
books

Python 3 for Science and Engineering A
pplications • Felix

Bittm
ann

Felix Bittmann

Learn to use Python productively in real-life
scenarios at work and in everyday life

Python 3 for Science and
Engineering Applications

Python 3 for Science and
Engineering Applications

●

an Elektor Publication

Felix Bittmann

SHAREDESIGNLEARN

● This is an Elektor Publication. Elektor is the media brand of

Elektor International Media B.V.

78 York Street

London W1H 1DP, UK

Phone: (+44) (0)20 7692 8344

© Elektor International Media BV 2020

First published in the United Kingdom 2020

● All rights reserved. No part of this book may be reproduced in any material form, including

photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally

to some other use of this publication, without the written permission of the copyright holder except in

accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a

licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 9HE.

Applications for the copyright holder’s written permission to reproduce any part of this publication should be

addressed to the publishers. The publishers have used their best efforts in ensuring the correctness of the

information contained in this book. They do not assume, and hereby disclaim, any liability to any party for

any loss or damage caused by errors or omissions in this book, whether such errors or omissions result from

negligence, accident or any other cause.

● British Library Cataloguing in Publication Data

Catalogue record for this book is available from the British Library

● ISBN 978-3-89576-399-1

● EBOOK 978-3-89576-400-4

● EPUB 978-3-89576-401-1

Prepress production: DMC ¦ daverid.com

Printed in the Netherlands by Wilco

Elektor is part of EIM, the world’s leading source of essential technical information and electronics products for pro
engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops
and delivers high-quality content - via a variety of media channels (e.g., magazines, video, digital media, and social media)
in several languages - relating to electronics design and DIY electronics. www.elektor.com

SHAREDESIGNLEARN

Table of Contents

● 5

Table of Contents

• Introduction . 6

Chapter 1 • Basics . 8

1.1 • Installation and Programming Environment . 8
1.2 • Basic Python . 8
1.3 • Principles of Good Programming . 18
1.4 • Problem-Solving Skills . 20

Chapter 2 • Working with Numbers . 22

2.1 • Fibonacci . 22
2.2 • Prime Numbers . 26
2.3 • Collatz . 29
2.4 • Pi . 30
2.5 • Countdown . 35
2.6 • Ulam Spiral . 42
2.7 • Total Chaos . 46
2.8 • Three Points . 55
2.9 • Close Together . 64
2.10 • Backtracking . 70
2.11 • Numerical Integration . 74

Chapter 3 • Statistics and Simulations . 79

3.1 • Speedtest . 79
3.2 • Pi (again) . 80
3.3 • Parallelisation . 84
3.4 • Random Walk . 88
3.5 • Game of Life . 92
3.6 • Modelling Populations . 96
3.7 • Quick Money . 102
3.8 • Many Circles . 106
3.9 • Pig . 114
3.10 • Bootstrapping . 124

Chapter 4 • Text Data and Strings . 132

4.1 • Dictionary . 132
4.2 • LPS . 135
4.3 • LCS . 137
4.4 • Encryption . 141
4.5 • Roman Numerals . 147
4.6 • Match Arithmetic . 149
4.7 • Superpalindromes . 154
4.8 • 2048 . 158
4.9 • The Next Steps . 164

Python 3 for Science and Engineering Applications

● 6

• Introduction

Why Python?

Not without reason Python has become one of the most popular programming languages
in the world. A user-friendly and intuitive syntax, a large and motivated community,
paired with a multitude of modules and program libraries, which allow quick and efficient
implementation of any project ideas inspire beginners and experts alike. Therefore Python
is an ideal first step into programming but also recommended for veterans who would like
to get a foothold in the realm of data sciences.

This book is written for readers who already have basic experience with Python, say after
completing a first tutorial, and now want to learn how to apply Python productively and
with a focus on applications in real-world settings. Therefore, this is not a classical textbook
that processes all aspects of the language linearly but rather starts with very concrete tasks
and puzzles that want to be solved. These are taken from a large number of different fields
to emphasize that Python can be applied in many contexts. In each example, we will first
look at the general ideas or tactics of how to solve the problem and when how these can be
implemented with special Python tricks and tweaks.

Requirements

You should know about the basic usage and commands before starting with the present
book. As long as you are informed about the most common data types (integers, floats,
strings, lists, dictionaries), know how to write a simple function, and can deal with lists,
you will be able to solve all problems posed in this book. If you want to have a quick
refreshment of the most basic aspects of the language, I recommend the course offered by
the University of Waterloo.1

Philosophy

The puzzles presented in this book are aimed at beginners with only a little experience
with general topics of programming. If any mathematical techniques are necessary to
solve a problem they will be introduced with the puzzle itself. The code shown in this
book does not aspire to be the most elegant, shortest, or most performant solution but
rather illustrates basic concepts of programming and how to think like a programmer.
For most puzzles presented there exist highly specialized algorithms that can improve
speed manifold but are often not obvious to beginners and require in many cases a lot
of background information. To solve the problems you will not require any other tools,
software, or packages than the native Python environment (pure Python). This being said,
there exists a multitude of excellent Python packages that drastically increase the number
of functions of Python (for example, NumPy, SciPi or Pygame, just to name few). However,
these often come with extensive documentation and need tutorials to be comprehensible
to the beginner. In general, the easier puzzles are placed at the beginning of a chapter to
introduce new concepts and methods that are then assumed to be known in the following
1 https://cscircles.cemc.uwaterloo.ca/

https://cscircles.cemc.uwaterloo.ca/

Chapter 1 ● Basics

● 7

puzzles. Therefore it might be a good idea to work on the problems following the order of
the book. However, if you feel confident feel free to skip and play around. If there are any
unknown commands or concepts, it is often the quickest way to hit up a search engine and
look things up online since it only takes seconds and is the easiest way.

Acknowledgments

I am very thankful to all people who helped me with this book, especially Florian Scholze,
Jannik Köster, and Kurt Bittmann. Simon Wolf checked the entire code meticulously and
improved it beyond imagination. Without Tam Hanna, there would be no english version of
this book: I am deeply grateful for this enthusiasm and mentorship. Furthermore, I want
to thank the Python Software Foundation in general for donating this wonderful gift to the
world. Finally, many thanks to all men and women who contribute to free open-source
projects like Wikipedia and Wikimedia Commons, which allow me to include a large number
of high-quality figures in this book.

All code available on: https://github.com/fbittmann/Pythonbook

https://github.com/fbittmann/Pythonbook

Python 3 for Science and Engineering Applications

● 8

Chapter 1 • Basics

1.1 • Installation and Programming Environment

Make sure you have installed the most up to date version of Python from python.org. To run
the code presented in this book you need at least version 3.6. If you run Linux or Mac, the
chances are Python is already pre-installed on your system. To test which version you are
running, open a terminal (Linux or Mac) or the power shell (Windows). Then type python3
to start an interactive session. Then the current version will be displayed.

I recommend using Geany1 as an IDE or editor. This smallish (16 MB) open-source application
is perfect for beginners and advanced users and comes with many functions without being
bulky or too complicated. Furthermore, a large number of themes, schemes, and plugins
allow extending the basic functions easily. Geany is available for Linux, Windows, and Mac.

1.2 • Basic Python

The next few pages serve as a crash course and are recommended for all users who want
to refresh their skills, so feel free to skip ahead if you want to. In contrast to most code
shown in this book we will here refer to an interactive Python session, which is denoted by
>>> to visualise the interactive character of the code. This means, type a line, hit enter
and you will instantly see the result, which is different from writing a large script and then
have it run as a whole. Output, if there is one, is then displayed in the following line without
the >>>.

>>> a = 12
>>> b = 3.141
>>> c = "Tomato"
>>> d = [a, b, c]
>>> e = (1.734, 3.822)
>>> f = {3, 8, 99, -4}
>>> g = {"Hello": 5, "Nope": 4, "Ego": 3, "Rocket": 6}

Here, a is an integer, b a float, c a string, d a list, e a tuple, f a set and g a dictionary. As you
see, declaring a variable only requires the equality sign. When working with mathematical
expressions, make sure to remember BEDMAS (brackets, exponents, division, multiplication,
addition, subtraction) since this helps you memorise the order in which operators are
addressed. Note that longer blocks of code are split over multiple lines if necessary using
"\" as an indicator for a line break. If you enter the code in your editor, do not type this sign
as it is just a visual aid for the printed version.

Indices and Slices

For Python, lists are an all-purpose tool that can be utilised in most situations. Sets, tuples
1 Geany.org

http://Geany.org

Chapter 1 ● Basics

● 9

and dicts add many more features and are often faster or more convenient, but Python
loves lists. You can store any elements or data types in a list and of course also more and
nested lists. You retrieve items from a list via their index. Remember, in Python (as in most
other programming languages), the first item of a list always receives the index 0.

>>> a = [1, 2, 3]
>>> b = ["Hi", 1, "Red", -6.87, [1, 2, 3, ["Mouse"]], 95]
>>> a[0]
1
>>> b[2]
"Red"
>>> b[4][1]
2
>>> b[-1]
95
>>> len(b)
6
>>> len(b[4])
4

As you see, items in nested lists are retrieved by combining several indices directly. For
example, if you want to retrieve the integer 2 from list b, first select the containing nested
list (which has the index 4) and then the index of this sub-list (which is the index 1), so
the final result is b[4][1]. Here, always use square brackets (this also holds for tuples and
dicts). If you want to retrieve the last item of a list, regardless of the number of items
contained, use negative indices. The last item always receives the index -1. The number
of elements in a list is reported by using len(). If you want to cut a list in parts, we refer to
this as slicing.

>>> a = [1, 2, 3, 4, 5, 6, 7]
>>> a[0:3]
[1, 2, 3]
>>> a[2:5]
[3, 4, 5]
>>> a[::2]
[1, 3, 5, 7]
>>> a[::-1] #Reverse a list
[7, 6, 5, 4, 3, 2, 1]

The slice-operator has three parts: the start, end, and step. The start is always included
in the resulting list, the end is always excluded. If no step is explicitly set, 1 is implied. If
start or end are omitted, Python uses the first or the last element. Also, note that lists and
strings can be sliced in the same form.

Python 3 for Science and Engineering Applications

● 10

>>> w = "Trebuchet"
>>> w[3]
"b"
>>> w[2::2]
"euht"

Dictionaries

Dictionaries or dicts are convenient when you want to build a very simple database for
lookups. Here pairs of keys and values are created, which are not selecting by an index but
by key. Let’s have a simple example with dates of birth.

>>> dateofbirth = {"Dawkins": 1941, "Dostojewski": 1821, "Goethe": 1749}
>>> dateofbirth["Goethe"]
1749
>>> dateofbirth["Boyle"] = 1948
>>> dateofbirth
{"Dawkins": 1941, "Dostojewski": 1821, "Goethe": 1749, "Boyle": 1948}

The first value (before the colon) is the key, the one after the value. To retrieve the value,
just enter the key in brackets. Adding new items is done likewise. Note that keys must be
immutable, so you can use integers, floats, strings, or tuples, but not lists. For values, any
data type is fine. Dicts have the advantage over lists that a lookup is faster. A very common
task is to loop over keys, values, or both and retrieve certain elements. Here you have
several options to do this.

>>> for key in dateofbirth.keys():
>>> key
Dawkins
Goethe
Dostojewski
Boyle

>>> for value in dateofbirth.values():
>>> value
1941
1821
1749
1948

>>> for key, value in dateofbirth.items():
>>> key, value
("Dawkins", 1941)

Chapter 1 ● Basics

● 11

("Dostojewski", 1821)
("Goethe", 1749)
("Boyle", 1948)

The last scheme is especially useful since you retrieve both keys and values at the same
time in a tuple and can work with them immediately. The order in which the elements will
be retrieved from the dict was random until version 3.7, after that every dict comes with
an inherent ordering, which might be useful for certain applications. Later we will see how
we can sort dicts arbitrarily. As a side note: whenever we work in the interactive session
as in the last example, it is optional to use the print-statement to generate output since
just calling a variable or function will automatically produce a visual output in the console.
However, if you want to use the same code in a file, always wrap these variables in print(),
otherwise, it will not be on display.

Loops

Python knows several different ways of looping. Using for, you can directly loop over all
elements of a given iterable or iterator, for example, a range, list, or tuple.2 While-loops are
useful when you do not know in advance how often a loop is executed and you want to exit
dynamically. Let’s have a look at three examples.

>>> for i in range(0, 10, 2):
>>> i
0
2
4
6
8

>>> wordlist = ["This", "is", "fine"]
>>> for word in wordlist:
>>> word
‘This’
‘is’
‘fine’

>>> value = 0
>>> while value < 64:
>>> value
>>> value = 2 ** value

2 In Python an iterable is an object which can be iterated over, say a list or tuple. An
iterator is a generator that saves its own internal state, which is useful when the same object
is called again. Only iterators can be called using next(). Later we will see how this can be
used for our benefit.

Python 3 for Science and Engineering Applications

● 12

0
1
2
4
16

The first loop produces all even numbers from 0 to 10 (exclusively). As with slices, the first
value is the start, the second the stop, and third the step. The variable i is the index and
can be named arbitrarily. The second loop iterates over all elements of the given list. The
last loop continues running until the exit condition is met. In this example, value has to
be smaller than 64 so that the loop continues. If this condition is violated, the loop is not
started anymore. Loops that never meet this exit condition will run forever and must be
terminated by the user (infinite loop). Therefore, make sure the variable that controls the
exit is manipulated somewhere inside the loop as only then an exit is possible.

If you want to exit a loop prematurely, use break. Continue is useful when you want to keep
the loop running but skip over certain elements, possibly to improve performance or avoid
obvious errors (like when you want to process integers but a string shows up in a list). With
continue, Python will always skip to the start of the loop immediately, regardless of where
the script executes at the moment within the loop. Use pass as a generic placeholder which
does exactly nothing, as the name indicates. Let’s have a look at three examples.

>>> for number in range(1, 5):
>>> print(number)
>>> if number == 3:
>>> break
>>> print(number * 10)
>>> print("Outside loop now")
1
10
2
20
3
Outside loop now

As soon as break is reached, Python will leave the loop at once and continue with the code
below. Any code within the loop below break will be skipped.

Chapter 1 ● Basics

● 13

>>> for number in range(1, 5):
>>> print(number)
>>> if number == 3:
>>> continue
>>> print(number * 10)
>>> print("Outside loop now")
1
10
2
20
3
4
40
Outside loop now

When continue is reached, Python will go back to the start of the loop and continue with the
next element of the iterable. The code inside the loop below continue is skipped.

>>> for number in range(1, 5):
>>> print(number)
>>> if number == 3:
>>> pass
>>> print(number * 10)
>>> print("Outside loop now")
1
10
2
20
3
30
4
40
Outside loop now

When pass is reached, nothing happens. The loop is not exited and Python continues to run
any code below pass if there is any. Pass usually works as a placeholder.

Comprehensions

Comprehensions can be used as a very compact alternative for loops and might also
improve performance. While we distinguish list, dict, set and generator comprehensions,
their syntax is almost identical. Suppose you want to generate a list with all integers below
100 that are divisible by both 3 and 7. Using comprehensions we can solve this within one

Python 3 for Science and Engineering Applications

● 14

line of code.

>>> [i for i in range(100) if i % 3 == 0 and i % 7 == 0]
[0, 21, 42, 63, 84]
>>> [i ** 2 for i in (1, 2, 3, 4, 5)]
[1, 4, 9, 16, 25]

The square brackets indicate that we want to create a list, i is the index which takes all
values from 0 to 99. As you see we included a filter to sort out all integers that do not fit our
condition. The second example illustrates how we can dynamically transform results before
adding them to the list. If...else constructions are also allowed with a slightly different
syntax (note the ordering of the elements).

>>> [1 if x > 5 else 0 for x in range(10)]
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1]

In this example, we receive a list that displays a 1 for any number that is larger than 5 and
a 0 otherwise. If and else are now placed on the left side of the iterator since this is not a
filter any more but the ternary operator. Sets and dicts can be created likewise, the only
difference is the type of brackets.

>>> {i for i in range(10)}
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
>>> {word: len(word) for word in ["We", "have", "fun"]}
{‘We’: 2, ‘have’: 4, ‘fun’: 3}

Be aware of the fact that comprehensions can become easily complex when nested
comprehensions are included. In this example, we create a simple matrix, which is a list
with sub-lists.

>>> [[i * j for i in range(4)] for j in range(4)]
[[0, 0, 0, 0], [0, 1, 2, 3], [0, 2, 4, 6], [0, 3, 6, 9]]

Python works from inside out, first creating a list that contains the products of i and j.
After that, the four new lists are returned together in one superior list. As you see, this
gets difficult to read and while comprehensions allow for very compact and sophisticated
expressions, they can easily become a nuisance for colleagues (or yourself after returning
to your code after a two-week break). Whenever loops are nested, special caution is advised

Chapter 1 ● Basics

● 15

to generate benign and readable code.

Functions

Whenever you need to solve more complex tasks it is strongly advised to split up your code
into functional parts and create several combined functions. This has many advantages:
firstly, functions can be easily reused and even imported into other documents. Secondly,
debugging functions is often easier than larger blocks of code since you can test each
function separately. Summarised: divide and conquer!

In Python, functions can be defined with two expressions. The first one is def(). A function
can include an arbitrary number of arguments, which can also be set as defaults.3 Let’s see
this in action with a very simple calculator for addition.

>>> def adder(x, y):
>>> return x + y
>>> adder(1, 1)
2

This function has two arguments, x, and y. These must always be specified by the user
when calling the function. Using return we specify which value we want to receive back from
the function. If no return is set by the programmer or if it is never reached, the function will
then return None. In many cases, this is irrelevant, for example, when a function is used
only to display something in the interactive session.

>>> def greetings(name):
>>> print("Hello " + str(name) + "!")
>>> greetings("Python")
"Hello Python!"

Using defaults we can pre-specify certain arguments that can be overwritten by the user
if desired.

>>> def exponentiate(x, y=2):
>>> return x ** y
>>> exponentiate(3)
9
>>> exponentiate(2, 4)
16

3 In this book the terms parameters and arguments are used changeably regarding
functions.

Python 3 for Science and Engineering Applications

● 16

We can also create anonymous functions using lambda. These functions are usually very
compact as they consist of only one expression and can be defined "on the fly".

>>> adder = lambda x, y: x + y
>>> adder(2, 2)
4

As you need to restrict the functionality to one expression, these are usually not applicable
to more complex tasks. At this point, you should also be aware of the fact that certain
expressions can be shortened to make code more compact.

x = x + 5 <=> x += 5
x = x - 5 <=> x -= 5
x = x * 5 <=> x *= 5
x = x / 5 <=> x /= 5

Internal Checks and Dealing with Exceptions

Writing software for end-users requires a lot of time and effort to make sure that inputs
are sanitised and only certain data types are fed into special functions. For example, a
calculator app should never have to deal with strings since only numbers are used for
arithmetic. When writing code for a web application, make sure that an email address
always contains exactly one at sign (@). In some cases, the receiving function will notice
the problem and throw an exception or error message, which is usually a good thing since
you will be alerted that something went wrong. Sometimes these issues go unnoticed and
the first problem you will notice is way down the line, maybe after receiving a wrong result.
Finding the bug then can be tedious and difficult so creating a few checkpoints is often a
good idea. To check for invalid inputs or wrong results we can use assert. In this example,
we want to make sure that a given email contains at least one at sign.

>>> email1 = "test@testmail.com"
>>> assert "@" in email1, "Invalid input!"
>>> email2 = "email.email.org"
>>> assert "@" in email2, "Invalid input!"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AssertionError: Invalid input!

While the first test is fine since @ is included in the given string, this assumption is violated
in the second example. Python then stops processing the script at once and throws an

Chapter 1 ● Basics

● 17

exception so we are informed about the problem. However, note that assert can be used
as an internal diagnostic for first checks but make sure to define proper exceptions and
especially more testing to sanitise user input. Also, assert statements are removed from
the code when performance is optimized by some compilers.

However, sometimes we want to silence errors explicitly and continue with the script. This
is done using try...except. If an error occurs, we can specify in advance how to handle it.
As an example, suppose you want to access a certain index in a list that does not exist.
Usually, Python would stop the script and complain.

>>> a = [1, 2, 3]
>>> a[20]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range

As the list has only three elements, there is no element with index 20 available. However,
when we catch this error we can continue with the script.

>>> for list in matrix:
>>> try:
>>> print(list[20])
>>> except IndexError:
>>> print("Index not found, continue")

This script takes lists from a given matrix and always displays the element with index 20.
Some shorter lists might not contain so many elements, which would cause problems.
However, as we can foresee that this error might occur, we define that all IndexErrors will
be caught by our script, produce a short warning note and then resume with the code.
There is also the possibility to create catch-alls, which are statements that silence any type
of error. Be very careful when working with these things and better specify in advance
which errors are possible.

Modules

Some functions or objects are always available in Python, for example, lists or the functions
len() or max(). Some other functions are also official parts of Python but are grouped in
modules that must be imported before usage. This is an efficient solution since not all
functions are always loaded into Python and many more names for variables and functions
are available for yourself. To access these other functions we need to import the respective
modules. Let’s demonstrate their usage with some mathematical function

Python 3 for Science and Engineering Applications

● 18

>>> import math
>>> math.cos(math.pi)
-1.0

Here we import the math module to access one constant and one function from this
module. The prefix math is subsequently used to tell Python where to take the functions
from. However, typing this all the time can become tedious so there are workarounds. For
example, we can shorten the name of a module to make writing and reading code more
convenient.

>>> import itertools as it
>>> list(it.combinations([1, 2], 2))
[(1, 2), (1, 3), (2, 3)]

As long as only a few functions are required you can also only import this function.

>>> from itertools import combinations
>>> list(combinations([1, 2], 2))
[(1, 2), (1, 3), (2, 3)]

If you need all functions, use the asterisk as a generic placeholder.

>>> from itertools import *
>>> list(combinations([1, 2], 2))
[(1, 2), (1, 3), (2, 3)]

When working with longer scripts and more complicated tasks it can be especially beneficial
to keep the respective module prefixes so it is clear to all colleagues where certain functions
are taken from.

1.3 • Principles of Good Programming

1. Indentations play a significant role in Python as they replace most of the parentheses
and brackets known from other programming languages. Whether you are using spaces
or tabs for indentations is irrelevant as long as you are consistent and never mix them,
which causes Python to produce an error message.

2. All variables and objects (and in Python, virtually everything is an object) should
have a unique and clear name. There are certain styles to choose from, for example,
Panelleft (Pascal case), panelLeft (Came case), or panel_left (Snake case). However,

Chapter 1 ● Basics

● 19

be consistent with your style. It might not be necessary to waste time thinking about
names for index variables (often just i) or very temporary variables. Try to limit the
usage of one-letter variables for narrow blocks of code or comprehensions.

3. Functions should usually do exactly one thing. If you conclude that a given function does
a lot of things, maybe due to the usage of many if...else statements, it might be wise
to split it up. Also, never define two functions at two different places in the code that
do the same thing but define it once and when call whenever necessary. This makes
debugging a lot easier and you have to clean up bugs only in one place if you find any.
Furthermore, a function should normally only return one data type (for example, a
math function that only returns integers but not strings or lists). Whenever something
goes bad, do not return a special "error code" or False but raise an exception.4

4. Python was created to get things done and work efficiently. Therefore it might be a good
idea to think about certain parameters before starting a project. How many people are
involved, how much time will it take? Should I start defining ten classes or are a few
functions enough to get the job done? Will I work with this code again in five years or is
it obsolete next week? Depending on the answers, you might want to spend more time
preparing the project and defining things, possibly with your colleagues. This refers to
a common style of coding, naming objects, and creating shared documentation. Note
that even the smallest projects deserve some documentation, even if it is just for a
weekend project.

5. Readability is a major factor in any code. For example, consistent spacing makes it
much easier to understand. Therefore, I recommend making use of it and writing x =
(5 + 5) instead of x=(5+5). Again, there are no strict rules but rather guidelines you
can choose. In this book, we will insert a space between most numbers and operators.

6. Clear and meaningful documentation is the gold standard of programming. Especially
larger, longer running projects with many co-workers deserve extensive documentation
that is understandable to all people working on it after you. And even if you code alone,
your future self will be very grateful if you spend just a few minutes on documenting
what you did. For example, Python docstrings ("""This is the comment""") are
very useful to describe what a function or class is doing. In this book there is little
documentation within the coding blocks since everything is explained in detail in the
chapters so probably do not use this is a template unless you are willing to explain
everything as in a tutorial. For inline comments use the number sign #.

7. When you have little experience with version control software it might be a good idea
to spend some time learning about it, especially when you are working on larger or
longer running projects. This makes the creation of many documents obsolete that
allow you to go back to previous versions of your code (we all know final.py, final2.py,
final3.py, …). Basic software that helps you out is git or bazaar. When collaborating
online, try Github.

8. Debugging, that is finding and fixing errors and bugs in your code usually takes a
large part of your time. An advantage of Python that can never be underestimated is
that error messages and exceptions are usually very clear and try to describe what
went wrong, which makes finding the problem a lot easier. Sometimes these are trivial
errors, like missing parentheses or letters. If an error is unknown to you, just search

4 For more information on clean code, research the works of Robert C. Martin. Youtube
provides some excellent presentations.

Python 3 for Science and Engineering Applications

● 20

for it online and things might be a lot clearer. Also, when Python reports a line together
with the error, make sure you check the lines before and after if you do not find it in
the one reported.

9. There is no rule without exception. The guidelines presented here are just basic
principles and not written in stone. There might be good reasons to deviate from them
but be sure that these are justified. If you feel too tired or lazy to follow a certain style,
it is perhaps time for a break instead of writing sluggish code.

10. If you are looking for more detailed information on style and coding principles, make
sure to have a look at the official Python style guide PEP8.5

1.4 • Problem-Solving Skills

As stated before, this is not a classical and theoretical textbook but rather is a focus on
applications and real-world problem-solving skills. Suppose your boss gives you a task and
isn’t interested in exactly how you process it as long as you quickly present the results. It’s
up to you to find out how to do it. All in all, Python is a precious tool for tackling complex
tasks. It comes with a wide range of libraries, modules, and packages which in many
cases are somewhat related to your specific task and can be easily adapted. Since the
performance of modern computers is huge it is nowadays also possible to tackle problems
by crunching numbers (Brute-Force solutions) or performing simulations for approximate
solutions instead of thinking about an analytical solution that requires a lot of theoretical
knowledge, time, and experience. What exactly could such a workflow look like?

First of all, it is relevant to understand the given task or problem and get an overview of
the situation. Have you already worked on related challenges in the past? Are there similar
problems you know about? Try to deduce the unknown to known things, which is quite easy
due to search engines or Wikipedia. In many cases, you will find ready to use solutions
online that perhaps only require implementation in Python. Sometimes you get lucky and
all you need to do is copy a few lines of code. This being said, it is of course not the goal
of this book to solve the tasks presented here by searching online and looking for ready to
use solutions - this would only train your research skills. Therefore, if you are stuck with a
problem and run out of ideas, perhaps just skip to the next task and come back later. The
human brain works tirelessly and subconsciously on unsolved problems which can lead to
Heureka-moments.

After you have a plan in mind it is time to work on the implementation in Python, which
is an easy task. As discussed before it is often a good idea to split up complex problems
into small chunks that can be easily solved. Using functions as an implementation is then
quite convenient. At this stage do not strive for perfection as you probably want a first
result quickly, which you can later optimise. Often your boss might be happy with a first
approximation as long as it is submitted in time. If you struggle with the implementation
phase, it might be beneficial to consult a textbook or guide on the required technique. Since
Python comes with so many features it is rarely necessary to reinvent things - be smart and
be sure to make use of the available functions and modules - these are tested and approved
by the community. The official documentation comes with many examples and serves as
5 Pep8.org

http://Pep8.org

Chapter 1 ● Basics

● 21

a wonderful guideline and teacher. If you need special functions, it might be wise to invest
some time to study the documentation of these external packages, especially when diving
deeper into some material and plan to work longer on related projects.

If your first attempt is complete and the code is written, it is time to test. Often code will not
work directly as planned, resulting in either a runtime error or an obviously incorrect result.
Syntax errors are easily debugged because of the quite specific error messages that Python
produces. It might be more challenging to wipe out logical errors in your code that relate
more to your algorithms and strategy than the implementation itself. If this happens, first
try to individually test each function to reduce the potential source of the problem. Think
about cases that are easy to test for correctness and work your way up to more complex
inputs. It is justifiable to place temporary print-statements inside the code to observe the
state of variables. By adding sleep-statements you can also run the code in slow motion
and trace the flow. Although this technique of debugging is often ridiculed, there are good
reasons to use it, especially in smallish projects. Of course, a real debugger is way more
powerful but often depends on the IDE you use and requires further experience. Python
comes with the internal debugging system pdb6 which allows you to follow the execution
of your code step by step. To spot logical errors, make sure you explain the principles and
algorithms of your code to colleagues. This will force you to spell out clearly what the code
is doing, which helps in clarifying your ideas.

If the code runs and is clear of any obvious bugs you can try to optimise it. Especially
when you work on longer projects which will run more often, increasing performance and
refactoring can be a boon. Then you should try to work on readability, documentation, and
performance to make your code better and more enjoyable. This task is often more relaxed
since your boss is already happy with the first outcome and there is less pressure. Try
identifying overly complex blocks of code and cleanly rewrite them. Add more documentation
while you work through it. When working on performance, testing functions individually
helps you identify the slow parts which might benefit from different approaches. In this
book, we will also talk about measuring runtime speeds and working on optimisation.

6 https://docs.python.org/3.6/library/pdb.html

https://docs.python.org/3.6/library/pdb.html

Python 3 for Science and Engineering Applications

● 22

Chapter 2 • Working with Numbers

2.1 • Fibonacci

The Fibonacci-sequence has not only been known to mathematicians for millennia but is
found in quite different aspects of nature, for example in the petals of flowers, population
laws, and the golden ratio. The sequence is defined by a recursive law. The first two elements
are 1 (f1=f2=1). All following elements (i >= 3) are defined by fi = fi-1 + fi-2. In words: the
next element of the sequence is the sum of the two predecessors. The first ten elements of
the sequence are therefore 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. This recursive definition requires
the computation of the n-th element of the sequence to calculate all predecessors. In this
chapter, we will talk about different methods of implementation. We start at the beginning
of the sequence, generate the first elements, and use them to progress further. A very
simple implementation could look like this:

def fibonacci(n):
 assert n > 0
 a, b = 1, 1
 for i in range(n):
 print(a)
 a, b = b, a + b

We have this function print all elements up to n. We define that the first element receives
the index 1, so include an assert statement to sanitise the inputs. Zero or any negative
indices are not allowed as inputs. Here, b is last and a the second to last known element of
the sequence. At the start, we initialise these variables with 1. On this line, we use a Python
shortcut (tuple assignment). On the last line, we make use of a similar trick allowing us
to avoid usage of a temporary variable to swap a and b around. This function only prints
results and saves nothing in memory. Therefore, we cannot work with them. Let’s first see
this in action and proceed to a second approach.

>>> fibonacci(10)
1
1
2
3
5
8
13
21
34
55

Chapter 2 ● Working with Numbers

● 23

This result is correct. Now let’s work with lists and keep the computed elements in memory.

def fibonacci2(n):
 elements = [1, 1]
 for i in range(n):
 elements.append(elements[-1] + elements[-2])
 return elements[:-2]

Now we forgo the assert check and define a list that holds the first two elements. We use
a for-loop to compute as many new elements as desired. The function then adds the last
and second to last element of the list together and appends this new element. Finally, we
return the entire list but cut off the two most extreme values to correct for the offset due
to the initial two elements so the users receive n elements exactly.

As previously described, the definition of the sequence is recursive. It seems like a good
idea to use this concept for implementation. Often recursive code is compact and quite
elegant, however, it can become difficult to understand when more complex tasks are
performed. Another disadvantage is that the overhead that is created when the function
calls itself reduces performance and takes memory so other approaches might be faster.
Another thing to consider is the limited depth of recursion in Python, which can be adjusted
by the user if necessary. If this limit is exceeded, Python will quit with an error message. In
general, recursion is a useful tool that is perfect for this example. To speed things up, we
will utilise memorisation to keep calculated elements in memory and look them up instead
of calculating them again in each recursive cycle. This requires us to write a nested function
as only the inner one will call itself recursively.

def fibonacci3(n):
 elements = {1:1, 2:1}
 def inner(n):
 if n not in elements:
 next_element = inner(n-1) + inner(n-2)
 elements[n] = next_element
 return elements[n]
 return inner(n)

In this example, we only return the n-th element of the sequence. The outer function
defines a dict that holds the first two elements with their index. After this, we define
the inner function that either returns an element from the dict if it is already included,
otherwise it will calculate it and save it in the dict. If we omit the inner function, each
call would start with a newly created dict and no memorisation would occur, resulting in
substantially decreased speed.

Python 3 for Science and Engineering Applications

● 24

Assignments

1. Code a function that produces the first 5,000 Fibonacci numbers and returns them in
a list.

2. It is possible to calculate the n-th Fibonacci number without recursion by using the
formula of Moivre-Binet. Implement it in Python and compute the 1000th element of
the sequence. Use the regular approach shown above and compare results. What do
you notice? What went wrong?

3. Compare the performance of two different implementations of functions that generate
Fibonacci numbers. Hint: time.time() or time.monotonic() can be used to measure the
runtime of functions.

4. The quotient of two adjacent Fibonacci numbers approaches the golden ratio
(1.6180339887…) when n approaches infinity. Compute the quotient for the elements
101, 102, 103 104, and 105 and the percentage deviation from the true result.

5. Compute the sum of the inverse of the first 5,000 Fibonacci numbers.
6. According to Zeckendorf’s theorem, any integer can be written as the sum of exactly

two differing non-adjacent Fibonacci numbers. For example, 6 can be expressed as the
sum of 5 and 1. Create a function that accepts an integer as input and fractionates it
into two Fibonacci numbers. Hint: you can look up the required algorithm online.1

7. In the last function, fibonacci3(), we utilise two nested functions. Rewrite this function
to create a recursive solution that does not require an inner function. Hint: there is no
need for global variables here.

Appendix: Comprehending Recursion

If you have never worked with recursive functions before it might be difficult to grasp the
concept. Especially with longer or more complex applications, it can be hard to follow their
flow. Therefore we want to highlight the basic concepts of this technique here. The central
idea of recursion is to write a function that modifies a given problem and then calls itself.
This might sound strange, but a function is allowed to call itself. It is like pulling oneself
up by the bootstraps but this is a valid and good idea in programming. For this to work,
two basic assumptions must hold. First, there must be a base case that is the case that
stops the recursion. If this is not defined or ever reached, the recursion will run forever,
which is usually not what we want. It is a good idea to start by defining this base case and
then continue with the rest of the function. Secondly, when the function calls itself, the
argument(s) used in this call cannot be identical to the original ones. Otherwise, there is no
progress and the recursion is stuck again. Usually, the argument is either incremented or
decremented. Let’s have another example. In mathematics, the factorial is defined as so:

1 https://cp-algorithms.com/algebra/fibonacci-numbers.html

https://cp-algorithms.com/algebra/fibonacci-numbers.html

Chapter 2 ● Working with Numbers

● 25

This means the factorial of 5 is 120 (1x2x3x4x5). Let’s implement this formula using
recursion. As we learn from the definition, we start with 1 and count up to n. Otherwise,
we start with n and count down until we reach 1. This guarantees that we get all integers
in between. Consequently, we define 1 to be our base case. Also, it becomes clear that we
use the same operation over and over again (multiplication), only with different arguments.

def fac(n):
 print("Computing the factorial of:", n)
 if n == 1: #Base Case
 print("Return: ", 1)
 return 1
 else: #calling itself
 result = n * fac(n - 1)
 print("Return: ", result)
 return result

We include several print-statements to trace what happens when we call this function. For a
test, we call the function with the input 3. Internally, the function first checks if the input is
equal to the base case. No, since 3 is not equal to 1. Therefore, the else-clause is entered.
Now we have to compute the result. This is done by multiplying n (3) with the factorial of
n-1 (2). Here the function calls itself. Notice how the input is different from before. By doing
so, we approach the base case since we decrement from 3 to 2. Now the new instance of
the function is created and runs while the first instance has to wait for the inner instance to
return the result. Let us see the entire trace.

>>> Fac(3)
Computing the factorial of: 3
Computing the factorial of: 2
Computing the factorial of: 1
Return: 1
Return: 2
Return: 6
6

It should now be clearer what happens. First, we call the function with 3 (from "outside").
Since the base case is not reached, the else-clause runs and a new instance is created,
which displays the message. This happens until the base case is reached for the innermost
function. Now, this function hits return and produces an output, which is passed back to the

Python 3 for Science and Engineering Applications

● 26

next instance. Therefore, we propagate the return upwards and each calling function uses
the result to compute its output. Finally, we have the correct result, which is 6. This process
can be visualised using a diagram.

As an exercise, try writing a few functions that implement basic mathematical operations
using recursion. For example addition, multiplication, or exponentiation. The scheme is
similar and the results can be easily checked. Make sure you include print-statements so
you can check the internal flow of the functions.

2.2 • Prime Numbers

Not only have prime numbers intrigued humans for millennia, but they also have many
practical purposes: for example in security or cryptography. The generation and verification
of large prime numbers is a highly relevant challenge of applied computer sciences. A
prime number is an integer that is divisible only by 1 and itself. We define 2 to be the
smallest prime number for all the following tasks and examples. Therefore, the sequence
of prime numbers starts with 2, 3, 5, 7, 11, 13, 17, and 19. While finding extremely large
prime numbers has become a kind of sport at the intersection of computer sciences and
mathematics, we will work with much smaller primes. A large number of heuristics and
techniques are available to find or generate primes. Probably the simplest one is the brute-
force technique which finds primes by testing all possible proper divisors. Given an integer
n, then n is prime only if there are no proper divisors for n. Therefore, by testing all integers
up to n as divisors will eventually reveal whether n is prime or not.

Coding such a test is rather simple and can be used as a wonderful example to have a
look at another Python specialty: generators. While a regular function crunches numbers
and finally returns something to terminate the function, a generator can return something
multiple times and store its current state in memory. Whenever the generator is called,

Figure 2.1: Recursion Schema

Chapter 2 ● Working with Numbers

● 27

it will produce an output based on the saved state until it is exhausted (if this can occur).
Since there is an infinite number of primes, a prime-generator can potentially run forever.
The only difference between a regular function and generator is the fact that return is
replaced with yield. Furthermore, generators are handled a bit differently as they must be
explicitly set up and can be called using next(). Let’s see this in action.

def primegenerator(n=2):
 """Creates consecutive prime numbers larger or equal to n"""
 if n <= 2:
 yield 2
 n = 3
 if n % 2 == 0:
 n += 1

 while True:
 for divisor in range(3, int(n ** 0.5 + 1), 2):
 if n % divisor == 0:
 break
 else: #break never reached
 yield n
 n += 2

Here we define a default so the generator starts producing primes starting with 2 if no
larger number is set by the user. Also, we add a docstring to describe what the generator
is doing. Since 2 is the only even prime we have to handle this case explicitly. After this,
all integers we are dealing with must be odd since every even number can be divided by
2. To test for divisibility of two numbers we use the modulo (%), which can be described
as returning the remainder of a division. If there is a proper divisor, the remainder is zero.
If this is not the case, we know that after the division the divisor was not a proper one.
This can be used to test whether a number is even or odd. Divide it by 2 and look at the
remainder: if it is zero the number was even, otherwise, it is odd. We use this technique
to ensure only odd numbers are used as potential primes. This trick sorts out half of all
integers and speeds up computation. We enter a while loop that runs until all potential
divisors are tested. We always start with 3 and work our way up to the square root of n.2
Why? It is easy to see that we can stop testing when the divisor is larger than half of n
(since the result must be smaller than 2). However, with a bit more math one can also
demonstrate that it is enough to only go to the square root of n. If the divisor is larger
it cannot be a proper one, so we can stop. Keep in mind that instead of loading the math
module and square-root-function, we exponentiate by 0.5 and get the same result. Here
we make sure to always generate an integer from the square root so range works properly.
If the remainder of this computation is zero, a proper divisor was found and we can stop
immediately since n cannot be prime then. This means we hit break, leave the for-loop
and skip to the end of the enclosing while-loop, increase n by 2 and continue with the next
2 https://math.stackexchange.com/q/1343171

https://math.stackexchange.com/q/1343171

Python 3 for Science and Engineering Applications

● 28

potential prime. However, when break is never reached in the for-loop until all divisors are
exhausted, Python skips to the else-clause. This means that after testing all divisors we did
not find one, so n must be prime. We then return the number using yield. If the generator
is called again afterwards, it will continue after this, so increasing n by two and starting a
new round. This concept of using else in combination with a for-loop might be new to you
but is actually quite pythonic. You can think of it as "nobreak" to memorise what its function
is. Now we can see how to invoke the generator and produce primes.

>>> primes = primegenerator()
>>> for i in range(5):
>>> next(primes)
2
3
5
7
11

If you need larger primes, just call the generator with a larger integer as an argument.
Technically, primes is an iterator and can be utilised in many ways, for example using
map() or a comprehension. If we need a certain subsection of all primes, this can be
achieved using islice from itertools. If we need all prime numbers from element 100 to 120
(exclusively), we can do this as follows.

>>> import itertools
>>> primes = primegenerator()
>>> list(itertools.islice(primes, 100, 120))
[547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
641, 643, 647, 653, 659]

Finally, we must concede that our generator is rather slow and may run into performance
problems when we need really large primes. Albeit we remove all even numbers as
potential divisors, the code does not extend this pattern. After testing 3 as divisor, we could
automatically sort out all divisors that are themselves divisible by 3, say 15. However, given
that we created this generator with just a few lines of code, these issues are acceptable for
the moment.

Assignments

1. Compute the first 5,000 primes and store them in a list.
2. A twin prime occurs when two consecutive primes are separated by 2, for example, 41

and 43. How many twin primes are there from 2 and 5,000?
3. The distance between two primes is also called the prime gap (Gn = pn+1 – pn).

Chapter 2 ● Working with Numbers

● 29

Therefore, the prime gap between 13 and 17 is 4. What is the largest prime gap for all
primes from 2 to 5,000?

4. Semiprimes are integers that are the product of exactly two primes, for example,
35 as the product of 5 and 7. Create a function that tests whether a given integer is
semiprime.

2.3 • Collatz

The Collatz conjecture is impressive on one hand because of its simplicity and on the other
because of the tenacity with which it evades the solution.

1, it is easy to see that this results in an infinite cycle (1, 4, 2, 1). So far, despite intensive
efforts, neither a counterexample nor a formal proof or refutation of the assertion has been
found. Theoretically, there is still the possibility that the sequence grows infinitely or that
another cyclic sequence is reached which doesn't contain 1. First, we can define a very
simple function that tests whether 1 is ever reached for a given integer n.

def collatz1(n):
 while n > 1:
 if n % 2 == 0:
 n = n // 2
 else:
 n = (n * 3) + 1
 return True

The code is self-explanatory. Note we are using integer division (//), otherwise, Python will
convert to float, which makes no sense because nothing but integers can occur. As you
can see, this function can only return True which means we have already incorporated our
assumption into the program. This way we would not be able to find a counterexample.
To find a cycle that does not contain 1, we have to keep a record of which numbers have
already been visited. Since the algorithm is strictly deterministic and each number can only
have exactly one successor, we can recognise a cycle by the fact the same number has
been visited several times.3

3 It should be noted that the same numbers may well have two different predecessors.
For example, you can get to 16 from 5 or 32.

Python 3 for Science and Engineering Applications

● 30

def collatz2(n):
 seen = set()
 while True:
 if n == 1:
 return True
 elif n in seen:
 return False
 else:
 seen.add(n)
 if n % 2 == 0:
 n = n // 2
 else:
 n = (n * 3) + 1

For keeping track of which numbers have already been seen, we use a set. This is faster
than a list regarding lookup speed. Sets are similar to lists but they do not have an ordering
and cannot contain the same element more than once. However, this is irrelevant in this
case because we stop as soon as a number encountered is already known. If we reach 1,
we output True. The assumption was confirmed in the example. If, on the contrary, we
reach a number already known a second time, False is returned. Otherwise, the algorithm
continues according to plan. It should be noted that all numbers up to 87 x 260 have been
tested so far and not a single one of them did not reach 1 at the end.4 Nonetheless, our
function cannot detect whether we reached a sequence that continues to grow infinitely.
This can not be tested by trial and error since verification would require us to follow the
sequence to its end, which is impossible by definition. In this respect, it is left to the
mathematicians to provide formal proof at this point.

Assignments

1. Write a function that computes the total number of integers tested by the algorithm
for a given starting point n. Test all numbers from 2 to 5,000. Which number produces
the longest Collatz sequence?

2. Give it a shot and test whether a very large number terminates. Measure the runtime
of the attempt.

2.4 • Pi

Few numbers enjoy such great popularity as Pi. The calculation of as many decimal places
as possible of this transcendental and irrational number, which defines the ratio of the
circumference of a circle to its diameter, has been a popular arithmetical exercise for
centuries. There are numerous formulas and methods to choose from, but in this chapter,
we will limit ourselves to a mathematical calculation. The implementation of such a formula
in Python is simple in principle, but quickly encounters problems if the calculation of many
decimal places is the objective. While Python can handle integers of any size and is limited
4 http://www.ericr.nl/wondrous/

http://www.ericr.nl/wondrous/

Chapter 2 ● Working with Numbers

● 31

only by memory and computational capacity, the situation is different for decimal numbers.
Normally, decimal numbers are handled as floats, which are stored in Python with double
precision, i.e. with 64 bits. This quickly leads to rounding errors, as a simple calculation
shows:

>>> 1.1 + 2.2
3.3000000000000003

Where the number three at the end of the floats comes from seems inexplicable at first, but
is the consequence of the internal representation of floating-point numbers in binary.5 These
errors are unproblematic for most applications, but not if we want to compute thousands
or even more decimal places. This requires various tricks and a clever implementation
strategy. But let's start simple. To calculate Pi, we implement the formula of John Machin,
known since 1706:

Here, arctan is the arctangent or the inverse function of the tangent. Calculating Pi,
therefore, depends on a very precise calculation of this trigonometric function. This alone
does not help us since the arctangent is also irrational and cannot be expressed easily, say
using fractions. However, we can use series to approximate it.

At first, it may be surprising that a sum with an infinite number of summands gives a finite
result, but this is possible as long as the summands become smaller and smaller. In this
case, one speaks of a convergent series. The more summation elements are included, the
more exact the result will be in the end. Logically, a factual calculation of an infinite sum
is impossible, only an approximation can be achieved. Using this adjusting screw, we can
then influence the result in the end: The more decimal places we need, the more terms we
will add up. In general, we should avoid floating-point numbers or floats. This is possible
using various tricks.

First, it is the case that the arctangent is defined only between -Pi/2 and + Pi/2. However,
we can already deduce from the formula shown above that we will only need the values 1/5
and 1/239 to compute Pi, which are both positive and smaller than 1. Furthermore, we can
avoid decimal numbers by multiplying all summands of the sum with a constant μ (My) of
any size. Thus we obtain the following sum:
5 For an explanation see https://www.youtube.com/watch?v=wbxSTxhTmrs

https://www.youtube.com/watch?v=wbxSTxhTmrs

Python 3 for Science and Engineering Applications

● 32

We can now choose μ to be as large as we want, say 101000 if we want 1,000 decimal places,
for example. However, there is still the problem that x is less than one, and information
is lost as the terms progress. For example, (1/5)10 is an extremely small number, which
Python stores internally as float, i.e. with limited precision. The larger the powers get, the
more serious the problem becomes. Starting at an exponent of about 500, the number in
this example is simply zero for Python and a calculation of subsequent terms is pointless.
The trick must, therefore, be to avoid floats. You can see how this works if you rearrange
the terms a bit. Let us look at the second term of the sum and rearrange it:

We pulled x in the denominator and took the inverse of that. But we know that x in our
example will always be less than one (1/5 or 1/239). If we now use this value as an
example, we obtain

As long as μ and thus the numerator is greater than the denominator, we avoid decimal
numbers and can only calculate with integers. This works as long as we only use values
between 0 and 1 for x and μ is big enough. The formula we want to implement is the
following:

with z = 1/x

Let’s see this in code.

Chapter 2 ● Working with Numbers

● 33

import math
import itertools

def arctan(z, digits):
 extra_digits = math.ceil(math.log10(digits / math.log10(z)))
 sign = -1
 term = 10 ** (digits + extra_digits) // z
 result = term
 for power in itertools.count(3, 2):
 term //= z ** 2
 if term < power:
 break
 result += (sign * term) // power
 sign *= -1
 return result // (10 ** extra_digits)

The function accepts two arguments, the inverse of the number to be calculated and the
number of significant digits. To guard against rounding errors, we also increase the number
of digits utilised for all calculations. We remain flexible and only add as many digits as are
necessary. If we wanted 3,000 digits for z, we would always add 5 places internally. We
define the sign, which alternately becomes negative and positive. Then we initialise the first
term of the sum in term, adding the calculated additional digits. Subsequently, result will
always be the value of the total sum already calculated, term is the new term to be added.

We start a loop that runs unless we explicitly exit it using break later on. For this we use
itertools.count(). This simple function does nothing else but initialise power with the value
3 and add 2 at each round, so that power has the values 3, 5, 7, 9,... as prescribed by
the formula shown above. To prepare the next term, we divide the previous one by z2. So,
for example, we go from μ/z to μ/z3, to increase the exponent in the denominator by 2. A
check follows: if the term is smaller than the power, we can stop the calculation, since then
a number smaller than 1 is created, which is rounded to 0. We see this in the next line:
here we multiply the term by the current sign and then divide by the power, so that we get
from μ/z3 to μ/(3z3). It is then added to the overall result. We then reverse the sign and
the loop starts again.

Once we have left the loop, we only have to remove the additionally created significant
places from the overall result. We achieve this using simple division. When applied, we only
have to remember to specify the desired value as a sweep fraction. So if the result for 1/5
is required, we insert 5 into the function. The fractional part is returned as an integer. With
this function and Machin's formula, we can now calculate Pi.

def pi(digits):
 return 4 * (4 * arctan(5, digits) - arctan(239, digits))

Python 3 for Science and Engineering Applications

● 34

The result is Pi as an integer, without the decimal separator.

>>> pi(30)
3141592653589793238462643383268

Assignments

1. Calculate the first 2,500 places of Pi and measure the time. Repeat for the first 5,000
places. What do you notice about the runtime?

2. Calculate the first 20,000 places of Pi and store it to search through it. Do you find your
date of birth, zip-code, or phone number?

3. Euler’s number e (2.718281828...) is defined as follows:

Create a function to compute this number with arbitrary precision.

Appendix: Higher Precision with Decimal

There is a second way to handle more decimal places in Python which invokes the usage
of an extra module: Simply import decimal and specify how many decimal places we need.
The numbers are then no longer considered floats, but as independent objects with similar
properties. Internally, decimal works much like the previous example. The disadvantage
is that we cannot simply convert existing decimal numbers to decimals, because floats
are already limited, the missing precision cannot simply be "added". However, if you take
integers as a starting point, the precision will be produced as desired. Let's look at an
example.

>>> 1 / 3 #regular precision
0.3333333333333333

>>> from decimal import *
>>> getcontext().prec = 25
>>> a = Decimal(1) / Decimal(3)
>>> a
Decimal('0.3333333333333333333333333')
>>> type(a)
<class 'decimal.Decimal'>
>>> Decimal(1 / 3) #Caution!
Decimal('0.333333333333333314829616256247390992939472198486')

Chapter 2 ● Working with Numbers

● 35

We import the module and set the accuracy to 25 digits. As we can see, this works well:
precision is higher. It is also clear that this is a new data type. However, if you want to
convert already existing floats, you will get nonsensical results. We can now perform various
mathematical operations with these objects, but they must be available in the module.

>>> a
Decimal('0.3333333333333333333333333')
>>> a.sqrt()
Decimal('0.5773502691896257645091488')
>>> Decimal(2).sqrt()
Decimal('1.414213562373095048801689')
>>> Decimal(2).exp()
Decimal('7.389056098930650227230427')
>>> Decimal(2).ln()
Decimal('0.6931471805599453094172321')

The documentation explains exactly which commands are available and how to use them.6
In summary, the module is extremely useful for calculations using very precise numbers but
requires the creation of its own functions and methods if you want to solve more complex
tasks. In this respect, you should always consider whether you want to use decimal or if
you can find a solution by the skillful handling of integers.

2.5 • Countdown

Before we saw how recursive functions can be accelerated by caching previous results and
using them to calculate further elements (memorization). This also works in more complex
contexts and can lead to truly gigantic increases in speed. The following example may
sound harmless at first, but it's a good one: Take an integer n, which you should reduce
to the value 1 with as few arithmetic operations as possible. There are three operations
available: dividing by 2, dividing by 3, and subtracting 1. Of course, the divisions may
only be made if the result is an integer again at the end. Let's take the example of 5: To
reduce this number to 1, we could subtract 1 four times in a row, i.e. to 4, 3, 2, and finally,
1, which is four operations in total. Can we do better? Yes, we first subtract 1 and get 4,
then we divide by 2 twice, so we have done the task in with only 3 operations. There is no
faster solution for 5, only equivalent ones (subtract 1 twice and then divide by 3). This task
is perfect for a recursive program: we take the starting number and try all 3 operations.
Thus we get a maximum of 3 new numbers. We then reapply the algorithm to each of these
numbers and keep a record of the total number of operations and the resulting sequences.
At the end, we pick the variant that has needed the least operations. The code for this task
is quite clear:

6 docs.python.org/3.6/library/decimal.html

http://docs.python.org/3.6/library/decimal.html

Python 3 for Science and Engineering Applications

● 36

def countdown1(n, counter=0, sequence=""):
 if n == 1:
 return (counter, sequence)
 counter += 1
 results = []
 if n % 2 == 0:
 results.append(countdown1(n // 2, counter, sequence + "2"))
 if n % 3 == 0:
 results.append(countdown1(n // 3, counter, sequence + "3"))
 results.append(countdown1(n - 1, counter, sequence + "1"))
 return min(results)

Our function has only one argument, namely the integer we want to process. However,
since we call the function repeatedly in the recursion, we specify some defaults here which
we can then replace in subsequent calls. This is the variable counter, which stores how
many operations we have already performed, and the string sequence, which keeps the
order and type of operations performed.

First, we define the base case, which is the condition that ends the recursion. This is when 1
is reached, then counter and sequence are returned as the output. If the current number is
still greater than 1, the algorithm runs normally. We increment the current counter by 1 and
create an empty list in which we collect the results. Since we have 3 possibilities (divide by
3, divide by 2 and subtract) we have to consider them all. Now, if a division by 2 is possible,
we apply the algorithm to that number again and append "2" to the current sequence so
that we know later that this operation was performed. The procedure for division by 3 is
similar, and since subtraction is always possible, we can omit the test here. Finally, we get
up to 3 tuples in the list. We then select the tuple that has the smallest value on the first
element, i.e. the smallest counter. Let’s now see this in action.

Chapter 2 ● Working with Numbers

● 37

>>> import time
>>> for k in range(20, 320, 20):
>>> tstart = time.monotonic()
>>> k, countdown1(k), round(time.monotonic() - tstart, 3)

20 (4, '2133') 0.0
40 (5, '22133') 0.001
60 (5, '23133') 0.002
80 (6, '222133') 0.007
100 (7, '1331133') 0.016
120 (6, '223133') 0.042
140 (9, '113133113') 0.073
160 (7, '2222133') 0.132
180 (6, '233133') 0.228
200 (8, '21331133') 0.379
220 (7, '2212333') 0.614
240 (7, '2223133') 0.948
260 (9, '213123123') 1.429
280 (8, '13313133') 2.12
300 (8, '22312223') 3.059

We should first check whether the algorithm works as planned. Starting at 20, we get
the following sequence: 20 → 10 → 9 → 3 → 1. This is fine. However, when we look at the
runtimes, we make an alarming discovery. While these are extremely short at the beginning,
they increase rapidly. For example, we need less than 0.02 seconds for 100, but almost 3.1
seconds for 300. If the number triples, the runtime increases by a factor of 190! 500 already
takes almost a minute, which makes it easy to see that larger numbers will probably elude
calculation. How can that be? The larger the number, the more possibilities are to be tested
and for each possibility again up to three possibilities, and so on. Furthermore, we do not
store anything, many sequences are calculated twice. For example, if we end up with 50,
we calculate the result, but other recursion sequences do not benefit from this. If they also
reach 50 in another way, they have to repeat the calculation instead of using the known
result. This is a serious disadvantage. To graphically visualise the problem, let's look at an
example, here for number 9.

Python 3 for Science and Engineering Applications

● 38

For number 9 there are two options, division by 3 and subtraction of 1. The same rules are
applied again and again, i.e. recursively, to the results. The ends or leaves of the tree are
always 1, our base case. Here we can see the problem clearly: Number 3, for example,
is independently reached four times. Thus, the complete search tree must be generated
anew for this number each time. If we now have larger numbers, gigantic search trees are
created, in which the same tasks must be completed again and again. This considerably
slows down the search. The solution to the problem is to keep previously generated search
trees in memory and retrieve the results dynamically when running through them again.
Let us assume that the left branch of the tree is created first and the result for 3 is already
available. If the algorithm encounters 3 again, for example when dividing 6 by 2, the known
result is simply returned instead of starting another recursive search. So we need a sub-
function that is called recursively again and again, but at the same time, we want to keep
a static part that stores the known results (from the earlier or parallel recursions). We can
achieve this using a wrapper.

Figure 2.2: Recursive search tree for starting number 9

Chapter 2 ● Working with Numbers

● 39

def countdown2(n):
 book = {1: (0, "")}
 def inner(n):
 if n in book:
 return book[n]
 results = []
 if n % 2 == 0:
 counter, sequence = inner(n // 2)
 results.append((counter + 1, "2" + sequence))
 if n % 3 == 0:
 counter, sequence = inner(n // 3)
 results.append((counter + 1, "3" + sequence))
 counter, sequence = inner(n - 1)
 results.append((counter + 1, "1" + sequence))
 book[n] = min(results)
 return book[n]
 return inner(n)

We name our function countdown2 and only specify one argument. Why this is so will
become more obvious in a moment. We define a dict which at the beginning only contains
our base case, i.e. the end of the recursion. If 1 is reached, a tuple is returned, which
contains the number of steps (0) and the shortest sequence (empty string). Now we define
another function within countdown2(), which we call inner(). The basic idea is the following:
if a recursive self-call is made, the inner function is called. Our database, which we created
in book, will be maintained and continually expanded. In this way, new instances of the
function can access the results already calculated and thus save duplicate calculations.

In this way, we can check directly whether the number n to be tested already has a result.
If available, the result is then immediately returned. Otherwise, the recursive algorithm
starts. With results, we create an empty list to store the computations and check which
arithmetic operations apply to n. For example, if a division by 2 is possible, we initiate a
recursive call with the new number (n // 2). We unpack the result (returned as a tuple)
directly to the desired variables counter and sequence and can then process them further.
We only need to increase counter by 1 and make sure we add the new arithmetic step to
the sequence of operations.

Suppose our current number to test is 8 and therefore divisible by 2. The function first
checks whether the next number (4) to be tested already exists in the dict. If this is the
case, we found a known result and can retrieve it. The result we find would therefore be (2,
"22") since it takes 2 steps to get from 4 to 1, the sequence indicates that this is achieved
by two divisions with 2. Since we already know 4, but not yet 8, we must now build on
this result. We need another step (namely from 8 to 4 by dividing with 2), so increase the
counter by 1. Furthermore, we have to add the necessary step to the known result. Here
we have to pay attention to the order. Since "22" already exists, we have to insert the new
step in front, since the back part describes the remaining way to 1, we cannot influence this

Python 3 for Science and Engineering Applications

● 40

anymore. Therefore we set "2" + sequence here. The same procedure is used for the other
two options. Thus we receive up to three possible "fates" for our current number. Finally,
we only have to check which option is best. We add them to the dict so other recursions can
also use this new result. After this, the function returns the result. To start the recursion,
we call the function inner() and let it return.

Let's summarise the logic again. We call the function countdown2() with a number to be
tested, let's say 10. In the function itself, we create the parameters or variables that store
our results. We then hand the number 10 to the function inner(). The recursion starts.
Since 10 does not exist in the book, all possible candidates, in this case, 9 and 5, are
defined as new numbers and new recursion loops are started for them. As soon as one of
the branches of the search tree returns a result for a number, it is stored permanently in
the book and the other recursions have access to it. This massively accelerates the search.
Is it worthwhile? Let's crunch some numbers.

>>> import sys
>>> sys.setrecursionlimit(15000)

>>> tstart = time.monotonic()
>>> for i in (500, 2000, 5000):
>>> i, countdown2(i)
>>> time.monotonic() - tstart
500 (9, '213113333')
2000 (10, '2133312233')
5000 (13, '2221222231223')
0.01499999999987267

Even very large numbers are now analysed in a fraction of a second. We must increase
the maximum number of recursions allowed. Python has to generate a lot of them at this
point, which can lead to an error message. With this setting we allow more recursions
to be started. In principle, only the performance of your system limits the number of
potential recursions. However, if computations for even larger numbers are desired, it may
be necessary to switch to another method. A recursive solution is therefore not always
the best way but can be very elegant if the basic conditions are right. Finally, we want to
compare the two functions, countdown1() and countdown2(), a little more closely. So far
we know the approximate runtimes, but what happens internally? To be able to do such
analyses, Python offers tools for profiling. This means to break a command, function, or
script down into its parts and check how often a certain loop or sub-function is called. This
makes it easy to see which parts are slow and deserve more attention. We use cProfile at
this point as it is very user-friendly.

Chapter 2 ● Working with Numbers

● 41

>>> import cProfile
>>> cProfile.run("countdown1(30)")
 1222 function calls (421 primitive calls) in 0.000 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
802/1 0.000 0.000 0.000 0.000 countdown1.py:4(countdown1)
 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec}
 417 0.000 0.000 0.000 0.000 {built-in method builtins.min}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.
Profiler' objects}

First you must make sure that you pass the function to be tested as a string to cProfile,
otherwise you will get an error message. We can see that a total of 1222 functions were
called, 421 of which are primitive, i.e. not triggered by a recursion. We can already see
here that the majority of functions were created by recursion. Further down we see that
802 times countdown1() was called recursively. The other large number, 417, comes from
the function min(), which we use to sort the lists. Although the runtimes are overall so fast
that they cannot be measured, it shows what is actually happening behind the scenes. So
what about the improved version?

>>> import cProfile
>>> cProfile.run("countdown2(30)")
 62 function calls (34 primitive calls) in 0.000 seconds

Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
 1 0.000 0.000 0.000 0.000 countdown.py:21(countdown2)
29/1 0.000 0.000 0.000 0.000 countdown.py:25(inner)
 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec}
29 0.000 0.000 0.000 0.000 {built-in method builtins.min}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.
Profiler' objects}

In the improved version, only 62 functions are called up, which is almost 20 times the naive
version. While we can't see how much additional memory we are using because we now
have to keep book in memory, this seems to be much better, since we can estimate that
the overhead generated by each new recursion will be much greater than the additional
data in the dict.

Python 3 for Science and Engineering Applications

● 42

Assignments

Solve the task discussed in this chapter without using any form of recursion. Compare the
runtime of your solution to countdown2(). What is your conclusion?

2.6 • Ulam Spiral

The Spiral, named after its discoverer Stanisław Marcin Ulam, is a graphical representation
of prime numbers. The idea is very simple: Write down integers, starting with 1, in a spiral,
and mark all prime numbers at the end. If you do this long enough and look at the resulting
image from a distance, interesting patterns are created.

As long as you want to limit yourself to console output only, without additional packages,
this task is not feasible in Python. Therefore, at this point, we will implement the first step,
namely the construction of the spiral.

First, define the notation. No matter how many numbers we want to represent at the
end, we can imagine the position of each number in a Cartesian coordinate system. The
first number (1) in the centre of the spiral is given the coordinates (0, 0). This order is
helpful for our imagination but is not useful for implementation. If we want to store data
in a matrix, i.e. a list with sub-lists, we have to define the number of necessary rows and
columns at the beginning. However, these values can only be between 0 and n, so that, in
contrast to the coordinate system, no negative values are possible. We, therefore, need a
function that converts the different coordinates into each other. For illustration, we can use
the following figure.

Figure 2.3: A visualisation of the Ulam Spiral -Created by Aydolen (Wikimedia Commons)

Chapter 2 ● Working with Numbers

● 43

Figure 2.4: Visualisation of the different data structures within the spiral including the first 22 integers

The first number in each cell represents the integer, followed by the coordinates in the
Cartesian system, with the central box representing the origin. The third information
describes the position of the cell in our data matrix, i.e. a list with sub-lists. First, we
have to select how many numbers should be mapped (n). Then we generate a list. The
number of sublists specifies the number of rows in the matrix. The length of each sublist
specifies the number of columns. The number of rows and the number of columns should
be identical. However, less than n rows or columns are necessary, since the numbers are
initially grouped in the centre of the spiral and slowly grow towards the edges. Therefore
we have to make sure that the first number is created in the middle row and middle column
of the matrix. For this we use the following conversion function:

def cart_to_matrix(position, size):
 """Converts a position from the Cartesian system to the list-matrix"""
 column = (size // 2) + position[0]
 row = (size // 2) - position[1]
 return (row, column)

As input, the Cartesian position is passed as a tuple (e.g. (0, 0)) as well as the number
of rows or columns as we have defined them. The integer division (//) makes sure that
the tuple is always rounded and the correct position is given. For example, if we have five
rows and columns, the midpoint is the third row with the third column. Since Python starts
counting from zero, the index value 2 is correct (5 // 2 is 2 since any floats are rounded
down by the integer division). The next challenge for the program is to find the next
position in the spiral. We always want to go clockwise. The basic idea is simple: Since a
maximum of three subsequent fields are possible (since you cannot go back to the previous
field and diagonal moves are forbidden), we only need to check which of the three adjacent
fields is still empty and also closest to the origin. This prevents leaving the spiral.

Python 3 for Science and Engineering Applications

● 44

def next_position(data, position):
 empty = []
 # Positions bottom, right, top and left
 # Order is relevant so corners are treated correctly
 for x, y in [(0, -1), (1, 0), (0, 1), (-1, 0)]:
 px, py = position[0] + x, position[1] + y
 pos = cart_to_matrix((px, py), len(data))
 if data[pos[0]][pos[1]] == "":
 empty.append((px, py, px ** 2 + py ** 2))
 return min(empty, key=lambda f: f[2])[:2]

The function accepts two arguments, the data matrix, and current position. We initialise
an empty list in which we buffer the results. Now we can process the four possible fields
sequentially. Here we can explicitly go through them all since there are only four. The order
is also important. We start at the bottom and then go counterclockwise. Why? We will see
in a moment. We then calculate the new coordinates and convert them into the matrix
position using the helper function defined before. Then we check whether the respective
field is empty. If it is, we add it to empty and also calculate the distance to the origin using
the Pythagorean theorem. Finally, we sort all elements in empty by this distance and select
the element with the smallest value. This guarantees the correct field is selected and that
the spiral shape is preserved. In the end, we return only the position, i.e. we cut the third
value, the distance, off the result, for which we use a slice ([:2]).

Let's look at an example of what we can use Figure 2.4 for. We are now on field 9, and
apparently, there are two adjacent empty fields: on the left and top. Notice the distance to
the origin is the same for both fields, so we have to be careful in selecting the correct one
(the upper). This is where sorting comes into play, as mentioned at the beginning. Since
we tested the fields counter clockwise, the upper field comes before the left and thus is
selected. This guarantees we don't drift to the left. In the end, it becomes obvious that
either the distance to the origin or, in these borderline cases, the sorting ensures that our
spiral continues as desired. This special case only happens when the top left corners of the
spiral are reached, the next field would be number 25. Now the main program follows.

Chapter 2 ● Working with Numbers

● 45

def ulam(n):
 size = max(15, (int(n ** 0.5) // 2) * 2 + 11)
 data = [[""] * size for i in range(size)]
 i = cart_to_matrix((0, 0), size)
 data[i[0]][i[1]] = 1
 i = cart_to_matrix((0, 1), size)
 data[i[0]][i[1]] = 2
 position = (1, 1)
 for counter in range(3, n + 1):
 a = cart_to_matrix(position, size)
 data[a[0]][a[1]] = counter
 position = next_position(data, position)
 print_field(data)

Our function accepts one argument, the length of the spiral. We specify the size of the data
matrix in size. To save space, we do it in one operation: either n is small and we set the
size to 15; if n is large, however, we use an estimation algorithm so our data matrix is not
too small and "overflows". After we determine size, we generate the empty matrix. Then
we manually create the first two numbers, which in Cartesian view gets the values (0, 0)
and (0, 1). The next position is (1, 1) because we always go clockwise. From here on, the
following loop takes over and creates all further numbers. We save the position in a using
the help function and write the following number in this cell. In this way, the data matrix is
gradually filled with numbers until we have processed all numbers up to n. The last step is
to display our spiral. We use another help function for this.

def print_field(data):
 size = len(data)
 print("".join(["*" for i in range(size * 4)]))
 for row in data:
 for element in row:
 if element == "":
 print(" " * 4, end = "") #Exactly 4 spaces
 else:
 print(f"{element:02d} ", end = "") #Space \
 before the f-string
 print("")
 print("".join(["*" for i in range(size * 4)]))

In this function, we only have to enter the data matrix. At the top and bottom of the field,
we place a delimiter for optical reasons. First, we create a list with the desired delimiters,
and then use join() to combine them to a string and output it. Then we iterate over all rows
and within a row over all columns. If we encounter an empty cell that does not contain a
number, we display exactly four spaces. We modify print() with the option end so that after
each character is displayed, it does not immediately jump to the next line. If we encounter

Python 3 for Science and Engineering Applications

● 46

a number, we use an f-string to create a nicer display. Since we are limiting ourselves to
two-digit numbers in this example, we will display a leading 0 for one-digit numbers, i.e.
09 instead of 9. This way, all numbers are aligned at the end and a nice-looking spiral is
created. If we did not do this, the rows would sometimes slip due to some numbers being
displayed with only three characters in total. This wouldn't be nice to look at. After a line
is finished, we now have to insert a line break, which we achieve by simply displaying an
empty string. Otherwise, all sublists of the data matrix would be displayed in one line,
which we don't want. Finally, a separator line is inserted, which completes the function. In
the end, the result is impressive, here using the example of the first 55 integers.

>>> ulam(55)

 50 51 52 53 54 55
 49 26 27 28 29 30 31
 48 25 10 11 12 13 32
 47 24 09 02 03 14 33
 46 23 08 01 04 15 34
 45 22 07 06 05 16 35
 44 21 20 19 18 17 36
 43 42 41 40 39 38 37

2.7 • Total Chaos

Some things are more profound than they appear. For example, we usually associate
mathematics with formulas, rules, and order. But as shown here, even quite harmless
algorithms can quickly degenerate into chaos. Let's first look at a simple model that can be
used in, for example, describing how a population changes over time.

 Xn+1 = rxn(1-xn)

Where x is a value between 0 and 1 and describes the proportion of the current population.
A high value would, therefore, mean the population has almost reached its maximum
size. We also use a scaling and growth factor r, which indicates whether the population is
increasing or decreasing. Assuming r is 2, the population would double every year. This

Chapter 2 ● Working with Numbers

● 47

would lead to a constantly growing population, which is unrealistic as habitat and food
supply are limited. To prevent this, the last term is introduced to reflect the limitations of
the environment. The larger x becomes, the smaller the factor and thus the value for the
following year. Let's look at an example. As a starting value for x, we choose 0.7, as growth
rate 2. How does the population change over time? The result is:

0.7
0.42
0.4872
0.4997
0.5
0.5
0.5

So the population shrinks first, then grows again and stabilises at a value of 0.5, i.e. half of
the maximum population. What happens if we now start with a much smaller population,
say 0.2? We get the following development:

0.2
0.32
0.4352
0.4916
0.4999
0.5
0.5
0.5

Surprisingly, the population is also very quickly heading towards an identical equilibrium. It
is completely irrelevant with which x we start, the destination is determined by r alone. We
can test this. For a calculation, we use the following function.

def chaosformula(x, r, n, prec):
 for i in range(n):
 print(round(x, prec))
 x = x * r * (1 – x)

If we now slowly increase the value of r, we notice it takes longer for the results to stabilise,
i.e. to converge towards a limit value. What is very surprising, however, is that this behavior
changes when r becomes even larger and exceeds 3: suddenly there are two limits. Let us
compare the result for r = 2.8 and r = 3.1:

Python 3 for Science and Engineering Applications

● 48

(...)
0.6425
0.6431
0.6426
0.643
0.6427
0.643
0.6428
0.6429
0.6428
0.6429
0.6428
0.6429
0.6428
0.6429
0.6428
0.6429
0.6428
0.6429
0.6429
0.6429

After about 30 iterations, the value stabilises and reaches 0.6429. It seems surprising
that the same values have different successors (e.g. for 0.643). This is because rounded
values are shown here. Internally, of course, maximum precision is used for floating-point
numbers. Therefore, this behavior, even if it is not very nice, should not surprise too much.
Now let's calculate the sequence for 3.1:

(...)
0.7647
0.5578
0.7646
0.5579
0.7646
0.5579
0.7646
0.558
0.7646
0.558
0.7646
0.558
0.7646
0.558
0.7646

Chapter 2 ● Working with Numbers

● 49

Figure 2.5: Development of x-values using different values for r. Starting value for x is always 0.5

0.558
0.7646
0.558

We find there are indeed two limits between which the sequence oscillates. The difference is
large and amounts to more than 0.2. A rounding error is not possible with such a dimension.
There are, in fact, two different values that alternate, no matter how many decimal places
we take into account or how long we let the sequence run. Will the number of distinct
points continue to grow as the values of r increase? Yes, but chaotically. This means from a
certain point on, even very small changes in r will lead to a massively fluctuating number of
convergence points. Let us first look at the convergence process for some selected values
of r (see figure 2.5). How can we determine how many convergence points a given value
of r will produce?

The idea is this: We start as before with the known formula and first generate a certain
number of iterations to ensure we have reached a point where the sequence is stable,
i.e. alternates between the same elements. If we choose a small r, this will possibly be
a single convergence point, from larger values for r on, there may be two or much more
such limits. So when we have finished the first iterations, which we refer to as burn-in, we
store all newly computed values together with the iteration in which they were created. For
each subsequent element, we then simply check whether the same value already exists. If

Python 3 for Science and Engineering Applications

● 50

this is the case, we know a cycle is complete. We then only need to check after how many
iterations this has happened and we know the number of convergence points. As an aid, we
convert the function shown above into a generator so we can let it run as often as required.

def logistic(x, r):
 while True:
 yield x
 x = x * r * (1 - x)

from itertools import islice
def cyclefinder(x, r):
 numbers = logistic(x, r)
 # skip first million iterations
 numbers = islice(numbers, 10**6, None)
 seen = {}
 for iteration, x in enumerate(numbers):
 for element in seen:
 if abs(element - x) < 1e-6:
 return iteration - seen[element]
 seen[x] = iteration

The generator applies the formula, but runs as often as we want, which we need in the
actual function, cyclefinder(). We also import islice from itertools. The function accepts
two arguments: x and r. In numbers we initialise the generator, which we can then call.
Now we want to burn-in this generator. This will call it a million times, which takes less
than a second. In this way, we ensure the unstable initial sequences are skipped and do
not affect the result. The larger r becomes, the longer the burn-in should be. The technical
implementation is done using islice. As with a regular slice, we cut a certain area from an
iterable. But since our generator is inexhaustible, we have to use islice. We specify that we
want the region of the generator that starts at one million runs. Since we are setting None
as the end-argument, we take the slice from one million to the end of the generator.

We now create an empty dict in which we store all results. We implement the solution idea
explained above. We iterate over all subsequent elements in numbers and also pack this
iterator into enumerate(). This way we get a tuple with two elements, current iteration and
actual value for each new request. In iteration we store the current call (which starts at
0), in x the return value of the generator. Once we have created this tuple, we iterate over
all entries in seen and check whether the currently created value x is already there. Since
we are working with floats, we test the equality by a difference. If this difference is very
small (less than one millionth), we consider the numbers to be equal. If this is the case and
an already known element is encountered, we return the difference between the current
iteration and the iteration where the known element was found. This way we determine
the period. If, on the other hand, current value x is not yet present, we add it and save the
current iteration with it.

Chapter 2 ● Working with Numbers

● 51

Figure 2.6: On the x-axis values of r are shown, on the y-axis the value the sequence converges towards.
Creator: PAR (Wikimedia Commons)

If we tinker with this function, we find out that value 3 is a jump discontinuity: Before this,
all values converge to one limit. If the values are greater than 3, there are at least two
limits. This is already mathematically validated, so we can use this limit for benchmarks.7
According to this, the first jump point is found exactly at 3. The second at 3.44948974... At
this point, the number of limits changes from 2 to 4, and there is a fascinating visualisation
of this development called the logistic map.

Viewed from left to right, very little happens at first, the sequence always converges
towards exactly one value. This changes at the first jump point (3), from then on the graph
splits and there are exactly two alternating values. Later there is another jump point and
there are now four values. Then it slides into chaos. Without any possibility of prediction,
from there on the number varies seemingly arbitrarily, so that these interesting patterns
emerge. The next task is the following: How can we determine a jump point numerically,
for example, if we do not have the figure shown above? A solution idea is as follows: We
slowly step down the x-axis from left to right, i.e. choose ever-increasing values of r. At
certain points, we then check how many limit values are to be found. If this value changes
from one point onwards, we know we have reached or exceeded a jump point. If 2.95 has
the output 1, but 3.05 has the output 2, it is clear the jump point must lie between these
two values of r. We can use an iterative algorithm that does this for us. Here we can apply
7 http://mathworld.wolfram.com/LogisticMap.html

http://mathworld.wolfram.com/LogisticMap.html

Python 3 for Science and Engineering Applications

● 52

a modification of Zeno's paradox: If we have distance x to an object and on the first day we
cover half of the distance, on the second day again half of the remaining distance, and so
on. When do we reach the object? Mathematically speaking, never, since a repeated halving
of a number produces smaller and smaller values, but never reaches 0. Since Python and
every computer cannot calculate with infinite accuracy, 0 is at some point still reached and
with it the target. We can take advantage of this.

So we define a starting value which we know is quite close to the jump discontinuity we
are looking for. We then move forward by a value a. If r1 and r2 are both still left of this
point, we move both to the right by the step value on the x-axis. If we cross the point at
any time, we halve a and move the point right of the jump discontinuity (r2) back in the
opposite direction. In this way, only r2 can lie to the right of the jump discontinuity, but r1
never (see also figure 2.7)

def find_discontinuity(x, r1, precision=4):
 p1 = cyclefinder(x, r1)
 stepsize = 0.1
 while stepsize > 0.1 ** precision:
 r2 = r1 + stepsize
 print(r1, r2)
 p2 = cyclefinder(x, r2)
 if p1 == p2:
 r1 = r2
 else:
 stepsize /= 2
 return round((r1 + r2) / 2, precision)

The function accepts the x-value (which we will always fix at 0.5), the start value of r1 and
the precision. r1 specifies the value from which the discontinuity is searched. The precision
is limited by the other functions, for example how precise cyclefinder() is. We will later
see that four to five decimal places are quite achievable. First, we calculate the number of
periods at the value r1 in p1. We set the stepsize to 0.1. The next value to be checked, r2, is
r1 + stepsize. For understanding this, it is helpful to have a clear view of the nomenclature:
r1 is always to the left of r2 on the number ray or the x-axis. Similarly, p1 indicates the
number of periods in r1, p2 the number in r2. We then enter the while-loop, which runs until
the result is found. We set the new value for r2 and intentionally leave a print command
in the code so we can later reproduce the iterations or convergence process against the
discontinuity. We calculate p2 and then check whether r1 and r2 are on the same side, so
they have the same value for p1 and p2? In this case we have to move further to the right
on the x-axis, so we make r2 our new r1 and then start the loop again from the beginning.
But if this is not the case and p1 and p2 have different values, we divide the stepsize by 2
and start the loop again. In the following iteration, r2 will, therefore, be closer to r1 again,
i.e. will slide to the left on the number ray. This becomes clearer in figure 2.7. In iteration
9, r1 and r2 have different periods, so in iteration 10, r2 again slides to the left. The process

Chapter 2 ● Working with Numbers

● 53

continues until we have approximated the discontinuity. Let us try the function with a
starting value of 2.7, which is already very close to the known value of 3:

>>> find_discontinuity(0.5, 2.7)
2.7 2.8000000000000003
2.8000000000000003 2.9000000000000004
2.9000000000000004 3.0000000000000004
2.9000000000000004 2.9500000000000006
2.9500000000000006 3.0000000000000004
2.9500000000000006 2.9750000000000005
2.9750000000000005 3.0000000000000004
2.9750000000000005 2.9875000000000003
2.9875000000000003 3.0000000000000004
2.9875000000000003 2.9937500000000004
2.9937500000000004 3.0000000000000004
2.9937500000000004 2.9968750000000006
2.9968750000000006 3.0000000000000004
2.9968750000000006 2.9984375000000005
2.9984375000000005 3.0000000000000004
2.9984375000000005 2.9992187500000003
2.9992187500000003 3.0000000000000004
2.9992187500000003 2.9996093750000004
2.9996093750000004 3.0000000000000004
2.9996093750000004 2.9998046875000006
2.9998046875000006 3.0000000000000004
2.9998046875000006 2.9999023437500005
2.9999

Slowly but steadily we approach the limit. The precision we reach here seems fit for
demonstrating the technique. What happens if we choose a starting point that is quite far
away from the limit we are looking for? We can test our algorithm again using 3.1 as a
starting point. This process is visualised in figure 2.7

Python 3 for Science and Engineering Applications

● 54

>>> find_discontinuity(0.5, 3.1)
3.1 3.2
3.2 3.3000000000000003
3.3000000000000003 3.4000000000000004
3.4000000000000004 3.5000000000000004
3.4000000000000004 3.4500000000000006
3.4000000000000004 3.4250000000000007
3.4250000000000007 3.4500000000000006
3.4250000000000007 3.4375000000000004
3.4375000000000004 3.4500000000000006
3.4375000000000004 3.4437500000000005
3.4437500000000005 3.4500000000000006
3.4437500000000005 3.446875000000001
3.446875000000001 3.4500000000000006
3.446875000000001 3.4484375000000007
3.4484375000000007 3.4500000000000006
3.4484375000000007 3.4492187500000004
3.4492187500000004 3.4500000000000006
3.4492187500000004 3.4496093750000005
3.4492187500000004 3.4494140625000007

Figure 2.7: Here the process of convergence is visualised for the starting point r = 3.1. The first few iterations
are not shown, so the scaling is not disturbed too much. As you can see, there are only two cases: either r1

and r2 are both on the left side of the discontinuity or r2 is only on the right of this limit.

Chapter 2 ● Working with Numbers

● 55

3.4494140625000007 3.4496093750000005
3.4494140625000007 3.4495117187500006
3.4495

Although the starting point is quite off, we finally reach the correct limit. However, when we
increase the values of r further, we notice that it becomes impossible to find discontinuities
since the cycles become chaotic and no clear patterns emerge. The algorithm fails since
its precision is limited. When the system slides into chaos, it does not seem possible to
distinguish points of discontinuity any longer.

2.8 • Three Points

A classical problem of antiquity, also known as the problem of Apollonius after Apollonios
of Perge, is as follows: There are three different points on a plane. How can a circle be
constructed that intersects all three? The following figure can serve as an illustration.

A solution is always possible if there are three distinct points and not all of these lie on
a straight line (in this case there is no solution). How can this problem be solved if the
algorithm is not known? The definition of a circle can serve as a starting point. It is defined
by its centre, i.e. a coordinate on a plane, and its radius, which is the distance of all points
from the centre. So the idea is to find a point in the plane which has the same distance
to all three given points. How can this be done? An iterative procedure is feasible here.

Figure 2.8: How can we construct a circle that intersects all three given points?

Python 3 for Science and Engineering Applications

● 56

You choose any starting point and measure the distance to all three points, which we
will refer to as A, B, and C in the following. It can be assumed that at the beginning the
distances are unequal. Now the selected point is moved slightly and we check how the
distances change. If they converge, the new point is better. Otherwise, another point must
be chosen. This standard principle of iterative optimisation works very well when there is a
measure of improvement. But how do we determine whether a new point brings us closer
to the solution?

This is not a trivial problem and involves several traps. The goal must be that the three
distances are equal in the end. The mean value of distances is thus not helpful, since the
radius to be found is unknown and the value does not allow any judgement about whether
we are approaching the true centre. More promising seems to be the standard deviation, i.e.
the mean difference of all three distances from the mean value. If the standard deviation
becomes zero, all three distances are identical and the centre is found. So we come closer
to the solution when the standard deviation becomes smaller, right? Unfortunately, it is not
that simple. The standard deviation can also become smaller if the point moves away from
the true centre. How can that be? If all three differences go towards infinity, their difference
to each other becomes smaller and with it the standard deviation. In the end, our "centre"
is infinitely far from A, B, and C, the standard deviation is zero, and we are further from the
solution than ever before.

A way that works is a bit more complex and requires some knowledge of vectors and
geometry, but should lead to the solution. As described above, our chosen point P has a
distance to each of the given points A, B and C, which must always be positive. If we now
imagine a cube, we can plot the distance A-P on the x-axis, distance B-P on the y-axis,
and distance C-P on the z-axis. The solution is found when these distances are all identical.
When we imagine this in a 3D-plot, the solution must lie on a straight line that intersects
the origin of the coordinate system and the point (1, 1, 1). At the beginning, we do not
know where exactly on this line the solution will be, but as long we slowly approach the line
we should make progress. For a visualisation of this, refer to figure 2.9

Figure 2.9: On the axes, we measure the distance between the current centre-point and each given point
A, B, and C. As soon as these distances are equal, we touch the diagonal and the true centre is found that

intersects A, B, and C. Created with Geogebra.org

http://Geogebra.org

Chapter 2 ● Working with Numbers

● 57

The objective must, therefore, be to minimise the distance between the current selected
point and line (diagonal). Whenever this difference becomes smaller, we come closer to the
solution. So some mathematics is necessary. We define the diagonal g as an equation of a
line in parameter form:

Here b is also called a support vector. u is a direction vector and s is a scaling factor. As
a support vector, we choose the origin of the coordinate system, so we have to define u
alone. With three dimensions we get the following equation:

How do we compute the distance of a point and line?

Here, x symbolises the cross product. The absolute value bars indicate we need the norm
of the vectors. The cross product is defined as:

And the norm of a vector as:

Python 3 for Science and Engineering Applications

● 58

Now we have collected all the mathematical components we need for computation. What
remains is the implementation in Python. We do this without creating special objects or
classes and use simple tuples or lists to hold our vectors.

def norm(vector):
 """Norm of a vector"""
 return (sum(x ** 2 for x in vector)) ** 0.5

def crossproduct(a, b):
 """cross product of vectors a and b"""
 assert len(a) == len(b) == 3
 return [a[1] * b[2] - a[2] * b[1],
 a[2] * b[0] - a[0] * b[2],
 a[0] * b[1] - a[1] * b[0]]

def line_point_distance(line, point):
 """Computes the distance between a line and a point.
 The line is entered as a tuple with support and direction.
 Support, direction and point are given as lists with 3 elements.
 """
 support, direction = line
 d = [s - p for s, p in zip(support, point)]
 return norm(crossproduct(d, direction)) / norm(direction)

Here we make use of zip() to create tuples from two lists. The elements in the lists are
paired together based on their indices. For a detail explanation, let’s consider the following
short example:

>>> x1 = [1, 2, 3]
>>> x2 = ["a", "b", "c"]
>>> list(zip(x1, x2))
[(1, 'a'), (2, 'b'), (3, 'c')]

As zip() creates a generator object, we use list() to display all elements. Otherwise we
could also iterate over all elements of the generator.

def point_point_distance(x, y):
 """Distance between two points in 2D"""
 assert len(x) == len(y) == 2
 return ((x[0] - y[0]) ** 2 + (x[1] - y[1]) ** 2) ** 0.5

Chapter 2 ● Working with Numbers

● 59

Additionally we create a function that calculates the distance between two points. However,
there is still the problem of three points lying on a straight line. We have to recognise such
inputs, because otherwise the function cannot generate a correct solution. As long as one
coordinate is identical for all three points, this problem is trivial, for example, if all points lie
on the x-axis. But what about the other cases? The points (1, 1), (2, 2) and (3, 3) would be
such an example. The solution idea is to calculate the direction vector between A and B and
then between B and C. This means that only the difference between the two points needs
to be calculated (this is possible because we can consider points in the coordinate system
as vectors). If the direction vectors calculated are equal, the points lie on a line.

def norm_vector(vector):
 """Create a vector with length 1 that keeps the direction of the
 input vector"""
 length = norm(vector)
 return [x / length for x in vector]

def falls_on_line(point_a, point_b, point_c, tolerance):
 """Tests whether a b c lie on a line"""
 direction_ab = norm_vector([a - b for a, b in zip(point_a, \
 point_b)])
 direction_bc = norm_vector([b - c for b, c in zip(point_b, \
 point_c)])
 scalar_product = sum(x * y for x, y in zip(direction_ab, \
 direction_bc))
 return 1 - abs(scalar_product) < tolerance

To do this, we define a function that normalises a vector, i.e. maintains its direction, but
gives it a length of 1. We are not interested in how far apart the vectors are, but only if they
point in the same direction. With the second help function falls_on_line() we check whether
the points lie on a straight line. To do this, we first calculate the vectors from A to B and B to
C and normalise them. We then calculate their scalar product. Here, two vectors lie parallel
if their scalar product is 1 or -1. We use the following formula:

The next function takes four points: the current estimate of our circle centre and the three
given points A, B, and C. It then calculates the distance of our estimate from the diagonal
line in 3D as explained above.

Python 3 for Science and Engineering Applications

● 60

def compute_distance(vector, a, b, c):
 diagonal = ((0, 0, 0), (1, 1, 1)) # support and direction
 distances = [point_point_distance(vector, p) for p in (a, b, c)]
 distance = line_point_distance(diagonal, distances)
 return distance, distances, vector

We define the diagonal line, which is always the same. We then determine the paired
distances between our estimated circle centre, which we will refer to here as a vector, and
the three given points. We store this information in a list. Then we use the already defined
function line_point_distance() and determine how far our estimate is from the diagonal line.
Last but not least, we need a function that shifts our current mean value and generates new
potential centres. We also outsource this so the main function does not become too long. A
simple implementation could look something like this:

def move_vector(vector, coordinate, movement):
 if coordinate == 0:
 return [vector[0] + movement, vector[1]]
 else:
 return [vector[0], vector[1] + movement]

We accept three arguments, the current centre of the circle, which we take as a vector
again, the coordinate to move (we move either x or y coordinate but not both at the same
time), and the distance to move. Since coordinate is only 0 or 1 here, there are only two
conditions to consider. Finally, we have created all auxiliary functions and now can focus
on their integration.

import math
def circlefinder(a, b, c, tolerance=0.01, maxiter=10**5):
 if a == b or b == c or c==a:
 raise ValueError("Enter three distinct points!")
 if falls_on_line(a, b, c, tolerance=0.1):
 raise ValueError("All given points lie on one line!")
 center = [(a[0] + b[0] + c[0]) / 3, (a[1] + b[1] + c[1]) / 3]
 step = 1
 dist1, distances, _ = compute_distance(center, a, b, c)
 for iteration in range(maxiter):
 candidates = []
 for sign in (-1, 1):
 for coordinate in (0, 1)
 candidates.append(compute_distance \

Chapter 2 ● Working with Numbers

● 61

 (move_vector(center, \
 coordinate, sign * step), a, b, c))
 new_dist1, new_distances, new_center = min(candidates)
 if new_dist1 < dist1:
 dist1, distances, center = new_dist1, new_distances, \
 new_center
 else:
 step *= 0.5
 if dist1 < 0.01 * tolerance:
 break
 else:
 raise ArithmeticError("Does not converge")

 dist_a, dist_b, dist_c = distances
 if not (math.isclose(dist_a, dist_b, abs_tol=tolerance)
 and math.isclose(dist_a, dist_c, abs_tol=tolerance)):
 raise ArithmeticError("Estimate is not true center")
 return (round(center[0], 3), round(center[1], 3)), round(dist_a, 3)

The function accepts five arguments: the three given points (A, B, C), tolerance (which
determines the accuracy of our result), and the maximum number of iterations. We will
discuss the meaning of this value in more detail in a moment. After this, we directly check
whether the points are identical or lie on a line. If so, we throw an error message. We then
calculate a first estimate for the centre of the circle as a simple average of the given points,
so that a starting value is available. Step, which determines how far we move the centre
of the circle in the search for better positions, is initially set to 1. Also, for these values, we
calculate the first distance of our estimate from the diagonal. Here we use tuple unpacking.
Since we do not use the third return value, we unpack it into an unused variable, which
we name with the underscore _. This is followed by the main loop, which at the latest
terminates when the iteration limit is reached. This is a backup that prevents the function
from running too long. This way it is possible that even after many attempts, no good
solution is found, which can happen if the points lie unfavorably, for example when they
are almost on a straight line.

In the main loop, we create an empty list in which we collect the new centre point
candidates. We hope that one of the points is a better estimate than our current value.
We iterate over the signs and coordinates, which means that we always want to test four
new coordinates based on our current mean value. These are shifted in either horizontal
or vertical dimensions by the value of step. If our current centre estimate would be (0, 0),
we would try the values (1, 0), (0, 1), (-1, 0) and (0, -1) in the first iteration. Using move_
vector() we calculate these four points first and then compute, for each of the four points,
whether this point brings an improvement. This can be measured by the fact that our point
is closer to the diagonal in the 3D visualisation. Thus, at the end we choose the smallest
value regarding this distance value stored in candidates. If this value is smaller than the
previous value, we have found an improvement and apply these values to all relevant

Python 3 for Science and Engineering Applications

● 62

variables. If this is not the case, it means all four potential candidates are not better than
the current position. This means we are no longer getting closer to the true centre, which
may be because we are already very close to it, but step is too large to allow an effective
approximation. In this case, we halve step. Finally, we check if we are already very close
to the true centre and thus can leave the loop. Otherwise, the next iteration starts. If we
reach the iteration limit, we abort and generate an error message.

If a good approximation has been found, we can perform a final check. We simply test
whether the distances between the centre point found and all three given points A, B,
and C are approximately the same. If so, the test is successful and we output the result.
Otherwise, we generate an error message. Now we can calculate an example. For this, we
give three points.

>>> circlefinder((2, 2), (-5, 1), (-1, -6))
((-1.085, -1.406), 4.595)

The centre of the circle is returned in a tuple, the third value is the radius of the circle.
Finally, we have found the correct circle and the challenge is completed.

Appendix: Decorators

If we want to change the behavior of functions, we can of course rewrite them. But what
if we want to do it dynamically? We also want to adjust the behavior of multiple functions
in the same way. Normally we would have to rewrite each function separately. To mitigate
the problem, Python provides decorators. A decorator can dynamically adapt the behavior
of any function, making the code flexible.

In this appendix, we would like to look at an example based on circlefinder() as shown
above. This function takes three points in a plane and finds the circle that intersects all
three. The output is a tuple with the coordinates of the circle centre and radius. Suppose we
need to extend this function to a third output, namely the current date, which can be useful
for logging purposes. To do this, we would have to adjust the function - either extend the
tuple before output or insert a print statement. Is there another way? Yes, with a decorator.
The basic idea is to treat functions in Python as objects that can be used as arguments in
other functions. To do this, we first code the decorator as a regular function:

def date_adder(func):
 date = "2020_03_04"
 def inner(*args, **kwargs):
 print("Current date:", date)
 return func(*args, **kwargs)
 return inner

Chapter 2 ● Working with Numbers

● 63

The new function date_adder() has exactly one argument, namely the function we want
to modify. We want to remain as flexible as possible and use *args and **kwargs to make
sure that all possible arguments of the function to be decorated are kept. Then comes our
real adjustment, namely the display of the date. After this, the function to be changed is
called normally with its arguments. This completes the inner function. Now we only need to
return inner in the outer function. Attention, the function is not called (otherwise you would
have to write inner()). Now we have to make sure that the decorator is active. Since we
want to call the original function at the end, as usual, we wrap it into the decorator. We do
this interactively and call everything as a test:

>>> circlefinder = date_adder(circlefinder)
>>> circlefinder((2, 2), (-5, 1), (-1, -6), 3)
Current date: 2020_03_04
((-1.085, -1.406), 4.595)

We simply redefine the function: We use the same name, and pass the original function to
the decorator. We then call the function as normal, so nothing has changed in handling and
we don't have to change anything else in the code, which is a blessing for longer scripts.
We get the correct result, but before we do so, the date is displayed as requested. It is
important to understand when a function is called and when it is treated like an object.
If you think of the function as a machine, we start it whenever you use parentheses,
for example func() or func(argument), then the function becomes active and returns the
desired result. If a function is used without these parentheses, it is just like carrying the
machine around, putting it in a list, or even passing it to another machine. This is exactly
what we are doing. We take a second machine and pass the first one with some additional
code. When you start the second machine, the additional code is executed and the first
machine is started as usual. You don't notice this because we simply rename the second
machine into the first one. The idea is you can apply this decorator to any function as
required. Here is an example:

@date_adder
def addition(x, y):
 return x + y

What happens when we call addition() now?

>>> addition(1, 2)
Current date: 2020_03_04
3

Python 3 for Science and Engineering Applications

● 64

We'll see how we can use the decorator alternatively with @ (somewhat more elegant
syntax, the way it works is identical). It is important to note that this action must be applied
at the definition of the function, not the function call. This means a decorator modifies the
behaviour of a function globally. No matter where it is subsequently called, the decorator
is always active at the same time.

In summary, decorators are powerful tools that, in some cases, allow for quick, dynamic,
and comprehensive customisation of one or more functions. For the very clear tasks shown
in this book, they are often not that useful because we can directly change code. In this
respect, it is important to carefully consider when a decorator can be used to advantage,
and when it is easier to change the function itself.

2.9 • Close Together

Given is a number of points in a plane. Now it is up to you to find the pair of points with the
smallest distance to each other. Sounds easy, right?

It is not difficult to come up with a naive algorithm. Simply calculate the distance between
all conceivable pairs. So from point A to B, then from A to C, A to D, and so on... At n
points, these are a total of (n(n – 1)) / 2 operations, i.e. at 1,000 points nearly half a
million. The runtime of this algorithm is not exactly short, or to put it another way, can we
do better? Indeed. Let's first implement the naive algorithm, which we will call the brute
force approach here. For the calculation, we use the itertools module, which makes sure we
get all pairs and don't count twice, i.e. we first measure A to B and later B to A, since the
distance is symmetrical. Here it is worth taking a look at how the function combinations()
works.

>>> from itertools import combinations
>>> x = ["A", "B", "C", "D"]
>>> for element in combinations(x, 2):
>>> element
('A', 'B')

Figure 2.10: Which two points have the shortest distance to each other?

Chapter 2 ● Working with Numbers

● 65

('A', 'C')
('A', 'D')
('B', 'C')
('B', 'D')
('C', 'D')

We have to take into account that itertools creates an iterator at this point, i.e. a generator
that outputs all possible combinations. We can now use this for calculation. We calculate
the distance between two points in the plane with Pythagoras’ theorem, which we do in a
small function.

from itertools import combinations
def distance(p1, p2):
 """Distance of two points"""
 xdiff = p1[0] - p2[0]
 ydiff = p1[1] - p2[1]
 return (xdiff ** 2 + ydiff ** 2) ** 0.5

def bruteforce(points):
 """Finds the pairing with the shortest distance"""
 return min(
 (distance(*pairing), pairing)
 for pairing in combinations(points, 2)
)

Actually we can fit the entire function into a single expression. Let's have a closer look.
First, combinations() generates the iterator object that gives us a pairing of all tuples.
Since we invoke option 2, pairs of two are created. Now we loop over this iterator and feed
the resulting tuples into distance(), for which we use tuple unpacking (asterisk operator).
We return the tuple with the minimal distance and the pairing itself since we use the min-
function on the created generator expression. If you think this is too complex, try to rewrite
it more explicitly.

So far, so slow. As explained above, this function works through all points and thus
guarantees the correct result. But we can be faster if we divide and conquer. The idea is
simple: We have a problem we cannot solve because it is too big or complex. We, therefore,
divide the problem into smaller sub-problems. Either each sub-problem is solvable, or we
divide it again. We do this until we find a problem we can solve. We then propagate the
solution back upwards until we reach the origin. This works in this case because the effort
of testing our problem in the naive algorithm does not grow linearly, but quadratically.
Twice as many points mean a quadrupling of the operations.

Python 3 for Science and Engineering Applications

● 66

The procedure is now as follows: We take the list of points and check how many elements
it contains. If there are less than five, we use the naive algorithm and return the result.
If there are more, we first sort the points by their x-coordinate. We then divide the points
into two equally sized lists, the left and right side. Now we apply the algorithm recursively
to each sublist. Either each list is short enough and we get a result directly, or we split the
list again. In the end, we get the minimum distance for each sublist. Now we can compare
both and learn whether the upper limit is on the left or right side. This leaves only one
problem: Theoretically, the shortest distance can also exist between points that are in the
other list. So P1 is on the left side of the limit, P2 is on the right side and the distance P1-P2
is shorter than the one found in the left and right list. Here we use a simple solution. We
take the shortest upper bound found so far from either the left or right sub-list and label it
δ. If this limit is not also the lower limit, the difference still to be found must be less than
δ. Only points with a distance from the "separating line" that is less than δ are considered,
see figure 2.11.

We collect these points in L1 (left of centre) and L2 (right of centre). On average, the
number of points in both lists will be considerably smaller than the total number of points,
so that we can now test all pairings again. Also, we only have to test the pairs that are on
different sides of the middle line, otherwise, they have been tested before. It can be shown
that there is an even better solution. Since the proof cannot be presented concisely at this

Figure 2.11: If the distance of a pairing those points lie on different sides of the dividing line is shorter
than the shortest distance on either the left or right side, which we call δ, this pairing has to fall inside the

depicted box. Note: δ = min(δ1, δ2) Creator: Subhash Suri, UC Santa Barbara.

Chapter 2 ● Working with Numbers

● 67

point, we refer to the literature and keep the simpler algorithm.8

We can now quite easily implement this approach. Since it is a recursive function, we must
remember to specify the base case first. If this is reached, the functions called must start
to produce returns, otherwise, the recursion is infinite. In our case, the base case is that a
list contains less than five elements.

def mindistance(pointlist):
 """Finding the shortest distance with divide and conquer"""
 length = len(pointlist)
 if length < 5: #Base Case
 return bruteforce(pointlist)

 points_left = pointlist[:length // 2]
 points_right = pointlist[length // 2:]
 min_left = mindistance(points_left)
 min_right = mindistance(points_right)
 d = min(min_left, min_right)[0]
 limit_left = [p for p in points_left if abs(p[0] - points_right[0] \
 [0]) <= d]
 limit_right = [p for p in points_right if abs(p[0] \
 - points_left[-1][0]) <= d]
 distances = [min_left, min_right]
 for x in limit_left:
 for y in limit_right:
 distances.append((distance(x, y), (x, y)))
 return min(distances)

The function is surprisingly compact. We define the base case and call the naive function
when the list of points to solve is very short. Otherwise, we split the list (we assume that
it is already sorted!) in half. This is where the recursion starts: We solve each sublist
(points_left and points_right) with exactly the function we are writing! This makes us use
the bootstrapping technique again, pulling ourselves out of the swamp by our straps since
we already assume at this point that our function works. We receive the result for both
sublists and store the shortest value in d. Now we define two new lists, which in turn are
sublists of the other lists. We set the point closest to the middle (i.e. the ends of the list)
as references and measure the distance from this value. We therefore only include points
that can lie within the box shown. We then create another list, distances. In this list we now
save all pairs of limit_left and limit_right. We iterate over all elements and calculate the
distances. At the end we only have to output the smallest value and we are done.

8 For a presentation of the improved search see http://people.csail.mit.edu/in-
dyk/6.838-old/handouts/lec17.pdf or https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/
closepoints.pdf

ttp://people.csail.mit.edu/indyk/6.838-old/handouts/lec17.pdf
ttp://people.csail.mit.edu/indyk/6.838-old/handouts/lec17.pdf
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/closepoints.pdf.
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/closepoints.pdf.

Python 3 for Science and Engineering Applications

● 68

If you get a headache with recursions you should think of a simple example with a short list
and follow it either with pen and paper or in the console itself using print statements. Now
we have no other choice than to test if we can keep what we promised. Are we really faster,
was it worth it? For this purpose we write a main function with a test.

import time
import random

def timetest():
 random.seed(1234)
 allpoints = [(random.random() * 100, random.random() * 100) for i \
 in range(5000)]
 start = time.monotonic()
 print(bruteforce(allpoints))
 print(time.monotonic() - start)

 start = time.monotonic()
 allpoints.sort()
 print(mindistance(allpoints))
 print(time.monotonic() - start)

We define a seed so we can reproduce the random points in a repeated call and build a list
containing random points. We then stop time, once naively, once with recursion. With the
recursion variant, we still have to remember to sort the list. What is the difference?

>>> timetest()
(0.012268040707845339, ((88.13955858203019, 90.2421702279523),
(88.14403029179554, 90.23074619037429)))
7.409728050231934
(0.012268040707845339, ((88.13955858203019, 90.2421702279523),
(88.14403029179554, 90.23074619037429)))
0.06520891189575195

We have improved from 7.41 to 0.065 seconds, a factor of 113! This is not insignificant and
shows what can be achieved with a little thought. Also, we haven't even implemented the
best version, so there is still some room for improvement.
Assignments

1. In the example shown, we sort the points list in the main function and not the actual
recursion function, which is a problem. If someone wants to load the function into her
script and imports the file as a module, the results will be wrong because the list is not
necessarily sorted at the beginning. A simple solution would be to include the sorting in

Chapter 2 ● Working with Numbers

● 69

the recursion, but it has the disadvantage that every time the function calls itself, the
list is sorted again, which is unnecessary because the sorting does not change, even
after splitting. So this would be an unnecessary slowdown. Rewrite mindistance() so
that sorting by x-coordinate is guaranteed and yet the speed does not suffer. Hint: You
will have to define a function within the function.

Appendix: *args and **kwargs

In this task, we used the unpacking operator, which is usually referred to as *args (the
name args, referring to "arguments", is arbitrary, the declaration in the code is done by
using the asterisk operator *). This operator is very useful when we are defining a function,
but want to allow an arbitrary number of arguments. We have already seen several times
how we can create a simple function that adds exactly two numbers. What if we have
more than two? Also, what if we want to allow not only addition but also multiplication, for
example? With *args we can be very flexible.

def calculator(operator, *args):
 if operator == "add":
 return sum(args)
 if operator == "multiply":
 res = 1
 for element in args:
 res *= element
 return res

Our function seems to accept exactly two arguments: the kind of arithmetic operation and
*args. We use the asterisk here to indicate we accept any number of additional arguments.
Python will later collect these in a tuple for us. Depending on the type of operations, we
perform either addition or multiplication. As you can see, internally we treat *args like a
normal list or tuple. It can be thought of as an iterator. Now let's test this function.

>>> calculator("add", 1, 2, 3)
6
>>> calculator("multiply", 1, 2, 3, 4)
24

It does not matter how many arguments we add. It should be emphasised that we don't
collect them in a list or tuple beforehand, so do not pass a list with any number of items, but
additional arguments. By defining the function with *args, Python can flexibly handle this.
It also shows that this trick only works if this has been taken into account in the definition.
Therefore, if we use Python's internal functions, we need to check or try out if *args is
allowed. Similarly, there are **kwargs ("keyword-arguments"), which are treated like a

Python 3 for Science and Engineering Applications

● 70

dict. This can be useful, for example, if you write a function that accepts different options
but it is not clear beforehand exactly what they are called or how many are available.

def display(name, **kwargs):
 print("Hello", name)
 for key, value in kwargs.items():
 print(key, value)

>>> display("User", Day = 1, Place = "West", Flag = True)
Hello User
Day 1
Place West
Flag True

You may specify both *args and **kwargs in one function, however, they must always be
placed as the last arguments.

2.10 • Backtracking

Backtracking is the process of solving a problem by systematically trying out all possible
solutions. It is therefore a brute force method that can be useful in some cases. As long
as the task does not involve too many possibilities, backtracking can be an intelligent
approach. As an example, one can mention finding the way out of a maze. At a fork in the
path, you always choose the paths from right to left and mark an already chosen path.
If you reach a dead-end, you return to the last unused branch. If you use this method
consistently, you will reach the end of the path at some point (in the worst case you had to
try every single pathway). All you need is a decision rule and memorising all paths already
taken. This way, a path is only used once.

As an applied example, we will consider the problem of the Knight’s tour (see figure 2.12).
This is about moving the knight on an empty chessboard so that it enters each of the 64
squares exactly once. The start is in one of the corners. By trial and error, you will find that
this is not easy and you will often reach a position where no valid move to a previously
unoccupied square is possible. The idea for the solution is the following: the knight starts
in a corner and randomly chooses a field that has not been visited. This is done until he
reaches a dead-end, i.e. he cannot move without violating the rule. He then goes back to
the last field where an unvisited field is still available. The dead-end pathway is kept in
memory and never entered again.

Chapter 2 ● Working with Numbers

● 71

Figure 2.12: Shown is a path for the knight that enters each square exactly once. Creator: Jan.Kamenicek
(Wikimedia Commons).

The task is divided into multiple subtasks or functions. First, the chessboard must be
represented numerically. One possibility is using a Cartesian coordinate system, where
each square is defined by two coordinates (row and column). To speed up the calculation,
in the example we consider a chessboard with only 25 squares, i.e. five rows and columns.
However, we will design the program in such a way that the field size can be defined
arbitrarily, whereby it should be noted that solutions do not exist for all field sizes. Field
(0, 0), which we want to look at in the upper left corner, would thus have the field number
0, the field (4, 4) is in the lower right corner with field number 24. Then we need another
function that computes all available moves for the knight. We have to consider both the
limits of the chessboard so that the knight does not jump out as well as all squares that
have already been visited in previous moves and are thus blocked.

def posfinder(position, path, deadend, size):
 """Finding all available squares for the knight"""
 posfields = []
 for a, b in [(-2, -1), (-2, 1), (-1, -2), (-1, 2), \
 (1, -2), (1, 2), (2, -1), (2, 1)]:
 a += position[0]
 b += position[1]
 if 0 <= a <= size - 1 and 0 <= b <= size - 1:

Python 3 for Science and Engineering Applications

● 72

 # Position is within the chessboard
 if (a, b) not in path and (path + [(a, b)]) not in \
 deadend:
 posfields.append((a, b))
 return posfields

The function accepts four arguments: the current position of the knight, the path currently
taken (i.e. a list of all the squares it has entered since the start), a list of all paths already
taken that have ended in a dead-end, and the size of the chessboard. We create an empty
list in which possible move fields are stored. We then iterate over all possible positions.
As you can easily check, there are a maximum of eight possible moves for a knight (less
if he is standing at the edge). We can go through these manually and store them in a list.
We calculate the new field for each possibility and check if it is still inside the limits of
the chessboard. If this is the case, we check whether it has already been entered on the
current route or whether it is a blocked field that can no longer be entered. To do so, we
"realise" the move and add it to the current path for testing. If this route already appears in
deadend, we have found a previously known dead-end and this field must be sorted out. If
these contingencies are excluded, the field can be added to posfields as a potential square
to jump to. Now the function knight() can be created. It uses posfinder() to find the legal
moves and otherwise only implements the general logic of backtracking.

def knight(size=5):
 startpos = (0, 0)
 path = [startpos]
 deadend = []
 iteration = 1
 while len(path) < size ** 2:
 iteration += 1
 # Generate all further moves:
 moves = posfinder(path[-1], path, deadend, size)
 if moves:
 path.append(moves[0])
 elif path == [startpos]:
 raise ValueError("Cannot be solved")
 else:
 #Backtrack when in deadend:
 deadend.append(path)
 path = path[:-1]
 print("Iterations:", iteration)
 print(path)
 print([b * size + a for a, b in path])

Our function accepts the size of the chessboard as the only argument, which we set here as

Chapter 2 ● Working with Numbers

● 73

default to 5. We initialise the starting position of the knight and create a list in path where
the current route is stored. At the beginning, this list contains only the starting position.
With deadend we use a second list in which we store paths we have tried and should no
longer be used. In iterations we store how often the main loop has been run. The main loop
runs until the path has reached a maximum length. This is the case when each field has
been entered exactly once, which is the square of size.

We increase the counter by 1 and use our previously defined helping function to generate
potential moves in moves. If the list is not empty, we select the first best move, append
it to our current path and start the loop from the beginning. Since our helper function
already checks that the move is legal and not yet entered, no further checks are necessary.
However, if the list is empty, this shows that no legal move is possible from the current
position. We then check if we are standing on the starting field. If this is the case, we have
reached a situation where a solution is impossible. This can happen with certain field sizes.
However, if we are not standing on the starting field, we have reached a dead end. In this
case, the actual backtracking mechanism is invoked. We add the current route to deadend
to memorise that we don't use it in the future again. We then delete the last move from the
current path and restart the loop. Since we updated deadend, posfinder(), the same move
the cannot be used the next time we run it.

If we tried all possibilities in this way, the board is either declared unsolvable or we have
found a way. In this case, we get some statistics and show the knight’s path so we can
retrace it if necessary. We can now test the function.

>>> knight()
Iterations: 9995
[(0, 0), (1, 2), (0, 4), (2, 3), (0, 2), (1, 0), (3, 1), (4, 3), (2, 4),
(0, 3), (1, 1), (3, 0), (2, 2), (1, 4), (3, 3), (4, 1), (2, 0), (0, 1), (1,
3), (3, 4), (4, 2), (2, 1), (4, 0), (3, 2), (4, 4)]
[0, 11, 20, 17, 10, 1, 8, 19, 22, 15, 6, 3, 12, 21, 18, 9, 2, 5, 16, 23,
14, 7, 4, 13, 24]

Assignments

1. According to H. C. von Warnsdorf, there is a simple heuristic to speed up the solution.
The knight should always move to the field from which he has the fewest further moves
available. Add this rule in the current program and check whether the speed can be
improved by this.

2. This task was actually solved without recursion. Change this and combine recursion
and backtracking to solve the knight’s tour.

3. Sudoku is a popular puzzle, where in a 9x9 square the numbers 1 to 9 may only occur
exactly once in each row, column and in each of the nine quadrants. Write a function
that accepts an unsolved Sudoku and solves it using backtracking. Hints:

Python 3 for Science and Engineering Applications

● 74

• First, think about how a Sudoku board can be numerically represented in Python.
• Write a function that checks whether the Sudoku has been solved successfully and if

each field has a number.
• Write a function that checks which numbers are still possible for a given field. These

can then be tested systematically.

2.11 • Numerical Integration

The derivation and integration of functions are one of the central interests of analysis.
There is probably no scientific discipline that does not use functions and differential calculus
to describe and evaluate models about reality. While derivation of functions can usually be
done very well with algorithms because only a few rules have to be applied, integration
is much more challenging. Although there are basic rules and algorithms available, more
complex functions require a lot of experience and indeed creativity. It is not without
reason that some universities organise competitions for mathematics students, where the
participants have to integrate certain functions as fast as possible. This is why computers
had a hard time with this task in the past. It was often necessary to resort to reference
books. Nowadays, due to enormous increases in computing power and overall progress
in computer sciences, even complex functions can usually be automatically integrated. At
this point, we will show a way to compute the integral of complex functions without any
knowledge of basic rules and formulas.

Integration is about determining the area under a curve. Thus, we are looking for a surface
area for a certain function in a certain section of the function. Let us first look at a simple
example (figure 2.13).

Figure 2.13: How you do calculate the total area of S? Creator: 4C (Wikimedia Commons)

Chapter 2 ● Working with Numbers

● 75

Figure 2.14: We want to calculate the grey shaded area. Creator: Snubcube (Wikimedia Commons)

Given is the function f(x) as well as the points on the x-axis which limit the area, i.e. the
integration area (a and b). The area is defined as the area between the curve and the
x-axis. In this example, this is no problem, because the function does not intersect the axis.
There are basic rules for various functions. Let's look at a simple high school math example.
Given is the function f(x) = x2. We want to determine the area of the curve in the range
from 0 to 2. We can represent this graphically as follows (next figure).

We can look up the rules and learn that the integral of the original function must, therefore,
be F(x)= (1/3)x3. We use the capital letter here to indicate it is the associated root function.
We can do the test and derive this root function, which again returns the original function.

The calculation of the area is done follows:

As we specify dx, we determine that the function is to be integrated for x. If we apply this
procedure to the given function, we receive the following result:

Python 3 for Science and Engineering Applications

● 76

We have determined the area exactly, but it was only possible because we knew the
formula or looked it up. What about much more complex functions? What if we do not
know the integration rule? In this case, numerical integration helps us. The basic idea is
simple: We divide the entire area under the curve into rectangles of equal width. We can
draw these and determine the area of all rectangles, which is easily possible because we
can calculate the y-coordinate by computing it with the given function. We then add up all
partial areas and have approximated the total area. The more rectangles we calculate, the
more accurate our estimate becomes. Let us take a look at this graphically (figure 2.15).

So our code has to do the following: first, the entire integration area is broken down into
n equally sized sections. We then select the x-value for a specific point within each section
(we will simply select the left margin). For this point, we then determine the corresponding
function value y. The area is then the product of y and the width of the section. Finally, we
sum up all the subareas. What sounds simple is also quite compact.

def integration(function, x1, x2, n):
 if x1 >= x2:
 raise AssertionError("x1 must be smaller than x2!")
 totallength = x2 - x1
 partlength = totallength / n
 totalarea = 0
 for i in range(n):
 xvalue = x1 + partlength * i
 yvalue = eval(function.replace("x", str(xvalue)))
 partarea = yvalue * partlength
 totalarea += abs(partarea)
 return round(totalarea, 5)

Our function has four arguments: the given function, the start, the end of the integration

Figure 2.15: The sine is integrated numerically by dividing it up into rectangles. Note that the x-axis is scaled
in Pi so 1.0 represents 3.141…. Creator: DMGualtieri (Wikimedia Commons, CC BY-SA 4.0)

Chapter 2 ● Working with Numbers

● 77

area, and the number of rectangles to be generated. We first check that the start is smaller
than the end of the integration area. We determined the total length of the integration
area and the length of a partial area. For example, if the total length is 10 and we want to
draw 10 rectangles, each one is exactly 1 wide. Then we start a loop that iterates over all
partial areas. We must start at 0 and go until n. The x-value should always be taken at the
left edge of a partial area. So it is the lower limit of the integration area plus the product of
partial length and number of the current rectangle. The corresponding y-value must now be
computed using the given function. To do this, we first replace all x-values in the function
with the current value. So if the function is f(x) = y = x2, the value 0 is inserted in the first
step and the function is evaluated as f(x) = y = 02. For this we use string.replace(oldvalue,
newvalue). After this, the actual evaluation takes place, the result is stored in yvalue. The
partial area is the product of the partial length and the y-value. We add this to the total
area. Here we specify that the absolute amount is used. This is relevant if the function goes
below the x-axis, i.e. negative y-values are produced. If we do not handle it in this way,
negative areas could be produced, which we do not want at this point. After iterating over
all rectangles, the total area is rounded and returned. So far so clear - time for a test run.
We must pass our function as a string.

>>> integration("(x)**2", 0, 2, 10**4)
2.66707

We see that our previous result is approximated. It is also a good idea to enter the function
in a special way. We put additional parentheses around every X. If we do not do this,
errors could occur if negative values are evaluated. The following example shows why. Our
function is identical and we want to evaluate the value -5.

>>> -5**2
-25
>>> (-5)**2
25

These errors can be avoided by the additional parentheses. Now let's look at figure 2.15
again and approximate this function. What if we do not know how to integrate the sine?
With numerical integration, this is no longer a challenge for us. So we integrate the sine
from 0 to 2 Pi, which corresponds to the figure above exactly.

>>> import math
>>> integration("math.sin(x)", 0, 2 * math.pi, 10**4)
4.0

Python 3 for Science and Engineering Applications

● 78

For validation, we can either know that the root function of the sine is the cosine and then
integrate it section by section (with respect to the roots), or ask Wolfram Alpha, which also
confirms our computation.9

One final word of caution on eval(). We used this function so the mathematical function
given by the user can be directly run as Python code. This can be dangerous when the user
inputs not a function as intended by the programmer but malicious code. Theoretically,
the user could provide code that steals data or erases the hard drive. These are extreme
examples but should highlight that eval() must always be used with caution. Since we are
not writing software for the end-user but rather just small tools for us, this is no concern
at this point.

9 https://www.wolframalpha.com/input/?i=integrate+absolute+sin\%28x\%29+-
from+0+to+2pi

https://www.wolframalpha.com/input/?i=integrate+absolute+sin\%28x\%29+from+0+to+2pi
https://www.wolframalpha.com/input/?i=integrate+absolute+sin\%28x\%29+from+0+to+2pi

Chapter 3 ● Statistics and Simulations

● 79

Chapter 3 • Statistics and Simulations

Python is well suited for statistical analysis and enjoys an excellent reputation in the
young discipline of data sciences. In the following examples we will forego the enormous
possibilities offered by additional packages such as NumPy or Pandas and limit ourselves
to the standard tools that already allow for a wide range of analysis. Even comprehensive
simulations can be constructed quickly in Python, thus allowing us to dispense with analytical
calculations. This is very useful if such an analytical solution is not available or extremely
complex. Simulations are ultimately based on random numbers, which are available in
Python using the random module.

3.1 • Speedtest

We already measured the runtime of functions and programs in previous assignments. This
can be extremely useful, for example, in benchmarks or to determine which implementation
of a task is the fastest. Until now, measurement approaches have been naive and based on
exactly one run. We should keep in mind that such a value can be distorted, for example,
because many programs are running in the background and taking up computing time.
Various methods can be used to obtain a better result. One possibility is to perform the task
repeatedly and average the measured times. Thus the effect of extreme measurements or
outliers can be reduced. It is also more convenient to test several functions directly against
each other instead of having to call them individually. We will, therefore, create a function
in the following that accepts an arbitrary number of functions to be tested and determines
their runtime. Likewise, we can randomise the order in which the functions are tested to
avoid position effects.

import time
import random
import statistics as stats
def speedtest(functions, n):
 assert isinstance(functions, list)
 times = {f: [] for f in functions}
 for run in range(n):
 random.shuffle(functions)
 for function in functions:
 start_time = time.monotonic()
 function()
 end_time = time.monotonic()
 times[function].append(end_time - start_time)
 for function, runtime in times.items():
 print(f"{function}: {stats.mean(runtime):.4f} | \
 {stats.median(runtime):.4f}")

First, we import three modules with functions we need. We can abbreviate long module

Python 3 for Science and Engineering Applications

● 80

names for simplification and introduce our own abbreviation. The function we create
accepts two arguments: a list of all the functions we want to test and the number of
passes. It becomes clear that we can treat functions in Python just like other objects and
can therefore add functions to other objects. The more passes we choose, the more precise
our result will be. We also check the functions are passed as a list and not as a tuple, since
we can only randomly shuffle lists. We then initialise a dict where we store the results of
the passes for each function. Since functions are immutable in Python, we can use them
directly as keys. We start a loop that runs until all passes are processed. In each pass, the
order of functions is subsequently randomised and each function executed. The time is
measured by the difference between the two timestamps. We add the times in the dict to
the respective functions. Finally we display the results. We iterate over all keys and values
in the dict and use F-Strings for a clean display.

Assignments

1. Choose a previous example from the book and compare the runtime of different
implementations using speedtest().

2. In a previous example we talked about decorators. Define a decorator function that
can be attached dynamically to arbitrary functions and measures the runtime of the
function when it is called.

3. To use speedtest() with functions that utilise arguments you can use functools.partial().
Test this in action. For a demonstration, refer to page 143

3.2 • Pi (again)

In a previous task we calculated the constant Pi with arbitrary accuracy. The following task
has a similar objective, but will rely on random draws and statistics instead of numerical
computation. The basic idea is to repeatedly draw random points and to test whether
they lie inside or outside a circle. If a sufficient number of points is drawn, Pi can be
approximated in this way.

Figure 3.1: Simulation of randomly drawn points. The hollow ones are within the circle, the other ones on the
outside.

Chapter 3 ● Statistics and Simulations

● 81

The basic idea is as follows. Within a square with side length 2 (thus with an area of 4) an
incircle with radius 1 is drawn. The area of the circle is r2 *pi, the area of the square (2r)2.
To simplify things, we select only a quarter of the square, which has an area 1. Using simple
algebra we can deduce the following:

Atotal = r2 = 1

The area of the circle within the square is calculated as follows:

Acircle = ¼ * r2 * pi

We see that Pi is present in this formula so can deduce it by rearranging the original
equation as follows:

pi = 4 * (Acircle / r2) = 4 * Acircle

The solution is as follows: We randomly draw points from the square and check for each
point whether it lies inside or outside the circle. We only need to calculate its distance
from the origin to check this. In this way, we can approximate the area of the circle by
the proportion of points that fall inside. Once we have found this area, we have Pi. An
implementation as a function is written compactly.

import random
def pi2(n):
 inside = 0
 for i in range(n):
 x, y = random.random(), random.random()
 distance = (x ** 2 + y ** 2) ** 0.5
 if distance <= 1:
 inside += 1
 return 4 * (inside / n)

We create a loop in which a random point between zero and one is drawn each time, which
is implemented via an x- and y-coordinate. We then use the Pythagorean theorem to
calculate the distance of this point from the centre of the circle. If this is less than or equal
to the radius, we know the point lies within the circle. If this is not the case, it must logically
fall outside. Finally, we need to count how many points are outside. Now we test the result.

>>> pi2(10**6)
3.141664574393

Even if this method works as intended, it is not very efficient. To get an acceptable

Python 3 for Science and Engineering Applications

● 82

approximation of Pi we need to take at least a million draws, which is quite a lot. Therefore,
when it comes to performance, the algorithmic solution might be preferable. I am not
sure how many people could come up with the solution John Machin found. The statistical
approach is easy to grasp and quickly implemented, which proves simulations can be a
valid tool for inference and analysis.

Assignments

1. Calculate Pi using the statistical method for 102, 103, 104, 105, 106, and 107 random
draws, and each version with 50 runs. How many correct decimal places are reached
on average?

2. The Monty Hall problem comes from a well-known American game show. The procedure
is quite simple: one win and two blanks (goats) are hidden behind three doors. The
candidate chooses one of the doors (e.g. door 2). Then the game master opens a door
with a blank (e.g. door 1). Now the candidate has the option to revise his original
decision or to stick to it. The question is now: Can the candidate increase her chances
of winning if she changes her choice after opening the first door? We assume the game
master always opens a door with a blank. Define a function that approximates the
candidate's chances of winning for both decisions (change or keep) using simulations.

3. The probability that out of a group of n people at least two have birthdays on the same
day can be calculated with the following formula. Write a program that solves this task
using simulations and approximates the probability. After that, implement the shown
formula in Python and compare results.

4. It is well known that the chances of winning are relatively low when playing the lottery.
Implement a function that simulates the drawing of lotto numbers 6 out of 49 (including
the additional number). Feed the function with your lotto numbers and find out what
total profit you have achieved after 50 years of playing the lottery. Assume one game
costs 1.50. The winning odds are shown in the table below.

Chapter 3 ● Statistics and Simulations

● 83

Appendix: Random Numbers in Python

Simulations and random draws are available in Python by functions in the random module.
This appendix will introduce some of the most important functions, as they repeatedly
appear later in this book.1 First, the module must be imported and then the individual
functions can be called. Let's look at how we can obtain random and yet reproducible
results.

>>> import random
>>> random.seed(123)
>>> random.random()
0.052363598850944326
>>> random.seed(123)
>>> random.random()
0.052363598850944326

Whenever results need to be reproducible, such as during debugging or in scientific
applications, it is necessary to set the seed. Computers generate random numbers
using pseudo-random number generators (PRNGs) because by design they are strictly
deterministic machines and all operations can be reproduced as they occur in a CPU. This
means that computers are bad at generating randomness. However, this shortcoming can
be circumvented by using special algorithms that generate seemingly random numbers.
Computers use certain factors that are presumably random, such as the number of processes
currently running, system load, available memory, user input, mouse movements, and so
on. These presumably "real" random factors are included in the algorithm's seed, which
guarantees different numbers will be generated the next time the algorithm is called. If this
is not desired, you can specify this seed and thus always get the same output. How many
numbers are taken from the seed is irrelevant. The example above shows how this function
can be used. It should be noted that the algorithms change over time and therefore it
cannot be guaranteed that different versions of Python will always produce the same
numbers even when using the same seed.

If we want random numbers from a certain range, randrange is useful. It combines the
well-known range-operator with a random element. For example, we can produce random
numbers between 50 and 100 (exclusive) at an interval of 5 in the following way:

>>> z = [random.randrange(50, 100, 5) for i in range(10)]
>>> z
[55, 80, 70, 55, 50, 80, 90, 90, 75, 75]

The handling is similar to range(). If we want real random numbers from the interval [0,_1[
we use random.random() as already demonstrated above. These random numbers are
1 For a complete overview see docs.python.org/3.6/library/random.html

http://docs.python.org/3.6/library/random.html

Python 3 for Science and Engineering Applications

● 84

equally distributed, which means that every number in the range has the same probability of
being drawn. If we want normally distributed numbers, we use random.normalvariate(mu,
sigma), where mu is the mean and sigma the desired standard deviation. Numerous other
distributions are also available. If, on the other hand, we are not concerned with numbers
but with elements, such as words, playing cards, or the like, there are additional functions
available.

>>> data = ["A", "B", "C", "D", "E", "F", "G", "H", "I"]
#Exactly one element
>>> random.choice(data)
A
#Draw a sample of 5 without replacement
>>> random.sample(data, k=5)
['C', 'I', 'H', 'E', 'G']
#Draw a sample of 5 with replacement
>>> random.choices(data, k=5)
['G', 'B', 'I', 'G', 'H']

3.3 • Parallelisation

While the clock frequency of processors has been stagnating for some time now and has
apparently reached a physical limit, the number of processor cores, on the other hand,
is rapidly increasing. Nowadays it is not unusual for desktop PCs to have eight or more
physical cores. Servers are reaching completely different magnitudes. So the trend of
the future is parallelisation. However, new programming techniques must also support
this trend, since many algorithms are designed for serial processing and architectures or
programming paradigms must be adapted. Whenever a task can be properly parallelised,
the performance gains are often enormous and at best scale linearly with the number of
cores or processes. In this example, we will look at how we can parallelise simple tasks
with Python.

As an example, we will again use prime numbers and assume we need many very large
ones for an application. We have already shown how these can be quite easily found by trial
and error. But the larger the numbers are, the slower new ones are produced. If we can
use multiple cores instead of one, the process can be accelerated. For this task, we adapt
the old function and use Python's multiprocessing module. This is required whenever more
than one physical core is utilised. The idea of the program is as follows: Instead of calling
a function or generator only once, we call it several times and let the different instances
run side by side. Whenever one of these functions produces a result, it is stored in a queue.
The fact that different types of queues exist is irrelevant to us here.2 We adjust the main
function to take each newly arriving element from this queue and write it to a list. As soon
as this list reaches a predefined length, all running instances or processes are terminated

2 To be more precise, Queue is a first-in-first-out object (FIFO). The element that
comes in first is also output first.

Chapter 3 ● Statistics and Simulations

● 85

and the list is returned. To do this, we first write the central function that generates primes.

def primegen(n, queue):
 if n % 2 == 0:
 n += 1
 while True:
 for i in range(3, int(n**0.5 + 1), 2):
 if n % i == 0:
 break
 else:
 queue.put(n)
 n += 2

This function is almost identical to the previous version but now accepts two parameters.
n specifies the starting number so that we can generate arbitrarily large prime numbers.
queue is the object to which the results are later passed. The main loop runs until we
terminate it from the outside. As soon as a prime number is found, the value is not returned
using return, but passed to the queue object using put(). Now to the main function.

from multiprocessing import Process, Queue
def multiprimegen(cores, nfinal):
 q = Queue()
 processes = []
 for number in range(1, cores + 1):
 start = 10**14 // number
 process = Process(target=primegen, args=(start, q))
 process.start()
 processes.append(process)
 primes = []
 while len(primes) < nfinal:
 primes.append(q.get())
 for process in processes:
 process.terminate()
 return primes

From the multiprocessing module we import two functions that we need. The actual function
has two arguments: the number of cores or threads to be used, and the total number of
primes to be generated. We create a queue object in q, in which we collect the results of
the individual processes. We put the processes themselves in a list so that we can manage
them. Using a loop, we create each process. First of all, it is important to note that each
process receives a different initialisation, otherwise they would all generate the same prime
numbers, which would be pointless. Here we use a crude estimation formula. In a real
application, this step would have to be considered more carefully so the workload of all

Python 3 for Science and Engineering Applications

● 86

processes is about the same. We then create the process itself. In target we address the
function to be used, all arguments of the function are then passed in a tuple or list. This
must be done even if only one argument is passed, otherwise, an error message will be
issued. We then start the process and place it in the list defined before. This is how we
proceed until all processes are started.

We then create another list in which the results are collected (primes). Now we fetch new
results from the queue object until our list is filled. For this, we use the get-method of the
object. Once we have all results, we can terminate the processes. To do this, we iterate over
all items in the list created initially and use terminate(). Finally, we return the generated
list. Time for a test run.

>>> if __name__ == '__main__':
 >>> multiprimegen(2, 10)
[50000000000053, 100000000000031, 50000000000099, 100000000000067,
50000000000113, 50000000000117, 100000000000097, 50000000000143,
50000000000161, 100000000000099]

What is the function of the first, rather cryptic expression if __name__ == '__main__':? The
short answer is that it enables us to run the current program as an independent program,
which we have to define here so the multiprocessing module works correctly. When working
with multiprocessing, it is not Python but rather your operating system that handles the
different processes. This is handled differently on for example Linux or Windows. This way
is a failsafe that should run on all systems. The final output looks fine.

In the previous example, we created the parallelisation so that several instances of the
same function work simultaneously and collect their results in a queue. As shown, this
can be very useful if one function alone would be too slow. What if we want a serial
arrangement, i.e. multiple functions working together to produce a final result? This could
look like this: Function A produces a number and stores it in a queue. As soon as there is
at least one element there, function B can retrieve it, modify it in another way and thus
produce a final result. Even such an application is not a great challenge. However, we
needed a second auxiliary function to perform another task. In this example, the second
function should always multiply two prime numbers with each other and provide the result,
which could be an application scenario in cryptography.

def prime_product(inqueue, outqueue):
 while True:
 prime_a = inqueue.get()
 prime_b = inqueue.get()
 outqueue.put(prime_a * prime_b)

Chapter 3 ● Statistics and Simulations

● 87

The principle of this helper function is very simple. Prime numbers are taken from a queue.
If there are two available, they are multiplied and transferred to the second queue. The
actual main function is then as follows:

def serial(cores, nfinal):
 processes = []
 q1 = Queue()
 q2 = Queue()
 for number in range(1, cores + 1):
 start = (10**14) // number
 process = Process(target=primegen, args=(start, q1))
 process.start()
 processes.append(process)
 process = Process(target=prime_product, args=(q1, q2))
 process.start()
 processes.append(process)

 output = []
 while len(output) < nfinal:
 output.append(q2.get())
 for process in processes:
 process.terminate()
 return output

The structure is very similar to the first function. However, we now create two queues
(q1 and q2). We only need multiple processes for the first functions that generate prime
numbers, because this is computationally intensive. Here we invoke a loop again. The
function that multiplies prime numbers at the end is not parallelised, because this function
is very fast. Here we create exactly one process. The rest of the function is then analogous.
Now we can do a test run.

>>> if __name__ == '__main__':
>>> serial(2, 10)
[5000000000006850000000001643, 5000000000013250000000006633,
2500000000011500000000013221, 5000000000019150000000013871,
5000000000021050000000015939, 5000000000024350000000023541,
2500000000024100000000057681, 5000000000033250000000036557,
5000000000035150000000045123, 5000000000040050000000056547]

The result looks OK. In real applications, more time should be invested to first analyse
which parts of your code are too slow and deserve more attention. You can then attempt
to make these critical aspects run in parallel. The implementation can be challenging when

Python 3 for Science and Engineering Applications

● 88

numerous functions need to work together and many tests and tweaking might be necessary
until everything runs smoothly. Here you should try to write flexible code where you can
dynamically adjust the number of threads. By testing, you can find out how many threads
should be reserved for each function and which design gives the best overall performance.
Python offers a large variety of tools and additional functions to work with multiprocessing,
so make sure that you have a look at the official documentation.

3.4 • Random Walk

A random walk is a point or object that moves randomly and therefore unpredictably from its
origin. This is not necessarily useful for practical applications, but it is a wonderful exercise
involving trigonometry. We want to simulate such a random movement in the plane, i.e. in
two dimensions. In doing so, we determine that our object moves in a Cartesian coordinate
system and starts at the origin (0, 0). It can move in any direction at each step and must
always cover a distance of exactly 1. Otherwise, no restrictions are applied, which is why
practically any point on the plane can be reached. Thus, an angle must be selected for each
step, in the direction of which the step is to be made. For example, if the random draw
was to select an angle of 90 degrees, the point (0, 1) would be reached after the first step.

Let us first look at the unit circle with radius 1. How do we find the point where the angle
α intersects the unit circle? For this, we use the sine and cosine. As depicted, the sine is
the vertical distance from the origin to the point; the cosine is the horizontal distance.
Depending on how far we move on the circle, these values will be positive or negative.
Based on these simple relationships, we can determine the new point.

Figure 3.2: Sine and cosine at the unit circle. Creator: Martin Thoma (Wikimedia Commons)

Chapter 3 ● Statistics and Simulations

● 89

import time
import math
import random

def randomwalk(steps):
 position = (0, 0)
 for i in range(steps):
 angle = random.random() * 360
 xpos = position[0] + math.cos(math.radians(angle))
 ypos = position[1] + math.sin(math.radians(angle))
 position = (xpos, ypos)
 return position

The function takes only one argument: the number of steps to go. In the function, we
first define the starting point as a tuple and then start the main loop, which goes as many
steps as we set it to. We determine a random number, which is taken from the interval
[0, 1[as a float. We multiply this number by 360 to always receive a value between 0 and
360. This covers all possibilities, as long as you compute in degrees. This angle is now the
base for the new position. We use two functions from the module math. First of all, the
angle has to be converted from degrees to radians, since Python calculates with this unit
by default. We can then insert the converted angle into the desired trigonometric function
and get a number. This number is added to the current position. The only thing we have to
pay attention to is that the correct axis is used. These coordinates are then set as the new
position. If we execute the function with a sufficiently long sequence of steps, we will notice
our final destination can vary greatly.

This function only gives us a return value at the very end, which is not very spectacular.
Would it not be more interesting to display the walk graphically? If you only want to limit
yourself to the console output this is certainly not very pretty, but is possible. To do this,
we have to change the function a little. Also, various help functions are necessary. The
idea is the following: In the console, a certain number of grid positions, divided into rows
and columns, are reserved and the walk is simulated by an object walking through this
grid. We can map such a grid using a list with sub-lists. The number of sublists in the main
list is the number of rows, the length of the sublists is the number of columns, that is,
the width of the display. To make matters worse, we have to make a conversion from the
original Cartesian coordinate system. A point with the coordinates (0, 0) should therefore
be displayed in the middle of the grid (notice how this task is similar to the Ulam spiral).
So we need a function that finds the corresponding position in the list matrix. It is also
necessary to consider what happens to the point if it leaves the grid and can no longer
be displayed. It has either disappeared and the display ends or is prevented from leaving
the grid, which is a kind of "wall" that cannot be overcome. Let us start with the modified
function randomwalk(). Now that we don't specify the number of steps at the beginning,
the function can run as long as we like.

Python 3 for Science and Engineering Applications

● 90

def random_pos(position, nrows, ncolumns):
 while True:
 angle = random.random() * 360
 xpos = position[0] + math.sin(math.radians(angle))
 ypos = position[1] + math.cos(math.radians(angle))
 position = (xpos, ypos)
 gridpos = postogrid(position, nrows, ncolumns)
 if 0 <= gridpos[1] <= nrows - 1 and 0 <= gridpos[0] <= \
 ncolumns - 1:
 return position

The function accepts the current position of our moving point as an argument and returns
the new, updated position of the object as the return value. Additionally, we specify the
size of the grid. Here we use a loop that runs until a legal position is found, i.e. one that lies
within the boundaries of the grid. We choose a version in which the object cannot leave.
In principle, the function is very similar to the first draft. The big difference is the function
postogrid(), which is still to be defined and which serves to convert the position from the
Cartesian coordinate system into the matrix system. Afterwards it is checked whether the
position created in this way is within the boundaries of the grid. If this is the case, it is
returned, if not, the function starts again with another random draw. This means the loop
will run until a legal position is finally found. This guarantees that, no matter what, our little
point stays with us inside the grid.

Let's go through this using a simple example. We choose a grid with five rows and nine
columns. This is now symbolised in a list with sub-lists. The number of sub-lists corresponds
to the number of rows, the length of each sub-list corresponds to the number of columns.
It would look like this:

matrix = [[0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0],
 [0,0,0,0,0,0,0,0,0]]

It is now clearer what is meant since the arrangement already reminds of a matrix. A point,
which in the Cartesian system would be located at the origin (0, 0), would therefore be
found exactly in the "centre" of the matrix, which would correspond to row 3 and column 5.
Since in Python the first element is addressed with 0, the position would be matrix[2][4].
The biggest stumbling block besides the actual conversion is this arrangement swaps x-
and y-coordinates, so to speak. The first value ([2]) specifies the row, i.e. the y-coordinate,
the second value ([4]) the column position, i.e. the x-coordinate. You must always keep this
in mind, otherwise errors will occur. The actual function can then look like this:

Chapter 3 ● Statistics and Simulations

● 91

def postogrid(position, nrows, ncolumns):
 xpos, ypos = position #tuple unpacking
 columnpos = int(xpos + ncolumns / 2)
 rowpos = int(-ypos + nrows / 2)
 return (columnpos, rowpos)

The input is given as a tuple in the format (x, y). The respective values are extracted and
converted. You can check with the example shown that this is correct. Since int() simply
truncates the fractional part of a decimal number, it does exactly what we have in mind and
always rounds off. In the case of the row position, you must also remember to reverse the
sign, since a negative value is located further "down" in the Cartesian coordinate system,
but this means that a numerical larger index is necessary, because this refers to a row that
is located more at the end of the list in the matrix. Let's take the Cartesian position (0, -1)
as an example. This point lies directly on the y-axis in the negative range. In a matrix with
five rows and five columns, this point is then displayed in the row (-(-1) +2.5) = 3.5, i.e.
rounded 3. This is correct. The two variables ncolumns and nrows are explicitly passed.
Now there is still a help function missing which graphically displays the grid.

def display_grid(particles, nrows, ncolumns):
 screen = [[" "] * ncolumns for i in range(nrows)]
 for element in particles:
 xgrid, ygrid = postogrid(element, nrows, ncolumns)
 screen[ygrid][xgrid] = "*"
 print("#" * (ncolumns + 2))
 for row in screen:
 print(f"#{''.join(row)}#")
 print("#" * (ncolumns + 2))

As input, the function accepts a list of all objects or particles to be simulated. Thus, several
objects can be displayed at the same time. First, an empty grid is created in screen, which
is done by a nested comprehension. Then we iterate over all elements in particles and use
the help function to correctly convert the position. We then insert an asterisk at the newly
calculated position in the grid to mark the field as occupied. After the loop is completed, an
asterisk is inserted at the correct position in the grid for each particle, and the data matrix
is complete. Now it only needs to be displayed.

To do this, we first have a border displayed at the top and bottom of the grid, which is
done with the number sign. We then iterate over all rows in screen and use F-strings to
display each row. At the beginning and end of each line, we draw another number sign as
a boundary, followed by the content of each line, which is assembled into a string using
join(). At the end, we draw the lower boundary to complete the grid. Now we can assemble
all parts in the main function.

Python 3 for Science and Engineering Applications

● 92

FPS = 10
def main(n, nrows=18, ncolumns=50):
 particles = [(0, 0)] * n #possible since tuples are immutable
 while True:
 particles = [random_pos(p, nrows, ncolumns)]
 for p in particles:
 display_grid(particles, nrows, ncolumns)
 time.sleep(1 / FPS)

We define the FPS, i.e. the frames per second, as a constant outside the main function
which has three arguments: the number of particles, rows, and columns, which we specify
as defaults. We create a list of particles, which all start at the origin. This is followed by the
main loop, which runs until we terminate the program from the outside. Here we iterate
over all particles and apply the random algorithm to each one so that a new, random
position is generated. After this, we display the grid and pause for a nice display in the
console. Then the loop restarts.

When you call the function, you will see that all points start close to the origin and then
spread randomly and almost evenly over the playing field. This is a nice visualisation of
how particles behave in a solution (Brownian molecular motion). The entropy increases by
chance alone and the distance between particles increases on average. Only the borders
we set prevent this process from continuing infinitely.

Assignments

1. Rewrite the original function so the conversion from degrees to radians becomes
obsolete and it is computed directly with radians.

2. Change the random walk function so multiple distinct particles are drawn. Limit the
code to a few distinct particles so the display is not too fuzzy.

3. Change the random walk function so not all particles start at the origin but at randomly
chosen points within the grid.

3.5 • Game of Life

Game of Life is a simple simulation in two dimensions invented by John Conway in 1970. It
is about cells that exist in a Cartesian coordinate system. These cells can have exactly two
states (dead or alive) and follow a few basic rules. Despite this simple set of rules, complex,
cyclically regenerating patterns or elements are sometimes created, which move across the
screen and thus resemble real life. The game is an illustration of how higher structures can
be created by basic elements.

The game field or grid is based on a plane, which is ideally infinitely large and is divided
into boxes or cells. Such a cell can be either empty (dead) or filled (alive). At the beginning,
there is usually a grid in which a certain number of cells is randomly filled. Each cell on the
grid has exactly eight neighboring cells. The following rules apply:

Chapter 3 ● Statistics and Simulations

● 93

• If a living cell has less than two living neighboring cells, it dies (loneliness).
• If a living cell has more than three living neighboring cells, it dies (overpopulation).
• If a living cell has exactly two or three living neighboring cells, it lives on (society).
• If an empty cell has exactly three living neighboring cells, it becomes a living cell

(reproduction).

It is quite easy to implement these rules. In this example we start with the main function
and then create the additional functions.

import time
import random
def game_of_life(rounds):
 grid = [[random.random() < 0.10 for x in range(50)]for y in \
 range(18)]
 for i in range(rounds):
 draw_grid(grid)
 grid = update_grid(grid)
 time.sleep(0.6)

We first import the necessary modules and then create the main function, in which the
only argument is the number of rounds to play. We randomly generate the board at the
beginning with a nested list comprehension. Each row is represented by a list with 50
columns. random.random() generates a random number in [0, 1[. If this number is smaller
than 0.10, True is written into the list, otherwise False. In this way, an average of 10% of
all cells are filled with True, which we interpret as a living cell. The main loop then starts.
First, the current grid is displayed. Then, based on the rules defined above, the grid of the
next round is calculated. After this, the function briefly pauses and the loop starts again.
Only the two auxiliary functions draw_grid() and update_grid() are still missing. We start
here with the function that updates the grid.

def update_grid(grid):
 new_grid = []
 for y, row in enumerate(grid):
 new_row = []
 for x, cell in enumerate(row):
 neighbors = count_neighbors((x,y), grid)
 if cell and neighbors == 2:
 cell = True
 elif neighbors == 3:
 cell = True
 else:
 cell = False
 new_row.append(cell)
 new_grid.append(new_row)
 return new_grid

Python 3 for Science and Engineering Applications

● 94

This function accepts the old grid as an argument, i.e. the list with sublists. We create the
new grid as an empty list and now fill it bit by bit. To do this, we first iterate over all rows in
the data matrix. Since we need both the contents of the row and the index of the respective
row, we use enumerate(). This function returns a tuple from a list with the respective
element of the list and its index. Let's look at an example:

>>> data = ["A", "B", "C"]
>>> for index, element in enumerate(data):
>>> print(index, element)
(0, 'A')
(1, 'B')
(2, 'C')

This is exactly the function we need. We then create a new row which we fill step by step.
To do so we have to iterate over each element of the row, which is done in the same way. In
the variables x and y, the position of each cell in the data matrix is displayed. We call a yet
to define function count_neighbors(), which returns the number of living neighbors for each
cell. This number, which can be between 0 and 8, is stored in neighbors. Now the game
rules come into play. If a cell is alive (True) and has exactly two neighbors, it remains alive.
But if the cell is empty and has exactly three neighbors, it is born, i.e. set to alive. If both
conditions do not apply, it is in any case empty (dead) in the next round. If we dealt with
such a cell of a line, the result is written to new_row. If we have gone through the whole old
row in this way, the complete new row is added to the board. In this way, we work through
row by row and within a row cell by cell until the new board is completely generated. We
still have to create the help function count_neighbors().

def count_neighbors(position, grid):
 neighbors = 0
 for x in (-1, 0, 1):
 for y in (-1, 0, 1):
 if x == y == 0:
 continue
 xpos, ypos = position[0] + x, position[1] + y
 if 0 <= xpos < len(grid[0]) and 0 <= ypos < len(grid):
 neighbors += grid[ypos][xpos]
 return neighbors

The function takes the position to be tested as a list or tuple and the current grid. We
initialise the counter and go through all conceivable possibilities for the x and y coordinates.
Obviously, there are only eight. We skip one position, i.e. when both x and y are equal to
0. We then define the position to be tested. If it is still within the boundaries of the grid, we
add the respective field contents to neighbors. Since True is evaluated as 1 and False as 0,

Chapter 3 ● Statistics and Simulations

● 95

this operation is valid. Finally, we can return the number of neighbors. Almost there! The
function that displays the grid field is missing. The logic is very similar to the previous task,
where a similar data matrix should be displayed.

def draw_grid(grid):
 for row in grid:
 print("".join("#" if cell else " " for cell in row))
 print("#" * len(row))

We iterate over all sublists in the main list and use an F-string to put them together. If a
cell is filled, we display a number sign (#), otherwise an empty string. At the end, we add
a separator line so that we get a nice display with every update of the field. Time for a test
run.

>>> game_of_life(30)
##
 #
 # # # #
 # # # #
 # #
 #

 #
 # # # #
 # # # # # ###
 ## # #
 ### #
 #
 ### ##
 ## #

##

If you are lucky you will notice moving or cyclically emerging patterns on the screen. Give
it a few more tries and set a seed for the random number generator if you want to study
some patterns in detail.

Python 3 for Science and Engineering Applications

● 96

Assignments

1. Look up the Wikipedia article on the game of life and inspect the pattern of a glider.3
This is a figure that seems to fly across the field. Create a function that inserts this
pattern at a random position before the game starts.

3.6 • Modelling Populations

In this example we want to build an ecological model and simulate a population. We use the
technique of agent-based modelling. The basic idea is to simulate a large number of agents
that act more or less independently of each other, but in sum affect their environment. This
mainly involves random processes that can be simulated in any complexity. We imagine
a herd of sheep on a pasture, which in the end can only perform three actions: move, eat
and mate.

The basic rules of the simulation are summarised in the following.

• The pasture is a square area of any size with fixed boundaries. The animals cannot
leave the pasture or the simulation (sorry Neo!). The pasture is divided into cells of
one square meter. Each cell is uniquely identified by a number, for example by an x
and y coordinate.

• The pasture is overgrown with grass that the sheep eat. Once the grass in a cell has
been eaten, it takes two days before another sheep can eat from it again. If a sheep
stands on a covered cell and eats, then all grass in that cell is eaten. Every sheep wants
to eat daily. If it cannot eat for two days, it will starve to death.

• Each sheep moves up to two meters in each round (in x- and y-coordinate; the
maximum distance covered in one round is therefore 2 * sqrt(2).

• If the distance between two sheep is less than one meter, they can mate. If mating
occurs, one of the two partners is randomly selected as the mother and becomes
pregnant for eight days. During this period it can no longer mate. At the end of the
period a new sheep is "born". The partner who does not become pregnant cannot mate
again in the same round. Hungry sheep cannot mate as well.

• Sheep have a life span of 20 days and die afterwards.

For the first time, we make use of classes. Classes are a powerful tool in object-oriented
programming. However, the examples discussed in this introduction are usually so short
that it is often not useful to utilise classes. These are ideal for larger or more complex
programs. In this example, they are a boon because they allow us to create a large set of
objects that all have similar properties. We will therefore create a sheep class. Each sheep
is then an instance of that class. We will also use various methods. A method in Python
is, roughly speaking, a function that belongs to an object. We have already used various
methods. Lists are also objects in Python. An associated method is append(). Whenever
we want to add an object to a list, we apply this method to the concrete list. If we create
our own classes, we can also define associated methods that can only be used with the
respective class instances. Let's first look at a simple example for our class.
3 https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life#Examples_of_patterns

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life#Examples_of_patterns

Chapter 3 ● Statistics and Simulations

● 97

class Sheep:
 def __init__(self):
 self.position = [random.random() * SIZE, random.random() * \
 SIZE]
 self.hunger = 0
 self.pregnant = 0
 self.age = 0

In principle, this example is a complete class. We are using the keyword class for the
definition. Class names are usually capitalised. Inside the class we define __init__() first.
Whenever we create a new instance of a class, this function is automatically executed.
It is used to create certain basic values or properties that must always be present. All
arguments we use in this function must be passed if we want to create an instance. The
double underscores before and after init indicate it is a special function, which in Python is
marked this way ("dunder methods").

So what exactly is self here? For functions that are defined within a class and are therefore
methods by definition, the implicit object to which the function is applied must always be
referenced. It should be noted that this argument must always be included. Otherwise, we
can program functions as before but have to keep in mind that the effect of this function is
always related to the object for which we call the function. This will become clearer below.

In __init__() itself, we define a set of variables that characterise the "properties" of the
sheep. We always use self.VAR. When we later want to query the properties of a particular
sheep, it is thus clear that the variable is not local, but belongs to a specific instance. These
properties are the position of the sheep, which is randomly determined when it is created,
the current hunger level, whether it is pregnant, and its age. So how can we create a
particular sheep, that is, an instance of the sheep class? Like this:

>>> shaun = Sheep()
>>> shaun.hunger
0
>>> shaun.hunger = 1
>>> shaun.hunger
1

We create a new instance called shaun and call the class to do so. We do not need to pass
any further arguments. Even if we use self in the init-method as an argument, we can
always ignore self and do not need to insert an argument. Once we create the instance, the
associated variables are automatically created. It becomes clear how to query or change
values of a specific instance, according to the scheme instancename.variablename. It is
now time to define several methods to modify the properties of a sheep. The sheep should
be able to move and eat.

Python 3 for Science and Engineering Applications

● 98

[Within class Sheep]
def move(self):
 while True :
 x = self.position[0] + random.random() * 4 - 2
 y = self.position[1] + random.random() * 4 - 2
 if 0 <= x < SIZE and 0 <= y < SIZE:
 break
 self.position = (x, y)

We define the function within the class Sheep, so have to use the implicit argument self
again. No other input is required for this function. We define an infinite loop that runs until
a legal move is found. This is necessary because the sheep must not leave the defined
grazing boundaries and some moves may be illegal. A total of two coordinates must be
determined, x and y. In each case, the change can be positive or negative. Thus we draw
a random number from [0, 1[and multiply it by 4 so that we get a value within [0, 4[. We
then subtract 2 from it again, ensuring both positive and negative numbers can be created.
We then check whether the move selected is still within the boundaries. If so, we exit the
loop and realize the move, otherwise, the loop starts again and other random numbers are
tried. We, therefore, stay in the loop as long as necessary. Since all values are randomly
chosen, we just have to call the function or apply the method to an instance and the
position of this instance is changed. After this, two more methods of the class are missing:
one for eating and a help function to calculate the distance to another instance.

[Within class Sheep]
def eat(self, grass):
 xpos, ypos = map(int, self.position)
 if grass[xpos, ypos] == 2:
 self.hunger = 0
 grass[xpos, ypos] = 0

We start with the eating-function. Here an argument is needed, namely the information
about the grass condition of the pasture. The idea is that the state of the current grass cell is
stored in grass. We first have to calculate from the current position on which cell the sheep
is standing. To do this, we have to cut off the decimal part of the real number. If the grass
has grown high enough, which is indicated by the value 2, the sheep can eat and hunger
drops to 0. At the same time, the respective grass cell is marked as eaten and receives the
value 0. If the current cell has already been eaten and the if-condition not fulfilled, nothing
happens. Here we have used map(). This function takes a function and an iterable (like a
list) and iterates over all of its elements and applies the function to each element. After this
all elements are output. Let's look at an example to illustrate how it works:

Chapter 3 ● Statistics and Simulations

● 99

>>> numbers = [-5, 33, -1, 1, 9.22]
>>> list(map(abs, numbers))
[5, 33, 1, 1, 9.22]

Here, a list called numbers is the iterable, and the function we use is the absolute value
of a number (abs), which removes any negative signs. Next, we define the function that
measures the distance of two sheep.

[Within class Sheep]
def distance(self, other):
 xdiff = self.position[0] - other.position[0]
 ydiff = self.position[1] - other.position[1]
 return (xdiff ** 2 + ydiff ** 2) ** 0.5

Interestingly, we use two implicit arguments here. We follow convention and call them self
and other. self again refers to the instance to which the method is applied. other is another
instance of the same class, that is, a different sheep. Using the Pythagorean theorem, we
simply calculate the distance between the two objects from their respective positions in the
coordinate system. We will need this function to test whether two sheep can mate. We will
create two more methods to quickly query certain states.

[Within class Sheep]
def alive(self):
 return self.age < 20 and self.hunger < 3

def horny(self):
 return self.pregnant == 0 and self.hunger == 0

These two methods allow us to directly test whether a sheep is still alive or a potential
mating partner. For example, horny() will only return True if a sheep is not pregnant and
not hungry. Finally, we add a help function to display statistics after each round so we can
follow the development over time. This function is not a method. We normally define it
outside the class. This is because this function should not be applied to a specific instance,
but should include information from all sheep.

Python 3 for Science and Engineering Applications

● 100

def display_statistics(allsheep, round):
 hunger = pregnant = grass = age = 0
 for sheep in allsheep:
 hunger += sheep.hunger
 age += sheep.age
 if sheep.pregnant > 1:
 pregnant += 1
 print("Round: ", round)
 print("Total number of sheep: ", len(allsheep))
 print(f"Average hunger: {hunger / len(allsheep):.2f}")
 print(f"Average age: {age / len(allsheep):.2f}")
 print("Pregnant: ", pregnant)
 print("#" * 40)

The function needs two arguments: the list in which all sheep are stored (we will create
it below) and the current round. The values are initialised with 0 and then summed up so
average values can be calculated. These are then output and presented in a form that is
quite clear for us, so that we get an overview of the population after each round: How many
sheep are currently alive, how old are they on average and how hungry they are. With
these tools, we can now write the actual main function.

import time
import random
from itertools import combinations
SIZE = 10
def simulation(rounds):
 grass = {(x, y): 2 for x in range(SIZE) for y in range(SIZE)}
 allsheep = [Sheep() for i in range(10)]
 for r in range(rounds):
 # Grass is growing
 for pos in grass:
 if grass[pos] < 2:
 grass[pos] += 1
 random.shuffle(allsheep)

 # Move and eat
 lambs = 0
 for sheep in allsheep:
 sheep.age += 1
 sheep.hunger += 1
 sheep.move()
 sheep.eat(grass)
 if sheep.pregnant == 8:
 sheep.pregnant = 0
 lambs += 1

Chapter 3 ● Statistics and Simulations

● 101

 elif sheep.pregnant > 0:
 sheep.pregnant += 1
 allsheep.extend(Sheep() for i in range(lambs))
 display_statistics(allsheep, r)

 # Mating
 horny_sheep = [sheep for sheep in allsheep if sheep.horny()]
 tired_sheep = set()
 for sheep, partner in combinations(horny_sheep, 2):
 if sheep in tired_sheep or partner in tired_sheep:
 pass
 elif sheep.distance(partner) <= 1:
 sheep.pregnant = 1
 tired_sheep.update([sheep, partner])

 # Death
 allsheep = [sheep for sheep in allsheep if sheep.alive()]
 if not allsheep:
 break
 time.sleep(0.7)

We first import all necessary modules and then define the actual function, in which the only
argument is the number of rounds to be simulated. Then we define grass as a dictionary-
comprehension, which stores the state of the grass for each field. In the beginning, each
field is fully covered with grass, so it gets the value 2. We then create a list of all sheep. We
enter the main loop, which runs until all rounds are calculated or all sheep have died. At the
beginning of each round, we let the grass grow. Keep in mind that it can have a maximum
value of 2. After this, the order of the sheep in the list is randomised so that there are no
position effects in the following calculations.

With lambs we create a variable in which we count how many sheep are born in the current
round. We then iterate over all the sheep and let them age and hunger, which are simply
time effects. After this, the sheep move. We apply the previously defined method to all
sheep. The sheep then eat with the second method. Now we check: if a sheep has been
pregnant for 8 rounds, birth takes place. The sheep is no longer pregnant and lambs is
incremented. However, if a sheep is pregnant, but not long enough, the variable pregnant
is incremented by 1. Now that we have treated all sheep in this way, we can officially
add the lambs to the population. First, we use a comprehension to generate a list of new
sheep. This is then added to the main list using extend(). After that, we have the statistics
displayed.

The mating phase follows. Here we first create a temporary list in which we store all
sheep that are potentially available for mating (horny_sheep). This means that the sheep
must not be hungry and not already pregnant. We also create a set with tired_sheep.
Here we store all sheep that have already mated and therefore cannot be active a second

Python 3 for Science and Engineering Applications

● 102

time in the current round. Afterwards we use combinations() to output all conceivable
pairings and iterate over them. If one of the potential partners appears in tired_sheep, this
pairing is directly skipped with pass. If both partners are not found in this set and their
distance is less than or equal to 1, mating occurs. Note how this method is called, which
has two arguments (self and other). Since we apply the method to a specific sheep, self is
already passed implicitly, so we only need to insert the partner as an argument. One animal
becomes pregnant afterwards. Since we already randomised the list at the beginning, the
order is irrelevant. Finally, we add both sheep to the set, using update(). We must pass the
two instances grouped in a list (other options would be in a tuple, dict or set).
Finally, the dying phase follows. We do a dynamic update of the sheep list by iterating over
the old list with a comprehension and selecting only the sheep that are still alive (others
are either overage or starved). Then this new list becomes the actual sheep list. If this list
is empty, we can exit the simulation, because there are no more animals present in the
next round. Otherwise, we wait 0.7 seconds so the display of the game field can be read
and then start the next round.

Based on the simulation, we can trace how the population changes when we modify the
specific parameters. If the pasture becomes too small and the number of sheep too large,
they will starve. In the long run, there are only two scenarios: either the population dies
out or equilibrium is established in which the number of sheep remains approximately
constant. This is unlikely, as extinction is generally easier to achieve. For example, if the
pasture becomes too large, the sheep will not starve but will move apart in the long run (by
chance alone), so that mating will become less frequent and the population will eventually
die out of old age. This shows how sensitive even very simple ecological systems can be.
Of course, this simulation is not very realistic, as we have not modelled many aspects.
For example, in reality, sheep will not randomly move, but will stay together as flocks in
larger groups, which naturally increases the chances of mating. We could also simulate the
appearance of a second species, which could decimate the population as hunters.

Assignments

1. Generate a model to simulate the spread of an infectious disease in a population.
Determine factors such as the probability of infection, mobility of agents, and mortality.
How many agents are infected? What happens if the number of immune individuals in
the population changes?

3.7 • Quick Money

What is the fastest strategy to reach your goals? This question is certainly of great
relevance to many tasks in life. A systematic solution is only usually available if the problem
is comparatively simple and strict rules are in place. This is the case, for example, in many
games. Even if these often have low complexity and they are understandable to children,
in many cases, an optimal strategy is not easily recognisable. Python can be helpful for this.
Thus, we assume there is no available algorithm that allows for a perfect solution. A pure
brute force approach is also not feasible, since we cannot test all options even with modern
systems due to the exponential increase in complexity. In these cases other methods are

Chapter 3 ● Statistics and Simulations

● 103

necessary. In the following example, we use an optimisation algorithm based on pure
chance which most likely does not find the best solution, but perhaps a pretty good one,
which can be useful in many real-world applications. Let us now turn to the rules of the
game.

1. The player opens a bank branch and is supposed to earn a certain amount of money
as fast as possible. The game is based on rounds and starts with round 1. In each
round, the player receives an amount of 20 plus a bonus which corresponds to the
current number of rounds (in round 1 you are therefore credited with a total of 21).
This amount is paid out directly at the beginning of the round.

2. The player can buy money printing machines. Each machine earns an interest of 5%
of the current balance in each round. Therefore, if you have a machine and a credit
balance of 100, the machine will earn an additional credit of 5. The machines generate
interest immediately after the round sum is received.

3. Ten rounds after the purchase of a machine, the interest earned by the machine drops
from 5% to 3% (due to wear and tear).

4. The player does not own a machine at the start of the game but can purchase up to
five. The first machine costs 50. The price then doubles for each additional machine.

It is not difficult to implement these rules. In our first draft, we assume that we will buy a
new machine as soon as the required amount is reached.

def game(goal):
 income = 20
 r = 0
 balance = 0
 machines = []
 while balance < goal:
 r += 1
 balance += income + r
 interest = sum(0.05 if r - t <= 10 else 0.03 for t in \
 machines)
 balance += balance * interest
 price = 50 * 2 ** len(machines)
 if balance >= price and len(machines) < 5:
 machines.append(r)
 balance -= price
 return r, machines

The function has only one argument: the target sum to be reached. We first define some
variables, such as income per round, current round (r), balance and an empty list in which
we store the time of purchase of the machines. This is followed by a loop that runs until
the target total is reached. We increase the r counter by 1 and receive our income which
is also based on the number of rounds. We calculate the interest in a list comprehension.
We iterate over all existing machines and calculate how long a machine has been available.

Python 3 for Science and Engineering Applications

● 104

Based on this, the interest rate can be determined, which is summed up. In the next step,
we apply the interest rate to the current credit balance. If the list is empty, the value is 0.
We then calculate the price of a new machine. It is based only on the number of machines
already bought. Then we test: if our credit is greater than the purchase price and we still
own less than 5 machines, we buy one. This information is subsequently added to the list as
the round in which the purchase was made. We have to subtract the price from our balance.
This way the game continues until the target goal is reached. Assume that we have a target
of 5,000. If we run this first strictly deterministic version, we get the following output:

>>> game(5000)
(44, [3, 6, 12, 18, 27])

So it takes 44 rounds to reach the goal. It is also clear that we will buy the machines as
soon as possible. But does that make sense? Let's assume that you would buy the last
machine for 800 just before reaching the goal of 5,000. In this case it could take longer
for the machines to make up the missing amount as if one had simply waited and saved.
Our solution is therefore to try many different versions and test which one works best. We,
therefore, need a random element that decides when to buy a machine. We still have the
limitation that we can only buy a machine if we can afford it. We proceed in such a way that
every time we could theoretically buy a machine, we flip a coin and only strike when the
coin shows the correct side. We do this by importing the random module and modifying the
corresponding line as follows:

(...)
if balance >= price and len(machines) < 5 and random.randint(0, 1) == 1:
(...)

Here Python "tosses" the coin for us and buys only if 1 is drawn. Let's run this version once
and we will surely get a different result from the deterministic one shown above. In my
case, the result was (41, [4, 11, 13, 18, 27]). Purely by chance, a small improvement is
made from 44 to only 41 rounds. We also see that the machines were bought a little later.
Only one attempt is hardly meaningful, so we should try many more. The procedure is
simple: repeatedly run the modified function, store the results, and later see which tactic
works best. We can add some optimisations to speed up the computation. For example,
a simulation can be aborted if the previous best result is reached because it is clear that
no better outcome can be achieved. Also, we don't need to save all results, but only the
best one. In this way, we avoid having to cache useless data. The new function could look
something like this:

Chapter 3 ● Statistics and Simulations

● 105

import random
def game2(best, goal):
 income = 20
 r = 0
 balance = 0
 machines = []
 while balance < goal:
 if r >= best:
 return None
 r += 1
 balance += income + r
 interest = sum(0.05 if r - t <= 10 else 0.03 for t in \
 machines)
 balance += balance * interest
 price = 50 * 2 ** len(machines)
 if balance >= price and len(machines) < 5 and \
 random. randint(0, 1) == 1:
 machines.append(r)
 balance -= price
 return r, machines

We have only made a few changes compared to the first function. Right at the beginning of
the while loop we check whether our old best has already been exceeded, then we can exit
immediately and return None. Below we have modified the purchase option so the correct
random number must also be drawn to make a purchase. Now only the actual simulation
program is missing.

def simulation(n):
 best = 999
 for i in range(n):
 output = game2(best, 5000)
 if output:
 best, machines = output
 return best, machines

We set a best which is high at the beginning so that it is guaranteed to be undercut. We
then start a loop in which the actual games are played. We store the result of a game in
output and check if it is unequal to None. If this is the case, the old best is undercut and we
update the best and the purchase information data. For this we use tuple-unpacking. After
all simulations have run, we can return the overall best result. This way we are efficient and
only complete those simulations that have a chance to beat the old record.

>>> simulation(10 ** 6)
35, [6, 7, 16, 27])

Python 3 for Science and Engineering Applications

● 106

As you can see, after a million games played, we have the best of 35 rounds. Interestingly,
only four machines were bought in total to reach this goal which means that it is probably
not a good idea to buy five machines if you want to reach 5,000 as quickly as possible.

Assignments

1. A special robot produces one motherboard per hour. The probability of failure for the
robot is 5% per hour (baseline). If it fails, no motherboard is produced in that hour
and repairing takes 6 hours (after that, the probability of failure is set back to 5%). In
general, the probability of failure increases by 0.2 percentage points with each hour.
How many motherboards does the robot produce on average per week (168 hours)?

2. What is the maximum baseline failure rate, which is 5% in the first assignment, so that
on average at least 120 motherboards can be produced per week?

3.8 • Many Circles

Given is an arbitrary number of circles in the plane, which might partially or completely
overlap. Now the total area of all circles shall be calculated. Overlaps should not be counted
twice, which is why adding up all circle areas does not lead to the desired result. How can
this be solved? Take some time to think about it, because this is not a trivial problem. A
graphical representation of the task serves as an aid.

Figure 3.3: What is the total area of the grey shape? Creator: Bearophile (Rosettacode.org)

http://Rosettacode.org

Chapter 3 ● Statistics and Simulations

● 107

As so often, there are many different approaches. Although there is also an analytical
solution, it is rather complex and requires a lot of mathematics, which is why it is probably
better kept in a mathematics book.4 Many readers will have noticed we have solved a
similar task before, namely when it was about calculating Pi using statistics. Can we apply
this method here as well? Yes, but it seems logical that significantly more random draws
will be necessary to get a precise result, which is why we are modifying the procedure. We
can summarise the strategy as follows:

1. First, all circles that lie completely inside another circle are removed, which speeds up
the calculation later.

2. The area is then trimmed so that as little white space as possible remains. The edges
are therefore moved as close as possible to the figure, which reduces the total area.

3. Afterwards, the field is divided into a freely definable number of rectangles. For
example, if we define that the x- and y-axis are to be split into 20 sections each, our
grid will contain 400 rectangles at the end.

4. Separately for each of the rectangles generated in the previous step, we check whether
all four corners lie within a circle. If this is the case, it is guaranteed that the entire
rectangle area lies within the circle. In this case, we can automatically add the entire
rectangle area to the total area and do not need to run a simulation.

5. If this condition does not apply to a rectangle (so at least one corner is not within a
specific circle), we know it either lies completely outside a circle or at least intersects
it. In this case, we start a simulation for the rectangle. We draw many random points
and check how many of the points land inside a circle. If about 25% of the points end
up inside a circle, we know about 25% of the rectangle lies inside a circle. In this case,
we add 25% of the rectangular area to the total area of the figure.

6. If all rectangles are treated in this way, we have approximated the total area. The
precision of the result is based on the number of rectangles defined and the number of
random points drawn for each rectangle.

7. The algorithm is more efficient than the naive algorithm in that rectangles that lie
completely within a circle do not require simulation, thus saving computing time.

After trimming the edges and creating a grid pattern, the figure looks like this:

4 For those interested, please refer to the following pages, which present ideas for
solutions: stackoverflow.com/a/1667789; http://rosettacode.org/wiki/Total_circles_area\#An-
alytical_Solution_3

http://stackoverflow.com/a/1667789
http://rosettacode.org/wiki/Total_circles_area\#Analytical_Solution_3
http://rosettacode.org/wiki/Total_circles_area\#Analytical_Solution_3

Python 3 for Science and Engineering Applications

● 108

For the numerical calculation, we use the following values that were taken from Rosettacode.
org.5 Every row represents one circle. The first two values are the x- and y-coordinates of
the centre of the circle. The third value is the radius of the circle. We store these values in a
list with sub-lists to represent them in Python (data). To start with step 1, we code a helper
function which removes all circles that lie completely within one larger circle. However, note
this function cannot remove circles that are completely covered by multiple different circles.

 x-Coordinate y-Coordinate Radius
 1.6417233788 1.6121789534 0.0848270516
 -1.4944608174 1.2077959613 1.1039549836
 0.6110294452 -0.6907087527 0.9089162485
 0.3844862411 0.2923344616 0.2375743054
 -0.2495892950 -0.3832854473 1.0845181219
 1.7813504266 1.6178237031 0.8162655711
 -0.1985249206 -0.8343333301 0.0538864941
 -1.7011985145 -0.1263820964 0.4776976918
 -0.4319462812 1.4104420482 0.7886291537
 0.2178372997 -0.9499557344 0.0357871187
 -0.6294854565 -1.3078893852 0.7653357688
5 https://rosettacode.org/wiki/Total_circles_area

Figure 3.4: The figure after trimming the edges, removing all circles that lie completely within another circle
and creating the grid pattern.

https://rosettacode.org/wiki/Total_circles_area

Chapter 3 ● Statistics and Simulations

● 109

 1.7952608455 0.6281269104 0.2727652452
 1.4168575317 1.0683357171 1.1016025378
 1.4637371396 0.9463877418 1.1846214562
 -0.5263668798 1.7315156631 1.4428514068
 -1.2197352481 0.9144146579 1.0727263474
 -0.1389358881 0.1092805780 0.7350208828
 1.5293954595 0.0030278255 1.2472867347
 -0.5258728625 1.3782633069 1.3495508831
 -0.1403562064 0.2437382535 1.3804956588
 0.8055826339 -0.0482092025 0.3327165165
 -0.6311979224 0.7184578971 0.2491045282
 1.4685857879 -0.8347049536 1.3670667538
 -0.6855727502 1.6465021616 1.0593087096
 0.0152957411 0.0638919221 0.9771215985

from itertools import combinations
def find_distance(p1, p2):
 return ((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) ** 0.5

def remove_circles(circles):
 remove = set()
 for pair in combinations(circles, 2):
 small_circle, big_circle = sorted(pair, key=lambda c: c[2])
 distance_centers = find_distance(small_circle, big_circle)
 if big_circle[2] >= distance_centers + small_circle[2]:
 # small circle lies within the big circle
 remove.add(small_circle)
 return [c for c in circles if c not in remove]

Again we first need an auxiliary function to calculate the distance between two points. The
actual function remove_circles() follows. This function has only one argument, namely a
list of all circles. After this, we create a set in which we mark all circles which should be
removed later. Afterwards we use combinations() to output all pairs of circles. The order
in which the circles appear is irrelevant. For each pairing, we sort the two circles by their
radius. For this, we use sorted() with a lambda function as key. We sort by the 3rd element,
i.e. the radius, as we defined it in the table above. We then calculate the distance between
the circle centres, using our initially defined help function. Now we check whether the
smaller circle is completely inside the larger one. The idea is as follows: if the radius of the
larger circle is greater than the sum of the distance between the centres and the radius of
the smaller circle, it is proven that the smaller circle must lie completely within the larger
one. To comprehend this, draw some examples on paper to make this principle clear. If it is
the case, we add the smaller circle to the set and mark it down for deletion. Once we have
gone through all pairings in this way, we end up only returning the circles that are not in
the set. This completes this first step.

Python 3 for Science and Engineering Applications

● 110

Since the function will be quite long, we will break it down into several other help functions.
First, we introduce the actual main function that brings everything together. In this way, the
basic principle is made clear right at the beginning. Other functions are defined afterwards.

def compute_total_area(circles, n, iterations):
 total_simulations = 0 # Area found using simulations
 total_boxes = 0 # Area found using boxes
 skipped_boxes = 0
 total_points = 0
 circles = remove_circles(circles)
 xmin, xmax, ymin, ymax = find_circumscribing_rectangle(circles)
 boxarea = ((xmax - xmin) * (ymax - ymin)) / (n ** 2)
 for box_part in iter_parts(xmin, xmax, ymin, ymax, n):
 if box_inside(box_part, circles):
 skipped_boxes += 1
 total_boxes += boxarea
 else:
 total_points += iterations
 hitrate = find_hitrate(box_part, circles, iterations)
 total_simulations += boxarea * hitrate
 print(f"Share of skipped boxed: {skipped_boxes / n**2}")
 print(f"Total number of all points drawn (in thousands):
 {total_points // 10**3}")
 return total_simulations + total_boxes

Our function has three arguments: a list of all circles, the number of sections into which
we will divide each side, and the number of iterations for the simulation part. The larger
n and iterations become, the more accurate our estimate should be. First, we define the
variables that are used for accounting purposes. In total_simulations we store the total
area calculated by the simulations. Similarly, in total_boxes we store the total area that is
calculated purely analytically. Therefore, the overall area of the figure is the sum of these
two variables. In skipped_boxes we count how many of the boxes or rectangles are purely
analytically calculated and were not given to the simulation. In total_points we store how
many random points we simulated in total. We then apply the already created help function
to the list of all circles to remove those which are completely covered and therefore can be
removed without affecting the outcome.

Next, we trim the grid, for which we calculate the most extreme x and y coordinates. This
is done using the find_circumscribing_rectangle() function. This gives us four new variables
that store the most extreme values. Using these, we can now compute the area of each
box. This is the remaining total area, which we divide by the number of boxes. Since we
generate an identical number of sections for both axes, this number is the square of the
sections. If the total area of the trimmed rectangle (not the figure!) were 100 and we had
a n of 20, the area of each box would be 0.25 (100 / 20^2). As shown in the figure before,

Chapter 3 ● Statistics and Simulations

● 111

we now need to place a grid on the rectangle. To do this, we have to calculate the four
corner points for each of the resulting boxes. This is done in the function iter_parts(). We
iterate over all boxes thus created. Now check: do all four corner points lie within a circle? If
so, it is confirmed that the entire surface of the box lies within a circle and we can skip the
simulation part for this specific box. This check is done in the function box_inside(). In this
case, we increase the counter of the skipped boxes by 1 and add one box area to the total
area of all boxes. If this is not the case, i.e. at least one corner point lies outside a circle, we
initiate a simulation. To do this, we add the number of new iterations to the total number
and calculate the hit rate using find_hitrate(). The returned value must lie between 0 and 1.
The proportion of the area within a circle is finally calculated as the product of the hit rate
and the area of a box. We add this result to the total area of all simulations.

We are almost done. We have two more statistics that might be interesting for us. In
the end, we compute the final area of the figure as the sum of the simulation and box
areas. Now the principle is clear, we can create the missing help functions. Let's start with
trimming, i.e. determining the most extreme positions in the grid.

def find_circumscribing_rectangle(circles):
 xmin = min(c[0] - c[2] for c in circles)
 xmax = max(c[0] + c[2] for c in circles)
 ymin = min(c[1] - c[2] for c in circles)
 ymax = max(c[1] + c[2] for c in circles)
 return xmin, xmax, ymin, ymax

The only argument this function needs is the list of circles. We then find the most extreme
x and y values using comprehensions. For x-values, for example, this is the x-coordinate
of a circle centre minus the radius. This is calculated for x and y values for minimum and
maximum respectively. We then return these values as a tuple. The order in which the
values are passed in the tuple must always remain the same, so subsequent functions
receive the correct assignment. We then turn to the function that calculates the corners of
all boxes in the grid.

def iter_parts(xmin, xmax, ymin, ymax, n):
 xsize = (xmax - xmin) / n
 ysize = (ymax - ymin) / n
 for xstep in range(n):
 for ystep in range(n):
 xmin_part = xmin + xstep * xsize
 ymin_part = ymin + ystep * ysize
 yield xmin_part, xmin_part + xsize, ymin_part, \
 ymin_part + ysize

This function accepts the previously calculated limits, as well as the number of sections into
which the x- and y-axis are divided. All boxes should have the same size. The size results

Python 3 for Science and Engineering Applications

● 112

from the difference between the maximum and minimum value, which is divided by the
number of sections. This determines the side lengths of each box. We now iterate over
all sections in x- and y-direction and call them xstep and ystep respectively. The corners
are calculated as the minimum value to which the product of the step and the side length
is added. In this way, we work through all boxes one by one. We then return the four
coordinates of the vertices as a tuple using yield instead of return, so we have created a
generator. Once we have calculated the four vertices of a box in this way, we can then test
whether all four lie within one specific circle. If they do, it is confirmed that the total area
of the respective box is within that circle.

def box_inside(box, circles):
 xmin, xmax, ymin, ymax = box
 for circle in circles:
 if (find_distance([xmin, ymin], circle) < circle[2] and \
 find_distance([xmin, ymax], circle) < circle[2] and \
 find_distance([xmax, ymin], circle) < circle[2] and \
 find_distance([xmax, ymax], circle) < circle[2]): \
 return True
 return False

This function takes the box coordinates as one tuple and the list of circles. We unpack the
tuple to the four corners of a box and then iterate over all circles. If the distance between
the centre of the circle and a corner coordinate is smaller than the radius of the respective
circle, it is definite that the point lies within the circle. If this applies to all four points, we
output True, or otherwise False. It is important to keep in mind the logic here: if the if-
condition is only true once (that is, for at least one circle), we can immediately stop and
return True, since it is demonstrated that the four corners lie in a circle. If this condition
is violated for one specific circle, we do not immediately terminate, but iterate over all
remaining circles, since the box might still lie within another circle.

Finally, we have to create the part that runs the simulation. If at least one corner point is
not in a circle, we use the random method and determine the share of the box that lies in
a circle. The principle is very similar to the earlier task when we statistically calculated Pi.

Chapter 3 ● Statistics and Simulations

● 113

import random
def find_hitrate(box, circles, iterations):
 xmin, xmax, ymin, ymax = box
 hits = 0
 for i in range(iterations):
 zx = xmin + (xmax - xmin) * random.random()
 zy = ymin + (ymax - ymin) * random.random()
 for circle in circles:
 if find_distance((zx, zy), circle) < circle[2]:
 hits += 1
 break
 return hits / iterations

As arguments, we again use the tuple, which contains the corners of the box, the list
of circles and the number of points to be drawn. First, we unpack the tuple to the four
corners. We then set the number of hits to 0. Now the simulation starts, which runs until
all points are drawn. The x-coordinate of the random point is the random value of [0, 1[,
which is multiplied by the length of the box. We add this value to the minimum x-value.
The procedure for the y-value is similar. In this way, we obtain a random point that lies
within the box currently under consideration. Now we check all circles from the list whether
the created point lies in at least one circle, which can be determined by the distance to the
respective centre point. If this is the case, for only one circle, we can immediately stop and
count the hit. Once we draw all the points in this way, we can determine the proportion of
points that lie within a circle. If this value is 0.5, for example, we know that on average,
half of the box under consideration lies within a circle. We then return this value to the
consuming function. This would complete all auxiliary functions and we can start a test run.

>>> compute_total_area(data, 100, 2000)
Share of skipped boxes: 0.7145
Total number of all points drawn (in thousands): 5710
21.565288978106558

Since we found the analytical solution online for the given example, 21.56503660..., we
can conclude that our approximation is quite good. Moreover, the program's runtime is less
than one minute, so that we could, if necessary, generate a more precise result.

Assignments

1. The precision of our function is determined by two parameters: the number of rectangles
to be generated, and the number of random points drawn from each rectangle. What
happens if we only vary the number of rectangles? What if we only vary the points? Go
through some extreme examples and think about what these variables determine and
how this may affect the result. How is this related to the influence of chance?

Python 3 for Science and Engineering Applications

● 114

2. What is more important for a precise result, many rectangles, or many random draws?
Write a program to systematically vary these variables and record the results. Also
make sure you take the influence of chance into account so that the results are not
distorted too much by outliers.

3.9 • Pig

Very simple rules can create devilishly complex situations is confirmable by this game of
dice for two or more players, where the goal is to score 100 points. The game is played
alternately in rounds. In each round, a player can roll one die or have his current round
score credited to his total score. If she rolls the die and receives a number between 2 and
6, this number is added to her round score. If she rolls a 1, she loses all points she scored
in that round and is only credited with a single point. This means each player receives at
least one point in each round.6 Based on these rules, each player can decide how much risk
she wants to take. Of course, you will want to roll at least once at the beginning of each
round, because you have nothing to lose on the first roll. After this, you should consider
whether you prefer to keep the current score and save it, or to gamble and hope not to
roll a 1? If we assume that exactly two players are playing, you also have to consider the
score of the other player. If she is far away from the goal of 100 points, you can play more
conservatively.

The question arises as to which strategy promises the best outcomes. In this respect,
the game is simple, as a player can only choose between two options: either to continue
playing or save. This decision, in turn, is only dependent on three variables, the player's
score (i), the score of the opponent (j), and the current round total (k). A rather simple rule
of thumb states that you should play each round until you have reached at least 20 points.
The reasoning is as follows: A die has six sides, each number has the same probability. So
we know that a 1 will occur on average every six rolls. Therefore, on average you can roll
five times until this event occurs. The expectation value of a roll, assuming one does not
get a 1, is equal to 4 ((2+3+4+5+6)/5). Since four times five is 20, on average you will get
this score. Therefore, if you stop before that, you give away points. But this rule of thumb
reaches its limits when some game situations occur. Suppose your opponent has 99 points,
it is clear that she is guaranteed to win the next round, no matter what happens. Therefore
it is sensible to roll the die as often as possible, even if your score is still far from 100.
Theoretically, a player can win in the first round right at the beginning of the game (she
"only" has to roll the number 6 17 times in a row, which is extremely unlikely, but possible.
An optimal strategy of playing must take these factors into account. We will develop a total
of five different strategies and test them against each other in a tournament. Since we can
easily simulate dice rolls in Python, we will ultimately know which strategy maximises the
chances of winning.

Let's start with a very simple and possibly nonsensical approach: A player could ignore all

6 This is where Progressive Pig differs from the original, because you do not receive
any points at all when you roll a one. Since this version leads to tricky cyclic dependencies,
we will discuss the slightly modified game version here. For a solution of the original see
http://cs.gettysburg.edu/~tneller/papers/pig.zip

http://cs.gettysburg.edu/~tneller/papers/pig.zip

Chapter 3 ● Statistics and Simulations

● 115

the information at hand and play completely randomly. She would flip a coin before each
roll. If it shows heads, she continues playing. If it shows tails, she stops. This rule does not
seem to be very effective, but we would like to include it nevertheless. It serves as a lower
limit, so to speak. Any other strategy that loses against it seems to contain serious errors
of reasoning.

import random
def randomplay(mytotal, yourtotal):
 roundtotal = 0
 while True:
 if random.randint(0, 1) == 1:
 z = random.randint(1, 6)
 if z == 1:
 return 1
 else:
 roundtotal += z
 else:
 return max(1, roundtotal)

Even if this way of playing does not use the information about the totals of both players,
we pass them here as arguments so we can later call all functions in the same way in the
tournament program. We initialise the round total with 0 and start a loop that runs until
the player rolls a 1 or stops the round. A random number is drawn: either 0 or 1. When the
value is 1, the die is rolled and the result is added to the round total. If the program rolls a
1, this value is directly returned as the final result. Summarised, this program continues to
roll the die until either a 0 is drawn or a 1 is rolled. The next strategy we implement seems
a bit more sensible but is quite risky: a player will continue to roll the die, no matter what.
This means she will play until she either receives a 1 or reaches 100 points.

def greedy(mytotal, yourtotal):
 roundtotal = 0
 while roundtotal + mytotal < 100:
 z = random.randint(1, 6)
 if z == 1:
 return 1
 else:
 roundtotal += z
 return roundtotal

The implementation of this way of playing is even easier because there are only two exit
conditions: rolling a 1 or winning the game. The third way of playing is the more elaborate,
previously explained version, in which you hope for at least 20 points per round in the long

Python 3 for Science and Engineering Applications

● 116

run and only stop when this value is reached.

def get20(mytotal, yourtotal):
 roundtotal = 0
 while roundtotal < 20 and mytotal + roundtotal < 100:
 z = random.randint(1, 6)
 if z == 1:
 return 1
 else:
 roundtotal += z
 return roundtotal

Here the main loop simply runs until you reach 20 or you have more than 100 points in
total. You should then stop in any case. Here is a short reminder regarding Boolean values:
The loop only runs if both conditions are True. As soon as one of them is False, for example,
False and True, the whole condition is False and the loop exited. You can fail and roll a 1
before this, but if it doesn't happen, you will only stop with minimum points. As discussed
above, there is a slight modification to this idea. You always play for at least 20 points,
unless your opponent is close to the limit of victory. You then have to play riskier. As we
argued, there is a 50% chance of winning once you reach 80 points. Therefore we set this
value as the limit. So if a player has this score or higher, the program will play until it either
wins or rolls a 1.

def risky(mytotal, yourtotal):
 roundtotal = 0
 if 80 <= yourtotal < 100:
 while mytotal + roundtotal < 100:
 z = random.randint(1, 6)
 if z == 1:
 return 1
 else:
 roundtotal += z
 return roundtotal
 else:
 while roundtotal < 20 and mytotal + roundtotal < 100:
 z = random.randint(1, 6)
 if z == 1:
 return 1
 else:
 roundtotal += z
 return roundtotal

Chapter 3 ● Statistics and Simulations

● 117

First of all, it is checked which tactic should be used. If the opponent has between 80 and
99 points, the loop runs until a win is achieved, i.e. at least 100 points (or a 1 is rolled).
Otherwise, the normal tactics are utilised and at least 20 points should be scored.
The question of what the optimal strategy that maximises the chances of winning looks like
remains. Some basic considerations can be made to solve this challenge. Once a player has
a score of 99 and it is her turn, she automatically wins, as she scores at least one point
per round, so there is no need to look at the situation in detail. What happens when a new
round is started and it is your turn to play with a total of 98 points, but your opponent has
99 points, which we denote as follows: (98, 99, 0)? In this case, we know that she will win
the next round unless you win this round. Our chances of winning are therefore 5/6. If we
roll a 1, we end the round with 99 points and lose. Any other roll of the die, however, brings
us to victory. So we can deduce: At the state of (98, 99, 0), we win if we roll the die with
p = 5/6. If we save and stop playing, we win with a 0% probability. At this state, it would
be better to roll the die. Since the results are always symmetrical, these considerations
apply to the opponent if she is in the same situation. What about the score (98, 98, 0)?
We automatically win if we roll at least a two. If we roll a one, we end the round and the
opponent finds, from her point of view, the situation as (98, 99, 0). As we have just seen,
her probability to win is p = 5/6. Since we know this, our probability to win in the round
before, when we roll the one, is the counter probability to it, that is 1 – (5/6) = (1/6). If we
add all these probabilities up, we get the following solution:

However, if the save our score at the same state, we have the following probability of
winning the game:

As 1/6 (about 17%) is smaller than 86%, we should continue with a roll instead of holding
at this state. We deduced this by using a few simple logical considerations. If we extend
them, we can develop a decision rule for every conceivable state of the game, which then
serves as the foundation for our optimal playing strategy. We would therefore like to have
a recommendation for every conceivable game situation (i, j, k) so that we know whether
we are maximising our chances by continuing to play or stopping. We can create such a
database recursively using the formulas shown above.7 Based on these considerations, we
7 It now becomes clearer why this is not easily possible with the normal Pig. If it is

Python 3 for Science and Engineering Applications

● 118

can now formulate the equations we need to implement and solve recursively.

Given is (i, j, k), that is, the current score. We can now calculate the probabilities of both
options and then choose the better one. The recursive character of this task becomes
obvious here. If we start at the very beginning with the first move, i.e. (0, 0, 0), we have
to calculate P(0, 0, 6) for example (if we roll a 6 on the first roll). Since this value does not
exist in the database as well, it has to be first calculated, which means that another value
has to be calculated. So we have to search recursively until we reach the base case, that
is, when the game ends and is either won or lost. Let's look at a possible implementation
in Python and then explain the procedure step by step.

also possible to win zero points in a given round, we sometimes get into cyclic dependencies.
The necessary probabilities can then no longer be calculated recursively, since an infinite
regress is opened up. Here other techniques are necessary, which require more mathematics.

Chapter 3 ● Statistics and Simulations

● 119

def strategyfinder(wintotal=100):
 def wincheck(i, j, k):
 if (i, j, k) in probability:
 # Probability is already available
 return probability[i, j, k]

 if i + k >= wintotal:
 # win is sure
 return 1
 elif j >= wintotal:
 # loss is sure
 return 0

 # Probability when rolling the die
 p_roll = 1 - wincheck(j , i + 1, 0)
 for points in range(2, 7):
 p_roll += wincheck(i, j, k + points)
 p_roll /= 6
 # When saving probability that j wins
 p_hold = 1 - wincheck(j, i + max(k, 1), 0)
 # which option is better
 p_best = max(p_roll, p_hold)
 if p_roll > p_hold:
 recommendation[i, j, k] = "roll"
 else:
 recommendation[i, j, k] = "hold"
 probability[i, j, k] = p_best
 return p_best
 probability = {}
 recommendation = {}
 wincheck(0, 0, 0)
 return (probability, recommendation)

We create the function strategyfinder(), which in the end generates all the data we need
to find the optimal decision. We assume that the winning total is set to 100. However,
this can be adjusted if you want to change the rules. We create two dicts, probability and
recommendation. The first stores for every possible state (i, j, k) the probability that the
current player is going to win the game, the second one indicates whether to roll the die or
to hold for a given state (i, j, k). For i and j there are logically 100 possibilities each, from
0 to 99 inclusive. For k, i.e. the current state of the round, there are fewer possibilities. For
example, if we already have 95 points, we don't need to consider a possible round score
of ten, because at this score you would have already won and you don't have to decide
anymore. The values to be generated for k, therefore, depend on i, so from the start we
cannot easily predict how many values need to be generated. This will be automatically
taken care of by the recursion we are going to use.

Python 3 for Science and Engineering Applications

● 120

Let us go through this function step by step. At first, the two empty dicts are created. Then
we call the inner function wincheck() with our starting state, i.e. the starting value of the
game (0, 0, 0). This is done "from the outside" exactly once. All other calls are done by the
function itself and thus recursive. We now enter wincheck().

The variables i, j, and k represent the own total score, the total score of the opponent, and
the own score of the round (round sum). If there is a value available in probability already,
we can directly return it. If the sum of i and k is greater than the necessary winning sum,
the game is already over and we can return the value 1. Conversely, if j, i.e. the opponent's
score is above the round sum, then a win is impossible and the return is 0. If neither of
these two cases applies, we have to calculate the new score. Let's start with the probability
of a roll, which we build up step by step. We only use the formulas shown above. First, we
calculate the probability that we win if we roll a 1, which is the probability that the opponent
will not win in the next round. We then calculate the probabilities for the other possible
outcomes, i.e. if we roll a number between 2 and 6. We add up all of these results and
finally divide by 6. This calculates probability.

We then come to the probability of winning if the player does not continue playing but holds
instead. Since we receive at least one point, we take the maximum value of 1 or k. So we
get either the value 1 or a higher one if k is greater than 1. In principle, this again is only
the probability that the opponent will not win in the next round. Now we choose the higher
one from both probabilities and save it in p_best. Depending on which option is better,
we enter either write "roll" or "hold" to record the result. Similarly, we put the numerical
value in probability. At the end, we return the probability. Since the function calls itself
when needed, we have a recursive function. Let's go through this with some examples. At
the beginning, we call the function with (0, 0, 0). Since there is no value at the beginning,
this value must be calculated. If we now go through wincheck() we see the first self-call
occurs at p_roll = 1 - wincheck(j , i + 1, 0). The self-call is then obviously done with (0,
1, 0), but this value is also not present yet. So we start a recursion cascade, which ends
only when the innermost function returns a value. This first happens when a player reaches
100 points, i.e. approximately (100, j, k). At some point, we reach this situation and get a
return value for the last recursion created.

We reach the input (99, 100, 0). This is the earliest value at which a player has won. Here
the opponent wins, the return to the previous function (99, 99, 0) is therefore 0, but we
already know that we are guaranteed to win if it is our turn. The return for this function is
then again 1, so here the odds of winning are summed up for each number of the die and
divided by six at the end. Since k is zero, the first condition is true and the probability of
winning when holding is also 1, since we receive exactly one point and we reach 100. At the
end, we write this result into the dict so it is permanently stored. We generate the return
and from then on the recursion "tower" is deconstructed from the bottom downwards. It
sounds paradoxical that we start at (0, 0, 0) and count up to (99, 100, 0) first, but it does
not bother us, since only there is an end of the recursion and the base case is reached.
To understand this, it can be helpful to directly place a print statement as the first line of
wincheck() and display (i, j, k). This way you can see the program first counts up and then
back from the top. Finally, you have filled the two dicts, which act as databases here, with

Chapter 3 ● Statistics and Simulations

● 121

all information. You then know for every possible situation whether you should roll the die
or hold. We now just have to implement the function as a strategy:

def optimal(mytotal, yourtotal):
 roundtotal = 0
 while True:
 if mytotal + roundtotal >= 100:
 return roundtotal
 res = (mytotal, yourtotal, roundtotal)
 if database[1][res] == "hold":
 return roundtotal
 z = random.randint(1, 6)
 if z == 1:
 return 1
 else:
 roundtotal += z

The basic structure is similar to the other strategies implemented before. Once we reach
100 points or more, we can exit. Otherwise, we check the database first to see if we should
roll or hold. If the return is stop, we end the round. Otherwise, the roll will take place.
Depending on the number we get, we either have to exit or increase our round total. It is
important the function can later access database, for which we will use a global variable.

With this information, we can start our tournament. So we need a function that sets up
pairs of duels for all game programs and then plays them repeatedly so that we get an
average over many games. To avoid positional effects, we always play both pairings, i.e. A
vs. B and additionally B vs. A. The player who starts the round has an advantage because
the opponent cannot catch up if the first player has already won.

Python 3 for Science and Engineering Applications

● 122

from itertools import product
def tournament(strategies, rounds):
 global database
 database = strategyfinder()
 history = {}
 for self in strategies:
 history[self] = {}
 for opponent in strategies:
 if self != opponent:
 history[self][opponent] = 0
 for strat0, strat1 in product(strategies, strategies):
 if strat0 != strat1:
 for r in range(rounds):
 p0, p1 = 0, 0
 while True:
 p0 += strat0(p0, p1)
 if p0 >= 100:
 history[strat0][strat1] += 1
 break
 p1 += strat1(p1, p0)
 if p1 >= 100:
 history[strat1][strat0] += 1
 break
 for self in history:
 print(self.__name__)
 for opponent in history[self]:
 winchance = 100 * history[self][opponent] / (rounds \
 * 2)
 print(opponent.__name__, round(winchance, 1))
 print("_" * 15)

The tournament only has two arguments: a list of all playing strategies and the number of
games to be played per pairing. We specify that the databases generated are considered
globally available variables. Otherwise, we would always have to explicitly pass this
information. To store all results we create a dict, which will contain several other dicts. For
each strategy, we generate a separate dict, in which all opponents are collected. Here we
just have to take care that games are sorted out against themselves because we can derive
these results logically. We count the wins against every other program in this database
so we can later calculate the probability of winning. Thus we generate the following data
structure:

Chapter 3 ● Statistics and Simulations

● 123

>>> history
{<function randomplay at 0x7fe865008268>: {<function greedy at
0x7fe8650082f0>: 0, <function get20 at 0x7fe865008378>: 0, <function risky
at 0x7fe865008400>: 0, <function optimal at 0x7fe865008488>: 0},...

This looks a bit odd because Python gives the name of each function as well as the address
in memory, which is irrelevant at this point. We will then start the actual simulation. Here
we use product() from itertools, which corresponds to a nested loop. In this way we let
all strategies compete against all others. Again, we sort out pairings where the function
would play against itself. We then iterate through all the rounds and initialise the score of
both players with 0, followed by the actual simulation, which runs until one player wins and
break is reached. When storing the results, we only have to pay attention to the order. In
the dict previously created, we only saved victories and therefore always have to name the
winner function first. Once we have played all pairings in this way, we come to the analysis.
For this, we iterate over all elements in the database and only display the name. The storage
address can be removed with FUNC.__name__. After this, we iterate over all opponents
and produce a clear display at the end. When calculating the victory probabilities, we must
multiply the number of rounds by 2 in the denominator, since we played all pairs twice (to
compensate for the position effects). Finally, we let the result be displayed.

>>> random.seed(1234)
>>> tournament((randomplay, greedy, get20, risky, optimal), 5000)
randomplay
greedy 46.4
get20 0.3
risky 0.4
optimal 0.8

(...)

So we see after 5,000 rounds, the strategy randomplay won against greedy in 46.4% of
all games, but only in 0.8% against the optimal strategy. From these numbers, we create
a table.

Randomplay Greedy Get20 Risky Optimal

Randomplay - 53.6 99.7 99.6 99.2

Greedy 46.4 - 86.0 85.2 85.8

Get20 0.3 14.0 - 57.2 55.3

Risky 0.4 14.8 42.8 - 54.7

Optimal 0.8 14.2 44.7 45.3 -

We see that optimal won against every other program and is therefore the winner of the

Python 3 for Science and Engineering Applications

● 124

tournament. What is interesting is that it won against risky by a relatively narrow margin,
meaning this fairly simple strategy is not much worse than a virtually perfect play. In this
respect, the luck factor should not be underestimated even with an optimal playing style.
In 0.8% of all games even pure chance did better than optimal. Second place goes to risky,
which won against all programs except optimal. Third place goes to get20, fourth place to
the greedy player, and last place to the random program, which did not much worse than
the greedy player. Overall, these results are in line with initial expectations.

Assignments

1. Think of another strategy and add it to the tournament. How well is it doing in
comparison to the other ones?

3.10 • Bootstrapping

One of the most important applications of statistics is to derive information about a much
larger population from a limited sample. Suppose you want to find out how much the
inhabitants of a certain region earn, which could be useful for market research purposes.
We know from official statistics that 85,000 people live in the region. They have an
independent income and therefore form the population for the analysis. Our question
could be answered by simply asking each person about their income and then taking the
average of all answers. Unfortunately, this is often not feasible to ask every individual in
the population, mainly because of the extreme costs, and many people would refuse to
participate or are not available otherwise. In this respect, statistics use a trick: a certain
number of respondents are randomly selected from the population and interviewed. By
the random process, one hopes that the sample forms a representative version of the
population, but on a smaller scale. For example, one could randomly select about 1,000
telephone numbers (assuming that each person has exactly one telephone number), call
them, and aggregate these responses. This reduces the effort considerably. However, we
now have a problem. Since we have not surveyed the entire population, we must assume
the calculated mean value of the sample will most likely differ from the mean value of the
population. We refer to the population mean as μ or as the "true" value. We refer to the
sample mean as μ bar, which is the best estimate of the mean population. The difference
between the two values is called sampling error. This is the error we make because we
did not interview the entire population. Unfortunately, we cannot calculate this error in
real applications, because we would have to know the true value, which would make the
drawing of a sample nonsensical. But we can already deduce some obvious properties: the
more people drawn, the smaller the error should be. Thus, if we could randomly interview
5,000 people instead of 1,000, our estimate would be better. In other words, the sampling
error converges to 0 when the sample size converges to the population size.

So much for the mean, which is our main concern. There remains a second problem. Since
we can already foresee that the sample mean will deviate from the true value, it would
be good if we could estimate approximately how large this deviation will be. As we have
seen, the relationship to the sample size is a central element of this estimation. The second
determining factor relates to how widely the values are scattered in the population. If we

_

Chapter 3 ● Statistics and Simulations

● 125

stick to income, some people may have extremely high incomes, others extremely low. For
example, we assume that the lowest monthly income is around €400, for the highest such
a limit is difficult to determine. If by chance, a billionaire happens to live in the region, he or
she could earn over €100,000, which would massively exceed the average income. In this
respect, we can already estimate that incomes are not normally distributed. From official
data, we know quite well that such variables are almost always skewed to the left. This
means that most people have a rather low income and there are significantly fewer people
with a very high income. However, we do not need to look any further into this, as income
is only an example here and the actual distribution is irrelevant for the task. Ultimately we
can assume that the distribution of the variable is quite uneven and the range is wide. We
would like to visualise this. In statistics, histograms are often used to illustrate the empirical
distribution of values (see figure 3.5). We can also do this in Python, although we will again
limit ourselves to console output. In contrast to regular histograms, we will display them
with swapped axes, i.e. rotate them, which has several advantages for the display and does
not influence the content.

The basic idea is as follows. We take the data and sort it numerically first. Then we have
to decide how many bars or bins we want to use. This number depends on the display
options in the console. Since each bar should have the same width, i.e. be displayed with
exactly one character, we have no option to adjust at this point, in contrast to a graphical
output, where we could set the display width via pixels. We, therefore, decide to generate
a maximum of 20 bars so everything is visible without scrolling in the console. If we have
very few data points, we may need fewer bars. There is no fixed standard for this, but there
are numerous algorithms available. At this point, we decide to use the formula according to
Rice, which is as follows: k = 2 * n^(1/3)

Here k is the number of bins to generate and n is the number of data points. For example,
if there are 100 data points, we would generate 9.28 bars, which we round down to 9. The

Figure 3.5: A histogram is used to visualise the distribution of a numerical variable. The values of the variable
are plotted on the x-axis and the relative frequency of each bin on the y-axis.

Python 3 for Science and Engineering Applications

● 126

height of bars depends on the number of elements that are assigned to each bar. The more
elements, the higher the bin. To determine this, we must define the width of each bar first,
which is the numerical range a bin should represent. To do this we first compute the width
of the variable, which is simply the difference between the maximum and minimum value.
The width of each bar is then the total width divided by the number of bars. For example,
if we have a numerical width of 100 and 20 bars are to be created, each bar has a width of
5. If the minimum value were 0, the first bar would contain all cases with a value between
0 (inclusive) and 5 (exclusive). In this way, we determine how many cases are assigned
to a bar. From the relative number of cases per bar, we can then derive the height of a bar
and display it in the console.

import random
from statistics import mean, median, stdev

def histogram(data, bins=None):
 """Draws a histogram from numerical data"""
 maxvalue = max(data)
 minvalue = min(data)
 totalwidth = abs(maxvalue - minvalue)
 ndata = len(data)
 if not bins: #no value given by the user
 #Rice's rule or 20 bins max
 bins = int(min((2 * ndata**(1/3)), 20))
 binwidth = totalwidth / bins
 bindata = []
 maxelements = 0
 for i in range(bins):
 lowerbound = minvalue + i * binwidth
 upperbound = minvalue + (i + 1) * binwidth
 nelements = sum(1 for element in data if lowerbound <= \
 element < upperbound)
 if nelements > maxelements:
 maxelements = nelements
 midvalue = lowerbound + (upperbound - lowerbound) / 2
 bindata.append([nelements, midvalue])

 maxheight = 25
 print("-" * 40)
 for row in bindata:
 binheight = int((maxheight / maxelements) * row[0])
 print(f"{row[1]: 4.2f} {'#' * binheight}")
 print("-" * 40)
 print(f"N: {ndata}")
 print(f"Mean: {mean(data):4.02f}")
 print(f"Median: {median(data):4.02f}")
 print(f"Standard deviation: {stdev(data):4.02f}")

Chapter 3 ● Statistics and Simulations

● 127

We import some modules and create our function which has two arguments, namely the
numeric data as a list and the option to specify the number of bins. If the user does not
overwrite the default, we will automatically set this value below using the algorithm. We
find the smallest and largest numerical value of the data and the total width. If no default
is given, we utilise the formula, but make sure that a maximum of 20 bins is generated,
for which we filter here for the minimum. We also have to remember to transform the
float back to an integer. The width of a bin can then be easily calculated. We will now save
the information in bindata. We create a variable in which we store the bin with the most
elements because we need this value to scale the histogram later. We then iterate over the
number of bins to create and set the respective upper and lower limits. We then calculate
in a comprehension how many elements of the data fall into the respective bin. If this value
is greater than the largest value known so far, we do an update of this variable. We also
calculate the centre of a bin, because we will use this information in the display. At the end,
we put all three objects into a list and add it to bindata.

Now we can focus on the display. The maximum height of a bin is set to 25, so there can be
a maximum of 25 characters in one line. We create a separator-line for clearer visualisation.
Now we iterate over all bins in bindata. We scale the height, which is the quotient of the
maximum allowed height and the height of the highest bin. This ensures the highest bin
is always exactly 25 characters high and all others are displayed correctly in relation to it.
Thus we use the area optimally. After this value has been calculated, we first display the
mean numerical value and in the same line the bin, which we assemble using the number
symbol (#). Here we use F-Strings. At the end, we insert a separating-line once again.
Finally, we output a number of descriptive statistics and are done. Time for a test run.

Python 3 for Science and Engineering Applications

● 128

>>> random.seed(1234)
>>> data = [round(random.normalvariate(0, 1), 3) for i in range(300)]
>>> histogram(data)
--
-2.64
-2.20 ##
-1.76 ####
-1.32 ########
-0.88 ###############
-0.44 ###################
 0.00 #########################
 0.44 ################
 0.88 #################
 1.32 #####
 1.76 ######
 2.20 ##
 2.64 #
--
N: 300
Mean: 0.01
Median: -0.05
Standard deviation: 0.98

We specify that we want to generate a normally distributed variable with a mean value
of 0 and a standard deviation of 1 with a total of 300 data points. The seed makes the
result reproducible. The character of the normal distribution becomes recognisable in the
histogram, even if there are obvious deviations. Since we generated only 300 cases, this is
not surprising. It also becomes clear why we rotated the histogram. Otherwise, we could
not display the numerical values directly below a bin, since each value would take several
characters.

Since we now have a tool to display numerical data graphically, we can go back to the
concept of bootstrapping. The basic idea is simple: whenever we want to quantify the
uncertainty of an estimator (mean, median, standard deviation, etc...), but the standard
error of the estimator is unknown or difficult to calculate, we generate the standard error
by repeatedly drawing new samples (resamples) from the existing sample. This process
is then called bootstrapping. Assuming we want to calculate the standard error of the
median, we do the following: take the sample and calculate the actual median - this is our
point estimate. We then draw new samples repeatedly with replacement from the sample,
with the size of the new samples being identical to the original one. It becomes clear that
this means that some elements can be drawn several times and others not at all. We do
this about 500 times and compute the median for each new sample. We store these new
medians in a list and compute the standard deviation of this list using stdev() from the
module statistics. As statisticians have demonstrated, we can consider this value to be the
standard error of the sample median and generate other derived statistics, for example,

Chapter 3 ● Statistics and Simulations

● 129

a confidence interval.8 The program which carries out these computations can be written
very compactly.

def bootstrap(func, data, n):
 empvalue = func(data)
 resamples = [func(random.choices(data, k=len(data))) for i in \
 range(n)]
 stderr = stdev(resamples)
 ci = (round(empvalue - 1.96 * stderr, 2), round(empvalue + 1.96 * \
 stderr, 2))
 histogram(resamples)
 print(f"Empirical value: {empvalue:4.02f} | Bootstrap Stderr: \
 {stderr:4.02f} | 95%-CI: {ci}")

The function accepts three arguments: the function for which the standard error is to be
calculated, the data, and the number of resamples we want to generate. We then calculate
the empirical value from the sample data. The actual bootstrapping is generated in the next
line using random.choices(), which randomly generates new samples with replacement. We
apply the function of interest to these resamples and store the generated values in a list.
The standard error is then simply the standard deviation of these results. After this, we also
generate a 95% confidence interval. The empirical distribution of the resample results is
also displayed, as it allows us to judge the quality of the outcome. An approximate normal
distribution would be desirable. Finally, the results are displayed. Let's see this in action.

Suppose we have available test data for 14 people (think of a standardised competence test
or examination results). We can assume that these 14 people were drawn at random from a
university and we would like to make inferences on the competence of the average student.
Those who have dealt with statistics before will remember that for such small samples most
inferential statistical methods should not be used and 30 cases is usually the lower limit.
Bootstrapping is better suited in such a situation and recommended especially for small
samples. We apply our program to this data and specify we are interested in the median.

8 The underlying theory cannot be explained at this point, the standard work, which
is easy to understand even with only basic statistical knowledge, is suitable for this purpose:
Efron, Bradley; Tibshirani, Robert J (1994): An Introduction to the Bootstrap. CRC Press

Python 3 for Science and Engineering Applications

● 130

>>> testresults = [4, 5, 7, 7, 9, 10, 11, 13, 15, 18, 19, 19, 22, 23]
>>> histogram(testresults, 5)
--
 5.90 #########################
 9.70 ###################
13.50 ############
17.30 ###################
21.10 ######
--
N: 14
Mean: 13.00
Median: 12.00
Standard deviation: 6.37
--

>>> bootstrap(median, testresults, 2000)
--
7.38 ###
 8.12 ####
 8.88 ########
 9.62 ########
10.38 #########################
11.12 ############
11.88 ################
12.62 ##
13.38 ###############
14.12 ##############
14.88 ##########
15.62 ###
16.38 ##########
17.12 ##
17.88 ######
18.62 ####
19.38 ###
20.12
20.88
21.62
--
N: 2000
Mean: 12.58
Median: 12.00
Standard deviation: 3.00
Empirical value: 12.00 | Bootstrap Stderr: 3.00 | 95%-CI: (6.13, 17.87)

First of all, as we have the empirical distribution of the data displayed, it becomes apparent

Chapter 3 ● Statistics and Simulations

● 131

these are clearly not normally distributed and higher values occur much less frequently. Now
to bootstrapping. After drawing 2,000 resamples, it becomes apparent that the distribution
of the generated medians corresponds approximately to a normal distribution, which can
be rated as acceptable. Further below we find the results. The empirical median is 12, our
estimated standard error is 3. The 95% confidence interval ranges from 6.13 to 17.87. We
therefore assume (roughly speaking) that the true mean, i.e. that of the population, will
probably be in this range.9 Here it was illustrated how we can make inferences from a small
sample to a much larger population. To sum up, bootstrapping is a versatile and powerful
statistical technique that can be applied to many different areas of scientific analysis.

Assignments

1. Some years ago a large retailer had the following offer: for each 10€ spent in the
shop, the customer received a collectible Smurf toy. In total, there were 36 different
figurines. The question is, how much money must be spent on average in the shop so
one ends up with a complete collection? Write a simulation and visualise the resulting
distribution using a histogram.

9 The professional statistician will immediately notice that this interpretation of
confidence intervals is debatable. If you want to know exactly, you should consult a statistics
textbook.

Python 3 for Science and Engineering Applications

● 132

Chapter 4 • Text Data and Strings

4.1 • Dictionary

In this example, a list of all English words as found in a dictionary is used as source for all
applications. There are numerous sources on the Internet for free and machine-readable
word lists in many languages. We use a list that can be downloaded as a text file.1 Now this
list is saved on our hard drive but it has to be loaded into Python first. For this, we use a
context manager, which nowadays is the better option to read data. The advantage is that
Python manages the whole object for us and closes the file correctly in case of errors or
aborts. This saves us from having to close the file manually at the end. This guarantees a
cleaner and better handling of files and code. The usage is simple:

with open("wordlist.txt", encoding="utf-8") as newfile:
 data = newfile.readlines()
 print(len(data))
 print(data[:20])

In the first line we specify the absolute or relative path to the desired file. Also, we specify
that the file should only be read. We do not want to make any changes. We specify the
file encoding, in this case, UTF-8. With the method readlines() we can now read all lines
of the file. This is possible because the data is structured, i.e. one entry per line. These
are written to a list and can be used as a basis for further analysis. We get the number of
elements of the list and their first 20 elements. When we run the code above, we get the
following output:

>>> list(data[5])
['3', 'r', 'd', '\n']

To remove the line break, we must therefore remove the last character from each element
of the list. Additionally, we use the string method lower() to convert all words to lower
case just in case there are any capital letters included. We can do this directly in a single
expression. We use two string functions here: rstrip(), which removes spaces at the end of
a string, and lower(). We can apply these to each string sequentially and write the whole
thing very compactly in a list comprehension. In the second round, we also remove the
character "‘" (apostrophe) from words as it also can disturb our analyses later on.

1 Surely first choice is the free Moby-Project, which provides word lists for different
languages. Unfortunately the main page is offline at the time of printing. The word lists
are still available, partly from other sources. Therefore it seems best to look up the current
sources on Wikipedia: https://en.wikipedia.org/wiki/Moby_Project Also note that after the
download, the list may be incorrectly encoded and Python will generate an error message. In
this case it may help to open the list in a text editor and save it again with the encoding UTF-
8.

https://en.wikipedia.org/wiki/Moby_Project

Chapter 4 ● Text Data and Strings

● 133

>>> words = [line.rstrip().lower() for line in data]
>>> words = [word.replace("'", "") for word in words]
>>> words[:5]
['1080', '10th', '1st', '2', '2nd']

As we can see, we now have the desired result, i.e. all words without disturbing characters,
in lower case, and everything collected in a list. This word list can now be used for all kinds
of analyses. What is the shortest, what is the longest entry in the list? We will soon find
out that there are many abbreviations in the list that are not very reminiscent of words. To
remove them, simply create a new list using a list comprehension and eliminate all words
under three letters:

longwords = [word for word in words if len(word) > 2]

What if we no longer want the list to be sorted alphabetically, but by word length? We have
to make sure Python uses the correct sorting key. data.sort() would sort the elements
either by numerical size (for numbers), or alphanumerically, i.e. according to the dictionary.
But that's already the case, so we request the length as key here.

>>> longwords.sort(key=len)
>>> longwords[0]
1st
>>> longwords[-1]
dichlorodiphenyltrichloroethane

We display the shortest and the longest word. Python provides a powerful sorting function
that we can customize as we like. For example, what can we do if we want a sort that sorts
words alphabetically from their end? This is not simply to reverse the sort so that words
with Z appear first but to sort words that end with the letter A, for example. To do this, we
use an anonymous lambda function that reverses the words. These should then be sorted.

>>> longwords.sort(key=lambda word: word[::-1])
>>> longwords[:20]
['1080', 'n/a', 'aaa', 'baa', 'cabaa', 'assbaa', 'chaa', 'mushaa',
'markkaa', 'ijmaa', 'naa', 'compaa', 'saa', 'taa', 'humuhumunukunukuapuaa',
'aba', 'caaba', 'kaaba', 'baba', 'caba']

The anonymous function is directly defined within the sort method. For this reason, these
functions cannot contain the same complexity as regular functions, since they can only

Python 3 for Science and Engineering Applications

● 134

consist of one expression. Nevertheless, they can be extremely useful. To reverse the
words we use a Python trick with slices, i.e. the clever deconstruction of strings. Note that
this sorting does not reverse the words in the list, this is only done internally during sorting.
The elements of the list remain untouched.

To shed some light on this function, let's take a look at the following task: which words in
the list most often contain the letter "g"? To find this out, we just have to count how often
this letter occurs in a word and sort the list accordingly. So much for the theory. To make
the implementation clearer, we will break this task down into several sub-steps. First, a
function that counts the number of letters:

def counter(string, character):
 return sum (1 for element in string if element == character)

f = lambda word: sum(1 for character in word if character == "g"])

Two functions that provide identical outputs. First the classic version with def(), then the
anonymous function, which we can still address here with a name f. It does not matter
which one we want to use for sorting. However, we can only create the lambda-function
"on the fly" directly, so we don't need to have defined the function explicitly before. If we
put all the parts together, we get the following code:

>>> longwords.sort(key=lambda word: sum(1 for character in word if \
character == "g"), reverse = True)
>>> longwords[:3]
['higglehaggle', 'keggmiengg', 'ganggang']

Exactly what the function does is now clear: it counts the "g"s and returns this value as a
number. How key works should also be clear now. Computers only work with numbers, so
all other symbols must represent numbers. To sort by the number of "g"s, we must first
see how many of them appear in a word and use that number to sort the list. Strings with
smaller values are therefore at the top. Others with larger values are further down. Since
we want to know which words have the largest number, we also specify reverse so the list
appears upside down (sorted from large to small). Note that this task can already be solved
with a predefined function, which is more convenient in practice (string.count("character")).

Assignments

1. Write a function that recognises palindromes, i.e. words that have the same letter
sequence when read backwards and forwards (for example OTTO). How many
palindromes are there in the English word list? What is the longest and the shortest
palindrome?

Chapter 4 ● Text Data and Strings

● 135

2. The word list can be used as a source for a password generator. Define a function that
randomly selects a given number of words from the list and outputs them. The user
should also be able to specify the minimum and maximum length for each word. A
maximum length of the generated password should also be possible to set. Thus, many
passwords can be generated, some of which are certainly easy to remember.2

3. We define the diversity of a word as the number of different letters contained. For
example, tolerance has a higher diversity than banana. Which ten words with at least
six letters have the highest (lowest) diversity?

4. An anagram is present when the letters of a word are rearranged to form another word.
For example, LISTEN is an anagram of SILENT. Write a function that takes one word as
an argument and searches the word list for matching anagrams. Tip: Limit your input
to short words, otherwise the search can take a long time.

4.2 • LPS

In this example, LPS stands for longest palindromic substring, a term from bioinformatics.
This involves the digital analysis of genes in which palindromes play a special role. In our
DNA, genes are represented by the four letters ATCG, a language with an alphabet of only
four letters. Furthermore, we understand a gene as an extremely long word, for example,
CCCTCACTGATCATGGGGCTTGGGTTAAGTGTA. In this, we find different substrings which
are palindromes, for example: CCC or TTGGTT. The goal is to find the longest palindrome
within the given sequence. This task is perfect for practicing list slices, i.e. the skillful
deconstruction of strings. Special attention should be paid to off-by-one errors, which occur
when the index is shifted by one position, i.e. the desired string is too long or too short. As
a reminder, let's briefly consider how to get slices of strings. It is important to remember
that Python starts counting with index 0. The last element in a string i.e. counted from
behind, is selected with index -1, regardless of the length of the string. For the following
task, we first need an auxiliary function that examines a given string and tests whether it is
a palindrome. Here we define that we only recognise substrings with at least two characters
as palindromes, otherwise each character would be a palindrome by itself.

def is_palindrome(string):
 if len(string) < 2:
 raise AssertionError("String must have at least 2 \
 characters")
 return string == string[::-1]

The logic is simple. We check whether the input string is identical to its inverted version. If
it is, we return True, otherwise False. Based on this function, the actual program can now
be designed. The idea is the following: A substring is cut from the string. We start with the
whole string and cut character by character from the end and test the resulting slice for a
palindrome. Once this is done, we take the whole string again, cut the first character from
the beginning and continue with this string as described.
2 https://xkcd.com/936/

https://xkcd.com/936/

Python 3 for Science and Engineering Applications

● 136

def lps(string):
 pal_start = None
 pal_length = 1
 length = len(string)
 for startpos in range(length):
 for endpos in range(length, startpos + pal_length, -1):
 substring = string[startpos:endpos]
 print(substring)
 if is_palindrome(substring):
 pal_start = startpos
 pal_length = len(substring)
 break
 return pal_start, pal_length

First, we create the variable pal_start to store the start index of the longest palindrome. At
the beginning, this variable is None since we do not know whether any palindrome is to be
found in the string. The length of the longest palindrome is initialised with 1 in pal_length.
As we just defined that a palindrome must have at least two characters, we set the value
to 1 so that any actual palindrome in the given string will override this default. The total
length of the string is also computed and stored.

We start with the outer loop that runs through all characters of the string from front to
back. Each starting position (startpos) also needs an end index (endpos), which is solved
with a second (inner) loop. This loop has to run from the back to the front, so starts with
the length of the string and runs until the sum of the start position and the length of the
longest found palindrome. We specify -1 to indicate that we count down. In this way, all
possible substrings are formed. We have them print out so we can trace the program later.
What is the idea here? For example, if the longest found palindrome has five characters
we can skip any remaining substrings with five or fewer characters since any palindrome
to be found cannot be longer than the current best, so we discount all further indices if
such a constellation occurs. After each substring is generated, we test it for a palindrome.
If this test is positive, we make an update and set the new start index to the current start
index. We can also update the length of the palindrome. We then directly exit the inner loop
and continue with the following start index. At the end, we return the start index of the
palindrome and the length of the palindrome, which defines the palindrome unambiguously
in the given string.

To show the function in more detail, we test the (somewhat pointless) string TOTABBA. It
is obvious that the whole string is not a palindrome, but contains two. If you look at the
tested substrings, the following pattern emerges:

Chapter 4 ● Text Data and Strings

● 137

>>> lps("TOTABBA")
TOTABBA
TOTABB
TOTAB
TOTA
TOT
OTABBA
OTABB
OTAB
TABBA
TABB
ABBA
(3, 4)

First, the whole string is tested and from here on, the end-index is always shifted one place
to the left. This continues until we find the palindrome TOT. Internally the updates are done
and the inner loop is quit. The start index is now shifted one position to the right and the
algorithm continues. Again, the whole string that is left is tested and then the end-index is
shifted to the left. This process continues until OTAB is reached, which is not a palindrome.
Since the next string only has three places left (OTA), it cannot beat the previously found
palindrome TOT, so the algorithm stops and goes back to the next option for the outer loop,
which is why TABBA is the next tested candidate. Later, ABBA is found, which beats TOT and
becomes the winner. The starting index (3) and length of the palindrome (4) are returned
and the task is successfully solved.

Assignments

1. Write a function that generates random genetic code from the letters A, T, C, and G.
Create such a string of 5,000 characters and feed it into lps(). How long is the longest
palindrome found?

2. The longest increasing substring is the section in a string or list that increases
continuously (strictly monotonously). For example, in string 741249223 the substring
1249 is such a substring. Let us assume a list of n elements, each element being a
natural number between 0 and 999. Write a function that finds the longest ascending
string in this list and outputs the beginning of this string and its length.

4.3 • LCS

Let us stick to genetics and look at a related task. Again, different gene sequences are
given as strings consisting only of the four letters A, T, C, and G, reflecting the genetic code.
A typical task is to find the longest common substring. Let us look at an example with five
genes:

Python 3 for Science and Engineering Applications

● 138

TAGGCGTCGA
TGCCGATCCC
ACGGATGATA
ACCGATACTC
GACATCCGTC

Each gene consists of ten letters. How long is the longest sequence common to all five
genes? The answer is, for example, CC or CG, i.e. a maximum of two common characters.
There will be no three-character string or longer common to all genes. There are different
solutions for this specific example, but they have the same length. For the solution of the
problem, we assume all genes have the same length and we are only interested in the
length of the longest common string. If more than one solution exists, any of them can be
returned. The longer the genes become, the longer the longest common string will be on
average. With an increasing number of genes, however, its length decreases again, since
the common string must occur in all genes simultaneously. Let us first start with a function
that randomly generates genetic information that we can use later.

import random
def create_genes(number, length):
 alphabet = "ACGT"
 return ["".join(random.choices(alphabet, k=length)) \
 for i in range(number)]

The function accepts two arguments, the number of genes to be generated and the length
of each gene. We specify the alphabet to be used in a string. In the end, all we need is a
list comprehension, with the work being done by random.choices(). This function randomly
draws letters from the alphabet with replacement which are then joined into a string using
join(). All "genes" are collected in a list and can be evaluated with the next function.

The actual solution idea in the search for the longest common sequence is to select one
of the genes as a reference (if the length of the genes is identical, this is irrelevant; if the
lengths differ, the longest gene should be selected). This gene is then deconstructed into
all possible substrings. For example, the string LION can be broken down into a total of ten
substrings: L, I, O, N, LI, IO, ON, LIO, ION, and LION itself. We sort these substrings from
long to short, because we can immediately stop after we find the first correct match since
all others cannot be longer.

Chapter 4 ● Text Data and Strings

● 139

def lcs(allstrings):
 reference = allstrings[0]
 tested = set()
 for length in range(len(reference), 0, -1):
 for pos in range(0, len(reference) + 1 - length):
 subsequence = reference[pos:pos + length]
 if subsequence not in tested:
 if all(subsequence in sequence for sequence \
 in allstrings[1:]):
 return subsequence
 tested.add(subsequence)
 return ""

Since we assume all genes in the selection have the same length, we randomly choose
the first one. We create a set in which we store all the substrings that have already been
tested. We create an outer loop that determines the length of the string. We take the
longest possible length, the reference gene, and reduce it by 1 in each run, i.e. count down.
The inner loop passes through all conceivable positions in the string, working from front to
back. We also take the length of the substring into account so we do not exceed the length
of the string at the end. For example, if the string to test is SHIP, the following strings are
produced: SHIP, SHI, HIP, SH, and so on...

If a string is new to us, i.e. not yet available in the set, it is a potential candidate. We
then use a comprehension and check whether the substring is present in all other gene
sequences. We utilise all() to test if all generated boolean values are True. If this is the
case, the all-function returns True and we have found the solution. If there is only one
False, we get False. The substring is then added to the set as mismatch and we continue. If
we have not found a match at the end, an empty string is returned. Time for a test.

def main():
 data = create_genes(3, 14)
 print(data)
 print(lcs(data))

We define a seed for the random number generator and thus guarantee the same random
numbers are always used for repeated function calls. This is often very useful for debugging.
The result is then as follows:

>>> random.seed(12345)
>>> main()
['CATCCAGAACGAGC', 'TATCGAGACACTTG', 'ATTTAACTGGAGGT']
GAG

Python 3 for Science and Engineering Applications

● 140

Appendix: Controlling the Flow of a Program

In general, programming is not necessarily math but rather the art of logical and structured
thinking. For example, certain operations are to be carried out for a task, but depending on
the result, the program flow must be adapted. Whether a certain operation is performed
or skipped is determined by the program flow. A fundamental kind of control are if...
else constructions that we use all the time. Things become more complex when nested
constructs appear. A frequently encountered task is to use nested loops to find a certain
result. Once you have it, you want to exit all loops directly and continue with the main
program. This is sometimes tricky. In the following, three basic ideas are presented which
allow you to handle these situations. Veterans will also remember the GOTO statement to
be able to make arbitrary program jumps. However, these are no longer up-to-date and
should be avoided at all costs. Meanwhile, there are enough alternatives.

Our example is as follows: we have three nested loops and are looking for a result. The
solution is found when the sum of three numbers is divisible by 31. The first program
architecture we will discuss is to outsource this part of the code to an extra function.
This has several advantages: it makes the code clearer, you can use the new function in
other places, and debugging is sometimes easier. The advantage of functions is that, no
matter how many loops are running, a return or yield statement causes the function to exit
immediately and return a result. An example can look like this:

def numfinder():
 for x in (200, 201, 220):
 for y in (77, 88, 99):
 for z in (1, 5):
 print(x, y, z)
 result = x + y + z
 if result % 31 == 0:
 return result
print(numfinder())
print("All loops exited")

The second option is to utilise a flag-variable. This is a Boolean, which is either True or
False. Once the result is found, the value changes and the parent loops will exit. We don't
need a new function for this, but the disadvantage is that the code gets longer and you
have to do a check for each loop.

leave = False #Create bool variable
for x in (200, 201, 220):
 if leave:
 break
 for y in (77, 88, 99):
 if leave:

Chapter 4 ● Text Data and Strings

● 141

 break
 for z in (1, 5):
 print(x, y, z)
 result = x + y + z
 if result % 31 == 0:
 leave = True
 break
print(result)
print("All loops exited")

First we set the flag-variable leave to False and then enter the loops. On each level we
introduce a check which quits the respective loop as soon as the value changes to True. As
soon as the result is available inside the loop, the variable is set to True and the innermost
loop is left with break. After this, the check from inside out leaves every loop and you are
back in the top program level.

The last possibility is a solution with exceptions. Since these are actually intended to display
or process error messages, controlling the program with these is considered to be a misuse
by some people. The application is as follows:

try:
 for x in (200, 201, 220):
 for y in (77, 88, 99):
 for z in (1, 5):
 print(x, y, z)
 result = x + y + z
 if result % 31 == 0:
 raise AssertionError
except AssertionError:
 pass
print(result)
print("All loops exited")

The idea is to put all loops into one try-block and throw a predefined exception when the
solution is found (here an AssertionError). As soon as this happens, it will be caught by the
except-block and you can specify how the program should proceed. A pass below except is
the least thing you need to include because otherwise, another exception is caused, which
is not usually what you had in mind.

4.4 • Encryption

Our modern world is no longer conceivable without digital encryption. No matter whether
we order something on the Internet, make a bank transfer or connect to a wireless

Python 3 for Science and Engineering Applications

● 142

hotspot, there are always complex encryption methods that are intended to prevent
unauthorised persons from gaining access to our data or secrets. Why the development
and implementation of encryption should be reserved for the absolute specialists can be
seen from the fact that new reports of holey encryption are circulating in the media almost
daily. Python inherently includes several ways to encrypt data and create hashes. In this
example, we want to illustrate how texts can be encrypted and decrypted in a primitive
way. The idea is to encrypt plaintext with a password and thereby create a secret text that
is not directly readable and makes no sense (the code). This text can then be converted
back into the plaintext, but only if you know the correct password. For this, we will need
several help functions.

First, we need to explain the principle of a hash function. Such a function generates a
(numeric) output for an arbitrary input. There are several aspects of interest: First, the
function must strictly be deterministic: identical inputs must always produce the same
outputs. There should be no obvious similarity between input and output, i.e. you can't
easily infer the output from the input and vice versa. Also, the output should always have
the same length, regardless of the length of the input. Thus, a hash function is also suitable
for compressing information in a lossy way. Similarly, small changes to the input should
produce large changes in the output. Finally, it is considered desirable to avoid collisions.
This means different inputs produce different outputs and no two different inputs map to
the same output. Of course, this is not always possible, since theoretically, inputs of any
length are possible, but the outputs are fixed in their length. If the number of theoretical
inputs exceeds the number of outputs, collisions are inevitable. Our own, very primitive
hash function will hardly meet these requirements. It serves here for illustration. We adapt
the checksum algorithm according to John Fletcher.

def generate_hash(string):
 data = [ord(element) for element in string]
 sum1, sum2 = 0, 0
 for element in data:
 sum1 = (sum1 + element * 11111) % (10 ** 6)
 sum2 = (sum2 + sum1) % (10 ** 6)
 return str(sum1) + str(sum2)

First, we convert each character of the string into a number. This is easily possible, because
due to the Unicode standard, each character is already assigned a unique number, which
can be retrieved in Python via ord(). Here are some examples:

>>> ord("t")
116
>>> [ord(i) for i in "HELLO"]
[72, 69, 76, 76, 79]

Chapter 4 ● Text Data and Strings

● 143

In this way, we create a list using a comprehension, in which all respective numerical values
of the string are stored. We initialise two sums with 0, then iterate over the numbers in the
list and sum the values as shown. As a small modification, we also multiply each number
in the list by a constant to produce larger numbers and thus longer output, which will be
useful later. We also want to avoid numbers that are too long and use modulo. Finally, we
have two numbers that we convert into strings and return them. Now we can test some
examples.

>>> a = ["Hallo", "Hello", "12345678", "12334567", \
"averylongstringisreducedbythehashing"]
>>> for element in a:
>>> generate_hash(element)
511056544289
555500722065
666620533128
611065366463
66236758629

As you can see, even small changes in input lead to big changes in output. Very long
inputs are compressed. We will then use this function to generate a seemingly random,
yet reliably producible numerical code from the password. In practice, cryptographic hash
functions such as SHA-2 or previously MD5 are used. However, their mode of operation is
much more complex than our example, since data is processed directly on a bit level, which
is faster and produces much better results. MD5 is nowadays considered insecure since the
currently available computing power can reliably generate collisions, which can be used to
manipulate data. Python's hash function can be called with hash().

Now the hash function is implemented, we can start thinking about the actual technique of
encryption. A very simple idea has to be put into practice here: The individual characters in
the text are swapped several times and seemingly randomly, resulting in a nonsense code.
As an example, a simple flipping of characters can be mentioned: The sequence of letters
HELLO results in OLLEH when inverted. This can be seen very quickly. However, if different
methods of transformation are combined and executed one after the other, it becomes
much more difficult to recognise the pattern. To make this process strictly deterministic,
the password is used. It determines which method is used and when, so that a reversal is
possible. If this process was not deterministic, the data could no longer be decrypted. We
want to limit ourselves to three different functions, which are shown below directly as code.

def turnaround(inputstring):
 return inputstring[::-1]

def twister(inputstring):
 assert len(inputstring) % 2 == 0

Python 3 for Science and Engineering Applications

● 144

 output = ""
 for i in range(0, len(inputstring) - 1, 2):
 output += inputstring[i + 1]
 output += inputstring[i]
 return output

def zipper(inputstring, reverse=False):
 assert len(inputstring) % 2 == 0
 output = ""
 if not reverse:
 for i in range(0, len(inputstring) // 2):
 output += inputstring[i]
 output += inputstring[-i - 1]
 else:
 a = [inputstring[i] for i in range(0, len(inputstring), 2)]
 b = [inputstring[i] for i in range(1, len(inputstring), 2)] \
 [::-1]
 for i in range(len(inputstring) // 2):
 output += a[i]
 for i in range(len(inputstring) // 2):
 output += b[i]
 return output

The first function simply turns a string around, as shown above in an example. The second
function reverses the position of two consecutive characters. The word SECRET thus
becomes ESRCTE.

The third function is a bit more complicated and has the goal of always replacing the first
with the last letter and the second with the penultimate... and so on. SECRET becomes
STEECR. Note the reverse translation requires a special function and is not sufficient to
apply the same function to the string again. Therefore, an argument must be used to
explicitly specify whether the reverse is desired. Also, only strings with an even number of
characters may be entered in zipper() and twister(), otherwise the pairings will not work. If
these three functions are created, the actual encryption can now be programmed.

import random
def encrypt(message, password):
 message = message.upper()
 alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 if len(message) % 2 == 0:
 message += "".join(random.choices(alphabet, k=20)) + "ZZ"
 else:
 message += "".join(random.choices(alphabet, k=20)) + "AAA"

Chapter 4 ● Text Data and Strings

● 145

 hashvalue = generate_hash(password)
 funclist = [turnaround, zipper, twister]

 for element in hashvalue:
 rest = int(element) % 3
 message = funclist[rest](message)
 return message

The function takes two arguments: the message and the password. At the beginning, the
plaintext is completely translated into uppercase letters. We then generate a random code
that is attached to the message. This has two purposes: First, it increases the effective
code length for very short texts, which increases security. Secondly, it ensures the text to
be encrypted contains an even number of characters. For stronger encryption, this addition
should probably be much larger, but in this case it would unnecessarily increase the length
of the printed code. To do this we first define an alphabet and then use random.choices() to
generate a random selection of characters. This appendix is then either 22 or 23 characters
long. As long as we cut off the right number of characters at the end, it doesn't matter
that the code is random and therefore not necessarily reproducible. By looking at the exact
characters at the end, which are either ZZ or AAA, we can see how much has to be cut off.

The hashvalue is then generated from the password, which is given as a string. Now the
actual encryption takes place. Each numerical value in hashvalue is assigned a function.
Since there are only three functions but ten digits, a reduction is made using modulo. Thus,
at the end in rest only 0, 1, or 2 are possible. These are assigned to the functions defined
in funclist. The order in which the functions are applied to the plaintext is thus based on the
hash and thus the password. The generated code is finally output. The decryption is only
a reverse of the encryption. The respective counter operations must now be performed in
reverse order, based on the same password.

from functools import partial
def decrypt(code, password):
 hashvalue = generate_hash(password)[::-1]
 funclist = [turnaround, partial(zipper, reverse=True), twister]
 for element in hashvalue:
 rest = int(element) % 3
 code = funclist[rest](code)
 if code.endswith("ZZ"):
 return code[:-22]
 else:
 return code[:-23]

Again, the hash is generated but saved directly in reverse order. The funclist must also have

Python 3 for Science and Engineering Applications

● 146

the same structure. It is also important that we call zipper() with the reverse argument
to ensure correct decryption. But since we treat the functions as objects and do not want
to pass any more arguments below, we use partial() from the module functools to make
sure that the function zipper() is always called with the special argument, which is what
the other functions lack. This way is more elegant, otherwise we will create an if...else
construction to pass (or not pass) certain arguments depending on the function.
The integers of the hash are then iterated over. Finally, the extra appendix added at
the beginning has to be truncated so that exactly the same plaintext is generated. The
characters at the end, either ZZ or AAA, tell us how many characters must be removed.

Now a test can be performed.

>>> message = "MEETMEATTHEOLDBRIDGEATSEVEN"
>>> password = "mysecret"

>>> code = encrypt(message, password)
>>> code
RMTHOBTYDEKYTSUBIAAEYNMYQEWFTEHDDAEOKEEQTMSWAVPLGA
>>> decode = decrypt(code, password)
>>> decode
MEETMEATTHEOLDBRIDGEATSEVEN
>>> assert message == decode

Obviously the encrypted message is longer than the original message, which is due to
the additional characters inserted. Because of the random element, the encrypted string
is probably not identical when the function is called again, but this is irrelevant for the
functionality. We could now pass on this string, for example via an insecure channel like a
letter, which we assume will be opened and spied on. Without the associated password, this
information ultimately makes little sense. If we then enter this text again with the correct
password in decrypt(), we get the original message. Since assert does not cause an error,
we know that the encryption and decryption were successful. This is undoubtedly a very
primitive encryption, which is intended for illustrative purposes only. It is nevertheless
superior to other techniques used in ancient times, such as Caesar encryption.

Assignments

1. Go through the individual steps of the encryption and consider the weaknesses or
points of attack.

2. Security through obscurity means that encryption is secure if the generating algorithms
or code implementations are kept secret. Consider why this is a bad idea and why
all common encryption methods disclose their codes and algorithms. To what extent
would the encryption algorithm shown above be insecure if attackers knew it?

3. Create at least one more function that mixes letters deterministically (such as zipper()).
Modify the existing code so this function is also used in the encryption.

Chapter 4 ● Text Data and Strings

● 147

4.5 • Roman Numerals

Roman numerals not only are impressive on documents or monuments, as they are
symbolic of one of the most famous civilisations of all time. The system is primitive and
barely allows for higher mathematics. It is not a positional system like Arabic numerals,
but rather an additive numerical alphabet. For example, Arabic numbers 91 and 19 are
completely different, since the position of the digits is different even though the number
of the respective digits is the same. In Roman numerals, this is less important, since XV
and VX, for example, mean the same thing (although there are also rules here, if only for
aesthetic reasons). Also, there is the peculiarity that already in ancient Rome, four identical
signs should be avoided next to each other. For this reason, the number 4 was not written
IIII, but a subtraction rule was used, i.e. subtraction was made from the next higher
character so that the result is IV.

Altogether we distinguish the following characters: M (1000), D (500), C (100), L (50), X
(10), V (5), and I (1), we do not accept numbers above 3999 to avoid the problem that
we need more numeric characters. We just have to pay special attention to the subtraction
rule to avoid making mistakes. There are different approaches to the algorithm. You can
integrate a counter that checks how often the character to be set is already present in a
row. If it reaches four, you can delete the previous characters and apply the subtraction.
This is very flexible, but may not be necessary. On closer inspection, it is clear that there are
only six cases where the rule is needed, namely for the numbers 4, 9, 40, 90, 400, and 900.
These can be addressed separately, thus saving the development of a checking algorithm.
The general solution idea is as follows: Take the Arabic numeral you want to convert and
check for each Roman numeral, starting with the largest. How many times you can subtract
it from the number without getting a negative result. If such a subtraction is possible, the
step is performed and the corresponding Roman numeral added. Then one continues with
the remainder of the first subtraction and the next smaller Roman numeral. In this way, the
number will be zero at the end and the Roman number will be built up successively. Taking
the number 1005 as an example, this would mean you can subtract 1000 (the remainder
is still 5), meaning you can add M to the result. Now you try to subtract all other numbers
from the rest, which only works for V, i.e. the five. You add V to the result and you are done
because the Arabic number was successfully reduced to zero. So you get the correct Roman
numeral MV. If you include the mentioned digits with subtraction rule in this list, they will
be considered equally. The code looks like this:

roman_numerals = [(1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100,
"C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"),
(4, "IV"), (1, "I")]

def to_roman(integer):
 if not isinstance(integer, int) or not 0 < integer < 4000:
 raise ValueError()
 output = ""
 for value, symbol in roman_numerals:
 while integer >= value:

Python 3 for Science and Engineering Applications

● 148

 output += symbol
 integer -= value
 return output

At the beginning, we define the mapping between numerical values and symbols, which
we do as tuples and pack all tuples into a list which we have sorted by numerical values
in descending order. The actual function follows. First, we sanitise the input and only then
we continue. We initialise the output as an empty string. We now iterate over the list just
created and start a loop. This loop runs as long as the input integer is greater than or equal
to the current numerical value. If this is the case, we add the current number sign to the
output and subtract the numerical value from the input. In this way, the Roman numeral
is successively constructed and the input value is reduced to 0. We are then done. We
can test the procedure using the example 2039. Let's start at 1000, which is smaller than
the input, so is reduced to 1039 and M added to the output. 1039 is still greater than
1000, so we end up with MM and 39. 1000 doesn't fit into 39 anymore and we go through
the list until we come across 10, which fits into the 39 three times, which brings us to
MMXXX. Missing is the 9, which is processed with IX. The final result is MMXXXIX. The re-
transformation follows a very similar procedure.

def from_roman(roman):
 if not isinstance(roman, str):
 raise ValueError()
 output = 0
 for value, symbol in roman_numerals:
 while roman.startswith(symbol):
 output += value
 roman = roman[len(symbol):]
 return output

The input must now be a Roman numeral as a string. The output will be an integer, which
we initialise with 0. Again, we iterate over the tuples of values and number symbols defined
at the beginning and start a loop. Using startswith(), we check whether the given string
starts with a certain number character. If this is the case, we add the respective value and
remove the characters. We have to be careful because a character can consist of one or
two characters (like IX for 9). So we cut away either one or two characters at the beginning
of the string, which we do with a slice. Let's take MMXXXIX again as an example. Since
M is present, we add 1000 to the output and remove the M. This happens a total of two
times, which brings us to the number 2000 and the remaining character XXXIX. We then
go through the characters until we get to the X, here the same happens three times, which
brings us to 2030 and IX. We find IX in the list, add 9 to the result and get the empty string,
so we are done. So we have gradually built up the number 2039.

Since the example shows a perfect inversion in each case, we can test our functions for

Chapter 4 ● Text Data and Strings

● 149

consistency. If we convert an Arabic number into a Roman numeral and back again, the
original number must emerge. This does not prove that our procedure is always correct, but
shows that the logic is consistent and a correct retransformation does indeed take place.
Since only numbers between 1 and 3999 are possible, we can test them all.

for i in range(1, 4000):
 assert i == from_roman(to_roman(i))

4.6 • Match Arithmetic

A popular type of puzzle deals with matches and arithmetic. An equation is given but is
incorrect, so the math does not work out. All numbers and characters in this equation are
represented by matches. The reader has to move a certain number of matches and thus
correct the equation. As a basis we, use the following:

 185 + 15 = 270

The math is clearly faulty. The task is to turn over exactly one match so the equation is
correct in the end. The number of matches used must remain the same. We cannot remove
any. Numbers and arithmetic operators may change equally, for example, the plus sign
could change to a minus sign. We assume all digits from 0 to 9 are allowed, as well as the
plus, minus and equal signs. As a "digital" replacement for matches, we utilise a seven-
segment display (see figure 4.1).

For example, number 1 consists of two matches, number 2 of five, and so on. The idea
is as follows: we use a brute force approach to systematically test all possible options. Of
course, we do not want to try all equations but have to limit our search range. The original

Figure 4.1: All ten digits are represented digitally using a seven-segment display. Source:
Publicdomainvectors.org

http://Publicdomainvectors.org

Python 3 for Science and Engineering Applications

● 150

equation serves as an aid. According to the guideline we are only allowed to move one piece
of wood. In the end there are only two possibilities: we move a piece of wood only within
a digit (for example, when a 2 turns into a 3), or take a piece of wood from one digit and
add it to another digit (for example, when we steal a piece of wood from the 8 so that it
becomes a 0 and then put the wood on a 1 which becomes a 7). We can manually collect
all such possible transformations and divide them into two categories.

n_same = ["1+", "+=", "23", "35", "90", "60", "69"]
n_diff = ["-+", "-=", "17", "39", "56", "59", "68", "98", "08"]

The explanation is as follows: we can change the 1 into a plus sign by flipping over one of
the two matches, so the number of matches in the original digit remains constant. If we
want to turn a minus sign into a plus sign, we have to add a piece of wood (or subtract it
if the direction is the other way round). In n_diff it is important the character that needs
fewer matches is always placed first and then the one with exactly one match more. After
this, we need different help functions. For example, we want to make replacements in
strings.

def replace_at_index(string, index, character):
 return string[:index] + character + string[index+1:]

It has three arguments: the string in which something is to be replaced, the position
which the want to replace, and the character to use as a replacement. The application is
as follows:

>>> replace_at_index("House", 0, "M")
Mouse

We then need a function to systematically go through all substitutions. We divide it into
two parts: one replaces configurations in which the number of sticks per character remains
constant and the other makes replacements in which the number of characters changes.
We can see why this makes sense when we put everything together. Now first the function
with different number of characters.

def add_match(string):
 for i, char in enumerate(string):
 for less, more in n_diff:
 if char == less:
 yield replace_at_index(string, i, more)

Chapter 4 ● Text Data and Strings

● 151

The input is only the string, i.e. the equation we want to solve. We then iterate over all
the characters in string and use enumerate() to simultaneously get the character and its
index as a tuple. For each character, we then iterate over the options in n_diff and try
them out systematically. For example, if a 1 appears in our original equation, it is replaced
by a 7 and the result is returned using yield (thus we create the function as a generator).
Our main function will then check whether a correct equation has been created in this
way. We add a match to the overall equation in this way, which means one must first be
removed elsewhere, otherwise the total is no longer constant. This is integrated into the
next function, which is structured as follows:

def change_match(string):
 for i, char in enumerate(string):
 for char1, char2 in n_same:
 if char == char1:
 yield replace_at_index(string, i, char2)
 if char == char2:
 yield replace_at_index(string, i, char1)
 for less, more in n_diff:
 if char == more:
 one_match_less = replace_at_index(string, i, \
 less)
 yield from add_match(one_match_less)

Again we use the original string as the sole argument. We then iterate over all characters
in string and apply enumerate() again. First we try out replacements with a constant
match count. To get all combinations we have to try the position of the characters in each
combination as stored in n_same, i.e. in both directions. Then we turn to the substitutions
with different numbers of sticks. Obviously we have to be careful to remove one first and
add one later. We then iterate over all the elements in n_diff and, if possible, replace a
match by removing one. We save this new equation in one_match_less and feed it into
add_match() so that now all additions are systematically tried and the number of woods
remains constant. Here we use yield from. This allows us to access another generator
directly from our current generator and request its return values (also see the appendix to
this chapter). This guarantees our function will ultimately make all possible replacements.
Let's look at an example of how this function would work with our original equation.

>>> testgen = change_match("185+15=270")
>>> for i in range(10):
>>> print(next(testgen))
+85+15=270
765+15=270
185+15=270
166+15=270
169+15=270

Python 3 for Science and Engineering Applications

● 152

165+75=270
165+16=270
165+19=270
165+15=278
795+15=270

To do this, we will call the function we have just defined as a test and look at the first ten
elements of this generator. First, the 1 is replaced by a +, then the 1 is replaced by a 7. This
means the 8 is converted into a 6 so the number of sticks remains constant. We are almost
finished with this. From this list of all possible solutions, we now have to find those that
are syntactically correct (i.e. contain exactly one equal sign) and also provide the correct
mathematical solution.

def solver(equation):
 for candidate in change_match(equation):
 if candidate.count("=") == 1:
 try:
 if eval(candidate .replace('=','==')):
 return candidate
 except SyntaxError:
 pass
 raise RuntimeError("No solution found")

The function accepts the original equation as input. We then iterate over all the output of
the generator. Thus, we are guaranteed to get from this function all possible combinations
of characters that fit the rules. We then first check whether the resulting equation contains
exactly one equal sign. Only then can it be a syntactically correct equation. We then have
to check the mathematics, for which we use eval(). This allows us to execute code directly
in Python or have it checked for correctness. Note the equal sign has to be replaced by a
double one because we have to test equivalence using this operator in Python (e.g. 1==1).
If this evaluation is successful, True is returned and we have found a solution. It is quite
likely that an error is generated, for example in an equation like 7==+, because it does
not make sense in Python. To catch such errors, we use a try...except construction so the
script does not crash. If we have tried all possible combinations in the end, but have not
found a solution, the equation is unsolvable. We then generate an error message. Time for
a test run.

>>> solver("185+15=270")
195+75=270

It is easy to verify that the math is correct. The solution is to remove a match from the 8

Chapter 4 ● Text Data and Strings

● 153

and make a 75 out of the 15. In the end, we moved exactly one match and thus changed
two digits or characters.

Assignments

1. Theoretically, could multiple solutions exist? Change the function so that all possible,
correct solutions are output.

2. Create a function that generates similar match equations, i.e. first an equation to be
corrected and in addition the correct solution.

Appendix: yield from

In the previous example, we used yield from, which was new. Whenever a function needs
to return something, we can use either return or yield, where yield, as explained earlier,
defines a generator and stores the state of the function. But what is yield from? The basic
idea is that a generator can supply elements directly from another generator without having
to explicitly initialise it. In this respect, yield from is something that makes our lives easier
but is not necessary. As an example, we can look at a nested list that we want to flatten so
that we end up with a list of all items but no sub-lists. The programming is simple:

def flatten(inputlist):
 """Flattens a list"""
 for element in inputlist:
 if not isinstance(element, list):
 yield element
 else:
 yield from flatten(element)

Assume that there are only lists included (no nested tuples). The function takes the original
list as its argument, then it iterates over every element of the list. If the element is not a
list, it can be directly returned. If it is a list, it must now be unpacked. We, therefore, call
our function recursively, the new argument is the list we just found. This list can contain
further sublists, but this is covered by the arbitrarily nested recursion. This is where yield
from comes into play. The self-call of the generator function creates a new generator. If we
were to use yield only, we would get a generator object as a return, which is of no use to
us. Using yield from, however, the newly created generator object is initialised directly and
individual outputs are made. Let us try it out.

>>> a = [1, 2, 3, [8, 77, [3, 4], 7], 5, [34, [], 43]]
>>> list(flatten(a))
[1, 2, 3, 8, 77, 3, 4, 7, 5, 34, 43]

Python 3 for Science and Engineering Applications

● 154

No matter how many levels the sublists have, at the end all elements (here only numbers)
are combined in one list without any further levels.

4.7 • Superpalindromes

In previous tasks, we dealt with palindromes, i.e. strings that are identical when read
backwards and forwards. Among the longer candidates of the English language are
RACECAR or TACOCAT. If we switch over to sentences we can find even longer constructs
like "Was it a bat I saw" Can you program such things? Yes, as long as you don't expect a
meaningful or grammatically correct sentence, but rather just a string of words. For this
purpose we use the dictionary we introduced in the first task of this chapter. It contains a
large list of nouns we can utilise.

The solution algorithm is based on a program by Peter Norvig, who created the longest
English palindrome.3 The idea in itself is the following: Determine the beginning and the
ends of the palindrome to define the boundaries. Thus, transferred to a written sentence,
you have a beginning part (the left part) and an end part (the right part). Afterwards you
determine which part of the complete sentence prevents the palindrome so far, i.e. does
not find a suitable character pair. Let's look at an example. As framing we use:

A MAN A PLAN ... A CANAL PANAMA

As you can easily verify, this sentence is a palindrome, except the part ACA on the right
side. Therefore, we need to find a word that starts with ACA which is added to the left part
of the construct. An example would be ACAPULCO, which creates this sentence.

A MAN A PLAN ACAPULCO ... A CANAL PANAMA

The previously "loose end" ACA is now covered by ACAPULCO, however, the current string
is still no palindrome. The new loose end is PULCO, located on the left side of the construct.
Now, to cover this part, we need a new word that ends in the reverse of PULCO, that is
OCLUP. However, a look in the dictionary and we see that no such words exist. Therefore,
we will run out of words. We have to rely on backtracking and find another solution. We
delete ACAPULCO from the left side of the construct and look for another word or construct,
maybe ACADEMIA. This gives us

A MAN A PLAN ACADEMIA ... A CANAL PANAMA

The loose end is now DEMIA. Is there a word that ends with the reverse of it, that is,
AIMED? Yes, CLAIMED for example. I hope the principle is now clearer. We look for suitable
matches, add them and see how far we progress. If no matches are found at a given point,
we have to delete words and try other ones. This continues until the total string becomes
palindromic and a certain minimum length is reached. To do this in Python, we will need a
few extra functions.

3 https://norvig.com/palindrome.html

https://norvig.com/palindrome.html

Chapter 4 ● Text Data and Strings

● 155

def is_palindrome(string):
 return string == string[::-1]

def rest(left, right):
 """Finds the part of the construct that prohibits the formation of \
 a palindrome"""
 left = "".join(left)
 right = "".join(right)
 return left[len(right):] or right[:-len(left)]

def wordfinder(wordlist, string, start, blocked):
 """Finds a suitable match"""
 if start:
 for word in wordlist:
 if word.startswith(string) and word not in blocked:
 return word
 else:
 for word in wordlist:
 if word.endswith(string) and word not in blocked:
 return word
 return None #no suitable match found

First, we create a simple test with is_palindrome(), to indicate whether a string to be
tested is a palindrome. The second function rest() takes two lists and checks which part
prevents a palindrome from being created. We must define our data types already at this
point. We store the respective words in lists and dynamically combine them into strings for
testing. This makes it very easy for us to add or delete whole words later (backtracking).
We then define a left and right subset as shown above and convert the lists into strings.
The rest is done in one command. For this, we use slices and the length of the other string.
If both strings have the same length, we get two empty strings and output one of them.
Otherwise, or ensures that the string with more characters is returned.

The last help function looks for new matching words from the dictionary. Here we have
four arguments: the list of all words, the string that has to find a match, start (a value that
indicates whether our string must be at the beginning or the end), and blocked, a collection
of words already used that we are not allowed to assign. We only have to distinguish
whether the string should be at the beginning or end of the word. We then simply iterate
over wordlist and find a suitable match. If it turns out that there is no matching word, as
explained in the above example, the function must take this into account. In this case, it
will output None. We can now put everything together in the main function.

Python 3 for Science and Engineering Applications

● 156

import random
def main(minlength):
 with open("wordlist.txt", encoding="utf8") as data:
 wordlist = [row.strip().upper() for row in data]
 left = ["A", "MAN", "A", "PLAN"]
 right = ["A", "CANAL", "PANAMA"]

 total = "".join(left) + "".join(right)
 blocked = set()
 last_right = False
 while len(total) < minlength or not is_palindrome(total):
 loose_end = rest(left, right)
 if loose_end == "":
 while True:
 newword = random.choice(wordlist)
 if newword not in blocked:
 break
 else:
 newword = wordfinder(wordlist, loose_end[::-1],
 last_right, blocked)

 #Backtrack
 if not newword:
 if last_right:
 right.pop(0)
 last_right = False
 else:
 left.pop(-1)
 last_right = True
 else:
 blocked.add(newword)
 if last_right:
 left.append(newword)
 last_right = False
 else:
 right.insert(0, newword)
 last_right = True

 total = "".join(left) + "".join(right)

 print("Loose end: ", loose_end)
 print("New word: ", newword)
 print(left, right)
 assert is_palindrome(total)
 return total

Chapter 4 ● Text Data and Strings

● 157

Let us now go through this somewhat longer function step by step and look at a more
detailed example at the end. The function utilises the random module and has one
argument, the minimum length the palindrome should finally reach. First, we read in the
word list. This must be in the same folder as our script. We convert all words to uppercase
and consistently stick to this format. We define the starting words as described above. We
then build the whole string from the start sentences in total. We create an empty set in
which we note down all words we have already used. We must also make sure we add new
words alternately to the left and right parts and never twice in a row on the same side. The
bool variable last_right is used to memorise this. If we added the last word to the right side,
this variable is True, otherwise False.

We start the main loop, which runs until two conditions are met. On the one hand, our
total palindrome must have reached a minimum length, which we specify in minlength. On
the other, the complete string must be a palindrome. We use the rest() help function to
determine the loose end of the current construct. There are two possibilities here: we get
an empty string back, which indicates that there is no loose end, and the current string is
already palindromic. Since we still ended up in the loop, we know the total length is too
short. In this case, we pick a random word from the word list (which must not appear in
blocked), which we will continue to use afterwards. If, on the other hand, we were given a
loose end, we must now find a suitable counterpart. Let's go through this using an example.
The residual value may be OT. Logically, the rest must come from the side that was last
added. Assuming this was the right side, the situation would look like this:

... | OT...

Therefore, we must now find a string for the left side of the sentence that matches the
reverse of the given end, which is TO. An example might be TOLERANT.

...TOLERANT | OT…

The new loose end is now LERANT. But what if the end is on the other side of the sentence,
like this?

...OT | …

Now we must find a word for the other side that ends with the reversed loose end, thus TO.
An example could be QUITO.

...OT | QUITO…

The new loose end on the right side is now QUI. The side we have to append a word to is
controlled using last_right. Here you just have to be careful to find the right string at the
right place either at the beginning or at the end of the new word. But what happens if no
word can be found, e.g. because it already exists and is therefore blocked, or none exists
at all? In this case, the return by wordfinder() is None and we have to initiate a backtrack.
Depending on whether the last word was inserted left or right, it will be deleted at the

Python 3 for Science and Engineering Applications

● 158

correct position, at either the beginning or end of the list. For this we use list.pop(index),
which removes an element from a list at the desired position. Once the element has been
deleted, we only need to flip the current position index (in last_right). The old word is left in
the blocked list and can therefore no longer be used the next time. This way, never-ending
cycles are prevented.

If the return is not None, i.e. a valid word, it will be added to the blocked set. Since this is
not a list but a set, we use set.add(element). Again, we have to make sure that we add the
newly selected word either to the left or to the right, and there at the beginning or end of
the list. To place an element at the beginning of a list we use list.insert(index, element),
otherwise (for inserting at the end of a list) we use the well-known list.append(element). If
this is finished, we are almost done and can now generate the total string and calculate the
length. We also have some intermediate results displayed in the console, so we can follow
the construction of the super palindrome. After this, the loop starts again. If at some point
all conditions are fulfilled and the loop is exited, a test is performed to make sure the final
palindrome is actually a palindrome. Afterwards, the result is displayed. Now let's display
the process interactively with the known parameters.

Loose end: ACA
New word: ABACA
['A', 'MAN', 'A', 'PLAN'] ['ABACA', 'A', 'CANAL', 'PANAMA']
Loose end: ABACAACA
New word: None
['A', 'MAN', 'A', 'PLAN'] ['A', 'CANAL', 'PANAMA']

Given the starting words, the program has correctly identified the loose end ACA and found
a possible word, ABACA. However, the new loose end is now ABACAACA and the new word
is None so Python is not able to find a matching word for this end. In the next line, the
added word ABACA is deleted and we are back at the start. The next round starts and the
process continues. It takes some time, but finally, we end up with this solution.

['A', 'MAN', 'APPAIR', 'BA', 'DEL'] ['LED', 'ABRI', 'AP', 'PANAMA']

As we can verify, this is indeed a palindrome with more than 30 characters in total. Some of
these "words" are rather strange so we might want to sanitise the input data a little further.
Feel free to play around with the data. Maybe you can find an interesting super palindrome
this way.

4.8 • 2048

2048 is a popular game for mobile phones and computers. The object is to cleverly combine
powers of two in a 16-square playing field so the number 2048 is ultimately reached

Chapter 4 ● Text Data and Strings

● 159

(see the next figure). The main rule is that only identical numbers can be combined, for
example, the numbers 2 and 2 to 4, but not 2 and 4. We want to recreate this rather simple
principle in the console.

The exact rules are as follows: you start with a playing field in which two fields are occupied
by the number 2. After this, the player can move the playing field in any direction with every
move, namely up, down, left, or right. This moves the numbers in the desired direction
and, if possible, adds them up. Also, after each move a new 2 is inserted at a random free
position. Let's look at some examples:

2 2 0 2
<---
4 2 0 0

2 2 2 2
<---
4 4 0 0

8 4 4 2
<---
8 8 2 0

The second example shows how to add up from left to right. The first and the second 2
are added up to a 4, then the third and the fourth number are added up again to a 4. This
completes the round. Empty fields at the borders are filled with zeros. The game is won
when the player reaches 2048. In our example, we will limit ourselves to 512 for a trivial
reason, as will be explained later. The field itself is represented by a list of sub-lists (four
lists with four elements each). Let us start with the central functionality of the game, the

Figure 4.2:A version of 2048 with a nice graphical interface. Creator: TheQ Editor (Wikimedia Commons, CC
BY-SA 3.0)

Python 3 for Science and Engineering Applications

● 160

implementation of the moves. There are four possibilities as mentioned above. We will
consider all four possibilities separately, as our functionality will be slightly changed as a
result. Let's start with this help function first.

def combine(numbers):
 numbers = [z for z in numbers if z != 0]
 for z in range(0, len(numbers) - 1):
 if numbers[z] == numbers[z + 1]:
 numbers[z] = numbers[z] * 2
 numbers[z + 1] = 0
 numbers = [z for z in numbers if z != 0]
 return numbers + [0 for z in range(4 - len(numbers))]

First, we use a list comprehension to remove all zeros from the list, since they disappear
anyway if there is another number in the same list. We get a new list that only contains
numbers that are 2 or larger. We now iterate over all elements of the new list and check,
from left to right: if two adjacent numbers are the same, the value of the left number is
doubled and the right number is deleted. Thus, it is possible that a list including zeros
can be again created. These are removed in the last step and, if necessary, new zeros
are inserted at the right end of the list. The pure function for a movement to the left was
implemented in this way. What if you play to the right or even up or down? We can still use
this function, we just have to transform the respective inputs. Let's look at the following
row in the playing field:

0 2 0 2
--->
0 0 0 4

We must therefore add up from right to left and insert the spaces at the left side. This is
done automatically if we simply flip the list over, pass it to the function, and then flip the
result over again. We feed the function with [2, 0, 2, 0] and get [4, 0, 0, 0]. We turn it over
again and get the final result. The second step is to extract the respective rows or columns
in such a way that we pass them in the correct orientation and at the end, correctly fit the
result into the overall game field again.

Chapter 4 ● Text Data and Strings

● 161

def update_grid(grid, direction):
 if direction == "left":
 grid = [combine(row) for row in grid]
 elif direction == "right":
 grid = [combine(row[::-1])[::-1] for row in grid]
 elif direction == "up":
 grid = [combine(row) for row in zip(*grid)]
 grid = [list(row) for row in zip(*grid)]
 elif direction == "down":
 grid = [combine(row[::-1])[::-1] for row in zip(*grid)]
 grid = [list(row) for row in zip(*grid)]
 return grid

The first variant, the move to the left, is clear. We only need to iterate over all lines in the
grid, apply the function, and output the result. For this, we use a list comprehension. The
second variant, the move to the right, is only a little more complex. We iterate over all rows
in the grid and feed the function with the reversed row. The result is then reversed over
again and written to the grid.

We have to pay a little more attention when we move up. We can't simply take a whole row
from the playing field but have to swap rows and columns (transpose). To do this, we use
zip() and receive the transposed rows which we enter into the function. In the second step,
after the row has been processed by the function, we reverse the process, i.e. transpose
again and make sure that the results are written as lists (and not as tuples) to the final
grid. If we move down, the procedure is almost the same, but here we first have to reverse
the transposed rows and then reverse the result again. For a better understanding, the
following example can help.

#Transposing a nested list (matrix)
>>> a = [[1,2,3], [4,5,6], [7,8,9]]
>>> b = zip(*a)
>>> for row in a:
>>> row
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
>>> for row in b:
>>> list(row)
[1, 4, 7]
[2, 5, 8]
[3, 6, 9]

It becomes clear how numbers that are initially adjacent in one row are adjacent in one

Python 3 for Science and Engineering Applications

● 162

column after the transposition. After this, we need a function that inserts a new 2 at a
random and empty position on the grid in each round.

def newnumber(grid):
 output = grid[:] #Copy of the original grid
 columnpos = [0, 1, 2, 3]
 rowpos = [0, 1, 2, 3]
 random.shuffle(columnpos)
 random.shuffle(rowpos)
 for row in rowpos:
 for col in columnpos:
 if output[row][col] == 0:
 output[row][col] = 2
 return output
 return output

For this purpose we randomise the indices and search until a number is found. If the field
is full, this would result in no explicit return statement being executed at the end and None
would be the output. However, this must not happen, so in this case, we will output the
untouched grid. After this we need a function that tests whether the game was won, i.e.
512 is reached.

def game_won(grid):
 return any(512 in row for row in grid)

As soon as 512 has been found in a row of the grid, True is returned, which we can achieve
via any(). There is still a function missing that graphically displays the grid.

def display(grid, move, score):
 mapping = {0: "[]", 2: "[2^1]", 4: "[2^2]", 8: "[2^3]", 16:
 "[2^4]", 32: "[2^5]", 64: "[2^6]", 128: "[2^7]", 256: "[2^8]", \
 512:"[2^9]"}
 for row in grid:
 for col in row:
 print(mapping[col], end= "")
 print("")
 print("================")
 print("Current move:", move)
 print("Score:", score)

Chapter 4 ● Text Data and Strings

● 163

Here we also see why we only go to 512. In the console, we have to think in characters
and for a nice even display, all fields have to be the same size. Instead of numbers (which
can have between one and four digits), we use a representation in powers of two, which
have exactly two characters, namely 2 and the power. We can go as high as 29, which
corresponds to 512.4 If we had larger numbers, we would need three digits. For the console
output, this seems like a good compromise. To make it look like this, we use a dict which
contains the necessary information. Then we iterate over rows and columns and make sure
that all characters in a list appear in one line. We also show information about the current
number of moves and the score. The score is simply the sum of all numbers on the current
board. Finally, we put everything together in the main function and structure the course of
the game.

import random
import itertools
KEYS = {
 "\x1b[D": "left",
 "\x1b[C": "right",
 "\x1b[A": "up",
 "\x1b[B": "down",
}

def main():
 grid = [[0] * 4 for i in range(4)]
 grid[3][0] = 2
 grid[3][1] = 2
 for move in itertools.count(1):
 score = sum(sum(row) for row in grid)
 display(grid, move, score)
 if game_won(grid):
 break
 while True:
 userinput = input()
 if userinput in KEYS:
 break
 print("Input not valid! Only use arrow keys!")
 grid = update_grid(grid, KEYS[userinput])
 grid = newnumber(grid)
 for i in range(40):
 print()
 print("Game won!")

4 For printing reasons, in the code shown here the powers can only be represented by
the character "^". In Python itself there are better characters so make sure to check out the
online documentation for this task.

Python 3 for Science and Engineering Applications

● 164

We start with an empty grid into which we insert two numbers. We use itertools.count()
to count up from 1. Using a comprehension, we calculate the current score by adding
up the numbers in all rows. Afterwards, the grid is displayed. This is followed by a check
for victory. If this is the case, we quit the game. Otherwise, a loop starts which serves
to capture the current input. The loop runs until we recieve a valid input. We moved the
assignment between the input (arrow keys) and the respective command to KEYS, because
these names are a bit cryptic. When we receive a valid input by the user, we pass the
information to move() and the grid is recalculated. We then insert a 2 at a random position.
This is followed by 40 empty lines, which are used to simulate a dynamic game field update
in the console. This completes the function.

Assignments

1. Add a function that tests whether the game is lost, meaning every field in the grid is
filled with a number and no further move is possible.

4.9 • The Next Steps

Congratulations! After working through all the tasks, you can be proud of what you have so
far learnt. You are no longer a beginner and can use Python productively in real scenarios
at work and in everyday life. You know how to break down complex tasks into distinct
steps, implement algorithms, and approximate complex problems with simulations. You
have made use of the various possibilities of Python and got to know many modules.
Depending on how you want to develop, there are many ways to dive deeper into Python.
For example, if you are looking for more practical tasks or puzzles, you will find numerous
online platforms that systematically and comprehensively collect and compile typical tasks.
Especially worth mentioning are Rosettacode.org and the Rosalind Project (rosalind.info),
which are always a valuable source of inspiration for me. You will find many more challenges
in various degrees of difficulty on these sites.

It can also be useful to explore special topics of interest in more detail - No matter
whether these are numerical programming, statistical simulations, GUI programming, web
applications, or classic software. Online and in bookshops, you will find extensive material
on all topics. Finally, it is recommended to consistently pursue your own ideas and projects.
Even if this may seem difficult, especially in the beginning, and you will probably encounter
challenges that you cannot directly solve. You now have all the tools to achieve your goals.
Make use of communities and forums on the Internet and exchange ideas with others.5
If you liked this book, I'm happy to receive comments and reviews in the various online
shops. I wish you lots of fun and success using Python.

5 Two great places to start are python-forum.io and reddit.com/r/python

http://Rosettacode.org
http://rosalind.info
http://python-forum.io
http://reddit.com/r/python

● Index

● 165

• Index

A
agent based modelling 96

analysis 74

any 162

append 23

args 69

assert 16

B
backtracking 70

base case 24

bootstrapping 104

break 12

brute force 65

C
cartesian coordinates 42

chaos 46

choice 84

class 97

collatz 29

combinations 64

comprehension 13

comment 19

convergence 49

context manager 132

continue 13

coordinate system 56

count 33

cross product 57

D
decimal 34

decision strategy 114

decorator 62

dictionary 10

discontinuity 52

E
encryption 141

enumerate 94

eval 77, 152

except 17

exception 17

Python 3 for Science and Engineering Applications

● 166

F
factorial 25

fibonacci 22

G
gambling 102, 104

game of life 92

generator 26
genetic code 135

grid 89

H
hash function 142

histogram 125

I
import 17

init 97

integral 74

islice 38

J
John Conway 92

K
knight's tour 70

kwargs 69

L
lcs 137

logistic function 50

logistic map 51

loop 11

lps 135

M
matrix 90

module 17

monotonic 68

multiprocessing 84

N
norm 57

numerical integration 74

● Index

● 167

O
object 18

optimization 103

P
palindrome 135, 154

parallelisation 84

pass 13

pep8 20

pi 30, 80

pig 104

population 96

prime number 26

process 85

product 123

profiling 41

program flow 140

Q
queue 84

R
random 83

random walk 88

recursion 22, 24, 36

recursionlimit 40

refactoring 21

resampling 128

return 15

roman numerals 147

S
sample 84

scalar product 59

series 31

simulation 103

slice 9

T
time 37, 79

transpose 161

trigonometry 31, 88

try 17

V
vector 57

Python 3 for Science and Engineering Applications

● 168

Y
yield 27

yield from 153

Z
zip 58

booksbooks

Python 3 for Science and Engineering A
pplications • Felix

Bittm
ann

Felix Bittmann is a research
associate at the Leibniz Institute
for Educational Trajectories
and a doctoral candidate at the
University of Bamberg, Germany.
His research interests include
social inequality, the role of
education in the course of life,
quantitative methods, and the
philosophy of science. With a
focus on statistical analysis and
applied research, Python is an
integral and multifunctional tool of
his daily workflow.

If you have mastered the basics of Python and are wanting to explore
the language in more depth, this book is for you. By means of concrete
examples used in different applications, the book illustrates many aspects
of programming (e.g. algorithms, recursion, data structures) and helps
problem-solving strategies. Including general ideas and solutions, the
specifics of Python and how these can be practically applied are discussed.

Python 3 for Science and Engineering Applications includes:
 > practical and goal-oriented learning
 > basic Python techniques
 >modern Python 3.6+ including comprehensions, decorators and
generators
 > complete code available online
 >more than 40 exercises, solutions documented online
 > no additional packages or installation required, 100% pure Python

Topics cover:
 > identifying large prime numbers and computing Pi
 >writing and understanding recursive functions with memorisation
 > computing in parallel and utilising all system cores
 > processing text data and encrypting messages
 > comprehending backtracking and solving Sudokus
 > analysing and simulating games of chance to develop optimal
winning strategies
 > handling genetic code and generating extremely long palindromes

Elektor International Media BV
www.elektor.com

Python 3 for Science and
Engineering Applications

Learn to use Python productively in real-life
scenarios at work and in everyday life

	 Introduction
	Chapter 1 Basics
	1.1 Installation and Programming Environment
	1.2 Basic Python
	1.3 Principles of Good Programming
	1.4 Problem-Solving Skills

	Chapter 2 Working with Numbers
	2.1 Fibonacci
	2.2 Prime Numbers
	2.3 Collatz
	2.4 Pi
	2.5 Countdown
	2.6 Ulam Spiral
	2.7 Total Chaos
	2.8 Three Points
	2.9 Close Together
	2.10 Backtracking
	2.11 Numerical Integration

	Chapter 3 Statistics and Simulations
	3.1 Speedtest
	3.2 Pi (again)
	3.3 Parallelisation
	3.4 Random Walk
	3.5 Game of Life
	3.6 Modelling Populations
	3.7 Quick Money
	3.8 Many Circles
	3.9 Pig
	3.10 Bootstrapping

	Chapter 4 Text Data and Strings
	4.1 Dictionary
	4.2 LPS
	4.3 LCS
	4.4 Encryption
	4.5 Roman Numerals
	4.6 Match Arithmetic
	4.7 Superpalindromes
	4.8 2048
	4.9 The Next Steps

	 Index

