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• Introduction

Why Python?

Not without reason Python has become one of the most popular programming languages 
in the world. A user-friendly and intuitive syntax, a large and motivated community, 
paired with a multitude of modules and program libraries, which allow quick and efficient 
implementation of any project ideas inspire beginners and experts alike. Therefore Python 
is an ideal first step into programming but also recommended for veterans who would like 
to get a foothold in the realm of data sciences.

This book is written for readers who already have basic experience with Python, say after 
completing a first tutorial, and now want to learn how to apply Python productively and 
with a focus on applications in real-world settings. Therefore, this is not a classical textbook 
that processes all aspects of the language linearly but rather starts with very concrete tasks 
and puzzles that want to be solved. These are taken from a large number of different fields 
to emphasize that Python can be applied in many contexts. In each example, we will first 
look at the general ideas or tactics of how to solve the problem and when how these can be 
implemented with special Python tricks and tweaks.

Requirements

You should know about the basic usage and commands before starting with the present 
book. As long as you are informed about the most common data types (integers, floats, 
strings, lists, dictionaries), know how to write a simple function, and can deal with lists, 
you will be able to solve all problems posed in this book. If you want to have a quick 
refreshment of the most basic aspects of the language, I recommend the course offered by 
the University of Waterloo.1

Philosophy

The puzzles presented in this book are aimed at beginners with only a little experience 
with general topics of programming. If any mathematical techniques are necessary to 
solve a problem they will be introduced with the puzzle itself. The code shown in this 
book does not aspire to be the most elegant, shortest, or most performant solution but 
rather illustrates basic concepts of programming and how to think like a programmer. 
For most puzzles presented there exist highly specialized algorithms that can improve 
speed manifold but are often not obvious to beginners and require in many cases a lot 
of background information. To solve the problems you will not require any other tools, 
software, or packages than the native Python environment (pure Python). This being said, 
there exists a multitude of excellent Python packages that drastically increase the number 
of functions of Python (for example, NumPy, SciPi or Pygame, just to name few). However, 
these often come with extensive documentation and need tutorials to be comprehensible 
to the beginner. In general, the easier puzzles are placed at the beginning of a chapter to 
introduce new concepts and methods that are then assumed to be known in the following 
1 https://cscircles.cemc.uwaterloo.ca/

https://cscircles.cemc.uwaterloo.ca/
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puzzles. Therefore it might be a good idea to work on the problems following the order of 
the book. However, if you feel confident feel free to skip and play around. If there are any 
unknown commands or concepts, it is often the quickest way to hit up a search engine and 
look things up online since it only takes seconds and is the easiest way.

Acknowledgments

I am very thankful to all people who helped me with this book, especially Florian Scholze, 
Jannik Köster, and Kurt Bittmann. Simon Wolf checked the entire code meticulously and 
improved it beyond imagination. Without Tam Hanna, there would be no english version of 
this book: I am deeply grateful for this enthusiasm and mentorship. Furthermore, I want 
to thank the Python Software Foundation in general for donating this wonderful gift to the 
world. Finally, many thanks to all men and women who contribute to free open-source 
projects like Wikipedia and Wikimedia Commons, which allow me to include a large number 
of high-quality figures in this book.

All code available on: https://github.com/fbittmann/Pythonbook

https://github.com/fbittmann/Pythonbook
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Chapter 1 • Basics

1.1 • Installation and Programming Environment

Make sure you have installed the most up to date version of Python from python.org. To run 
the code presented in this book you need at least version 3.6. If you run Linux or Mac, the 
chances are Python is already pre-installed on your system. To test which version you are 
running, open a terminal (Linux or Mac) or the power shell (Windows). Then type python3 
to start an interactive session. Then the current version will be displayed.

I recommend using Geany1  as an IDE or editor. This smallish (16 MB) open-source application 
is perfect for beginners and advanced users and comes with many functions without being 
bulky or too complicated. Furthermore, a large number of themes, schemes, and plugins 
allow extending the basic functions easily. Geany is available for Linux, Windows, and Mac.

1.2 • Basic Python

The next few pages serve as a crash course and are recommended for all users who want 
to refresh their skills, so feel free to skip ahead if you want to. In contrast to most code 
shown in this book we will here refer to an interactive Python session, which is denoted by 
>>> to visualise the interactive character of the code. This means, type a line, hit enter 
and you will instantly see the result, which is different from writing a large script and then 
have it run as a whole. Output, if there is one, is then displayed in the following line without 
the >>>.

>>> a = 12
>>> b = 3.141
>>> c = "Tomato"
>>> d = [a, b, c]
>>> e = (1.734, 3.822)
>>> f = {3, 8, 99, -4}
>>> g = {"Hello": 5, "Nope": 4, "Ego": 3, "Rocket": 6}

Here, a is an integer, b a float, c a string, d a list, e a tuple, f a set and g a dictionary. As you 
see, declaring a variable only requires the equality sign. When working with mathematical 
expressions, make sure to remember BEDMAS (brackets, exponents, division, multiplication, 
addition, subtraction) since this helps you memorise the order in which operators are 
addressed. Note that longer blocks of code are split over multiple lines if necessary using 
"\" as an indicator for a line break. If you enter the code in your editor, do not type this sign 
as it is just a visual aid for the printed version.

Indices and Slices

For Python, lists are an all-purpose tool that can be utilised in most situations. Sets, tuples 
1 Geany.org

http://Geany.org
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and dicts add many more features and are often faster or more convenient, but Python 
loves lists. You can store any elements or data types in a list and of course also more and 
nested lists. You retrieve items from a list via their index. Remember, in Python (as in most 
other programming languages), the first item of a list always receives the index 0.

>>> a = [1, 2, 3]
>>> b = ["Hi", 1, "Red", -6.87, [1, 2, 3, ["Mouse"]], 95]
>>> a[0]
1
>>> b[2]
"Red"
>>> b[4][1]
2
>>> b[-1]
95
>>> len(b)
6
>>> len(b[4])
4

As you see, items in nested lists are retrieved by combining several indices directly. For 
example, if you want to retrieve the integer 2 from list b, first select the containing nested 
list (which has the index 4) and then the index of this sub-list (which is the index 1), so 
the final result is b[4][1]. Here, always use square brackets (this also holds for tuples and 
dicts). If you want to retrieve the last item of a list, regardless of the number of items 
contained, use negative indices. The last item always receives the index -1. The number 
of elements in a list is reported by using len(). If you want to cut a list in parts, we refer to 
this as slicing.

>>> a = [1, 2, 3, 4, 5, 6, 7]
>>> a[0:3]
[1, 2, 3]
>>> a[2:5]
[3, 4, 5]
>>> a[::2]
[1, 3, 5, 7]
>>> a[::-1]   #Reverse a list
[7, 6, 5, 4, 3, 2, 1]

The slice-operator has three parts: the start, end, and step. The start is always included 
in the resulting list, the end is always excluded. If no step is explicitly set, 1 is implied. If 
start or end are omitted, Python uses the first or the last element. Also, note that lists and 
strings can be sliced in the same form.
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>>> w = "Trebuchet"
>>> w[3]
"b"
>>> w[2::2]
"euht"

Dictionaries

Dictionaries or dicts are convenient when you want to build a very simple database for 
lookups. Here pairs of keys and values are created, which are not selecting by an index but 
by key. Let’s have a simple example with dates of birth.

>>> dateofbirth = {"Dawkins": 1941, "Dostojewski": 1821, "Goethe": 1749}
>>> dateofbirth["Goethe"]
1749
>>> dateofbirth["Boyle"] = 1948
>>>   dateofbirth
{"Dawkins": 1941, "Dostojewski": 1821, "Goethe": 1749, "Boyle": 1948}

The first value (before the colon) is the key, the one after the value. To retrieve the value, 
just enter the key in brackets. Adding new items is done likewise. Note that keys must be 
immutable, so you can use integers, floats, strings, or tuples, but not lists. For values, any 
data type is fine. Dicts have the advantage over lists that a lookup is faster. A very common 
task is to loop over keys, values, or both and retrieve certain elements. Here you have 
several options to do this.

>>> for key in dateofbirth.keys():
>>>  key
Dawkins
Goethe
Dostojewski
Boyle

>>> for value in dateofbirth.values():
>>>  value
1941
1821
1749
1948

>>> for key, value in dateofbirth.items():
>>>  key, value
("Dawkins", 1941)
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("Dostojewski", 1821)
("Goethe", 1749)
("Boyle", 1948)

The last scheme is especially useful since you retrieve both keys and values at the same 
time in a tuple and can work with them immediately. The order in which the elements will 
be retrieved from the dict was random until version 3.7, after that every dict comes with 
an inherent ordering, which might be useful for certain applications. Later we will see how 
we can sort dicts arbitrarily. As a side note: whenever we work in the interactive session 
as in the last example, it is optional to use the print-statement to generate output since 
just calling a variable or function will automatically produce a visual output in the console. 
However, if you want to use the same code in a file, always wrap these variables in print(), 
otherwise, it will not be on display.

Loops

Python knows several different ways of looping. Using for, you can directly loop over all 
elements of a given iterable or iterator, for example, a range, list, or tuple.2 While-loops are 
useful when you do not know in advance how often a loop is executed and you want to exit 
dynamically. Let’s have a look at three examples.

>>> for i in range(0, 10, 2):
>>>  i
0
2
4
6
8
 
>>> wordlist = ["This", "is", "fine"]
>>> for word in wordlist:
>>>  word
‘This’
‘is’
‘fine’
 
>>> value = 0
>>> while value < 64:
>>>  value
>>>  value = 2 **  value

2 In Python an iterable is an object which can be iterated over, say a list or tuple. An 
iterator is a generator that saves its own internal state, which is useful when the same object 
is called again. Only iterators can be called using next(). Later we will see how this can be 
used for our benefit.



Python 3 for Science and Engineering Applications

● 12

0
1
2
4
16

The first loop produces all even numbers from 0 to 10 (exclusively). As with slices, the first 
value is the start, the second the stop, and third the step. The variable i is the index and 
can be named arbitrarily. The second loop iterates over all elements of the given list. The 
last loop continues running until the exit condition is met. In this example, value has to 
be smaller than 64 so that the loop continues. If this condition is violated, the loop is not 
started anymore. Loops that never meet this exit condition will run forever and must be 
terminated by the user (infinite loop). Therefore, make sure the variable that controls the 
exit is manipulated somewhere inside the loop as only then an exit is possible.

If you want to exit a loop prematurely, use break. Continue is useful when you want to keep 
the loop running but skip over certain elements, possibly to improve performance or avoid 
obvious errors (like when you want to process integers but a string shows up in a list). With 
continue, Python will always skip to the start of the loop immediately, regardless of where 
the script executes at the moment within the loop. Use pass as a generic placeholder which 
does exactly nothing, as the name indicates. Let’s have a look at three examples.

>>> for number in range(1, 5):
>>>  print(number)
>>>  if number == 3:
>>>      break
>>>  print(number * 10)
>>> print("Outside loop now")
1
10
2
20
3
Outside loop now

As soon as break is reached, Python will leave the loop at once and continue with the code 
below. Any code within the loop below break will be skipped.
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>>> for number in range(1, 5):
>>>  print(number)
>>>  if number == 3:
>>>   continue
>>>  print(number * 10)
>>> print("Outside loop now")
1
10
2
20
3
4
40
Outside loop now

When continue is reached, Python will go back to the start of the loop and continue with the 
next element of the iterable. The code inside the loop below continue is skipped.

>>> for number in range(1, 5):
>>>  print(number)
>>>  if number == 3:
>>>   pass
>>>  print(number * 10)
>>> print("Outside loop now")
1
10
2
20
3
30
4
40
Outside loop now

When pass is reached, nothing happens. The loop is not exited and Python continues to run 
any code below pass if there is any. Pass usually works as a placeholder.

Comprehensions

Comprehensions can be used as a very compact alternative for loops and might also 
improve performance. While we distinguish list, dict, set and generator comprehensions, 
their syntax is almost identical. Suppose you want to generate a list with all integers below 
100 that are divisible by both 3 and 7. Using comprehensions we can solve this within one 
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line of code.

>>> [i for i in range(100) if i % 3 == 0 and i % 7 == 0]
[0, 21, 42, 63, 84]
>>> [i ** 2 for i in (1, 2, 3, 4, 5)]
[1, 4, 9, 16, 25]

The square brackets indicate that we want to create a list, i is the index which takes all 
values from 0 to 99. As you see we included a filter to sort out all integers that do not fit our 
condition. The second example illustrates how we can dynamically transform results before 
adding them to the list. If...else constructions are also allowed with a slightly different 
syntax (note the ordering of the elements).

>>> [1 if x > 5 else 0 for x in range(10)]
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1]

In this example, we receive a list that displays a 1 for any number that is larger than 5 and 
a 0 otherwise. If and else are now placed on the left side of the iterator since this is not a 
filter any more but the ternary operator. Sets and dicts can be created likewise, the only 
difference is the type of brackets.

>>> {i for i in range(10)}
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
>>> {word: len(word) for word in ["We", "have", "fun"]}
{‘We’: 2, ‘have’: 4, ‘fun’: 3}

Be aware of the fact that comprehensions can become easily complex when nested 
comprehensions are included. In this example, we create a simple matrix, which is a list 
with sub-lists.

>>> [[i * j for i in range(4)] for j in range(4)]
[[0, 0, 0, 0], [0, 1, 2, 3], [0, 2, 4, 6], [0, 3, 6, 9]]

Python works from inside out, first creating a list that contains the products of i and j. 
After that, the four new lists are returned together in one superior list. As you see, this 
gets difficult to read and while comprehensions allow for very compact and sophisticated 
expressions, they can easily become a nuisance for colleagues (or yourself after returning 
to your code after a two-week break). Whenever loops are nested, special caution is advised 



Chapter 1 ● Basics

● 15

to generate benign and readable code.

Functions

Whenever you need to solve more complex tasks it is strongly advised to split up your code 
into functional parts and create several combined functions. This has many advantages: 
firstly, functions can be easily reused and even imported into other documents. Secondly, 
debugging functions is often easier than larger blocks of code since you can test each 
function separately. Summarised: divide and conquer!

In Python, functions can be defined with two expressions. The first one is def(). A function 
can include an arbitrary number of arguments, which can also be set as defaults.3 Let’s see 
this in action with a very simple calculator for addition.

>>> def adder(x, y):
>>>  return x + y
>>> adder(1, 1)
2

This function has two arguments, x, and y. These must always be specified by the user 
when calling the function. Using return we specify which value we want to receive back from 
the function. If no return is set by the programmer or if it is never reached, the function will 
then return None. In many cases, this is irrelevant, for example, when a function is used 
only to display something in the interactive session.

>>> def greetings(name):
>>>  print("Hello " + str(name) + "!")
>>> greetings("Python")
"Hello Python!"

Using defaults we can pre-specify certain arguments that can be overwritten by the user 
if desired.

>>> def exponentiate(x, y=2):
>>>  return x ** y
>>> exponentiate(3)
9
>>> exponentiate(2, 4)
16

3 In this book the terms parameters and arguments are used changeably regarding 
functions.



Python 3 for Science and Engineering Applications

● 16

We can also create anonymous functions using lambda. These functions are usually very 
compact as they consist of only one expression and can be defined "on the fly".

>>> adder = lambda x, y: x + y
>>> adder(2, 2)
4

As you need to restrict the functionality to one expression, these are usually not applicable 
to more complex tasks. At this point, you should also be aware of the fact that certain 
expressions can be shortened to make code more compact.

x = x + 5 <=> x += 5
x = x - 5 <=> x -= 5
x = x * 5 <=> x *= 5
x = x / 5 <=> x /= 5

Internal Checks and Dealing with Exceptions

Writing software for end-users requires a lot of time and effort to make sure that inputs 
are sanitised and only certain data types are fed into special functions. For example, a 
calculator app should never have to deal with strings since only numbers are used for 
arithmetic. When writing code for a web application, make sure that an email address 
always contains exactly one at sign (@). In some cases, the receiving function will notice 
the problem and throw an exception or error message, which is usually a good thing since 
you will be alerted that something went wrong. Sometimes these issues go unnoticed and 
the first problem you will notice is way down the line, maybe after receiving a wrong result. 
Finding the bug then can be tedious and difficult so creating a few checkpoints is often a 
good idea. To check for invalid inputs or wrong results we can use assert. In this example, 
we want to make sure that a given email contains at least one at sign.

>>> email1 = "test@testmail.com"
>>> assert "@" in email1, "Invalid input!"
>>> email2 = "email.email.org"
>>> assert "@" in email2, "Invalid input!"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AssertionError: Invalid input!

While the first test is fine since @ is included in the given string, this assumption is violated 
in the second example. Python then stops processing the script at once and throws an 
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exception so we are informed about the problem. However, note that assert can be used 
as an internal diagnostic for first checks but make sure to define proper exceptions and 
especially more testing to sanitise user input. Also, assert statements are removed from 
the code when performance is optimized by some compilers.

However, sometimes we want to silence errors explicitly and continue with the script. This 
is done using try...except. If an error occurs, we can specify in advance how to handle it. 
As an example, suppose you want to access a certain index in a list that does not exist. 
Usually, Python would stop the script and complain.

>>> a = [1, 2, 3]
>>> a[20]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range

As the list has only three elements, there is no element with index 20 available. However, 
when we catch this error we can continue with the script.

>>> for list in matrix:
>>>  try:
>>>   print(list[20])
>>>  except IndexError:
>>>  print("Index not found, continue")

This script takes lists from a given matrix and always displays the element with index 20. 
Some shorter lists might not contain so many elements, which would cause problems. 
However, as we can foresee that this error might occur, we define that all IndexErrors will 
be caught by our script, produce a short warning note and then resume with the code. 
There is also the possibility to create catch-alls, which are statements that silence any type 
of error. Be very careful when working with these things and better specify in advance 
which errors are possible.

Modules

Some functions or objects are always available in Python, for example, lists or the functions 
len() or max(). Some other functions are also official parts of Python but are grouped in 
modules that must be imported before usage. This is an efficient solution since not all 
functions are always loaded into Python and many more names for variables and functions 
are available for yourself. To access these other functions we need to import the respective 
modules. Let’s demonstrate their usage with some mathematical function
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>>> import math
>>> math.cos(math.pi)
-1.0

Here we import the math module to access one constant and one function from this 
module. The prefix math is subsequently used to tell Python where to take the functions 
from. However, typing this all the time can become tedious so there are workarounds. For 
example, we can shorten the name of a module to make writing and reading code more 
convenient.

>>> import itertools as it
>>> list(it.combinations([1, 2], 2))
[(1, 2), (1, 3), (2, 3)]

As long as only a few functions are required you can also only import this function.

>>> from itertools import combinations
>>> list(combinations([1, 2], 2))
[(1, 2), (1, 3), (2, 3)]

If you need all functions, use the asterisk as a generic placeholder.

>>> from itertools import *
>>> list(combinations([1, 2], 2))
[(1, 2), (1, 3), (2, 3)]

When working with longer scripts and more complicated tasks it can be especially beneficial 
to keep the respective module prefixes so it is clear to all colleagues where certain functions 
are taken from.

1.3 • Principles of Good Programming

1. Indentations play a significant role in Python as they replace most of the parentheses 
and brackets known from other programming languages. Whether you are using spaces 
or tabs for indentations is irrelevant as long as you are consistent and never mix them, 
which causes Python to produce an error message.

2. All variables and objects (and in Python, virtually everything is an object) should 
have a unique and clear name. There are certain styles to choose from, for example, 
Panelleft (Pascal case), panelLeft (Came case), or panel_left (Snake case). However, 
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be consistent with your style. It might not be necessary to waste time thinking about 
names for index variables (often just i) or very temporary variables. Try to limit the 
usage of one-letter variables for narrow blocks of code or comprehensions.

3. Functions should usually do exactly one thing. If you conclude that a given function does 
a lot of things, maybe due to the usage of many if...else statements, it might be wise 
to split it up. Also, never define two functions at two different places in the code that 
do the same thing but define it once and when call whenever necessary. This makes 
debugging a lot easier and you have to clean up bugs only in one place if you find any. 
Furthermore, a function should normally only return one data type (for example, a 
math function that only returns integers but not strings or lists). Whenever something 
goes bad, do not return a special "error code" or False but raise an exception.4

4. Python was created to get things done and work efficiently. Therefore it might be a good 
idea to think about certain parameters before starting a project. How many people are 
involved, how much time will it take? Should I start defining ten classes or are a few 
functions enough to get the job done? Will I work with this code again in five years or is 
it obsolete next week? Depending on the answers, you might want to spend more time 
preparing the project and defining things, possibly with your colleagues. This refers to 
a common style of coding, naming objects, and creating shared documentation. Note 
that even the smallest projects deserve some documentation, even if it is just for a 
weekend project.

5. Readability is a major factor in any code. For example, consistent spacing makes it 
much easier to understand. Therefore, I recommend making use of it and writing x = 
(5 + 5) instead of x=(5+5). Again, there are no strict rules but rather guidelines you 
can choose. In this book, we will insert a space between most numbers and operators.

6. Clear and meaningful documentation is the gold standard of programming. Especially 
larger, longer running projects with many co-workers deserve extensive documentation 
that is understandable to all people working on it after you. And even if you code alone, 
your future self will be very grateful if you spend just a few minutes on documenting 
what you did. For example, Python docstrings ("""This is the comment""") are 
very useful to describe what a function or class is doing. In this book there is little 
documentation within the coding blocks since everything is explained in detail in the 
chapters so probably do not use this is a template unless you are willing to explain 
everything as in a tutorial. For inline comments use the number sign #.

7. When you have little experience with version control software it might be a good idea 
to spend some time learning about it, especially when you are working on larger or 
longer running projects. This makes the creation of many documents obsolete that 
allow you to go back to previous versions of your code (we all know final.py, final2.py, 
final3.py, …). Basic software that helps you out is git or bazaar. When collaborating 
online, try Github.

8. Debugging, that is finding and fixing errors and bugs in your code usually takes a 
large part of your time. An advantage of Python that can never be underestimated is 
that error messages and exceptions are usually very clear and try to describe what 
went wrong, which makes finding the problem a lot easier. Sometimes these are trivial 
errors, like missing parentheses or letters. If an error is unknown to you, just search 

4 For more information on clean code, research the works of Robert C. Martin. Youtube 
provides some excellent presentations.
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for it online and things might be a lot clearer. Also, when Python reports a line together 
with the error, make sure you check the lines before and after if you do not find it in 
the one reported.

9. There is no rule without exception. The guidelines presented here are just basic 
principles and not written in stone. There might be good reasons to deviate from them 
but be sure that these are justified. If you feel too tired or lazy to follow a certain style, 
it is perhaps time for a break instead of writing sluggish code.

10. If you are looking for more detailed information on style and coding principles, make 
sure to have a look at the official Python style guide PEP8.5

1.4 • Problem-Solving Skills

As stated before, this is not a classical and theoretical textbook but rather is a focus on 
applications and real-world problem-solving skills. Suppose your boss gives you a task and 
isn’t interested in exactly how you process it as long as you quickly present the results. It’s 
up to you to find out how to do it. All in all, Python is a precious tool for tackling complex 
tasks. It comes with a wide range of libraries, modules, and packages which in many 
cases are somewhat related to your specific task and can be easily adapted. Since the 
performance of modern computers is huge it is nowadays also possible to tackle problems 
by crunching numbers (Brute-Force solutions) or performing simulations for approximate 
solutions instead of thinking about an analytical solution that requires a lot of theoretical 
knowledge, time, and experience. What exactly could such a workflow look like?

First of all, it is relevant to understand the given task or problem and get an overview of 
the situation. Have you already worked on related challenges in the past? Are there similar 
problems you know about? Try to deduce the unknown to known things, which is quite easy 
due to search engines or Wikipedia. In many cases, you will find ready to use solutions 
online that perhaps only require implementation in Python. Sometimes you get lucky and 
all you need to do is copy a few lines of code. This being said, it is of course not the goal 
of this book to solve the tasks presented here by searching online and looking for ready to 
use solutions - this would only train your research skills. Therefore, if you are stuck with a 
problem and run out of ideas, perhaps just skip to the next task and come back later. The 
human brain works tirelessly and subconsciously on unsolved problems which can lead to 
Heureka-moments.

After you have a plan in mind it is time to work on the implementation in Python, which 
is an easy task. As discussed before it is often a good idea to split up complex problems 
into small chunks that can be easily solved. Using functions as an implementation is then 
quite convenient. At this stage do not strive for perfection as you probably want a first 
result quickly, which you can later optimise. Often your boss might be happy with a first 
approximation as long as it is submitted in time. If you struggle with the implementation 
phase, it might be beneficial to consult a textbook or guide on the required technique. Since 
Python comes with so many features it is rarely necessary to reinvent things - be smart and 
be sure to make use of the available functions and modules - these are tested and approved 
by the community. The official documentation comes with many examples and serves as 
5 Pep8.org

http://Pep8.org
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a wonderful guideline and teacher. If you need special functions, it might be wise to invest 
some time to study the documentation of these external packages, especially when diving 
deeper into some material and plan to work longer on related projects.

If your first attempt is complete and the code is written, it is time to test. Often code will not 
work directly as planned, resulting in either a runtime error or an obviously incorrect result. 
Syntax errors are easily debugged because of the quite specific error messages that Python 
produces. It might be more challenging to wipe out logical errors in your code that relate 
more to your algorithms and strategy than the implementation itself. If this happens, first 
try to individually test each function to reduce the potential source of the problem. Think 
about cases that are easy to test for correctness and work your way up to more complex 
inputs. It is justifiable to place temporary print-statements inside the code to observe the 
state of variables. By adding sleep-statements you can also run the code in slow motion 
and trace the flow. Although this technique of debugging is often ridiculed, there are good 
reasons to use it, especially in smallish projects. Of course, a real debugger is way more 
powerful but often depends on the IDE you use and requires further experience. Python 
comes with the internal debugging system pdb6 which allows you to follow the execution 
of your code step by step. To spot logical errors, make sure you explain the principles and 
algorithms of your code to colleagues. This will force you to spell out clearly what the code 
is doing, which helps in clarifying your ideas.

If the code runs and is clear of any obvious bugs you can try to optimise it. Especially 
when you work on longer projects which will run more often, increasing performance and 
refactoring can be a boon. Then you should try to work on readability, documentation, and 
performance to make your code better and more enjoyable. This task is often more relaxed 
since your boss is already happy with the first outcome and there is less pressure. Try 
identifying overly complex blocks of code and cleanly rewrite them. Add more documentation 
while you work through it. When working on performance, testing functions individually 
helps you identify the slow parts which might benefit from different approaches. In this 
book, we will also talk about measuring runtime speeds and working on optimisation.

6 https://docs.python.org/3.6/library/pdb.html

https://docs.python.org/3.6/library/pdb.html
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Chapter 2 • Working with Numbers

2.1 • Fibonacci

The Fibonacci-sequence has not only been known to mathematicians for millennia but is 
found in quite different aspects of nature, for example in the petals of flowers, population 
laws, and the golden ratio. The sequence is defined by a recursive law. The first two elements 
are 1 (f1=f2=1). All following elements (i >= 3) are defined by fi = fi-1 + fi-2. In words: the 
next element of the sequence is the sum of the two predecessors. The first ten elements of 
the sequence are therefore 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. This recursive definition requires 
the computation of the n-th element of the sequence to calculate all predecessors. In this 
chapter, we will talk about different methods of implementation. We start at the beginning 
of the sequence, generate the first elements, and use them to progress further. A very 
simple implementation could look like this:

def fibonacci(n):
 assert n > 0
 a, b  = 1, 1
 for i in range(n):
  print(a)
  a, b = b, a + b

We have this function print all elements up to n. We define that the first element receives 
the index 1, so include an assert statement to sanitise the inputs. Zero or any negative 
indices are not allowed as inputs. Here, b is last and a the second to last known element of 
the sequence. At the start, we initialise these variables with 1. On this line, we use a Python 
shortcut (tuple assignment). On the last line, we make use of a similar trick allowing us 
to avoid usage of a temporary variable to swap a and b around. This function only prints 
results and saves nothing in memory. Therefore, we cannot work with them. Let’s first see 
this in action and proceed to a second approach.

>>> fibonacci(10)
1
1
2
3
5
8
13
21
34
55
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This result is correct. Now let’s work with lists and keep the computed elements in memory.

def fibonacci2(n):
 elements = [1, 1]
 for i in range(n):
  elements.append(elements[-1] + elements[-2])
 return elements[:-2]

Now we forgo the assert check and define a list that holds the first two elements. We use 
a for-loop to compute as many new elements as desired. The function then adds the last 
and second to last element of the list together and appends this new element. Finally, we 
return the entire list but cut off the two most extreme values to correct for the offset due 
to the initial two elements so the users receive n elements exactly.

As previously described, the definition of the sequence is recursive. It seems like a good 
idea to use this concept for implementation. Often recursive code is compact and quite 
elegant, however, it can become difficult to understand when more complex tasks are 
performed. Another disadvantage is that the overhead that is created when the function 
calls itself reduces performance and takes memory so other approaches might be faster. 
Another thing to consider is the limited depth of recursion in Python, which can be adjusted 
by the user if necessary. If this limit is exceeded, Python will quit with an error message. In 
general, recursion is a useful tool that is perfect for this example. To speed things up, we 
will utilise memorisation to keep calculated elements in memory and look them up instead 
of calculating them again in each recursive cycle. This requires us to write a nested function 
as only the inner one will call itself recursively.

def fibonacci3(n):
 elements = {1:1, 2:1}
 def inner(n):
  if n not in elements:
   next_element = inner(n-1) + inner(n-2)
   elements[n] = next_element
  return elements[n]   
 return inner(n)

In this example, we only return the n-th element of the sequence. The outer function 
defines a dict that holds the first two elements with their index. After this, we define 
the inner function that either returns an element from the dict if it is already included, 
otherwise it will calculate it and save it in the dict. If we omit the inner function, each 
call would start with a newly created dict and no memorisation would occur, resulting in 
substantially decreased speed.
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Assignments

1. Code a function that produces the first 5,000 Fibonacci numbers and returns them in 
a list.

2. It is possible to calculate the n-th Fibonacci number without recursion by using the 
formula of Moivre-Binet. Implement it in Python and compute the 1000th element of 
the sequence. Use the regular approach shown above and compare results. What do 
you notice? What went wrong?

3. Compare the performance of two different implementations of functions that generate 
Fibonacci numbers. Hint: time.time() or time.monotonic() can be used to measure the 
runtime of functions.

4. The quotient of two adjacent Fibonacci numbers approaches the golden ratio 
(1.6180339887…) when n approaches infinity. Compute the quotient for the elements 
101, 102, 103 104, and 105 and the percentage deviation from the true result.

5. Compute the sum of the inverse of the first 5,000 Fibonacci numbers.
6. According to Zeckendorf’s theorem, any integer can be written as the sum of exactly 

two differing non-adjacent Fibonacci numbers. For example, 6 can be expressed as the 
sum of 5 and 1. Create a function that accepts an integer as input and fractionates it 
into two Fibonacci numbers. Hint: you can look up the required algorithm online.1

7. In the last function, fibonacci3(), we utilise two nested functions. Rewrite this function 
to create a recursive solution that does not require an inner function. Hint: there is no 
need for global variables here.

Appendix: Comprehending Recursion

If you have never worked with recursive functions before it might be difficult to grasp the 
concept. Especially with longer or more complex applications, it can be hard to follow their 
flow. Therefore we want to highlight the basic concepts of this technique here. The central 
idea of recursion is to write a function that modifies a given problem and then calls itself. 
This might sound strange, but a function is allowed to call itself. It is like pulling oneself 
up by the bootstraps but this is a valid and good idea in programming. For this to work, 
two basic assumptions must hold. First, there must be a base case that is the case that 
stops the recursion. If this is not defined or ever reached, the recursion will run forever, 
which is usually not what we want. It is a good idea to start by defining this base case and 
then continue with the rest of the function. Secondly, when the function calls itself, the 
argument(s) used in this call cannot be identical to the original ones. Otherwise, there is no 
progress and the recursion is stuck again. Usually, the argument is either incremented or 
decremented. Let’s have another example. In mathematics, the factorial is defined as so:

1 https://cp-algorithms.com/algebra/fibonacci-numbers.html

https://cp-algorithms.com/algebra/fibonacci-numbers.html
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This means the factorial of 5 is 120 (1x2x3x4x5). Let’s implement this formula using 
recursion. As we learn from the definition, we start with 1 and count up to n. Otherwise, 
we start with n and count down until we reach 1. This guarantees that we get all integers 
in between. Consequently, we define 1 to be our base case. Also, it becomes clear that we 
use the same operation over and over again (multiplication), only with different arguments.

def fac(n):
 print("Computing the factorial of:", n)
 if n == 1:    #Base Case
  print("Return: ", 1)
  return 1
 else:     #calling itself
  result = n * fac(n - 1)
  print("Return: ", result)
  return result

We include several print-statements to trace what happens when we call this function. For a 
test, we call the function with the input 3. Internally, the function first checks if the input is 
equal to the base case. No, since 3 is not equal to 1. Therefore, the else-clause is entered. 
Now we have to compute the result. This is done by multiplying n (3) with the factorial of 
n-1 (2). Here the function calls itself. Notice how the input is different from before. By doing 
so, we approach the base case since we decrement from 3 to 2. Now the new instance of 
the function is created and runs while the first instance has to wait for the inner instance to 
return the result. Let us see the entire trace.

>>> Fac(3)
Computing the factorial of: 3
Computing the factorial of: 2
Computing the factorial of: 1
Return:  1
Return:  2
Return:  6
6

It should now be clearer what happens. First, we call the function with 3 (from "outside"). 
Since the base case is not reached, the else-clause runs and a new instance is created, 
which displays the message. This happens until the base case is reached for the innermost 
function. Now, this function hits return and produces an output, which is passed back to the 
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next instance. Therefore, we propagate the return upwards and each calling function uses 
the result to compute its output. Finally, we have the correct result, which is 6. This process 
can be visualised using a diagram.

As an exercise, try writing a few functions that implement basic mathematical operations 
using recursion. For example addition, multiplication, or exponentiation. The scheme is 
similar and the results can be easily checked. Make sure you include print-statements so 
you can check the internal flow of the functions.

2.2 • Prime Numbers

Not only have prime numbers intrigued humans for millennia, but they also have many 
practical purposes: for example in security or cryptography. The generation and verification 
of large prime numbers is a highly relevant challenge of applied computer sciences. A 
prime number is an integer that is divisible only by 1 and itself. We define 2 to be the 
smallest prime number for all the following tasks and examples. Therefore, the sequence 
of prime numbers starts with 2, 3, 5, 7, 11, 13, 17, and 19. While finding extremely large 
prime numbers has become a kind of sport at the intersection of computer sciences and 
mathematics, we will work with much smaller primes. A large number of heuristics and 
techniques are available to find or generate primes. Probably the simplest one is the brute-
force technique which finds primes by testing all possible proper divisors. Given an integer 
n, then n is prime only if there are no proper divisors for n. Therefore, by testing all integers 
up to n as divisors will eventually reveal whether n is prime or not.

Coding such a test is rather simple and can be used as a wonderful example to have a 
look at another Python specialty: generators. While a regular function crunches numbers 
and finally returns something to terminate the function, a generator can return something 
multiple times and store its current state in memory. Whenever the generator is called, 

Figure 2.1: Recursion Schema
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it will produce an output based on the saved state until it is exhausted (if this can occur). 
Since there is an infinite number of primes, a prime-generator can potentially run forever. 
The only difference between a regular function and generator is the fact that return is 
replaced with yield. Furthermore, generators are handled a bit differently as they must be 
explicitly set up and can be called using next(). Let’s see this in action.

def primegenerator(n=2):
 """Creates consecutive prime numbers larger or equal to n"""
 if n <= 2:
  yield 2
  n = 3
 if n % 2 == 0:
  n += 1
 
 while True:
  for divisor in range(3, int(n ** 0.5 + 1), 2):
   if n % divisor == 0:
    break
  else:   #break never reached
   yield n
  n += 2

Here we define a default so the generator starts producing primes starting with 2 if no 
larger number is set by the user. Also, we add a docstring to describe what the generator 
is doing. Since 2 is the only even prime we have to handle this case explicitly. After this, 
all integers we are dealing with must be odd since every even number can be divided by 
2. To test for divisibility of two numbers we use the modulo (%), which can be described 
as returning the remainder of a division. If there is a proper divisor, the remainder is zero. 
If this is not the case, we know that after the division the divisor was not a proper one. 
This can be used to test whether a number is even or odd. Divide it by 2 and look at the 
remainder: if it is zero the number was even, otherwise, it is odd. We use this technique 
to ensure only odd numbers are used as potential primes. This trick sorts out half of all 
integers and speeds up computation. We enter a while loop that runs until all potential 
divisors are tested. We always start with 3 and work our way up to the square root of n.2 
Why? It is easy to see that we can stop testing when the divisor is larger than half of n 
(since the result must be smaller than 2). However, with a bit more math one can also 
demonstrate that it is enough to only go to the square root of n.  If the divisor is larger 
it cannot be a proper one, so we can stop. Keep in mind that instead of loading the math 
module and square-root-function, we exponentiate by 0.5 and get the same result. Here 
we make sure to always generate an integer from the square root so range works properly. 
If the remainder of this computation is zero, a proper divisor was found and we can stop 
immediately since n cannot be prime then. This means we hit break, leave the for-loop 
and skip to the end of the enclosing while-loop, increase n by 2 and continue with the next 
2 https://math.stackexchange.com/q/1343171

https://math.stackexchange.com/q/1343171
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potential prime. However, when break is never reached in the for-loop until all divisors are 
exhausted, Python skips to the else-clause. This means that after testing all divisors we did 
not find one, so n must be prime. We then return the number using yield. If the generator 
is called again afterwards, it will continue after this, so increasing n by two and starting a 
new round. This concept of using else in combination with a for-loop might be new to you 
but is actually quite pythonic. You can think of it as "nobreak" to memorise what its function 
is. Now we can see how to invoke the generator and produce primes.

>>> primes = primegenerator()
>>> for i in range(5):
>>>  next(primes)
2
3
5
7
11

If you need larger primes, just call the generator with a larger integer as an argument. 
Technically, primes is an iterator and can be utilised in many ways, for example using 
map() or a comprehension. If we need a certain subsection of all primes, this can be 
achieved using islice from itertools. If we need all prime numbers from element 100 to 120 
(exclusively), we can do this as follows.

>>> import itertools
>>> primes = primegenerator()
>>> list(itertools.islice(primes, 100, 120))
[547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 
641, 643, 647, 653, 659]

Finally, we must concede that our generator is rather slow and may run into performance 
problems when we need really large primes. Albeit we remove all even numbers as 
potential divisors, the code does not extend this pattern. After testing 3 as divisor, we could 
automatically sort out all divisors that are themselves divisible by 3, say 15. However, given 
that we created this generator with just a few lines of code, these issues are acceptable for 
the moment.

Assignments

1. Compute the first 5,000 primes and store them in a list.
2. A twin prime occurs when two consecutive primes are separated by 2, for example, 41 

and 43. How many twin primes are there from 2 and 5,000?
3. The distance between two primes is also called the prime gap (Gn = pn+1 – pn). 
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Therefore, the prime gap between 13 and 17 is 4. What is the largest prime gap for all 
primes from 2 to 5,000?

4. Semiprimes are integers that are the product of exactly two primes, for example, 
35 as the product of 5 and 7. Create a function that tests whether a given integer is 
semiprime.

2.3 • Collatz

The Collatz conjecture is impressive on one hand because of its simplicity and on the other 
because of the tenacity with which it evades the solution. 

1, it is easy to see that this results in an infinite cycle (1, 4, 2, 1). So far, despite intensive 
efforts, neither a counterexample nor a formal proof or refutation of the assertion has been 
found. Theoretically, there is still the possibility that the sequence grows infinitely or that 
another cyclic sequence is reached which doesn't contain 1. First, we can define a very 
simple function that tests whether 1 is ever reached for a given integer n.

def collatz1(n):
 while n > 1:
  if n % 2 == 0:
   n = n // 2
  else:
   n = (n * 3) + 1
 return True

The code is self-explanatory. Note we are using integer division (//), otherwise, Python will 
convert to float, which makes no sense because nothing but integers can occur. As you 
can see, this function can only return True which means we have already incorporated our 
assumption into the program. This way we would not be able to find a counterexample. 
To find a cycle that does not contain 1, we have to keep a record of which numbers have 
already been visited. Since the algorithm is strictly deterministic and each number can only 
have exactly one successor, we can recognise a cycle by the fact the same number has 
been visited several times.3 

3 It should be noted that the same numbers may well have two different predecessors. 
For example, you can get to 16 from 5 or 32.
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def collatz2(n):
 seen = set()
 while True:
  if n == 1:
   return True
  elif n in seen:
   return False
  else:
   seen.add(n)
   if n % 2 == 0:
    n = n // 2
   else:
    n = (n * 3) + 1

For keeping track of which numbers have already been seen, we use a set. This is faster 
than a list regarding lookup speed. Sets are similar to lists but they do not have an ordering 
and cannot contain the same element more than once. However, this is irrelevant in this 
case because we stop as soon as a number encountered is already known. If we reach 1, 
we output True. The assumption was confirmed in the example. If, on the contrary, we 
reach a number already known a second time, False is returned. Otherwise, the algorithm 
continues according to plan. It should be noted that all numbers up to 87 x 260 have been 
tested so far and not a single one of them did not reach 1 at the end.4 Nonetheless, our 
function cannot detect whether we reached a sequence that continues to grow infinitely. 
This can not be tested by trial and error since verification would require us to follow the 
sequence to its end, which is impossible by definition. In this respect, it is left to the 
mathematicians to provide formal proof at this point.

Assignments

1. Write a function that computes the total number of integers tested by the algorithm 
for a given starting point n. Test all numbers from 2 to 5,000. Which number produces 
the longest Collatz sequence?

2. Give it a shot and test whether a very large number terminates. Measure the runtime 
of the attempt.

2.4 • Pi

Few numbers enjoy such great popularity as Pi. The calculation of as many decimal places 
as possible of this transcendental and irrational number, which defines the ratio of the 
circumference of a circle to its diameter, has been a popular arithmetical exercise for 
centuries. There are numerous formulas and methods to choose from, but in this chapter, 
we will limit ourselves to a mathematical calculation. The implementation of such a formula 
in Python is simple in principle, but quickly encounters problems if the calculation of many 
decimal places is the objective. While Python can handle integers of any size and is limited 
4 http://www.ericr.nl/wondrous/

http://www.ericr.nl/wondrous/
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only by memory and computational capacity, the situation is different for decimal numbers. 
Normally, decimal numbers are handled as floats, which are stored in Python with double 
precision, i.e. with 64 bits. This quickly leads to rounding errors, as a simple calculation 
shows:

>>> 1.1 + 2.2
3.3000000000000003

Where the number three at the end of the floats comes from seems inexplicable at first, but 
is the consequence of the internal representation of floating-point numbers in binary.5 These 
errors are unproblematic for most applications, but not if we want to compute thousands 
or even more decimal places. This requires various tricks and a clever implementation 
strategy. But let's start simple. To calculate Pi, we implement the formula of John Machin, 
known since 1706:

Here, arctan is the arctangent or the inverse function of the tangent. Calculating Pi, 
therefore, depends on a very precise calculation of this trigonometric function. This alone 
does not help us since the arctangent is also irrational and cannot be expressed easily, say 
using fractions. However, we can use series to approximate it.

At first, it may be surprising that a sum with an infinite number of summands gives a finite 
result, but this is possible as long as the summands become smaller and smaller. In this 
case, one speaks of a convergent series. The more summation elements are included, the 
more exact the result will be in the end. Logically, a factual calculation of an infinite sum 
is impossible, only an approximation can be achieved. Using this adjusting screw, we can 
then influence the result in the end: The more decimal places we need, the more terms we 
will add up. In general, we should avoid floating-point numbers or floats. This is possible 
using various tricks.

First, it is the case that the arctangent is defined only between -Pi/2 and + Pi/2. However, 
we can already deduce from the formula shown above that we will only need the values 1/5 
and 1/239 to compute Pi, which are both positive and smaller than 1. Furthermore, we can 
avoid decimal numbers by multiplying all summands of the sum with a constant μ (My) of 
any size. Thus we obtain the following sum:
5 For an explanation see https://www.youtube.com/watch?v=wbxSTxhTmrs

https://www.youtube.com/watch?v=wbxSTxhTmrs
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We can now choose μ to be as large as we want, say 101000 if we want 1,000 decimal places, 
for example. However, there is still the problem that x is less than one, and information 
is lost as the terms progress. For example, (1/5)10 is an extremely small number, which 
Python stores internally as float, i.e. with limited precision. The larger the powers get, the 
more serious the problem becomes. Starting at an exponent of about 500, the number in 
this example is simply zero for Python and a calculation of subsequent terms is pointless. 
The trick must, therefore, be to avoid floats. You can see how this works if you rearrange 
the terms a bit. Let us look at the second term of the sum and rearrange it:

We pulled x in the denominator and took the inverse of that. But we know that x in our 
example will always be less than one (1/5 or 1/239). If we now use this value as an 
example, we obtain 

As long as μ and thus the numerator is greater than the denominator, we avoid decimal 
numbers and can only calculate with integers. This works as long as we only use values 
between 0 and 1 for x and μ is big enough. The formula we want to implement is the 
following:

with z = 1/x

Let’s see this in code.



Chapter 2 ● Working with Numbers

● 33

import math
import itertools

def arctan(z, digits):
 extra_digits = math.ceil(math.log10(digits / math.log10(z)))
 sign = -1
 term = 10 ** (digits + extra_digits) // z
 result = term
 for power in itertools.count(3, 2):
  term //= z ** 2
  if term < power:
   break
  result += (sign * term) // power
  sign *= -1
 return result // (10 ** extra_digits)

The function accepts two arguments, the inverse of the number to be calculated and the 
number of significant digits. To guard against rounding errors, we also increase the number 
of digits utilised for all calculations. We remain flexible and only add as many digits as are 
necessary. If we wanted 3,000 digits for z, we would always add 5 places internally. We 
define the sign, which alternately becomes negative and positive. Then we initialise the first 
term of the sum in term, adding the calculated additional digits. Subsequently, result will 
always be the value of the total sum already calculated, term is the new term to be added.

We start a loop that runs unless we explicitly exit it using break later on. For this we use 
itertools.count(). This simple function does nothing else but initialise power with the value 
3 and add 2 at each round, so that power has the values 3, 5, 7, 9,... as prescribed by 
the formula shown above. To prepare the next term, we divide the previous one by z2. So, 
for example, we go from μ/z to μ/z3, to increase the exponent in the denominator by 2. A 
check follows: if the term is smaller than the power, we can stop the calculation, since then 
a number smaller than 1 is created, which is rounded to 0. We see this in the next line: 
here we multiply the term by the current sign and then divide by the power, so that we get 
from μ/z3 to μ/(3z3). It is then added to the overall result. We then reverse the sign and 
the loop starts again.

Once we have left the loop, we only have to remove the additionally created significant 
places from the overall result. We achieve this using simple division. When applied, we only 
have to remember to specify the desired value as a sweep fraction. So if the result for 1/5 
is required, we insert 5 into the function. The fractional part is returned as an integer. With 
this function and Machin's formula, we can now calculate Pi.

def pi(digits):
 return 4 * (4 * arctan(5, digits) - arctan(239, digits))
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The result is Pi as an integer, without the decimal separator.

>>> pi(30)
3141592653589793238462643383268

Assignments

1. Calculate the first 2,500 places of Pi and measure the time. Repeat for the first 5,000 
places. What do you notice about the runtime?

2. Calculate the first 20,000 places of Pi and store it to search through it. Do you find your 
date of birth, zip-code, or phone number?

3. Euler’s number e (2.718281828...) is defined as follows:

Create a function to compute this number with arbitrary precision.

Appendix: Higher Precision with Decimal

There is a second way to handle more decimal places in Python which invokes the usage 
of an extra module: Simply import decimal and specify how many decimal places we need. 
The numbers are then no longer considered floats, but as independent objects with similar 
properties. Internally, decimal works much like the previous example. The disadvantage 
is that we cannot simply convert existing decimal numbers to decimals, because floats 
are already limited, the missing precision cannot simply be "added". However, if you take 
integers as a starting point, the precision will be produced as desired. Let's look at an 
example.

>>> 1 / 3  #regular precision
0.3333333333333333

>>> from decimal import *
>>> getcontext().prec = 25
>>> a = Decimal(1) / Decimal(3)
>>> a
Decimal('0.3333333333333333333333333')
>>> type(a)
<class 'decimal.Decimal'>
>>> Decimal(1 / 3)   #Caution!
Decimal('0.333333333333333314829616256247390992939472198486')
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We import the module and set the accuracy to 25 digits. As we can see, this works well: 
precision is higher. It is also clear that this is a new data type. However, if you want to 
convert already existing floats, you will get nonsensical results. We can now perform various 
mathematical operations with these objects, but they must be available in the module.

>>> a
Decimal('0.3333333333333333333333333')
>>> a.sqrt()
Decimal('0.5773502691896257645091488')
>>> Decimal(2).sqrt()
Decimal('1.414213562373095048801689')
>>> Decimal(2).exp()
Decimal('7.389056098930650227230427')
>>> Decimal(2).ln()
Decimal('0.6931471805599453094172321')

The documentation explains exactly which commands are available and how to use them.6 
In summary, the module is extremely useful for calculations using very precise numbers but 
requires the creation of its own functions and methods if you want to solve more complex 
tasks. In this respect, you should always consider whether you want to use decimal or if 
you can find a solution by the skillful handling of integers.

2.5 • Countdown

Before we saw how recursive functions can be accelerated by caching previous results and 
using them to calculate further elements (memorization). This also works in more complex 
contexts and can lead to truly gigantic increases in speed. The following example may 
sound harmless at first, but it's a good one: Take an integer n, which you should reduce 
to the value 1 with as few arithmetic operations as possible. There are three operations 
available: dividing by 2, dividing by 3, and subtracting 1. Of course, the divisions may 
only be made if the result is an integer again at the end. Let's take the example of 5: To 
reduce this number to 1, we could subtract 1 four times in a row, i.e. to 4, 3, 2, and finally, 
1, which is four operations in total. Can we do better? Yes, we first subtract 1 and get 4, 
then we divide by 2 twice, so we have done the task in with only 3 operations. There is no 
faster solution for 5, only equivalent ones (subtract 1 twice and then divide by 3). This task 
is perfect for a recursive program: we take the starting number and try all 3 operations. 
Thus we get a maximum of 3 new numbers. We then reapply the algorithm to each of these 
numbers and keep a record of the total number of operations and the resulting sequences. 
At the end, we pick the variant that has needed the least operations. The code for this task 
is quite clear:

6 docs.python.org/3.6/library/decimal.html

http://docs.python.org/3.6/library/decimal.html
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def countdown1(n, counter=0, sequence=""):
 if n == 1:
  return (counter, sequence)
 counter += 1
 results = []
 if n % 2 == 0:
  results.append(countdown1(n // 2, counter, sequence + "2"))
 if n % 3 == 0:
  results.append(countdown1(n // 3, counter, sequence + "3"))
 results.append(countdown1(n - 1, counter, sequence + "1"))
 return min(results)

Our function has only one argument, namely the integer we want to process. However, 
since we call the function repeatedly in the recursion, we specify some defaults here which 
we can then replace in subsequent calls. This is the variable counter, which stores how 
many operations we have already performed, and the string sequence, which keeps the 
order and type of operations performed.

First, we define the base case, which is the condition that ends the recursion. This is when 1 
is reached, then counter and sequence are returned as the output. If the current number is 
still greater than 1, the algorithm runs normally. We increment the current counter by 1 and 
create an empty list in which we collect the results. Since we have 3 possibilities (divide by 
3, divide by 2 and subtract) we have to consider them all. Now, if a division by 2 is possible, 
we apply the algorithm to that number again and append "2" to the current sequence so 
that we know later that this operation was performed. The procedure for division by 3 is 
similar, and since subtraction is always possible, we can omit the test here. Finally, we get 
up to 3 tuples in the list. We then select the tuple that has the smallest value on the first 
element, i.e. the smallest counter. Let’s now see this in action.
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>>> import time
>>> for k in range(20, 320, 20):
>>>  tstart = time.monotonic()
>>>  k, countdown1(k), round(time.monotonic() - tstart, 3)

20 (4, '2133') 0.0
40 (5, '22133') 0.001
60 (5, '23133') 0.002
80 (6, '222133') 0.007
100 (7, '1331133') 0.016
120 (6, '223133') 0.042
140 (9, '113133113') 0.073
160 (7, '2222133') 0.132
180 (6, '233133') 0.228
200 (8, '21331133') 0.379
220 (7, '2212333') 0.614
240 (7, '2223133') 0.948
260 (9, '213123123') 1.429
280 (8, '13313133') 2.12
300 (8, '22312223') 3.059

We should first check whether the algorithm works as planned. Starting at 20, we get 
the following sequence: 20 → 10 → 9 → 3 → 1. This is fine. However, when we look at the 
runtimes, we make an alarming discovery. While these are extremely short at the beginning, 
they increase rapidly. For example, we need less than 0.02 seconds for 100, but almost 3.1 
seconds for 300. If the number triples, the runtime increases by a factor of 190! 500 already 
takes almost a minute, which makes it easy to see that larger numbers will probably elude 
calculation. How can that be? The larger the number, the more possibilities are to be tested 
and for each possibility again up to three possibilities, and so on.  Furthermore, we do not 
store anything, many sequences are calculated twice. For example, if we end up with 50, 
we calculate the result, but other recursion sequences do not benefit from this. If they also 
reach 50 in another way, they have to repeat the calculation instead of using the known 
result. This is a serious disadvantage. To graphically visualise the problem, let's look at an 
example, here for number 9.
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For number 9 there are two options, division by 3 and subtraction of 1. The same rules are 
applied again and again, i.e. recursively, to the results. The ends or leaves of the tree are 
always 1, our base case. Here we can see the problem clearly: Number 3, for example, 
is independently reached four times. Thus, the complete search tree must be generated 
anew for this number each time. If we now have larger numbers, gigantic search trees are 
created, in which the same tasks must be completed again and again. This considerably 
slows down the search. The solution to the problem is to keep previously generated search 
trees in memory and retrieve the results dynamically when running through them again. 
Let us assume that the left branch of the tree is created first and the result for 3 is already 
available. If the algorithm encounters 3 again, for example when dividing 6 by 2, the known 
result is simply returned instead of starting another recursive search. So we need a sub-
function that is called recursively again and again, but at the same time, we want to keep 
a static part that stores the known results (from the earlier or parallel recursions). We can 
achieve this using a wrapper.

Figure 2.2: Recursive search tree for starting number 9
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def countdown2(n):
 book = {1: (0, "")}
 def inner(n):
  if n in book:
   return book[n]
  results = []
  if n % 2 == 0:
   counter, sequence = inner(n // 2)
   results.append((counter + 1, "2" + sequence))
  if n % 3 == 0:
   counter, sequence = inner(n // 3)
   results.append((counter + 1, "3" + sequence))
  counter, sequence = inner(n - 1)
  results.append((counter + 1, "1" + sequence))
  book[n] = min(results)
  return book[n]
 return inner(n)

We name our function countdown2 and only specify one argument. Why this is so will 
become more obvious in a moment. We define a dict which at the beginning only contains 
our base case, i.e. the end of the recursion. If 1 is reached, a tuple is returned, which 
contains the number of steps (0) and the shortest sequence (empty string). Now we define 
another function within countdown2(), which we call inner(). The basic idea is the following: 
if a recursive self-call is made, the inner function is called. Our database, which we created 
in book, will be maintained and continually expanded. In this way, new instances of the 
function can access the results already calculated and thus save duplicate calculations.

In this way, we can check directly whether the number n to be tested already has a result. 
If available, the result is then immediately returned. Otherwise, the recursive algorithm 
starts. With results, we create an empty list to store the computations and check which 
arithmetic operations apply to n. For example, if a division by 2 is possible, we initiate a 
recursive call with the new number (n // 2). We unpack the result (returned as a tuple) 
directly to the desired variables counter and sequence and can then process them further. 
We only need to increase counter by 1 and make sure we add the new arithmetic step to 
the sequence of operations.

Suppose our current number to test is 8 and therefore divisible by 2. The function first 
checks whether the next number (4) to be tested already exists in the dict. If this is the 
case, we found a known result and can retrieve it. The result we find would therefore be (2, 
"22") since it takes 2 steps to get from 4 to 1, the sequence indicates that this is achieved 
by two divisions with 2. Since we already know 4, but not yet 8, we must now build on 
this result. We need another step (namely from 8 to 4 by dividing with 2), so increase the 
counter by 1. Furthermore, we have to add the necessary step to the known result. Here 
we have to pay attention to the order. Since "22" already exists, we have to insert the new 
step in front, since the back part describes the remaining way to 1, we cannot influence this 
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anymore. Therefore we set "2" + sequence here. The same procedure is used for the other 
two options. Thus we receive up to three possible "fates" for our current number. Finally, 
we only have to check which option is best. We add them to the dict so other recursions can 
also use this new result. After this, the function returns the result. To start the recursion, 
we call the function inner() and let it return.

Let's summarise the logic again. We call the function countdown2() with a number to be 
tested, let's say 10. In the function itself, we create the parameters or variables that store 
our results. We then hand the number 10 to the function inner(). The recursion starts. 
Since 10 does not exist in the book, all possible candidates, in this case, 9 and 5, are 
defined as new numbers and new recursion loops are started for them. As soon as one of 
the branches of the search tree returns a result for a number, it is stored permanently in 
the book and the other recursions have access to it. This massively accelerates the search. 
Is it worthwhile? Let's crunch some numbers.

>>> import sys
>>> sys.setrecursionlimit(15000)

>>> tstart = time.monotonic()
>>> for i in (500, 2000, 5000):
>>>  i, countdown2(i)
>>> time.monotonic() - tstart
500 (9, '213113333')
2000 (10, '2133312233')
5000 (13, '2221222231223')
0.01499999999987267

Even very large numbers are now analysed in a fraction of a second. We must increase 
the maximum number of recursions allowed. Python has to generate a lot of them at this 
point, which can lead to an error message. With this setting we allow more recursions 
to be started. In principle, only the performance of your system limits the number of 
potential recursions. However, if computations for even larger numbers are desired, it may 
be necessary to switch to another method. A recursive solution is therefore not always 
the best way but can be very elegant if the basic conditions are right. Finally, we want to 
compare the two functions, countdown1() and countdown2(), a little more closely. So far 
we know the approximate runtimes, but what happens internally? To be able to do such 
analyses, Python offers tools for profiling. This means to break a command, function, or 
script down into its parts and check how often a certain loop or sub-function is called. This 
makes it easy to see which parts are slow and deserve more attention. We use cProfile at 
this point as it is very user-friendly.
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>>> import cProfile
>>> cProfile.run("countdown1(30)")
         1222 function calls (421 primitive calls) in 0.000 seconds

Ordered by: standard name

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
 1    0.000    0.000    0.000    0.000 <string>:1(<module>)
802/1    0.000    0.000    0.000    0.000 countdown1.py:4(countdown1)
 1    0.000    0.000    0.000    0.000 {built-in method builtins.exec}
  417    0.000    0.000    0.000    0.000 {built-in method builtins.min}
 1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.
Profiler' objects}

First you must make sure that you pass the function to be tested as a string to cProfile, 
otherwise you will get an error message. We can see that a total of 1222 functions were 
called, 421 of which are primitive, i.e. not triggered by a recursion. We can already see 
here that the majority of functions were created by recursion. Further down we see that 
802 times countdown1() was called recursively. The other large number, 417, comes from 
the function min(), which we use to sort the lists. Although the runtimes are overall so fast 
that they cannot be measured, it shows what is actually happening behind the scenes. So 
what about the improved version?

>>> import cProfile
>>> cProfile.run("countdown2(30)")
         62 function calls (34 primitive calls) in 0.000 seconds

Ordered by: standard name
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
 1    0.000    0.000    0.000    0.000 <string>:1(<module>)
 1    0.000    0.000    0.000    0.000 countdown.py:21(countdown2)
29/1     0.000    0.000    0.000    0.000 countdown.py:25(inner)
 1    0.000    0.000    0.000    0.000 {built-in method builtins.exec}
29       0.000    0.000    0.000    0.000 {built-in method builtins.min}
 1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.
Profiler' objects}

In the improved version, only 62 functions are called up, which is almost 20 times the naive 
version. While we can't see how much additional memory we are using because we now 
have to keep book in memory, this seems to be much better, since we can estimate that 
the overhead generated by each new recursion will be much greater than the additional 
data in the dict.
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Assignments

Solve the task discussed in this chapter without using any form of recursion. Compare the 
runtime of your solution to countdown2(). What is your conclusion?

2.6 • Ulam Spiral

The Spiral, named after its discoverer Stanisław Marcin Ulam, is a graphical representation 
of prime numbers. The idea is very simple: Write down integers, starting with 1, in a spiral, 
and mark all prime numbers at the end. If you do this long enough and look at the resulting 
image from a distance, interesting patterns are created.

As long as you want to limit yourself to console output only, without additional packages, 
this task is not feasible in Python. Therefore, at this point, we will implement the first step, 
namely the construction of the spiral.

First, define the notation. No matter how many numbers we want to represent at the 
end, we can imagine the position of each number in a Cartesian coordinate system. The 
first number (1) in the centre of the spiral is given the coordinates (0, 0). This order is 
helpful for our imagination but is not useful for implementation. If we want to store data 
in a matrix, i.e. a list with sub-lists, we have to define the number of necessary rows and 
columns at the beginning. However, these values can only be between 0 and n, so that, in 
contrast to the coordinate system, no negative values are possible. We, therefore, need a 
function that converts the different coordinates into each other. For illustration, we can use 
the following figure.

Figure 2.3: A visualisation of the Ulam Spiral -Created by Aydolen (Wikimedia Commons)
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Figure 2.4: Visualisation of the different data structures within the spiral including the first 22 integers

The first number in each cell represents the integer, followed by the coordinates in the 
Cartesian system, with the central box representing the origin. The third information 
describes the position of the cell in our data matrix, i.e. a list with sub-lists. First, we 
have to select how many numbers should be mapped (n). Then we generate a list. The 
number of sublists specifies the number of rows in the matrix. The length of each sublist 
specifies the number of columns. The number of rows and the number of columns should 
be identical. However, less than n rows or columns are necessary, since the numbers are 
initially grouped in the centre of the spiral and slowly grow towards the edges. Therefore 
we have to make sure that the first number is created in the middle row and middle column 
of the matrix. For this we use the following conversion function:

def cart_to_matrix(position, size):
 """Converts a position from the Cartesian system to the list-matrix"""
 column = (size // 2) + position[0]
 row = (size // 2) - position[1]
 return (row, column)

As input, the Cartesian position is passed as a tuple (e.g. (0, 0)) as well as the number 
of rows or columns as we have defined them. The integer division (//) makes sure that 
the tuple is always rounded and the correct position is given. For example, if we have five 
rows and columns, the midpoint is the third row with the third column. Since Python starts 
counting from zero, the index value 2 is correct (5 // 2 is 2 since any floats are rounded 
down by the integer division). The next challenge for the program is to find the next 
position in the spiral. We always want to go clockwise. The basic idea is simple: Since a 
maximum of three subsequent fields are possible (since you cannot go back to the previous 
field and diagonal moves are forbidden), we only need to check which of the three adjacent 
fields is still empty and also closest to the origin. This prevents leaving the spiral.
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def next_position(data, position):
 empty = []
 # Positions bottom, right, top and left
 # Order is relevant so corners are treated correctly
 for x, y in [(0, -1), (1, 0), (0, 1), (-1, 0)]:
  px, py = position[0] + x, position[1] + y
  pos = cart_to_matrix((px, py), len(data))
  if data[pos[0]][pos[1]] == "":
   empty.append((px, py, px ** 2 + py ** 2))
 return min(empty, key=lambda f: f[2])[:2]

The function accepts two arguments, the data matrix, and current position. We initialise 
an empty list in which we buffer the results. Now we can process the four possible fields 
sequentially. Here we can explicitly go through them all since there are only four. The order 
is also important. We start at the bottom and then go counterclockwise. Why? We will see 
in a moment. We then calculate the new coordinates and convert them into the matrix 
position using the helper function defined before. Then we check whether the respective 
field is empty. If it is, we add it to empty and also calculate the distance to the origin using 
the Pythagorean theorem. Finally, we sort all elements in empty by this distance and select 
the element with the smallest value. This guarantees the correct field is selected and that 
the spiral shape is preserved. In the end, we return only the position, i.e. we cut the third 
value, the distance, off the result, for which we use a slice ([:2]).

Let's look at an example of what we can use Figure 2.4 for. We are now on field 9, and 
apparently, there are two adjacent empty fields: on the left and top. Notice the distance to 
the origin is the same for both fields, so we have to be careful in selecting the correct one 
(the upper). This is where sorting comes into play, as mentioned at the beginning. Since 
we tested the fields counter clockwise, the upper field comes before the left and thus is 
selected. This guarantees we don't drift to the left. In the end, it becomes obvious that 
either the distance to the origin or, in these borderline cases, the sorting ensures that our 
spiral continues as desired. This special case only happens when the top left corners of the 
spiral are reached, the next field would be number 25. Now the main program follows.
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def ulam(n):
 size = max(15, (int(n ** 0.5) // 2) * 2 + 11)
 data = [[""] * size for i in range(size)]
 i = cart_to_matrix((0, 0), size)
 data[i[0]][i[1]] = 1
 i = cart_to_matrix((0, 1), size)
 data[i[0]][i[1]] = 2
 position = (1, 1)
 for counter in range(3, n + 1):
  a = cart_to_matrix(position, size)
  data[a[0]][a[1]] = counter
  position = next_position(data, position)
 print_field(data)

Our function accepts one argument, the length of the spiral. We specify the size of the data 
matrix in size. To save space, we do it in one operation: either n is small and we set the 
size to 15; if n is large, however, we use an estimation algorithm so our data matrix is not 
too small and "overflows". After we determine size, we generate the empty matrix. Then 
we manually create the first two numbers, which in Cartesian view gets the values (0, 0) 
and (0, 1). The next position is (1, 1) because we always go clockwise. From here on, the 
following loop takes over and creates all further numbers. We save the position in a using 
the help function and write the following number in this cell. In this way, the data matrix is 
gradually filled with numbers until we have processed all numbers up to n. The last step is 
to display our spiral. We use another help function for this.

def print_field(data):
 size = len(data)
 print("".join(["*" for i in range(size * 4)]))
 for row in data:
  for element in row:
   if element == "":
    print(" " * 4, end = "") #Exactly 4 spaces
   else:
    print( f"{element:02d} ", end = "") #Space \ 
    before the f-string
  print("")
 print("".join(["*" for i in range(size * 4)]))

In this function, we only have to enter the data matrix. At the top and bottom of the field, 
we place a delimiter for optical reasons. First, we create a list with the desired delimiters, 
and then use join() to combine them to a string and output it. Then we iterate over all rows 
and within a row over all columns. If we encounter an empty cell that does not contain a 
number, we display exactly four spaces. We modify print() with the option end so that after 
each character is displayed, it does not immediately jump to the next line. If we encounter 
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a number, we use an f-string to create a nicer display. Since we are limiting ourselves to 
two-digit numbers in this example, we will display a leading 0 for one-digit numbers, i.e. 
09 instead of 9. This way, all numbers are aligned at the end and a nice-looking spiral is 
created. If we did not do this, the rows would sometimes slip due to some numbers being 
displayed with only three characters in total. This wouldn't be nice to look at. After a line 
is finished, we now have to insert a line break, which we achieve by simply displaying an 
empty string. Otherwise, all sublists of the data matrix would be displayed in one line, 
which we don't want. Finally, a separator line is inserted, which completes the function. In 
the end, the result is impressive, here using the example of the first 55 integers.

>>> ulam(55)
***********************************************************

     50 51 52 53 54 55                         
     49 26 27 28 29 30 31                     
     48 25 10 11 12 13 32                     
     47 24 09 02 03 14 33                     
     46 23 08 01 04 15 34                     
     45 22 07 06 05 16 35                     
     44 21 20 19 18 17 36                     
     43 42 41 40 39 38 37                     

***********************************************************

2.7 • Total Chaos

Some things are more profound than they appear. For example, we usually associate 
mathematics with formulas, rules, and order. But as shown here, even quite harmless 
algorithms can quickly degenerate into chaos. Let's first look at a simple model that can be 
used in, for example, describing how a population changes over time.

 Xn+1 = rxn(1-xn)

Where x is a value between 0 and 1 and describes the proportion of the current population. 
A high value would, therefore, mean the population has almost reached its maximum 
size. We also use a scaling and growth factor r, which indicates whether the population is 
increasing or decreasing. Assuming r is 2, the population would double every year. This 
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would lead to a constantly growing population, which is unrealistic as habitat and food 
supply are limited. To prevent this, the last term is introduced to reflect the limitations of 
the environment. The larger x becomes, the smaller the factor and thus the value for the 
following year. Let's look at an example. As a starting value for x, we choose 0.7, as growth 
rate 2. How does the population change over time? The result is:

0.7
0.42
0.4872
0.4997
0.5
0.5
0.5

So the population shrinks first, then grows again and stabilises at a value of 0.5, i.e. half of 
the maximum population. What happens if we now start with a much smaller population, 
say 0.2? We get the following development:

0.2
0.32
0.4352
0.4916
0.4999
0.5
0.5
0.5

Surprisingly, the population is also very quickly heading towards an identical equilibrium. It 
is completely irrelevant with which x we start, the destination is determined by r alone. We 
can test this. For a calculation, we use the following function.

def chaosformula(x, r, n, prec):
 for i in range(n):
  print(round(x, prec))
  x = x * r * (1 – x)

If we now slowly increase the value of r, we notice it takes longer for the results to stabilise, 
i.e. to converge towards a limit value. What is very surprising, however, is that this behavior 
changes when r becomes even larger and exceeds 3: suddenly there are two limits. Let us 
compare the result for r = 2.8 and r = 3.1:
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(...)
0.6425
0.6431
0.6426
0.643
0.6427
0.643
0.6428
0.6429
0.6428
0.6429
0.6428
0.6429
0.6428
0.6429
0.6428
0.6429
0.6428
0.6429
0.6429
0.6429

After about 30 iterations, the value stabilises and reaches 0.6429. It seems surprising 
that the same values have different successors (e.g. for 0.643). This is because rounded 
values are shown here. Internally, of course, maximum precision is used for floating-point 
numbers. Therefore, this behavior, even if it is not very nice, should not surprise too much. 
Now let's calculate the sequence for 3.1:

(...)
0.7647
0.5578
0.7646
0.5579
0.7646
0.5579
0.7646
0.558
0.7646
0.558
0.7646
0.558
0.7646
0.558
0.7646
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Figure 2.5: Development of x-values using different values for r. Starting value for x is always 0.5

0.558
0.7646
0.558

We find there are indeed two limits between which the sequence oscillates. The difference is 
large and amounts to more than 0.2. A rounding error is not possible with such a dimension. 
There are, in fact, two different values that alternate, no matter how many decimal places 
we take into account or how long we let the sequence run. Will the number of distinct 
points continue to grow as the values of r increase? Yes, but chaotically. This means from a 
certain point on, even very small changes in r will lead to a massively fluctuating number of 
convergence points. Let us first look at the convergence process for some selected values 
of r (see figure 2.5). How can we determine how many convergence points a given value 
of r will produce?

The idea is this: We start as before with the known formula and first generate a certain 
number of iterations to ensure we have reached a point where the sequence is stable, 
i.e. alternates between the same elements. If we choose a small r, this will possibly be 
a single convergence point, from larger values for r on, there may be two or much more 
such limits. So when we have finished the first iterations, which we refer to as burn-in, we 
store all newly computed values together with the iteration in which they were created. For 
each subsequent element, we then simply check whether the same value already exists. If 
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this is the case, we know a cycle is complete. We then only need to check after how many 
iterations this has happened and we know the number of convergence points. As an aid, we 
convert the function shown above into a generator so we can let it run as often as required.

def logistic(x, r):
 while True:
  yield x
  x = x * r * (1 - x)
 
from itertools import islice
def cyclefinder(x, r):
 numbers = logistic(x, r)
 # skip first million iterations
 numbers = islice(numbers, 10**6, None)
 seen = {}
 for iteration, x in enumerate(numbers):
  for element in seen:
   if abs(element - x) < 1e-6:
    return iteration - seen[element]
  seen[x] = iteration

The generator applies the formula, but runs as often as we want, which we need in the 
actual function, cyclefinder(). We also import islice from itertools. The function accepts 
two arguments: x and r. In numbers we initialise the generator, which we can then call. 
Now we want to burn-in this generator. This will call it a million times, which takes less 
than a second. In this way, we ensure the unstable initial sequences are skipped and do 
not affect the result. The larger r becomes, the longer the burn-in should be. The technical 
implementation is done using islice. As with a regular slice, we cut a certain area from an 
iterable. But since our generator is inexhaustible, we have to use islice. We specify that we 
want the region of the generator that starts at one million runs. Since we are setting None 
as the end-argument, we take the slice from one million to the end of the generator.

We now create an empty dict in which we store all results. We implement the solution idea 
explained above. We iterate over all subsequent elements in numbers and also pack this 
iterator into enumerate(). This way we get a tuple with two elements, current iteration and 
actual value for each new request. In iteration we store the current call (which starts at 
0), in x the return value of the generator. Once we have created this tuple, we iterate over 
all entries in seen and check whether the currently created value x is already there. Since 
we are working with floats, we test the equality by a difference. If this difference is very 
small (less than one millionth), we consider the numbers to be equal. If this is the case and 
an already known element is encountered, we return the difference between the current 
iteration and the iteration where the known element was found. This way we determine 
the period. If, on the other hand, current value x is not yet present, we add it and save the 
current iteration with it.
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Figure 2.6: On the x-axis values of r are shown, on the y-axis the value the sequence converges towards. 
Creator: PAR (Wikimedia Commons)

If we tinker with this function, we find out that value 3 is a jump discontinuity: Before this, 
all values converge to one limit. If the values are greater than 3, there are at least two 
limits. This is already mathematically validated, so we can use this limit for benchmarks.7 
According to this, the first jump point is found exactly at 3. The second at 3.44948974... At 
this point, the number of limits changes from 2 to 4, and there is a fascinating visualisation 
of this development called the logistic map.

Viewed from left to right, very little happens at first, the sequence always converges 
towards exactly one value. This changes at the first jump point (3), from then on the graph 
splits and there are exactly two alternating values. Later there is another jump point and 
there are now four values. Then it slides into chaos. Without any possibility of prediction, 
from there on the number varies seemingly arbitrarily, so that these interesting patterns 
emerge. The next task is the following: How can we determine a jump point numerically, 
for example, if we do not have the figure shown above? A solution idea is as follows: We 
slowly step down the x-axis from left to right, i.e. choose ever-increasing values of r. At 
certain points, we then check how many limit values are to be found. If this value changes 
from one point onwards, we know we have reached or exceeded a jump point. If 2.95 has 
the output 1, but 3.05 has the output 2, it is clear the jump point must lie between these 
two values of r. We can use an iterative algorithm that does this for us. Here we can apply 
7 http://mathworld.wolfram.com/LogisticMap.html

http://mathworld.wolfram.com/LogisticMap.html
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a modification of Zeno's paradox: If we have distance x to an object and on the first day we 
cover half of the distance, on the second day again half of the remaining distance, and so 
on. When do we reach the object? Mathematically speaking, never, since a repeated halving 
of a number produces smaller and smaller values, but never reaches 0. Since Python and 
every computer cannot calculate with infinite accuracy, 0 is at some point still reached and 
with it the target. We can take advantage of this.

So we define a starting value which we know is quite close to the jump discontinuity we 
are looking for. We then move forward by a value a. If r1 and r2 are both still left of this 
point, we move both to the right by the step value on the x-axis. If we cross the point at 
any time, we halve a and move the point right of the jump discontinuity (r2) back in the 
opposite direction. In this way, only r2 can lie to the right of the jump discontinuity, but r1 
never (see also figure 2.7)

def find_discontinuity(x, r1, precision=4):
 p1 = cyclefinder(x, r1)
 stepsize = 0.1
 while stepsize > 0.1 ** precision:
  r2 = r1 +  stepsize
  print(r1, r2)
  p2 = cyclefinder(x, r2)
  if p1 == p2:
   r1 = r2
  else:
   stepsize /= 2
 return round((r1 + r2) / 2, precision)

The function accepts the x-value (which we will always fix at 0.5), the start value of r1 and 
the precision. r1 specifies the value from which the discontinuity is searched. The precision 
is limited by the other functions, for example how precise cyclefinder() is. We will later 
see that four to five decimal places are quite achievable. First, we calculate the number of 
periods at the value r1 in p1. We set the stepsize to 0.1. The next value to be checked, r2, is 
r1 + stepsize. For understanding this, it is helpful to have a clear view of the nomenclature: 
r1 is always to the left of r2 on the number ray or the x-axis. Similarly, p1 indicates the 
number of periods in r1, p2 the number in r2. We then enter the while-loop, which runs until 
the result is found. We set the new value for r2 and intentionally leave a print command 
in the code so we can later reproduce the iterations or convergence process against the 
discontinuity. We calculate p2 and then check whether r1 and r2 are on the same side, so 
they have the same value for p1 and p2? In this case we have to move further to the right 
on the x-axis, so we make r2 our new r1 and then start the loop again from the beginning. 
But if this is not the case and p1 and p2 have different values, we divide the stepsize by 2 
and start the loop again. In the following iteration, r2 will, therefore, be closer to r1 again, 
i.e. will slide to the left on the number ray. This becomes clearer in figure 2.7. In iteration 
9, r1 and r2 have different periods, so in iteration 10, r2 again slides to the left. The process 
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continues until we have approximated the discontinuity. Let us try the function with a 
starting value of 2.7, which is already very close to the known value of 3:

>>> find_discontinuity(0.5, 2.7)
2.7 2.8000000000000003
2.8000000000000003 2.9000000000000004
2.9000000000000004 3.0000000000000004
2.9000000000000004 2.9500000000000006
2.9500000000000006 3.0000000000000004
2.9500000000000006 2.9750000000000005
2.9750000000000005 3.0000000000000004
2.9750000000000005 2.9875000000000003
2.9875000000000003 3.0000000000000004
2.9875000000000003 2.9937500000000004
2.9937500000000004 3.0000000000000004
2.9937500000000004 2.9968750000000006
2.9968750000000006 3.0000000000000004
2.9968750000000006 2.9984375000000005
2.9984375000000005 3.0000000000000004
2.9984375000000005 2.9992187500000003
2.9992187500000003 3.0000000000000004
2.9992187500000003 2.9996093750000004
2.9996093750000004 3.0000000000000004
2.9996093750000004 2.9998046875000006
2.9998046875000006 3.0000000000000004
2.9998046875000006 2.9999023437500005
2.9999

Slowly but steadily we approach the limit. The precision we reach here seems fit for 
demonstrating the technique. What happens if we choose a starting point that is quite far 
away from the limit we are looking for? We can test our algorithm again using 3.1 as a 
starting point. This process is visualised in figure 2.7
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>>> find_discontinuity(0.5, 3.1)
3.1 3.2
3.2 3.3000000000000003
3.3000000000000003 3.4000000000000004
3.4000000000000004 3.5000000000000004
3.4000000000000004 3.4500000000000006
3.4000000000000004 3.4250000000000007
3.4250000000000007 3.4500000000000006
3.4250000000000007 3.4375000000000004
3.4375000000000004 3.4500000000000006
3.4375000000000004 3.4437500000000005
3.4437500000000005 3.4500000000000006
3.4437500000000005 3.446875000000001
3.446875000000001 3.4500000000000006
3.446875000000001 3.4484375000000007
3.4484375000000007 3.4500000000000006
3.4484375000000007 3.4492187500000004
3.4492187500000004 3.4500000000000006
3.4492187500000004 3.4496093750000005
3.4492187500000004 3.4494140625000007

Figure 2.7: Here the process of convergence is visualised for the starting point r = 3.1. The first few iterations 
are not shown, so the scaling is not disturbed too much. As you can see, there are only two cases: either r1 

and r2 are both on the left side of the discontinuity or r2 is only on the right of this limit.
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3.4494140625000007 3.4496093750000005
3.4494140625000007 3.4495117187500006
3.4495

Although the starting point is quite off, we finally reach the correct limit. However, when we 
increase the values of r further, we notice that it becomes impossible to find discontinuities 
since the cycles become chaotic and no clear patterns emerge. The algorithm fails since 
its precision is limited. When the system slides into chaos, it does not seem possible to 
distinguish points of discontinuity any longer.

2.8 • Three Points

A classical problem of antiquity, also known as the problem of Apollonius after Apollonios 
of Perge, is as follows: There are three different points on a plane. How can a circle be 
constructed that intersects all three? The following figure can serve as an illustration.

A solution is always possible if there are three distinct points and not all of these lie on 
a straight line (in this case there is no solution). How can this problem be solved if the 
algorithm is not known? The definition of a circle can serve as a starting point. It is defined 
by its centre, i.e. a coordinate on a plane, and its radius, which is the distance of all points 
from the centre. So the idea is to find a point in the plane which has the same distance 
to all three given points. How can this be done? An iterative procedure is feasible here. 

Figure 2.8: How can we construct a circle that intersects all three given points?



Python 3 for Science and Engineering Applications

● 56

You choose any starting point and measure the distance to all three points, which we 
will refer to as A, B, and C in the following. It can be assumed that at the beginning the 
distances are unequal. Now the selected point is moved slightly and we check how the 
distances change. If they converge, the new point is better. Otherwise, another point must 
be chosen. This standard principle of iterative optimisation works very well when there is a 
measure of improvement. But how do we determine whether a new point brings us closer 
to the solution?

This is not a trivial problem and involves several traps. The goal must be that the three 
distances are equal in the end. The mean value of distances is thus not helpful, since the 
radius to be found is unknown and the value does not allow any judgement about whether 
we are approaching the true centre. More promising seems to be the standard deviation, i.e. 
the mean difference of all three distances from the mean value. If the standard deviation 
becomes zero, all three distances are identical and the centre is found. So we come closer 
to the solution when the standard deviation becomes smaller, right? Unfortunately, it is not 
that simple. The standard deviation can also become smaller if the point moves away from 
the true centre. How can that be? If all three differences go towards infinity, their difference 
to each other becomes smaller and with it the standard deviation. In the end, our "centre" 
is infinitely far from A, B, and C, the standard deviation is zero, and we are further from the 
solution than ever before.

A way that works is a bit more complex and requires some knowledge of vectors and 
geometry, but should lead to the solution. As described above, our chosen point P has a 
distance to each of the given points A, B and C, which must always be positive. If we now 
imagine a cube, we can plot the distance A-P on the x-axis, distance B-P on the y-axis, 
and distance C-P on the z-axis. The solution is found when these distances are all identical. 
When we imagine this in a 3D-plot, the solution must lie on a straight line that intersects 
the origin of the coordinate system and the point (1, 1, 1). At the beginning, we do not 
know where exactly on this line the solution will be, but as long we slowly approach the line 
we should make progress. For a visualisation of this, refer to figure 2.9

Figure 2.9: On the axes, we measure the distance between the current centre-point and each given point 
A, B, and C. As soon as these distances are equal, we touch the diagonal and the true centre is found that 

intersects A, B, and C. Created with Geogebra.org

http://Geogebra.org
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The objective must, therefore, be to minimise the distance between the current selected 
point and line (diagonal). Whenever this difference becomes smaller, we come closer to the 
solution. So some mathematics is necessary. We define the diagonal g as an equation of a 
line in parameter form:

Here b is also called a support vector. u is a direction vector and s is a scaling factor. As 
a support vector, we choose the origin of the coordinate system, so we have to define u 
alone. With three dimensions we get the following equation:

How do we compute the distance of a point and line?

Here, x symbolises the cross product. The absolute value bars indicate we need the norm 
of the vectors. The cross product is defined as:

And the norm of a vector as:
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Now we have collected all the mathematical components we need for computation. What 
remains is the implementation in Python. We do this without creating special objects or 
classes and use simple tuples or lists to hold our vectors.

def norm(vector):
 """Norm of a vector"""
 return (sum(x ** 2 for x in vector)) ** 0.5

def crossproduct(a, b):
 """cross product of vectors a and b"""
 assert len(a) == len(b) == 3
 return [a[1] * b[2] - a[2] * b[1],
  a[2] * b[0] - a[0] * b[2],
  a[0] * b[1] - a[1] * b[0]]

def line_point_distance(line, point):
 """Computes the distance between a line and a point.
 The line is entered as a tuple with support and direction.   
 Support, direction and point are given as lists with 3 elements.
 """
 support, direction = line
 d = [s - p for s, p in zip(support, point)]
 return norm(crossproduct(d, direction)) / norm(direction)

Here we make use of zip() to create tuples from two lists. The elements in the lists are 
paired together based on their indices. For a detail explanation, let’s consider the following 
short example:

>>> x1 = [1, 2, 3]
>>> x2 = ["a", "b", "c"]
>>> list(zip(x1, x2))
[(1, 'a'), (2, 'b'), (3, 'c')]

As zip() creates a generator object, we use list() to display all elements. Otherwise we 
could also iterate over all elements of the generator.

def point_point_distance(x, y):
 """Distance between two points in 2D"""
 assert len(x) == len(y) == 2
 return ((x[0] - y[0]) ** 2 + (x[1] - y[1]) ** 2) ** 0.5 
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Additionally we create a function that calculates the distance between two points. However, 
there is still the problem of three points lying on a straight line. We have to recognise such 
inputs, because otherwise the function cannot generate a correct solution. As long as one 
coordinate is identical for all three points, this problem is trivial, for example, if all points lie 
on the x-axis. But what about the other cases? The points (1, 1), (2, 2) and (3, 3) would be 
such an example. The solution idea is to calculate the direction vector between A and B and 
then between B and C. This means that only the difference between the two points needs 
to be calculated (this is possible because we can consider points in the coordinate system 
as vectors). If the direction vectors calculated are equal, the points lie on a line.

def norm_vector(vector):
 """Create a vector with length 1 that keeps the direction of the  
 input vector"""
 length = norm(vector)
 return [x / length for x in vector]

def falls_on_line(point_a, point_b, point_c, tolerance):
 """Tests whether a b c lie on a line"""
 direction_ab = norm_vector([a - b for a, b in zip(point_a, \  
 point_b)])
 direction_bc = norm_vector([b - c for b, c in zip(point_b, \   
 point_c)])
 scalar_product = sum(x * y for x, y in zip(direction_ab, \
 direction_bc))
 return 1 - abs(scalar_product) < tolerance

To do this, we define a function that normalises a vector, i.e. maintains its direction, but 
gives it a length of 1. We are not interested in how far apart the vectors are, but only if they 
point in the same direction. With the second help function falls_on_line() we check whether 
the points lie on a straight line. To do this, we first calculate the vectors from A to B and B to 
C and normalise them. We then calculate their scalar product. Here, two vectors lie parallel 
if their scalar product is 1 or -1. We use the following formula:

The next function takes four points: the current estimate of our circle centre and the three 
given points A, B, and C. It then calculates the distance of our estimate from the diagonal 
line in 3D as explained above.



Python 3 for Science and Engineering Applications

● 60

def compute_distance(vector, a, b, c):
 diagonal = ((0, 0, 0), (1, 1, 1)) # support and direction
 distances = [point_point_distance(vector, p) for p in (a, b, c)]
 distance = line_point_distance(diagonal, distances)
 return distance, distances, vector

We define the diagonal line, which is always the same. We then determine the paired 
distances between our estimated circle centre, which we will refer to here as a vector, and 
the three given points. We store this information in a list. Then we use the already defined 
function line_point_distance() and determine how far our estimate is from the diagonal line. 
Last but not least, we need a function that shifts our current mean value and generates new 
potential centres. We also outsource this so the main function does not become too long. A 
simple implementation could look something like this:

def move_vector(vector, coordinate, movement):
 if coordinate == 0:
  return [vector[0] + movement, vector[1]]
 else:
  return [vector[0], vector[1] + movement]

We accept three arguments, the current centre of the circle, which we take as a vector 
again, the coordinate to move (we move either x or y coordinate but not both at the same 
time), and the distance to move. Since coordinate is only 0 or 1 here, there are only two 
conditions to consider. Finally, we have created all auxiliary functions and now can focus 
on their integration.

import math
def circlefinder(a, b, c, tolerance=0.01, maxiter=10**5):
 if a == b or b == c or c==a:
  raise ValueError("Enter three distinct points!")
 if falls_on_line(a, b, c, tolerance=0.1):
  raise ValueError("All given points lie on one line!")
 center = [(a[0] + b[0] + c[0]) / 3, (a[1] + b[1] + c[1]) / 3]
 step = 1
 dist1, distances, _ = compute_distance(center, a, b, c)
 for iteration in range(maxiter):
  candidates = []
  for sign in (-1, 1):
   for coordinate in (0, 1)
    candidates.append(compute_distance \  
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    (move_vector(center, \
    coordinate, sign * step), a, b, c))
  new_dist1, new_distances, new_center = min(candidates)
  if new_dist1 < dist1:
   dist1, distances, center = new_dist1, new_distances, \  
   new_center
  else:
   step *= 0.5
  if dist1 < 0.01 * tolerance:
   break
 else:
  raise ArithmeticError("Does not converge")
  
 dist_a, dist_b, dist_c = distances
 if not (math.isclose(dist_a, dist_b, abs_tol=tolerance)
 and math.isclose(dist_a, dist_c, abs_tol=tolerance)):
  raise ArithmeticError("Estimate is not true center")
 return (round(center[0], 3), round(center[1], 3)), round(dist_a, 3)

The function accepts five arguments: the three given points (A, B, C), tolerance (which 
determines the accuracy of our result), and the maximum number of iterations. We will 
discuss the meaning of this value in more detail in a moment. After this, we directly check 
whether the points are identical or lie on a line. If so, we throw an error message. We then 
calculate a first estimate for the centre of the circle as a simple average of the given points, 
so that a starting value is available. Step, which determines how far we move the centre 
of the circle in the search for better positions, is initially set to 1. Also, for these values, we 
calculate the first distance of our estimate from the diagonal. Here we use tuple unpacking. 
Since we do not use the third return value, we unpack it into an unused variable, which 
we name with the underscore _. This is followed by the main loop, which at the latest 
terminates when the iteration limit is reached. This is a backup that prevents the function 
from running too long. This way it is possible that even after many attempts, no good 
solution is found, which can happen if the points lie unfavorably, for example when they 
are almost on a straight line.

In the main loop, we create an empty list in which we collect the new centre point 
candidates. We hope that one of the points is a better estimate than our current value. 
We iterate over the signs and coordinates, which means that we always want to test four 
new coordinates based on our current mean value. These are shifted in either horizontal 
or vertical dimensions by the value of step. If our current centre estimate would be (0, 0), 
we would try the values (1, 0), (0, 1), (-1, 0) and (0, -1) in the first iteration. Using move_
vector() we calculate these four points first and then compute, for each of the four points, 
whether this point brings an improvement. This can be measured by the fact that our point 
is closer to the diagonal in the 3D visualisation. Thus, at the end we choose the smallest 
value regarding this distance value stored in candidates. If this value is smaller than the 
previous value, we have found an improvement and apply these values to all relevant 
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variables. If this is not the case, it means all four potential candidates are not better than 
the current position. This means we are no longer getting closer to the true centre, which 
may be because we are already very close to it, but step is too large to allow an effective 
approximation. In this case, we halve step. Finally, we check if we are already very close 
to the true centre and thus can leave the loop. Otherwise, the next iteration starts. If we 
reach the iteration limit, we abort and generate an error message.

If a good approximation has been found, we can perform a final check. We simply test 
whether the distances between the centre point found and all three given points A, B, 
and C are approximately the same. If so, the test is successful and we output the result. 
Otherwise, we generate an error message. Now we can calculate an example. For this, we 
give three points.

>>> circlefinder((2, 2), (-5, 1), (-1, -6))
((-1.085, -1.406), 4.595)

The centre of the circle is returned in a tuple, the third value is the radius of the circle. 
Finally, we have found the correct circle and the challenge is completed.

Appendix: Decorators

If we want to change the behavior of functions, we can of course rewrite them. But what 
if we want to do it dynamically? We also want to adjust the behavior of multiple functions 
in the same way. Normally we would have to rewrite each function separately. To mitigate 
the problem, Python provides decorators. A decorator can dynamically adapt the behavior 
of any function, making the code flexible.

In this appendix, we would like to look at an example based on circlefinder() as shown 
above. This function takes three points in a plane and finds the circle that intersects all 
three. The output is a tuple with the coordinates of the circle centre and radius. Suppose we 
need to extend this function to a third output, namely the current date, which can be useful 
for logging purposes. To do this, we would have to adjust the function - either extend the 
tuple before output or insert a print statement. Is there another way? Yes, with a decorator. 
The basic idea is to treat functions in Python as objects that can be used as arguments in 
other functions. To do this, we first code the decorator as a regular function:

def date_adder(func):
 date = "2020_03_04" 
 def inner(*args, **kwargs):
  print("Current date:", date)
  return func(*args, **kwargs)
 return inner
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The new function date_adder() has exactly one argument, namely the function we want 
to modify. We want to remain as flexible as possible and use *args and **kwargs to make 
sure that all possible arguments of the function to be decorated are kept. Then comes our 
real adjustment, namely the display of the date. After this, the function to be changed is 
called normally with its arguments. This completes the inner function. Now we only need to 
return inner in the outer function. Attention, the function is not called (otherwise you would 
have to write inner()). Now we have to make sure that the decorator is active. Since we 
want to call the original function at the end, as usual, we wrap it into the decorator. We do 
this interactively and call everything as a test:

>>> circlefinder = date_adder(circlefinder)
>>> circlefinder((2, 2), (-5, 1), (-1, -6), 3)
Current date: 2020_03_04
((-1.085, -1.406), 4.595)

We simply redefine the function: We use the same name, and pass the original function to 
the decorator. We then call the function as normal, so nothing has changed in handling and 
we don't have to change anything else in the code, which is a blessing for longer scripts. 
We get the correct result, but before we do so, the date is displayed as requested. It is 
important to understand when a function is called and when it is treated like an object. 
If you think of the function as a machine, we start it whenever you use parentheses, 
for example func() or func(argument), then the function becomes active and returns the 
desired result. If a function is used without these parentheses, it is just like carrying the 
machine around, putting it in a list, or even passing it to another machine. This is exactly 
what we are doing. We take a second machine and pass the first one with some additional 
code. When you start the second machine, the additional code is executed and the first 
machine is started as usual. You don't notice this because we simply rename the second 
machine into the first one. The idea is you can apply this decorator to any function as 
required. Here is an example:

@date_adder
def addition(x, y):
 return x + y

What happens when we call addition() now?

>>> addition(1, 2)
Current date: 2020_03_04
3
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We'll see how we can use the decorator alternatively with @ (somewhat more elegant 
syntax, the way it works is identical). It is important to note that this action must be applied 
at the definition of the function, not the function call. This means a decorator modifies the 
behaviour of a function globally. No matter where it is subsequently called, the decorator 
is always active at the same time.

In summary, decorators are powerful tools that, in some cases, allow for quick, dynamic, 
and comprehensive customisation of one or more functions. For the very clear tasks shown 
in this book, they are often not that useful because we can directly change code. In this 
respect, it is important to carefully consider when a decorator can be used to advantage, 
and when it is easier to change the function itself.

2.9 • Close Together

Given is a number of points in a plane. Now it is up to you to find the pair of points with the 
smallest distance to each other. Sounds easy, right?

It is not difficult to come up with a naive algorithm. Simply calculate the distance between 
all conceivable pairs. So from point A to B, then from A to C, A to D, and so on... At n 
points, these are a total of (n(n – 1)) / 2 operations, i.e. at 1,000 points nearly half a 
million. The runtime of this algorithm is not exactly short, or to put it another way, can we 
do better? Indeed. Let's first implement the naive algorithm, which we will call the brute 
force approach here. For the calculation, we use the itertools module, which makes sure we 
get all pairs and don't count twice, i.e. we first measure A to B and later B to A, since the 
distance is symmetrical. Here it is worth taking a look at how the function combinations() 
works.

>>> from itertools import combinations
>>> x = ["A", "B", "C", "D"]
>>> for element in combinations(x, 2):
>>>  element
('A', 'B')

Figure 2.10: Which two points have the shortest distance to each other?
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('A', 'C')
('A', 'D')
('B', 'C')
('B', 'D')
('C', 'D')

We have to take into account that itertools creates an iterator at this point, i.e. a generator 
that outputs all possible combinations. We can now use this for calculation. We calculate 
the distance between two points in the plane with Pythagoras’ theorem, which we do in a 
small function.

from itertools import combinations
def distance(p1, p2):
 """Distance of two points"""
 xdiff = p1[0] - p2[0]
 ydiff = p1[1] - p2[1]
 return (xdiff ** 2 + ydiff ** 2) ** 0.5

def bruteforce(points):
 """Finds the pairing with the shortest distance"""
 return min(
  (distance(*pairing), pairing)
  for pairing in combinations(points, 2)
 )

Actually we can fit the entire function into a single expression. Let's have a closer look. 
First, combinations() generates the iterator object that gives us a pairing of all tuples. 
Since we invoke option 2, pairs of two are created. Now we loop over this iterator and feed 
the resulting tuples into distance(), for which we use tuple unpacking (asterisk operator). 
We return the tuple with the minimal distance and the pairing itself since we use the min-
function on the created generator expression. If you think this is too complex, try to rewrite 
it more explicitly.

So far, so slow. As explained above, this function works through all points and thus 
guarantees the correct result. But we can be faster if we divide and conquer. The idea is 
simple: We have a problem we cannot solve because it is too big or complex. We, therefore, 
divide the problem into smaller sub-problems. Either each sub-problem is solvable, or we 
divide it again. We do this until we find a problem we can solve. We then propagate the 
solution back upwards until we reach the origin. This works in this case because the effort 
of testing our problem in the naive algorithm does not grow linearly, but quadratically. 
Twice as many points mean a quadrupling of the operations.
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The procedure is now as follows: We take the list of points and check how many elements 
it contains. If there are less than five, we use the naive algorithm and return the result. 
If there are more, we first sort the points by their x-coordinate. We then divide the points 
into two equally sized lists, the left and right side. Now we apply the algorithm recursively 
to each sublist. Either each list is short enough and we get a result directly, or we split the 
list again. In the end, we get the minimum distance for each sublist. Now we can compare 
both and learn whether the upper limit is on the left or right side. This leaves only one 
problem: Theoretically, the shortest distance can also exist between points that are in the 
other list. So P1 is on the left side of the limit, P2 is on the right side and the distance P1-P2 
is shorter than the one found in the left and right list. Here we use a simple solution. We 
take the shortest upper bound found so far from either the left or right sub-list and label it 
δ. If this limit is not also the lower limit, the difference still to be found must be less than 
δ. Only points with a distance from the "separating line" that is less than δ are considered, 
see figure 2.11.

We collect these points in L1 (left of centre) and L2 (right of centre). On average, the 
number of points in both lists will be considerably smaller than the total number of points, 
so that we can now test all pairings again. Also, we only have to test the pairs that are on 
different sides of the middle line, otherwise, they have been tested before. It can be shown 
that there is an even better solution. Since the proof cannot be presented concisely at this 

Figure 2.11: If the distance of a pairing those points lie on different sides of the dividing line is shorter 
than the shortest distance on either the left or right side, which we call δ, this pairing has to fall inside the 

depicted box. Note: δ = min(δ1, δ2) Creator: Subhash Suri, UC Santa Barbara.
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point, we refer to the literature and keep the simpler algorithm.8

We can now quite easily implement this approach. Since it is a recursive function, we must 
remember to specify the base case first. If this is reached, the functions called must start 
to produce returns, otherwise, the recursion is infinite. In our case, the base case is that a 
list contains less than five elements.

def mindistance(pointlist):
 """Finding the shortest distance with divide and conquer"""
 length = len(pointlist) 
 if length < 5:  #Base Case
  return bruteforce(pointlist)
 
 points_left = pointlist[:length // 2]
 points_right = pointlist[length // 2:]
 min_left = mindistance(points_left)
 min_right = mindistance(points_right)
 d = min(min_left, min_right)[0]
 limit_left = [p for p in points_left if abs(p[0] - points_right[0] \ 
 [0]) <= d]
 limit_right = [p for p in points_right if abs(p[0] \
 - points_left[-1][0]) <= d]
 distances = [min_left, min_right]
 for x in limit_left:
  for y in limit_right:
   distances.append((distance(x, y), (x, y)))
 return min(distances)

The function is surprisingly compact. We define the base case and call the naive function 
when the list of points to solve is very short. Otherwise, we split the list (we assume that 
it is already sorted!) in half. This is where the recursion starts: We solve each sublist 
(points_left and points_right) with exactly the function we are writing! This makes us use 
the bootstrapping technique again, pulling ourselves out of the swamp by our straps since 
we already assume at this point that our function works. We receive the result for both 
sublists and store the shortest value in d. Now we define two new lists, which in turn are 
sublists of the other lists. We set the point closest to the middle (i.e. the ends of the list) 
as references and measure the distance from this value. We therefore only include points 
that can lie within the box shown. We then create another list, distances. In this list we now 
save all pairs of limit_left and limit_right. We iterate over all elements and calculate the 
distances. At the end we only have to output the smallest value and we are done.

8 For a presentation of the improved search see http://people.csail.mit.edu/in-
dyk/6.838-old/handouts/lec17.pdf or https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/
closepoints.pdf

ttp://people.csail.mit.edu/indyk/6.838-old/handouts/lec17.pdf
ttp://people.csail.mit.edu/indyk/6.838-old/handouts/lec17.pdf
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/closepoints.pdf.
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/closepoints.pdf.
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If you get a headache with recursions you should think of a simple example with a short list 
and follow it either with pen and paper or in the console itself using print statements. Now 
we have no other choice than to test if we can keep what we promised. Are we really faster, 
was it worth it? For this purpose we write a main function with a test.

import time
import random

def timetest():
 random.seed(1234)
 allpoints = [(random.random() * 100, random.random() * 100) for i \
 in range(5000)]
 start = time.monotonic()
 print(bruteforce(allpoints))
 print(time.monotonic() - start)
 
 start = time.monotonic()
 allpoints.sort()
 print(mindistance(allpoints))
 print(time.monotonic() - start)

We define a seed so we can reproduce the random points in a repeated call and build a list 
containing random points. We then stop time, once naively, once with recursion. With the 
recursion variant, we still have to remember to sort the list. What is the difference?

>>> timetest()
(0.012268040707845339, ((88.13955858203019, 90.2421702279523), 
(88.14403029179554, 90.23074619037429)))
7.409728050231934
(0.012268040707845339, ((88.13955858203019, 90.2421702279523), 
(88.14403029179554, 90.23074619037429)))
0.06520891189575195 

We have improved from 7.41 to 0.065 seconds, a factor of 113! This is not insignificant and 
shows what can be achieved with a little thought. Also, we haven't even implemented the 
best version, so there is still some room for improvement.
Assignments

1. In the example shown, we sort the points list in the main function and not the actual 
recursion function, which is a problem. If someone wants to load the function into her 
script and imports the file as a module, the results will be wrong because the list is not 
necessarily sorted at the beginning. A simple solution would be to include the sorting in 
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the recursion, but it has the disadvantage that every time the function calls itself, the 
list is sorted again, which is unnecessary because the sorting does not change, even 
after splitting. So this would be an unnecessary slowdown. Rewrite mindistance() so 
that sorting by x-coordinate is guaranteed and yet the speed does not suffer. Hint: You 
will have to define a function within the function.

Appendix: *args and **kwargs

In this task, we used the unpacking operator, which is usually referred to as *args (the 
name args, referring to "arguments", is arbitrary, the declaration in the code is done by 
using the asterisk operator *). This operator is very useful when we are defining a function, 
but want to allow an arbitrary number of arguments. We have already seen several times 
how we can create a simple function that adds exactly two numbers. What if we have 
more than two? Also, what if we want to allow not only addition but also multiplication, for 
example? With *args we can be very flexible.

def calculator(operator, *args):
 if operator == "add":
  return sum(args)
 if operator == "multiply":
  res = 1
  for element in args:
   res *= element
  return res

Our function seems to accept exactly two arguments: the kind of arithmetic operation and 
*args. We use the asterisk here to indicate we accept any number of additional arguments. 
Python will later collect these in a tuple for us. Depending on the type of operations, we 
perform either addition or multiplication. As you can see, internally we treat *args like a 
normal list or tuple. It can be thought of as an iterator. Now let's test this function.

>>> calculator("add", 1, 2, 3)
6
>>> calculator("multiply", 1, 2, 3, 4)
24

It does not matter how many arguments we add. It should be emphasised that we don't 
collect them in a list or tuple beforehand, so do not pass a list with any number of items, but 
additional arguments. By defining the function with *args, Python can flexibly handle this. 
It also shows that this trick only works if this has been taken into account in the definition. 
Therefore, if we use Python's internal functions, we need to check or try out if *args is 
allowed. Similarly, there are **kwargs ("keyword-arguments"), which are treated like a 
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dict. This can be useful, for example, if you write a function that accepts different options 
but it is not clear beforehand exactly what they are called or how many are available.

def display(name, **kwargs):
 print("Hello", name)
 for key, value in kwargs.items():
  print(key, value)

>>> display("User", Day = 1, Place = "West", Flag = True)
Hello User
Day 1
Place West
Flag True

You may specify both *args and **kwargs in one function, however, they must always be 
placed as the last arguments.

2.10 • Backtracking

Backtracking is the process of solving a problem by systematically trying out all possible 
solutions. It is therefore a brute force method that can be useful in some cases. As long 
as the task does not involve too many possibilities, backtracking can be an intelligent 
approach. As an example, one can mention finding the way out of a maze. At a fork in the 
path, you always choose the paths from right to left and mark an already chosen path. 
If you reach a dead-end, you return to the last unused branch. If you use this method 
consistently, you will reach the end of the path at some point (in the worst case you had to 
try every single pathway). All you need is a decision rule and memorising all paths already 
taken. This way, a path is only used once.

As an applied example, we will consider the problem of the Knight’s tour (see figure 2.12). 
This is about moving the knight on an empty chessboard so that it enters each of the 64 
squares exactly once. The start is in one of the corners. By trial and error, you will find that 
this is not easy and you will often reach a position where no valid move to a previously 
unoccupied square is possible. The idea for the solution is the following: the knight starts 
in a corner and randomly chooses a field that has not been visited. This is done until he 
reaches a dead-end, i.e. he cannot move without violating the rule. He then goes back to 
the last field where an unvisited field is still available. The dead-end pathway is kept in 
memory and never entered again.
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Figure 2.12: Shown is a path for the knight that enters each square exactly once. Creator: Jan.Kamenicek 
(Wikimedia Commons).

The task is divided into multiple subtasks or functions. First, the chessboard must be 
represented numerically. One possibility is using a Cartesian coordinate system, where 
each square is defined by two coordinates (row and column). To speed up the calculation, 
in the example we consider a chessboard with only 25 squares, i.e. five rows and columns. 
However, we will design the program in such a way that the field size can be defined 
arbitrarily, whereby it should be noted that solutions do not exist for all field sizes. Field 
(0, 0), which we want to look at in the upper left corner, would thus have the field number 
0, the field (4, 4) is in the lower right corner with field number 24. Then we need another 
function that computes all available moves for the knight. We have to consider both the 
limits of the chessboard so that the knight does not jump out as well as all squares that 
have already been visited in previous moves and are thus blocked.

def posfinder(position, path, deadend, size):
 """Finding all available squares for the knight"""
 posfields = []
 for a, b in [(-2, -1), (-2, 1), (-1, -2), (-1, 2), \
  (1, -2), (1, 2), (2, -1), (2, 1)]:
  a += position[0]
  b += position[1]
  if 0 <= a <= size - 1 and 0 <= b <= size - 1:
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  # Position is within the chessboard
   if (a, b) not in path and (path + [(a, b)]) not in \ 
   deadend:
    posfields.append((a, b))
 return posfields

The function accepts four arguments: the current position of the knight, the path currently 
taken (i.e. a list of all the squares it has entered since the start), a list of all paths already 
taken that have ended in a dead-end, and the size of the chessboard. We create an empty 
list in which possible move fields are stored. We then iterate over all possible positions. 
As you can easily check, there are a maximum of eight possible moves for a knight (less 
if he is standing at the edge). We can go through these manually and store them in a list. 
We calculate the new field for each possibility and check if it is still inside the limits of 
the chessboard. If this is the case, we check whether it has already been entered on the 
current route or whether it is a blocked field that can no longer be entered. To do so, we 
"realise" the move and add it to the current path for testing. If this route already appears in 
deadend, we have found a previously known dead-end and this field must be sorted out. If 
these contingencies are excluded, the field can be added to posfields as a potential square 
to jump to. Now the function knight() can be created. It uses posfinder() to find the legal 
moves and otherwise only implements the general logic of backtracking.

def knight(size=5):
 startpos = (0, 0)
 path = [startpos]
 deadend = []
 iteration = 1
 while len(path) < size ** 2:
  iteration += 1
  # Generate all further moves:
  moves = posfinder(path[-1], path, deadend, size)
  if moves:
   path.append(moves[0])
  elif path == [startpos]:
   raise ValueError("Cannot be solved")
  else:
   #Backtrack when in deadend:
   deadend.append(path)
   path = path[:-1]
 print("Iterations:", iteration)
 print(path)
 print([b * size + a for a, b in path])

Our function accepts the size of the chessboard as the only argument, which we set here as 
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default to 5. We initialise the starting position of the knight and create a list in path where 
the current route is stored. At the beginning, this list contains only the starting position. 
With deadend we use a second list in which we store paths we have tried and should no 
longer be used. In iterations we store how often the main loop has been run. The main loop 
runs until the path has reached a maximum length. This is the case when each field has 
been entered exactly once, which is the square of size.

We increase the counter by 1 and use our previously defined helping function to generate 
potential moves in moves. If the list is not empty, we select the first best move, append 
it to our current path and start the loop from the beginning. Since our helper function 
already checks that the move is legal and not yet entered, no further checks are necessary. 
However, if the list is empty, this shows that no legal move is possible from the current 
position. We then check if we are standing on the starting field. If this is the case, we have 
reached a situation where a solution is impossible. This can happen with certain field sizes. 
However, if we are not standing on the starting field, we have reached a dead end. In this 
case, the actual backtracking mechanism is invoked. We add the current route to deadend 
to memorise that we don't use it in the future again. We then delete the last move from the 
current path and restart the loop. Since we updated deadend, posfinder(), the same move 
the cannot be used the next time we run it.

If we tried all possibilities in this way, the board is either declared unsolvable or we have 
found a way. In this case, we get some statistics and show the knight’s path so we can 
retrace it if necessary. We can now test the function.

>>> knight()
Iterations:  9995
[(0, 0), (1, 2), (0, 4), (2, 3), (0, 2), (1, 0), (3, 1), (4, 3), (2, 4), 
(0, 3), (1, 1), (3, 0), (2, 2), (1, 4), (3, 3), (4, 1), (2, 0), (0, 1), (1, 
3), (3, 4), (4, 2), (2, 1), (4, 0), (3, 2), (4, 4)]
[0, 11, 20, 17, 10, 1, 8, 19, 22, 15, 6, 3, 12, 21, 18, 9, 2, 5, 16, 23, 
14, 7, 4, 13, 24]

Assignments

1. According to H. C. von Warnsdorf, there is a simple heuristic to speed up the solution. 
The knight should always move to the field from which he has the fewest further moves 
available. Add this rule in the current program and check whether the speed can be 
improved by this.

2. This task was actually solved without recursion. Change this and combine recursion 
and backtracking to solve the knight’s tour.

3. Sudoku is a popular puzzle, where in a 9x9 square the numbers 1 to 9 may only occur 
exactly once in each row, column and in each of the nine quadrants. Write a function 
that accepts an unsolved Sudoku and solves it using backtracking. Hints:
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• First, think about how a Sudoku board can be numerically represented in Python.
• Write a function that checks whether the Sudoku has been solved successfully and if 

each field has a number.
• Write a function that checks which numbers are still possible for a given field. These 

can then be tested systematically.

2.11 • Numerical Integration

The derivation and integration of functions are one of the central interests of analysis. 
There is probably no scientific discipline that does not use functions and differential calculus 
to describe and evaluate models about reality. While derivation of functions can usually be 
done very well with algorithms because only a few rules have to be applied, integration 
is much more challenging. Although there are basic rules and algorithms available, more 
complex functions require a lot of experience and indeed creativity. It is not without 
reason that some universities organise competitions for mathematics students, where the 
participants have to integrate certain functions as fast as possible. This is why computers 
had a hard time with this task in the past. It was often necessary to resort to reference 
books. Nowadays, due to enormous increases in computing power and overall progress 
in computer sciences, even complex functions can usually be automatically integrated. At 
this point, we will show a way to compute the integral of complex functions without any 
knowledge of basic rules and formulas.

Integration is about determining the area under a curve. Thus, we are looking for a surface 
area for a certain function in a certain section of the function. Let us first look at a simple 
example (figure 2.13).

Figure 2.13: How you do calculate the total area of S? Creator: 4C (Wikimedia Commons)
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Figure 2.14: We want to calculate the grey shaded area. Creator: Snubcube (Wikimedia Commons)

Given is the function f(x) as well as the points on the x-axis which limit the area, i.e. the 
integration area (a and b). The area is defined as the area between the curve and the 
x-axis. In this example, this is no problem, because the function does not intersect the axis. 
There are basic rules for various functions. Let's look at a simple high school math example. 
Given is the function f(x) = x2. We want to determine the area of the curve in the range 
from 0 to 2. We can represent this graphically as follows (next figure).

We can look up the rules and learn that the integral of the original function must, therefore, 
be F(x)= (1/3)x3. We use the capital letter here to indicate it is the associated root function. 
We can do the test and derive this root function, which again returns the original function. 

The calculation of the area is done follows:

As we specify dx, we determine that the function is to be integrated for x. If we apply this 
procedure to the given function, we receive the following result:
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We have determined the area exactly, but it was only possible because we knew the 
formula or looked it up. What about much more complex functions? What if we do not 
know the integration rule? In this case, numerical integration helps us. The basic idea is 
simple: We divide the entire area under the curve into rectangles of equal width. We can 
draw these and determine the area of all rectangles, which is easily possible because we 
can calculate the y-coordinate by computing it with the given function. We then add up all 
partial areas and have approximated the total area. The more rectangles we calculate, the 
more accurate our estimate becomes. Let us take a look at this graphically (figure 2.15).

So our code has to do the following: first, the entire integration area is broken down into 
n equally sized sections. We then select the x-value for a specific point within each section 
(we will simply select the left margin). For this point, we then determine the corresponding 
function value y. The area is then the product of y and the width of the section. Finally, we 
sum up all the subareas. What sounds simple is also quite compact.

def integration(function, x1, x2, n):
 if x1 >= x2:
  raise AssertionError("x1 must be smaller than x2!")
 totallength = x2 - x1
 partlength = totallength / n
 totalarea = 0
 for i in range(n):
  xvalue = x1 + partlength * i
  yvalue = eval(function.replace("x", str(xvalue)))
  partarea = yvalue *  partlength
  totalarea += abs(partarea)
 return round(totalarea, 5)

Our function has four arguments: the given function, the start, the end of the integration 

Figure 2.15: The sine is integrated numerically by dividing it up into rectangles. Note that the x-axis is scaled 
in Pi so 1.0 represents 3.141…. Creator: DMGualtieri (Wikimedia Commons, CC BY-SA 4.0)
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area, and the number of rectangles to be generated. We first check that the start is smaller 
than the end of the integration area. We determined the total length of the integration 
area and the length of a partial area. For example, if the total length is 10 and we want to 
draw 10 rectangles, each one is exactly 1 wide. Then we start a loop that iterates over all 
partial areas. We must start at 0 and go until n. The x-value should always be taken at the 
left edge of a partial area. So it is the lower limit of the integration area plus the product of 
partial length and number of the current rectangle. The corresponding y-value must now be 
computed using the given function. To do this, we first replace all x-values in the function 
with the current value. So if the function is f(x) = y = x2, the value 0 is inserted in the first 
step and the function is evaluated as f(x) = y = 02. For this we use string.replace(oldvalue, 
newvalue). After this, the actual evaluation takes place, the result is stored in yvalue. The 
partial area is the product of the partial length and the y-value. We add this to the total 
area. Here we specify that the absolute amount is used. This is relevant if the function goes 
below the x-axis, i.e. negative y-values are produced. If we do not handle it in this way, 
negative areas could be produced, which we do not want at this point. After iterating over 
all rectangles, the total area is rounded and returned. So far so clear - time for a test run. 
We must pass our function as a string.

>>> integration("(x)**2", 0, 2, 10**4)
2.66707

We see that our previous result is approximated. It is also a good idea to enter the function 
in a special way. We put additional parentheses around every X. If we do not do this, 
errors could occur if negative values are evaluated. The following example shows why. Our 
function is identical and we want to evaluate the value -5.

>>> -5**2
-25
>>> (-5)**2
25

These errors can be avoided by the additional parentheses. Now let's look at figure 2.15 
again and approximate this function. What if we do not know how to integrate the sine? 
With numerical integration, this is no longer a challenge for us. So we integrate the sine 
from 0 to 2 Pi, which corresponds to the figure above exactly.

>>> import math
>>> integration("math.sin(x)", 0, 2 * math.pi, 10**4)
4.0
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For validation, we can either know that the root function of the sine is the cosine and then 
integrate it section by section (with respect to the roots), or ask Wolfram Alpha, which also 
confirms our computation.9

One final word of caution on eval(). We used this function so the mathematical function 
given by the user can be directly run as Python code. This can be dangerous when the user 
inputs not a function as intended by the programmer but malicious code. Theoretically, 
the user could provide code that steals data or erases the hard drive. These are extreme 
examples but should highlight that eval() must always be used with caution. Since we are 
not writing software for the end-user but rather just small tools for us, this is no concern 
at this point.

9 https://www.wolframalpha.com/input/?i=integrate+absolute+sin\%28x\%29+-
from+0+to+2pi

https://www.wolframalpha.com/input/?i=integrate+absolute+sin\%28x\%29+from+0+to+2pi
https://www.wolframalpha.com/input/?i=integrate+absolute+sin\%28x\%29+from+0+to+2pi
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Chapter 3 • Statistics and Simulations

Python is well suited for statistical analysis and enjoys an excellent reputation in the 
young discipline of data sciences. In the following examples we will forego the enormous 
possibilities offered by additional packages such as NumPy or Pandas and limit ourselves 
to the standard tools that already allow for a wide range of analysis. Even comprehensive 
simulations can be constructed quickly in Python, thus allowing us to dispense with analytical 
calculations. This is very useful if such an analytical solution is not available or extremely 
complex. Simulations are ultimately based on random numbers, which are available in 
Python using the random module.

3.1 • Speedtest

We already measured the runtime of functions and programs in previous assignments. This 
can be extremely useful, for example, in benchmarks or to determine which implementation 
of a task is the fastest. Until now, measurement approaches have been naive and based on 
exactly one run. We should keep in mind that such a value can be distorted, for example, 
because many programs are running in the background and taking up computing time. 
Various methods can be used to obtain a better result. One possibility is to perform the task 
repeatedly and average the measured times. Thus the effect of extreme measurements or 
outliers can be reduced. It is also more convenient to test several functions directly against 
each other instead of having to call them individually. We will, therefore, create a function 
in the following that accepts an arbitrary number of functions to be tested and determines 
their runtime. Likewise, we can randomise the order in which the functions are tested to 
avoid position effects.

import time
import random
import statistics as stats
def speedtest(functions, n):
 assert isinstance(functions, list)
 times = {f: [] for f in functions}
 for run in range(n):
  random.shuffle(functions)
  for function in functions:
   start_time = time.monotonic()
   function()
   end_time = time.monotonic()
   times[function].append(end_time - start_time)
 for function, runtime in times.items():
  print(f"{function}: {stats.mean(runtime):.4f} | \
  {stats.median(runtime):.4f}")

First, we import three modules with functions we need. We can abbreviate long module 
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names for simplification and introduce our own abbreviation. The function we create 
accepts two arguments: a list of all the functions we want to test and the number of 
passes. It becomes clear that we can treat functions in Python just like other objects and 
can therefore add functions to other objects. The more passes we choose, the more precise 
our result will be. We also check the functions are passed as a list and not as a tuple, since 
we can only randomly shuffle lists. We then initialise a dict where we store the results of 
the passes for each function. Since functions are immutable in Python, we can use them 
directly as keys. We start a loop that runs until all passes are processed. In each pass, the 
order of functions is subsequently randomised and each function executed. The time is 
measured by the difference between the two timestamps. We add the times in the dict to 
the respective functions. Finally we display the results. We iterate over all keys and values 
in the dict and use F-Strings for a clean display.

Assignments

1. Choose a previous example from the book and compare the runtime of different 
implementations using speedtest().

2. In a previous example we talked about decorators. Define a decorator function that 
can be attached dynamically to arbitrary functions and measures the runtime of the 
function when it is called.

3. To use speedtest() with functions that utilise arguments you can use functools.partial(). 
Test this in action. For a demonstration, refer to page 143

3.2 • Pi (again)

In a previous task we calculated the constant Pi with arbitrary accuracy. The following task 
has a similar objective, but will rely on random draws and statistics instead of numerical 
computation. The basic idea is to repeatedly draw random points and to test whether 
they lie inside or outside a circle. If a sufficient number of points is drawn, Pi can be 
approximated in this way.

Figure 3.1: Simulation of randomly drawn points. The hollow ones are within the circle, the other ones on the 
outside.
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The basic idea is as follows. Within a square with side length 2 (thus with an area of 4) an 
incircle with radius 1 is drawn. The area of the circle is r2 *pi, the area of the square (2r)2. 
To simplify things, we select only a quarter of the square, which has an area 1. Using simple 
algebra we can deduce the following:

Atotal = r2 = 1

The area of the circle within the square is calculated as follows:

Acircle = ¼ * r2 * pi

We see that Pi is present in this formula so can deduce it by rearranging the original 
equation as follows:

pi = 4 * (Acircle / r2) = 4 * Acircle

The solution is as follows: We randomly draw points from the square and check for each 
point whether it lies inside or outside the circle. We only need to calculate its distance 
from the origin to check this. In this way, we can approximate the area of the circle by 
the proportion of points that fall inside. Once we have found this area, we have Pi. An 
implementation as a function is written compactly.

import random
def pi2(n):
 inside = 0
 for i in range(n):
  x, y = random.random(), random.random()
  distance = (x ** 2 + y ** 2) ** 0.5
  if distance <= 1:
   inside += 1
 return 4 * (inside / n)

We create a loop in which a random point between zero and one is drawn each time, which 
is implemented via an x- and y-coordinate. We then use the Pythagorean theorem to 
calculate the distance of this point from the centre of the circle. If this is less than or equal 
to the radius, we know the point lies within the circle. If this is not the case, it must logically 
fall outside. Finally, we need to count how many points are outside. Now we test the result.

>>> pi2(10**6)
3.141664574393

Even if this method works as intended, it is not very efficient. To get an acceptable 
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approximation of Pi we need to take at least a million draws, which is quite a lot. Therefore, 
when it comes to performance, the algorithmic solution might be preferable. I am not 
sure how many people could come up with the solution John Machin found. The statistical 
approach is easy to grasp and quickly implemented, which proves simulations can be a 
valid tool for inference and analysis.

Assignments

1. Calculate Pi using the statistical method for 102, 103, 104, 105, 106, and 107 random 
draws, and each version with 50 runs. How many correct decimal places are reached 
on average?

2. The Monty Hall problem comes from a well-known American game show. The procedure 
is quite simple: one win and two blanks (goats) are hidden behind three doors. The 
candidate chooses one of the doors (e.g. door 2). Then the game master opens a door 
with a blank (e.g. door 1). Now the candidate has the option to revise his original 
decision or to stick to it. The question is now: Can the candidate increase her chances 
of winning if she changes her choice after opening the first door? We assume the game 
master always opens a door with a blank. Define a function that approximates the 
candidate's chances of winning for both decisions (change or keep) using simulations.

3. The probability that out of a group of n people at least two have birthdays on the same 
day can be calculated with the following formula. Write a program that solves this task 
using simulations and approximates the probability. After that, implement the shown 
formula in Python and compare results.

4. It is well known that the chances of winning are relatively low when playing the lottery. 
Implement a function that simulates the drawing of lotto numbers 6 out of 49 (including 
the additional number). Feed the function with your lotto numbers and find out what 
total profit you have achieved after 50 years of playing the lottery. Assume one game 
costs 1.50. The winning odds are shown in the table below.
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Appendix: Random Numbers in Python

Simulations and random draws are available in Python by functions in the random module. 
This appendix will introduce some of the most important functions, as they repeatedly 
appear later in this book.1 First, the module must be imported and then the individual 
functions can be called. Let's look at how we can obtain random and yet reproducible 
results.

>>> import random
>>> random.seed(123)
>>> random.random()
0.052363598850944326
>>> random.seed(123)
>>> random.random()
0.052363598850944326

Whenever results need to be reproducible, such as during debugging or in scientific 
applications, it is necessary to set the seed. Computers generate random numbers 
using pseudo-random number generators (PRNGs) because by design they are strictly 
deterministic machines and all operations can be reproduced as they occur in a CPU. This 
means that computers are bad at generating randomness. However, this shortcoming can 
be circumvented by using special algorithms that generate seemingly random numbers. 
Computers use certain factors that are presumably random, such as the number of processes 
currently running, system load, available memory, user input, mouse movements, and so 
on. These presumably "real" random factors are included in the algorithm's seed, which 
guarantees different numbers will be generated the next time the algorithm is called. If this 
is not desired, you can specify this seed and thus always get the same output. How many 
numbers are taken from the seed is irrelevant. The example above shows how this function 
can be used. It should be noted that the algorithms change over time and therefore it 
cannot be guaranteed that different versions of Python will always produce the same 
numbers even when using the same seed.

If we want random numbers from a certain range, randrange is useful. It combines the 
well-known range-operator with a random element. For example, we can produce random 
numbers between 50 and 100 (exclusive) at an interval of 5 in the following way:

>>> z = [random.randrange(50, 100, 5) for i in range(10)]
>>> z
[55, 80, 70, 55, 50, 80, 90, 90, 75, 75]

The handling is similar to range(). If we want real random numbers from the interval [0,_1[ 
we use random.random() as already demonstrated above. These random numbers are 
1 For a complete overview see docs.python.org/3.6/library/random.html

http://docs.python.org/3.6/library/random.html


Python 3 for Science and Engineering Applications

● 84

equally distributed, which means that every number in the range has the same probability of 
being drawn. If we want normally distributed numbers, we use random.normalvariate(mu, 
sigma), where mu is the mean and sigma the desired standard deviation. Numerous other 
distributions are also available. If, on the other hand, we are not concerned with numbers 
but with elements, such as words, playing cards, or the like, there are additional functions 
available.

>>> data = ["A", "B", "C", "D", "E", "F", "G", "H", "I"]
#Exactly one element
>>> random.choice(data)
A
#Draw a sample of 5 without replacement
>>> random.sample(data, k=5)
['C', 'I', 'H', 'E', 'G']
#Draw a sample of 5 with replacement
>>> random.choices(data, k=5)
['G', 'B', 'I', 'G', 'H']

3.3 • Parallelisation

While the clock frequency of processors has been stagnating for some time now and has 
apparently reached a physical limit, the number of processor cores, on the other hand, 
is rapidly increasing. Nowadays it is not unusual for desktop PCs to have eight or more 
physical cores. Servers are reaching completely different magnitudes. So the trend of 
the future is parallelisation. However, new programming techniques must also support 
this trend, since many algorithms are designed for serial processing and architectures or 
programming paradigms must be adapted. Whenever a task can be properly parallelised, 
the performance gains are often enormous and at best scale linearly with the number of 
cores or processes. In this example, we will look at how we can parallelise simple tasks 
with Python.

As an example, we will again use prime numbers and assume we need many very large 
ones for an application. We have already shown how these can be quite easily found by trial 
and error. But the larger the numbers are, the slower new ones are produced. If we can 
use multiple cores instead of one, the process can be accelerated. For this task, we adapt 
the old function and use Python's multiprocessing module. This is required whenever more 
than one physical core is utilised. The idea of the program is as follows: Instead of calling 
a function or generator only once, we call it several times and let the different instances 
run side by side. Whenever one of these functions produces a result, it is stored in a queue. 
The fact that different types of queues exist is irrelevant to us here.2 We adjust the main 
function to take each newly arriving element from this queue and write it to a list. As soon 
as this list reaches a predefined length, all running instances or processes are terminated 

2 To be more precise, Queue is a first-in-first-out object (FIFO). The element that 
comes in first is also output first.
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and the list is returned. To do this, we first write the central function that generates primes.

def primegen(n, queue):
 if n % 2 == 0:
  n += 1
 while True:
  for i in range(3, int(n**0.5 + 1), 2):
   if n % i == 0:
    break
  else:
   queue.put(n)
  n += 2

This function is almost identical to the previous version but now accepts two parameters. 
n specifies the starting number so that we can generate arbitrarily large prime numbers. 
queue is the object to which the results are later passed. The main loop runs until we 
terminate it from the outside. As soon as a prime number is found, the value is not returned 
using return, but passed to the queue object using put(). Now to the main function.

from multiprocessing import Process, Queue
def multiprimegen(cores, nfinal):
 q = Queue()
 processes = []
 for number in range(1, cores + 1):
  start = 10**14 // number
  process = Process(target=primegen, args=(start, q))
  process.start()
  processes.append(process)
 primes = []
 while len(primes) < nfinal:
  primes.append(q.get())
 for process in processes:
  process.terminate()  
 return primes

From the multiprocessing module we import two functions that we need. The actual function 
has two arguments: the number of cores or threads to be used, and the total number of 
primes to be generated. We create a queue object in q, in which we collect the results of 
the individual processes. We put the processes themselves in a list so that we can manage 
them. Using a loop, we create each process. First of all, it is important to note that each 
process receives a different initialisation, otherwise they would all generate the same prime 
numbers, which would be pointless. Here we use a crude estimation formula. In a real 
application, this step would have to be considered more carefully so the workload of all 
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processes is about the same. We then create the process itself. In target we address the 
function to be used, all arguments of the function are then passed in a tuple or list. This 
must be done even if only one argument is passed, otherwise, an error message will be 
issued. We then start the process and place it in the list defined before. This is how we 
proceed until all processes are started.

We then create another list in which the results are collected (primes). Now we fetch new 
results from the queue object until our list is filled. For this, we use the get-method of the 
object. Once we have all results, we can terminate the processes. To do this, we iterate over 
all items in the list created initially and use terminate(). Finally, we return the generated 
list. Time for a test run.

>>> if __name__ == '__main__':
 >>> multiprimegen(2, 10)
[50000000000053, 100000000000031, 50000000000099, 100000000000067, 
50000000000113, 50000000000117, 100000000000097, 50000000000143, 
50000000000161, 100000000000099]

What is the function of the first, rather cryptic expression if __name__ == '__main__':? The 
short answer is that it enables us to run the current program as an independent program, 
which we have to define here so the multiprocessing module works correctly. When working 
with multiprocessing, it is not Python but rather your operating system that handles the 
different processes. This is handled differently on for example Linux or Windows. This way 
is a failsafe that should run on all systems. The final output looks fine.

In the previous example, we created the parallelisation so that several instances of the 
same function work simultaneously and collect their results in a queue. As shown, this 
can be very useful if one function alone would be too slow. What if we want a serial 
arrangement, i.e. multiple functions working together to produce a final result? This could 
look like this: Function A produces a number and stores it in a queue. As soon as there is 
at least one element there, function B can retrieve it, modify it in another way and thus 
produce a final result. Even such an application is not a great challenge. However, we 
needed a second auxiliary function to perform another task. In this example, the second 
function should always multiply two prime numbers with each other and provide the result, 
which could be an application scenario in cryptography.

def prime_product(inqueue, outqueue):
 while True:
  prime_a = inqueue.get()
  prime_b = inqueue.get()
  outqueue.put(prime_a * prime_b)
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The principle of this helper function is very simple. Prime numbers are taken from a queue. 
If there are two available, they are multiplied and transferred to the second queue. The 
actual main function is then as follows:

def serial(cores, nfinal):
 processes = []
 q1 = Queue()
 q2 = Queue()
 for number in range(1, cores + 1):
  start = (10**14) // number
  process = Process(target=primegen, args=(start, q1))
  process.start()
  processes.append(process)
 process = Process(target=prime_product, args=(q1, q2))
 process.start()
 processes.append(process)
 
 output = []
 while len(output) < nfinal:
  output.append(q2.get())
 for process in processes:
  process.terminate()
 return output

The structure is very similar to the first function. However, we now create two queues 
(q1 and q2). We only need multiple processes for the first functions that generate prime 
numbers, because this is computationally intensive. Here we invoke a loop again. The 
function that multiplies prime numbers at the end is not parallelised, because this function 
is very fast. Here we create exactly one process. The rest of the function is then analogous. 
Now we can do a test run.

>>> if __name__ == '__main__':
>>>  serial(2, 10)
[5000000000006850000000001643, 5000000000013250000000006633, 
2500000000011500000000013221, 5000000000019150000000013871, 
5000000000021050000000015939, 5000000000024350000000023541, 
2500000000024100000000057681, 5000000000033250000000036557, 
5000000000035150000000045123, 5000000000040050000000056547]

The result looks OK. In real applications, more time should be invested to first analyse 
which parts of your code are too slow and deserve more attention. You can then attempt 
to make these critical aspects run in parallel. The implementation can be challenging when 
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numerous functions need to work together and many tests and tweaking might be necessary 
until everything runs smoothly. Here you should try to write flexible code where you can 
dynamically adjust the number of threads. By testing, you can find out how many threads 
should be reserved for each function and which design gives the best overall performance. 
Python offers a large variety of tools and additional functions to work with multiprocessing, 
so make sure that you have a look at the official documentation.

3.4 • Random Walk

A random walk is a point or object that moves randomly and therefore unpredictably from its 
origin. This is not necessarily useful for practical applications, but it is a wonderful exercise 
involving trigonometry. We want to simulate such a random movement in the plane, i.e. in 
two dimensions. In doing so, we determine that our object moves in a Cartesian coordinate 
system and starts at the origin (0, 0). It can move in any direction at each step and must 
always cover a distance of exactly 1. Otherwise, no restrictions are applied, which is why 
practically any point on the plane can be reached. Thus, an angle must be selected for each 
step, in the direction of which the step is to be made. For example, if the random draw 
was to select an angle of 90 degrees, the point (0, 1) would be reached after the first step.

Let us first look at the unit circle with radius 1. How do we find the point where the angle 
α intersects the unit circle? For this, we use the sine and cosine. As depicted, the sine is 
the vertical distance from the origin to the point; the cosine is the horizontal distance. 
Depending on how far we move on the circle, these values will be positive or negative. 
Based on these simple relationships, we can determine the new point.

Figure 3.2: Sine and cosine at the unit circle. Creator: Martin Thoma (Wikimedia Commons)
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import time
import math
import random

def randomwalk(steps):
 position = (0, 0)
 for i in range(steps):
  angle = random.random() * 360
  xpos = position[0] + math.cos(math.radians(angle))
  ypos = position[1] + math.sin(math.radians(angle))
  position = (xpos, ypos)
 return position

The function takes only one argument: the number of steps to go. In the function, we 
first define the starting point as a tuple and then start the main loop, which goes as many 
steps as we set it to. We determine a random number, which is taken from the interval 
[0, 1[ as a float. We multiply this number by 360 to always receive a value between 0 and 
360. This covers all possibilities, as long as you compute in degrees. This angle is now the 
base for the new position. We use two functions from the module math. First of all, the 
angle has to be converted from degrees to radians, since Python calculates with this unit 
by default. We can then insert the converted angle into the desired trigonometric function 
and get a number. This number is added to the current position. The only thing we have to 
pay attention to is that the correct axis is used. These coordinates are then set as the new 
position. If we execute the function with a sufficiently long sequence of steps, we will notice 
our final destination can vary greatly.

This function only gives us a return value at the very end, which is not very spectacular. 
Would it not be more interesting to display the walk graphically? If you only want to limit 
yourself to the console output this is certainly not very pretty, but is possible. To do this, 
we have to change the function a little. Also, various help functions are necessary. The 
idea is the following: In the console, a certain number of grid positions, divided into rows 
and columns, are reserved and the walk is simulated by an object walking through this 
grid. We can map such a grid using a list with sub-lists. The number of sublists in the main 
list is the number of rows, the length of the sublists is the number of columns, that is, 
the width of the display. To make matters worse, we have to make a conversion from the 
original Cartesian coordinate system. A point with the coordinates (0, 0) should therefore 
be displayed in the middle of the grid (notice how this task is similar to the Ulam spiral). 
So we need a function that finds the corresponding position in the list matrix. It is also 
necessary to consider what happens to the point if it leaves the grid and can no longer 
be displayed. It has either disappeared and the display ends or is prevented from leaving 
the grid, which is a kind of "wall" that cannot be overcome. Let us start with the modified 
function randomwalk(). Now that we don't specify the number of steps at the beginning, 
the function can run as long as we like.
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def random_pos(position, nrows, ncolumns):
 while True:
  angle = random.random() * 360
  xpos = position[0] + math.sin(math.radians(angle))
  ypos = position[1] + math.cos(math.radians(angle))
  position = (xpos, ypos)
  gridpos = postogrid(position, nrows, ncolumns)
  if 0 <= gridpos[1] <= nrows - 1 and 0 <= gridpos[0] <= \  
  ncolumns - 1:
   return position

The function accepts the current position of our moving point as an argument and returns 
the new, updated position of the object as the return value. Additionally, we specify the 
size of the grid. Here we use a loop that runs until a legal position is found, i.e. one that lies 
within the boundaries of the grid. We choose a version in which the object cannot leave. 
In principle, the function is very similar to the first draft. The big difference is the function 
postogrid(), which is still to be defined and which serves to convert the position from the 
Cartesian coordinate system into the matrix system. Afterwards it is checked whether the 
position created in this way is within the boundaries of the grid. If this is the case, it is 
returned, if not, the function starts again with another random draw. This means the loop 
will run until a legal position is finally found. This guarantees that, no matter what, our little 
point stays with us inside the grid.

Let's go through this using a simple example. We choose a grid with five rows and nine 
columns. This is now symbolised in a list with sub-lists. The number of sub-lists corresponds 
to the number of rows, the length of each sub-list corresponds to the number of columns. 
It would look like this:

matrix = [  [0,0,0,0,0,0,0,0,0],
   [0,0,0,0,0,0,0,0,0],
   [0,0,0,0,0,0,0,0,0],
   [0,0,0,0,0,0,0,0,0],
   [0,0,0,0,0,0,0,0,0]]

It is now clearer what is meant since the arrangement already reminds of a matrix. A point, 
which in the Cartesian system would be located at the origin (0, 0), would therefore be 
found exactly in the "centre" of the matrix, which would correspond to row 3 and column 5. 
Since in Python the first element is addressed with 0, the position would be matrix[2][4]. 
The biggest stumbling block besides the actual conversion is this arrangement swaps x- 
and y-coordinates, so to speak. The first value ([2]) specifies the row, i.e. the y-coordinate, 
the second value ([4]) the column position, i.e. the x-coordinate. You must always keep this 
in mind, otherwise errors will occur. The actual function can then look like this:
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def postogrid(position, nrows, ncolumns):
 xpos, ypos = position #tuple unpacking
 columnpos = int(xpos + ncolumns / 2)
 rowpos = int(-ypos + nrows / 2)
 return (columnpos, rowpos)

The input is given as a tuple in the format (x, y). The respective values are extracted and 
converted. You can check with the example shown that this is correct. Since int() simply 
truncates the fractional part of a decimal number, it does exactly what we have in mind and 
always rounds off. In the case of the row position, you must also remember to reverse the 
sign, since a negative value is located further "down" in the Cartesian coordinate system, 
but this means that a numerical larger index is necessary, because this refers to a row that 
is located more at the end of the list in the matrix. Let's take the Cartesian position (0, -1) 
as an example. This point lies directly on the y-axis in the negative range. In a matrix with 
five rows and five columns, this point is then displayed in the row (-(-1) +2.5) = 3.5, i.e. 
rounded 3. This is correct. The two variables ncolumns and nrows are explicitly passed. 
Now there is still a help function missing which graphically displays the grid.

def display_grid(particles, nrows, ncolumns):
 screen = [[" "] * ncolumns for i in range(nrows)]
 for element in particles:
  xgrid, ygrid = postogrid(element, nrows, ncolumns)
  screen[ygrid][xgrid] = "*"
 print("#" * (ncolumns + 2))
 for row in screen:
  print(f"#{''.join(row)}#")
 print("#" * (ncolumns + 2))

As input, the function accepts a list of all objects or particles to be simulated. Thus, several 
objects can be displayed at the same time. First, an empty grid is created in screen, which 
is done by a nested comprehension. Then we iterate over all elements in particles and use 
the help function to correctly convert the position. We then insert an asterisk at the newly 
calculated position in the grid to mark the field as occupied. After the loop is completed, an 
asterisk is inserted at the correct position in the grid for each particle, and the data matrix 
is complete. Now it only needs to be displayed.

To do this, we first have a border displayed at the top and bottom of the grid, which is 
done with the number sign. We then iterate over all rows in screen and use F-strings to 
display each row. At the beginning and end of each line, we draw another number sign as 
a boundary, followed by the content of each line, which is assembled into a string using 
join(). At the end, we draw the lower boundary to complete the grid. Now we can assemble 
all parts in the main function.
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FPS = 10
def main(n, nrows=18, ncolumns=50):
 particles = [(0, 0)] * n #possible since tuples are immutable
 while True:
  particles = [random_pos(p, nrows, ncolumns)]
  for p in particles:   
   display_grid(particles, nrows, ncolumns)
   time.sleep(1 / FPS)

We define the FPS, i.e. the frames per second, as a constant outside the main function 
which has three arguments: the number of particles, rows, and columns, which we specify 
as defaults. We create a list of particles, which all start at the origin. This is followed by the 
main loop, which runs until we terminate the program from the outside. Here we iterate 
over all particles and apply the random algorithm to each one so that a new, random 
position is generated. After this, we display the grid and pause for a nice display in the 
console. Then the loop restarts.

When you call the function, you will see that all points start close to the origin and then 
spread randomly and almost evenly over the playing field. This is a nice visualisation of 
how particles behave in a solution (Brownian molecular motion). The entropy increases by 
chance alone and the distance between particles increases on average. Only the borders 
we set prevent this process from continuing infinitely.

Assignments

1. Rewrite the original function so the conversion from degrees to radians becomes 
obsolete and it is computed directly with radians.

2. Change the random walk function so multiple distinct particles are drawn. Limit the 
code to a few distinct particles so the display is not too fuzzy.

3. Change the random walk function so not all particles start at the origin but at randomly 
chosen points within the grid.

3.5 • Game of Life

Game of Life is a simple simulation in two dimensions invented by John Conway in 1970. It 
is about cells that exist in a Cartesian coordinate system. These cells can have exactly two 
states (dead or alive) and follow a few basic rules. Despite this simple set of rules, complex, 
cyclically regenerating patterns or elements are sometimes created, which move across the 
screen and thus resemble real life. The game is an illustration of how higher structures can 
be created by basic elements.

The game field or grid is based on a plane, which is ideally infinitely large and is divided 
into boxes or cells. Such a cell can be either empty (dead) or filled (alive). At the beginning, 
there is usually a grid in which a certain number of cells is randomly filled. Each cell on the 
grid has exactly eight neighboring cells. The following rules apply:
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• If a living cell has less than two living neighboring cells, it dies (loneliness). 
• If a living cell has more than three living neighboring cells, it dies (overpopulation).
• If a living cell has exactly two or three living neighboring cells, it lives on (society).
• If an empty cell has exactly three living neighboring cells, it becomes a living cell 

(reproduction).

It is quite easy to implement these rules. In this example we start with the main function 
and then create the additional functions.

import time
import random
def game_of_life(rounds):
 grid = [[random.random() < 0.10 for x in range(50)]for y in \  
 range(18)]
 for i in range(rounds):
  draw_grid(grid)
  grid = update_grid(grid)
  time.sleep(0.6)

We first import the necessary modules and then create the main function, in which the 
only argument is the number of rounds to play. We randomly generate the board at the 
beginning with a nested list comprehension. Each row is represented by a list with 50 
columns. random.random() generates a random number in [0, 1[. If this number is smaller 
than 0.10, True is written into the list, otherwise False. In this way, an average of 10% of 
all cells are filled with True, which we interpret as a living cell. The main loop then starts. 
First, the current grid is displayed. Then, based on the rules defined above, the grid of the 
next round is calculated. After this, the function briefly pauses and the loop starts again. 
Only the two auxiliary functions draw_grid() and update_grid() are still missing. We start 
here with the function that updates the grid.

def update_grid(grid):
 new_grid = []
 for y, row in enumerate(grid):
  new_row = []
  for x, cell in enumerate(row):
   neighbors = count_neighbors((x,y), grid)
   if cell and neighbors == 2:
    cell = True
   elif neighbors == 3:
    cell = True
   else:
    cell = False
   new_row.append(cell)
  new_grid.append(new_row)
 return new_grid 
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This function accepts the old grid as an argument, i.e. the list with sublists. We create the 
new grid as an empty list and now fill it bit by bit. To do this, we first iterate over all rows in 
the data matrix. Since we need both the contents of the row and the index of the respective 
row, we use enumerate(). This function returns a tuple from a list with the respective 
element of the list and its index. Let's look at an example:

>>> data = ["A", "B", "C"]
>>> for index, element in enumerate(data):
>>>  print(index, element)
(0, 'A')
(1, 'B')
(2, 'C')

This is exactly the function we need. We then create a new row which we fill step by step. 
To do so we have to iterate over each element of the row, which is done in the same way. In 
the variables x and y, the position of each cell in the data matrix is displayed. We call a yet 
to define function count_neighbors(), which returns the number of living neighbors for each 
cell. This number, which can be between 0 and 8, is stored in neighbors. Now the game 
rules come into play. If a cell is alive (True) and has exactly two neighbors, it remains alive. 
But if the cell is empty and has exactly three neighbors, it is born, i.e. set to alive. If both 
conditions do not apply, it is in any case empty (dead) in the next round. If we dealt with 
such a cell of a line, the result is written to new_row. If we have gone through the whole old 
row in this way, the complete new row is added to the board. In this way, we work through 
row by row and within a row cell by cell until the new board is completely generated. We 
still have to create the help function count_neighbors().

def count_neighbors(position, grid):
 neighbors = 0
 for x in (-1, 0, 1):
  for y in (-1, 0, 1):
   if x == y == 0:
    continue
   xpos, ypos = position[0] + x, position[1] + y
   if 0 <= xpos < len(grid[0]) and 0 <= ypos < len(grid):
    neighbors += grid[ypos][xpos]
 return neighbors

The function takes the position to be tested as a list or tuple and the current grid. We 
initialise the counter and go through all conceivable possibilities for the x and y coordinates. 
Obviously, there are only eight. We skip one position, i.e. when both x and y are equal to 
0. We then define the position to be tested. If it is still within the boundaries of the grid, we 
add the respective field contents to neighbors. Since True is evaluated as 1 and False as 0, 
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this operation is valid. Finally, we can return the number of neighbors. Almost there! The 
function that displays the grid field is missing. The logic is very similar to the previous task, 
where a similar data matrix should be displayed.

def draw_grid(grid):
 for row in grid:
  print("".join("#" if cell else " " for cell in row))
 print("#" * len(row))

We iterate over all sublists in the main list and use an F-string to put them together. If a 
cell is filled, we display a number sign (#), otherwise an empty string. At the end, we add 
a separator line so that we get a nice display with every update of the field. Time for a test 
run.

>>> game_of_life(30)
##################################################
       #                                          
      # #   # #                                   
      # #   # #                                   
       #    #                                     
                  #                               
                                                  
                                                  
                                     #            
         #   #      # #                           
        #   # #    #   #  ###                     
      ##            # #                           
            ###      #                            
                                            #     
                         ###               ##     
                   ##                     #       
                                                  
                                                  
                                                  
##################################################

If you are lucky you will notice moving or cyclically emerging patterns on the screen. Give 
it a few more tries and set a seed for the random number generator if you want to study 
some patterns in detail.
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Assignments

1. Look up the Wikipedia article on the game of life and inspect the pattern of a glider.3  
This is a figure that seems to fly across the field. Create a function that inserts this 
pattern at a random position before the game starts.

3.6 • Modelling Populations

In this example we want to build an ecological model and simulate a population. We use the 
technique of agent-based modelling. The basic idea is to simulate a large number of agents 
that act more or less independently of each other, but in sum affect their environment. This 
mainly involves random processes that can be simulated in any complexity. We imagine 
a herd of sheep on a pasture, which in the end can only perform three actions: move, eat 
and mate. 

The basic rules of the simulation are summarised in the following.

• The pasture is a square area of any size with fixed boundaries. The animals cannot 
leave the pasture or the simulation (sorry Neo!). The pasture is divided into cells of 
one square meter. Each cell is uniquely identified by a number, for example by an x 
and y coordinate.

• The pasture is overgrown with grass that the sheep eat. Once the grass in a cell has 
been eaten, it takes two days before another sheep can eat from it again. If a sheep 
stands on a covered cell and eats, then all grass in that cell is eaten. Every sheep wants 
to eat daily. If it cannot eat for two days, it will starve to death.

• Each sheep moves up to two meters in each round (in x- and y-coordinate; the 
maximum distance covered in one round is therefore 2 * sqrt(2).

• If the distance between two sheep is less than one meter, they can mate. If mating 
occurs, one of the two partners is randomly selected as the mother and becomes 
pregnant for eight days. During this period it can no longer mate. At the end of the 
period a new sheep is "born". The partner who does not become pregnant cannot mate 
again in the same round. Hungry sheep cannot mate as well.

• Sheep have a life span of 20 days and die afterwards.

For the first time, we make use of classes. Classes are a powerful tool in object-oriented 
programming. However, the examples discussed in this introduction are usually so short 
that it is often not useful to utilise classes. These are ideal for larger or more complex 
programs. In this example, they are a boon because they allow us to create a large set of 
objects that all have similar properties. We will therefore create a sheep class. Each sheep 
is then an instance of that class. We will also use various methods. A method in Python 
is, roughly speaking, a function that belongs to an object. We have already used various 
methods. Lists are also objects in Python. An associated method is append(). Whenever 
we want to add an object to a list, we apply this method to the concrete list. If we create 
our own classes, we can also define associated methods that can only be used with the 
respective class instances. Let's first look at a simple example for our class.
3 https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life#Examples_of_patterns

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life#Examples_of_patterns
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class Sheep:
 def __init__(self):
  self.position = [random.random() * SIZE, random.random() * \ 
  SIZE]
  self.hunger = 0
  self.pregnant = 0
  self.age = 0

In principle, this example is a complete class. We are using the keyword class for the 
definition. Class names are usually capitalised. Inside the class we define __init__() first. 
Whenever we create a new instance of a class, this function is automatically executed. 
It is used to create certain basic values or properties that must always be present. All 
arguments we use in this function must be passed if we want to create an instance. The 
double underscores before and after init indicate it is a special function, which in Python is 
marked this way ("dunder methods").

So what exactly is self here? For functions that are defined within a class and are therefore 
methods by definition, the implicit object to which the function is applied must always be 
referenced. It should be noted that this argument must always be included. Otherwise, we 
can program functions as before but have to keep in mind that the effect of this function is 
always related to the object for which we call the function. This will become clearer below.

In __init__() itself, we define a set of variables that characterise the "properties" of the 
sheep. We always use self.VAR. When we later want to query the properties of a particular 
sheep, it is thus clear that the variable is not local, but belongs to a specific instance. These 
properties are the position of the sheep, which is randomly determined when it is created, 
the current hunger level, whether it is pregnant, and its age. So how can we create a 
particular sheep, that is, an instance of the sheep class? Like this:

>>> shaun = Sheep()
>>> shaun.hunger
0
>>> shaun.hunger = 1
>>> shaun.hunger
1

We create a new instance called shaun and call the class to do so. We do not need to pass 
any further arguments. Even if we use self in the init-method as an argument, we can 
always ignore self and do not need to insert an argument. Once we create the instance, the 
associated variables are automatically created. It becomes clear how to query or change 
values of a specific instance, according to the scheme instancename.variablename. It is 
now time to define several methods to modify the properties of a sheep. The sheep should 
be able to move and eat.
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[Within class Sheep]
def move(self):
 while True :
  x = self.position[0] + random.random() * 4 - 2
  y = self.position[1] + random.random() * 4 - 2
  if 0 <= x < SIZE and 0 <= y < SIZE:
   break
 self.position = (x, y)

We define the function within the class Sheep, so have to use the implicit argument self 
again. No other input is required for this function. We define an infinite loop that runs until 
a legal move is found. This is necessary because the sheep must not leave the defined 
grazing boundaries and some moves may be illegal. A total of two coordinates must be 
determined, x and y. In each case, the change can be positive or negative. Thus we draw 
a random number from [0, 1[ and multiply it by 4 so that we get a value within [0, 4[. We 
then subtract 2 from it again, ensuring both positive and negative numbers can be created. 
We then check whether the move selected is still within the boundaries. If so, we exit the 
loop and realize the move, otherwise, the loop starts again and other random numbers are 
tried. We, therefore, stay in the loop as long as necessary. Since all values are randomly 
chosen, we just have to call the function or apply the method to an instance and the 
position of this instance is changed. After this, two more methods of the class are missing: 
one for eating and a help function to calculate the distance to another instance.

[Within class Sheep]
def eat(self, grass):
 xpos, ypos = map(int, self.position)
 if grass[xpos, ypos] == 2:
  self.hunger = 0
  grass[xpos, ypos] = 0

We start with the eating-function. Here an argument is needed, namely the information 
about the grass condition of the pasture. The idea is that the state of the current grass cell is 
stored in grass. We first have to calculate from the current position on which cell the sheep 
is standing. To do this, we have to cut off the decimal part of the real number. If the grass 
has grown high enough, which is indicated by the value 2, the sheep can eat and hunger 
drops to 0. At the same time, the respective grass cell is marked as eaten and receives the 
value 0. If the current cell has already been eaten and the if-condition not fulfilled, nothing 
happens. Here we have used map(). This function takes a function and an iterable (like a 
list) and iterates over all of its elements and applies the function to each element. After this 
all elements are output. Let's look at an example to illustrate how it works:



Chapter 3 ● Statistics and Simulations

● 99

>>> numbers = [-5, 33, -1, 1, 9.22]
>>> list(map(abs, numbers))
[5, 33, 1, 1, 9.22]

Here, a list called numbers is the iterable, and the function we use is the absolute value 
of a number (abs), which removes any negative signs. Next, we define the function that 
measures the distance of two sheep.

[Within class Sheep]
def distance(self, other):
 xdiff = self.position[0] - other.position[0]
 ydiff = self.position[1] - other.position[1]
 return (xdiff ** 2 + ydiff ** 2) ** 0.5

Interestingly, we use two implicit arguments here. We follow convention and call them self 
and other. self again refers to the instance to which the method is applied. other is another 
instance of the same class, that is, a different sheep. Using the Pythagorean theorem, we 
simply calculate the distance between the two objects from their respective positions in the 
coordinate system. We will need this function to test whether two sheep can mate. We will 
create two more methods to quickly query certain states.

[Within class Sheep]
def alive(self):
 return self.age < 20 and self.hunger < 3

def horny(self):
 return self.pregnant == 0 and self.hunger == 0

These two methods allow us to directly test whether a sheep is still alive or a potential 
mating partner. For example, horny() will only return True if a sheep is not pregnant and 
not hungry. Finally, we add a help function to display statistics after each round so we can 
follow the development over time. This function is not a method. We normally define it 
outside the class. This is because this function should not be applied to a specific instance, 
but should include information from all sheep.
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def display_statistics(allsheep, round):
 hunger = pregnant = grass = age = 0
 for sheep in allsheep:
  hunger += sheep.hunger
  age += sheep.age
  if sheep.pregnant > 1:
   pregnant += 1
 print("Round: ", round)
 print("Total number of sheep: ", len(allsheep))
 print(f"Average hunger: {hunger / len(allsheep):.2f}")
 print(f"Average age: {age / len(allsheep):.2f}")
 print("Pregnant: ", pregnant)
 print("#" * 40)

The function needs two arguments: the list in which all sheep are stored (we will create 
it below) and the current round. The values are initialised with 0 and then summed up so 
average values can be calculated. These are then output and presented in a form that is 
quite clear for us, so that we get an overview of the population after each round: How many 
sheep are currently alive, how old are they on average and how hungry they are. With 
these tools, we can now write the actual main function.

import time
import random
from itertools import combinations
SIZE = 10
def simulation(rounds):
 grass = {(x, y): 2 for x in range(SIZE) for y in range(SIZE)}
 allsheep = [Sheep() for i in range(10)]
 for r in range(rounds):
  # Grass is growing
  for pos in grass:
   if grass[pos] < 2:
    grass[pos] += 1
  random.shuffle(allsheep)
  
  # Move and eat
  lambs = 0
  for sheep in allsheep:
   sheep.age += 1
   sheep.hunger += 1
   sheep.move()
   sheep.eat(grass)
   if sheep.pregnant == 8:
    sheep.pregnant = 0
    lambs += 1



Chapter 3 ● Statistics and Simulations

● 101

   elif sheep.pregnant > 0:
    sheep.pregnant += 1
  allsheep.extend(Sheep() for i in range(lambs))
  display_statistics(allsheep, r)
  
  # Mating
  horny_sheep = [sheep for sheep in allsheep if sheep.horny()]
  tired_sheep = set()
  for sheep, partner in combinations(horny_sheep, 2):
   if sheep in tired_sheep or partner in tired_sheep:
    pass
   elif sheep.distance(partner) <= 1:
    sheep.pregnant = 1
    tired_sheep.update([sheep, partner])
  
  # Death
  allsheep = [sheep for sheep in allsheep if sheep.alive()]
  if not allsheep:
   break
  time.sleep(0.7)

We first import all necessary modules and then define the actual function, in which the only 
argument is the number of rounds to be simulated. Then we define grass as a dictionary-
comprehension, which stores the state of the grass for each field. In the beginning, each 
field is fully covered with grass, so it gets the value 2. We then create a list of all sheep. We 
enter the main loop, which runs until all rounds are calculated or all sheep have died. At the 
beginning of each round, we let the grass grow. Keep in mind that it can have a maximum 
value of 2. After this, the order of the sheep in the list is randomised so that there are no 
position effects in the following calculations.

With lambs we create a variable in which we count how many sheep are born in the current 
round. We then iterate over all the sheep and let them age and hunger, which are simply 
time effects. After this, the sheep move. We apply the previously defined method to all 
sheep. The sheep then eat with the second method. Now we check: if a sheep has been 
pregnant for 8 rounds, birth takes place. The sheep is no longer pregnant and lambs is 
incremented. However, if a sheep is pregnant, but not long enough, the variable pregnant 
is incremented by 1. Now that we have treated all sheep in this way, we can officially 
add the lambs to the population. First, we use a comprehension to generate a list of new 
sheep. This is then added to the main list using extend(). After that, we have the statistics 
displayed.

The mating phase follows. Here we first create a temporary list in which we store all 
sheep that are potentially available for mating (horny_sheep). This means that the sheep 
must not be hungry and not already pregnant. We also create a set with tired_sheep. 
Here we store all sheep that have already mated and therefore cannot be active a second 
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time in the current round. Afterwards we use combinations() to output all conceivable 
pairings and iterate over them. If one of the potential partners appears in tired_sheep, this 
pairing is directly skipped with pass. If both partners are not found in this set and their 
distance is less than or equal to 1, mating occurs. Note how this method is called, which 
has two arguments (self and other). Since we apply the method to a specific sheep, self is 
already passed implicitly, so we only need to insert the partner as an argument. One animal 
becomes pregnant afterwards. Since we already randomised the list at the beginning, the 
order is irrelevant. Finally, we add both sheep to the set, using update(). We must pass the 
two instances grouped in a list (other options would be in a tuple, dict or set).
Finally, the dying phase follows. We do a dynamic update of the sheep list by iterating over 
the old list with a comprehension and selecting only the sheep that are still alive (others 
are either overage or starved). Then this new list becomes the actual sheep list. If this list 
is empty, we can exit the simulation, because there are no more animals present in the 
next round. Otherwise, we wait 0.7 seconds so the display of the game field can be read 
and then start the next round.

Based on the simulation, we can trace how the population changes when we modify the 
specific parameters. If the pasture becomes too small and the number of sheep too large, 
they will starve. In the long run, there are only two scenarios: either the population dies 
out or equilibrium is established in which the number of sheep remains approximately 
constant. This is unlikely, as extinction is generally easier to achieve. For example, if the 
pasture becomes too large, the sheep will not starve but will move apart in the long run (by 
chance alone), so that mating will become less frequent and the population will eventually 
die out of old age. This shows how sensitive even very simple ecological systems can be. 
Of course, this simulation is not very realistic, as we have not modelled many aspects. 
For example, in reality, sheep will not randomly move, but will stay together as flocks in 
larger groups, which naturally increases the chances of mating. We could also simulate the 
appearance of a second species, which could decimate the population as hunters.

Assignments

1. Generate a model to simulate the spread of an infectious disease in a population. 
Determine factors such as the probability of infection, mobility of agents, and mortality. 
How many agents are infected? What happens if the number of immune individuals in 
the population changes?

3.7 • Quick Money

What is the fastest strategy to reach your goals? This question is certainly of great 
relevance to many tasks in life. A systematic solution is only usually available if the problem 
is comparatively simple and strict rules are in place. This is the case, for example, in many 
games. Even if these often have low complexity and they are understandable to children,                
in many cases, an optimal strategy is not easily recognisable. Python can be helpful for this. 
Thus, we assume there is no available algorithm that allows for a perfect solution. A pure 
brute force approach is also not feasible, since we cannot test all options even with modern 
systems due to the exponential increase in complexity. In these cases other methods are 
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necessary. In the following example, we use an optimisation algorithm based on pure 
chance which most likely does not find the best solution, but perhaps a pretty good one, 
which can be useful in many real-world applications. Let us now turn to the rules of the 
game.

1. The player opens a bank branch and is supposed to earn a certain amount of money 
as fast as possible. The game is based on rounds and starts with round 1. In each 
round, the player receives an amount of 20 plus a bonus which corresponds to the 
current number of rounds (in round 1 you are therefore credited with a total of 21). 
This amount is paid out directly at the beginning of the round.

2. The player can buy money printing machines. Each machine earns an interest of 5% 
of the current balance in each round. Therefore, if you have a machine and a credit 
balance of 100, the machine will earn an additional credit of 5. The machines generate 
interest immediately after the round sum is received. 

3. Ten rounds after the purchase of a machine, the interest earned by the machine drops 
from 5% to 3% (due to wear and tear). 

4. The player does not own a machine at the start of the game but can purchase up to 
five. The first machine costs 50. The price then doubles for each additional machine.

It is not difficult to implement these rules. In our first draft, we assume that we will buy a 
new machine as soon as the required amount is reached.

def game(goal):
 income = 20
 r = 0
 balance = 0
 machines = []
 while balance < goal:
  r += 1
  balance += income + r
  interest = sum(0.05 if r - t <= 10 else 0.03 for t in \  
  machines)
  balance += balance * interest
  price = 50 * 2 ** len(machines)
  if balance >= price and len(machines) < 5:
   machines.append(r)
   balance -= price
 return r, machines

The function has only one argument: the target sum to be reached. We first define some 
variables, such as income per round, current round (r), balance and an empty list in which 
we store the time of purchase of the machines. This is followed by a loop that runs until 
the target total is reached. We increase the r counter by 1 and receive our income which 
is also based on the number of rounds. We calculate the interest in a list comprehension. 
We iterate over all existing machines and calculate how long a machine has been available. 
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Based on this, the interest rate can be determined, which is summed up. In the next step, 
we apply the interest rate to the current credit balance. If the list is empty, the value is 0. 
We then calculate the price of a new machine. It is based only on the number of machines 
already bought. Then we test: if our credit is greater than the purchase price and we still 
own less than 5 machines, we buy one. This information is subsequently added to the list as 
the round in which the purchase was made. We have to subtract the price from our balance. 
This way the game continues until the target goal is reached. Assume that we have a target 
of 5,000. If we run this first strictly deterministic version, we get the following output:

>>> game(5000)
(44, [3, 6, 12, 18, 27])

So it takes 44 rounds to reach the goal. It is also clear that we will buy the machines as 
soon as possible. But does that make sense? Let's assume that you would buy the last 
machine for 800 just before reaching the goal of 5,000. In this case it could take longer 
for the machines to make up the missing amount as if one had simply waited and saved. 
Our solution is therefore to try many different versions and test which one works best. We, 
therefore, need a random element that decides when to buy a machine. We still have the 
limitation that we can only buy a machine if we can afford it. We proceed in such a way that 
every time we could theoretically buy a machine, we flip a coin and only strike when the 
coin shows the correct side. We do this by importing the random module and modifying the 
corresponding line as follows:

(...)
if balance >= price and len(machines) < 5 and random.randint(0, 1) == 1:
(...)

Here Python "tosses" the coin for us and buys only if 1 is drawn. Let's run this version once 
and we will surely get a different result from the deterministic one shown above. In my 
case, the result was (41, [4, 11, 13, 18, 27]). Purely by chance, a small improvement is 
made from 44 to only 41 rounds. We also see that the machines were bought a little later. 
Only one attempt is hardly meaningful, so we should try many more. The procedure is 
simple: repeatedly run the modified function, store the results, and later see which tactic 
works best. We can add some optimisations to speed up the computation. For example, 
a simulation can be aborted if the previous best result is reached because it is clear that 
no better outcome can be achieved. Also, we don't need to save all results, but only the 
best one. In this way, we avoid having to cache useless data. The new function could look 
something like this:
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import random
def game2(best, goal):
 income = 20
 r = 0
 balance = 0
 machines = []
 while balance < goal:
  if r >= best:
   return None
  r += 1
  balance += income + r
  interest = sum(0.05 if r - t <= 10 else 0.03 for t in \  
  machines)
  balance += balance * interest
  price = 50 * 2 ** len(machines)
  if balance >= price and len(machines) < 5 and \
  random. randint(0, 1) == 1:
   machines.append(r)
   balance -= price
 return r,  machines

We have only made a few changes compared to the first function. Right at the beginning of 
the while loop we check whether our old best has already been exceeded, then we can exit 
immediately and return None. Below we have modified the purchase option so the correct 
random number must also be drawn to make a purchase. Now only the actual simulation 
program is missing.

def simulation(n):
 best = 999
 for i in range(n):
  output = game2(best, 5000)
  if output:
   best, machines = output
 return best, machines

We set a best which is high at the beginning so that it is guaranteed to be undercut. We 
then start a loop in which the actual games are played. We store the result of a game in 
output and check if it is unequal to None. If this is the case, the old best is undercut and we 
update the best and the purchase information data. For this we use tuple-unpacking. After 
all simulations have run, we can return the overall best result. This way we are efficient and 
only complete those simulations that have a chance to beat the old record.

>>> simulation(10 ** 6)
35, [6, 7, 16, 27])
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As you can see, after a million games played, we have the best of 35 rounds. Interestingly, 
only four machines were bought in total to reach this goal which means that it is probably 
not a good idea to buy five machines if you want to reach 5,000 as quickly as possible.

Assignments

1. A special robot produces one motherboard per hour. The probability of failure for the 
robot is 5% per hour (baseline). If it fails, no motherboard is produced in that hour 
and repairing takes 6 hours (after that, the probability of failure is set back to 5%). In 
general, the probability of failure increases by 0.2 percentage points with each hour. 
How many motherboards does the robot produce on average per week (168 hours)?

2. What is the maximum baseline failure rate, which is 5% in the first assignment, so that 
on average at least 120 motherboards can be produced per week?

3.8 • Many Circles

Given is an arbitrary number of circles in the plane, which might partially or completely 
overlap. Now the total area of all circles shall be calculated. Overlaps should not be counted 
twice, which is why adding up all circle areas does not lead to the desired result. How can 
this be solved? Take some time to think about it, because this is not a trivial problem. A 
graphical representation of the task serves as an aid.

Figure 3.3: What is the total area of the grey shape? Creator: Bearophile (Rosettacode.org)

http://Rosettacode.org
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As so often, there are many different approaches. Although there is also an analytical 
solution, it is rather complex and requires a lot of mathematics, which is why it is probably 
better kept in a mathematics book.4 Many readers will have noticed we have solved a 
similar task before, namely when it was about calculating Pi using statistics. Can we apply 
this method here as well? Yes, but it seems logical that significantly more random draws 
will be necessary to get a precise result, which is why we are modifying the procedure. We 
can summarise the strategy as follows:

1. First, all circles that lie completely inside another circle are removed, which speeds up 
the calculation later. 

2. The area is then trimmed so that as little white space as possible remains. The edges 
are therefore moved as close as possible to the figure, which reduces the total area.

3. Afterwards, the field is divided into a freely definable number of rectangles. For 
example, if we define that the x- and y-axis are to be split into 20 sections each, our 
grid will contain 400 rectangles at the end. 

4. Separately for each of the rectangles generated in the previous step, we check whether 
all four corners lie within a circle. If this is the case, it is guaranteed that the entire 
rectangle area lies within the circle. In this case, we can automatically add the entire 
rectangle area to the total area and do not need to run a simulation. 

5. If this condition does not apply to a rectangle (so at least one corner is not within a 
specific circle), we know it either lies completely outside a circle or at least intersects 
it. In this case, we start a simulation for the rectangle. We draw many random points 
and check how many of the points land inside a circle. If about 25% of the points end 
up inside a circle, we know about 25% of the rectangle lies inside a circle. In this case, 
we add 25% of the rectangular area to the total area of the figure. 

6. If all rectangles are treated in this way, we have approximated the total area. The 
precision of the result is based on the number of rectangles defined and the number of 
random points drawn for each rectangle. 

7. The algorithm is more efficient than the naive algorithm in that rectangles that lie 
completely within a circle do not require simulation, thus saving computing time.

After trimming the edges and creating a grid pattern, the figure looks like this:

4 For those interested, please refer to the following pages, which present ideas for 
solutions: stackoverflow.com/a/1667789; http://rosettacode.org/wiki/Total_circles_area\#An-
alytical_Solution_3

http://stackoverflow.com/a/1667789
http://rosettacode.org/wiki/Total_circles_area\#Analytical_Solution_3
http://rosettacode.org/wiki/Total_circles_area\#Analytical_Solution_3
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For the numerical calculation, we use the following values that were taken from Rosettacode.
org.5 Every row represents one circle. The first two values are the x- and y-coordinates of 
the centre of the circle. The third value is the radius of the circle. We store these values in a 
list with sub-lists to represent them in Python (data). To start with step 1, we code a helper 
function which removes all circles that lie completely within one larger circle. However, note 
this function cannot remove circles that are completely covered by multiple different circles.

  x-Coordinate    y-Coordinate    Radius       
  1.6417233788    1.6121789534    0.0848270516 
  -1.4944608174   1.2077959613    1.1039549836 
  0.6110294452    -0.6907087527   0.9089162485 
  0.3844862411    0.2923344616    0.2375743054 
  -0.2495892950   -0.3832854473   1.0845181219 
  1.7813504266    1.6178237031    0.8162655711 
  -0.1985249206   -0.8343333301   0.0538864941 
  -1.7011985145   -0.1263820964   0.4776976918 
  -0.4319462812   1.4104420482    0.7886291537 
  0.2178372997    -0.9499557344   0.0357871187 
  -0.6294854565   -1.3078893852   0.7653357688 
5 https://rosettacode.org/wiki/Total_circles_area

Figure 3.4: The figure after trimming the edges, removing all circles that lie completely within another circle 
and creating the grid pattern.

https://rosettacode.org/wiki/Total_circles_area
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  1.7952608455    0.6281269104    0.2727652452 
  1.4168575317    1.0683357171    1.1016025378 
  1.4637371396    0.9463877418    1.1846214562 
  -0.5263668798   1.7315156631    1.4428514068 
  -1.2197352481   0.9144146579    1.0727263474 
  -0.1389358881   0.1092805780    0.7350208828 
  1.5293954595    0.0030278255    1.2472867347 
  -0.5258728625   1.3782633069    1.3495508831 
  -0.1403562064   0.2437382535    1.3804956588 
  0.8055826339    -0.0482092025   0.3327165165 
  -0.6311979224   0.7184578971    0.2491045282 
  1.4685857879    -0.8347049536   1.3670667538 
  -0.6855727502   1.6465021616    1.0593087096  
  0.0152957411    0.0638919221    0.9771215985 

from itertools import combinations
def find_distance(p1, p2):
 return ((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) ** 0.5

def remove_circles(circles):
 remove = set()
 for pair in combinations(circles, 2):
  small_circle, big_circle = sorted(pair, key=lambda c: c[2])
  distance_centers = find_distance(small_circle, big_circle)
  if big_circle[2] >= distance_centers + small_circle[2]:
   # small circle lies within the big circle
   remove.add(small_circle)
 return [c for c in circles if c not in remove]

Again we first need an auxiliary function to calculate the distance between two points. The 
actual function remove_circles() follows. This function has only one argument, namely a 
list of all circles. After this, we create a set in which we mark all circles which should be 
removed later. Afterwards we use combinations() to output all pairs of circles. The order 
in which the circles appear is irrelevant. For each pairing, we sort the two circles by their 
radius. For this, we use sorted() with a lambda function as key. We sort by the 3rd element, 
i.e. the radius, as we defined it in the table above. We then calculate the distance between 
the circle centres, using our initially defined help function. Now we check whether the 
smaller circle is completely inside the larger one. The idea is as follows: if the radius of the 
larger circle is greater than the sum of the distance between the centres and the radius of 
the smaller circle, it is proven that the smaller circle must lie completely within the larger 
one. To comprehend this, draw some examples on paper to make this principle clear. If it is 
the case, we add the smaller circle to the set and mark it down for deletion. Once we have 
gone through all pairings in this way, we end up only returning the circles that are not in 
the set. This completes this first step.
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Since the function will be quite long, we will break it down into several other help functions. 
First, we introduce the actual main function that brings everything together. In this way, the 
basic principle is made clear right at the beginning. Other functions are defined afterwards.

def compute_total_area(circles, n, iterations):
 total_simulations = 0 # Area found using simulations
 total_boxes = 0   # Area found using boxes
 skipped_boxes = 0
 total_points = 0
 circles = remove_circles(circles)
 xmin, xmax, ymin, ymax = find_circumscribing_rectangle(circles)
 boxarea = ((xmax - xmin) * (ymax - ymin)) / (n ** 2)
 for box_part in iter_parts(xmin, xmax, ymin, ymax, n):
  if box_inside(box_part, circles):
   skipped_boxes += 1
   total_boxes += boxarea
  else:
   total_points += iterations
   hitrate = find_hitrate(box_part, circles, iterations)
   total_simulations += boxarea * hitrate
 print(f"Share of skipped boxed: {skipped_boxes / n**2}")
 print(f"Total number of all points drawn (in thousands): 
 {total_points // 10**3}")
 return total_simulations + total_boxes

Our function has three arguments: a list of all circles, the number of sections into which 
we will divide each side, and the number of iterations for the simulation part. The larger 
n and iterations become, the more accurate our estimate should be. First, we define the 
variables that are used for accounting purposes. In total_simulations we store the total 
area calculated by the simulations. Similarly, in total_boxes we store the total area that is 
calculated purely analytically. Therefore, the overall area of the figure is the sum of these 
two variables. In skipped_boxes we count how many of the boxes or rectangles are purely 
analytically calculated and were not given to the simulation. In total_points we store how 
many random points we simulated in total. We then apply the already created help function 
to the list of all circles to remove those which are completely covered and therefore can be 
removed without affecting the outcome.

Next, we trim the grid, for which we calculate the most extreme x and y coordinates. This 
is done using the find_circumscribing_rectangle() function. This gives us four new variables 
that store the most extreme values. Using these, we can now compute the area of each 
box. This is the remaining total area, which we divide by the number of boxes. Since we 
generate an identical number of sections for both axes, this number is the square of the 
sections. If the total area of the trimmed rectangle (not the figure!) were 100 and we had 
a n of 20, the area of each box would be 0.25 (100 / 20^2). As shown in the figure before, 
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we now need to place a grid on the rectangle. To do this, we have to calculate the four 
corner points for each of the resulting boxes. This is done in the function iter_parts(). We 
iterate over all boxes thus created. Now check: do all four corner points lie within a circle? If 
so, it is confirmed that the entire surface of the box lies within a circle and we can skip the 
simulation part for this specific box. This check is done in the function box_inside(). In this 
case, we increase the counter of the skipped boxes by 1 and add one box area to the total 
area of all boxes. If this is not the case, i.e. at least one corner point lies outside a circle, we 
initiate a simulation. To do this, we add the number of new iterations to the total number 
and calculate the hit rate using find_hitrate(). The returned value must lie between 0 and 1. 
The proportion of the area within a circle is finally calculated as the product of the hit rate 
and the area of a box. We add this result to the total area of all simulations.

We are almost done. We have two more statistics that might be interesting for us. In 
the end, we compute the final area of the figure as the sum of the simulation and box 
areas. Now the principle is clear, we can create the missing help functions. Let's start with 
trimming, i.e. determining the most extreme positions in the grid.

def find_circumscribing_rectangle(circles):
 xmin = min(c[0] - c[2] for c in circles)
 xmax = max(c[0] + c[2] for c in circles)
 ymin = min(c[1] - c[2] for c in circles)
 ymax = max(c[1] + c[2] for c in circles)
 return xmin, xmax, ymin, ymax

The only argument this function needs is the list of circles. We then find the most extreme 
x and y values using comprehensions. For x-values, for example, this is the x-coordinate 
of a circle centre minus the radius. This is calculated for x and y values for minimum and 
maximum respectively. We then return these values as a tuple. The order in which the 
values are passed in the tuple must always remain the same, so subsequent functions 
receive the correct assignment. We then turn to the function that calculates the corners of 
all boxes in the grid.

def iter_parts(xmin, xmax, ymin, ymax, n):
 xsize = (xmax - xmin) / n
 ysize = (ymax - ymin) / n
 for xstep in range(n):
  for ystep in range(n):
   xmin_part = xmin + xstep * xsize
   ymin_part = ymin + ystep * ysize
   yield xmin_part, xmin_part + xsize, ymin_part, \
   ymin_part + ysize

This function accepts the previously calculated limits, as well as the number of sections into 
which the x- and y-axis are divided. All boxes should have the same size. The size results 
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from the difference between the maximum and minimum value, which is divided by the 
number of sections. This determines the side lengths of each box. We now iterate over 
all sections in x- and y-direction and call them xstep and ystep respectively. The corners 
are calculated as the minimum value to which the product of the step and the side length 
is added. In this way, we work through all boxes one by one. We then return the four 
coordinates of the vertices as a tuple using yield instead of return, so we have created a 
generator. Once we have calculated the four vertices of a box in this way, we can then test 
whether all four lie within one specific circle. If they do, it is confirmed that the total area 
of the respective box is within that circle.

def box_inside(box, circles):
 xmin, xmax, ymin, ymax = box
 for circle in circles:
  if (find_distance([xmin, ymin], circle) < circle[2] and \
   find_distance([xmin, ymax], circle) < circle[2] and \
   find_distance([xmax, ymin], circle) < circle[2] and \
   find_distance([xmax, ymax], circle) < circle[2]): \
   return True
 return False

This function takes the box coordinates as one tuple and the list of circles. We unpack the 
tuple to the four corners of a box and then iterate over all circles. If the distance between 
the centre of the circle and a corner coordinate is smaller than the radius of the respective 
circle, it is definite that the point lies within the circle. If this applies to all four points, we 
output True, or otherwise False. It is important to keep in mind the logic here: if the if-
condition is only true once (that is, for at least one circle), we can immediately stop and 
return True, since it is demonstrated that the four corners lie in a circle. If this condition 
is violated for one specific circle, we do not immediately terminate, but iterate over all 
remaining circles, since the box might still lie within another circle.

Finally, we have to create the part that runs the simulation. If at least one corner point is 
not in a circle, we use the random method and determine the share of the box that lies in 
a circle. The principle is very similar to the earlier task when we statistically calculated Pi.
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import random
def find_hitrate(box, circles, iterations):
 xmin, xmax, ymin, ymax = box
 hits = 0
 for i in range(iterations):
  zx = xmin + (xmax - xmin) * random.random()
  zy = ymin + (ymax - ymin) * random.random()
  for circle in circles:
   if find_distance((zx, zy), circle) < circle[2]:
    hits += 1
    break
 return hits / iterations

As arguments, we again use the tuple, which contains the corners of the box, the list 
of circles and the number of points to be drawn. First, we unpack the tuple to the four 
corners. We then set the number of hits to 0. Now the simulation starts, which runs until 
all points are drawn. The x-coordinate of the random point is the random value of [0, 1[, 
which is multiplied by the length of the box. We add this value to the minimum x-value. 
The procedure for the y-value is similar. In this way, we obtain a random point that lies 
within the box currently under consideration. Now we check all circles from the list whether 
the created point lies in at least one circle, which can be determined by the distance to the 
respective centre point. If this is the case, for only one circle, we can immediately stop and 
count the hit. Once we draw all the points in this way, we can determine the proportion of 
points that lie within a circle. If this value is 0.5, for example, we know that on average, 
half of the box under consideration lies within a circle. We then return this value to the 
consuming function. This would complete all auxiliary functions and we can start a test run.

>>> compute_total_area(data, 100, 2000)
Share of skipped boxes:  0.7145
Total number of all points drawn (in thousands):  5710
21.565288978106558

Since we found the analytical solution online for the given example, 21.56503660..., we 
can conclude that our approximation is quite good. Moreover, the program's runtime is less 
than one minute, so that we could, if necessary, generate a more precise result.

Assignments

1. The precision of our function is determined by two parameters: the number of rectangles 
to be generated, and the number of random points drawn from each rectangle. What 
happens if we only vary the number of rectangles? What if we only vary the points? Go 
through some extreme examples and think about what these variables determine and 
how this may affect the result. How is this related to the influence of chance?
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2. What is more important for a precise result, many rectangles, or many random draws? 
Write a program to systematically vary these variables and record the results. Also 
make sure you take the influence of chance into account so that the results are not 
distorted too much by outliers.

3.9 • Pig

Very simple rules can create devilishly complex situations is confirmable by this game of 
dice for two or more players, where the goal is to score 100 points. The game is played 
alternately in rounds. In each round, a player can roll one die or have his current round 
score credited to his total score. If she rolls the die and receives a number between 2 and 
6, this number is added to her round score. If she rolls a 1, she loses all points she scored 
in that round and is only credited with a single point. This means each player receives at 
least one point in each round.6 Based on these rules, each player can decide how much risk 
she wants to take. Of course, you will want to roll at least once at the beginning of each 
round, because you have nothing to lose on the first roll. After this, you should consider 
whether you prefer to keep the current score and save it, or to gamble and hope not to 
roll a 1? If we assume that exactly two players are playing, you also have to consider the 
score of the other player. If she is far away from the goal of 100 points, you can play more 
conservatively.

The question arises as to which strategy promises the best outcomes. In this respect, 
the game is simple, as a player can only choose between two options: either to continue 
playing or save. This decision, in turn, is only dependent on three variables, the player's 
score (i), the score of the opponent (j), and the current round total (k). A rather simple rule 
of thumb states that you should play each round until you have reached at least 20 points. 
The reasoning is as follows: A die has six sides, each number has the same probability. So 
we know that a 1 will occur on average every six rolls. Therefore, on average you can roll 
five times until this event occurs. The expectation value of a roll, assuming one does not 
get a 1, is equal to 4 ((2+3+4+5+6)/5). Since four times five is 20, on average you will get 
this score. Therefore, if you stop before that, you give away points. But this rule of thumb 
reaches its limits when some game situations occur. Suppose your opponent has 99 points, 
it is clear that she is guaranteed to win the next round, no matter what happens. Therefore 
it is sensible to roll the die as often as possible, even if your score is still far from 100. 
Theoretically, a player can win in the first round right at the beginning of the game (she 
"only" has to roll the number 6 17 times in a row, which is extremely unlikely, but possible. 
An optimal strategy of playing must take these factors into account. We will develop a total 
of five different strategies and test them against each other in a tournament. Since we can 
easily simulate dice rolls in Python, we will ultimately know which strategy maximises the 
chances of winning.

Let's start with a very simple and possibly nonsensical approach: A player could ignore all 

6 This is where Progressive Pig differs from the original, because you do not receive 
any points at all when you roll a one. Since this version leads to tricky cyclic dependencies, 
we will discuss the slightly modified game version here. For a solution of the original see 
http://cs.gettysburg.edu/~tneller/papers/pig.zip

http://cs.gettysburg.edu/~tneller/papers/pig.zip
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the information at hand and play completely randomly. She would flip a coin before each 
roll. If it shows heads, she continues playing. If it shows tails, she stops. This rule does not 
seem to be very effective, but we would like to include it nevertheless. It serves as a lower 
limit, so to speak. Any other strategy that loses against it seems to contain serious errors 
of reasoning.

import random
def randomplay(mytotal, yourtotal):
 roundtotal = 0
 while True:
  if random.randint(0, 1) == 1:
   z = random.randint(1, 6)
   if z == 1:
    return 1
   else:
    roundtotal += z
  else:
   return max(1, roundtotal)

Even if this way of playing does not use the information about the totals of both players, 
we pass them here as arguments so we can later call all functions in the same way in the 
tournament program. We initialise the round total with 0 and start a loop that runs until 
the player rolls a 1 or stops the round. A random number is drawn: either 0 or 1. When the 
value is 1, the die is rolled and the result is added to the round total. If the program rolls a 
1, this value is directly returned as the final result. Summarised, this program continues to 
roll the die until either a 0 is drawn or a 1 is rolled. The next strategy we implement seems 
a bit more sensible but is quite risky: a player will continue to roll the die, no matter what. 
This means she will play until she either receives a 1 or reaches 100 points.

def greedy(mytotal, yourtotal):
 roundtotal = 0
 while roundtotal + mytotal < 100:
  z = random.randint(1, 6)
  if z == 1:
   return 1
  else:
   roundtotal += z
 return roundtotal

The implementation of this way of playing is even easier because there are only two exit 
conditions: rolling a 1 or winning the game. The third way of playing is the more elaborate, 
previously explained version, in which you hope for at least 20 points per round in the long 
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run and only stop when this value is reached.

def get20(mytotal, yourtotal):
 roundtotal = 0
 while roundtotal < 20 and mytotal + roundtotal < 100:
  z = random.randint(1, 6)
  if z == 1:
   return 1
  else:
   roundtotal += z
 return roundtotal

Here the main loop simply runs until you reach 20 or you have more than 100 points in 
total. You should then stop in any case. Here is a short reminder regarding Boolean values: 
The loop only runs if both conditions are True. As soon as one of them is False, for example, 
False and True, the whole condition is False and the loop exited. You can fail and roll a 1 
before this, but if it doesn't happen, you will only stop with minimum points. As discussed 
above, there is a slight modification to this idea. You always play for at least 20 points, 
unless your opponent is close to the limit of victory. You then have to play riskier. As we 
argued, there is a 50% chance of winning once you reach 80 points. Therefore we set this 
value as the limit. So if a player has this score or higher, the program will play until it either 
wins or rolls a 1.

def risky(mytotal, yourtotal):
 roundtotal = 0
 if 80 <= yourtotal < 100:
  while mytotal + roundtotal < 100:
   z = random.randint(1, 6)
   if z == 1:
    return 1
   else:
    roundtotal += z
  return roundtotal
 else:
  while roundtotal < 20 and mytotal + roundtotal < 100:
   z = random.randint(1, 6)
   if z == 1:
    return 1
   else:
    roundtotal += z
  return roundtotal
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First of all, it is checked which tactic should be used. If the opponent has between 80 and 
99 points, the loop runs until a win is achieved, i.e. at least 100 points (or a 1 is rolled).
Otherwise, the normal tactics are utilised and at least 20 points should be scored.
The question of what the optimal strategy that maximises the chances of winning looks like 
remains. Some basic considerations can be made to solve this challenge. Once a player has 
a score of 99 and it is her turn, she automatically wins, as she scores at least one point 
per round, so there is no need to look at the situation in detail. What happens when a new 
round is started and it is your turn to play with a total of 98 points, but your opponent has 
99 points, which we denote as follows: (98, 99, 0)? In this case, we know that she will win 
the next round unless you win this round. Our chances of winning are therefore 5/6. If we 
roll a 1, we end the round with 99 points and lose. Any other roll of the die, however, brings 
us to victory. So we can deduce: At the state of (98, 99, 0), we win if we roll the die with 
p = 5/6. If we save and stop playing, we win with a 0% probability. At this state, it would 
be better to roll the die. Since the results are always symmetrical, these considerations 
apply to the opponent if she is in the same situation. What about the score (98, 98, 0)? 
We automatically win if we roll at least a two. If we roll a one, we end the round and the 
opponent finds, from her point of view, the situation as (98, 99, 0). As we have just seen, 
her probability to win is p = 5/6. Since we know this, our probability to win in the round 
before, when we roll the one, is the counter probability to it, that is 1 – (5/6) = (1/6). If we 
add all these probabilities up, we get the following solution:

However, if the save our score at the same state, we have the following probability of 
winning the game:

As 1/6 (about 17%) is smaller than 86%, we should continue with a roll instead of holding 
at this state. We deduced this by using a few simple logical considerations. If we extend 
them, we can develop a decision rule for every conceivable state of the game, which then 
serves as the foundation for our optimal playing strategy. We would therefore like to have 
a recommendation for every conceivable game situation (i, j, k) so that we know whether 
we are maximising our chances by continuing to play or stopping. We can create such a 
database recursively using the formulas shown above.7 Based on these considerations, we 
7 It now becomes clearer why this is not easily possible with the normal Pig. If it is 
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can now formulate the equations we need to implement and solve recursively.

Given is (i, j, k), that is, the current score. We can now calculate the probabilities of both 
options and then choose the better one. The recursive character of this task becomes 
obvious here. If we start at the very beginning with the first move, i.e. (0, 0, 0), we have 
to calculate P(0, 0, 6) for example (if we roll a 6 on the first roll). Since this value does not 
exist in the database as well, it has to be first calculated, which means that another value 
has to be calculated. So we have to search recursively until we reach the base case, that 
is, when the game ends and is either won or lost. Let's look at a possible implementation 
in Python and then explain the procedure step by step.

also possible to win zero points in a given round, we sometimes get into cyclic dependencies. 
The necessary probabilities can then no longer be calculated recursively, since an infinite 
regress is opened up. Here other techniques are necessary, which require more mathematics.
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def strategyfinder(wintotal=100):
 def wincheck(i, j, k):
  if (i, j, k) in probability:
   # Probability is already available
   return probability[i, j, k]
  
  if i + k >= wintotal:
   # win is sure
   return 1
  elif j >= wintotal:
   # loss is sure
   return 0
  
  # Probability when rolling the die
  p_roll = 1 - wincheck(j , i + 1, 0)
  for points in range(2, 7):
   p_roll += wincheck(i, j, k + points)
  p_roll /= 6
  # When saving probability that j wins
  p_hold = 1 - wincheck(j, i + max(k, 1), 0)
  # which option is better
  p_best = max(p_roll, p_hold)
  if p_roll > p_hold:
   recommendation[i, j, k] = "roll"
  else:
   recommendation[i, j, k] = "hold"
  probability[i, j, k] = p_best
  return p_best
 probability = {}
 recommendation = {}
 wincheck(0, 0, 0)
 return (probability, recommendation)

We create the function strategyfinder(), which in the end generates all the data we need 
to find the optimal decision. We assume that the winning total is set to 100. However, 
this can be adjusted if you want to change the rules. We create two dicts, probability and 
recommendation. The first stores for every possible state (i, j, k) the probability that the 
current player is going to win the game, the second one indicates whether to roll the die or 
to hold for a given state (i, j, k). For i and j there are logically 100 possibilities each, from 
0 to 99 inclusive. For k, i.e. the current state of the round, there are fewer possibilities. For 
example, if we already have 95 points, we don't need to consider a possible round score 
of ten, because at this score you would have already won and you don't have to decide 
anymore. The values to be generated for k, therefore, depend on i, so from the start we 
cannot easily predict how many values need to be generated. This will be automatically 
taken care of by the recursion we are going to use.
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Let us go through this function step by step. At first, the two empty dicts are created. Then 
we call the inner function wincheck() with our starting state, i.e. the starting value of the 
game (0, 0, 0). This is done "from the outside" exactly once. All other calls are done by the 
function itself and thus recursive. We now enter wincheck().

The variables i, j, and k represent the own total score, the total score of the opponent, and 
the own score of the round (round sum). If there is a value available in probability already, 
we can directly return it. If the sum of i and k is greater than the necessary winning sum, 
the game is already over and we can return the value 1. Conversely, if j, i.e. the opponent's 
score is above the round sum, then a win is impossible and the return is 0. If neither of 
these two cases applies, we have to calculate the new score. Let's start with the probability 
of a roll, which we build up step by step. We only use the formulas shown above. First, we 
calculate the probability that we win if we roll a 1, which is the probability that the opponent 
will not win in the next round. We then calculate the probabilities for the other possible 
outcomes, i.e. if we roll a number between 2 and 6. We add up all of these results and 
finally divide by 6. This calculates probability.

We then come to the probability of winning if the player does not continue playing but holds 
instead. Since we receive at least one point, we take the maximum value of 1 or k. So we 
get either the value 1 or a higher one if k is greater than 1. In principle, this again is only 
the probability that the opponent will not win in the next round. Now we choose the higher 
one from both probabilities and save it in p_best. Depending on which option is better, 
we enter either write "roll" or "hold" to record the result. Similarly, we put the numerical 
value in probability. At the end, we return the probability. Since the function calls itself 
when needed, we have a recursive function. Let's go through this with some examples. At 
the beginning, we call the function with (0, 0, 0). Since there is no value at the beginning, 
this value must be calculated. If we now go through wincheck() we see the first self-call 
occurs at p_roll = 1 - wincheck(j , i + 1, 0). The self-call is then obviously done with (0, 
1, 0), but this value is also not present yet. So we start a recursion cascade, which ends 
only when the innermost function returns a value. This first happens when a player reaches 
100 points, i.e. approximately (100, j, k). At some point, we reach this situation and get a 
return value for the last recursion created.

We reach the input (99, 100, 0). This is the earliest value at which a player has won. Here 
the opponent wins, the return to the previous function (99, 99, 0) is therefore 0, but we 
already know that we are guaranteed to win if it is our turn. The return for this function is 
then again 1, so here the odds of winning are summed up for each number of the die and 
divided by six at the end. Since k is zero, the first condition is true and the probability of 
winning when holding is also 1, since we receive exactly one point and we reach 100. At the 
end, we write this result into the dict so it is permanently stored. We generate the return 
and from then on the recursion "tower" is deconstructed from the bottom downwards. It 
sounds paradoxical that we start at (0, 0, 0) and count up to (99, 100, 0) first, but it does 
not bother us, since only there is an end of the recursion and the base case is reached. 
To understand this, it can be helpful to directly place a print statement as the first line of 
wincheck() and display (i, j, k). This way you can see the program first counts up and then 
back from the top. Finally, you have filled the two dicts, which act as databases here, with 
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all information. You then know for every possible situation whether you should roll the die 
or hold. We now just have to implement the function as a strategy:

def optimal(mytotal, yourtotal):
 roundtotal = 0
 while True:
  if mytotal + roundtotal >= 100:
   return roundtotal
  res = (mytotal, yourtotal, roundtotal)
  if database[1][res] == "hold":
   return roundtotal
  z = random.randint(1, 6)
  if z == 1:
   return 1
  else:
   roundtotal += z

The basic structure is similar to the other strategies implemented before. Once we reach 
100 points or more, we can exit. Otherwise, we check the database first to see if we should 
roll or hold. If the return is stop, we end the round. Otherwise, the roll will take place. 
Depending on the number we get, we either have to exit or increase our round total. It is 
important the function can later access database, for which we will use a global variable.

With this information, we can start our tournament. So we need a function that sets up 
pairs of duels for all game programs and then plays them repeatedly so that we get an 
average over many games. To avoid positional effects, we always play both pairings, i.e. A 
vs. B and additionally B vs. A. The player who starts the round has an advantage because 
the opponent cannot catch up if the first player has already won.
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from itertools import product
def tournament(strategies, rounds):
 global database
 database = strategyfinder()
 history = {}
 for self in strategies:
  history[self] = {}
  for opponent in strategies:
   if self != opponent:
    history[self][opponent] = 0
 for strat0, strat1 in product(strategies, strategies):
  if strat0 != strat1:
   for r in range(rounds):
    p0, p1 = 0, 0
    while True:
     p0 += strat0(p0, p1)
     if p0 >= 100:
      history[strat0][strat1] += 1
      break
     p1 += strat1(p1, p0)
     if p1 >= 100:
      history[strat1][strat0] += 1
      break
 for self in history:
  print(self.__name__)
  for opponent in history[self]:
   winchance = 100 * history[self][opponent] / (rounds \
   * 2)
   print(opponent.__name__, round(winchance, 1))
  print("_" * 15)

The tournament only has two arguments: a list of all playing strategies and the number of 
games to be played per pairing. We specify that the databases generated are considered 
globally available variables. Otherwise, we would always have to explicitly pass this 
information. To store all results we create a dict, which will contain several other dicts. For 
each strategy, we generate a separate dict, in which all opponents are collected. Here we 
just have to take care that games are sorted out against themselves because we can derive 
these results logically. We count the wins against every other program in this database 
so we can later calculate the probability of winning. Thus we generate the following data 
structure:
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>>> history
{<function randomplay at 0x7fe865008268>: {<function greedy at 
0x7fe8650082f0>: 0, <function get20 at 0x7fe865008378>: 0, <function risky 
at 0x7fe865008400>: 0, <function optimal at 0x7fe865008488>: 0},...

This looks a bit odd because Python gives the name of each function as well as the address 
in memory, which is irrelevant at this point. We will then start the actual simulation. Here 
we use product() from itertools, which corresponds to a nested loop. In this way we let 
all strategies compete against all others. Again, we sort out pairings where the function 
would play against itself. We then iterate through all the rounds and initialise the score of 
both players with 0, followed by the actual simulation, which runs until one player wins and 
break is reached. When storing the results, we only have to pay attention to the order. In 
the dict previously created, we only saved victories and therefore always have to name the 
winner function first. Once we have played all pairings in this way, we come to the analysis.
For this, we iterate over all elements in the database and only display the name. The storage 
address can be removed with FUNC.__name__. After this, we iterate over all opponents 
and produce a clear display at the end. When calculating the victory probabilities, we must 
multiply the number of rounds by 2 in the denominator, since we played all pairs twice (to 
compensate for the position effects). Finally, we let the result be displayed.

>>> random.seed(1234)  
>>> tournament((randomplay, greedy, get20, risky, optimal), 5000)
randomplay
greedy 46.4
get20 0.3
risky 0.4
optimal 0.8
_______________
(...) 

So we see after 5,000 rounds, the strategy randomplay won against greedy in 46.4% of 
all games, but only in 0.8% against the optimal strategy. From these numbers, we create 
a table.

Randomplay Greedy Get20 Risky Optimal

Randomplay - 53.6 99.7 99.6 99.2

Greedy 46.4 - 86.0 85.2 85.8

Get20 0.3 14.0 - 57.2 55.3

Risky 0.4 14.8 42.8 - 54.7

Optimal 0.8 14.2 44.7 45.3 -

We see that optimal won against every other program and is therefore the winner of the 



Python 3 for Science and Engineering Applications

● 124

tournament. What is interesting is that it won against risky by a relatively narrow margin, 
meaning this fairly simple strategy is not much worse than a virtually perfect play. In this 
respect, the luck factor should not be underestimated even with an optimal playing style. 
In 0.8% of all games even pure chance did better than optimal. Second place goes to risky, 
which won against all programs except optimal. Third place goes to get20, fourth place to 
the greedy player, and last place to the random program, which did not much worse than 
the greedy player. Overall, these results are in line with initial expectations.

Assignments

1. Think of another strategy and add it to the tournament. How well is it doing in 
comparison to the other ones?

3.10 • Bootstrapping

One of the most important applications of statistics is to derive information about a much 
larger population from a limited sample. Suppose you want to find out how much the 
inhabitants of a certain region earn, which could be useful for market research purposes. 
We know from official statistics that 85,000 people live in the region. They have an 
independent income and therefore form the population for the analysis. Our question 
could be answered by simply asking each person about their income and then taking the 
average of all answers. Unfortunately, this is often not feasible to ask every individual in 
the population, mainly because of the extreme costs, and many people would refuse to 
participate or are not available otherwise. In this respect, statistics use a trick: a certain 
number of respondents are randomly selected from the population and interviewed. By 
the random process, one hopes that the sample forms a representative version of the 
population, but on a smaller scale. For example, one could randomly select about 1,000 
telephone numbers (assuming that each person has exactly one telephone number), call 
them, and aggregate these responses. This reduces the effort considerably. However, we 
now have a problem. Since we have not surveyed the entire population, we must assume 
the calculated mean value of the sample will most likely differ from the mean value of the 
population. We refer to the population mean as μ or as the "true" value. We refer to the 
sample mean as μ bar, which is the best estimate of the mean population. The difference 
between the two values is called sampling error. This is the error we make because we 
did not interview the entire population. Unfortunately, we cannot calculate this error in 
real applications, because we would have to know the true value, which would make the 
drawing of a sample nonsensical. But we can already deduce some obvious properties: the 
more people drawn, the smaller the error should be. Thus, if we could randomly interview 
5,000 people instead of 1,000, our estimate would be better. In other words, the sampling 
error converges to 0 when the sample size converges to the population size.

So much for the mean, which is our main concern. There remains a second problem. Since 
we can already foresee that the sample mean will deviate from the true value, it would 
be good if we could estimate approximately how large this deviation will be. As we have 
seen, the relationship to the sample size is a central element of this estimation. The second 
determining factor relates to how widely the values are scattered in the population. If we 

_
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stick to income, some people may have extremely high incomes, others extremely low. For 
example, we assume that the lowest monthly income is around €400, for the highest such 
a limit is difficult to determine. If by chance, a billionaire happens to live in the region, he or 
she could earn over €100,000, which would massively exceed the average income. In this 
respect, we can already estimate that incomes are not normally distributed. From official 
data, we know quite well that such variables are almost always skewed to the left. This 
means that most people have a rather low income and there are significantly fewer people 
with a very high income. However, we do not need to look any further into this, as income 
is only an example here and the actual distribution is irrelevant for the task. Ultimately we 
can assume that the distribution of the variable is quite uneven and the range is wide. We 
would like to visualise this. In statistics, histograms are often used to illustrate the empirical 
distribution of values (see figure 3.5). We can also do this in Python, although we will again 
limit ourselves to console output. In contrast to regular histograms, we will display them 
with swapped axes, i.e. rotate them, which has several advantages for the display and does 
not influence the content.

The basic idea is as follows. We take the data and sort it numerically first. Then we have 
to decide how many bars or bins we want to use. This number depends on the display 
options in the console. Since each bar should have the same width, i.e. be displayed with 
exactly one character, we have no option to adjust at this point, in contrast to a graphical 
output, where we could set the display width via pixels. We, therefore, decide to generate 
a maximum of 20 bars so everything is visible without scrolling in the console. If we have 
very few data points, we may need fewer bars. There is no fixed standard for this, but there 
are numerous algorithms available. At this point, we decide to use the formula according to 
Rice, which is as follows: k = 2 * n^(1/3)

Here k is the number of bins to generate and n is the number of data points. For example, 
if there are 100 data points, we would generate 9.28 bars, which we round down to 9. The 

Figure 3.5: A histogram is used to visualise the distribution of a numerical variable. The values of the variable 
are plotted on the x-axis and the relative frequency of each bin on the y-axis.
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height of bars depends on the number of elements that are assigned to each bar. The more 
elements, the higher the bin. To determine this, we must define the width of each bar first, 
which is the numerical range a bin should represent. To do this we first compute the width 
of the variable, which is simply the difference between the maximum and minimum value. 
The width of each bar is then the total width divided by the number of bars. For example, 
if we have a numerical width of 100 and 20 bars are to be created, each bar has a width of 
5. If the minimum value were 0, the first bar would contain all cases with a value between 
0 (inclusive) and 5 (exclusive). In this way, we determine how many cases are assigned 
to a bar. From the relative number of cases per bar, we can then derive the height of a bar 
and display it in the console.

import random
from statistics import mean, median, stdev

def histogram(data, bins=None):
 """Draws a histogram from numerical data"""
 maxvalue = max(data)
 minvalue = min(data)
 totalwidth = abs(maxvalue - minvalue)
 ndata = len(data)
 if not bins: #no value given by the user
  #Rice's rule or 20 bins max
  bins = int(min((2 * ndata**(1/3)), 20))
 binwidth = totalwidth / bins
 bindata = []
 maxelements = 0
 for i in range(bins):
  lowerbound =  minvalue + i * binwidth
  upperbound = minvalue + (i + 1) * binwidth
  nelements = sum(1 for element in data if lowerbound <= \  
  element < upperbound)
  if nelements > maxelements:
   maxelements = nelements
  midvalue = lowerbound + (upperbound - lowerbound) / 2
  bindata.append([nelements, midvalue])

 maxheight = 25
 print("-" * 40)
 for row in bindata:
  binheight = int((maxheight / maxelements) * row[0])
  print(f"{row[1]: 4.2f}  {'#' * binheight}")
 print("-" * 40)
 print(f"N: {ndata}")
 print(f"Mean: {mean(data):4.02f}")
 print(f"Median: {median(data):4.02f}")
 print(f"Standard deviation: {stdev(data):4.02f}")
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We import some modules and create our function which has two arguments, namely the 
numeric data as a list and the option to specify the number of bins. If the user does not 
overwrite the default, we will automatically set this value below using the algorithm. We 
find the smallest and largest numerical value of the data and the total width. If no default 
is given, we utilise the formula, but make sure that a maximum of 20 bins is generated, 
for which we filter here for the minimum. We also have to remember to transform the 
float back to an integer. The width of a bin can then be easily calculated. We will now save 
the information in bindata. We create a variable in which we store the bin with the most 
elements because we need this value to scale the histogram later. We then iterate over the 
number of bins to create and set the respective upper and lower limits. We then calculate 
in a comprehension how many elements of the data fall into the respective bin. If this value 
is greater than the largest value known so far, we do an update of this variable. We also 
calculate the centre of a bin, because we will use this information in the display. At the end, 
we put all three objects into a list and add it to bindata.

Now we can focus on the display. The maximum height of a bin is set to 25, so there can be 
a maximum of 25 characters in one line. We create a separator-line for clearer visualisation. 
Now we iterate over all bins in bindata. We scale the height, which is the quotient of the 
maximum allowed height and the height of the highest bin. This ensures the highest bin 
is always exactly 25 characters high and all others are displayed correctly in relation to it. 
Thus we use the area optimally. After this value has been calculated, we first display the 
mean numerical value and in the same line the bin, which we assemble using the number 
symbol (#). Here we use F-Strings. At the end, we insert a separating-line once again. 
Finally, we output a number of descriptive statistics and are done. Time for a test run.
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>>> random.seed(1234)
>>> data =  [round(random.normalvariate(0, 1), 3) for i in range(300)]
>>> histogram(data)
----------------------------------------
-2.64  
-2.20  ##
-1.76  ####
-1.32  ########
-0.88  ###############
-0.44  ###################
 0.00  #########################
 0.44  ################
 0.88  #################
 1.32  #####
 1.76  ######
 2.20  ##
 2.64  #
----------------------------------------
N: 300
Mean: 0.01
Median: -0.05
Standard deviation: 0.98

We specify that we want to generate a normally distributed variable with a mean value 
of 0 and a standard deviation of 1 with a total of 300 data points. The seed makes the 
result reproducible. The character of the normal distribution becomes recognisable in the 
histogram, even if there are obvious deviations. Since we generated only 300 cases, this is 
not surprising. It also becomes clear why we rotated the histogram. Otherwise, we could 
not display the numerical values directly below a bin, since each value would take several 
characters.

Since we now have a tool to display numerical data graphically, we can go back to the 
concept of bootstrapping. The basic idea is simple: whenever we want to quantify the 
uncertainty of an estimator (mean, median, standard deviation, etc...), but the standard 
error of the estimator is unknown or difficult to calculate, we generate the standard error 
by repeatedly drawing new samples (resamples) from the existing sample. This process 
is then called bootstrapping. Assuming we want to calculate the standard error of the 
median, we do the following: take the sample and calculate the actual median - this is our 
point estimate. We then draw new samples repeatedly with replacement from the sample, 
with the size of the new samples being identical to the original one. It becomes clear that 
this means that some elements can be drawn several times and others not at all. We do 
this about 500 times and compute the median for each new sample. We store these new 
medians in a list and compute the standard deviation of this list using stdev() from the 
module statistics. As statisticians have demonstrated, we can consider this value to be the 
standard error of the sample median and generate other derived statistics, for example, 
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a confidence interval.8 The program which carries out these computations can be written 
very compactly.

def bootstrap(func, data, n):
 empvalue = func(data)
 resamples = [func(random.choices(data, k=len(data))) for i in \  
 range(n)]
 stderr = stdev(resamples)
 ci = (round(empvalue - 1.96 * stderr, 2), round(empvalue + 1.96 * \ 
 stderr, 2))
 histogram(resamples)
 print(f"Empirical value: {empvalue:4.02f} | Bootstrap Stderr: \   
 {stderr:4.02f} | 95%-CI: {ci}")

The function accepts three arguments: the function for which the standard error is to be 
calculated, the data, and the number of resamples we want to generate. We then calculate 
the empirical value from the sample data. The actual bootstrapping is generated in the next 
line using random.choices(), which randomly generates new samples with replacement. We 
apply the function of interest to these resamples and store the generated values in a list. 
The standard error is then simply the standard deviation of these results. After this, we also 
generate a 95% confidence interval. The empirical distribution of the resample results is 
also displayed, as it allows us to judge the quality of the outcome. An approximate normal 
distribution would be desirable. Finally, the results are displayed. Let's see this in action.

Suppose we have available test data for 14 people (think of a standardised competence test 
or examination results). We can assume that these 14 people were drawn at random from a 
university and we would like to make inferences on the competence of the average student. 
Those who have dealt with statistics before will remember that for such small samples most 
inferential statistical methods should not be used and 30 cases is usually the lower limit. 
Bootstrapping is better suited in such a situation and recommended especially for small 
samples. We apply our program to this data and specify we are interested in the median.

8 The underlying theory cannot be explained at this point, the standard work, which 
is easy to understand even with only basic statistical knowledge, is suitable for this purpose: 
Efron, Bradley; Tibshirani, Robert J (1994): An Introduction to the Bootstrap. CRC Press
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>>> testresults = [4, 5, 7, 7, 9, 10, 11, 13, 15, 18, 19, 19, 22, 23]
>>> histogram(testresults, 5)
----------------------------------------
 5.90  #########################
 9.70  ###################
13.50  ############
17.30  ###################
21.10  ######
----------------------------------------
N: 14
Mean: 13.00
Median: 12.00
Standard deviation: 6.37
----------------------------------------

>>> bootstrap(median, testresults, 2000)
----------------------------------------
7.38  ###
 8.12  ####
 8.88  ########
 9.62  ########
10.38  #########################
11.12  ############
11.88  ################
12.62  ##
13.38  ###############
14.12  ##############
14.88  ##########
15.62  ###
16.38  ##########
17.12  ##
17.88  ######
18.62  ####
19.38  ###
20.12  
20.88  
21.62  
----------------------------------------
N: 2000
Mean: 12.58
Median: 12.00
Standard deviation: 3.00
Empirical value: 12.00 | Bootstrap Stderr: 3.00 | 95%-CI: (6.13, 17.87)

First of all, as we have the empirical distribution of the data displayed, it becomes apparent 
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these are clearly not normally distributed and higher values occur much less frequently. Now 
to bootstrapping. After drawing 2,000 resamples, it becomes apparent that the distribution 
of the generated medians corresponds approximately to a normal distribution, which can 
be rated as acceptable. Further below we find the results. The empirical median is 12, our 
estimated standard error is 3. The 95% confidence interval ranges from 6.13 to 17.87. We 
therefore assume (roughly speaking) that the true mean, i.e. that of the population, will 
probably be in this range.9 Here it was illustrated how we can make inferences from a small 
sample to a much larger population. To sum up, bootstrapping is a versatile and powerful 
statistical technique that can be applied to many different areas of scientific analysis.

Assignments

1. Some years ago a large retailer had the following offer: for each 10€ spent in the 
shop, the customer received a collectible Smurf toy. In total, there were 36 different 
figurines. The question is, how much money must be spent on average in the shop so 
one ends up with a complete collection? Write a simulation and visualise the resulting 
distribution using a histogram.

9 The professional statistician will immediately notice that this interpretation of 
confidence intervals is debatable. If you want to know exactly, you should consult a statistics 
textbook.



Python 3 for Science and Engineering Applications

● 132

Chapter 4 • Text Data and Strings

4.1 • Dictionary

In this example, a list of all English words as found in a dictionary is used as source for all 
applications. There are numerous sources on the Internet for free and machine-readable 
word lists in many languages. We use a list that can be downloaded as a text file.1 Now this 
list is saved on our hard drive but it has to be loaded into Python first. For this, we use a 
context manager, which nowadays is the better option to read data. The advantage is that 
Python manages the whole object for us and closes the file correctly in case of errors or 
aborts. This saves us from having to close the file manually at the end. This guarantees a 
cleaner and better handling of files and code. The usage is simple:

with open("wordlist.txt", encoding="utf-8") as newfile:  
 data = newfile.readlines()
 print(len(data))
 print(data[:20])

In the first line we specify the absolute or relative path to the desired file. Also, we specify 
that the file should only be read. We do not want to make any changes. We specify the 
file encoding, in this case, UTF-8. With the method readlines() we can now read all lines 
of the file. This is possible because the data is structured, i.e. one entry per line. These 
are written to a list and can be used as a basis for further analysis. We get the number of 
elements of the list and their first 20 elements. When we run the code above, we get the 
following output:

>>> list(data[5])
['3', 'r', 'd', '\n']

To remove the line break, we must therefore remove the last character from each element 
of the list. Additionally, we use the string method lower() to convert all words to lower 
case just in case there are any capital letters included. We can do this directly in a single 
expression. We use two string functions here: rstrip(), which removes spaces at the end of 
a string, and lower(). We can apply these to each string sequentially and write the whole 
thing very compactly in a list comprehension. In the second round, we also remove the 
character "‘" (apostrophe) from words as it also can disturb our analyses later on.

1 Surely first choice is the free Moby-Project, which provides word lists for different 
languages. Unfortunately the main page is offline at the time of printing. The word lists 
are still available, partly from other sources. Therefore it seems best to look up the current 
sources on Wikipedia: https://en.wikipedia.org/wiki/Moby_Project Also note that after the 
download, the list may be incorrectly encoded and Python will generate an error message. In 
this case it may help to open the list in a text editor and save it again with the encoding UTF-
8.

https://en.wikipedia.org/wiki/Moby_Project
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>>> words = [line.rstrip().lower() for line in data]
>>> words = [word.replace("'", "") for word in words]
>>> words[:5]
['1080', '10th', '1st', '2', '2nd']

As we can see, we now have the desired result, i.e. all words without disturbing characters, 
in lower case, and everything collected in a list. This word list can now be used for all kinds 
of analyses. What is the shortest, what is the longest entry in the list? We will soon find 
out that there are many abbreviations in the list that are not very reminiscent of words. To 
remove them, simply create a new list using a list comprehension and eliminate all words 
under three letters:

longwords = [word for word in words if len(word) > 2]

What if we no longer want the list to be sorted alphabetically, but by word length? We have 
to make sure Python uses the correct sorting key. data.sort() would sort the elements 
either by numerical size (for numbers), or alphanumerically, i.e. according to the dictionary. 
But that's already the case, so we request the length as key here.

>>> longwords.sort(key=len)
>>> longwords[0]
1st
>>> longwords[-1]
dichlorodiphenyltrichloroethane

We display the shortest and the longest word. Python provides a powerful sorting function 
that we can customize as we like. For example, what can we do if we want a sort that sorts 
words alphabetically from their end? This is not simply to reverse the sort so that words 
with Z appear first but to sort words that end with the letter A, for example. To do this, we 
use an anonymous lambda function that reverses the words. These should then be sorted.

>>> longwords.sort(key=lambda word: word[::-1])
>>> longwords[:20]
['1080', 'n/a', 'aaa', 'baa', 'cabaa', 'assbaa', 'chaa', 'mushaa', 
'markkaa', 'ijmaa', 'naa', 'compaa', 'saa', 'taa', 'humuhumunukunukuapuaa', 
'aba', 'caaba', 'kaaba', 'baba', 'caba']

The anonymous function is directly defined within the sort method. For this reason, these 
functions cannot contain the same complexity as regular functions, since they can only 
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consist of one expression. Nevertheless, they can be extremely useful. To reverse the 
words we use a Python trick with slices, i.e. the clever deconstruction of strings. Note that 
this sorting does not reverse the words in the list, this is only done internally during sorting. 
The elements of the list remain untouched.

To shed some light on this function, let's take a look at the following task: which words in 
the list most often contain the letter "g"? To find this out, we just have to count how often 
this letter occurs in a word and sort the list accordingly. So much for the theory. To make 
the implementation clearer, we will break this task down into several sub-steps. First, a 
function that counts the number of letters:

def counter(string, character):
 return sum (1 for element in string if element == character)
 
f = lambda word: sum(1 for character in word if character == "g"])

Two functions that provide identical outputs. First the classic version with def(), then the 
anonymous function, which we can still address here with a name f. It does not matter 
which one we want to use for sorting. However, we can only create the lambda-function 
"on the fly" directly, so we don't need to have defined the function explicitly before. If we 
put all the parts together, we get the following code:

>>> longwords.sort(key=lambda word: sum(1 for character in word if \
character == "g"), reverse = True)
>>> longwords[:3]
['higglehaggle', 'keggmiengg', 'ganggang']

Exactly what the function does is now clear: it counts the "g"s and returns this value as a 
number. How key works should also be clear now. Computers only work with numbers, so 
all other symbols must represent numbers. To sort by the number of "g"s, we must first 
see how many of them appear in a word and use that number to sort the list. Strings with 
smaller values are therefore at the top. Others with larger values are further down. Since 
we want to know which words have the largest number, we also specify reverse so the list 
appears upside down (sorted from large to small). Note that this task can already be solved 
with a predefined function, which is more convenient in practice (string.count("character")).

Assignments

1. Write a function that recognises palindromes, i.e. words that have the same letter 
sequence when read backwards and forwards (for example OTTO). How many 
palindromes are there in the English word list? What is the longest and the shortest 
palindrome? 
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2. The word list can be used as a source for a password generator. Define a function that 
randomly selects a given number of words from the list and outputs them. The user 
should also be able to specify the minimum and maximum length for each word. A 
maximum length of the generated password should also be possible to set. Thus, many 
passwords can be generated, some of which are certainly easy to remember.2 

3. We define the diversity of a word as the number of different letters contained. For 
example, tolerance has a higher diversity than banana. Which ten words with at least 
six letters have the highest (lowest) diversity? 

4. An anagram is present when the letters of a word are rearranged to form another word. 
For example, LISTEN is an anagram of SILENT. Write a function that takes one word as 
an argument and searches the word list for matching anagrams. Tip: Limit your input 
to short words, otherwise the search can take a long time.

4.2 • LPS

In this example, LPS stands for longest palindromic substring, a term from bioinformatics. 
This involves the digital analysis of genes in which palindromes play a special role. In our 
DNA, genes are represented by the four letters ATCG, a language with an alphabet of only 
four letters. Furthermore, we understand a gene as an extremely long word, for example, 
CCCTCACTGATCATGGGGCTTGGGTTAAGTGTA. In this, we find different substrings which 
are palindromes, for example: CCC or TTGGTT. The goal is to find the longest palindrome 
within the given sequence. This task is perfect for practicing list slices, i.e. the skillful 
deconstruction of strings. Special attention should be paid to off-by-one errors, which occur 
when the index is shifted by one position, i.e. the desired string is too long or too short. As 
a reminder, let's briefly consider how to get slices of strings. It is important to remember 
that Python starts counting with index 0. The last element in a string i.e. counted from 
behind, is selected with index -1, regardless of the length of the string. For the following 
task, we first need an auxiliary function that examines a given string and tests whether it is 
a palindrome. Here we define that we only recognise substrings with at least two characters 
as palindromes, otherwise each character would be a palindrome by itself.

def is_palindrome(string):
 if len(string) < 2:
  raise AssertionError("String must have at least 2 \  
  characters")
 return string == string[::-1]

The logic is simple. We check whether the input string is identical to its inverted version. If 
it is, we return True, otherwise False. Based on this function, the actual program can now 
be designed. The idea is the following: A substring is cut from the string. We start with the 
whole string and cut character by character from the end and test the resulting slice for a 
palindrome. Once this is done, we take the whole string again, cut the first character from 
the beginning and continue with this string as described.
2 https://xkcd.com/936/

https://xkcd.com/936/
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def lps(string):
 pal_start = None
 pal_length = 1
 length = len(string)
 for startpos in range(length):
  for endpos in range(length, startpos + pal_length, -1):
   substring = string[startpos:endpos]
   print(substring)
   if is_palindrome(substring):
    pal_start = startpos
    pal_length = len(substring)
    break
 return pal_start, pal_length

First, we create the variable pal_start to store the start index of the longest palindrome. At 
the beginning, this variable is None since we do not know whether any palindrome is to be 
found in the string. The length of the longest palindrome is initialised with 1 in pal_length. 
As we just defined that a palindrome must have at least two characters, we set the value 
to 1 so that any actual palindrome in the given string will override this default. The total 
length of the string is also computed and stored.

We start with the outer loop that runs through all characters of the string from front to 
back. Each starting position (startpos) also needs an end index (endpos), which is solved 
with a second (inner) loop. This loop has to run from the back to the front, so starts with 
the length of the string and runs until the sum of the start position and the length of the 
longest found palindrome. We specify -1 to indicate that we count down. In this way, all 
possible substrings are formed. We have them print out so we can trace the program later. 
What is the idea here? For example, if the longest found palindrome has five characters 
we can skip any remaining substrings with five or fewer characters since any palindrome 
to be found cannot be longer than the current best, so we discount all further indices if 
such a constellation occurs. After each substring is generated, we test it for a palindrome. 
If this test is positive, we make an update and set the new start index to the current start 
index. We can also update the length of the palindrome. We then directly exit the inner loop 
and continue with the following start index. At the end, we return the start index of the 
palindrome and the length of the palindrome, which defines the palindrome unambiguously 
in the given string.

To show the function in more detail, we test the (somewhat pointless) string TOTABBA. It 
is obvious that the whole string is not a palindrome, but contains two. If you look at the 
tested substrings, the following pattern emerges:
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>>> lps("TOTABBA")
TOTABBA
TOTABB
TOTAB
TOTA
TOT
OTABBA
OTABB
OTAB
TABBA
TABB
ABBA
(3, 4)

First, the whole string is tested and from here on, the end-index is always shifted one place 
to the left. This continues until we find the palindrome TOT. Internally the updates are done 
and the inner loop is quit. The start index is now shifted one position to the right and the 
algorithm continues. Again, the whole string that is left is tested and then the end-index is 
shifted to the left. This process continues until OTAB is reached, which is not a palindrome. 
Since the next string only has three places left (OTA), it cannot beat the previously found 
palindrome TOT, so the algorithm stops and goes back to the next option for the outer loop, 
which is why TABBA is the next tested candidate. Later, ABBA is found, which beats TOT and 
becomes the winner. The starting index (3) and length of the palindrome (4) are returned 
and the task is successfully solved.

Assignments

1. Write a function that generates random genetic code from the letters A, T, C, and G. 
Create such a string of 5,000 characters and feed it into lps(). How long is the longest 
palindrome found?

2. The longest increasing substring is the section in a string or list that increases 
continuously (strictly monotonously). For example, in string 741249223 the substring 
1249 is such a substring. Let us assume a list of n elements, each element being a 
natural number between 0 and 999. Write a function that finds the longest ascending 
string in this list and outputs the beginning of this string and its length.

4.3 • LCS

Let us stick to genetics and look at a related task. Again, different gene sequences are 
given as strings consisting only of the four letters A, T, C, and G, reflecting the genetic code. 
A typical task is to find the longest common substring. Let us look at an example with five 
genes:
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TAGGCGTCGA
TGCCGATCCC
ACGGATGATA
ACCGATACTC
GACATCCGTC

Each gene consists of ten letters. How long is the longest sequence common to all five 
genes? The answer is, for example, CC or CG, i.e. a maximum of two common characters. 
There will be no three-character string or longer common to all genes. There are different 
solutions for this specific example, but they have the same length. For the solution of the 
problem, we assume all genes have the same length and we are only interested in the 
length of the longest common string. If more than one solution exists, any of them can be 
returned. The longer the genes become, the longer the longest common string will be on 
average. With an increasing number of genes, however, its length decreases again, since 
the common string must occur in all genes simultaneously. Let us first start with a function 
that randomly generates genetic information that we can use later.

import random
def create_genes(number, length):
 alphabet = "ACGT"
 return ["".join(random.choices(alphabet, k=length)) \
  for i in range(number)]

The function accepts two arguments, the number of genes to be generated and the length 
of each gene. We specify the alphabet to be used in a string. In the end, all we need is a 
list comprehension, with the work being done by random.choices(). This function randomly 
draws letters from the alphabet with replacement which are then joined into a string using 
join(). All "genes" are collected in a list and can be evaluated with the next function.

The actual solution idea in the search for the longest common sequence is to select one 
of the genes as a reference (if the length of the genes is identical, this is irrelevant; if the 
lengths differ, the longest gene should be selected). This gene is then deconstructed into 
all possible substrings. For example, the string LION can be broken down into a total of ten 
substrings: L, I, O, N, LI, IO, ON, LIO, ION, and LION itself. We sort these substrings from 
long to short, because we can immediately stop after we find the first correct match since 
all others cannot be longer.
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def lcs(allstrings):
 reference = allstrings[0]
 tested = set()
 for length in range(len(reference), 0, -1):
  for pos in range(0, len(reference) + 1 - length):
   subsequence = reference[pos:pos + length]
   if subsequence not in tested:
    if all(subsequence in sequence for sequence \
    in allstrings[1:]):
     return subsequence
    tested.add(subsequence)
 return ""

Since we assume all genes in the selection have the same length, we randomly choose 
the first one. We create a set in which we store all the substrings that have already been 
tested. We create an outer loop that determines the length of the string. We take the 
longest possible length, the reference gene, and reduce it by 1 in each run, i.e. count down. 
The inner loop passes through all conceivable positions in the string, working from front to 
back. We also take the length of the substring into account so we do not exceed the length 
of the string at the end. For example, if the string to test is SHIP, the following strings are 
produced: SHIP, SHI, HIP, SH, and so on...

If a string is new to us, i.e. not yet available in the set, it is a potential candidate. We 
then use a comprehension and check whether the substring is present in all other gene 
sequences. We utilise all() to test if all generated boolean values are True. If this is the 
case, the all-function returns True and we have found the solution. If there is only one 
False, we get False. The substring is then added to the set as mismatch and we continue. If 
we have not found a match at the end, an empty string is returned. Time for a test.

def main():
 data = create_genes(3, 14)
 print(data)
 print(lcs(data))

We define a seed for the random number generator and thus guarantee the same random 
numbers are always used for repeated function calls. This is often very useful for debugging. 
The result is then as follows:

>>> random.seed(12345)
>>> main()
['CATCCAGAACGAGC', 'TATCGAGACACTTG', 'ATTTAACTGGAGGT']
GAG
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Appendix: Controlling the Flow of a Program

In general, programming is not necessarily math but rather the art of logical and structured 
thinking. For example, certain operations are to be carried out for a task, but depending on 
the result, the program flow must be adapted. Whether a certain operation is performed 
or skipped is determined by the program flow. A fundamental kind of control are if...
else constructions that we use all the time. Things become more complex when nested 
constructs appear. A frequently encountered task is to use nested loops to find a certain 
result. Once you have it, you want to exit all loops directly and continue with the main 
program. This is sometimes tricky. In the following, three basic ideas are presented which 
allow you to handle these situations. Veterans will also remember the GOTO statement to 
be able to make arbitrary program jumps. However, these are no longer up-to-date and 
should be avoided at all costs. Meanwhile, there are enough alternatives.

Our example is as follows: we have three nested loops and are looking for a result. The 
solution is found when the sum of three numbers is divisible by 31. The first program 
architecture we will discuss is to outsource this part of the code to an extra function. 
This has several advantages: it makes the code clearer, you can use the new function in 
other places, and debugging is sometimes easier. The advantage of functions is that, no 
matter how many loops are running, a return or yield statement causes the function to exit 
immediately and return a result. An example can look like this:

def numfinder():
 for x in (200, 201, 220):
  for y in (77, 88, 99):
   for z in (1, 5):
    print(x, y, z)
    result = x + y + z
    if result % 31 == 0:
     return result
print(numfinder())
print("All loops exited")

The second option is to utilise a flag-variable. This is a Boolean, which is either True or 
False. Once the result is found, the value changes and the parent loops will exit. We don't 
need a new function for this, but the disadvantage is that the code gets longer and you 
have to do a check for each loop.

leave = False    #Create bool variable
for x in (200, 201, 220):
 if leave:
  break
 for y in (77, 88, 99):
  if leave:
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  break
  for z in (1, 5):
   print(x, y, z)
   result = x + y + z
   if result % 31 == 0:
    leave = True
    break
print(result)
print("All loops exited")

First we set the flag-variable leave to False and then enter the loops. On each level we 
introduce a check which quits the respective loop as soon as the value changes to True. As 
soon as the result is available inside the loop, the variable is set to True and the innermost 
loop is left with break. After this, the check from inside out leaves every loop and you are 
back in the top program level.

The last possibility is a solution with exceptions. Since these are actually intended to display 
or process error messages, controlling the program with these is considered to be a misuse 
by some people. The application is as follows:

try:
 for x in (200, 201, 220):
  for y in (77, 88, 99):
   for z in (1, 5):
    print(x, y, z)
    result = x + y + z
    if result % 31 == 0:
     raise AssertionError
except AssertionError:
 pass
print(result)
print("All loops exited")

The idea is to put all loops into one try-block and throw a predefined exception when the 
solution is found (here an AssertionError). As soon as this happens, it will be caught by the 
except-block and you can specify how the program should proceed. A pass below except is 
the least thing you need to include because otherwise, another exception is caused, which 
is not usually what you had in mind.

4.4 • Encryption

Our modern world is no longer conceivable without digital encryption. No matter whether 
we order something on the Internet, make a bank transfer or connect to a wireless 
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hotspot, there are always complex encryption methods that are intended to prevent 
unauthorised persons from gaining access to our data or secrets. Why the development 
and implementation of encryption should be reserved for the absolute specialists can be 
seen from the fact that new reports of holey encryption are circulating in the media almost 
daily. Python inherently includes several ways to encrypt data and create hashes. In this 
example, we want to illustrate how texts can be encrypted and decrypted in a primitive 
way. The idea is to encrypt plaintext with a password and thereby create a secret text that 
is not directly readable and makes no sense (the code). This text can then be converted 
back into the plaintext, but only if you know the correct password. For this, we will need 
several help functions.

First, we need to explain the principle of a hash function. Such a function generates a 
(numeric) output for an arbitrary input. There are several aspects of interest: First, the 
function must strictly be deterministic: identical inputs must always produce the same 
outputs. There should be no obvious similarity between input and output, i.e. you can't 
easily infer the output from the input and vice versa. Also, the output should always have 
the same length, regardless of the length of the input. Thus, a hash function is also suitable 
for compressing information in a lossy way. Similarly, small changes to the input should 
produce large changes in the output. Finally, it is considered desirable to avoid collisions. 
This means different inputs produce different outputs and no two different inputs map to 
the same output. Of course, this is not always possible, since theoretically, inputs of any 
length are possible, but the outputs are fixed in their length. If the number of theoretical 
inputs exceeds the number of outputs, collisions are inevitable. Our own, very primitive 
hash function will hardly meet these requirements. It serves here for illustration. We adapt 
the checksum algorithm according to John Fletcher.

def generate_hash(string):
 data = [ord(element) for element in string]
 sum1, sum2 = 0, 0
 for element in data:
  sum1 = (sum1 + element * 11111) % (10 ** 6)
  sum2 = (sum2 + sum1) % (10 ** 6)
 return str(sum1) + str(sum2)

First, we convert each character of the string into a number. This is easily possible, because 
due to the Unicode standard, each character is already assigned a unique number, which 
can be retrieved in Python via ord(). Here are some examples:

>>> ord("t")
116
>>> [ord(i) for i in "HELLO"]
[72, 69, 76, 76, 79]
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In this way, we create a list using a comprehension, in which all respective numerical values 
of the string are stored. We initialise two sums with 0, then iterate over the numbers in the 
list and sum the values as shown. As a small modification, we also multiply each number 
in the list by a constant to produce larger numbers and thus longer output, which will be 
useful later. We also want to avoid numbers that are too long and use modulo. Finally, we 
have two numbers that we convert into strings and return them. Now we can test some 
examples.

>>> a = ["Hallo", "Hello", "12345678", "12334567", \
"averylongstringisreducedbythehashing"]
>>> for element in a:
>>>  generate_hash(element)
511056544289
555500722065
666620533128
611065366463
66236758629

As you can see, even small changes in input lead to big changes in output. Very long 
inputs are compressed. We will then use this function to generate a seemingly random, 
yet reliably producible numerical code from the password. In practice, cryptographic hash 
functions such as SHA-2 or previously MD5 are used. However, their mode of operation is 
much more complex than our example, since data is processed directly on a bit level, which 
is faster and produces much better results. MD5 is nowadays considered insecure since the 
currently available computing power can reliably generate collisions, which can be used to 
manipulate data. Python's hash function can be called with hash().

Now the hash function is implemented, we can start thinking about the actual technique of 
encryption. A very simple idea has to be put into practice here: The individual characters in 
the text are swapped several times and seemingly randomly, resulting in a nonsense code. 
As an example, a simple flipping of characters can be mentioned: The sequence of letters 
HELLO results in OLLEH when inverted. This can be seen very quickly. However, if different 
methods of transformation are combined and executed one after the other, it becomes 
much more difficult to recognise the pattern. To make this process strictly deterministic, 
the password is used. It determines which method is used and when, so that a reversal is 
possible. If this process was not deterministic, the data could no longer be decrypted. We 
want to limit ourselves to three different functions, which are shown below directly as code.

def turnaround(inputstring):
 return inputstring[::-1]

def twister(inputstring):
 assert len(inputstring) % 2 == 0 
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 output = ""
 for i in range(0, len(inputstring) - 1, 2):
  output += inputstring[i + 1]
  output += inputstring[i]
 return  output

def zipper(inputstring, reverse=False):
 assert len(inputstring) % 2 == 0
 output = ""
 if not reverse:
  for i in range(0, len(inputstring) // 2):
   output += inputstring[i]
   output += inputstring[-i - 1]
 else:
  a = [inputstring[i] for i in range(0, len(inputstring), 2)]
  b = [inputstring[i] for i in range(1, len(inputstring), 2)] \ 
  [::-1]
  for i in range(len(inputstring) // 2):
   output += a[i]
  for i in range(len(inputstring) // 2):
   output += b[i]
 return  output

The first function simply turns a string around, as shown above in an example. The second 
function reverses the position of two consecutive characters. The word SECRET thus 
becomes ESRCTE.

The third function is a bit more complicated and has the goal of always replacing the first 
with the last letter and the second with the penultimate... and so on. SECRET becomes 
STEECR. Note the reverse translation requires a special function and is not sufficient to 
apply the same function to the string again. Therefore, an argument must be used to 
explicitly specify whether the reverse is desired. Also, only strings with an even number of 
characters may be entered in zipper() and twister(), otherwise the pairings will not work. If 
these three functions are created, the actual encryption can now be programmed.

import random
def encrypt(message, password):
 message = message.upper()
 alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
 if len(message) % 2 == 0:
  message += "".join(random.choices(alphabet, k=20)) + "ZZ"
 else:
  message += "".join(random.choices(alphabet, k=20)) + "AAA"
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 hashvalue = generate_hash(password)
 funclist = [turnaround, zipper, twister]
 
 for element in hashvalue:
  rest = int(element) % 3
  message = funclist[rest](message) 
 return message

The function takes two arguments: the message and the password. At the beginning, the 
plaintext is completely translated into uppercase letters. We then generate a random code 
that is attached to the message. This has two purposes: First, it increases the effective 
code length for very short texts, which increases security. Secondly, it ensures the text to 
be encrypted contains an even number of characters. For stronger encryption, this addition 
should probably be much larger, but in this case it would unnecessarily increase the length 
of the printed code. To do this we first define an alphabet and then use random.choices() to 
generate a random selection of characters. This appendix is then either 22 or 23 characters 
long. As long as we cut off the right number of characters at the end, it doesn't matter 
that the code is random and therefore not necessarily reproducible. By looking at the exact 
characters at the end, which are either ZZ or AAA, we can see how much has to be cut off.

The hashvalue is then generated from the password, which is given as a string. Now the 
actual encryption takes place. Each numerical value in hashvalue is assigned a function. 
Since there are only three functions but ten digits, a reduction is made using modulo. Thus, 
at the end in rest only 0, 1, or 2 are possible. These are assigned to the functions defined 
in funclist. The order in which the functions are applied to the plaintext is thus based on the 
hash and thus the password. The generated code is finally output. The decryption is only 
a reverse of the encryption. The respective counter operations must now be performed in 
reverse order, based on the same password.

from functools import partial
def decrypt(code, password):
 hashvalue = generate_hash(password)[::-1]
 funclist = [turnaround, partial(zipper, reverse=True), twister]
 for element in hashvalue:
  rest = int(element) % 3
  code = funclist[rest](code)
 if code.endswith("ZZ"):
  return code[:-22]
 else:
  return  code[:-23]

Again, the hash is generated but saved directly in reverse order. The funclist must also have 
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the same structure. It is also important that we call zipper() with the reverse argument 
to ensure correct decryption. But since we treat the functions as objects and do not want 
to pass any more arguments below, we use partial() from the module functools to make 
sure that the function zipper() is always called with the special argument, which is what 
the other functions lack. This way is more elegant, otherwise we will create an if...else 
construction to pass (or not pass) certain arguments depending on the function.
The integers of the hash are then iterated over. Finally, the extra appendix added at 
the beginning has to be truncated so that exactly the same plaintext is generated. The 
characters at the end, either ZZ or AAA, tell us how many characters must be removed. 

Now a test can be performed.

>>> message = "MEETMEATTHEOLDBRIDGEATSEVEN"
>>> password = "mysecret"

>>> code = encrypt(message, password)
>>> code
RMTHOBTYDEKYTSUBIAAEYNMYQEWFTEHDDAEOKEEQTMSWAVPLGA
>>> decode = decrypt(code, password)
>>> decode
MEETMEATTHEOLDBRIDGEATSEVEN
>>> assert message == decode

Obviously the encrypted message is longer than the original message, which is due to 
the additional characters inserted. Because of the random element, the encrypted string 
is probably not identical when the function is called again, but this is irrelevant for the 
functionality. We could now pass on this string, for example via an insecure channel like a 
letter, which we assume will be opened and spied on. Without the associated password, this 
information ultimately makes little sense. If we then enter this text again with the correct 
password in decrypt(), we get the original message. Since assert does not cause an error, 
we know that the encryption and decryption were successful. This is undoubtedly a very 
primitive encryption, which is intended for illustrative purposes only. It is nevertheless 
superior to other techniques used in ancient times, such as Caesar encryption.

Assignments

1. Go through the individual steps of the encryption and consider the weaknesses or 
points of attack. 

2. Security through obscurity means that encryption is secure if the generating algorithms 
or code implementations are kept secret. Consider why this is a bad idea and why 
all common encryption methods disclose their codes and algorithms. To what extent 
would the encryption algorithm shown above be insecure if attackers knew it? 

3. Create at least one more function that mixes letters deterministically (such as zipper()). 
Modify the existing code so this function is also used in the encryption.
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4.5 • Roman Numerals

Roman numerals not only are impressive on documents or monuments, as they are 
symbolic of one of the most famous civilisations of all time. The system is primitive and 
barely allows for higher mathematics. It is not a positional system like Arabic numerals, 
but rather an additive numerical alphabet. For example, Arabic numbers 91 and 19 are 
completely different, since the position of the digits is different even though the number 
of the respective digits is the same. In Roman numerals, this is less important, since XV 
and VX, for example, mean the same thing (although there are also rules here, if only for 
aesthetic reasons). Also, there is the peculiarity that already in ancient Rome, four identical 
signs should be avoided next to each other. For this reason, the number 4 was not written 
IIII, but a subtraction rule was used, i.e. subtraction was made from the next higher 
character so that the result is IV.

Altogether we distinguish the following characters: M (1000), D (500), C (100), L (50), X 
(10), V (5), and I (1), we do not accept numbers above 3999 to avoid the problem that 
we need more numeric characters. We just have to pay special attention to the subtraction 
rule to avoid making mistakes. There are different approaches to the algorithm. You can 
integrate a counter that checks how often the character to be set is already present in a 
row. If it reaches four, you can delete the previous characters and apply the subtraction. 
This is very flexible, but may not be necessary. On closer inspection, it is clear that there are 
only six cases where the rule is needed, namely for the numbers 4, 9, 40, 90, 400, and 900. 
These can be addressed separately, thus saving the development of a checking algorithm. 
The general solution idea is as follows: Take the Arabic numeral you want to convert and 
check for each Roman numeral, starting with the largest. How many times you can subtract 
it from the number without getting a negative result. If such a subtraction is possible, the 
step is performed and the corresponding Roman numeral added. Then one continues with 
the remainder of the first subtraction and the next smaller Roman numeral. In this way, the 
number will be zero at the end and the Roman number will be built up successively. Taking 
the number 1005 as an example, this would mean you can subtract 1000 (the remainder 
is still 5), meaning you can add M to the result. Now you try to subtract all other numbers 
from the rest, which only works for V, i.e. the five. You add V to the result and you are done 
because the Arabic number was successfully reduced to zero. So you get the correct Roman 
numeral MV. If you include the mentioned digits with subtraction rule in this list, they will 
be considered equally. The code looks like this:

roman_numerals = [(1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, 
"C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), 
(4, "IV"), (1, "I")]

def to_roman(integer):
 if not isinstance(integer, int) or not 0 < integer < 4000:
  raise ValueError()
 output = ""
 for value, symbol in roman_numerals:
  while integer >= value:
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   output += symbol
   integer -= value
 return output

At the beginning, we define the mapping between numerical values and symbols, which 
we do as tuples and pack all tuples into a list which we have sorted by numerical values 
in descending order. The actual function follows. First, we sanitise the input and only then 
we continue. We initialise the output as an empty string. We now iterate over the list just 
created and start a loop. This loop runs as long as the input integer is greater than or equal 
to the current numerical value. If this is the case, we add the current number sign to the 
output and subtract the numerical value from the input. In this way, the Roman numeral 
is successively constructed and the input value is reduced to 0.  We are then done. We 
can test the procedure using the example 2039. Let's start at 1000, which is smaller than 
the input, so is reduced to 1039 and M added to the output. 1039 is still greater than 
1000, so we end up with MM and 39. 1000 doesn't fit into 39 anymore and we go through 
the list until we come across 10, which fits into the 39 three times, which brings us to 
MMXXX. Missing is the 9, which is processed with IX. The final result is MMXXXIX. The re-
transformation follows a very similar procedure.

def from_roman(roman):
 if not isinstance(roman, str):
  raise ValueError()
 output = 0
 for value, symbol in roman_numerals:
  while roman.startswith(symbol):
   output += value
   roman = roman[len(symbol):]
 return output

The input must now be a Roman numeral as a string. The output will be an integer, which 
we initialise with 0. Again, we iterate over the tuples of values and number symbols defined 
at the beginning and start a loop. Using startswith(), we check whether the given string 
starts with a certain number character. If this is the case, we add the respective value and 
remove the characters. We have to be careful because a character can consist of one or 
two characters (like IX for 9). So we cut away either one or two characters at the beginning 
of the string, which we do with a slice. Let's take MMXXXIX again as an example. Since 
M is present, we add 1000 to the output and remove the M. This happens a total of two 
times, which brings us to the number 2000 and the remaining character XXXIX. We then 
go through the characters until we get to the X, here the same happens three times, which 
brings us to 2030 and IX. We find IX in the list, add 9 to the result and get the empty string, 
so we are done. So we have gradually built up the number 2039.

Since the example shows a perfect inversion in each case, we can test our functions for 
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consistency. If we convert an Arabic number into a Roman numeral and back again, the 
original number must emerge. This does not prove that our procedure is always correct, but 
shows that the logic is consistent and a correct retransformation does indeed take place. 
Since only numbers between 1 and 3999 are possible, we can test them all.

for i in range(1, 4000):
 assert i == from_roman(to_roman(i))

4.6 • Match Arithmetic

A popular type of puzzle deals with matches and arithmetic. An equation is given but is 
incorrect, so the math does not work out. All numbers and characters in this equation are 
represented by matches. The reader has to move a certain number of matches and thus 
correct the equation. As a basis we, use the following:

 185 + 15 = 270

The math is clearly faulty. The task is to turn over exactly one match so the equation is 
correct in the end. The number of matches used must remain the same. We cannot remove 
any. Numbers and arithmetic operators may change equally, for example, the plus sign 
could change to a minus sign. We assume all digits from 0 to 9 are allowed, as well as the 
plus, minus and equal signs. As a "digital" replacement for matches, we utilise a seven-
segment display (see figure 4.1).

For example, number 1 consists of two matches, number 2 of five, and so on. The idea 
is as follows: we use a brute force approach to systematically test all possible options. Of 
course, we do not want to try all equations but have to limit our search range. The original 

Figure 4.1: All ten digits are represented digitally using a seven-segment display. Source: 
Publicdomainvectors.org

http://Publicdomainvectors.org
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equation serves as an aid. According to the guideline we are only allowed to move one piece 
of wood. In the end there are only two possibilities: we move a piece of wood only within 
a digit (for example, when a 2 turns into a 3), or take a piece of wood from one digit and 
add it to another digit (for example, when we steal a piece of wood from the 8 so that it 
becomes a 0 and then put the wood on a 1 which becomes a 7). We can manually collect 
all such possible transformations and divide them into two categories.

n_same = ["1+", "+=", "23", "35", "90", "60", "69"]
n_diff = ["-+", "-=", "17", "39", "56", "59", "68", "98", "08"]

The explanation is as follows: we can change the 1 into a plus sign by flipping over one of 
the two matches, so the number of matches in the original digit remains constant. If we 
want to turn a minus sign into a plus sign, we have to add a piece of wood (or subtract it 
if the direction is the other way round). In n_diff it is important the character that needs 
fewer matches is always placed first and then the one with exactly one match more. After 
this, we need different help functions. For example, we want to make replacements in 
strings.

def replace_at_index(string, index, character):
 return string[:index] + character + string[index+1:]

It has three arguments: the string in which something is to be replaced, the position 
which the want to replace, and the character to use as a replacement. The application is 
as follows:

>>> replace_at_index("House", 0, "M")
Mouse

We then need a function to systematically go through all substitutions. We divide it into 
two parts: one replaces configurations in which the number of sticks per character remains 
constant and the other makes replacements in which the number of characters changes. 
We can see why this makes sense when we put everything together. Now first the function 
with different number of characters.

def add_match(string):
 for i, char in enumerate(string):
  for less, more in n_diff:
   if char == less:
    yield replace_at_index(string, i, more)
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The input is only the string, i.e. the equation we want to solve. We then iterate over all 
the characters in string and use enumerate() to simultaneously get the character and its 
index as a tuple. For each character, we then iterate over the options in n_diff and try 
them out systematically. For example, if a 1 appears in our original equation, it is replaced 
by a 7 and the result is returned using yield (thus we create the function as a generator). 
Our main function will then check whether a correct equation has been created in this 
way. We add a match to the overall equation in this way, which means one must first be 
removed elsewhere, otherwise the total is no longer constant. This is integrated into the 
next function, which is structured as follows:

def change_match(string):
 for i, char in enumerate(string):
  for char1, char2 in n_same:
   if char == char1:
    yield replace_at_index(string, i, char2)
   if char == char2:
    yield replace_at_index(string, i, char1)
  for less, more in n_diff:
   if char == more:
    one_match_less = replace_at_index(string, i, \ 
    less)
    yield from add_match(one_match_less)

Again we use the original string as the sole argument. We then iterate over all characters 
in string and apply enumerate() again. First we try out replacements with a constant 
match count. To get all combinations we have to try the position of the characters in each 
combination as stored in n_same, i.e. in both directions. Then we turn to the substitutions 
with different numbers of sticks. Obviously we have to be careful to remove one first and 
add one later. We then iterate over all the elements in n_diff and, if possible, replace a 
match by removing one. We save this new equation in one_match_less and feed it into 
add_match() so that now all additions are systematically tried and the number of woods 
remains constant. Here we use yield from. This allows us to access another generator 
directly from our current generator and request its return values (also see the appendix to 
this chapter). This guarantees our function will ultimately make all possible replacements. 
Let's look at an example of how this function would work with our original equation.

>>> testgen = change_match("185+15=270")
>>> for i in range(10):
>>>  print(next(testgen))
+85+15=270
765+15=270
185+15=270
166+15=270
169+15=270
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165+75=270
165+16=270
165+19=270
165+15=278
795+15=270

To do this, we will call the function we have just defined as a test and look at the first ten 
elements of this generator. First, the 1 is replaced by a +, then the 1 is replaced by a 7. This 
means the 8 is converted into a 6 so the number of sticks remains constant. We are almost 
finished with this. From this list of all possible solutions, we now have to find those that 
are syntactically correct (i.e. contain exactly one equal sign) and also provide the correct 
mathematical solution.

def solver(equation):
 for candidate in change_match(equation):
  if candidate.count("=") == 1:
   try:
    if eval(candidate .replace('=','==')):
     return  candidate
   except SyntaxError:
    pass
 raise RuntimeError("No solution found")

The function accepts the original equation as input. We then iterate over all the output of 
the generator. Thus, we are guaranteed to get from this function all possible combinations 
of characters that fit the rules. We then first check whether the resulting equation contains 
exactly one equal sign. Only then can it be a syntactically correct equation. We then have 
to check the mathematics, for which we use eval(). This allows us to execute code directly 
in Python or have it checked for correctness. Note the equal sign has to be replaced by a 
double one because we have to test equivalence using this operator in Python (e.g. 1==1). 
If this evaluation is successful, True is returned and we have found a solution. It is quite 
likely that an error is generated, for example in an equation like 7==+, because it does 
not make sense in Python. To catch such errors, we use a try...except construction so the 
script does not crash. If we have tried all possible combinations in the end, but have not 
found a solution, the equation is unsolvable. We then generate an error message. Time for 
a test run.

>>> solver("185+15=270")
195+75=270

It is easy to verify that the math is correct. The solution is to remove a match from the 8 
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and make a 75 out of the 15. In the end, we moved exactly one match and thus changed 
two digits or characters.

Assignments

1. Theoretically, could multiple solutions exist? Change the function so that all possible, 
correct solutions are output.

2. Create a function that generates similar match equations, i.e. first an equation to be 
corrected and in addition the correct solution.

Appendix: yield from

In the previous example, we used yield from, which was new. Whenever a function needs 
to return something, we can use either return or yield, where yield, as explained earlier, 
defines a generator and stores the state of the function. But what is yield from? The basic 
idea is that a generator can supply elements directly from another generator without having 
to explicitly initialise it. In this respect, yield from is something that makes our lives easier 
but is not necessary. As an example, we can look at a nested list that we want to flatten so 
that we end up with a list of all items but no sub-lists. The programming is simple:

def flatten(inputlist):
 """Flattens a list"""
 for element in inputlist:
  if not isinstance(element, list):
   yield element
  else:
   yield from flatten(element)

Assume that there are only lists included (no nested tuples). The function takes the original 
list as its argument, then it iterates over every element of the list. If the element is not a 
list, it can be directly returned. If it is a list, it must now be unpacked. We, therefore, call 
our function recursively, the new argument is the list we just found. This list can contain 
further sublists, but this is covered by the arbitrarily nested recursion. This is where yield 
from comes into play. The self-call of the generator function creates a new generator. If we 
were to use yield only, we would get a generator object as a return, which is of no use to 
us. Using yield from, however, the newly created generator object is initialised directly and 
individual outputs are made. Let us try it out.

>>> a = [1, 2, 3, [8, 77, [3, 4], 7], 5, [34, [], 43]]
>>> list(flatten(a))
[1, 2, 3, 8, 77, 3, 4, 7, 5, 34, 43]
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No matter how many levels the sublists have, at the end all elements (here only numbers) 
are combined in one list without any further levels.

4.7 • Superpalindromes

In previous tasks, we dealt with palindromes, i.e. strings that are identical when read 
backwards and forwards. Among the longer candidates of the English language are 
RACECAR or TACOCAT. If we switch over to sentences we can find even longer constructs 
like "Was it a bat I saw" Can you program such things? Yes, as long as you don't expect a 
meaningful or grammatically correct sentence, but rather just a string of words. For this 
purpose we use the dictionary we introduced in the first task of this chapter. It contains a 
large list of nouns we can utilise.

The solution algorithm is based on a program by Peter Norvig, who created the longest 
English palindrome.3 The idea in itself is the following: Determine the beginning and the 
ends of the palindrome to define the boundaries. Thus, transferred to a written sentence, 
you have a beginning part (the left part) and an end part (the right part). Afterwards you 
determine which part of the complete sentence prevents the palindrome so far, i.e. does 
not find a suitable character pair. Let's look at an example. As framing we use:

A MAN A PLAN ... A CANAL PANAMA

As you can easily verify, this sentence is a palindrome, except the part ACA on the right 
side. Therefore, we need to find a word that starts with ACA which is added to the left part 
of the construct. An example would be ACAPULCO, which creates this sentence.

A MAN A PLAN ACAPULCO ... A CANAL PANAMA

The previously "loose end" ACA is now covered by ACAPULCO, however, the current string 
is still no palindrome. The new loose end is PULCO, located on the left side of the construct. 
Now, to cover this part, we need a new word that ends in the reverse of PULCO, that is 
OCLUP. However, a look in the dictionary and we see that no such words exist. Therefore, 
we will run out of words. We have to rely on backtracking and find another solution. We 
delete ACAPULCO from the left side of the construct and look for another word or construct, 
maybe ACADEMIA. This gives us

A MAN A PLAN ACADEMIA ... A CANAL PANAMA

The loose end is now DEMIA. Is there a word that ends with the reverse of it, that is, 
AIMED? Yes, CLAIMED for example. I hope the principle is now clearer. We look for suitable 
matches, add them and see how far we progress. If no matches are found at a given point, 
we have to delete words and try other ones. This continues until the total string becomes 
palindromic and a certain minimum length is reached. To do this in Python, we will need a 
few extra functions.

3 https://norvig.com/palindrome.html

https://norvig.com/palindrome.html
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def is_palindrome(string):
 return string == string[::-1]

def rest(left, right):
 """Finds the part of the construct that prohibits the formation of \
 a palindrome"""
 left = "".join(left)
 right = "".join(right)
 return left[len(right):] or right[:-len(left)]

def wordfinder(wordlist, string, start, blocked):
 """Finds a suitable match"""
 if start:
  for word in wordlist:
   if word.startswith(string) and word not in blocked:
    return word
 else:
  for word in wordlist:
   if word.endswith(string) and word not in blocked:
    return word
 return None   #no suitable match found

First, we create a simple test with is_palindrome(), to indicate whether a string to be 
tested is a palindrome. The second function rest() takes two lists and checks which part 
prevents a palindrome from being created. We must define our data types already at this 
point. We store the respective words in lists and dynamically combine them into strings for 
testing. This makes it very easy for us to add or delete whole words later (backtracking). 
We then define a left and right subset as shown above and convert the lists into strings. 
The rest is done in one command. For this, we use slices and the length of the other string. 
If both strings have the same length, we get two empty strings and output one of them. 
Otherwise, or ensures that the string with more characters is returned.

The last help function looks for new matching words from the dictionary. Here we have 
four arguments: the list of all words, the string that has to find a match, start (a value that 
indicates whether our string must be at the beginning or the end), and blocked, a collection 
of words already used that we are not allowed to assign. We only have to distinguish 
whether the string should be at the beginning or end of the word. We then simply iterate 
over wordlist and find a suitable match. If it turns out that there is no matching word, as 
explained in the above example, the function must take this into account. In this case, it 
will output None. We can now put everything together in the main function.
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import random
def main(minlength):
 with open("wordlist.txt", encoding="utf8") as data:
  wordlist = [row.strip().upper() for row in data]
 left =  ["A", "MAN", "A", "PLAN"]
 right = ["A", "CANAL", "PANAMA"]
 
 total = "".join(left) + "".join(right)
 blocked = set()
 last_right = False
 while len(total) < minlength or not is_palindrome(total):
  loose_end = rest(left, right)
  if loose_end == "":
   while True:
    newword = random.choice(wordlist)
    if newword not in blocked:
     break
  else:
   newword = wordfinder(wordlist, loose_end[::-1], 
   last_right, blocked)
  
  #Backtrack
  if not newword:
   if last_right:
    right.pop(0)
    last_right = False
   else:
    left.pop(-1)
    last_right = True
  else:
   blocked.add(newword)
   if last_right:
    left.append(newword)
    last_right = False
   else:
    right.insert(0, newword)
    last_right = True
 
  total = "".join(left) + "".join(right)
 
  print("Loose end: ", loose_end)
  print("New word: ", newword)
  print(left, right)
 assert is_palindrome(total)
 return total
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Let us now go through this somewhat longer function step by step and look at a more 
detailed example at the end. The function utilises the random module and has one 
argument, the minimum length the palindrome should finally reach. First, we read in the 
word list. This must be in the same folder as our script. We convert all words to uppercase 
and consistently stick to this format. We define the starting words as described above. We 
then build the whole string from the start sentences in total. We create an empty set in 
which we note down all words we have already used. We must also make sure we add new 
words alternately to the left and right parts and never twice in a row on the same side. The 
bool variable last_right is used to memorise this. If we added the last word to the right side, 
this variable is True, otherwise False.

We start the main loop, which runs until two conditions are met. On the one hand, our 
total palindrome must have reached a minimum length, which we specify in minlength. On 
the other, the complete string must be a palindrome. We use the rest() help function to 
determine the loose end of the current construct. There are two possibilities here: we get 
an empty string back, which indicates that there is no loose end, and the current string is 
already palindromic. Since we still ended up in the loop, we know the total length is too 
short. In this case, we pick a random word from the word list (which must not appear in 
blocked), which we will continue to use afterwards. If, on the other hand, we were given a 
loose end, we must now find a suitable counterpart. Let's go through this using an example.
The residual value may be OT. Logically, the rest must come from the side that was last 
added. Assuming this was the right side, the situation would look like this:

... | OT...

Therefore, we must now find a string for the left side of the sentence that matches the 
reverse of the given end, which is TO. An example might be TOLERANT.

...TOLERANT | OT…

The new loose end is now LERANT. But what if the end is on the other side of the sentence, 
like this?

...OT | …

Now we must find a word for the other side that ends with the reversed loose end, thus TO. 
An example could be QUITO.

...OT | QUITO…

The new loose end on the right side is now QUI. The side we have to append a word to is 
controlled using last_right. Here you just have to be careful to find the right string at the 
right place either at the beginning or at the end of the new word. But what happens if no 
word can be found, e.g. because it already exists and is therefore blocked, or none exists 
at all? In this case, the return by wordfinder() is None and we have to initiate a backtrack. 
Depending on whether the last word was inserted left or right, it will be deleted at the 
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correct position, at either the beginning or end of the list. For this we use list.pop(index), 
which removes an element from a list at the desired position. Once the element has been 
deleted, we only need to flip the current position index (in last_right). The old word is left in 
the blocked list and can therefore no longer be used the next time. This way, never-ending 
cycles are prevented.

If the return is not None, i.e. a valid word, it will be added to the blocked set. Since this is 
not a list but a set, we use set.add(element). Again, we have to make sure that we add the 
newly selected word either to the left or to the right, and there at the beginning or end of 
the list. To place an element at the beginning of a list we use list.insert(index, element), 
otherwise (for inserting at the end of a list) we use the well-known list.append(element). If 
this is finished, we are almost done and can now generate the total string and calculate the 
length. We also have some intermediate results displayed in the console, so we can follow 
the construction of the super palindrome. After this, the loop starts again. If at some point 
all conditions are fulfilled and the loop is exited, a test is performed to make sure the final 
palindrome is actually a palindrome. Afterwards, the result is displayed. Now let's display 
the process interactively with the known parameters.

Loose end:  ACA
New word:  ABACA
['A', 'MAN', 'A', 'PLAN'] ['ABACA', 'A', 'CANAL', 'PANAMA']
Loose end:  ABACAACA
New word:  None
['A', 'MAN', 'A', 'PLAN'] ['A', 'CANAL', 'PANAMA']

Given the starting words, the program has correctly identified the loose end ACA and found 
a possible word, ABACA. However, the new loose end is now ABACAACA and the new word 
is None so Python is not able to find a matching word for this end. In the next line, the 
added word ABACA is deleted and we are back at the start. The next round starts and the 
process continues. It takes some time, but finally, we end up with this solution.

['A', 'MAN', 'APPAIR', 'BA', 'DEL'] ['LED', 'ABRI', 'AP', 'PANAMA']

As we can verify, this is indeed a palindrome with more than 30 characters in total. Some of 
these "words" are rather strange so we might want to sanitise the input data a little further. 
Feel free to play around with the data. Maybe you can find an interesting super palindrome 
this way.

4.8 • 2048

2048 is a popular game for mobile phones and computers. The object is to cleverly combine 
powers of two in a 16-square playing field so the number 2048 is ultimately reached 
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(see the next figure). The main rule is that only identical numbers can be combined, for 
example, the numbers 2 and 2 to 4, but not 2 and 4. We want to recreate this rather simple 
principle in the console.

The exact rules are as follows: you start with a playing field in which two fields are occupied 
by the number 2. After this, the player can move the playing field in any direction with every 
move, namely up, down, left, or right. This moves the numbers in the desired direction 
and, if possible, adds them up. Also, after each move a new 2 is inserted at a random free 
position. Let's look at some examples:

2 2 0 2
<---
4 2 0 0

2 2 2 2
<---
4 4 0 0

8 4 4 2
<---
8 8 2 0

The second example shows how to add up from left to right. The first and the second 2 
are added up to a 4, then the third and the fourth number are added up again to a 4. This 
completes the round. Empty fields at the borders are filled with zeros. The game is won 
when the player reaches 2048. In our example, we will limit ourselves to 512 for a trivial 
reason, as will be explained later. The field itself is represented by a list of sub-lists (four 
lists with four elements each). Let us start with the central functionality of the game, the 

Figure 4.2:A version of 2048 with a nice graphical interface. Creator: TheQ Editor (Wikimedia Commons, CC 
BY-SA 3.0)
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implementation of the moves. There are four possibilities as mentioned above. We will 
consider all four possibilities separately, as our functionality will be slightly changed as a 
result. Let's start with this help function first.

def combine(numbers):
 numbers = [z for z in numbers if z != 0]
 for z in range(0, len(numbers) - 1):
  if numbers[z] == numbers[z + 1]:
   numbers[z] = numbers[z] * 2
   numbers[z + 1] = 0
 numbers = [z for z in numbers if z != 0]
 return numbers + [0 for z in range(4 - len(numbers))]

First, we use a list comprehension to remove all zeros from the list, since they disappear 
anyway if there is another number in the same list. We get a new list that only contains 
numbers that are 2 or larger. We now iterate over all elements of the new list and check, 
from left to right: if two adjacent numbers are the same, the value of the left number is 
doubled and the right number is deleted. Thus, it is possible that a list including zeros 
can be again created. These are removed in the last step and, if necessary, new zeros 
are inserted at the right end of the list. The pure function for a movement to the left was 
implemented in this way. What if you play to the right or even up or down? We can still use 
this function, we just have to transform the respective inputs. Let's look at the following 
row in the playing field:

0 2 0 2
--->
0 0 0 4

We must therefore add up from right to left and insert the spaces at the left side. This is 
done automatically if we simply flip the list over, pass it to the function, and then flip the 
result over again. We feed the function with [2, 0, 2, 0] and get [4, 0, 0, 0]. We turn it over 
again and get the final result. The second step is to extract the respective rows or columns 
in such a way that we pass them in the correct orientation and at the end, correctly fit the 
result into the overall game field again.
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def update_grid(grid, direction):
 if direction == "left":
  grid = [combine(row) for row in grid]
 elif direction == "right":
  grid = [combine(row[::-1])[::-1] for row in grid]
 elif direction == "up":
  grid = [combine(row) for row in zip(*grid)]
  grid = [list(row) for row in zip(*grid)]
 elif direction == "down":
  grid = [combine(row[::-1])[::-1] for row in zip(*grid)]
  grid = [list(row) for row in zip(*grid)]
 return  grid

The first variant, the move to the left, is clear. We only need to iterate over all lines in the 
grid, apply the function, and output the result. For this, we use a list comprehension. The 
second variant, the move to the right, is only a little more complex. We iterate over all rows 
in the grid and feed the function with the reversed row. The result is then reversed over 
again and written to the grid.

We have to pay a little more attention when we move up. We can't simply take a whole row 
from the playing field but have to swap rows and columns (transpose). To do this, we use 
zip() and receive the transposed rows which we enter into the function. In the second step, 
after the row has been processed by the function, we reverse the process, i.e. transpose 
again and make sure that the results are written as lists (and not as tuples) to the final 
grid. If we move down, the procedure is almost the same, but here we first have to reverse 
the transposed rows and then reverse the result again. For a better understanding, the 
following example can help.

#Transposing a nested list (matrix)
>>> a = [[1,2,3], [4,5,6], [7,8,9]]
>>> b = zip(*a)
>>> for row in a:
>>>  row
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
>>> for row in b:
>>>  list(row)
[1, 4, 7]
[2, 5, 8]
[3, 6, 9]

It becomes clear how numbers that are initially adjacent in one row are adjacent in one 
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column after the transposition. After this, we need a function that inserts a new 2 at a 
random and empty position on the grid in each round.

def newnumber(grid):
 output = grid[:]  #Copy of the original grid
 columnpos = [0, 1, 2, 3]
 rowpos = [0, 1, 2, 3]
 random.shuffle(columnpos)
 random.shuffle(rowpos)
 for row in rowpos:
  for col in columnpos:
   if output[row][col] == 0:
    output[row][col] = 2
    return output
 return output

For this purpose we randomise the indices and search until a number is found. If the field 
is full, this would result in no explicit return statement being executed at the end and None 
would be the output. However, this must not happen, so in this case, we will output the 
untouched grid. After this we need a function that tests whether the game was won, i.e. 
512 is reached.

def game_won(grid):
 return any(512 in row for row in grid)

As soon as 512 has been found in a row of the grid, True is returned, which we can achieve 
via any(). There is still a function missing that graphically displays the grid.

def display(grid, move, score):
 mapping = {0: "[  ]", 2: "[2^1]", 4: "[2^2]", 8: "[2^3]", 16:   
 "[2^4]", 32: "[2^5]", 64: "[2^6]", 128: "[2^7]", 256: "[2^8]", \
 512:"[2^9]"}
 for row in grid:
  for col in row:
   print(mapping[col], end= "")
  print("")
 print("================")
 print("Current move:", move)
 print("Score:", score)
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Here we also see why we only go to 512. In the console, we have to think in characters 
and for a nice even display, all fields have to be the same size. Instead of numbers (which 
can have between one and four digits), we use a representation in powers of two, which 
have exactly two characters, namely 2 and the power. We can go as high as 29, which 
corresponds to 512.4 If we had larger numbers, we would need three digits. For the console 
output, this seems like a good compromise. To make it look like this, we use a dict which 
contains the necessary information. Then we iterate over rows and columns and make sure 
that all characters in a list appear in one line. We also show information about the current 
number of moves and the score. The score is simply the sum of all numbers on the current 
board. Finally, we put everything together in the main function and structure the course of 
the game.

import random
import itertools
KEYS = {
 "\x1b[D": "left",
 "\x1b[C": "right",
 "\x1b[A": "up",
 "\x1b[B": "down",
}

def main():
 grid = [[0] * 4 for i in range(4)]
 grid[3][0] = 2
 grid[3][1] = 2
 for move in itertools.count(1):
  score = sum(sum(row) for row in grid)
  display(grid, move, score)
  if game_won(grid):
   break
  while True:
   userinput = input()
   if userinput in KEYS:
    break
   print("Input not valid! Only use arrow keys!")
  grid = update_grid(grid, KEYS[userinput])
  grid = newnumber(grid)
  for i in range(40):
   print()
 print("Game won!")

4 For printing reasons, in the code shown here the powers can only be represented by 
the character "^". In Python itself there are better characters so make sure to check out the 
online documentation for this task.
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We start with an empty grid into which we insert two numbers. We use itertools.count() 
to count up from 1. Using a comprehension, we calculate the current score by adding 
up the numbers in all rows. Afterwards, the grid is displayed. This is followed by a check 
for victory. If this is the case, we quit the game. Otherwise, a loop starts which serves 
to capture the current input. The loop runs until we recieve a valid input. We moved the 
assignment between the input (arrow keys) and the respective command to KEYS, because 
these names are a bit cryptic. When we receive a valid input by the user, we pass the 
information to move() and the grid is recalculated. We then insert a 2 at a random position. 
This is followed by 40 empty lines, which are used to simulate a dynamic game field update 
in the console. This completes the function.

Assignments

1. Add a function that tests whether the game is lost, meaning every field in the grid is 
filled with a number and no further move is possible.

4.9 • The Next Steps

Congratulations! After working through all the tasks, you can be proud of what you have so 
far learnt. You are no longer a beginner and can use Python productively in real scenarios 
at work and in everyday life. You know how to break down complex tasks into distinct 
steps, implement algorithms, and approximate complex problems with simulations. You 
have made use of the various possibilities of Python and got to know many modules.
Depending on how you want to develop, there are many ways to dive deeper into Python. 
For example, if you are looking for more practical tasks or puzzles, you will find numerous 
online platforms that systematically and comprehensively collect and compile typical tasks. 
Especially worth mentioning are Rosettacode.org and the Rosalind Project (rosalind.info), 
which are always a valuable source of inspiration for me. You will find many more challenges 
in various degrees of difficulty on these sites.

It can also be useful to explore special topics of interest in more detail - No matter 
whether these are numerical programming, statistical simulations, GUI programming, web 
applications, or classic software. Online and in bookshops, you will find extensive material 
on all topics. Finally, it is recommended to consistently pursue your own ideas and projects. 
Even if this may seem difficult, especially in the beginning, and you will probably encounter 
challenges that you cannot directly solve. You now have all the tools to achieve your goals. 
Make use of communities and forums on the Internet and exchange ideas with others.5  
If you liked this book, I'm happy to receive comments and reviews in the various online 
shops. I wish you lots of fun and success using Python.

5 Two great places to start are python-forum.io and reddit.com/r/python

http://Rosettacode.org
http://rosalind.info
http://python-forum.io
http://reddit.com/r/python
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