. Hence, we only covered how to load/store three-
dimensional models and how to apply them to the OpenGL rendering surface by applying
clipping, rotate, and resize transformations. We also studied color properties and used
them with PyOpenGL and pygame. The main goal of this chapter was to make it easier for
you to understand how to create 3D shapes using OpenGL 3D scenes while providing
critical geometrical information such as vertices, edges, and surfaces. You will now be able
to work with OpenGL to create 3D shapes, figures, and visuals. You now also know how to
distinguish the color property of OpenGL from any other coloring patterns.

Getting to Know PyOpenGL Chapter 14

[408]

In the next chapter, we will learn about another important module, which goes by the name
of Pymunk. This is a very powerful physics library that adds physics capabilities for game
characters. We will learn about the different terms that are used when we need to talk
about real-world environments, such as velocity and acceleration, which are used to handle
collisions and the movement of game characters. While learning about these concepts, we
will also be making an Angry Bird game, which we will deploy across various platforms.

15
Getting to Know Pymunk by

Building an Angry Birds Game
Python, being a standalone language for half a decade in data science and machine
learning, was not popular enough in the game development industry until open source
packages such as pymunk evolved. These open source packages provided game developers
with an easy interface for mimicking real-world environments through simulation, which
allowed them to create single or multiple body objects that linked the player's input to
physical impulses. This evolution brought the usage of a continuous physics model into
Python game development, where some objects were allowed to rest for efficiency purposes
and were only brought into the light with the principle of collision. With this model, we can
handle multiple object collisions properly and efficiently.

By the end of this chapter, you will have learned about the fundamentals of Pythonic 2D
physics library so that you know how to use classes and submodules to build complex
games such as Angry Birds, which simulates the real-world environment by considering
physical properties such as mass, motion, inertia, elasticity, and moment. You will also
learn how to create 2D rigid bodies and link them to the player's input in order to simulate
physical impulses. This will result in movement in the rigid bodies within the simulated
environment (space). You will also learn how to use time interval steps (dt) by updating
physical attributes that facilitate movement for rigid bodies within that space.

Up until now, you have been checking collisions between two game entities (in Chapter 11,
Outdo Turtle – Snake Game UI with Pygame, you checked collisions between the snake and
the boundary wall, while in Chapter 12, Learning About Character Animation, Collision, and
Movement, you checked collisions between the bird and a vertical pipe), but this chapter
will be more edifying in the sense that you will be checking collisions between three game
objects one by one and performing actions by creating a collision handler.

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[410]

The following topics will be covered in this chapter:

Understanding pymunk
Creating a character controller
Creating a polygon class
Exploring Pythonic physics simulation
Implementing sling-action
Addressing collisions
Creating levels
Handling user events
Possible modifications

Technical requirements
You must have the following requirements to be able to complete this chapter:

The Pygame editor (IDLE) version 3.5 or higher.
The PyCharm IDE (refer to Chapter 1, Getting to Know Python – Setting Up Python
and the Editor, for the installation procedure).
The pymunk module (an open source library that's available at http:/ /www.
pymunk.org/ en/ latest/).
The code for this chapter can be found in this book's GitHub repository: https:/
/github. com/ PacktPublishing/ Learning- Python- by- building- games/ tree/
master/Chapter15

An external link to the sprite sheets for angry birds: https:/ /www. spriters-
resource. com/ mobile/ angrybirds/ sheet/ 59982/ .

Check out the following video to see the code in action:

http://bit.ly/2oG246k

http://www.pymunk.org/en/latest/
http://www.pymunk.org/en/latest/
http://www.pymunk.org/en/latest/
http://www.pymunk.org/en/latest/
http://www.pymunk.org/en/latest/
http://www.pymunk.org/en/latest/
http://www.pymunk.org/en/latest/
http://www.pymunk.org/en/latest/
http://www.pymunk.org/en/latest/
http://www.pymunk.org/en/latest/
http://www.pymunk.org/en/latest/
http://www.pymunk.org/en/latest/
http://www.pymunk.org/en/latest/
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
https://www.spriters-resource.com/mobile/angrybirds/sheet/59982/
http://bit.ly/2oG246k
http://bit.ly/2oG246k
http://bit.ly/2oG246k
http://bit.ly/2oG246k
http://bit.ly/2oG246k
http://bit.ly/2oG246k
http://bit.ly/2oG246k
http://bit.ly/2oG246k
http://bit.ly/2oG246k

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[411]

Understanding pymunk
In a real-world environment, objects move in ubiquitous directions arbitrarily. Thus, to
mimic such movements, games must address the different physical behaviors of objects.
For example, when we throw an object in the air, due to the presence of gravity, the object
will hit the ground at some point. Similarly, we must also address the reduction in the
velocity of objects every time an object bounces back from the surface. For example, if we
were to take a ball and throw it in the air, after some time, it must hit the ground with the
original velocity, Vo, and after one hit to the surface, it will bounce off the surface and then
ascend with velocity Vf. Therefore, it is obvious that Vo > Vf. Implementing this kind of
behavior for objects in a game environment will leave players with a good impression of
the game.

Physics, being a branch of natural science, tries to simulate real-world actions through
simulation and mathematical deduction. Different terminology is defined in physics, such
as mass, inertia, impulse, elasticity, friction, and so on. These terminologies define the
characteristics of objects when they're exposed to different environments. Without getting
bogged down in the intricacies of physics, let's get down to business. The real question is,
why do we need physics in games? The answer to this question is simple: similar to real-
world objects, games also have objects/characters. These characters are governed by the
players of the game. Most players love to play a game that simulates a real-world
phenomenon.

Some physical terms you must understand before using the pymunk module are as follows:

Mass: Literally, mass refers to the weight of any object. While considering its
physical definition, the mass of an object is a measure of the amount of matter in
the object.
Force: A force is a push or a pull upon an object resulting from the object's
interaction with another object.
Gravity: The force that causes, for example, an apple to fall toward the ground.
Gravity is the force that attracts two bodies to each other.
Elasticity: A property of deformed objects where they get reshaped and go back
to their original form. For example, a spring and a rubber band will go back to
their original shape, even if force is applied to distort them.
Moment: A moment of force is a property that causes an object to rotate around a
specific point or axis.

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[412]

If you have not played Angry Birds before, make sure to check out this
link: http:/ / freeangrybirdsgame. org/ play/ angry_ birds_ online. html.
While playing the game, observe the number of characters, structures, and
catapult actions.

It would be boring if both of the characters in our Angry Birds game (Bird and Pig) had
horizontal movements. For instance, when the player shoots an Angry Bird from the
catapult or material slingshot, what if it doesn't follow projectile motion (45-degree motion)
and just goes in a horizontal direction (90-degree motion)? This violates one of the laws of
physics which states that Earth pulls down on you. Maybe we could argue that's why this is a
big deal. Violating such laws would make games asinine and absurd, which might hamper
the reputation of the game. In order to simulate such real-world physics in games, the
Python community has developed a 2D physics library. We can employ different
characteristics for game objects such as mass, inertia, impulse, and friction using this
library.

First of all, I recommend that you check out the official documentation of pymunk
at http://www.pymunk. org/ en/ latest/ pymunk. html. Since the packages and modules of
pymunk are frequently updated, you will see a huge amount of resources on their official
documentation page. Just don't get overwhelmed by how many there are—we will need
only a few of them to make a game that uses the pymunk 2D physics library.

Now that you have gone through the documentation, I assume that you might have seen
several submodules and classes. We will need some of them, all of which we will discuss.
We will start with pymunk, which is the most popular and widely used submodule. It's
named vec2d. To observe the working of vec2d, you have to brush up on your basics,
which we learned about in Chapter 9, Data Model Implementation. To recap, we used
different data models to implement vector manipulation (we used __add__() to add
vectors, __str__() to format vectors, and so on). We've already learned about vector
manipulation, but in a Pythonic way; now, let's learn about it in a modular way. The
Python developer community has created a submodule for vec2d; that is, the Vec2d class,
in order to perform any vector-related manipulation.

Before looking at an example of the Vec2d class, let's set up our PyCharm project first.
Open the PyCharm editor and create a new project. I will call it Angry Bird. After providing
a name for the project, press the Create button to create a project. When PyCharm is ready
with your project, create a new Python file called test.py. Before writing any code, we
have to install the pymunk module in the current project.

http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://freeangrybirdsgame.org/play/angry_birds_online.html.
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[413]

Follow these steps to do so (to get a detailed description of how to install any third-party
library in PyCharm, refer to Chapter 1, Getting to Know Python – Setting Up Python and the
Editor):

Click on File | Settings. The Settings window will open.1.
On the left-hand side tab, click on the Project: Angry Bird tab. It will list all the2.
modules that have been installed in the Python interpreter.
To add a new module, click on the (+) button next to the Packages tab.3.
Search for pymunk and install the module (make sure your internet connection is4.
up and running).

Now that the pymunk module has been successfully installed, let's get back to the Vec2d
class. As we mentioned previously, this class can be used to perform vector manipulation.
It is an alternative to using data models for vector manipulation. Let's look at a simple
example of creating a vector using the Vec2d class:

from pymunk.vec2d import Vec2d
print(Vec2d(2, 7))

#add two vectors
print(Vec2d(2, 7) + Vec2d((3, 4)))

#results
Vec2d(2, 7)
Vec2d(5, 11)

Apart from performing mathematical computations, Vec2d can also perform different high-
level functional computations. For instance, if you want to find the distance between two
vectors, we can call the get_distance() function, as follows:

print(Vec2d(3,4).get_distance(Vec2d(9,0)))
7.211102550927978

The preceding function calculates the distance between two vectored points using the
formula √(x2 − x1)^2 + (y2 − y1)^2, where (x1, y1) and (x2, y2) are two vectored coordinates.
To learn more about the distance formula, please go to https:/ /www. purplemath. com/
modules/distform. htm.

Now that we have explored Vec2d, we will learn about pymunk classes. There are more
than 10 of them but we will only learn about the important ones. You can explore them by
going to their official documentation pages. Let's learn about them one by one.

https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[414]

Exploring pymunk's built-in classes
To begin, we will start with the Space class. This class refers to the placeholders where all
your game characters will reside. The movement of the game characters will also be defined
within this space. The properties of rigid objects (with physical properties such as mass,
friction, elasticity, and inertia) will change in this space as we begin to progress in the
game. For example, an object in a different space will have different velocity and
acceleration. In the case of the Angry Birds game, the velocity of an Angry Bird will differ
from when the player initially slung it from the catapult to it then colliding with the
structures in the game (beams and columns, which we will cover in a minute).

There are many methods defined inside the pymunk modules, so we will start with the most
important one: add_collision_handler(collision_type_a, collision_type_b).
Recall from Chapter 11, Outdo Turtle – Snake Game UI with Pygame, that you made a Snake
game and added the collision handler by yourself, adding some logic that implies that
When the position of two objects is the same, they are said to have collided. This method is a way
of doing the same thing in an easier way, which is just by calling the pymunk built-in
function. This collision handler that's made by pymunk will take two arguments: type_a
and type_b. You must remember that these two types are integers. We will use them to
define two objects explicitly. For example, in the Angry Birds game, there will be three
main characters: Bird, Wood, and Pig (to download the required assets, check the GitHub
link mentioned in the Technical requirements section). Since we have three characters, we
have to add a collision handler for each of them, like so:

When Bird and Pig collide: We will call add_collision_handler(0, 1),
where 0 indicates the integer type of the Bird character and 1 represents the
integer type of the Pig game character.
When Bird and Wood collide: We will call add_collision_handler(0, 2),
where 2 indicates the integer type of the Wood game character. (Remember that,
throughout the game, 0 must represent the Bird character and must not be used
for any other character).
When Pig and Wood collide: We will call add_collision_handler(1, 2).

By doing this, we will get to feel the power of the collision handler defined inside the
Space class. This function checks whether two objects collide and
returns CollisionHander for collisions between objects represented by type_a and
type_b.

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[415]

Now that we have learned about handling collisions in pymunk, we will learn about two of
the most important and most used classes of the pymunk module: Body and Shape. Firstly,
we will start by learning about the pymunk Body class and its properties. Then, we will
explore the pymunk Shape class, where we will learn how to add different physical
properties such as elasticity, mass, and moment to geometrical figures.

Exploring the pymunk Body class
When making complex games such as Angry Birds, we have to define multiple game
characters, such as the Bird, Pig, and Wood structures. The following illustration provides a
visual of these game characters:

All of these are images (in the sense of Pygame, they are sprites). They can't be used
directly until and unless we convert them into rigid bodies. The way that Pygame defines
physical measurements (mass, motion, friction, and impulse) means that it will convert
these sprites into rigid bodies. Here comes the power of the Body class: the Body class takes
any shape (circular, polygon, sprites, and so on) and injects properties such as mass,
moment, force, and many more, like so:

import pymunk
space = pymunk.Space() #creating Space instance
body = pymunk.Body() #creating Body instance
object = pymunk.Circle(body, 4)
object.density = 2
#print body measurements
print("Mass : {:.0f} and Moment: {:.0f}".format(body.mass, body.moment))

space.add(body, object)
print("Mass: {:.0f} and Moment: {:.0f}",format(body.mass, body.moment))

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[416]

The result of the preceding code is as follows:

Mass : 0 and Moment: 0
Mass: 101 and Moment: 804

In the preceding code, we started by defining space. As we mentioned previously, Space
is a class that represents the placeholder for the objects. Take a close look at
the space.add(body, object) statement: we have used the add() method to add the
object to the space. Similarly, we made an instance of the Body class. The Body class does
not necessarily mean the objects or game characters; rather, it is a virtual place where we
can add game characters. The object = pymunk.Circle(body, 4) statement will create
a circular object with a radius of 4 units and will add it to the scope of Body. After creating
the circular objects, we added density (the intensive property of the object: mass per unit
volume occupied by an object; please refer to the following link to learn more about
density: https://www. nuclear- power. net/nuclear- engineering/ thermodynamics/
thermodynamic-properties/ what- is- density- physics/).

After adding the density property to the objects, we printed the two bodies: the first one
when the body was not added into the space and another circular body (along with
density) added to the space. We printed both bodies. As expected, the first bodies were
not into space and we didn't define any properties for that body, and so its mass and
moment were displayed as zero. Similarly, after the body was added to space, their mass
and moment changed to 101 and 804 standard units, respectively.

Now, let's learn about another important class of the pymunk module, which goes by the
name of Shape.

Exploring the pymunk Shape class
There are three different class categories that come under the Shape class: Circle, Poly,
and Segment. However, learning about the Shape class itself is enough for us to
understand these categories. Let's learn about a few important physical properties (all in
lowercase) that we can call upon the shapes from the following points:

copy(): Performs the deep copy of the current shape.
density: The density of shapes. An extremely important property that calculates
the mass and moment of inertia of a body from which shapes are attached. We
looked at an example of this in the Exploring the pymunk Body class section.
elasticity: Defines the elasticity of a shape. This property is used to define the
bouncing nature of shapes. If the elasticity value is 0, that shape cannot bounce.
For a perfect bounce, the value of elasticity should be 1.

https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/
https://www.nuclear-power.net/nuclear-engineering/thermodynamics/thermodynamic-properties/what-is-density-physics/

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[417]

friction: Defines the friction coefficient for a shape. A friction value of 0
defines a frictionless surface while 1 defines a perfectly fine (no rough) surface.
mass: Defines the weight for a shape. When mass is higher, the object cannot
bounce and move freely.
moment: Calculates the moment for a shape.

To observe the application of the preceding properties, we don't create instances of
the Shape class. Instead, we use the Circle, Poly and Segment classes.

The Circle class (which we used in the previous section) can be instantiated like so:

pymunk.Circle(body, radius_of_circular_shape)

Properties such as density, elasticity, friction, mass, and moment can be also defined in the
case of circular objects. We will see an example of this while making the Angry Birds game.

Similarly, we can create a polygon shape using the Poly class. The following syntax
represents the creation of instances using the Poly class:

pymunk.Poly(body, vertices, transform = None, radius = 0)

In the preceding line of code, body is the instance of the Body class which represents the
virtual space for the shape. The vertices argument defines the vertices for the convex hull
of the polygon. A convex hull is calculated by the Poly class using vertices automatically.
The remaining two arguments, transform and radius, are optional. transform is an object of
the Transform class (refer to http:/ /www. pymunk. org/ en/ latest/ pymunk. html#pymunk.
Poly to find out more about transform), which applies the transform to each vertex of the
polygon, while the radius argument sets the radius of the created poly shape.

You may be wondering what the application of the Poly class will be while making the
Angry Birds game. In this game, we have two main characters, as well as the wood
structures, consisting of beam and column, which are made using the Poly class. More on
this will be discussed when we start making the Angry Birds game.

Finally, we have another useful class, known as the Segment class. Let's explore how its
instance is created:

pymunk.Segment(body, point1, point2, radius)

http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Poly

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[418]

As its name suggests, the Segment class is responsible for defining a line segment shape
between two points: point1 and point2. It is an important class since it defines the surface
for the game. The radius argument defines the thickness of the line segment drawn from
point1 to point2. Several aforementioned properties, such as mass, density,
elasticity, and friction can also be added to this shape. Mostly, friction is used to
define the roughness of the surface while creating the surface of the game. Even in the
Angry Birds game, we can create a game surface using the Segment class and associate the
body with some level of friction (0—1), which defines the level of fineness and roughness of
the surface. The value of 0 represents 100 percent fine, while 1 represents totally rough.

Now that we are fully equipped with all the classes and properties associated with
the pymunk module, we can start coding our Angry Birds game.

Creating a character controller
If you haven't played Angry Birds yet, I highly encourage you to do so. Search for Angry
Birds online and play it for a few minutes. While playing the game, observe the main
characters (bird and pig), their actions, and their interaction with wooden structures. The
wooden structures are made of different beam and column structures where a different
number of wooden structures are dovetailed, one after the other.

After you've taken a look at the original game, you can start coding your own Angry Birds
game. We made the Angry Bird project previously, in PyCharm, while installing
the pymunk module. We will use the same project folder to create this game. Create a new
Python file and name it characters.py.

In this Angry Bird project, we are not going to write whole pieces of code
within a single file. While coding complex games such as Angry Birds, it is
important for us to create different modules for different tasks. Doing so,
we can easily find bugs while testing our game. In this Angry Birds game,
we will create four Python files: characters.py, polygon.py, main.py,
and level.py.

The first file, which we just created, will contain the main game characters: Bird and Pig.
The wooden beam and column structures will be created in the next file; that
is, polygon.py. But for now, let's concentrate on the characters.py file.

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[419]

The characters.py file will contain two classes: one for Bird and another for Pig. Then,
we will define several attributes that govern the movement, that is, the physical property,
for each of these classes. The following code represents the content of the characters.py
file:

import pymunk as p #aliasing pymunk as p
from pymunk import Vec2d #for vector manipulation

After importing the necessary modules, let's define the class for the Bird character (Angry
Bird movement is handled by the player who is playing the game):

class RoundBird():
 def __init__(self, distance, angle, x_pos, y_pos, space):
 weight = 5
 r = 12 #radius
 value_of_inertia = p.moment_for_circle(weight, 0, r, (0, 0))
 obj_body = p.Body(weight, value_of_inertia)
 obj_body.position = x_pos, y_pos
 power_value = distance * 53
 impulse = power_value * Vec2d(1, 0)
 angle = -angle
 obj_body.apply_impulse_at_local_point(impulse.rotated(angle))
 obj_shape = p.Circle(obj_body, r, (0, 0))
 obj_shape.elasticity = 0.95 #bouncing angry bird
 obj_shape.friction = 1 #for roughness
 obj_shape.collision_type = 0 #for checking collisions later
 space.add(obj_body, obj_shape)
 #class RoundBird attribute ----
 self.body = obj_body
 self.shape = obj_shape

In the preceding line of code, we defined all the physical and positional attributes for the
Angry Birds character. We start by defining the constructor. The arguments for the
constructor are as follows:

distance between the two body positions, usually calculated by the distance
formula (https:/ / www. purplemath. com/ modules/ distform. htm) and passed to
the Bird class.
angle in degrees to perform the movement of the Bird character.
x_pos, y_pos represents the position of Bird.
space represents the space object where Bird is rendered.

https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm
https://www.purplemath.com/modules/distform.htm

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[420]

Inside the constructor, we have added multiple physical attributes to the Bird character.
For example, elasticity= 0.95 represents the bouncing capability (standard), friction
= 1 (level of roughness of surface), power = work done (distance) * time (53). The mass
(weight) of the Bird is 20, and the birdLife class attribute represents the quantity that
reduces whenever the Bird character collides with the ground or other characters (Pig or
the wooden structures).

The values of friction, elasticity, and work done are not random (I didn't
use them arbitrarily). They are defined on the official documentation
page. Refer to the following URL to explore the chart: http:/ /www.
pymunk. org/ en/ latest/ pymunk. html#pymunk. Shape.

The two important methods of the Bird class (highlighted in the preceding code) are the
built-in functions defined by the pymunk module. The first method,
moment_for_circle(), calculates the moment of inertia (the resistance of any physical
object to any change in its velocity) for the hollow circle. The argument that's passed to the
function is the mass of the object; that is, the inner radius and the outer radius. Observe the
inner radius, which is passed as 0, which means the Angry Bird (the main character of the
game is a circular solid circle). If the inner radius is 0, it means this is a solid circular object.
The outer radius defines the circular dimension of the Angry Bird. Similarly, observe the
collision_type = 0 attribute. This statement will add the integer type to the Bird game
character. When checking collisions between two objects with
add_collision_handler(type_a, type_b), we use this collision type value to indicate
that the 0 value for the character is Bird. For the Bird character, we have a collision type
equal to 0. The Pig class will have its collision type defined as 1.

Similarly, the next method, apply_impulse_at_local_point(impulse, point = (0,
0)), will apply a local impulse to the body. This, in turn, will represent how much the
momentum of the angry bird will change when force is provided. Refer to https:/ /study.
com/academy/lesson/ impulse- definition- equation- calculation- examples. html to
learn more about impulse and momentum.

Next, we need to define the class for the Pig character. The following code should be
written just after the Bird class:

class RoundPig():
 def __init__(self, x_pos, y_pos, space):
 self.life = 20 #life will be decreased after
 collision of pig with bird
 weight = 5
 r = 14 #radius
 value_of_inertia = p.moment_for_circle(weight, 0, r, (0, 0))
 obj_body = p.Body(weight, value_of_inertia)

http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
http://www.pymunk.org/en/latest/pymunk.html#pymunk.Shape
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html
https://study.com/academy/lesson/impulse-definition-equation-calculation-examples.html

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[421]

 #creates virtual space to render shape
 obj_body.position = x_pos, y_pos
 #add circle to obj body
 obj_shape = p.Circle(obj_body, r, (0, 0))
 obj_shape.elasticity = 0.95
 obj_shape.friction = 1
 obj_shape.collision_type = 1
 space.add(obj_body, obj_shape)
 self.body = obj_body
 self.shape = obj_shape

The preceding code is similar to the Bird class. Like before, we defined the same level of
elasticity and friction as the Pig character. We added the inertia and mass effects to the
object. For the Pig character, the collision_type is added as 1, which means that while
checking the collision between Pig and Bird, we can simply
call add_collision_handler(0, 1), where 0 represents Bird and 1 represents Pig.

Now that we have created two main classes for the Angry Birds game, that is, RoundBird
and RoundPig, inside the characters.py file, we will create another game character, that
is, the wooden structures (beams and columns).

Creating the Polygon class
For each of the game entities, we have created separate classes, that is, Bird and Pig. Since
our final game entity is a wooden structure (that the player shoots at with the slingshot), we
will make a different Python file and create a class for this entity. But before that, let's go
through one of the important concepts regarding sprite sheets.

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[422]

Images that are used in Python game development are usually called sprites, and they are
the static images on which some manipulation (vectored movement) is done based on the
user's actions (such as moving the snake when clicking the arrow keys on the keyboard). In
the preceding chapters (Chapter 12, Learning About Character Animation, Collision, and
Movement, and Chapter 13, Coding the Tetris Game with Pygame), we used sprites (single
images), but not sprite sheets (sheets containing multiple static images). The following is an
example of a sprite sheet, and is specific to our Angry Birds game:

These image files generally don't contain a single image of a game character. As you can
see, they usually contain a large number of distinct game characters. But most of the time,
we will only require a single image from the entire sprite sheet. Thus, the question is, how
can we extract a single image from such sprite sheets? We do so using the Rect class of
the Pygame module. Do you remember the Rect class (Chapter 11, Outdo Turtle – Snake
Game UI with Pygame) from the Pygame module? This class creates a rectangular object
based on the left, top, width, and height dimensions. To extract an image from the
aforementioned sprite sheet, we will draw a rectangle around one of the sprites, as follows:

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[423]

This mapping is done with the help of the Rect class. The Rect class will create a rectangle
with the dimensions of four points on the screen (left, top, width, and height). In this way,
by altering any four dimensions of the Rect object, we can extract the part or sub-surface of
sprite sheets.

Now, let's see this in action by creating a wooden structure. To begin, download the sprite
assets from the following GitHub link: https:/ /github. com/ PacktPublishing/ Learning-
Python-by-building- games/ tree/ master/ Chapter15/ res. You will see various images,
along with code assets. There will be two folders inside the res folder: one for photos and
another for sound. You have to copy the entire folder and paste it into the Angry Bird
project folder in the PyCharm editor.

After you've imported the resources, I suggest that you open the wood.png file. This file
contains different wooden structures. When creating a polygon out of these wooden
structures, we have to crop one of the images using the Rect class.

In the same Angry Bird project, create another Python file with the name polygon.py. We
will start by importing the necessary modules:

import pymunk as pym
from pymunk import Vec2d
import Pygame as pg
import math

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[424]

Now, let's create the Polygon class:

class Polygon():
 def __init__(self, position, length, height, space, mass=5.0):
 value_moment = 1000
 body_obj = pym.Body(mass, value_moment)
 body_obj.position = Vec2d(position)
 shape_obj = pym.Poly.create_box(body_obj, (length, height))
 shape_obj.color = (0, 0, 255)
 shape_obj.friction = 0.5
 shape_obj.collision_type = 2 #adding to check collision later
 space.add(body_obj, shape_obj)
 self.body = body_obj
 self.shape = shape_obj
 wood_photo =
 pg.image.load("../res/photos/wood.png").convert_alpha()
 wood2_photo =
 pg.image.load("../res/photos/wood2.png").convert_alpha()
 rect_wood = pg.Rect(251, 357, 86, 22)
 self.beam_image = wood_photo.subsurface(rect_wood).copy()
 rect_wood2 = pg.Rect(16, 252, 22, 84)
 self.column_image = wood2_photo.subsurface(rect_wood2).copy()

The attributes we've defined for the Polygon class are quite similar to what we did for
the Bird and Pig classes: we initialized friction and added the collision_type so as to
reference the Polygon shape with an integer of 2. The constructor takes an argument, that
is, position, to tell us about the position of the polygon to render, the length and height
of the polygon, the space object where the polygon will be rendered, and the mass for the
polygon shape.

The only novel thing in the preceding code is the highlighted part of the code. We have
loaded the wood.png and wood2.png images into the Python project using Pygame's load
method. The convert_alpha() method acts as an optimizer and will create a new image
surface that is suitable for quick blitting. The Rect class takes four dimensions to create a
rectangular surface (refer to Chapter 11, Outdo Turtle – Snake Game UI with Pygame). The
dimensional values that are provided aren't given randomly and represent the values that
cover the subsurface of the sprite sheets that we need to extract. For example, the
self.beam_image = wood.subsurface(rect).copy() command will extract the
horizontal beam image (the piece of wood enclosed by a red rectangle) from the wood.png
file, as follows;

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[425]

Now that we have extracted horizontal and vertical wooden images (a beam and a column,
respectively), we can start drawing a polygon containing them. However, there's a
problem. Since, although we have been using Pygame and pymunk together, their
coordinate systems are not alike: pymunk uses a coordinate system with the origin at the
bottom left, while Pygame, as you probably already know, uses a coordinate system with
the origin at the upper left. Thus, we will make a function that will convert the pymunk
coordinate system into a compatible Pygame coordinate system:

def convert_to_pygame(self, pos):
 """Function that will transform pymunk coordinates to
 Pygame coordinates"""
 return int(pos.x), int(-pos.y+610)

The preceding function is important because the game surface will be made out of
the Pygame module. Thus, we must track the position where the beam and column must be
rendered. Now, let's start drawing the polygon into the surface:

def draw_poly(self, element, screen):
 """Draw beams and columns"""
 polygon = self.shape

 if element == 'beams':
 pos = polygon.body.position
 pos = Vec2d(self.convert_to_pygame(pos))
 angle_degrees = math.degrees(polygon.body.angle)
 rotated_beam = pg.transform.rotate(self.beam_image,
 angle_degrees)
 offset = Vec2d(rotated_beam.get_size()) / 2.

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[426]

 pos = pos - offset
 final_pos = pos
 screen.blit(rotated_beam, (final_pos.x, final_pos.y))

The preceding function will be used to place a beam on the screen in which an object is
passed as an argument to it. The first argument to the function is element, which tells the
function which polygon to draw: is it a beam or a column? We will add some logic to the
draw column in the following code, but for now, let's observe what we have written so far.
The code starts by getting the shape object. Then, we check whether the element is beam. If it
is beam, then we get the position of the image and convert it into the Vec2d coordinate
position. The highlighted part of the code (getting the angle to rotate the beam image) will
ensure that the image of the beam is within the red rectangular (virtual) area, as follows:

Just remove that highlighted line from the preceding code and observe the result. You will
see that the beam won't be perfectly aligned because of the offset of the Vec2d coordinate
system. Similarly, let's add some code so that we can draw the column to the screen:

if element == 'columns':
 pos = polygon.body.position
 pos = Vec2d(self.convert_to_pygame(pos))
 angle_degrees = math.degrees(polygon.body.angle) + 180
 rotated_column = pg.transform.rotate(self.column_image,
 angle_degrees)
 offset = Vec2d(rotated_column.get_size()) / 2.
 pos = pos - offset
 final_pos = pos
 screen.blit(rotated_column, (final_pos.x, final_pos.y))

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[427]

In the preceding code, the first couple of lines will convert the pymunk coordinates into
Pygame. Since column should be rendered in the Pygame surface, this conversion is
necessary. Similarly, after getting the position coordinates, we take an angle of coordinate
and make sure to add 180 or 0 to it so that it remains an original image with no rotation.
After getting that image, we transform it and create a new image as a rotated_column
image. Remember that if the rotating angle is not a multiple of 90, the image will be
distorted. In the preceding line of code, if offset is not removed from the rotated image,
the image will move down the surface, as shown in the following screenshot:

In the preceding screenshot, the red line represents the surface. Thus, if you do not remove
the offset from the column's body position, the column will be displayed below the surface.

Now that we have finished the Polygon class, which will render either a beam or a column
whenever the draw_poly() function is called from the main class, it's time to make our
main class, which is the director of all the classes. This class will be responsible for creating
instances of all the classes and for calling the methods that are defined inside different
classes to render game objects into the Pygame game surface.

Exploring Pythonic physics simulation
To begin, let's start by revising what we have done so far. We started by defining two main
game entities: Bird and Pig. All of the major physics properties, such as mass, inertia, and
friction, were defined for each of these characters so as to simulate real-world physics. After
creating the two major game characters, we made another Python file so that we could
create the Polygon class. This class was created to render the wooden structures in the
game with the help of beam and column. Now, we are going to create another Python file
with the name main.py. This will be the main controller of the game.

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[428]

Use the following code to declare the base physics in the main.py file. We will start by
importing some essential modules:

import os
import sys
import math
import time
import Pygame
import pymunk
from characters import RoundBird #our characters.py file have Bird class

After importing the necessary modules, we need to crop some subsurfaces from the sprites
that we added previously. Obviously, we don't want everything from the sprite sheets, and
so we will be extracting only parts of them to create game characters. However, since our
main character, our Angry Bird, only has a single image and is not present in the sprite
sheets, we don't need to crop the image for the Angry Bird and the slingshot. However, for
the Pig character, we have to create a Rect object because the Pig images are bundled
together in a sprite sheet. Thus, we will have to load the images by using the following
code:

Pygame.init()
screen = Pygame.display.set_mode((1200, 650))
redbird = Pygame.image.load(
 "../res/photos/red-bird3.png").convert_alpha()
background_image = Pygame.image.load(
 "../res/photos/background3.png").convert_alpha()
sling_image = Pygame.image.load(
 "../res/photos/sling-3.png").convert_alpha()
full_sprite = Pygame.image.load(
 "../res/photos/full-sprite.png").convert_alpha()
rect_screen = Pygame.Rect(181, 1050, 50, 50)
cropped_image = full_sprite.subsurface(rect_screen).copy()
pig_image = Pygame.transform.scale(cropped_image, (30, 30))
#(30, 30) resulting height and width of pig

In the preceding code, we started by defining a game screen using the Pygame module.
After that, we loaded all the images that exist as a single image but not the sprite sheets,
such as red-bird3.png, background3.png and sling-3.png. As we mentioned
previously, the image of the pig is part of a bundle of images in full-sprite.png. Since
we need only one image of the pig, we will perform a similar process the one we carried
out while extracting beam and column. We will create a Rect object with the exact
dimensions of the pig's shape and then use it to extract a pig image from the sprite sheets.
Then, we will crop that image and store it as a cropped object, which will eventually be
transformed so that is has a height and width of 30, 30, respectively.

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[429]

Now that we have extracted the necessary images for the game objects, let's get down to
business by declaring the physical variables and positional variables for each of these
objects:

running = True
#base physics code
space_obj = pymunk.Space()
space_obj.gravity = (0.0, -700.0)

As we know, the Angry Birds game is played by using a mouse to stretch the catapult in a
slinging motion. Thus, we have to declare some variables that will take care of these sling
actions:

mouse_distance = 0 #distance after stretch
rope_length = 90

angle = 0
mouse_x_pos = 0
mouse_y_pos = 0

mouse_pressed = False
time_of_release = 0

initial_x_sling, initial_y_sling = 135, 450 #sling position at rest (not
stretched)
next_x_sling, next_y_sling = 160, 450

In the preceding code, we have defined different variables so that we can track the position
of the mouse before and after the sling action. The sling_action() function, which we
will declare afterward, will manipulate these values. For now, let's create a list that will
track the number of pigs, birds, beams, and columns that are displayed in the space:

total_pig = []
total_birds = []
beams = []
columns = []
#color code
WHITE = (255, 255, 255)
RED = (255, 0, 0)
BLACK = (0, 0, 0)
BLUE = (0, 0, 255)

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[430]

Now that we have defined all the necessary variables for the Angry Birds game (we will
add more variables later if needed), it's time to create a surface for the screen. This surface is
not a background surface; instead, it's some ground in which all the structures will reside.
The Angry Bird will also bounce off this surface, and so we have to add some physical
properties to this ground, as follows:

Static floor
static_floor_body = pymunk.Body(body_type=pymunk.Body.STATIC)
static_lines_first = [pymunk.Segment(static_floor_body, (0.0, 060.0),
(1200.0, 060.0), 0.0)]
static_lines_second = [pymunk.Segment(static_floor_body, (1200.0, 060.0),
(1200.0, 800.0), 0.0)]

#lets add elasticity and friction to surface
for eachLine in static_lines_first:
 eachLine.elasticity = 0.95
 eachLine.friction = 1
 eachLine.collision_type = 3
for eachLine in static_lines_second:
 eachLine.elasticity = 0.95
 eachLine.friction = 1
 eachLine.collision_type = 3
space_obj.add(static_lines_first)

The preceding line of code will create some static ground. While instantiating the static
body, we can explicitly set body-type as STATIC by adding
the pymunk.Body.STATIC constant. After defining the static body, we have to use
the Segment class to create a line segment between one point and another (recall the
Segment class from the Exploring the pymunk Space class section). For each line segment, we
have added elasticity to support the bouncing property, friction to indicate the
roughness, and collision_type to check whether other game objects have collided with
the ground surface or not, which will be checked later, in the Checking collision section. After
creating these static surfaces, we will add them to the Space object, which will render them
onto the screen.

After defining the static surface, we need to define the sling action, that is, what happens
when the player stretches the rope of the catapult. We will implement this in the next
section.

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[431]

Implementing the sling action
In this section, we are going to implement the sling action. The player is going to interact
with the game character through the sling action. But before implementing the sling action,
we have to take care of a few things: how far can the player stretch the rope of the catapult?
What is the angle of impulse (the track of motion after the player releases the rope)? What
is the distance between the mouse action point and the rope's current stretch point? All of
these things must be addressed by declaring functions. First of all, we need to convert
pymunk coordinates into Pygame coordinates so that we can align the game objects with
the screen properly (the reason for this conversion was discussed in the Creating the Polygon
class section).

The following function will convert the pymunk coordinates to Pygame coordinates:

def convert_to_pygame(pos):
 """ function that performs conversion of pymunk coordinates to
 Pygame coordinates"""
 return int(pos.x), int(-pos.y+600)

Although pymunk's x-coordinates are the same as Pygame's x-coordinates, due to
pymunk's origin being at the bottom left, we have to change it to the upper left. Similarly,
let's define another function, that is, vector, which will convert the passed point into a
vector. The following code represents the implementation of the vector function:

def vector(a, b):
 #return vector from points
 p = b[0] - a[0]
 q = b[1] - a[1]
 return (p, q)

Refer to Chapter 9, Data Model Implementation, to find out more about how vectors are
created using positional vectors. Here, the arguments a and b represent the points that are
converted into vectors from the reference point. Now that we have created a vector, let's
define a function that will return the distance between two points:

def distance(x0, y0, x1, y1):
 """function to calculate the distance between two points"""
 dx = x1 - x0
 dy = y1 - y0
 dist = ((dx ** 2) + (dy ** 2)) ** 0.5
 return dist

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[432]

The preceding code will calculate the distance formula between two points, that is, (x0,
y0) and (x1, y1), using the sqrt((x1 - x0) + (y0 - yo)) distance formula, where
sqrt represents square root (math.sqrt(4) = 2). The ** operator represents the
power. For example, dx ** 2 is equivalent to (dx)2.

Now that we've calculated the distance, we need to learn how to calculate unit vectors. A
unit vector is a vector that has a magnitude of 1. We don't really care about the magnitude,
but the significance of a unit vector is that it tells us about the direction of the vector. Once
we have a unit vector, we can amplify it by any factor to achieve the new vector in that
particular direction. While creating the sling action, having knowledge about the unit
vector is important as this will give us information about the direction the catapult is
stretched in. To find the unit vector in the same direction as a vector, we have to divide it
by its magnitude. Using mathematical deduction, let's build a function and create a unit
vector:

def unit_vector(v):
 """ returns the unit vector of a point v = (a, b) """
 mag = ((v[0]**2)+(v[1]**2))**0.5
 if mag == 0:
 mag = 0.000000000000001
 unit_p = v[0] / mag #formula to calculate unit vector:
vector[i]/magnitude
 unit_q = v[1] / mag
 return (unit_p, unit_q)

In the preceding code, the value of h is determined by the sqrt(a^2 + b^2) magnitude
formula. To find the unit vector, each component of the vector (v[0], v[1]) is divided by
the magnitude (mag).

Now that we have declared different functions to define the position, magnitude, and
direction for the sling action, we can begin to define the method that performs the sling
action. The following picture represents the catapult, which has two ends but no rope
attached to it:

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[433]

Here, our main task will be to add bird (the main character) to this catapult and to define
the position for it. Let's start by defining some globals inside sling_action:

def sling_action():
 """will Set up sling action according to player input events"""
 global mouse_distance
 global rope_length
 global angle
 global mouse_x_pos
 global mouse_y_pos

In the preceding line of code, we have declared some globals. However, these attributes
were initialized with some initial values at the beginning of the Exploring pythonic physics
simulation section. This means we will have to do some manipulation to update the values
of these variables. The mouse_distance variable will contain the distance value from the
point where the catapult is at rest to the point where the player stretches the rope of the
catapult. Similarly, rope_length represents the length of the rope when it's been stretched
by the player. The angle represents the angle of impulse, which is calculated as a slope
angle. The slope for the rope of the catapult represents how steep the rope is when it's
stretched by the player. mouse-x-pos and mouse-y-pos represent the current position of
the mouse when the rope of the catapult is stretched.

Now, we have to address three things in this sling_action function:

Add the Angry Bird to the rope of the sling (as shown in the following1.
screenshot).
Make the bird stay on the rope, even when the rope of the sling is stretched.2.
Address a situation where the rope of the sling is fully stretched.3.

To understand what these events are, take a look at the following picture:

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[434]

Now, let's address all of the preceding actions in the sling_action function:

#add code inside sling_action function
""" Fixing bird to the sling rope (Addressing picture 1)"""
vec = vector((initial_x_sling, initial_y_sling), (mouse_x_pos,
mouse_y_pos))
unit_vec = unit_vector(vec)
uv_1 = unit_vec[0]
uv_2 = unit_vec[1]

mouse_distance = distance(initial_x_sling, initial_y_sling, mouse_x_pos,
mouse_y_pos)
#mouse_distance is a distance between sling initials point to the point at
which currrent bird is

fix_pos = (uv_1*rope_length+initial_x_sling,
uv_2*rope_length+initial_y_sling)
highest_length = 102 #when stretched

The preceding code will create a view for the Angry Birds character in the sling action. First
of all, the v vector is created by the two coordinate points (sling_original,
mouse_current) for example, ((2, 3), (4, 5)), where (2, 3) represents the sling at the static
position or the center point of the sling, while (4, 5) represents the position when the mouse
action is activated by the player. We will create a unit vector from this vector to understand
the direction of stretch made by the player. Then, we will calculate mouse_distance,
which will be calculated by calling the previously defined distance() function. This
distance represents the distance from the static sling's center to the current mouse position.
The (mouse_x_pos, mouse_y_pos) value represents the final position for the bird after the
rope has been stretched. The uv_1 and uv_2 unit vectors will ensure that the bird will
remain on the rope, which is indicated by the mouse's position. For example, if the mouse
pointer is pointed upward, the rope and the bird will stretch in an upward direction.

Similarly, let's address the second scenario, that is, making an Angry Bird remain on the
rope, even when the rope has been fully stretched. We will implement it in the following
code:

#to make bird stay within rope
x_redbird = mouse_x_pos - 20
y_redbird = mouse_y_pos - 20
if mouse_distance > rope_length:
 pux, puy = fix_pos
 pux -= 20
 puy -= 20
 first_pos = pux, puy
 screen.blit(redbird, first_pos)
 second_pos = (uv_1*highest_length+initial_x_sling,

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[435]

uv_2*highest_length+initial_y_sling) #current position ==> second_pos

 Pygame.draw.line(screen, (255, 0, 0), (next_x_sling, next_y_sling),
 second_pos, 5)
 #front side catapult rope
 screen.blit(redbird, first_pos)
 Pygame.draw.line(screen, (255, 0, 0), (initial_x_sling,
 initial_y_sling), second_pos, 5)
 #ANOTHER SIDE of catapult

A lot is going on in the preceding code, but the actions are easier and more mathematical.
You must try to understand the logic rather than trying to understand the syntax. Let's
delve into the code and uncover the reason behind each line of code. We start by
decrementing the mouse position by 20 units to make sure that, while stretching, the bird
remains at the edge of the rope. Try changing this value to 40 and observe the effect. Next,
we checked whether mouse_distance is greater than rope_length to make sure that the
distance of the stretch is within the limit. We don't want the mouse distance to be greater
than the maximum rope length. In this situation, we will take the mouse distance and
decrease it until and unless it comes under the maximum length of rope.

After that, we will blit the redbird (Angry Birds image) at the end of the rope. Similarly,
we have to blit the rope too. In the preceding picture, observe the rope pull where the
rope has turned red. This red color will be created if we blit the rope from the center of
the static sling to the maximum possible rope length. Observe the bold part of the code; we
have drawn a line that represents the rope with the color code (255, 0, 0), that is, red. There
are two statements for this: one on each side. Thus, we have implemented the condition
where the user will stretch the rope to its maximum defined length.

Now, we have to address the third and last scenario, that is, what happens when the player
stretches the rope to its maximum length? In the preceding line of code we checked if
mouse_distance > rope_length, and thus if the player stretches to less than
rope_length, it should be addressed in the else part of the code, as follows:

else:
 #when rope is not fully stretched
 mouse_distance += 10
 third_pos = (uv_1*mouse_distance+initial_x_sling,
 uv_2*mouse_distance+initial_y_sling)
 Pygame.draw.line(screen, (0, 0, 0), (next_x_sling, next_y_sling),
 third_pos, 5)
 screen.blit(redbird, (x_redbird, y_redbird))
 Pygame.draw.line(screen, (0, 0, 0), (initial_x_sling,
 initial_y_sling), third_pos, 5)

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[436]

Similar to the previous code, we make the distance no less than 10, which means that when
the user even slightly stretches the rope, its mouse_distance will be equal to or more than
10. Then, we create third_pos to define the position in which to render the rope and the
Angry Bird. uv_1 and uv_2 are unit vectors that indicate the direction of stretch. After
getting the position, we blit the Angry Bird and then draw a line to indicate the rope. This
will be in black and will be done on the front and the back.

Now that we have defined the scenario for all our cases, let's add a line of code to calculate
the angle of impulse. This angle will be made whenever there is stretch in the rope. The tan
(angle of impulse) is equal to the slope of the stretched rope. The slope is defined as the rise
by run or (dy/dx), where dy is the change in y and dx is the change in x. Thus, the angle of
impulse can be calculated as tan-1(dy / dx). To learn more about the origins and
application of this formula, check out https:/ /www. intmath. com/plane- analytic-
geometry/1b-gradient- slope- line. php.

Let's use this formula to calculate the angle of impulse, as follows:

#this is angle of impulse (angle at which bird is projected)
change_in_y = mouse_y_pos - initial_y_sling
change_in_x = mouse_x_pos - initial_x_sling
if change_in_x == 0:
 #if no change in x, we make fall within the area of sling
 dx = 0.00000000000001

angle = math.atan((float(change_in_y))/change_in_x) #tan-1(dy / dx)

The preceding angle of impulse will be necessary to determine the path of the Angry Bird
after the sling action is performed.

Finally, we have completed the sling action. Now, let's hop over to the next section, where
we will address a collision between two game objects.

Addressing collisions
To recap, answer the following question: When do we know when two game objects have
collided? Do you have your answer? Whenever two objects are in the same location within
the coordinate system, they are said to have collided. However, in the case of pymunk, we
don't have to check whether a collision has occurred or not. Rather, a single method call
will check this for us. For example, a call to space.add_collision_handler(0, 1) will
add a collision handler to check whether there has been a collision between the Bird and
Pig characters. Here, the 0 integer represents the collision_type that's defined inside the
Bird class. The collision_type that's defined for the Pig class is 1. Thus, these
collision_type must be unique so that each game entity can identify them uniquely.

https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php
https://www.intmath.com/plane-analytic-geometry/1b-gradient-slope-line.php

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[437]

Although we have an easier method for adding a handler to check collisions, the program
still asks for the details; that is, what happens when two game objects collide? What actions
must be performed? This is resolved by using post_solve. We will explicitly tell the
collision handler that if there is a collision between X and Y, then a specific method should
be called; for example, space.add_collision_handler(0, 1).post_solve =
perform_some_action.

Let's define each of these actions whenever there is a collision between game objects. We
will start by defining an action that must be performed whenever there is a collision
between Bird and Pig. Let's write a function to do this:

def post_solve_bird_pig(arbiter, space_obj, _):
 """Action to perform after collision between bird and pig"""

 object1, object2 = arbiter.shapes #Arbiter class obj
 bird_body = object1.body
 pig_body = object2.body
 bird_position = convert_to_pygame(bird_body.position)
 pig_position = convert_to_pygame(pig_body.position)
 radius = 30
 Pygame.draw.circle(screen, (255, 0, 0), bird_position, radius, 4)
 #screen => Pygame surface
 Pygame.draw.circle(screen, RED, pig_position, radius, 4)
 #removal of pig
 pigs_to_remove = []
 for pig in total_pig:
 if pig_body == pig.body:
 pig.life -= 20 #decrease life
 pigs_to_remove.append(pig)

 for eachPig in pigs_to_remove:
 space_obj.remove(eachPig.shape, eachPig.shape.body)
 total_pig.remove(eachPig)

In the preceding code, the method takes an object of the Arbiter class: arbiter. The
arbiter object will encapsulate all the colliding objects/shapes and even store all of the
colliding object's positions. Since the game objects are drawn into the Pygame screen, we
need to know their exact location in terms of the Pygame coordinate system. Thus, a
conversion is made from pymunk coordinates into Pygame coordinates. Similarly, the
process that we defined for the post_solve function is to address the action that must be
performed instantaneously after the collision between Pig and Bird. The action will reduce
the health of pig and then eventually remove it from the space. The
space.remove() statement will remove the game objects from the screen.

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[438]

Similarly, let's define another action that must be performed after the collision between Bird
and the wooden structure. Similar to the preceding code, after a collision, the wooden
beams and columns must be removed from the space or screen. The following function will
address such actions:

def post_solve_bird_wood(arbiter, space_obj, _):
 """Action to perform after collision between bird and wood structure"""
 #removing polygon
 removed_poly = []
 if arbiter.total_impulse.length > 1100:
 object1, object2 = arbiter.shapes
 for Each_column in columns:
 if object2 == Each_column.shape:
 removed_poly.append(Each_column)
 for Each_beam in beams:
 if object2 == Each_beam.shape:
 removed_poly.append(Each_beam)
 for Each_poly in removed_poly:
 if Each_poly in columns:
 columns.remove(Each_poly)
 if Each_poly in beams:
 beams.remove(Each_poly)
 space_obj.remove(object2, object2.body)
 #you can also remove bird if you want

Similar to before, the arbiter object will hold information about the colliding shapes and
positions. Here, the total_impulse attribute will return the impulse that was applied to
resolve the collision. To find out more about the Arbiter class, go to http:/ /www. pymunk.
org/en/latest/pymunk. html. Now, after getting the collision's impact, we will check
whether arbiter has a shape of either beam or column since the arbiter object will contain
the list of the collided object. After looping through the beam and column stored inside the
arbiter object, we will remove it from the space.

Finally, we will address the last collision—an action that must be implemented when Pig
has collided with the wooden structure. Let's add a method to implement it:

def post_solve_pig_wood(arbiter, space_obj, _):
 """Action to perform after collision between pig and wood"""
 removed_pigs = []
 if arbiter.total_impulse.length > 700:
 pig_shape, wood_shape = arbiter.shapes
 for pig in total_pig:
 if pig_shape == pig.shape:
 pig.life -= 20

 if pig.life <= 0: #when life is 0

http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html
http://www.pymunk.org/en/latest/pymunk.html

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[439]

 removed_pigs.append(pig)
 for Each_pig in removed_pigs:
 space_obj.remove(Each_pig.shape, Each_pig.shape.body)
 total_pig.remove(Each_pig)

Similar to the previous two methods, this function will also check the content of the
arbiter object, which is responsible for encapsulating all the information regarding the
shape of collided objects and the position at which the collision happened. Using the
content of the Arbiter class object, we have checked the length of after impact and then
either removed or decreased the life unit of the Pig character.

The next step is to add a collision handler. Since we have declared all the post_solve
actions that must be performed after a collision between two objects, let's add it to the
collision handler using post_solve, as follows:

bird and pigs
space.add_collision_handler(0, 1).post_solve=post_solve_bird_pig
bird and wood
space.add_collision_handler(0, 2).post_solve=post_solve_bird_wood
pig and wood
space.add_collision_handler(1, 2).post_solve=post_solve_pig_wood

After adding the collision handler, all we need to do is add an event handler that handles
the events of the player who's playing the game. But before that, it is easier to work on the
levels. What I really mean by level is to create a structure using beams and columns.
Although we extracted the beams and columns from the sprite sheets, we never created a
structure out of them. Let's create some wooden structures using beams and columns.

Creating levels
Not only have we created three major game entities, but we have also made a collider
handler and sling_action function. But we aren't done yet. We have to add wooden
structures to the space with the help of beam and column game objects. beam is a horizontal
wooden rectangular structure while column is a vertical wooden rectangular structure. In
this section, we'll create another class and define a level for the game by defining different
wooden structures. You will have to create a new Python file and name it level.py. In that
file, start writing the following code to define the wooden structures:

from characters import RoundPig #HAVE TO ADD PIG IN STRUCTURE
from polygon import Polygon #POLYGON

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[440]

After importing the essential modules, we can start creating a Level class:

class Level():
 #each level will be construct by beam, column, pig
 #will create wooden structure
 def __init__(self, pigs_no, columns_no, beams_no, obj_space):
 self.pigs = pigs_no #pig number
 self.columns = columns_no
 self.beams = beams_no
 self.space = obj_space
 self.number = 0 #to create build number
 self.total_number_of_birds = 4 #total number of initial bird

In the aforementioned code, we have created a Level class with a constructor that takes
pigs, columns, beams, and space as arguments. These arguments must not be foreign to
you. All of these represent the objects of different classes. Similarly, we initialized the class
variable using a constructor. The use of the number attribute will be discussed in a minute.
It won't make sense describing its usage until and unless we use it. There is another
attribute with a total_number_of_birds signature, which represents the number of
Angry Birds that must be available for the player to project with the catapult. Now, let's
build the first level for the game:

def build_0(self):

 pig_no_1 = RoundPig(980, 100, self.space)
 pig_no_2 = RoundPig(985, 182, self.space)
 self.pigs.append(pig_no_1)
 self.pigs.append(pig_no_2)
 pos = (950, 80)
 self.columns.append(Polygon(pos, 20, 85, self.space))
 pos = (1010, 80)
 self.columns.append(Polygon(pos, 20, 85, self.space))
 pos = (980, 150)
 self.beams.append(Polygon(pos, 85, 20, self.space))
 pos = (950, 200)
 self.columns.append(Polygon(pos, 20, 85, self.space))
 pos = (1010, 200)
 self.columns.append(Polygon(pos, 20, 85, self.space))
 pos = (980, 240)
 self.beams.append(Polygon(pos, 85, 20, self.space))
 self.total_number_of_birds = 4

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[441]

In the preceding code, we have arranged beam and column in a window fashion (one layer
on top of another). We also added two pigs inside the structure. To create such beams and
columns, we have to create instances of the Polygon class (which we made in the Creating
the Polygon class section). Although the code that's written inside the function seems
lengthy, no novel logic is created here. We have just instantiated different beams and
columns and provided a position to render. The value of pos is a tuple that represents the
position in the space where the polygon should be placed.

Now, let's create another method inside the same level.py file and call this level 0.
Remember that this is the method of the Level class:

def load_level(self):
 try:
 level_name = "build_"+str(self.number)
 getattr(self, level_name)()
 except AttributeError:
 self.number = 0
 level_name = "build_"+str(self.number)
 getattr(self, level_name)()

Finally, here is the application of the number attribute that we initialized while creating the
constructor of the class. This load_level() method will perform string concatenation to
build the function name that represents level_levelNumber. For example, the
highlighted part of the preceding code will yield build_name = "build_0"
[initially number = 0] and getattr(self, "build_0)(), which is equivalent to
build_0().

get_attr(object, p) is equivalent to object.p. This method is
important if you feel that there might be an Attribute Error exception. For
example, get_attr(object, p, 10) will return 10 if there is an
exception. Thus, this method can be used to provide a default value.
Attribute Error occurs when an attribute with the given name doesn't exist
in the object.

Since this load_level() method should be called explicitly from a file, we will do this in
the main.py file. Open your main.py file and then continue with the code from where we
left off. Write the following code to call the recently made load_level() method:

#write it in main.py file
from level import Level
level = Level(total_pig, columns, beams, space)
level.number = 0
level.load_level()

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[442]

In the preceding line of code, we import the Level class from the level module. We create
an instance of the Level class by passing a list of pig, columns, beams, and space.
Similarly, we assign an initial value of number equal to 0, which means that the beginning
of the build_0 method should be called by the load_level() method. You can increment
the value of number by adding more difficult levels.

Now that we've loaded the level into our main.py file, it's high time to handle user action
events. We will handle mouse events using Pygame in the next section.

Handling user events
In this section, we are going to handle user events. This won't be new to you. Ever
since Chapter 5, Learning About Curses by Building a Snake Game, we have been handling
user action events in various cases. While building the snake game, we handled keyboard
events, and for Flappy Bird, we handled mouse tapping events. While handling those
events, we found that the easiest and most universal way of doing this was by using
the pygame module; it was just one line of code where we had to listen for the incoming
actions and handle them accordingly.

But in the case of Angry Birds, handling mouse actions is a little bit tricky. Problems arise
when we take the mouse action beyond the scope of space and try to perform a sling action.
This must not be allowed, and so we have to check whether or not the mouse action should
be associated with the sling action (the previously created function that pulls the rope of the
catapult). Thus, let's learn how to handle the input events of the user by writing the
following code:

while running:
 # handle Input events
 for eachEvent in Pygame.event.get():
 if eachEvent.type == Pygame.QUIT:
 running = False
 elif eachEvent.type == Pygame.KEYDOWN and event.key ==
 Pygame.K_ESCAPE:
 running = False

Now that we've checked for QUIT action events, we can get to mouse event handling (when
the user uses the mouse to project the Angry Bird from the catapult):

if (Pygame.mouse.get_pressed()[0] and mouse_x_pos > 100 and
 mouse_x_pos < 250 and mouse_y_pos > 370 and mouse_y_pos < 550):
 mouse_pressed = True
if (event.type == Pygame.MOUSEBUTTONUP and
 event.button == 1 and mouse_pressed):

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[443]

 # Release new bird
 mouse_pressed = False
 if level.number_of_birds > 0:
 level.number_of_birds -= 1
 time_of_release = time.time()*1000
 x_initial = 154
 y_initial = 156

In the preceding code, we start off by checking whether the mouse action is within scope.
We check whether the mouse click is within the scope of space of (mouse_x_pos > 100
and mouse_x_pos < 250 and mouse_y_pos > 370 and mouse_y_pos < 550). If it
is, we will assign a Boolean of True to the mouse_pressed variable.

Next, we will perform the action to release the bird from the catapult or sling. After
releasing each bird, we check whether any other birds are left or not. If there is, we decrease
the number of birds by one and assign the value of x-initial, y-initial = 154, 156, respectively.
These values are the center coordinates of the sling when the sling is at rest. Now, when the
sling is stretched, there will be a new value, which we will call mouse-x-pos, mouse-y-
pos. Remember that we don't have to calculate the distance from (mouse_x_pos,
mouse_y_pos) to (x-initial, y-initial) because we did this while creating
the sling_action function. Thus, we will use the mouse_distance we calculated there to
perform the bird release action:

#add code after x-initial and y-initial declaration
if mouse_distance > rope_length:
 mouse_distance = rope_length
if mouse_x_pos < initial_x_sling+5:
 bird = RoundBird(mouse_distance, angle, x_initial, y_initial,
 space_obj)
 total_birds.append(bird)
else:
 bird = RoundBird(-mouse_distance, angle, x_initial, y_initial,
 space_obj)
 total_birds.append(bird)
if level.number_of_birds == 0:
 game_finish_time = time.time()

In the preceding code, we are adding the current Bird object that's attached to the rope to
the birds list. This list will provide us with information about the current bird distance from
the center of the catapult, the angle of impulse, and the space object. Now that we have
handled the input actions of the player, let's blit every object into the space with the
following code:

mouse_x_pos, mouse_y_pos = Pygame.mouse.get_pos()
Blit the background image

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[444]

screen.fill((130, 200, 100))
screen.blit(background_image, (0, -50))

Blitting the first part of sling image
rect = Pygame.Rect(50, 0, 70, 220)
screen.blit(sling_image, (138, 420), rect)

Blit the remaining number of angry bird
if level.total_number_of_birds > 0:
 for i in range(level.total_number_of_birds-1):
 x = 100 - (i*35)
 screen.blit(redbird, (x, 508))

In the preceding code, we got the current mouse position (the position in the space for the
mouse action). Then, we drew the background with the background image that we loaded
previously. Similarly, we blit the sling image into the screen. Now, we have to blit the
Angry Birds that are waiting in line to be placed in the sling, as shown in the following
screenshot:

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[445]

Since total_number_of_birds is an attribute that's defined inside the Level class, we
have to use it by creating an instance of it. Until and unless the number of birds is greater
than 0, we create a list representing the number of birds. In the for loop code, we have to
decrease the number of birds by 1 because one bird will be in the sling. After getting the
actual number of remaining birds, we have to get the position to render these birds into the
space. Although the y-position (height) is constant, that is, 508 units, the x-position is
calculated by providing a space between each of them by i*35 units, where i represents
the iterables that were created by the for loop. For example, for bird number 2, the position
in the space will be (2*35, 508).

Now, we will call the sling action. When the mouse is pressed within the scope and the bird
possesses some angle of impulse in the space, we have to call the sling_action method
using the following code:

Draw sling action checking user input
if mouse_pressed and level.total_number_of_birds > 0:
 sling_action()
else: #blit bird when there is no stretch of sling
 if time.time()*1000 - time_of_release > 300 and
 level.number_of_birds > 0:
 screen.blit(redbird, (130, 426))

If we have mouse_pressed and the number of birds is greater than 0, we perform the sling
action; otherwise, we just blit the bird in the position (130, 426). In the else part of the
code, we do not perform a sling action. The way to determine whether the sling action must
be performed or not is by observing whether the mouse has been pressed or not (released)
and the time_of_release after the release. If the current time has a significant difference,
we do not perform the sling action. If there are differences of a significant amount, that
means the bird hasn't been released. In order to release the bird, the current time must be
equal to time_of_release. This is the case when we blit redbird in the sling just before
release.

After performing sling_action, we can track the number of birds and pigs that must be
removed from the scope with the following code:

removed_bird_after_sling = []
removed_pigs_after_sling = []
Draw total_birds
for bird in total_birds:
 if bird.shape.body.position.y < 0:
 removed_bird_after_sling.append(bird)
 pos = convert_to_pygame(bird.shape.body.position)
 x_pos, y_pos = pos
 x_pos -= 22 #Pygame compatible

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[446]

 y_pos -= 20
 screen.blit(redbird, (x_pos, y_pos)) #blit bird
 Pygame.draw.circle(screen, BLUE,
 pos, int(bird.shape.radius), 2) #creates blue circle
 at the edge of bird

In the highlighted part of the code, we check whether the bird hits the ground. If it does,
that means we have to append the bird to the removed_bird_after_sling list. Similarly,
we get the Pygame coordinates for the bird character and blit it in the (x_pos, y_pos)
position. A blue circle is made around the bird after the impact.

Similarly, we have to remove birds and pigs after impact. Write the following code to
implement this:

Remove total_birds and total_pig
for bird in removed_bird_after_sling:
 space_obj.remove(bird.shape, bird.shape.body)
 total_birds.remove(bird)
for pig in removed_pigs_after_sling:
 space_obj.remove(pig.shape, pig.shape.body)
 total_pig.remove(pig)

Similarly, let's draw pigs into the space:

Draw total_pig
for Each_pig in total_pig:

 pig = Each_pig.shape
 if pig.body.position.y < 0: #when pig hits ground or fall to the ground
 removed_pigs_after_sling.append(pig)

 pos = convert_to_pygame(pig.body.position) #pos is a tuple
 x_pos, y_pos = pos

 angle_degrees = math.degrees(pig.body.angle)
 pig_rotated_img = Pygame.transform.rotate(pig_image, angle_degrees)
 #small random rotation within wooden frame
 width,height = pig_rotated_img.get_size()
 x_pos -= width*0.5
 y_pos -= height*0.5
 screen.blit(pig_rotated_img, (x_pos, y_pos))
 Pygame.draw.circle(screen, BLUE, pos, int(pig.radius), 2)

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[447]

After the pig hits the ground, we have to add it to the removed_pigs_after_sling list.
We get the position of the body using Pygame coordinates. Similarly, we perform a
transformation on the pig objects. The rotation transformation is within 0.5 units. This auto
transformation will make the pig move smoothly in the space without remaining static. If
you change the value of rotation to more than 2 units, the pig's position will be drastically
deteriorated.

Two primary game entities have already been rendered into the space; that is, pig and bird.
Now, it's time to add some other game entities to the game screen; that is, beam and
column. We previously made a beam and column list to track the number of beams and
columns. Let's use it to render structures in the game:

Draw columns and Beams
#beam and column are object of Poly class
for column in columns:
 column.draw_poly('columns', screen)
for beam in beams:
 beam.draw_poly('beams', screen)

Now, it's time to update the physics: how fast the bird should travel after the sling action,
and how many updates per frame are to be established for the stability of the game. First of
all, let's define the time step's length:

time_step_change = 1.0/50.0/2.

In the previously defined time interval (dt or time step interval), observe that we have
moved the simulation of space forward 50 times with a dt of 2 units. If you increase the
value of dt from 2 to 4 or more, the simulation will be slower. According to pymunk's
official documentation: Performing more steps by using smaller dt creates a stable simulation.
Here, the value 50 represents the steps defined and a dt of 2 creates a movement of a total
of 100 units forward into the space. The forward simulation in the space represents the
speed at which the Angry Bird is projected toward the wooden structure.

Now, using this time interval, let's add these steps to the simulation:

#time_step_change = 1.0/50.0/2.
for x in range(2):
 space_obj.step(time_step_change) # This causes two updates for frame

Blitting second part of the sling
rect_for_sling = Pygame.Rect(0, 0, 60, 200)
screen.blit(sling_image, (120, 420), rect_for_sling)

Pygame.display.flip() #updating the game objects
clock.tick(50)

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[448]

The step method, which is called using the space object, will update the space for the
given time step interval (dt or time step interval). Refer to http:/ / www.pymunk. org/ en/
latest/_modules/ pymunk/ space. html to find out more about the step method.

Finally, let's run our game. Click on the Run tab and then click on the main.py file. The
following is the result of running the Angry Birds game:

Finally, our game is complete. You can test the different physical attributes we defined for
the game entities by changing their values and observing their results. If I were you, I
would probably change the step size value of dt and check how it affects the simulation of
objects. Obviously, changing the value of dt from lower to higher would make the speed of
objects slower after sling_action is triggered. For example, changing the value of step
size (dt = 4), you would experience the Angry Bird going slower than before. This is due
to an increase in the simulation forward movement by extra units.

Although our game is perfectly fine to play and test with, there are a few tweaks that can be
implemented to make our game even more appealing. For example, we can add sound
effects to the game and add more levels. We'll go over this in the next section.

http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[449]

Possible modifications
When testing our game, it might be the case that there is not much space for further
modifications. However, I came up with an important one: adding soundFx to the game.
To provide an active experience to the user while they're communicating with the virtual
world, sound effects play an important role. With this consideration, Python's Pygame
module provides an interface so that we can add a soundtrack to the game.

First of all, to add sound effects to the game, we need to load music into the game. Check
out this book's resource folder on GitHub: https:/ / github. com/ PacktPublishing/
Learning-Python- by- building- games/ tree/ master/ Chapter15/ res. Then, check out the
sounds folder, which will contain music files that can be added for the game project. I will
use the angry-birds.ogg file (you can use any file you like—you can even download one
off the internet).

The following code will load the music file into your Python project. Make sure the code is
written inside the main.py file:

def load_music():
 """Function that will load the music"""
 song_name = '../res/sounds/angry-birds.ogg'
 Pygame.mixer.music.load(song_name)
 Pygame.mixer.music.play(-1)

In the preceding function definition, we started by defining the path for the music file and
stored it as a string in the song_name variable. Now, to load the playback file, we can use
the mixer.music class, which has a predefined load() method that will load the song into
the Python project. To play the music that we have just loaded, we will call the play()
method. The play method takes two arguments: loop and start. Both of these arguments are
optional. The loop value will be -1, which means the loaded music must be played
continuously. If you want to play music continuously, for example, six times, you can call
the play method with a loop = 5 argument on it. For example, play(5) will make the music
play 6 times, continuously.

Now, let's call the aforementioned function within the same main.py file. You can call it as
follows:

load_music()

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter15/res

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[450]

That's it if we want to load music into our Python game. Now, you can play your game and
enjoy the soundtrack.

The next modification we can make is adding different levels. Go back to the Python project
and open the level.py file. It will contain the Level class, along with a single function
called build_0. You can add as many levels as you want. In this section, we will add
another level for the game and call it build_1. The following function should be written
inside the Level class of the level.py file:

def build_1(self):
 """Function that will render level 1"""
 obj_pig = RoundPig(1000, 100, self.space)
 self.pigs.append(obj_pig)
 pos = (900, 80)
 self.columns.append(Polygon(pos, 20, 85, self.space))
 pos = (850, 80)
 self.columns.append(Polygon(pos, 20, 85, self.space))
 pos = (850, 150)
 self.columns.append(Polygon(pos, 20, 85, self.space))
 pos = (1050, 150)
 self.columns.append(Polygon(pos, 20, 85, self.space))
 pos = (1105, 210)
 self.beams.append(Polygon(pos, 85, 20, self.space))
 self.total_number_of_birds = 4 #reduce the number to
 make game more competitive

In the preceding code, we have defined a function that will create a wooden structure.
Observe the code closely – we have created instances of the Pig and Polygon classes. The
pig character was created at the position (1000, 10) in the space. Similarly, the three
columns were created one after another and aligned vertically. The pos local variable
denotes the position in the space where these game entities must be rendered. To create any
random structure with the help of these game entities, you can test the different values for
the pos variables. However, make sure that the position you defined is within the space
and at the left-hand side corner of the space. For example, giving a position of (50 , 150)
would render any game entities closer to the catapult and would not make the game
competitive. Therefore, while building such structures, make sure that the entities are
drawn far away from the catapult.

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[451]

Now, when you run the program with the second level, you will see the following output:

You can add as many levels as you want. All you need is a bit of creativity for making game
levels—forming beam and column structures that would be hard to break by the player. If
you want to add further modifications, you could add a score to the game. You could
assign some values to the game entities (pig, beam, and column) and whenever the bird
collides with those game entities, you could add that value to the player's score. We
implemented similar logic in Chapter 12, Learning About Character Animation, Collision, and
Movement.

Finally, our game is playable, and you can test the sound effects and physical attributes of
each game entity. You can test how the elasticity property has provided real-world
simulation for the surfaces of the game. You can also test the simulation speed of the space.
To learn more about the simulation step and step time interval, check out the online
resources that are available at http:/ /www. pymunk. org/ en/ latest/ _modules/ pymunk/
space.html.

I had a lot of fun writing this chapter, along with building this game. I hope it was the same
for you too. In the next chapter, we will learn about other important skills that every
Python game developer must possess—adding an artificial character to the game. This
character will play and compete with the human player in the same game. To be precise,
we will be creating a human-like player in the game and adding intelligence to it, similar to
what we humans have. The next chapter will be an interesting and edifying one. Let's get to
it!

http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html
http://www.pymunk.org/en/latest/_modules/pymunk/space.html

Getting to Know Pymunk by Building an Angry Birds Game Chapter 15

[452]

Summary
In this chapter, we explored how we can create Pythonic 2D physics simulation spaces by
adding real-world physical attributes to game characters and the environment. We began
by learning about the fundamentals of various pymunk modules, such as vec2d, sub-
modules, different classes, and attributes that will build 2D rigid bodies. These bodies have
the ability to simulate real-world object characteristics such as mass, inertia, motion, and
elasticity. Using these characteristics, we were able to provide unique features to each of the
game entities; that is, bird, pig, beam, and column.

The main aim of this chapter was to make you understand how to use the pymunk module
effectively to create complex games such as Angry Birds. Games such as Angry Birds are
considered intricate—not because it contains a variety of entities, but because they have to
simulate real-world physical attributes. Since pymunk contains different classes to address
such an environment, we used it to create a game environment, surfaces, and game entities
such as Angry Birds, pigs, and polygons. In this chapter, you also learned how to handle
collisions and movements between more than two game characters. So far, we've learned
how to create a handler to address collisions between two game objects (between the snake
and the boundary and between the flappy bird and the vertical pipes), but this chapter
helped you understand how easily a collision handler can be created to address collisions
between multiple game entities.

The next chapter will be a fun and challenging one. We will be learning about how to create
non-player characters (NPCs)—an artificial player who is smart enough to compete with
human players. We will create these NPCs by defining the moves and actions that human
players would perform in the same instances. For example, when a human player sees a
wall in front of them, they will make a move to omit a collision. A similar strategy will also
be fed into the artificial player so that they can make smart moves and be able to compete
with human players effectively.

16
Learning Game AI - Building a

Bot to Play
–A game developer aims to create a game that is challenging and fun. Despite many
attempts, many programmers have failed to do this. The main reason for the failure of
games, is that human players love to be challenged by an artificial player in the gameplay.
The result of the creation of such artificial players is generally referred to as a non-player
character (NPC), or an artificial player. While the creation of such a player is fun (only for
the programmer), it doesn't add any value to the game until and unless we inject some
intelligence into that artificial player. The process of creating such NPCs and making them
interact with human players with some degree of awareness and intelligence (closely
comparable to human intelligence) is called artificial intelligence (AI).

In this chapter, we will create an intelligent system, which will be able to compete with a
human player. The system will be smart enough to make moves similar to the moves of the
human player. The system will be able to check collisions on its own, check the different
possible moves, and make the one that is the most beneficial. Which move is beneficial will
be highly dependent upon the target. The target of the artificial player will be defined
explicitly by the programmer, and will be based on that target—a computer player will be
able to make a smart move. For example, in the Snake AI game, the target of the computer
player is to make a move that will lead them closer to the snake food, and in first-person
shooter (FPS) games, the target of an artificial player is to approach the human player and
to start to fire at the human player.

By the end of this chapter, you will have learned how to create an artificial system by
defining machine states—ways to define what an artificial player will do in any instance.
Similarly, we will take the example of Snake AI in order to illustrate how intelligence can
be added to a computer player. We will create different entities for the game characters: the
player, the computer, and the frog (snake food), and explore the power of object-oriented
and modular programming. In this chapter, you will mostly find stuff that we have already
covered and learn how to use it efficiently in order to make productive games.

Learning Game AI - Building a Bot to Play Chapter 16

[454]

We will cover the following topics in this chapter:

Understanding AI
Starting Snake AI
Adding a computer player
Adding intelligence to a computer player
Building the game and frog entities
Building the surface renderer and handler
Possible modifications

Technical requirements
The following list of requirements must be acquired in order to work through this chapter
effectively:

The Pygame editor (IDLE)—version 3.5+ is recommended
The PyCharm IDE (refer to Chapter 1, Getting to Know Python – Setting Up Python
and the Editor, for the installation procedure)
Assets (snake and frog .png files)—available at the GitHub link: https:/ /
github.com/ PacktPublishing/ Learning- Python- by-building- games/ tree/
master/Chapter16

Check out the following video to see the code in action:

http://bit.ly/2n79HSP

Understanding AI
With the advent of numerous algorithms and models, today's game developers make use of
them in order to create artificial characters, and then make them compete with human
players. Playing a game passively, and competing with oneself, is not fun in real-world
games anymore, thus, programmers intentionally set several difficulties and states, so that
games are more challenging and fun. Among the several methods that programmers use,
one of the best, and most popular, is making a computer compete with human beings.
Sounds fun and complicated? The question that begs is how is it possible to create such
algorithms, which will be able to compete with intelligent human beings. The answer is
simple. We, as programmers, will define several smart moves, which will allow the
computer to perform in a similar way to how we humans would respond to such situations.

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
http://bit.ly/2n79HSP
http://bit.ly/2n79HSP
http://bit.ly/2n79HSP
http://bit.ly/2n79HSP
http://bit.ly/2n79HSP
http://bit.ly/2n79HSP
http://bit.ly/2n79HSP
http://bit.ly/2n79HSP
http://bit.ly/2n79HSP

Learning Game AI - Building a Bot to Play Chapter 16

[455]

While playing games, human beings are smart enough to protect their game characters
from obstacles and defeat. Thus, in this chapter, our main aim is to provide such skills for
NPCs. We will use the previously made Snake game (Chapter 11, Outdo Turtle – Snake
Game UI with Pygame), refine it a little bit, and add a computer player to it, which will have
some degree of awareness about where the food (things that the snake eats) is, and where
obstacles are. Speaking literally, we are going to define different moves for our computer
character, so that it will have a life of its own.

First of all, recall Chapter 4, Data Structures and Functions. In that chapter, we created a
simple tic-tac-toe game, and embedded a simple intelligent algorithm in it. In that tic-tac-toe
game, we were able to make a human player compete with the computer. We started by
defining the models, handled the user events, and then finally added different moves in
order for the computer to play on its own. We also tested the game, and the computer was
able to beat the player in some instances. Thus, the basic concepts of AI were already
learned by us back in Chapter 4, Data Structures and Functions. Nevertheless, in this
chapter, we are going to dig deeper down into the world of AI, and uncover other cool
things about intelligent algorithms, which can be added into our previously made Snake
game.

To know how an AI algorithm works, we have to have a fair amount of knowledge of state
machine charts. A state machine chart (originating generally from the theory of computation)
defines what an NPC must do in different instances. We will learn about state machine
charts, or animation charts, in the next topic.

Implementing states
The number of states are different for each game, and is highly dependent upon the
complexity of the game. For instance, in a game such as an FPS, the NPCs, or enemies, must
have different states: seeking the human player randomly, spawning a number of enemies
randomly within player positions, shooting the human player, and many more. The
relation between each of these states is defined by the state machine diagram. This diagram
(not necessarily pictorial) represents the change from one state to another. For example, at
what point should the enemy fire at the human player? At what distance should a random
number of enemies be spawned?

Learning Game AI - Building a Bot to Play Chapter 16

[456]

The following diagram represents different states, and when such states must be changed
from one to another:

While observing the preceding diagram, you might not find it foreign. We have done
similar things before, in the case of adding an intelligent computer player to the tic-tac-toe
game. In the figure, we start with random enemy movement, since we don't want each and
every enemy to be rendered in the same place. Similarly, after enemies are rendered, they
are allowed to approach the human player. There is no restriction on the movement of
enemies. Thus, a simple conditional check between the position of the enemy and the
human player can be implemented, in order to perform vectored movements (Chapter 10,
Upgrading the Snake Game with Turtle) for the enemies. Similarly, after each position change,
the position of the enemies is checked against the human player's position, and if they are
near to each other, then the enemies can begin to fire toward the human player.

Learning Game AI - Building a Bot to Play Chapter 16

[457]

Between every state, there is a check on the steps, which make sure that the computer
player is intelligent enough to compete with the human player. We can observe the
following pseudo code, which represents the preceding machine states:

#pseudocode for random movement
state.player_movement():
 if state.hits_boundary:
 state.change_movement()

In the preceding pseudo code, each state defines the code, which must be executed in order
to perform check operations such as player_movement, hits_boundary, and
change_movements. Furthermore, in the case of approaching the human player, the
pseudo code looks something like the following:

#pseudocode for check if human player and computer are near
if state.player == "explore":
 if human(x, y) == computer(x, y):
 state.fire_player()
 else:
 state.player_movement()

The preceding pseudo code is not the actual code, but it provides us with a blueprint about
what we can expect AI to do for us. In the next topic, we will see how we can use our
knowledge of pseudo code, and state machines, to create different entities for implementing
AI in our snake game.

Starting snake AI
As discussed in the case of FPS, similar machine states can be used in the case of snake AI.
The two important states that need to be considered for our computer player in the Snake
AI game are as follows:

What movements are valid for the computer player?
What are the crucial stages at which changes from one state to another occur?

With regard to the preceding points, the first one indicates that whenever the computer
player approaches the boundary line or wall, the movements of the computer player must
be changed (making sure it remains within the boundary line), so that the computer player
can compete with the human player. Secondly, we have to define a target for the computer
snake player. In the case of FPS, as stated before, the main target for the computer enemy, is
to find a human player and perform a shooting operation, but, in snake AI, the computer
player has to approach the food in the game. The real competition in snake AI, between, the
human and the computer player, is who can eat the food faster.

Learning Game AI - Building a Bot to Play Chapter 16

[458]

Now that we are aware of the actions that must be defined for the NPC (computer player),
we can define the entities for the game. Similar to what we did in Chapter 11, Outdo Turtle
– Snake Game UI with Pygame, our Snake AI has three major entities, and they are listed as
follows:

Class Player: It represents the human player, and all actions are related to the
human—event handling, rendering, and movements.
Class Computer: It represents the computer player (a form of AI). It performs
actions such as updating the position and updating the target.
Class Frog: It represents the food for the game. The aim of the competition
between the human and the computer is approach to the frog as fast as possible.

Besides these three major game entities, there are two remaining game entities that define
the peripheral tasks, and they are as follows:

Class Collision: It represents the class that will have a method in order to
check whether any entity (the player or the computer) has collided with the
boundary, or not.
Class App: It represents the class that will render the display screen and check
whether any entity has eaten the frog or not.

Now, with the help of these entity blueprints, we can start to code. We will start by adding
a Player class, along with the method that can render the player and handle its movement.
Open your PyCharm editor, create a new project folder with a new Python file in it, and
add the following code to it:

from pygame.locals import *
from random import randint
import pygame
import time
from operator import *

In the preceding code, every module will be familiar to you, except operator. When
writing programs (especially when checking for collisions between the game entity and the
boundary wall), it is extremely helpful to use mathematical functions in order to perform
operations, rather than using mathematical operators directly. For instance, if you want to
check if value >= 2, we can easily do the same operations by using the functions that
are defined inside the operator module. In this case, we can call the ge method, which
represents greater than equal to: if ge(value, 2). Similar to the ge method, we can call
different methods such as these:

Learning Game AI - Building a Bot to Play Chapter 16

[459]

gt(a, b): to check whether a > b—returns True if a > b; otherwise, False
lt(a, b): to check whether a < b—returns True if a < b; otherwise, False
le(a, b): to check whether a <= b—returns True if a <= b; otherwise, False
eq(a, b): to check whether a == b—returns True if a == b; otherwise, False

Now that you have imported the necessary modules, let's get to the fun stuff, by creating
the Player class:

class Player:
 x = [0] #x-position
 y = [0] #y-position
 size = 44 #step size must be same for Player, Computer, Food
 direction = 0 #to track which direction snake is moving
 length = 3 #initial length of snake

 MaxMoveAllow = 2
 updateMove = 0

 def __init__(self, length):
 self.length = length
 for i in range(0, 1800):
 self.x.append(-100)
 self.y.append(-100)

 # at first rendering no collision
 self.x[0] = 1 * 44
 self.x[0] = 2 * 44

In the preceding code, we started defining class attributes: (x, y) represents the initial snake
position, size represents the step size of the snake block, direction (value ranges from 0
to 4) represents the current direction in which the snake is moving, and length is the
original length of the snake. The value of the attribute named direction will range from 0
to 3, where 0 represents that the snake is moving right, 1 represents that the snake is
moving left, and similarly, 2 and 3 are for the up and down directions, respectively.

The next two class attributes are MaxMoveAllow and update. These two attributes will be
used in the function named updateMove (shown in the following code), and they make
sure that the player is not allowed to make a movement of the snake more than twice. It
may well be case that the player might enter more than two arrow keys at once, but if all
the effects or arrow keys are reflected at once, the snake will move incongruously. To omit
this, we have defined the maxMoveAllowed variable, in order to ensure that, at most, two
arrow key presses are handled at once.

Learning Game AI - Building a Bot to Play Chapter 16

[460]

Similarly, we have defined the constructor inside the class, which performs the
initialization of the class attributes. It is not limited to that—after rendering the snake
player in a random position (done by the for loop), we have written a statement that
ensures that there are no collisions at the beginning of the game (the highlighted part). The
code implies that the position between each block of the snake and the other blocks must be
three units apart. If you change the value of self.x[0] = 2*44 to self.x[0] = 1
*44, then a collision will happen between the snake head and its. Thus, to ensure that there
is no collision at the beginning (before the players start to play), we have to provide a
specific positional gap between the blocks.

Now, let's use the MaxMoveAllow and updateMove attributes to create the update
function:

def update(self):

 self.updateMove = self.updateMove + 1
 if gt(self.updateMove, self.MaxAllowedMove):

 # update previous to new position
 for i in range(self.length - 1, 0, -1):
 self.x[i] = self.x[i - 1]
 self.y[i] = self.y[i - 1]

 # updating the position of snake by size of block (44)
 if self.direction == 0:
 self.x[0] = self.x[0] + self.size
 if self.direction == 1:
 self.x[0] = self.x[0] - self.size
 if self.direction == 2:
 self.y[0] = self.y[0] - self.size
 if self.direction == 3:
 self.y[0] = self.y[0] + self.size

 self.updateMove = 0

The preceding code will not be foreign to you. You have seen such logic many times before
(in Chapter 6, Object-Oriented Programming, and in Chapter 11, Outdo Turtle – Snake Game
UI with Pygame, while handling the snake position). To recapitulate, the preceding line of
code changes the current position of the human player to a new one, based on which arrow
key is pressed. You can see in the code that we have not handled any arrow keys (we will
do this in the App class afterward), but we have created an attribute named direction,
which can track which key has been pressed. If direction is equal to 0, it means that the
right arrow key has been pressed, thus, we increase the x-position with the block size.

Learning Game AI - Building a Bot to Play Chapter 16

[461]

Similarly, if direction is 1, we change the x positional value, by decrementing it with a
block size of 44, which means that the snake will move toward the negative x-axis. (This
information is not new; a detailed discussion can be found in Chapter 9, Data Model
Implementation.)

Now, in order to make sure that each direction attribute is associated with a value
ranging from 0 to 3; we will create functions for each of them, as follows:

def moveRight(self):
 self.direction = 0

def moveLeft(self):
 self.direction = 1

def moveUp(self):
 self.direction = 2

def moveDown(self):
 self.direction = 3

def draw(self, surface, image):
 for item in range(0, self.length):
 surface.blit(image, (self.x[item], self.y[item]))

Observing the preceding code, you might have noticed the importance of the direction
attribute. Each movement has an associated value that can be used when handling user
events with the pygame module (we will discuss this later in the chapter). But, for now, just
have a look at the draw function, which takes the arguments of surface and image of the
snake (human player), and blits them accordingly. You might have a question such as:
instead of using the direction attribute to handle user events, why don't we use a
traditional approach (which we have been doing since Chapter 8, Turtle Class – Drawing on
the Screen)? The question is valid, and obviously you can do it in that way, too, but there are
major drawbacks to implementing such code in the case of Snake AI. Since Snake AI has
two main players or game entities (the human being and the computer), each of them must
have movements that are independent of one another. Thus, using traditional approaches
for handling events differently for each entity would be both tedious and lengthy. A better
option would be to use one attribute to track which key has been pressed, and handle it
uniquely for each player, which we are going to do, in this case, using the direction
attribute.

Now that we are done with the main human player, we will reach out to the computer
player. We will start writing code for the Computers class, which will handle the moves
that the computer makes, in the next topic.

Learning Game AI - Building a Bot to Play Chapter 16

[462]

Adding a computer player
Finally, we are in the main part of our chapter—the meaty part—it is easier to add the
computer snake character into the game. As with the appearance, the movement handling
technique of the computer must resemble the human player. We can reuse the code that
was written inside the Player class. The only the thing that must differ from the Player
class is the target. In the case of the human player, the target is not defined, since the target
of movement is implemented by the player's mind. For example, the human player can
play the game effectively by controlling its snake movement in the direction of the snake
food. If the snake food is on the left, then there is no way that the human player will press
the right arrow key and move the snake in the opposite direction. But, the computer is not
smart enough to think of the best way to win the game on its own. Thus, we have to
explicitly specify the target for the computer player. This technique of specifying the target
for an individual player/system will result in an intelligent system, and its application
ranges widely—from games to robotics.

For now, let's replicate the code that was written inside the Player class and add it to the
new class, which is named Computer. The following code represents the creation of the
Computer class, along with its constructor:

class Computer:
 x = [0]
 y = [0]
 size = 44 #size of each block of snake
 direction = 0
 length = 3

 MaxAllowedMove = 2
 updateMove = 0

 def __init__(self, length):
 self.length = length
 for item in range(0, 1800):
 self.x.append(-100)
 self.y.append(-100)

 # making sure no collision with player
 self.x[0] = 1 * 44
 self.y[0] = 4 * 44

Learning Game AI - Building a Bot to Play Chapter 16

[463]

Similar to the Player class, it has four attributes, with direction specified with an initial
value of 0, which means that before the computer actually starts to play, the snake will be
automatically moving in the right (positive x-axis) direction. Furthermore, everything that
is initialized within the constructor is similar to the Player class, except the highlighted
part of the code. The last line of the code has y[0], which started from 4 *44. Recalling the
same part of code in the case of the human player, it was 2*44, which represents the
column position. Writing this code, we are implying that there must not be a collision
between the human player snake and the computer player snake at the beginning of the
game. But, the value of x[0] is the same, because we want each of the snakes to start within
the same row, but not in the same column. By doing this, we omit their collision, and each
player's snake will be rendered properly.

Similarly, we have to add the update method, which will reflect the changes in the x, y
position of the computer snake, based on the direction attribute. Th following code
represents the update method, which will make sure that the snake computer is limited to
using a combination of only two arrow key movements at one time:

def update(self):

 self.updateMove = self.updateMove + 1
 if gt(self.updateMove, self.MaxAllowedMove):

 # Previous position changes one by one
 for i in range(self.length - 1, 0, -1):
 self.x[i] = self.x[i - 1]
 self.y[i] = self.y[i - 1]

 # head position change
 if self.direction == 0:
 self.x[0] = self.x[0] + self.size
 if self.direction == 1:
 self.x[0] = self.x[0] - self.size
 if self.direction == 2:
 self.y[0] = self.y[0] - self.size
 if self.direction == 3:
 self.y[0] = self.y[0] + self.size

 self.updateMove = 0

Learning Game AI - Building a Bot to Play Chapter 16

[464]

The preceding code is similar to the Player class, so I won't bother explaining it. You can
refer to the update function of the Player class to see how this method works. Similar to
the Player class, we have to add four methods that will change value of the direction
variable accordingly:

def moveRight(self):
 self.direction = 0

def moveLeft(self):
 self.direction = 1

def moveUp(self):
 self.direction = 2

def moveDown(self):
 self.direction = 3

The code that is written will be able to update the direction of the computer player, but it is
not enough to make a smart move. Let's say, if the snake food is on the right-hand side, the
code that has been written up till now won't be able to track the position of the food, and
thus, the computer snake might go to the opposite place. Thus, we have to explicitly specify
that the computer player will move in such a direction, which is close to the position of the
snake food. We will cover this in the next topic.

Adding intelligence to a computer player
Up till now, two game entities have been defined, and both of them handle the players'
movements. Unlike the Player class, another game entity (the computer player) is not
going to decide its next move on its own. Thus, we have to explicitly enjoin the computer
player to make a move that would take the snake closer to the snake food. By doing this,
there will be immense competition between the computer player and the human player.
This looks quite complex to implement; however, the idea still remains the same, as
discussed earlier, along with the machine state diagram.

Going through the machine state diagram, the AI player must accommodate two things:

Check the position of the snake food, and make a move in order to get closer to it.
Check the current position of the snake, and make sure it that doesn't hit the
boundary wall.

Learning Game AI - Building a Bot to Play Chapter 16

[465]

The first step will be implemented as follows:

def target(self, food_x, food_y):
 if gt(self.x[0] , food_x):
 self.moveLeft()

 if lt(self.x[0] , food_x):
 self.moveRight()

 if self.x[0] == food_x:
 if lt(self.y[0] , food_y):
 self.moveDown()

 if gt(self.y[0] , food_y):
 self.moveUp()

def draw(self, surface, image):
 for item in range(0, self.length):
 surface.blit(image, (self.x[item], self.y[item]))

In the preceding line of code, we called different previously made methods, such as
moveLeft(), moveRight(), and so on. These methods will cause the snake to move as
indicated by the direction attribute value. The target() method takes two arguments:
food_x and food_y, which compositely refer to the position of the snake food. The
operators, gt and lt, are used to perform comparison operations with the snake x-head
and y-head positions. For instance, if the snake food is on the negative x-axis, then a
comparison is made between the x-position of the snake and the x-position of the food
(gt(self.x[0], food_x)). It is obvious that food_x is on the negative x-axis, which
means that the snake x-position is greater, thus, moveLeft() is called. As the signature of
the method suggests, we are going to make a turn, and move the computer player snake
toward the negative x-axis. Similar comparisons are done for each (x, y) position of the
food, and each time a different method is called, so that we can lead the computer player
toward the snake food.

Now that we have added the simple computer player, which is able to pass through
multiple obstacles, let's add the Frog and Collision classes in the next topic. The Frog
class is responsible for rendering the frog (the snake food) on the screen at random
positions, and Collision will check whether there is a collision between the snakes,
and/or between a snake and the boundary wall.

Learning Game AI - Building a Bot to Play Chapter 16

[466]

Building the game and frog entities
As previously mentioned, we are going to add two more classes into our code in this topic.
Each of these classes serve different purposes in our Snake AI. The Game entity will check
whether there is any sort of collision, by checking the argument that is passed to their
member methods. In the case of the Game entity, we will define a simple, yet powerful
method, named checkCollision(), which will return a Boolean of either True or False,
based on the collision.

The following code represents the Game class and its member method:

class Game:
 def checkCollision(self, x1, y1, x2, y2, blockSize):
 if ge(x1 , x2) and le(x1 , x2 + blockSize):
 if ge(y1 , y2) and le(y1, y2 + blockSize):
 return True
 return False

The call to the checkCollision() method will be done inside the main class (which will
be defined in a moment). But, the important thing that you will notice is that the argument
that is passed (the x and y values), will be the current position of the snake, from which this
method will be called. Let's say you make an instance of the Game class, and pass the (x1,
y1, x2, and y2) positional values of the human player. In doing so, you are calling the
checkCollision method for the human players. The conditional statements check
whether the positional value of a snake is the same as the boundary wall, or not. If yes, it
will return True; otherwise, it will return False.

The next important game entity is Frog. This class renders the image of Frog in a random
position, after each time it gets eaten by any player (the human or the computer). The
following code represents the declaration of the Frog class:

class Frog:
 x = 0
 y = 0
 size = 44

 def __init__(self, x, y):
 self.x = x * self.size
 self.y = y * self.size

 def draw(self, surface, image):
 surface.blit(image, (self.x, self.y))

Learning Game AI - Building a Bot to Play Chapter 16

[467]

In the preceding code, we have defined the x-position, the y-position, and the draw method
in order to render the frog image. The call to this method will be made by creating Frog
from the main class.

In the next topic, we will wrap up our program by creating and implementing one last
entity: the main App entity. This will be the central director of our game.

Building the surface renderer and handler
To begin, let's recap what we have done so far. We started to write the code by defining two
major game entities: Player and Computer. Both of these entities were quite similar in
terms of actions and rendering methods, except an extra target() method was introduced
within the Computer class, in order to make sure that the computer player is smart enough
to compete with the human player. Similarly, we declared two more entities: Game and
Frog. These two classes provide the backend facility for the Snake AI, such as adding
collision logic, and checking the position for the snake food to be rendered in. We have
created multiple methods within these different entities, but we have never made
instances/objects out of them. Such instances can be created from the main single class,
which we are going to implement now. I am going to call this class the App class.

Look at the following snippet in order to write the code for the App class:

class App:
 Width = 800 #window dimension
 Height = 600
 player = 0 #to track either human or computer
 Frog = 0 #food

 def __init__(self):
 self._running = True
 self.surface = None
 self._image_surf = None
 self._Frog_surf = None
 self.game = Game()
 self.player = Player(5) #instance of Player with length 5 (5
 blocks)
 self.Frog = Frog(8, 5) #instance of Frog with x and y position
 self.computer = Computer(5) #instance of Computer player with
 length 5

The preceding code defines some attributes, such as Height and Width, for the games
console. Similarly, it has a constructor, which initializes the different class attributes, along
with creating the Player, Frog, and Computer instances.

Learning Game AI - Building a Bot to Play Chapter 16

[468]

Next up, is to load the image from the computer and add it to the Python project (refer to
Chapter 11, Outdo Turtle – Snake Game UI with Pygame, to learn more about the load
method). The assets of the game, such as the snake body and food, are available at this
GitHub link: https:/ /github. com/ PacktPublishing/ Learning- Python- by- building-
games/tree/master/ Chapter16. But, you can also create your own, and experiment with it.
I have taught you how to create a transparent sprite using GIMP and a simple paint
application before, in Chapter 11, Outdo Turtle – Snake Game UI with Pygame. Try to recap
those concepts, and it try on your own. For now, I am going to load two images into the
Python project.

It is better to use a .png file for sprites, and don't create a filename with a
numeric value in it. For example, a filename for the snake body that is
named snake12.png is not valid. The filename should be given without
numeric values. Similarly, make sure that you add those .png files within
the Python project folder. Revisit Chapter 11, Outdo Turtle – Snake Game
UI with Pygame, to check how an image is loaded with PyCharm into the
Python project.

The following code will load two image files into the Python project:

def loader(self):
 pygame.init()
 self.surface = pygame.display.set_mode((self.Width, self.Height),
 pygame.HWSURFACE)

 self._running = True
 self._image_surf = pygame.image.load("snake.png").convert()
 self._Frog_surf = pygame.image.load("frog-main.png").convert()

In the preceding line of code, we created a surface object using the pygame.display
module. Then, we loaded two images—snake.png and frog-main.png—into the Python
project. The convert() method will change the pixel formatting of the rendered object, so
that it works perfectly on any surface.

Similarly, if a game has events, and it interacts with the user, then the on_event method
must be implemented:

def on_event(self, event):
 if event.type == QUIT:
 self._running = False
def on_cleanup(self):
 pygame.quit()

https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16
https://github.com/PacktPublishing/Learning-Python-by-building-games/tree/master/Chapter16

Learning Game AI - Building a Bot to Play Chapter 16

[469]

Finally, let's define the main function:

def main(self):
 self.computer.target(self.Frog.x, self.Frog.y)
 self.player.update()
 self.computer.update()

In the preceding function, we called the target method to make sure that the computer
player is able to use the capabilities that have been defined inside it. As discussed before,
the target() method takes the x, y coordinates of the food and the computer makes a
decision to move closer to the food. Similarly, the update method of both the Player and
Computer classes is called.

Now let's define the renderer() method. This method will draw the snakes and the food
onto the game surface. This is done using the pygame and draw modules:

def renderer(self):
 self.surface.fill((0, 0, 0))
 self.player.draw(self.surface, self._image_surf)
 self.Frog.draw(self.surface, self._Frog_surf)
 self.computer.draw(self.surface, self._image_surf)
 pygame.display.flip()

If you feel that you do not understand the workings of the renderer() method, go to
Chapter 11, Outdo Turtle – Snake Game UI with Pygame. In summary, this method will draw
different objects (image_surf and Frog_surf) onto the game screen.

Finally, let's create a handler method. This method will handle the user events. Different
methods, such as moveUp(), moveDown(), moveLeft(), and moveRight() will be called,
based upon the arrow keys that are pressed by the user. These four methods are created
within both the Player and Computer entities. The following code defines the handler
method:

def handler(self):
 if self.loader() == False:
 self._running = False

 while (self._running):
 keys = pygame.key.get_pressed()

 if (keys[K_RIGHT]):
 self.player.moveRight()

 if (keys[K_LEFT]):
 self.player.moveLeft()

Learning Game AI - Building a Bot to Play Chapter 16

[470]

 if (keys[K_UP]):
 self.player.moveUp()

 if (keys[K_DOWN]):
 self.player.moveDown()

 self.main()
 self.renderer()

 time.sleep(50.0 / 1000.0);

The preceding handler method has been created so many times before (we saw both
advanced and easy methods), and this one is the easiest one. We used the pygame module
to listen to incoming key events and handled them accordingly, by calling different
methods. For example, when the user pressed the down arrow key, the moveDown()
method was called. The last sleep method will embed the timer, so that there is a
difference between two successive key events.

Finally, let's call this handler method:

if __name__ == "__main__":
 main = App()
 main.handler()

Let's run our game and observe the output:

Learning Game AI - Building a Bot to Play Chapter 16

[471]

As expected, there are several things that must be added to this game, including: what
happens when the human player and the computer player eat the food, and what happens
when the snake collides with itself? If you have followed the book throughout, properly,
this should be a piece of cake for you. We have added this same logic multiple times
(in Chapter 7, List Comprehension and Properties; Chapter 10, Upgrading the Snake Game with
Turtle; and Chapter 11, Outdo Turtle – Snake Game UI with Pygame). But apart from that
logic, focus on the two alike snakes: one must be moving with human player actions, and
the other independently. The computer snake was aware of the collision with the boundary
wall and the position of the food. As soon as you run your game, the computer player will
react instantaneously, and will try to make a smart move, before the human does. This is
the application of AI in the real-world gaming industry. Although you might think that the
Snake AI example is simpler, in the real world, AI is also all about the machine acting
independently, regardless of how complex the algorithm is.

But, there are several tweaks that must be made within the game, which will be covered in
the next topic—Possible modifications.

Game testing and possible modifications
First of all, I suggest that you look back and observe the part where we defined the Game
class. We defined the checkCollision() method inside it. This method can be used for
multiple purposes: firstly, to check whether a player collides with the snake food; and
secondly, to check whether a player collides with the boundary wall, or not. You must have
a gotcha moment at this time. Chapter 7, List Comprehension and Properties, to Chapter 11,
Outdo Turtle – Snake Game UI with Pygame, was all about using this technique to implement
the collision principle, which states that, If the (x, y) position of food objects is same with the (x,
y) coordinates of any player, there is said to be a collision.

Let's add code that will check whether any player has collided with the food or not:

Does human player snake eats Frog
for i in range(0, self.player.length):
 if self.game.checkCollision(self.Frog.x, self.Frog.y,
 self.player.x[i], self.player.y[i], 44):
 #after each player eats frog; next frog should be spawn in next
 position
 self.Frog.x = randint(2, 9) * 44
 self.Frog.y = randint(2, 9) * 44
 self.player.length = self.player.length + 1

Does computer player eats Frog
for i in range(0, self.player.length):

Learning Game AI - Building a Bot to Play Chapter 16

[472]

 if self.game.checkCollision(self.Frog.x, self.Frog.y,
 self.computer.x[i], self.computer.y[i], 44):
 self.Frog.x = randint(2, 9) * 44
 self.Frog.y = randint(2, 9) * 44

Similarly, let's use the same function to check whether the human player's snake has hit the
boundary wall or not. You might think that you need to check this in the case of the
computer player too, but that is useless, because the target method that was defined in
the Computer class will not let this happen. In other words, the computer player will never
hit the boundary wall, thus, checking whether a collision happened or not is useless. But, in
the case of the human player, we will check it using the following code:

To check if the human player snake collides with its own body
for i in range(2, self.player.length):
 if self.game.checkCollision(self.player.x[0], self.player.y[0],
 self.player.x[i], self.player.y[i], 40):
 print("You lose!")
 exit(0)

pass

We will end this topic right here, but you can make this game even more appealing by
adding a game over screen, which we learned how to create using pygame back in Chapter
11, Outdo Turtle – Snake Game UI with Pygame. Instead of the last pass statement, you can
create a surface and render a font with a label in it, in order to create such a game over
screen.

But, before wrapping up this chapter, let's look at the final output of our game:

Learning Game AI - Building a Bot to Play Chapter 16

[473]

Another thing that you might notice in the game is that the computer player's snake length
is constant, even if it eats the food. I did this intentionally, so that my game screen wouldn't
be polluted too much. But, if you want to increase the computer player's snake length
(every time the snake eats the food), you can add a statement after the computer player
snake eats the frog:

self.computer.length = self.computer.length + 1

Finally, we have come to the end of this chapter. We have learned different things, as well
as revising old ones. The concepts that are associated with AI are vast; we have just
attempted to touch the surface. You can find other implications of AI in the game using
Python by heading to this URL: https:/ /www. pygame. org/ tags/ ai.

Summary
In this chapter, we explored the basic way of implementing AI in our game. Nonetheless,
the workings of AI depend heavily on rewarding the intelligent system for its each and
every move. We used a machine state diagram to define the possible states for our
computer player, and used it to perform different actions for each entity. We employed
different programming paradigms in this single chapter; in fact, it was a recap of
everything that we have learned so far, in addition to employing smart algorithms for
NPCs.

For each defined entity, we made a class, and employed an object-oriented paradigm such
as the encapsulation and model, based on properties and methods. Furthermore, we
defined different classes such as Frog and Game in order to implement the logic for
collisions. The reason for making separate classes for implementing single logic is because
these methods should be called by each game entity (Player and Computer)
independently. You could infer it as multi-inheritance. The main aim of this book was to
make the reader understand how a gaming bot can be created with Python. Furthermore, to
some extent, the aim was to revise all the programming paradigms that we have learned
throughout the book, in a single chapter.

As the old adage says: Known is a drop. Unknown is an Ocean. I hope you are still yearning to
learn more about Python. I suggest you brush up on your basic programming skills and
experiment more often, which will surely lead you to your dream job of becoming a game
developer. The gaming industry is huge, and having knowledge of Python will make a
difference. Python is a beautiful language, thus, you will be incentivized to learn it more
deeply, and this book will be the first of many steps that you will take in order to become
an expert in Python.

https://www.pygame.org/tags/ai
https://www.pygame.org/tags/ai
https://www.pygame.org/tags/ai
https://www.pygame.org/tags/ai
https://www.pygame.org/tags/ai
https://www.pygame.org/tags/ai
https://www.pygame.org/tags/ai
https://www.pygame.org/tags/ai
https://www.pygame.org/tags/ai
https://www.pygame.org/tags/ai
https://www.pygame.org/tags/ai
https://www.pygame.org/tags/ai
https://www.pygame.org/tags/ai

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Deep Learning for Games
Micheal Lanham

ISBN: 9781788994071

Learn the foundations of neural networks and deep learning.
Use advanced neural network architectures in applications to create music,
textures, self driving cars and chatbots.
Understand the basics of reinforcement and DRL and how to apply it to solve a
variety of problems.
Working with Unity ML-Agents toolkit and how to install, setup and run the kit.
Understand core concepts of DRL and the differences between discrete and
continuous action environments.
Use several advanced forms of learning in various scenarios from developing
agents to testing games.

https://www.packtpub.com/game-development/hands-deep-learning-games

Other Books You May Enjoy

[475]

Expert Python Programming - Third Edition
Tarek Ziadé, Michał Jaworski

ISBN: 9781789808896

Explore modern ways of setting up repeatable and consistent development
environments
Package Python code effectively for community and production use
Learn modern syntax elements of Python programming such as f-strings, enums,
and lambda functions
Demystify metaprogramming in Python with metaclasses
Write concurrent code in Python
Extend Python with code written in different languages
Integrate Python with code written in different languages

https://www.packtpub.com/application-development/expert-python-programming-third-edition

Other Books You May Enjoy

[476]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
alpha testing 61
Angry Birds game
 character controller, creating 418, 420, 421
 collisions, addressing 436, 437, 438, 439
 levels, creating 439, 441, 442
 modifications 449, 450, 451
 Polygon class, creating 421, 422, 423, 424,

425, 426, 427
 Pythonic physics simulation, exploring 427, 428,

429, 430
 sling action, implementing 431, 432, 433, 434,

435, 436
 user events, handling 442, 443, 445, 446, 447,

448

animation
 with Turtle module 253, 254, 255, 256, 257,

259, 260, 261
application programming interface (API) 391
artificial intelligence (AI) 454, 455
attribute components 306

B
background animation
 scrolling 338, 339, 340, 341, 342, 343, 345
background color 385
bit block transfer 291
blitting 291
Boolean logic
 about 65, 66
 using, with comparison operators 66, 67
break statements
 using 80

C
CamelCase 33
capsule 175
character animation
 scrolling 338, 339, 340, 341, 342, 343, 345
clipping 398
code complexities
 overview 199, 200, 201, 202, 203
code procedures 11
code programming
 without Hello World 25, 26
collision
 detecting 351, 352, 353, 354, 355
color properties 401
color properties, OpenGL
 about 401, 402
 glClearColor() 402
 glEnable() 402
command-line interface (CLI) 148
comments
 writing, in code 42, 43, 44
comparison operators
 used, for creating statements 66, 67
computer pixels
 exploring 249, 250, 252, 253
concatenation 52
conditionals 70, 71, 72, 73
conversing
 with Python 12
curses
 about 148, 149
 application, building 149, 150, 151
 functions 151
 screen 151, 152, 153, 154
 Snake game, creating 158
 user input 155, 156, 157, 158

[478]

 window object 151, 152, 153, 154
custom classes
 data models, using 236, 237, 238

D
data encapsulation 255
data hiding 175
data models
 using, in custom classes 236, 237, 238
data structures, categories
 dictionary 98
 list and tuple 98
 set 98
data structures
 need for 96, 97
data
 handling 28, 29, 30
decorator 207, 208, 209, 210
decrementing 74
dictionaries
 about 108, 109, 110
 looping, used 111, 112
 method 112
 tuples 113, 114, 115
don't repeat yourself (DRY) principle 210
drivers 218

E
easy_install module
 reference link 392
encapsulation 175, 176, 177, 183, 345
end screen 355, 356
errors
 in game 60, 61
event handling 278
events
 displaying 295, 296, 297
 handling 295, 296, 297
exception handling
 about 62, 81
 using 85
executables
 converting to 324
expression 35

F
flappy bird game
 about 271, 273, 274, 275, 276
 reference link 271
floor division 36
for loop
 using 74, 75
 versus list comprehension 203
frames per second (FPS) 292
functions
 about 119, 120, 121, 122, 123
 anonymous function 127, 128
 arguments, packing 124, 125
 arguments, unpacking 124, 125
 built-in function 130
 default arguments 123, 124
 keyword arguments, packing 126, 127
 keyword arguments, unpacking 126, 127
 recursive function 128, 129

G
game animation 328, 329, 330, 331, 332
game controller, for tic-tac-toe game
 brainstorming 84
 creating 83
 exceptions, handling 86, 87
 information, gathering 84
 model, modifying 84, 85
 player's turn, toggling 87, 89
 player, winner functionality, adding 90, 91, 92,

93

game loop
 modifying 377, 378, 379, 380, 381
 setting up 368, 371
game window
 setting up 368, 371
game-object color 385
game
 testing 356, 357, 386, 387, 388
geometrical shapes
 drawing, with PyOpenGL 395
GIMP
 reference link 319
GLU library

[479]

 about 404, 405, 407
 reference link 394
graphics cards 391
grids
 brainstorming 403, 404
 creating 366, 368

I
inception 160
incrementing 74
IndexError 102
inheritance 177, 178, 179, 180, 181
initialization 174
iteration
 about 73, 74
 break statements, using 80
 continue statements, using 80
 exceptions, handling with except 81, 82, 83
 exceptions, handling with try 81, 82, 83
 for loop, using 74, 75
 loop pattern 77, 78, 79
 while loop, using 76, 77

K
keywords 31, 32, 33

L
lines of code (LOC) 199
list comprehension pattern 203, 204, 206
list comprehension
 snake game, refining with 214, 215
 versus for loop 203
lists
 about 98, 99, 100
 element, accessing 100, 101, 102, 103
 items 98
 method 103, 104, 105, 106
 object 107, 108
 operation 103, 104, 105, 106
 slicing 106
logic
 animating 336, 337, 338
logical inverter 69
logical operators
 about 65, 66

 using 67, 68, 69
loop pattern 77, 78, 79

M
Mac
 Python, installing for 17, 19
main function 140
map function
 using 206, 207
math module
 using 37, 39, 40, 41
method overloading 183
method overriding 181, 182
modulus operator 36, 37
mouse control
 implementing 303, 304, 305
mouse events
 methods 227

N
naming variables
 rules 33, 34
nested lists 99
normal 396
normalization 398
normalized device coordinates (NDC) 398

O
object-oriented programming (OOP) 170, 171
objects
 making, with PyOpenGL 395, 396, 397
operands 35, 36
operator overloading 234, 235
operators 35, 36
order of operations
 about 36
 addition and subtraction 36
 division 36
 exponential/of 36
 multiplication 36
 parenthesis/brackets 36

P
PascalCase 33

[480]

pip tool 149
polymorphism 181, 182
pong game
 exploring 267, 269, 270, 271
positive indexing 50
programming
 with Python 9, 11
projections 398
py2exe
 used, for converting Python files to executables

324

PyCharm 283
PyCharm IDE
 installing 23, 24, 25
pygame draw module
 drawing with 293, 294, 295
pygame game object
 creating 309, 310, 311
 directional movements, handling 312, 313, 314
 display, initializing 308
 food, adding 315, 316, 317, 318
 frame rate concept, using 311, 312
 rendering 306, 307, 308
 snake sprites, adding 319, 320, 321
 working, with colors 308, 309
pygame game
 menu, adding 321, 322, 323
pygame key functions
 reference link 301
pygame objects
 about 289, 290
 blitting 291, 292
 subsurfaces 290
pygame optional parameters
 reference link 394
pygame time module
 reference link 307
pygame
 about 283, 284, 285, 286, 287, 288, 289
 reference link 283
 used, for testing game 325
 using, for game modifications 325
pymunk Body class
 exploring 415, 416
pymunk built-in classes

 exploring 414, 415
pymunk Shape class
 exploring 416, 418
pymunk
 about 411, 412, 413
 reference link 412
PyOpenGL
 about 391
 geometrical shapes, drawing 395
 installing 392, 393
 methods 398, 399, 400, 401
 objects, making 395, 396, 397
Python classes 172, 173, 174, 175
Python egg 392
Python enterprise application kit (PEAK) 392
Python graphical programming module
 requisites 217
Python Integrated Development Environment (IDE)

19

Python property 211, 212, 214
Python set
 about 116, 117
 method 116, 117, 118
Python Shell
 about 19
 particulars 20
Python, data structures
 dictionaries 97
 lists 97
 sets 97
 tuples 97
Python
 fundamentals 21, 22
 installing 13
 installing, for Mac 17, 19
 installing, for Windows 13, 14, 15, 16
 structural pillars 98
 used, for conversing 12
 used, for programming 9, 11

R
random object generation 345, 347, 348, 349,

351

random shapes
 creating 366, 368

[481]

recursion function 128
recursive case 129
recursive programming 128
removal of hardcoding process 313
role playing games (RPGs) 359
rotations 371, 372, 373, 374
rows
 clearing 381, 382, 384, 385

S
score screen 355, 356
shape format
 converting 374, 375, 376
shapes
 attributes 367
 drawing, with Turtle module 228, 230, 231
 Hexagon 229
 Star 229
simulation 144
Snake AI game
 about 457, 458, 459, 460, 461
 computer player, adding 462, 463, 464
 frog entities, building 466, 467
 game entities, building 466, 467
 intelligence, adding to computer player 464, 465
 modifications 471, 473
 surface handler, building 467, 468, 469, 470,

471

 surface renderer, building 467, 468, 469, 470,
471

Snake game implementation
 about 183
 brainstorming 183, 184
 collisions, handling 193
 constants, declaring 184, 186
 Food class, adding 193, 195
 information, gathering 183, 184
 screen, initializing 184, 186
 Snake class, creating 186, 187, 189
 user events, handling 189, 190, 192
Snake game
 brainstorming 158, 159
 creating, with curses 158
 game logic, example 162, 163, 164, 165
 inception 160

 information gathering 158, 159
 modifications 165, 166, 167, 195, 277, 279,

280

 refining, with list comprehension 214, 215
 refining, with property 214, 215
 testing 165, 166, 167, 195, 196, 277, 279, 280
 upgrading, with Turtle 262, 263, 264, 265, 266
 user key events, handling 161, 162
sprites
 animating 332, 334, 335
 reference link 338
states
 implementing 455, 456, 457
string 107, 108
string formatting 53
string operations 48, 49, 50, 51, 52
subsurfaces 290

T
Tetris essentials
 about 360, 361, 362
 reference link 360
 shapes format, creating 363, 364, 365
tic-tac-toe game, AI
 modifying 144, 145
 testing 144, 145
tic-tac-toe game
 brainstorming 54, 55, 131, 132
 building 54
 code editor, selecting 55, 56
 information gathering 131, 132, 133
 information, gathering 54, 55
 intelligence, adding 130, 131
 models, implementing for intelligence 134, 135,

136, 137, 138, 139
 modifying 61, 62
 program flow, controlling with main function 140,

141, 142, 143
 programming model 56, 57, 58
 testing 61, 62
 user interaction 58, 59, 60
time complexity 200
Turtle events
 exploring 223, 224, 225, 226, 228
Turtle module

 commands 219, 220, 221, 222, 223
 overview 217, 218
 used, for animation 253, 254, 255, 256, 257,

259, 260, 261
 used, for drawing shapes 228, 230, 231
Turtle
 used, for upgrading snake game 262, 263, 264,

265, 266
two dimensional vectors
 dealing with 239
type conversion 47, 48
type-casting method 100
typecasting 47, 48

U
unicurses library 148
user events
 handling 298, 299, 300, 302, 303
user experience (UX) 56
user input, methods
 getch() 155
 getkey() 155
user input
 requesting 45, 46
 type conversion 47, 48
 typecasting 47, 48

 with curses 155, 156, 157, 158

V
values
 handling 28, 29, 30
variables 31, 32, 33
vector 239
vector addition 243, 244
vector division 245
vector equality 246
vector multiplication 245
vector negation 246
vector subtraction 244
vectored motion
 modeling 242
vectors
 exploring 240, 242

W
warnings
 in game 60, 61
while loop
 using 76, 77
windows-curses library 148
Windows
 Python, installing for 13, 14, 15, 16

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting to Know Python - Setting Up Python and the Editor
	Technical requirements
	Introducing programming with Python
	Explaining code procedures
	Conversing with Python

	Installing Python
	For the Windows platform
	For the Mac platform
	Introducing the Python Shell and IDLE
	Particulars of the Python Shell

	Building blocks of Python
	Installing the PyCharm IDE
	Programming code without Hello World
	Summary

	Chapter 2: Learning the Fundamentals of Python
	Technical requirements
	Handling values and data
	Variables and keywords
	Rules for naming variables

	Operators and operands
	Order of operations
	Modulus operator
	Using the math module

	Writing comments in code
	Requesting user input
	Typecasting or type conversion

	String operations
	String formatting

	Building your first game – tic-tac-toe
	Brainstorming and information gathering
	Choosing proper code editor
	Programming model or modelling
	User interaction – user input and manipulation

	Possible errors and warnings
	Game testing and possible modifications
	Summary

	Chapter 3: Flow Control - Building a Decision Maker For Your Game
	Technical requirements
	Understanding Boolean logic and logical operators
	Comparison operators
	Logical operators

	Conditionals
	Iteration
	Th for loop
	While loop
	Loop pattern
	The break and continue statements
	Handling exceptions using try and except

	Making a game controller for our tic-tac-toe game
	Brainstorming and information gathering
	Modifying the model
	Handling the exceptions of the game
	Toggling the player's turn
	Making a player the winner

	Summary

	Chapter 4: Data Structures and Functions
	Technical requirements
	Why do we need data structures?
	The four structural pillars of Python – lists, dictionaries, sets, and tuples
	Lists
	Accessing list elements
	List operations and methods
	Slicing the list
	String and list objects

	Dictionaries
	Looping through dictionaries
	Dictionary methods
	Tuples
	Tuples and dictionaries

	Sets
	Set methods

	Functions
	Default arguments
	Packing and unpacking arguments
	Packing and unpacking keyword arguments
	Anonymous function
	Recursive functions
	Built-in functions

	Adding intelligence into our game
	Brainstorming and information gathering
	Implementation of models for intelligence
	Controlling program flow with main function

	Game testing and possible modifications
	Summary

	Chapter 5: Learning About Curses by Building a Snake Game
	Technical requirements
	Understanding curses
	Starting the curses application
	New screen and window objects

	User input with curses
	Making a snake game with curses
	Brainstorming and information gathering
	Inception
	Handling user key events
	Game logic – updating the head position of the snake
	Game logic – when the snakes eats the food

	Game testing and modification
	Summary

	Chapter 6: Object-Oriented Programming
	Technical requirements
	Overview of OOP
	Python classes
	Encapsulation
	Inheritance
	Polymorphism
	Snake game implementation
	Brainstorming and information gathering
	Declaring constants and initializing the screen
	Creating the snake class
	Handling user events
	Handling collisions elp of decorator property.
	Adding the food class

	Game testing and possible modification
	Summary

	Chapter 7: List Comprehension and Properties
	Technical requirements
	Overview of code complexities
	For loop versus list comprehension
	List comprehension pattern
	Map function

	Decorators
	Python property
	Refining the snake game with LC and property
	Summary

	Chapter 8: Turtle Class - Drawing on the Screen
	Technical requirements
	Understanding the turtle module
	Introduction to turtle commands
	Exploring turtle events
	Drawing shapes with turtle
	Summary

	Chapter 9: Data Model Implementation
	Technical requirements
	Understanding operator overloading
	Using data models in custom classes

	Dealing with two-dimensional vectors
	Exploring vectors

	Modeling for vectored motion
	Vector addition
	Vector subtraction
	Vector multiplication and division
	Vector negation and equality

	Summary

	Chapter 10: Upgrading the Snake Game with Turtle
	Technical requirements
	Exploring computer pixels
	Understanding simple animation using the Turtle module
	Upgrading the snake game using Turtle
	Exploring the Pong game
	 Understanding the flappy bird game
	Game testing and possible modifications
	Summary

	Chapter 16: Outdo Turtle - Snake Game UI with Pygame
	Technical requirements
	Understanding pygame
	Pygame objects
	Subsurfaces
	Blitting your objects
	Drawing with the pygame draw module

	Initializing the display and handling events
	Handling user events
	Mouse control

	Object rendering
	Initializing the display
	Working with colors
	Making game objects
	Using the frame rate concept
	Handling directional movements
	Adding food to the game
	Adding snake sprites

	Adding a menu to the game
	Converting into executables
	Using py2exe

	Game testing and possible modifications
	Summary

	Chapter 12: Learning About Character Animation, Collision, and Movement
	Technical requirements
	Understanding game animation
	Animating sprites
	Animation logic

	Scrolling background and character animation
	Understanding random object generation
	Detecting collision
	Scoring and end screen
	Game testing
	Summary

	Chapter 13: Coding the Tetris Game with Pygame
	Technical requirements
	Understanding Tetris essentials
	Creating the shapes format

	Creating a grid and random shapes
	Setting up the window and game loop
	Understanding rotations

	Converting the shape format
	Modifying the game loop
	Clearing the rows
	Game testing
	Summary

	Chapter 14: Getting to Know PyOpenGL
	Technical requirements
	Understanding PyOpenGL
	Installing PyOpenGL

	Making objects with PyOpenGL
	Understanding PyOpenGL methods
	Understanding color properties
	Brainstorming grids
	Understanding the GLU library

	Summary

	Chapter 15: Getting to Know Pymunk by Building an Angry Birds Game
	Technical requirements
	Understanding pymunk
	Exploring pymunk's built-in classes
	Exploring the pymunk Body class
	Exploring the pymunk Shape class

	Creating a character controller
	Creating the Polygon class
	Exploring Pythonic physics simulation
	Implementing the sling action
	Addressing collisions
	Creating levels
	Handling user events
	Possible modifications
	Summary

	Chapter 16: Learning Game AI - Building a Bot to Play
	Technical requirements
	Understanding AI
	Implementing states

	Starting snake AI
	Adding a computer player
	Adding intelligence to a computer player
	Building the game and frog entities
	Building the surface renderer and handler
	Game testing and possible modifications
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

	Index

