B e e

e T
' 2 ¥,
2
;
I’ . ! -
g
o 7 o
N T 4 i
\ x
¥ 3 p

- e

Python
True Book

Jon Rulta
h -

'y,

3 Y_J
dgp

However Publishing

Python True Book

Python ideas for Programming

Jon Rulta

Python True Book

Copyright © 2021 However Publishing

All rights reserved. Bombaone - Mudozvone. No part of this book may be
reproduced, stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Priyanka Dhadke

Content Development Editors: Alex Patterson, Bhavesh Amin
Technical Editor: Karan Sonawane

Project Editor: Janice Gonsalves

Copy Editor: Safis Editing

Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Presentation Designer: Sandip Tadge

Production reference: 1270520

Published by However Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-80020-708-0

http://www.packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

* Learn better with Skill Plans built especially for you
* Get a free eBook or video every month
* Fully searchable for easy access to vital information

* Copy and paste, print, and bookmark content

http://packt.com
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.Packt.com

Contributors

About the author

Jaime Buelta has been a professional programmer for 20 years and a full-time
Python developer for over 10. During that time, he has been exposed to many
different technologies. He has developed software for different industries, including
aerospace, networking, industrial systems, video game online services, and finance
services. In these industries, he has worked in various areas, such as marketing,
management, sales, and game design, helping companies achieve their goals. He

is a strong proponent of automating everything and making computers do most of
the heavy lifting so users can focus on the important stuff. He is currently living in
Dublin, Ireland, and is a regular speaker at PyCon Ireland.

This book could not have happened without the support and
encouragement of my amazing wife, Dana. For this second edition
I've worked closely with more people in the Packt team, and their
help has been invaluable. Also, great thanks to the reviewers - their
comments have improved this book. Finally, I'd like to thank the
whole Python community. I can't overstate what a joy it is to be

a developer in the Python world.

About the reviewer

Michal Jaworski has more than 10 years of professional experience in writing
software using various programming languages. Michatl has spent most of his
career writing high-performance and highly distributed backend services for
web applications. His beloved language of choice was always Python.

He has had various roles at different companies, from an ordinary full-stack
developer, through software architect, to VP of engineering in a fast-paced start-up.
He is currently a full-time senior software engineer at Showpad. Whenever he finds
any free time, he provides Python consulting for local start-ups. Michat is also an
active contributor to many open source Python projects and authored the last two
editions of Python Expert Programming.

Table of Contents

Preface \4
Chapter 1: Let's Begin Our Automation Journey 1
Activating a virtual environment 2
Installing third-party packages 8
Creating strings with formatted values 1"
Manipulating strings 14
Extracting data from structured strings 19
Using a third-party tool—parse 23
Introducing regular expressions 28
Going deeper into regular expressions 34
Adding command-line arguments 38
Chapter 2: Automating Tasks Made Easy 45
Preparing a task 46
Setting up a cron job 53
Capturing errors and problems 59
Sending email notifications 65
Chapter 3: Building Your First Web Scraping Application 71
Downloading web pages 72
Parsing HTML 75
Crawling the web 79
Subscribing to feeds 85
Accessing web APIs 89
Interacting with forms 93
Using Selenium for advanced interaction 929
Accessing password-protected pages 103

[il

Table of Contents

Speeding up web scraping 106
Chapter 4: Searching and Reading Local Files 113
Crawling and searching directories 114
Reading text files 117
Dealing with encodings 120
Reading CSV files 124
Reading log files 127
Reading file metadata 130
Reading images 132
Reading PDF files 139
Reading Word documents 143
Scanning documents for a keyword 147
Chapter 5: Generating Fantastic Reports 151
Creating a simple report in plain text 152
Using templates for reports 155
Formatting text in Markdown 159
Writing a basic Word document 162
Styling a Word document 165
Generating structure in Word documents 169
Adding pictures to Word documents 175
Writing a simple PDF document 179
Structuring a PDF 182
Aggregating PDF reports 188
Watermarking and encrypting a PDF 190
Chapter 6: Fun with Spreadsheets 197
Writing a CSV spreadsheet 198
Updating CSV files 200
Reading an Excel spreadsheet 203
Updating an Excel spreadsheet 206
Creating new sheets in an Excel spreadsheet 209
Creating charts in Excel 213
Working with cell formats in Excel 216
Creating a macro in LibreOffice 220
Chapter 7: Cleaning and Processing Data 229
Preparing a CSV spreadsheet 230
Appending currency based on location 235
Standardizing the date format 240
Aggregating results 245
Processing data in parallel 252

Processing data with Pandas 259
[ii]

Table of Contents

Chapter 8: Developing Stunning Graphs 267
Plotting a simple sales graph 268
Drawing stacked bars 272
Plotting pie charts 277
Displaying multiple lines 280
Drawing a scatter plot 286
Visualizing maps 290
Adding legends and annotations 297
Combining graphs 302
Saving charts 307

Chapter 9: Dealing with Communication Channels 311
Working with email templates 312
Sending an individual email 316
Reading an email 321
Adding subscribers to an email newsletter 325
Sending notifications via email 329
Producing SMS messages 334
Receiving SMS 339
Creating a Telegram bot 347

Chapter 10: Why Not Automate Your Marketing Campaign? 355
Introduction 355
Detecting opportunities 356
Creating personalized coupon codes 360
Sending a notification to a customer on their preferred channel 366
Preparing sales information 373
Generating a sales report 379

Chapter 11: Machine Learning for Automation 387
Introduction 387
Analyzing images with Google Cloud Vision Al 389
Extracting text from images with Google Cloud Vision Al 403
Analyzing text with Google Cloud Natural Language 411
Creating your own custom machine learning model to classify text 419

Chapter 12: Automatic Testing Routines 433
Introduction 433
Writing and executing test cases 435
Testing external code 439
Testing using dependency mocking 442
Testing using HTTP call mocking 450
Preparing testing scenarios 458

[iii]

Table of Contents

Running tests selectively 466
Chapter 13: Debugging Techniques 475
Introduction 475
Learning Python interpreter basics a77
Debugging through logging 481
Debugging with breakpoints 485
Improving your debugging skills 490
Other Books You May Enjoy 499

Index 503

[iv]

Preface

We are all probably spending time doing small manual tasks that don't add much
value. It may be scanning through information sources in search of the small bits

of relevant information, working with spreadsheets to generate the same graph
over and over, or searching files one by one until we find the data we're looking
for. Some — probably most — of those tasks are, in fact, automatable. There's an
investment upfront, but for the tasks that get repeated over and over, we can use
computers to do these kinds of menial tasks and focus our own efforts instead on
what humans are good for —high-level analysis and decision making based on the
result. This book will explain how to use the Python language to automate common
business tasks that can be greatly sped up if a computer is doing them.

Given the expressiveness and ease of use of Python, it's surprisingly simple to start
making small programs to perform these actions and combine them into more
integrated systems. Throughout the book, we will show small, easy-to-follow
recipes that can be adapted to your specific needs, and we will combine them to
perform more complex actions. We will perform common actions, such as detecting
opportunities by scraping the web, analyzing information to generate automatic
spreadsheet reports with graphs, communicating with automatically generated
emails, getting notifications via text messages, and learning how to run tasks

while your mind is focused on other more important stuff.

Though some Python knowledge is required, the book is written with non-
programmers in mind, giving clear and instructive recipes that will further
the reader's proficiency while being oriented to specific day-to-day goals.

[v]

Preface

Who this book is for

This book is for Python beginners, not necessarily developers, that want to use and
expand their knowledge to automate tasks. Most of the examples in the book are
aimed at marketing, sales, and other non-tech areas. The reader needs to know a
little of the Python language, including its basic concepts.

What this book covers

Chapter 1, Let's Begin Our Automation Journey, presents some basic content that will
be used all through the book. It describes how to install and manage third-party
tools through virtual environments, how to do effective string manipulation, how
to use command-line arguments, and introduces you to regular expressions and
other methods of text processing.

Chapter 2, Automating Tasks Made Easy, shows how to prepare and automatically
run tasks. It covers how to program tasks to be executed when they should, instead
of running them manually; how to be notified of the result of a task that's run
automatically; and how to be notified if there has been an error in an automated
process.

Chapter 3, Building Your First Web Scraping Application, explores sending web requests
to communicate with external websites in different formats, such as raw HTML
content; structured feeds; RESTful APIs; and even automating a browser to execute
steps without manual intervention. It also covers how to process results to extract
relevant information.

Chapter 4, Searching and Reading Local Files, explains how to search through local
files and directories and analyze the information stored there. You will learn how to
filter through relevant files in different encodings and read files in several common
formats, such as CSVs, PDFs, Word documents, and even images.

Chapter 5, Generating Fantastic Reports, looks at how to display information given in
text format in multiple formats. This includes creating templates to produce text files,
as well as creating richly formatted and properly styled Word and PDF documents.

Chapter 6, Fun with Spreadsheets, explores how to read and write spreadsheets in the
CSV format; in rich Microsoft Excel, including with formatting and charts; and in
LibreOffice, a free alternative to Microsoft Excel.

Chapter 7, Cleaning and Processing Data, presents techniques to deal with multiple
sources of information and cleanup of data before processing it. You will learn how
to batch process to speed up working with big amounts of data, including using
specific data analysis libraries like Pandas.

[vil

Preface

Chapter 8, Developing Stunning Graphs, explains how to produce beautiful charts,
including common examples such as pie, line, and bar charts, as well as other
advanced cases, such as stacked bars and even maps. It also explains how multiple
graphs can be combined and styled to generate rich graphics and show relevant
information in an understandable format.

Chapter 9, Dealing with Communication Channels, explains how to send messages
in multiple channels, using external tools to do the most of the heavy lifting. This
chapter goes into sending and receiving emails individually as well as en masse,
communicating through SMS messages, and creating a bot in Telegram.

Chapter 10, Why Not Automate Your Marketing Campaign?, combines the different
recipes included in the book to generate a full marketing campaign, including

steps such as detection of opportunity, generation of promotion, communication to
potential customers, and analyzing and reporting sales produced by promotion. This
chapter shows how to combine different elements to create powerful systems.

Chapter 11, Machine Learning for Automation, explains how to use the Machine
Learning APIs from Google for text analysis, detecting a location of an image
landmark, and extracting text from images. The chapter includes the creation and
training of a model for detecting, based on text, which department an email should
be assigned.

Chapter 12, Automatic Testing Routines, explores the write and execute tests to verify
that code is behaving as expected. To do so, the test framework pytest is presented
with common situations to effectively work with tests.

Chapter 13, Debugging Techniques, features different methods and tips to help in the
debugging process and ensure the quality of your software. It leverages the great
introspection capabilities of Python and its out-of-the-box debugging tools for fixing
problems and producing solid automated software.

To get the most out of this book

* Before reading this book, readers need to know the basics of the Python
language. We do not assume that the reader is an expert in the language.

* The reader needs to know how to input commands in the command line
(Terminal, Bash, or equivalent).

* To understand the code in this book, you need a text editor, which will
enable you to read and edit the code. You can use an IDE that supports the
Python language, such as PyCharm and PyDev —which you choose is up to
you. Check out this link for ideas about IDEs: https://realpython.com/
python-ides-code-editors-guide/.

[vii]

https://realpython.com/python-ides-code-editors-guide/.
https://realpython.com/python-ides-code-editors-guide/.

Preface

Download the example code files

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

Log in or register at http: //www.packtpub. com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the on-screen
instructions.

Ll s

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

* WIinRAR / 7-Zip for Windows

* Zipeg / iZip / UnRarX for Mac

» 7-Zip / PeaZip for Linux
The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition. We also have

other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800207080_ ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, object names, module names, folder
names, filenames, file extensions, pathnames, dummy URLs and user input. Here
is an example: "For this recipe, we need to import the requests module."

[viii]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition.
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition.
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800207080_ColourImages.pdf
https://static.packt-cdn.com/downloads/9781800207080_ColourImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Bookname_ColorImages.pdf.

Preface

A block of code is set as follows:

from sale log import Salelog
def get logs from file(shop, log filename):
def main(log_dir, output_filename):

if _name__ == "' main_ ':

Note that code may be edited for concision and clarity. Refer to the full code when
necessary, which is available at GitHub.

Any command-line input or output is written as follows (notice the $ symbol):

$ python execute script.py parameters
Any input in the Python interpreter is written as follows (notice the >>> symbol):

>>> import delorean

>>> timestamp = delorean.utcnow() .datetime.isoformat ()

To enter inside the Python interpreter, call the python3 command with no
parameters:

$ python3

Python 3.8.2 (default, Mar 11 2020, 00:28:52)

[Clang 11.0.0 (clang-1100.0.33.17)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

Verify that the Python interpreter is Python 3.8 or higher. It may be necessary to
call python or python3. 8, depending on your operating system and installation
options. See Chapter 1, Let's Begin Our Automation Journey, specifically the Activating
a virtual environment recipe — for further details about the use of different Python
interpreters.

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes. For example: "Select System info from the
Administration panel."

[ix]

Preface

\/;p’> Warnings or important notes appear like this.

\ 7/
'@\' Tips and tricks appear like this.

/7

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedbackepacktpub.com, and mention the book's title
in the subject of your message. If you have questions about any aspect of this book,
please email us at questionsepacktpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http: //www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyrightepacktpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit http://authors.packtpub. com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can understand
what you think about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packtpub.com.

[x]

http://www.packtpub.com/submit-errata,
http://www.packtpub.com/submit-errata,
http://authors.packtpub.com
http://packtpub.com.

Let's Begin Our
Automation Journey

The objective of this chapter is to lay down some of the basic techniques that will
be useful throughout the whole book. The main idea is to create a good Python
environment to run the automation tasks that follow and be able to parse text
inputs into structured data.

Python has a good number of tools installed by default, but it also makes it easy

to install third-party tools that can simplify many common operations. We'll see how
to import modules from external sources and use them to leverage the full potential
of Python.

We will install and use tools to help process texts. The ability to structure input
data is critical in any automation task. Most of the data that we will process in this
book will come from unformatted sources such as web pages or text files. As the old
computer adage says, garbage in, garbage out, making the sanitizing of inputs a very
important task.

In this chapter, we'll cover the following recipes:

* Activating a virtual environment

* Installing third-party packages

* Creating strings with formatted values
* Manipulating strings

* Extracting data from structured strings

[11]

Let's Begin Our Automation Journey

* Using a third-party tool — parse
* Introducing regular expressions
* Going deeper into regular expressions

* Adding command-line arguments

We will start by creating our own self-contained environment to work in.

Activating a virtual environment

As a first step when working with Python, it is a good practice to explicitly define the
working environment.

This helps you to detach from the operating system interpreter and environment and
properly define the dependencies that will be used. Not doing so tends to generate
chaotic scenarios. Remember, explicit is better than implicit!

Explicit is better than implicit is one of the most quoted parts of
/ the Zen of Python. The Zen of Python is a list of general guidelines
\/;p; for Python, to provide clarity on what is considered Pythonic. The
full Zen of Python can be invoked from the Python interpreter by
calling import this.

This is especially important in two scenarios:

* When dealing with multiple projects on the same computer, as they can have
different dependencies that clash at some point. For example, two versions
of the same module cannot be installed in the same environment.

* When working on a project that will be used on a different computer, for
example, developing some code on a personal laptop that will ultimately
run in a remote server.

A common joke among developers is responding to a bug with "it runs on my
machine," meaning that it appears to work on their laptop, but not on the production
servers. Although a huge number of factors can produce this error, a good practice is
to produce an automatically replicable environment, reducing uncertainty over what
dependencies are really being used.

This is easy to achieve using the venv module, which sets up a local virtual
environment. None of the installed dependencies will be shared with the Python
interpreter installed on the machine, creating an isolated environment.

[2]

Chapter 1

In Python 3, the venv tool is installed as part of the standard library. This was not
the case in the previous version where you had to install the external virtualenv
package.

Getting ready

To create a new virtual environment, do the following;:

1. Go to the main directory that contains the project:

$ cd my-directory

2. Type the following command:
$ python3 -m venv .venv

This creates a subdirectory called .venv that contains the virtual
environment.

The directory containing the virtual environment can be located anywhere.
Keeping it on the same root keeps it handy, and adding a dot in front of it
avoids it being displayed when running 1s or other commands.

3. Before activating the virtual environment, check the version installed in pip.
This is different depending on your operating system and installed packages.
It may be upgraded later. Also, check the referenced Python interpreter,
which will be the main operating system one:

$ pip --version

pip 10.0.1 from /usr/local/lib/python3.7/site-packages/pip (python
3.7)

$ which python3
/usr/local/bin/python3

\/V Note that which may not be available in your shell. In Windows,

for example, where can be used.

Now your virtual environment is ready to go.

How to do it...

1. Activate the virtual environment if you use Linux or macOS by running:

$ source .venv/bin/activate

[31]

Let's Begin Our Automation Journey

Depending on your operating system (for example, Windows) and shell (for
example, fish), you may need a different command. View the documentation
of venv in the Python documentation here: https://docs.python.org/3/
library/venv.html.

You'll notice that the shell prompt will display (.venv), showing that the
virtual environment is active.

2. Notice that the Python interpreter used is the one inside the virtual
environment, and not the general operating system one from step 3 of the
Getting ready section. Check the location within a virtual environment:

(.venv) $ which python
/root _dir/.venv/bin/python
(.venv) $ which pip

/root _dir/.venv/bin/pip

3. Upgrade the version of pip and then check the version:
(.venv) $ pip install --upgrade pip

Successfully installed pip-20.0.2
(.venv) $ pip --version

pip 20.0.2 from /root dir/.venv/lib/python3.8/site-packages/pip
(python 3.8)

\/V An alternative is to run python -m ensurepip -U, which will

ensure that pip is installed.

4. Get out of the environment and run pip to check the version, which will
return the previous environment. Check the pip version and the Python
interpreter to show the existing directories before activating the virtual
environment directories, as shown in step 3 of the Getting ready section. Note
that they are different pip versions:

(.venv) $ deactivate

$ which python3
/usr/local/bin/python3
$ pip --version

pip 10.0.1 from /usr/local/lib/python3.8/site-packages/pip (python
3.8)

[4]

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

Chapter 1

How it works...

Notice that inside the virtual environment you can use python instead of python3,
although python3 is available as well. This will use the Python interpreter defined
in the environment.

In some systems, like Linux, it's possible that you'll need to use python3 .8 instead
of python3. Verify that the Python interpreter you're using is 3.8 or higher.

Inside the virtual environment, step 3 of the How to do it section installs the
most recent version of pip, without affecting the external installation.

The virtual environment contains all the Python data in the . venv directory, and the
activate script points all the environment variables there. The best thing about it is
that it can be deleted and recreated very easily, removing the fear of experimenting
in a self-contained sandbox.

Remember that the directory name is displayed in the prompt. If you need
to differentiate the environment, use a descriptive directory name, such as
.my_automate_recipe,Orusethe—promptopﬁon.

There's more...

To remove a virtual environment, deactivate it and remove the directory:

(.venv) $ deactivate
$ rm -rf .venv
The venv module has more options, which can be shown with the -h flag:
$ python3 -m venv -h
usage: venv [-h] [--system-site-packages]
[--symlinks | --copies] [--clear]
[--upgrade] [--without-pipl]
[--prompt PROMPT]
ENV_DIR [ENV DIR ...]

Creates virtual Python environments in one or more target directories.
positional arguments:

ENV_DIR A directory to create the

environment in.

[51]

Let's Begin Our Automation Journey

optional arguments:

-h, --help

--system-site-packages

--symlinks

--copies

--clear

--upgrade

--without-pip

--prompt PROMPT

show this help message and

exit

Give the virtual
environment access to the
system site-packages dir.
Try to use symlinks rather
than copies, when symlinks
are not the default for the
platform.

Try to use copies rather
than symlinks, even when
symlinks are the default
for the platform.

Delete the contents of the
environment directory if it
already exists, before
environment creation.
Upgrade the environment
directory to use this
version of Python, assuming
Python has been upgraded
in-place.

Skips installing or
upgrading pip in the
virtual environment (pip is
bootstrapped by default)
Provides an alternative
prompt prefix for this

environment.

Once an environment has been created, you may wish

to activate it, e.g. by sourcing an activate script

in its bin directory.

[6]

Chapter 1

A convenient way of dealing with virtual environments, especially if you often have
to swap between them, is to use the virtualenvwrapper module:

1. To install it, run this:

$ pip install virtualenvwrapper

2. Then, add the following variables to your shell startup script, these are
normally .bashrc or .bash_profile. The virtual environments will be
installed under the WorRKON_HOME directory instead of the same directory as
the project, as shown previously:
export WORKON HOME=~/.virtualenvs

source /usr/local/bin/virtualenvwrapper.sh

Sourcing the startup script or opening a new terminal will allow you to create new
virtual environments:

$ mkvirtualenv automation cookbook

Installing setuptools, pip, wheel...done.
(automation cookbook) $ deactivate
$ workon automation cookbook

(automation cookbook) $

For more information, view the documentation of virtualenvwrapper at https://
virtualenvwrapper.readthedocs.io/en/latest/index.html.

An alternative tool for defining environments is Poetry (https://
N python-poetry.org/). This tool is designed for creating
‘,@\‘ consistent environments with clear dependencies, and provides
g commands for upgrades and managing dependency packages.
Check it out to see whether it's useful in your use case.

Hitting the Tab key after workon autocompletes the command with the available
environments.

See also
* The Installing third-party packages recipe, covered later in the chapter.

* The Using a third-party tool — parse recipe, covered later in the chapter.

[71

https://virtualenvwrapper.readthedocs.io/en/latest/index.html
https://virtualenvwrapper.readthedocs.io/en/latest/index.html
https://python-poetry.org/
https://python-poetry.org/

Let's Begin Our Automation Journey

Installing third-party packages

One of the strongest capabilities of Python is the ability to use an impressive catalog
of third-party packages that cover an amazing amount of ground in different areas,
from modules specialized in performing numerical operations, machine learning,
and network communications, to command-line convenience tools, database access,
image processing, and much more!

Most of them are available on the official Python Package Index (https://pypi.org/),
which has more than 200,000 packages ready to use. In this book, we'll install some

of them. In general, it's worth spending a little time researching external tools when
trying to solve a problem. It's very likely that someone else has already created a tool
that solves all, or at least part, of the problem.

More important than finding and installing a package is keeping track of which
packages are being used. This greatly helps with replicability, meaning the ability
to start the whole environment from scratch in any situation.

Getting ready

The starting point is to find a package that will be of use in our project.

A great one is requests, a module that deals with HTTP requests and is known for
its easy and intuitive interface, as well as its great documentation. Take a look at the
documentation, which can be found here: https://requests.readthedocs.io/en/
master/.

We'll use requests throughout this book when dealing with HTTP connections.

The next step will be to choose the version to use. In this case, the latest (2.22.0, at
the time of writing) will be perfect. If the version of the module is not specified, by
default it will install the latest version, which can lead to inconsistencies in different
environments as newer versions are released.

We'll also use the great delorean module for time handling (version 1.0.0: http://
delorean.readthedocs.io/en/latest/).

How to do it...

1. Create a requirements.txt file in our main directory, which will specify all
the requirements for our project. Let's start with delorean and requests:

delorean==1.0.0
requests==2.22.0

[8]

https://pypi.org/
https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/
http://delorean.readthedocs.io/en/latest/
http://delorean.readthedocs.io/en/latest/

Chapter 1

Install all the requirements with the pip command:
$ pip install -r requirements.txt

Successfully installed babel-2.8.0 certifi-2019.11.28
chardet-3.0.4 delorean-1.0.0 humanize-0.5.1 idna-2.8 python-
dateutil-2.8.1 pytz-2019.3 requests-2.22.0 six-1.14.0
tzlocal-2.0.0 urllib3-1.25.7

Show the available modules installed using pip list:

$ pip list

Package Version
Babel 2.8.0
certifi 2019.11.28
chardet 3.0.4
Delorean 1.0.0
humanize 2.0.0

idna 2.8

pip 19.2.3

python-dateutil 2.8.1

pytz 2019.3
requests 2.22.0
setuptools 41.2.0
six 1.14.0
tzlocal 2.0.0
urllib3 1.25.8

You can now use both modules when using the virtual environment:

$ python
Python 3.8.1 (default, Dec 27 2019, 18:05:45)
[Clang 11.0.0 (clang-1100.0.33.16)] on darwin

Type "help", "copyright", "credits" or "license" for more
information.

>>> import delorean

>>> import requests

[o]

Let's Begin Our Automation Journey

How it works...

The requirements. txt file specifies the module and version, and pip performs
a search on pypi.org.

Note that creating a new virtual environment from scratch and running the
following will completely recreate your environment, which makes replicability
very straightforward:

$ pip install -r requirements.txt

Note that step 2 of the How to do it section automatically installs other modules that
are dependencies, such as ur11ib3.

There's more...

If any of the modules need to be changed to a different version because a new
version is available, change them using requirements and run the install
command again:

$ pip install -r requirements.txt
This is also applicable when a new module needs to be included.

At any point, the freeze command can be used to display all of the installed
modules. freeze returns the modules in a format compatible with requirements.
txt, making it possible to generate a file with our current environment:

$ pip freeze > requirements.txt
This will include dependencies, so expect a lot more modules in the file.

Finding great third-party modules is sometimes not easy. Searching for specific
functionality can work well, but, sometimes, there are great modules that are

a surprise because they do things you never thought of. A great curated list is
Awesome Python (https://awesome-python.com/), which covers a lot of great
tools for common Python use cases, such as cryptography, database access, date and
time handling, and more.

In some cases, installing packages may require additional tools, such as compilers or
a specific library that supports some functionality (for example, a particular database
driver). If that's the case, the documentation will explain the dependencies.

[10]

http://pypi.org
https://awesome-python.com/

Chapter 1

See also

* The Activating a virtual environment recipe, covered earlier in this chapter.

* The Using a third-party tool — parse recipe, covered later in this chapter,
to learn how to use one installed third-party module.

Creating strings with formatted values

One of the basic abilities when dealing with creating text and documents is to be able
to properly format values into structured strings. Python is smart at presenting good
defaults, such as properly rendering a number, but there are a lot of options and
possibilities.

We'll discuss some of the common options when creating formatted text using the
example of a table.

Getting ready

The main tool to format strings in Python is the format method. It works with
a defined mini-language to render variables this way:

result = template.format(*parameters)

The template is a string that is interpreted based on the mini-language. At its
simplest, templating replaces the values between the curly brackets with the
parameters. Here are a couple of examples:

>>> 'Put the value of the string here: {}'.format('STRING')

"Put the value of the string here: STRING"

>>> 'It can be any type ({}) and more than one ({})'.format(1l.23,
'STRING')

"It can be any type (1.23) and more than one (STRING)"
>> 'Specify the order: {1}, {0}'.format('first', 'second')
'Specify the order: second, first'

>>> 'Or name parameters: {first}, {second}'.format(second='SECOND',
first="'FIRST')

'Or name parameters: FIRST, SECOND'

In 95% of cases, this formatting will be all that's required; keeping things simple
is great! But for complicated times, such as when aligning strings automatically and
creating good looking text tables, the mini-language format has more options.

[11]

Let's Begin Our Automation Journey

How to do it...

1. Write the following script, recipe format_strings_stepl.py, to print an
aligned table:

data = [
(1000, 10),
(2000, 17),
(2500, 170),
(2500, -170),

print('REVENUE | PROFIT | PERCENT')

TEMPLATE = '{revenue:>7,} | {profit:>+6} | {percent:>7.2%}"

for revenue, profit in data:

row = TEMPLATE.format(revenue=revenue, profit=profit,
percent=profit / revenue)

print(row)

2. Run it to display the following aligned table. Note that PERCENT is correctly
displayed as a percentage:

REVENUE | PROFIT | PERCENT
1,000 | +10 | 1.00%
2,000 | +17 | 0.85%
2,500 | +170 | 6.80%
2,500 | -170 | -6.80%

How it works...

The TEMPLATE constant defines three columns, each one defined by a parameter
named revenue, profit, and percent. This makes it explicit and straightforward
to apply the template to the format call.

[12]

Chapter 1

After the name of the parameter, there's a colon that separates the format definition.
Note that everything is inside the curly brackets. In all columns, the format
specification sets the width to seven characters, to make sure all the columns have
the same width, and aligns the values to the right with the > symbol:

* revenue adds a thousands separator with the , symbol — [{revenue:>7, }].

* profit adds a + sign for positive values. A - sign for negatives is added
automatically — [{profit:>+7}].

* percent displays a percent value with a precision of two decimal places —
[{percent:>7.2%}]. This is done through .2 (precision) and adding a %
symbol for the percentage.

There's more...

You may have also seen the available Python formatting with the % operator. While it
works for simple formatting, it is less flexible than the formatted mini-language, and
it is not recommended for use.

A great new feature since Python 3.6 is to use £-strings, which perform a format
action using defined variables:

>>> paraml = 'first'
>>> param2 = 'second'

>>> f'Parameters {paraml}:{param2}’

'Parameters first:second’

This simplifies a lot of the code and allows us to create very descriptive and readable
code.

Be careful when using £-strings to ensure that the string is replaced at the proper
time. A common problem is that the variable defined to be rendered is not yet
defined. For example, TEMPLATE, defined previously, won't be defined as an f-string,
as revenue and the rest of the parameters are not available at that point. All variables
defined at the scope of the string definition will be available, both local and global.

If you need to write a curly bracket, you'll need to repeat it twice. Note that each
duplication will be displayed as a single curly bracket, plus a curly bracket for the
value replacement, making a total of three brackets:

>> value = 'VALUE'

>>> f'This is the value, in curly brackets {{{value}}}’

'This is the value, in curly brackets {VALUE}'

[13]

Let's Begin Our Automation Journey

This allows us to create meta templates — templates that produce templates. In some
cases, this will be useful, but they get complicated very quickly. Use with care, as it's
easy to produce code that will be difficult to read.

| Representing characters that have a special meaning usually
\@l requires some sort of special way to define them, for example,
N by duplicating the curly bracket like we see here. This is called
- "escaping" and it's a common process in any code representation.

The Python Format Specification mini-language has more options than the ones
shown here.

As the language tries to be quite concise, sometimes it can be difficult to determine
the position of the symbols. You may sometimes ask yourself questions, like "is the
+ symbol before or after the width parameters?" Read the documentation with care and
remember to always include a colon before the format specification.

Please refer to the full documentation and examples on the Python then it
would look like website: https://docs.python.org/3/library/string.
html#formatspec or at this fantastic web page—https://pyformat.info—
that shows lots of examples.

See also

* The Template Reports recipe in Chapter 5, Generating Fantastic Reports, to learn
more advanced template techniques.

* The Manipulating strings recipe, covered later in this chapter, to learn more
about working with text.

Manipulating strings

When dealing with text, it's often necessary to manipulate and process it; that is,

to be able to join it, split it into regular chunks, or change it to be uppercase or
lowercase. We'll discuss more advanced methods for parsing text and separating it
later; however, in lots of cases, it is useful to divide a paragraph into lines, sentences,
or even words. Other times, words will require some characters to be removed or a
word will need to be replaced with a canonical version to be able to compare it with
a predetermined value.

[14]

https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec
https://pyformat.info-that shows lots of examples
https://pyformat.info-that shows lots of examples

Chapter 1

Getting ready

We'll define a basic piece of text and transform it into its main components; then,
we'll reconstruct it. As an example, a report needs to be transformed into a new
format to be sent via email.

The input format we'll use in this example will be this:

AFTER THE CLOSE OF THE SECOND QUARTER, OUR COMPANY, CASTANACORP
HAS ACHIEVED A GROWTH IN THE REVENUE OF 7.47%. THIS IS IN LINE

WITH THE OBJECTIVES FOR THE YEAR. THE MAIN DRIVER OF THE SALES HAS
BEEN

THE NEW PACKAGE DESIGNED UNDER THE SUPERVISION OF OUR MARKETING
DEPARTMENT.

OUR EXPENSES HAS BEEN CONTAINED, INCREASING ONLY BY 0.7%, THOUGH THE
BOARD

CONSIDERS IT NEEDS TO BE FURTHER REDUCED. THE EVALUATION IS
SATISFACTORY

AND THE FORECAST FOR THE NEXT QUARTER IS OPTIMISTIC. THE BOARD
EXPECTS

AN INCREASE IN PROFIT OF AT LEAST 2 MILLION DOLLARS.

We need to redact the text to eliminate any references to numbers. It needs to
be properly formatted by adding a new line after each period, justified with 80
characters, and transformed into ASCII for compatibility reasons.

The text will be stored in the INPUT_TEXT variable in the interpreter.

How to do it...

1. After entering the text, split it into individual words:
>>> INPUT TEXT = ''!

... AFTER THE CLOSE OF THE SECOND QUARTER, OUR COMPANY,
CASTANACORP

e HAS ACHIEVED A GROWTH IN THE REVENUE OF 7.47%. THIS IS IN
LINE

>>> words = INPUT TEXT.split()

[15]

Let's Begin Our Automation Journey

2.

Replace any numerical digits with an 'x' character:

>>> redacted = [''.join('X' if w.isdigit() else w for w in word)
for word in words]

Transform the text into pure ASCII (note that the name of the company
contains the letter fi, which is not ASCII):

>>> ascii text = [word.encode('ascii', errors='replace').
decode('ascii')

e for word in redacted]

Group the words into 80-character lines:

>>> newlines = [word + '\n' if word.endswith('.') else word for
word in ascii text]

>>> LINE SIZE = 80

>>> lines = []

>>> line = '!

>>> for word in newlines:

.o if line.endswith('\n') or len(line) + len(word) + 1 >
LINE_SIZE:

e lines.append(line)
e line = '!

e line = line + ' ' + word

Format all of the lines as titles and join them as a single piece of text:
>>> lines = [line.title() for line in lines]
>>> result = '\n'.join(lines)

Print the result:

>>> print(result)

After The Close Of The Second Quarter, Our Company, Casta?Acorp
Has Achieved A Growth In The Revenue Of X.Xx%. This Is In Line
With The Objectives For The Year. The Main Driver Of The Sales
Has Been The New Package Designed Under The Supervision Of Our
Marketing Department. Our Expenses Has Been Contained, Increasing
Only By X.X%, Though The Board Considers It Needs To Be Further
Reduced. The Evaluation Is Satisfactory And The Forecast For The
Next Quarter Is Optimistic.

[16]

Chapter 1

How it works...

Each step performs a specific transformation of the text:

The first step splits the text into the default separators, whitespaces, and new
lines. This splits it into individual words with no lines or multiple spaces for
separation.

To replace the digits, we go through every character of each word. For

each one, if it's a digit, an 'X' is returned instead. This is done with two list
comprehensions, one to run on the list, and another on each word, replacing
them only if there's a digit —['X' if w.isdigit() else w for w in
word] . Note that the words are joined together again.

Each of the words is encoded into an ASCII byte sequence and decoded back
again into the Python string type. Note the use of the errors parameter to
force the replacement of unknown characters such as .

The difference between strings and bytes is not very

intuitive at first, especially if you never have to worry

about multiple languages or encoding transformations.

In Python 3, there's a strong separation between strings

(internal Python representation) and bytes. So most of

the tools applicable to strings won't be available in byte

objects. Unless you have a good idea of why you need a

-()- byte object, always work with Python strings. If you need

A to perform transformations like the one in this task, encode
and decode in the same line so that you keep your objects
within the comfortable realm of Python strings. If you are
interested in learning more about encodings, you can refer
to this brief article: https://eli.thegreenplace.
net/2012/01/30/the-bytesstr-dichotomy-in-
python-3 and this other, longer and more detailed one:
http://www.diveintopython3.net/strings.html.

The next step adds an extra newline character (the \n character) for all words
ending with a period. This marks the different paragraphs. After that, it
creates a line and adds the words one by one. If an extra word will make it go
over 80 characters, it finishes the line and starts a new one. If the line already
ends with a new line, it finishes it and starts another one as well. Note that
there's an extra space added to separate the words.

Finally, each of the lines is capitalized as a Title (the first letter of each word
is uppercased) and all the lines are joined through new lines.

[17]

https://eli.thegreenplace.net/2012/01/30/the-bytesstr-dichotomy-in-python-3
https://eli.thegreenplace.net/2012/01/30/the-bytesstr-dichotomy-in-python-3
https://eli.thegreenplace.net/2012/01/30/the-bytesstr-dichotomy-in-python-3
http://www.diveintopython3.net/strings.html

Let's Begin Our Automation Journey

There's more...

Some other useful operations that can be performed on strings are as follows:

Strings can be sliced like any other list. This means that "word"[0:2] will
return "wo".

Use .splitlines() to separate lines with a newline character.

There are .upper () and . lower () methods, which return a copy with all
of the characters set to uppercase or lowercase. Their use is very similar to
.title():

>>> 'UPPERCASE'.lower ()

'uppercase'’

For easy replacements (for example, changing all As to Bs or changing mine

\ to ours), use .replace (). This method is useful for very simple cases, but
replacements can get tricky easily. Be careful with the order of replacements
to avoid collisions and case sensitivity issues. Note the wrong replacement in
the following example:

>>> 'One ring to rule them all, one ring to find them, One ring
to bring them all and in the darkness bind them.'.replace('ring',
'necklace')

'One necklace to rule them all, one necklace to find them, One
necklace to bnecklace them all and in the darkness bind them.'

This is similar to the issues we'll encounter with regular expressions matching
unexpected parts of your code. There are more examples to follow later. Refer to the
regular expressions recipes for more information.

| To wrap text lines, you can use the textwrap module included
\@/ in the standard library, instead of manually counting characters.
AR View the documentation here: https://docs.python.org/3/
= library/textwrap.html.

If you work with multiple languages, or with any kind of non-English input, it is
very useful to learn the basics of Unicode and encodings. In a nutshell, given the vast
amount of characters in all the different languages in the world, including alphabets
not related to the Latin one, such as Chinese or Arabic, there's a standard to try and
cover all of them so that computers can properly understand them. Python 3 greatly
improved this situation, making the internal objects of the strings can deal with all of
those characters. The default encoding that Python uses, and the most common and
compatible one, is currently UTF-8.

[18]

Chapter 1

A good article to learn about the basics of UTF-8 is this blog post: https://www.
joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-
developer-absolutely-positively-must-know-about-unicode-and-
character-sets-no-excuses/.

Dealing with encodings is still relevant when reading from external files that can be
encoded in different encodings (for example, CP-1252 or windows-1252, which is a
common encoding produced by legacy Microsoft systems, or ISO 8859-15, which is
the industry standard).

See also

* The Creating strings with formatted values recipe, covered earlier in the chapter,
to learn the basics of string creation.

* The Introducing regular expressions recipe, covered later in the chapter, to learn
how to detect and extract patterns in text.

* The Going deeper into reqular expressions recipe, covered later in the chapter, to
further your knowledge of regular expressions.

* The Dealing with encodings recipe in Chapter 4, Searching and Reading Local
Files, to learn about different kinds of encodings.

Extracting data from structured strings

In a lot of automated tasks, we'll need to treat input text structured in a known
format and extract the relevant information. For example, a spreadsheet may
define a percentage in a piece of text (such as 37.4%) and we want to retrieve

it in a numerical format to apply it later (0.374, as a float).

In this recipe, we'll learn how to process sale logs that contain inline information
about a product, such as whether it has been sold, its price, profit made, and other
information.

Getting ready

Imagine that we need to parse information stored in sales logs. We'll use a sales log
with the following structure:

[<Timestamp in iso format>] - SALE - PRODUCT: <product id> - PRICE:
$<price of the sale>

[19]

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

Let's Begin Our Automation Journey

For example, a specific log may look like this:

[2018-05-05T10:58:41.504054] - SALE - PRODUCT: 1345 - PRICE: $09.99

Note that the price has a leading zero. All prices will have two digits for the dollars
and two for the cents.

£

/ The standard ISO 8601 defines standard ways of representing the
time and date. It is widely used in the computing world and can
be parsed and generated by virtually any computer language.

We need to activate our virtual environment before we start:

$ source .venv/bin/activate

How to do it...

1.

In the Python interpreter, make the following imports. Remember to activate
your virtualenv, as described in the Creating a virtual environment recipe:

>>> import delorean

>>> from decimal import Decimal

Enter the log to parse:

>>> log = '[2018-05-05T11:07:12.267897] - SALE - PRODUCT: 1345 -
PRICE: $09.99'

Split the log into its parts, which are divided by - (note the space before
and after the dash). We ignore the SALE part as it doesn't add any relevant
information:

>>> divide it = log.split(' - ')

>>> timestamp string, , product string, price string = divide it

Parse the timestamp into a datetime object:

>>> timestamp = delorean.parse(timestamp string.strip('[]'))

Parse the product_id into an integer:

>>> product id = int(product string.split(':') [-1])

Parse the price into a Decimal type:

>>> price = Decimal (price string.split('$') [-1])

[20]

Chapter 1

7. Now you have all of the values in native Python format:

>> timestamp, product id, price

(Delorean(datetime=datetime.datetime (2018, 5, 5, 11, 7, 12,
267897), timezone='UTC'), 1345, Decimal('9.99'))

How it works...

The basic working of this is to isolate each of the elements and then parse them into
the proper type. The first step is to split the full log into smaller parts. The - string is
a good divider, as it splits it into four parts —a timestamp one, one with just the word
SALE, the product, and the price.

In the case of the timestamp, we need to isolate the ISO format, which is in brackets
in the log. That's why the timestamp has the brackets stripped from it. We use the
delorean module (introduced earlier) to parse it into a datetime object.

The word saLE is ignored. There's no relevant information there.

To isolate the product ID, we split the product part at the colon. Then, we parse the
last element as an integer:

>>> product string.split(':"')

['PRODUCT', ' 1345']

>>> int (' 1345'")

1345

To divide the price, we use the dollar sign as a separator, and parse it as a Decimal
character:

>>> price string.split('$')

['PRICE: ', '09.99']

>>> Decimal ('09.99"')

Decimal('9.99")

As described in the next section, do not parse this value into a float type, as it will
change the precision.

[21]

Let's Begin Our Automation Journey

There's more...

These log elements can be combined together into a single object, helping to parse
and aggregate them. For example, we could define a class in Python code in the
following way:

class PricelLog(object):
def _ init_ (self, timestamp, product_id, price):
self.timestamp = timestamp
self.product_id = product_id
self.price = price
def _ repr__ (self):
return '<Pricelog ({}, {}, {})>'.format(self.timestamp,
self.product_id,
self.price)

@classmethod

def parse(cls, text_log):
Parse from a text log with the format
[<Timestamp>] - SALE - PRODUCT: <product id> - PRICE: $<price>
to a PricelLog object
divide_it = text_log.split(' - ")
tmp_string, _, product_string, price_string = divide_it
timestamp = delorean.parse(tmp_string.strip('[]"))
product_id = int(product_string.split(':")[-1])
price = Decimal(price_string.split('$')[-1])
return cls(timestamp=timestamp, product_id=product_id,

price=price)

So, the parsing can be done as follows:

>>> log = '[2018-05-05T12:58:59.998903] - SALE - PRODUCT: 897 - PRICE:
$17.99"

>>> Pricelog.parse(log)

<PricelLog (Delorean(datetime=datetime.datetime (2018, 5, 5, 12, 58, 59,
998903), timezone='UTC'), 897, 17.99)>

Avoid using float types for prices. Floats numbers have precision problems that may
produce strange errors when aggregating multiple prices, for example:

>>> 0.1 + 0.1 + 0.1
0.30000000000000004

[22]

Chapter 1

Try these two options to avoid any problems:

* Use integer cents as the base unit: This means multiplying currency inputs
by 100 and transforming them into Integers (or whatever fractional unit is
correct for the currency used). You may still want to change the base when
displaying them.

* Parse into the decimal type: The Decimal type keeps the fixed precision and
works as you'd expect. You can find further information about the Decimal

type in the Python documentation at https://docs.python.org/3.8/
library/decimal.html.

If you use the Decimal type, parse the results directly into Decimal from the string.
If transforming it first into a float, you can carry the precision errors to the new type.

See also

* The Creating a virtual environment recipe, covered earlier in the chapter,
to learn how to start a virtual environment with installed modules.

* The Using a third-party tool — parse recipe, covered later in the chapter, to
further your knowledge of how to use third-party tools to deal with text.

* The Introducing regular expressions recipe, covered later in the chapter,
to learn how to detect and extract patterns from text.

* The Going deeper into regular expressions recipe, covered later in the chapter,
to further your knowledge of regular expressions.

Using a third-party tool—parse

While manually parsing data, as seen in the previous recipe, works very well

for small strings, it can be very laborious to tweak the exact formula to work
with a variety of inputs. What if the input has an extra dash sometimes? Or it has
a variable length header depending on the size of one of the fields?

A more advanced option is to use regular expressions, as we'll see in the next
recipe. But there's a great module in Python called parse (https://github.com/
richardjon3s/parse), which allows us to reverse format strings. It is a fantastic
tool that's powerful, easy to use, and greatly improves the readability of code.

[23]

https://docs.python.org/3.8/library/decimal.html
https://docs.python.org/3.8/library/decimal.html
https://github.com/r1chardj0n3s/parse
https://github.com/r1chardj0n3s/parse

Let's Begin Our Automation Journey

Getting ready

Add the parse module to the requirements. txt file in our virtual environment and
reinstall the dependencies, as shown in the Creating a virtual environment recipe.

The requirements. txt file should look like this:

delorean==1.0.0
requests==2.22.0
parse==1.14.0

Then, reinstall the modules in the virtual environment:

$ pip install -r requirements.txt

Collecting parse==1.14.0

Downloading https://files.pythonhosted.org/packages/4a/ea/9al6££9167522
4laa80flabec56dc6c6defc5d0e70a£2d16904a9573367£f/parse-1.14.0.tar.gz

Installing collected packages: parse
Running setup.py install for parse ... done

Successfully installed parse-1.14.0

How to do it...

1. Import the parse function:
>>> from parse import parse

2. Define the log to parse, in the same format as in the Extracting data from
structured strings recipe:

>>> LOG = '[2018-05-06T12:58:00.714611] - SALE - PRODUCT: 1345 -
PRICE: $09.99'

3. Analyze it and describe it as you would do when trying to print it, like this:

>>> FORMAT = '[{date}] - SALE - PRODUCT: {product} - PRICE:
${price}’

4. Run parse and check the results:
>>> result = parse (FORMAT, LOG)
>>> result

<Result () {'date': '2018-05-06T12:58:00.714611', 'product’:
11345', 'price': '09.99'}>

>>> result['date']

'2018-05-06T12:58:00.714611"

[24]

Chapter 1

>>> result|['product']
11345"
>>> result['price']

'09.99!

5. Note the results are all strings. Define the types to be parsed:
>>> FORMAT = '[{date:ti}] - SALE - PRODUCT: {product:d} - PRICE:
${price:05.2£}"
6. Parse once again:
>>> result = parse (FORMAT, LOG)
>>> result

<Result () {'date': datetime.datetime(2018, 5, 6, 12, 58, 0,
714611), 'product': 1345, 'price': 9.99}>

>>> result['date']

datetime.datetime (2018, 5, 6, 12, 58, 0, 714611)
>>> result|['product']

1345

>>> result['price']

9.99

7. Define a custom type for the price to avoid issues with the float type:

>>> from decimal import Decimal
>>> def price(string):

return Decimal (string)

>>> FORMAT = '[{date:ti}] - SALE - PRODUCT: {product:d} - PRICE:
${price:price}"

>>> parse (FORMAT, LOG, {'price': price})

<Result () {'date': datetime.datetime(2018, 5, 6, 12, 58, 0,
714611), ‘product': 1345, 'price': Decimal('9.99')}>

How it works...

The parse module allows us to define a format, as a string, that reverses the format
method when parsing values. A lot of the concepts that we discussed when creating
strings apply here —put values in brackets, define the type after a colon, and so on.

[25]

Let's Begin Our Automation Journey

By default, as seen in step 4, the values are parsed as strings. This is a good starting
point when analyzing text. The values can be parsed into more useful native types,
as shown in steps 5 and 6 in the How to do it section. Please note that while most of
the parsing types are the same as the ones in the Python Format Specification mini-
language, there are some others available, such as ti for timestamps in ISO format.

Though we are using timestamp in this book in a more liberal way
as a replacement for "Date and time," in the strictest sense, it should
only be used for numeric formats, such as Unix timestamp or epoch,

!
\@’ defined as the number of seconds since a particular time.
4 N\

= The usage of a timestamp that includes other formats is common
anyway as it's a clear and understandable concept, but be sure

to agree to formats when sharing information with others.

If native types are not enough, our own parsing can be defined, as demonstrated in
step 7 of the How to do it section. Note that the definition of the price function gets a
string and returns the proper format, in this case, a Decimal type.

All the issues about floats and price information described in the There's more section
of the Extracting data from structured strings recipe apply here as well.

There's more...

The timestamp can also be translated into a delorean object for consistency. Also,
delorean objects carry over time zone information. Adding the same structure as in
the previous recipe gives the following object, which is capable of parsing logs:

import parse
from decimal import Decimal
import delorean

class PricelLog(object):
def init_ (self, timestamp, product_id, price):
self.timestamp = timestamp
self.product_id = product_id
self.price = price

def _ repr_ (self):
return '<PricelLog ({}, {}, {})>'.format(self.timestamp,
self.product_id,
self.price)

[26]

Chapter 1

@classmethod
def parse(cls, text_log):

Parse from a text log with the format
[<Timestamp>] - SALE - PRODUCT: <product id> - PRICE: $<price>
to a PricelLog object

def price(string):
return Decimal(string)
def isodate(string):
return delorean.parse(string)
FORMAT = ('[{timestamp:isodate}] - SALE - PRODUCT: {product:d}

"PRICE: ${price:price}')
formats = {'price’': price, 'isodate': isodate}
result = parse.parse(FORMAT, text_log, formats)
return cls(timestamp=result['timestamp'],
product_id=result['product'],
price=result['price’'])

So, parsing it returns similar results:

>>> log = '[2018-05-06T14:58:59.051545] - SALE - PRODUCT: 827 - PRICE:
$22.25!
>>> PriceLog.parse (log)

<PricelLog (Delorean(datetime=datetime.datetime (2018, 6, 5, 14, 58, 59,
51545), timezone='UTC'), 827, 22.25)>

This code is contained in the GitHub file, https://github.com/PacktPublishing/
Python-Automation-Cookbook-Second-Edition/blob/master/Chapter0l/

price log.py

All supported parse types can be found in the documentation at https://github.
com/rlchardjon3s/parse##format-specification.

See also

* The Extracting data from structured strings recipe, covered earlier in this
chapter, to learn how to use simple processes to get information from text.

* The Introducing reqular expressions recipe, covered later in this chapter, to
learn how to detect and extract patterns from text.

* The Going deeper into regular expressions recipe, covered later in this chapter, to
further your knowledge of regular expressions.

[27]

https://github.com/r1chardj0n3s/parse#format-specification
https://github.com/r1chardj0n3s/parse#format-specification

Let's Begin Our Automation Journey

Introducing regular expressions

A regular expression, or regex, is a pattern to match text. In other words, it allows
us to define an abstract string (typically, the definition of a structured kind of text)
to check with other strings to see if they match or not.

It is better to describe them with an example. Think of defining a pattern of text as
a word that starts with an uppercase A and contains only lowercase "n"s and "a"s after that.
Let's show some possible comparisons and results:

Text to compare Result

Anna Match

Bob No match (No initial A)

Alice No match (I is not n or a after initial A)
James No match (No initial A)

Aaan Match

Ana Match

Annnn Match

Aaaan Match

ANNA No match (N is not n or a)

Table 1.1: A pattern matching example

If this sounds complicated, that's because it is. Regexes can be notoriously
complicated because they may be incredibly intricate and difficult to follow. But they
are also very useful because they allow us to perform incredibly powerful pattern
matching.

Some common uses of regexes are:
* Validating input data: For example, a phone number that is only numbers,

dashes, and brackets.

* String parsing: Retrieve data from structured strings, such as logs or URLs.
This is similar to what's described in the previous recipe.

* Scrapping: Find the occurrences of something in a long piece of text. For
example, find all of the emails in a web page.

* Replacement: Find and replace a word or words with others. For example,
replace the owner with John Smith.

[28]

Chapter 1

Getting ready

The python module to deal with regexes is called re. The main function we'll cover
is re.search (), which returns a match object with information about what matched
the pattern.

As regex patterns are also defined as strings, we'll differentiate
them by prefixing them with an r, such as r'pattern'. This is
L the Python way of labeling a text as raw string literals, meaning
‘@\‘ that the string within is taken literally, without any escaping.
g This means that a "\" is used as a backslash instead of an escaping
sequence. For example, without the r prefix, \n means a newline
character.

4

Some characters are special and refer to concepts such as the end of the string, any
digit, any character, any whitespace character, and so on.

The simplest form is just a literal string. For example, the regex pattern r'LoG"
matches the string 'Logs', but not the string 'NOT A MATCH'. If there's no match,
re.search returns None. If there is, it returns a special Match object:

>>> import re

>>> re.search(r'LOG', 'LOGS')

< _sre.SRE Match object; span=(0, 3), match='LOG'>

>>> re.search(r'LOG', 'NOT A MATCH')

>>>

How to do it...

1. Import the re module:
>>> import re

2. Then, match a pattern that is not at the start of the string:
>>> re.search(r'LOG', 'SOME LOGS')
< _sre.SRE Match object; span=(5, 8), match='LOG'>

3. Match a pattern that is only at the start of the string. Note the * character:
>>> re.search(r'”"LOG', 'LOGS')
<_sre.SRE Match object; span=(0, 3), match='LOG'>
>>> re.search(r'”LOG', 'SOME LOGS')

>>>

[29]

Let's Begin Our Automation Journey

4. Match a pattern only at the end of the string. Note the $ character:
>>> re.search(r'LOG$', 'SOME LOG')
< _sre.SRE Match object; span=(5, 8), match='LOG'>
>>> re.search(r'LOGS$', 'SOME LOGS')

>>>

5. Match the word 'thing' (not excluding things), but not something or
anything. Note the \b at the start of the second pattern:

>>> STRING = 'something in the things she shows me'
>>> match = re.search(r'thing', STRING)

>>> STRING[:match.start()], STRING[match.start():match.end()],
STRING [match.end () :]

('some', 'thing', ' in the things she shows me')
>>> match = re.search(r'\bthing', STRING)

>>> STRING[:match.start()], STRING[match.start():match.end()],
STRING [match.end () :]

('something in the ', 'thing', 's she shows me')

6. Match a pattern that's only numbers and dashes (for example, a phone
number). Retrieve the matched string;:

>>> re.search(r'[0123456789-]1+', 'the phone number is 1234-567-
890') < sre.SRE Match object; span=(20, 32), match='1234-567-890"'>

>>> re.search(r'[0123456789-]1+', 'the phone number is 1234-567-
890') .group ()

'1234-567-890"

7. Match an email address naively:

>>> re.search(r'\S+@\S+', 'my email is email.l23@test.com').
group() 'email.l23@test.com'

How it works...

The re.search function matches a pattern, no matter its position in the string. As
explained previously, this will return None if the pattern is not found, or a Match
object.

The following special characters are used:

e “:Marks the start of the string
* $:Marks the end of the string

[30]

Chapter 1

¢ \b: Marks the start or end of a word

* \s:Marks any character that's not a whitespace, including characters like *
or $

More special characters are shown in the next recipe, Going deeper into regular
expressions.

In step 6 of the How to do it section, the r' [0123456789-1+' pattern is composed of
two parts. The first one is between square brackets, and matches any single character
between 0 and 9 (any number) and the dash (-) character. The + sign after that means
that this character can be present one or more times. This is called a quantifier in
regexes. This makes a match on any combination of numbers and dashes, no matter
how long it is.

Step 7 again uses the + sign to match as many characters as necessary before the @
and again after it. In this case, the character match is \'s, which matches any non-
whitespace character.

Please note that the naive pattern for emails described here is very naive, as it will

match invalid emails such as johnesmithetest.com. A better regex for most uses
isr" (" [a-2zA-20-9_.+-]1+@[a-2A-20-9-1+\. [a-2zA-Z0-9-.]+$)". You can go to
http://emailregex.com/ to find it, along with links to more information.

Note that parsing a valid email including corner cases is actually a difficult and
challenging problem. The previous regex should be fine for most uses covered in this
book, but in a general framework project such as Django, email validation is a very
long and hard-to-read regex.

The resulting matching object returns the position where the matched pattern
starts and ends (using the start and end methods), as shown in step 5, which
splits the string into matched parts, showing the distinction between the two
matching patterns.

The difference displayed in step 5 is a very common one. Trying
, to capture GP (as in General Practitioner, for a medical doctor)
\/§p> can end up capturing eggplant and bagpipe! Similarly, things\b
won't capture things. Be sure to test and make the proper
adjustments, such as capturing \bGP\b for just the word GP.

[31]

http://emailregex.com/

Let's Begin Our Automation Journey

The specific matched pattern can be retrieved by calling group (), as shown in step 6.
Note that the result will always be a string. It can be further processed using any of
the methods that we've previously seen, such as by splitting the phone number into
groups by dashes, for example:

>>> match = re.search(r'[0123456789-]1+', 'the phone number is 1234-567-
890')

>>> [int(n) for n in match.group() .split('-"')]

[1234, 567, 890]

There's more...

Dealing with regexes can be difficult and complex. Please allow time to test your
matches and be sure that they work as you expect in order to avoid nasty surprises.

" Some people, when confronted with a problem, think "I know,
I'll use regular expressions." Now they have two problems."

- Jamie Zawinski

Regular expressions are at their best when they are kept very simple. In general, if
there is a specific tool to do it, prefer it over regexes. A very clear example of this is
with HTML parsing; refer to Chapter 3, Building Your First Web Scraping Application,
for better tools to achieve this.

Some text editors allow us to search using regexes as well. While
/ most are editors aimed at writing code, such as Vim, BBEdit, or
\/;p; Notepad++, they're also present in more general tools, such as MS
Office, Open Office, or Google Documents. But be careful, as the
particular syntax may be slightly different.

You can check your regexes interactively with some tools. A good one that's freely
available online is https://regex101.com/, which displays each of the elements
and explains the regex. Double-check that you're using the Python flavor:

[32]

online is https://regex101.com/,

® © ® [oniine regex tester and debic %

&« @ Secure hitps://regex10V.com w B8

S 0 @regex101 5 donate - cor

SAVE & SHARE REGULAR EXPRESSION [1 mateh, 12 steps -0
@ EXPLANATION
Ei save regux Hes fBthing gn » " Blthing * gn
=2 KB assert position at a word boundary (A% 1 AwS |
FLAVOR TEST STRING SWITCH TO UNIT TESTS » AW WA
A | prretehel r . . - 1 thing matches the characters thing liverally (case
a i pere [php) Something in the things she show me sensitive)
o javascript = Global pattern flags
- & python i g modifier: global All matches (dan't return
after first match)
- & golang m modifier: mut line. Causes & and § to
match the beginfend of each line [not only
TOOLS beginend of string)

B code generatc

MATCH INFORMATION v
Match 1 ~
Full match 17-22 “thing

QUICK REFERENCE

Asingle chara,.. [abc]

wcharacter ¢ [Aabe]

B allwckens
common tokens o Acharacter in .. [a-z]
® peneral tokens A character n_. [*a-z]
general tokens

& anchors Acharacte, . [a-zA-Z]
e r Any single character
o

L Aavy ot e ch.. \S
@ group construct Any non-whitespa... \S

§ SUBSTITUTION

Figure 1.1: An example using RegEx101

Note that the EXPLANATION box in the preceding image describes that \b matches
a word boundary (the start or end of a word), and that thing matches literally these
characters.

Regexes, in some cases, can be very slow, or even susceptible to what's called

a regex denial-of-service attack, a string created to confuse a particular regex so
that it takes an enormous amount of time. In the worst-case scenario, it can even
block the computer. While automating tasks probably won't get you into those
problems, keep an eye out in case a regex takes too long to process.

[33]

Let's Begin Our Automation Journey

See also

* The Extracting data from structured strings recipe, covered earlier in the
chapter, to learn simple techniques to extract information from text.

* The Using a third-party tool — parse recipe, covered earlier in the chapter,
to use a third-party tool to extract information from text.

* The Going deeper into reqular expressions recipe, covered later in the chapter,
to further your knowledge of regular expressions.

Going deeper into regular expressions

In this recipe, we'll learn more about how to deal with regular expressions. After
introducing the basics, we will dig a little deeper into pattern elements, introduce
groups as a better way to retrieve and parse strings, learn how to search for multiple
occurrences of the same string, and deal with longer texts.

How to do it...

1. Import re:
>>> import re

2. Match a phone pattern as part of a group (in brackets). Note the use of \d as
a special character for any digit:

>>> match = re.search(r'the phone number is ([\d-]1+)', '37: the
phone number is 1234-567-890')

>>> match.group ()
'the phone number is 1234-567-890"
>>> match.group (1)
11234-567-890"
3. Compile a pattern and capture a case-insensitive pattern with a yes | no
option:

>>> pattern = re.compile(r'The answer to question (\w+) is
(yes|no) ', re.IGNORECASE)

>>> pattern.search('Naturally, the answer to question 3b is YES')

<_sre.SRE Match object; span=(10, 42), match='the answer to
question 3b is YES' >

>>> pattern.search('Naturally, the answer to question 3b is YES').
groups ()

('3b', 'YES')

[34]

Chapter 1

4. Match all the occurrences of cities and state abbreviations in the text. Note
that they are separated by a single character, and the name of the city always
starts with an uppercase letter. Only four states are matched for simplicity:

>>> PATTERN = re.compile(r' ([A-Z] [\w\s]+?). (TX|OR|OH|MI)")

>>> TEXT ='the jackalopes are the team of Odessa,TX while the
knights are native of Corvallis OR and the mud hens come from
Toledo.OH; the whitecaps have their base in Grand Rapids,MI'

>>> list (PATTERN. finditer (TEXT))

[< sre.SRE Match object; span=(31, 40), match='Odessa,TX'>, <_ sre.
SRE Match object; span=(73, 85), match='Corvallis OR'>, < sre.SRE
Match object; span=(113, 122), match='Toledo.OH'>, < sre.SRE Match
object; span=(157, 172), match='Grand Rapids,MI'>]

>>> [0] .groups() ('Odessa', 'TX')

How it works...

The new special characters that were introduced are as follows:

* \d: Marks any digit (o to 9).

* \s:Marks any character that's a whitespace, including tabs and other
whitespace special characters. Note that this is the reverse of \s, which was
introduced in the previous recipe.

* \w: Marks any letter (this includes digits, but excludes characters such as
periods).

* .: (dot): Marks any character.

opposite match, for example, \d matches a digit, while \D matches
a non-digit.

B’ Note that the same letter in uppercase or lowercase means the
\"/

To define groups, put the defined groups in parentheses. Groups can be retrieved
individually. This makes them perfect for matching a bigger pattern that contains
a variable part to be processed in the next step, as demonstrated in step 2. Note the
difference with the step 6 pattern in the previous recipe. In this case, the pattern

is not only the number, but it includes the prefix text, even if we then extract only
the number:

>>> re.search(r'the phone number is ([\d-]1+)', '37: the phone number is
1234-567-890"')

<_sre.SRE Match object; span=(4, 36), match='the phone number is 1234-

[35]

Let's Begin Our Automation Journey

567-890"'>

>>> .group(1l)

'1234-567-890"

>>> re.search(r'[0123456789-]1+', '37: the phone number is 1234-567-890"')
< _sre.SRE Match object; span=(0, 2), match='37'>

>>> .group()

l37l

Remember that group 0 (.group () or .group (0)) is always the whole match. The
rest of the groups are ordered as they appear.

Patterns can be compiled as well. This saves some time if the pattern needs to be
matched over and over. To use it that way, compile the pattern and then use that
object to perform searches, as shown in steps 3 and 4. Some extra flags can be added,
such as making the pattern case insensitive.

Step 4's pattern requires a little bit of information. It's composed of two groups,
separated by a single character. The special character "." (dot) means it matches
everything. In our example, it matches a period, a whitespace, and a comma. The
second group is a straightforward selection of defined options, in this case, US state
abbreviations.

The first group starts with an uppercase letter ([A-z]) and accepts any combination
of letters or spaces ([\w\s] +?), but not punctuation marks such as periods or
commas. This matches the cities, including those that are composed of more than
one word.

The final +? makes the match of letters non-greedy, matching as few characters
as possible. This avoids some problems such as when there are no punctuation
symbols between the cities. Take a look at the result where we don't include the
non-greedy qualifier for the second match and how it includes two elements:

>>> PATTERN = re.compile(r' ([A-Z] [\w\s]+).(TX|OR|OH|MI)")

>>> TEXT ='the jackalopes are the team of Odessa,TX while the knights
are native of Corvallis OR and the mud hens come from Toledo.OH; the
whitecaps have their base in Grand Rapids,MI'

>>> list (PATTERN. finditer (TEXT)) [1]

<re.Match object; span=(73, 122), match='Corvallis OR and the mud hens
come from Toledo.OH>

Note that this pattern starts on any uppercase letter and keeps matching until it finds
a state, unless separated by a punctuation mark, which may not be what's expected,
for example:

[36]

Chapter 1

>>> re.search(r' ([A-Z] [\w\s]+?).(TX|OR|OH|MI)', 'This is a test, Escanaba
MI')
< _sre.SRE Match object; span=(16, 27), match='Escanaba MI'>

>>> re.search(r' ([A-Z] [\w\s]+?).(TX|OR|OH|MI)', 'This is a test with
Escanaba MI')

< _sre.SRE Match object; span=(0, 31), match='This is a test with Escanaba
MI'>

Step 4 also shows you how to find more than one occurrence in a long text. While
the . findall () method exists, it doesn't return the full match object, while
.findalliter () does. As is common now in Python 3, . findalliter () returns an
iterator that can be used in a for loop or list comprehension. Note that . search ()
returns only the first occurrence of the pattern, even if more matches appear:

>>> PATTERN. search (TEXT)
< _sre.SRE Match object; span=(31, 40), match='Odessa,TX'>

>>> PATTERN. findall (TEXT)
[('Odessa', 'TX'), ('Corvallis', 'OR'), ('Toledo', 'OH')]

There's more...

The special characters can be reversed if they are case swapped. For example,
the reverse of the ones we used are as follows:

* \D: Marks any non-digit.

* \W: Marks any non-letter.

* \B: Marks a position that's not at the start or end of a word. For example,
r'thing\B' will match things but not thing.

, The most commonly used special characters are typically \d
\/;n> (digits) and \w (letters and digits), as they mark common patterns

to search for.

Groups can be assigned names as well. This makes them more explicit at
the expense of making the group more verbose in the following shape —
(?P<groupname>PATTERN) . Groups can be referred to by name with
.group (groupname) or by calling .groupdict () while maintaining its
numeric position.

[37]

Let's Begin Our Automation Journey

For example, the step 4 pattern can be described as follows:

>>> PATTERN = re.compile(r' (?P<city>[A-Z] [\w\s]l+?).
(?P<state>TX|OR|OH|MN) ')

>>> match = PATTERN.search (TEXT)

>>> match.groupdict() {'city': 'Odessa', 'state': 'TX'}
>>> match.group('city') 'Odessa'

>>> match.group('state') 'TX'

>>> match.group(l), match.group(2) ('Odessa', 'TX')

Regular expressions are a very extensive topic. There are whole technical books
devoted to them and they can be notoriously deep. The Python documentation is a
good reference to use (https://docs.python.org/3/library/re.html)and to
learn more.

If you feel a little intimidated at the start, it's a perfectly natural feeling. Analyze
each of the patterns with care, dividing them into smaller parts, and they will start to
make sense. Don't be afraid to run a regex interactive analyzer!

Regexes can be really powerful and generic, but they may not be the proper tool
for what you are trying to achieve. We've seen some caveats and patterns that have
subtleties. As a rule of thumb, if a pattern starts to feel complicated, it's time to
search for a different tool. Remember the previous recipes as well and the options
they presented, such as parse.

See also

* The Introducing regular expressions recipe, covered earlier in the chapter,
to learn the basics of using regular expressions.

* The Using a third-party tool — parse recipe, covered earlier in the chapter,
to learn a different technique to extract information from text.

Adding command-line arguments

A lot of tasks can be best structured as a command-line interface that accepts
different parameters to change the way it works, for example, scraping a web

page from a provided URL or other URL. Python includes a powerful argparse
module in the standard library to create rich command-line argument parsing with
minimal effort.

[38]

reference to use (https://docs.python.org/3/library/re.html

Chapter 1

Getting ready

The basic use of argparse in a script can be shown in three steps:

1. Define the arguments that your script is going to accept, generating a new
parser.

2. Call the defined parser, returning an object with all of the resulting
arguments.

3. Use the arguments to call the entry point of your script, which will apply
the defined behavior.

Try to use the following general structure for your scripts:

IMPORTS

def main(main parameters):
DO THINGS

if __name__ == "'__main__':

DEFINE ARGUMENT PARSER

PARSE ARGS

VALIDATE OR MANIPULATE ARGS, IF NEEDED

main(arguments)

The main function makes it easy to know what the entry point for the code is. The
section under the if statement is only executed if the file is called directly, but not
if it's imported. We'll follow this for all the steps.

How to do it...

1. Create a script that will accept a single integer as a positional argument, and
will print a hash symbol that amount of times. The recipe_cli_stepl.py
script is as follows, but note that we are following the structure presented
previously, and the main function is just printing the argument:

import argparse

def main(number):
print('#' * number)

if __name__ == '_main_ ":
parser = argparse.ArgumentParser()

parser.add_argument('number', type=int, help='A number')

[39]

Let's Begin Our Automation Journey

args = parser.parse_args()

main(args.number)

2. Call the script and check how the parameter is presented. Calling the script
with no arguments displays the automatic help. Use the automatic argument
-h to display the extended help:

$ python3 recipe cli stepl.py
usage: recipe cli stepl.py [-h] number

recipe cli stepl.py: error: the following arguments are required:
number

$ python3 recipe cli stepl.py -h
usage: recipe cli stepl.py [-h] number

positional arguments:
number A number
optional arguments:

-h, --help show this help message and exit

3. Calling the script with the extra parameters works as expected:
$ python3 recipe cli stepl.py 4
####
$ python3 recipe cli stepl.py not a number
usage: recipe cli stepl.py [-h] number
recipe cli stepl.py: error: argument number: invalid int value:

'not a number'

4. Change the script to accept an optional argument for the character to print.
The default will be "#". The recipe_cli_step2.py script will look like this:

import argparse

def main(character, number):
print(character * number)

if __name__ == ' main__
parser = argparse.ArgumentParser()
parser.add_argument(' number', type=int, help="A number')

parser.add_argument('-c', type=str, help='Character to
print’,

[40]

Chapter 1

default="#")

args = parser.parse_args()
main(args.c, args.number)
The help is updated, and using the -c flag allows us to print different
characters
$ python3 recipe cli step2.py -h
usage: recipe cli step2.py [-h] [-c¢ C] number
positional arguments:
number A number
optional arguments:
-h, --help show this help message and exit
-c¢ C Character to print
$ python3 recipe cli step2.py 4
HHH##
$ python3 recipe cli step2.py 5 -cm

mmmmm

Add a flag that changes the behavior when present. The recipe cli_step3.
py script is as follows:

import argparse

def main(character, number):
print(character * number)

if __name__ == '_main_ ':
parser = argparse.ArgumentParser()
parser.add_argument('number', type=int, help='A number')
parser.add_argument('-c', type=str, help='Character to
print’',
default="#")
parser.add_argument('-U', action='store true',
default=False,
dest="uppercase’,
help="'Uppercase the character")

args = parser.parse_args()

[41]

Let's Begin Our Automation Journey

if args.uppercase:
args.c = args.c.upper()
main(args.c, args.number)

7. Calling it uppercases the character if the -U flag is added:

$ python3 recipe cli step3.py 4 -c f
ffff

$ python3 recipe cli step3.py 4 -c £ -U
FFFF

How it works...

As described in step 1 of the How to do it section, the arguments are added to the
parser through .add_arguments. Once all of the arguments are defined, calling
parse_args () returns an object that contains the results (or exits if there's an error).

Each argument should add a help description, but their behavior can change greatly:

* If an argument starts with a -, it is considered an optional parameter, like
the -c argument in step 4. If not, it's a positional argument, like the number
argument in step 1.

* For clarity, always define a default value for optional parameters. It will be
None if you don't, but this may be confusing.

* Remember to always add a help parameter with a description of the
parameter; help is automatically generated, as shown in step 2.

* If atypeis present, it will be validated, for example, number in step 3. By
default, the type will be a string.

* The actions store_true and store_false can be used to generate flags,
arguments that don't require any extra parameters. Set the corresponding
default value as the opposite Boolean. This is demonstrated in the U
argument in steps 6 and 7.

* The name of the property in the args object will be, by default, the name
of the argument (without the dash, if it's present). You can change it with
dest. For example, in step 6, the command-line argument -U is described
as uppercase.

Changing the name of an argument for internal usage is very useful when using
short arguments, such as single letters. A good command-line interface will use

-c, but, internally, it's probably a good idea to use a more verbose label, such as
configuration_ file. Remember, explicit is better than implicit!

[42]

Chapter 1

* Some arguments can work in coordination with others, as shown in step 3.
Perform all of the required operations to pass the main function as clear and
concise parameters. For example, in step 3, only two parameters are passed,
but one may have been modified.

There's more...

You can create long arguments as well with double dashes, for example:

parser.add argument ('-v', '--verbose',6 action='store true',
default=False,

help="'Enable verbose output')
This will accept both -v and --verbose, and it will store the name verbose.

Adding long names is a good way of making the interface more intuitive and easy to
remember. It's easy to remember after a couple of times that there's a verbose option,
and it starts with a v.

The main inconvenience when dealing with command-line arguments may be
that you end up with too many of them. This creates confusion. Try to make your
arguments as independent as possible and don't make too many dependencies
between them; otherwise, handling the combinations can be tricky.

In particular, try to not create more than a couple of positional arguments, as they
won't have mnemonics. Positional arguments also accept default values, but most
of the time, that won't be the expected behavior.

For advanced details, refer to the Python documentation of argparse (https://
docs.python.org/3/library/argparse.html).

See also

* The Creating a virtual environment recipe, covered earlier in this chapter,
to learn how to create an environment installing third-party modules.

* The Installing third-party packages recipe, covered earlier in this chapter,
to learn how to install and use external modules in the virtual environment.

[43]

https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html

Automating Tasks Made Easy

To properly automate tasks, we need a way to make them execute automatically
at the proper times. A task that needs to be started manually is not really fully
automated.

However, in order to be able to leave them running in the background while
worrying about more pressing issues, the task will need to be adequate to run in
fire-and-forget mode. We should be able to monitor that it executes correctly, be sure
that we capture relevant information (such as receiving notifications if something
interesting arises), and know whether there have been any errors while running it.

Ensuring that a piece of software runs consistently with high reliability is

actually a very big deal. It is one area that, in order to be done properly, requires
specialized knowledge and staff, who typically go by the names of sysadmin,
operations, or SRE (Site Reliability Engineering). Big operations, such as Amazon
and Google, require huge investment in ensuring that everything works 24/7.

The objective for this book is way more modest than that, as most software doesn't
require this kind of high availability. Designing systems with downtimes of less than
a few seconds per year is challenging, but executing a task with reasonable reliability
is a much easier thing to do. However, be aware that there's maintenance to be done,
and plan accordingly.

In this chapter, we'll cover the following recipes:
* Preparing a task
* Setting up a cron job
* Capturing errors and problems

* Sending email notifications

[45]

Automating Tasks Made Easy

We'll begin by going over how we ought to prepare a task before we automate it.

Preparing a task

It all starts with defining precisely the work that needs to be executed, and designing
it in a way that doesn't require human intervention to run.

Some ideal characteristic points are as follows:

Single, clear entry point: No confusion on how to start the task.

Clear parameters: If there are any parameters, they should be as explicit
as possible.

3. No interactivity: Stopping the execution to request information from the
user is not possible.

4. The result should be stored: In order to be checked at a different time than
when it runs.

5. Clear result: When we oversee the execution of a program ourselves, we
can accept more verbose results, such as unlabeled data or extra debugging
information. However, for an automated task, the final result should be as
concise and to the point as possible.

6. Errors should be logged: To analyze what went wrong,.

A command-line program has a lot of those characteristics already. It always has
a clear entry point, with defined parameters, and the result can be stored, even if
just in text format. And it can be improved ensuring a config file that clarifies the
parameters, and an output file.

Note that point 6 is the objective of the Capturing errors and problems recipe, and will
be covered there.

To avoid interactivity, do not use any function that waits for user input, such as
input. Remember to delete debugger breakpoints!

Getting ready

We'll start by following a structure in which a main function will serve as the entry
point, and all parameters are supplied to it.

This is the same basic structure that was presented in the Adding command-line
arguments recipe in Chapter 1, Let's Begin Our Automation Journey.

[46]

Chapter 2

The definition of a main function with all of the explicit arguments covers points 1
(single, clear entry point) and 2 (clear parameters). Point 3 (no interactivity) is not
difficult to achieve.

To improve points 2 (clear parameters) and 5 (clear result), we'll look at retrieving
the configuration from a file and storing the result in another. Another option is to
send a notification, such as an email, which will be covered later in this chapter.

How to do it...

1. Prepare the following command-line program by multiplying two numbers,
and save it as prepare task stepl.py:

import argparse

def main(number, other_number):
result = number * other_number
print(f'The result is {result}")

if __name__ == '_main__"':
parser = argparse.ArgumentParser()

parser.add_argument('-nl', type=int, help='A number’,
default=1)

parser.add_argument('-n2', type=int, help='Another
number', default=1)

args = parser.parse_args()

main(args.nl, args.n2)
Run prepare_task_stepl.py by multiplying two numbers:

$ python3 prepare task stepl.py -nl 3 -n2 7
The result is 21

2. Update the file to define a config file that contains both arguments, and
save it as prepare_task_step3.py. Note that defining a config file
overwrites any command-line parameters:

import argparse
import configparser

[47]

Automating Tasks Made Easy

def main(number, other_number):
result = number * other_number
print(f'The result is {result}')

if __name__ == '__main__"':
parser = argparse.ArgumentParser()
parser.add_argument('-nl"', type=int, help='A number',
default=1)
parser.add_argument('-n2', type=int, help='Another
number', default=1)

parser.add_argument('--config', '-c', type=argparse.
FileType('r"),
help='config file')

args = parser.parse_args()

if args.config:
config = configparser.ConfigParser()
config.read_file(args.config)

int(config['ARGUMENTS']['nl1'])
int(config["ARGUMENTS"']['n2"'])

args.nl

args.n2

main(args.nl, args.n2)

3. Create the config file, config.ini. See the ARGUMENTS section and the n1
and n2 values:
[ARGUMENTS]
nl=5
n2="7

4. Run the command with the config file. Note that the config file overwrites
the command-line parameters, as described in step 2:
$ python3 prepare task step3.py -c config.ini
The result is 35
$ python3 prepare task step3.py -c config.ini -nl 2 -n2 3
The result is 35

[48]

Chapter 2

5. Add a parameter to store the result in a file, and save it as prepare_task_
step6.py:
import argparse
import sys
import configparser

def main(number, other_number, output):
result = number * other_number
print(f'The result is {result}', file=output)

if __name__ == '_main__":

parser = argparse.ArgumentParser()

parser.add_argument('-nl', type=int, help='A number’,
default=1)

parser.add_argument('-n2', type=int, help='Another
number', default=1)

parser.add_argument('--config', '-c', type=argparse.
FileType('r'),
help="'config file'")
parser.add_argument('-o', dest='output', type=argparse.
FileType('w'),
help="output file',
default=sys.stdout)

args = parser.parse_args()

if args.config:
config = configparser.ConfigParser()
config.read_file(args.config)

int(config['ARGUMENTS']['nl1'])
int(config['ARGUMENTS']['n2'])

args.nl

args.n2

main(args.nl, args.n2, args.output)

[49]

Automating Tasks Made Easy

6. Run the result to check that it's sending the output to the defined file. Note
that there's no output outside the result files:

$ python3 prepare task step6.py -nl 3 -n2 5 -o result.txt

$ cat result.txt

The result is 15

$ python3 prepare task step6.py -c config.ini -o result2.txt
$ cat result2.txt

The result is 35

How it works...

Note that the argparse module allows us to define files as parameters, with the
argparse.FileType type, and opens them automatically. This is very handy and
will raise an error if the file path leads to an invalid location.

Remember to open the file in the correct mode. In step 5, the config file is opened in
read mode (r) and the output file in write mode (w), which will overwrite the file if
it exists. You may find the append mode (a) useful, which will add the next piece of
data at the end of an existing file.

configparser module allows us to use config files with ease. As demonstrated in
step 2, the parsing of the file is simple, as follows:

config = configparser.ConfigParser()
config.read_file(file)

The config will then be accessible as a dictionary. This will have the sections of the
config file as the keys, and inside another dictionary with each of the config values.
So, the value n2 in the ARGUMENTS section is accessed as config['ARGUMENTS ']
['n2'].

Note that the values are always stored as strings, which are required to be
transformed into other types, such as integers.

If you need to obtain Boolean values, do not perform value = bool (config[raw_
value]l), as any string will be transformed into True no matter what; for instance,
the string False is a true string, as it's not empty. Using an empty string is a bad
option as well, as they are very confusing. Use the .getboolean method instead, for
example, value = config.getboolean (raw_value). There are similar getint ()
and getfloat () for integers and float values.

[50]

Chapter 2

Python 3 allows us to pass a £ile parameter to the print function, which will write
to that file. Step 5 shows the usage to redirect all of the printed information to a file.

Note that the default parameter is sys . stdout, which will print the value to
the terminal (standard output). This means that calling the script without an

-o parameter will display the information on the screen, which is helpful when
developing and debugging the script:

$ python3 prepare task step6.py -c config.ini

The result is 35

$ python3 prepare task step6.py -c config.ini -o result.txt
$ cat result.txt

The result is 35

There's more...

Please refer to the full documentation of configparser in the official Python
documentation: https://docs.python.org/3/library/configparser.html.

In most cases, this configuration parser should be good enough, but if more

power is needed, you can use YAML files as configuration files. YAML files
(https://learn.getgrav.org/advanced/yaml) are very common as configuration
files. They are well structured and can be parsed directly, taking into account of
various data types:

1. Add pyYaML to the requirements. txt file:
PyYAML==5.3

2. [Install the requirements in the virtual environment:

$ pip install -r requirements.txt

3. Create the prepare task yaml.py file:
import yaml
import argpars
import sys

def main(number, other_number, output):
result = number * other_number
print(f'The result is {result}', file=output)

[51]

https://docs.python.org/3/library/configparser.html
https://learn.getgrav.org/advanced/yaml

Automating Tasks Made Easy

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-nl"', type=int, help='A number',
default=1)
parser.add_argument('-n2', type=int, help="Another
number', default=1)
parser.add_argument('-c', dest="'config', type=argparse.
FileType('r"),
help='config file in YAML format',
default=None)
parser.add_argument('-o', dest="output', type=argparse.
FileType('w"),
help="'output file',
default=sys.stdout)

args = parser.parse_args()
if args.config:
config = yaml.load(args.config, Loader= yaml.

FullLoader)
args.nl = config['ARGUMENTS']['nl1']
args.n2 = config["ARGUMENTS"']['n2"]

main(args.nl, args.n2, args.output)

Note that the PyYAML yaml . load () function requires a
Loader parameter. This is to avoid arbitrary code execution if the
YAML file comes from an untrusted source. Always use yaml.
/ SafeLoader unless you need a set of YAML language features.

\/;n; Never use loaders other than yaml . SafeLoader if any part of
the data coming from a YAML file comes from an untrusted source
(for example, user input). Refer to this article for more information:
https://github.com/yaml/pyyaml/wiki/PyYAML-yaml.
load (input) -Deprecation.

4. Define the config file, config.yaml:

ARGUMENTS:
nl: 7
n2: 4

[52]

https://github.com/yaml/pyyaml/wiki/PyYAML-yaml.

Chapter 2

5. Then, run the following;:

$ python3 prepare task yaml.py -c config.yaml
The result is 28

There's also the possibility of setting a default config file, as well as a default output
file. This can be handy to create a task that requires no input parameters.

As a general rule, try to avoid creating too many input and configuration parameters
if the task has a very specific objective in mind. Try to limit the input parameters

to different executions of the task. A parameter that never changes is probably fine
being defined as a constant. A high number of parameters will make config files

or command-line arguments complicated and will create more maintenance in

the long run. On the other hand, if your objective is to create a very flexible tool to
be used in very different situations, then creating more parameters is probably a
good idea. Try to find your own proper balance!

See also

* The Command-line arguments recipe in Chapter 1, Let's Begin Our Automation
Journey, to get more information about command-line arguments.

* The Sending email notifications recipe, covered later in this chapter, to see a
more fleshed-out example of an automated task.

* The Debugging with breakpoints recipe in Chapter 13, Debugging Techniques, to
learn how to debug the code before executing it automatically.

Setting up a cron job

Cron is an old-fashioned but reliable way of executing commands. It has been
around since the 1970s in Unix, and it's an old favorite in system administration to
perform maintenance tasks such as freeing up disk space, rotating log files, making
backups, and other common, repetitive operations.

This recipe is Unix and Unix-like operating systems specific, so it will work in Linux
and macOS. While it's possible to schedule a task in Windows, it's very different and
uses Task Scheduler, which won't be described here. If you have access to a Linux
server, this can be a good way of scheduling periodic tasks.

The main advantages are as follows:

* It's present in virtually all Unix or Linux systems and configured to run
automatically.

* It's easy to use, although a little deceptive at first.

[53]

Automating Tasks Made Easy

* It's well known. Almost anyone involved with admin tasks will have a
general idea of how to use it.

* It allows for easy periodic commands, with good precision.
However, it also has some disadvantages, including the following:

* By default, it may not give much feedback. Retrieving the output, logging
execution, and errors are critical.

* The task should be as self-contained as possible to avoid problems with
environment variables, such as using the wrong Python interpreter, or what
path should execute.

e It is Unix-specific.
* Only fixed periodic times are available.

* It doesn't control how many tasks run at the same time. Each time the
countdown goes off, it creates a new task. For example, a task that takes 1
hour to complete, and that is scheduled to run once every 45 minutes, will
have 15 minutes of overlap where two tasks will be running.

Don't understate the latest effect. Running multiple expensive tasks at the same
time can have a bad effect on performance. Having expensive tasks overlapping
may result in a race condition where each task stops the others from ever finishing!
Allow ample time for your tasks to finish and keep an eye on them. Keep in mind
that any other program running in the same host may have their performance
affected, which can include any service, such as web servers, databases, and

email. Check how loaded the host where the task will execute is so as to avoid
surprises.

Getting ready

We will produce a script, called cron.py:

import argparse

import sys

from datetime import datetime
import configparser

def main(number, other_number, output):
result = number * other_number
print(f'[{datetime.utcnow().isoformat()}] The result is
{result}’,

[54]

Chapter 2

file=output)

if __name__ == '__main__"':
parser = argparse.ArgumentParser(formatter_class=argparse.
ArgumentDefaultsHelpFormatter)
parser.add_argument('--config', '-c', type=argparse.
FileType('r'),
help="'config file",
default="/etc/automate.ini")
parser.add_argument('-o', dest="output', type=argparse.
FileType('w'),
help="output file',
default=sys.stdout)

args = parser.parse_args()

if args.config:
config = configparser.ConfigParser()
config.read_file(args.config)

args.nl
args.n2

int(config["ARGUMENTS"]['nl1'])
int(config["ARGUMENTS ']['n2'])

main(args.nl, args.n2, args.output)
Note the following details:
1. The config file is, by default, /etc/automate.ini. Reuse config.ini from
the previous recipe.

2. A timestamp has been added to the output. This will make it explicit when
the task is run.

3. The result is being added to the file, as shown with the a mode where the file
is open.

4. The ArgumentDefaultsHelpFormatter parameter automatically adds
information about default values when printing the help using the -h
argument.

[55]

Automating Tasks Made Easy

Check that the task is producing the expected result and that you can log to a known
file:

$ python3 cron.py

[2020-01-15 22:22:31.436912] The result is 35

$ python3 cron.py -o /path/automate.log

$ cat /path/automate.log
[2020-01-15 22:28:08.833272] The result is 35

How to do it...

1. Obtain the full path of the Python interpreter. This is the interpreter that's
in your virtual environment:

$ which python
/your/path/.venv/bin/python

2. Prepare the cron job to be executed. Get the full path and check that it can
be executed without any problems. Execute it a couple of times:

$ /your/path/.venv/bin/python /your/path/cron.py -o /path/
automate.log

$ /your/path/.venv/bin/python /your/path/cron.py -o /path/
automate.log
3. Check that the result is being added correctly to the result file:
$ cat /path/automate.log
[2020-01-15 22:28:08.833272] The result is 35
[2020-01-15 22:28:10.510743] The result is 35

4. Edit the crontab file to run the task once every 5 minutes:

$ crontab -e

*/5 * * * * /your/path/.venv/bin/python /your/path/cron.py -o /
path/automate.log

Note that this opens an editing terminal with your default command-line
editor.

If you haven't set up your default command-line editor, then, by default, it
is likely to be Vim. This can be disconcerting if you don't have experience
with Vim. Press I to start inserting text and Esc when you're done. Then, exit
after saving the file with wg. For more information about Vim, refer to this
introduction: https://null-byte.wonderhowto.com/how-to/intro-vim-
unix-text-editor-every-hacker-should-be-familiar-with-0174674.

[56]

https://null-byte.wonderhowto.com/how-to/intro-vim-unix-text-editor-every-hacker-should-be-familiar-with-0174674
https://null-byte.wonderhowto.com/how-to/intro-vim-unix-text-editor-every-hacker-should-be-familiar-with-0174674

Chapter 2

For information on how to change the default command-line editor, refer to
the following link: https://www.a2hosting.com/kb/developer-corner/
linux/setting-the-default-text-editor-in-1linux.

Check the crontab contents. Note that this displays the crontab contents,
but doesn't set it to edit:

$ contab -1
*/5 * * % * /your/path/.venv/bin/python /your/path/cron.py -o /
path/automate.log

Wait and check the result file to see how the task is being executed:

$ tail -F /path/automate.log

[2020-01-17 21:20:00.611540] The result is 35
[2020-01-17 21:25:01.174835] The result is 35
[2020-01-17 21:30:00.886452] The result is 35

How it works...

The crontab line consists of a line describing how often to run the task (the first six
elements), plus the task. Each of the initial six elements means a different unit of time
to execute. Most of them are stars, meaning any:

| +-- Year (range: 1900-3000)
| +---- Day of the Week (range: 1-7, 1 standing for Monday)
t------ Month of the Year (range: 1-12)

------- Day of the Month (range: 1-31)

fommmmm e e Hour (range: 0-23)

D Minute (range: 0-59)

Therefore, our line, */5 * * * * *, means every time the minute is divisible by 5, in all
hours, all days... all years.

Here are some examples:

30 15

30
0,30
*/30
0

*

*

* % * * means "every day at 15:30"

* % * * means "every hour, at 30 minutes"

* % * * means "every hour, at 0 minutes and 30 minutes"
* * * * means "every half hour"

* * 1 * means "every Monday at 00:00"

[57]

https://www.a2hosting.com/kb/developer-corner/linux/setting-the-default-text-editor-in-linux
https://www.a2hosting.com/kb/developer-corner/linux/setting-the-default-text-editor-in-linux

Automating Tasks Made Easy

Do not try to guess too much. Use a cheat sheet such as https://crontab.guru/ for
examples and tweaks. Most of the common usages will be described there directly.
You can also edit a formula and get a descriptive piece of text of how it's going to
run.

After the description of how to run the cron job, include the line to execute the task,
as prepared in step 2 of the How to do it... section.

Note that the task is described with all of the full paths for every
/ related file — the interpreter, the script, and the output file. This
\/{p, removes all ambiguity related to the paths and reduces the chances
of possible errors. A very common error is for cron to not be able to
determine one or more of these three elements.

There's more...

The description of the default output (standard output) can be a bit verbose. When
calling python3 cron.py -h, it gets displayed as:

-o OUTPUT output file (default: < io.TextIOWrapper name='<stdout>'
mode='w' encoding='utf-8'>)

This is the description of the standard output (stdout). The format of the parameter
can be changed using the formatter_ class argument in the ArgumentParser. This
means that you can use a custom formatter inheriting from the available default ones
to tweak the display of the value. Refer to the documentation at https://docs.
python.org/2/library/argparse.html#formatter-class

If there's any problem in the execution of the crontab, you should receive a system
mail. This will show up as a message in the terminal like this:

You have mail.

$

This can be read with mail:

$ mail

Mail version 8.1 6/6/93. Type ? for help.

"/var/mail/jaime": 1 message 1 new

>N 1 jaime@Jaimes-iMac-5K Fri Jun 17 21:15 20/914 "Cron <jaime@Jaimes-iM"
? 1

Message 1:

[58]

https://crontab.guru/
https://docs.python.org/2/library/argparse.html#formatter-class
https://docs.python.org/2/library/argparse.html#formatter-class

Chapter 2

/usr/local/Cellar/python/3.8.1/Frameworks/Python. framework/Versions/3.8/
Resources/Python.app/Contents/MacOS/Python: can't open file 'cron.py':
[Exrrno 2] No such file or directory

In the next recipe, we will explore methods to capture the errors independently so
that the task can run smoothly.

See also

* The Adding command-line options recipe in Chapter 1, Let's Begin Our
Automation Journey, to understand the basic concepts of command-line
options.

* The Capturing errors and problems recipe, next in this chapter, to learn how to
store events happening during the execution.

Capturing errors and problems

An automated task's main characteristic is its fire-and-forget quality. We are not
actively looking at the result, but making it run in the background.

Most of the recipes in this book deal with external information, such as web pages

or other reports, so the likelihood of finding an unexpected problem when running

it is high. This recipe will present an automated task that will safely store unexpected
behaviors in a log file that can be checked afterward.

Getting ready

As a starting point, we'll use a task that will divide two numbers, as described in
the command line.

This task is very similar to the one presented in step 5 of How it works for the Preparing
a task recipe, earlier this chapter. However, instead of multiplying two numbers,
we'll divide them.

How to do it...

1. Create the task with error handling stepl.py file, as follows:

import argparse
import sys

def main(number, other_number, output):
result = number / other_number

[59]

Automating Tasks Made Easy

print(f'The result is {result}', file=output)

if __name__ == "'__main__
parser = argparse.ArgumentParser()

parser.add_argument('-nl"', type=int, help='A number',
default=1)

parser.add_argument('-n2
number', default=1)

parser.add_argument('-o
FileType('w'),

, type=int, help='Another

, dest="output', type=argparse.

help="output file', default=sys.
stdout)

args = parser.parse_args()

main(args.nl, args.n2, args.output)

2. Execute it a couple of times to see that it divides two numbers:
$ python3 task with error handling stepl.py -nl 3 -n2 2
The result is 1.5
$ python3 task with error handling stepl.py -nl 25 -n2 5
The result is 5.0

3. Check that dividing by 0 produces an error, and that the error is not logged
on the result file:

$ python task with error handling stepl.py -nl 5 -n2 1 -o result.
txt

$ cat result.txt
The result is 5.0

$ python task with error handling stepl.py -nl 5 -n2 0 -o result.
txt

Traceback (most recent call last):
File "task with error handling stepl.py", line 20, in <module>
main (args.nl, args.n2, args.output)

File "task with error handling stepl.py", line 6, in main
result = number / other number

ZeroDivisionError: division by zero

$ cat result.txt

[60]

Chapter 2

4. Create the task_with error handling step4.py file:

import argparse
import sys
import logging

LOG_FORMAT = '%(asctime)s %(name)s %(levelname)s %(message)s’
LOG_LEVEL = logging.DEBUG

def main(number, other_number, output):
logging.info(f'Dividing {number} between {other_number}')
result = number / other_number
print(f'The result is {result}', file=output)

if __name__ == '_main__"':

parser = argparse.ArgumentParser()

parser.add_argument('-nl', type=int, help='A number’,
default=1)

parser.add_argument('-n2', type=int, help='Another
number', default=1)

parser.add_argument('-o', dest="output', type=argparse.
FileType('w'),
help="'output file', default=sys.
stdout)
parser.add_argument('-1', dest='log', type=str, help='log
file',
default=None)

args = parser.parse_args()
if args.log:
logging.basicConfig(format=LOG_FORMAT, filename=args.
log,
level=L0OG_LEVEL)
else:

logging.basicConfig(format=LOG_FORMAT, level=L0G_
LEVEL)

[61]

Automating Tasks Made Easy

try:
main(args.nl, args.n2, args.output)
except Exception as exc:
logging.exception("Error running task")
exit(1)
5. Run it to check that it displays the proper I1NFO and ERROR logs, and that it
stores it on the log file:

$ python3 task with error handling step4.py -nl 5 -n2 0
2020-01-19 14:25:28,849 root INFO Dividing 5 between 0
2020-01-19 14:25:28,849 root ERROR division by zero
Traceback (most recent call last):
File "task with error handling step4.py", line 31, in <module>
main (args.nl, args.n2, args.output)
File "task with error handling step4.py", line 10, in main
result = number / other number
ZeroDivisionError: division by zero

$ python3 task with error handling step4.py -nl 5 -n2 0 -1 error.
log

$ python3 task with error handling step4.py -nl 5 -n2 0 -1 error.
log

$ cat error.log
2020-01-19 14:26:15,376 root INFO Dividing 5 between 0
2020-01-19 14:26:15,376 root ERROR division by zero
Traceback (most recent call last):
File "task with error handling step4.py", line 33, in <module>
main (args.nl, args.n2, args.output)
File "task with error handling step4.py", line 11, in main
result = number / other number
ZeroDivisionError: division by zero
2020-01-19 14:26:19,960 root INFO Dividing 5 between 0
2020-01-19 14:26:19,961 root ERROR division by zero
Traceback (most recent call last):
File "task with error handling step4.py", line 33, in <module>
main (args.nl, args.n2, args.output)

File "task with error handling step4.py", line 11, in main

[62]

Chapter 2

result = number / other number

ZeroDivisionError: division by zero

How it works...

To properly capture any unexpected exceptions, the main function should be
wrapped in a try-except block, as implemented in step 4 of the How to do it...
section. Compare this to how step 1 does not wrap the code:

try:
main(...)
except Exception as exc:

logging.exception("Error running task")
exit(1)

Note that logging the exception is important for getting information on what went
wrong.

This kind of exception is nicknamed Pokémon Exception because it can catch 'em all.
It will capture any unexpected error at the highest level. Do not use it in other areas
of the code, as capturing everything can hide unexpected errors. At the very least,
any unexpected exception should be logged to allow for further analysis.

The extra step, to exit with status 1 by using the exit (1) call, informs the operating
system that something went wrong with our script.

The 1ogging module allows us to log. Note the basic configuration, which includes
an optional file to store the logs, the format, and the level of the logs to display.

The available levels for logs are —from less critical to more critical — DEBUG, INFO,
WARNING, ERROR, and CRITICAL. The logging level will set the minimum severity
required to log the message. For example, an INFO log won't be stored if the severity
is set to WARNING.

Creating logs is easy. You can do this by making a call to the 1ogging.<logging
levels method (where the logging level is DEBUG, INFO, and so on). For example:
>>> import logging

>>> logging.basicConfig(level=logging.INFO)

>>> logging.warning('a warning message')

WARNING:root:a warning message

>>> logging.info('an info message')

INFO:root:an info message

[63]

Automating Tasks Made Easy

>>> logging.debug('a debug message')

>>>

Note how logs with a severity lower than INFO are not displayed. Use the level
definition to tweak how much information to display. This may change, for example,
how DEBUG logs may be used only while developing the task, but not be displayed
when running it. Notice that task_with error handling_ step4.py defines the
logging level to be DEBUG, by default.

A good definition of log levels is key to displaying relevant information while
reducing noise. It is not easy to set up sometimes, but especially if more than one
person is involved, try to agree on exactly what WARNING versus ERROR means to
avoid misinterpretations.

logging.exception () is a special case that will create an ERROR log, but it will also
include information about the exception, such as the stack trace.

Remember to check logs to discover errors. A useful reminder is to add a note to
the results file, like this:

try:

main(args.nl, args.n2, args.output)
except Exception as exc:

logging.exception(exc)

print('There has been an error. Check the logs', file=args.
output)

There's more...

The Python 1ogging module has many capabilities, including the following;:

* It provides further tweaks to the format of the log, for example, including the
file and line number of the log that was produced.

* It defines different logger objects, each one with its own configuration,
such as logging level and format. This allows us to publish logs to different
systems in different ways, though, normally, a single logger object is used to
keep things simple.

[64]

Chapter 2

* It sends logs to multiple places, such as the standard output and file, or even
a remote logger.

* It automatically rotates logs, creating new log files after a certain time or
size. This is handy for keeping logs organized by day or week. It also allows
for the compression or removal of old logs. Logs take up space when they
accumulate.

* Itreads standard logging configurations from files.

Instead of creating complex rules on what to log, try to log extensively using the
proper level for each, and then filter by level.

For comprehensive details, refer to the Python documentation of the module
athttps://docs.python.org/3.8/library/logging.html, or the tutorial at
https://docs.python.org/3.8/howto/logging.html.

See also

* The Adding command-line options recipe in Chapter 1, Let's Begin Our
Automation Journey, to describe the basic elements of the command-line
options.

* The Preparing a task recipe, covered earlier in the chapter, to learn about the
strategy to follow when designing an automated task.

Sending email notifications

Email has become an inescapable tool for everyday use. It's arguably the best place to
send a notification if an automated task has detected something. On the other hand,
email inboxes are already too full up with spam messages, so be careful.

Spam filters are also a reality. Be careful with whom to send emails to and the
number of emails to be sent. An email server or address can be labeled as a spam
source, and all emails may be quietly dropped by the internet.

This recipe will show you how to send a single email using an existing email
account.

This approach is viable for spare emails sent to a couple of people, as a result
of an automated task, but no more than that. Refer to Chapter 9, Dealing with
Communication Channels, for more ideas on how to send emails, including groups.

[65]

https://docs.python.org/3.8/library/logging.html
https://docs.python.org/3.8/howto/logging.html

Automating Tasks Made Easy

Getting ready

For this recipe, we require a valid email account set up, which includes the
following;:

* A valid email server using SMTP; SMTP is the standard email protocol
* A port to connect to
¢ An address

* A password
These four elements should be enough to be able to send an email.

Some email services, for example, Gmail, will encourage you to set up 2FA, meaning
that a password is not enough to send an email. Typically, they'll allow you to create
a specific password for apps to use, bypassing the 2FA request. Check your email
provider's information for options.

The email service you use should indicate what the SMTP server is and what port
to use in their documentation. This can be retrieved from email clients as well,

as they are the same parameters. Check your provider documentation. In the
following example, we will use a Gmail account.

How to do it...
1. Create the email task.py file, as follows:

import argparse
import configparser

import smtplib
from email.message import EmailMessage

def main(to_email, server, port, from_email, password):
print(f'With love, from {from_email} to {to_email}"')

subject = 'With love, from ME to YOU'
text = ''"'This is an example test'''
msg = EmailMessage()
msg.set_content(text)

msg['Subject'] = subject

[66]

Chapter 2

msg['From'] = from_email
msg['To'] = to_email

server = smtplib.SMTP_SSL(server, port)
server.login(from_email, password)
server.send_message(msg)

server.quit()

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('email', type=str, help='destination
email')
parser.add_argument('-c', dest='config', type=argparse.
FileType('r'),
help='config file', default=None)

args = parser.parse_args()

if not args.config:
print('Error, a config file is required')
parser.print_help()
exit(1)

config = configparser.ConfigParser()
config.read_file(args.config)

main(args.email,
server=config['DEFAULT"']['server'],
port=config['DEFAULT']['port'],
from_email=config['DEFAULT"']['email'],
password=config['DEFAULT']['password’'])

Create a configuration file called email_conf.ini with the specifics of

your email account. For example, for a Gmail account, fill in the following
template. The template is available in GitHub at https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/
master/Chapter02/email conf.ini but be sure to fill it in with your data:

[DEFAULT]
email = EMAIL@gmail.com

[67]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter02/email_conf.ini
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter02/email_conf.ini
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter02/email_conf.ini

Automating Tasks Made Easy

server = smtp.gmail.com
port = 465
password = PASSWORD

3. Ensure that the file cannot be read or written by other users on the system,
setting the permissions of the file to allow only our user. 600 permissions
mean read and write access for the file owner, and no access to anyone else:

$ chmod 600 email conf.ini

4. Run the script to send a test email:

$ python3 email task.py -c email conf.ini destination emaile
server.com

5. Check the inbox of the destination email; an email should be received with
the subject with love, from ME to YOU.

How it works...

There are two key steps in the preceding scripts —the generation of the message and
the sending.

The message needs to contain mainly the To and From email addresses, as well as
the subject. If the content is pure text, as in this case, calling .set_content () is
enough. The whole message can then be sent.

It is technically possible to send an email that is tagged as coming from a different
email address than the one you used to send it. This is discouraged, though, as it
can be considered by your email provider as trying to impersonate a different email.
You can use the reply-to header to allow answering to a different account.

Sending the email requires you to connect to the specified server and start an SMTP
connection. SMTP is the standard for email communication.

The steps are quite straightforward — configure the server, log into it, send the
prepared message, and quit.

If you need to send more than one message, you can log in, send multiple emails,
and then quit, instead of connecting each time.

There's more...

If the objective is a bigger operation, such as a marketing campaign, or even
production emails, such as confirming a user's email, please refer to Chapter 9,
Dealing with Communication Channels.

[68]

Chapter 2

The email message content used in this recipe is very simple, but emails can be
much more complicated than that.

The To field can contain multiple recipients. Separate them with commas, like this:
message['To'] = ', ".join(recipients)

Emails can be defined in HTML, with an alternative plain text, and have attachments.
The basic operation is to set up a MIMEMultipart and then attach each of the MIME
parts that compose the email:

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.image import MIMEImage

message = MIMEMultipart()

partl = MIMEText('some text', 'plain')

message.attach(partl)

with open('path/image', 'rb') as image:
part2 = MIMEImage(image.read())

message.attach(part2)

The most common SMTP connection is SMTP_SSL, which is more secure, as all
communication with the server is encrypted and always requires a login and
password. However, plain, unauthenticated SMTP exists — check your email
provider documentation.

Remember that this recipe is aimed toward simple notifications. Emails can grow
quite complex if attaching different information. If your objective is an email for
customers or any general group, try to use the ideas in Chapter 9, Dealing with
Communication Channels.

See also

* The Adding command-line options recipe in Chapter 1, Let's Begin Our
Automation Journey, to understand the basic concepts of command-line
options.

* The Preparing a task recipe, covered earlier in this chapter, to learn about
the strategy to follow when designing an automated task.

[69]

Building Your First Web
Scraping Application

The internet, and the World Wide Web (WWW), is probably the most prominent
source of information today. Most of that information is retrievable through
HTTP. HTTP was invented originally to share pages of hypertext (hence the name
HyperText Transfer Protocol), which started the WWW.

This process happens each time that we request a web page, so it should be familiar
to almost everyone. But we can also perform these operations programmatically to
retrieve and process information automatically. Python has in its standard library
an HTTP client, but the fantastic requests module makes obtaining web pages very
easy. In this chapter, we will see how.

In this chapter, we'll cover the following recipes:

Downloading web pages

Parsing HTML

Crawling the web

Subscribing to feeds

Accessing web APlIs

Interacting with forms

Using Selenium for advanced interaction
Accessing password-protected pages

Speeding up web scraping

[71]

Building Your First Web Scraping Application

Let's start with the basics of how to programmatically obtain an existing web page.

Downloading web pages

The basic ability to download a web page involves making an HTTP GET request
against a URL. This is the basic operation of any web browser.

Let's quickly recap the different parts of this operation, as it has three distinct
elements:

1. Using the HTTP protocol. This deals with the way the request is structured.

2. Using the GET method, which is the most common HTTP method. We'll see
more in the Accessing web APIs recipe.

3. A full URL describing the address of the page, including the server
(for example: mypage . com) and the path (for example: /page).

That request will be routed toward the server by the internet and processed by the
server, then a response will be sent back. This response will contain a status code,
typically 200 if everything went fine, and a body with the result, which will normally
be text with an HTML page.

Most of this is handled automatically by the HTTP client used to perform the
request. We'll see in this recipe how to make a simple request to obtain a web page.

HTTP requests and responses can also contain headers. Headers
‘ / contain important information about the request itself, such as the
\p/ total size of the request, the format of the content, the date of the
request, and what browser or server is used.

Getting ready

Using the fantastic requests module, getting web pages is super simple. Install
the module:

$ echo "requests==2.23.0" >> requirements.txt

$ source .venv/bin/activate

(.venv) $ pip install -r requirements.txt

We'll download the page at http://www.columbia.edu/~fdc/sample.html
because it is a straightforward HTML page that is easy to read in text mode.

[72]

http://www.columbia.edu/~fdc/sample.html

Chapter 3

How to do it...

1.

Import the requests module:

>>> import requests

Make a request to the server using the following URL, which will take
a second or two:

>>> url = 'http://www.columbia.edu/~£fdc/sample.html’

>>> response = requests.get (url)

Check the returned object status code:
>>> response.status code

200

Check the content of the result:
>>> response.text

'<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">\
n<html>\n<head>\n

FULL BODY

<!-- close the <html> begun above -->\n'

Check the ongoing and returned headers:

>>> response.request.headers

{'User-Agent': 'python-requests/2.22.0', ‘'Accept-Encoding': 'gzip,
deflate', 'Accept': '*/*!', 'Connection': 'keep-alive'}

>>> response.headers

{'Date': 'Fri, 24 Jan 2020 19:04:12 GMT', 'Server': 'Apache’,
'Last-Modified': 'Wed, 11 Dec 2019 12:46:44 GMT', 'Accept-Ranges'
'bytes', 'Vary': 'Accept-Encoding,User-Agent', 'Content-Encoding'
'gzip', 'Content-Length': '10127', 'Keep-Alive': 'timeout=15,
max=100', 'Connection': 'Keep-Alive', 'Content-Type': 'text/
html', 'Set-Cookie': 'BIGipServer~CUIT~www.columbia.edu-80-
pool=1311259520.20480.0000; expires=Sat, 25-Jan-2020 01:04:12 GMT;
path=/; Httponly'}

[73]

Building Your First Web Scraping Application

How it works...

The operation of requests is very simple; perform the request, using the GET
method in this case, over the URL. This returns a result object that can be analyzed.
The main elements are the status_code and the body content, which can be
presented as text.

The full request can be inspected in the request attribute:

>>> response.request
<PreparedRequest [GET]>
>>> response.request.url

http://www.columbia.edu/~fdc/sample.html’

The full requests module documentation can be found here: https://requests.
readthedocs.io/en/master/.

Over the course of the chapter, we'll be showing more features of the requests
library.

There's more...

All HTTP status codes can be seen at this web page: https://httpstatuses.com/.
They are also described in the http.HTTPStatus enum with convenient constant
names, such as OK, NOT_FOUND, or FORBIDDEN.

| The most famous error status code is arguably 404, which is
\@’ returned when the resource described by a URL is not found.
-4 Try it out by doing requests.get(http://www.columbia.edu/
- invalid).

The general structure of the status code is:

1XX - Information on specifics about the protocol.
2XX - Success.

3XX - Redirection. For example: The URL is no longer valid and is available
somewhere else. The new URL should be included.

4XX - Client error. There's some error in the information sent to the server
(like a bad format) or in the client (for example, authentication is required
to be able to access the URL).

[74]

https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/
https://httpstatuses.com/.
http://www.columbia.edu/invalid
http://www.columbia.edu/invalid

Chapter 3

5XX - Server error. There's an error on the server side; for example, the server
might be unavailable or there might be a bug processing the request.

A request can use the HTTPS (secure HTTP) protocol. It is the same as HTTP but
ensures that the contents of the request and response are private. requests handles
it transparently.

L Any website that handles any private information should use
‘@' HTTPS to ensure that the information has not leaked out. HTTP is

h vulnerable to someone eavesdropping. Use HTTPS where available.

See also

* The Installing third-party packages recipe in Chapter 1, Let's Begin Our
Automation Journey, to learn the basics of installing external modules.

* The Parsing HTML recipe, later in this chapter, to find out how to treat
the information returned from the server.

Parsing HTML

Downloading raw text or a binary file is a good starting point, but the main language
of the web is HTML.

HTML is a structured language, defining different parts of a document such as
headings and paragraphs. HTML is also hierarchical, defining sub-elements. The
ability to parse raw text into a structured document is basically the ability to extract
information automatically from a web page. For example, some text can be relevant
if enclosed in certain HTML elements, such as a class div or after a heading h3 tag.

Getting ready

We'll use the excellent Beautiful Soup module to parse HTML text into a memory
object that can be analyzed. We need to use the latest version of the beautifulsoup4
package to be compatible with Python 3. Add the package to your requirements.
txt and install the dependencies in the virtual environment:

$ echo "beautifulsoup4==4.8.2" >> requirements.txt

$ pip install -r requirements.txt

[75]

Building Your First Web Scraping Application

How to do it...

1.

Import BeautifulSoup and requests:
>>> import requests

>>> from bs4 import BeautifulSoup

Set up the URL of the page to download and retrieve it:

>>> URL = 'http://www.columbia.edu/~£fdc/sample.html’
>>> response = requests.get (URL)

>>> response

<Response [200]>

Parse the downloaded page:

>>> page = BeautifulSoup (response.text, 'html.parser')

Obtain the title of the page. See that it is the same as what's displayed in the
browser:

>>> page.title

<title>Sample Web Page</title>

>>> page.title.string

'Sample Web Page'

Find all the h3 elements in the page, to determine the existing sections:
>>> page.find all('h3')

[<h3>CONTENTS</h3>, <h3>1.
Creating a Web Page</h3>, <h3>2. HTML
Syntax</h3>, <h3>3. Special Characters</
h3>, <h3>4. Converting Plain Text to HTML</
a></h3>, <h3>5. Effects</h3>, <h3>6. Lists</h3>, <h3>7. Links</
a></h3>, <h3>8. Tables</h3>, <h3>9. Installing Your Web Page on the Internet</
h3>, <h3>10. Where to go from here</h3>]

Extract the text on the section for Special Characters. Stop when you reach the
next <h3> tag:

>>> link section = page.find('h3', attrs={'id': 'chars'})

>>> section = []

[76]

Chapter 3

>>> for element in link section.next elements:
.. if element.name == 'h3':
.o break

. section.append(element.string or '!')

>>> result = ''.join(section)
>>> result

'3. Special Characters\n\nHTML special "character entities"

start with ampersand (&&) and\nend with semicolon (;;), like
"geuro; €" = "€"., The\never-popular "no-break space" is
 . There are speciall\nentity names for accented Latin
letters and other West European speciall\ncharacters such as:\
n\n\n\n\n\nä ; ä \na-umlaut\n\xa0d\xa0\n\n\n&2Auml ; Ä \
nA-umlaut \n\xaOA\xaO\n\n\náá\na-acute \n\xa0a\xa0\
n\n\nà à \na-grave \n\xa0a\xaO\n\n\nññ\
nn-tilde \n\xa0Ofi\xa0\n\n\nßß\nGerman double-s\n\
xal0R\xa0\n\n\nþ þ \nIcelandic thorn \n\xaOp\xaO\n\xaOp\
xal0\n\n\n\n\nExamples:\n\n\nFor SpanishSpanish you would need:\
nÁ &RAacute; (&), \náá (&), \nÉÉ
(E) , \né é (&),\nÍÍ (I),\
níí (i), \nÓÓ (0),\nóó
(6) , \nÚ Ú (4),\núú (d),\
nÑÑ (N),\nññ (f);\n¿¿
(¢) ;s \n¡¡ (i) .\nExample: Afioraradn = Añora
ránAñorarán.\n\n\nFor GermanGerman you
would need:\nÄÄ (&), \nää (&), \nÖÖ
(0) , \nö ö (&), \nÜÜ (i), \nüü (d),\
nßß (R).\nExample: GrifRe aus Kdéln = Grüße
aus KölnGrü ße aus Kö1ln.\n\n\n\nCLICK
HERECLICK HERE\nfor a complete list. When the page encoding
is\nUTF-8UTF-8, which is\nrecommended, you can also enter any
character at all, Roman,\nCyrillic, Arabic, Hebrew, Greek.
Japanese, \netc, either as numeric entities or (if you have a way
to type them) directly\nfrom the keyboard.\n\n\n\nAnd remember:
if you want to\ninclude <<, &&,\nor >> literally in text to be
displayed, you have\nto write <<, \n&&, >>,
respectively.\n\n\n\n\n'

Notice that all the raw text is displayed, without including the enclosing HTML tags.

[77]

Building Your First Web Scraping Application

How it works...

The first step is to download the page. Then, the raw text can be parsed, as in step 3.
The resulting page object contains the parsed information.

The html . parser parser is the default one, but for certain
operations, it can have problems. For example, for big pages it
L can be slow, and it can have issues rendering highly dynamic
‘/@\‘ web pages. You can use other parsers, such as 1xml, which is
= much faster, or htm1511ib, which will be closer to how a browser
operates. They are external modules that will need to be added to
the requirements. txt file.

BeautifulSoup allows us to search for HTML elements. It can search for the first
occurrence of an HTML element with . find () or return a list with .find all().
In step 5, it searched for a specific tag, <a>, that had a particular attribute, id=chars.
After that, it kept iterating on .next_elements until it found the next h3 tag, which
marks the end of the section.

The text of each element is extracted and finally composed into a single text. Note the
or that avoids storing None, returned when an element has no text.

HTML is highly versatile and can have multiple structures.
| The case presented in this recipe is typical, but other options
\@/ on dividing sections can be grouping related sections inside
a big <div> tag or other elements, or even raw text. Some
experimentation will be required until you find the specific process
to extract the juicy bits on a web page. Don't be afraid to try!

There's more...

Regexes can be used as input in the . find () and .find_all () methods. For
example, this search uses the h2 and h3 tags:

>>> page.find all(re.compile('*h(2]3)"'))

[<h2>Sample Web Page</h2>, <h3 id="contents">CONTENTS</h3>, <h3
id="basics">1l. Creating a Web Page</h3>, <h3 id="syntax">2. HTML Syntax</
h3>, <h3 id="chars">3. Special Characters</h3>, <h3 id="convert">4.
Converting Plain Text to HTML</h3>, <h3 id="effects">5. Effects</

h3>, <h3 id="lists">6. Lists</h3>, <h3 id="links">7. Links</h3>, <h3
id="tables">8. Tables</h3>, <h3 id="viewing">9. Viewing Your Web Page</
h3>, <h3 id="install">10. Installing Your Web Page on the Internet</h3>,
<h3 id="more">11l. Where to go from here</h3>]

[78]

Chapter 3

Another useful £ind parameter is including the CSS class with the class_
parameter. This will be shown later in the book.

The full Beautiful Soup documentation can be found here: https://www.crummy.
com/software/BeautifulSoup/bs4/doc/.

See also

* The Installing third-party packages recipe in Chapter 1, Let's Begin
Our Automation Journey, to learn about installing external modules.

* The Downloading web pages recipe, earlier in this chapter, to learn the basics
of requesting web pages.

Crawling the web

Given the nature of hyperlink pages, starting from a known place and following
links to other pages is a very important tool in your arsenal when scraping the web.

To do so, we crawl a page looking for a short phrase, and we print any paragraph
that contains it. We will search only in pages that belong to a single site, for example:
only URLs starting with www . somesite.com. We won't follow links to external sites.

Getting ready

This recipe builds on the concepts introduced so far, so it will involve downloading
and parsing pages to search for links and then continue downloading.

| When crawling the web, remember to set limits when
\@l downloading. It's very easy to crawl over too many pages.
- As anyone checking Wikipedia can confirm, the internet is
- potentially limitless.

We'll use a prepared example, available in the GitHub repo at https://github.
com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapter03/test_site. Download the whole site and run the included
script:

$ python simple delay server.py

This serves the site at the URL http://localhost:8000. You can find this in a
browser. It's a simple blog with three entries.

[79]

https://www.crummy.com/software/BeautifulSoup/bs4/doc/.
https://www.crummy.com/software/BeautifulSoup/bs4/doc/.
http://www.somesite.com
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter03/test_site
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter03/test_site
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter03/test_site

Building Your First Web Scraping Application

Most of it is uninteresting, but we added a couple of paragraphs that contain the
keyword python:

UNTITLED PAGE

CRAWLABLE SITE

Archives:

An uninteresting article

September 2018

Figure 3.1: A screenshot of the blog

How to do it...

1. The full script, crawling web_stepl.py, is available on GitHub at
the following link: https://github.com/PacktPublishing/Python-
Automation-Cookbook-Second-Edition/blob/master/Chapter03/
crawling web_stepl.py. The most relevant bits are displayed here:

def process link(source_link, text):
logging.info(f'Extracting links from {source_link}')
parsed_source = urlparse(source_link)
result = requests.get(source_link)

page = BeautifulSoup(result.text, 'html.parser')
search_text(source_link, page, text)

[80]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter03/crawling_web_step1.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter03/crawling_web_step1.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter03/crawling_web_step1.py

Chapter 3

return get_links(parsed_source, page)

def get links(parsed_source, page):
''"'Retrieve the links on the page'''’
links = []
for element in page.find_all('a'):
link = element.get('href')

links.append(link)
return links

2. Search for references to python to return a list with URLs that contain it and
the paragraph. Notice there are a couple of errors because of broken links:

$ python crawling web stepl.py http://localhost:8000/ -p python

Link http://localhost:8000/: --> A smaller article , that contains
a reference to Python

Link http://localhost:8000/files/5eabef23£f63024c20389c34b94d
ee593-1.html: --> A smaller article , that contains a reference to
Python

Link http://localhost:8000/files/33714fc865e02aeda2dabb9a42a78
7b2-0.html: --> This is the actual bit with a python reference
that we are interested in.

Link http://localhost:8000/files/archive-september-2018.html: -->
A smaller article , that contains a reference to Python

Link http://localhost:8000/index.html: --> A smaller article ,
that contains a reference to Python

3. Another good search term is crocodile. Try it out:

$ python crawling web stepl.py http://localhost:8000/ -p crocodile

How it works...

Let's see each of the components of the script:

1. Aloop that goes through all the found links, in the main function:
def main(base_url, to_search):
checked links = set()
to_check = [base_url]
max_checks = 10

[81]

Building Your First Web Scraping Application

while to_check and max_checks:

link = to_check.pop(9)

links = process_link(1link, text=to_search)

checked_links.add(1link)

for link in links:

if link not in checked_links:

checked_links.add(1link)
to_check.append(link)

max_checks -= 1

Note that there's a retrieval limit of 10 pages, and the code here is checking
that any new link to be added is not added already

Note that these two elements act as limits for the script. We won't
download the same link twice and we'll stop at some point.

(@

2. Downloading and parsing the link, in the process_1ink function:
def process link(source_link, text):
logging.info(f'Extracting links from {source_link}")
parsed_source = urlparse(source_link)
result = requests.get(source_link)
if result.status_code != http.client.OK:

logging.error(f'Error retrieving {source_link}:
{result}")
return []

if 'html' not in result.headers['Content-type']:
logging.info(f'Link {source_link} is not an HTML
page’)
return []

page = BeautifulSoup(result.text, 'html.parser')
search_text(source_link, page, text)

return get_links(parsed_source, page)

[82]

Chapter 3

The code here downloads the file and checks that the status is correct to skip
errors such as broken links. This code also checks that the type (as described
in Content-Type) is an HTML page to skip PDFs and other formats. Finally,
it parses the raw HTML into a BeautifulSoup object.

The code also parses the source link using urlparse, so later, in step 4, it can
skip all the references to external sources. urlparse divides a URL into its
constituent elements:

>>> from urllib.parse import urlparse

>>> urlparse('http://localhost:8000/files/
b93bec5d9681df87e6e8d5703ed7cd81-2.html")

ParseResult (scheme='http', netloc='localhost:8000', path='/files/
b93bec5d9681df87e6e8d5703ed7cd81-2.html', params='"', query='"',
fragment="")

The code finds the text to search, in the search text function:

def search text(source_link, page, text):

itlll
for element in page.find_all(text=re.compile(text,
flags=re.IGNORECASE)):
print(f'Link {source_link}: --> {element}"')

Search for an element with the searched text and print

This searches the parsed object for the specified text. Note that the search is
done as a regex and only in the text of the page. It prints the resulting matches,
including source_1link, referencing the URL where the match was found:

for element in page.find all (text=re.compile(text)):

print (£'Link {source link}: --> {element}')

The get_1links function retrieves all links on a page:
def get links(parsed_source, page):
'''Retrieve the links on the page'''
links = []
for element in page.find all('a'):
link = element.get('href')
if not link:
continue

if link.startswith("'
continue

[83]

Building Your First Web Scraping Application

if link.startswith('mailto:'):

continue

if not link.startswith('http'):
netloc = parsed_source.netloc
scheme = parsed_source.scheme
path = urljoin(parsed_source.path, link)
link = f'{scheme}://{netloc}{path}’

if parsed_source.netloc not in link:
continue

links.append(link)

return links

This searches in the parsed page for all <a> elements and retrieves the href elements,
but only elements that have such href elements and that are a fully qualified URL
(starting with http) or a local link. This removes links that are not a URL, such as

a '#'link or links that are internal to the page.

Keep in mind that some references could have other effects, for

\/‘/ example, the mailto: scheme. There is a check to avoid mailto:

schemes, but there could be cases like ftp or irc, though they are
rare to see in practice.

An extra check is done to check that the links have the same source as the original
link; only then are they registered as valid links. The netloc attribute detects
whether a link comes from the same URL domain as the parsed URL generated
in step 2.

[84]

Chapter 3

\/‘/ We won't follow links that point to a different address (for example,

an http://www.google.com one).

Finally, the links are returned, where they'll be added to the loop described in step 1.

There's more...

Further filters could be enforced; for example, all links that end in . pdf could be
discarded, as they likely refer to PDF files:

if link.endswith('pdf'):
continue

The use of content-Type can also be determined to parse the returned object in
different ways. Keep in mind that Content-Type won't be available without making
the request, which means the code cannot skip links without requesting them. A PDF
result (Content-Type: application/pdf)won't have a valid response.text object
to be parsed, but a PDF result can be parsed in other ways. The same goes for other
types, such as a CSV file (Content-Type: text/csv) or a ZIP file that may need to
be decompressed (Content-Type: application/zip). We'll see how to deal with
those later.

See also

* The Downloading web pages recipe, earlier in this chapter, to learn the basics
of requesting web pages.

* The Parsing HTML recipe, earlier in this chapter, to learn how to parse
elements in HTML.

Subscribing to feeds

RSS is probably the biggest secret of the internet. Its time in the spotlight seemed to
be during the 2000s, and it enables easy subscription to websites. It is present in lots
of websites and it's incredibly useful.

[85]

http://www.google.com

Building Your First Web Scraping Application

At its core, RSS is a way of presenting a succession of ordered references (typically
articles, but also other elements such as podcast episodes or YouTube publications)
and publishing times. This makes for a very natural way of learning what articles are
new since the last check, as well as presenting some structured data about them, such
as the title and a summary.

In this recipe, we will present the feedparser module and determine how to obtain
data from an RSS feed.

| RSS is not the only available feed format. There's also a format
\@l called Atom, but Atom and RSS are more or less the same.
S feedparser is also capable of parsing Atom, so both formats
can be processed in the same way.

/

Getting ready

We need to add the feedparser dependency to our requirements. txt file and
reinstall it:

$ echo "feedparser==5.2.1" >> requirements.txt

$ pip install -r requirements.txt

Feed URLSs can be found on almost all pages that deal with publications, including
blogs, news, podcasts, and so on. Sometimes they are very easy to find, but
sometimes they are a little bit hidden. Search for feed or RSs.

Most newspapers and news agencies have their RSS feeds divided by themes.

For our example, we'll parse the New York Times main page feed, https://rss.
nytimes.com/services/xml/rss/nyt/HomePage.xml. There are more feeds
available on the main feed page: https://archive.nytimes.com/www.nytimes.
com/services/xml/rss/index.html.

, Please note that the feeds may be subject to terms and conditions
\/;p; of use. In the case of the New York Times, the terms and conditions

are described at the end of the main feed page.

[86]

https://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml
https://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml
https://archive.nytimes.com/www.nytimes.com/services/xml/rss/index.html
https://archive.nytimes.com/www.nytimes.com/services/xml/rss/index.html

Chapter 3

Please note that this feed changes quite often, meaning that the linked entries will be
different than the examples in this book.

How to do it...

1.

Import the feedparser module, as well as datetime, delorean, and
requests:

>>> import feedparser
>>> import datetime
>>> import delorean

>>> import requests

Parse the feed (it will be downloaded automatically) and check when it was
last updated. Feed information, like the title of the feed, can be obtained in
the feed attribute:

>>> rss = feedparser.parse('http://rss.nytimes.com/services/xml/
rss/nyt/HomePage.xml')

>>> rss.channel.updated

Friday, 24 Jan 2020 19:42:27 +0000'

Get the entries that are less or equal to 6 hours old:

>>> time limit = delorean.parse(rss.channel.updated) - datetime.
timedelta (hours=6)

>>> entries = [entry for entry in rss.entries if delorean.
parse (entry.published) > time limit]

Some of the returned entries will be older than 6 hours:
>>> len(entries)

28

>>> len(rss.entries)

54

Retrieve information about the entries, such as the title. The full entry URL
is available as 1ink. Explore the available information in this particular feed:

>>> entries[18] ['title']
'These People Really Care About Fonts'
>>> entries[18] ['link']

'https://www.nytimes.com/2020/01/24/style/typography-font-design.
html?emc=rss&partner=rss'

>>> requests.get (entries[18].1link)

<Response [200] >

[87]

Building Your First Web Scraping Application

How it works...

The parsed feed object contains the information of the entries, as well as general
information about the feed itself, such as when it was updated. The feed
information can be found in the feed attribute:

>>> rss.feed.title

'NYT > Top Stories'

Each of the entries works as a dictionary, so the fields are easy to retrieve. They
can also be accessed as attributes, but treating them as keys allows us to get all the
available fields:

>>> entries[5] .keys ()

dict keys(['title', 'title detail', 'links', 'link', 'id', 'guidislink',
'media content', 'summary', 'summary detail', 'media credit', 'credit',
'content', 'authors', 'author', 'author detail', 'published', 'published
parsed', 'tags'l)

The basic strategy when dealing with feeds is to parse them and go through the
entries, performing a quick check on whether they are interesting or not, for
example, by checking the description or summary. If the entry seems worth it, they can
be fully downloaded through the 1ink field. Then, to avoid rechecking entries, store
the latest publication date and next time, only check newer entries.

There's more...

The full feedparser documentation can be found here: https://pythonhosted.
org/feedparser/.

The information available can differ from feed to feed. In the New York Times
example, there's a tag field with tag information, but this is not standard.
As a minimum, entries will have a title, a description, and a link.

I
\@l RSS feeds are also a great way of curating your own selection of

’ news sources. There are great feed readers for that.

[88]

https://pythonhosted.org/feedparser/
https://pythonhosted.org/feedparser/

Chapter 3

See also

* The Installing third-party packages recipe in Chapter 1, Let's Begin Our
Automation Journey, to learn the basics of installing external modules.

* The Downloading web pages recipe, earlier in this chapter, to learn more
about making requests and obtaining remote pages.

Accessing web APIs

Rich interfaces can be created through the web, allowing powerful interactions
through HTTP. The most common interface is through RESTful APIs using JSON.
These text-based interfaces are easy to understand and to program, and use
common technologies that are language agnostic, meaning they can be accessed
in any programming language that has an HTTP client module, including, of
course, Python.

Formats other than JSON are used, such as XML. But JSON is a
/ very simple and readable format that translates very well into
\/;p> Python dictionaries (and other language equivalents). JSON is,
by far, the most common format in RESTful APIs at the moment.
Learn more about JSON here: https://www.json.org/.

The strict definition of RESTful requires some specific characteristics, but an informal
definition of RESTful is a system that describes resources through HTTP URLs. This
means each URL represents a particular resource, such as an article in a newspaper
or a property on a real estate site. Resources can then be manipulated through HTTP
methods (GET to view, POST to create, PUT/PATCH to edit, and DELETE to delete).

Proper RESTful interfaces need to have certain characteristics.
, They are a way of creating interfaces that is not strictly restricted
\/;p; to HTTP interfaces. You can read more about it here: https://
codewords .recurse.com/issues/five/what-restful-
actually-means.

Using requests is very easy with RESTful interfaces, as they include native JSON
support.

[89]

https://www.json.org/
https://codewords.recurse.com/issues/five/what-restful-actually-means
https://codewords.recurse.com/issues/five/what-restful-actually-means
https://codewords.recurse.com/issues/five/what-restful-actually-means

Building Your First Web Scraping Application

Getting ready

To demonstrate how to operate RESTful APIs, we'll use the example site https://
jsonplaceholder.typicode.com/. It simulates a common case with posts,
comments, and other common resources. We will use posts and comments.

The URLSs to use will be as follows:

The collection of all posts

/posts

A single post. X is the ID of the post
/posts/X

The comments of post X

/posts/X/comments

The site returns the correct result for each of them. Pretty handy!

all the correct responses.

\/‘/ Because it is a test site, data won't be created, but the site will return

How to do it...

1. Import requests:

>>> import requests

2. Getalist of all posts and display the latest post:

>>> result = requests.get('https://jsonplaceholder.typicode.com/
posts')

>>> result

<Response [200]>

>>> result.json()

List of 100 posts NOT DISPLAYED HERE
>>> result.json() [-1]

{'userId': 10, 'id': 100, 'title': 'at nam consequatur ea labore
ea harum', 'body': 'cupiditate quo est a modi nesciunt soluta\
nipsa voluptas error itaque dicta in\nautem qui minus magnam et
distinctio eum\naccusamus ratione error aut'}

[90]

https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/

Chapter 3

Create a new post. See the URL of the newly created resource. The call also
returns the resource:

>>> new post = {'userId': 10, 'title': 'a title', 'body':
'something something'}

>>> result = requests.post('https://jsonplaceholder.typicode.com/
posts',

json=new post)
>>> result
<Response [201]>
>>> result.json()

{'userId': 10, 'title': 'a title', 'body': 'something something’,
ridr: 101}

>>> result.headers['Location']

'http://jsonplaceholder. typicode.com/posts/101"

Notice that the POST request to create the resource returns 201, which is the
proper status for created.
Fetch an existing post with GET:

>>> result = requests.get('https://jsonplaceholder.typicode.com/
posts/2"')

>>> result
<Response [200] >
>>> result.json()

{'userId': 1, 'id': 2, 'title': 'qui est esse', 'body': 'est
rerum tempore vitae\nsequi sint nihil reprehenderit dolor beatae
ea dolores neque\nfugiat blanditiis voluptate porro vel nihil
molestiae ut reiciendis\nqui aperiam non debitis possimus qui
neque nisi nulla'}

Use PATCH to update its values. Check the returned resource:

>>> update = {'body': 'new body'}

>>> result = requests.patch('https://jsonplaceholder.typicode.com/
posts/2', json=update)

>>> result
<Response [200] >
>>> result.json()

{'userrd': 1, 'id': 2, 'title': 'qui est esse', 'body': 'new
body'}

[91]

Building Your First Web Scraping Application

How it works...

Two kinds of resources are typically accessed - single resources (https://
jsonplaceholder.typicode.com/posts/X) and collections (https://
jsonplaceholder.typicode. com/posts)

* Collections accept GET to retrieve all the members of the collection and poOST
to create a new resource

* Single elements accept GET to get the element, PUT and PATCH to edit, and
DELETE to remove elements

All the available HTTP methods can be called in requests. In the previous recipes,
we used .get (), but .post (), .patch(), .put (), and .delete() are available.

The returned response object has a . json () method that decodes the result from
JSON.

Equally, to send information, a json argument is available. This encodes a dictionary
into JSON and sends it to the server. The data needs to follow the format of the
resource or an error may be raised.

|
‘@’_ GET and DELETE don't require data, while PATCH, PUT, and POST

b do require data to be sent through the body payload.

The referred-to resource will be returned, and its URL is available in the header.
This is useful when creating a new resource, as its URL is not known beforehand.

the whole resource, while the former does a partial update.

\/‘/ The difference between PATCH and PUT is that the latter replaces

[92]

https://jsonplaceholder.typicode.com/posts/X
https://jsonplaceholder.typicode.com/posts/X
https://jsonplaceholder.typicode.com/posts
https://jsonplaceholder.typicode.com/posts

Chapter 3

There's more...

RESTful APIs are very powerful but also have huge variability. Please check the
documentation of the specific API to learn about its details.

See also

* The Downloading web pages recipe, earlier in this chapter, to learn the basics
of requesting web pages

* The Installing third-party packages recipe in Chapter 1, Let's Begin Our
Automation Journey, to learn the basics of installing external modules

Interacting with forms

A common element present in web pages is forms. Forms are a way of sending
values to a web page, for example, to create a new comment on a blog post, or to
submit a purchase.

Browsers present forms so you can input values and send them in a single action
after pressing the submit or equivalent button. We'll see how to create this action
programmatically in this recipe.

Be aware that sending data to a site is normally a more delicate
| matter than receiving data from it. For example, sending automatic
\@/ comments to a website is very much the definition of spam. This
NR means that it can be more difficult to automate as it involves
- considering security measures. Double-check that what you're
trying to achieve is a valid, ethical use case.

Getting ready

We'll work against the test server https://httpbin.org/forms/post, which allows
us to send a test form and sends back the submitted information.

Note that the URL https://httpbin.org/forms/post

\/‘/ renders the form, but internally calls the URL https://httpbin.

org/post to send the information. We'll use both URLs during
this recipe.

[93]

https://httpbin.org/forms/post
https://httpbin.org/forms/post
https://httpbin.org/post
https://httpbin.org/post

Building Your First Web Scraping Application

The following is an example form to order a pizza:

@ @ D https:fhttpbin.org/fforms/post x o 6

& C & Secure https://httpbin.org/.. ¥r O I

Customer name:
Telephone:

E-mail address:

— Pizza Size
Small
Medium

Large

— Pizza Toppings

| Bacon
Extra Cheese
Onion

Mushroom

Preferred delivery time: --:—-

Delivery instructions: &

Submit arder

Figure 3.2: Rendered form

You can fill the form in manually and see it return the information in JSON format,
including extra information such as the browser being used.

[94]

Chapter 3

The following is the frontend of the web form that is generated:

® @ D https: fhttpbin.org/forms/post = _ 6

& > C & Secure https:/httpbin.org/... ¢ IO

Customer name: Sean 0'Connell
Telephone: 123-1458-789

E-mail address: sean@oconnell.ie

— Pizza Size

O Small
Medium

Large

— Pizza Toppings
Bacon

| Extra Cheese
Onion

Mushroom

Preferred delivery time: zo: 30

Delivery instructions:

Submit arder

Figure 3.3: Filled-in form

[95]

Building Your First Web Scraping Application

The following screenshot shows the backend of the web form that is generated:

® L] [https:/fihttpbin.org/post ® B
« C | @ Secure | https://hitpbin.org/post r i
Chrome is being controlled by automated test software. ®

{"args":{},"data":"","files": {}, "form":
{"comments":"","custemail”:"", "custname" : "Sean

O'Connell”, "custtel”:"","delivery":"","size" : "medium”, "topping":

["bacon®, "cheese” |}, "~headers” :

{"Accept":"text/html, application/xhtml+xml,application/xml;g=0.9, image /webp,
image/apng, */*;q=0.8", "Accept-Encoding”:"gzip, deflate, br", "Accept-
Language": "en-GB,en-US;g=0.9,en;g=0.8","Cache-Control" : "max-
age=0","Connection”:"close", "Content-Length":"106", "Content-

Type": "application/x-www-form-

urlencoded”, "Host": "httpbin.org”, "Origin®:"https://httpbin.org", "Referer”:"h
ttps://httpbin.org/forms/post”, "Upgrade-Insecure-Requests”:"1", "User-
Agent”:*Mozilla/5.0 (Macintosh; Intel Mac OS5 X 10_13_4) AppleWebKit/537.136
(KHTML, like Gecko) Chrome/66.0.3359.181

Safari/537.36"},"json"tnull, "origin”:"89.100.17.159", "url" : "https: //httpbin.

org/post"}

Figure 3.4: Returned JSON content

We need to analyze the HTML to see the accepted data for the form. The source code
is as follows:

® ® [view-source:https://httpbin.o ¥ e
C | @ view-source:https://httpbin.org/forms/post o W @ i
2| <html>
3 <head>
1 </head>
B <hody>
<1-- Example form from HTMLS spec http://www.w3d.org/TR/html5/forms.html#writing-a-form's-user-interface -->
7 <form method="post” action="/post™>
8 <p><label>Customer name: <input name="gustname'></label></p>

8 <pr<label>Telaphone: <input type=tel name="custtel"></label></p>
<pr<label>E-mail address: <input type=email name="custemail"></label></p>
<fieldset>
<legend> Pizza Size </legend=
3 <p><label> <input type=radic name=size value="small"> Small </label></p>
14 <p»<label> <input type=radic name=size value="medium"> Medium </label></p>
5 <p><label> <input type=radic name=size value="large"> Large </label></p>
6 </fieldset>
<fimldset>
8 <legend> Pizza Toppings </legend>
4 <p><label> <input typescheckbox names="topping" values="bacon"> Bacon </label></p>
<p><label> <input type=scheckbox name="topping"” value="cheese"> Extra Chesse </label></p>
<p><label> <input type=checkbox name="topping"” value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping” value="mushroom”> Mushroom </label=></p>
</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900" name="delivery"></label></p>
<pr<label>Delivery instructions: <textarea name="comments"></textarea></label></p>
<pr<hutton>Submit order</buttons</p>

2 </fform=>
a8 < body=
= </html>

Figure 3.5: Source code

[96]

Chapter 3

Check the names of the inputs, custname, custtel, custemail, size (aradio
option), topping (a multiselection checkbox), delivery (time), and comments.

How to do it...

1.

Import the requests, BeautifulSoup, and re modules:
>>> import requests
>>> from bs4 import BeautifulSoup

>>> import re

Retrieve the form page, parse it, and print the input fields. Check that the
posting URL is /post (not /forms/post):

>>> response = requests.get('https://httpbin.org/forms/post')
>>> page = BeautifulSoup (response.text)

>>> form = page.find('form')

>>> {field.get('name') for field in form.find all(re.

compile ('input|textarea'))}

{'delivery', 'topping', 'size', 'custemail', 'comments',
'custtel', 'custname'}

Note that textarea is a valid input and is defined in the HTML format.

Prepare the data to be posted as a dictionary. Check that the values are as
defined in the form:

>>> data = {'custname': "Sean O'Connell", 'custtel': '123-456-
789', 'custemail': 'sean@oconnell.ie', 'size': 'small', 'topping':
['bacon', 'onion'], 'delivery': '20:30', 'comments': ''}

Post the values and check that the response is the same as returned in the
browser:

>>> response = requests.post('https://httpbin.org/post', data)
>>> response

<Response [200] >

>>> response.json()

{rargs': {}, 'data': '', 'files': {}, 'form': {'comments': '',
'custemail': 'sean@oconnell.ie', 'custname': "Sean O'Connell",
'custtel': '123-456-789', 'delivery': '20:30', 'size': 'small’',
'topping': ['bacon', 'onion'l}, 'headers': {'Accept': '*/*',
'Accept-Encoding': 'gzip, deflate', 'Connection': 'close’',
'Content-Length': '140', 'Content-Type': 'application/x-www-
form-urlencoded', 'Host': 'httpbin.org', 'User-Agent': 'python-
requests/2.22.0'}, 'json': None, 'origin': '89.100.17.159', 'url':
'https://httpbin.org/post'}

[97]

Building Your First Web Scraping Application

How it works...

Requests directly encodes and sends data in the configured format. By default,
it sends POST data in the application/x-www-form-urlencoded format.

| Compare the action of requests with the Accessing web APIs recipe,
\@’ where the data is explicitly sent in JSON format using the argument
-4 json. This means that the Content -Type is application/json
- instead of application/x-www-form-urlencoded.

The key aspect here is to respect the format of the form and the possible values
that can return an error if incorrect, typically a 400 error, indicating a problem
with the client.

There's more...

Other than following the format of forms and inputting valid values, the main
problem when working with forms is the multiple ways of preventing spam
and abusive behavior.

You will often have to ensure that you have downloaded a form before submitting
it, to avoid submitting multiple forms or Cross-Site Request Forgery (CSRF).

CSRF, which means producing a malicious call from a page to a
different one taking advantage of the fact that your browser is
authenticated, is a serious problem - for example, you might think
A you were entering a site about adorable puppies, that in fact takes
/@ advantage of you being logged into your bank page to perform
g financial operations on your behalf: such as transferring your
savings to a distant account. Here is a good description of CSREF:
https://stackoverflow.com/a/33829607. New techniques

in browsers help with these CSRF issues by default.

To obtain the specific token, you need to first download the form, as shown in the
recipe, obtain the value of the CSRF token, and resubmit it. Note that the token can
have different names; this is just an example:

>>> form.find(attrs={'name': 'token'}).get('value')

'ABCEDF12345"

[98]

https://stackoverflow.com/a/33829607

Chapter 3

See also

* The Downloading web pages recipe, earlier in this chapter, to learn the basics of
requesting web pages.

* The Parsing HTML recipe, earlier in this chapter, to follow up on structuring
the returned information from the server.

Using Selenium for advanced interaction

Sometimes, nothing short of the real thing will work. Selenium is a project to use to
achieve automation in web browsers. It's conceived as a way of automatic testing,
but it also can be used to automate interactions with a site.

Selenium can control Safari, Chrome, Firefox, Internet Explorer, or Microsoft Edge,
though it requires installing a specific driver for each case. We'll use Chrome.

Getting ready

We need to install the right driver for Chrome, called chromedriver. It is available
here: https://sites.google.com/a/chromium.org/chromedriver/. It is available
for most platforms. It also requires that you have Chrome installed: https://www.
google.com/chrome/.

Add the selenium module to requirements. txt and install it:

$ echo "selenium==3.141.0" >> requirements.txt

$ pip install -r requirements.txt

How to do it...

1. Import Selenium, start a browser and load the form page. A page will open
reflecting the operations:

>>> from selenium import webdriver
>>> browser = webdriver.Chrome ()

>>> browser.get ('https://httpbin.org/forms/post')

\/V Note the banner in Chrome showing it is being controlled by

automated test software.

[99]

https://sites.google.com/a/chromium.org/chromedriver/
https://www.google.com/chrome/
https://www.google.com/chrome/

Building Your First Web Scraping Application

2. Add a value in the Customer name field. Remember that it is called
custname:

>>> custname = browser.find element by name ("custname")
>>> custname.clear()

>>> custname.send keys("Sean O'Connell")

The form will update:
o ® [https://httpbin.org/forms/post x e
& - C' | @& Secure | https://httpbin.org/forms/post b+ 4

Chrome is being controlled by automated test software.

Customer name: Sean O'Connell
Telephone:

E-mail address:

Figure 3.6: Form being filled automatically

3. Set the pizza size to medium:
>>> for size element in browser.find elements by name("size"):
if size element.get attribute('value') == 'medium':

size element.click()

>>>
This will set the Pizza Size radio button.

4. Add bacon and cheese:
>>> for topping in browser.find elements by name('topping'):
if topping.get attribute('value') in ['bacon', 'cheese']:

topping.click()

>>>

Finally, the checkboxes will appear as marked:

[100]

Chapter 3

— Pizza Size
Small

© Medium

Large

— Pizza Toppings

Bacon

Extra Cheese
Onion

Mushroom

Figure 3.7: Form with checked boxes

5. Submit the form. The page will submit and the result will be displayed:

>>> browser.find element by tag name('form').submit ()

The form will be submitted and the result from the server will be displayed:

e] [https://httpbin.org/post x e

< C @ Secure | https://httpbin.org/post T

Chrome is being controlled by automated test software.

{"args":{},"data":"","files":{}, " "form":

{"comments":"", "custemail”:"","custname": "Sean

0'Connell”, "custtel”:"","delivery":"","size" : "medium”, "topping":
["bacon", "cheese"]}, "headers":
{"Accept":"text/html,application/xhtml+xml,application/xml;g=0.9, image/webp,
image/apng, */*;gq=0.8","Accept-Encoding":"gzip, deflate, br","Rccept-
Language":"en-GB,en-US;g=0.9,en;g=0.8", "Cache-Control” : "max-

age=0", "Connection":"close", "Content-Length":"106", "Content-
Type":"application/x-www-form-

urlencoded", "Host":"httpbin.org", "Origin":"https://httpbin.org", "Referer":"h
ttps://httpbin.org/forms/post”, "Upgrade-Insecure-Requests":"1", "User-
Agent":"Mozilla/5.0 (Macintosh; Intel Mac 0S5 X 10 13 4) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/66.0.3359.181

safari/537.36"},"json":null, "origin":"89.100.17.159","url": "https://httpbin.
org/post”}

Figure 3.8: Returned JSON information

[101]

Building Your First Web Scraping Application

6. Close the browser:

>>> browser.quit ()

How it works...

Step 1 in the How to do it... section shows how to create a Selenium page and go to
a particular URL.

Selenium works in a similar way to Beautiful Soup: you select an element and then
manipulate it. The selectors in Selenium work in a similar way to those in Beautiful
Soup, with the most common ones being find_element_by id, find element_

by class name, find element by name, find element by tag name, and find
element by css selector.

There are equivalent find_elements_by X actions that return lists by other
attributes other than the first found element (such as £ind_elements_by tag_name,
find_elements_by name, and more). This is also useful when checking whether an
element is there or not. If there are no elements, £ind_element will raise an error
while £ind_elements will return an empty list.

Data on the elements can be obtained through .get_attribute () for HTML
attributes (such as the values on the form elements) or . text.

Elements can be manipulated by simulating sending keystrokes to input text with
the method . send_keys (), sending clicks with .click (), or submitting the form
with . submit (). Note that .click () will select/deselect in the same way that a click
of the mouse will.

Finally, step 6 closes the browser.

There's more...

Here is the Python Selenium documentation: http://selenium-python.
readthedocs.io/.

For each of the elements, there's extra information that can be extracted, such as .is_
displayed() or .is_selected (). Text can be searched using .find element_by_
link text () and .find element by partial link text ().

Sometimes, opening a browser can be inconvenient. An alternative is to start the
browser in headless mode and manipulate it from there, like this:

>>> from selenium.webdriver.chrome.options import Options

>>> chrome options = Options|()

[102]

http://selenium-python.readthedocs.io/
http://selenium-python.readthedocs.io/

Chapter 3

>>> chrome options.add argument ("--headless")
>>> browser = webdriver.Chrome (chrome options=chrome options)

>>> browser.get ('https://httpbin.org/forms/post')

The page won't be displayed, but a screenshot can be saved anyway with the
following line:

>>> browser.save screenshot ('screenshot.png')

See also
* The Parsing HTML recipe, earlier in this chapter, to learn how to parse
elements in HTML.

* The Interacting with forms recipe, earlier in this chapter, to see alternatives
to dealing with forms.

Accessing password-protected pages

Sometimes a web page is not open to the public but protected in some way. The
simplest aspect of protection is to use basic HTTP authentication, which is integrated
into virtually every web server and implements a user/password schema.

Getting ready

We can test this kind of authentication in https://httpbin.org.

It has a path, /basic-auth/{user}/{password}, which forces authentication,
with the user and password stated. This is very handy for understanding how
authentication works.

How to do it...

1. Import requests:

>>> import requests

2. Make a GET request to the URL with the wrong credentials. Notice that we set
the credentials on the URL to be user and psswd:

>>> requests.get ('https://httpbin.org/basic-auth/user/psswd’,
auth=('user', 'psswd'))

<Response [200] >

[103]

https://httpbin.org

Building Your First Web Scraping Application

3. Use the wrong credentials to return a 401 status code (unauthorized):
>>> requests.get('https://httpbin.org/basic-auth/user/psswd’,
auth=('user', 'wrong'))

<Response [401]>

4. The credentials can also be passed directly as part of the URL, separated by a
colon and an @ symbol before the server, like this:

>>> requests.get('https://user:psswd@httpbin.org/basic-auth/user/
psswd')

<Response [200] >

>>> requests.get('https://user:wrong@httpbin.org/basic-auth/user/
psswd')

<Response [401]>

How it works...

As HTTP basic authentication is supported everywhere, support from requests is
very easy.

Steps 2 and 4 in the How to do it... section show how to provide the proper password.
Step 3 shows what happens when the password is wrong.

Remember to always use HTTPS to ensure that the sending of the

I

\@’ password is kept secret. If you use HI'TP, the password will be sent

- in the open over the internet, allowing it to be captured by listening
- elements.

There's more...

Adding the user and password to the URL works on the browser as well. Try
to access the page directly to see a box asking for the username and password:

[104]

Chapter 3

_- httpbin.org ® https:/fhttpbin.orgfbasic-auth/u x 8

C @ https://httpbin.org/basic-auth/user/psswd “ B @8 @
Sign in
https://httpbin.org

Username

Password

Cancel Sign In

Figure 3.9: User credentials page

When using a URL containing the user and password, https://user:psswde
httpbin.org/basic-auth/user/psswd, the dialog does not appear, and it
authenticates automatically.

If you need to access multiple pages, you can create a session in requests and set
the authentication parameters to avoid having to input them everywhere:

>>> s = requests.Session()

>>> s.auth = ('user', 'psswd')

>>> s.get('https://httpbin.org/basic-auth/user/psswd')

<Response [200]>

See also

* The Downloading web pages recipe, earlier in this chapter, to learn the basics of
requesting web pages.

* The Accessing web APIs recipe, earlier in this chapter, to learn how to access
APIs that are behind an authentication wall.

[105]

mailto:https://user:psswd@httpbin.org/basic-auth/user/psswd
mailto:https://user:psswd@httpbin.org/basic-auth/user/psswd

Building Your First Web Scraping Application

Speeding up web scraping

Most of the time spent downloading information from web pages is usually spent
waiting. A request goes from our computer to the remote server to process it, and
until the response is composed and comes back to our computer, we cannot do much
about it.

During the execution of the recipes in the book, you'll notice there's a wait involved in
requests calls, normally of around one or two seconds. But computers can do other
stuff while waiting, including making more requests at the same time. In this recipe, we
will see how to download a list of pages in parallel and wait until they are all ready. We
will use an intentionally slow server to show why it's worth getting this right.

Getting ready

We'll get code to crawl and search for keywords, making use of the futures
capabilities of Python 3 to download multiple pages at the same time.

A future is an object that represents the promise of a value. This means that you
immediately receive an object while the code is being executed in the background
- only, when specifically requesting its . result (), the code waits until the result
is available.

If the result is already available at that point, that makes it faster.

\/‘D/ Think of the operation as putting something in the washing

machine while doing other tasks. There's a chance that the
laundry will be done by the time we finish the rest of our chores.

To generate a future, you need a background engine, called an executor. Once
created, submit a function and parameters to it to retrieve a future. The retrieval
of the result can be delayed as long as necessary, allowing the generation of several
futures in a row; then we can wait until all are finished and execute them in
parallel. This is an alternative to creating one, waiting until it finishes, creating
another, and so on.

There are several ways to create an executor; in this recipe, we'll use
ThreadPoolExecutor, which uses threads.

We'll use a prepared example, available at the following GitHub repo: https://
github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/
tree/master/Chapter03/test site. Download the whole site and run the
included script:

$ python simple delay server.py -d 2

[106]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter03/test_site
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter03/test_site
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter03/test_site
https://github.com/PacktPublishing/Python-Automation-Cookbook/tree/master/Chapter03/test_site.

Chapter 3

This serves the site at the URL http://localhost:8000. You can see it in a browser.
It's a simple blog with three entries. Most of it is uninteresting, but we added a
couple of paragraphs that contain the keyword python. The parameter -d 2 makes
the server intentionally slow, simulating a bad connection.

How to do it...

1.

Write the following script, speed_up_stepl.py. The full code is

available on GitHub at the Chapter03 directory (https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/
master/Chapter03/speed_up_stepl.py). Here are only the most relevant
parts. It is based on crawling web_stepl.py:

def process_link(source_link, text):

return source_link, get_ links(parsed_source, page)

def main(base_url, to_search, workers):
checked_links = set()
to_check = [base_url]
max_checks = 10

with concurrent.futures.ThreadPoolExecutor(max_
workers=workers) as executor:

while to_check:

futures = [executor.submit(process_link, url, to_
search)

for url in to_check]
to_check = []

for data in concurrent.futures.as_
completed(futures):

link, new_links = data.result()

checked_links.add(link)
for link in new_links:

if link not in checked_links and link not
in to_check:

to_check.append(link)

[107]

http://localhost:8000
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter03/speed_up_step1.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter03/speed_up_step1.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter03/speed_up_step1.py

Building Your First Web Scraping Application

max_checks -= 1
if not max_checks:
return

if __name__ == '__main__'
parser = argparse.ArgumentParser()

parser.add_argument('-w', type=int, help='Number of
workers',
default=4)

args = parser.parse_args()

main(args.u, args.p, args.w)

2. Notice the differences in the main function. Also, there's an extra parameter
added (number of concurrent workers), and the function process_1link now
returns the source link.

3. Runthe crawling web_stepl.py script to get a time baseline. Notice that
the output has been removed here for clarity:
$ time python crawling web stepl.py http://localhost:8000/
REMOVED OUTPUT
real Oml2.221s
user Om0.160s

sys Om0.034s

4. Run the new script with one worker, which will make it slower than the
original one:

$ time python speed up stepl.py -w 1
REMOVED OUTPUT

real 0ml6.403s

user Om0.181s

sys O0m0.068s

5. Increase the number of workers:
$ time python speed up stepl.py -w 2
REMOVED OUTPUT
real O0ml0.353s

[108]

Chapter 3

user O0m0.199s

sys O0m0.068s

6. Adding more workers decreases the time:
$ time python speed up stepl.py -w 5
. REMOVED OUTPUT
real Om6.234s
user O0m0.171s

sys Om0.040s

How it works...

The main engine to create the concurrent requests is the main function. Notice that
the rest of the code is basically untouched (other than returning the source link in the
process_link function).

, This change is actually quite common when adapting for
\/§p> concurrency. Concurrent tasks need to return all the relevant
data, as they cannot rely on an ordered context.

This is the relevant part of the code that handles the concurrent engine:

with concurrent.futures.ThreadPoolExecutor(max_
workers=workers) as executor:

while to_check:
futures = [executor.submit(process_link, url, to_
search)
for url in to_check]
to_check = []
for data in concurrent.futures.as_completed(futures):
link, new_links = data.result()

checked_links.add(1link)
for link in new_links:
if link not in checked_links and link not in
to_check:
to_check.append(1link)

max_checks -= 1

[109]

Building Your First Web Scraping Application

if not max_checks:
return

The with context creates a pool of workers, specifying how many. Inside, a list

of futures containing all the URLs to retrieve is created. The .as_completed ()
function returns the futures that are finished, and then there's some work to do to
obtain newly found links and check whether they need to be added to be retrieved
or not. This process is similar to the one presented in the Crawling the web recipe.

The process starts again until enough links have been retrieved or there are no links
to retrieve. Note that the links are retrieved in batches; the first time, the base link is
processed and all links are retrieved. In the second iteration, all those links will be
requested. Once they are all downloaded, a new batch will be processed.

When dealing with concurrent requests, keep in mind that they
, can change order between two executions. If a request takes a little
\/§p> more or a little less time, that can affect the ordering of the retrieved
information. Because we stop after downloading 10 pages, that also
means that the 10 pages could be different.

There's more...

The full futures documentation in Python can be found here: https://docs.
python.org/3/library/concurrent.futures.html.

| As you can see in steps 4 and 5 in the How to do it... section,
\@’ properly determining the number of workers can require some
AR tests. Some numbers can make the process slower, due to the

- increase in management. Do not be afraid to experiment!

In the Python world, there are other ways to make concurrent HTTP requests.
There's a native request module that allows us to work with futures, called
requests-futures. It can be found here: https://github.com/ross/requests-
futures.

Another alternative is to use asynchronous programming. This way of working has
recently gotten a lot of attention, as it can be very efficient in situations that involve
dealing with many concurrent calls, but the resulting way of coding is different
from the traditional way and requires some time to get used to. Python includes
the asyncio module to work that way, and there's a good module called aiohttp
to work with HTTP requests. You can find more information about aiohttp here:
https://aiohttp.readthedocs.io/en/stable/client quickstart.html.

[110]

https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html
https://github.com/ross/requests-futures
https://github.com/ross/requests-futures
https://aiohttp.readthedocs.io/en/stable/client_quickstart.html

Chapter 3

A good introduction to asynchronous programming can be found in this article:
https://djangostars.com/blog/asynchronous-programming-in-python-
asyncio/.

See also

* The Crawling the web recipe, earlier in this chapter, for the less efficient
alternative to this recipe.

* The Downloading web pages recipe, earlier in this chapter, to learn the basics
of requesting web pages.

[111]

https://djangostars.com/blog/asynchronous-programming-in-python-asyncio/
https://djangostars.com/blog/asynchronous-programming-in-python-asyncio/

Searching and
Reading Local Files

In this chapter, we will introduce the basic operations to read information from
files, starting with searching and opening files stored in different directories and
subdirectories. Then, we'll describe some of the most common file types and how
to read them, including formats such as raw text files, PDFs, and Word documents.

The last recipe will search for a word inside different kinds of files, recursively in a
directory tree.

In this chapter, we'll cover the following recipes:

Crawling and searching directories
Reading text files

Dealing with encodings

Reading CSV files

Reading log files

Reading file metadata

Reading images

Reading PDF files

Reading Word documents

Scanning documents for a keyword

We will start by accessing all the files in a directory tree.

[113]

Searching and Reading Local Files

Crawling and searching directories

In this recipe, we'll learn how to scan a directory recursively to get all the files
contained there. That will include all the files in subdirectories. The matched files
can be of a particular kind, like text files, or every single one of them.

This is normally a starting operation when dealing with files, to detect all the
existing ones.

Getting ready

Let's start by creating a test directory with some file information:

$ mkdir dir

$ touch dir/filel.txt

$ touch dir/file2.txt

$ mkdir dir/subdir

$ touch dir/subdir/file3.txt
$ touch dir/subdir/file4d.txt
$ touch dir/subdir/file5.pdf
$ touch dir/file6.pdf

All the files will be empty; we will use them in this recipe only to discover them.
Notice there are four files that have a . txt extension, and two that have a .pdf
extension.

The files are also available in the GitHub repository here:
‘ p/ https://github.com/PacktPublishing/Python-
Automation-Cookbook-Second-Edition/tree/master/

Chapter04/documents/dir.

Enter the created dir directory

$ cd dir

How to do it...

1. Print all the filenames in the dir directory and subdirectories:
>>> import os
>>> for root, dirs, files in os.walk('.'):

for file in files:

[114]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter04/documents/dir
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter04/documents/dir
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter04/documents/dir

Chapter 4

3.

4.

print(file)

filel.txt
file2.txt
file6.pdf
file3.txt
file4.txt
file5.pdf

Print the full path of the files, joining with the root:
>>> for root, dirs, files in os.walk('.'):
for file in files:
full file path = os.path.join(root,
print (full file path)

./dir/filel. txt
./dir/file2.txt
./dir/file6.pdf
./dir/subdir/file3.txt
./dir/subdir/file4.txt
./dir/subdir/file5.pdf

Print only the . pdf files:
>>> for root, dirs, files in os.walk('.'):
for file in files:

if file.endswith('.pdf'):

full file path = os.path.join(root,

print (full file path)

./dir/file6.pdf
./dir/subdir/file5.pdf

Print only files that contain an even number:

>>> import re
>>> for root, dirs, files in os.walk('.'):
for file in files:

if re.search(r'[13579]', file):

file)

file)

[115]

Searching and Reading Local Files

full file path = os.path.join(root, file)
print (full file path)

./dir/filel.txt
./dir/subdir/file3.txt
./dir/subdir/file5.pdf

How it works...

os.walk () goes through a whole directory and all subdirectories under it,
returning all the files. For each directory, it returns a tuple with the directory,
any subdirectories under it, and all the files:

>>> for root, dirs, files in os.walk('.'):

print (root, dirs, files)

[*dir'] [1]
./dir ['subdir'] ['filel.txt', 'file2.txt', 'file6.pdf']
./dir/subdir []1 ['file3.txt', 'file4.txt',6 'file5.pdf'l]

The os.path.join () function allows us to join two paths, such as the base path and
the file.

As paths are returned as pure strings, any kind of filtering can be done, as in step 3.
In step 4, the full power of regular expressions can be used to filter.

In the next recipe, we'll deal with the content of the files, and not just the filename.

There's more...

In this recipe, the returned files are not opened or modified in any way. This
operation is read-only. Files can be opened as described in the following recipes.

| Be aware that changing the structure of the directory while walking
\@' over it may affect the results. If you need to carry out some file
AR maintenance while walking through the tree, like copying or
moving a file, it's a good idea to store it in a different directory.

[116]

Chapter 4

The os.path module has other interesting functions. We talked about . join(),
but other included utilities are:

* os.path.abspath (), which returns the absolute path of a file.

* os.path.split (), which splits the path between directory and file:
>>> os.path.split('/a/very/long/path/file.txt")
('/a/very/long/path', 'file.txt"')

* os.path.exists (), to return whether a file exists or not on the filesystem.

The full documentation about os.path can be found here: https://docs.python.
org/3/library/os.path.html. Another module, pathlib, can be used for higher-
level access, in an object-oriented way: https://docs.python.org/3/library/
pathlib.html.

As demonstrated in step 4, multiple ways of filtering can be used. All of the string
manipulations and tips shown in Chapter 1, Let's Begin Our Automation Journey,
are available.

See also

* The Introducing regular expressions recipe in Chapter 1, Let's Begin Our
Automation Journey, to learn how to filter using regular expressions.

* The Reading text files recipe, later in this chapter, to open the found files
and read their context.

Reading text files

After searching for a particular file, the next typical action is to open it and read its
content. Text files are very simple yet very powerful files. They store data in plain
text, without complicated binary formats.

Text file support is provided natively in Python, and it's easy to consider it
a collection of lines that can be represented as Python strings.

Getting ready

We'll read the zen_of_python. txt file, containing The Zen of Python by Tim Peters,
which is a collection of aphorisms that very well describe the design principles
behind Python.

[117]

https://docs.python.org/3/library/os.path.html
https://docs.python.org/3/library/os.path.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html

Searching and Reading Local Files

It is available in the GitHub repository here: https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/
master/Chapter04/documents/zen of python.txt:

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

The Zen of Python is described in PEP-20 here: https://www.python.org/dev/peps/
pep-0020/.

\@’ The Zen of Python will be displayed on any Python interpreter by
typing import this.

How to do it...
1. Open and print the whole file, line by line (the result is not displayed):
>>> with open('zen of python.txt') as file:
for line in file:

print (line)

[RESULT NOT DISPLAYED]

[118]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/documents/zen_of_python.txt
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/documents/zen_of_python.txt
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/documents/zen_of_python.txt
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/

Chapter 4

2. Open the file and print any line containing the string should:
>>> with open('zen of python.txt', 'r') as file:
for line in file:
if 'should' in line.lower():

print (line)
Errors should never pass silently.

There should be one-- and preferably only one --obvious way to do
it.

3. Open the file and print the first line containing the word better:

>>> with open('zen of python.txt', 'rt') as file:
for line in file:
if 'better' in line.lower():
print(line)

break

Beautiful is better than ugly.

How it works...

To open a file, use the open () function. This returns a £ile object that then can be
iterated over to return it line by line, as shown in step 1 of the How to do it... section.
Note it opens the file in text mode.

The with context manager is a very convenient way of dealing with files. It will close
the file after finishing its use (leaving the block). It will do so even if an exception has
been raised.

Step 2 shows how to iterate and filter the lines based on what lines are applicable for
our tasks. The lines are returned as strings that can be filtered in multiple ways, as
described in the recipes in Chapter 1, Let's Begin Our Automation Journey and Chapter
3, Building Your First Web Scraping Application.

Reading the whole file may not be required, as shown in step 3. Because iterating
through the file line by line will be reading the file as you go, you can stop at any
time, avoiding reading the rest of the file. For a small file such as our example,
that's not very relevant, but for long files, this can reduce memory use and time.

[119]

Searching and Reading Local Files

There's more...

The with context manager is the preferred way of dealing with files, but it's not the
only one. You may also open and close them manually, like this:

>>> file = open('zen of python.txt')

>>> content = file.read()

>>> file.close()

Note the .close () method, to ensure that the file is closed and to free resources
related to opening a file. The .read () method reads the whole file in one go, instead
of line by line.

| The . read () method also accepts a size parameter in bytes that
\@/ limits the size of the data read. For example, file.read (1024)
AR will return up to 1KB of information. The next call to . read ()

- will continue from that point.

Files are opened in a particular mode. Modes define a combination of read/write,
as well as whether to treat the data as text or binary data. By default, files are opened
in read-only and text mode, which are described as "r" (step 2) or "rt" (step 3).

More modes will be explored in other recipes.

See also

* The Crawling and searching directories recipe, earlier in this chapter, to find
files that will be read later.

* The Dealing with encodings recipe, later in this chapter, to learn how to deal
with files encoded in a non-standard way.

Dealing with encodings

Text files can be present in different encodings. In recent years, the situation has
greatly improved, as there are a few encodings that are pretty standard, but there
are still compatibility problems when working with different systems.

[120]

Chapter 4

There's a difference between raw data in a file and a string object
in Python. The string object has been transformed from whatever
| encoding the file contained into a native Unicode string. Once it is
@ in this format, it may need to be stored in different encodings. By
default, Python works with the encoding defined by the OS, which
in modern operating systems is UTF - 8. This is a highly compatible
encoding, but you may need to save files in a different one,
depending on your specific requirements.

/
N\

Getting ready

We prepared two files in the GitHub repository that store the string 20£ in two
different encodings: one in the usual UTF-8 and another in IS0 8859-1, a different
common encoding. These prepared files are available in GitHub under the
Chapter04/documents directory, with the names example_iso.txt and example
utf8.txt: https://github.com/PacktPublishing/Python-Automation-
Cookbook-Second-Edition/tree/master/Chapter04/documents.

We'll use the Beautiful Soup module, presented previously in the Parsing HTML
recipe in Chapter 3, Building Your First Web Scraping Application.

How to do it...
1. Open the example_utfs.txt file and display its content:
>>> with open('example utf8.txt') as file:

print(file.read())

20£

2. Try to open the example_iso.txt file, which will raise an exception:
>>> with open('example iso.txt') as file:

print (file.read())
Traceback (most recent call last):
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa3 in

position 2: invalid start byte

3. Open the example_iso.txt file with the proper encoding;:
>>> with open('example iso.txt', encoding='iso-8859-1') as file:

print(file.read())

[121]

example_utf8.txt:
example_utf8.txt:
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter04/documents
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter04/documents

Searching and Reading Local Files

20£

4. Open the ut£s file and save its content in an iso-8859-1 file:
>>> with open('example utf8.txt') as file:
content = file.read()

>>> with open('example output iso.txt', 'w',
encoding='is0-8859-1') as file:

file.write(content)

4

5. Finally, read from the new file in the proper format to ensure it is correctly
saved:

>>> with open('example output iso.txt', encoding='iso-8859-1') as
file:

print(file.read())

20£

How it works...

Step 1 and step 2 in the How to do it... section are very straightforward. In step 3, we
add an extra parameter, encoding, to specify that the file needs to be opened in
something different to UTF-8.

| Python accepts a lot of standard encodings right out of the
\@' box. Check here for all of them and their aliases: https://
AR docs.python.org/3/library/codecs.html#istandard-
- encodings.

In step 4, we create a new file in ISO-8859-1 and write to it as usual. Notice the "w"
parameter, which specifies to open it for writing and in text mode.

Step 5 is a confirmation that the file is properly saved.

[122]

https://docs.python.org/3/library/codecs.html#standard-encodings
https://docs.python.org/3/library/codecs.html#standard-encodings
https://docs.python.org/3/library/codecs.html#standard-encodings

Chapter 4

There's more...

This recipe assumes that we know the encoding a file is in. But sometimes, we're not
sure about that. Beautiful Soup, a module used to parse HTML, can try to detect
what encoding a particular file has.

Automatically detecting what encoding a file has may be, well,
A impossible. There are potentially an infinite number of encodings!
- ,@\' But a subset of usual encodings should cover 90% of real-world
E cases. Just remember that the easiest way of knowing for sure is

to ask whomever created the file in the first place.

To do so, we'll need to open the file to read in binary format with the 'rb"’
parameter. And then, we'll pass the binary content to the UnicodeDammit module
of Beautiful Soup, like this:

>>> from bs4 import UnicodeDammit
>>> with open('example output iso.txt', 'rb') as file:

content = file.read()

>>> suggestion = UnicodeDammit (content)

>>> suggestion.original encoding

'iso-8859-1"

>>> suggestion.unicode markup

'20£\n’

The encoding can then be inferred. Though .unicode_markup returns the decoded

string, it's better to use this suggestion only to obtain the encoding, and then reopen
the file in text mode with the proper encoding.

See also

* The Manipulating strings recipe in Chapter 1, Let's Begin Our Automation
Journey, to learn more about how to edit strings.

* The Parsing HTML recipe in Chapter 3, Building Your First Web Scraping
Application, to learn more about Beautiful Soup.

[123]

Searching and Reading Local Files

Reading CSV files

Some text files contain tabular data separated by commas. This is a convenient
way of creating structured data, instead of using proprietary, more complex binary
formats such as Excel or others. These files are called Comma Separated Values

or CSV files, and most spreadsheet packages allow us to work directly with them.

Getting ready

We've prepared a CSV file using the data for the top 10 movies by theatre attendance,
as described by this page: http://www.mrob.com/pub/film-video/topadj.html.

We copied the first 10 elements of the table into a spreadsheet program (Numbers)
and exported the file as a CSV. The file is available in the GitHub repository in the
Chapter04/documents directory as top films.csv:

[] [] il Untitled.numbers —
B~ 125%v ~ | T [] el ~ = To M 3
View Zoom Insert Table Chart Text Shape Media Comment Collaborate Format Sort & Filter
ar Sheet 1
Table 1
Rank ':;’m;;igns Title (year} (studio} Director(s)
1 225.7|Gone With the Wind (1939) (MCM) Victor Fleming, George Cukor, Sam Wood
2 194.4|Star Wars (Ep. IV: A New Hope) (1977) (Fox) George Lucas
3 161.0|ET: The Extra-Terrestrial (1982) (Univ) Steven Spielberg
4 156.4| The Sound of Music (1965) (Fox) Robert Wise
5 130.0|The Ten Commandments (1956) (Para) Cecil B. DeMille
6 128.4|Titanic (1997} (Fox) James Cameron
7 126.3|Snow White and the Seven Dwarfs (1937) (BV) |David Hand
8 120.7(Jaws (1975) (Univ) Steven Spielberg
9 120.1|Doctor Zhivago (1965) (IMGM) David Lean
10 118.9|The Lion King (1994) (BV) Roger Allers, Rob Minkoff

Figure 4.1: Content of the CSV file

How to do it...

1. Import the csv module:

>>> import csv

2. Open the file, create a reader, and iterate through it to show the tabular data
of all rows (only three rows are shown):

>>> with open('top films.csv') as file:

e data = csv.reader(file)

[124]

http://www.mrob.com/pub/film-video/topadj.html

Chapter 4

. for row in data:

. print (row)

['Rank', 'Admissions\n(millions)', 'Title (year) (studio)"',
'Director(s) ']

[*1', '225.7', 'Gone With the Wind (1939)\xa0(MGM)', 'Victor
Fleming, George Cukor, Sam Wood']

[*2', '194.4', 'Star Wars (Ep. IV: A New Hope) (1977)\xa0(Fox)"',
'George Lucas']

['10', '118.9', 'The Lion King (1994)\xa0(BV)', 'Roger Allers, Rob
Minkoff']

3. Open the file and use DictReader to structure the data, including the header:
>>> with open('top films.csv') as file:
.o data = csv.DictReader(file)
oo structured data = [row for row in data]
>>> structured datal0]

{'Rank': '1', 'Admissions\n(millions)': '225.7', 'Title (year)
(studio) ': 'Gone With the Wind (1939)\xa0(MGM)', 'Director(s)':
'Victor Fleming, George Cukor, Sam Wood'}

4. Each of the items in structured_data is a full dictionary that contains each
of the values:
>>> structured datal0] .keys()

dict keys(['Rank', 'Admissions\n(millions)', 'Title (year)
(studio) ', 'Director(s)'])

>>> structured datal[0] ['Rank']
lll
>>> structured datal[0] ['Director(s) ']

'Victor Fleming, George Cukor, Sam Wood'

How it works...

Notice that the file needs to be read and that we use a with context block. This
ensures that the file is closed at the end of the block.

[125]

Searching and Reading Local Files

As shown in step 2 in the How to do it... section, the csv.reader class allows us to
structure the returning lines of code by subdividing them as lists, following the
format of the table data. Notice how all the values are described as strings. csv.
reader does not understand whether the first line is a header or not.

For a more structured read of the file, in step 3, we used csv.DictReader. By default,
it reads the first row as a header defining the applicable fields, and then converts
each of the rows into dictionaries with those fields.

N Sometimes, like in this case, the names of the fields as described
‘@\‘ in the file can be a little verbose. Don't be afraid to translate the

4
= dictionary as an extra step into more manageable field names.

There's more...

A CSV has a very loosely defined file structure interpretation. There are several
ways that the data can be stored. This is represented in the csv module as dialects.
For example, the values can be delimited by commas, semicolons, or tabs. The list of
default accepted dialects can be displayed by calling csv.1list_dialect ().

]
\@l By default, the dialect will be Excel, which is the most common one.

Even other spreadsheets will commonly use it.

Dialects can also be inferred from the file itself through the sniffer class. The
Sniffer class analyzes a sample of the file (or the whole file) and returns a dialect
object to allow reading in the proper way.

Notice that the file is open with no new lines, to not make any assumptions about it:

>>> with open('top films.csv', newline='') as file:

dialect = csv.Sniffer().sniff(file.read())

The dialect can then be used when opening the reader. Note the newline again, as
the dialect will split the lines correctly:

>>> with open('top films.csv', newline='') as file:
reader = csv.reader(file, dialect)
for row in reader:

print (row)

[126]

Chapter 4

The full csv module documentation can be found here: https://docs.python.
org/3/library/csv.html.

See also

* The Dealing with encodings recipe, earlier in this chapter, to learn how to deal
with encodings.

* The Reading text files recipe, earlier in this chapter, to learn more about
opening and reading files.

Reading log files
Another common structured text file format is log files. Log files consist of rows of
logs, which are a line of text with a particular format, describing an event.

be very different and there's no common structure or syntax for
them. Each application can and will use a different format.

B’ Logs are structured only in the same file or type of file. Formats can
\”/

Typically, each one will have a time when the event occurred, so the file is an
ordered collection of them.

Getting ready

The example_log.log file containing five sales logs can be obtained from the
GitHub repository here: https://github.com/PacktPublishing/Python-
Automation-Cookbook-Second-Edition/blob/master/Chapter04/documents/
example logs.log.

The format is:

[<Timestamp in iso format>] - SALE - PRODUCT: <product id> - PRICE:
$<price of the sale>

We'll use the Chapter01l/price log.py file to process each log into an object.
There's a copy in the Chapter04/documents directory to simplify the import process.

[127]

https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/documents/example_logs.log
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/documents/example_logs.log
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/documents/example_logs.log

Searching and Reading Local Files

How to do it...

1. Import PriceLog:

>>> from price log import PriceLog

2. Open the log file and parse all logs:
>>> with open('example logs.log') as file:

logs = [PricelLog.parse(log) for log in file]

>>> len(logs)
5
>>> logs[0]

<PricelLog (Delorean(datetime=datetime.datetime (2018, 6, 17, 22,
11, 50, 268396), timezone='UTC'), 1489, 9.99)>

3. Determine the total income by all sales:
>>> total = sum(log.price for log in logs)
>>> total

Decimal ('47.82")

4. Determine how many units have been sold of each product_ia:
>>> from collections import Counter
>>> counter = Counter(log.product id for log in logs)
>>> counter

Counter ({1489: 2, 4508: 1, 8597: 1, 3086: 1})

5. Filter the logs to find all occurrences of selling product ID 1489:
>>> logs = [log for log in logs if log.product id == 1489]
>>> len(logs)

2
>>> logs[0] .product_id, logs[0].timestamp

(1489, Delorean(datetime=datetime.datetime (2018, 6, 17, 22, 11,
50, 268396), timezone='UTC'))

>>> logs[1l] .product_id, logs[1l].timestamp

(1489, Delorean(datetime=datetime.datetime (2018, 6, 17, 22, 11,
50, 268468), timezone='UTC'))

[128]

Chapter 4

How it works...

As each entry is a single line, we open the file and go one by one, parsing each of
them. The parsing code is available in price_log.py. Check it for more details on
the parsing process.

In step 2 in the How to do it... section, we open the file and process each of the lines
to create a log list with all our processed logs. Then, we can produce aggregation
operations, as in the next steps.

Step 3 shows how to aggregate all values. In this case, summing the price of all items
sold over the log file to get the total revenue.

Step 4 uses Counter to determine the amount of each item in the file log. This
returns a dictionary-like object with the values to count and the number of times
they appear.

Filtering can also be done in a line-by-line approach, as shown in step 5. This is
similar to the other filtering we've done in the recipes of this chapter.

There's more...

Remember that you can stop processing a file as soon as you have all the data you
need. This may be a good strategy if the file is very big, as is usually the case with
log files.

Counter is a great tool to quickly count a list. See the Python documentation
here for more details: https://docs.python.org/3/library/collections.
html#counter-objects. You can get the ordered items by calling the following:
>>> counter.most_ common ()

[(1489, 2), (4508, 1), (8597, 1), (3086, 1)]

See also

* The Using a third-party tool — parse recipe in Chapter 1, Let's Begin Our
Automation Journey.

* The Reading text files recipe, earlier in this chapter, to learn more about
opening and reading files.

[129]

https://docs.python.org/3/library/collections.html#counter-objects
https://docs.python.org/3/library/collections.html#counter-objects

Searching and Reading Local Files

Reading file metadata

File metadata is everything associated with a particular file that is not the data
content itself. The most obvious is the file name, but there are more parameters
available such as the size of the file, the creation date, or its permissions.

Browsing through that data is important, for example, to filter files older than a date,
or to find all files bigger than a value in KBs. In this recipe, we'll see how to access
the file metadata in Python.

Getting ready

We'll use the zen_of_python. txt file, available in the GitHub repository (https://
github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/
blob/master/Chapter04/documents/zen of python.txt). As you can see, by
using the 1s command, the file is 856 bytes, and, in this example, it was created

on June 14:

$ 1s -1lrt zen of python.txt

-rw-r--r--@ 1 jaime staff 856 14 Jun 21:22 zen of python.txt

On your computer, the dates may vary, based on when you downloaded the code.

How to do it...

1. Import os and datetime:
>>> import os

>>> from datetime import datetime

2. Retrieve the stats of the zen_of python.txt file:
>>> stats = os.stat(('zen of python.txt!'))
>>> stats
os.stat result(st mode=33188, st ino=15822537, st dev=16777224,
st nlink=1, st uid=501, st gid=20, st size=856, st
atime=1529461935, st mtime=1529007749, st ctime=1529007757)

3. Get the size of the file, in bytes:
>>> stats.st _size

856

4. Obtain when the file was last modified:
>>> datetime.fromtimestamp (stats.st mtime)

datetime.datetime (2018, 6, 14, 21, 22, 29)

[130]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/documents/zen_of_python.txt
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/documents/zen_of_python.txt
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/documents/zen_of_python.txt

Chapter 4

5. Obtain when the file was last accessed:
>>> datetime.fromtimestamp (stats.st atime)

datetime.datetime (2018, 6, 20, 3, 32, 15)

How it works...

os.stats returns a stats object that represents the metadata stored in the
filesystem. The metadata includes:

* The size of the file, in bytes, as shown in step 3 in the How to do it... section,
using st_size.

* When the file content was last modified, as shown in step 4, using st_mtime.

* When the file was last read (accessed), as shown in step 5, using st_atime.

The times are returned as timestamps, so in step 4 and step 5, we create a datetime
object from the timestamps to better access the data.

All these values can be used to filter the files and access the meaningful ones.

Notice you don't need to open the file with open () to read
A its metadata. Detecting whether a file has been changed after
- /@\' a known time by reading the modification time will be quicker
g than comparing its content, so you can take advantage of that

for comparison.

There's more...

To obtain the stats one by one, there are also convenience functions available in
os.path, which follow the pattern get<values:

>>> os.path.getsize('zen of python.txt')

856

>>> os.path.getmtime('zen of python.txt!')

1529531584.0

>>> os.path.getatime('zen of python.txt!')

1529531669.0

The value is specified in the UNIX timestamp format (seconds since January 1, 1970).

[131]

Searching and Reading Local Files

! Note that calling all of these three functions will be slower than

N\ 7/
'@\‘ making a single call to os . stats and processing the results. Also,

4
g returned stats can be inspected to detect the available metadata.

The values described in this recipe are available for all filesystems, but there are
more values that can be used, depending on the particular platform.

For example, to obtain the creation date of a file, you can use the st_birthtime
parameter for macOS or st_mtime in Windows.

A st_mtime is always available, but its meaning changes
‘@\‘ between systems. In Unix system:s, it will change when the

7/
S content is modified, so it's not a reliable time of creation.

os. stat will follow symbolic links. If you want to get the stats of a symbolic link,
use os.lstat ().

You can check the full documentation about all available stats here: https://docs.
python.org/3/library/os.html - os.stat result.

See also

* The Reading text files recipe, earlier in this chapter, to learn the basics of
opening and reading files.

* The Reading images recipe, later in this chapter, to learn how to read and treat
image files.

Reading images
Probably the most common data that is not text is image data. Images have their own
set of specific metadata that can be read to filter values or perform other operations.

The main challenge is dealing with multiple formats and different metadata
definitions. We'll show in this recipe how to get information from both a JPEG
and a PNG, and how the same information can be encoded differently.

[132]

https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html - os.stat_result

Chapter 4

Getting ready

The best general toolkit for dealing with images in Python is, arguably, Pillow.
This library allows you to easily read files in the most common formats, as well
as perform operations on them. Pillow started as a fork of PIL (Python Imaging
Library), a previous module that became stagnant some years ago.

We will also use the xmltodict module to transform some data from XML into a
more convenient dictionary. We will add both modules to requirements. txt and
reinstall them in the virtual environment:

$ echo "Pillow==7.0.0" >> requirements.txt

$ echo "xmltodict==0.12.0" >> requirements.txt

$ pip install -r requirements.txt

The metadata information in photo files is defined in the EXIF (Exchangeable Image
File) format. EXIF is a standard for storing information about pictures, including
things like what camera took the picture, when it was taken, GPS describing the
location, exposure, focal length, color info, and so on.

You can get a good summary here: https://www.
N slrphotographyguide.com/what-is-exif-metadata/. All
/@ the information is optional, but virtually all digital cameras and
g processing software will store some data. Because of the privacy

concerns, parts of it, like the exact location, can be disabled.

The following images will be used for this recipe, and are available to download
in the GitHub repository (https://github.com/PacktPublishing/Python-
Automation-Cookbook-Second-Edition/tree/master/Chapter04/ images):

® photo-dublin-al.jpg
¢ photo-dublin-a2.png
® photo-dublin-b.png

Two of them, photo-dublin-al.jpg and photo-dublin-a2.png, are the same
scene, but while the first is the untouched picture, the second one has been retouched
to slightly change the colors, and has also been scaled. Notice one is in JPEG

format and the other in PNG. The other one, photo-dublin-b.png, is a different
picture. Both pictures were taken in Dublin, with the same phone camera, on two
different days.

[133]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter04/images
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter04/images
https://www.slrphotographyguide.com/what-is-exif-metadata/
https://www.slrphotographyguide.com/what-is-exif-metadata/

Searching and Reading Local Files

While pillow understands how JPG files store the EXIF info directly, PNG files store
XMP info, a more generic standard that can contain EXIF data inside.

, More info about XMP can be obtained here: https://www.
\/;p; adobe . com/devnet /xmp . html. For the most part, it defines
an XML tree structure that's relatively readable in raw.

To further complicate matters, XMP is encoded using RDF, which is a standard
describing how to encode an XML tree.

If EFIX, XMP, and RDF sound confusing, well, it's because
they are. XMP stores the EXIF information using RDF. Ultimately,
A the differences between them are not very relevant, and the best
'@ approach is to find out the interesting bits and pieces. We can
inspect the specifics of the names using Python introspection
tools and check exactly how the data is structured, and what
the name of the parameter we are looking for is.

/7 AN

As the GPS information is stored in different formats, we've included in the
GitHub repository a file called gps_conversion.py: https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/
master/Chapter04/gps_conversion.py. This includes the functions exif to
decimal and rdf to decimal, which will transform both formats into decimals
to compare them.

How to do it...

1. Import the modules and functions to use in this recipe:
>>> from PIL import Image
>>> from PIL.ExifTags import TAGS, GPSTAGS
>>> import xmltodict

>> from gps conversion import exif to decimal, rdf to decimal

2. Open the first photo:

>>> imagel = Image.open ('images/photo-dublin-al.jpg')

3. Get the width, height, and format of the file:
>>> imagel.height
3024

>>> imagel.width

[134]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/gps_conversion.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/gps_conversion.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/gps_conversion.py
https://www.adobe.com/devnet/xmp.html
https://www.adobe.com/devnet/xmp.html

Chapter 4

4032
>>> imagel.format

'JPEG'

Retrieve the EXIF information of the image and transform it into a convenient
dictionary. Show the camera, the lens used, and when it was taken:

>>> exif info 1 = {TAGS.get(tag, tag): value
for tag, value in imagel. getexif().items()}
>>> exif info 1['Model']
'iPhone X'
>>> exif info 1['LensModel']
'iPhone X back dual camera 4mm £/1.8"
>>> exif info 1['DateTimeOriginal']

'2018:04:21 12:07:55"

Open the second image and obtain the XMP info:

>>> image2 = Image.open ('images/photo-dublin-a2.png"')
>>> image2.height

1512

>>> image2.width

2016

>>> image2.format

'PNG'

>>> xmp info = xmltodict.parse(image2.info['XML:com.adobe.xmp'])

Obtain the RDF description field, which contains all the values we are
looking for. Retrieve the model (a TIFF value), the lens model (an EXIF
value), and the creation date (an XMP value). Check the values are the same
as in step 4, even if the file is different:

>>> rdf info 2 = xmp info['x:xmpmeta'] ['rdf:RDF']
['rdf:Description']

>>> rdf info 2['tiff:Model']

'iPhone X'

>>> rdf info 2['exifEX:LensModel']
'iPhone X back dual camera 4mm £/1.8'
>>> rdf info 2['xmp:CreateDate']

'2018-04-21T12:07:55"

[135]

Searching and Reading Local Files

7. Obtain the GPS information in both pictures, transform them into an
equivalent format, and check that they are the same. Notice that the
resolution is not the same, but they match up to the fourth decimal point:
>>> gps_info 1 = {GPSTAGS.get(tag, tag): value

for tag, value in exif info 1['GPSInfo'].items()}
>>> exif to decimal (gps info 1)
('N53.34690555555556", 'W6.247797222222222")
>>> rdf to decimal (rdf info 2)

('N53.346905', 'W6.247796666666667"')

8. Open the third image and obtain the creation date and GPS info, and check
it doesn't match the other photo, although it is close (the second and third
decimals are not the same):
>>> image3 = Image.open('photo-dublin-b.png')
>>> xmp info = xmltodict.parse(image3.info['XML:com.adobe.xmp'])
>>> rdf info 3 = xmp info['x:xmpmeta'] ['rdf:RDF']
['rdf:Description']
>>> rdf info 3 ['xmp:CreateDate']

'2018-03-08T18:16:57"
>>> rdf to_decimal (rdf info 3)
('N53.34984166666667', 'W6.260388333333333")

How it works...

Pillow is able to interpret files in most common image formats, as shown in step 2 in
the How to do it... section.

The Image object contains the basic information about the size and format of the file,
and is displayed in step 3. The info property contains information that is dependent
on the format.

The EXIF metadata for JPG files can be parsed with the . getexif () method, but
then it needs to be translated properly, as it uses the raw binary definition. For
example, the number 42,036 corresponds to the LensModel property. Fortunately,
there's a definition of all tags in the PIL.ExifTags module. We translate the
dictionary into readable tags in step 4 to obtain a more readable dictionary.

Step 5 opens a PNG format, which has the same properties related to size, but
the metadata is stored in XML/RDF format and needs to be parsed with the help
of xmltodict. Step 6 shows how to navigate this metadata to extract the same
information that's in JPG format. The data is the same, as both files come

from the same original picture, even if the images are different.

[136]

Chapter 4

‘ p, Xmltodict has some issues when trying to parse data
\/ that's not in XML format. Check that the input is valid XML.

Step 7 extracts the GPS information for both images, which is stored in different
ways, and shows they are the same (although the precision is different because
of the way it is encoded).

Not every image will necessarily have location information or
\ ! 7/ . . .
@ other metadata. This information can be changed or removed,
AR or stored differently, depending on the format and the camera
generating the file.

Step 8 shows the information on a different photo.

There's more...

Pillow also has a lot of functionality around modifying pictures. It is very easy to
resize or make simple modifications to a file, such as rotating it. You can find the
complete Pillow documentation here: https://pillow.readthedocs.io.

Pillow allows a lot of operations with images. Not only simple
A operations such as resizing or transforming one format into
‘,@\‘ a'nother, but also .thmgs. like cropping the image, applylr}g ?olor
g filters, or generating animated GIFs. If you're interested in image
processing using Python, it is definitely the module to master.

The GPS coordinates in the recipe are stated in DMS (Degrees, Minutes, Seconds)
and DDM (Degrees, Decimal, Minutes), and transformed into DD (Decimal,
Degrees). You can find out more about the different GPS formats here: http://

www . ubergizmo.com/how-to/read-gps-coordinates/. You'll also find out how to
search the exact locations of the pictures there, in case you're curious.

A more advanced use of reading image files is to try to process them for OCR
(Optical Character Recognition). This means automatically detecting text in an
image and extracting and processing it. The open source module tesseract allows
you to do this, and it can be used with Python and pillow.

You need to install tesseract on your system (https://github.com/tesseract-
ocr/tesseract/wiki), and the pytesseract Python module (using pip install
pytesseract).

[137]

https://pillow.readthedocs.io
http://www.ubergizmo.com/how-to/read-gps-coordinates/
http://www.ubergizmo.com/how-to/read-gps-coordinates/
https://github.com/tesseract-ocr/tesseract/wiki
https://github.com/tesseract-ocr/tesseract/wiki

Searching and Reading Local Files

You can download a file with clear text, called photo-text.jpg, from the GitHub
repository at https://github.com/PacktPublishing/Python-Automation-
Cookbook-Second-Edition/blob/master/Chapter04/images/photo-text.jpg:

>>> from PIL import Image
>>> import pytesseract
>>> pytesseract.image to string(Image.open('photo-text.jpg'))

'Automate!’

OCR can be difficult if the text is not very clear in the image, or it is mixed with
images, or it uses a distinctive font. There's an example of that in the photo-
dublin-a-text.jpg file, (available in the GitHub repository at https://github.
com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/
master/Chapter04/images/photo-dublin-a-text.jpg), which includes text over
the picture:

>>> >>> pytesseract.image to string(Image.open ('photo-dublin-a-text.
jpg'))
'fl\n\nAutomat'

More information about Tesseract is available at the following links:
https://github.com/tesseract-ocr/tesseract

https://github.com/madmaze/pytesseract

Properly importing files to OCR may require initial image
processing for better results. Image processing is out of scope
L for the objectives of this book, but you may use OpenCV, which
',@\' is more powerful than Pillow. You can process a file and then
E open it with Pillow: http://opencv-python-tutroals.
readthedocs.io/en/latest/py tutorials/py
tutorials.html.

See also

* The Reading text files recipe, earlier in this chapter, to learn the basics of
opening and reading files.

* The Reading file metadata recipe, earlier in this chapter, to learn how to get
extra information from files.

* The Crawling and searching directories recipe, earlier in this chapter, to learn
how to search and find files in directories.

[138]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/images/photo-text.jpg
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/images/photo-text.jpg
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/images/photo-dublin-a-text.jpg
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/images/photo-dublin-a-text.jpg
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/images/photo-dublin-a-text.jpg
https://github.com/tesseract-ocr/tesseract
https://github.com/madmaze/pytesseract
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html

Chapter 4

Reading PDF files

A common format for documents is PDF (Portable Document Format). It started
as a format to describe a document for any printer, so PDF is a format that ensures
that the document will be printed exactly as shown. It has become a powerful
standard for sharing documents, especially documents that are final and intended
to be read-only.

Getting ready

For this recipe, we are going to use the pyPDF2 module. We need to add it to our
virtual environment:

$ echo "PyPDF2==1.26.0" >> requirements.txt

$ pip install -r requirements.txt
In the GitHub directory Chapter03/documents, we have prepared two documents,

document-1.pdf and document-2.pdf, to use in this recipe. Note they contain
mostly Lorem Ipsum text, which is just placeholder.

! Lorem Ipsum text is commonly used in design to show text without

\ 7/
/@ needing to create the content before the design. You can learn more

= about it here: https://loremipsum.io/.

They are both the same test document, but the second one can only be opened with a
password. The password is automate.

How to do it...
1. Import the module:

>>> from PyPDF2 import PdfFileReader

2. Open the document-1.pdf file and create a PDF document object. Notice the
file needs to be open for the whole reading;:

>>> file = open('document-1l.pdf', 'rb!')

>>> document = PdfFileReader (file)

[139]

https://loremipsum.io/

Searching and Reading Local Files

3.

Get the number of pages of the document and check it is not encrypted:
>>> document.numPages

3

>>> document.isEncrypted

False

Get the creation date from the document info (2018-Jun-24 11:15:18) and
discover that it has been created with a Mac Quartz PDFContext:

>>> document.documentInfo['/CreationDate’']
"D:20180624111518Z00'00"'"
>>> document.documentInfo['/Producer']

'Mac OS X 10.13.5 Quartz PDFContext'

Get the first page and read the text on it:
>>> document.pages[0] .extractText ()

'"IA VERY IMPORTANT DOCUMENT \nBy James McCormac CEO Loose Seal Inc

Do the same operation for the second page (redacted here):

>>> document.pages[l] .extractText ()

'"1This is an example of a test document that is stored in PDF
format. It contains some \nsentences to describe what it is and
the it has lore ipsum text.\n!"\nLorem ipsum dolor sit amet,
consectetur adipiscing elit. ...$'

Close the file and open document -2 . pdf:

>>> file.close()

>>> file = open('document-2.pdf', 'rb!')

>>> document = PdfFileReader(file)

Check the document is encrypted (it requires a password) and raise an error
if we try to access its content:

>>> document.isEncrypted
True
>>> document.numPages

PyPDF2.utils.PdfReadError: File has not been decrypted

Decrypt the file and access its content:
>>> document.decrypt('automate')

1

[140]

Chapter 4

>>> document.numPages
3

>>> document.pages[0] .extractText ()

'1A VERY IMPORTANT DOCUMENT \nBy James McCormac CEO Loose Seal Inc

10. Close the file to clean up:

>>> file.close()

How it works...

Once the document is open, as shown in step 1 and step 2 in the How to do it... section,
the document object provides access to the document.

Some useful properties are the number of pages, available in .numpages, and each
of the pages, available in . pages, which can be accessed like a list.

Other data that's accessible is stored in .document Info, which stores metadata
on the creator and when it was created.

I
\@’ The information in . document Info is optional and sometimes not

up to date. It depends greatly on the tool used to generate the PDF.

Each of the page objects can get its text by calling . extractText (), which will
return all the text contained in the page, as done in step 5 and step 6. This method
tries to extract all text, but it has some limitations. For well-structured texts, such
as our example, it works quite well, and the resulting text can be processed cleanly.
When dealing with text in multiple columns or located in strange positions, it may
complicate working with it.

instead of using a with context operator. After leaving the with
block, the file is closed.

C’ Notice that the PDF file needs to be open for the whole operation,
\’/

Step 8 and step 9 show how to deal with encrypted files. You can detect whether a
file is encrypted or not with . isEncrypted, and then decrypt it with the .decrypt
method, providing the correct password.

[141]

Searching and Reading Local Files

There's more...

PDF is such a flexible format that it is widely used for a variety of purposes, but that
also means that it can be difficult to parse and process.

While most PDF files contain text information, it is not uncommon that they contain
images of text. This happens when a document has been scanned. In this case, the
information is stored as a collection of images, instead of in structured text. This
makes it difficult to extract the textual data; we may end up having to resort to
methods such as OCR to parse the images into text.

PyPDEF2 does not provide a good interface to deal with images. You may need to
transform the PDF into a collection of images and then process the images with
other tools like Pillow. See the Reading images recipe for ideas about OCR and the
usage of Pillow. Most PDF readers can do it, or you can use a command-line tool
such as pdftooppm (https://linux.die.net/man/1/pdftoppm) or QPDF (see the
following).

Some methods of encrypting files may not be understood by PyPDEF2. It will generate
NotImplementedError: only algorithm code 1 and 2 are supported. If that
happens, you need to decrypt the PDF externally and open it once it is decrypted.
You can use QPDF to create a copy without the password, as follows:

$ gpdf --decrypt --password=PASSWORD encrypted.pdf output-decrypted.pdf

The full documentation for QPDF is available here: http://gpdf . sourceforge.
net/files/gpdf-manual.html. QPDF is available in most package managers
as well.

QPDF is capable of doing a lot of transformations and analyzing
| PDFs in depth. There are also bindings in Python on a library called
\@/ pikepdf (https://pikepdf.readthedocs.io/en/stable/).
AR This package is more complicated to use than PyPDF2 and it's not
as straightforward for text extraction, but it can be useful for other
operations such as extracting images from a PDF.

See also

* The Reading text files recipe, earlier in this chapter, to learn the basics of
opening and reading files.

* The Crawling and searching directories recipe, earlier in this chapter, to learn
how to search and find files in directories.

[142]

https://linux.die.net/man/1/pdftoppm
http://qpdf.sourceforge.net/files/qpdf-manual.html
http://qpdf.sourceforge.net/files/qpdf-manual.html
https://pikepdf.readthedocs.io/en/stable/

Chapter 4

Reading Word documents

Word documents (.docx) are another common kind of document that stores mainly
text. They are typically generated with Microsoft Office, but other tools also produce
compatible files. They are probably the most common format to share files that need
to be editable, but they are also common for distributing documents.

We'll see in this recipe how to extract text information from a Word document.

Getting ready

We'll use the python-docx module to read and process Word documents:

$ echo "python-docx==0.8.10" >> requirements.txt

$ pip install -r requirements.txt

We have prepared a test file, available in the GitHub Chapter04 /documents
directory, called document -1 .docx, which we'll use in this recipe. Note that this
document follows the same Lorem Ipsum pattern that was described in the test
document for the Reading PDF files recipe.

How to do it...

1. Import python-docx:

>> import docx

2. Open the document-1.docx file

>>> doc = docx.Document ('document-1.docx"')

3. Check some of the metadata properties stored in core_properties:
>> doc.core properties.title
'A very important document'
>>> doc.core properties.keywords
'lorem ipsum'
>>> doc.core properties.modified

datetime.datetime (2018, 6, 24, 15, 1, 7)

4. Check the number of paragraphs:
>>> len (doc.paragraphs)

58

[143]

Searching and Reading Local Files

5.

Walk through the paragraphs to detect the ones that contain text. Notice not
all text is displayed here:

>>> for index, paragraph in enumerate (doc.paragraphs) :
if paragraph.text:

print (index, paragraph.text)

30 A VERY IMPORTANT DOCUMENT
31 By James McCormac

32 CEO Loose Seal Inc

34

56 TITLE 2
57

Obtain the text for paragraphs 30 and 31, which correspond to the title and
subtitle on the first page:

>>> doc.paragraphs[30].text
'A VERY IMPORTANT DOCUMENT'
>>> doc.paragraphs[31].text

'By James McCormac'

Each of the paragraphs has runs, which are sections of the text with different
properties. Check that the first text paragraph and run is in bold and the
second is in italics:

>>> doc.paragraphs[30] .runs[0] .italic
>>> doc.paragraphs[30] .runs[0] .bold
True

>>> doc.paragraphs[31] .runs[0] .bold
>>> doc.paragraphs[31] .runs[0] .italic

True

In this document, most of the paragraphs have only one run, but we have
a good example of different runs in paragraph 4s. Display its text and the
different styles. For example, the word word is in bold, and ipsum is in italics:

>>> [run.text for run in doc.paragraphs[48].runs]

['This is an example of a test document that is stored in ',
'Word', ' format', '. It contains some ', 'sentences', ' to
describe what it is and it has ', 'lore', 'm', ' ipsum', ' text.']

>>> runl = doc.paragraphs[48] .runs[1]

[144]

Chapter 4

>>> runl.text

'Word'

>>> runl.bold

True

>>> run2 = doc.paragraphs[48] .runs[8]
>>> run2.text

' ipsum'

>>> run2.italic

True

How it works...

The most important peculiarity of Word documents is that the data is structured
in paragraphs, instead of in pages. The size of the font, line size, and other
considerations may make the number of pages change.

Most of the paragraphs are also typically empty, or contain only new lines, tabs, or
other whitespace characters. It is a good idea to check when a paragraph is empty
and skip it.

In the How to do it... section, step 2 opens the file and step 3 shows how to access
the core properties. These are properties that are defined in Word as document
metadata, such as the author or creation date.

LY This information needs to be taken with a grain of salt, as a lot of
'@\' tools that produce Word documents (but not Microsoft Office)

g won't necessarily fill it. Double-check before using that information.

The paragraphs of the document can be iterated and have their text extracted
in raw format, as shown in step 6. This is information that doesn't include
styling information and is typically the most useful format for processing the
data automatically.

If the styling information is required, the runs can be used, as in step 7 and step 8.
Each paragraph can contain one or more runs, which are smaller text units that share
the same styling. For example, if a sentence is Word1 word2 word3, there will be
three runs, one with italicized text (Word1), another with underline (word2), and
another with bold (word3). Furthermore, there can be intermediate runs with regular
text that contain just whitespaces, making a total of five runs.

[145]

Searching and Reading Local Files

The styling can be detected individually for properties such as bold, italic,
or underline.

The division in runs can be quite complicated. Due to the way
editors work, it is not uncommon to have half -words, a word
L split into two runs, sometimes with the same properties. Do not
‘,@\‘ rely on the number of runs and analyze the content. In particular,
g double-check if you're trying to ensure if a part with a particular
style is divided in two or more runs. A good example is the words
lore and m (it should be a single word, 1orem) in step 8.

Be aware that because Word documents are produced by so many sources, a lot of
properties may not be set up, leaving it to the tool to specify the specifics to use. For
example, it is very common to keep the default font, which may mean that the font
information on the runs is left empty.

There's more...

Further style information can be found under the font attribute, such as small_caps
or size:

>>> run2.font.cs italic
True

>>> run2.font.size
152400

>>> run2.font.small caps

Normally, focusing on the raw text, without paying attention to the style
information, is the correct way of parsing. But sometimes, a bold word in a
paragraph will have special significance. It may be the header or some particularly
meaningful text. Because it's highlighted, it likely is what you're looking for! Keep
that in mind when analyzing documents.

You can find the whole python-docx documentation here: https://python-docx.
readthedocs.io/en/latest/.

See also

* The Reading text files recipe, earlier in this chapter, to learn the basics of
opening and reading text files.

* The Reading PDF files recipe, earlier in this chapter, to learn how to process
other kinds of document files.

[146]

https://python-docx.readthedocs.io/en/latest/
https://python-docx.readthedocs.io/en/latest/

Chapter 4

Scanning documents for a keyword

In this recipe, we will apply all the lessons from the previous recipes and search all
the files in the directory for a particular keyword. This is a recap of the rest of the
recipes in this chapter and includes a script that searches different kinds of files.

Getting ready

Be sure to include the following modules in the requirements. txt file and install
them into your virtual environment:

beautifulsoup4==4.8.2

Pillow==7.0.0

PyPDF2==1.26.0

python-docx==0.8.10

Check that the directory to search has the following files (all are available in
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-
Edition/tree/master/Chapter04/documents/. Note that file5.pdf and file6.
pdf are copies of document-1.pdf, for simplicity. filel.txt to file4.txt are
empty files:

— filel.txt
— file2.txt
— file6.pdf
L— subdir
— file3.txt
— file4.txt
L— file5.pdf
— document-1.docx
— document-1.pdf
— document-2-1.pdf
— document-2.pdf
— example iso.txt
— example output iso.txt
— example utf8.txt
— top films.csv
L— zen of python.txt

[147]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter04/documents/
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter04/documents/

Searching and Reading Local Files

We've prepared a script, scan.py, that will search for a word in all the . txt, .csv,
.pdf, and . docx files. The script is available in the Chaptero04 directory of the
GitHub repository.

How to do it...

1. Refer to help -h for how to use the scan. py script:
$ python scan.py -h
usage: scan.py [-h]l [-w W]

optional arguments:
-h, --help show this help message and exit

-w W Word to search

2. Search for the word the, which is present in most of the files:
$ python scan.py -w the
>>> Word found in ./documents/top films.csv
>>> Word found in ./documents/zen of python.txt
>>> Word found in ./documents/document-1.pdf
>>> Word found in ./documents/dir/file6.pdf
>>> Word found in ./documents/dir/subdir/file5.pdf

3. Search for the word lorem, only present in the PDF and .docx files:
$ python scan.py -w lorem
>>> Word found in ./documents/document-1.pdf
>>> Word found in ./documents/document-1.docx
>>> Word found in ./documents/dir/file6.pdf
>>> Word found in ./documents/dir/subdir/file5.pdf

4. Search for the word 20¢, only present in the two ISO files, with different
encodings, and in the UTFS file:

$ python scan.py -w 20£
>>> Word found in ./documents/example iso.txt
>>> Word found in ./documents/example output iso.txt

>>> Word found in ./documents/example utf8.txt

5. The search is case-insensitive. Search for the word BETTER, only present in
the zen of python.txt file:

$ python scan.py -w BETTER

>>> Word found in ./documents/zen of python.txt

[148]

Chapter 4

How it works...

The scan.py file has the following elements:

1.

An entry point that parses the input parameters and creates the help for the
command line.

A main function that walks through the directory and analyzes each of the
files found. Based on their extension, it decides whether there's an available
function to process and search it.

An EXTENSION dictionary, which pairs the extensions with the function to
search them.

The search_txt, search csv, search pdf, and search docx functions,
which process and search for the required word for each kind of file.

Keep in mind that file extensions are just file name endings and only a hint of the format of a
file. So, they should be taken with a pinch of salt. In the Python standard library, there's the
function mimetypes.guess_type, which can give an educated guess as to the type of a
file. Check the Python documentation here: https://docs.python.org/3.8/1library/
mimetypes.html.

The comparison is case-insensitive, so the search word is transformed into lowercase
and, in all comparisons, the text is transformed into lowercase.

Each of the search functions has its own peculiarities:

1.

search_txt first opens the file to determine its encoding, using
UnicodeDammit, then it opens the file and reads it line by line. As soon as the
word is found, it stops and returns success.

search_csv opens the file in CSV, and iterates not only line by line, but also
column by column. As soon as the word is found, it returns.

search_pdf opens the file and exits if it is encrypted. If not, it goes page by
page, extracting the text and comparing it with the word. It returns as soon
as it finds a match.

search_docx opens the file and iterates through all its paragraphs for
a match. As soon as a match is found, the function returns.

There's more...

There are some extra ideas that could be implemented:

More search functions could be added. In this chapter, we went through log
tiles and images, as well as text files.

[149]

https://docs.python.org/3.8/library/mimetypes.html
https://docs.python.org/3.8/library/mimetypes.html

Searching and Reading Local Files

A similar structure could work for searching for files and returning only the
last 10.

search_csv is not sniffing to detect the dialect. This could be added as well.

Reading is quite sequential. It should be possible to read the files in parallel,
analyzing them for faster returns. Be aware that reading files in parallel

can lead to sorting issues, as the files won't always be processed in the

same order.

See also

The Crawling and searching directories recipe, earlier in this chapter, to learn
how to search and find files in directories.

The Reading text files recipe, earlier in this chapter, to learn the basics of
opening and reading basic text files.

The Dealing with encodings recipe, earlier in this chapter, to learn how to open
files in different encodings.

The Reading CSV files recipe, earlier in this chapter, to learn how to read CSV
files.

The Reading PDF files recipe, earlier in this chapter, to learn how to open and
read PDF documents.

The Reading Word documents recipe, earlier in this chapter, to learn the basics
of reading Word documents.

[150]

Generating Fantastic Reports

We'll see in this chapter how to write automated documents and perform associated
operations, such as dealing with templates in different formats. We will cover
simple options like plain text and also options that include richer possibilities, such
as Markdown. We'll also cover standard formats such as Word and PDF. These

two formats are arguably the most common way of sharing documents and reports
across the globe.

In this chapter, we will cover the following recipes:

* Creating a simple report in plain text
* Using templates for reports

* Formatting text in Markdown

* Writing a basic Word document

* Styling a Word document

* Generating structure in Word documents
* Adding pictures to Word documents
* Writing a simple PDF document

* Structuring a PDF

* Aggregating PDF reports

* Watermarking and encrypting a PDF

We will start our report generation with a minimal text-only one.

[151]

Generating Fantastic Reports

Creating a simple report in plain text

The simplest possible way to create a report is to generate plain text and store it in a
file. Though this may seem simplistic in comparison with other formats that we will
see later, don't underestimate its utility. Plain text is the easiest format to share as it
will work in virtually all environments, and textual information can go a long way
in representing information.

Getting ready

For this recipe, we will generate a brief report in text format about the number of
watched movies in the last month and total time. Internally, the original data to be
represented will be in the shape of a Python dictionary. The report will include the
generation date as well, for reference.

How to do it...

1. Import datetime:

>>> from datetime import datetime

2. Create the template with the report in text format:
>>> TEMPLATE = '!'!

Movies report

Date: {date}
Movies seen in the last 30 days: {num movies}

Total minutes: {total minutes}

3. Create a dictionary with the values to store. Note that this is the data to be
presented in the report:

>>> data = {
'date': datetime.utcnow(),
'num movies': 3,
'total minutes': 376,

}

4. Compose the text of the report, adding the data to the template:
>>> report = TEMPLATE. format (**data)

[152]

Chapter 5

5. Create a new file with the current date and store the report:
>>> FILENAME TMPL = "{date} report.txt"

>>> filename = FILENAME TMPL.format (date=datal'date'].
strftime ('%Y-%m-%d'))

>>> filename
2020-01-26_ report.txt
>>> with open(filename, 'w') as file:

file.write (report)

6. Check the newly created report:

$ cat 2020-01-26_ report.txt

Movies report

Date: 2020-01-26 23:40:08.737671
Movies seen in the last 30 days: 3

Total minutes: 376

How it works...

Step 2 and step 3 in the How to do it... section set up a simple template and add
a dictionary with all the data. Then, in step 4, those two are combined into the specific
report.

In step 4, the dictionary is combined with a template. Notice that
, the keys on the dictionary correspond to the parameters on the
\/;n> template. The trick here is to use the double star in the format
call to unpack the dictionary, passing each of the keys as a
parameter to format ().

In step 5, the resulting report, a string, is stored in a newly created file. We use the
with context manager paired with open (), as introduced in previous chapters. In
this case, we generate a new file to write the data. After closing the with block, the
file is properly closed and the data is stored on the disk.

| The open modes determine how to open a file, whether it is to read
\@l or write, and whether the file is in text or binary. The w mode opens
S the file to write it, overwriting it if it already exists. Be careful not to
delete an existing file by mistake!

/

[153]

Generating Fantastic Reports

Step 6 checks that the file has been created with the proper data.

There's more...

The filename is created with a dynamic date to minimize the probability
of overwriting existing files. The date format starting with the year and ending
with the day has been selected so that the files are sorted in the correct order.

The format YYYY-MM-DD for dates is covered in the ISO 8601

\/V standard, which describes different ways to format dates and

times. It is a standard format that's easily parsed and supported
in Python.

The with context manager will close the file, even if there's an exception. In case of
an error, the write call will raise an T0Error exception.

Some of the common problems when writing to disk are problems

\ ! 7/
‘/@\‘ with permissions, no space left on the hard drive, or a path problem

E (for instance, trying to write in a non-existent directory).

Note that a file may not be fully committed to disk until it is closed or explicitly
flushed. Generally, the operating system will take care of it, but keep this in mind
if you're trying to open a file twice, one for read and one for write.

This can produce an error if the program ends abruptly before
| being able to flush the data into the hard drive, making data
\@’ apparently disappear. If required, call file.flush () to force the
AR data to be committed to disk. This is useful when writing several
- times into the same file. Note that at the end of the with block, the
file will be flushed and closed automatically.

See also
* The Using templates for reports recipe, later in this chapter, to learn about
HTML templates.
* The Formatting text in Markdown recipe, later in this chapter, to learn about
Markdown.
* The Aggregating PDF reports recipe, later in this chapter, to learn how to
produce PDF reports.

[154]

Chapter 5

Using templates for reports

While plain text can convey a lot of information, to generate better reports, we
need a system where styling can be added to the text. Details such as bold text,
bullet points, and images can make a difference. As all browsers work with HTML,
generating reports in this format is a good option. Everyone is familiar with

a browser rendering text.

HTML is a very flexible format that can be used to render rich text and reports. While
an HTML template can be managed as pure plain text, doing so is very error prone
and tedious. There are tools that allow you to add better handling of structured text
and define templates.

This also detaches the template from the code, separating the generation of the
data from the representation of that data. The styling of the template can be done
separately by specialized designers, making it look great.

Getting ready

The tool used in this recipe, Jinja2, reads a file that contains the template and applies
the context to it. The context contains the data to be displayed.

We should start by installing the module:

$ echo "jinja2==2.11.1" >> requirements.txt

$ pip install -r requirements.txt

Jinja2 uses its own syntax, which is a mixture of HTML and Python. It is aimed at
HTML documents, so it easily performs operations such as correctly escaping special
characters.

In the GitHub repository, https://github.com/PacktPublishing/Python-
Automation-Cookbook-Second-Edition/tree/master/Chapter05, we've
included a template file called jinja_template.html with the template to use.

How to do it...

1. Import the Jinja2 Template and datetime:
>>> from jinja2 import Template

>>> from datetime import datetime

2. Read the template from the files into memory:
>>> with open('jinja template.html') as file:

template = Template(file.read())

[155]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter05,
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter05,

Generating Fantastic Reports

3. Create a context with the data to be displayed:

>>> context = {
'date': datetime.now(),

'movies': ['Casablanca', 'The Sound of Music', 'Vertigo'l,
.. 'total minutes': 404,
-}
4. Render the template and write a new file, report . html, with the following
result:

>>> with open('report.html', 'w') as file:

file.write(template.render (context))

5. Exit the Python interpreter and open the report . html file in a browser:

(S

[Movies Report X

& C O filey)y report.html ¥¢r [Ed @ @

Movies Report

Date 2018-06-27 23:14:14.339608
Movies seen in the last 30 days: 3
1. Casablanca
2. The Sound of Music
3. Vertigo

Total minutes: 404

Figure 5.1: The rendered report.html

How it works...
Steps 2 and 4 in the How to do it... section are very straightforward: they read the
template and render and save the resulting report.

As seen in steps 3 and 4, the main task is to create a context dictionary with the
information to be displayed. The template then renders that information, as shown

in step 5. Let's take a look at jinja_template.html:

<!DOCTYPE html>
<html lang="en">

[156]

Chapter 5

<head>
<title> Movies Report</title>
</head>
<body>
<hl>Movies Report</hl>
<p>Date {{date}}</p>
<p>Movies seen in the last 30 days: {{movies|length}}</p>

{% for movie in movies %}
{{movie}}</1i>
{% endfor %}

<p>Total minutes: {{total_minutes}} </p>
</body>
</html>

Most of it is replacing the context values defined between curly brackets, such as
{{total minutes}}.

Note the tag, {¢ for ... %} / {% endfor %}, which defines a loop. That allows
for a very Pythonic way to generate multiple rows or elements in a list.

Filters can be applied to the variables to modify them. In this case, the 1length filter
is applied to the movies list to obtain the size using the pipe symbol, as shown in
{{movies|length}}.

There's more...

Other than the {% for %} tag, there'salsoan {% if %} tag, allowing it to display
conditionally:

{% if movies|length > 5 %}

Wow, so many movies this month!
{% else %}

Regular number of movies
{% endif %}

There are a good number of defined filters already (see the whole list here: http://
jinja.pocoo.org/docs/2.11/templates/#list-of-builtin-filters). Itis also
possible to define custom ones.

[157]

http://jinja.pocoo.org/docs/2.11/templates/#list-of-builtin-filters
http://jinja.pocoo.org/docs/2.11/templates/#list-of-builtin-filters

Generating Fantastic Reports

Note that you can add a lot of processing and logic to the template
| using filters. While a little bit is fine, try to limit the amount of logic
\@l in the template. Most of the calculations for data to be displayed
- should be done beforehand, leaving the template to just display
- values. This makes the context very straightforward and simplifies
the template, allowing for changes.

When dealing with HTML files, it is good to auto-escape the variables. This means
that special characters could be interpreted as part as the HTML syntax instead of
verbatim text; for example, the < character will be replaced by the equivalent HTML
code to be properly displayed on an HTML page. To do so, create the template with
the autoescape parameter. Check the difference here:

>>> Template ('{{variable}}', autoescape=False).render ({'variable': '<'})
|<|

>>> Template ('{{variable}}', autoescape=True).render ({'variable': '<'})
'<!

Escaping can be applied to each variable with the e filter (meaning escape) and
unapplied with the safe filter (meaning it is safe to render as it is).

Jinja2 templates are extensible, meaning that you can create a base_template.html
file and then extend it, changing some of the elements. You can include other files as
well, partitioning and separating different sections. Refer to the full documentation
for further details.

| Jinja2 is very powerful and allows us to create complex HTML
\@’ templates, and also in other formats such as LaTeX or JavaScript,
AR though this requires configuring. I encourage you to read the

- whole documentation and have a look at all its capabilities!

The whole Jinja2 documentation can be found here: http://jinja.pocoo.org/
docs/2.11/.

See also

* The Creating a simple report in plain text recipe, earlier in this chapter, to learn
the basics of creating plain text reports.

* The Formatting text in Markdown recipe, later in this chapter, to learn
Markdown, an alternative template format.

[158]

http://jinja.pocoo.org/docs/2.11/
http://jinja.pocoo.org/docs/2.11/

Chapter 5

Formatting text in Markdown

Markdown is a very popular markup language used to create plain text that can be
converted into styled HTML. It is a good way of structuring documents in a way that
they are still easy to read in plain text format, while being able to properly style them
in HTML.

In this recipe, we'll see how to transform a Markdown document into styled HTML
using Python.

Getting ready

We should start by installing the mistune module, which will compile Markdown
documents into HTML:

$ echo "mistune==0.8.4" >> requirements.txt
$ pip install -r requirements.txt

In the GitHub repository, there is a template file called markdown_template.md with
a template of the report to generate.

How to do it...

1. Import mistune and datetime:
>>> import mistune

>>> from datetime import datetime

2. Read the template from the file:
>>> with open('markdown template.md') as file:

template = file.read()

3. Set up the context of the data to be included in the report:
>>> context = {
'date': datetime.now(),
'pmovies': ['Casablanca', 'The Sound of Music', 'Vertigo'l,
.o 'total minutes': 404,
-}
4. As movies need to be displayed as bullet points, we will transform the
list into a suitable Markdown bullet list. Also, we will store the number of

movies:
>>> context['num movies'] = len(context['pmovies'])
>>> context['movies'] = '\n'.join('* {}'.format (movie) for movie

in context['pmovies'])

[159]

Generating Fantastic Reports

5. Render the template and compile the resulting Markdown into HTML:
>>> md report = template.format (**context)

>>> report = mistune.markdown (md report)

6. Finally, store the resulting report in the report .html file:
>>> with open('report.html', 'w') as file:
file.write(report)

7. Open the report . html file in a browser to check the result:

@ [Movies Report X 9

& C @ file:yy report.html ¥r B2 @ @

Movies Report

Date 2018-06-27 23:14:14.339608
Movies seen in the last 30 days: 3
1. Casablanca
2. The Sound of Music
3. Vertigo

Total minutes: 404

Figure 5.2: The rendered report, as seen in a browser

How it works...

Steps 2 and 3 in the How do it... section prepare the template and the data to be
displayed. In step 4, extra information is produced — the number of movies, which

is derivative from the movies element. The movies element is then transformed into
a valid Markdown element from a Python list. Note the new lines and the initial*,
which will be rendered as a bullet point:

>>> '\n'.join('* {}'.format(movie) for movie in context['pmovies'])

'* Casablanca\n* The Sound of Music\n* Vertigo'

In step 5, the template is generated in Markdown format. The format is very readable
in this raw form, which is the strong point of Markdown:

[160]

Chapter 5

Movies Report

Date: 2018-06-29 20:47:18.930655
Movies seen in the last 30 days: 3

* Casablanca
* The Sound of Music

* Vertigo

Total minutes: 404

Then, using mistune, the report is transformed into HTML and stored in a file
in step 6.

There's more...

Learning Markdown is extremely useful, as it is supported by many common web
pages as a way of enabling text input that is easy to read and write and can render
to a styled format. Some examples are GitHub, Stack Overflow, and most blogging
platforms.

There is actually more than one kind of Markdown. This is
L because the official definition was limited or ambiguous, and
‘/@\‘ there was little interest in clarifying or extending it. This led
g to several implementations that are slightly different, such as

GitHub Flavored Markdown, MultiMarkdown, and CommonMark.

The text in Markdown is quite readable, but in case you need to interactively see
how it will look, you can use the Dillinger online editor at https://dillinger.io/.

Mistune full docs are available here: http://mistune.readthedocs.io/en/
latest/.

The full Markdown syntax can be found at https://daringfireball.net/
projects/markdown/syntax, and a good cheat sheet with the most frequently used
elements can be found at https://www.markdownguide.org/cheat-sheet/.

[161]

https://dillinger.io/
http://mistune.readthedocs.io/en/latest/
http://mistune.readthedocs.io/en/latest/
https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax
https://www.markdownguide.org/cheat-sheet/

Generating Fantastic Reports

See also

* The Creating a simple report in pain text recipe, earlier in this chapter, to learn
the basics of creating plain text reports.

* The Using templates for reports recipe, earlier in this chapter, to learn how to
create templates directly in HTML.

Writing a basic Word document

Microsoft (MS) Office is one of the most common pieces of software, and MS Word
in particular is almost the de facto standard for editable documents. Generating docx
documents is possible with automated scripts, which may help distribute reports in
a format that's easily shared in many businesses.

In this recipe, we will learn how to generate a full Word document
programmatically.

Getting ready

We'll use the python-docx module to process Word documents:

$ echo "python-docx==0.8.10" >> requirements.txt

$ pip install -r requirements.txt

How to do it...

1. Import python-docx and datetime
>>> import docx

>>> from datetime import datetime

2. Define the context with the data to be stored in the report:
>>> context = {
'date': datetime.now(),
'movies': ['Casablanca', 'The Sound of Music', 'Vertigo'l,
. 'total minutes': 404,
-}
3. Create a new docx document and include a heading, Movies Report:
>>> document = docx.Document ()

>>> document.add heading('Movies Report', 0)

[162]

Chapter 5

4. Add a paragraph describing the date, with the date in italics:
>>> paragraph = document.add paragraph('Date: ')

>>> paragraph.add run(str(context['date'])).italic = True

5. Add information about the number of movies seen in a different paragraph:

>>> paragraph = document.add paragraph('Movies see in the last 30
days: ')

>>> paragraph.add run(str(len(context['movies']))).italic = True

6. Add each of the movies as a bullet point:
>>> for movie in context['movies']:

document.add paragraph(movie, style='List Bullet')

7. Add the total minutes and save the file, as follows:
>>> paragraph = document.add paragraph('Total minutes: ')
>>> paragraph.add run(str(context['total minutes'])).italic = True

>>> document.save ('word-report.docx')

8. Close the interpreter and open the word-report . docx file to check it:

word-report.docx

=

Movies Report

Date: 2018-06-30 13:44:25.345693
Movies see in the last 30 days: 3

* Casablanca

* The Sound of Music

* Vertigo

Total minutes: 404

Figure 5.3: The content of word-report.docx

How it works...

The basics of a Word document is that it is divided into paragraphs, and each of
the paragraphs is divided into runs. A run is a part of a paragraph that shares the
same style.

[163]

Generating Fantastic Reports

Steps 1 and 2 in the How to do it... section are preparation for importing and defining
the data that's going to be stored in the report.

In step 3, the document is created and a heading with the proper title is added. This
automatically styles the text.

Dealing with paragraphs is introduced in step 4. A new paragraph is created based
on the text with the default style, but new runs can be added to change it. Here, we
added the first run with the text Date:, but another run is added after that with the
specific time and the format changed to italics.

In steps 5 and 6, we can see information about the movies. The first part stores the
number of movies, in a similar format to step 4. After that, the movies are added to
the report one by one, and the style is set up to be bullet points with the style "List
Bullet."

Finally, step 7 stores the total run time of all movies, in a similar way to step 4, and
stores the document in a file.

There's more...

If you need to introduce extra lines in the document for formatting purposes, add
empty paragraphs.

Due to the way that the MS Word format works, there's no easy way of determining
how many pages a document will have. You may need to run some tests on sizes,
especially if you're generating dynamic documents.

A Even if you generate docx files, having MS Office is not necessary.
‘@‘ There are other applications that can open and deal with these files,

7/ AN
E including free alternatives such as LibreOffice.

The whole python-docx documentation is available here: https://python-docx.
readthedocs.io/en/latest/.

See also

* The Styling a Word document recipe, later in this chapter, to learn how format
a document.

* The Generating structure in Word documents recipe, later in this chapter, to
learn how to create sections and other separators in Word documents.

[164]

https://python-docx.readthedocs.io/en/latest/
https://python-docx.readthedocs.io/en/latest/

Chapter 5

Styling a Word document

A Word document can contain text with almost no format, but we can also add
styling to help us understand the displayed content. Word has a set of predefined
styles that can be used to variate the document and highlight the important parts
of it.

Getting ready

We'll use the python-docx module to process Word documents:

$ echo "python-docx==0.8.10" >> requirements.txt

$ pip install -r requirements.txt

How to do it...

1. Import the python-docx module:

>>> import docx

2. Create a new document:

>>> document = docx.Document ()

3. Add a paragraph that highlights some words in different ways (Ifalics, bold,
and underline):

>>> p = document.add paragraph('This shows different kinds of
emphasis: ')

>>> p.add run('bold').bold = True

>>> p.add run(', ')

<docx.text.run.Run object at ...>

>>> p.add run('italics').italic = True

>>> p.add run(' and ')

<docx.text.run.Run object at ...>

>>> p.add run('underline') .underline = True
>>> p.add run('."')

<docx.text.run.Run object at ...>

4. Create some paragraphs and style them with default styles, such as List
Bullet, List Number, Or Quote

>>> document.add paragraph('a few', style='List Bullet')
<docx. text.paragraph.Paragraph object at ...>

>>> document.add paragraph('bullet', style='List Bullet')

[165]

Generating Fantastic Reports

<docx.text.paragraph.Paragraph object at ...>

>>> document.add paragraph('points', style='List Bullet')
<docx.text.paragraph.Paragraph object at ...>

>>>

>>> document.add paragraph('Or numbered', style='List Number')
<docx.text.paragraph.Paragraph object at ...>

>>> document.add paragraph('that will', style='List Number')
<docx.text.paragraph.Paragraph object at ...>

>>> document.add paragraph('that keep', style='List Number')
<docx.text.paragraph.Paragraph object at ...>

>>> document.add paragraph('count', style='List Number')
<docx.text.paragraph.Paragraph object at ...>

>>>

>>> document.add paragraph('And finish with a quote’',
style='Quote!')

<docx.text.paragraph.Paragraph object at 0x1042336d8>

5. Create a paragraph in a different font and size. We'll use Arial font and a
point size of 25. The paragraph will be aligned to the right:

>>> from docx.shared import Pt
>>> from docx.enum.text import WD ALIGN PARAGRAPH

>>> p = document.add paragraph('This paragraph will have a manual
styling and right alignment')

>>> p.runs[0].font.name = 'Arial'
>>> p.runs[0] .font.size = Pt (25)

>>> p.alignment = WD ALIGN PARAGRAPH.RIGHT

6. Save the document:

>>> document.save ('word-report-style.docx')

7. Open the word-report-style.docx document to verify its content:

[166]

Chapter 5

word-report.docx i}

This shows different kinds of emphasis: bold, italics and underline.
* afew

* bullet

* points

1. Or numbered

2. that will

3. that keep

4. count

And finish with a quote

This paragraph will have a manual
styling and right alignment

Figure 5.4: The final word-report-style.docx document

How it works...

After creating the document in step 1, step 2 from the How to do it... section adds

a paragraph with several runs. In Word, a paragraph can contain multiple runs,
which are smaller parts that may have different styles. In general, any format change
related to individual words will be applied to a run, while a change that affects the
whole paragraph will be applied to the paragraph object.

Each of the runs are created, by default, with the Normal style. Any attribute of
.bold, .italic, or .underline can be changed to True to set up whether the
run should be in a proper style or a combination of these. A value of False will
deactivate it, while a None value will apply the configured default.

A Note that the proper word in this protocol is italic, and not italics.
'@\' Setting the property to italics won't have any effect, but won't

4
g display an error either.

Step 4 shows how to apply some of the default styles for paragraphs; in this case,
to show bullet points, numbered lists, and quotes. There are more included styles,
and these can be found on this page of the following documentation: https://
python-docx.readthedocs.io/en/latest/user/styles-understanding.
html?highlight=List%20Bullet#paragraph-styles-in-default-template.
Try to find out which ones work best for your document.

[167]

https://python-docx.readthedocs.io/en/latest/user/styles-understanding.html?highlight=List%20Bullet#paragraph-styles-in-default-template
https://python-docx.readthedocs.io/en/latest/user/styles-understanding.html?highlight=List%20Bullet#paragraph-styles-in-default-template
https://python-docx.readthedocs.io/en/latest/user/styles-understanding.html?highlight=List%20Bullet#paragraph-styles-in-default-template

Generating Fantastic Reports

The . font property of a run is shown in step 5. This allows you to manually set up
a specific font and size. Note that the size needs to be specified using the proper pt
(points) object.

A Points are common on regular Word documents, but sometimes it
‘@\‘ can be difficult to know the exact size. Don't be afraid to perform

4
= some tests and experiment with them.

The alignment of the paragraph is set up in the paragraph object, and uses a
constant to define whether it is left, right, center, or justified. All alignment options
can be found here: https://python-docx.readthedocs.io/en/latest/api/enum/
WdAlignParagraph.html.

Finally, step 7 saves the file to the filesystem.

There's more...

The font attribute can also be used to set up more properties of the text, such as
small caps, shadow, emboss, or strikethrough. The whole range of possibilities is
shown in the following documentation: https://python-docx.readthedocs.io/
en/latest/api/text.html#docx.text.run.Font.

Another available option is to change the color of the text:

>>> from docx.shared import RGBColor
>>> DARK BLUE = RGBColor.from string('lb3866"')

>>> run.font.color.rbg = DARK BLUE

The color can be described in the usual hex format from a string. Try to define all the
colors as named constants to ensure they are all consistent, and limit yourself to a
maximum of three colors in a report so as not to distract from the content.

[168]

https://python-docx.readthedocs.io/en/latest/api/enum/WdAlignParagraph.html
https://python-docx.readthedocs.io/en/latest/api/enum/WdAlignParagraph.html
https://python-docx.readthedocs.io/en/latest/api/text.html#docx.text.run.Font
https://python-docx.readthedocs.io/en/latest/api/text.html#docx.text.run.Font

Chapter 5

You can use an online color picker, such as this one: https://
L www.w3schools.com/colors/colors picker.asp.
- /@\' Remember to not use the # at the beginning. If you need to generate
= a palette, it's a good idea to use tools such as https://coolors.

co/ to generate good combinations.

The whole python-docx documentation is available here: https://python-docx.
readthedocs.io/en/latest/.

See also

* The Writing a basic Word document recipe, earlier in this chapter, to learn the
basics of how to create a Word document.

* The Generating structure in Word documents recipe, next, to learn how to create
sections and other separators in Word documents.

Generating structure in Word documents

To create proper professional reports, they need to be properly structured. An MS
Word document doesn't have the concept of a page, as it works in paragraphs. But we
can introduce breaks and sections to properly divide a document.

We'll see in this recipe how to create a structured Word document, introducing
breaks to create sections.

Getting ready

We'll use the python-docx module to process Word documents:

$ echo "python-docx==0.8.10" >> requirements.txt

$ pip install -r requirements.txt

[169]

https://python-docx.readthedocs.io/en/latest/
https://python-docx.readthedocs.io/en/latest/
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://coolors.co/
https://coolors.co/

Generating Fantastic Reports

How to do it...

1.

Import the python-docx module:

>>> import docx

Create a new document:

>>> document = docx.Document ()

Create a paragraph that has a line break:

>>> p = document.add paragraph('This is the start of the
paragraph')

>>> run = p.add run()
>>> run.add_break(docx.text.run.WD_ BREAK.LINE)
>>> p.add run('And now this in a different line')

>>> p.add run(". Even if it's on the same paragraph.")

Create a page break and write a paragraph:
>>> document.add page break()

>>> document.add paragraph('This appears in a new page')

Create a new section, which will be on landscape pages:

>>> section = document.add section(docx.enum.section.WD SECTION.
NEW_PAGE)

>>> section.orientation = docx.enum.section.WD ORIENT.LANDSCAPE

>>> section.page height, section.page width = section.page width,
section.page height

>>> document.add paragraph('This is part of a new landscape
section')

Create another section, reverting to portrait orientation:

>>> section = document.add section(docx.enum.section.WD SECTION.
NEW_PAGE)

>>> section.orientation = docx.enum.section.WD ORIENT.PORTRAIT

>>> section.page height, section.page width = section.page width,
section.page height

>>> document.add paragraph('In this section, recover the portrait
orientation')
Save the document:

>>> document.save ('word-report-structure.docx')

Check the result by opening the document and checking the resulting
sections:

[170]

Chapter 5

L N] word-report.docx
S"0O-B- 8 &R B- 4 QA B-AhM B8E-Q = F & [4
DefautiSiyle | T T (26 Bu BBZUS RA L L - # E-%-[BIF 58 1
-] 1 R 1 2 13 14 5 6 7 B 8 A 1 12 013 1 34 0 15 1 16 1T 18 180 200 71 A28 M :
5]
0O
This is the start of the paragraph £
And now this in a different line, Even if it's on the same paragraph.
0]

Figure 5.5: The rendered first page
Check the new page:

® e word-report.docx
S-O-B-Dakl eI L (A T 7 QA B-DEFE BE-0 <880 -
Defaut Style | T Ty 26 B u: BB7US ﬁ&zlrﬂ.javéﬁvgiﬁgx
- I T)S 1,02 13 /.4 3 6 0 7 08 8 110 W b12 1334 ¢ SATAENITIE -
B
O
L8
This appears ina new page !
@

| Page 2 0f4 42 words, 218 characters Default Style English (USA) I. 8 & = o + 7%

Figure 5.6: The rendered new file

[171]

Generating Fantastic Reports

Check for a landscape section:

® -8 word-report.docx
S-O-B-uUaR By ok D QA B-BEHA B=E-0 =B 810
Detautsyle | T Ty 26 Bz BB 7 U& AL DI ac =i Sl = =
(5 3 2 1 2 :. 2. b - 4 .. L] 47 p B _' '.. . 2 I'..' __: ‘.ﬁ 15 :
B
0O
L
@
This is part of a new landscape section
In this section, recover the portrait orientation
Page 2o0i4 42 words, 218 characters Default Style English (USA) I-| & D O + | TT%

Figure 5.7: The rendered landscape section

[172]

Chapter 5

Then, go back to portrait orientation:

@ e word-report.docx

=i om B R - P B- 4 9- QA BE-Q R B=5E-0Q0 <E B0 g

DefaultStyle & T T, 26 M u B B7ZIUS AA L Li-réa- Cric-lDilE T E =

= : TS] 9011 1 ¢ 150036 L3zl 2 -
5]
o

In this section, recover the portralt orientation

Page 3 of 4 42 words, 218 characters Default Style English (USA) I B | + | TT%

Figure 5.8: The new page, after going back to portrait orientation

How it works...

After creating the document in step 2 in the How to do it... section, we add a
paragraph for the first section. Notice that the document starts with a section.
The paragraph introduces a line break in the middle of the paragraph.

L There is a small difference between a line break in a paragraph and
',@\' a new paragraph, though for most uses, it is quite similar. Try to
= experiment with them.

[173]

Generating Fantastic Reports

A page break is introduced in step 3, without changing the section.

Step 4 creates a new section on a new page. Step 5 also changes the orientation of
the page to landscape in the section. In step 6, a new section is introduced, and the
orientation reverts to portrait.

, Note that when changing the orientation, we also need to swap the
\/;p; width and height. Each new section inherits the properties from the
previous one, so this swapping needs to happen in step 6 as well.

Finally, the document is saved in step 7.

There's more...

A section mandates page composition, including the orientation and size of the page.
The size of the page can be changed using the length options, such as Inches or cm:
>>> from docx.shared import Inches, Cm

>>> section.page height = Inches(10)

>>> section.page width = Cm(20)
The page margins can also be defined in the same way:

>>> section.left margin = Inches(1.5)
>>> section.right margin = Cm(2.81)
>>> section.top margin = Inches(1)

>>> section.bottom margin = Cm(2.54)

Sections can also be forced to start not only on the next page, but on the next odd
page, which will look better when printing on two sides:

>>> document.add section(docx.enum.section.WD SECTION.ODD PAGE)

The whole python-docx documentation is available here: https://python-docx.
readthedocs.io/en/latest/.

[174]

https://python-docx.readthedocs.io/en/latest/
https://python-docx.readthedocs.io/en/latest/

Chapter 5

See also

* The Writing a basic Word document recipe, earlier in this chapter, to learn the
basics of how to create a Word document.

* The Styling a Word document recipe, earlier in this chapter, to learn how to
add format to the document.

Adding pictures to Word documents

Word documents can include images to show graphs or any other kind of extra
information. Adding an image is a great way of creating rich reports.

Any experienced Word user will know how frustrating it can be to
i properly position an image, as the surrounding environment can
\@/ make it change. Keep in mind that, while positioning the image
AR programmatically can help, as it will be included in a specific
- place, changing the surrounding paragraphs can change how
it gets rendered.

In this recipe, we'll learn how to attach an existing image file to a Word document.

Getting ready

We'll use the python-docx module to process Word documents:

$ echo "python-docx==0.8.10" >> requirements.txt

$ pip install -r requirements.txt

We need to prepare an image to include in the document. We'll use the file in GitHub
at https://github.com/PacktPublishing/Python-Automation-Cookbook-
Second-Edition/blob/master/Chapter04/images/photo-dublin-al.jpg, which
shows a view of Dublin. You can download it on the command line, like this:

$ wget https://github.com/PacktPublishing/Python-Automation-Cookbook-
Second-Edition/blob/master/Chapter04/images/photo-dublin-al.jpg

[175]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/images/photo-dublin-a1.jpg
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter04/images/photo-dublin-a1.jpg

Generating Fantastic Reports

How to do it...

1. Import the python-docx module:

>>> import docx

2. Create a new document:

>>> document = docx.Document ()

3. Create a paragraph with some text:
>>> document.add paragraph('This is a document that includes a
picture taken in Dublin')

4. Add the image:
>>> image = document.add picture('photo-dublin-al.jpg"')

5. Scale the image properly to fit on the page (14 x 10 cm):
>>> from docx.shared import Cm
>>> image.width = Cm(14)
>>> image.height = Cm(10)

6. The image has been added to a new paragraph. Align it to the center and add
descriptive text:

>>> paragraph = document.paragraphs[-1]

>>> from docx.enum.text import WD ALIGN_ PARAGRAPH
>>> paragraph.alignment = WD ALIGN PARAGRAPH.CENTER
>>> paragraph.add run().add break()

>>> paragraph.add run('A picture of Dublin')

7. Add a new paragraph with extra text, and save the document:
>>> document.add paragraph('Keep adding text after the image')
<docx.text.paragraph.Paragraph object at XXX>

>>> document.save ('report.docx')

8. Check the result:

[176]

Chapter 5

Home Inserl Draw Design Layoul Relerences Mailings Review View & Share () Comments

= - - A i
F1E Comria (8 = 11 v ALK e Ay = 2 ABVGDSEe | ABLGDGEs ASDBCCDA] AsBSCcdE | @
Paste o Bl UevaE x ¥ AP b = deH~ Heemal MaSpscng Hesdng | Heagng 2 ’;'T'n'

This is a document that includes a picture taken in Dublin

A picture of Dublin

Keep adding text after the image

Fagetaf1 2iwerds [F English {United S1ates) 3 Focus Eln W B - —— 202%

Figure 5.9: The report.docx document with a picture

How it works...
The first few steps (steps 1 to 3 in the How to do it... section) create the document and
add some text.

Step 4 adds the image from the file, while step 5 resizes it into a manageable size. By
default, the image is too big.

[177]

Generating Fantastic Reports

N Keep in mind the proportion of the image when resizing. Note that
- ,@\' you can also use other measures such as Inch, which is defined in
= shared as well.

Inserting the image creates a new paragraph as well, so the paragraph can be styled
to align the image or to add more text, such as a reference or description. The
paragraph is obtained in step 6 through the document . paragraph property. The last
paragraph is obtained and styled properly, aligning it to the center. A new line and
a run with descriptive text are added.

Step 7 adds extra text after the image and saves the document.

There's more...

The size of the image can be changed, but as we saw previously, the proportion of
the image needs to be calculated if it changes. The resizing may end up not being
perfect if done by approximation, as in step 5 from the How to do it... section.

| Notice that the image does not have a perfect ratio of 10:14. Instead,
\@’ it is 10:13.33. For a photograph, that may be good enough, but for
-5 images sensitive to proportion changes, such as a chart, it may

- require extra care.

To obtain the proper ratio, divide the height by the width and then scale properly:

>>> image = document.add picture('photo-dublin-al.jpg"')
>>> image.height / image.width

0.75

>>> RELATION = image.height / image.width

>>> image.width = Cm(12)

>>> image.height = Cm(12 * RELATION)

If you need to transform the values to a particular size, you can use the cm, inches,
mm, Or pt attributes:

>>> image.width.cm

12.0

>>> image.width.mm

120.0

>>> image.width.inches

[178]

Chapter 5

4.724409448818897
>>> image.width.pt
340.15748031496065

The whole python-docx documentation is available here: https://python-docx.
readthedocs.io/en/latest/.

See also

* The Writing a basic Word document recipe, earlier in this chapter, to learn the
basics of working with Word documents.

* The Styling a Word document recipe, earlier in this chapter, to learn how to
add rich format to the document.

* The Generating structure in Word documents recipe, earlier in this chapter, to
learn how to add sections and other separators to the documents.

Writing a simple PDF document

PDF files are a common format for shared reports. The main characteristic of PDF
documents is that they define exactly how the document is going to look and

be printed, and they are read-only after being produced. This makes them very
straightforward to use to transmit information.

In this recipe, we'll see how to write a simple PDF report using Python.

Getting ready

We'll use the fpdf module to create PDF documents:

$ echo "fpdf==1.7.2" >> requirements.txt

$ pip install -r requirements.txt

How to do it...
1. Import the fpdf module:
>>> import fpdf

2. Create a document:
>>> document = fpdf.FPDF ()

3. Define the font and color for a title, and add the first page:

>>> document.set font('Times', 'B', 14)

[179]

https://python-docx.readthedocs.io/en/latest/
https://python-docx.readthedocs.io/en/latest/

Generating Fantastic Reports

>>> document.set text color (19, 83, 173)
>>> document.add page()

4. Write the title of the document:

>>> document.cell (0, 5, 'PDF test document')
>>> document.ln()

5. Write a long paragraph:

>>> document.set font('Times', '', 12)

>>> document.set text color(0)

>>> document.multi cell(0, 5, 'This is an example of a long
paragraph. ' * 10)

[1

>>> document.ln()

6. Write another long paragraph:

>>> document.multi cell(0, 5, 'Another long paragraph. Lorem ipsum
dolor sit amet, consectetur adipiscing elit.' * 20)

[1

7. Save the document:

>>> document.output ('report.pdf')

8. Check the report .pdf document:

| BON = report.pdf (1 page) ~
o alalal £-15] 0 Q.

PDF test document

This is an example of a long paragraph. This is an example of a long paragraph. This is an example of a long
paragraph. This is an example of a long paragraph. This is an example of a long paragraph. This is an example
of a long paragraph. This is an example of a long p ph. This is an ple of a long h. This is an
example of a long paragraph. This is an example of a long paragraph.

Another long paragraph. Lorem ipsum dolor sit amet, consectetur adipiscing elit.Another long p.-ragr.lph.
Lorem ipsum dolor sit amet, consectetur adipiscing elit Another long paragraph. Lorem ipsum dolor si .
consectetur adipiscing elit. Another long paragraph. Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Another long paragraph. Lorem ipsum dolor sit amet, consectetur adipiscing elit.Another long paragraph.
Lorem ipsum dolor sit amet, consectetur adipiscing elit.Another long paragraph. Lorem ipsum dolor et,
consectetur adipiscing elit. Another long paragraph. Lorem ipsum dolor sit amet, consectetur adi
elit. Another long paragraph. Lorem ipsum dolor sit amet, consectetur adipiscing elit.Another long par;
Lorem ipsum dolor sit amet, consectetur adipiscing elit Another long paragraph. Lorem ipsum dolor
consectetur adipiscing elitAnother long paragraph. Lorem ipsum dolor sit amet, consectetur adi J
elit. Another long paragraph. Lorem ipsum dolor sit amet, consectetur adipiscing elit.Another long paragraph.
Lorem ipsum dolor sit amet, consectetur adipiscing elit Another long paragraph. Lorem ipsum dolor = .
consectetur adipiscing elit. Another long paragraph. Lorem ipsum dolor sit amet, consectetur adipis
elit. Another long paragraph. Lorem ipsum dolor sit amet, consectetur adipiscing elit.Another long paragraph.
Lorem ipsum dolor sit amet, consectetur adipiscing elit.Another long paragraph. Lorem ipsum dolor
consectetur adipiscing elit-Another long paragraph. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Figure 5.10: The content of report.pdf

[180]

Chapter 5

How it works...

The fpdf module creates a PDF document and allows us to write in it.

! Due to the peculiarities of a PDF, the best way to think about it is to

\ 7/
‘,@\' imagine a cursor writing in the document and moving to the next

g position, similar to a typewriter.

The first operations are to specify the font and size to use, and then add the first
page. This is done in step 3. The first font is in bold (second argument, 'B') and in

a bigger font than the rest of the document. This makes it a title. The color is also set
up with .set_text color, in RGB components.

L The text can also be styled in italics with I and underlined with
'@' U. You can combine them, so BI will produce text in both bold

/7 -/ AN . .
5 and italic.

The .cell call creates a box of text with the specified text. The first couple of
parameters are the width and height. Width o uses the whole space up to the right
margin. Height 5 (mm) is adequate for a size 12 font. The call to . 1n introduces

a new line.

To write a multiline paragraph, we use the .multi_cell method. Its parameters are
the same as .cell. Two paragraphs are written in steps 5 and 6. Notice the change in
font previously, to distinguish the title from the body of the report..set_text_color
is called with a single argument to set up the color in grayscale. In this case, it is in
black using o.

LV Using cell for long text will make it go over the margin and off
',@\' the page. Use it only for text that will fit in a single line. You can
g find the size of a string with .get string width.

The document is saved to disk in step 7.

There's more...

Pages are added automatically if a multi_cell operation occupies all space available
in a page. Calling .add_page will move to a new page.

[181]

Generating Fantastic Reports

You can use any of the default fonts (Courier, Helvetica, and Times), or add an
extra font using .add_font. Check the documentation for more details: http://
pyfpdf.readthedocs.io/en/latest/reference/add font/index.html.

The Symbol and ZapfDingbats fonts are also available, but
represent symbols. This could be useful if you need to display
A special characters, but be sure to test the result before using them.
- /@\' The rest of the default fonts should include your necessities for
= serif, sans serif, and fixed-width cases. In PDFs, the fonts used
will be embedded in the document, so they'll always be displayed

correctly.

Keep the height consistent throughout the document, at least between text of the
same size. Define a constant you're comfortable with, and use it for the whole
content:

>>> BODY_TEXT HEIGHT = 5

>>> document.multi cell(0, BODY TEXT HEIGHT, text)

By default, the text will be justified, but that can be changed. Use the align argument
with J (justified), ¢ (center), r (right), or L (left). For example, this produces text
aligned to the left:

>>> document.multi cell(0, BODY TEXT HEIGHT, text, align='L")

The full FPDF documentation can be found here: http: //pyfpdf . readthedocs.io/
en/latest/index.html.

See also

* Structuring a PDF, next, to learn how to add separators to a PDF document.

» Aggregating PDF reports, later in this chapter, to learn how to merge different
PDF documents into one.

* Watermarking and encrypting a PDF, later in this chapter, to learn how to add
security measures to the document.

Structuring a PDF

Some elements can be automatically generated when creating a PDF to add a better
look and structure to your elements. In this recipe, we'll see how to add a header and
footer, and how to create links to other parts of the document.

[182]

http://pyfpdf.readthedocs.io/en/latest/reference/add_font/index.html
http://pyfpdf.readthedocs.io/en/latest/reference/add_font/index.html
http://pyfpdf.readthedocs.io/en/latest/index.html.
http://pyfpdf.readthedocs.io/en/latest/index.html.

Chapter 5

Getting ready

We'll use the fpdf module to create PDF documents:

$ echo "fpdf==1.7.2" >> requirements.txt

$ pip install -r requirements.txt

How to do it...

The structuring pdf.py script is available in GitHub here: https://github.
com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/
blob/master/Chapter05/structuring_pdf .py. The most relevant bits are

displayed here:

import fpdf

from random import randint

class StructuredPDF(fpdf.FPDF):
LINE_HEIGHT = 5

def

footer(self):

self.set_y(-15)
self.set_font('Times', 'I', 8)
page_number = 'Page {number}/{{nb}}".

format(number=self.page_no())

def

def

self.cell(9, self.LINE_HEIGHT, page_number, 0, 0, 'R'")

chapter(self, title, paragraphs):

self.add_page()

link = self.title text(title)

page = self.page_no()

for paragraph in paragraphs:
self.multi_cell(9, self.LINE_HEIGHT, paragraph)
self.1ln()

return link, page
title text(self, title):

self.set_font('Times', 'B', 15)
self.cell(0, self.LINE_HEIGHT, title)

[183]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/structuring_pdf.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/structuring_pdf.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/structuring_pdf.py

Generating Fantastic Reports

self.set_font('Times', "', 12)
self.line(10, 17, 110, 17)
link = self.add_link()
self.set_link(link)

self.1ln()

self.1ln()

return link

def get full line(self, head, tail, fill):

def toc(self, links):
self.add_page()
self.title_text('Table of contents')
self.set_font('Times', 'I', 12)

for title, page, link in links:

line = self.get_full line(title, page, '.")
self.cell(9, self.LINE_HEIGHT, line, link=1ink)
self.1ln()

LOREM_IPSUM = ...

def main()

document = StructuredPDF()
document.alias_nb_pages()

links

=[]

num_chapters = randint(5, 40)

for index in range(1, num_chapters):
chapter_title = 'Chapter {}'.format(index)
num_paragraphs = randint(1e, 15)
link, page = document.chapter(chapter_title,

[184]

Chapter 5

[LOREM_IPSUM] * num_
paragraphs)
links.append((chapter_title, page, link))

document.toc(links)
document.output('report.pdf")
1. Run the script. It will generate the report .pdf file, which contains some

chapters and a table of contents. Note that the specific content it generates is
somehow random, so the specific numbers will vary each time you run it:

$ python3 structuring pdf.py

Check the result. Here is a sample:

ace = ropar gt [page 14 ot 8l
| b £ 150l

I g Bt Vg -
Chapter & Proin in velit pellentesque. temspus dobor vel. tincidus vepes. Quisque vel sea metus. Nullam sliguet risus vel

Lovem ipsum dobor sit amet, comectenir shipising clt, Dones o diam som. Sod a sulla comequat. wmpas
vt et Termentum lurpin. Clana spcst tacet sicisags 3d Bora boequcnt for conube pndsa, fd inceplon
hitsenacam, Fusce fermentem ribih lipels, wod dignissim i beadserit mullis. Fusce aliguam wemper eslio, o
convallls mi ssgitis o1, Proin i neque non massa lobortis mavimes a quis vephs. Vessbalum vie justo di.
Fusoe hendresir. libern im aactor auctor, risus velit fementum dui, sed placersa wna sague vel lorem. Pracsen
in omm porta. blandit lorem wu-um S mulla, Duin placoral nequs vites magsa pulvis chomestum.
Proin in velil pellcates pis, Quingue [i —
sy s elemestem

Lorem ipsum dolor sit amet. consectotur adipiscing i, Donec » diam som Sod ac nulla consequat. tompus
tartor eget. formentum furpis. Class apiost (i sockscs ad Bora orgeont per conubia novsa, per incrplos
Misnacus, Fawe Bermentss pibd lpsla, scd dignissin ross. hendsesit mollis. Fusce aliquam sewnper adio, in
comuali i st 1. Prsn ¢ e hon e bt i a .,....u,m Veuskuilum vitse jestis et

asctoe, sisus vellt f sgue vel horem, Pracsem
in emm pmi_lﬂam lorem vulputase. somper ulla. Duis. Nm'at Mw witae magma pulvisar elementum,
Proin in velil pellendcsgue. irmpus dolor vel. tincadunt turpis, Quisque vol som matus. Nullam sligeet riss vel
ancu s clementan.

Lovem ipsum daloe sit amet, corsectenur adipiscing eli. Donec & diam sem. Sed ac sulla consequa, wmpas
sartor eget, formentum furpis. Clavs splest tacii anciosqa ad Wora torgacns per conubia nossra, per incepios
himenasos. Fusce fermentem nibh ligwda, sed dignissim riuss hendrerit mollis. Fusce aliquam semper odio in
somvallis mi sagittin o1, Proin neque non v laberts mavimas 3 quin fepi, VesSbubum viac feo cifl

ey . s velt i, s placetan ten sague vel horeen, Pracuert
in coum porta, hiandit lorem lpuia. semper enile. Duis placera neque vime g puliiase clemscaium
Proin in velit pellentesque. b el Quisque wel
ancu tompus ¢lomonesm.

Liwem igsuss dhokor sit amet, concctenur slipicing cli, Donec & dism s Sed s sulla comequt, ioepus
90108 eget, fermentum turpls. Class aptest tack socheqe ad oty loegeens er conuba nosar, per ncepios
imenaeos. Fusce fermeorsm nibh ligala, sed dignissim rivss hendrerit mollls. Fusce aliquam semper odio, in
wonvallis mi sagittis of. Proin s neque nom masss fobortis maximn 3 quis fepis, Viesbulum vitse jesto o,
Fusce hendresit, libera i anctar auctos, siss velit fermentum di, s plascran ama ssgue vel kv, Pracucen
in ese porta. banit o vulpatae, sesmpe s, D lacerl s itas g pulvis elesestum
Proin in velit pellestesque. tempis dolor vel, pis. Qhabque vel
arcu empus ¢lemonesm.

Lorem ipum dalor vit amet, comecetur dipiscing clit, Donec & diam s, Sod ac sulla comequa, ispus
Wt et Termentum lurpis. Cliss splenl it s saga 2 Bora toequont fier conubsa nindsa, it ineeplin
himenacos. Fusce fersscoism nibh ligada, sed dignissim rvass hendrerit mollis. Fusce aliquam scmper odio, in
comvalis mi agit . Proin o neque nom massa obertis maximes a quis sepis. Vessbulum vise jeso lit
Fusce hendreit. lib anctor, risus velit sed placeran wma sague vel lorem, Pracsen
in o ot bl e elpotae, weges enlb. D placvest nequs vitas magas pulvias clesscatum.
Proin in velit pellemics . Quinue Sl aliquet rists vel
arvu reinpus elosmentam

Lorem ipsum dolor sit amet, copsectetur adipiscing ¢, Donec & diam som. Sod a¢ sulla consequat, kempus
Wwtor eget. fermentum furpis. Class spleat bt sixisgs ad Bors boeqacnl per conubia nonisa, s inceplos
icnacun, Fuws by lipela, sed diga berddrceit paollin. Fusce aliceam sermper i, in
coavallls i sagini 1. Prodn o neque non masoa fobertis maimie & qués . Vessbalum vitie fud et
Fusoe hendrerit. libero im smcsar suctor, risus velit formentum dai, sod placorst wma segue vel lorem, Praceent
in onim porta. blandit lorom vulpatate, semper vk, Duis placorst nequs vites mapes pulviser chomestum,

arcu temgas elementum.

Lovern ipvesm dolor sl aimel. comsecketur alipiscing <3, Donee & diam sess, Sed a¢ aulla comoyest, Iemnpu
Bortu epet, formentum Turpis. Clins Splent L sochsges il BAors togaett et ennchbis noues, fef inceptin

imenoeos, Fasce fermestum nitdh ligsls, sed dignissim riass hendrerit mollls. Fusce allgeam semper odio, in
comallis mi sagittis et Proin s neque non masa lobonls mavimes a qers s Vesibalum veae jsto e
Fase hendrreit, libero i suctor austor,risus velit femmentum dui. sod placerst wma sugus vel lorem, Pracuens
i ceinn jorta, Hankit lorem vulputale, scmper sulla. Duis placeeal egee vitas magna pulvins clemcatun,
Proin in veli pellenteuque, temspes dobor vel. lincidus berpis. Qerue vel sems metus. Nulls abguet riss vl
arcu temgas elemaatum

Lowem ipsam dolor sit amet. cossectetur adipising ¢4, Dones & diam sem. Sod a aulla comageat, lempus
Roetor eget, formeritum turpis. Clavs aplonl Ll sochosps ad B TR Sy r—
Bmcrmen, Face fermesnum nil ligels, wd dignissim tras hendeeeit mollis. Fusee aliqeam sempes oia, in
comvallis mi sagittis o1, Proin o neque no massa lobortls maximes a quis seepis. Vestibulum vise gt el
Fasoe hendrerit. libe . risas velit Lwod sugue vel lorem. Pracsent
in i pora, Shandit lorem vulputae. smper slla. Duis placeral e itas mage pulvias shmenbum,
Proin in velil pellcatcaque. OQuingue vl s sl risis vl
ara termgars elomeium

Lorem ipsum dolor sit amet, cossectetur sdipiscing ¢, Donec & diam sem. Sed ac aulla consoquan, iempas

i i i - Clavs apient tacisi sociosqe d boora torguent per cunsbia nosira. per incepios

s fermicatam nibd igala, sed dignissinn o hendrerit muolis, Fusce aliqeam semper odia, i

convallis i wagitin & Proin o neque nos s lobertis it g Vewbulum viese pesto el

suctor, sl velit augue vel lorem. Pracien

i cwim porta, blandit Jorem vilputate, semper sulla. Duis ﬂom.- neque vites magna pulsinar elemestum

Proin in velit prllc-kuu tempas dokor vel. lincidunt barpis. Quique vel scm metus. Nullam sliquct rises vel
arca o o

Lorem ipsum dalor sit amet, cossectenur adipiscing el. Donec & dum sem. Sed o nulls conseqen, iempus
nomar eper, fermentum Turpis. Class aplent tacisi sockosgu ad heor borgaens per comubia nosima, per incepios
Imseonacas, Fascs Fermentum nibih ligsks, s0d dignissim risus hendrerit mollis. Fusce aliqeam semper odio, in
omallic i gin . o, Dot 28 mei b maxizs o M. Vedsbulu Ve et cb.
Fusce hendesi, lib s velit St sl sugue vl huee, Pracsers
in endm pora, Mandit borem \nhnng seamper mulla, Duis placerat heqee itne magna pulyisas chmeamm,
Proin in velit pellemtesque. tempas dobor vel. tincidunt cerpis. Cmbque "!kwnmﬂus Nullam aliquet risus vel
arvu tempus slomentum

L s dhobo st ame, comscctetur siipiscing el Dunec o diam sm. Sod o nulls comoqet, kempus
Hontor eget. fermentuem 1rpis. Class Mptent it sockregn d e torgaent per coula o, per incepios
imomacos. Pusce. fermeomtum nib ligsts, sed dignissim riss hendrerit mollis, Fusce aliqeam semper odio, in
comallis mi st 8. Prin o noqus noa mana boboris masimes g fepis. Vesalum 1 fesio .
Fusce hendreit, lib assctoe, sisan velit augus vel lorom, Praciers
in eaien purta, Blandit lorem volutate, i, D phacerat Taqn. vies s pefiisis slesmtin,
Proin in veli pellemesue. tempas dokir vel, tincidum perpes. Quisque vel sems mets. Nullsm sbiquet risus vel
ancw tempas glemertum

Figure 5.11: Two pages inside report.pdf

[185]

Generating Fantastic Reports

Check the table of contents at the end:

0 e = report.pdf (page 49 of 49)
Ov i & th gL v o ® Q

Table of contents

Chapter 2 ...
Chapter 3 ...
Chapter 4 ...
Chapter 5 ...
Chapter 6 ...
Chapter 7 ...
Chapter § ...
Chapter 9 ...
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14

Chapter 15

Chapter 16

Chapter 17

Page 49/49

Figure 5.12: The table of contents at the end of report.pdf

How it works...

Let's take a look at each of the elements of the script.

StructuredPDF defines a class that inherits from FpDF. This is useful to overwrite
the footer method, which creates a footer for each of the pages at generation time. It
also helps simplify the code in main.

The main function creates the document. It starts the document and adds each of the
chapters, collecting their link information. Finally, it calls the toc method to generate
a table of contents using the link information.

\/V The text to be stored is generated by multiplying the LOREM IPSUM

text, which is a placeholder.

[186]

Chapter 5

The chapter method first prints a title section, and then adds each of the paragraphs.
It collects the page number the chapter starts on and the link returned by the title_
text method to return them.

The title_text method writes the text in bigger and bolder text. Then, it adds a line
to separate the title from the body of the chapter. It generates and sets a 1ink object
pointing to the current page in the following lines:

link = self.add_link()
self.set_link(1link)

This link will be used in the table of contents to add a clickable element that points to
this chapter.

The footer method automatically adds a footer to each page. It sets a smaller font,
and it adds text with the current page (obtained through page no) and uses {nb},
which will be replaced with the total number of pages.

‘ p/ The callto .alias nb_pages() inmain ensures {nb} is
replaced when the document is generated.

Finally, the table of contents is generated in the toc method. It writes the title and
adds all the referenced links that have been collected as the link, page, and chapter
name, which is all the info required.

There's more...

Notice the use of randint to add a bit of randomness to the document. This call,
available in Python's standard library, returns a random number between the
defined maximum and minimum. Both are included.

The get_full_line method generates a properly sized line for the table of contents.
It takes a start (the name of the chapter) and end (the page number), and adds the
number of fill characters (dots) until the line has the proper width (120 mm).

To calculate the size of the text, the script calls get_string width, which takes into
account the font and the size.

Link objects can be used to point to a specific page, instead of the current one, and

also not to the start of the page. To tweak the call, use set_link (link, y=place,

page=num_page). Check the documentation at http://pyfpdf.readthedocs.io/
en/latest/reference/set link/index.html.

[187]

http://pyfpdf.readthedocs.io/en/latest/reference/set_link/index.html
http://pyfpdf.readthedocs.io/en/latest/reference/set_link/index.html

Generating Fantastic Reports

| Adjusting some of the elements can take a certain degree of trial
\ 7 rE . .
@ and error; for example, to position the line. A slightly longer or
AR shorter line can be a matter of taste. Don't be afraid to experiment
- and check until it produces the desired effect.

The full FPDF documentation can be found here: http: //pyfpdf . readthedocs.io/
en/latest/index.html.

See also

* The Writing a simple PDF document recipe, earlier in this chapter, to learn the
basics of how to work with PDF documents.

* The Aggregating PDF reports recipe, later in this chapter, to learn how to
merge multiple documents into a single one.

* The Watermarking and encrypting a PDF recipe, later in this chapter, to learn
how to add security measures to the document.

Aggregating PDF reports
In this recipe, we'll see how to combine two PDFs into one. We will add the pages of
one report at the end of the other.

Getting ready

We'll use the pyPDF2 module. Pillow and pdf2image are also dependencies used by
the scripts:

$ echo "PyPDF2==1.26.0" >> requirements.txt
$ echo "pdf2image==1.11.0" >> requirements.txt
$ echo "Pillow==7.0.0" >> requirements.txt

$ pip install -r requirements.txt

For pdf2image to properly work, it needs to install pdftoppm, so check here for
instructions on how to install it for different platforms: https://github.com/
Belval/pdf2image#first-you-need-pdftoppm.

We need two PDFs to combine them. For this recipe, we'll use two PDFs: a report.
pdf file generated by the structuring pdf.py script, available on GitHub:
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-
Edition/blob/master/Chapter05/structuring pdf.py, and another (report2.
pdf) after watermarking it through the following command:

[188]

http://pyfpdf.readthedocs.io/en/latest/index.html
http://pyfpdf.readthedocs.io/en/latest/index.html
https://github.com/Belval/pdf2image#first-you-need-pdftoppm
https://github.com/Belval/pdf2image#first-you-need-pdftoppm
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/structuring_pdf.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/structuring_pdf.py

Chapter 5

$ python watermarking pdf.py report.pdf -u automate user -o report2.pdf

This uses the watermarking script, watermarking pdf .py, described in the

Watermarking and encrypting a PDF recipe, which is available on GitHub: https://
github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/
blob/master/Chapter05/watermarking pdf.py.

How to do it...

1.

Import pyPDF2 and create the output PDF:
>>> import PyPDF2
>>> output pdf = PyPDF2.PdfFileWriter()

Read the first file and create a reader:
>>> filel = open('report.pdf', 'rb')
>>> pdfl = PyPDF2.PdfFileReader (filel)

Append all pages to the output PDF:

>>> output pdf.appendPagesFromReader (pdfl)

Open the second file, create a reader, and append the pages to the output
PDEF:

>>> file2 = open('report2.pdf', 'rb')

>>> pdf2 = PyPDF2.PdfFileReader (file2)

>>> output pdf.appendPagesFromReader (pdf2)

Create the output file and save it:
>>> with open('result.pdf', 'wb') as out file:

output pdf.write(out file)

Close both source files:
>>> filel.close()

>>> file2.close()

Check the output file and confirm that it contains both PDF pages.

How it works...

pyPDF2 allows us to create a reader for each source file and add all its pages
to a newly created PDF writer. Note that the files are opened in binary mode (rb).

[189]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/watermarking_pdf.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/watermarking_pdf.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/watermarking_pdf.py

Generating Fantastic Reports

A The input files need to remain open until the result is saved. This is
- ,@' due to the way the copy of the pages works. If the file is open, the
g resulting file may be stored as an empty file.

The PDF writer is finally saved into a new file. Notice that the file needs to be open to
write in binary mode (wb).

There's more...

.appendPagesFromReader is very convenient for adding all pages, but it's also
possible to add a number of pages one by one with . addpage. For example, to add
the third page, the code would look like this:

>>> page = pdfl.getPage(3)

>>> output pdf.addPage (page)

The full documentation for PyPDF2 can be found here: https://pythonhosted.org/
PyPDF2/.

See also

* The Writing a simple PDF document recipe, earlier in this chapter, to learn the
basics of how to work with PDF documents.

* The Structuring a PDF recipe, earlier in this chapter, to learn how to add
separators to a PDF document.

* The Watermarking and encrypting a PDF recipe, later in this chapter, to learn
how to add security measures to the document.

Watermarking and encrypting a PDF

PDF files have some interesting security measures to limit the distribution of a
document. We can encrypt the content, requiring users to input a password in order
to be able to read it. We'll also see how to add a watermark to label the document
clearly as not for public distribution and, if leaked, to know its origin.

Getting ready

We'll use the pdf2image module to transform PDF documents to PIL images. Pillow
is a prerequisite. We'll also use pyPDF2:

[190]

https://pythonhosted.org/PyPDF2/
https://pythonhosted.org/PyPDF2/

Chapter 5

$ echo "pdf2image==1.11.0" >> requirements.txt
$ echo "Pillow==7.0.0" >> requirements.txt

$ echo "PyPDF2==1.26.0" >> requirements.txt

$ pip install -r requirements.txt

For pdf2image to work properly, it needs to install pdftoppm, so check here for
instructions on how to install it for different platforms: https://github.com/
Belval/pdf2image#.

We also need a PDF file to watermark and encrypt. We'll use a report .pdf file
generated by the structuring pdf .py script, described in the Structuring a PDF
recipe, which is available on GitHub: https://github.com/PacktPublishing/
Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/
structuring pdf.py.

How to do it...

1. The script, watermarking pdf .py, is available on GitHub here: https://
github.com/PacktPublishing/Python-Automation-Cookbook-Second-
Edition/blob/master/Chapter05/watermarking pdf .py. The most
relevant bits are displayed here:

def encrypt(out_pdf, password):
output_pdf = PyPDF2.PdfFileWriter()
in_file = open(out_pdf, "rb")
input_pdf = PyPDF2.PdfFileReader(in_file)

output_pdf.appendPagesFromReader(input_pdf)
output_pdf.encrypt(password)

with open(INTERMEDIATE_ENCRYPT_FILE, "wb") as out_file:
output_pdf.write(out_file)
in_file.close()

os.rename(INTERMEDIATE_ENCRYPT_FILE, out_pdf)

def create watermark(watermarked_by):

[191]

https://github.com/Belval/pdf2image#first-you-need-pdftoppm
https://github.com/Belval/pdf2image#first-you-need-pdftoppm
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/structuring_pdf.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/structuring_pdf.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/structuring_pdf.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/watermarking_pdf.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/watermarking_pdf.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter05/watermarking_pdf.py

Generating Fantastic Reports

mask = Image.new('L', WATERMARK_SIZE, ©)

draw = ImageDraw.Draw(mask)

font = ImageFont.load _default()

text = "WATERMARKED BY {}\n{}'.format(watermarked_by,

datetime.now())

def

draw.multiline_text((©, 100), text, 55, font=font)
watermark = Image.new('RGB', WATERMARK_ SIZE)
watermark.putalpha(mask)

watermark = watermark.resize((1950, 1950))

watermark = watermark.rotate(45)

bbox = watermark.getbbox()
watermark = watermark.crop(bbox)

return watermark

apply watermark(watermark, in_pdf, out_pdf):

images = convert_from_path(in_pdf)

for image in images:
image.paste(watermark, position, watermark)

images[9].save(out_pdf, save_all=True, append_

images=images[1:])

2. Watermark the PDF file with the following command:

$ python watermarking pdf.py report.pdf -u automate user -o out.

pdf

Creating a watermark

Watermarking the document

3. Check that the document added a watermark with automate user and a
timestamp to all the pages of out . pdf:

[192]

Chapter 5

[RO] a out.pdf (page 12 of 13) -

o~ & | & t £~ o @ Q,

Prodn in velie pellesteague. lempens dolor vel. lincidunt turpis. Quisgee vel sem metes. Nullam aliquet risis vel Table of contents
Chapler |]
Chpies 2 4
Chapter 3 7
Chapuer 4 o
Chapler § 1

o
krmtnlumdal o placerat urma augue vel kecom. Pracsent
Duis placernt neque vilae magna pulvisar clementun

Lorem ipsum dolor sit sme. consecserar adipiscing elit. Doncc 3 diam sem. Sed ac nulla coffiequat, iempus
Mot et St trpin, Clas sptent Lacilh sociosgu sd Fiors Woeuen er somsbis i, per mcepio
hamemacos. Husce fermentem pitd ligels, sod dignissim sises hendrerit mollss, Fusce aligeim semper o0, s
convallis mé sagittin 1. Proin o nogas mon massa loborlis maximes a quis tepis. Vasiibulum vitae jusso dlit.
Funce hendresit, libern in sactor 14 fermentuns dui. s placerst urma augue vel Witm. Pracent
im enim puorta. blandit barem vulpus mulla. Duis placerat nogue vitde magns pob¥inar lemenum
Proin in velis pelicscigee, e d excidust s, Quiscgse vl dny goctos, Nl aliguet risus vel
arcu tempes elementum

Lovem ipsum dolor sit amet, consectenar sdipiscing ehit. Donec 3 diam sem. Sed ac mulls comequat, tempus
taror aget, femmentum parpés, Cliss apeent tacith sociosqu ad B loequem pef comebia nostra, per inceplos
himenacos. Fusce formentem nibd ligula, sod dignissim ras beadrerit mallis. Pasce algaam semper odeo, i
convallis mi vagitis o1, From ac nogac pon mava bobortiy et iy a quit i, Vostbuhm vitac juso it
- ero in suctor aucio, risus velit fermeenim dul, sed plifers uma sugue vel korem. Pracsent
vulputate, semper nulls, Duis. placgrst ngxue vitas magna pulsinar ehementum.
sgue. tempns dolor vel, lineidunt turpts. QUlee vel sem metes. Nullam sliquet risus vel

Froin in velin pel
arci bermpn ¢l

Lorem apsum dolor sit amet, consecicnst Mlipiscing chite Dooec & diam sem. Sod o nulls consegual, lempus.
Borton et Bermeniums barpis. Class Splel taciti sobiigil ad liloes iosquent per consbia nistm, per incepios
himemacos. Fusce formsentem nibd Tigila, sod dignivsith risas hendrerit mollis, Fusce aliquam scmper oo, i
convallis mi asgitis e1. Proin ¢ aeiae mon mg bobortis matimes 8 quis wepis. Vestibulum vise juo elic
Fusce endrerit, libero in auciof uctor. risityelil fermentum dui. sed placers urma sugue vel lorem, Pracsent
I eniem porta. blandic barem ulputate. semper nulla. Duis placern neque vitae magna palvinar dhomentum,
Proin in velie pelleoseaye fenipen dolir vel. tincidunt turpis. Quisgee vel sem metus. Nullam sliquet riss vel
arcu g i

convallis mi sagi it foin sc o Shiaed M s aquis |urp| Vestibulum vitae jussa elit
Fusce hendrerit, libas in aucsor st velia fermentum dal. sed placerat urma augue vel locom. Pracsent
= enien porta, blandit korem v nulla. Duis placernt neque vitae magna palyis
Proin in velit pellensesge, temps dolor ve i turpis. Quisggee vel sem metus. Nullam sliquet rivos vel
[A—

J——

Figure 5.13: Watermarked content of out.pdf

4. Watermark and encrypt with the following command. Note that encrypting
may take a little bit of time:

$ python watermarking pdf.py report.pdf -u automate user -o out.
pdf -p secretpassword

Creating a watermark
Watermarking the document

Encrypting the document

5. Open the resulting out . pdf file and check that it requires you to input the
secretpassword password. The timestamp will also be new.

How it works...

The watermarking pdf .py script first obtains the parameters from the command
line using argparse, and then passes it to a main function that calls the other three
functions, create watermark, apply watermark, and, if a password is used, encrypt.

[193]

Generating Fantastic Reports

create_watermark generates an image with the watermark. It uses the Pillow

Image class to create a gray image (mode L) and draw the text. Then, this image

gets applied as an alpha channel to a new image, making the image semi-transparent
so that it will show the text to watermark.

The alpha channel makes fully transparent anything in white (color
‘ / 0) and fully opaque anything in black (color 255). In this case, the
\p/ background is white (fully transparent) and the color of the text is
55, making it semi-transparent.

The image is then rotated 45 degrees and cropped to reduce the transparent
background that may have appeared. This centers the image and allows for better
positioning.

In the next step, apply watermark transforms the PDF into a sequence of PIL
Images using the pdf2image module. It calculates the position to apply the
watermark, and then pastes the watermark.

The image needs to be located by its top-left corner. This is located
, in the half of the document, minus half of the watermark, in both
\p/ height and width. Note that the script assumes that all the pages
of the document have the same size.

Finally, the result is saved to a PDF. Notice the save_all parameter, which allows us
to save a multipage PDF.

If a password is passed, the encrypt function is called. It opens the output PDF
using PdfFileReader and creates a new intermediate PDF with pdfFilewriter. All
the pages of the output PDF are added to the new PDF, the PDF is encrypted, and
then the intermediate PDF is renamed as the output PDF using os . rename.

There's more...

As part of the watermarking process, notice that the pages are transformed, from text
into image. This adds extra protection as the text won't be extractable directly as text.
When protecting a file, this is a good idea, as it will stop copying/ pasting directly.

| This is not a huge security measure, though, as the text may
\@l be extracted through OCR tools. But it protects against casual
- extraction of the text. The output file size is also much bigger,
- about 30 MB. This also makes it slower to encrypt and decrypt.

[194]

Chapter 5

The default font from PIL can be a little rough. Another font, if the TrueType or
OpenType file is available, can be added and used by calling the following;:

font = ImageFont.truetype('my font.ttf',6 SIZE)

Note that this may require installing the FreeType libraries, normally available as
part of the 1ibfreetype package. Further documentation is available at https://
www . freetype.org/. Depending on the font and size, you may need to adjust

the sizes.

The full pdf2image documentation can be found at https://github.com/Belval/
pdf2image, the full documentation for PyPDF2 at https://pythonhosted.org/
pyPDF2/, and the full documentation for Pillow at https://pillow.readthedocs.
io/en/5.2.x/.

See also

* The Writing a simple PDF document recipe, earlier in this chapter, to learn how
to add separators to a PDF document.

* The Structuring a PDF recipe, earlier in this chapter, to learn how to add
separators to a PDF document.

* The Aggregating PDF reports recipe, earlier in this chapter, to learn how to
merge multiple documents into a single one.

[195]

https://www.freetype.org/
https://www.freetype.org/
https://github.com/Belval/pdf2image
https://github.com/Belval/pdf2image
https://pythonhosted.org/PyPDF2/
https://pythonhosted.org/PyPDF2/
https://pillow.readthedocs.io/en/5.2.x/
https://pillow.readthedocs.io/en/5.2.x/

Fun with Spreadsheets

Spreadsheets are one of the most versatile and omnipresent tools in the world of

computing. Their intuitive approach of sheets and cells is used by virtually everyone

that uses a computer as part of their day-to-day operations. But they allow you

to apply complex operations, including the use of macro languages. There's even
a running joke that whole complex businesses are managed and described within
a single spreadsheet, somewhere. They are incredibly powerful tools.

This makes the ability to automate reading from and writing to spreadsheets so

interesting. We'll see in this chapter how to process spreadsheets, mainly in the most
common format, Excel. The final recipe will cover a free alternative, LibreOffice, and

in particular, how to use Python as a scripting language inside it.

Python presents advantages over using specific tools included

in spreadsheet suites. First, it is more versatile than custom tools
like VBA, which only work on a single suite of applications. You
can also take advantage of its vast available library to perform
operations, both in terms of capacity (for example, using a
statistical library or a specialized mathematical library) and in
terms of performance. Also, in Python, the code is readable and
easy to understand compared to other alternatives. In Chapter 7,
Cleaning and Processing Data, we'll go through some techniques that
can help you increase the productivity of dealing with spreadsheet
files and processes.

In this chapter, we will cover the following recipes:

* Writing a CSV spreadsheet
* Updating CSV files

[197]

Fun with Spreadsheets

Reading an Excel spreadsheet

Updating an Excel spreadsheet

Creating new sheets in an Excel spreadsheet
Creating charts in Excel

Working with cell formats in Excel

Creating a macro in LibreOffice

Let's start by taking a look at CSV files.

Writing a CSV spreadsheet

CSV files are simple spreadsheets in a highly compatible format. They are text files
with tabular data, separated by commas (hence the name Comma-Separated Values),
in a simple table format. CSV files can be created using Python's standard library and
can be read by all kinds of spreadsheet software.

Getting ready

For this recipe, only the standard library of Python is required. Everything is ready
out of the box!

How to do it...

1.

Import the csv module:

>>> import csv

Define the header with how the data will be ordered and the data to store:
>>> HEADER =
>>> DATA = [
(225.7, 'Gone With the Wind', 1939),
(194.4, 'Star Wars', 1977),
.. (161.0, 'ET: The Extra-Terrestrial', 1982)
<]

('Admissions', 'Name', 'Year')

Write the data into a CSV file:

>>> with open('movies.csv', 'w', mnewline='') as csvfile:
movies = csv.writer (csvfile)
movies.writerow (HEADER)
for row in DATA:

movies.writerow (row)

[198]

Chapter 6

4. Check the resulting CSV file in a spreadsheet. In the following screenshot, the
file is displayed using the LibreOffice software:

® @ movies.csv
B-A-B-BDaeaR XDB- & 4 Q =
LiberaionSansfig 10 o B / U 2' B- = = = = »
Al ba f. = = Admissions - >
| A ; B | ¢ D = |
1 Iédmissions |Name Year =
2 225.7 Gone With the Wind 1939 -
s 194.4 Star Wars 1977 —
4 161 ET: The Extra-Terrestrial 1982
5
_E: ®
= e
5
99
£
11
I
+ | movies |
Sheet1 of1 Default Enalish (Ireland) I Average::Sum:Q - |

Figure 6.1: Contents of the movies . csv file

How it works...

After the preparation work in steps 1 and 2 in the How to do it... section, step 3 is the
part that saves the movies. csv file.

It opens a new file, movies.csv, in write (w) mode. The file handle object in csvfile
references the file, which the csv.writer () function uses to create the CSV file. All
this happens in a with block, so it closes the file when the block is complete.

Note the newline="""" parameter. This is done to make

the writer be in control of the newline format and avoid

incompatibility issues, such as adding a newline twice. This won't
‘ n’ normally be a problem, but sometimes the CSV format may require
\/ the newline to be a specific character, different from the default

one. This can happen, for example, if working with a file to be used

on a different operating system. It's better to handle it explicitly in

the CSV configuration.

[199]

Fun with Spreadsheets

The writer writes the elements row by row using the .writerow () method. The
first row is the HEADER, and the remaining rows are the lines of data.

There's more...

The code presented stores the data in the default CSV dialect. The CSV dialect
defines what character divides the data on each row (commas or other characters),
how to escape characters, newline characters (also known as line terminators)
defining a new entry, and so on.

Escape is the process of storing characters that could be interpreted
A as part of the syntax; for example, storing a column with a text
- /@\' that includes a comma or a quote. The dialect will determine how
g to store it in that case, normally by adding a special character, for

example, \, for a verbatim comma.

In case the dialect needs to be tweaked, each of these parameters can be defined in
the writer call. Refer to the following link for a list of all the parameters that can
be defined: https://docs.python.org/3/library/csv.html#dialects-and-
formatting-parameters.

CSYV files are better when simple. If the data to be stored is
L complicated, maybe the best alternative is not a CSV file. But CSV
- /@\' files are extremely useful when dealing with tabular data. They can
g be understood by virtually all programs, and even dealing with

them at a low level is easy.

The full csv module documentation can be found here: https://docs.python.
org/3/library/csv.html.

See also
* The Reading CSV files recipe in Chapter 4, Searching and Reading Local Files.

e The Updating CSV files recipe in the following section.

Updating CSV files

Given that CSV files are simple text files, the best solution to update their content is
to read them, process them into internal Python objects, make the changes, and then
overwrite the result back in the same format. In this recipe, we will see how to do this.

[200]

https://docs.python.org/3/library/csv.html#dialects-and-formatting-parameters
https://docs.python.org/3/library/csv.html#dialects-and-formatting-parameters
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html

Chapter 6

Getting ready

In this recipe, we will use the movies. csv file that is available on GitHub at

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-
Edition/blob/master/Chapter06/movies.csv. It contains the following data:

Admissions Name Year
225.7 Gone With the Wind 1939
194.4 Star Wars 1968
161.0 ET: The Extra-Terrestrial 1982

Figure 6.2: Movie data

Notice that the Year of Star Wars is incorrect (the movie was released in 1977). We'll
change it in this recipe.

How to do it...
1. Import the csv module and define the filename:

>>> import csv

>>> FILENAME = 'movies.csv'

2. Read the content of the file using DictReader and transform this content into
a list of ordered rows:

>>> with open (FILENAME, newline='"') as file:

data = [row for row in csv.DictReader (file)]

3. Check the obtained data. Change the proper value from 1968 to 1977:

>>> data

[{*Admissions': '225.7', 'Name': 'Gone With the Wind', 'Year':
11939'}, {'Admissions': '194.4', 'Name': 'Star Wars', 'Year':
11977'}, {'Admissions': '161.0', 'Name': 'ET: The Extra-
Terrestrial', 'Year': '1982'}]

>>> datal[l] ['Year']

11968

>>> datal[l] ['Year'] = '1977'

4. Open the file again and store the values:
>>> HEADER = datal0] .keys()
>>> with open (FILENAME, 'w', newline='"') as file:
writer = csv.DictWriter(file, fieldnames=HEADER)
writer.writeheader ()

writer.writerows (data)

[201]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter06/movies.csv
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter06/movies.csv

Fun with Spreadsheets

5. Check the result in spreadsheet software. The result is similar to that
displayed in step 4 of the Writing a CSV spreadsheet recipe.

How it works...

After importing the csv module in step 2 of the How to do it... section, we extract all
the data from the file. The file is opened in a with block. DictReader conveniently
transforms it into a list of dictionaries, with the headers as keys and the content of
the cell as the values.

The conveniently formatted data can then be manipulated and modified. We
changed the data to fix the Year problem in step 3.

In this recipe, we change the value by directly accessing a row

\ ! 7/
/@ number, but searching the specific row or rows to change may be

g required in a more general case.

Step 4 overwrites the file and, using DictWriter, stores the data. DictWriter
requires us to define the fields on the columns by requiring the fieldnames. To
obtain them, we retrieve the keys of one of the rows and store them in HEADER.

The file is opened again in w mode to overwrite it. DictWriter first stores the header
with .writeheader and then stores all the rows with a single call to .writerows ().

‘ , The rows can also be added one by one by calling the
) .
\/ .writerow () method.

After closing the with block, the file is stored and can be checked to verify it is
correct.

There's more...

For familiar data sources, the dialect of the CSV file is typically known, but this may
not always be the case, especially if the file comes from an unknown source. In that
case, the sniffer class can help. It analyzes a sample of the file (or the whole file)
and returns a guessed dialect object:

>>> with open(FILENAME, newline='"') as file:
dialect = csv.Sniffer().sniff(file.read())

[202]

Chapter 6

The dialect can then be passed to the DictReader class when opening the file. The
file will need to be opened twice for reading.

]
\@l_ Remember to use the dialect on the DictWriter class as well to

4 save the file in the same format.

The full documentation for the csv module can be found here: https://docs.
python.org/3.7/library/csv.html.

See also
* The Reading CSV files recipe in Chapter 4, Searching and Reading Local Files.

* The Writing a CSV spreadsheet recipe earlier in the chapter.

Reading an Excel spreadsheet

MS Office is arguably the most common office suite software, making its formats
pretty much standard. MS Excel is probably the most common spreadsheet
application and the Excel format is the most common spreadsheet format, mirrored
by many other spreadsheet applications.

In this recipe, we'll see how to obtain information from an Excel spreadsheet using
the openpyx1 module in Python.

Getting ready

We will use the openpyx1 module. We should install the module, adding it to our
requirements.txt file as follows:

$ echo "openpyxl==3.0.3" >> requirements.txt

$ pip install -r requirements.txt

In the GitHub repository, there's an Excel spreadsheet named movies.x1sx that

contains information on the top 10 movies by attendance. The file can be found here:
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-
Edition/blob/master/Chapter06/movies.xlsx.

The source of the information can be found at http://www.mrob.com/pub/film-
video/topadj.html.

[203]

https://docs.python.org/3.7/library/csv.html
https://docs.python.org/3.7/library/csv.html
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter06/m
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter06/m
http://www.mrob.com/pub/film-video/topadj.html
http://www.mrob.com/pub/film-video/topadj.html

Fun with Spreadsheets

How to do it...

1.

Import the openpyx1 module:

>>> import openpyxl

Load the file into memory:

>>> xlsfile = openpyxl.load workbook('movies.xlsx')

List all sheets and get the first one, which is the only one that contains data:
>>> xlsfile.sheetnames

['Sheetl']

>>> sheet = xlsfile['Sheetl']

Obtain the value of cells B4 and D4 (admissions and director of E.T.):
>>> sheet['B4'] .value

161

>>> sheet['D4'] .value

'Steven Spielberg'

Obtain the size in rows and columns. Any cell out of that range will return
None as a value:

>>> sheet.max row

11

>>> sheet.max column
4

>>> sheet['Al2'] .value

>>> sheet['El'] .value

How it works...

After importing the module in step 1, step 2 in the How to do it... section loads the file
into memory in a Workbook object. Each workbook can contain one or more sheets,
each of them containing cells.

To determine the available sheets, in step 3, we obtain all the sheet names (there's
a single one in this example) and then access the sheet like a dictionary to retrieve
a Worksheet object.

Worksheet can then access all the cells directly by their names, such as 24 or ¢3. Each
of them will return a cel1l object. The .value attribute stores the value in the cell.

[204]

Chapter 6

I
\@l In the rest of the recipes in this chapter, we will see more attributes

of Cell objects. Keep reading!

Obtaining the area where the data is stored is possible with max_columns and max_
rows. This allows us to search within the limits of the data.

LY Excel defines the columns as letters (A, B, C, and so on) and rows as

/@ numbers (1, 2, 3, and so on). Remember to always set the column,

g and then the row (D1, and not 1D), or an error will be raised.

Cells outside the area are accessible but won't return data. They are available to write
new data.

There's more...

Cells can also be retrieved with sheet.cell (column, row).Both elements start
their index at 1.

All the cells within the data area iterate from the sheet, for example:

>>> for row in sheet:
for cell in row:

This will return a list of lists with all cells, row by row: A1, A2, A3 ... B1, B2, B3, and
So on.

I
\@l You can retrieve the cell's column with columns iterating through
7\ sheet .columns: Al, B1, C1, and so on, A2, B2, C2, and so on.

When retrieving a cell, you can find its position with . coordinate, .row, and
.column:

>>> cell.coordinate

1 D4 1

>>> cell.column

[205]

Fun with Spreadsheets

IDI
>>> cell.row

4

The full openpyx1 documentation can be found here: https://openpyx1.
readthedocs.io/en/stable/index.html.

See also

* The Updating an Excel spreadsheet recipe in the following section.
* The Creating new sheets in an Excel spreadsheet recipe later on in the chapter.
* The Creating charts in Excel recipe later on in the chapter.

* The Working with cell formats in Excel recipe later on in the chapter.

Updating an Excel spreadsheet

In this recipe, we'll see how to update an existing Excel spreadsheet. This will
include changing raw values in cells and setting up formulas that will be evaluated
when the spreadsheet is open. We'll also see how to add comments to cells.

Getting ready

We will use the openpyx1 module. We should install the module, adding it to our
requirements. txt file as follows:

$ echo "openpyxl==3.0.3" >> requirements.txt

$ pip install -r requirements.txt

In the GitHub repository, there's an Excel spreadsheet named movies.x1sx that
contains information on the top 10 movies by attendance.

The file can be found here: https://github.com/PacktPublishing/Python-
Automation-Cookbook-Second-Edition/blob/master/Chapter06/movies.xlsx.

How to do it...

1. Import the openpyx1 module and the Comment class:
>>> import openpyxl

>>> from openpyxl.comments import Comment

[206]

https://openpyxl.readthedocs.io/en/stable/index.html
https://openpyxl.readthedocs.io/en/stable/index.html
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter06/m
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter06/m

Chapter 6

Load the file into memory and get the sheet:
>>> xlsfile = openpyxl.load workbook('movies.xlsx')

>>> sheet = xlsfile['Sheetl']

Obtain the value of cell D4 (director of E.T):
>>> sheet['D4'] .value

'Steven Spielberg'

Change the value to just Spielberg:
>>> sheet['D4'] .value = 'Spielberg’

Add a comment to that cell:

>>> sheet['D4'] .comment = Comment ('Changed text automatically’',
'User')

Add a new element that obtains the total of all values in the Admission
column:

>>> sheet['B12'] = '=SUM(B2:B11)"

Save the spreadsheet to the movies_comment.x1sx file:

>>> xlsfile.save('movies comment.xlsx')

Check the resulting file, which includes the comment and the calculation of
the total of column B in A12:

fi Steven Spielberg

1

A

Rank

ME INSERT DATA REVIEW VIEW 1 Tell me what you want to do EDIT IN EXCEL
, db | [Calibr " - B 2 | Genenl . H ﬂ_" %= B [y autosum + A ()
> B I U P oW ; | e ...,, E_ . #
o - P A- A & = % % * u ¢ Clear Sar
B c D E F G H Comments %
Admissions
{millians) Tithe (year) (studio) Directar(s)
225.7 Gone With the Wind (1933) (MGM) Victor Fleming, George Cukor, Sam Wood o7 o
184.4 Star Wars (Ep. IV: A New Hope] (1977) (Fox] George LucC o ;
161 ET: The Extra-Terrestrial (1982) (Univ) Steven Spi}]b&rg Shnged bk spmmomns x
156.4 The Sound of Music (1965) (Fox) Robert Wise
130 The Ten Commandments [1956) (Para) Cecil B. DeMille
128.4 Titanic (1997) (Fax) Jamies Cameron
126.3 Snow White and the Seven Dwarfs (1937) (BV) David Hand
120.7 Jaws [1975) (Univ) Steven Spielberg
120.1 Doctor Zhivago (1965) (MGM) Dravid Lean
118.9 The Lion King [1994) (BV) Rager Allers, Rob Minkoff
148159

Figure 6.3: The cell now shows a comment

[207]

Fun with Spreadsheets

How it works...

In the How to do it... section, after making the imports in step 1 and reading the
spreadsheet in step 2, we select the cell to be changed in step 3.

Updating the value is done in step 4 with an assignment. A comment in the cell is
added, overwriting the .comment attribute with a new Comment class instance. Note
that the name of the user making the comment is required.

Values can also include descriptions of formulas. In step 6, we add a new formula
to cell B12. The value is calculated and displayed when the file is opened in step 8.

| The value of a formula is not calculated in Python, but in Excel.
\@/ This means that the formula could contain errors or display
NR unexpected results through bugs in the resulting spreadsheet.
- Be sure to double-check that the formulas are correct.

Finally, in step 7, the spreadsheet is saved to disk by calling the . save method of the
XLSX file object. The name of the resulting file can be the same one as the input file
to overwrite it.

The comment and values can be viewed by externally accessing the file.

There's more...

You can store data as multiple data types, and it will be translated into the proper
types for Excel. For example, storing datetime will store it in the proper date format.
The same is true with £1loat or other numeric formats.

If you don't need to change any value in the spreadsheet, you can open it in read-
only mode:

>>> xlsfile = openpyxl.load workbook('movies.xlsx', read only=True)

>>> xlsfile['Sheetl'] ['Al'] .value = '37%"

AttributeError: Cell is read only

Adding comments to automatically generated cells can help review the resulting file,
making it clear how each specific value was generated.

While it is possible to add formulas to automatically generate Excel files, debugging
the results can be tricky. When generating a result, generally, it's better to make the
calculations in Python and store the result in a raw format.

[208]

Chapter 6

The data_only parameter for 1oad workbook will load all the formulas as the
resulting data. This can be useful if the result for formulas is expected to perform
further calculations.

The full openpyx1 documentation can be found here: https://openpyxl.
readthedocs.io/en/stable/index.html.

See also

* The Reading an Excel spreadsheet recipe earlier in the chapter.
* The Creating new sheets in an Excel spreadsheet recipe in the following section.
* The Creating charts in Excel recipe later in the chapter.

* The Working with cell formats in Excel recipe later in the chapter.

Creating new sheets in an Excel
spreadsheet

In this recipe, we'll demonstrate how to create a new Excel spreadsheet from scratch
and deal with multiple sheets within that spreadsheet, including creating them.

Getting ready

We will use the openpyx1 module. We should install the module, adding it to our
requirements.txt file as follows:

$ echo "openpyxl==3.0.3" >> requirements.txt

$ pip install -r requirements.txt
We'll store it in the new file information about the movies with the most

attendance. The data is extracted from here: http://www.mrob.com/pub/film-
video/topadj.html.

How to do it...

1. Import the openpyx1 module:

>>> import openpyxl

2. Create a new Excel file. This creates a default sheet, called sheet:
>>> xlsfile = openpyxl.Workbook ()

>>> xlsfile.sheetnames

[209]

https://openpyxl.readthedocs.io/en/stable/index.html
https://openpyxl.readthedocs.io/en/stable/index.html
http://www.mrob.com/pub/film-video/topadj.html
http://www.mrob.com/pub/film-video/topadj.html

Fun with Spreadsheets

['Sheet']

>>> sheet = xlsfile['Sheet’']

3. Add data about the number of attendees to this sheet from the source. Only
the first three are added for simplicity:

>>> data = [
(225.7, 'Gone With the Wind', 'Victor Fleming'),
(194.4, 'Star Wars', 'George Lucas'),
(161.0, 'ET: The Extraterrestrial', 'Steven Spielberg'),
1
>>> for row, (admissions, name, director) in enumerate(data, 1):
sheet['A{}'.format (row)].value = admissions

sheet ['B{}'.format (row)].value = name

4. Create a new sheet:
>>> sheet = xlsfile.create_ sheet ("Directors")
>>> sheet
<Worksheet "Directors">
>>> xlsfile.sheetnames

['Sheet', 'Directors']

5. Add the name of the director for each movie:
>>> for row, (admissions, name, director) in enumerate(data, 1):
sheet ['A{}'.format (row)].value = director

sheet ['B{}'.format (row)].value = name

6. Save the file as movie sheets.xlsx:

>>> xlsfile.save('movie sheets.xlsx')

7. Open the movie sheets.x1sx file to check that it has two sheets with the
proper information, as shown in the following screenshot:

[210]

Chapter 6

FILE HOME INSERT DATA REVIEW VIEW Q Tell me what you want to do
< X Calibri * 1111 v = = = General v M
o i ° I El
— B B I U D ak = = = $" %
Paste . i_'_=_:] > Conditional Forms
. ~ 1 v Py - i\- - A A & a= = s %3 M Formatting- -
Undo Clipboard Font Alignment Number Tables
fe 2257
A B C D E F G H I]
1 225.7 |Gone With the Wind
2 194.4 Star Wars
3 161 ET: The Extraterrestrial
4
5
Sheet Directors +

Figure 6.4: Content of movie_sheets.xlsx

How it works...

In the How to do it... section, after importing the module in step 1, we create a new
spreadsheet in step 2. This is a new spreadsheet that contains just the default sheet.

The data to be stored is defined in step 3. Note that it contains information that will
go on both sheets (name in both; the admissions in the first sheet and the director's
name in the second). In this step, the first sheet is filled.

Note how the value is stored. The proper cell is defined as column
/ A or B and the proper row (rows start at 1). The enumerate
\/;p; function returns a tuple with the first element as the index and
the second as the enumerated parameter (in this case, a tuple with
three values).

After that, the new sheet is created in step 4, using the name Directors. .create_
sheet returns the new sheet.

The information in the Directors sheet is stored in step 5 and the file is saved
in step 6.

[211]

Fun with Spreadsheets

There's more...

The name of an existing sheet can be changed through the .title property:

>>> sheet = xlsfile['Sheet']
>>> sheet.title = 'Admissions'
>>> xlsfile.sheetnames
['Admissions', 'Directors']

Be careful, as it won't be possible to access the sheet with x1sfile ['Sheet']. That
name doesn't exist anymore!

The active sheet, the sheet that will be displayed when the file is opened, can be
obtained through the .active property and changed with . _active_sheet_index.
The index starts at 0 for the first sheet:

>> xlsfile.active

<Worksheet "Admissions">

>>> xlsfile. active sheet index

0

>>> xlsfile. active sheet index =1

>>> xlsfile.active

<Worksheet "Directors">

The sheet can also be copied using .copy_worksheet. Be aware that some data, for
example, charts, won't be carried over. All the cell data will be duplicated:

new_copied_sheet = xlsfile.copy worksheet(source_sheet)

If you need to copy charts, keep in mind that you can replicate them by code
multiple times, if necessary.

The full openpyx1l documentation can be found here: https://openpyxl.
readthedocs.io/en/stable/index.html.

See also

* The Reading an Excel spreadsheet recipe earlier in the chapter.
* The Updating an Excel spreadsheet recipe earlier in the chapter.
* The Creating charts in Excel recipe in the following section.

* The Working with cell formats in Excel recipe later in the chapter.

[212]

https://openpyxl.readthedocs.io/en/stable/index.html
https://openpyxl.readthedocs.io/en/stable/index.html

Chapter 6

Creating charts in Excel

Spreadsheets include a lot of tools to deal with data, including presenting the data
in colorful charts. Let's see how to append a chart programmatically to an Excel
spreadsheet.

Getting ready

We will use the openpyx1 module. We should install the module, adding it to our
requirements. txt file as follows:

$ echo "openpyxl==3.0.3" >> requirements.txt

$ pip install -r requirements.txt

We'll store it in the new file information about the movies with the most attendance.
The data is extracted from here: http://www.mrob.com/pub/film-video/topad] .
html.

How to do it...

1. Import the openpyx1 module and create a new Excel file:
>>> import openpyxl
>>> from openpyxl.chart import BarChart, Reference

>>> xlsfile = openpyxl.Workbook ()

2. Add data about the number of attendees in this sheet from the source. Only
the first three are added for simplicity:
>>> data = [
('Name', 'Admissions'),
('Gone With the Wind', 225.7),
(*Star Wars', 194.4),
('ET: The Extraterrestrial', 161.0),
1
>>> sheet = xlsfile['Sheet']
>>> for row in data:

sheet.append (row)

3. Create a BarChart object and fill it with basic information:
>>> chart = BarChart()
>>> chart.title = "Admissions per movie"

>>> chart.y axis.title = 'Millions'

[213]

http://www.mrob.com/pub/film-video/topadj.html
http://www.mrob.com/pub/film-video/topadj.html

Fun with Spreadsheets

4.

Create a reference to the data and append the data to the chart:

>>> data =
col=2)

>>> chart.add data(data,

Reference(sheet, min row=2, max row=4, min col=1l, max

from rows=True, titles from data=True)

Add the chart to the sheet and save the file:
>>> sheet.add chart(chart, "A6")

>>> xlsfile.save('movie_ chart.xlsx')

Check the resulting chart in the spreadsheet, as shown in the following
screenshot:

fx Name
A B C D E F G H |]

1 |Name Admissions

7 GoneWith 2257

3 Star Wars 194.4

4 |ET:The Ext 161

5

6 - 2

B Admissions per movie

8 250

9
10
il)
12 g ® Gone With the Wind
L = m Star Wars
14 —
15 E u ET: The Extraterrestrial |
16
17
18
19 1

~J
o

Sheet G

Figure 6.5: Displayed chart

How it works...

In the How to do it... section, after preparing the data in steps 1 and 2, the data is
ready in the range A1:B4. Note that A1 and B1 both contain a header that should not
be used in the chart.

In step 3, we set up the new chart and include the basic data, such as a title and the
units of the y-axis.

[214]

Chapter 6

Step 4 creates a reference box through a Reference object, from row 2 column 1 to
row 4 column 2, which is the area where our data lives, excluding the header. The
data is added to the chart with the .add_data () method. The from rows argument
makes each row a different data series. Another argument, titles from data, uses
the first column to name the series.

The chart is added to cell 26 in step 5 and saved to disk.

There's more...

Numerous charts can be created, including bar charts, line charts, area charts (line
charts that fill the area between the line and the axis), pie charts, or scatter charts
(XY charts where one value is plotted against the other). Each kind of chart has an
equivalent class, for example, PieChart or LineChart.

Each one, at the same time, can have different types. For example, the default type
for BarChart is column, printing the bars vertically, but they can also be printed
vertically by selecting a different type:

>>> chart.type = 'bar!'
Check the openpyx1 documentation to see all available combinations.

* Instead of extracting the x-axis labels from the data, they can be set explicitly
with set_categories. For example, compare step 4 with the following code:

data = Reference(sheet, min_row=2, max_row=4, min_col=2, max_col=2)

labels = Reference(sheet, min_row=2, max_row=4, min_col=1, max_

col=1)

chart.add_data(data, from_rows=False, titles from_data=False)

chart.set_categories(labels)

The range, instead of using a Reference object, can also be input with text labels
describing the region:

chart.add_data('Sheet!B2:B4"', from_rows=False, titles_from_
data=False)
chart.set_categories('Sheet!A2:A4")

This way of describing it may be more difficult to deal with if the range of data needs
to be created programmatically.

[215]

Fun with Spreadsheets

Defining charts in Excel correctly can be difficult sometimes. The
way Excel extracts the data from a particular range can be baffling.
| Remember to allow time for trial and error, and to deal with
\@’ differences. For example, in step 4, we defined three series with one
AR data point, while in the preceding code, we defined a single series
- with three data points. Most of those differences are subtle. Finally,
the most important point is how the end chart looks. Try different
chart types and learn the differences.

The full openpyxl documentation can be found here: https://openpyxl.
readthedocs.io/en/stable/index.html.

See also
* The Reading an Excel spreadsheet recipe earlier in the chapter.
* The Updating an Excel spreadsheet recipe earlier in the chapter.
* The Creating new sheets in an Excel spreadsheet recipe in the previous section.

* The Working with cell formats in Excel recipe in the following section.

Working with cell formats in Excel

Presenting information in spreadsheets is not just a matter of organizing it into

cells or displaying it graphically in charts. It also involves changing the format to
highlight the important details. In this recipe, we'll see how to manipulate the format
of cells to enhance the results and present the data in the best way.

Getting ready

We will use the openpyx1 module. We should install the module, adding it to our
requirements.txt file as follows:

$ echo "openpyxl==3.0.3" >> requirements.txt

$ pip install -r requirements.txt

We'll store it in the new file information about the movies with the most
attendance. The data is extracted from here: http://www.mrob.com/pub/film-
video/topadj.html.

[216]

https://openpyxl.readthedocs.io/en/stable/index.html
https://openpyxl.readthedocs.io/en/stable/index.html
http://www.mrob.com/pub/film-video/topadj.html
http://www.mrob.com/pub/film-video/topadj.html

Chapter 6

How to do it...

1.

Import the openpyx1 module and create a new Excel file:
>>> import openpyxl
>>> from openpyxl.styles import Font, PatternFill, Border, Side

>>> xlsfile = openpyxl.Workbook ()

Add data about the number of attendees in this sheet from the source. Only
the first four are added, for simplicity:

>>> data = [

.o ('Name', 'Admissions'),

.o ('Gone With the Wind', 225.7),

.o ('Star Wars', 194.4),

.o ('ET: The Extraterrestrial', 161.0),
.o ('The Sound of Music', 156.4),

>>> sheet = xlsfile['Sheet']
>>> for row in data:

cee sheet.append (row)

Define the colors to use for styling the spreadsheet:

>>> BLUE = '0033CC'
>>> LIGHT BLUE = 'E6ECFF'
>>> WHITE = 'FFFFFF'

Define the header in a blue background and a white font:

>>> header_ font = Font(name='Tahoma', size=14, color=WHITE)
>>> header_ fill = PatternFill("solid", fgColor=BLUE)

>>> for row in sheet['Al:Bl']:

cee for cell in row:

ces cell.font = header_ font

ces cell.fill = header fill

Define an alternate pattern for the columns and a border on each row after
the header:

>>> white_side = Side(border style='thin', color=WHITE)
>>> blue_side = Side(border_ style='thin', color=BLUE)
>>> alternate fill = PatternFill("solid", f£gColor=LIGHT BLUE)

>>> border = Border (bottom=blue side, left=white side,

[217]

Fun with Spreadsheets

right=white side)
>>> for row index, row in enumerate(sheet['A2:B5']):
for cell in row:
cell.border = border
if row_index % 2:

cell.fill = alternate fill

6. Save the file as movies format.xlsx:

>>> xlsfile.save('movies format.xlsx')

7. Check the resulting file:

FILE HOME INSERT DATA REVIEW VIEW Q Tell me what you want to do
“ ﬂ‘:_ ¥ Calibri 11 - e = 2” General *

" 3y B I U D ak = = = o $ " %

- o H-D-AA A &= 3= = I I
Undo Clipboard Font Alignment Number
j 2

A B c D E F G
I Name Admissions
2 Gone With the Wind 225.7
3 Star Wars 194.4
4 ET: The Extraterrestrial 161
5 The Sound of Music 156.4
6
7
8 |
9
Sheet +

Figure 6.6: Formatted movie data spreadsheet

How it works...

* In the How to do it... section, in step 1, we import the openpyx1 module and
create a new Excel file. In step 2, we add the data to the first sheet. Step 3 is
also a preparation step to define the colors to be used. The colors are defined
in hex format, which is common in the web design world.

[218]

Chapter 6

A To find the definition of colors, there are plenty of color pickers
'@\‘ online or even embedded in the OS. A tool like https://

4
g coolors.co/ can be useful to define a palette to work with.

In step 4, we prepare the format to define the header. The header will have a different
font (Tahoma), a bigger size (14pt), and it will be white on a blue background. To

do this, we prepare a Font object with the font, size, and foreground color, and a
PatternFill with the background color.

The loop after creating header font and header £ill applies the font and fill to the
proper cells.

cells, even if only one row is involved.

\/V Note that iterating over a range always returns the row, and then

In step 5, a border to the rows and an alternate background is applied. The border
is defined with blue top and bottom and white left and right. The fill is created

in a similar way to step 4, but in a light blue. The background is only applied to
even rows.

, Note that the top border of a cell is the bottom of the one above,
\/;p; and vice versa. This means that it's possible to overwrite the border
in a loop.

The file is finally saved in step 6.

There's more...

There are multiple options available to style the text, such as bold, italic, strikeout,
or underline. Define the font and reassign it if you need to change any of its
elements. And remember to check that the font is available in the system.

There are also various ways of creating a fill. PatternFill accepts several patterns,
but the most useful one is solid. GradientFill can also be used to apply a two-
color gradient.

[219]

https://coolors.co/
https://coolors.co/

Fun with Spreadsheets

It's best to limit yourself to solid fills using PatternFill. You

\ ! 7/
/@ can tweak the color to best represent what you want. Remember

=] toinclude style="'so0lid', or the color may not appear.

It's also possible to define conditional formatting, but for an automatically generated
spreadsheet, it's less complicated to try to define the logic in Python and then apply
the proper static formatting based on the result.

Number formatting can be set up properly, for example:
cell.style = 'Percent’
This will display the value 0.37 as 37%.

The full openpyx1 documentation can be found here: https://openpyxl.
readthedocs.io/en/stable/index.html.

See also

* The Reading an Excel spreadsheet recipe earlier in the chapter.
* The Updating an Excel spreadsheet recipe earlier in the chapter.
* The Creating new sheets in an Excel spreadsheet recipe earlier in the chapter.

* The Creating charts in Excel recipe in the previous section.

Creating a macro in LibreOffice

LibreOffice is a free productivity suite that's an alternative to MS Office and

other office packages. It includes, among others, a text editor called writer and a
spreadsheet program called calc. Calc understands the regular Excel formats, and
it's also totally scriptable internally through its UNO APIL The UNO interface allows
programmatic access to the suite, and it's accessible in different languages, such

as Java.

One of these available languages is Python, making it very easy to generate very
complex applications in a suite format, as this enables the use of the full Python
standard library.

[220]

https://openpyxl.readthedocs.io/en/stable/index.html
https://openpyxl.readthedocs.io/en/stable/index.html

Chapter 6

1 Using the full Python standard library provides access to elements
\ 7/
@ such as cryptography, opening external files (including zip files),
AR and connecting to remote databases. Also, you can take advantage
of the Python syntax and avoid dealing with LibreOffice BASIC.

We'll see in this recipe how to add an external Python file as a macro that will change
the contents of a spreadsheet.

Getting ready

LibreOffice needs to be installed. It is available at https://www.libreoffice.org/.

Once downloaded and installed, it needs to be configured to allow the execution of
macros:

1. Go to Settings | Security to find the Macro Security details:

T OpenFile ————
Options - LibreOffice - Security

5 Remote Files
— LibreOtfice Security Options and Warnings

g;f,’ﬁ:'a Adjust security related options and define warnings for hidden Ontions
-— 3 iy information in documents. pRONE...
" RecentFiles v

for Web Ci

Z Templates hd Foi S ly save p

Personalization

3 Applcation Colors
Create: Accessitility
s Advanced RETRe

;! Writer Document Oniine Update

OpencL Macro Security
= LoadiSaes Adjust the security level for executing macros and specily trusted
! Calc Spreadsheet LRRpIag SemnpS macro developers. Mooy Seanity,
L1 Impress Presentati Iteret S nun
L P & ezt Select the Metwork Security Services certificate directory 1o use for Certificate,

digital signatures,
Draw Drawing TSAs
Maintain a list of Time Stamping Authority (TSA) URLS to be used

Math Formula for digital signatures in PDF export.

E’ Base Database

Help Extensions

Figure 6.7: Macro Security settings in LibreOffice

[221]

https://www.libreoffice.org/

Fun with Spreadsheets

2. Open Macro Security and select Medium to allow the execution of our
macros. This will display a warning before allowing us to run a macro:

£ Open File s
-— 1
Remote Files
By LibreCifice L] Macro Security
User Data)
General LSecuriBleell Trusted Sources
" RecentFiles iy it
Paths Wery high.
z Templates - Fonls Only macros from trusted file locations are allowed to run,
Security All other macros, regardless whether signed o not, are disabled.
Personalizat
. Application €
Create: Accessibility.
Advanced High
M ; 5
;¢ Writer Document g:g:‘;%fpdn Only signed macros from rusted sources are allowed 1o run,
2 Loadisave unsigned macros are disabled.
| Calc Spreadsheet Language Seltit Wacro Security...
LibreOfiice Basi i
Charts
!{;'ﬂ Impress Presentation Internet N
o ‘Confirmation required before executing macres from untrusted sources. Certificate...
.. Draw Drawing
B Math Formula Low (not recommended).
All macros will be executed without confirmation.
E Base Database Lise this setting only if you are certain that all documents that will be opened are sale.
Help Extensions

Figure 6.8: Setting macro security level to Medium

To insert the macro into the file, we'll use a script called include_macro.py, which
is available at https://github.com/PacktPublishing/Python-Automation-
Cookbook-Second-Edition/blob/master/Chapter06/include macro.py.

The script with the macro is also available as 1ibreoffice_script.py here:
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-
Edition/blob/master/Chapter06/libreoffice script.py.

The file to put the script into, called movies.ods, is also available here: https://
github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/

blob/master/Chapter06/movies.ods.

It contains, in. ods format (LibreOffice format), a table with the 10 movies with the
highest admissions. The data was extracted from here: http://www.mrob.com/pub/
film-video/topadj.html.

[222]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter06/i
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter06/i
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter06/l
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter06/l
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter06/m
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter06/m
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter06/m
http://www.mrob.com/pub/film-video/topadj.html
http://www.mrob.com/pub/film-video/topadj.html

Chapter 6

How to do it...

1. Use the include _macro.py script to attach the 1ibreoffice script.py file
to the movies.ods macrofile:
$ python include macro.py -h
usage: It inserts the macro file "script" into the file
"spreadsheet" in .ods format. The resulting file is located in the
macro file directory, that will be created
[-h] spreadsheet script
positional arguments:
spreadsheet File to insert the script
script Script to insert in the file
optional arguments:
-h, --help show this help message and exit
$ python include macro.py movies.ods libreoffice script.py
2. Open the resulting file, macro_file/movies.ods, in LibreOffice. Notice that
it shows a warning to enable the macros (click on Enable). Go to Tools |
Macros | Run Macro:
H-O-B-DeRk xDa- s L E-8H- 4 & Q OBE-2 -
Liberation Sans 10 R.7Z I Tu=-M- = = =5 = ¥ £ 1 4.0 o0 MM 0000 == - :-E- *, -
a— e @ Macro Selecior
Blau A = : > | r;bﬁm.lhe||hrarythntoumninsmemcmyuuwam Then select the macro under ‘Macro e E = I'_ —
1 Rank (milions) _[Tide (ved | iy o\ Macro Name Cancel —
2 5 (- | Acros bitai regated T
Fm i ?S::g::\m » Mﬁr:‘nm Macras AR Help —
4 3 161ET: The| 2
& | 4 156.4 The Sowm S
6 | 5 130 The Ten G
7 6 1284 Thanic (1 f
7| 7 1263SnowWl :
9 | 8 120.7 Jaws (15
10 | 8 120.1DoctrZ
| 10 118.9 The Lion
12
13 —
14
15 |
16
17
18 | Description
19 |
20 |
21 |
2 |
23
24 |
25 | 1 i T |
& | Sheetl I
Sheet1of 1 Default English (Ireland) I- Average: . Sum: 0 - o + 100%

Figure 6.9: Running the ObtainAggregated macro

[223]

Fun with Spreadsheets

3. Select ObtainAggregated under movies.ods | libreoffice script and
click on Run. This calculates the aggregated admissions and stores them in
cell B12. It adds a Total label in A15:

[] ® - movies.ods
H-o-B- D8R XD B & L O QA BM-B- 44 WP EEHT OO0 BBR-8B A
Libersionsansf (10 B B 7 U L-®M- £ F = = T+ 1 $-%wmM QO =X O-F-L- ¢-
B13 B +rc-= vi| =
Il B, T B 0 C |l b 1 E | F_ | 6 | H | g
1 |Rank (millons) Title (year) (studio) Director(s) | 5
2 | 1 225.7 Gone With the Wind (1930) (MGM) Victor Fleming, George Cukor, Sam Wood 28
3 | 2 194.4 Star Wars (Ep. IV: A New Hope) (1977) (Fox) George Lucas o
4 | 3 161 ET: The Extra-Terrestrial (1982) (Liniv) Steven Spielberg b=l
[4 156.4 The Sound of Music (1965) (Fox) Fobert Wise -
6 | 5 130 The Ten Commandments (1956) (Para) Cecil B. DeMile
T & 128.4 Titanic (1997) (Fox) James Cameron f
8 | 7 126.3 Snow White and the Seven Dwarfs (1937) (BV) David Hand :
g | a8 120.7 Jaws (1975) (Univ) Steven Spielberg
10 | 9 120.1 Doctor Zhivago {1965) (MGM) David Lean
u | 10 118.8 The Lion King (1994) (BVY) Ruoger Allers, Rob Minkgff
12 14819
13
14 |
15 Total
16
Ll
* | Sheetl
Sheet1of1 Detault English (ireland) I B Average: ; Sum: 0 o v 100%
Figure 6.10: Aggregated admissions calculated in cell B12
4. Repeat steps 2 and 3 to run it again. Now it runs all the aggregations, but
adds B12 and gets the result in B13:
LR < movies.ods
B-AO-B- N8R XDA-& L 5- QA B-B-4H 4L LS PR Q= 0O BEB-B -
tberatonSans il (10 @ OB 7 U L-B- = = = = T+ L $-%0 0o, =3 O-F-[- ¢
B13 B L = 2vas il
— A el o | e 10 EE] R [-] H 5
1 |Rank (mdlions) Tre (year) (studio) Director(s) B
ol 1 225.7 Gone With the Wind (1538) (MGM) Victor Fleming, George Cukor, Sam Wood &
3 | 2 194.4 Star Wars (Ep. IV: A New Hope) (1977) (Fox) George Lucas =
4 | 3 161 ET: The Extra-Terrestrial (1982) (Liniv) Steven Spielberg =
5 | a 156.4 The Sound of Music (1965) (Fox) Robert Wise
€ | 5 130 The Ten Commandments (1956) (Para) Cecil B, DeMille
F 6 128.4 Thanic (1997) (Fox) James Cameron
8 | 7 126.3 Snow White and the Seven Dwarls (1937) (V) David Hand
9 | 8 120.7 Jaws (1975) (Univ) Steven Spelberg
10 | 9 120.1 Doctor Zhivago (1965) (MGM) David Lean
| 10 118.9 The Lion King (1984) (BY) Roger Allers, Rob Minkoff I
12 1481.9
13 |
14
15 Total
16
i
+ | Sheetl
Sheet1of1 Detawi English (Ireland) i

Figure 6.11: Running the macro again sums all the cells in column B, this time including cell B12

[224]

Chapter 6

How it works...

The main work in step 1 is done in the include_macro.py script. It copies the file
into the macro_file subdirectory to avoid modifying the input.

Internally, an . ods file is a zip file with a certain structure. The script takes
advantage of the zip file Python module to add the script to the proper subdirectory
internally. It also modifies the manifest.xml file to allow LibreOffice to know there's
a script inside the file.

The macro that is executed in step 3 is defined in 1ibreoffice_script.py and
contains a single function:

def ObtainAggregated(*args):

desktop = XSCRIPTCONTEXT.getDesktop()
model = desktop.getCurrentComponent()

sheet = model.Sheets.getByIndex(0)

MAX_ELEMENT = 20
for column in range(©, MAX_ELEMENT):
cell = sheet.getCellByPosition(column,)
if 'Admissions' in cell.String:
break
else:
raise Exception('Admissions not found")

accumulator = 0.0
for row in range(1, MAX_ELEMENT):
cell = sheet.getCellByPosition(column, row)
value = cell.getValue()
if value:
accumulator += cell.getValue()
else:
break

cell = sheet.getCellByPosition(column, row)
cell.setValue(accumulator)

[225]

Fun with Spreadsheets

cell = sheet.getCellRangeByName("A15")
cell.String = 'Total’
return None

The XSCRIPTCONTEXT variable is created automatically and allowed to get the current
component, and from there, the first Sheet. After that, the sheet is iterated to find

the Admissions column through .getCellByPosition and obtain the string value
with the . string attribute. With the same method, it aggregates all the values in the
column, extracting them through .getvalue to get their numerical values.

As the loop iterates through the column until finding an empty
/ cell, the second time it's executed, it will aggregate the value in
\/;p> B12, which is the aggregated value in the previous execution. This
is done on purpose to show that macros can be executed multiple
times, with different results.

Cells can also be referenced by their string position through .getCellRangeByName,
to store Total in cell A1s.

There's more...

The Python interpreter is embedded into LibreOffice, meaning that the specific
version can change if LibreOffice changes. In the latest version of LibreOffice at the
time of writing this book (6.4.0), the version included was Python 3.7.6.

The UNO interface is very complete and allows you to access a lot of advanced
elements. Unfortunately, the documentation is not great, and achieving it can be
complicated and time consuming. The documentation is defined in Java or C++, and
there are examples in LibreOffice BASIC or other languages, but few for Python.
The full documentation can be found at https://api.libreoffice.org/, and the
reference is here: https://api.libreoffice.org/docs/idl/ref/index.html.

| For example, it is possible to create complex charts or even
N\ 7/ . . .
@ interactive dialogs that ask for and process responses from the user.
7N There's a lot of information in forums and old answers. The code in

BASIC is also adaptable to Python most of the time.

LibreOffice is a fork of a previous project called OpenOffice. UNO is already
available at the time of forking, meaning that some references will be found when
searching for OpenOffice on the Internet.

[226]

https://api.libreoffice.org/
https://api.libreoffice.org/docs/idl/ref/index.html

Chapter 6

Remember that LibreOffice is capable of reading and writing Excel files. Some
features may not be 100% compatible. For example, there may be formatting issues.

| For the same reason, it is totally possible to generate a file in Excel
\@’ format with the tools described in other recipes of this chapter
AR and open it with LibreOffice. That can be a good approach as the
= documentation is better for openpyx1.

Debugging can also be tricky on occasion. Remember to ensure that a file is fully
closed before reopening it with new code.

UNO is also capable of working with other parts of the LibreOffice suite, such as for
creating other kinds of documents such as text documents in writer (analogous to
MS Word).

See also
* The Writing a CSV spreadsheet recipe earlier in the chapter.

* The Updating an Excel spreadsheet recipe earlier in the chapter.

[227]

Cleaning and
Processing Data

Some automated tasks will require dealing with large amounts of data. As data
grows, two new and distinct problems appear. Processing the task takes too long
and input data quality issues cause more problems.

Both problems are well known in the realm of data science dealing with big
quantities of data, but the problems can appear even at a smaller scale.

The quality of input data is highly related to the number of sources of the data.

In general, data from a single source will be more consistent, but using a single
source is limiting. Even if the data comes from the same source, it could still contain
inconsistencies or errors.

| Some examples of differences could be regional, such as date
\@/ formats or currencies, extra information, different names for the
A same concept (including spelling differences), typos, general bad
quality of data with errors... The list is huge!

To compare apples with apples, the input data will probably need to be cleaned.
This can be a difficult task and require multiple iterations until the process is refined,
particularly if the data changes over time. We will look at some techniques to
approach this task.

[229]

Cleaning and Processing Data

Regarding time, for some automated cases, this is not a problem. It makes no
difference if an automated background emailer, composing and sending a daily
update email during the night hours to be read as people come into the office, takes
two hours or two minutes. But if someone is waiting for timely results, this can be
highly inefficient.

In particular, the waiting time during actual code development and testing is critical
as it will not only use up time that could be spent on developing features but also
destroys your focus and concentration, which are key to the development process.

There are several tips and techniques to speed up code execution. The main two
are: avoid performing the same operation multiple times; and parallelize the task by
dividing it into smaller chunks.

The best general advice on to reduce time for your computer tasks
L is to learn computer science, in particular, algorithms and data
‘/@\‘ structures. This is out of scope for this book, and it can be a long
g journey. But don't be afraid to ask a fellow programmer for help!

Even online!

Chapter 3, Building Your First Web Scraping Application, introduced parallelization of
code as part of the Speeding up web scraping recipe. We will continue with the concept
during this chapter.

In this chapter, we will cover the following recipes:

* Preparing a CSV spreadsheet

* Appending currency based on location
* Standardizing the date format

* Aggregating results

* Processing data in parallel

* Processing data with Pandas

Let's start by getting the base information ready in a tabular file.

Preparing a CSV spreadsheet

As we saw in the previous chapter, CSV files are files containing tabular data defined
as a collection of rows with defined columns, separated by commas. They are a very
common format for all kinds of data. We will see in this recipe how to extract data
from log files and store the information in a CSV file.

[230]

Chapter 7

Getting ready

We will use a similar log format as the one introduced in the Extracting data from
structured strings recipe in Chapter 1, Let's Begin Our Automation Journey:

[<Timestamp>] - SALE - PRODUCT: <product id> - PRICE: <price>
Each line will represent a sale log.

We will use the parse module. We should install the module, adding it to our
requirements. txt file as follows:
$ echo "parse==1.14.0" >> requirements.txt

$ pip install -r requirements.txt

In the GitHub repository, there are some log files to process with the following
structure:
sale logs/
OH
logs. txt
ON
logs. txt

The code can be found in the GitHub repository at https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapter07.

How to do it...

1. Check the contents of the sale logs/OH/logs.txt file:

$ head sale logs/OH/logs.txt

[08-27-2019 18:39:41] - SALE - PRODUCT: 12346 - PRICE: 02.99
[08-27-2019 19:39:41] - SALE - PRODUCT: 12346 - PRICE: 02.99
[08-27-2019 20:39:41] - SALE - PRODUCT: 12346 - PRICE: 02.99
[08-27-2019 21:39:41] - SALE - PRODUCT: 12346 - PRICE: 02.99
[08-27-2019 22:39:41] - SALE - PRODUCT: 12345 - PRICE: 09.99
[08-27-2019 23:39:41] - SALE - PRODUCT: 12345 - PRICE: 07.99
[08-28-2019 00:39:41] - SALE - PRODUCT: 12346 - PRICE: 02.99
[08-28-2019 01:39:41] - SALE - PRODUCT: 12346 - PRICE: 02.99
[08-28-2019 02:39:41] - SALE - PRODUCT: 12346 - PRICE: 02.99
[08-28-2019 03:39:41] - SALE - PRODUCT: 12346 - PRICE: 02.99

[231]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07

Cleaning and Processing Data

2. Import the data and transform it into a CSV file using the logs_to_csv.py
script. The script adds the location as input:
$ python logs to csv.py sale logs/OH/logs.txt output 1 OH.csv -1
OH

3. Check the resulting CSV file in a spreadsheet. In the following screenshot,
the file is displayed using the LibreOffice software:

k ® ® output_ OH.csv |
D-B-B-08R X0 8- & 4 Q A B-8- Wiy LW 7 B »
teratonsans | 0 @ B 7 U L-B- T =3I =0 T4+ 1L @-%0Mm »
AL f« L = |LOCATION -
N U I [¢ [o e | ¢ [e [® [7%
1 [LOCATION [TIMESTAMP PRODUCT PRICE i B
2 [oH 08-27-2019 18:39:41 12346 2.99 |
3 |oH 08-27-2019 19:39:41 12346 2.9 : L
08-27-2019 20:39:41 12346 2.99 -
08-27-2019 21:39:41 12346 2.9 !
08-27-2019 22:39:41 12345 9.9 ! ®
08-27-2019 23:39:41 12345 7.99 !
08-28-2019 00:39:41 12346 2.9 ! fa
08-28-2019 01:39:41 12346 2.99 i
08-28-2019 02:39:41 12346 2.99 i
08-28-2019 03:39:41 12346 2.99 i
08-28-2019 04:39:41 12346 2.99 |
08-28-2019 05:39:41 12346 2.99 :
08-28-2019 06:39:41 12345 7.99 : l
08-28-2019 07:39:41 12345 9.9 !
08-28-2019 08:39:41 12346 2.99 i I
08-28-2019 09:39:41 12346 2.99 '
08-28-2019 10:39:41 12346 2.99 i
08-28-2019 11:39:41 12345 9.99 i
08-28-2019 12:39:41 12346 2.99 i
08-28-2019 13:39:41 12346 2.99 |
08-28-2019 14:39:41 12346 2.99 |
08-28-2019 15:39:41 12345 999 ;
08-28-2019 16:39:41 12345 9.99 s
08-28-2019 17:39:41 12346 2.99 !
08-28-2019 18:39:41 12346 2.99 -
08-28-2019 19:39:41 12345 7.99 !
08-28-2019 20:39:41 12346 2.99 |
08-28-2019 21:39:41 12345 7.99 i
08-28-2019 22:39:41 12346 2.9 :
|
=+ output_OH
Sheet 1 of 1 Default = English (Ireland) I- Average: ; Sum: 0 - ——O——+ 100%

Figure 7.1: Screenshot of product data

Notice how the CSV includes the location, which is stated as oH. Notice also the
format of the timestamp.

[232]

Chapter 7

How it works...

Let's take a look at the 1logs_to_csv.py script, used in step 2.

It imports from the price_log.py file, which contains the parsing of the logs. This is
similar to the code in the Extracting data from structured strings recipe in Chapter 1,
Let's Begin Our Automation Journey. The code adds a header with all the rows and
adds a location column. Let's take a look:

class PricelLog(object):

def __init_ (self, location, timestamp, product_id, price):
self.timestamp = timestamp
self.product_id = product_id
self.price = price
self.location = location

@classmethod
def parse(cls, location, text_log):
Parse from a text log with the format
[<Timestamp>] - SALE - PRODUCT: <product id> - PRICE:
<price>
to a Pricelog object

It requires a location
def price(string):
return Decimal(string)

FORMAT = ('[{timestamp}] - SALE - PRODUCT: {product:d} - '
"PRICE: {price:price}")

formats = {'price’: price}
result = parse.parse(FORMAT, text_log, formats)

return cls(location=location, timestamp=result['timestamp'],
product_id=result['product'],
price=result['price'])

@classmethod
def header(cls):

[233]

Cleaning and Processing Data

return ['LOCATION', 'TIMESTAMP', 'PRODUCT', 'PRICE']

def row(self):
return [self.location, self.timestamp, self.product_id,
self.price]

The file is converted into CSV format by the 1og_to_csv function in the logs_to_
csv.py file:

def log to csv(input_file, output file, location):
logs = [PricelLog.parse(location, line) for line in input_file]

writer = csv.writer(output_file)
writer.writerow(PricelLog.header())
writer.writerows(l.row() for 1 in logs)

The rest of the 1ogs_to_csv.py file deals with the parsing of arguments, which
was described in detail in Chapter 2, Automating Tasks Made Easy.

The resulting file contains the same information, but CSV is an easier format to
understand, process, and add extra information to, as we will see in the following
recipes.

There's more...

The main objective in this recipe is to import data from a text file into a CSV without
imposing any formatting restrictions on the raw data. For example, the date is in a
particular format. The timestamp format will change from file to file, as we will see
in the following recipes.

The description of the location is also left deliberately open, as we will use it to set
different kinds of locations in the following recipes.

If the log files are very big, reading the whole file and then saving it could
be memory-inefficient. In that case, you can process one line at a time, in the
following way:

def log to csv(input_file, output file, location):
writer = csv.writer(output_file)
writer.writerow(PriceLog.header())

for line in input_file:

[234]

Chapter 7

log = Pricelog.parse(location, line)
writer.writerow(log.row())

This approach can also be done in batches, reading and writing several lines at a
time. This can increase the throughput, though a bit of experimentation could be
required to find the optimal solution.

See also
* The Reading CSV files recipe in Chapter 4, Searching and Reading Local Files.

* The Extracting data from structured strings recipe from Chapter 1, Let's Begin
Our Automation Journey.

* The Preparing a task recipe in Chapter 2, Automating Tasks Made Easy.

Appending currency based on location

The resulting CSV file from the previous recipe doesn't contain currency information,
even though the location can indicate different places with different currencies. In
this recipe, we will process a CSV file to add extra information: the currency the
prices are in, and a conversion into US dollars.

Getting ready

We will use the resulting CSV file from the previous recipe that receives and
transforms logs to the following format:

[<Timestamp>] - SALE - PRODUCT: <product id> - PRICE: <price>
Each line will represent a sale log.

We will use the parse module. We should install the module, adding it to our
requirements. txt file as follows:
$ echo "parse==1.14.0" >> requirements.txt

$ pip install -r requirements.txt

In the GitHub repository, there are some log files to process with the following
structure:

sale logs/
OH

logs. txt
ON

[235]

Cleaning and Processing Data

logs. txt

The code can be found in the GitHub repository, at https: //github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapter07.

How to do it...

1. Import the data and transform it into a CSV file using the 1ogs_to_csv.py
script. The script adds the location as input. Create the files for both the on
and oT logs:

$ python logs to csv.py sale logs/OH/logs.txt output 1 OH.csv -1
OH

$ python logs to csv.py sale logs/ON/logs.txt output 1 ON.csv -1
ON
2. Process both resulting files using the location price.py script:
$ python location price.py output 1 OH.csv output 2 OH.csv
$ python location price.py output 1 ON.csv output 2 ON.csv

3. Check the resulting CSV files in a spreadsheet. In the following screenshots,
the files are displayed using the LibreOffice software:

A B \ c | D | E ‘ F | G |

1 |[LOCATION [TIMESTAMP PRODUCT PRICE COUNTRY CURRENCY USD |

2 ON 2018-08-27 19:05:55+00:00 12346 3.99CANADA CAD 3

3 ON 2018-08-27 20:05:55+00:00 12346 3.99CANADA CAD 3

4 ON 2018-08-27 21:05:55+00:00 12346 3.99CANADA CAD 3

5 ON 2018-08-27 22:05:55+00:00 12345 10.5CANADA CAD 8|

6 ON 2018-08-27 23:05:55+00:00 12346 3.99CANADA CAD 3
7 _ON 2018-08-28 00:05:55+00:00 12346 3.99CANADA CAD 3
8 ON 2018-08-28 01:05:55+00:00 12346 3.99CANADA CAD 3

9 ON 2018-08-28 02:05:55+00:00 12346 3.99CANADA CAD 3
10 ON 2018-08-28 03:05:55+00:00 12346 3.99CANADA CAD 3
11 ON 2018-08-28 04:05:55+00:00 12346 3.99CANADA CAD 3
12 ON 2018-08-28 05:05:55+00:00 12345 10.5CANADA CAD 8
13 ON 2018-08-28 06:05:55+00:00 12346 3.99CANADA CAD 3
14 ON 2018-08-28 07:05:55+00:00 12346 3.99CANADA CAD 3
15 ON 2018-08-28 08:05:55+00:00 12345 13.5CANADA CAD 10,
[16 ON 2018-08-28 09:05:55+00:00 12346 3.99CANADA CAD 3
[17 |ON 2018-08-28 10:05:55+00:00 12345 10.5CANADA CAD 8
| 18 |ON 2018-08-28 11:05:55+00:00 12346 3.99CANADA CAD 3
19 ON 2018-08-28 12:05:55+00:00 12346 3.99CANADA CAD 3
20 ON 2018-08-28 13:05:55+00:00 12346 3.99CANADA CAD 3
21 |ON 2018-08-28 14:05:55+00:00 12346 3.99CANADA CAD 3
22 ON 2018-08-28 15:05:55+00:00 12346 3.99CANADA CAD 3

Figure 7.2a: Screenshot of Canadian product data

[236]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07

Chapter 7

A B G 0| E F | G
1 [LOCATION [TIMESTAMP PRODUCT PRICE COUNTRY CURRENCY USD
2 |OH 08-27-2019 18:39:41 12346 2.99US uUsD 2.99
3 |OH 08-27-2019 19:39:41 12346 2.99US usD 2.99
4 OH 08-27-2019 20:39:41 12346 2.99US usD 2.99
5 |oH 08-27-2019 21:39:41 12346 2.99US uUsD 2.99
6 OH 08-27-2019 22:39:41 12345 9.99US uUSsD 9.99
_7 |OH 08-27-2019 23:39:41 12345 7.99US usD 7.99
8 OH 08-28-2019 00:39:41 12346 2.99US usD 2.99
9 OH 08-28-2019 01:39:41 12346 2.99US usD 2.99
10 OH 08-28-2019 02:39:41 12346 2.99US usD 2.99
11 |OH 08-28-2019 03:39:41 12346 2.99US usD 2.99
12 OH 08-28-2019 04:39:41 12346 2.99US usD 2.99
13 |OH 08-28-2019 05:39:41 12346 2.99US usD 2.99
14 |OH 08-28-2019 06:39:41 12345 7.99US uUsD 7.99
15 |OH 08-28-2019 07:39:41 12345 9.99US usD 9.99
16 OH 08-28-2019 08:39:41 12346 2.99US usD 2.99
17 |OH 08-28-2019 09:39:41 12346 2.99US usD 2.99
18 |OH 08-28-2019 10:39:41 12346 2.99US usD 2.99
19 OH 08-28-2019 11:39:41 12345 9.99US usD 9.99
20 |OH 08-28-2019 12:39:41 12346 2.99US usD 2.99
21 |OH 08-28-2019 13:39:41 12346 2.99US usD 2.99
22 OH 08-28-2019 14:39:41 12346 2.99US usD 2.99

Figure 7.2b: Screenshot of US product data

Notice how the currency changes depending on the location where the product
was sold, either Ohio (US) or Ontario (Canada). The prices are displayed in their
equivalent US Dollar value for comparison.

How it works...

Let's take a look at the location price.py script, used in step 2.

The end of the script file deals with the parsing of arguments, which was described
in detail in Chapter 2, Automating Tasks Made Easy.

The main function reads the input CSV and calls the add_price by location
function for each of the rows. It then saves the file:

def main(input_file, output_file):
csv.DictReader(input_file)
[add_price_by location(row) for row in reader]

reader
result

Save
header
writer

into csv format

result[0].keys()
csv.DictWriter(output_file, fieldnames=header)

writer.writeheader()

writer.writerows(result)

[237]

Cleaning and Processing Data

It uses the CSV DictReader class to transform each of the rows into a dictionary.
The dictionary is then passed for processing. The resulting rows are stored in the
output CSV file using a DictWriter class. The header for the fields of the output
file is obtained from the keys in the dictionary of the first output row.

The usage of DictReader and DictWriter was already described in Chapter 6, Fun
with Spreadsheets.

The most interesting code is in add_price by location. This code will detect the
country (USA or Canada) based on their location code. Let's take a look:

US_LOCATIONS = ['AL', 'AK', .., 'WY', 'DC']
CAD_LOCATIONS = ['AB', 'BC', .., 'NU', 'YT']
CAD_TO_USD = Decimal(@.76)

def add_price by location(row):
location = row['LOCATION"]
if location in US_LOCATIONS:
row['COUNTRY'] = 'USA'
row['CURRENCY'] = 'USD'
row["USD"'] = Decimal(row['PRICE'])
elif location in CAD_LOCATIONS:
row['COUNTRY'] = 'CANADA'
row['CURRENCY'] = 'CAD'
row["USD"'] = Decimal(row['PRICE']) * CAD_TO_USD
else:
raise Exception('Location not found")

return row

Based on the location, it derives the currency. Note that the two-letter codes for
Canadian provinces and territories and for US states are described in two lists.
The full description of each is in the CAD_LOCATIONS and US_LOCATIONS arrays.
If the detected location is a US state, the currency is set to US dollars, and it's set
to Canadian dollars for all the provinces and territories in Canada.

! It's very convenient that US states and Canadian provinces have

N\ 7
'@\‘ different unique codes, making them easy to distinguish. In other

/
g systems, this may be more complicated.

[238]

Chapter 7

It adds a new key to the dictionary for the country, the currency, and the US-dollar
equivalent of the price. These three keys are then added as columns to the output CSV.

Since Python 3.7, the dictionaries keep the insertion order. This
means that the last added key to the dictionary will be retrieved
| last when keys are presented. This wasn't the case in previous
\@’ versions, where we had to rely on OrderedDict, a specific kind
NIR of dictionary that preserves key order. We take advantage of
- this behavior regarding the generation of the header, as any new
element introduced will be stored as a new column at the end,
keeping the order of the old ones.

The resulting file provides information on each sale log in a common currency,
making comparisons easier.

There's more...

As we commented before, processing and distinguishing location and currency may
not be as straightforward as presented here. Different countries may have different
ways of presenting places, and in some cases, codes used to represent locations
from different countries may overlap.

The country is added as a column to have available later on.

The currency exchange rate is defined as a constant, but that's only an
approximation. It may be necessary to obtain it from an external source. For
example, www . exchangerate-api. com offers a free API to integrate exchange
rate conversions, as follows:

>>> import requests

>>> result = requests.get('https://api.exchangerate-api.com/v4/latest/
CAD')

>>> result.json() ['rates'] ['USD']

0.755081

More complicated setups may require access to specific exchange rate sources or to
be able to retrieve the historic information on rates.

L Most exchange rate sources have a limit on the number of calls, or

‘/@\‘ charge per access. Be sure to avoid constant polling for data and

=] store the rates for local usage.

[239]

http://www.exchangerate-api.com

Cleaning and Processing Data

See also
* The Preparing a CSV spreadsheet recipe from the previous section.
* The Reading CSV files recipe in Chapter 4, Searching and Reading Local Files.
* The Preparing a task recipe in Chapter 2, Automating Tasks Made Easy.

Standardizing the date format

The date time format in the logs is different depending on the location. In the
Canadian logs, the format is the standard ISO 8601 in the format YYYY-MM-DD.
The logs coming from the USA use the format MM-DD-YYYY. In this recipe, we will
append a new column with a standard format to unify both dates.

Getting ready
We will use the resulting CSV file from the previous recipe that receives and

transforms logs in the following format:

[<Timestamp>] - SALE - PRODUCT: <product id> - PRICE: <price>
Each line will represent a sale log.

We will use the parse module. We should install the module, adding it to our
requirements. txt file as follows:

$ echo "parse==1.14.0" >> requirements.txt

$ pip install -r requirements.txt

In the GitHub repository, there are some log files to process with the following
structure:

sale logs/
OH
logs. txt
ON
logs. txt
The code can be found in the GitHub repository at https://github.com/

PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapter07.

[240]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07

Chapter 7

How to do it...

1. Import the data and transform it into a CSV file using the logs_to_csv.py
script. The script adds the location as input. Create the files for both the on
and ot logs:

$ python logs to csv.py sale logs/OH/logs.txt output 1 OH.csv -1
OH

$ python logs to csv.py sale logs/ON/logs.txt output 1 ON.csv -1
ON
2. Process both resulting files using the location_price.py script:
$ python location price.py output 1 OH.csv output 2 OH.csv
$ python location price.py output 1 ON.csv output 2 ON.csv

3. Process both files using the standard_date.py script:
$ python standard date.py output 2 OH.csv output 3 OH.csv
$ python standard date.py output 2 ON.csv output 3 ON.csv

4. Check the resulting CSV files in a spreadsheet. In the following screenshots,
the files are displayed using the LibreOffice software:

|] A B \ = | o | E \ F | & | H

1 [LOCATION [TIMESTAMP PRODUCT PRICE COUNTRY CURRENCY USD STD_TIMESTAMP
| 2 |oH 08-27-2019 18:39:41 12346 2.99USA uUSsD 2.99/2019-08-27T17:39:41+00:00
| 3 |oH 08-27-2019 19:39:41 12346 2.99USA usD 2.99/2019-08-27T18:39:41+00:00
| 4 |OH 08-27-2019 20:39:41 12346 2.99USA usD 2.99/2019-08-27T19:39:41+00:00
| 5 |oH 08-27-2019 21:39:41 12346 2.99USA usD 2.99/2019-08-27T20:39:41+00:00

6 |OH 08-27-2019 22:39:41 12345 9.99USA usD 9.99'2019-08-27721:39:41+00:00
| 7 |oH 08-27-2019 23:39:41 12345 7.99USA uUSsD 7.9912019-08-27T22:39:41+00:00
| 8 |oH 08-28-2019 00:39:41 12346 2.99USA usD 2.992019-08-27T23:39:41+00:00
| 9 |oH 08-28-2019 01:39:41 12346 2.99USA uUsD 2.9912019-08-28T00:39:41+00:00
| 10 |OH 08-28-2019 02:39:41 12346 2.99USA usD 2.992019-08-28T01:39:41+00:00
| 11 |OH 08-28-2019 03:3%:41 12346 2.99USA usD 2.99/2019-08-28T02:39:41+00:00
112 |OH 08-28-2019 04:39:41 12346 2.99USA usD 2.99/2019-08-28T03:39:41+00:00
| 13 |OH 08-28-2019 05:39:41 12346 2.99USA uUsD 2.99,2019-08-28T04:39:41+00:00
| 14 |OH 08-28-2019 06:39:41 12345 7.99 USA uUsD 7.99/2019-08-28T05:39:41+00:00
| 15 |OH 08-28-2019 07:39:41 12345 9.99USA usD 9.99/2019-08-28T06:39:41+00:00
| 16 |OH 08-28-2019 08:39:41 12346 2.99USA uUsD 2.99/2019-08-28T07:39:41+00:00
|17 |OH 08-28-2019 09:39:41 12346 2.99USA usD 2.9912019-08-28T08:39:41+00:00
| 18 |OH 08-28-2019 10:39:41 12346 2.99USA uUsD 2.99'2019-08-28T09:39:41+00:00
|19 |OH 08-28-2019 11:39:41 12345 9.99USA uUSsD 9.99/2019-08-28T10:39:41+00:00
|20 |OH 08-28-2019 12:39:41 12346 2.99USA uUsD 2.9912019-08-28T11:39:41+00:00
| 21 |OH 08-28-2019 13:39:41 12346 2.99USA usD 2.99,2019-08-28T12:39:41+00:00
| 22 |OH 08-28-2019 14:39:41 12346 2.99USA uUSsD 2.99/2019-08-28T13:39:41+00:00

[241]

Cleaning and Processing Data

B | C | o | E | G | H
1 [LOCATION |[TIMESTAMP PRODUCT PRICE COUNTRY CURRENCY USD STD_TIMESTAMP

| 2 |ON 2018-08-27 19:05:55+00:00 12346 3.99CANADA CAD 3,2018-08-27 19:05:55+00:00
| 3 |ON 2018-08-27 20:05:55+00:00 12346 3.99CANADA CAD 3/2018-08-27 20:05:55+00:00
| 4 |ON 2018-08-27 21:05:55+00:00 12346 3.99 CANADA CAD 3,2018-08-27 21:05:55+00:00
| 5 |ON 2018-08-27 22:05:55+00:00 12345 10.5CANADA CAD 8/2018-08-27 22:05:55+00:00
| 6 |ON 2018-08-27 23:05:55+00:00 12346 3.99CANADA CAD 3'2018-08-27 23:05:55+00:00
| 7 |ON 2018-08-28 00:05:55+00:00 12346 3.99CANADA CAD 312018-08-28 00:05:55+00:00
| 8 |ON 2018-08-28 01:05:55+00:00 12346 3.99 CANADA CAD 312018-08-28 01:05:55+00:00
| 9 |ON 2018-08-28 02:05:55+00:00 12346 3.99CANADA CAD 32018-08-28 02:05:55+00:00
| 10 |ON 2018-08-28 03:05:55+00:00 12346 3.99CANADA CAD 312018-08-28 03:05:55+00:00

11 |ON 2018-08-28 04:05:55+00:00 12346 3.99CANADA CAD 312018-08-28 04:05:55+00:00
| 12 |ON 2018-08-28 05:05:55+00:00 12345 10.5CANADA CAD 8,2018-08-28 05:05:55+00:00
| 13 |ON 2018-08-28 06:05:55+00:00 12346 3.99CANADA CAD 3,2018-08-28 06:05:55+00:00
| 14 |ON 2018-08-28 07:05:55+00:00 12346 3.99CANADA CAD 3/2018-08-28 07:05:55+00:00

15 [ON 2018-08-28 08:05:55+00:00 12345 13.5CANADA CAD 10,2018-08-28 08:05:55+00:00
| 16 |ON 2018-08-28 09:05:55+00:00 12346 3.99CANADA CAD 3'2018-08-28 09:05:55+00:00
| 17 |ON 2018-08-28 10:05:55+00:00 12345 10.5CANADA CAD 812018-08-28 10:05:55+00:00
| 18 |ON 2018-08-28 11:05:55+00:00 12346 3.99CANADA CAD 31 2018-08-28 11:05:55+00:00
|19 |ON 2018-08-28 12:05:55+00:00 12346 3.99 CANADA CAD 32018-08-28 12:05:55+00:00

20 |ON 2018-08-28 13:05:55+00:00 12346 3.99 CANADA CAD 312018-08-28 13:05:55+00:00
| 21 |ON 2018-08-28 14:05:55+00:00 12346 3.99CANADA CAD 312018-08-28 14:05:55+00:00
| 22 |ON 2018-08-28 15:05:55+00:00 12346 3.99CANADA CAD 3,2018-08-28 15:05:55+00:00

Figure 7.3: Screenshots of consistent standardized timestamps

Notice how the times in the STD_TIMESTAMP column are formatted in the same
way, while those in the TIMESTAMP column are not.

How it works...

Let's take a look at the standard_date.py script, used in step 3.

The end of the script file deals with the parsing of arguments, which was described
in detail in Chapter 2, Automating Tasks Made Easy.

The main function reads the input CSV and calls the add_std_timestamp function

for each of the rows. It then writes the results in the output file:

def main(input_file, output_file):

csv.DictReader(input_file)
[add_price_by location(row) for row in reader]

reader =

result =

Save into csv format
header = result[0].keys()
writer =

writer.writeheader()
writer.writerows(result)

csv.DictWriter(output_file, fieldnames=header)

[242]

Chapter 7

It uses the CSV DictReader class to transform each of the rows into a dictionary,
which is then passed for processing. The output CSV file stores the resulting rows
using DictWriter. The output file field headers are obtained from the keys in the
dictionary of the first output row.

The usage of DictReader and DictWriter was already described in Chapter 6, Fun
with Spreadsheets.

Each of the rows is modified in the add_std_timestamp function, depending on the
country the log was written in. Let's take a look:

def add_std_timestamp(row):
country = row['COUNTRY"]
if country == 'USA':

row['STD_TIMESTAMP'] = american_format(row[' TIMESTAMP'])
elif country == 'CANADA':

row['STD_TIMESTAMP']
else:
raise Exception('Country not found')

row[' TIMESTAMP ']

return row

Based on the country of origin, this function transforms the date and creates a new
standardized timestamp.

Note that the country has been inserted into the data in the
previous recipe, having been derived from the location codes.
| Storing the country explicitly in the previous stage of processing
\@’ allows us to simplify the script for the date, as the data has been
AR already calculated. This may look straightforward in this example,
- but duplicating operations in different stages while processing data
is quite common as the focus while developing is generally only on
a small part of the code, and not the code as a whole.

The function adds a new key to the dictionary with a standard timestamp in ISO
8601 format. The logs produced in Canada already have this format, but the ones
generated in the United States need to be translated. The translation is done in the
american_format function:

def american_format(timestamp):

[243]

Cleaning and Processing Data

Transform from MM-DD-YYYY HH:MM:SS to iso 8601

FORMAT = 'Z%m-%d-%Y %H:%M:%S"

parsed_tmp = datetime.strptime(timestamp, FORMAT)
time with_tz = parsed tmp.astimezone(timezone.utc)
isotimestamp = time_with_tz.isoformat()

return isotimestamp

The timestamp is parsed using the standard Python library with datetime.
strptime with the format "$m-%d-%y %H:3%M:%s", which corresponds to MM-DD-
YYYY HH:MM:SS. The resulting datetime object is then added to the UTC time
zone, transformed into an ISO 8601 valid string, and then returned.

]
\@'_ Remember that since Python 3.7, the dictionaries keep the insertion

4 order.

The resulting file allows us to compare times in the same format.

There's more...

In some cases, the detection of the timestamp format may not be dependent on
other parameters such as the country and will require you to try several formats to
see which one fits. When working with many sources, this can actually become a
problem, as a single row may not contain enough information. For example, a date
05-06-2019 could be June 5" in international format, or May 6™ in US format. An
analysis of the whole file may be required or even taking a guess and validating it
afterward.

The time in all the log files for the recipe is stored in UTC time, but that's not
necessarily true in every case. It can be stored in different time zones.

In our example, the time zones in Ohio and Ontario are the same, but the time zones
may be different depending on the location. Depending on the logs, this may require
an adjustment.

[244]

Chapter 7

The ISO 8601 format may include the time zone. For example, the
| ending in +00 : 00 shows the time zone is UTC. Don't assume that
N~ o
@ the time format will always include time zone information. If it's
N not present, it may lead to inconsistent times in your data. Always
- include the time zone, or use the times in UTC when combining
different sources to avoid confusion.

If different time zones are used, the delorean module, introduced in Chapter 1, Let's
Begin Our Automation Journey, helps define the times and match equivalent times

in an easy way:

>>> import delorean

>>> timestamp = delorean.parse('2018-08-28 20:05:55+00:00")

>>> timestamp EST = timestamp.shift('US/Eastern')

>>> timestamp EST.datetime.isoformat ()

'2018-08-28T16:05:55-04:00"

The full Delorean documentation can be found online at https://delorean.
readthedocs.io/.

Notice how the old timestamps are still present in the CSV file, instead of being
overwritten by the new timestamp column. Unless there's a clear need to save space,
it's best to keep it for reference and to detect possible problems later. It also allows
us to know easily when this stage has been applied to the given CSV file.

See also

* The Appending currency based on location recipe in the previous section.
* The Reading CSV files recipe in Chapter 4, Searching and Reading Local Files.
* The Preparing a task recipe in Chapter 2, Automating Tasks Made Easy.

Aggregating results

Once the data is cleaned, we can process the results. For our example, we will
calculate the average sale price by both location and day, as well as the total sales
by both location and day in the data range. As our data is stored by location, this
will be done in two steps. First, we'll create the files per location, and then by date,
using the date on the location results.

[245]

https://delorean.readthedocs.io/
https://delorean.readthedocs.io/

Cleaning and Processing Data

Getting ready

We will use the resulting CSV file from the previous recipe that receives and
transforms logs in the following format:

[<Timestamp>] - SALE - PRODUCT: <product id> - PRICE: <price>
Each line will represent a sale log.

We will use the parse module and the delorean module. We should install the
modules, adding them to our requirements. txt file as follows:

$ echo "parse==1.14.0" >> requirements.txt

$ echo "delorean==1.0.0" >> requirements.txt

$ pip install -r requirements.txt

In the GitHub repository, there are some log files to process with the following
structure:
sale_logs/
OH
logs. txt
ON

logs. txt

The code can be found in the GitHub repository, at https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapter07.

How to do it...

1. Import the data and transform it into a CSV file using the logs_to_csv.py
script. The script adds the location as input. Create the files for both the on
and oT logs:

$ python logs to csv.py sale logs/OH/logs.txt output 1 OH.csv -1
OH

$ python logs to csv.py sale logs/ON/logs.txt output 1 ON.csv -1
ON
2. Process both resulting files using the location_price.py script:
$ python location price.py output 1 OH.csv output 2 OH.csv
$ python location price.py output 1 ON.csv output 2 ON.csv

[246]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07

Chapter 7

3. Process both files using the standard_date. py script:
$ python standard date.py output 2 OH.csv output 3 OH.csv
$ python standard date.py output 2 ON.csv output 3 ON.csv

4. Process both resulting files using the aggregate by _location.py script:
$ python aggregate by location.py output 3 ON.csv aggregate ON.csv
$ python aggregate by location.py output 3 OH.csv aggregate OH.csv

5. Check the resulting CSV files in a spreadsheet. In the following screenshots,
the files are displayed using the LibreOffice software:

A B | ¢ | b |

1 [DATE TOTALUSD NUMBER AVERAGE
2 |2019-08-27 32.93 7 4.7
3 [2019-08-28 114.76 24 4.78
4 |2019-08-29 111.76 24 4.66
5 |2019-08-30 113.76 24 4.74
6 |2018-08-31 135.76 24 5.66
7 |2019-09-01 112.76 24 4.7
~ 8 |2019-09-02 126.76 24 5.28
9 |2019-09-03 114.76 24 4.78
10 |2019-09-04 115.76 24 4.82
11 |2019-09-05 100.76 24 4.2
12 |2019-09-06 119.76 24 4.99
A B | ¢ | D |
1 |DATE TOTAL USD NUMBER AVERAGE

2 |2018-08-27 20 5 4
~ 3 |2018-08-28 113 24 4.71
4 |2018-08-29 120 24 5
~ 5 |2018-08-30 120 24 5
6 2018-08-31 115 24 4.79
7 |2018-09-01 106 24 4.42
~ 8 |2018-09-02 126 24 5.25
~ 9 |2018-09-03 159 24 6.62
10 |2018-09-04 114 24 4.75
11 |2018-09-05 134 24 5.58
12 |2018-09-06 94 24 3.92

Figure 7.4: Screenshots of aggregated results

[247]

Cleaning and Processing Data

How it works...

Let's take a look at the aggregate by location.py script, used in step 6.

The final part of the script file deals with the parsing of arguments, which was
described in detail in Chapter 2, Automating Tasks Made Easy.

The main function reads the input CSV and calls the calculate results function
to generate the aggregated reports. It then writes the results in the output file. The
usage of DictReader and DictWriter was already described in Chapter 6, Fun
with Spreadsheets.

In the calculate_results function, the aggregation takes place. Each line is
analyzed to check its date, and all the entries with the same date are aggregated:

def calculate results(reader):
result = []
last_date = None
total usd = ©
number = 0

for row in reader:
date = parse_iso(row['STD_TIMESTAMP'])
if not last_date:
last_date = date

if last_date < date:

result.append(line(date, total_usd, number))
total _usd = ©

number = 0

last _date = date

number += 1
total _usd += Decimal(row['USD'])

result.append(line(date, total usd, number))
return result

The code takes note of the latest date and keeps aggregating until it changes. Every
time there's a change in date, the line is appended to the result array.

[248]

Chapter 7

Note that this takes advantage of the fact that the data is sorted by
| timestamp. In this example, the timestamps in the logs are sorted
\@l by origin, but there may be scenarios where it is necessary to
- perform some ordering and/ or filtering. Use the same techniques
- we described in this chapter, and create an extra step with the
sorting process if necessary.

To obtain the date, the input ISO format is parsed using the delorean module:

def parse_iso(timestamp):
total = delorean.parse(timestamp, dayfirst=False)

return total.date

The dayfirst=False parameter ensures that the timestamp is correctly interpreted.

The new (as yet unreleased) version of delorean will include

\/‘/ a specific isofirst parameter to explicitly parse ISO 8601.

This version hasn't been released at the time of writing, but it's
displayed in the documentation.

Each new line is configured in dictionary format on the 1ine function, which is as
follows:

def line(date, total_usd, number):
data = {
'DATE': date,
'"TOTAL USD': total_usd,
"NUMBER ' : number,

"AVERAGE': round(total_usd / number, 2),
}

return data

Each of the lines has the date, the total USD from sales, the number of sales, and an
average price per item.

[249]

Cleaning and Processing Data

Storing the aggregated total and the number of events that
A comprise this total allows us to aggregate the values further
- /@\' and calculate the average. Just the average on its own cannot be
g aggregated further, but the aggregated total and the number of
events can, and the average can easily be calculated from them.

The aggregated file is stored in CSV format, after calculate_results returns the
value to main.

There's more...

A careful examination of the input dates will show that they are not exactly identical.
While the format in the output 3 OH.csv file is YYYY-MM-DDTHH:MM:S5+00:00,
the format in the file output 3 ON.csvis YYYY-MM-DD HH:MM:SS+00:00. Note
the space where the T is. The ISO 8601 format uses the T character to separate

the date from the time, but it's quite common to see it separated with a space,

as described in RFC3339 (https://tools.ietf.org/html/rfc3339), so most
software tools will be able to parse it, including delorean.

L Noticing at a later stage that the data is not completely
‘@\‘ standardized is actually a common problem. Be forgiving with the

4

g input data and try to be as strict as possible with the data output.

The full delorean documentation can be found online at https://delorean.
readthedocs.io/.

The average price per sale is rounded to two decimal places, which keeps it up to
the penny and makes sense in this specific case. This is done through the built-in
round function that accepts an extra parameter with the number of decimal places
to round to:

>>> round(3.14159)
3

>>> round(3.14159, 4)
3.1416

If you need more control to round either up or down to the next integer, you can
use the math.ceil and math. floor functions:

>>> import math

>>> math.ceil (3.14159)

[250]

https://tools.ietf.org/html/rfc3339
https://delorean.readthedocs.io/
https://delorean.readthedocs.io/

Chapter 7

4
>>> math.floor (3.14159)
3

For more general statistical operators other than the average, the Python module in

the statistics standard library has functions such as median () and quantiles ().
Check the documentation at https://docs.python.org/3/library/statistics.
html.

While not required for the average, some of these measurements (such as the mode
or median) may require working with the full data set in memory. This limits the
amount of data that can be processed, especially for very big sets of data.

The debate over what exactly is big data is difficult, as there's not
a single point where regular data becomes big. While an in-depth
discussion about big data is out of scope for this book, its main
characteristic is that it is data that cannot be contained in a single
computer, requiring distributed processing in different computers.
-(0)- This complicates the operation a lot, to the point of requiring
AR specialized skills to deal with it. Before moving to that area, think
about whether the data could fit on a specific server with as much
memory as possible and if that could be helpful. This approach
of "throwing hardware at a problem" can go a long way, and it's
typically cheaper than the work involved in re-architecting the
code.

Please note that calculating statistics can be a difficult challenge requiring specific
knowledge to avoid problems such as outliers modifying the average, or more subtle
issues such as unrepresentative sampling of the data. When calculating something
complicated, double check your assumptions and verify that the result correctly
represents the desired measure. This may seem like an easy task to do, but it can be
trickier than expected.

See also

* The Standardizing the date format recipe from the previous section.

* The Reading CSV files recipe in Chapter 4, Searching and Reading Local Files.
* The Preparing a task recipe in Chapter 2, Automating Tasks Made Easy.

[251]

https://docs.python.org/3/library/statistics.html
https://docs.python.org/3/library/statistics.html

Cleaning and Processing Data

Process data in parallel

The processing presented in the previous recipe works well. But it needs to process
each file one by one. When we have a small number of files, this may be fine, but
with huge numbers of files to handle, this will not be efficient. Each time we will be
using a single CPU core, which is not the best for this type of number crunching task.

In this recipe, we will see how to process the files in parallel, making use of all the
cores of the computer to speed up the process and greatly increase the throughput.

Getting ready

We will use the resulting CSV file from the previous recipe that receives and
transforms logs in the following format:

[<Timestamp>] - SALE - PRODUCT: <product id> - PRICE: <price>
Each line will represent a sale log.

We will use the parse module and the delorean module. We should install the
modules, adding them to our requirements. txt file as follows:

$ echo "parse==1.14.0" >> requirements.txt
$ echo "delorean==1.0.0" >> requirements.txt

$ pip install -r requirements.txt

In the GitHub repository, there are some log files to process with the following
structure:

sale logs/
OH
logs. txt
ON

logs. txt

The code can be found in the GitHub repository at https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapter07.

[252]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07

Chapter 7

How to do it...

1.

Import the data and transform it into a CSV file using the logs_to_csv.py
script. The script adds the location as input. Create the files for both the on
and oT logs:

$ python logs to csv.py sale logs/OH/logs.txt output 1 OH.csv -1
OH

$ python logs to csv.py sale logs/ON/logs.txt output 1 ON.csv -1
ON

Process both resulting files using the location_price.py script:

$ python location price.py output 1 OH.csv output 2 OH.csv

$ python location price.py output 1 ON.csv output 2 ON.csv

Process both files using the standard date.py script:
$ python standard date.py output 2 OH.csv output 3 OH.csv
$ python standard date.py output 2 ON.csv output 3 ON.csv

Process all the files in a single call to aggregate_by location parallel.py
specifying the files to process:

$ python aggregate by location parallel.py "output 3 *.csv"
Processing output 3 ON.csv

Processing output 3 OH.csv

Done with output 3 ON.csv => aggregate ON.csv

Done with output 3 OH.csv => aggregate OH.csv

Check the resulting CSV files in a spreadsheet. In the following screenshots,
the files are displayed using the LibreOffice software:

A | B (o D
1 |DATE TOTALUSD NUMBER AVERAGE
2 |2019-08-28 32.93 7 4.7
3 |2019-08-29 114.76 24 4.78
4 |2019-08-30 111.76 24 4.66
5 |2019-08-31 113.76 24 4.74
6 |2019-09-01 135.76 24 5.66
_ 7 |2019-09-02 112.76 24 4.7
8 |2019-09-03 126.76 24 5.28
9 |2019-09-04 114.76 24 4.78
10 |2019-09-05 115.76 24 4.82
11 |2019-09-06 100.76 24 4.2
12 |2019-09-07 119.76 24 4.99

[253]

Cleaning and Processing Data

A B ¢ [o [
1 DATE |TOTALUSD NUMBER AVERAGE
2 |2018-08-28 20 5 4
3 |2018-08-29 113 24 4.71
4 |2018-08-30 120 24 5
~ 5 |2018-08-31 120 24 5
6 2018-09-01 115 24 4.79
7 |2018-09-02 106 24 4.42
8 [2018-09-03 126 24 5.25
9 |2018-09-04 159 24 6.62
10 (2018-09-05 114 24 4.75
11 |2018-09-06 134 24 5.58
12 (2018-09-07 94 24 3.92

Figure 7.5: The results of the recipe

How it works...

Let's take a look at the aggregate_by_ location_parallel.py script, used in step 6.

The final part of the script file deals with the parsing of arguments, which was
described in detail in Chapter 2, Automating Tasks Made Easy.

The main function detects the input files to aggregate and then processes them in
parallel:

def main(input_glob):
input_files = [filename for filename in glob.glob(input_glob)]

with concurrent.futures.ProcessPoolExecutor(max_workers=4) as
executor:
futures = [executor.submit(aggregate_filename, filename)
for filename in input_files]
concurrent.futures.wait(futures)

The function first uses the input glob to filter the related files and stores them in the
input_files variable. This is done through the glob.glob function, which returns
the filenames that match the glob.

[254]

Chapter 7

Globs are patterns commonly encountered to match groups of
filenames with wildcard characters, normally *. For example,

\g glob *.txt will match any filename that has the extension txt.
)

Python includes a glob module as part of its standard library. You
can check the full documentation at https://docs.python.
org/3/library/glob.html.

The glob pattern searches by default in the current directory. Keep this in mind in
case it requires tweaking.

The next step is to make a call using a parallel executor for each of the files to the
aggregate_filename function. We will describe this function shortly, but let's take
a look at the executor first:

with concurrent.futures.ProcessPoolExecutor(max_workers=4) as
executor:

futures = [executor.submit(aggregate_filename, filename)
for filename in input_files]
concurrent.futures.wait(futures)

First, we define the executor using a with statement and a call to
ProcessPoolExecutor. ProcessPoolExecutor creates a number of process
workers that will run the submitted calls to the executor in the background.

ProcessPoolExecutor uses independent processes
created in the background, instead of threads. You can use
ThreadPoolExecutor as well.

Due to some limitations arising from how Python is structured
internally, using threads is not optimal for workloads that are CPU
—-(0)- intensive, such as numerical operations. Threads are adequate for
AUA I/ O operations including calling external APIs and reading from
disk.

For this particular workload that relies on crunching numbers, the
number of processes (and therefore workers) should be the same
as the number of cores in the CPU used. We assumed four for this
example, which is a common number in desktop computers.

[255]

https://docs.python.org/3/library/glob.html
https://docs.python.org/3/library/glob.html

Cleaning and Processing Data

The next step is to create a future for each filename. The future is an object that
references the call that will be executed in the background by the executor. When
it's done, the future object will store the result.

\

! 7/
/@\

You can think of a future object as a ticket for a valet car cleaning,.
You submit the task, get a ticket, and can go do other things. When
you're done, you hand back the ticket and may need to wait until
it's finished, if there's still some work pending.

The last step is to wait until all futures are completed by calling concurrent.
futures.wait. Note that there's no result to check for the futures in this specific
example.

We introduced futures and executors in the Speeding up web scraping recipe in
Chapter 3, Building Your First Web Scraping Application. In that recipe, we used
a thread-based future.

The task to be executed wraps the aggregation of the file. Let's take a look:

from aggregate_by location import main as main_by file

def aggregate_filename(filename):

file:

try:

print(f'Processing {filename}")

match = re.match(r'output 3 (.*).csv', filename)
location = match.group(1)
output_file = f'aggregate {location}.csv'

with open(filename) as in_file, open(output_file, 'w') as out_

main_by file(in_file, out_file)

print(f'Done with {filename} => {output_file}', flush=True)

except Exception as exc:

print(f'Unexpected exception {exc}')

At the core of it, there's a call to main_by_ file. This method is imported directly
from the Aggregating results recipe from the previous section. It receives an input
file and produces an output file. These files are opened with read and write access
using the with statement.

[256]

Chapter 7

The names of the files are determined beforehand. The input file is a parameter of the
function, but the output file is obtained from it. It uses the regex output_3_(.*).
csv file to extract the location from the filename in a match group:

match = re.match(r'output 3 (.*).csv', filename)
location = match.group(1)
output_file = f'aggregate_{location}.csv’

The input filename and the resulting output file are printed to provide feedback
while they are executing.

Working with regexes was described in more detail in the Introducing regqular
expressions and Going deeper with reqular expressions recipes in Chapter 1, Let's Begin
Our Automation Journey.

The resulting file is the same as the one produced in the previous Aggregating results
recipe, but in this case, we process the files in parallel, up to four at the same time.
This speeds up the process significantly.

There's more...

Working with parallel tasks has multiple advantages, but there are also some
caveats that need to be taken into account.

Executing multiple tasks may make exceptions for stopping the execution of

the whole script, as would happen with single-task runs. In our example, the
aggregate_filename function contains a try/except block that will capture any
possible issues and log the error. The rest of the files will continue, but at least the
error can be noticed and won't be silently ignored.

This is actually part of the Zen of Python, available by calling
L, import this.
’@ Errors should never pass silently.

Unless explicitly silenced.

The script could also include an extra check to see whether a particular file has
already been created, after determining the output filename. This can be checked
with the os.path.isfile function:

import os.path

output_file = f'aggregate_{location}.csv'
if os.path.isfile(output_file):

[257]

Cleaning and Processing Data

Return

with open(filename) as in_file ...

When dealing with large numbers of files, to repeat the execution of the script
without starting from the beginning is a great advantage. A common problem

is to process a gigantic amount of data, to have an error when processing is 80%
complete, and then to restart the script from the beginning, having to redo all the
work.

If possible, invest a bit of time in saving partial results to disk or other storage
places, so they can be skipped over, thereby speeding up the processing.

A Keep the working dataset small for the purpose of development. It

',@\' will allow you to iterate quickly and limits distractions. Also, store

g already processed data on disk.

One of the print statements to produce feedback adds the £1ush parameter:
print(f'Done with {filename} => {output_file}', flush=True)

The flush parameter will use the print statement to display the message
immediately. If £1ush is not set, or if it's set to False, the message won't be printed
instantly on screen, but goes to an intermediate buffer. The buffer will be printed
when the operating system decides to do it, usually after a newline.

This may cause a small delay. That delay can be noticeable in certain cases, such as
in the last task executed. In that case, the print buffer might hold information, but
the program exits before the information is printed. In a single-task program, before
exiting, the buffer is printed, but that's not guaranteed in multitask applications.

The parallel nature of the multitask application may also mean that the order
of the files being processed is not consistent from one run to the next. To avoid
problems, each of the tasks should be independent of each other to avoid
introducing dependencies.

To learn more about futures and executors, check the Python documentation
at https://docs.python.org/3/library/concurrent . futures.html.

[258]

https://docs.python.org/3/library/concurrent.futures.html

Chapter 7

See also

* The Aggregating Results recipe from the previous section.
* The Reading CSV files recipe in Chapter 4, Searching and Reading Local Files.
* The Preparing a task recipe in Chapter 2, Automating Tasks Made Easy.

* The Speeding up web scraping recipe in Chapter 3, Building Your First WWeb
Scraping Application.

Process data with Pandas

For some operations, simple calculations are not enough. Sometimes, operations may
have some nuances in the way they are calculated and have problems with precision
due to using certain kinds of types.

Python allows us to use big numbers automatically, but in certain
L languages, adjusting to big numbers could be a challenge. Numbers
‘/@\‘ in computing have limitations such as limited precision or ranges
g where they are accurate. These limitations may not be obvious at

first glance.

Even more so, Python is known not to have an amazing number-crunching
performance. Complicated mathematical operations will take longer compared to
a compiled language such as C++ or even Java.

That's why using a specialized package can greatly help. They deal with a lot of
complexities of the treatment of data, and also produce better performance, as
they're optimized for that.

In this recipe, we will see how to process the files using the Pandas library, which
is an easy-to-use data analysis library for Python that's widely used by the scientific
community.

Getting ready

We will use the resulting CSV file from the previous recipe that receives and
transforms logs in the following format:

[<Timestamp>] - SALE - PRODUCT: <product id> - PRICE: <price>

Each line will represent a sale log.

[259]

Cleaning and Processing Data

We will use the pandas module. We should install the module, adding it to our
requirements. txt file as follows:
$ echo "pandas==1.0.1" >> requirements.txt

$ pip install -r requirements.txt

In the GitHub repository, there are some log files to process with the following
structure:
sale logs/
OH
logs. txt
ON

logs. txt

The code can be found in the GitHub repository at https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapter07.

How to do it...

1. Import the data and transform it into a CSV file using the logs_to_csv.py
script. The script adds the location as input. Create the files for both the on
and oT logs:

$ python logs to csv.py sale logs/OH/logs.txt output 1 OH.csv -1
OH

$ python logs to csv.py sale logs/ON/logs.txt output 1 ON.csv -1
ON
2. Process both resulting files using the location price.py script:
$ python location price.py output 1 OH.csv output 2 OH.csv
$ python location price.py output 1 ON.csv output 2 ON.csv

3. Process both files using the standard_date.py script:
$ python standard date.py output 2 OH.csv output 3 OH.csv
$ python standard date.py output 2 ON.csv output 3 ON.csv

[260]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter07

Chapter 7

Process all the files in a single call to aggregate_by location pandas.py,
specifying the files to process:

$ python aggregate by location by pandas.py output 3 OH.csv
aggregate pd OH.csv

$ python aggregate by location by pandas.py output 3 ON.csv
aggregate pd ON.csv

Check the resulting CSV files, aggregate_pd_OH.csv and aggregate_pd_
ON.csv, in a spreadsheet. In the following screenshots, the files are displayed
using the LibreOffice software:

| A B | C | D |
1 [DATE TOTAL USD NUMBER AVERAGE
2 |2018-08-28 20 5 4
3 [2018-08-29 113 24 4.71
4 |2018-08-30 120 24 5
5 [2018-08-31 120 24 5
6 |2018-09-01 115 24 4.79
7 |2018-09-02 106 24 4.42
8 |2018-09-03 126 24 5.25
9 [2018-09-04 159 24 6.62
10 [2018-09-05 114 24 4.75
11 [2018-09-06 134 24 5.58
12 |2018-09-07 94 24 3.92

| A B | ¢l D |
1 [DATE TOTAL USD NUMBER AVERAGE
2 [2018-08-28 20 5 4
3 |2018-08-29 113 24 4.711
4 12018-08-30 120 24 5
5 {2018-08-31 120 24 5
6 |2018-09-01 115 24 4.79
_7_12018-09-02 106 24 4.42
8 {2018-09-03 126 24 5.25
9 |2018-09-04 159 24 6.62
10 2018-09-05 114 24 4.75
11 |2018-09-06 134 24 5.58
12 |2018-09-07 94 24 3.92

Figure 7.6: Checking the results of the recipe

[261]

Cleaning and Processing Data

How it works...

Let's take a look at the aggregate by location pandas.py script, used in step 6.

same chapter.

\/‘/ This recipe is equivalent to the Agqregating results recipe in this

The final part of the script file deals with the parsing of arguments, which was
described in detail in Chapter 2, Automating Tasks Made Easy.

In Pandas, the basic data model is called a DataFrame, which, in essence, is a
representation of a table with rows and columns. Most of the operations are related
to mutating the DataFrame.

The main function reads the input CSV and calls the calculate results function to
generate the aggregated reports. The usage of DictReader was already described in
the Updating CSV spreadsheets recipe in Chapter 6, Fun with Spreadsheets. Calculate_
results returns a DataFrame:

def main(input_file, output_file):
reader = csv.DictReader(input_file)
result = calculate_results(reader)

output_file.write(result.to_csv())

The write operation to the output file uses the . to_csv () function that's available
in Pandas for a DataFrame. This generates a text result that's equivalent to the CSV
format. The data is written using the low-level output .write () call.

In the calculate_results function, the aggregation takes place. The aggregation
takes places in three phases. First, the data is imported into a DataFrame, then the
values are aggregated. Finally, the data is rounded to two decimal positions for
compatibility. Let's take a look at the code:

def pandas_format(row):
row['DATE'] = pd.to_datetime(row['STD TIMESTAMP'])
row['USD'] = pd.to_numeric(row['USD"'])

return row

[262]

Chapter 7

def calculate_results(reader):
data = pd.DataFrame(pandas_format(r) for r in reader)

by usd
result

data.groupby(data['DATE'].dt.date)['USD"]
by _usd.agg(['sum', 'count', 'mean'])

result = result.round(2)

result = result.rename(columns={
'sum': 'TOTAL USD',
‘count': 'NUMBER',
"mean': 'AVERAGE',

1)

return result

The first line imports the data into a Pandas DataFrame. The pandas_format
function adds the DATE column, transforming the standard timestamp into

a datetime object, and transforms the USD column into a numeric format. This
is all laying the groundwork to allow Pandas to work with these columns.

The core of the aggregation happens in these two lines:

by _usd = data.groupby(data['DATE'].dt.date)['USD"]
result = by usd.agg(['sum', 'count', 'mean'])

The first line transforms the DataFrame to group the results by the DATE column
(which is a full datetime object) but only by its date, without hour information.
This aggregates the results by whole days. The grouped values are only presented
for the usp column.

The second line aggregates the results, in three different ways: Sum is used to get
the total results, count to get the number of events, and mean for the average value.
They all refer to the UsD column, selected previously.

The rest of the calculate_results function is more straightforward. It first rounds
the results to two digital positions with . round (2). It then changes the names of
the columns to be consistent with the previous recipes. The . rename function uses

a dictionary to define the input and output results.

[263]

Cleaning and Processing Data

The resulting CSV file is equivalent to the one presented in the Aggregating results
recipe, except for minimal format differences.

There's more...

The pattern shown in calculate_results when applying changes and overwriting
the results is very common in Pandas:

result = by usd.agg(['sum', 'count', 'mean'])
result = result.round(2)
result = result.rename(...)

This process can also be concatenated easily into the following;:
result = by usd.agg(['sum', 'count', 'mean']).round(2).rename(...)

This way of working means that for each operation, a copy of the data is generated.
For very big collections of data, this may not be efficient. You can perform most
operations without making a copy by using the inplace argument. This will mutate
them without using extra memory space or copying data around.

Consider the following, for example:

result.rename(columns={
'sum': 'TOTAL USD',
‘count': 'NUMBER',
'mean': 'AVERAGE',
}, inplace=True)

The preceding code will replace the columns without making a copy. It will return
None instead. This doesn't allow us to use chained operations and it's generally
considered bad practice. Use this only when having problems with memory.

[264]

Chapter 7

Pandas is a big, complex package that has a lot of usages, from statistical analysis to
plotting to complex mathematical applications. It is widely used in the data science
community. Pandas uses the approach of describing the desired result, instead of the
operations to perform.

This approach is known as declarative, as opposed to imperative.
Declarative languages aim at describing the result, the WHAT,
/ while imperative languages describe the HOW. The most common
\/;p; example of a declarative language is the SQL language, used to
interact with databases. Python is mainly an imperative language,
but as we see in Pandas, the declarative approach can be used as
well.

Pandas is very commonly used with Jupyter Notebook. This application allows users
to create rich Python sessions that mix code execution, documentation, and graphs
for a rich environment in the form of notebooks that can be accessed via a web
browser. It's capable of automatically presenting data from modules such as Pandas
or Matplotlib.

The aim of this project is to allow the exploration of data, instead of following a more
repetitive process as when using an automated tool, but it's a fantastic tool to know
how to use.

The notebook can be tested online at https://jupyter.org/try. Go to the main
web page at https://jupyter.org/ to check how to install it locally and read the
whole documentation.

[265]

https://jupyter.org/try
https://jupyter.org/

Cleaning and Processing Data

Here is an example session displaying some data:

& hub,gke.mybinder.argluser/ipythan-ipython-in-depth-wkxpiB3d/noteboaks/binder/Index ipynb
TJuUpYter Index s changos)
Edt View el Ca Komel Widges Help

B+ ¥ &0 & &% HiRn B C B c : @ LDownioas & O O GiHE % Binder

Welcome to Jupyter!

: 2
2]: import pandas as pd

111 df = pd.DataPramei|
Country's ['Spai
‘Popalation’: [46

1]

411 df.head()

Country Popslation

L Span 4668
1 Germany 8279
2 e 6544
2 haly BOLE
In [5]: df.plot.bar{x='Country”, y="Population'})
: <matplotlib.axes. subpl at Ox7£620ebleddex

o B N M & EEB 3B

* Dea0® 60

Vistrepo | Copy Binder ink

Figure 7.7: The Jupyter Notebook

You can find the complete Pandas documentation at https://pandas.pydata.org/

docs/user guide/index.html.

See also

* The Aggregating results recipe from earlier in the chapter.

* The Reading CSV files recipe in Chapter 4, Searching and Reading Local Files.
* The Preparing a task recipe in Chapter 2, Automating Tasks Made Easy.

[266]

https://pandas.pydata.org/docs/user_guide/index.html
https://pandas.pydata.org/docs/user_guide/index.html

Developing Stunning Graphs

Graphs and images are fantastic ways of presenting complex data in an easy and

understandable way. In this chapter, we will make use of the powerful matplotlib

library to learn how to create all kinds of graphs. matplotlib is a library that's

aimed at displaying data in multiple ways, and it can create stunning plots that help

transmit and display information in the best way possible.

\ ! /
/@\

matplotlib is well known and interacts well with other tools in
the Python ecosystem. For example, matplotlib graphs can also
be automatically displayed by Jupyter Notebooks as introduced in
Chapter 7, Cleaning and Processing Data.

The graphs we'll cover will go from simple bar graphs to line or pie charts,
and combine multiple plots in the same graph, annotate them, or even draw
geographical maps.

The following recipes will be covered in this chapter:

* Plotting a simple sales graph

* Drawing stacked bars

* Plotting pie charts

* Displaying multiple lines

* Drawing a scatter plot

* Visualizing maps

* Adding legends and annotations

[267]

Developing Stunning Graphs

* Combining graphs

* Saving charts

Let's start by creating our first graph.

Plotting a simple sales graph

In this recipe, we'll see how to draw a sales graph by drawing bars proportional to
sales in different periods.

Getting ready

We can install matplot1lib in our virtual environment using the following
commands:

$ echo "matplotlib==3.2.1" >> requirements.txt

$ pip install -r requirements.txt

In some OSes, this may require us to install additional packages; for example,
in Ubuntu, it may require us to run apt-get install python3-tk. Check the
matplolib documentation for details.

If you are using macQOS, it's possible that you'll get an error like this: RuntimeError:
Python is not installed as a framework. Refer to the matplotlib documentation on
how to fix it: https://matplotlib.org/fag/osx_framework.html.

How to do it...

1. Importmatplotlib:
>>> import matplotlib.pyplot as plt

2. Prepare the data to be displayed on the graph:
>>> DATA = (
('Q1 2017', 100),
('Q2 2017', 150),
('Q3 2017', 125),
('Q4 2017', 175),
<)

3. Split the data into usable formats for the graph. This is a preparation step:
>>> POS = list(range(len(DATA)))

[268]

https://matplotlib.org/faq/osx_framework.html

Chapter 8

>>> VALUES = [value for label, value in DATA]
>>> LABELS = [label for label, wvalue in DATA]

Create a bar graph with the data:

>>> plt.bar (POS, VALUES)
<BarContainer object of 4 artists>
>>> plt.xticks (POS, LABELS)
<REDACTED>

>>> plt.ylabel('Sales')

Text (0, 0.5, 'Sales')

Display the graph:
>>> plt.show()

The result will be displayed as follows in a new window:

Q12017 Q2 2017 Q3 2017

A€ P FAEIE] o resnae

Figure 8.1: Displayed graph

How it works...

After importing the module, the data is presented in step 2 of the How to do it...
section in a useable structure.

[269]

Developing Stunning Graphs

Because of the way matplotlib works, it requires an X component, as wellasa Y
component. In this case, our X component is just a sequence of increasing numbers,
as many as there are data points. We store that in the variable pos. This positions
each of the Y values and works as a temporal series. In VALUES, we store the numeric
value of the sales as a sequence, and in LABELS, we store the associated label for each
data point. All that preparation work is done in step 3.

Step 4 creates the bar graph with the sequences X (pos) and Y (VALUES). These define
our bars. To specify the period it refers to, we put labels on the x-axis for each value
with .xticks in the same way. To clarify the meaning, we add a label with .ylabel.

To display the resulting graph, step 5 calls . show, which opens a new window with
the result.

I
\@’_ Calling . show blocks the execution of the program. The program

4 will resume when the window is closed.

There's more...

You may want to change the format in which the values are presented. In our
example, maybe the numbers represent millions of dollars. To do so, you can add
a formatter to the y-axis, so the values represented there will have it applied to them:

>>> from matplotlib.ticker import FuncFormatter

>>> def value format(value, position):

return '$ {}M'.format (int(value))

>>> axes = plt.gca()

>>> axes.yaxis.set major formatter (FuncFormatter (value format))

value_format is a function that returns a value based on the value and position of
the data. Here, it will return the value 100 as $100M.

[270]

Chapter 8

!
\@'_ Values will be retrieved as floats, requiring you to transform them

~ into integers for display.

To apply the formatter, we need to retrieve the axis object with . gca (get current
axes). Then, the .yaxi attribute sets up the formatter for the y-axis labels.

The color of the bars can also be determined with the color parameter. Colors can
be specified in multiple formats, as described at https://matplotlib.org/api/
colors_api.html, but my favorite is following the XKCD color survey using the
xked: prefix (no space after the colon):

>>> plt.bar (POS, VALUES, color='xkcd:moss green')

The full survey can be found here: https://xkcd.com/color/rgb/.

N Most common colors, such as blue and red, are also available for
‘@\‘ quick tests. They tend to be a little bright and harsh to be used in

d

g good-looking reports, though.

Combining the color with formatting the axis gives us the following result:

S 175M

5 150M 4

$ 125M A

S 100M 4

Sales

S 75M +

S 50M 4

$ 25M

4 0OM -

Q12017 Q2 2017 Q3 2017 Q4 2017

AeBFa=E

Figure 8.2: Graph with a different color

[271]

https://matplotlib.org/api/colors_api.html
https://matplotlib.org/api/colors_api.html
https://xkcd.com/color/rgb/

Developing Stunning Graphs

Bar graphs don't need to display information in a temporal way. As we've seen,
matplotlib requires us to specify the X parameter of each bar. It's a powerful tool
used to generate all kinds of graphs.

| For example, the bars can be arranged to display a histogram, such
\@l as for displaying people of a certain height. The bars will start at a
low height, increase to the average size, and then drop back. Don't
limit yourself to just spreadsheet charts!

The full matplotlib documentation can be found here: https://matplotlib.org/.

See also

* The Drawing stacked bars recipe, next in this chapter, to learn how to plot
more accumulated information on each bar.

* The Adding legends and annotations recipe, later in this chapter, to learn how
to add context information to a graph.

* The Combining graphs recipe, later in this chapter, to learn how to combine
multiple plots into a single graph.

Drawing stacked bars

A powerful way of displaying different categories is to present them as stacked bars
so that each of the categories and the total are displayed. We'll see how to do that in
this recipe.

Getting ready

We need to install matplotlib in our virtual environment:

$ echo "matplotlib==3.2.1" >> requirements.txt

$ pip install -r requirements.txt
If you are using macOS, you may get an error like this: RuntimeError: Python is

not installed as a framework. See the matplotlib documentation on how to fix it:
https://matplotlib.org/faqg/osx framework.html.

[272]

https://matplotlib.org/
https://matplotlib.org/faq/osx_framework.html.

Chapter 8

How to do it...

1.

Import matplotlib:
>>> import matplotlib.pyplot as plt

Prepare the data. This represents two products' sales; an established one and
a new one:

>>> DATA = (
(*Q1 2017', 100, 0),
(*Q2 2017', 105, 15),
('Q3 2017', 125, 40),
('Q4 2017', 115, 80),
)

Process the data to prepare the expected format:
>>> POS = list(range(len(DATA)))
>>> VALUESA = [valueA for label, valuedA, valueB in DATA]

>>> VALUESB = [valueB for label, valueA, valueB in DATA]

>>> LABELS = [label for label, wvaluel, value2 in DATA]

Create the bar plot. Two plots are required:

>>> plt.bar (POS, VALUESB)

<BarContainer object of 4 artists>

>>> plt.bar (POS, VALUESA, bottom=VALUESB)
<BarContainer object of 4 artists>

>>> plt.ylabel ('Sales')

Text (0, 0.5, 'Sales')

>>> plt.xticks (POS, LABELS)

<REDACTED>

Display the graph:
>>> plt.show()

[273]

Developing Stunning Graphs

6. The result will be displayed in a new window, as follows:

Sales

Q12017 Q2 2017 Q32017 Q4 2017

'.“.' (-'-) *'Q.E.l! %= y=114.784

Figure 8.3: Stacked bars

How it works...

After importing the module, the data is presented in step 2 in a useable structure.

In step 3, the data is prepared in three sequences, VALUESA, VALUESB, and LABELS.
A pos increasing sequence is added so that the bars are positioned over the x-axis,
one after the other.

Step 4 creates the bar graph with the sequences X (pos) and Y (VALUESB). The
second bar sequence, VALUESA, is added on top of the previous one using the
bot tom=VALUESB argument. This process stacks both bars, positioning the full
VALUESA bar on top of the VALUESB bar.

Notice that we stack the second value, VALUESB, first. The second
‘ p’ value represents a new product that was introduced to the market.
\/ VALUESA represents the established product and is more stable.
This graph shows the growth of the new product better.

Each of the periods is labeled on the x-axis with .xticks. To clarify the meaning, we
add a label with .ylabel.

To display the resulting graph, step 5 calls . show, which opens a new window with
the result.

[274]

Chapter 8

I
\@' Calling . show blocks the execution of the program. The program

4 will resume when the window is closed.

There's more...

Another way of presenting stacked bars is by adding them as percentages so that the
total doesn't change, only the relative sizes compared to each other.

To do that, vALUESA and VALUEB need to be calculated relative to the percentages in
this way:

>>> VALUESA
in DATA]

[100 * valueA / (valueA + valueB) for label, valueA, valueB

>>> VALUESB
in DATA]

[100 * valueB / (valueA + valueB) for label, valueA, valueB

This makes each value equal to the percentage of the total, and the total always adds
up to 100. This produces the following graphic:

100 A

80

50 1

Sales

40 1

20 A

Q12017 Q2 2017 Q32017 Q4 2017

A€EIPAQ=R

Figure 8.4: Stacking percentages

The bars don't necessarily need to be stacked. Sometimes, it may be interesting to
present the bars one against the other for comparison.

[275]

Developing Stunning Graphs

To do that, we need to move the position of the second bar sequence. We'll also need
to set thinner bars to allow spaces:

>>> WIDTH = 0.3
>>> plt.bar([p - WIDTH / 2 for p in POS], VALUESA, width=WIDTH)
>>> plt.bar([p + WIDTH / 2 for p in POS], VALUESB, width=WIDTH)

Note how the width of the bar is set to a third of the space since our reference
space is 1 between the bars. The first bar is moved to the left, while the second bar
is moved to the right to center them. The bot tom argument has been deleted so that
the bars aren't stacked:

120 4

100 -

80 1

Sales

60 A

40

20 A

Q1 2017 Q2 2017 Q3 2017 Q4 2017

ﬂéé .*'QE x= y=117.969

Figure 8.5: Independent bars

The full matplotlib documentation can be found here: https://matplotlib.org/.

See also

* The Plotting a simple sales graph recipe, earlier in this chapter, to learn the
basics of drawing bar graphs.

* The Adding legends and annotations recipe, later in this chapter, to learn how to
add context information to a graph.

* The Combining graphs recipe, later in this chapter, to learn how to add
multiple plots to a single graph.

[276]

https://matplotlib.org/

Chapter 8

Plotting pie charts

Pie charts! A Business 101 favorite, and a common way of presenting percentages.
We'll see in this recipe how to plot a pie chart, with different slices representing
proportions.

Getting ready

We need to install matplotlib in our virtual environment using the following
commands:

$ echo "matplotlib==3.2.1" >> requirements.txt

$ pip install -r requirements.txt

If you are using macOS, you may get an error like this: RuntimeError: Python is
not installed as a framework. See the matplotlib documentation on how to fix it:
https://matplotlib.org/fag/osx framework.html.

How to do it...

1. Importmatplotlib:
>>> import matplotlib.pyplot as plt

2. Prepare the data. This represents several lines of products:
>>> DATA = (
('"Common', 100),
('Premium', 75),
('Luxurious', 50),
('Extravagant', 20),
)

3. Process the data to prepare the expected format:
>>> VALUES = [value for label, value in DATA]

>>> LABELS = [label for label, wvalue in DATA]

4. Create the pie chart:
>>> plt.pie(VALUES, labels=LABELS, autopct='%1.1£%%"')
<REDACTED>
>>> plt.gca() .axis('equal')

(-1.1113861431510297, 1.1005422098873965, -1.125031021533458,
1.1221350517711501)

[277]

https://matplotlib.org/faq/osx_framework.html

Developing Stunning Graphs

5. Display the graph:
>>> plt.show()

6. The result will be displayed in a new window, as follows:

Common

Extravagant
Premium

Luxurious

A€IPQA=B

Figure 8.6: Pie chart

How it works...

The module is imported in step 1 of the How to do it... section, and the data to present
is imported in step 2. The data is separated into two components, a list of VALUES and
a list of LABELS, in step 3.

The chart is created in step 4 by adding VALUES and LABELS. The autopct parameter
formats the value so it displays it as a percentage to a single decimal place.

The call to axis ('equals') ensures the pie chart will look round, instead of having
a bit of perspective and appearing as an oval.

To display the resulting graph, step 5 calls . show, which opens a new window with
the result.

[278]

Chapter 8

!
\@l Calling . show blocks the execution of the program. The program

4 will resume when the window is closed.

There's more...

Pie charts are a little overused in business graphs. Most of the time, a bar chart with
percentages or values will be a better way of visualizing the data, especially if more
than two or three options are displayed. Try to limit the use of pie charts in your
reports and data presentations.

Rotating the start of the wedges is possible with the startangle parameter, and the
direction to set up the wedges is defined by counterclock (defaults to True):

>>> plt.pie(VALUES, labels=LABELS, startangle=90, counterclock=False)

The format inside the label can be set by a function. As the value inside the pie is
defined as a percentage, finding the original value can be a little tricky. The following
snippet creates a dictionary indexing by its percentage as an integer, so we can
retrieve the referenced value. Please note that this assumes that no percentage gets
repeated. If that's the case, the labels may be slightly incorrect. In that case, we may
need to use up to the first decimal place for better precision:

>>> from matplotlib.ticker import FuncFormatter

>>> total = sum(value for label, wvalue in DATA)

>>> BY VALUE = {int (100 * value / total): value for label, value in DATA}

>>> def value format(percent, **kwargs):
value = BY VALUE[int (percent)]

return '{}'.format (value)

One or more wedges can also be separated using the explode parameter. This
specifies how separated the wedge is from the center:

>>> explode = (0, 0, 0.1, 0)

>>> plt.pie(VALUES, labels=LABELS, explode=explode, autopct=value format,

startangle=90, counterclock=False)

[279]

Developing Stunning Graphs

By combining all these options, we get the following result when calling p1t.
show ():

Extravagant

Luxurious

Common

Premium

’Em;‘g@’g‘ x=1.20063 y=0.813877

Figure 8.7: Highlighting a wedge by separating it

The full matplotlib documentation can be found here: https://matplotlib.org/.

See also

The Plotting a simple sales graph recipe, earlier in this chapter, to learn the
basics of plotting bar graphs.

The Drawing stacked bars recipe, from the previous section, to learn how to
plot accumulated values as bars.

Displaying multiple lines

This recipe will show you how to display multiple lines in a graph.

[280]

https://matplotlib.org/

Chapter 8

Getting ready

We need to install matplotlib in our virtual environment:

$ echo "matplotlib==3.2.1" >> requirements.txt

$ pip install -r requirements.txt

If you are using macOS, you may get an error like this: RuntimeError: Python is
not installed as a framework. See the matplotlib documentation on how to fix it:
https://matplotlib.org/fag/osx framework.html.

How to do it...

1.

Import matplotlib:
>>> import matplotlib.pyplot as plt

Prepare the data. This represents two products' sales:
>>> DATA = (
('Q1 2017', 100, 5),
('Q2 2017', 105, 15),
('Q3 2017', 125, 40),
('Q4 2017', 115, 80),
)

Process the data to prepare the expected format:

>>> POS = list(range(len(DATA)))

>>> VALUESA = [valueA for label, valueA, valueB in DATA]
>>> VALUESB = [valueB for label, valueA, valueB in DATA]

>>> LABELS = [label for label, valuel, value2 in DATA]

Create the line plot. Two lines are required:

>>> plt.plot(POS, VALUESA, 'o-')
[<matplotlib.lines.Line2D object at 0xl1l2e78a2b0>]
>>> plt.plot(POS, VALUESB, 'o-')
[<matplotlib.lines.Line2D object at 0xl2e7afcd0>]
>>> plt.ylabel('Sales')

Text (0, 0.5, 'Sales')

>>> plt.xticks (POS, LABELS)

<REDACTED>

[281]

https://matplotlib.org/faq/osx_framework.html

Developing Stunning Graphs

5. Display the graph:
>>> plt.show()

6. The result will be displayed in a new window:

1204

100 A

80 A

Sales

60 -

40

201

0- T T T T
Q1 2017 Q2 2017 Q3 2017 Q4 2017

A €>PQ= x= y=69.0714

Figure 8.8: Line chart

How it works...

In the How to do it... section, step 1 imports the module and step 2 shows the data
to be plotted in a formatted way.

In step 3, the data is prepared in three sequences, VALUESA, VALUEB, and LABELS.
A pos increasing sequence is used to locate each of the points along the x-axis.

Step 4 creates the graph with the sequences X (pos) and Y (VALUESA), and then pos
and VALUESB. The value 'o-' is added to draw a circle on each of the data points and
a full line between them.

[282]

Chapter 8

\/‘/ By default, the plot will display a solid line, with no marker on each

point. If only the marker is used (thatis, 'o"), there'll be no line.

Each of the periods is labeled on the x-axis with .xticks. To clarify the meaning, we
add a label with .ylabel.

To display the resulting graph, step 5 calls . show, which opens a new window with
the result.

I
\@’ Calling . show blocks the execution of the program. The program

4 will resume when the window is closed.

There's more...

Graphs with lines are deceptively simple and able to create a lot of interesting
representations. It is probably the most convenient when showing mathematical
graphs. For example, we can display a graph showing Moore's Law in a few lines
of code.

Moore's Law is an observation by Gordon Moore that the number of
A components in an integrated circuit doubles every 2 years. It was
'@\' first described in 1965 and then corrected in 1975. It seems to be
g quite close to the historic rate of technological advancement over
the last 40 years.

4

We first create a line describing the theoretical line, with data points from 1970 to
2013. Starting with 1,000 transistors, we double it every 2 years, up to 2013:

>>> POS = [year for year in range (1970, 2013)]

>>> MOORES = [1000 * (2 ** (i * 0.5)) for i in range(len(POS))]
>>> plt.plot (POS, MOORES)

[<matplotlib.lines.Line2D object at 0x12b7c27c0>]

Following some documentation, we extract a few examples of commercial
CPUgs, their year of release, and their number of integrated components from
here: http://mercury.pr.erau.edu/~siewerts/cec320/documents/Papers/
AHistoryofMicroprocessorTransistorCount .pdf.

[283]

http://mercury.pr.erau.edu/~siewerts/cec320/documents/Papers/AHistoryofMicroprocessorTransistorCount.pdf
http://mercury.pr.erau.edu/~siewerts/cec320/documents/Papers/AHistoryofMicroprocessorTransistorCount.pdf

Developing Stunning Graphs

Due to the big numbers, we'll use the notation of 1_000_000 for 1 million, which is
available in Python 3:
>>> DATA = (

("Intel 4004', 2 300, 1971),

("Motorola 68000', 68_000, 1979),

(*Pentium', 3 100 000, 1993),

(*Core i7', 731 000 000, 2008),

)

Draw a line with markers to display those points at the proper places. The 'v' mark
will display a triangle:

>>> data x = [x for label, y, x in DATA]

>>> data y = [y for label, y, x in DATA]

>>> plt.plot(data x, data y, 'v'")

[<matplotlib.lines.Line2D object at 0x12b7c2d60>]

For each data point, append a label in the proper place with the name of the CPU:

>>> for label, y, x in DATA:
plt.text(x, y, label)

Text (1971, 2300, 'Intel 4004')

Text (1979, 68000, 'Motorola 68000')

Text (1993, 3100000, 'Pentium')

Text (2008, 731000000, 'Core i7')

Finally, growth doesn't make sense displayed in a linear graph, so we change the
scale to be logarithmic, which makes exponential growth look like a straight line. But
to keep the sense of dimension, we add a grid. Call . show to display the graph:

>>> plt.gca() .grid()
>>> plt.yscale('log')

The resulting graph will be displayed when calling p1t . show ():

[284]

Chapter 8

107 4 Core i7
105 .
10? 4
ntium
106 -

105 4

1061 4

103 4

1970 1980 1990 2000 2010

A€>PQEDR

Figure 8.9: Moore's Law graph

Note how the straight line follows the duplication of transistors in the logarithmic
scale and the processors are close. You can see that the real processors look pretty
similar to the prediction done by Moore!

The full matplotlib documentation can be found here: https://matplotlib.org/.
In particular, check the available formats for the lines (solid, dashed, dotted, and so
on) and markers (dot, circle, triangle, star, and so on) here: https://matplotlib.
org/api/ as gen/matplotlib.pyplot.plot.html.

See also

* The Adding legends and annotations recipe, later in this chapter, to learn how to
add context information to a graph.

* The Combining graphs recipe, later in this chapter, to learn how to add
multiple plots to a single graph.

[285]

https://matplotlib.org/
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html

Developing Stunning Graphs

Drawing a scatter plot

A scatter plot is one where the information is displayed as dots with X and Y values.
They are very useful when presenting data with two dimensions (as opposed to a
temporal series seen previously) and to see whether there's any relationship between
two variables. In this recipe, we'll display a graph plotting time spent on a website
against money spent to see whether we can see a pattern.

Getting ready

We need to install matplotlib in our virtual environment:

$ echo "matplotlib==3.2.1" >> requirements.txt

$ pip install -r requirements.txt

If you are using macOS, you may get an error like this: RuntimeError: Python is
not installed as a framework. See the matplotlib documentation on how to fix it:
https://matplotlib.org/faqg/osx framework.html.

As we're going to be working with data points, we'll use the scatter.csv file
to read the data. This file is available on GitHub at https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/
master/Chapter08/scatter.csv.

How to do it...

1. Importmatplotlib, csv, and FuncFormatter (to format the axes later):
>>> import csv
>>> import matplotlib.pyplot as plt

>>> from matplotlib.ticker import FuncFormatter

2. Prepare the data, reading from the file using the csv module:
>>> with open('scatter.csv') as fp:
reader = csv.reader (fp)

data = list (reader)

3. Prepare the data for plotting, and then plot it:
>>> data x = [float(x) for x, y in datal
>>> data y = [float(y) for x, y in datal
>>> plt.scatter(data x, data_ y)
<matplotlib.collections.PathCollection object at 0xllccbda30>

[286]

https://matplotlib.org/faq/osx_framework.html
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter08/scatter.csv
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter08/scatter.csv
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter08/scatter.csv

Chapter 8

Improve the context by formatting the axes:

>>> def format minutes(value, pos):
return '{}m'.format (int (value))

>>> def format dollars(value, pos):
return '${}'.format (value)

>>> plt.gca() .xaxis.set major formatter (FuncFormatter (format
minutes))

>>> plt.xlabel('Time in website')
Text (0.5, 0, 'Time in website')

>>> plt.gca() .yaxis.set major formatter (FuncFormatter (format
dollars))

>>> plt.ylabel ('Spending’')
Text (0, 0.5, 'Spending')

Show the graph:
>>> plt.show()

The result will be displayed in a new window:

$100.0 1 : Y ® [Y ®
® ®
o
® ™
$80.0 g
o]
°
® o
™ ®
8, o .
$60.0
o ® o
5 ¢ o %o ®e
= °
;".T_ ®
$40.0 o © ° ° ®
o] ® ®
® °
20.0 4
$ o
e a
® []
e%e,, ' .loo g 8 .28 o e o
(Y
50.0) ' ede e®®
om 5m 10m 15m 20m 25m 30m

Time on website

A€IPQ=B

Figure 8.10: Scatter plot

[287]

Developing Stunning Graphs

How it works...

Step 1 of the How to do it... section imports the modules we'll use later.

Step 2 reads the data from the CSV file. The data is transformed into a list to allow us
to iterate through it several times, as that's necessary for step 3.

Step 3 prepares the data in two arrays and then uses . scatter to plot them. The
parameters for . scatter, as with other methods of matplotlib, require an array
of X and Y values. They both need to be the same size. The data is converted into a
float from the file format to ensure the number format.

Step 4 refines the way the data is presented on each axis. For each axis, a function
is created that defines how the values on that axis should be displayed (in dollars
or in minutes). The function accepts the value to display and the position as inputs.
Typically, the position will be ignored. The axis formatter will be overwritten with
.set_major_formatter. Notice that both axes are returned with .gca (get current
axes).

A label is added to the axes with .xlabel and .ylabel.

Finally, step 5 displays the graph in a new window. Analyzing the result, we can say
that there seems to be two kinds of users, ones who spend less than 10 minutes and
never spend more than $10, and users who spend more time and also have a higher
chance of spending up to $100.

| Note that the data presented is synthetic, and it has been generated
\@’ with the result in mind. Real-life data will probably look more
-4 spread out. Statistical analysis can be used to determine trends
- and patterns with a higher degree of sophistication.

There's more...

A scatter plot can display not only points in two dimensions, but also add a third
(area) and even a fourth dimension (color).

To add those elements, use the parameters s for size and c for color.

size is defined as the diameter of a ball in points squared. So, for
/ a ball of diameter 10, 100 will be used. color can use any of the
\/;p> usual definitions of color in matplotlib, such as hex color, RGB,
and so on. See the documentation for more details: https://
matplotlib.org/users/colors.html.

[288]

https://matplotlib.org/users/colors.html
https://matplotlib.org/users/colors.html

Chapter 8

For example, we can generate a random graph using the four dimensions in the
following way:

>>> import matplotlib.pyplot as plt

>>> import random

>>> NUM POINTS = 100

>>> COLOR _SCALE = ['#FF0000', '#FFFF00', '#FFFF00', '#7FFF00', '#00FF00']

>>> data x = [random.random() for _ in range (NUM POINTS)]

>>> data y = [random.random() for _ in range (NUM POINTS)]

>>> size = [(50 * random.random()) ** 2 for _ in range (NUM POINTS)]
>>> color = [random.choice (COLOR SCALE) for _ in range (NUM POINTS)]
>>> plt.scatter(data x, data y, s=size, c=color, alpha=0.5)
<matplotlib.collections.PathCollection object at 0x123552ee0>

>>> plt.show()

COLOR_SCALE goes from green to red, and the size of each of the points will be
between 0 and 50 points in diameter. The result should be something like this:

1.0 1 TN

o @
0.6 1 \;
o N

0.4 1
|
- e k
0.2 - :
0.0 - i
0.0 0.2 0.4 0.6 0.8 1.0

A€>IPQEDR

Figure 8.11: Displaying points, sizes, and colors

Note that the values are random, so each time the code is run it will generate
a different graph.

[289]

Developing Stunning Graphs

The alpha value makes each of the points semitransparent, allowing us to see
where they overlap. The higher this value is, the less transparent the points will be.
This parameter will affect the displayed color as it will blend the point in with the
background.

Even though it's possible to display two independent values in
terms of size and color, they can also be related to any of the other
L values. For example, making the color dependent on the size will
‘,@\‘ make all the points of the same size the same color, which may
g help us distinguish between the data. Remember that the ultimate
goal of a graph is to make data easy to understand. Try different
approaches to improve this.

The full matplotlib documentation can be found here: https://matplotlib.org/.

See also

* The Displaying multiple lines recipe, earlier in this chapter, to learn how to plot
multiple lines that follow a temporal series.

* The Adding legends and annotations recipe, later in this chapter, to learn how to
add context information to a graph.

Visualizing maps
To best way to show information that changes from region to region is to create a

map that presents the information, while at the same time giving a regional sense of
location for the data.

In this recipe, we'll make use of the Fiona module to import GIS information, as well
as matplotlib to display the information. We will display a map of Western Europe
and display the population of each country with a color grade. The darker the color,
the larger the population.

Getting ready

We need to install matplotlib and Fiona in our virtual environment:

$ echo "matplotlib==3.2.1" >> requirements.txt
$ echo "Fiona==1.8.13" >> requirements.txt

$ pip install -r requirements.txt

[290]

https://matplotlib.org/

Chapter 8

If you are using macOS, you may get an error like this: RuntimeError: Python is
not installed as a framework. See the matplotlib documentation on how to fix it:
https://matplotlib.org/fag/osx framework.html.

The map data needs to be downloaded. Fortunately, there's a lot of freely available
data for geographic information. A search on Google should quickly return almost
everything you need, including detailed information on regions, counties, rivers, or
any other kind of data.

GIS information is available in different formats from a lot of public
‘ , organizations. Fiona is capable of understanding most common
) . - .
formats and treating them in equivalent ways, but there are small
differences. Read the Fiona documentation for more details.

The data we'll use in this recipe, covering all European countries, is available
on GitHub at the following URL: https://github.com/leakyMirror/map-of -
europe/blob/master/GeoJSON/europe . geojson. Note that it is in GeoJSON,
which is an easy standard to work with.

How to do it...

1. Import the modules:
>>> import matplotlib.pyplot as plt
>>> import matplotlib.cm as cm

>>> import fiona

2. Load the population of the countries to display:

>>> COUNTRIES POPULATION = {
'Spain': 47.2,
'Portugal': 10.6,
'United Kingdom': 63.8,
'Ireland': 4.7,
'France': 64.9,
"Ttaly': 61.1,
'Germany': 82.6,
'Netherlands': 16.8,
'Belgium': 11.1,
'Denmark': 5.6,
'Slovenia': 2,

'Austria': 8.5,

[291]

https://matplotlib.org/faq/osx_framework.html
https://github.com/leakyMirror/map-of-europe/blob/master/GeoJSON/europe.geojson
https://github.com/leakyMirror/map-of-europe/blob/master/GeoJSON/europe.geojson

Developing Stunning Graphs

. 'Luxembourg': 0.5,
. 'Andorra': 0.077,
ces 'Switzerland': 8.2,

e 'Liechtenstein': 0.038,

>>> MAX POPULATION max (COUNTRIES POPULATION.values())

>>> MIN POPULATION min (COUNTRIES POPULATION.values())

3. Prepare the colormap, which will determine the color each country will be
displayed in (differing shades of green). Calculate which color corresponds
to each country:

>>> colormap = cm.get cmap ('Greens')
>>> COUNTRY COLOUR = {
. country name: colormap (

(population - MIN POPULATION) / (MAX POPULATION - MIN
POPULATION)

.o)

N for country name, population in COUNTRIES POPULATION.
items ()

oo}

4. Open the file and read the data, filtering by the countries we defined the
population in step 1:

>>> with fiona.open('europe.geojson') as fd:
>>> full data = [data for data in fd

e if datal['properties'] ['NAME'] in COUNTRIES
POPULATION]

5. Plot each of the countries in the proper color:
>>> for data in full data:
e country name = data['properties'] ['NAME']
.o color = COUNTRY COLOUR[country name]
e geo type = datal'geometry']l ['type'l
e if geo type == 'Polygon':

. data x = [x for x, y in datal['geometry']
['coordinates'] [0]]

. data y = [y for x, y in datal['geometry']
['coordinates'] [0]]

“en plt.fill(data x, data_ y, c=color)
. elif geo type == 'MultiPolygon':

[292]

Chapter 8

for coordinates in datal'geometry'] ['coordinates']:
data x = [x for x, y in coordinates[0]]
data y = [y for x, y in coordinates[0]]

plt.fill (data x, data y, c=color)

6. Display the result:
>>> plt.show()

7. The result will be displayed in a new window, as follows:

60 1

55 A

50 A

45 A

40 A

35 1

-10 -5 0 5 10 15

A€ Q=Q8 x=8.35983 y=56.9539

Figure 8.12: Displaying a map

How it works...

After importing the modules in step 1 from the How to do it... section, the data to be
displayed is defined in step 2. Note that the names need to be in the same format as
they'll be in the GEO file. The minimum and maximum populations are calculated to
properly balance the range later.

, The population has been rounded to a significant number, and it's
) defined in millions. Only a few countries have been defined for this
recipe, but there are more available in the GIS file.

[293]

Developing Stunning Graphs

Step 3 describes a colormap defining the color range in shades of green (Greens).
This is one standard colormap in matplotlib, but we can use others, such as
oranges, reds, or plasma for a more cold-to-hot approach. More details are available
in the documentation: https://matplotlib.org/examples/color/colormaps
reference.html.

The couNTRY_COLOUR dictionary stores the color defined by colormap for each
country. The population is normalized to a number from 0.0 (least population) to 1.0
(most), and passed to colormap to retrieve the color at the scale it corresponds to.

The GIS information is then retrieved in step 4. f£iona reads the europe . geojson file
and the data is copied so we can use it in the next steps. It also filters to only deal
with the countries we defined the population of, which means no extra countries are
plotted.

The loop in step 5 goes over the country information list in data_1list, and then each
country's geometry is plotted using . £111, which plots a polygon. The geometry of
each country is either a single polygon (Polygon) or more than one (MultiPolygon).
In each case, the proper polygons are drawn, all in the same color. This means
MultiPolygon is drawn several times.

GIS information is stored as points for coordinates describing the
latitude and longitude of the point. Areas, such as countries, have
a list of coordinates that describe an area within them. Some maps

‘ , are more precise and have more points defining areas. Multiple

\p/ polygons may be required to define a country, as some parts may
be separated from each other, with islands being the most obvious
case, but there are also exclaves. Exclaves are regions of countries
detached from the main body, like Alaska.

Finally, the data is displayed by calling . show.

There's more...

Taking advantage of the information contained in the GIS file, we can add extra
information to the map. The properties object contains information about the name
of the country, but also its ISO name, FID code, and central location as LON and LAT.
We can use this information to display the name of the country using . text:

long, lat = datal'properties'] ['LON'], datal'properties'] ['LAT']
iso3 = datal['properties'] ['IS0O3']

plt.text (long, lat, iso3, horizontalalignment='center')

[294]

https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html

Chapter 8

This code will live inside the loop in step 6 in the How to do it... section.

If you analyze the file, you'll see that the properties object
| contains information about the population, stored as POP2005,
\@l so you can draw the population information directly from the
N map. That is left as an exercise. Different map files contain
- different information, so be sure to play around to unleash
all the possibilities.

Also, you may notice that the map may be distorted in some cases. matplotlib will
try to present it in a square box, and if the map is not roughly square, this will be
evident. For example, try to display only Spain, Portugal, Ireland, and the UK. We
can force the graph to present 1 point of latitude with the same space as 1 point of
longitude, which is a good approach if we are not drawing something near the poles.
This is achieved by calling . set_aspect in the axes. Current axes can be obtained
through .gca (get current axes):

>>> axes = plt.gca()

>>> axes.set aspect('equal', adjustable='box')

Also, to improve the look of the map, we can set up a background color that helps

to differentiate between the background and the foreground, and remove the labels
in the axes, as printing the latitude and longitude is probably distracting. Removing
the labels on the axes is achieved by setting empty labels with .xticks and .yticks.
The background color is mandated by the foreground color of the axes:

>>> plt.xticks([])

([1, <a list of 0 Text major ticklabel objects>)
>>> plt.yticks ([])

([1, <a list of 0 Text major ticklabel objects>)
>>> axes = plt.gca()

>>> axes.set facecolor('xkcd:light blue')

Finally, to better differentiate between the different regions, a line surrounding each
area can be added. This can be done by drawing a thin line with the same data as
.£111, right after. Notice that this code is repeated twice in step 2:

>>> plt.fill(data x, data y, c=color)
[<matplotlib.patches.Polygon object at 0x1161a49d0>]
>>> plt.plot(data x, data y, c='black', linewidth=0.2)
[<matplotlib.lines.Line2D object at 0x116l1a4b80>]

[295]

Developing Stunning Graphs

After applying all these elements to the map, it now looks like this:

AEIPAZTE cenea

Figure 8.13: Map with colored countries and background color

The resulting code is available on GitHub here: https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/
master/Chapter08/visualising maps.py.

As we've seen, maps are drawn as general polygons. Don't be
| afraid to include other geometrical forms. You can define your
\@' own polygons and print them with . £111 or some extra labels.
For example, far away regions may need to be transported to avoid
having too large a map. Or, rectangles can be used to print extra
information on top of parts of the map.

The full Fiona documentation can be found here: https://fiona.readthedocs.
io/. The full matplotlib documentation can be found here: https://matplotlib.
org/ .

[296]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter08/visualising_maps.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter08/visualising_maps.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter08/visualising_maps.py
https://fiona.readthedocs.io/
https://fiona.readthedocs.io/
https://matplotlib.org/.
https://matplotlib.org/.

Chapter 8

See also

» The Adding legends and annotations recipe, next in this chapter, to learn how to
add context information to a graph.

* The Combining graphs recipe, later in this chapter, to learn how to add
multiple plots to a single graph.

Adding legends and annotations

When drawing graphs with dense information, a legend may be required to display
relevant information to improve the understanding of the data presented, like

what color is assigned to what concept. In matplotlib, legends can be pretty rich
and there are multiple ways of presenting them. Annotations to draw attention

to specific points are also useful to help the reader understand the information
displayed on the graph.

In this recipe, we'll create a graph with three different components and display
a legend with information to better understand it, as well as annotating the most
interesting points on our graph.

Getting ready

We need to install matplotlib in our virtual environment:

$ echo "matplotlib==3.2.1" >> requirements.txt

$ pip install -r requirements.txt

If you are using macOS, you may get an error like this: RuntimeError: Python is
not installed as a framework. See the matplotlib documentation on how to fix it:
https://matplotlib.org/faqg/osx framework.html.

How to do it...

1. Importmatplotlib:
>>> import matplotlib.pyplot as plt

2. Prepare the data to be displayed on the graph and the legends that should be
displayed. Each of the lines is composed of the time label, sales of Producta,
sales of ProductB, and sales of ProductcC:

>>> LEGEND = ('ProductA', 'ProductB', 'ProductC')
>>> DATA = (
('Q1 2017', 100, 30, 3),

[297]

https://matplotlib.org/faq/osx_framework.html

Developing Stunning Graphs

e ('Q2 2017', 105, 32, 15),
N ('Q3 2017', 125, 29, 40),
N ('Q4 2017', 115, 31, 80),

3. Split the data into usable formats for the graph. This is a preparation step:
>>> POS = list(range(len(DATA)))
>>> VALUESA = [valueA for label, valueA, valueB, valueC in DATA]

>>> VALUESB = [valueB for label, valueA, valueB, valueC in DATA]

>>> VALUESC = [valueC for label, valueA, valueB, valueC in DATA]
>>> LABELS = [label for label, valueA, valueB, valueC in DATA]

4. Create a bar graph with the data:
>>> WIDTH = 0.2
>>> plt.bar([p - WIDTH for p in POS], VALUESA, width=WIDTH)
<BarContainer object of 4 artists>
>>> plt.bar([p for p in POS], VALUESB, width=WIDTH)
<BarContainer object of 4 artists>
>> plt.bar([p + WIDTH for p in POS], VALUESC, width=WIDTH)
<BarContainer object of 4 artists>
>>> plt.ylabel('Sales')
Text (0, 0.5, 'Sales')
>>> plt.xticks (POS, LABELS)
<REDACTED>

5. Add an annotation displaying the maximum growth in the chart:
>>> plt.annotate('400% growth', xy=(1.2, 18), xytext=(1.3, 40),
horizontalalignment='center',
arrowprops=dict (facecolor='black', shrink=0.05))

Text (1.3, 40, '400% growth')

6. Add the legend:
>>> plt.legend (LEGEND)
<matplotlib.legend.Legend object at 0x1153d1e80>

7. Display the graph:

>>> plt.show()

[298]

Chapter 8

8. The result will be displayed in a new window:

mm ProductA
1207 s Products
B ProductC
100 A
80 1
"
S
& 60
40 4 400% growth
20 1 J

Q1 2017 Q2 2017 Q3 2017 Q4 2017

A €>PQ= x= y=120.099

Figure 8.14: Pointing to interesting parts of the graph

How it works...

Steps 1 and 2 of the How to do it... section prepare the imports and the data that
will be displayed by the bar chart. In step 3, the data is split into different arrays
to prepare the input for matplot1lib. Basically, each data sequence is stored in a
different array.

Step 4 draws the data. Each data sequence gets a call to .bar, specifying its position
and values. Labels do the same as .xticks. To separate each of the bars around the
labels, the first one is displaced to the left and the third to the right.

An annotation is added above the bar for Productc in the second quarter. Note that
the annotation includes the point in xy and the text location in xytext.

In step 6, the legend is added. Notice that the labels need to be added to the data in
the same order as the data was inputted. The legend is located automatically in an
area that doesn't cover any data. Arrowprops tells the arrow to point to the data.

[299]

Developing Stunning Graphs

Finally, the graph is drawn in step 7 by calling . show.

!
\@l_ Calling . show blocks the execution of the program. The program

4 will resume when the window is closed.

There's more...

Legends will be displayed automatically in most cases with just a call to . legend. If
you need to customize the order in which they appear, you may refer each label to a
specific element. For example, this way (note it calls Producta the valuec series):

>>> valueA = plt.bar([p - WIDTH for p in POS], VALUESA, width=WIDTH)
>>> valueB = plt.bar([p for p in POS], VALUESB, width=WIDTH)

>>> valueC = plt.bar([p + WIDTH for p in POS], VALUESC, width=WIDTH)
>>> plt.legend((valueC, valueB, valueA), LEGEND)
<matplotlib.legend.Legend object at 0x112273fal>

The location of the legend can also be changed manually, through the 1oc parameter.
By default, it is best and it will draw the legend over an area where there's the least
overlap of data (ideally none). But values such as right, upper, left, and so on can
be used, or a specific (x, v) tuple.

Another option is to plot the legend outside of the graph using the bbox_to_anchor
option. In this case, the legend is attached to the (X, Y) of the bounding box, where 0
is the bottom-left corner of the graph and 1 is the upper-right corner. This may cause
the legend to be clipped by the external border, so you may need to adjust where the
graph starts and ends with . subplots_adjust:

>>> plt.legend (LEGEND, title='Products', bbox to anchor=(1, 0.8))
<matplotlib.legend.Legend object at 0x11963b910>
>>> plt.subplots adjust(right=0.80)

Adjusting the bbox_to_anchor and . subplots_adjust parameters requires a little
bit of trial and error in producing the expected result.

[300]

Chapter 8

.subplots_ adjust references the positions as the position of the
axis where it will be displayed. This means that right=0.80 will
, leave 20% of the screen on the right of the plot, while the default
\/;p> for left is 0. 125, meaning it leaves 12.5% of the space on the left
of the plot. See the documentation for further details: https://
matplotlib.org/api/ as_gen/matplotlib.pyplot.
subplots_adjust.html.

The annotations can be done in different styles and can be tweaked with different
options regarding the way to connect and so on. For example, this code will create an
arrow with the fancy style connecting with a curve. The result is displayed here:

plt.annotate('400% growth', xy=(1.2, 18), xytext=(1.3, 40),
horizontalalignment='center’,

arrowprops={'facecolor': 'black’,
'arrowstyle': "fancy",
'connectionstyle': "angle3",
}

In our recipe, we did not annotate to the end of the bar (point (1.2, 15)), but slightly
above it, to give a little bit of breathing space.

Adjusting the exact point to annotate and where to locate the text
N will require a bit of testing. The text was also positioned by looking
'@\' for the best place to not overlap the text with the bars. The font
g size and color can be changed using the fontsize and color
parameters in both the . legend and . annotate calls.

/

Applying all these elements, the graph may look similar to the following graph.
This graph can be replicated by calling the adding legend and annotation.py
script, available in GitHub here: https://github.com/PacktPublishing/Python-
Automation-Cookbook-Second-Edition/blob/master/Chapter08/adding
legend and annotations.py:

[301]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter08/adding_legend_and_annotations.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter08/adding_legend_and_annotations.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter08/adding_legend_and_annotations.py
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots_adjust.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots_adjust.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots_adjust.html

Developing Stunning Graphs

1204
100 A Products
N ProductA
. ProductB
80 = ProductC
w
L]
LR
40 4 400% growth
20 }

Q12017 Q2 2017 032017 Q4 2017

A€EI2PQ=EN

Figure 8.15: Legend adding context to each bar

The full matplotlib documentation can be found here: https://matplotlib.org/.
In particular, the guide for legends can be found here: https://matplotlib.org/
users/legend guide.html#plotting-guide-legend. The guide for annotations
can be found here: https://matplotlib.org/users/annotations.html.

See also

* The Drawing stacked bars recipe, earlier in this chapter, to learn how to plot
accumulated values as bars that will benefit from a legend.

* The Combining graphs recipe, next in this chapter, to learn how to add
multiple plots to a single graph.

Combining graphs
More than one plot can be combined in the same graph. In this recipe, we'll see how

to present data in the same plot, on two different axes, and how to add more plots to
the same graph.

Getting ready

We need to install matplotlib in our virtual environment:

$ echo "matplotlib==3.2.1" >> requirements.txt

$ pip install -r requirements.txt

[302]

https://matplotlib.org/
https://matplotlib.org/users/legend_guide.html#plotting-guide-legend
https://matplotlib.org/users/legend_guide.html#plotting-guide-legend
https://matplotlib.org/users/annotations.html

Chapter 8

If you are using macOS, you may get an error like this: RuntimeError: Python is
not installed as a framework. See the matplotlib documentation on how to fix it:
https://matplotlib.org/fag/osx framework.html.

How to do it...

1.

Import matplotlib:
>>> import matplotlib.pyplot as plt

Prepare the data to be displayed on the graph and the legends that should be
displayed. Each of the lines is composed of the time label, sales of Producta,
and sales of ProductB. Notice how ProductB has a much higher value than
A:
>>> DATA = (

('Q1 2017', 100, 3000, 3),

('Q2 2017', 105, 3200, 5),

('Q3 2017', 125, 2900, 7),

('Q4 2017', 115, 3100, 3),

)

Prepare the data in independent arrays:
>>> POS = list(range(len (DATA)))

>>> VALUESA = [valueA for label, wvaluelA, wvalueB, valueC in DATA]

>>> VALUESB = [valueB for label, wvaluelA, wvalueB, valueC in DATA]

>>> VALUESC = [valueC for label, wvaluelA, wvalueB, valueC in DATA]
>>> LABELS = [label for label, wvaluelA, wvalueB, wvalueC in DATA]

Note that this expands and creates a list for each of the values.

I
\@’ The values can also be expanded with this: LABELS, VALUESA,
Q VALUESB, VALUESC = ZIP (*DATA).

Create the first subplot:
>>> plt.subplot(2, 1, 1)
<matplotlib.axes. subplots.AxesSubplot object at 0x115a91cd0>

Create a bar graph with information about VALUESA:
>>> valueA = plt.bar (POS, VALUESA)

[303]

https://matplotlib.org/faq/osx_framework.html

Developing Stunning Graphs

>>> plt.ylabel('Sales A')
Text (0, 0.5, 'Sales A')

6. Create a different y-axis, and add information about VALUESB as a line plot:
>>> plt.twinx()
<matplotlib.axes. subplots.AxesSubplot object at 0x118b0cl60>
>>> valueB = plt.plot(POS, VALUESB, 'o-', color='red')
>>> plt.ylabel('Sales B')
Text (0, 0.5, 'Sales B')
>>> plt.xticks (POS, LABELS)
<REDACTED>

7. Create another subplot and fill it with VALUESC:
>>> plt.subplot(2, 1, 2)
<matplotlib.axes. subplots.AxesSubplot object at 0x1l1l5abdfd0>
>>> plt.plot (POS, VALUESC)
[<matplotlib.lines.Line2D object at 0x118c7c0d0>]
>>> plt.gca() .set_ylim(ymin=0)
(0.0, 7.2)
>>> plt.xticks (POS, LABELS)
<REDACTED>

8. Display the graph:

>>> plt.show()

9. The result will be displayed in a new window:

[304]

Chapter 8

125 A - 3200

100 A

- 3100
75 A

Sales A
Sales B

50 1 - 3000

254

- 2900

Q1 2017 Q2 2017 Q3 2017 Q4 2017

0

Q1 2017 Q2 2017 Q32017 Q4 2017

A€IPQEDR

Figure 8.16: Multiple plots in the same graph

How it works...

In Step 1 of the How to do it... section, all the required imports for the module are
called.

Step 2 presents the data in a useable format.
Step 3 is a preparation step that splits the data into different arrays for the next steps.

Step 4 creates a new . subplot. This splits the full drawing into two elements. The
parameters are number of rows, columns, and the selected subplot. So, we create two
subplots in a column and draw in the first one.

[305]

Developing Stunning Graphs

Step 5 prints a .bar plot in this subplot using VALUESA data, and labels the y-axis with
Sales Ausing .ylabel.

Step 6 creates a new y-axis with . twinx, drawing VALUESB as a line plot through
.plot. The label is marked with .ylabel as Sales B. The x-axis is labeled using
.xticks.

The VALUESB plot is set to red to avoid both plots having the
‘ p, same color. By default, the first color is the same in both cases,
\/ and that will lead to confusion. The data points are marked with
the 'o' option.

In step 7, we changed to the second subplot using . subplot. The plot prints VALUESC
as a line, and again puts the labels on the x-axis with .xticker and sets the
minimum of the y-axis to 0. The graph is then displayed in step 8.

There's more...

Plots with multiple axes are complicated to read as a general rule. Use them only
when there's a good reason to do so and the data is highly correlated.

By default, the y-axis in line plots will try to present information
between the minimum and maximum Y values. Truncating the axis
| is normally not the best way to present information, as it can distort

\@l the perceived differences. For example, changing values in the

- range from 10 to 11 can look like a huge deal if the graph goes from

- 10 to 11, but this is less than 10%. Setting the y-axis minimum to
0 withplt.gca() .set_ylim(ymin=0) isa good idea, especially

with two different axes.

The call to select the subplot will first go by row, then by column, so . subplot (2,
2, 3) will select the subplot in the first column, second row.

The divided subplot grid can be changed. A first call to . subplot (2, 2, 1) and
.subplot (2, 2, 2),and then calling .subplot (2, 1, 2), will create a structure
with two small plots in the first row and a wider one in the second. Going back will
overwrite previously drawn subplots.

The full matplotlib documentation can be found here: https://matplotlib.
org/. In particular, the guide for legends can be found here: https://matplotlib.
org/users/legend_guide.html#plotting-guide-legend. The guide for
annotations can be found here: https://matplotlib.org/users/annotations.
html.

[306]

 https://matplotlib.org/
 https://matplotlib.org/
https://matplotlib.org/users/legend_guide.html#plotting-guide-legend.
https://matplotlib.org/users/legend_guide.html#plotting-guide-legend.
https://matplotlib.org/users/annotations.html.
https://matplotlib.org/users/annotations.html.

Chapter 8

See also
* The Drawing multiple lines recipe, earlier in this chapter, which shows
alternatives to displaying multiple values in a single graph.

* The Visualizing maps recipe, earlier in this chapter, to learn how to display
other kinds of rich graphs with multiple data.

Saving charts

Once a chart is ready, we can store it on the hard drive so it can be referenced in
other documents. In this recipe, we'll see how to save charts in different formats.

Getting ready

We need to install matplotlib in our virtual environment:

$ echo "matplotlib==3.2.1" >> requirements.txt

$ pip install -r requirements.txt

If you are using macOS, you may get an error like this: RuntimeError: Python is
not installed as a framework. See the matplotlib documentation on how to fix
it: https://matplotlib.org/faq/osx_framework.html.

How to do it...

1. Importmatplotlib:
>>> import matplotlib.pyplot as plt

2. Prepare the data to be displayed on the graph and split it into different
arrays:
>>> DATA = (
('Q1 2017', 100),
('Q2 2017', 150),
('Q3 2017, 125),
('Q4 2017, 175),
)
>>> POS = list(range(len (DATA)))
>>> VALUES = [value for label, value in DATA]

>>> LABELS = [label for label, wvalue in DATA]

[307]

https://matplotlib.org/faq/osx_framework.html

Developing Stunning Graphs

3. Create a bar graph with the data:
>>> plt.bar (POS, VALUES)
<BarContainer object of 4 artists>
>>> plt.xticks (POS, LABELS)
<REDACTED>
>>> plt.ylabel('Sales')
Text (0, 0.5, 'Sales')

4. Save the graph to the hard drive:
>>> plt.savefig('data.png')

5. Open the new file data.png to show the graph, as follows:

Sales

Q12017 Q2 2017 Q3 2017 Q4 2017

Figure 8.17: Graph saved in PNG format

[308]

Chapter 8

How it works...

After importing and preparing the data in steps 1 and 2 in the How to do it... section,
the graph is generated in step 3 by calling .bar. A .ylabel is added and the x-axis
is labelled with the proper time description through . xticks.

Step 4 saves the file to the hard drive with the name data.png.

There's more...

The resolution of the image can be determined through the dpi parameter. This will
affect the size of the file. Use resolutions between 72 and 300. Lower ones will be
difficult to read, while higher ones won't make sense unless the size of the graph is
humongous:

>>> plt.savefig('data.png', dpi=72)

matplotlib understands how to store the most common file formats, such as JPEG,
PDF, and PNG. It will be used automatically when the filename has the proper
extension.

| Unless you have a specific requirement, use PNG. It is very efficient
\@/ at storing graphs with limited colors compared to other formats. If
A you need to find all the supported files, you can call p1t.gc£ () .
canvas.get supported filetypes().

The full matplotlib documentation can be found here: https://matplotlib.org/.
In particular, the guide for legends can be found here: https://matplotlib.org/
users/legend guide.html#plotting-guide-legend. The guide for annotations
can be found here: https://matplotlib.org/users/annotations.html.

See also

* The Plotting a simple sales graph recipe, earlier in this chapter, to learn the
basics of plotting a bar graph.

* The Adding legends and annotations recipe, earlier in this chapter, to learn how
to add context information to graphs.

[309]

https://matplotlib.org/
https://matplotlib.org/users/legend_guide.html#plotting-guide-legend
https://matplotlib.org/users/legend_guide.html#plotting-guide-legend
https://matplotlib.org/users/annotations.html

Dealing with
Communication Channels

Dealing with communication channels is where automating things can produce

big gains. In this chapter, we'll see how to work with two of the most common
communication channels —emails, including newsletters, and sending and receiving
text messages by phone.

During the years, there has been a fair amount of abuse in both channels, like spam
or unsolicited marketing messages, making it necessary for senders to use external
tools to avoid messages being rejected by automated filters. We will present the
proper caveats where applicable. The presented tools have a lot of features that will
help you with your specific task. They also have excellent documentation, so do not
be afraid to read it.

In this chapter, we will cover the following recipes:

* Working with email templates

* Sending an individual email

* Reading an email

* Adding subscribers to an email newsletter
* Sending notifications via email

* Producing SMS

* Receiving SMS

* Creating a Telegram bot

[311]

Dealing with Communication Channels

We will start by understanding how to use templates to generate good emails.

Working with email templates

To send an email, we first need to generate its content. In this recipe, we'll see how to
generate a proper template, in both text-only style and HTML.

Getting ready

We should start by installing the mistune module, which will compile Markdown
documents into HTML. We will also use the jinja2 module to combine HTML with
our text:

$ echo "mistune==0.8.4" >> requirements.txt

$ echo "jinja2==2.11.1" >> requirements.txt

$ pip install -r requirements.txt

In this book's GitHub repository, there are a couple of templates we will use—
email template.mdathttps://github.com/PacktPublishing/Python-
Automation-Cookbook-Second-Edition/blob/master/Chapter09/email
template.md and a template for styling, email_styling.html, at https://github.
com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/
master/Chapter09/email styling.html.

How to do it...

1. Import the modules:
>>> import mistune

>>> import jinja2

2. Read both templates from disk:
>>> with open('email template.md') as md file:

markdown = md file.read()

>>> with open('email styling.html') as styling file:
styling = styling file.read()

[312]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/email_template.md
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/email_template.md
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/email_template.md
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/email_styling.html
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/email_styling.html
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/email_styling.html

Chapter 9

Define the data to include in the template. The template is quite simple and
accepts only a single name parameter:

>>> data = {'name': 'Seamus'}
Render the Markdown template. This produces the text-only version of the
data:

>>> text = markdown.format (**data)

Render the Markdown and add the styling:
>>> html content = mistune.markdown (text)

>>> html = jinja2.Template(styling) .render (content=html content)

Save the text and the HTML version to disk to check them:

>>> with open('text version.txt', 'w') as fp:
fp.write (text)

164

>>> with open('html version.html', 'w') as fp:
fp.write (html)

4085

Exit the interpreter and check the text version:
$ cat text version.txt

Hi Seamus:

This is an email talking about **things**
Very important info

1. One thing

2. Other thing

3. Some extra detail

Best regards,

The email team

[313]

Dealing with Communication Channels

8. Check the HTML version in a browser:

® @ ' [htmlversion.html X e

& C' @ file:///Usersfjaime/Dropb... Yr Ei @ @

Hi Seamus:

This is an email talking about things

Very important info

1. One thing
2. Other thing
3. Some extra detalil

Best regards,

The email team

Figure 9.1: Rendered image of the HTML file

How it works...

Step 1 imports the modules that will be used later, and step 2 reads the two templates
that will be rendered. email template.md is the basis of the content, and it's a
Markdown template. email_ styling.html is an HTML template that contains the
basic HTML surrounding and CSS styling information.

The basic strategy is to create the content in Markdown format. This
is a readable plain text file, which can be sent as part of the email.
‘ / That content can then be converted into HTML and surrounded
\p/ with some styling to assemble the complete, styled HTML file. The
styling file email styling.html has a content area where we
can put the rendered HTML from Markdown.

[314]

Chapter 9

Step 3 defines the data that will render in email_ template.md.Itis a very simple
template that only requires a parameter called name.

In step 4, the Markdown template gets rendered with the data. This produces the
plain text version of the email.

The HTML version is rendered in step 5. The plain text version is rendered to HTML
using mistune, and then wrapped in email_styling.html usinga jinja2 template.
The final version is a self-contained HTML document.

Finally, we save both versions, plain text (as text) and HTML (as html), to a file in
step 6. Steps 7 and 8 check the stored values. The information is the same, but in the
HTML version, it is better styled.

There's more...

Using Markdown makes emails that contain a version in both plain text and HTML
easy to generate. Markdown is quite readable in text format, and renders very
naturally into HTML. That said, it is possible to generate a totally different HTML
version, which will allow for more customization and taking advantage of HTML's
features.

The full Markdown syntax can be found at https://daringfireball.net/
projects/markdown/syntax, and a good cheat sheet with the most commonly used
elements can be found at https://www.markdownguide.org/cheat-sheet.

| While making a plain text version of an email is not strictly
\@’ necessary, it is a good practice and shows you care about who
AR reads the email. Most email clients accept HTML, but it's not
- totally universal.

For an HTML email, note that the whole stylesheet information should be contained
in the email. This means that the CSS needs to be embedded into the HTML. Avoid
making external references to resources that could lead the email to not render
properly in some email clients, or even be qualified as spam.

The styling in email_styling.html is based on the modest stylesheet, which can be
found here: http://markdowncss.github.io/. There are more CSS stylesheets that
can be used, and a search using Google should find more. Remember to remove any
external references, as discussed previously.

[315]

https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax
https://www.markdownguide.org/cheat-sheet
http://markdowncss.github.io/

Dealing with Communication Channels

Images can be included in HTML by encoding the image in baseé4 format so it can
be embedded directly in the HTML img tag, instead of adding a reference:

>>> import base64
>>> with open("image.png",'rb') as file:
encoded data = base64.b64encode(file)

>>> print "".
format (data=encoded data)

You can find more information about this technique in this article: https://css-
tricks.com/data-uris/.

The mistune full documents are available at http://mistune.readthedocs.io/
en/latest/, and the jinja2 documentation can be found at https://jinja.
palletsprojects.com/en/2.11.x/.

See also

* The Formatting text in Markdown recipe in Chapter 5, Generating Fantastic
Reports, to learn more about Markdown

* The Using templates for reports recipe in Chapter 5, Generating Fantastic Reports,
to learn more about Jinja2 templates

* The Sending an individual email recipe, later in this chapter, to follow up on
how to send the composed email

Sending an individual email

The most basic way of sending an email is by using the standard Simple Mail
Transfer Protocol (SMTP). SMTP is one of the oldest protocols on the Internet.
Although newer proprietary protocols exist, SMTP is the standard used by all email
providers to communicate with each other and is one of the pillars of electronic
communications.

[316]

https://css-tricks.com/data-uris/
https://css-tricks.com/data-uris/
http://mistune.readthedocs.io/en/latest/
http://mistune.readthedocs.io/en/latest/
https://jinja.palletsprojects.com/en/2.11.x/
https://jinja.palletsprojects.com/en/2.11.x/

Chapter 9

SMTP allows you to send rich emails with multiple sections containing different
kinds of data. These sections can be used to add attachments, or to generate
alternative sections, such as a plain text and HTML version of the same message,
to display on compatible email clients.

Given SMTP is such a strong standard, it is easy to use, and virtually all languages
and operating systems support it. This ease of usage is also a weakness as the
amount of spam email is huge, and big players in the email domain have strong
incentives to disallow emails coming from non-verified sources, like a Python script.

This is why SMTP is only recommended for very sporadic use and simple purposes
such as sending a few emails a day to controlled addresses.

! Do not use this method to send emails in bulk to distribution lists

N\ 7/
/@ or to customers from random email addresses. You risk being

g banned from your service provider due to anti-spam rules.

Getting ready

For this recipe, we'll need an email account with a service provider. There are small
differences based on the provider you'll use, but we'll be using a Gmail account as
they are very common and free to access.

Due to Gmail's security, we'll need to create a specific app password that can be used
to send an email. Follow the instructions here: https://support .google.com/
accounts/answer/185833. This will help you generate a password for the purpose
of this recipe. Remember to create it for mail access. You can delete the password
afterward to remove it.

We'll use the smtplib module, which is part of Python's standard library.

[317]

https://support.google.com/accounts/answer/185833
https://support.google.com/accounts/answer/185833

Dealing with Communication Channels

How to do it...

1.

Import the smtplib and email modules:
>>> import smtplib
>>> from email.mime.multipart import MIMEMultipart

>>> from email.mime.text import MIMEText

Set up the credentials, replacing these with your own ones. For testing
purposes, we'll send to the same email, but feel free to use a different
address:

>>> USER = 'your.account@gmail.com'
>>> PASSWORD = 'YourPassword'
>>> sent from = USER

>>> send to = [USER]

Define the data to be sent. Notice the two alternatives, a plain text one and an
HTML one:

>>> text = "Hi!\nThis is the text version linking to https://www.
packtpub.com/\nCheers!"

>>> html = """<html><head></head><body>
<p>Hi!

This is the HTML version linking to <a href="https://www.
packtpub.com/">Packt

</p>
</body></html>

Compose the message as a MIME multipart, including subject, to, and from:

>>> msg = MIMEMultipart('alternative')

>>> msg['Subject'] = 'An interesting email'
>>> msg['From'] = sent_from
>>> msg['To'] = ', '.join(send to)

Fill in the data content parts of the email:

>>> part plain = MIMEText (text, 'plain')
>>> part html = MIMEText (html, 'html')
>>> msg.attach(part plain)

>>> msg.attach(part html)

[318]

Chapter 9

6. Send the email using the sMTP SSL protocol:
>>> with smtplib.SMTP SSL('smtp.gmail.com', 465) as server:
e server.login (USER, PASSWORD)

N server.sendmail (sent from, send to, msg.as string())

7. The email should have been sent. Check your email account for the message.
Checking the original email, you will see the full raw email, with elements
in both HTML and plain text. The email has been redacted in the following
screenshot:

Return-Path: <mail .com>
Received: from .local |([1, 159 | l
by smtp.gmail.com with ESMTPSA id 1 45.01
for </ EEEEE: o=l . com>
(version=TLS1_2 cipher=ECDHE-RSA-AES128-GCM-5HA256 bits=128/128);
Thu, 09 Aug 2018 13:45:01 -0700 (PDT)
Message-ID: <Sb6ca?‘cd._. 85cd@mx.google.com>
Date: Thu, 09 Aug 2018 13:45:01 -0700 (PDT)
Content-Type: multipart/alternative; boundary="=== 4673407806445885785=="
MIME-Version: 1.0
Subject: An interesting email
From: fgmail.com
To: fgmail.com

——===============4§73407806445885785==
Content-Type: text/plain; charset="us-ascii"”
MIME-Version: 1.0

Content-Transfer-Encoding: 7bit

Hi!

This is the text version linking to https://www.packtpub.com/
Cheers!

——===============4673407806445885785==

Content-Type: text/html; charset="us-ascii”

MIME-Version: 1.0

Content-Transfer-Encoding: 7bit

<html>
<head></head>
<body>
<p>Hi!

This is the HTML version linking to Packt

</p>
</body>
</html>

—m===============4§73407806445885785==——

Figure 9.2: Email in both plain text and HTML format

[319]

Dealing with Communication Channels

How it works...

After step 1, making the pertinent imports from stmplib and email, step 2 defines
the credentials obtained from Gmail.

Step 3 shows the HTML and text that is going to be sent. They are alternatives, so
they should present the same information, but in different formats.

The basic message information is set up in step 4. It specifies the subject of the
email, as well as the from and to. Step 5 adds multiple parts, each with the proper
MIMEText type.

the MIME format, so we add the HTML part last.

\/‘/ The last part that's added is the preferred alternative, according to

Step 6 sets up the connection with the server, logs in using the credentials, and sends
the message. It uses a with context to get the connection. Note the address smtp.
gmail.comand port 465 are specific for Gmail.

If there's an error with the credentials, it will raise an exception with the username
and password not accepted.

There's more...

Note that send_to is a list of addresses. You can send an email to more than one
address. The only caveat is in step 4, where it needs to be specified as a list of comma-
separated values for all addresses.

| Although it is possible to label sent_from as a different address
\@’ than the address used to send the email, it is not recommended.
AR This can be interpreted as an indication of trying to fake the origin
- of the email and provokes labeling the email as spam.

The server used here, smtp.gmail. com, is the one specified by Gmail, and the
defined port for sSMTPS (secure SMTP) is 465. Gmail also accepts port 587, which is
the standard, but requires you to specify the kind of session by calling .starttls, as
shown in the following code:

with smtplib.SMTP('smtp.gmail.com', 587) as server:
server.starttls()
server.login(USER, PASSWORD)
server.sendmail(sent_from, send to, msg.as_string())

[320]

Chapter 9

If you are interested in more details about these differences and both protocols,
you can find more information in this article: https://www.fastmail.com/help/
technical/ssltlsstarttls.html.

The full smtplib documentation can be found at https://docs.python.org/3/
library/smtplib.html, and the email module, with information on the different
formats for emails, including examples on MIME types, can be found here: https://
docs.python.org/3/library/email.html. MIME types can be used to add binary
attachments to emails.

See also

* The Working with email templates recipe, earlier in this chapter, to see how
to compose the body of the email

* The Sending notifications via email recipe, later in this chapter, to learn how
to send bulk emails

Reading an email

In this recipe, we'll see how to read emails from an account. We'll use the 1MAP4
standard, which is the most commonly used standard for reading emails.

Once read, the email can be processed and analyzed automatically to generate
actions such as smart automated responses, forwarding the email to a different
target, aggregating the results for monitoring, and so on. The options are unlimited!

Getting ready

For this recipe, we'll need an email account with a service provider. There are small
differences based on the provider you use, but we'll use a Gmail account, as it is very
common and free to access.

Due to Gmail's security, we'll need to create a specific app password to use to send
an email. Follow the instructions here: https://support .google.com/accounts/
answer/185833. This will generate a password for the purpose of this recipe.
Remember to create it for mail. You can delete the password afterward to remove it.

We'll use the imaplib module, which is part of Python's standard library.

This recipe will read the last received email, so you can use it for better control over
what's going to be read. We'll send a short email that looks like it was sent to the
support team.

[321]

https://www.fastmail.com/help/technical/ssltlsstarttls.html
https://www.fastmail.com/help/technical/ssltlsstarttls.html
https://docs.python.org/3/library/smtplib.html
https://docs.python.org/3/library/smtplib.html
https://docs.python.org/3/library/email.html
https://docs.python.org/3/library/email.html
https://support.google.com/accounts/answer/185833
https://support.google.com/accounts/answer/185833

Dealing with Communication Channels

How to do it...

1.

Import the imaplib and email modules:

>>> import imaplib

>>> import email

>>> from email.parser import BytesParser, Parser

>>> from email.policy import default

Set up the credentials, replacing the following with your own ones:
>>> USER = 'your.account@gmail.com'

>>> PASSWORD = 'YourPassword'

Connect to the email server:
>>> mail = imaplib.IMAP4 SSL('imap.gmail.com')
>>> mail.login (USER, PASSWORD)

Select the inbox folder:

>>> mail.select('inbox')

Read all email UIDs and retrieve the latest received email:

>>> result, data = mail.uid('search', None, 'ALL')

>>> latest email uid = datal0].split() [-1]

>>> result, data = mail.uid('fetch', latest email uid, ' (RFC822)")

>>> raw_email = datal[0] [1]

Parse the email into a Python object:

>>> email message = BytesParser (policy=default) .parsebytes(raw
email)

Display the subject and sender of the email:

>>> email message['subject']

' [Ref ABCDEF] Subject: Product A’

>>> email.utils.parseaddr (email message['From'])

('Sender name', 'sender@gmail.com')

Retrieve the payload of the text:

>>> email type = email message.get content maintype()
>>> if email type == 'multipart':
for part in email message.get payload():

if part.get content type() == 'text/plain':

[322]

Chapter 9

payload = part.get payload()
. elif email type == 'text':
payload = email message.get payload()
>>> print (payload)
Hi:

I'm having difficulties getting into my account. What was the
URL, again?

Thanks!

A confused customer

How it works...

After importing the modules that will be used and defining the credentials, we
connect to the server in step 3.

Step 4 connects to inbox. This is a default folder in Gmail that contains the received
email.

\|/

@ Of course, you may need to read a different folder. You can get a
‘ list of all folders by calling mail.list ().

In step 5, first, a list of UlIDs is retrieved for all the emails in the inbox by calling
.uid('search', None, "ALL").The last email received is then retrieved again
from the server through a fetch action with .uid (' fetch', latest_email_ uid,

' (RFC822) ') . This retrieves the email in RFC822 format, which is the standard. Note
that retrieving the email marks it as read.

a tuple with the result (OK or NO) and the data. If there's an error, it
will raise the proper exception.

C’ The .uid command allows us to call IMAP4 commands, returning
\’/

The BytesParser module is used to transform the raw RFC822 email into a Python
object. This is done in step 6.

[323]

Dealing with Communication Channels

The metadata, including details such as the subject, the sender, and the timestamp,
can be accessed like a dictionary, as shown in step 7. The addresses can be parsed
from raw text format to separate the part with email.utils.parseaddr.

Finally, the content can be unfolded and extracted. If the type of the email is
multipart, each of the parts can be extracted by iterating through .get_payload().
The one that's easier to deal with is plain/text, so assuming it is present, the code
in step 8 will extract it.

The email's body is stored in the payload variable.

There's more...

In step 5, we retrieved all the emails from the inbox, but that's not necessary. The
search command can be parameterized with filter criteria, for example, by retrieving
only the last day's emails:

import datetime

since = (datetime.date.today() - datetime.timedelta(days=1)).
strftime("%d-%b-%Y")

result, data = mail.uid('search', None, f'(SENTSINCE {since})")

This will search according to the date of the email. Notice that the resolution is in
days.

There are more actions that can be done through 1Map4. Check RFC 3501 at
https://tools.ietf.org/html/rfc3501 and RFC 6851 at https://tools.ietf.
org/html/rfce851 for further details.

The preceding RFCs describe the IMAP4 protocol and can be a
L little arid. Checking the available commands in the RFCs' indexes
- /@\' will give you an idea of the capabilities of the protocol, and then
g you can search for examples on how to implement the specific

command.

The subject and body of the email, as well as other metadata such as date, to, from,
and so on, can be parsed and processed. For example, the subject retrieved in this
recipe can be processed in the following way:

>>> import re

>>> re.search(r'\[Ref (\w+)] Subject: (\w+)', '[Ref ABCDEF] Subject:
Product A') .groups()

('ABCDEF', 'Product')

[324]

https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc6851
https://tools.ietf.org/html/rfc6851

Chapter 9

See also

* Chapter 1, Let's Begin Our Automation Journey, for more information about
regular expressions and other ways of parsing information.

Adding subscribers to an email
newsletter

A common marketing tool is email newsletters. They are convenient ways of sending
information to multiple targets. A good newsletter system is difficult to implement,
and the recommended way is to use ones available on the market. A well-known one
is MailChimp (https://mailchimp.com/).

MailChimp has a lot of possibilities, but the interesting one in regard to this book is
its API, which can be scripted to automate tools. This RESTful API can be accessed
through Python. In this recipe, we will see how to add more subscribers to an
existing list.

Getting ready

As we will use MailChimp, we need to have an account with them. You can create a
free account at https://login.mailchimp.com/signup/.

After creating the account, be sure to at least have a list that we can add subscribers
to. As part of the registration process, it may have been created for you. It will
appear under Audience -> Manage Audience -> View Audience:

- ROV R DU — © 27 i ™ Q

ncas allawed in your plan—to add an

1o your existing sudiences and org

Audiences

Sortby Custom order «

Feedback

Wrong Side of Memphis 2 2 0.0% 0.0% +2 St v
Created Aug 13, 2018 1:44 pm Contacts Subscribers Opens Clicks

Figure 9.3: Audiences in MailChimp

[325]

https://mailchimp.com/
https://login.mailchimp.com/signup/

Dealing with Communication Channels

The Audience will contain the subscribed users.

For the API, we'll need an API key. Go to Account -> Extras -> API keys and create a
new one:

Wrong Side Of Memphis

Overview Settings v Billing Extras v Integrations Transactional

API keys

About the AP/ Developing an app?

The MailChimp API makes it easy for programmers to integrate Writing your own application that requires access to other MailChimp
MailChimp's features into other applications. users' accounts? Check out our OAuth2 APl documentation, then register

your app.
Read The APl Documentation

Register And Manage Your Apps

Your API keys
API keys provide full access to your MailChimp account, so keep them safe. Tips on keeping
APl keys secure
Created User Label API key QR Code Status

fE AR e et ovnen rorese [
Create AMandet 41 Ky

Figure 9.4: A screenshot of API keys in MailChimp

We will use the requests module to access the APL. Add it to your virtual
environment:
$ echo "requests==2.23" >> requirements.txt

$ pip install -r requirements.txt

The MailChimp API uses the concept of the data center (DC) that your account uses.
This can be obtained from the last 4 digits of your API key or from the start of the
URL from the MailChimp admin site. For example, us19.

How to do it...

1. Import the requests module:

>>> import requests

[326]

Chapter 9

Define the authentication and base URLs. The base URL requires your dc at
the start (such as us19):

>>> API _KEY = 'your secret key'

>>> BASE 'https://<dc>.api.mailchimp.com/3.0"'

>>> auth

('user', API KEY)

Obtain all your lists:
>>> url = f'{BASE}/lists'
>>> response = requests.get(url, auth=auth)

>>> result = response.json()

Filter your lists to obtain the href for the required list:

>>> LIST NAME 'Your list name'

>>> this list = [1 for 1 in result['lists'] if l['name'] == LIST
NAME] [0]

>>> list_url = [1['href'] for 1 in this list['_links'] if 1l['rel']
== 'self'] [0]

With the list URL, you can obtain the URL for the members of the list:

>>> response = requests.get(list url, auth=auth)

>>> result = response.json()

>>> result['stats']

{'member_count': 1, 'unsubscribe count': 0, 'cleaned count': 0,

-}
>>> members url = [l['href'] for 1 in result[' links'] if 1['rel']
== 'members'] [0]

The list of members can be retrieved through a GET request to members_url:
>>> response = requests.get(members url, auth=auth)
>>> result = response.json()

>>> len(result['members'])

1

Append a new member to the list:

>>> new member = {
'email address': 'test@test.com',
'status': 'subscribed',

>>> response = requests.post (members url, json=new member,
auth=auth)

[327]

Dealing with Communication Channels

8. Retrieving the list of users with a GET obtains both users:
>>> response = requests.get (members url, auth=auth)
>>> result = response.json()
>>> len(result['members'])

2

How it works...

After importing the requests module in step 1, we define the basic values to connect
in step 2: the base URL and the credentials. Note that for authentication, we only
require the API key as the password, and any user (as described by the MailChimp
documentation: https://developer.mailchimp.com/documentation/mailchimp/
guides/get—started—with—mailchimp—api—3/).

Step 3 retrieves all the lists, calling the proper URL. The result is returned in JSON
format. The call includes the auth parameter with the defined credentials. All
subsequent calls will be made with this auth parameter for authentication purposes.

Step 4 shows how to filter the returned list to grab the URL of the list of interest. Each
of the returned calls includes a list of _1inks with related information, making it
possible to walk through the API.

The URL for the list is called in step 5. This returns information for the list, including
the basic stats. By applying a similar filtering to step 4, we retrieve the URL for the
members.

Due to size constraints and to show relevant data, not all of the
L retrieved elements have been displayed. Feel free to analyze them
‘,@\‘ interactively and find out about them. The data is well constructed
g and follows the RESTful principles of discoverability. Python's
introspection makes it quite readable and understandable.

Step 6 retrieves the list of members, making a GET request to members_url, which
can be seen as a single user. This can be seen in the Getting ready section, in the web
interface.

Step 7 creates a new user and posts on members_url with the information passed in
the json parameter so that it gets translated into JSON format. The updated data is
retrieved in step 7, showing that there's a new user in the list.

[328]

https://developer.mailchimp.com/documentation/mailchimp/guides/get-started-with-mailchimp-api-3/
https://developer.mailchimp.com/documentation/mailchimp/guides/get-started-with-mailchimp-api-3/

Chapter 9

There's more...

The full MailChimp APl is quite powerful and can perform a large number of tasks.
Go to the full MailChimp documentation to discover all the possibilities: https: //
developer.mailchimp.com/.

As a brief note, and a little out of scope of this book, please
be aware of the legal implications of adding subscribers to an
L automated list. Spam is a serious concern and there are new
‘/@\‘ regulations in place to protect the rights of customers, such as
g GDPR. Ensure that you have the permission of users to email them.
The good thing is that MailChimp automatically implements tools

to help with this, such as automatic unsubscribe buttons.

The general MailChimp documentation is also quite interesting and shows a lot of
possibilities. MailChimp is capable of managing newsletter and general distribution
lists, but it can also be tailored to generate flows, schedule the sending of emails, and
automatically send messages to your audience based on parameters such as their
birthday.

See also

* The Sending an individual email recipe, earlier in this chapter, to see the
differences between sending an email directly without this kind of tool

* The Sending notification emails recipe, next, to learn how to send emails
tailored to a specific user for an action

Sending notifications via email

In this recipe, we will cover how to send emails to customers. Transactional emails
are sent in response to an action by a user, such as confirmation or alert emails. Due
to spam protection and other limitations, it is better to implement this kind of email
with the help of external tools.

In this recipe, we will use Mailgun (https://www.mailgun.com), which is able to
send these kinds of emails, as well as communicate responses.

Getting ready

We'll need to create an account with Mailgun. Go to https://signup.mailgun.com
to create one. Notice that the credit card information is optional.

[329]

https://developer.mailchimp.com/
https://developer.mailchimp.com/
https://www.mailgun.com
https://signup.mailgun.com

Dealing with Communication Channels

Once registered, go to Domains to see there's a sandbox environment. We can use
it to test Mailgun's functionality, although it will only send emails to registered test
email accounts. The API credentials will be displayed there:

Domain Information
184.173.153.194 + Manage IPs

smtp.mailgun.org

htcps://api.mailgun.net/v3/ S 2.0
I - znage SMTP credentials

Figure 9.5: Domain information in Mailgun

We need to register the account so we'll receive the email as an authorized recipient.
You can add it here:

Account

Success: Invited recipient

Authorized Recipients Upsgrad

]

Authorized Recipients

Invite New Recipient

State Email

Figure 9.6: Verifying an account using Mailgun

[330]

Chapter 9

To verify the account, check the email of the authorized recipient and confirm it. The
email address is now ready to receive test emails:

Would you like to receive emails from Wrong Side of Memphis on Mailgun? = i & B

Mailgun <supaceiEmaigun o wI3Ominesope) T &

Hi thare,

Mailgun account "Wrang Side of Memphis® provided your addrsss 1o test

thair intagration with Maigun,

Please click the link balow i you sgree to receive emails from their account

If you didn't expect this email, please unsubscribe.

Thiriks, Maiigun Taam

Figure 9.7: The account is ready to receive test emails

We will use the requests module to connect to the Mailgun API. Install it in the
virtual environment:
$ echo "requests==2.23" >> requirements.txt

$ pip install -r requirements.txt

Everything is ready to send emails, but notice that you can only send emails to
authorized recipients. Being able to send emails everywhere requires us to set up
a domain. Follow the Mailgun documentation for that: https://documentation.
mailgun.com/en/latest/quickstart-sending.html#verify-your-domain.

How to do it...
1. Import the requests module:

>>> import requests

2. Prepare the credentials, as well as the to and from emails. Note we're using a
mock from:

>>> KEY = 'YOUR-SECRET-KEY'
>>> DOMAIN = 'YOUR-DOMAIN.mailgun.org'

>>> TO = 'YOUR-AUTHORISED-RECEIVER'

>>> FROM

f'sender@{DOMAIN}'
>>> auth = ('api', KEY)

[331]

https://documentation.mailgun.com/en/latest/quickstart-sending.html#verify-your-domain
https://documentation.mailgun.com/en/latest/quickstart-sending.html#verify-your-domain

Dealing with Communication Channels

3.

Prepare the email to be sent. Here, there is an HTML version and an
alternative plain text one:

>>> text = "Hi!\nThis is the text version linking to https://www.
packtpub.com/\nCheers!"

>>> html = '''<html><head></head><body>
e <p>Hi!

e This is the HTML version linking to <a href="https://
www.packtpub.com/">Packt

... </p>
e </body></html>"""

Set up the data to send to Mailgun:

>>> data = {

cen 'from': f'Sender <{FROM}>',

cen 'to': f'Jaime Buelta <{TO}>',

e 'subject': 'An interesting email!',
e "text': text,

e "html': html,

o}
Make the call to the API:

>>> response = requests.post(f"https://api.mailgun.net/v3/
{DOMAIN}/messages", auth=auth, data=data)

>>> response.json()

{*id': '<YOUR-ID.mailgun.org>', 'message': 'Queued. Thank you.'}

Retrieve the events and check the email has been delivered:

>>> response_events = requests.get(f'https://api.mailgun.net/v3/
{DOMAIN}/events', auth=auth)

>>> response events.json() ['items'] [0] ['recipient'] == TO
True

>>> response events.json() ['items'] [0] ['event']

'delivered!'

The email should appear in your inbox. As it was sent through the sandbox
environment, be sure to check your spam folder if it doesn't show up
directly.

[332]

Chapter 9

How it works...

Step 1 imports the requests module to be used later. The credentials and the basic
information in the message are defined in step 2, and should be extracted from the
Mailgun web interface, as shown previously.

Step 3 defines the email that will be sent. Step 4 structures the information in the way
Mailgun expects. Notice the html and text fields. By default, it will set HTML as
the preferred option and the plain text option as an alternative. The format for To
and FroM should be in the Name <address> format. You can use commas to separate
multiple recipients in TO.

The call to the API is made in step 5. It is a POST call to the messages endpoint. The
data is transferred in the standard way, and basic authentication is used with the
auth parameter. Notice the definition in step 2. All calls to Mailgun should include
this auth parameter. It returns a message, notifying you that it was successful, and
then the message is queued.

In step 6, a call to retrieve the events through a GET request is made. This will show
the latest actions performed, the last of which will be the recent send. Information
about delivery status can also be found here.

There's more...

To send emails, you'll need to set up the domain with which to send it, instead of
using the sandbox environment. You can find the instructions on how to do this
here: https://documentation.mailgun.com/en/latest/quickstart-sending.
html#verify-your-domain. This requires you to change your DNS records to verify
that you are the legitimate owner of the domain. This also increases the deliverability
of emails.

The emails can include attachments in the following way:

attachments = [
("attachment",
("attachmentl.jpg", open("image.jpg","rb").read())
)>
("attachment”,
("attachment2.txt", open("text.txt","rb").read())
)]
response = requests.post(f"https://api.mailgun.net/v3/{DOMAIN}/
messages",
auth=auth, files=attachments, data=data)

[333]

https://documentation.mailgun.com/en/latest/quickstart-sending.html#verify-your-domain
https://documentation.mailgun.com/en/latest/quickstart-sending.html#verify-your-domain

Dealing with Communication Channels

Notice the structure of ("attachment", (<filename>, <binary datas)).

The data can include the usual information such as cc or bee, but you can also delay
the delivery for up to three days with the o:deliverytime parameter:

import datetime

import email.utils

delivery time = datetime.datetime.now() + datetime.timedelta(days=1)
data = {

'o:deliverytime': email.utils.format_datetime(delivery time),

}

Mailgun can also be used to receive emails and to trigger processes when they arrive;
for example, forwarding them based on rules. Check the Mailgun documentation to
find out more.

The full Mailgun documentation can be found here: https://documentation.
mailgun.com/en/latest/quickstart.html. Be sure to check their Best Practices
section at (https ://documentation.mailgun.com/en/latest/best practices.
html#email-best-practices) to understand the world of sending emails and how
to avoid them being labeled as spam.

See also

* The Working with email templates recipe, earlier in this chapter, to learn how to
style emails using templates

* The Sending an individual email recipe, earlier in this chapter, to learn how to
send emails directly from Python, instead of using an external service

Producing SMS messages

One of the most widely available communication channels is text messages. Text
messages are very convenient to use to distribute information.

! SMS messages can be used for marketing purposes, but also as a

\ 7/
‘/@\‘ way of alerting or sending notifications, or, very common recently,

g as a way of implementing two-factor authentication systems.

[334]

https://documentation.mailgun.com/en/latest/quickstart.html
https://documentation.mailgun.com/en/latest/quickstart.html
https://documentation.mailgun.com/en/latest/best_practices.html#email-best-practices
https://documentation.mailgun.com/en/latest/best_practices.html#email-best-practices

Chapter 9

We will use Twilio, a service that exposes APIs to send SMS easily.

Getting ready

We need to create an account for Twilio at https://www.twilio.com/. Go to the
page and register a new account.

You'll need to follow the instructions and set up a phone number to receive
messages. You will need to input a code sent to this phone or receive a call to verify
the phone line is correct.

Create a new project and check the dashboard. From there, you'll be able to create
your first phone number so that you can receive and send SMS:

® & @ Twiio Console - Phone Numb ¥ e

« @ Secure | hitps://www.twilio.com, & £ bers/getting t o B8 0

My automation p... i o £ 7 bii7)

hone Numbers — Get Started with Phone Numbers s

Geltting started with Twilio's phone numbers is easy! Search for local, toll-free, or mobile numbers by capability, country, or prefix

Get your first Twilio phone number

Lecking for a short-code? Apaly for

Helpful Documentation

Not ready to build? We can help you find the right solution. Talk to Sal:
Ready to remove trial restrictions and enjoy full benefits? :
Upgrade your account

Getting Started

Get Started

g e twilie,

Figure 9.8: Setting up phone numbers using Twilio

Once the number has been configured, it will appear in the Active Numbers section
in All Products and Services -> Phone Numbers.

On the main dashboard, check aAccounT SIDand AuTH TOKEN. They'll be used later.
Notice you'll need to display the auth token.

[335]

https://www.twilio.com/

Dealing with Communication Channels

We'll also need to install the twilio module. Add it to your virtual environment:

$ echo "twilio==6.37.0" >> requirements.txt

$ pip install -r requirements.txt

Notice that the receiver phone number can only be a verified number with a trial
account. You can verify more than one number; follow the documentation at
https://support.twilio.com/hc/en-us/articles/223180048-Adding-a-
Verified-Phone-Number-or-Caller-ID-with-Twilio

How to do it...

1.

Import client from the twilio module:

>>> from twilio.rest import Client

Set up the authentication credentials obtained from the dashboard
previously. Also, set your Twilio phone number; as an example, here, we set
+353 12 345 6789, a fake Irish number. It will be local to your country:

>>> ACCOUNT_SID = 'Your account SID'
>>> AUTH TOKEN = 'Your secret token'
>>> FROM = '+353 12 345 6789'

Start the client to access the API:
>>> client = Client (ACCOUNT SID, AUTH TOKEN)

Send a message to your authorized phone number. Notice the underscore at
the end of from :

>>> message = client.messages.create(body='This is a test message
from Python!',

from =FROM,

to='+your authorised number')

You'll receive an SMS on your phone:

[336]

https://support.twilio.com/hc/en-us/articles/223180048-Adding-a-Verified-Phone-Number-or-Caller-ID-with-Twilio
https://support.twilio.com/hc/en-us/articles/223180048-Adding-a-Verified-Phone-Number-or-Caller-ID-with-Twilio

Chapter 9

all 3 ¥ 22:24 @ < % 63%)
< v o ®
I

Sent from your Twilio trial
account - This is a test
message from Python!

& O | @
._/l‘k
QWERTYU I OFP

A'SDFGHJ KLN

123 @& 0 space return

Figure 9.9: Test message from Python

How it works...

The use of the Twilio client to send messages is very straightforward.

In step 1, we import client. We prepare the credentials and configure the phone

number in step 2.

Step 3 creates the client with the proper authentication, and the message is sent in

step 4.

[337]

Dealing with Communication Channels

Note that the to number needs to be one of the authenticated

\/V numbers while you're working in a trial account, or it will produce

an error. You can add more authenticated numbers; check the
Twilio documentation.

All the messages that are sent from a trial account will include that detail in the SMS,
as you can see in step 5.

There's more...

In certain regions (US and Canada, at the time of writing this), SMS numbers
have the ability to send MMS messages, including images. To attach images to the
message, add the media_url parameter and the URL of the image to send:

client.messages.create(body="An MMS message',
media_url="http://my.image.com/image.png’,
from_=FROM,
to="+your authorised number')

The client is based on a RESTful API, and allows you to perform multiple operations,
such as creating a new phone number or obtaining an available number first and
then purchasing it:

available numbers = client.available phone numbers("IE").local.
list()
number = available_numbers[0]

new_number = client.incoming_phone_numbers.create(phone_
number=number.phone_number)

Check the documentation for more available actions; most of the dashboard point-
and-click actions can be performed programmatically.

Twilio is also capable of performing other phone services,
such as phone calls and text-to-speech. Check it out in the full
documentation.

(@

[338]

Chapter 9

The full Twilio documentation is available here: https://www.twilio.com/docs/.

See also
* The Receiving SMS recipe, next, to learn how to receive messages, as well as
send them

* The Creating a Telegram bot recipe, later in this chapter, to further your
knowledge

Receiving SMS

SMS can also be received and processed automatically. This enables services such
as delivering information on request (for instance, send INFO GOALS to receive the
results from the Soccer League), but also more complex flows such as in bots, which
can have simple conversations with users that enable rich services such as remotely
configuring a thermostat.

Each time Twilio receives an SMS to one of your registered phone
numbers, it performs a request to a publicly available URL. This is
configured in the Twilio service, meaning the code to execute when
accessing the URL should be under your control. This creates the
problem of having this URL available on the internet. That means
that just your local computer won't work, as it's very unlikely that

B’ it is addressable externally from your local network. We will use

-} . . .

\/ Heroku (http://heroku. com) to deliver an available service, but
there are other alternatives. The Twilio documentation provides
examples of using ngrok, which allows for local development
by creating a tunnel between a public address and your local
development environment. See here for more details: https://
www.twilio.com/blog/2013/10/test-your-webhooks-
locally-with-ngrok.html.

This way of operating is common in communication APIs. It should be noted that
Twilio has a beta API for WhatsApp, which works in a similar way. Check the
docs for more information at https://www.twilio.com/docs/sms/whatsapp/
quickstart/python.

[339]

https://www.twilio.com/docs/
https://www.twilio.com/docs/sms/whatsapp/quickstart/python
https://www.twilio.com/docs/sms/whatsapp/quickstart/python
http://heroku.com
https://www.twilio.com/blog/2013/10/test-your-webhooks-locally-with-ngrok.html
https://www.twilio.com/blog/2013/10/test-your-webhooks-locally-with-ngrok.html
https://www.twilio.com/blog/2013/10/test-your-webhooks-locally-with-ngrok.html

Dealing with Communication Channels

Getting ready

We need to create an account for Twilio at https://www.twilio.com/. Refer to the
Getting ready section in the Producing SMS recipe for detailed instructions.

For this recipe, we will also need to set up a web service in Heroku (https://www.
heroku.com/) to be able to create a webhook capable of receiving SMS addressed to
Twilio. Because the main objective of this recipe is the SMS part, we will be concise
when setting up Heroku, but you can refer to its excellent documentation. It is quite
easy to use:

1.
2.

Create an account in Heroku.

You'll need to install the command-line interface for Heroku (instructions for
all platforms can be found at https://devcenter.heroku.com/articles/
getting-started-with-python#set-up) and then log in to the command
line:

$ heroku login

Enter your Heroku credentials.

Email: your.user@server.com

Password:
Download a basic Heroku template from https://github.com/
datademofun/heroku-basic-flask. We will use it as a base for our server.

Add the twilio client to the requirements. txt file:

$ echo "twilio" >> requirements.txt

Replace the python interpreter with the newest supported
, version of python in the file runt ime. txt. At the time of the
\/§p> writing, this was 3 . 8 . 3. Check the heroku documentation
https://devcenter.heroku.com/articles/python-
support#specifying-a-python-version

Replace app . py with the one in GitHub at https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/
master/Chapter09/app.py. The key part of this is to obtain the body of the
request and send it back with some extra information. The code is displayed
later in the How it works... section.

[340]

https://www.twilio.com/
https://www.heroku.com/
https://www.heroku.com/
https://devcenter.heroku.com/articles/getting-started-with-python#set-up
https://devcenter.heroku.com/articles/getting-started-with-python#set-up
https://github.com/datademofun/heroku-basic-flask
https://github.com/datademofun/heroku-basic-flask
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/app.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/app.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/app.py
https://devcenter.heroku.com/articles/python-support#specifying-a-python-version
https://devcenter.heroku.com/articles/python-support#specifying-a-python-version

Chapter 9

NI You can keep the existing app . py to check the template example
/@ and how Heroku works. Check out the README at https://
5] github.com/datademofun/heroku-basic-flask.

Once done, commit the changes to Git:
$ git add

$ git commit -m 'first commit'

Create a new service in Heroku. It will generate a new service name
randomly (we used service-name-12345 here). This URL is accessible:

$ heroku create
Creating app... done, @ SERVICE-NAME-12345
https://service-name-12345.herokuapp.com/ | https://git.heroku.

com/service-name-12345.git

Deploy the service. In Heroku, deploying a service pushes the code to the
remote Git server:

$ git push heroku master

remote: Verifying deploy... done.
To https://git.heroku.com/service-name-12345.git
b6cd95a..367a994 master -> master

Check that the service is up and running at the webhook URL. Note it is
displayed as output in the previous step. You can also check it in a browser:

$ curl https://service-name-12345.herokuapp.com/

All working!

[341]

https://github.com/datademofun/heroku-basic-flask
https://github.com/datademofun/heroku-basic-flask

Dealing with Communication Channels

How to do it...

1. Go to Twilio and access the PHONE NUMBER section. Configure the
webhook URL. This will make the URL be called on each received SMS.
Go to the Active Numbers section in All Products and Services -> Phone

Numbers and fill in the webhook. Note /sms at the end of the webhook.
Click on Save:

(@ Pross Number WiongSide

o twilia. com,

My automation p... e

WrongSideOfMemphis
Manage Mumbers Configure A J

Active Numbers

b
M

‘oice is unavailable for this phone number,

HTTP POST g

Figure 9.10: Configuring phone numbers in Twilio

2. The service is now up and running and can be used. Send an SMS to your
Twilio phone number; you should get an automated response:

[342]

Chapter 9

23:50 + all T -

i
WL

Hello bot
Sent from your Twilio trial

account - Awwwww! Thanks so

much for your message
13_‘:_3& "Hello bot"

to you too.

(O M A) (1)

QWERTYU I OFP
A'SDFGHJ KL
4 Z X CVBNM &

123 space return

@ 0

Figure 9.11: SMS from Twilio trial account

Note the blurred parts should be replaced with your information.

L If you have a trial account, you can only send messages back to one
',@\' of your authorized phone numbers, so you'll need to send the text
g from them.

[343]

Dealing with Communication Channels

How it works...

Step 1 sets up the webhook, so Twilio calls your Heroku app when receiving an SMS
on the phone line.

Let's take a look at the code in app . py to see how this works. Here it is, redacted
for clarity; check the full file at https://github.com/PacktPublishing/Python-
Automation-Cookbook-Second-Edition/blob/master/Chapter09/app.py:

from flask import Flask, request
from twilio.twiml.messaging _response import MessagingResponse

app = Flask(__name_)

@app.route('/")
def homepage():
return 'All working!'

@app.route("/sms", methods=["'GET', 'POST'])
def sms_reply():
from_number = request.form[' From']
body = request.form['Body']
resp = MessagingResponse()
msg = (f'Awwwww! Thanks so much for your message {from_number},

f'"{body}" to you too.")

resp.message(msg)
return str(resp)

if __name__ == '__main__":

app.run()
app.py can be divided into three parts:
* The Python imports at the start of the file and startup of the Flask app at the
end, which is just setting up Flask
* The call to homepage, which is generated to test that the server is working

* sms_reply, which is where the magic happens

[344]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/app.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/app.py

Chapter 9

The sms_reply function obtains the phone number that sends the SMS, as well as the
body of the message, from the request . form dictionary. Then, compose a response
in msg, attach it to a new MessagingResponse, and return it.

| We are using the message from the user as a whole, but remember
L Y . . , ,
@ all the techniques to parse text mentioned in Chapter 1, Let's Begin
N Our Automation Journey. They are all applicable here for detecting
- predefined actions or any other text processing.

The returned value will be sent back by Twilio to the sender, producing the result
seen in step 2.

There's more...

To be able to generate automated conversations, the state of the conversation
should be stored. For an advanced state, it should probably be stored in a database,
generating a flow, but for simple cases, storing information in session may be
enough. The session is able to store information in cookies that are persistent
between the same combination of to and from phone numbers, allowing you to
retrieve it between messages.

For example, this modification will return not only the send body, but the previous
one as well. Only the relevant parts have been included:

app = Flask(__name__)
app.secret_key = b'somethingreallysecret!!!!’

@app.route("/sms", methods=['GET', 'POST'])
def sms_reply():
from_number = request.form[' From']
last _message = session.get('MESSAGE', None)
body = request.form['Body']
resp = MessagingResponse()
msg = (f'Awwwww! Thanks so much for your message {from_number},

f'"{body}" to you too. ')
if last_message:
msg += f'Not so long ago you said "{last_message}" to me..'
session['"MESSAGE'] = body
resp.message(msg)
return str(resp)

[345]

Dealing with Communication Channels

The previous body is stored in the MESSAGE key of the session, which is carried
over. Notice the requirement to define a secret key to be able to use the session
data. Read this for information about it: https://flask.palletsprojects.
com/en/1.1.x/quickstart/#sessions. More information about the handling of
cookies in Twilio can be found here: https://support.twilio.com/hc/en-us/
articles/223136287-How-do-Twilio-cookies-work-.

NI To deploy the new version in Heroku, commit the new app . py file
/@ to Git, and then use git push heroku master. The new version
g will be deployed automatically!

Because the main objective of this recipe is to demonstrate how to reply, Heroku and
Flask are not described in detail, but they both have excellent documentation. The
full documentation for Heroku can be found at https://devcenter.heroku.com/
categories/reference, and the documentation for Flask is here: http://flask.
pocoo.org/docs/.

Remember, the use of Heroku and Flask is just a convenience
for this recipe. They're great and easy tools to use, but there are
L multiple alternatives to them, as long as you are able to expose a
‘,@\‘ URL so that Twilio can call it. Also, check the security measures to
E ensure that requests to this endpoint come from Twilio: https://
www.twilio.com/docs/usage/security#validating-
requests.

The full documentation for Twilio can be found here: https://www.twilio.com/
docs/.

See also

* The Producing SMS recipe, earlier in this chapter, to get to grips with the
fundamentals of Twilio and how to receive messages.

* The Creating a Telegram bot recipe, next, to further your knowledge and apply
it to similar elements.

[346]

https://flask.palletsprojects.com/en/1.1.x/quickstart/#sessions
https://flask.palletsprojects.com/en/1.1.x/quickstart/#sessions
https://support.twilio.com/hc/en-us/articles/223136287-How-do-Twilio-cookies-work-
https://support.twilio.com/hc/en-us/articles/223136287-How-do-Twilio-cookies-work-
https://devcenter.heroku.com/categories/reference
https://devcenter.heroku.com/categories/reference
https://www.twilio.com/docs/usage/security#validating-requests
https://www.twilio.com/docs/usage/security#validating-requests
https://www.twilio.com/docs/usage/security#validating-requests

Chapter 9

Creating a Telegram bot

Telegram Messenger is an instant messaging app that has good support for creating
bots. Bots are small applications that aim to produce automatic conversations. The
big promise of bots is that, as machines, they can create any kind of conversation,
totally indistinguishable from a conversation with a human being, and pass the
Turing Test, but that objective is quite ambitious and not realistic for the most part.

The Turing Test was proposed by Alan Turing in 1951. Two
participants, a human and an Artificial Intelligence (AI) machine/
/ software program, communicate via text (like in an instant
\/;p> messaging app) with a human judge that decides which one is
human and which one is not. If the judge can only guess correctly

50% of the time, it can't be easily differentiated and therefore the Al
passes the test. This was one of the first attempts to measure AL

But bots can be very useful for a more limited approach, similar to phone systems
where you need to press 2 to check your account and press 3 to report a missing
card. In this recipe, we'll see how to generate a simple bot that will display offers and
events for a company.

Getting ready

We need to create a new bot for Telegram. This is done through an interface called
the BotFather, which is a Telegram special channel that allows us to create a new
bot. You can access the channel here: https://telegram.me/botfather. Access it
through your Telegram account.

Run /start to start the interface and then create a new bot with /newbot. The
interface will ask you for the name of the bot and a username, which should be
unique.

[347]

https://telegram.me/botfather

Dealing with Communication Channels

Once it's set up, it will give you the following:

* The Telegram channel of your bot: https:/t.me/<yourusernames.

* A token to allow access to the bot. Copy it as it will be used later.

I
\@’ You can generate a new token if you lose an existing token. Read

the BotFather's documentation for more information.

We also need to install the Python module telepot, which wraps the RESTful
interface from Telegram:

$ echo "telepot==12.7" >> requirements.txt

$ pip install -r requirements.txt

Download the telegram bot.py script from GitHub at https://github.com/

PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/
master/Chapter09/telegram bot.py.

How to do it...

1. Setup your generated token in the telegram bot .py script on the TOKEN
constant in line 6:

TOKEN = '<YOUR TOKEN>'

2. Start the bot:
$ python telegram bot.py

3. Open the Telegram channel on your phone using the URL and start it. You
can use the help, offers, and events commands:

[348]

https:/t.me/<yourusername>
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/telegram_bot.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/telegram_bot.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/telegram_bot.py

Chapter 9

13:229 al T .

¢ Back Automate_bot o

bot
Use one o1 e 1UIIUWI[]Q commdanas:
help: To show this help
offers: To see this week offers
events: To see this week events
Offers 12....

This week enjoy these amazing offers!
20% discount in beach products
15% discount if you spend more

than €50

Events ;.. .

Join us for an incredible party the
Thursday in our Sun City shop!

2 ORCIRY

El No Que

123 space return

@ Y

Figure 9.12: Marketing offers sent by SMS

[349]

Dealing with Communication Channels

How it works...

Step 1 sets the token to use for your specific channel. In step 2, we start the bot locally.

Let's see how the code in telegram bot.py is structured:

def get _help():

def get offers():

def get_events():

COMMANDS = {
"help': get_help,
‘offers': get_offers,
'events': get_events,

class MarketingBot(telepot.helper.ChatHandler):

The Market ingBot class creates an interface to handle the communication with
Telegram:
* When the channel is started, the open method will be called
* When a message is received, the on_chat_message method will be called
* If there's no answer in a while, on_idle will be called

In each case, the self.sender.sendMessage method is used to send a message back
to the user. Most of the interesting bits happen in on_chat_message:

def on_chat_message(self, msg):

content_type, chat_type, chat_id = telepot.glance(msg)

if content_type != "text':
self.sender.sendMessage("I don't understand you.
"Please type 'help' for options™)

return

[350]

Chapter 9

command = msg['text'].lower()

if command not in COMMANDS:
self.sender.sendMessage("I don't understand you.
"Please type 'help' for options™)

return

message = COMMANDS[command]()
self.sender.sendMessage(message)

First, it checks whether the received message is text and returns an error message
if it's not. It analyzes the received text, and if it's one of the defined commands, it
executes the corresponding function to retrieve the text to return.

Then, it sends the message back to the user.

Step 3 shows how this works from the user's point of view, who is interacting with
the bot.

There's more...

You can add more information, an avatar picture, and so on to your Telegram
channel using the BotFather interface.

To simplify our interface, we can create a custom keyboard to simplify the bot.
Create it after defining the commands, around line 44 of the script:

from telepot.namedtuple import ReplyKeyboardMarkup, KeyboardButton
keys = [[KeyboardButton(text=text)] for text in COMMANDS]
KEYBOARD = ReplyKeyboardMarkup(keyboard=keys)

Notice it is creating a keyboard with three rows, each with one of the commands.
Then, add the resulting KEYBOARD as the reply markup on each of the sendMessage
calls, as follows:

message = COMMANDS[command] ()
self.sender.sendMessage(message, reply markup=KEYBOARD)

[351]

Dealing with Communication Channels

This replaces the keyboard with only the defined buttons, making the interface very
obvious:

14:02 4 o T Em

< Back Auton;lf_te_bot u
Use one of the Tollowing commands:
help: To show this help
offers: To see this week offers
events: To see this week events
offers 1.0z

This week enjoy these amazing offers!
20% discount in beach products
15% discount if you spend more

than €50

events ...

Join us for an incredible party the
Thursday in our Sun City shop!

help
offers

events

Figure 9.13: SMS with three buttons

These changes can be downloaded from the telegram bot_custom_ keyboard.py
file, available in GitHub here: https://github.com/PacktPublishing/Python-
Automation-Cookbook-Second-Edition/blob/master/Chapter09/telegram
bot custom_ keyboard.py.

You can create other kinds of custom interfaces, such as inline buttons or even a
platform for creating games. Check the Telegram API docs for more information.

[352]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/telegram_bot_custom_keyboard.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/telegram_bot_custom_keyboard.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter09/telegram_bot_custom_keyboard.py

Chapter 9

Interacting with Telegram can also be done through webhooks, in a similar way as
presented in the Receiving SMS recipe. Check the example for Flask in the telepot
documentation here: https://github.com/nickoala/telepot/tree/master/
examples/webhook.

Setting up a Telegram webhook can be done through telepot. It
requires that your service is behind an HTTPS address to ensure

:@’_ the communication is private. This can be tricky to do with
- simple services. You can check the documentation on setting up a
- webhook in the Telegram docs: https://core.telegram.org/
bots/api#tsetwebhook.

The full Telegram API for bots can be found here: https://core.telegram.org/
bots.

The documentation for the telepot module can be found here: https://telepot.
readthedocs.io/en/latest/.

See also

* The Producing SMS recipe, earlier in this chapter, to learn about the
fundamentals of Twilio and how to receive SMS messages.

* The Receiving SMS recipe, earlier in this chapter, to learn how to receive SMS
messages using Twilio.

[353]

https://github.com/nickoala/telepot/tree/master/examples/webhook
https://github.com/nickoala/telepot/tree/master/examples/webhook
https://core.telegram.org/bots
https://core.telegram.org/bots
https://telepot.readthedocs.io/en/latest/
https://telepot.readthedocs.io/en/latest/
https://core.telegram.org/bots/api#setwebhook
https://core.telegram.org/bots/api#setwebhook

10

Why Not Automate Your
Marketing Campaign?

In this chapter, we will cover the following recipes, which are related to a marketing
campaign:

* Detecting opportunities

* Creating personalized coupon codes

* Sending a notification to a customer on their preferred channel

* Preparing sales information

* Generating a sales report

Introduction

In this chapter, we will create a marketing campaign and go through each of the
automatic steps we'll take. We will use concepts and recipes throughout this book
in a single project that will require different steps.

Let's look at an example. For our project, our company wishes to set up a marketing
campaign to improve engagement and sales. A very laudable effort. To do so, we
can divide this into several tasks:

1. We want to detect the best moment to launch the campaign, so we will be
notified from different sources about keywords that will help us make an
informed decision

[355]

Why Not Automate Your Marketing Campaign?

2. The campaign will include the generation of individual codes to be sent to
potential customers

3. We will send these codes directly to users over their preferred channel, text
message or email

To monitor the result of the campaign, we will compile the sales information
And finally, a sales report will be generated

This chapter will go through each of these tasks and present a combined solution
based on modules and techniques that have been introduced in this book.

While these examples have been created with real-life requirements
L in mind, take into account that your specific environment will
/@ always surprise you. Don't be afraid to experiment, tweak, and
g improve your system as you learn more about it. Iterating is the

way to create great systems.

Let's get to it!

Detecting opportunities

In this chapter, we are presenting a marketing campaign divided into several tasks:

1. Detect the best moment to launch the campaign
2. Generate individual codes to be sent to potential customers

3. Send the codes directly to users over their preferred channel, text message or
email

4. Collect the results of the campaign
5. Generate a sales report with an analysis of the results

This recipe covers task 1.

Our first task is to detect the best time to launch a campaign. To do so, we will
monitor a list of news sites, searching for news containing one of our defined
keywords. We add any article that matches these keywords to a report and send it in
an email.

Getting ready

In this recipe, we will use several external modules previously presented in this
book, delorean, requests, and BeautifulSoup. We need to add them to our
virtual environment if they're not already there:

[356]

Chapter 10

echo "delorean==1.0.0" >> requirements.txt

echo "requests==2.23.0" >> requirements.txt

echo "beautifulsoup4==4.8.2" >> requirements.txt
echo "feedparser==5.2.1" >> requirements.txt
echo "jinja2==2.11.1" >> requirements.txt

echo "mistune==0.8.4" >> requirements.txt

»v» v v v v W

pip install -r requirements.txt

You need to make a list of RSS feeds, from which we will retrieve our data.

In our example, we're using the following feeds, which are all
technology feeds of well-known news sites:

* http://feeds.reuters.com/reuters/

‘p/ technologyNews
* https://rss.nytimes.com/services/xml/rss/

nyt/Technology.xml

* https://feeds.bbci.co.uk/news/science and
environment/rss.xml

Download the search_keywords.py script, which will perform the actions, from
GitHub at https://github.com/PacktPublishing/Python-Automation-
Cookbook-Second-Edition/blob/master/Chapterl0/search keywords.py.

You also need to download the email templates, which can be found at https://
github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/
blob/master/Chapterl0/email styling.html and https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/
master/Chapterl0/email_template.md. There is a config template at https://
github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/
blob/master/Chapterl0/config-opportunity.ini.

You need a valid username and password for an email service. Check the Sending
an individual email recipe in Chapter 9, Dealing with Communication Channels.

How to do it...

1. Create a config-opportunity.ini file, which should be in the following
format. Remember to fill it with your details:

[SEARCH]
keywords = keyword, keyword
feeds = feed, feed

[357]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/s
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/s
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/email_styling.html
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/email_styling.html
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/email_styling.html
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/email_template.md
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/email_template.md
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/email_template.md
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/config-opportunity.ini
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/config-opportunity.ini
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/config-opportunity.ini
http://feeds.reuters.com/reuters/technologyNews
http://feeds.reuters.com/reuters/technologyNews
https://rss.nytimes.com/services/xml/rss/nyt/Technology.xml
https://rss.nytimes.com/services/xml/rss/nyt/Technology.xml
https://feeds.bbci.co.uk/news/science_and_environment/rss.xml
https://feeds.bbci.co.uk/news/science_and_environment/rss.xml

Why Not Automate Your Marketing Campaign?

[EMAIL]

user = <YOUR EMAIL USERNAME>
password = <YOUR EMAIL PASSWORD>
from = <EMAIL ADDRESS FROM>

to = <EMAIL ADDRESS TO>

You can use the template from GitHub at https://github.com/PacktPublishing/
Python-Automation-Cookbook-Second-Edition/blob/master/Chapterl0/
config-opportunity.ini to search for the keyword cpu and some test feeds.
Remember to fill in the EMAIL fields with your own account details.

2. Call the script to produce the email and report:
$ python search keywords.py config-opportunity.ini
3. Check the to email; you should receive a report with the articles found.

Keep in mind that it will be different depending on the daily news, but it
should be something similar to this:

Hil
This is an automated email checking articles published last week containing the keywords: cpu in the following feeds:

http:/ifeeds.reuters.com/reuters/technologyNews http://rss.nytimes.com/services/xml/rss/nyt Technology.xml
http:/ifeeds bbei.co.uk/news/science_and_environment/rss. xml

List of articles:

+ As Nvidia expands in artificial intelligence, Intel defends turf | Reuters Nvidia Corp dominates chips for fraining computers to think like humans, but it
faces an entrenched competiter in a major avenue for expansion in the ariificial intelligence chip market: Intel Corp .<div class="feedflare"> <a

] com/~fiireutersitechnologyMews?a=A10kGChaZlsKET rJFBi0ylI2AUgCEzA"><img src="hitp:/Teeds feadbu om/~filreuters!
lechnologyNews?d=ylI2ZAUoCEzA" border="0"><fa> =a href="hilp.feeds reulers.com/~fiireuiersitechnologyNews?a=A1okGChalls:
IKET_cJFBi0Y_sGLIPBpWU"><img src="hitp./fesds feedburner.comi~fiireuterstechnologyNews?i=A1okGChaZ|sIKET rJFBI0Y_sGLIPBpWU"

border="0"><fa> </div>: http:/feeds.reuters. com/-r/
reutersitechnologyNews/~3/A1okGChaZls/as-nvidia-expands-in-artificial-dntelligence-intel-defends-turd-id USKBN 1L 2051

Give Your Old Computer New Life - The New York Times If you're not ready to buy a whale new system, you might be able to add new parts and upgrade

life html? pariner=resfemec=rss

Enjoy the read!

Figure 10.1: A list of articles containing the keyword cpu

How it works...

After creating the proper configuration for the script in step 1, web scraping and
sending an email with the results is done in step 2 by calling search_keywords.py.

[358]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/config-opportunity.ini
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/config-opportunity.ini
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/config-opportunity.ini

Chapter 10

Let's take a look at the search_keywords. py script. The code is structured into the
following parts:

* The 1MPORTS section makes available all the Python modules to be used later.
It also defines EmailConfig namedtuple to help with handling the email
parameters.

* READ TEMPLATES retrieves the email templates and stores them for later use
in the EMATL TEMPLATE and EMAIL_ STYLING constants.

* The_main__ block starts the process by getting the configuration
parameters, parsing the config file, and then calling the main function.

¢ The main function combines the other functions. First, it retrieves the articles,
and then it obtains the body and sends the email.

* get_articles walks through all the feeds and discards any article that is
over 1 week old. For the remaining articles, it searches for a match on the
keywords. All the matched articles are returned, including information
about the link and a summary.

* compose_email_body uses the email templates to compile the email body.
Notice that the template is in Markdown and it gets parsed into HTML, to
give the same information in plain-text and in HTML.

* send_email gets the body information, as well as required information
such as the username/password, and sends the email.

There's more...

One of the main challenges in retrieving information from different sources is to
parse the text in all cases. Some feeds may return information in different formats.

For instance, in our example, you can see that the Reuters feed summary includes
HTML information that gets rendered in the resulting email. If you have that kind
of problem, you may need to process the returned data further, until it becomes
consistent. This may be highly dependent on the expected quality of the resulting
report.

When developing automatic tasks, especially when dealing with

multiple input sources, expect to spend a lot of time cleaning the

-(0)- input to make it consistent. However, find a balance and keep in

2\ mind the final recipient. If the email is to be received, for example,
by yourself or a friend, you can be a little more permissive than
with an important client.

[359]

Why Not Automate Your Marketing Campaign?

Another possibility is to increase the complexity of the match. In this recipe, the
check is done with a simple in operator. Remember that all the techniques in
Chapter 1, Let's Begin Our Automation Journey, are available for you to use, including
all the regular expression's capabilities.

\@/ This script is automatable through a cron job, as described in

Chapter 2, Automating Tasks Made Easy. Try to run it every week!

See also

The Adding command-line arguments recipe in Chapter 1, Let's Begin Our
Automation Journey, to learn the details about the command-line arguments.

The Introducing regular expressions recipe in Chapter 1, Let's Begin Our
Automation Journey, to learn about how to use regular expressions.

The Preparing a task recipe in Chapter 2, Automating Tasks Made Easy, to check
the structure for a good automated task.

The Setting up a cron job recipe in Chapter 2, Automating Tasks Made Easy, to
learn how to repeat a job automatically.

The Parsing HTML recipe in Chapter 3, Building Your First Web Scraping
Application, to learn how to parse returned HTML.

The Crawling the web recipe in Chapter 3, Building Your First Web Scraping
Application, to learn how to follow up links when retrieving information on
the web.

The Subscribing to feeds recipe in Chapter 3, Building Your First Web Scraping
Application, to learn the basics about dealing with RSS feeds.

The Sending an individual email recipe in Chapter 9, Dealing with Communication
Channels, to learn how to send emails using Python.

Creating personalized coupon codes

In this chapter, we are presenting a marketing campaign divided into several tasks:

1.
2.
3.

Detect the best moment to launch the campaign
Generate individual codes to be sent to potential customers

Send the codes directly to users over their preferred channel, text message
or email

[360]

Chapter 10

4. Collect the results of the campaign

5. Generate a sales report with an analysis of the results
This recipe shows task 2 of the campaign.

After an opportunity has been detected, we decide to generate a campaign for all
customers. To direct promotions and avoid duplication, we will generate 1 million
unique coupons, divided into three batches:

* Half of the codes will be printed and distributed in a marketing action.
* 300,000 codes will be reserved to be used later if the campaign hits some
goals.

* The remaining 200,000 will be directed to customers through SMS and emails.

These coupons can be redeemed in the online system. Our task will be to generate
the proper codes, which should meet the following requirements:

* The codes need to be unique.

* The codes need to be printable and easy to read, as some customers will be
dictating them over the phone.

* There should be a quick way to discard fake codes. This will avoid attacks
with random codes that could overload the system.

* The codes should be presented in CSV format for printing.

Getting ready

Download the create_personalised_coupons.py script, which will generate the
coupons in CSV files, from GitHub at https://github.com/PacktPublishing/
Python-Automation-Cookbook-Second-Edition/blob/master/Chapterl0/
create personalised coupons.py.

How to do it...

1. Call the create_personalised_coupons.py script. It will take a minute or
two to run, depending on your processor speed. It will display the generated
codes onscreen:

$ python create personalised coupons.py
Code: HWLF-P9J9E-U3
Code: EAUE-FRCWR-WM
Code: PMW7-P39MP-KT

[361]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/create_personalised_coupons.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/create_personalised_coupons.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/create_personalised_coupons.py

Why Not Automate Your Marketing Campaign?

2. Check it has created three CSV files, codes batch 1.csv, codes batch 2.
csv, and codes_batch_3.csv, each with the proper number of codes:

$ we -1 codes batch *.csv
500000 codes batch l.csv
300000 codes batch 2.csv
200000 codes batch 3.csv
1000000 total

3. Check that each of the batch files contains unique codes. Your codes will be
unique and different from the ones displayed here:

$ head codes batch 2.csv
9J9F-M33YH-YR
TWLP-LTJUP-PV
WHFU-THW7R-T9

How it works...

Step 1 calls the script that generates all the codes, and step 2 checks that the results
are correct. Step 3 shows the format in which the codes are stored. Let's analyze the
create personalised coupons.py Script.

In summary, it has the following structure:

def random_code(digits)
def checksum(codel, code2)
def check code(code)

def generate_code()

SET UP TASK

GENERATE CODES

[362]

Chapter 10

CREATE AND SAVE BATCHES

The different functions work together to create a code. random_code generates a
combination of random letters and numbers, taken from CHARACTERS. This string
contains all the valid characters to choose from.

The selection of characters is defined as symbols that are easy to

print and cannot be mistaken for each other. For example, it will be

difficult to distinguish between a letter O and the number 0, or the

number 1 and the letter I, depending on the font. This may depend

-(O)- on the specifics of the typeface and the printing process, so check

AR printing tests if necessary to adjust the characters. But avoid using
all letters and numbers in printing form, as it may cause confusion.
Increase the length of the codes if necessary; for example, if many
more codes are required or if the number of easily recognizable
symbols is smaller.

The checksum function generates, based on two codes, an extra digit that is derived
from the two codes. This process is called hashing, and it's a well-known process in
computing, especially for cryptography.

The basic functionality of hashing is to produce an output from an
/ input that is smaller and is not reversible, meaning it's very difficult
\/§n> to guess unless the input is known. Hashing has a lot of common
applications in computing, normally under the hood. For example,
Python dictionaries make extensive use of hashing.

In our recipe, we'll use SHA256, a well-known fast hashing algorithm included in the
Python hashlib module:

def checksum(codel, code2):
m = hashlib.sha256()
m.update(codel.encode())
m.update(code2.encode())
checksum = int(m.hexdigest()[:2], base=16)
digit = CHARACTERS[checksum % len(CHARACTERS)]
return digit

Both codes are concatenated as input, and the resulting two hex digits of the
resulting hash string are used to pick the corresponding character from CHARACTERS.

[363]

Why Not Automate Your Marketing Campaign?

The hash digits get transformed into a base 10 number (as they are in base 16) and
we apply the modulo operator to obtain one of the available characters.

The objective of this checksum is to be able to quickly check whether a code
looks like it is correct and discard possible spam. We can produce the operation
again over a code to see whether the checksum is the same. Note that this is not a
cryptographic hash, as no secret is required at any point of the operation. Given
this specific use case, this (low) level of security is probably fine for our purposes.

Cryptography is a much bigger theme and ensuring that security
| is strong can be difficult. The main strategy in cryptography
\ / N
@ involving hashing is probably to store just the hash to avoid storing
AR passwords in a readable format. You can read a quick introduction
- to that technique here: https://crackstation.net/hashing-
security.htm.

The generate_code function then produces a random code, composed of four digits,
then five digits, and then two digits of the checksum, divided by dashes. The first
checksum digit is generated with the first nine digits in right-to-left order (using the
four-character block as code1 and the five-character block as code2). The second
checksum digit is generated by reversing them (the five-character block as code1

and the four-character block as code2).

The check_code function reverses the process and returns True if the code is correct,
and False otherwise.

With the basic elements in place, the script starts by defining the required batches:
500,000, 300,000, and 200,000.

All the codes are generated in the same pool, called codes. This is to avoid duplicates
between batches. Note that, due to the randomness of the process, we can't rule out
the possibility of generating duplicated code, though such a possibility is small.

We are allowed to retry up to three times to avoid generating duplicated code. The
codes are stored in a set accumulator to guarantee their uniqueness and to speed up
the process of checking whether a code is already there.

| Sets is another of the places where Python uses hashing under the
\@l hood, so it hashes the element to be added and compares it with the
NUR hashes of the elements already there. This makes checking in sets a
- very quick operation.

[364]

https://crackstation.net/hashing-security.htm
https://crackstation.net/hashing-security.htm

Chapter 10

To be sure that the process is correct, each code is verified and printed to display
progress while generating the code. This also allows us to inspect that everything is
working as expected.

Finally, the codes are divided into the proper number of batches and each one is
saved in an individual . csv file. The codes are removed one by one from codes
using .pop () until batch is the proper size:

batch = [(codes.pop(),) for _ in range(batch_size)]

Note how the previous line creates a batch of the proper size of rows with a single
element. Each row is still a list, as it should be for a CSV file.

Then, a file is created and, using csv.writer, the codes are stored as rows.

As a final test, the remaining codes are verified to make sure they're empty.

There's more...

In this recipe, a direct approach was used in the flow. This is in opposition to the
principles presented in the Preparing a task to run recipe in Chapter 2, Automating
Tasks Made Easy. Notice that, compared with the tasks presented there, this script is
aimed to be run a single time to produce the codes, and that's it. It also uses defined
constants, such as BATCHES, for configuration, instead of command-line parameters
or config files.

Given that it is a unique task, designed to be run once, spending time structuring it
into a reusable component is probably not the best use of our time.

Over-engineering is definitively possible and choosing between a

I
\@’ pragmatic design and a more future-facing approach may not be
-4 easy. Be realistic about maintenance costs and try to find your own
- balance.

In the same way, the design in this recipe on the checksum is aimed to give a
minimal way to check whether a code is totally made up or looks legit. Given that
codes will be checked against a system, this seems like a sensible approach, but be
aware of your particular use case.

Our code space is made up of 22 characters ** 9 digits = 1,207,269,217,792
possible codes, meaning the probability of guessing one of the million generated
is very small. It's also not very likely to produce the same code twice, but
nevertheless, we protected our code against that with up to three retries.

[365]

Why Not Automate Your Marketing Campaign?

These kinds of checks, as well as checking that each code has been verified and
that we end up with no remaining codes, are very useful when developing this
kind of script. It ensures that we are going in the right direction and things are
going according to plan. Just be aware that asserts may not be executed in
some conditions.

As described in the Python documentation, assert commands
are ignored if the Python code is optimized (run with the -0
‘ / command). See the documentation here: https://docs.python.
\p/ org/3/reference/simple stmts.html#the-assert-
statement. The usage of the -0 argument is rare, but can be
confusing if that's the case. Avoid depending heavily on asserts.

Learning the basics of cryptography is not as difficult as you may think. There are

a small number of basic schemes that are well-known and can be easily learned. A
good introduction article is https://thebestvpn.com/cryptography/. Python also
has a good number of cryptographic functions; see the documentation at https://
docs.python.org/3/library/crypto.html. The best approach is to find a good
book and know that, while it's a difficult subject to truly master, it is definitely
approachable.

See also

* The Introducing regular expressions recipe in Chapter 1, Let's Begin Our
Automation Journey, to learn how to use regular expressions.

* The Reading CSV files recipe in Chapter 4, Searching and Reading Local Files,
to learn how to work with CSV files.

Sending a notification to a customer on
their preferred channel

In this chapter, we are presenting a marketing campaign divided into several tasks:

1. Detect the best moment to launch the campaign
2. Generate individual codes to be sent to potential customers

3. Send the codes directly to users over their preferred channel, text message
or email

Collect the results of the campaign

5. Generate a sales report with an analysis of the results

[366]

https://thebestvpn.com/cryptography/
https://docs.python.org/3/library/crypto.html
https://docs.python.org/3/library/crypto.html
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement

Chapter 10

This recipe shows task 3 of the campaign.

Once our codes have been created for direct marketing, we need to distribute them
to our customers.

For this recipe, from an input from a CSV file with the information of all customers
and their preferred contact methods, we will fill the file with the codes generated
previously, and then send a notification through the proper method. This will
include the promotional code.

Getting ready

In this recipe, we will use several modules already presented: delorean, requests,
and twilio. We need to add them to our virtual environment, if they're not already
there:

$ echo "delorean==1.0.0" >> requirements.txt
$ echo "requests==2.23.0" >> requirements.txt
$ echo "twilio==6.37.0" >> requirements.txt

$ pip install -r requirements.txt

We need to define a config-channel.ini file with our credentials for the services
to use, Mailgun and Twilio. A template of this file can be found on GitHub here:
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-
Edition/blob/master/Chapterl0/config-channel.ini.

Sending notifications via emails and Producing SMS recipes in Chapter
9, Dealing with Communication Channels.

C’ For information on how to obtain the credentials, refer to the
\"/

The file has the following format:

[MAILGUN]

KEY = <YOUR KEY>

DOMAIN = <YOUR DOMAIN>

FROM = <YOUR FROM EMAIL>

[TWILIO]

ACCOUNT SID = <YOUR SID>

AUTH TOKEN = <YOUR TOKEN>

FROM = <FROM TWILIO PHONE NUMBER>

[367]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/c
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/c

Why Not Automate Your Marketing Campaign?

For a description of all the contacts to target, we need to generate a CSV file,
notifications.csv, in the following format:

Contact .
Name Method Target Status Code Timestamp
John PHONE +1-555-12345678 NOT- SENT
Smith
Pagl EMAIL paul.smith@test. NOT- SENT
Smith com

Figure 10.2: Format of notifications.csv

Note that the code column is empty and that all the statuses should be NOT-SENT or
empty.

| If you are using a test account in Twilio and Mailgun, be aware
\ 7/ 1.
@ of its limitations. For example, Twilio only allows you to send
messages to authenticated phone numbers. You can create a small
CSV file with only two or three contacts to test the script.

The coupon codes to be used should be ready in a CSV file. You can generate several
batches with the create_personalised coupons.py script, available on GitHub at

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-
Edition/blob/master/Chapterl0/create personalised coupons.py.

Download the script to be used, send_notifications.py, from GitHub at https://
github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/
blob/master/Chapterl0/send notifications.py.

How to do it...

1. Run send_notifications.py to see its options and usage:
$ python send notifications.py --help

usage: send notifications.py [-h] [-c CODES] [--config CONFIG
FILE] notif file

positional arguments:

notif file notifications file

[368]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/c
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/c
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/send_notifications.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/send_notifications.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/send_notifications.py

Chapter 10

optional arguments:
-h, --help show this help message and exit
-c CODES, --codes CODES

Optional file with codes. If present, the
file

will be populated with codes. No codes
will be

sent

--config CONFIG FILE config file (default config.ini)

2. Add the codes to the notifications.csv file:

$ python send notifications.py --config config-channel.ini
notifications.csv -c codes batch 3.csv

$ head notifications.csv

Name, Contact Method, Target,Status,Code, Timestamp

John Smith, PHONE, +1-555-12345678,NOT-SENT, CFXK-U37JN-TM,
Paul Smith, EMAIL,paul.smith@test.com, NOT-SENT, HJGX-M97WE-9Y,

3. Finally, send the notifications:

$ python send notifications.py --config config-channel.ini
notifications.csv

$ head notifications.csv
Name, Contact Method, Target,Status,Code, Timestamp

John Smith, PHONE, +1-555-12345678, SENT, CFXK-U37JN-TM,2018-08-
25T13:08:15.908986+00:00

Paul Smith, EMAIL,paul.smith@test.com, SENT,HJGX-M97WE-9Y,2018-08-
25T13:08:16.980951+00:00

4. Check the emails and phones to verify the messages were received.

How it works...

Step 1 shows the use of the script. The general idea is to call it several times; the first
time to fill it with codes, and the second time to send the messages. If there's an
error, the script can be executed again, and only messages not previously sent will
be retried.

[369]

Why Not Automate Your Marketing Campaign?

The notifications.csv file gets the codes that will be injected in step 2. The codes
are finally sent in step 3.

Let's analyze the code of send_notifications.py. Only the most relevant bits are
shown here:

def send_phone_notification(...):
def send email notification(...):
def send_notification(...):

def save_file(...):
def main(...):

if __name__ == "'__main__':

The main function goes through the file line by line and analyzes what to do in each
case. If the entry is SENT, it skips it. If it has no code, it tries to fill it. If it tries to send
it, it will attach the timestamp to record when it was sent or tried to be sent.

For each entry, the whole file is saved again in a file called save_file. Notice how
the file cursor is positioned at the start of the file. The file is written and then flushed
to disk:

def save_file(notif_file, data):

Overwrite the file with the new information

notif file.seek(0@)
header = data[@].keys()
writer = csv.DictWriter(notif_file, fieldnames=header)

writer.writeheader()
writer.writerows(data)

notif_file.flush()

[370]

Chapter 10

This overwrites the file on each entry operation, without us having to close and open
the file again.

Why write the whole file for each entry? This is an easy way to
store each of the operations and allows you to retry the sending
process. For example, if an entry produces an unexpected error or
a timeout, or even if there's a general failure, all the progress and
previous codes will be marked as SENT already and won't be sent
a second time. This means the operation can be retried as needed.
For a big number of entries, this is a good way of ensuring that

\/V a problem in the middle of the process doesn't make us resend

messages to our customers.

For a huge number of rows, we may risk having a problem with
saving the file. This can cause the file to get corrupted by an
unexpected error while writing or taking too long to save. If that's
the case, split the file into independent batches that can be treated
independently. For very big processes, a system that guarantees the
data won't get corrupted, like using a database, may be required.

For each code to be sent, the send notification function decides to call either
send_phone notificationor send email notification. It appends the current
time in both cases.

Both send functions return an error if they can't send the message. This allows you
to mark it in the resulting notifications.csv file and retry it later.

A The notifications.csv file can also be changed manually. For
'@' example, imagine there's a typo in an email and that's the reason
g for the error. It can be changed and retried.

/

send_email notification sends the message based on the Mailgun interface.
For more information, refer to the Sending notifications via emails recipe in Chapter 9,
Dealing with Communication Channels. Note that the email sent here is text only.

send_phone_notification sends the message based on the Twilio interface.
For more information, refer to the Producing SMS recipe in Chapter 9, Dealing with
Communication Channels.

[371]

Why Not Automate Your Marketing Campaign?

There's more...

Timestamps have been deliberately written in ISO format, as it is a parsable format.
This means that we can get back a proper object in an easy way, like this:

>>> import datetime

>>> timestamp = datetime.datetime.now(datetime.timezone.utc) .isoformat ()
>>> timestamp

'2018-08-25T14:13:53.772815+00:00"

>>> datetime.datetime.fromisoformat (timestamp)

datetime.datetime (2018, 9, 11, 21, 5, 41, 979567, tzinfo=datetime.

timezone.utc)

This allows you to easily parse the timestamp back and forth.

L ISO 8601 time format is well supported in most programming
'@\' languages and precisely defines the time as it includes the time

/7
g zone. It is an excellent choice for recording times, if you can use it.

The strategy used in send_notification to route the notifications is an interesting
one:

METHOD = {
"PHONE ' : send_phone_notification,
"EMAIL': send_email notification,

}

try:
method = METHOD[entry['Contact Method']]
result = method(entry, config)

except KeyError:
result = '"INVALID METHOD'

The METHOD dictionary assigns each of the possible Contact Methods to a function
that has the same definition, accepting both an entry and a config.

Then, based on the specific method, the function is retrieved from the dictionary
and called. Note that the method variable contains the correct function to call.

[372]

Chapter 10

This acts in a similar way to the switch operation that is available

\/V in other programming languages. It is also possible to achieve

this through if..else blocks. For simple cases like this code, the
dictionary method makes the code very readable.

The invalid method function is used as a default. If Contact Method is not one of
the available ones (PHONE or EMAIL), a KeyError will be raised and captured, and the
result will be defined as INVALID METHOD.

See also

* The Sending notifications via emails recipe in Chapter 9, Dealing with
Communication Channels, to learn how to send emails through Mailgun.

* The Producing SMS recipe in Chapter 9, Dealing with Communication Channels,
to learn how to send text messages using Twilio.

Preparing sales information

In this chapter, we are presenting a marketing campaign divided into several tasks:

* Detect the best moment to launch the campaign
* Generate individual codes to be sent to potential customers

* Send the codes directly to users over their preferred channel, text message or
email

* Collect the results of the campaign

* Generate a sales report with an analysis of the results
This recipe shows task 4 of the campaign.

After sending the information to users, we need to collect the sales logs from the
shops to monitor how it is going and how big the campaign's impact is.

The sales logs are reported as individual files from each of the associated shops, so
in this recipe, we'll see how to aggregate all the info into a spreadsheet to be able
to treat the information as a whole.

[373]

Why Not Automate Your Marketing Campaign?

Getting ready

For this recipe, we need to install the following modules:

$ echo "openpyxl==3.0.3" >> requirements.txt
$ echo "parse==1.15.0" >> requirements.txt

$ echo "delorean==1.0.0" >> requirements.txt
$ pip install -r requirements.txt

We can obtain a test structure and test logs for this recipe from GitHub at https://
github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/
tree/master/Chapter10/sales. Please download the full sales directory, which
contains a lot of test logs. To display the structure, we'll use the tree command
(http://mama.indstate.edu/users/ice/tree/), which is installed by default in
Linux and can be installed using brew in macOS (https://brew.sh/). You can use a
graphical tool to inspect the directory as well.

We'll also need the sale log.py module and the parse sales log.py script,
available on GitHub at https://github.com/PacktPublishing/Python-
Automation-Cookbook-Second-Edition/blob/master/Chapterl0/parse sales

log.py.

How to do it...

1. Check the structure of the sales directory. Each subdirectory represents a
shop that has submitted its sales logs for the specified period:
$ tree sales
sales
— 345
| L— logs.txt
— 438
| F— logs 1.txt
| F— logs 2.txt

| F— logs 3.txt
| L— logs 4.txt
L— 656

L— logs.txt

2. Check the log files:
$ head sales/438/logs_1.txt

[2018-08-27 21:05:55+00:00] - SALE - PRODUCT: 12346 - PRICE:
$02.99 - NAME: Single item - DISCOUNT: 0%

[374]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter10/sales
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter10/sales
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter10/sales
http://mama.indstate.edu/users/ice/tree/
https://brew.sh/
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/parse_sales_log.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/parse_sales_log.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/parse_sales_log.py

Chapter 10

[2018-08-27 22:05:55+00:00] -
$07.99 - NAME: Family pack - DISCOUNT:

SALE

- PRODUCT: 12345 -

20%

PRICE:

3. Call the parse_sales_log.py script to generate the repository:
$ python parse sales log.py sales -o report.xlsx
4. Check the generated Excel result, report .x1sx:

FILE HOME INSERT DATA REVIEW VIEW Q Tell me what you want to do |4 Share

. &:\ X, Calibri =12 - i f :) General . - |PI=! Trl ":lj_"' i_:‘)(".j
Pasle. B I UPD = = = E_; - s T % Cnndu‘liu‘nal Forms Furrl"ut Insert Delete Format
- ¥ - - A - A s %0 % Formatting= - asTable- - - -
Unde Clipboard Font Alignment Number Tables Cell
Jfe Timestamp
A c D E F G H 1]

1 |Timestamp IShup Product |d Name Price Discount

2 2018-08-27T18:39:41+00:00 345 12346 Single item 2.99 0%

3 2018-08-27T19:35:41+00:00 345 12346 Single item 299 0%

4 2018-08-27T20:39:41+00:00 345 12346 Single item 2.99 0%

5 2018-08-27T21:39:41+00:00 345 12346 Single item 299 0%

6 2018-08-27T22:39:41+00:00 345 12345 Family pack 9.99 0%

7 2018-08-27T23:39:41+00:00 345 12345 Family pack 7.99 20%

§ 2018-08-28T00:39:41+00:00 345 12346 Single item 2.99 0%

9 2018-08-28T01:39:41+00:00 345 12346 Single item 299 0%
10 2018-08-28T02:35:41+00:00 345 12346 Single item 2.99 0%
11 2018-08-28T03:39:41+00:00 345 12346 Single item 299 0%
12 2018-08-28T04:35:41+00:00 345 12346 Single item 2.99 0%
13 2018-08-28T05:39:41400:00 345 12346 Single item 299 0%
14 2018-08-28T06:39:41+00:00 345 12345 Family pack 7.99 20%
15 2018-08-28T07:39:41+00:00 345 12345 Family pack 9.99 0%
16 2018-08-28T08:39:41+00:00 345 12346 Single item 2.99 0%
17 2018-08-28T09:39:41400:00 345 12346 Single item 299 0%
18 2018-08-28T10:39:41+00:00 345 12346 Single item 2.99 0%
19 2018-08-28T11:39:41+00:00 345 12345 Family pack 9.99 0%
20 2018-08-28T12:39:41+00:00 345 12346 Single item 2.99 0%
271 2018-08-28T13:39:41+00:00 345 12346 Single item 299 0%
22 2018-08-28T14:39:41+00:00 345 12346 Single item 2.99 0%
23 2018-08-28T15:39:41+00:00 345 12345 Family pack 9.99 0%
24 2018-08-28T16:39:41+00:00 345 12345 Family pack 9.99 0%
25 2018-08-28T17:39:41+00:00 345 12346 Single item 299 0%
26 2018-08-28T18:39:41+00:00 345 12346 Single item 2.99 0%

7 2013-08-28T19:39:41+00:00 345 12345 Family pack 799 20%
28 2018-08-28T720:39:41+00:00 345 12346 Single item 2.99 0%
29 2018-08-28721:39:41+00:00 345 12345 Family pack 799 20%
30 2018-08-28T22:39:41+00:00 345 12346 Single item 2.99 0%
31 2018-08-28723:39:41+00:00 345 12346 Single item 2.99 0%
32 2018-08-29T700:39:41+00:00 345 12346 Single item 2.99 0%
33 2018-08-29T01:39:41+00:00 345 12346 Single item 2.99 0%
34 2018-08-29T02:39:41+00:00 345 12345 Family pack 9.99 0%

Sheet

¥

Figure 10.3: Screenshot of report . x1sx

[375]

Why Not Automate Your Marketing Campaign?

How it works...

Steps 1 and 2 show how the data is structured. Step 3 calls parse_sales_log.py to
read all the log files and parse them, and then stores them in an Excel spreadsheet.
The contents of the spreadsheet are displayed in step 4.

Let's see how parse sales log.py is structured:

from sale_log import Salelog

def get logs from_file(shop, log filename):
with open(log_filename) as logfile:
logs = [Salelog.parse(shop=shop, text log=log)
for log in logfile]
return logs
def main(log_dir, output_filename):
logs = []
for dirpath, dirnames, filenames in os.walk(log dir):
for filename in filenames:

shop = os.path.basename(dirpath)
fullpath = os.path.join(dirpath, filename)
logs.extend(get_logs_from_file(shop, fullpath))

x1lsfile = openpyxl.Workbook()
sheet = xlsfile['Sheet']
sheet.append(SalelLog.row_header())
for log in logs:
sheet.append(log.row())
x1lsfile.save(output_filename)

The command-line arguments are explained in Chapter 1, Let's Begin Our Automation
Journey. Note that the imports include SaleLog.

The main function walks through the whole directory and grabs all the files through
os.walk. You can find out more about os.walk in Chapter 2, Automating Tasks Made
Easy. Each file is then passed to get_logs_from file to parse their logs and add
them to the global 1ogs list.

[376]

Chapter 10

Note that the specific shop is stored in the last subdirectory, so it is extracted with
os.path.basename.

Once the list of logs has been completed, a new Excel sheet is created using the
openpyx1 module. The saleLog module has a .row header method to add the first
row, and then all the logs are converted into row format using . row. Finally, the file
is saved.

To parse the logs, we make a module called sale log.py, which abstracts parsing
and dealing with rows. Most of it is straightforward and structures each of the
different parameters properly, but the parse method requires a bit of attention:

@classmethod
def parse(cls, shop, text_log):

Parse from a text log with the format

to a Salelog object
def price(string):
return Decimal(string)

def isodate(string):
return delorean.parse(string)

FORMAT = ('[{timestamp:isodate}] - SALE - PRODUCT:
{product:d} '

'- PRICE: ${price:price} - NAME: {name:D} '
'- DISCOUNT: {discount:d}%")

formats = {'price': price, 'isodate': isodate}
result = parse.parse(FORMAT, text_log, formats)

return cls(timestamp=result['timestamp'],
product_id=result['product'],
price=result['price’'],
name=result['name'],
discount=result['discount'],
shop=shop)

sale_log.py is a classmethod, meaning that it can be used by calling saleLog.
parse. It returns a new element of the class.

[377]

Why Not Automate Your Marketing Campaign?

Classmethods are called with a first argument that stores

C’ the class, instead of the object normally stored in self. The
\”/

convention is to use cls to represent it. Calling c1s (.. .) at the
end is equivalent to SaleFormat (...),soitcallsthe init
method.

The method uses the parse module to retrieve the values from the template. Note
how two elements, timestamp and price, have custom parsing. The delorean
module helps us with parsing the date, and the price is better described as a
Decimal to keep the proper resolution. The custom filters are applied in the formats
argument.

There's more...

The Decimal type is described in detail in the Python documentation here: https://
docs.python.org/3/library/decimal .html.

The full openpyx1 can be found here: https: /openpyxl.readthedocs.io/en/
stable/. Also, check Chapter 6, Fun with Spreadsheets, for more examples on how to
use the module.

The full parse documentation can be found here: https://github.com/
richardjon3s/parse. Chapter 1, Let's Begin Our Automation Journey, also describes
this module in greater detail.

See also

* The Using a third-party tool — parse recipe in Chapter 1, Let's Begin Our
Automation Journey, to learn more about the parse module.

* The Crawling and searching directories recipe in Chapter 4, Searching and Reading
Local Files, to learn about how to walk and find all the files in a directory.

* The Reading text files recipe in Chapter 4, Searching and Reading Local Files,
to learn how to open text files.

* The Updating an Excel spreadsheet recipe in Chapter 6, Fun with Spreadsheets,
to learn how to write Excel spreadsheets using Python.

[378]

https://docs.python.org/3/library/decimal.html
https://docs.python.org/3/library/decimal.html
https:/openpyxl.readthedocs.io/en/stable/
https:/openpyxl.readthedocs.io/en/stable/
https://github.com/r1chardj0n3s/parse
https://github.com/r1chardj0n3s/parse

Chapter 10

Generating a sales report

In this chapter, we are presenting a marketing campaign divided into several tasks:

1. Detect the best moment to launch the campaign
2. Generate individual codes to be sent to potential customers

3. Send the codes directly to users over their preferred channel, text message or
email
Collect the results of the campaign

5. Generate a sales report with an analysis of the results
This recipe shows task 5 of the campaign.

As the final step, all the information about each of the sales is aggregated and
displayed in a sales report.

In this recipe, we'll see how to read from spreadsheets, create PDFs, and produce
graphs to generate a comprehensive report automatically in order to analyze the
performance of our campaign.

Getting ready

In this recipe, we'll require the following modules in our virtual environment:

$ echo "openpyxl==3.0.3" >> requirements.txt
$ echo "fpdf==1.7.2" >> requirements.txt

$ echo "delorean==1.0.0" >> requirements.txt

$ echo "PyPDF2==1.26.0" >> requirements.txt

$ echo "matplotlib==3.2.1" >> requirements.txt
$ pip install -r requirements.txt

We'll need the sale log.py module, which is available on GitHub at https://
github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/
blob/master/Chapterl0/sale log.py.

\/V The input spreadsheet was generated in the previous recipe,

Preparing sales information. Refer to this recipe for more information.

[379]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/sale_log.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/sale_log.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/sale_log.py

Why Not Automate Your Marketing Campaign?

You can download the script to generate the input spreadsheet, parse_sales_log.
py, from GitHub at https://github.com/PacktPublishing/Python-Automation-
Cookbook-Second-Edition/blob/master/Chapterl0/parse sales log.py.

Download the raw log files from GitHub at https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapter10/sales. Please download the full sales directory.

Download the generate_sales_report.py script from GitHub at https://
github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/
blob/master/Chapterl0/generate sales report.py.

How to do it...

1.

Call the parse_sales_log.py script to generate the input file:

$ python parse sales log.py sales -o report.xlsx

Check the input file and the use of generate_sales_report.py
$ ls report.xlsx

report.xlsx

$ python generate sales report.py --help

usage: generate sales report.py [-h] input file output file

positional arguments:
input file

output file

optional arguments:

-h, --help show this help message and exit

Call the generate_sales_report.py script with the input file and an output
file:

$ python generate sales report.py report.xlsx output.pdf
Check the output . pdf output file. It will contain three pages, the first a brief

summary and the second and third with graphs showing the sales by day
and by shop.

[380]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/p
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/p
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter10/sales
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter10/sales
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter10/sales
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/generate_sales_report.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/generate_sales_report.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter10/generate_sales_report.py

Chapter 10

How it works

Step 1 shows how to use the script and step 2 calls it on the input file. Let's take a
look at the basic structure of the generate sales report.py script:

def

def
def

def

def

def

generate_summary(logs):

aggregate_by_day(logs):
aggregate_by shop(logs):

graph(...):

create_summary_brief(...):

main(input_file, output_file):

There are two key elements — the aggregation of the logs in different ways (by

shop and by day) and the generation of a summary in each case. The summary is
generated with generate_summary, which, from a list of logs, generates a dictionary
with its aggregated information. The aggregation of the logs is done in different
styles in the aggregate_by functions.

\/‘/ information, including start and end time, total income of all logs,

generate summary produces a dictionary with the aggregated

total units, average discount, and a breakdown of the same data by
product.

The script is better understood by starting at the end. The main functions join all the
different operations. Read each of the logs and transform them into native SaleLog

objects.

[381]

Why Not Automate Your Marketing Campaign?

Then, it generates each of the pages as intermediate PDF files:

A brief, generated by create_summary_brief, provides a general summary
of all the data.

The logs are aggregate_by_day. A summary is created, and a graph is
produced.

The logs are aggregate_by shop. A summary is created, and a graph is
produced.

All the intermediate PDF pages are joined, using PyPDF2, into a single file. Finally,
the intermediate pages are deleted.

Both aggregate_by_day and aggregate_by_shop return a list with a summary of
each of the elements. In aggregate_by day, we detect when a day ends by using
.end_of_day to differentiate one day from another.

The graph function does the following;:

1.

Prepares all the data that is going to be displayed. That includes the number
of units per tag (day or shop) and the total income per tag.

Creates a top graph with the total income, split by product into stacked bars.
To be able to do this, at the same time the total income is calculated, the
baseline (the position where the next stack is located) is calculated.

It divides the bottom part of the graph into as many graphs as there are
products, and displays the number of units sold on each one, per tag (day or
shop).

For a better display, the graph is defined to be the size of an A4
/ sheet. It also allows us, using skip labels, to print one of each X
\/;p> label on the second graph on the X axis to avoid overlapping. This
is useful when displaying the days, and it's set to show only one
label per week.

The resulting graph is saved to a file.

create_summary_ brief uses the fpdf module to save a text PDF page containing
the total summary information.

The template and information in create summary brief has
L been left deliberately simple to avoid complicating this recipe, but
- /@\' it can be complicated with better descriptive text and formatting.
2 Refer to Chapter 5, Generating Fantastic Reports, for more details on
how to use fpdf.

[382]

Chapter 10

As shown previously, the main function groups all the PDF pages and joins them

into a single document, removing the intermediate pages later:

Covering data from 27 Aug to 08 Oct

Summary

TOTAL INCOME: § 14225.0
TOTAL UNIT: 3000 units
AVERAGE DISCOUNT: 2%

Report generated at 2018-08-29T23:45:21.661291+00:00

Figure 10.4: Sales summary

The second page shows a graph of sales by day:

01 Oct

140 - . Family pack
mm Single item
120 4
g
2 1001
g
- 80
F)
o
g 60
o
c
- E
20 1
o.
27 Aug 03 Sep 10 Sep 17 Sep 24 Sep
20.0 4 20.0
21751 g 175
o 8
o
% 15.0 1 £ 150
(=3 =
2125 £12.5
E 2
£ 10,01 @ 10.0
2 2
S 7.5 S 7.51
= ™
- 04 a 04
g 5.0 ki 5
25 2.5
0.0 0.0

27 Aug 035ep 105ep 175ep 245ep 010ct

27 Aug 035ep 105ep 17Sep 245ep 010ct

Figure 10.5: Graphical display of daily sales

[383]

Why Not Automate Your Marketing Campaign?

The third page divides the sales by shop:

5000
 Family pack
s Single item
4000 -
o]
=
-
S 3000
a
z
% 2000
=
1000 -
0 -
656 345 438
700 4 700
o 600 o 600
8 E]
f‘; 500 £ 500 4
2 £
2 400 £ 400
E =
I @
1z 300 1 300
g 5
= 200 - 2001
2 £
100 - 100
0 0
345 438 656 345 438

Figure 10.6: Graphical display of sales by shop

There's more...

The reports included in this recipe can be expanded. For example, the average
discount could be calculated on each page and displayed as a line:

Generate a data series with the average discount

discount = [summary['average discount'] for _, summary in full_
summary]

Print the Llegend

Plot the discount in a second axis
plt.twinx()

plt.plot(pos, discount, 'o-', color='green')
plt.ylabel('Average Discount')

[384]

Chapter 10

Be careful not to put too much information in a single graph, though. It may reduce
readability. In this case, another graph is probably a better way of displaying it.

\Il

@ Be careful to print the legend before creating the second axis, or it
7 will display only the information on the second axis.

The size and orientation of the graphs can determine whether to use more labels or
fewer so that they are clear and readable. This is demonstrated in the use of skip_
labels to avoid clutter. Keep an eye on the resulting graphics and try to adapt to
possible problems in that area by changing sizes or limiting labels in some cases.

| For example, a possible limit is to have no more than three
\@’ products, as printing four graphs on the second row in our graphs
-4 will probably make the text illegible. Feel free to experiment and
- check the limits of the code.

The complete matplotlib documentation can be found at https://matplotlib.
org/. The delorean documentation can be found here: https://delorean.
readthedocs.io/en/latest/.

All the documentation for openpyx1 is available at https://openpyx1l.
readthedocs.io/en/stable/. The full documentation for the PDF manipulation
modules can be found for PyPDF2 at https://pythonhosted.org/PyPDF2/ and for
pyfdf at https://pyfpdf.readthedocs.io/en/latest/.

This recipe makes use of different concepts and techniques that are
/ available in Chapter 5, Generating Fantastic Reports, for PDF creation
\/;p> and manipulation, Chapter 6, Fun with Spreadsheets, for spreadsheet
reading, and Chapter 8, Developing Stunning Graphs, for graph
creation. Check them out to find out more.

[385]

https://matplotlib.org/
https://matplotlib.org/
https://delorean.readthedocs.io/en/latest/
https://delorean.readthedocs.io/en/latest/
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://pythonhosted.org/PyPDF2/
https://pyfpdf.readthedocs.io/en/latest/

Why Not Automate Your Marketing Campaign?

See also

The Aggregating PDF reports recipe in Chapter 5, Generating Fantastic Reports,
to learn how to join multiple PDF files.

The Reading an Excel spreadsheet recipe in Chapter 6, Fun with Spreadsheets, to
learn how to get information from Excel spreadsheets.

The Drawing stacked bars recipe in Chapter 8, Developing Stunning Graphs, to
find out more about how to draw stacked bar graphs.

The Displaying multiple lines recipe in Chapter 8, Developing Stunning Graphs,
to learn how to get a single graph with multiple information lines.

The Adding legends and annotations recipe in Chapter 8, Developing Stunning
Graphs, for more information about adding legends and extra annotations to
graphs.

The Combining graphs recipe in Chapter 8, Developing Stunning Graphs, to learn
how to combine different graphs into a single image.

The Saving charts recipe in Chapter 8, Developing Stunning Graphs, to find out
more about how to store graphs in different formats.

[386]

11

Machine Learning
for Automation

In this chapter, we will cover the following recipes:

* Analyzing images with Google Cloud Vision Al
* Extracting text from images with Google Cloud Vision Al
* Analyzing text with Google Cloud Natural Language

* Creating your own custom machine learning model to classify text

Introduction

Machine learning is a technique that allows systems to be trained to recognize
patterns without explicitly describing these patterns. The basis of machine learning
is the creation and training of a model, a system that is prepared with training data
and then can automatically process new data that is similar to the training data. The
model learns from the training data.

For example, a traditional method to detect spam in emails is to check words or
sentences that are suspicious. With machine learning techniques, instead, a list of
spam and non-spam messages are provided to the model, and the system adjusts
itself. It learns from the data. New emails then can be given to the model to detect
whether they are spam or not.

[387]

Machine Learning for Automation

This approach can also be used with images, so instead of trying to create a
complicated shape detection algorithm to recognize a dog, a significant number of
dog images can be used to train the model to detect whether there's a dog or not in
an image. The same approach can be used for other areas, such as sound (speech-to-
text and text-to-speech) and video.

This kind of training is called "supervised" because the training data needs to be
properly labeled beforehand. This is the most mature and useful type of machine
learning at the moment. There are other kinds of machine learning that work in an
unsupervised way (where training data needs no labels), for example, determining
from a group of pictures which ones are related to each other.

Machine learning is becoming increasingly popular. As time passes, machine
learning models are becoming more capable and producing better results. This used
to be a complicated field to enter, but thanks to new cloud providers, ready-to-use
APIs are available to leverage the power of machine learning quickly.

Machine learning can be used in a lot of different fields. In this chapter, we will cover
the following examples:

* Detecting the location in a picture

* Finding and extracting text in an image, including handwritten text

* Detecting whether the sentiment of text is positive or negative

* Translating text to other languages

* Determining what department within a store a message is addressed to,

based on previous examples

In this chapter, we will use the publicly available Google resources, specifically
their out-of-the-box models to detect general characteristics in images and text.
Their public trained models are very powerful and allow you to detect a variety
of elements. We will also cover how to create and train a custom text model that
can apply our own labels to new text.

There are three levels of machine learning application, based on
their complexity. The first one is to apply an already existing ready-
| to-use trained model. The second is to train an existing model with
\@l your own data. The third is to create your own model from scratch.
- To get to the third level you need significant expertise in machine
- learning, so it's out of scope for this book, but the first two levels
are accessible. Most of this chapter deals with the first level, but the
last recipe covers the second using supervised training.

[388]

Chapter 11

We will start our journey into machine learning by detecting already existing labels
in images. To be able to do so, we will need to set up an account in Google Cloud.

Analyzing images with Google Cloud
Vision Al

We will acquire basic access to Google Cloud Vision Al to detect what broad
categories can be inferred from pictures automatically. These categories are called
labels by the API. These labels identify objects (such as a box), locations (such as

a landscape), animal species (such as a cat), and other things. We will use images
already presented in Chapter 4, Searching and Reading Local Files.

In this recipe, we will set up a Google Cloud account to use its APIs. This process
will work as the basis for other recipes in this chapter.

Getting ready

We first need to set up our account with Google, so go to the Google Cloud site at
https://cloud.google.com/vision:

D Google Products
\\\\\\ L Produc
Industry-leading accuracy for image
understanding Q“*ﬁ
] \‘
Google Cloud offers Two computer visan products | \]
% "\
AutoML Vision Vision API

Figure 11.1: Main Vision Al page

[389]

https://cloud.google.com/vision:

Machine Learning for Automation

From there, you can go to Get started for free and set up your account:

Try Google Cloud Platform for free

Step 1 of 2 Access to all Cloud Platform products
Get everything that you need to build and run your
Country apps, websites and services, including Firebase and
the Google Maps AP
Ireland -
$300 credit for free
Terms of Service Sign up and get $300 to spend on Google Cloud

. Platform over the next 12 months.
2 1agree to the Google Cloud Platfarm Terms of Service, and the

terms of service of any applicable services and APIs.| have also
read and agree to the Google Cloud Platform Free Trial Terms of
Service. We ask you for your credit card details to make sure
that you are not a robot. You won't be charged unless
you manually upgrade to a paid account.

No auto-charge after free trial ends

Required 1 continue

Email updates

[I would like to receive periodic emails on news, product updates
and special offers from Google Cloud and Google Cloud Partners.

Privacy policy | FAQ

Figure 11.2: Registration page

[390]

Chapter 11

You'll need to set up your credit card information as part of the setup. You should
get some free credit to allow enough time to test, and there won't be charges, though
you'll see a Google Temporary Hold on your credit card statement:

) Google Cloud Platform

Welcome, Jaime!

Thanis for signing 1. Your free trial includes $300 in credit 1o spend aver the nen 12
menths. If you ren out of credit, ¥ = yeu you tum on
stomatic biling.

Figure 11.3: Welcome screen after registering

[391]

Machine Learning for Automation

From there, you need to access the APIs & Services tab:

Google Cloud Platform

RPI APIs & Services APls & Services + EMABLE APIS AND SERVICES

€ Dshbosrd thow Ghours 12hours 1day 2days ddays Tdays lddays 30 days

Libeary
v Credontials Traffic = Median latency +

Cuish consent seresn

] Dornain verfication

Fo Page ussge sgresmants A Nodataiz avallabie for the selecied time A No data is av

[Hide mused APis @

Hame 4 Requasts Erors (%) Latancy, madian (ma] Latenzy, 55% [ma)
BayOueery API

BigQuery Starage APY

Cloud Datasicre AP

Cloud Debugger API

Cloud Logging APY

Cloud Manitonng API

Cloud S0

Cloud Storage

Cloud Trace API

Google Cloud APIs

Googhe Cloud Storage JSON APY
Service Management AP

W Sarvice Usage AP

Figure 11.4: APIs & Services page

And enable the Vision API. You can search and filter by name, as there are lots of
different APIs:

[392]

Chapter 11

Google Cloud Platforrn | &= My First Preject

& Search Q, wvision e
Filter by 1 result
CATEGORY

Claud Vision AP

Big dana 1) & oo

Machine bearming {1} Image Cortent Analysis

Figure 11.5: Search for Cloud Vision API

From there, enable it from the interface:

= Google Cloud Platform | 2= my Fir

API Library

Cloud Vision API

Google
0 Image Conten Analysis

ENABLE TRY THIS APl 7

Tree Overview
Integrates Google Vision features, including imags labeling, face, loge, ard landmark cetection, cptical charmeter
Last updated recognition (QCA), and Setection of exphic content, into applcaticns.
About Google
Guogle's missian is 1o org e accessible and useful. Thiough
prodicts and platforms ke Search, Maps, Grmadl, Andeciel Google Play, Chiceme and YouTube, Google plays &
N daily lives of billi 1 people
Servie name 2 x
wison googleapes. com
Tuterials and documentation

Leam mors [

Maintenance & support

Terms of Service

By using this product, you agree ta the terms and canditions of the foawing licencels):

Figure 11.6: Overview of the API to allow enabling it

[393]

Machine Learning for Automation

To access the API you'll need to create a set of credentials to authenticate. Click on
CREATE CREDENTIALS:

Overview W DISABLE API

@ Touse this APL, you may need credentials. Click Create credentials’ to get started CREATE CREDENTIALS

ZE Details 44 Traffic by response code

o Credentiala
Name Requestisec (2 he average)

Choud Vision API

By
Google

Service name

A N
Activation status
Enabled
> View metrics
#+ Tutorials and documentation
Leam mare B Billing Last 3 morhe in EUR

Tey In APY Explores
i e @ There s ro data for this APYin this time span

Maintenance & suppart

Figure 11.7: Cloud Vision API main page

You need to create a service account to use Vision API with the Python client. A
service account is a set of credentials that are intended for use with an automated
script or "bot," like the one we need.

[394]

Chapter 11

Go to credentials to create a new one. After clicking on CREATE CREDENTIALS,
select Service Accounts:

= Google Cloud Platform | 3 My First Project = X rces ang produc

on > §e My Firg

B 1AM & Admin Create service account
2 IAM @ service account details — @) Grant this service account access to the project (optional) —
6 (dentity & Organisation © Grant users access to this service account {(optional)
9, Policy troubleshooter
B Orgenisation Policies Service account details

Service account name
= Quotas Test

Displey name far this service account
o3 Service Accounts

Service account 1D
¥ Labels fest-244 @nodal-broker-273119.4am.gserviceaccount.com X O
£ Settings Service aceount d

[Testing APIs

a Prwacg & Rar””"‘" Describe what this sarvice account will do
® Cryptographic Keys
B dentity-Aware Proxy CREATE CANCEL
- Roles
= Audit Logs

Figure 11.8: Creating a new service account

Add a descriptive name and create the service account. You don't need to fill in the
other two optional steps, but they can restrict the users that can use the key or grant
permissions.

[395]

Machine Learning for Automation

Finally, create a new JSON key by hitting the +Create Key button and selecting it in
JSON format:

Private key saved to your computer

&

Figure 11.9: Download the JSON private key

This downloaded JSON file will contain the required credentials to access the APL
We'll call it credentials. json throughout this chapter.

L Service account keys can be deleted. After a key is deleted, it won't
'@\' work anymore. Ideally, keys should be changed regularly to avoid

“E security problems in case they are leaked.

You also need to enable billing. Go to the billing section in the console, https://
console.cloud.google.com/billing, and make sure that you have your project
enabled for billing:

[396]

https://console.cloud.google.com/billing
https://console.cloud.google.com/billing

Chapter 11

©, Search resources and products

Cost trend

Average monthly total cost
€0.00

Overview My Billg Ascount =

BILLING ACCOUNT OVERVIEW PAYMENT OVERVIEW
Current month g accom
L My Bifing Ace AZDF1BELDE

Organisation
Monsh-to-date total cost @ End-of-month tatal cast (forecasted) € Mo organiestion
€0.00 €0.00
> View report Billing health checks i

=3 Viaw 9l beatth chacks

Promotional credits @

€272.80
Remaring credits

Figure 11.10: Account overview

You are now ready to access the APL

A Take your time to explore the billing options in case you make use
'@' of the system for more than some tests. There are options that will
g allow you to limit expenses to avoid surprises.

We need to add the official Google Cloud Vision library. We should install the
module, adding it to our requirements. txt file as follows:

$ echo "google-cloud-vision==1.0.0" >> requirements.txt

$ pip install -r requirements.txt

We will use the image_labels.py script and the photo-dublin-b.png image file,
which was also used in the Reading images recipe in Chapter 4, Searching and Reading
Local Files. You can download them from the GitHub repository at https://github.
com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/

master/Chapterll.

[397]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
http://

Machine Learning for Automation

The images are in the images subdirectory.

How to do it...

1. Take alook at the images/photo-dublin-a2.png image:

Figure 11.11: Picture of Dublin waterfront

2. Call the image_labels.py script, passing the credentials and the
photo-dublin-a2.png file:
$ GOOGLE_APPLICATION_CREDENTIALS:credentials .json python
image labels.py images/photo-dublin-a2.png
Labels for the image and score:
Water 0.9388793110847473
Daytime 0.9213085770606995
River 0.9155402183532715
City 0.9150108098983765

[398]

Chapter 11

Sky 0.9127334952354431

Waterway 0.9020747542381287

Urban area 0.8954816460609436

Human settlement 0.8528644442558289
Architecture 0.8278814554214478
Metropolitan area 0.8263764381408691

Notice how the labels provide a good characterization of the picture, including
details such as River and Daytime.

How it works...

An important detail is the usage of the credentials.json credential file. Note how
we set it up in the GOOGLE_APPLICATION CREDENTIALS environment variable so the
library can read it there. Remember to add the right path to access the file.

Adding the variable at the start of the line makes it available for
the environment on that command. This avoids having to set it
up permanently in the shell environment. You can also use the
export command to define it in an indefinite way:

\/;n/> export GOOGLE_APPLICATION CREDENTIALS=credentials.

json

If you're using Windows, you'll need to set up the environment
variable using the equivalent command, set: set GOOGLE
APPLICATION CREDENTIALS=credentials.json

Let's take a look at the image labels.py script, used in step 2:

import argparse
from google.cloud import vision

def landmark(client, image):
print('Landmark detected')
response = client.landmark_detection(image=image)
landmarks = response.landmark_annotations
for landmark in landmarks:
print(f' {landmark.description}")
for location in landmark.locations:
coord = location.lat_lng
print(f' Latitude {coord.latitude}")

[399]

Machine Learning for Automation

print(f' Longitude {coord.longitude}")

if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check:
"https://cloud.google.com/apis/design/errors'.format(
response.error.message))

def main(image_file):
content = image_file.read()

client = vision.ImageAnnotatorClient()
image = vision.types.Image(content=content)

response = client.label detection(image=image)
labels = response.label_annotations
print('Labels for the image and score:')

for label in labels:
print(label.description, label.score)
if(label.description == 'Landmark"'):
landmark(client, image)

if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check:
"https://cloud.google.com/apis/design/errors’ .format(
response.error.message))

if _name__ == ' main__ ':
parser = argparse.ArgumentParser()
parser.add_argument(dest="input', type=argparse.FileType('rb"'),
help="input image")
args = parser.parse_args()
main(args.input)

[400]

Chapter 11

The script uses argparse to open and pass the file as described in the call. Then,
it calls main, which uses the Google Cloud Vision API to retrieve the labels for the
image. The core of the process is this:

content = image_file.read()

client = vision.ImageAnnotatorClient()
image = vision.types.Image(content=content)

response = client.label detection(image=image)
labels = response.label_annotations
print('Labels for the image and score:')

for label in labels:
print(label.description, label.score)

It first extracts the content from the file. Note this is binary content as extracted by
the configuration of argparse with rb.

The content is then sent to ImageAnnotatorClient to perform label detection.
The image first needs to be properly converted into vision.types. Image.

The response label description and score are then printed. Note how they are sorted
by score. A high score means that the API considers the label a good match.

There's more...

Other than the score of a particular label, the interface will return the topicality
of it. While the score reflects the confidence that the label is applicable to the image,
the topicality reflects how representative the label is for the image as a whole.
Typically, they are the same or very similar, but an image with a landscape can show
a small house far away that has a high score but low topicality compared with
the 1andscape label.

The label_detection interface is the most general, and will return general
information about the image, but there are other interfaces available that are more
specific. We added landmark detection in the 1andmark function, which is called if
the 1andmark label is returned:

def landmark(client, image):
print('Landmark detected')
response = client.landmark_detection(image=image)
landmarks = response.landmark_annotations

[401]

Machine Learning for Automation

for landmark in landmarks:
print(f' {landmark.description}')
for location in landmark.locations:
coord = location.lat_lng
print(f' Latitude {coord.latitude}")
print(f' Longitude {coord.longitude}")

if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check:
"https://cloud.google.com/apis/design/errors’.format(
response.error.message))

If you call the script with the photo-dublin-b.png image, which is a picture of the
General Post Office building in the center of Dublin, you'll be able to trigger it:

$ GOOGLE APPLICATION CREDENTIALS=credentials.json python3 image labels.py
photo-dublin-b.png
Labels for the image and score:
Architecture 0.9421795010566711
Landmark 0.928507924079895
Landmark detected
General Post Office
Latitude 53.349369
Longitude -6.260251
Building 0.8951834440231323
Sky 0.8857545852661133
Classical architecture 0.8762346506118774
Daytime 0.8634399771690369
Town 0.8440616726875305
City 0.82234787940979
Facade 0.8102320432662964
Street 0.758461058139801

The images can be sent for analysis in binary format, like here, or also as a URL, if
they are available on the web:

image = vision.types.Image()
image.source.image_uri = uri

[402]

Chapter 11

This can be combined with the ideas in Chapter 3, Building Your First Web Scraping
Application, to automatically detect some kinds of images on a web page. For
example, you could detect the headshots on a corporate website, as shown by the
label Face, or detect the pictures of red cars in a catalog of vehicles.

1 There's a specific API to detect faces with face client.
\ 7/
@ detection (image=image), which includes details such as the
likelihood of different emotions, such as joy or sadness. It can be
called in a similar fashion as 1andmark_detection.

Other available features can detect an image's dominant colors, logos in an image,
explicit (adult) content, or even if an image is present somewhere on the web. Be
sure to check the documentation to learn all the options.

| Be sure to check the documentation of the available types to get
\@’ the returned attributes from the API. This is available at https://
-5 googleapis.dev/python/vision/latest/gapic/vl/
= types.html.

You can access the full Vision API documentation at https://cloud.google.com/
vision/docs/. The Python client documentation is here: https://googleapis.
dev/python/vision/latest/index.html.

See also

* The Extracting text from images with Google Cloud Vision Al recipe, later in this
chapter, to learn about another image analyzing technique.

* The Analyzing text with Google Cloud Natural Language recipe, later in this
chapter, to apply a similar approach to text.

* The Creating your own custom machine learning model to classify text recipe, later
in this chapter, to learn how to train your own model. This technique is also
applicable to images.

Extracting text from images with Google
Cloud Vision Al

We can use the power of the Google Cloud interface to detect and extract text in
images. This process is called Optical Character Recognition, or OCR.

[403]

https://cloud.google.com/vision/docs/
https://cloud.google.com/vision/docs/
https://googleapis.dev/python/vision/latest/index.html
https://googleapis.dev/python/vision/latest/index.html
https://googleapis.dev/python/vision/latest/gapic/v1/types.html
https://googleapis.dev/python/vision/latest/gapic/v1/types.html
https://googleapis.dev/python/vision/latest/gapic/v1/types.html

Machine Learning for Automation

Getting ready

We need to enable the Google Cloud Vision API and create credentials to work with
it, as described in the previous recipe, Analyzing Images with Google Cloud Vision Al.
We need to use the generated service account key in JSON format. We will call it
credentials.json throughout the chapter.

We need to add the official Google Cloud Vision library. We should install the
module, adding it to our requirements. txt file as follows:

$ echo " google-cloud-vision==1.0.0" >> requirements.txt

$ pip install -r requirements.txt

We will use the image_text.py script and the photo-text.jpgand dublin-a-
text . jpg files that were also used in Chapter 4, Searching and Reading Local Files.
You can download them from the GitHub repository at https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapterll.

The images are in the images subdirectory.

How to do it...

1. Take alook at the images/photo-text.jpg image:

Automate!

Figure 11.12: Image with text

[404]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11

Chapter 11

2. Execute the image_text.py script passing the credentials and the
images/hoto-text . jpg file:

$ GOOGLE APPLICATION CREDENTIALS=credentials.json python3
image text.py images/photo-text.jpg

Automate !

3. Check the images/photo-dublin-a-text.jpg file, which has the same text
over a landscape:

Automate!

Figure 11.13: Landscape with the same text as the previous picture

4. Call the image_text.py script passing the credentials and the
images/photo-dublin-a-text.jpg file:

$ GOOGLE APPLICATION CREDENTIALS=credentials.json python3
image text.py images/photo-dublin-a-text.jpg

Automate !

See how it detects the text even if it's over an image.

[405]

Machine Learning for Automation

How it works...

Let's take a look at the image_text .py script, used in steps 2 and 4:

import argparse
from google.cloud import vision

def main(image_file, verbose):
content = image_file.read()

client = vision.ImageAnnotatorClient()
image = vision.types.Image(content=content)
response = client.document_text_detection(image=image)

for page in response.full text_annotation.pages:
for block in page.blocks:

if verbose:

print('\nBlock confidence: {}\n'.format(block.
confidence))

if block.confidence < 0.8:
if verbose:
print('Skipping block due to low confidence")
continue

for paragraph in block.paragraphs:
paragraph_text = []
for word in paragraph.words:
word_text = "'.join([
symbol.text for symbol in word.symbols
D
paragraph_text.append(word_text)
if verbose:
print(f'Word text: {word_ text} '
' (confidence: {word.confidence})"')
for symbol in word.symbols:
print(f'\tSymbol: {symbol.text} '
f'(confidence: {symbol.

[406]

Chapter 11

confidence})")
print("' '.join(paragraph_text))

if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check:
"https://cloud.google.com/apis/design/errors’.format(
response.error.message))

['

if __name__ == '_main__':
parser = argparse.ArgumentParser()
parser.add_argument(dest="input', type=argparse.FileType('rb'),
help="input image")
parser.add_argument('-v', dest='verbose', help="Print more
data',
action='store_true')
args = parser.parse_args()
main(args.input, args.verbose)

The final block configures the command-line parameters, using the argparse library.
It configures the input file and the verbose parameter. We will talk about the
verbose parameter in the There's more section.

The core of the code in the main function is as follows:

def main(image_file, verbose):
content = image_file.read()

client = vision.ImageAnnotatorClient()
image = vision.types.Image(content=content)
response = client.document_text_detection(image=image)

for page in response.full text_annotation.pages:

for paragraph in block.paragraphs:
paragraph_text = []
for word in paragraph.words:
word_text = ''.join([symbol.text for symbol in word.
symbols])
paragraph_text.append(word_text)

[407]

Machine Learning for Automation

print(' '.join(paragraph_text))

The content of the image is read and sent to the Vision API through the document_
text_detection interface. This returns a response that's structured in blocks, then in
paragraphs, words, and finally symbols.

Blocks with a low confidence are skipped. This prevents elements being printed that
the API is not sure are correct.

The confidence level has been set arbitrarily to 0.8. You can play
with the value until finding one that works for you. If you're
L happy with any confidence level, you can directly call the text with
'ﬁ;}: response.full text annotation.text,though this may
g return spurious results if there are elements in the image that could
add noise to the text, like in the photo-dublin-a-text.jpg
image.

The symbols get aggregated as words, and then into paragraphs. Each paragraph is
printed independently.

There's more...

The verbose flag displays more information about the margin of confidence for each
symbol. For example, calling:

$ GOOGLE APPLICATION CREDENTIALS=credentials.json python3 image text.py
images/photo-dublin-a-text.jpg -v

Block confidence: 0.9900000095367432

Word text: Automate (confidence: 0.9900000095367432)

Symbol: A (confidence: 0.9900000095367432)
Symbol: u (confidence: 0.9900000095367432)
Symbol: t (confidence: 1.0)
Symbol: o (confidence: 1.0)
Symbol: m (confidence: 1.0)
Symbol: a (confidence: 1.0)
Symbol: t (confidence: 1.0)
Symbol: e (confidence: 0.9900000095367432)

[408]

Chapter 11

Word text: ! (confidence: 0.949999988079071)
Symbol: ! (confidence: 0.949999988079071)
Automate !

Block confidence: 0.3100000023841858

Skipping block for low confidence

This gives detailed information for each of the individual detected symbols. Notice
the skipped block due to low confidence.

This interface is even capable of recognizing handwritten and non-vertical text.

For example, the images/handwrite. jpg file, available at https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapterll shows the following text:

Figure 11.14: Handwriting example

[409]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11

Machine Learning for Automation

Running it through the script, it detects the text correctly in three blocks:

$ GOOGLE APPLICATION CREDENTIALS=credentials.json python3 image text.py
images/handwrite.jpg

PYTHON

AUTOMATED

COOKBOOK

Instead of document text detection, the text detection interface can be used.
This returns the text without dividing it into blocks. In this case, the position of the
text is returned described as a polygon with the boundaries of the text:

response = client.text_detection(image=image)
for text in response.text_annotations:

print('"{}""'.format(text.description))

points = ['({},{}) ' .format(p.x, p.y)
for p in text.bounding poly.vertices]
print('box: {}'.format(',"'.join(points)))

The position information can be used to give context, such as filtering only the text in
the top-right corner or similar.

A script showing this capability called image text box.
N py is available on GitHub at https://github.com/
/@ PacktPublishing/Python-Automation-Cookbook-Second-

= Edition/tree/master/Chapterll. Call it with the -v
parameter to display the position of each piece of detected text.

The position information can be used to give context, such as filtering only the text in
the top-right corner or similar.

[410]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11

Chapter 11

In Chapter 4, Searching and Reading Local Files, we introduced the pytesseract
module as another way of extracting text from images and applying OCR. Both
methods have their advantages and disadvantages. Calling the Google Cloud Vision
APl is likely to return a better result in worse conditions (noise, background images,
handwriting), but at the same time, the access to an external API is slower and less
safe. There's also a cost associated with using the Vision API, especially if it's used
for bulk text extraction, while pytesseract is open source and free to use. The
method you choose depends on the data and security requirements.

You can access the full Vision API documentation at https://cloud.google.com/
vision/docs/.The Python client documentation is at https://googleapis.dev/
python/vision/latest/index.html.

See also

* The Analyzing images with Google Cloud Vision Al recipe, earlier in this
chapter, to learn how to create an account for Google Cloud interfaces.

Analyzing text with Google Cloud Natural
Language

In this recipe, we will use the Google Cloud interface to evaluate text. This is similar
to the earlier Analyzing images with Google Cloud Vision Al recipe but applied to text
instead. We will be able to detect the language of a piece of text, as well as its general
sentiment (how positive or negative it is). We will also translate all non-English text
into English.

Getting ready

We need to enable the Google Cloud Natural Language API and create credentials
to work with it. Most of the process is similar to the process described earlier in the
chapter to enable the Vision API in a Google Cloud project, so we'll use the same
project described in the earlier Analyzing images with Google Cloud Vision Al recipe.

Log into your account to go to the API dashboard at https://console.
cloud.google.com/apis. Make sure you're using the same project as before,
or the credentials.json file won't work:

[411]

https://cloud.google.com/vision/docs/
https://cloud.google.com/vision/docs/
https://googleapis.dev/python/vision/latest/index.html
https://googleapis.dev/python/vision/latest/index.html
https://console.cloud.google.com/apis
https://console.cloud.google.com/apis

Machine Learning for Automation

‘Google Cloud Platform | & My Firt Project

APls & Services APls & Services + EMABLE APIS AND SERVICES

Thow 6Ghours 1ihows iday 2dep 4days Tdeys lddepn 0dap

I+
L]

Sodaiaks Traffic Errors £ Median latency

Aaith conrsend scieen

Page usage agreements & o dhats bn avmikabb for U sehociend B 2 Nt ke Bt o the niictbed thive A

Mame 4 Requests Errors (%) Lasency, median (ma) Latency, 95% (ma)

Bigluery Storage AP
Choud Dutastons AP
Cloud Detwgrger AP1
Cloud Logging AP
Cloud Monitoring AP
bt B8

Cloud tomge

Cloud Trace APY
Google Cloud APH
Google Cloud Siorage JSON APY
Tarwice Managenect APY
Service Usage AP

Figure 11.15: API dashboard

Click on ENABLE APIS AND SERVICES and search for Natural Language to
enable it:

Google Cloud Platform | &= My First Project

APl &

> i LE AP
Cloud Natural Langua.. Overview | et
Ovirvesw
Metrics 5 Details 74 Traffic by response code
i Reguent/sec (2 hr aveage]
Quaciag c ntural Language AP
o oy .
Crecencals .
-
Senvice name

language.googheapis com

Activation stahss " " "
Frubied @ S G004

< View metics
Tutorials and documentation

Learn mote
B2 Billing vast 3 mantis in EUR
Tey in AP Exploner

O There is no data for this APY in this time span.

Figure 11.16: Natural Language API dashboard

[412]

Chapter 11

Search and enable the Cloud Translation API as well:

= Google Cloud Platform = 8 my First Project | X @, Search rescurces st products
L
e APls & Sardces - =
3C=A Gioud Transiation . Overview oo
5t .
o ZE Detalls & Traffic by response code
&
ié] M Request/sec (2 hr average)
Quetas Clowd Tramstation AP1
By
o Googie
Bervice name

Asthcation etatus

® Tutorials and documentation
= View matrics

Leaen mare

Tey in AP Explorer »
B2 Billing vLast 3 meeshs in EUR

@ Billedusage 0

= Gotoall Biling reports

Figure 11.17: Translation API dashboard

We need to use the generated service account key in JSON format. We will call it
credentials.json throughout the chapter.

We will use the google-cloud-1language module. We should install the module,
adding it to our requirements. txt file as follows:

$ echo "google-cloud-language==1.3.0" >> requirements.txt
$ echo "google-cloud-translate==2.0.1" >> requirements.txt

$ pip install -r requirements.txt

The code can be found in the GitHub repository, https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapterll. There are some text examples in the /texts/ subdirectory,
mostly containing text from the beginning of classic novels from the 19" century in
different languages.

[413]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11

Machine Learning for Automation

How to do it...

1.

Call the text_analysis.py script with the start of the novel Pride and
Prejudice and pass the credentials:

$ GOOGLE APPLICATION CREDENTIALS=credentials.json python text
analysis.py texts/pride and prejudice.txt

Text: It is a truth universally acknowledged, that a single man in
possession of a good fortune, must be in want of a wife. However
little known the feelings or views of such a man may be on his
first entering a neighbourhood, this truth is so well fixed in

the minds of the surrounding families, that he is considered the
rightful property of some one or other of their daughters.

Language: en
Sentiment Score (how positive the sentiment is): 0.699999988079071

Sentiment Magnitude (how strong it is): 1.5

Call the text_analysis.py script with the start of the novel La Regenta, in
Spanish, and pass the credentials:

$ GOOGLE APPLICATION CREDENTIALS=credentials.json python text
analysis.py texts/regenta.txt

Text: La heroica ciudad dormia la siesta. El viento Sur,

caliente y perezoso, empujaba las nubes blangquecinas que se
rasgaban al correr hacia el Norte. En las calles no habia

mas ruido que el rumor estridente de los remolinos de polvo,
trapos, pajas y papeles que iban de arroyo en arroyo, de acera

en acera, de esquina en esquina revolando y persiguiéndose,

como mariposas que se buscan y huyen y que el aire envuelve en

sus pliegues invisibles. Cual turbas de pilluelos, aquellas
migajas de la basura, aquellas sobras de todo se juntaban en un
montén, pardbanse como dormidas un momento y brincaban de nuevo
sobresaltadas, dispersdndose, trepando unas por las paredes hasta
los cristales temblorosos de los faroles, otras hasta los carteles
de papel mal pegado a las esquinas, y habia pluma que llegaba a un
tercer piso, y arenilla que se incrustaba para dias, o para afios,
en la vidriera de un escaparate, agarrada a un plomo.

Language: es

Sentiment Score (how positive the sentiment is): 0.0
Sentiment Magnitude (how strong it is): 0.8999999761581421
IN ENGLISH

The heroic city napped. The south wind, hot and lazy, pushed the
whitish clouds that ripped as they ran north. In the streets there
was no more noise than the shrill noise of the swirls of dust,

[414]

Chapter 11

rags, straws and papers that went from stream to stream, from
sidewalk to sidewalk, from corner to corner revoking and chasing
each other, like butterflies that seek and flee and that the

air envelops in its invisible folds. Like mobs of urchins, those
crumbs from the garbage, those leftovers from everything gathered
in a heap, they stood as if for a moment asleep and they jumped
again with a start, dispersing, some climbing the walls to the
trembling glass of the lanterns, others to the paper posters badly
glued to the corners, and there was a pen that reached a third
floor, and sand that was embedded for days, or for years, in the
window of a shop window, clinging to a lead.

How

it works...

Let's take a look at the text_analysis.py script, used in steps 1 and 2:

impo
from
from
from
from

def

doc

{sco

rt argparse

google.cloud import language

google.cloud import translate_v2 as translate
google.cloud.language import enums
google.cloud.language import types

main(image_file):

content = image_file.read()

print(f'Text: {content}")

ument = types.Document(content=content,
type=enums.Document.Type.PLAIN_TEXT)

client = language.LanguageServiceClient()

response = client.analyze_ sentiment(document=document)

lang = response.language

print(f'Language: {lang}')

sentiment = response.document_sentiment

score = sentiment.score

magnitude = sentiment.magnitude

print(f'Sentiment Score (how positive the sentiment is):
re}')

print(f'Sentiment Magnitude (how strong it is): {magnitude}')

if lang != ‘'en

translate_client = translate.Client()

[415]

Machine Learning for Automation

response = translate client.translate(content,
target_language='en')

print('IN ENGLISH')

print(response['translatedText'])

if __name__ == '__main__
parser = argparse.ArgumentParser()
parser.add_argument(dest="input', type=argparse.FileType('r'),
help="input text")
args = parser.parse_args()
main(args.input)

The final block configures the command-line parameters using the argparse library.
It configures the input file and opens it in text format. The main function performs
the actions.

The first stage is to extract the text from the file. The text gets encapsulated into a
types.Document type, defining it as plain text.

The client is created with LanguageServiceClient and the analyze sentiment
method gets called to get the results from Google servers.

This call returns both the automatically detected language, stored in 1ang, and the
sentiment of the text, stored in score and magnitude.

The sentiment is composed of both score and magnitude. score
describes how positive the aggregated sentiment is in a text. A
C’ score of -1. 0 describes an extremely negative emotion, and 1.0
)
describes an extremely positive emotion. The magnitude is how
clear this sentiment is in the text, with a positive number. Short
sentences will be difficult to qualify correctly by the API.

If the language is different from English, then it's translated by creating a new
Client and calling translate:

translate client = translate.Client()

response = translate_client.translate(content,
target_language="en')

print('IN ENGLISH')

print(response['translatedText'])

[416]

Chapter 11

The resulting translated text gets printed.

Google Translate sometimes gets a bit of bad press in terms of

getting strange translations sometimes, but it's still capable of
A getting pretty good results most of the time, with an impressive
_@ amount of languages covered.

An automated translation can work as an initial stage to determine
what parts require a better human translation, such as idioms.

There's more...

The quality of language processing is very different for different languages. Some
languages won't have the same level of support as English. Check the documentation
for more details.

The Google text APIs also have other capabilities. For example, they can classify
text based on predefined categories. The text_analysis_categories.py script
does that, and it's available on GitHub at https://github.com/PacktPublishing/
Python-Automation-Cookbook-Second-Edition/tree/master/Chapterll.
Executing it classifies the text, for example, calling it over the texts/category_
example. txt text:

$ GOOGLE APPLICATION CREDENTIALS=credentials.json python
text analysis categories.py texts/category example.txt

Text: This text talks about literature and different authors from the
XIX century. It discusses the different styles from different authors in
different languages, analysing and comparing them with their historical
context.

Categories
Category: /Books & Literature
Confidence: 0.9300000071525574

Let's take a look at the text_analysis_categories.py script, which is very similar
to text _analysis.py:

import argparse

from google.cloud import language

from google.cloud.language import enums
from google.cloud.language import types

def main(image_file):

[417]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11

Machine Learning for Automation

content = image_file.read()

print(f'Text: {content}")

document = types.Document(content=content,
type=enums.Document.Type.PLAIN_TEXT)

client = language.LanguageServiceClient()

print('Categories')
response = client.classify text(document=document)
if not response.categories:

print('No categories detected')

for category in response.categories:
print(f'Category: {category.name}')
print(f'Confidence: {category.confidence}"')

if _name__ == ' main_ ':
parser = argparse.ArgumentParser()
parser.add_argument(dest="input', type=argparse.FileType('r'),
help="input text')
args = parser.parse_args()
main(args.input)

To obtain the categories, it calls classify_text, which returns the categories along

with the confidence for each detected one. The full list of categories can be obtained

in the Google documentation, at https://cloud.google.com/natural-language/
docs/categories.

As with the sentiment, check in the documentation if the API is
, compatible with the specific language, since the API may not be
\/{n> capable of categorization certain languages. You can try to translate
first into English and then perform the categorization, but the
quality of the result may vary.

In all these cases, the document can also accept HTML text using the enums.
Document . Type . PLAIN_TEXT type. That can help if you want to combine this recipe
with others in this book, such as crawling the web and translating interesting articles
to your native language, or categorizing blog posts from an RSS feed to filter only the
relevant ones.

[418]

https://cloud.google.com/natural-language/docs/categories
https://cloud.google.com/natural-language/docs/categories

Chapter 11

Go to https://cloud.google.com/natural-language/ to see the full Natural
Language API documentation. The documentation for the Python clients is available
athttps://googleapis.dev/python/translation/latest/index.html and
https://googleapis.dev/python/language/latest/index.html.

See also

* The Analyzing images with Google Cloud Vision Al recipe, earlier in this
chapter, to learn how to create an account to use the Google Cloud interfaces.

* The Creating your own custom machine learning model to classify text recipe, later
this chapter, to learn how to train a model to recognize custom elements.

Creating your own custom machine
learning model to classify text

Using the default interface to classify text based on sentiment or general categories is
very powerful but doesn't allow us to classify different texts based on our own rules.
Being able to create our own model is where the full power of machine learning lies.

Fortunately, Google offers the power to create and train our own models based on
our own set of training data. This allows us to generate a collection of texts and
classify them using our own labels. With this data, we will prepare our own model
that can be matched against new texts.

We will see in this recipe an example of classifying emails sent to a shop that has two
sections, "appliances" and "furniture." We will create a third category of "others" that
should capture emails that don't fit neatly into either category.

The process is highly dependent on the quality of the data that is provided to the
model. The examples presented in this recipe are simple to keep it small, but they
show the potential of this technique.

Let's see how we can create and operate our own machine learning model.

Getting ready

We need to enable the Google Cloud Natural Language API and create credentials
to work with it. Most of the process is similar to the process described earlier in the
chapter to enable the Vision API in a Google Cloud project, so we can start with the
project used in the earlier Analyzing images with Google Cloud Vision Al recipe.

[419]

https://cloud.google.com/natural-language/
https://googleapis.dev/python/translation/latest/index.html
https://googleapis.dev/python/language/latest/index.html

Machine Learning for Automation

Log into your account to go to the API dashboard at https://console.cloud.
google.com/apis. Be sure to use the same project as before, or the credentials.
json file won't work.

We have some text prepared for training the model. It is available on GitHub:
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-
Edition/tree/master/Chapterll.

In the shop_training subdirectory, there are three subdirectories (appliances,
furniture, and others), each containing ten text files with email content. Each
of the subdirectories corresponds to a label, so all the emails in each subdirectory
should be qualified on that label.

The data is zipped in a file called shop . zip. This contains the same information, but
Google requires it to be uploaded in zip format.

departments or other stuff. You can take a look at them.

\/‘/ Each email text is simulating a request to the shop for either two

We need to create a new model. Go to https://console.cloud.google.com/
natural-language and select AutoML text and document classification:

= Google Cloud Platform | & My FiestProject | X

[E] natwral Language Dashboard

Natural Language preducts

AutoML text and document classification AutoML sentiment analysis
Budd a maching keaming model 1o classify content Mo a Budd & machine-leaming mede 1o analyse attitudes withen
cuslom se1 of categories. Lear more 18t and documents. Leam mare
<> Getstarted = Gt started
AutoML entity extraction Cloud Matural Language AP

Build a machine Jearming model bo recognise a custom set oagle's po weneral
af entities within text and documents. Leam mare classification; sentiment anabysls; entity racogration, and
mare

3 Getstarted 3 View APi docs

Figure 11.18: Natural Language dashboard

[420]

https://console.cloud.google.com/apis
https://console.cloud.google.com/apis
https://console.cloud.google.com/natural-language
https://console.cloud.google.com/natural-language

Chapter 11

Now we need to add a new data set with our example:

Google Cloud Platf

[E] Natural Language Data sets E3 WEW DATA SET c
4! Dashboard Lecation
Giobal ~ @

Datagers.

T, § e o Loeasion Cibjective Tonal Bems. Laballnd @nms Lot upeianed oL Sanss
5

-

M tews 1o display

Figure 11.19: Data set list

Select that our data set is for Single-label classification (each text will have a single
label):

Create new data set

(=

it bptnes, rumbsers and inders:

Lecaton
Global

Select your model objective

(8) Single-label classsfication () Mhaiti-dabet
Predct the one cormect label that Predict o the corect Labels that
i wank assigned ta a documeed o el salgned 1o 8 documen

Entity extraction) Semtiment
ideenily enzmies within your 1e Understand the ovesall sectiment
vy apiossed i & Block of te)

CANCEL CREATE DATA SET

Figure 11.20: Creating a new data set

To upload the files, select a ZIP file. You'll need to create a new bucket to store the
data. Keep in mind that the bucket name needs to be globally unique, so you'll need
to specify your own.

[421]

Machine Learning for Automation

Follow the instructions to create one. Add the ZIP file:

Google Cloud Platform

First Projact

[E Matural Language € shop 1l VIEW LABEL STATS & EXPORT DATA

= IMPORT ITEMS TRAIN EVALUATE TEST & USE
! Dashboand

Detnasts Select files to import
L] Modals To build o customn model, you fiest need 1o import & set of text or documents to train .
Each tem shoud gorised with a label (labels ar tefing the model

e to classify bext].

Each label should have at least 100 ifems for best results M

() Upload a G5V file fram your computer

(8 Upload TCT, TIFF, POF er ZIP file(s) from your computer

() Setect a €SV file on Cloud Storage

Upload text items from your computer

Supparts TXT, TIFF, POF and 2IP: Madmum 500 files per upload. Files will be stoced on Cloud Storsge. @)
shep.2ip Ths X

SELECT FILES

Bastination on Cloud Storaga
B3 s 4 shop-data-trasning BROWSE

Singhe-label classificasion

Figure 11.21: Import the training set

Importing the data will take a few minutes. Once it is imported, you'll see all the data

available as different items:

Matural Language & shop il VIEW LAREL STATS ik EXPORT DATA
IMPORT TEMS TRAIN EVALLIATE TEST & USE
Dashboard
T Filler tabh
Oimvetn All ems 30
e
® Modals
Laboted G Good maming: Are you open on next Saturday? What times? Thanks, lames
15 Ehis the car sales? Do you knaw (e contect? T sure they ste in T same
Unlabelied [

ML bought 8 year BG0 & size Table for the Badroom, it was mahogany colour. with thies drawens and

Good moming. Are there any good fridges with double doors? | am changing the ktchen and was k.

ining 24

i Srer o st my keys and

ek b possible [t wat in your shop on T

ciday. Thiry ha
My old refrigertor is not warking properly. Tm thinkin on what are the current ablers? Any fast de
Valkdation 3
Fhave & wardiobe closet that | want 1o retum, Any chance That you could pick 8 up? Will that have

Good Evening, | bought recently a washing maching madel MDA5S0A and | deell knaw what pragram is.

Good maming: fm selling some industrial cleaning products hat could be of your interst for ke

Hal

have probism with 8 washing machire that | bought from you last wesk its lsaking and s

Whaete are you localed in Jarmestown? I bying 1o fnd your address, but | cant

1 e weh

appliances L] Hi | am lomking for a double bed. Do you have any affef in matresses? Thanks, Rob
Goed moming. m wandsring what ks the size and wekght of the kng size bed model Fionda, the one
furnmae 1

Good m What are the

Fiing T Eooking 1 o fo

 ogitin:

Good evening | saw an offer on wardrobes. ks the shap open next sinday? Cheers
others 10

ADD MEW LABEL

I nend & washing deier that is not 1o big, Mot sure sbout the beand, | saw some good modsls in your

O0O0ODO0ODODOOOOOODOOCDOOODOOa

Hello: | wars ool or an emplayee called C | tafied to him sbout some sales. Is he o

R par page

Single-labied elassification

L

Labely
athers
athers
furmisure
appliances
others
appliances
farmsure
apphances
others
Appiances
athers
fumsure
furmaure

applances

fuems

appliances

appiances

Mw i-fofmay ¢ B

Figure 11.22: The imported data

[422]

Chapter 11

With this data, we can now train the model. Click on the TRAIN tab and then

START TRAINING, which can take several hours, so be patient. You'll get an email
when it's done:

[E] Natural Language 4 shop 1l VIEW LADEL STATS i EXPORT DATA

" IMPORT ITEMS TRAN EVALUATE TESTE USE Singhe-label cleasification
N Dashboard

Undabtlled text or documents arenl used Your data set wil be spbt atomatically into Train, Validatesn and Test sels.

Idealy, £ach bl shousd have 31 east 100 ineme assigned 1o 1 Engune tht your masl is trainad 1o peadict aqually wll for ssch
label

Walidasion Test

START TRAIMING

11.23: Start the training

As you can see, to properly label data, each label should have
100 examples or more. Our data is not that ambitious. The more
LY examples, the better the model will work, though it will take longer
‘@\‘ to train. Keep in mind that training the model requires computing
power that will be charged to your account. With the free account,
the credit should be enough to make some tests, but keep in mind
potential charges when using the platform.

After the training is done, you can see the evaluation of the model. The system will
leave some elements of your training data as tests to evaluate how good your model is:

oo HOOUAMI0SE - Coahdascatiatheld —@

Al sbels

" | —
[
— Puckia g at |
et g =]

Figure 11.24: Dashboard for evaluating the model

[423]

Machine Learning for Automation

The two most important parameters here are precision and recall.

&

precision is the ability of the model to predict the correct label,
while recall is the ability to not assign an incorrect label. A model
with low precision will have more false positives - results with
labels attached that are not correct. For example, it will detect a
smile when there isn't one. A model with low recall will produce
false negatives - results that should have a label attached will not
have one. For example, it won't detect a smile when there is one.

The confusion matrix displays the detection patterns based on the training data. A
perfect matrix will show a 100% diagonal, which will mean that the data is properly

categorized and there are no mistaken elements. You can see that's not the case here.

N\ 4
/@\

Our precision and recall parameters of 66.67% are not fantastic.
This is in part due to the small number of samples generated. In
real life, aim to have around 90% or higher.

The next tab, TEST & USE, has all the information that we require to use it, but to be

able to call the API, we need to add the proper permissions to our service account.

\Q/\/

Copy the model reference at the end of the TEST & USE tab for
Python. This will look similar to projects/<PROJECT ID>/
locations/us-centrall/models/<ID>. We will use it later as
REFERENCE.

Remember that the service account is linked to the credentials. To add them, go to
https://console.cloud.google.com/iam-admin/:

[424]

Chapter 11

B 1am & admin

H @ &« &0 ¢ 4 D B > O 5

[

ENMSSIING

Permissions for project My First Project

RECOMMENDATIONS LOG

Figure 11.25: Dashboard with the defined users

We need to add the service account as a user and grant it the AutoML Editor role.
Go to the Service accounts page to get the name of our created service account:

\ 7/
/@\

Check out the first recipe in this chapter, Analyzing images with
Google Cloud Vision Al to see the process of creating the service
account.

Servics accounts + CREATL SERVICE ACCOUNT [JUSTR IO INFD PANLL
Service accounts far project My First Project
= L L
B e - o Tseptan -
| = L]

Figure 11.26: Service account list

[425]

Machine Learning for Automation

Copy the name of the service account and go back to the IAM tab to create a new
user with that name. Use the ADD button at the top. Put the service account name
and add the extra role of AutoML Editor:

Add members to My First Project

Add members, roles to My First Project project

Enter one or more members below. Then select a role for these members to grant them
access to your resources. Multiple roles allowed. Learn more

New members

test-700@nodal-broker-273119.iam.gserviceaccount.com € (7]
Role Condition _
i []

AutoML Editor M Add condition

Editor of all AutoML resources

<+ ADD ANOTHER ROLE

D Send notification email
This email will inform members that you've granted them access to this role for ‘My First Project’

SAVE CANCEL

Figure 11.27: Add a role to the member

Once saved, the model is ready to use authentication with the credentials.json
file. Remember to annotate the REFERENCE for the model, as it will be used later.

We will use the google-cloud-automl module. We should install the module,
adding it to our requirements. txt file as follows:

$ echo " google-cloud-automl==0.10.0" >> requirements.txt

$ pip install -r requirements.txt

The code can be found in the GitHub repository: https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapterll. There are some text examples with the name example_shopX.
txt. The script we will use is text_predict.py. Remember the training data is in
the shop_training subdirectory and compressed as shop. zip.

precision and recall oppose each other and can be tweaked to a certain extent.

[426]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter11

Chapter 11

How to do it...

1.

Check the message from example shopl.txt and categorize it using text
predict.py, credentials.json, and REFERENCE for the model:

$ cat example shopl.txt

Hello:

Are there any offers in fridges? I'm searching to replace mine.
I live in a fifth floor and the lift is broken, would that be a
problem? I'll be fine with paying an extra.

Thanks a lot,
Carrie

$ GOOGLE APPLICATION CREDENTIALS=credentials.json python text
predict.py -m projects/<project id>/locations/us-centrall/
models/<id> example shopl.txt

Label: appliances : 0.99986
Label: furniture : 0.00014
Label: others : 0.00000

Check the result is correctly labelled as appliances.

Look at the message from example_shop2.txt and categorize it using text_
predict.py, credentials.json, and REFERENCE for the model:

$ cat example shop2.txt

Hello:

Are there any offers in fridges? I'm looking to replace mine
that is old. I live in a fifth floor and the 1lift is broken, would
that be a problem? I'll be fine with paying an extra.

I think you also have a furniture department, right? What are
the prices for mattresses?

Thanks a lot,
Carrie
$ GOOGLE APPLICATION CREDENTIALS=credentials.json python text
predict.py -m projects/<project id>/locations/us-centrall/
models/<id> example shop2.txt
Label: furniture : 0.99995
Label: appliances : 0.00005

Label: others : 0.00000

[427]

Machine Learning for Automation

Check the result is correctly labeled as furniture
3. Look at the message from example_shop3.txt and categorize it using text_
predict.py, credentials.json, and REFERENCE for the model:
$ cat example shop3.txt
Hello:

I need your full details including your address and phone for an
invoice. Can you please send them to me?

Thanks a lot,
Carrie

$ GOOGLE APPLICATION CREDENTIALS=credentials.json python text
predict.py -m projects/<project id>/locations/us-centrall/
models/<id> example shop3.txt

Label: others : 1.00000
Label: furniture : 0.00000
Label: appliances : 0.00000

Check the result is correctly labelled as others

How it works...

Let's take a look at the text_predict.py script, used in all steps:

import argparse

from google.api_core.client_options import ClientOptions
from google.cloud import automl_vil

def main(content, model name):
content = args.input.read()
options = ClientOptions(api_endpoint="automl.googleapis.com")
prediction_client = automl_vil.PredictionServiceClient(

client_options=options

)
payload = {'text_snippet': {

'content': content,

'mime_type': 'text/plain'}

}

params = {}

[428]

Chapter 11

request = prediction_client.predict(model name, payload, params)
for result in request.payload:

label = result.display_name

match = result.classification.score

print(f'Label: {label} : {match:.5f}")

if __name__ == '_ main__
parser = argparse.ArgumentParser()
parser.add_argument(dest="input', type=argparse.FileType('r'),
help="input text')
parser.add_argument('-m', dest="model', type=str, help='model
ref')
args = parser.parse_args()

main(content, args.model)

The final part of the script file deals with the parsing of arguments, which was
described in detail in Chapter 2, Automating Tasks Made Easy. It accepts a file and the
details for the model.

The main function reads the input text and calls the Google API for AutoML. The
data needs to be sent in a standard structure including the mime_type. The result of
prediction client.predict is printed. Note it's sorted so the most relevant label
is located at the start:

for result in request.payload:
label = result.display_name
match = result.classification.score
print(f'Label: {label} : {match:.5f}")

The score match is displayed up to 5 decimal places with {match:.5£}.

You can create your own messages and test to see if they are properly labeled.

There's more...

The classification of text into different categories can help to direct emails towards
the correct department, to assign them with different priorities, to generate statistics
against a database of messages, or to divide them into different groups.

[429]

Machine Learning for Automation

In our example, we used a simple single-label detection model, but the API allows
more complex processes, such as recognizing multiple labels instead of a single one
per text or recognizing custom sentiments or entities. Be sure to check out the full
documentation at https://cloud.google.com/natural-language/automl/docs.

Try to use the simplest model possible. As with every tool, there's
| a return on investment in terms of configuration and tweaking.
\@l In our example, the simple division of an email by department
- could be better than trying to set up multiple labels. Use a sensible
- approach, and start small before generating complex models. A
complex model will also take longer to tweak.

The most important step of the process is selecting an adequate set of data to train
the model. It's recommended that a minimum of 100 samples should be used for
each label. The selection of the set is also important as it has to be representative of
the things you want to detect; both to check things that should be labeled, and things
that should not.

A machine learning model is so dependent on the training set, so

it is easy to fall into the trap of reinforcing biases in the training

set. Machine learning is, at its core, something that uses bias to get

results. Creating a set of diverse data is very important. This is easy
SN to explain with pictures. If you only use pictures of cats sitting to
N/ train a model to recognize cats, it will probably not recognize a
jumping or running cat as a cat.

Minimizing hidden bias can be difficult. Include ample examples in
your training data of rare cases of your match, so the common case
won't overload them completely.

We talked about precision and recall earlier. Though they are not completely
dependent on one another, they are definitively related and can be adjusted
dependently. The model allows a bit of tweaking in the form of the confidence
threshold. You can change it on the EVALUATE tab of the model:

[430]

https://cloud.google.com/natural-language/automl/docs

Chapter 11

[] atwal Language
R
l ossnos

e ToMs B EVALUATE TEST & LS

Shep 2000409100843 - Confdonce threahold — ——@ o
% i H

All labels

Towt s

—_— Precition

fecall g

L The 500 19 504 whkch Condibernce thoeshold works Dt o o

s st preciscn-recas watece e

Lioarm mcrs sbonst e et s and graghe

Confusion matrix

Thue tathe shows ant which

[Sonku v g 10tk

:) predcnons
>
3&3 5
£

— Pecal — Pracison

Figure 11.28: The confidence threshold can be tweaked from the EVALUATE panel

You can also use this page to see the different tags and how they relate.

N\ 4
/@\

Tweaking the training set and adjusting the model is an essential
part of the process if you want to get good results. Spend enough
time testing and adjusting the model that you want to use in a real

operation.

Following the same parameters, you can also use the AutoML Vision product,
which works in the same way but with images. You train the model to identify
and categorize different labels with a set of pictures and then analyze new pictures

with that.

[431]

Machine Learning for Automation

You can use it to train the detection of custom elements in pictures. For example, it
could be trained to count different subspecies of bears in a national park or specific
car models. You can use AutoML Vision to identify specific expressions, such as
smiles, or more complex ones such as winking the left eye or raising eyebrows.
This, combined with a camera capturing multiple photos per second, can enable fast
interfaces to communicate actions in environments where the hands cannot be used
and sound is not an option, such as industrial environments. The possibilities are
only being discovered now.

You can learn more in the full documentation for AutoML Vision at https://
cloud.google.com/vision/overview/docsH#automl-vision.

See also

* The Analyzing images with Google Cloud Vision Al recipe, earlier in this
chapter, to learn how to create an account to use the Google Cloud interfaces.

* The Analyzing text with Google Cloud Natural Language recipe, from the
previous section, to learn about other possibilities of text analysis using
pre-trained models.

[432]

https://cloud.google.com/vision/overview/docs#automl-vision
https://cloud.google.com/vision/overview/docs#automl-vision

12

Automatic Testing Routines

In this chapter, we will cover the following recipes:

* Writing and executing test cases

* Testing external code

* Testing using dependency mocking
* Testing using HTTP call mocking

* Preparing testing scenarios

* Running tests selectively

Introduction

When the code and the complexity of your software grows, generating tests to
ensure your program does what it is supposed to do is the best tool to provide you
with a firm footing over rocky terrain.

Tests are, in essence, double-checking the code is valid and doing what it is supposed
to do. This is a deceptively simple statement, but in practice, it can be very difficult.

Mastering the ability to test is a difficult task and is worth a book
L or two. The tasks introduced in this chapter move from business-
‘,@\‘ oriented tasks to software engineering tasks, which is a different
= approach. The objective of this chapter is to present some practical
aspects of testing to introduce the subject.

[433]

Automatic Testing Routines

The most important thing about a test is that it tries to check the code that is being
tested independently. This involves a mindset of looking at the code and the inputs
and outputs and approaching the task with a fresh look, and to not be influenced by
the internal implementation. In some cases, the people testing the software may be
different from the people writing the code in the first place, to ensure that there's a
good understanding of what the code should and should not do. Try to design your
tests with this approach and create well-defined interfaces to work with.

In summary, testing checks the code does what it is supposed to do,
and doesn't do what it is not supposed to do.

_‘@’ _ The first part of the sentence is easier, but the second part is very
\ difficult or even impossible. Writing tests has a cost, both in time
and in maintenance. Only in highly critical software is code tested
extensively to ensure that nothing unexpected happens. Try to find
your balance in how many tests are adequate for your needs.

/

Tests are typically classified depending on how many different parts of the software
they test. A test that only covers a small part of the code, like a function, is normally
called a unit test, while a test that covers the whole system is called a system test. A
test that covers the integration of different software elements is called an integration
test. This is a very fluid definition, as not everyone agrees on what the system

is, or how big a unit test can be before it becomes an integration test, or whether
there's a significant difference between integration and system tests. But it helps to
understand that different tests cover different areas of software - some are bigger,
some are smaller - and have different requirements.

To have a team of developers working on the same software,
ensuring it is of high quality, and the discipline of adding and
running tests continuously is crucial. That's why there are lots
L of types of tests to help with that task. Continuous integration,
or CI, includes the practice of running tests for each change to
g the software and before merging them with changes by other
developers. CI tools allow you to run tests in the background
automatically and notify developers of any problem, ensuring that
there are no unexpected failures.

In this chapter, we will cover the usage of pytest as a tool to run various tests. This
is one of the most complete Python test frameworks. pytest enables the easy setup
of tests and provides a lot of useful options to run subsets of tests, run tests quickly,
and detect problems when tests fail.

[434]

Chapter 12

It has also an extensive ecosystem of plugins that allows you to integrate

with other systems, like databases and web services, and to extend pytest
with additional features, such as code coverage, running tests in parallel, and
performance benchmarking. Let's start writing and running some simple tests.

Writing and executing test cases

In this recipe, we will learn how to define and run tests using the pytest library.

Getting ready

We will use the pytest module. We should install the module, adding it to our
requirements.txt file as follows:

$ echo "pytest==5.4.1" >> requirements.txt

$ pip install -r requirements.txt

We will use the file test_case.py. You can download it from the GitHub repository at
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-
Edition/tree/master/Chapterl2/tests.

How to do it...

1. Check the file tests/test case.py, which contains the definition of four
tests:

LIST = [1, 2, 3]

def test one():

pass

def test_two():
assert 2 ==1+1

def test_three():
assert 3 in LIST

[435]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12/tests
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12/tests

Automatic Testing Routines

def test_fail():
assert 4 in LIST

2. Run pytest to run the test file:

$ pytest tests/test case.py
—====================_, test session starts ======================

platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1,
pluggy-0.13.1

rootdir: /Python-Automation-Cookbook/Chapterl2

collected 4 items

tests/test case.py ...F
[100%]

============z=======z========== FAILURES =========z=z=z====z=z===========
test_fail

def test fail():
> assert 4 in LIST

E assert 4 in [1, 2, 3]

tests/test case.py:16: AssertionError

==================== short test summary info =====================
FAILED tests/test case.py::test fail - assert 4 in [1, 2, 3]
=================== 1 failed, 3 passed in 0.03s ==================

Congratulations, you've run your first suite of tests. Notice
how one of the tests has failed.

[436]

Chapter 12

How it works...

pytest allows you to define tests simply as functions.

Not every function will be interpreted as a test. By default, only
A functions starting with "test" will be treated as such. This is a very
/@\‘ handy default configuration, but it can be changed if needed. The
g documentation can be found at https://docs.pytest.org/
en/latest/goodpractices.html#test-discovery.

Each function in tests/test_case.py defines a test, as we see in step 1.

The four tests defined in the file tests/test case.py define the basis of a pytest
test: code that executes and contains one or more assertions verifying the code is
correct. Note that these first tests are very simple. We will see more complicated tests
later in the chapter:

test_one doesn't have any assertions, so it can only pass.
test_two checks that the addition is correct with an == operator.

test_three uses the in operator to check whether a value is contained in a
list.

test fails uses the in operator to check whether a value is contained in a
list. It is not, so this test will fail, as seen in step 2.

In step 2, pytest collects all the tests at the start and then runs them:

collected 4 items

tests/test _case.py ...F

[100%]

Each passing test is represented by a dot, while each failed test shows an F.

]
\@’_ If color is available in the terminal, the failures will be marked in

2 red and passes marked in green.

[437]

https://docs.pytest.org/en/latest/goodpractices.html#test-discovery
https://docs.pytest.org/en/latest/goodpractices.html#test-discovery

Automatic Testing Routines

For failed tests, the details on the exact line where an assertion failed are shown:
test fail

def test fail():
> assert 4 in LIST

assert 4 in [1, 2, 3]

tests/test case.py:16: AssertionError
======================== short test summary info ========================
FAILED tests/test case.py::test fail - assert 4 in [1, 2, 3]

A brief summary of failed tests, total tests, and time taken is displayed later. This
information is very useful to be able to act and fix the code to make the tests pass.

There's more...

The displayed information shows almost nothing on passing tests by default. This
allows you to focus on the failing tests. If you want to display every single test, you
can call pytest with the verbose flag (-v or -verbose) activated:

$ pytest -v tests/test case.py

======================= test session starts ========================
platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1, pluggy-0.13.1 --
/usr/local/opt/python@3.8/bin/python3.8

cachedir: .pytest cache

rootdir: Python-Automation-Cookbook/Chapterl2

collected 4 items

tests/test case.py::test one PASSED [25%]

tests/test case.py::test two PASSED [50%]

tests/test case.py::test three PASSED [75%]

tests/test case.py::test fail FAILED [100%]

============================= FAJILURES =============================
test_fail

def test fail():
> assert 4 in LIST
assert 4 in [1, 2, 3]

tests/test case.py:18: AssertionError

===================== short test summary info ======================
FAILED tests/test case.py::test fail - assert 4 in [1, 2, 3]
=================== 1 failed, 3 passed in 0.03s ===================

[438]

Chapter 12

The usage of the assert keyword in Python is very flexible and easy to understand.
The test needs to be defined in a way that it asserts that something evaluates
as True.

pytest will not only show the line that's failing but also give some context, as shown
in our example, making it easy to see the problem.

\ ! 7/
'@\‘ Try to fix the error to make all the tests pass.

/

You can access the full pytest documentation at the following link: https://docs.
pytest.org/.

See also

* The Running tests selectively recipe, later in this chapter, to learn how to run
only a subsection of the tests.

* The Testing external code recipe, next up in this chapter, to learn how to test
code in other modules.

Testing external code

The main objective of testing is to be able to check code that's out of the boundaries
of the test files. We can import code easily in the tests, and then verify whether it is
working as expected. Let's see how to do it.

Getting ready

We will use the pytest module. We should install the module, adding it to our
requirements.txt file as follows:

$ echo "pytest==5.4.1" >> requirements.txt

$ pip install -r requirements.txt

We will use the test files tests/test _external.py and code/external.py.

You can download them from the GitHub repository at https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapteri12, under the subdirectories tests and code.

[439]

https://docs.pytest.org/
https://docs.pytest.org/
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12

Automatic Testing Routines

The tree should look like this:

— code

| b= _init__ .py
| L— external.py
— conftest.py

L— tests

L— test external.py

How to do it...

1. The__init__ .py file and conftest.py are empty, but define the structure
of the modules.

2. Check the file code/external .py, which contains the definition of a division
function:
def division(a, b):
return a / b
3. The testfile tests/test_external.py contains some tests about the
division function:

import pytest
from code.external import division

def test_int_division():
assert 4 == division(8, 2)

def test float _division():
assert 3.5 == division(7, 2)

def test_division_by zero():
with pytest.raises(ZeroDivisionError):
division(1, 0)

[440]

Chapter 12

Run pytest on tests/test_external.py to see all the tests pass:

$ pytest tests/test external.py
EEEEEE========S========== test Session Starts EEEEEE==S===SS=S=S==========

platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1,
pluggy-0.13.1

rootdir: Python-Automation-Cookbook/Chapterl2

collected 3 items

tests/test_external.py ... [100%]

How it works...

The tree structure allows pytest to detect the different modules in the structure:

The _init__ .py file defines that the subdirectory code contains a Python
module. This is a standard Python definition.

The file conftest . py contains specific information for pytest. Even if it's
empty, it defines the root directory for the tests.

The files starting with test are detected as containing tests. Inside these files,
the functions prefixed with test are detected and run.

The code module content is defined in step 1. The file external . py contains the
function division.

In step 3, the test file is defined. Note the import:

from code.external import division

That allows you to use external code defined outside of the boundaries of the test file.
The function is then verified in three situations:

test_int_division checks that division divides two integers and returns
the correct integer result.

test_float_division verifies that dividing two integers can produce a float
result.

test_division by_zero checks that the correct exception is raised if trying
to divide by zero.

[441]

Automatic Testing Routines

The first two tests contain a simple assertion checking the result of the function
call, but test_division_ by_zero requires that you verify that the code raises an
exception. This is done through a with block using pytest.raises:

def test_division_by zero():
with pytest.raises(ZeroDivisionError):
division(1, @)

This block will generate an assertion error if the call doesn't generate the exception,
allowing you to check the behavior. Note that the specific exception needs to be
passed as an argument.

Step 4 runs the tests, checking that all tests are correct and the code does what it is
supposed to do.

There's more...

To be able to define the exceptions to be captured, you'll need to import the
exception definitions from the module code or the relevant library.

Raising an exception in any part inside of the with block will capture it. Try to include
the smallest possible call that is expected to raise the exception, to avoid capturing
spurious exceptions. For the same reason, the most precise exception should be declared.

When running pytest without specifying a file, it will try to detect possible test files
and capture all the tests in the subdirectory. Be sure that the modules are properly
defined as defined by init_ .py and conftest.py.

N\ ! 7/
'@' We will see more of conftest .py later in this chapter.

/7 N

See also

* The Writing and executing test cases recipe, in the previous section, to learn the
basics of how to define tests.

* The Testing using HTTP call mocking recipe, later in this chapter, to learn how
to use testing modules that mock specific libraries.

Testing using dependency mocking

One of the biggest advantages of using Python is having a rich library of resources at
our disposal. That includes modules in the standard library, like the csv module to
read and write CSV files or the re library to use regexes.

[442]

Chapter 12

Others can be external, like Beautiful Soup to parse HTML or matplotlib to generate
graphs. We can also create our own libraries or structure our code in different files and
encapsulate the functionality in a way that's reusable and improves readability.

When creating tests, sometimes using external elements and library calls to the core
of the test is not advisable. For example, to test that a report is correctly processed,
it may be necessary to read a CSV file that contains the report. But preparing the
test by preparing a file, in this case, becomes cumbersome and can lose focus on the
actual objective of the test.

In these cases, it can be convenient to simulate those dependencies to simplify the
tests or to avoid external calls such as calls to network access or other kinds of
hardware. This kind of simulation, which replaces the external dependencies during
testing, is known as a mock.

Mocks are closely related to unit tests, in that they are small focused
| tests that cover a single unit of code, like a function, a class, or even a
\@’ small module. This allows you to test such units of code in isolation
AR from external elements, or, more precisely, fully controlling the
- external elements the code accesses. Keep in mind that exactly how
big a unit test can get before it is no longer a unit test is up for debate.

This can be done through the library mock in the Python standard library, which
allows you to replace the behavior of external dependencies.

Getting ready

We will use the pytest module. We should install the module, adding it to our
requirements. txt file as follows:

$ echo "pytest==5.4.1" >> requirements.txt
$ pip install -r requirements.txt

We will use the test files tests/ test dependencies.py and code/dependencies.
py. You can download them from the GitHub repository at https://github.
com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapteri12, under the subdirectories tests and code.

The tree should look like this:
— code

| F— init .py
| L — dependencies.py

— conftest.py
L— tests

L— test dependencies.py

[443]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12

Automatic Testing Routines

How to do it...

1. The init .pyfile and conftest.py are empty, but define the structure
of the modules.

2. Check the file code/dependencies . py, which contains the definition of
calculating areas for certain shapes:

PI = 3.14159

def rectangle(sideA, sideB):
return sideA * sideB

def circle(radius):
return 2 * PI * radius

def calculate area(shape, sizeA, sizeB=0):
if sizeA <= 0:
raise ValueError('sizeA needs to be positive')

if sizeB < 0:
raise ValueError('sizeB needs to be positive')

if shape == 'SQUARE":
return rectangle(sizeA, sizeA)

if shape == "RECTANGLE':
return rectangle(sizeA, sizeB)

if shape == 'CIRCLE':
return circle(sizeA)

raise Exception(f'Shape {shape} not defined')

3. Check the tests in the file tests/test_dependencies.py, validating the
calculations of calculate area:

from unittest import mock

[444]

Chapter 12

from code.dependencies import calculate_area
def test_square():
result = calculate_area('SQUARE', 2)
assert result ==
def test _rectangle():
result = calculate_area('RECTANGLE', 2, 3)
assert result == 6
def test_circle_with_proper_pi():
result = calculate_area('CIRCLE", 2)
assert result == 12.56636
@mock.patch('code.dependencies.PI', 3)
def test_circle_with_mocked pi():
result = calculate _area('CIRCLE", 2)
assert result == 12
@mock.patch('code.dependencies.rectangle’)
def test circle_with _mocked rectangle(mocked_rectangle):
mocked_rectangle.return_value = 12

result = calculate_area('SQUARE', 2)

assert result == 12
mocked_rectangle.assert_called()

[445]

Automatic Testing Routines

4. Run pytest to run the test file:

$ pytest tests/test dependencies.py
EEEEEE========S========== test Session Starts EEEEEE==S===SS=S=S==========

platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1,
pluggy-0.13.1

rootdir: Python-Automation-Cookbook/Chapterl2

collected 5 items

tests/test_dependencies.py
[100%]

How it works...

The code module content is defined in step 1. The file dependencies.py contains the
following elements:

¢ The definition of the variable pI.

* Two internal functions that calculate the areas of rectangles (based on two
sides) and circles (based on the radius).

* The calculate_area function, which accepts several kinds of shapes and
channels the request to the correct internal one. It understands that a square
is a kind of rectangle with four equal sides, for example.

In step 3, the test file is defined. Note the imports, both of the mock module and the
function to test:

from unittest import mock
from code.dependencies import calculate_area

The first three tests (test_square, test_rectangle, and test_circle with_
proper_pi) are straightforward.

The test test_circle with mocked pi uses a mock.path decorator to replace the
PI variable with 3 in the code . dependencies module:

@mock.patch('code.dependencies.PI', 3)
def test _circle_with_mocked pi():
result = calculate area('CIRCLE", 2)

assert result == 12

[446]

Chapter 12

This changes the PI constant while the test is running, affecting the result. Once the
test is done, the mock is disabled and the variable is again the previously defined
value.

The test test_circle with mocked rectangle mocks the rectangle function.
As a replacement is not defined in the decorator, it is passed as a parameter to the
function mocked rectangle:

@mock.patch('code.dependencies.rectangle')
def test_circle_with_mocked_rectangle(mocked rectangle):
mocked_rectangle.return_value = 12

result = calculate_area('SQUARE', 2)

assert result == 12
mocked_rectangle.assert_called()

The function, during the test, is replaced with a MagicMock object. To specify the
value returned when this object is called as a function, use the attribute . return_
value. As we see in the result, it replaces the area calculation. The mock can also be
checked to see whether it has been called with .assert called().

In step 4, the tests are called to see that all tests are working as expected.

There's more...

Mocks are very flexible and there are different ways of checking whether they have
been called and how. A few possibilities are listed here:

* _.assert_called once (): Raises an error if not called or called more than
once.

* _.assert _called with(args): Raises an error if not called or called with
different arguments. The arguments will be checked against the last call of
the mock.

* .call count: Counts the number of times i has been called.

[447]

Automatic Testing Routines

A Mock object will create another mock automatically if any attribute is accessed or
called. For example:

>>> from unittest.mock import Mock

>>> mock = Mock()

>>> mock.attribute

<Mock name='mock.attribute' id='4337292000'>

>>> mock.other attribute

<Mock name='mock.other attribute' id='4337292144'>

>>> mock.other attribute()

<Mock name='mock.other attribute()' id='4337353728'>
This means mocks have a flexible API that adapts easily to most calls of a module.

In our example, we mocked a function and a constant in our code, but you can
also mock any library, either in the Python standard library or any other installed
package.

Keep in mind that you need to mock in the correct path. You need
to mock the object where it's imported to, not where it's originally
defined. For example, if you're importing from extpck import
extfunction into your package code .module, you need to

\g mock it as follows:
2

@mock.patch('code.module.extfunction')

It's an easy mistake to make, even for seasoned mocking users.
Remember that you need to mock where it's used, not where it's
defined.

If you need to raise an exception when a mock is called, you can do so using the
.side_effect attribute. This is very useful for testing error conditions in external
libraries and making sure your code can correctly handle them:

>>> from unittest.mock import Mock
>>> mock = Mock ()
>>> mock.side effect = Exception('Custom error')
>>> mock ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

File "/usr/local/Cellar/python@3.8/3.8.2/Frameworks/Python. framework/
Versions/3.8/lib/python3.8/unittest/mock.py", line 1081, in call

[448]

Chapter 12

return self. mock call(*args, **kwargs)

File "/usr/local/Cellar/python@3.8/3.8.2/Frameworks/Python.framework/
Versions/3.8/1ib/python3.8/unittest/mock.py", line 1085, in mock call

return self. execute mock call(*args, **kwargs)

File "/usr/local/Cellar/python@3.8/3.8.2/Frameworks/Python.framework/
Versions/3.8/1ib/python3.8/unittest/mock.py", line 1140, in _execute_
mock call

raise effect

Exception: Custom error

The same .side_effect attribute, assigning an iterator, can be used if the mock
needs to return different results for multiple calls:

>>> from unittest.mock import Mock
>>> mock = Mock()
>>> mock.side effect = (1, 2, 3)

>>> mock ()
>>> mock ()

>>> mock ()

We mentioned that mock .patch can be used as a decorator. This is a Python concept
that, in essence, modifies the function it is decorating, usually by adding extra
functionality before and/ or after the function process.

Decorators are a very useful concept and, in essence, they replace the function
with a modified version. You can gain a deeper understanding of how decorators
work from this article: https://medium.com/hasgeek/python-decorators-
demystified-5ab4081fd0fe

patch can also be used as a with block. If that's the case, the module is mocked while
inside the block:

>>> from unittest.mock import patch
>>> from code.dependencies import circle
>>> with patch('code.dependencies.PI', 2):

print (circle(2))

8
>>> circle(2)
12.56636

[449]

https://medium.com/hasgeek/python-decorators-demystified-5ab4081fd0fe
https://medium.com/hasgeek/python-decorators-demystified-5ab4081fd0fe

Automatic Testing Routines

You can read the full documentation for mocks at https://docs.python.org/3/
library/unittest.mock.html.

See also

* The Testing external code recipe, earlier in this chapter, to learn how to test
code in other modules.

* The Testing using HTTP call mocking recipe, up next, to learn how to use
testing modules that mock specific libraries.

Testing using HTTP call mocking

Working with mocks is a common operation when testing. Some dependencies are
typically mocked in most tests.

One common dependency to be mocked is external HTTP calls. Performing these
calls while running tests is costly, slow, and can produce unreliable results if the
network connection fails.

Though external calls can be mocked through the library mock in the Python
standard library, as shown in the previous recipe, Testing using dependency mocking,
there are specific testing modules that allow you to simulate HTTP calls and
responses. Also, there are specific libraries that mock other specific libraries. This
produces easier and better mocks, as they are adapted to the behavior of the mock.

We have previously used the fantastic requests library (introduced in the Installing
third-party packages recipe from Chapter 1, Let's Begin Our Automation Journey, but also
used throughout the book). We will look at how to mock this library specifically. We
will use the testing library responses, which allows us to generate expected requests
and their responses.

\/‘/ Note that this testing library doesn't mock general HTTP access, but

specifically the requests module.

Getting ready

We will use the pytest module, along with the requests and responses libraries. We
should install the modules, adding them to our requirements. txt file as follows:

$ echo "pytest==5.4.1" >> requirements.txt

[450]

https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html

Chapter 12

$ echo "requests==2.23.0" >> requirements.txt
$ echo "responses==0.10.12" >> requirements.txt

$ pip install -r requirements.txt

We will use the test files tests/test requests.py and code/code requests.
py. You can download them from the GitHub repository at https://github.
com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapterl2/tests, under the subdirectories tests and code.

The tree should look like this:

— code

| — _ init .py

| L— code requests.py
— conftest.py

L tests

L— test requests.py

How to do it...

1. The _init__ .pyfile and conftest.py are empty, but define the structure
of the modules.

2. Check the file code/code requests.py, which contains a call to an external
formin https://httpbin.org/post to order a pizza:
import requests
from datetime import datetime, timedelta

RECIPES = {
'DEFAULT": {
'size': 'small',
"topping': ['bacon', 'onion'],
¥
"SPECIAL': {
'size': 'large',
"topping': ['bacon', 'mushroom', 'onion'],
}

[451]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12/tests
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12/tests
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12/tests

Automatic Testing Routines

def order pizza(recipe='DEFAULT"):

delivery time = datetime.now() + timedelta(hours=1)
delivery = delivery time.strftime('%H:%M")

data = {
"custname': "Sean 0'Connell”,
'custtel': '123-456-789°',
"custemail': 'sean@oconnell.ie',

‘delivery': delivery,

[}

'comments”':

extra_info = RECIPES[recipe]

data.update(extra_info)

resp = requests.post('https://httpbin.org/post’, data)
return resp.json()['form"]

3. Check the tests in the file tests/test_requests.py, checking that the code
behaves correctly:
import pytest
import requests
import responses
import urllib.parse
from code.code_requests import order_pizza

@responses.activate
def test _order_pizza():

body = {
"form': {
'size': 'small',
"topping': ['bacon', 'onion']
}
}

responses.add(responses.POST, 'https://httpbin.org/post’,
json=body, status=200)

[452]

Chapter 12

result = order_pizza()
assert result['size'] == 'small'

encoded_body = responses.calls[@].request.body
sent_data = urllib.parse.parse_gs(encoded_body)
assert sent_data['size'] == ['small']

@responses.activate
def test_order_pizza_ timeout():
responses.add(responses.POST, 'https://httpbin.org/post’,
body=requests.exceptions.Timeout())

with pytest.raises(requests.exceptions.Timeout):
order_pizza()

4. Run pytest to run the test file:

$ pytest tests/test requests.py
=== ============== test SeSSiOn Starts === ===S============

platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1,
pluggy-0.13.1

rootdir: Python-Automation-Cookbook-Second-Edition/Chapterl2

collected 2 items

tests/test_requests.py .. [100%]

How it works...

The code module content is defined in step 1. The file code_requests.py contains
the following elements:

* A section of imports.

* The definition of two kinds of pizzas in the RECIPES constant.

* The order pizza function selects the pizza, composes the form data, and
then POSTs it to https://httpbin.org/post.

[453]

Automatic Testing Routines

The form rendered in https://httpbin.org/forms/post and
it's POSTing url https: //httpbin.org/post were introduced
, in the Interacting with forms recipe from Chapter 3, Building Your First
{ s . I .
\/ Web Scraping Application. It presents a form to order a pizza and
returns the same information that is posted in the form in JSON
format.

Let's take a closer look at the order pizza function.

The code uses the current time to calculate the delivery time, adding an hour. The
time is described in the format HH:MM using delivery time.strftime('$H:3%M').
The function strftime formats the time and the string ' $H: %$M' prints only the hours
and minutes of the time:

delivery time = datetime.now() + timedelta(hours=1)
delivery = delivery_time.strftime('%H:%M")

The full data is composed of both a predefined data dictionary and the recipe
information. The recipe information gets selected from the RECIPE dictionary and is
then added to the data dictionary using .update ():

data = {
"custname': "Sean 0'Connell”,
‘custtel': '123-456-789°',
'custemail': 'sean@oconnell.ie’,

‘delivery': delivery,

'comments’:
}
extra_info = RECIPES[recipe]
data.update(extra_info)

Finally, the information is sent to the URL using requests.post. The response data,
once decoded from JSON, is returned by the function:

resp = requests.post('https://httpbin.org/post’, data)
return resp.json()['form"]

In step 3, the test file is defined. Note the import of the responses module. The
first test, test_order pizza, starts by activating the responses module with the
decorator @responses.activate:

@responses.activate
def test_order_pizza():

[454]

https://httpbin.org/forms/post
https://httpbin.org/post

Chapter 12

body = {
"form': {
'size': 'small',
"topping': ['bacon', 'onion']

}
responses.add(responses.POST, 'https://httpbin.org/post’,

json=body, status=200)

result = order_pizza()
assert result['size'] == 'small’

encoded_body = responses.calls[@].request.body
sent_data = urllib.parse.parse_gs(encoded_body)
assert sent_data['size'] == ['small']

The first thing it does is define the expected HTTP request as https://httpbin.
org/post and the response that should be returned:

body = {
"form': {
'size': 'small',
"topping': ['bacon', 'onion']

}
responses.add(responses.POST, 'https://httpbin.org/post’,

json=body, status=200)

The call to responses . add specifies the method (posT), the URL, the response in
JSON format, and the status code. When our code makes a request to the given URL,
it will receive this information, instead of making an external call to the network.

The next block is the call to order pizza () and the assertion of the result, which is
straightforward.

After that, the following block checks the data sent and captured by responses:

encoded_body = responses.calls[@].request.body
sent_data = urllib.parse.parse_gs(encoded_body)
assert sent_data['size'] == ['small']

[455]

https://httpbin.org/post
https://httpbin.org/post

Automatic Testing Routines

The responses library keeps track of all the captured requests. We retrieve the body
of the first request and store it in the encoded_body variable. This data has been
encoded and sent as part of the POST into application/x-www-form-urlencoded
format, which is the default for POST requests. We decode it using the default library,
urllib, and parse_gs () to transform it into a dictionary.

N The full documentation for urllib.parse can be found in the
‘/@\‘ Python official documentation: https://docs.python.org/3/
£ library/urllib.parse.html.

The second test, test_order_pizza_timeout, shows how to raise an exception
when requesting a particular URL:

@responses.activate
def test_order_pizza_ timeout():
responses.add(responses.POST, 'https://httpbin.org/post’,
body=requests.exceptions.Timeout())

with pytest.raises(requests.exceptions.Timeout):
order_pizza()

The responses.add call, in this case, specifies an Exception in the body that will be
raised when the URL is requested with the defined method.

this speeds up the generation of a Timeout exception, which
normally would require seconds or minutes to be generated.

C’ Because the exception is raised instantly when the request is done,
\”/

Step 4 runs the tests to check that the code works as expected.

There's more...

The responses library is very useful for generating error conditions and preparing
your code for them. The STATUS argument can be used to generate error codes in
external systems, such as "403 Forbidden,"'"404 Not Found,"'"500 Internal
Server error,"and "503 Service Unavailable." Properly handling the different
situations that can be produced and reacting to them will improve the reliability of
your code.

[456]

https://docs.python.org/3/library/urllib.parse.html
https://docs.python.org/3/library/urllib.parse.html

Chapter 12

Notice that some of these errors can happen without any changes at
L your end, like 503. In some cases, a wait-and-retry strategy can be
- /@\' adequate, and in others, the proper notification of "external service
g unavailable" can be better. Don't assume that external services will
always behave perfectly, as they can (and will) have problems.

Once you enable responses.activate to capture all the HTTP requests, any request
to an unexpected URL will raise an error:

E requests.exceptions.ConnectionError: Connection refused by
Responses - the call doesn't match any registered mock.

Request:

- POST https://httpbin.org/otherurl

Available matches:

H H #H H H H

- POST https://httpbin.org/post

This makes every test that uses responses self-contained and means they won't leak
any external calls due to mistakes or changes.

The pytest plugin pytest-responses allows the activation of responses for all
tests automatically. You can read its documentation here: https://github. com/
getsentry/pytest-responses.

The full documentation of the responses library can be found here: https://
github.com/getsentry/responses.

responses is not the only example of a library created to mock some specific aspects
when testing. Another example is freezegun, which allows you to set the time. Take
this test, for example:

import responses

import urllib.parse

from freezegun import freeze_time

from code.code_requests import order_pizza

@responses.activate
@freeze_time("2020-03-17T19:34")
def test_order_time():

body = {

[457]

https://github.com/getsentry/pytest-responses
https://github.com/getsentry/pytest-responses
https://github.com/getsentry/responses
https://github.com/getsentry/responses

Automatic Testing Routines

"form': {
'size': 'small"’,
"topping': ['bacon', ‘onion']

}
responses.add(responses.POST, 'https://httpbin.org/post’,

json=body, status=200)
order_pizza()
encoded_body = responses.calls[@].request.body

sent_data = urllib.parse.parse_gs(encoded_body)
assert sent_data[‘delivery'] == ['20:34"']

This test uses the freeze time decorator to set the time to 19:34, no matter when the
test is run. Note that it also sets the date.

I
?C): The test is available on GitHub as tests/test requests_

‘ time.py. Remember to install the package freezegun using pip.

The full documentation of freezegun can be accessed here: https://github.com/
spulec/freezegun.

See also

The Testing external code recipe, earlier in this chapter, to learn how to test
code in other modules.

The Testing using dependency mocking recipe, from the previous section, to
learn how to mock any kind of package or function.

Preparing testing scenarios

Tests are typically prepared in batches. Similar tests require a similar setup and
cleanup, and they only differ on small details. Repeating the same preparation over
and over generates boilerplate code and it's less readable.

[458]

https://github.com/spulec/freezegun
https://github.com/spulec/freezegun

Chapter 12

The term boilerplate comes from 19* century local newspapers
printing already-prepared news stamped onto metal plates by
N distribution companies. This meant the same news, in the same
‘,@\‘ format, was repeated all across different newspapers. Boilerplate
= code is reused code that presents little or no variation, and, in most
cases, mainly adds clutter. When creating tests, it is easy to fall into
this pattern, which makes the code cumbersome.

In this recipe, we will see how to prepare setup scenarios to run tests using pytest
fixtures.

Getting ready

We will use the pytest module. We should install the modules, adding them to our
requirements. txt file as follows:

$ echo "pytest==5.4.1" >> requirements.txt

$ pip install -r requirements.txt

We will use the test files tests/test fixtures.py and code/code fixtures.

py. You can download them from the GitHub repository at https://github.

com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapteri2/, under the subdirectories tests and code:

The tree should look like this:

— code
| — init .py
| L— code fixtures.py

— conftest.py
L— tests

L— test fixtures.py

How to do it...

1. The_init__ .py file and conftest.py are empty, but define the structure
of the modules.

2. Check the file code/code fixtures.py, which contains the code to store
data in a zip file and retrieve it:

from zipfile import ZipFile

[459]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12/
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12/
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12/

Automatic Testing Routines

INTERNAL_FILE = 'internal.txt’

def write zipfile(filename, content):
with ZipFile(filename, 'w') as zipfile:
zipfile.writestr(INTERNAL_FILE, content)

def read zipfile(filename):
with ZipFile(filename, 'r') as zipfile:
with zipfile.open(INTERNAL_FILE) as intfile:
content = intfile.read()

return content.decode('utf8")

3. Check the tests in the file tests/test_fixtures.py, checking that the code
behaves correctly:
import os
import random
import string
from pytest import fixture
from zipfile import ZipFile
from code.code_fixtures import write_zipfile, read_zipfile

@fixture
def fzipfile():
content_length = 50

content = ''.join(random.choices(string.ascii_lowercase,
k=content_length))
fnumber = ''.join(random.choices(string.digits, k=3))

filename = f'file{fnumber}.zip’

write zipfile(filename, content)
yield filename, content

os.remove(filename)

[460]

Chapter 12

def test writeread zipfile():
TESTFILE = 'test.zip'
TESTCONTENT = 'This is a test'
write zipfile(TESTFILE, TESTCONTENT)
content = read_zipfile(TESTFILE)

assert TESTCONTENT == content

def test readwrite zipfile(fzipfile):
filename, expected_content = fzipfile
content = read_zipfile(filename)

assert content == expected_content

def test_internal_zipfile(fzipfile):
filename, expected_content = fzipfile
EXPECTED_LIST = ['internal.txt"']

with ZipFile(filename, 'r') as zipfile:
assert zipfile.namelist() == EXPECTED_LIST

Run pytest to run the test file:
$ pytest tests/test fixtures.py
—======================= test session starts =====================

platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1,
pluggy-0.13.1

rootdir: /Users/jaime/Dropbox/code/Packt/Python-Automation-
Cookbook/Chapterl2New

collected 3 items

tests/test fixtures.py ...
[100%]

========================= 3 passed in 0.0ls ======================

[461]

Automatic Testing Routines

5. Check that a new file called test . zip has been created in the directory:

$ ls test.zip
test.zip

How it works...

The code module content is defined in step 1.

As described in step 2, the file code_fixtures.py contains two functions to store and
save information in a zip file. This uses the standard Python zipfile module to deal
with zip files:

write_zipfile creates a zip file with an internal compressed file, internal.txt,
which contains the data passed as an argument. This is written using the method
.writestr():

def write zipfile(filename, content):

with ZipFile(filename, 'w') as zipfile:
zipfile.writestr(INTERNAL_FILE, content)

read_zipfile reads the file and extracts the content from the internal file:

def read _zipfile(filename):
with ZipFile(filename, 'r') as zipfile:
with zipfile.open(INTERNAL_FILE) as intfile:
content = intfile.read()

return content.decode('utf8")

read_zipfile follows the same pattern as the write. It searches for the defined
internal file inside the zip file and reads its content. The content needs to be decoded
as it's encoded in UTF-8.

Zip files are a collection of files that are compressed. We need to define at least one
file to store information inside a zip file. You can learn more about the zipfile
module here: https://docs.python.org/3/library/zipfile.html.

[462]

https://docs.python.org/3/library/zipfile.html

Chapter 12

The tests are defined in step 3. The test test_writeread_zipfile first generates
a file and then reads it, testing the whole lifecycle and ensuring that a file can be
written, then read:

def test writeread_zipfile():
TESTFILE = 'test.zip'
TESTCONTENT = 'This is a test'
write zipfile(TESTFILE, TESTCONTENT)
content = read_zipfile(TESTFILE)

assert TESTCONTENT == content

This test works correctly but doesn't perform any cleanup, which leaves the file
test.zip in the working directory.

For the other two tests, use the declared fixture fzipfile. Note the @fixture
decorator. Let's take a look at it:

import os

import random

import string

from pytest import fixture

@fixture
def fzipfile():
content_length = 50

content = ''.join(random.choices(string.ascii_lowercase,
k=content_length))
fnumber = ''.join(random.choices(string.digits, k=3))

filename = f'file{fnumber}.zip"’

write zipfile(filename, content)
yield filename, content

os.remove(filename)

The fixture generates some random content in the shape of a string of 50 lowercase
characters. It also generates a random filename. It then writes this file and yields
both the generated filename and the content. Finally, it removes the file with a call to
oS .remove.

[463]

Automatic Testing Routines

The yield keyword in Python allows us to pause the execution of code, return a
value, and then resume the code. In a fixture, everything that goes before yield will
be executed before the start of a test, and everything after yield will be executed at
the end of the test.

iterators, but each time a new value is requested, the code keeps
executing until another yield is found; for example:

C’ yield is typically used within generator functions that act as
\”/

>>> def generator():
yield 1
yield 2
for in range(3):
yield 3

>>> list (generator())

(1, 2, 3, 3, 3]
You can learn more about generators at https://realpython.com/introduction-
to-python-generators/.

The fixture then performs some setup (creates a zip file), returns the values
(randomly generated name and content) to work with, and finally cleans up (deletes
the file).

The other two tests use this fixture to set up the test. test_readwrite_zipfileis
very straightforward; it reads the file created by the fixture:

def test_readwrite_zipfile(fzipfile):
filename, expected_content = fzipfile
content = read_zipfile(filename)

assert content == expected_content

Note that the value returned by the fixture fzipfile is a tuple with two elements,
the filename and the content.

test_internal_zipfile uses the fixture to then check that there's only one file
inside the zip file and that it has the correct name. It opens the zip file and uses
.namelist () to get a list of the files inside to verify them:

def test_internal zipfile(fzipfile):
filename, expected_content = fzipfile
EXPECTED_LIST = ['internal.txt']

[464]

https://realpython.com/introduction-to-python-generators/
https://realpython.com/introduction-to-python-generators/

Chapter 12

with ZipFile(filename, 'r') as zipfile:
assert zipfile.namelist() == EXPECTED_LIST

There's more...

Fixtures can be shared across multiple test files. You don't need to import them. Add
them instead to the conftest.py file. You can generate local conftest . py files in
the subdirectory for fixtures that are local to that directory only.

! To use a fixture, the name of the parameter in the test needs to have

\ /
‘,@\' the name of the fixture. Be careful not to overwrite these names

= unintentionally.

pytest provides some built-in fixtures available for common operations. For
example, the fixture caplog captures the logs emitted while running tests, and tmp_
path creates a temporary subdirectory that's unique to each test. Go to the fixture
documentation for more details.

There are a lot of pytest plugins that include fixtures to deal with a lot of common
scenarios or tools; for example, connecting to databases, web frameworks, external
APIs, and so on. It's worth running a search on pypi . org before creating a fixture,
or checking the non-exhaustive list of pytest plugins at http://plugincompat.
herokuapp.com/.

pytest also adds context for the specific data on fixtures when there's a failing test.
This helps with understanding behavior and debugging problems, either on the
fixture or in the code that's being tested:

$ pytest tests/test fixtures.py

======================== test session starts ========================
platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1, pluggy-0.13.1

rootdir: /Users/jaime/Dropbox/code/Packt/Python-Automation-Cookbook
Second-Edition/Chapterl2

collected 3 items

tests/test fixtures.py ..F [100%]

[465]

http://pypi.org
http://plugincompat.herokuapp.com/
http://plugincompat.herokuapp.com/

Automatic Testing Routines

test internal zipfile

fzipfile = ('file989.zip’',
'ldrnfqwgodcwmkxkehfcaaxzaocxasbduixouchvrzqyfgaaxv')

FAILURE

Remember to perform a cleanup stage in your fixtures. As we've seen in the example
of test_writeread zipfile, not cleaning up can lead to spurious data being stored
on the hard drive or any other place where the fixture created spurious data. Putting
code in the fixture after the yield keyword will definitely be called even if there's an
exception or some other kind of error.

The full pytest fixture documentation is available here: https://docs.pytest.
org/en/latest/fixture.html.

See also

* The Writing and executing test cases recipe, earlier in this chapter, to learn the
basics of how to define tests.

* The Testing external code recipe, earlier in this chapter, to learn how to test
code in other modules.

Running tests selectively

Detecting and running all the defined tests in a project is good to verify that
everything is working. But most of the development work done while dealing with
tests benefits from executing only a subset of all tests.

When adding new code or new tests, it is crucial to iterate quickly through a specific
part of the tests and code to narrow your focus.

In this recipe, we will see how to run a subset of available tests with pytest and
what parameters to use in different scenarios.

Getting ready

We will use the pytest module among others. We should install the modules by
adding them to our requirements. txt file as follows:

$ echo "pytest==5.4.1" >> requirements.txt

$ echo "requests==2.23.0" >> requirements.txt

[466]

https://docs.pytest.org/en/latest/fixture.html
https://docs.pytest.org/en/latest/fixture.html

Chapter 12

$ echo "responses==0.10.12" >> requirements.txt
$ echo "freezegun==0.3.15" >> requirements.txt

$ pip install -r requirements.txt

We will use the test files introduced in the previous recipes of the chapter. You
can download them from the GitHub repository at https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/
master/Chapteril2, under the subdirectories tests and code:

— code

F— _init .py

— code fixtures.py
— code requests.py
— dependencies.py

L— external.py

conftest.py

T

tests

— test case.py

F—— test dependencies.py
— test externmal.py

— test fixtures.py

— test requests.py

L

test requests time.py

How to do it...

1. Run all the tests with pytest:
$ pytest
======================== tegt session starts =====================

platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1,
pluggy-0.13.1

rootdir: /Python-Automation-Cookbook-second-Edition/Chapterl2

collected 18 items

tests/test case.py ...F
[22%]

tests/test dependencies.py
[50%]

tests/test external.py ...

[467]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/tree/master/Chapter12

Automatic Testing Routines

[66%]

tests/test fixtures.py ...
[83%]

tests/test requests.py ..
[94%]

tests/test_requests time.py .
[100%]

============================= FAILURES ===========================
test fail

?2?2?

E assert 4 in [1, 2, 3]

/Python-Automation-Cookbook-Second-Edition/Chapterl2/tests/test
case.py:18: AssertionError

========================= short test summary info ================
FAILED tests/test case.py::test fail - assert 4 in [1, 2, 3]
=================== 1 failed, 17 passed in 0.28s =================

Note that test_fail is failing.
2. Runpytest --collect-only:
$ pytest --collect-only
======================== test session starts =====================

platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1,
pluggy-0.13.1

rootdir: /Python-Automation-Cookbook-Second-Edition/Chapterl2
collected 18 items
<Module tests/test case.py>
<Function test one>
<Function test two>
<Function test three>
<Function test fail>
<Module tests/test dependencies.py>
<Function test square>
<Function test rectangle>
<Function test circle with proper pi>

<Function test circle with mocked pi>

[468]

Chapter 12

<Function test circle with mocked rectangle>
<Module tests/test external.py>
<Function test int division>
<Function test float division>
<Function test division by zero>
<Module tests/test fixtures.py>
<Function test writeread zipfile>
<Function test readwrite zipfile>
<Function test internal zipfile>
<Module tests/test requests.py>
<Function test order pizza>
<Function test order pizza timeout>
<Module tests/test requests time.py>

<Function test order time>

Run pytest -v -k time:
$ pytest -v -k time

======================= test session starts ==============

platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1,
pluggy-0.13.1 -- /usr/local/opt/python@3.8/bin/python3.8

cachedir: .pytest cache

rootdir: / Python-Automation-Cookbook-Second-Edition/Chapterl2

collected 18 items / 16 deselected / 2 selected

tests/test requests.py::test_order pizza timeout PASSED
[50%]

tests/test requests_time.py::test order time PASSED
[100%]

================= 2 passed, 16 deselected in 0.22s =======

Rurlpytest -v -k time tests/test requests.py:
$ pytest -v -k time tests/test requests.py

—====================== test session starts ==============

platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1,
pluggy-0.13.1 -- /usr/local/opt/python@3.8/bin/python3.8

[469]

Automatic Testing Routines

cachedir: .pytest cache
rootdir: / Python-Automation-Cookbook-Second-Edition/Chapterl2
collected 2 items / 1 deselected / 1 selected

tests/test _requests.py::test order pizza timeout PASSED
[100%]

================= 1 passed, 1 deselected in 0.108 =============

5. Run pytest -v tests/test requests time.py::test order time:
$ pytest -v tests/test requests time.py::test order time
======================= test sesgssion starts ===================

platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1,
pluggy-0.13.1 -- /usr/local/opt/python@3.8/bin/python3.8

cachedir: .pytest cache
rootdir: /Python-Automation-Cookbook-Second-Edition/Chapterl2

collected 1 item

tests/test requests_time.py::test order time PASSED
[100%]

6. Run pytest -v --1f:

$ pytest -v --1f
=—====================== test session starts ===================

platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1,
pluggy-0.13.1 -- /usr/local/opt/python@3.8/bin/python3.8

cachedir: .pytest cache
rootdir: /Python-Automation-Cookbook-Second-Edition/Chapterl2
collected 11 items / 10 deselected / 1 selected

run-last-failure: rerun previous 1 failure (skipped 3 files)

tests/test case.py::test fail FAILED
[100%]

============================= FAILURES ========================
test fail

[470]

Chapter 12

def test fail():
assert 4 in LIST
E assert 4 in [1, 2, 3]

tests/test case.py:18: AssertionError

===================== short test summary info =================
FAILED tests/test case.py::test fail - assert 4 in [1, 2, 3]
================= 1 failed, 10 deselected in 0.30s ============

How it works...

In step 1, the call to pytest is done with no arguments. This runs all the tests defined
under the subdirectory.

Note that it displays how many tests it collects:

collected 18 items

Step 2 shows how to get the list of tests collected, but without running them. This
is done through the --collect-only parameter. It presents them all but doesn't
run them.

To run only certain tests, step 3 shows how to generate a matching string that will
limit the tests to run. Using -k allows matching by string, so all the tests that match
the string t ime will be executed.

test, instead of a line per test file.

\/‘/ The option -v makes the output verbose and displays a line per

Note how the total number of tests is still present. pytest collects them all, but then
only runs the ones that match the -k parameter:

collected 18 items / 16 deselected / 2 selected

To limit the number of collected tests, a file path can be specified, as done in step 4,
where the path of a specific file is added to the command. In this case, the number of
collected tests is only the ones located in the file path:

$ pytest -v -k time tests/test requests.py

collected 2 items / 1 deselected / 1 selected

[471]

Automatic Testing Routines

Step 5 shows how to specify a single test, using the full file path and descriptor. This
is easy to copy from the output when using the -v argument:
$ pytest -v tests/test requests time.py::test order time

collected 1 item

Finally, in step 6, a different argument is used, --1£. This runs only the last failed
tests:

$ pytest -v --1f

collected 11 items / 10 deselected / 1 selected

run-last-failure: rerun previous 1 failure (skipped 3 files)

If no test has failed in the last run, - -1f will run all the tests.

There's more...

Keep in mind that all these parameters can be combined. For example, --collect-
only can be used with -k to check whether the selected tests are correct.

In the same way, multiple file paths and tests can be added. For example:

$ pytest -v tests/test external.py::test int division tests/test
requests.py

========================== test session starts ==========================

platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1, pluggy-0.13.1 --
/usr/local/opt/python@3.8/bin/python3.8

cachedir: .pytest cache
rootdir: / Python-Automation-Cookbook-Second-Edition/Chapterl2

collected 3 items

tests/test external.py::test_int division PASSED [33%]
tests/test requests.py::test order pizza PASSED [66%]
tests/test requests.py::test order pizza timeout PASSED [100%]

[472]

Chapter 12

Collecting tests, when the number of tests grows, can take a significant amount

of time. When the number of tests is in the hundreds or thousands, collecting and
filtering using -k can take so much time as to delay the execution of tests (by half
a minute or more). This makes it important to know how to reduce the number of
collected tests by specifying the files to collect tests from.

To stop the execution of tests when a failure is detected, use the parameter -x:

$ pytest -v -x
—========================= test session starts ==========================

platform darwin -- Python 3.8.2, pytest-5.4.1, py-1.8.1, pluggy-0.13.1 --
/usr/local/opt/python@3.8/bin/python3.8

cachedir: .pytest cache
rootdir: /Python-Automation-Cookbook-Second-Edition/Chapterl2

collected 18 items

tests/test case.py::test one PASSED [5%]

tests/test case.py::test two PASSED [11%]

tests/test case.py::test three PASSED [16%]

tests/test case.py::test fail FAILED [22%]

================================ FAILURES ===============================
test_fail

def test fail():
> assert 4 in LIST

E assert 4 in [1, 2, 3]

tests/test case.py:18: AssertionError
======================== short test summary info ========================
FAILED tests/test case.py::test fail - assert 4 in [1, 2, 3]

rrrrrrrrrrrrrrirrlllll stopping after 1 failures
SEREERREEERERRRRRRRERRE!

[473]

Automatic Testing Routines

When developing, it's common to iterate through a test or a small number of tests to
fix them. In these situations, --1f can greatly help to run the whole test suite at once,
and then repeat with only the failing tests. As the code is fixed, tests that pass will be
removed from the execution group, until finally the last test passes. Then, --1£ will
run all the tests again.

With small numbers of tests in a test suite, most of this advice won't
be necessary, as tests will be very quick. As the number of tests
increases, using these parameters becomes more important so as
L to not waste time executing tests that are not directly related to the
p\V/A specific part of the code being developed. Just remember to run
the whole suite once at the end to ensure that your changes didn't
have a disruptive effect on an unexpected part of the code. This
is actually something that happens more times than developers
would like!

See also

* The Writing and executing test cases, earlier in this chapter, to learn the basics
of how to define tests.

* The Testing external code, earlier in this chapter, to learn how to test code in
other modules.

[474]

15

Debugging Techniques

In this chapter, we will cover the following recipes:

* Learning Python interpreter basics
* Debugging through logging

* Debugging with breakpoints

* Improving your debugging skills

Introduction

Writing code is not easy. Actually, it is very hard. Even the best programmer in the
world can't foresee every possible alternative and flow of the code.

This means that executing our code will always produce surprises and unexpected
behaviors. Some will be very evident, while others will be very subtle, but the ability
to identify and remove these defects in the code is critical to building solid software.

These defects in software are known as bugs, and therefore removing them is called
debugging.

Inspecting the code just by reading it and reasoning about its execution image will
never be enough to cover all the possible outcomes on non-trivial code. There are
always surprises, and complex code is difficult to follow. That's why the ability

to debug by stopping execution and taking a look at the current state of things is
important.

[475]

Debugging Techniques

Everyone, and I mean EVERYONE, introduces bugs in the code,

I
\@’ only to be surprised by them later. Some people have described
AR debugging as being the detective in a crime movie where you are also the
- murderer.

Any debugging process roughly follows this path:

Ll s

You realize there's a problem.
You understand what the correct behavior should be.
You discover why the current code produces the bug.

You change the code to produce the proper result.

95% of the time, everything but step 3 is straightforward. Step 3 is the bulk of the
debugging process.

Realizing the why of a bug, at its core, follows a scientific methodology:

1.
2.
3.

4.

Measure and observe what the code is doing.
Produce a hypothesis on why that is.

Validate or disprove the hypothesis, through either a specifically designed
experiment (for example, a test) or the examination of the execution of a test
(which can be considered a natural experiment).

Use the resulting information to fix the bug or to iterate the process.

Debugging is a skill, and as such, it will improve over time. Practice plays an
important role in developing intuition on what paths look promising to identify an
error, but there are some general ideas that may help you:

Divide and conquer: Isolate small parts of the code so that it is possible to
understand the code. Simplify the problem as much as possible.

There's a format of this method called the Wolf fence algorithm,
described by Eduard Gauss:

\ ! 7/
',@\' "There's one wolf in Alaska; how do you find it? First, build a fence down
= the middle of the state, wait for the wolf to howl, and determine which side
of the fence it is on. Repeat this process on that side only, until you get to
the point where you can see the wolf."

Move backward from the error: If there's a clear error at a specific point, the
bug is likely located in the surroundings. Move progressively backward from
the error, following the track until the source of the error is found.

[476]

Chapter 13

* You can assume anything you want, as long as you prove your assumption
is true: Code is very complex to keep in your head all at once. You need
to validate small assumptions that, when combined, will provide solid
ground to move forward with detecting and fixing the problem. Make small
experiments that allow you to rule out parts of the code that work and focus
on untested ones.

Or, in the words of Sherlock Holmes:

\ ! 7/
/@ "Once you eliminate the impossible, whatever remains, no matter how
= improbable, must be the truth."

Remember to prove any assumption you make. Avoid unproven assumptions, as
they'll distract you from the location of the bug. It's very easy to think that the error
happens in one part of the code and look at another.

This may sound a bit scary, but most bugs are pretty evident.
‘ ’ Maybe a typo, or a piece of code not ready for a particular value.
\D/ Try to keep things simple. Simple code is easier to analyze and
debug.

Check out Chapter 12, Automatic Testing Routines, to learn how to work with tests.
Tests are excellent tools to help you debug, find problems, and add validation points.
Debugging the code in a defined test allows you to create a small environment where
you can focus on the expected inputs and outputs and search for bugs.

In this chapter, we will look at several tools and techniques for debugging and apply
them specifically to Python scripts. The scripts will contain some bugs that we will
fix as part of the recipe.

Learning Python interpreter basics

In this recipe, we'll cover some of Python's built-in capabilities to examine code,
investigate what's going on, and detect when things are not behaving properly.

L We can also verify when things are working as expected.
'@' Remember that being able to rule out part of the code as the

4 A Y
= source of a bug is incredibly important.

[477]

Debugging Techniques

While debugging, we typically need to analyze unknown elements and objects that
come from an external module or service. Code in Python is highly discoverable at
any point in its execution. This ability to examine the types and properties of the
code while it is being executed is called introspection.

Everything in this recipe is included by default in Python's interpreter.

How to do it...

1. Import pprint:

>>> from pprint import pprint

2. Create a new dictionary called dictionary:

>>> dictionary = {'example': 1}

3. Display globals in this environment:
>>> globals ()
{...'pprint': <function pprint at 0x100995048>,

...'dictionary': {'example': 1}}

4. Print the globals dictionary in a readable format with pprint:
>>> pprint (globals())

{'_annotations ': {},

‘dictionary': {'example': 1},

'pprint': <function pprint at 0x100995048>}

5. Display all of the attributes of dictionary:

>>> dir (dictionary)

[' class ', ' contains ', ' delattr ', ' delitem ',

' dir ', ' doc ', ' eq ', ' format ', ' ge ', '
getattribute ', '_getitem ', ' gt ', ' hash ', ' init ',
' init subclass ', ' iter ', ' le ', ' len ', ' 1t ',
' mne ', ' mnew ', ' reduce ', ' reduce ex ', ' repr ',

' reversed ', ' setattr ', ' setitem ', ' sizeof ', '
str ', ' subclasshook ', 'clear', 'copy', 'fromkeys', ‘'get',
'items', 'keys', 'pop', 'popitem', 'setdefault', 'update’',
'values']

6. Show the help for the dictionary object:

>>> help(dictionary)

[478]

Chapter 13

Help on dict object:

class dict(object)
| dict() -> new empty dictionary

| dict(mapping) -> new dictionary initialized from a mapping
object's

| (key, value) pairs

How it works...

After importing pprint (pretty print) in step 1, we create a new dictionary to work
in, as shown in step 2.

Step 3 shows how the global namespace contains, among other things, the defined
dictionary and the module. globals () displays all imported modules and other
global variables.

\/;n,> There's an equivalent 1ocals () for local namespaces.

pprint helps display the globals in a more readable format in step 4, adding more
space and separating the elements by line.

Step 5 shows how to use dir () to obtain all the names of the attributes of a Python
object. Note that this includes all the double underscore values, suchas __len_

The use of the built-in help () function will display relevant information for objects.

There's more...

dir (), in particular, is extremely useful for inspecting unknown objects, modules, or
classes. If you need to filter out the default attributes and clarify the output, you can
filter the output using a list comprehension:

>>> [att for att in dir(dictiomnary) if not att.startswith(' ')]
['clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem',

'setdefault', 'update', 'values']

In the same way, you can do this if you're searching for a particular method (such as
something that starts with set).

[479]

Debugging Techniques

help () will display the docstring of a function or class. docstring is the string
defined just after the definition to document the function or class:

>>> def something() :

This is help for something

pass

>>> help (something)

Help on function something in module main :

something ()

This is help for something

Notice how the "This is help for something'string is displayed just after the
definition of the function.

docstring is normally enclosed in triple quotes to allow writing
| string with multiple lines. Python will treat everything inside triple
\@’ quotes as a big string, even if there are newlines. You can use either
R "or" characters, as long as you use three of them. You can find
more information about docstrings at https://www.python.
org/dev/peps/pep-0257/.

/

The documentation for the built-in functions can be found at https://docs.
python.org/3/library/functions.html#built-in-functions, while the full
documentation for pprint can be found at https://docs.python.org/3/library/
pprint.html.

See also

* The Improving your debugging skills recipe, later in this chapter, to pick up
more debugging tools.

* The Debugging through logging recipe, next in this chapter, to learn how to
debug elements by setting traces.

[480]

https://docs.python.org/3/library/functions.html#built-in-functions
https://docs.python.org/3/library/functions.html#built-in-functions
https://docs.python.org/3/library/pprint.html
https://docs.python.org/3/library/pprint.html
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/

Chapter 13

Debugging through logging

Debugging is, after all, detecting what's going on inside our program and finding out
what unexpected or incorrect effects may be happening. A simple, yet very effective,

approach is to output variables and other information at strategic parts of your code

to allow the programmer to follow the flow of the program.

The simplest form of this approach is called print debugging. This technique consists
of inserting print statements at certain points to print the value of variables or points
while debugging.

But taking this technique a little further and combining it with the logging
techniques presented in Chapter 2, Automating Tasks Made Easy, allows us to create a
trace of the execution of the program. This tracing information can be really useful
when detecting issues in a running program. Logs are also typically displayed when
running tests using a test framework.

pytest, introduced in Chapter 12, Automatic Testing Routines,
‘ n/ automatically shows logs of failed tests. Other test frameworks may
\/ need to be configured. Logging is presented in this book in Chapter
2, Automating Tasks Made Easy.

Getting ready

Download the debug logging.py file from GitHub: https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/
master/Chapterl3/debug logging.py.

This contains an implementation of the bubble sort algorithm (https://www.
studytonight.com/data-structures/bubble-sort), which is one of the simplest
ways to sort a list of elements. It iterates several times over the list, and within each
iteration, two adjacent values are checked and interchanged, so the bigger one comes
after the smaller. This makes the bigger values ascend like bubbles in the list.

Bubble sort is a simple but naive way of implementing a sort, and

\ ! 7/
‘,@\' there are better alternatives. Unless you have an extremely good

S reason not to, rely on the standard . sort method in lists.

When run, it checks the following list to verify that it is correct:

assert [1, 2, 3, 4, 7, 10] == bubble_sort([3, 7, 10, 2, 4, 1])

[481]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter13/debug_logging.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter13/debug_logging.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter13/debug_logging.py
https://www.studytonight.com/data-structures/bubble-sort
https://www.studytonight.com/data-structures/bubble-sort

Debugging Techniques

We have a bug in this implementation, so we can fix it as part of the recipe!

How to do it...

1.

Run the debug_logging.py script and check whether it fails:
$ python debug logging.py
INFO:Sorting the list: [3, 7, 10, 2, 4, 1]
INFO:Sorted list: [2, 3, 4, 7, 10, 1]
Traceback (most recent call last):
File "debug logging.py", line 17, in <module>
assert [1, 2, 3, 4, 7, 10] == bubble sort([3, 7, 10, 2, 4, 1])
AssertionError
Enable debug logging by changing the second line of the debug_logging.py
script:

logging.basicConfig(format="%(levelname)s:%(message)s’,
level=1logging.INFO)

Change the preceding line to the following one:

logging.basicConfig(format="%(levelname)s:%(message)s’,
level=logging.DEBUG)

Note the different 1evel.

Run the script again, with more information inside:

$ python debug logging.py

INFO:Sorting the list: [3, 7, 10, 2, 4, 1]
DEBUG:alist: [3, 7, 10, 2, 4, 1]
DEBUG:alist: [3, 7, 10, 2, 4, 1]
DEBUG:alist: [3, 7, 2, 10, 4, 1]
DEBUG:alist: [3, 7, 2, 4, 10, 1]
DEBUG:alist: [3, 7, 2, 4, 10, 1]
DEBUG:alist: [3, 2, 7, 4, 10, 1]
DEBUG:alist: [3, 2, 4, 7, 10, 1]
DEBUG:alist: [2, 3, 4, 7, 10, 1]
DEBUG:alist: [2, 3, 4, 7, 10, 1]
DEBUG:alist: [2, 3, 4, 7, 10, 1]
INFO:Sorted 1list : [2, 3, 4, 7, 10, 1]

Traceback (most recent call last):

[482]

Chapter 13

File "debug logging.py", line 17, in <module>
assert [1, 2, 3, 4, 7, 10] == bubble sort([3, 7, 10, 2, 4, 1])
AssertionError
After analyzing the output, we realize that the last element of the list is not

sorted. We analyze the code and discover an off-by-one error in line 7. Do
you see it? Let's fix it by changing the following line:

for passnum in reversed(range(len(alist) - 1)):

Change the preceding line to the following one:

for passnum in reversed(range(len(alist))):

Notice the removal of the -1 operation.

Run it again and you will see that it works as expected. The debug logs are
not displayed here:

$ python debug logging.py
INFO:Sorting the list: [3, 7, 10, 2, 4, 1]

INFO:Sorted list : [1, 2, 3, 4, 7, 10]

How it works...

Step 1 presents the script and shows that the code is faulty, as it's not sorting the list
properly.

The script already has some logs to show the start and end result, as well as some

debug logs that show each intermediate step. In step 2, we activate the display of the
DEBUG logs, as in step 1, only the INFO ones were shown.

Note that the logs are displayed by default in the standard error
output. This is displayed by default in the terminal. If you need to
‘ p, direct the logs somewhere else, such as a file, you can configure a
\/ different handler. See the logging configuration in Python for more
details: https://docs.python.org/3/howto/logging.
html.

Step 3 runs the script again, this time displaying extra information, showing that the
last element in the list is not sorted.

The bug is an off-by-one error, a very common kind of error, as it should iterate to
the whole size of the list. This is fixed in step 4.

[483]

https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/howto/logging.html

Debugging Techniques

, Check the code to understand why there's an error. The whole list
; 26N should be compared, but we made the mistake of reducing the size
by one.

Step 5 shows that the fixed script runs correctly.

There's more...

In this recipe, we have strategically located the debug logs beforehand, but that
may not be the case in a real-life debugging exercise. You may need to add more or
change the location as part of the bug investigation.

The biggest advantage of this technique is that we're able to see the flow of the
program, being able to inspect the output of one block of the code execution to the
next and make sense of the flow. The disadvantage is that we can end up with a wall
of text that doesn't provide specific information about our problem. You need to find
a balance between too much and too little information.

Be verbose if you have to, but to reduce clutter, try to avoid long and confusing logs.
Keep the text as short and as descriptive as possible. Keep each log concise, as you
can always create more logs if you have to.

Remember to turn down the logging level after fixing the bug. You may need to
delete some logs afterward as they won't be useful in the long term.

| The quick and dirty version of this technique is to add print
\@l statements instead of debug logs. While some people are resistant
- to this, it is a valuable technique to use for debugging purposes. But
- remember to clean them up when you're done.

All the introspection tools are available while generating logs, so you can create logs
that display, for example, all the results of a call to a dir (object) object:

logging.debug(f'object {dir(object)}")

Anything that can be displayed as a string can be presented in a log.

See also

* The Learning Python interpreter basics recipe, earlier in this chapter, to learn
the basics of Python introspection tools.

[484]

Chapter 13

* The Improving your debugging skills recipe, later in this chapter, to see a whole
example of debugging covering different problems.

Debugging with breakpoints

Python has a built-in debugger called pdb. Stopping the execution of the code at any
point is possible by setting a breakpoint. A breakpoint will jump into command-
line mode. From the command line, the current status can be analyzed. Given that
Python is interpreted, any new code can be executed from this stage. This is very
flexible and allows you to create flexible breakpoints and change the current state

to analyze the behavior of the program.

Let's see how to do it.

Getting ready

Download the debug_algorithm.py script, available from GitHub: https://
github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/
blob/master/Chapterl3/debug algorithm.py.

In the next section, we will analyze the execution of the code in detail. The code
checks whether numbers fulfil certain criteria:

def valid(candidate):
if candidate <= 1:
return False

lower = candidate - 1
while lower > 1:
if candidate / lower == candidate // lower:
return False
lower -=1
return True

assert not valid(1)
assert valid(3)
assert not valid(15)
assert not valid(18)
assert not valid(59)
assert valid(53)

[485]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter13/debug_algorithm.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter13/debug_algorithm.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter13/debug_algorithm.py

Debugging Techniques

It is possible that you recognize what the code is doing, but bear with me so that we
can analyze it interactively.

How to do it...

1. Run the code to see that all the assertions are valid:

$ python debug algorithm.py

2. Add breakpoint (), after the while statement, just before line 7, resulting
in the following;:

while lower > 1:
breakpoint ()
if candidate / lower == candidate // lower:
3. Execute the code again, and see that it stops at the breakpoint, entering into

the interactive pdb mode:
$ python debug algorithm.py
> .../debug algorithm.py(8)valid()
-> if candidate / lower == candidate // lower:

(Pdb)

4. Check the value of the candidate and the two operations. This line is
checking whether dividing candidate by lower is an integer (float and
integer division is the same):

(Pdb) candidate

3

(Pdb) candidate / lower
1.5

(Pdb) candidate // lower
1

5. Continue to the next instruction with n. Check that it ends the while loop
and returns True:

(Pdb) n

> ...debug algorithm.py(10)valid()
-> lower -=1

(Pdb) n

> ...debug algorithm.py(6)valid()
-> while lower > 1:

(Pdb) n

[486]

Chapter 13

> ...debug algorithm.py(12)valid()

-> return True

(Pdb) n

--Return—

> ...debug algorithm.py(12)valid() ->True

-> return True

6. Continue the execution until another breakpoint is found with c. Note that
this is the next call to valid (), which has 15 as an input:

(Pdb) c

> ...debug algorithm.py(8)valid()

-> if candidate / lower == candidate // lower:
(Pdb) candidate

15

(Pdb) lower

14

7. Continue running and inspecting the numbers until what the valid function
is doing makes sense. Are you able to find out what the code does? (If you
can't, don't worry and check the next section.) When you're done, exit with g.
This stops the execution:

(Pdb) q

bdb.BdbQuit

How it works...

The code is, as you probably know already, checking whether a number is a prime
number. It tries to divide the number by all integers lower than it. If, at any point, the
number is exactly divisible by any of them, it returns False, because it's not a prime
number.

This is actually a very inefficient way of checking for a prime
number, as it will take a very long time to deal with big numbers.
L It is fast enough for our teaching purposes, though. If you're
N\ interested in finding primes, you can take a look at math packages
£ such as SymPy (https://docs.sympy.org/latest/modules/
ntheory.html?highlight=prime#sympy.ntheory.
primetest.isprime).

[487]

https://docs.sympy.org/latest/modules/ntheory.html?highlight=prime#sympy.ntheory.primetest.isprime
https://docs.sympy.org/latest/modules/ntheory.html?highlight=prime#sympy.ntheory.primetest.isprime
https://docs.sympy.org/latest/modules/ntheory.html?highlight=prime#sympy.ntheory.primetest.isprime

Debugging Techniques

After checking the general execution in step 1, in step 2, we introduced a breakpoint
in the code.

When you execute the code in step 3, it will stop at the breakpoint position, entering
an interactive mode.

In the interactive mode, we can inspect the values of any variable, as well as perform
any kind of operation. As demonstrated in step 4, sometimes, a line of code can be
better analyzed by reproducing its parts.

The code can be inspected and regular operations can be executed in the command
line. The next line of code can be executed by calling n (next), as implemented in
step 5 several times, to see the flow of the code.

Step 6 shows how to resume the execution with the (continue) command, in order
to stop in the next breakpoint. All these operations can be iterated to see the flow and
values, and to understand what the code is doing at any point.

The execution can be stopped with g (quit), as demonstrated in step 7.

There's more...

To see all the available operations, you can call h(help) at any point.

You can check the surrounding code at any point using the 1 (1ist) command. For
example, in step 4:

(Pdb) 1
3 return False
4
5 lower = candidate - 1
6 while lower > 1:
7 breakpoint ()
8 -> if candidate / lower == candidate // lower:
9 return False
10 lower -=1
11
12 return True

The other two main debugger commands are s (step), which will execute the next step,
including entering a new call (as in stepping into), and (return), which will continue
the execution of the current function until it executes a return statement, and then
stops. Note that at the end of any Python function, there's an implicit return None.

[488]

Chapter 13

| You can set up (and disable) more breakpoints using the pdb
\@’ command (break). You need to specify the file and line for the
AR breakpoint, but it's actually more straightforward and less error-
- prone to just change the code and run it again.

You can overwrite variables as well as read them. Or create new variables. Or

make extra calls. Or anything else you can imagine. The full power of the Python
interpreter is at your service! Use it to check how something works or verify whether
something is happening.

L Avoid creating variables with names that are reserved for the
'@\' debugger, such as calling a list 1. It will make things confusing and

/7
= interfere with pdb commands, sometimes in non-obvious ways.

The breakpoint () function was introduced in Python 3.7 and is highly
recommended if you're using a compatible version. In previous versions, you need to
replace it with the following:

import pdb;
pdb.set_trace()

They work in exactly the same way. Note the two statements in the same line,
which is not recommended in Python in general, but it's a great way of keeping the
breakpoint in a single line.

/ Remember to remove any breakpoints once debugging is done!
\/;p; Especially when committing to a version control system such as
Git.

You can read more about the new breakpoint call in the official PEP at https://
www . python.org/dev/peps/pep-0553/.

The full pdb documentation can be found here: https://docs.python.org/3.7/
library/pdb.html#module-pdb. It includes all the debug commands.

See also

* The Learning Python interpreter basics recipe, earlier in this chapter, to learn
the basics of Python introspection tools.

* The Improving your debugging skills recipe, next in this chapter, to see an
example of debugging covering different problems.

[489]

https://www.python.org/dev/peps/pep-0553/
https://www.python.org/dev/peps/pep-0553/
https://docs.python.org/3.7/library/pdb.html#module-pdb
https://docs.python.org/3.7/library/pdb.html#module-pdb

Debugging Techniques

Improving your debugging skills

In this recipe, we will analyze and fix some bugs using a small script that replicates
a call to an external service. We will show different techniques to improve your
debugging skills.

The script will send some personal names to an internet server (httpbin.org, a
test site) to get them back, simulating its retrieval from an external server. It will
then split them into first and last names and prepare them to be sorted by surname.
Finally, it will sort them.

We used this test site previously in the Interacting with forms recipe,
, Chapter 3, Building Your First Web Scraping Application. Note that the
\/§p> URL https://httpbin.org/forms/post renders the form, but
internally calls the URL https://httpbin.org/post to send the
information. We only need to use the second URL for this recipe..

The script contains several bugs that we will detect and fix.

Getting ready

For this recipe, we will use the requests and parse modules and include them in
our virtual environment:

echo "requests==2.18. >> requirements.tx

$ ho " t 2.18.3" i ts.txt
echo "parse==1.8. >> requirements.tx

$ ho " 1.8.2" i ts.txt

$ pip install -r requirements.txt

The debug_skills.py script is available from GitHub: https://github.com/
PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/
master/Chapterl3/debug_skills.py. Note that it contains bugs that we will
fix as part of this recipe.

How to do it...

1. Run the script, which will generate an error:

$ python debug skills.py
Traceback (most recent call last):

File "debug skills.py", line 26, in <module>

raise Exception(f'Error accessing server: {result}')
Exception: Error accessing server: <Response [405]>

2. Analyze the status code. We get 405, which means that the method we sent
is not allowed. We inspect the code and realize that for the request on line
24, we used GET when we should have used poST (as described in the URL).
Replace the code with the following;:

[490]

http://httpbin.org
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter13/debug_skills.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter13/debug_skills.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter13/debug_skills.py

Chapter 13

ERROR Step 2. Using .get when it should be .post

(old) result = requests.get('http://httpbin.org/post’',
json=data)

result = requests.post('http://httpbin.org/post', json=data)

We keep the old buggy code commented with (old) for clarity of changes
that we made.

Run the code again, which will produce a different error:

$ python debug skills.py
Traceback (most recent call last):
File "debug skills solved.py", line 34, in <module>
first name, last name = full name.split()
ValueError: too many values to unpack (expected 2)

Insert a breakpoint in line 33, one preceding the error. Run it again and enter
debugging mode:

$ python debug skills solved.py

..debug skills.py(35)<module>()

-> first name, last name = full name.split()
(Pdb) n

> ...debug skills.py(36)<module>()

-> ready name = f'{last name}, {first name}'
(Pdb) c

> ...debug skills.py(34)<module>()

-> breakpoint ()

Running n does not produce an error, meaning that it's not the first value.
After a few runs on c, we realize that this is not the correct approach, as we
don't know what input is the one generating the error.

Instead, wrap the line with a try. . . except block and produce a breakpoint
at that point:

try:

first_name, last _name = full name.split()
except:

breakpoint()

We run the code again. This time, the code stops at the moment the data
produced an error:

$ python debug skills.py

> ...debug skills.py(38)<module>()

-> ready name = f'{last name}, {first name}'
(Pdb) full name

'John Paul Smith'

[491]

Debugging Techniques

7.

10.

11.

The cause is now clear; line 35 only allows us to split two words, but raises
an error if a middle name is added. After some testing, we settle into this line
to fix it:

ERROR Step 6 split only two words. Some names has middle
names

(old) first name, last name = full name.split()

first name, last name = full name.rsplit (maxsplit=1)

We run the script again. Be sure to remove breakpoint and the try. .
except block. This time, it generates a list of names! And they are sorted
alphabetically by surname. However, a few of the names look incorrect:

$ python debug skills solved.py

['Berg, Keagan', 'Cordova, Mai', 'Craig, Michael', 'Garc\\uOOeda,
Roc\\uOOedo', 'Mccabe, Fathima', "O'Carroll, S\\uOOe9amus", 'Pate,
Poppy-Mae', 'Rennie, Vivienne', 'Smith, John Paul', 'Smyth, John',
'Sullivan, Roman']

Who's called o' carroll, S\\u0Oe9amus?

To analyze this particular case but skip the rest, we must create an if
condition to break only for that name in line 33. Notice the in to avoid
having to be totally correct:

full_name = parse.search('"custname": "{name}"', raw_

result)['name']
if "O'Carroll” in full_name:
breakpoint()

Run the script once more. The breakpoint stops at the proper moment:
$ python debug skills.py

> debug skills.py(38)<module> ()

-> first name, last name = full name.rsplit (maxsplit=1)

(Pdb) full name

"s\\uO0O0e9amus O'Carroll"

Move upward in the code and check the different variables:
(Pdb) full name

"S\\u0OOe9amus O'Carroll"

(Pdb) raw result

'{"custname": "S\\uOOe9amus O\'Carroll"}'

(Pdb) result.json/()

{'args': {}, 'data': '{"custname": "S\\uOOe9amus O\'Carroll"}',
'files': {}, 'form': {}, 'headers': {'Accept': '*/*', 'Accept-

[492]

Chapter 13

Encoding': 'gzip, deflate', 'Connection': 'close', 'Content-
Length': '37', 'Content-Type': 'application/json', 'Host':
'httpbin.org', 'User-Agent': 'python-requests/2.18.3'}, 'json':
{'custname': "Séamus O'Carroll"}, ‘'origin': '89.100.17.159',
'url': 'http://httpbin.org/post'}

12. In the result.json() dictionary, there's actually a different field that seems
to be rendering the name properly, which is called 'json'. Let's look at it in
detail; we can see that it's a dictionary:

(Pdb) result.json() ['json']
{'custname': "Séamus O'Carroll"}
(Pdb) type(result.json() ['json'l])

<class 'dict'>

13. Now, we need to change the code. Instead of parsing the raw value in
'data', use the 'json' field directly from the result. This simplifies the code,
which is great!

ERROR Step 11l. Obtain the value from a raw value. Use
the decoded JSON instead

raw result = result.json() ['data']

Extract the name from the result

H H H H

full name = parse.search('"custname": "{name}"', raw result)
['name']
raw result = result.json() ['json']

full name = raw result['custname']

14. Run the code again. Remember to remove the breakpoint:

$ python debug skills.py

['Berg, Keagan', 'Cordova, Mai', 'Craig, Michael', 'Garcia,
Rocio', 'Mccabe, Fathima', "O'Carroll, Séamus", 'Pate, Poppy-Mae',
'Rennie, Vivienne', 'Smith, John Paul', 'Smyth, John', 'Sullivan,
Roman']

This time, it's all correct! You have successfully debugged the program!

How it works...

The structure of this recipe is divided into three different problems. Let's analyze it
in small blocks:
1. First error—Wrong call to the external service:

After showing the first error in step 1, we read the resulting error with care,
saying that the server is returning a 405 status code.

[493]

Debugging Techniques

This corresponds to a method not allowed error, indicating that our calling
method is not correct.

Inspect the following line:
result = requests.get('http://httpbin.org/post’, json=data)

This gives us the indication that we are sending a GET request to one URL
that accepts only POST requests, so we make the change in step 2.

Notice that no specific debug steps have been required to detect
L this error, only a careful reading of the error message and the code.
‘@ Remember to pay attention to error messages and logs. Often, this
is enough to discover the issue or at least a very important piece of
the puzzle.

4 \

o

We run the code in step 3 to find the next problem.

2. Second error—Wrong handling of middle names:

In step 3, we get an error of too many values to unpack. We can create a
breakpoint to analyze the data in step 4 at this point but discover that not
all the data produces this error. The analysis done in step 4 shows that it may
be very confusing to stop the execution when an error is not produced, thus
having to continue until it does. We know that the error is produced at this
point, but only for specific data.

As we know that the error is being produced at some point, we capture it in a
try..except block in step 5. When the exception is produced, we trigger the
breakpoint.

This causes the step 6 execution of the script to stop when full name is
'gohn Paul Smith'.This produces an error as the split expects two
elements, not three.

This is fixed in step 7, allowing everything except the last word to be part of
the first name, grouping any middle name(s) into the first element. This fits
our purpose for this program, to sort by last name.

Names are actually quite complex to handle. Check out this article
L if you want to be delighted by the vast numbers of incorrect
- /@\' assumptions one can make regarding names: https://www.
£ kalzumeus.com/2010/06/17/falsehoods-programmers-

believe-about-names/.

The following line does that with rsplit:

first _name, last _name = full name.rsplit(maxsplit=1)

[494]

https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/

Chapter 13

It divides the text by words, starting from the right and making a maximum
of one split, guaranteeing that only two elements, at most, will be returned.

for example. We may need to amend the code if the input data
changes.

B’ This may produce an error if a name with no surname is defined,
\”/

When the code is changed, step 8 runs the code again to discover the next
erTor.

Third error—Using an incorrect returned value by the external service:
Running the code in step 8 displays the list and does not produce any errors.

But, by examining the results, we can see that some names are incorrectly
processed.

We pick one example in step 9 and create a conditional breakpoint. We only
activate the breakpoint if the data fulfils the if condition.

The if condition, in this case, stops at any time the "O' Carroll™"

\/‘/ string appears, not having to make it stricter with an equal

statement. Be pragmatic about this code, as you'll need to remove it
after the bug is fixed anyway.

The code is run again in step 10. Once we've validated the data is as expected,
we work backward to find the root of the problem. Step 11 analyzes previous
values and the code up to that point, trying to find out what led to the
incorrect value.

We then discover that we used the wrong field of the server response. The
value in the json field is better for this task and it's already parsed for us.
Step 12 checks the value and sees how it should be used.

In step 13, we change the code to properly decode the JSON content using
the existing .json () method. Notice that the parse module is no longer
needed and that the code is cleaner using the json method.

This outcome, using already existing tools, is more common than it
L looks, especially when dealing with external interfaces. We may use
- /@\' it in a way that works, but maybe it's not the best. Take a little bit
g of time to read the documentation to keep an eye on improvements

and learn how to better use the tools.

Once this is fixed, the code is run again in step 14. Finally, the code is doing
what's expected, sorting the names alphabetically by surname. Notice that
the other name that contained strange characters is fixed as well.

[495]

Debugging Techniques

There's more...

The fixed script is available from GitHub: https://github.com/PacktPublishing/
Python-Automation-Cookbook-Second-Edition/blob/master/Chapterl3/
debug skills fixed.py. You can download it and see the differences.

There are other ways of creating conditional breakpoints. There's actually support
from the debugger to create breakpoints that stop, but only if some conditions are
met. When possible, I find it easier to work directly with code, as it is persistent
between runs and easier to remember and operate. You can check how to create it
in the Python pdb documentation: https://docs.python.org/3/library/pdb.
html#pdbcommand-break.

The kind of breakpoint that catches an exception, as shown in the first error, is a
demonstration of how making conditions in code is straightforward. Just be careful
to remove them afterward!

There are other debuggers available that have an increased set of features; for
example:

* ipdb (https://github.com/gotcha/ipdb): Adds tab completion and syntax
highlights.

* pudb (https://documen.tician.de/pudb/): Displays an old-style, semi-
graphical, text-based interface, in the style of early 90s tools that displays the
local scope variables automatically.

* web-pdb (https://pypi.org/project/web-pdb/): Opens a web server to
access a graphic interface with the debugger.

Read the preceding debuggers' documentation to learn how to install and run them.

| There are more debuggers available. A search on the Internet will

\@’ give you more options, including Python IDEs. In any case, be
- aware of adding dependencies. It is always good to be able to use
- the default debugger.

The new breakpoint commands allow us to change easily between debuggers using
the PYTHONBREAKPOINT environment variable; for example:

$ PYTHONBREAKPOINT=ipdb.set trace python my script.py

This starts ipdb on any breakpoint in the code. You can learn more about this in the
breakpoint () documentation, which can be found here: https://www.python.
org/dev/peps/pep-0553/#environment -variable.

[496]

https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter13/debug_skills_fixed.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter13/debug_skills_fixed.py
https://github.com/PacktPublishing/Python-Automation-Cookbook-Second-Edition/blob/master/Chapter13/debug_skills_fixed.py
https://docs.python.org/3/library/pdb.html#pdbcommand-break
https://docs.python.org/3/library/pdb.html#pdbcommand-break
https://github.com/gotcha/ipdb
https://documen.tician.de/pudb/
https://pypi.org/project/web-pdb/
https://www.python.org/dev/peps/pep-0553/#environment-variable
https://www.python.org/dev/peps/pep-0553/#environment-variable

Chapter 13

An important effect on this is to disable all breakpoints by setting

I
\@’ PYTHONBREAKPOINT=0, which is a great tool to ensure that code
N in production is never interrupted by a breakpoint () left by
- mistake.

The Python pdb documentation can be found here: https://docs.python.org/3/
library/pdb.html. The entire documentation regarding the parse module can

be found at https://github.com/rlchardjon3s/parse, while the whole
requests documentation can be found at https://requests.readthedocs.io/en/
master/.

See also

* The Learning Python interpreter basics recipe, earlier in this chapter, to learn
the basics of code introspection in Python.

* The Debugging with breakpoints recipe, from the previous section, to learn the
basics of setting up breakpoints.

[497]

https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/pdb.html
https://github.com/r1chardj0n3s/parse, while the whole requests
https://github.com/r1chardj0n3s/parse, while the whole requests
https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python
Machine
Learning

Sebastian Raschka

& Vahid Mirjalili Packt

Python Machine Learning - Third Edition
Sebastian Raschka, Vahid Mirjalili
ISBN: 978-1-78995-575-0

o Master the frameworks, models, and techniques that enable machines to 'learn’
from data
o Use scikit-learn for machine learning and TensorFlow for deep learning

e Apply machine learning to image classification, sentiment analysis, intelligent
web applications, and more

[499]

https://www.packtpub.com/data/python-machine-learning-third-edition

Other Books You May Enjoy

e Build and train neural networks, GANs, and other models
« Discover best practices for evaluating and tuning models
e Predict continuous target outcomes using regression analysis

« Dig deeper into textual and social media data using sentiment analysis

[500]

Other Books You May Enjoy

Pandas 1.x
Cookbook

Pandas 1.x Cookbook - Second Edition
Matt Harrison, Theodore Petrou
ISBN: 978-1-83921-310-6

e Master data exploration in pandas through dozens of practice problems
o Group, aggregate, transform, reshape, and filter data

e Merge data from different sources through pandas SQL-like operations
o Create visualizations via pandas hooks to matplotlib and seaborn

e Use pandas, time series functionality to perform powerful analyzes

« Import, clean, and prepare real-world datasets for machine learning

o Create workflows for processing big data that doesn't fit in memory

[501]

https://www.packtpub.com/programming/pandas-1-x-cookbook-second-edition

Other Books You May Enjoy

Leave a review - let other readers know
what you think

Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see

and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the

title that they have worked with Packt to create. It will only take a few minutes of your

time, but is valuable to other potential customers, our authors, and Packt. Thank you!

[502]

A

abstract string 28
aiohttp

reference link 110
annotations

adding 297-299
argparse

reference link 43
asynchronous programming

reference link 111
Awesome Python

URL 10

boilerplate 459
BotFather 347
breakpoints
reference link 489
used, for debugging 485-488
brew
URL 374
bubble sort algorithm
reference link 481
bugs 475
builtin filters
reference link 157
bytes/str dichotomy in Python 3
reference link 17

C

Calc 220
cell formats

working with 216-219
charts

Index

creating, in Excel spreadsheet 213-215
saving 307-309

chromedriver
URL 99

color picker
reference link 169

command-line arguments
adding 38-42

Comma Separated Values (CSV) 124

configparser module documentation
reference link 51

constant 53

cron job
setting up 53-56
working 57

cron job, in Unix/Linux
advantages 53
disadvantages 54

Cross-Site Request Forgery (CSRF)
reference link 98

cryptography 364

CSV files
reading 124, 126
updating 200-202

CSV module documentation
reference link 127, 200

CSV spreadsheet
aggregate results 245-249
currency, appending based on

location 235-239

data, processing in parallel 252-257
data, processing with Pandas 259-263
date format, standardizing 240-243
preparing 230-234
writing 198, 199

custom machine learning model
creating, for text classification 419-429

[503]

D

data
extracting, from structured strings 19-21
data center (DC) 326
DataFrame 262
debugging
about 475
through logging 481-483
with breakpoints 485-488
debugging, skills
improving 490-495
Decimal, Degrees (DD) 137
Decimal type, Python
reference link 378
declarative 265
default text editor, setting in Linux
reference link 57
Degrees, Decimal, Minutes (DDM) 137
Degrees, Minutes, Seconds (DMS) 137
Delorean module documentation
reference link 245, 385
dependency mocking
used, for performing tests 443-447
dialects 126
Dillinger
URL 161
directories
crawling 114-116
searching 114-116
documents
scanning, for keyword 147-149

E

email
notifications, sending via 329-333
reading 321-323
email newsletter
subscribers, adding 325-328
email notifications
sending 65-68
Email Regex
URL 31
email templates
working with 312-315
encodings
dealing with 120-122

reference link 122
errors
capturing 59-63
escaping 14
Excel spreadsheet
cell formats, working with 216-219
charts, creating 213-215
new sheets, creating 209-211
reading 203, 204
updating 206-208
Exchangeable Image File (EXIF) 133
ExchangeRate-API
URL 239
exif metadata
reference link 133
external code
testing 439-441

F

feedparser module documentation
URL 88
feeds
subscribing 86-88
file metadata
reading 130, 131
Fiona documentation
reference link 296
formatted values
used, for creating strings 11-14
formatter_class argument
reference link 58
forms
interacting with 93-98
FPDF documentation
reference link 182
freezegun documentation
reference link 458

G

get current axes (gca) 295
Google Cloud Natural Language
used, for analyzing text 411-417
Google Cloud Vision
used, for analyzing images 389-401
used, for extracting text from
images 403-408

[504]

graphs
combining 302-306

H

hashing 363
Heroku
URL 339
HTML
parsing 75-78
HTTP call mocking
used, for performing tests 450-456
HTTP status codes
structure 74
URL 74

images
analyzing, with Google Cloud Vision 389-401
reading 132-137
text, extracting with Google Cloud
Vision 403-408
image_text_box.py
reference link 410
include_macro.py
reference link 222
individual email
sending 316-320
integration test 434
introspection 478
ipdb
URL 496

J

Jinja2 documentation
reference link 158
JSON
URL 89
JSONPIlaceholder
URL 90

Jupyter
URL 265

L

labels 389
language agnostic 89
legends

adding 297-299
LibreOffice

macro, creating 220-226

URL 221, 226
line terminator 200
log files

reading 127, 129
Lorem Ipsum text

URL 139

macro
creating, in LibreOffice 220-226
MailChimp
about 329
URL 325, 329
Mailgun
URL 329
Mailgun documentation
reference link 334
maps
visualizing 290-294
Markdown
text, formatting 159, 160
Markdown syntax
reference link 161, 315
matplotlib
URL 272
matplotlib, annotations
reference link 302
matplotlib, colors
reference link 288
Microsoft (MS) Office 162
Mistune
reference link 161
mocks 443
movies.ods
reference link 222
multiple lines
displaying 280, 282

[505]

notifications
sending, to customer 366-371
sending, via email 329-333

0

openpyxl
reference link 378
openpyxl documentation
reference link 206
opportunities
detecting 356-359
Optical Character Recognition
(OCR) 137,403
os.path
reference link 117

P

Pandas
used, for processing data in CSV
spreadsheet 259-263
Pandas documentation
reference link 266
parse documentation
reference link 378
parse module
reference link 23, 497
using 23, 25
working 25

parse module, format-specification

reference link 27
password-protected pages
accessing 103, 104
pathlib module
reference link 117
pdb 485
pdb documentation
reference link 489
Portable Document Format (PDF)
about 139
encrypting 190-194
structuring 182-187
watermarking 190-194
PDF document
writing 179-181

PDF files
reading 139-141
PDF reports
aggregating 188-190
pdftooppm
reference link 142
personalized coupon codes
creating 360-365
pictures
adding, to Word documents 175-178
pie charts
plotting 277,278
pikepdf
reference link 142
Pillow documentation
reference link 137, 195
Poetry tool 7
pprint documentation
reference link 480
print debugging 481
problems
capturing 59-63
pudb
URL 496
PyPDF2 documentation
reference link 190
pytest documentation
reference link 439
pytest library
used, for executing test cases 435-437
used, for writing test cases 435-437
Python, assert commands
reference link 366
Python, built-in functions documentation
reference link 480
Python documentation
reference link 258
references 65
Python Imaging Library (PIL) 133
Python interpreter 477-479
Python Package Index
URL 8
Python Selenium documentation
reference link 102

Q

quantifier 31

[506]

R SMS messages
producing 334-338

regex101 smtplib documentation
URL 32 reference link 321
regex denial-of-service attack 33 somesite
regexes 28 URL 79
regexes, usage stacked bars
input data, validating 28 drawing 272-274
scrapping 28 stack trace 64
string, parsing 28 standard output (stdout) 58
words replacement 28 strings
regular expression operations creating, with formatted values 11-14
reference link 38 manipulating 14-17
regular expressions reference link 17
about 28-34 structure
working 30-36 generating, in Word documents 169-174
reports structured strings
creating, in plain text 152, 153 data, extracting from 19-21
templates, using for 155-157 subscribers
requests-futures adding, to email newsletter 325-328
reference link 110 supervised training 388
responses library 456 system test 434
RESTful 89
RFC3339 T
URL 250
RGB colors tasks
reference link 271 preparing 46-50
RSS feeds Telegram bot
reference links 357 creating 347-351
reference link 353
S telepot module documentation
reference link 353
sales graph templates
plotting 268-270 using, for reports 155-157
sales information test cases
preparing 373-378 executing, with pytest library 435-437
sales report writing, with pytest library 435-437
generating 379-384 testing scenarios
scatter plot preparing 458-464
drawing 286-288 tests
Selenium performing, with dependency
using, for interactions 99-101 mocking 442-447
working 102 performing, with HTTP call mocking 450-456
shop.zip file 420 running, selectively 466-472
Simple Mail Transfer Protocol (SMTP) 316 text
SMS analyzing, with Google Cloud Natural
receiving 339-345 Language 411-417

formatting, in Markdown 159, 160

[507]

text_analysis_categories.py script
reference link 417
text classification
custom machine learning model, creating for
419-429
text files
reading 117-119
textwrap module documentation
reference link 18
third-party packages
installing 8-10
Twilio
URL 335
Twilio documentation
reference link 339

U

unit test 434
urllib.parse documentation
reference link 456

Vv

Vim
reference link 56
virtual environment
activating 2-4
working 5
virtualenvwrapper module documentation
reference link 7

W

web
crawling 79-84
web APIs
accessing 89-92
web pages
downloading 72-74
web-pdb
URL 496
web scraping
speeding up 106-110
Wolf fence algorithm 476
Word documents
pictures, adding 175-178
reading 143-146

structure, generating 169-174

styling 165-167

writing 162, 164
write_zipfile 462

X

XMP
reference link 134

Y

YAML files
reference link 51
yield 464

[508]

