

 ENG/ OSAMA ADEL WWW.OneOsama.com

Before starting to learn through this book, you must download

the Python language from the official site and download any editor
to write codes or use the official python language editor.

python language editor.

Print Function:

Print different values

print(33) print(77.99)
print(True)
print(False)
print("Hello")
print('Hello')
print("Hello 'Amr'")
print('Hello "Amr"')
print(None)

 one print:

 Multiple print in

bulk

print("Hi" , 'Ok' , 7 , True , 5.5)

Exit Function

Exit the program and not complete the post-exit

That was the following

print('Hello 1')
print('Hello 2')
exit()
print('Hello 3')

 Implementation

Executing more than one line; For insulation

Executing more than one code using

That was the following

print('Ok 1'); print('Ok 2'); print('Ok 3')
Implementation

Combine texts with the + symbol

Between texts Merge and paste text with +

That was the following

print("Hello" + " " + "Ahmed")
print("Hello" + ' ' + 'Adel')
print('Hello' + ' ' + 'Amr')
print('My' + " " + 'name is ' + '"' + "Ali" + '"')

Implementation

Mathematical transactions

Use addition, subtraction, multiplication, and division

That was the following and the rest of the division Code

print(7+3)
print(7-3)
print(7*3)
print(7/3)

print(7%3)

Implementation

// fraction can be removed with division using // can

Here it is

Calculating mathematical exponent using **

Code

 print(7//3)
print(5**3)
Implementation

 Variables Define two variables and group them into a
third variable

 That was the following

num1 = 7

num2 = 3

result = num1 + num2

print(result)
Implementation

Distance Hello Variable and then combine it with the word

That was the following

name = 'Ahmed'
say_hello = 'Hello ' + name
print(say_hello)

 Implementation

 Respectively, then give them the values Define variables
on

That was the following

name1, name2, name3 = 'Ahmed', 'Adel', 'Amr'
print(name1 + ' ' + name2 + ' ' + name3)
Implementation

 Also respectively Code

num, name, salary, is_active = 1, 'Ali', 4500.66, True print(num)

print(name)
print(salary)
print(is_active)

Implementation

 The variable contains only one value Here it is

name = 'Adel'
print(name)
name = 'Ahmed'

name = 'Amr'
print(name)

 Implementation

 Type Function Print data type – type Show data type for
each variable using

 That was the
following

var1 = 733
var2 = 99.55
var3 = True
var4 = 'Hello'
var5 = "Hi"
print(type(var1))
print(type(var2))
print(type(var3))
print(type(var4))
print(type(var5))

Implementation

Multiline text variable Define a text variable with text lines

printed as it is

 That was the
following

my_str = """

Welcome to Hassouna Academy
Windows
Programming
Development

Create Account On www.hassouna-academy.com
"""
print(my_str)

 Implementation

Code

 my_str = '''
Welcome to Hassouna Academy

I love Python
Now Create Account On www.hassouna-academy.com
'''
print(my_str)

Implementation

Repetitive text with symbol *

Use the multiplication operator * to repeat text with a certain
number

 That was the following

print('A ' * 5)
name = ' AMR '
print(name * 3)

Implementation

Strings Using strings or what is known as strings

That was the following

What each one does is explained Escape Sequence

Escape Include them when printing with every code

Code

str1 = '\n'
str2 = '\N{copyright sign}'
str3 = '\N{registered sign}'
str4 = '\N{up down arrow}'
str5 = '\N{left right arrow}'
str6 = '\x41'
str7 = '\u0042'
str8 = '\U00000043'

print('This For New Line' , str1 , 'OK') print(str2, str3, str4,str5)
print(str6, str7, str8)

Upon execution to hear the beep DOS Using the

That was the following in the code Which is \ a

Beep

Code

str1 = 'Hello \'Ahmed\''
str2 = "Hello \"Adel\""
str3 = 'Hello \\Amr\\'
str4 = '\fFormfeed is\N{FF}'
str5 = '\nLinefeed is\N{LF}'
str6 = 'Welcome to Egypt\rCarriage Return or \N{CR}' str7 = '\aIs Beep
Or \N{BEL}'
str8 = 'Rad Cat\br\b\b\b\b\N{BS}\be'
str9 = 'Hello\t\N{TAB}World'
str10 = 'Vertical\v\N{VT}Tab'
str11 = 'Three Digits Octal:\101'

print(str1, '\N{LF}', str2, '\n', str3) print(str4)
print(str5)
print(str6)
print(str7)
print(str8)
print(str9)
print(str10)
print(str11)

input('Press Enter To Exit')

 Non-changeable values Tuple The variable It has values
and Appeal to them tuple Use a variable

 That was the
following

p1 = (1,'Ahmed',3900.50)
p2 = (2,'Adel',4600.60)
p3 = (3,'Amr',4500.55)

print(p1); print(p2); print(p3)
print(p1[0], p1[1], p1[2])

print(type(p1))

print(type(p1[0]), type(p1[1]), type(p1[2]))

Implementation

Changeable values List the existing variable list with values and
appeal list use a variable

That was the following

Index on it with the number

Code

numbers = [11,22,33]
names = ['Amr','Ali','Ezz']

print(numbers); print(names)
print(numbers[0])
print(numbers[1])
print(numbers[2])
names[0] = 'Akl'
print(names)

Implementation

 Code

 person = [1,'Ahmed',3500.55,True]
print(person)

 Implementation

To put value and use append utilization

That was the following

To delete a value remove single payment and use values

To put extend copy to put a value in a specific place and use

Insert and use to delete the values clear to copy values and use

Code

names = ['Amr','Ali','Ezz']
print(names)
names.append('Omar')
print(names)

names.extend(['Adel','Akl'])
print(names)
names.remove(names[1])
print(names)
names.insert(1,'Ali')

 print(names)

names2 = names.copy()

names.clear()

print(names)
print(names2)

 Nested row variable branches off from it tuples do a
variable loaded with a dash inside

family1 = ('Ahmed','Adel','Amr')

family2 = ('Sarah','Hajer','Rehab')
family3 = ('Tawfeek','Ezzat','Foaad')

family4 = ('Hasan','Shokry','Ali','Akl')

home1 = (family1 , family2)

home2 = (family3 , family4)

print(home1[0][1]) print(home1[1][0])

print(home2[0][2])

 print(home2[1][3])
print(home1[0])

print(home2[1])

print(home1) 17
print(home2)

 Variable nested lists Branch off from it lists do a variable
loaded with a dash inside

 That was the
following

family1 = ['Ahmed','Adel','Amr']
family2 = ['Ehab','Mahmoud','Ezz']

family3 = ['Sarah','Hajer','Rehab']

family4 = ['Tawfeek','Ezzat','Foaad'] family5 =
['Abdelrahman','Abdelkareem'] family6 = ['Hasan','Shokry','Ali','Akl']

home1 = [family1 , family2 , family3]

home2 = [family4 , family5 , family6]

print(home1[0][1])
print(home1[1][0])

print(home2[0][2])

print(home2[2][3])
print(home1[0])
print(home2[1])
del(home1[1])

del(home2[1])
print(home1)

print(home2) 18

The dictionary variable use variables of special type which is

That was the following

Value and value key as each value holds a key dictionary the

values are called using the keys

Code

person1 = {'name':'Amr', 'salary':5000, 'active':True} person2 = {'name':'Ali', 'salary':4000,
'active':True} person3 = {'name':'Ezz', 'salary':3000, 'active':True}

print(person1['name'], person1['salary'], person1['active']) print(person2['name'],
person2['salary'], person2['active']) print(person3['name'], person3['salary'], person3['active']
)

Implementation

 Show keys and values that was the following

person = {'name':'Amr', 'salary':5000, 'active':True} print(
person.keys())
print(person.values())

 Implementation

 List Keys and values can be made up of Here it is

person = {'name':'Amr', 'salary':5000, 'active':True} print(list(
person.keys()))
print(list(person.values()))

 Implementation

 Shows each key next to it items utilization That was the
following

 Its value, and can be made a list

person = { 'name':'Adel', 'city':'Giza', 'salary':3000 } print(
person.items())
Implementation

 Code

 person = { 'name':'Adel', 'city':'Giza',
'salary':3000 } print(list(person.items()))

Implementation

 Compound variable using set empty without values set
utilization

 That was the following

names = set()

print(names)
Implementation

Set Put a list inside that was the following

L1 = ['Ahmed','Adel','Omar']
names = set(L1)
print(names)

Implementation

Update create a new list with that was the following

L1 = ['Ahmed','Adel','Omar']
L2 = ['Amr','Ali','Ezz']
names = set(L1)
names.update(L2)
print(names)

 Implementation

 To add value add utilization

That was the following

L1 = ['Amr','Ali']
names = set(L1)
names.add('Ezz')
names.add('Yaser')
print(names)

Implementation

 Repeat values, then repetition is not accepted

That was the following

names = set()
names.add('Ahmed')
names.add('Ahmed')
names.add('Ahmed')
print(names)

Implementation

To delete a value, if only the value remove utilization

That was the following

To be deleted is not present, the program will generate an error

L1 = ['Amr','Ali']
names = set(L1)
names.add('Ezz')
names.add('Yaser')
names.remove('Ali')
print(names)

 Implementation

To delete a value, if only the value discard Utilization

That was the following

The target to be deleted is not found, the program will not generate
an error Code

L1 = ['Amr','Ali']
names = set(L1)
names.add('Ezz')
names.add('Yaser')
names.discard('Ali')
print(names)

Implementation

Below, pop was used to delete the last value, without regard

The arrangement, as the arrangement is not fixed

Code

L1 = ['Amr','Ali']
names = set(L1)
names.add('Ezz')
names.add('Yaser')
names.pop() #Remove the last item without sort
print(names)

 Implementation

 To delete all values clear Utilization That was the
following

L1 = ['Amr','Ali']
names = set(L1)
names.add('Ezz')
names.add('Yaser')
names.clear() #Remove all items
print(names)

 Implementation

 To make a union Utilization That
was the following

names1 = set(['Adel','Omar','Atef'])

names2 = set(['Amr','Ali','Ezz'])

all_names = names1.union(names2)

print(all_names)

 Implementation

To make a union, and note that repetition use union

That was the following

Code

 names1 = set(['Adel','Omar','Atef','Amr'])

 names2 = set(['Amr','Ali','Omar','Ezz','Adel'])

 all_names = names1.union(names2)

 print(all_names)

Implementation

To assemble the subscriber intersection utilization

That was the following

Among them is the code

names1 = set(['Adel','Omar','Atef','Amr']) names2 =
set(['Amr','Ali','Omar','Ezz','Adel'])
all_names = names1.intersection(names2)
print(all_names)
Implementation

For a different assembly difference utilization

That was the following

names1 = set(['Adel','Omar','Atef','Amr'])
names2 = set(['Amr','Ali','Omar','Ezz','Adel'])

all_names1 = names1.difference(names2)
all_names2 = names2.difference(names1)
print(all_names1)

print(all_names2)

 Implementation

 Using in things search in find the character within the

text

That was the following

name = 'Ahmed Hassouna'
print('H' in name)

 Implementation

 Search for the item inside the list that was the following

names = ['Amr','Ali','Ezz']
print('Amr' in names)
Implementation

Search for the item within the group

That was the following

names = {'Amr','Ali','Ezz'}
print('Amr' in names)

 Implementation

 Search for the item inside the class

That was the following

names = ('Amr','Ali','Ezz')
print('Amr' in names)

 Implementation

Set Search for the item inside the

 That was the following

names = set(['Amr','Ali','Ezz'])
print('Amr' in names)

 Implementation

 Search for a number in the text within the text

That was the following

 my_dept = 'Department 3'

 print('3' in my_dept)
Implementation

 Del Function things delete a variable, in the same way
anything can be deleted

 That was the
following

name = 'Amr'
print(name)
del name

 Implementation

Code

names = ['Amr','Ali','Ezz']
print(names)
del(names[2])
print(names)

Implementation

 Len function number of things the process of
counting the letters

of the text and knowing the number of elements

name1 = 'Ahmed'
name2 = 'Adel'
name3 = 'Amr'

names1 = ('Ahmed','Adel','Amr')
names2 = ['Sarah','Hajer','Rehab','Heba']

length_name1 = len(name1) length_name2 = len(name2) length_name3
= len(name3)

length_names1 = len(names1) length_names2 = len(names2)

print('length_name1 :', length_name1, 'Characters') print(
'length_name2 :', length_name2, 'Characters') print('length_name3 :',
length_name3, 'Characters')

 print('length_names1 :', length_names1, 'Items') print(
'length_names1 :', length_names2, 'Items')
Implementation

Comments are not implemented with the code make comments

as notes and do not implement with the code

That was the following

#This Words Not Run, But Comment
name = 'Ahmed' #This is my name
print(name) #Print name in here
#The Hash Symbol For One Line Comment
#Can be multiline using # in each first line '''
And Can be multiline using triple single quote In First Paragraph
And In Last Paragraph
'''
"""
And Can be multiline using triple double quote In First Paragraph
And In Last Paragraph
"""

Implementation

 30

Allocation factors the addition

Use = operator and allocation coefficients

That was the following

Like the parameter + = i.e. make the variable the same and

increase it, or the parameter / =

That is, make the variable the same and divide it, and so on

Code

 Implementation

Here, the assignment parameter + = was used with the text, so that

Preserves the existing text and then increases it

num = 5; print(num)
num += 6; print(num)
num -= 4; print(num)
num *= 2; print(num)
num **= 2; print(num)
num /= 3; print(num)
num //= 3; print(num)
num %= 12; print(num)

my_str = ""
my_str += "Hello"
my_str += " "
my_str += "Ahmed"
print(my_str)

Implementation

 For several variables allocate one value

That was the following

num1 = num2 = num3 = 7
print(num1)
print(num2)
print(num3)

 Implementation

 Str function convert from number to text -until str
convert the

number to text using the function

That was the following

We can combine it with another text

num = 99
print('My number is: ' + str(num))

 Implementation

 int, float functions convert from text to number do an int
integer

conversion and float fraction number

num_1 = '77'
num_2 = '77.33'
num1 = int(num_1)
num2 = float(num_2)
print(num1 , type(num1))
print(num2 , type(num2))

 Bool The function convert from number to boolean
converting

valid values to logical values

That was the following

num1 = 1
num2 = 0
bool1 = bool(num1)
bool2 = bool(num2)
print(bool1 , type(bool1))
print(bool2 , type(bool2))

Implementation

Ord Function ASCII convert letter to ord the character in a function
ascii arrive to

That was the following

c = 'A'
i = ord(c)
print(i)

 Implementation

 Chr the function for a letter ASCII convert
the chr by function

ascii get to the letter by putting

That was the following

i = 65
c = chr(i)
print(c)

 Implementation

Range Function span variable to make a quick and fix list

range utilization

That was the following

The end of the number that does not reach it

r = range(5)
print(r[0], r[1], r[2], r[3], r[4])

 Implementation

 Code

 r = range(7)
print(r[0], r[1], r[2], r[3], r[4], r[5], r[6])

 Implementation

 The end he never reaches Determine the start then What
follows

 has been done

 r = range(1 , 8)
print(r[0], r[1], r[2], r[3], r[4], r[5], r[6])

 Implementation

That the next step was used and determined, whether positive or
negative

 r = range(1,11 , 2)
print(r[0], r[1], r[2], r[3], r[4])
Implementation

 Code

 r = range(2,21 , 3)
print(r[0], r[1], r[2], r[3], r[4], r[5], r[6])

 Implementation

The character of the character ascii for Ord utilization

What follows has been done ascii for the character from chr

Code

r = range(ord('A'), ord('Z')+1)
chr(r[0]), print(chr(r[1]), chr(r[2]), chr(r[3]),
chr(r[4]), chr(r[5]))

Implementation

r = range(6, 1, -1)
print(r[0], r[1], r[2], r[3], r[4])
Implementation

 Code

 r = range(5, 0, -1)
print(r[0], r[1], r[2], r[3], r[4])

 Implementation

 Code

 r = range(10, 0, -2)
print(r[0], r[1], r[2], r[3], r[4])
Implementation

Input Function Receipt from the user in the following, the program
waits for you to enter a value in the input function and

notice even if you enter a number

This value is textual

 name =
input("Enter your name:")
print('Hello ' + name)

 Code

 name = input('Enter any name:')
print(type(name))

 Implementation 1

 Implementation 2

 To be amenable int text number conversion using what
follows

has been done to perform mathematical operations

The code

num1 = int(input('Enter number 1:'))
num2 = int(input('Enter number 2:'))
result = num1 + num2
print(result)

Randint and function import import and random -below is the
randomly drawn module that will be imported modules, and that

function and so on for the rest of the import With the word to her
max and the min Produces a random number as specified by the
randint

 The code

import random
num = random.randint(1,10); print(num)
num = random.randint(1,10); print(num)

num = random.randint(1,10); print(num)
num = random.randint(1,10); print(num)
num = random.randint(1,10); print(num)

Implementation 1

 Implementation 2

 The code

from random import randint
num = randint(10,20); print(num)
num = randint(20,30); print(num)
num = randint(30,40); print(num)
num = randint(40,50); print(num)
num = randint(50,60); print(num)
num = randint(60,70); print(num)

 Implementation

 and, or, not with words Boolean operators
true unless all of its parties True do not return and that False unless
all of its parties

False or do not return

 bool1 =

True and True; print('true AND true =',bool1)

print('false AND true =',bool2)

print('true AND false

print('false AND false =',bool4)

bool2 = False and True; bool3 = True and False;

 bool4 = False and False;

bool5 = True and True and False and True; print('T&T&F&T =',bool5) bool6 = True and True and True and True;

print('T&T&T&T =',bool6) print('==============')

print('true OR true =',bool7)

bool7 = True or True;
bool8 = False or True;

bool10 = False or False;
print('false OR true =',bool8) print('true OR false =',bool9)

print('false OR false =',bool10)
bool11 = False or False or False or False; print('F|F|F|F =',bool11)

bool12 = False or False or True or False; print('F|F|T|F =',bool12) bool13 = True or True or True or True; print('T|T|T|T
=',bool13) print('==============')

bool14 = not True; print('NOT true =',bool14)

 Implementation

 Comparison factors use of comparison factors
to test a specific condition what follows has been done

x , y = 7 , 9
b1 = x>y; print(b1) b2 = x<y; print(b2) b3 = x>=y; print(b3) b4 = x<=y;
print(b4) b5 = x==y; print(b5) b6 = x!=y; print(b6)

Implementation

Transformations of numerical systems transfer between numerical
systems in more than one way what follows has been done

num_d = 255
num_h = 0xff
num_o = 0o377
num_b = 0b11111111
print('Hexadecimal :', hex(num_d)) print('Octal :', oct(num_d))
print('Binary :', bin(num_d)) print('Decimal from h:', int(num_h))
print('Decimal from o:', int(num_o)) print('Decimal from b:',
int(num_b))

 The code

num_d = 255
num_h = 0xff
num_o = 0o377

num_b = 0b11111111 :', format(num_d,'x')) print('Hexadecimal

print('Octal :', format(num_d,'o')) print('Binary :',
print('Decimal from h:',
print('Decimal from o:',
print('Decimal from b:',
format(num_d,'b')) format(num_h,'d')) format(num_o,'d'))
format(num_b,'d'))

Implementation

 The code

print(int('11111111',2))
print(int('377',8))
print(int('255',10))
print(int('ff',16))

Chopping text chopping the text with ease as if we are dealing

with what follows has been done just and we define what we

want for it with the range between the two points:

Code List

my = 'Welcome to Hassouna Academy'
print(my[0], my[1], my[2], my[3], my[4], my[5], my[6]) print(my[:7])
print(my[0:7])
print(my[11:])
print(my[:-len(my)+7])
print(my[11:len(my)])

Implementation

 To separate text into a list split use the
function what follows

has been done

str_names = 'Ahmed;Adel;Amr;Ali;Omar;Haitham'
list_names = str_names.split(';')
print(str_names)
print(list_names)

 Implementation

 Connect the text list connect text content, whether text or

what follows has been done

str1 = 'Hello'
str2 = '-'.join(str1)
print(str1)
print(str2)

 Implementation

 The code

list_names = ['Amr','Ali','Ezz']
str_names = ';'.join(list_names)

print(list_names)
print(str_names)

 Implementation

list_names = ['Amr','Ali','Ezz','Ehab']
str_names = '\n'.join(list_names)
print(list_names)
print(str_names)

 Implementation

 Text formatting for text formatting use of emoticons
what follows has been done

name = 'Amr'
my = 'Hello %s' % name
print(my)

 Implementation

 The code

num1 = 7
num2 = 9
my = '%d + %d = %d' %(num1, num2, num1+num2)
print(my)

Implementation

 my = '65 is ASCII for %c' % 'A'
print(my)

 Implementation

The code

 my = 'Character
%c'
my += '\nString %s'

my += '\nDecimal %d'
my += '\nInteger %i'
my += '\nexponent %e'
my += '\nExponent %E'
my += '\nFloat %f'

my += '\nFloat %0.2f'

 my +=
'\nNumber %g,%g'

% 'A'
% 'Hi'
% 55.99
% 77
% 33
% 33

 % 99.77
my += '\nHexadecimal %x' % 65

 print(my)

Use another type of initialization, where it is written What

follows has been done Names are enclosed in brackets {} in the

text and then specify any values for them to be displayed

We also wish, thanks to God

The code

name = 'Ahmed'
say_hello = 'Hello {my}'

my_format = say_hello.format(my=name)
print(my_format)
Implementation

 The code

 my_format = '{n1} + {n2} =
{r}'.format(n1=7, n2=3, r=7+3) print(my_format)

ABC uppercase and lowercase transformations, lower and upper

Text conversion what follows has been done

The code

str1 = 'HELLO'
str2 = 'welcome'
print(str1.lower())
print(str2.upper())

 Implementation

 Text check to find out whether it is uppercase or text

verification what follows has been done

Small numbers, letters, spaces, etc., and notice that

If it is, the result is true verify is yes, the result is false

49

print('HELLO'.isupper())
print('hello'.islower())
print('HEllo'.isalpha())
print('ABC45'.isalnum())
print('12345'.isdigit())

print(' '.isspace())
print('1 AB@'.isprintable())
print('==========')
print('HeLLO'.isupper())
print('hEllo'.islower())
print('HE7lo'.isalpha())
print('AB@45'.isalnum())
print('12A45'.isdigit())
print(' . '.isspace())
print('\n'.isprintable())

 Implementation

 Text search keyword by search index arrive to what
follows has been done

my = 'Hello Amr and Welcome Back Amr'
indexFind1 = my.find('amr')
indexFind2 = my.find('Amr')
print(indexFind1)
print(indexFind2)

 Implementation

 The code

my = 'Hello Amr and Welcome Back Amr'
i = my.find('Welcome')
print(my[i:])

 Implementation

 Text replacement replace text with other text
what follows has been done

 The code

my1 = 'Hello Amr and Welcome Back Amr'
my2 = my1.replace('Amr','Adel')
print(my1)
print(my2)

 Implementation

Decision making - the if statement the implementation of the

code depends on a specific condition, if it is the result what follows
has been done not implemented false runs and if b

True the condition

 x = 5
if x==5: print('OK')

 Implementation

 The code

 x = 7
if x>5:print('OK1');print('OK2');print('OK3')

 Implementation

x = 7
if x<=7:

print('OK1')
print('OK2')
print('OK3')

Implementation

 The code

 num = int(input('Enter any
number:'))

if num<0:
print('Negative Number')
else:
print('Positive Number')
Implementation 1

 Implementation 2

degree = int(input('Enter student degree:'))

if degree<0 or degree>100:
print('Degree Error')

elif degree<50:
print('F')
elif degree<60:
print('E')
elif degree<70:
print('D')
elif degree<80:
print('C')
elif degree<90:
print('B')
else:
print('A')

 Implementation 1

Implementation 2

 Implementation 3

 Implementation 5

 Implementation 6

 Triple Conditional Expression operator if on one line for
the shortcut utilization what follows has been done

The code

 num1 = int(input('Enter Number 1:
'))
num2 = int(input('Enter Number 2: '))

str_big = 'Number 1' if num1>num2 else 'Number 2'
print(str_big)

Implementation 1

For Sentence loops of iteration in the following, iteration loops

were used to use code duplication and perform multiple operations
with few lines of code to save time and effort

The code

 for x in (1,2,3,4,5): print(x)

 Implementation

 The code

 for x in [10,20,30,40,50]:
print(x)
Implementation

 The code

 for x in range(2,11 , 2):
print(x)

 Implementation

 The code

 for x in range(1,6):
if x != 4:
print(x)

 Implementation

 The code

 for x in range(5, 0, -1):
print(x)

 The code

alpha = ''
for x in range(ord('A'), ord('Z')+1):
alpha += chr(x)
if x<ord('Z'): alpha += ', '

print(alpha)

 Implementation

 The code

alpha = ''
for x in range(ord('Z'), ord('A')-1, -1):
alpha += chr(x)
if x>ord('A'): alpha += ', '

print(alpha)

 The code

 names =
['Ahmed','Adel','Amr','Omar','Ali']
for x in range(len(names)):
print('Hello ' + names[x])

 Implementation

 The code

 names =
['Ahmed','Adel','Amr','Omar','Ali']
for name in names:

 print('Hello ' + name)
Implementation

 The code

 my_list = [3, 'A', True, 5.7]
for v in my_list:
print(v , type(v))

 Implementation

 The code

 emp = { 'name':'Adel', 'city':'Giza',
'salary':3000 } for x in emp:
print(x)

 Implementation

 emp = { 'name':'Adel',
'city':'Giza', 'salary':3000 } for x in emp:
print(emp[x])

 Implementation

 The code

 emp = { 'name':'Ahmed',
'city':'Giza', 'salary':3000 } for k,v in emp.items():
print(str(k) + ':' , v)

 Implementation

 Loop nested

Use overlapping redundancy that needs a pinnacle what follows has
been done focus and understanding to be simple for you, and

luck that cross-repetition can or more loop inside loop to be

the code

family1 = ['Ahmed','Adel','Amr'] family2 = ['Ehab','Mahmoud','Ezz']
family3 = ['Sarah','Hajer','Rehab']

home1 = [family1 , family2 , family3]

for x in range(len(home1)):
print('Family:', x+1)
for y in range(len(home1[x])):

print(' Name', y+1, 'is:', home1[x][y])

 Implementation

family1 = ['Adel','Amr'] family2 = ['Ehab','Ezz'] family3 =
['Sarah','Hajer']

family4 = ['Ezzat','Foaad']
family5 = ['Abdelrahman','Abdelkareem'] family6 = ['Ali','Akl']

home1 = [family1 , family2 , family3] home2 = [family4 , family5 ,
family6]
homes = [home1 , home2]

for x in range(len(homes)):
print('Home', x+1)
for i in range(len(homes[x])):

print(' Family', i+1)
for y in range(len(homes[x][i])):
print(' Name', y+1, 'is:', homes[x][i][y])

Implementation

With more than one variable for create a repeat list with the list

enumerate utilization what follows has been done for two

variables were dealt with within the iteration

The code

 for i, name in
enumerate(['amr','ali','ezz']):
print(i, name)

 Implementation

 A counter variable was used and also switches were used
what

follows has been done dictionary at the same time

The code

person1 = { 'name':'Amr', 'salary':5000 }
person2 = { 'name':'Ali', 'salary':4000 }
person3 = { 'name':'Ezz', 'salary':3000 }

persons = [person1, person2, person3]
for x in range(len(persons)):

print('Person', x+1)
for index, (k, v) in enumerate(persons[x].items()): print(' ', index+1 , ':',
k, v)

While sentence loops of iteration the following iterations were

used to use code duplication and it was worked multiple operations
with few lines of code to save time and effort

The code

x = 1
while x <= 5:
print(x)

x +=1

Implementation

 The code

x = 5
while x > 0:
print(x)
x -=1

 Implementation

 The code

 x = 2
while x <= 10:

print(x)
x +=2

Implementation

 The code

x = 1
while x <= 10:
print(x)

x +=2

 The code

x = 1
while x <= 10:
print(x)
x +=2
else:

print('X After Loop Is:', x)

Implementation

 The code

x = 1
while x < 1:
print(x)
x +=2
else:

print('Condition is False')

Implementation

 The code

my_list = [7,'A',9.9,False]
x = 0

while x < len(my_list):

print(my_list[x] , type(my_list[x]))
x += 1

 Implementation

 The code

emp = { 'name':'Adel', 'city':'Giza', 'salary':3000 } my_keys =
list(emp.keys())
x = 0
while x < len(emp):

print(emp[my_keys[x]])
x += 1

 Implementation

 again = 'y'
while again=='y':

 Implementation

 Infinite redundancy

 Infinite

loop makes the program not stop and keep running

x = 1
while True:
print(x)
x+=1

 Implementation

 69

name = input('Enter your name:') print('Hello ' + name)
again = input('Again(y/n)?:')

from itertools import count
for x in count():

 print(x)

 Implementation

 Break

 In what follows, the iteration has been
permanently exit and

completely stopped using break

Code Sentence

for x in range(1,6):
if x == 4: break
print(x)

 Implementation

 x = 1
while x <= 100:
if x>5:

break
print(x)
x += 1

Implementation

 The code

x = 1
while x <= 100:
if x>3: break
print('OK', x)
x += 1

 Implementation

Continue in iterations – continue You ignore what is underneath

and go on and on continue That the Normal to repeat

numbers = [5,2,0,3,0,7]
mysum = 0

print('All Is:', len(numbers))
for x in range(len(numbers)):

if numbers[x]==0: continue
mysum += numbers[x]
print('Sum OK Without Zero(s)','x:',x)

print('Sum:', mysum)
Implementation

 Create a list of repetitions create a list from nothing
using repetition what follows has been done

numbers = [num for num in range(11)]
print(numbers)

 Implementation

 The code

 numbers = [chr(num) for num in
range(ord('A'),ord('Z')+1)] print(numbers)

 The code

 numbers = [num for num in
range(21) if num%2==0] print(numbers)

Implementation

Print time and date for time now then datetime utilization what

follows has been done and the current date, then we use them what
we want, and notice that time can be made and a date with

the values that we want the code

import datetime

dt1 = datetime.datetime.now()

dt2 = datetime.datetime.now().date()
dt3 = datetime.datetime.now().time()

dt4 = datetime.date(2005,12,31)

 print(dt1)

print(dt2) print(dt3)

print(dt4) print(dt5)

Customize date and time customize time and date as we want what
follows has been done
The code
import datetime

 now = datetime.datetime.now()

d = str(now.day)
m = str(now.month)
y = str(now.year)

h = str(now.hour) mi = str(now.minute) s =
str(now.second)

ms = str(now.microsecond)
print(d + '-' + m + '-' + y) print(y + '/' + m + '/' + d)

print(d + '-' + m + '-' + y + '\t' + h +':'+ mi +':'+ s)

Date and time initialization create a date and time configuration to
facilitate our operations what follows has been done The code
import datetime

 now = datetime.datetime.now()

print('Long day name :', now.strftime('%A'))
print('Short day name :', now.strftime('%a'))
print('Long month name :', now.strftime('%B'))

print('Short month name:', now.strftime('%b'))
print('Date time :', now.strftime('%c'))
print('Day of month :', now.strftime('%d'))

print('Hour number 24 :', now.strftime('%H')) print('Hour number
12 :', now.strftime('%I')) print('Day of year
print('Month of year
print('Minutes
print('AM or PM
print('Seconds
print('Short date
print('Short time

print('Short year
print('Long year
:', now.strftime('%j')) :', now.strftime('%m')) :', now.strftime('%M'))
:', now.strftime('%p')) :', now.strftime('%S')) :', now.strftime('%x'))
:', now.strftime('%X')) :', now.strftime('%y')) :', now.strftime('%Y'))

my_format = '%d/%m/%Y - %I:%M:%S %p'
:', now.strftime(my_format)) print('Date time 12)

Open an existing text file to read from to open an existing file

open utilization what follows has been done

The code

 file = open('my_file.txt')
file.close()

 Implementation

 The file is opened

and closed, and if it does not exist an error occurs

Create a blank text file to write to It means that the file will be

created, use w What follows has been done

If it is, it will be deleted and then a new file created. Note that it

must after using it close the file with a function

The code

 file = open('my_file.txt' , 'w')
file.close()

Then shut it down just in the same location as the code file

Implementation The file is created

Create a text file and write to it on the file using the write

The following is a speech added

The code

file = open('my_file.txt' , 'w')
file.write('Hello Abdelhamid\nWelcome Amr')
file.write(' Hi')
file.close()

 Implementation

 The code

file = open('my_file.txt' , 'w')
names = ['Amr','Ali','Ezz']
file.writelines(names)
file.close()

 Regular reading from an existing file

The code

f = open('my_file.txt' , 'r')
names = f.read()

f.close()
print(names)

Implementation

 Read from an existing, single-line file to fetch the file
content in

read lines use what follows has been done list

Code List

f = open('my_file.txt' , 'r')
names = f.readlines()
f.close()
print(names)

Implementation

Read from an existing, multi-line file where each line has

content read lines use What follows has been done Any new line in
each item With the addition of \ n list from the contents of the list

The code

f = open('my_file.txt' , 'r')
names = f.readlines()
f.close()
print(names)

 Implementation

Reading from a file from a specific location to stop the reading
indicator in place seek use What follows has been done you read

to the end read Main before reading, luck that

The code

f = open('my_file.txt' , 'r')
f.seek(2)
names = f.read()
f.close()
print(names)

Implementation

Read from a file line-by-line which begins with the first reading

read line use what follows has been done line, then next, then next,
and so on

 The code

f = open('my_file.txt' , 'r')
print(f.readline())
print(f.readline())
print(f.readline())
print(f.readline())
f.close()

 Implementation

 Upon arrival false be zero or b readline function to the

end of

the file

 The code

f = open('my_file.txt' , 'r')
line = True
while line:

line = f.readline()
print(line)
f.close()

 Implementation

Continue writing to an existing text file writing supplement append
to work use a what follows has been done on the file

without prejudice to the old speech

The code

f = open('my_file.txt' , 'a')
f.write('Omar')
f.close()

Implementation

Supplement writing with reading from a text file a + to continue,

and with it can be read use what follows has been done

 The code

f = open('my_file.txt' , 'a+')
f.seek(0)
print(f.readlines())
f.write('\nOmar')
f.seek(0)
print(f.readlines())
f.close()

 Implementation

Reading with writing to a text file to write and with it can read

use w + what follows has been done

The code

f = open('my_file.txt' , 'w+')
f.write('Ahmed\n')
f.seek(0); print(f.readlines())
f.write('Omar\n')

f.seek(0); print(f.readlines())
f.write('Adel\n')
f.seek(0); print(f.readlines())
f.close()

Implementation

Writing with reading r + to read and with it can write

use what follows has been done

The code

f = open('my_file.txt' , 'r+')
f.seek(0); print(f.readlines())
f.write('Ammar\n')
f.seek(0); print(f.readlines())
f.write('Yaser\n')
f.seek(0); print(f.readlines())
f.close()

 Implementation

Read, write and complete a binary file r + and r and w

use the same previous patterns as what follows has been done

binary then b and others but with an extra character

The code

f = open('my_file.jpg' , 'wb')
f = open('my_file.jpg' , 'rb')
f = open('my_file.jpg' , 'wb+')
f = open('my_file.jpg' , 'rb+')
f = open('my_file.jpg' , 'ab')
f = open('my_file.jpg' , 'ab+')
f.close()

 The code is here
for knowledge, and then deal with it as per request for the binary
file

Things after use to close with wholesale with the file is closed

automatically because it was used with what follows has been done

 The code

with open('my_file.txt','r') as file:
print(file.readlines())

print('Closed: ', file.closed)

print('Closed: ', file.closed)

 Implementation

 Folders check for and create a file or folder

The code

 import os

if not os.path.exists('My New Folder 1'):
os.mkdir('My New Folder 1')

if not os.path.exists('My New Folder 2'):
os.makedirs('My New Folder 2')
if not os.path.exists('my_file.txt'):
f = open('my_file.txt' , 'w')
f.close()

 They exist implementation the folders and file will be
created if not

Delete files and folders

The code

import os

if os.path.exists('My New Folder 1'):
os.rmdir('My New Folder 1')
if os.path.exists('My New Folder 2'):
os.rmdir('My New Folder 2')
if os.path.exists('my_file.txt'):
os.remove('my_file.txt')

They exist if execute folders and file will be deleted

Located in a specific folder and folders find out about files It comes
with all files and folders for the specified path list dir.

Function informs if a file isfile Have inside parentheses, and

notice that the function ML code

import os
files = os.listdir('New Folder')
for file in files:

if os.path.isfile('New Folder/' + file):
print('File :', file)
else:
print('Folder:', file)

Create a list of files and folders

The code

import os
all_files = [f for f in os.listdir('New Folder')] for file in all_files:

 print(file)
Implementation

 The code

 import os
os.system('mkdir my_folder_using_dos')

 DOS, or any other as per Implementation A system
folder will

 be
created Need.

 Copying
files

 The code

 import shutil
shutil.copy2('New Folder/Image.bmp' , 'NewFile.bmp')

Implementation

The file is copied from the first location to the second location

Cut File Transfer

The code

 import shutil
shutil.move('New Folder/Image.bmp' , 'NewFile.bmp')

Implementation

The file will be moved from the first place to the second place

Folders copies

The code

 import shutil
shutil.copytree('New Folder/New Folder (3)' , 'New')

 Implementation

 The volume is
copied from the first location to the second location

 Regular Expression use

import re
pattern = '^[A-Z][a-z]{1,15}$' text = input('Enter first name:') v =
re.match(pattern , text) if v != None: print('Correct') else: print(
'Incorrect')

Execution 1

 Execution 2

Execution 3

Math use of mathematics

89
import math

print('PI print('SQRT print('Round print('Round print('Ceil print(
'Floor :', math.pi)
:', math.sqrt(81)) :', round(1.5))
:', round(1.4))
:', math.ceil(1.1)) :', math.floor(1.99))

print('Absolute :', math.fabs(-50))
print('Absolute :', abs(-10))
print('Bower :', math.pow(5,3))
print('Bower :', pow(5,3))
print('Factorial:', math.factorial(5))
print('Summation:', math.fsum([1,2,3,4,5,6])) print('Summation:',
sum(
[1,2,3,4,5,6])) s =
[2500,6700,8400,2500,3400,210
0]

print('Average :', sum(s) / len(s))

Implementation

Error handling

The code

try:
num1, num2 = int(input('Num1:')) , int(input('Num2:')) result =
num1/num2
print(result)
names = ['Amr','Ali']
print(names[int(input('Name Index:'))])

except ZeroDivisionError as ex1:
print(ex1)
except IndexError as ex2:
print(ex2)
except:
print('Unknown Error')
finally:
print('Finally')

Execution 1

 Execution2

Execution 3

Work with csv files it has the following information

ahmed, amr, adel, ehab, mahmoud omar, ammar, yasser,

haytham 1500,2500,3500,4500,5500

info.csv create a file First

The code

 import csv

f = open('info.csv') r = csv.reader(f) g1 = next(r)
print(g1)
g2 = next(r)
print(g2)
g3 = next(r)
print(g3)

f.close()

Implementation

Do not do anything normal functions create functions for lack of

implementation define three functions that do not have pass codes it
was done

 The code

def my_func1():
'''This is my function 1'''
def my_func2():
'''This is my function 1'''
def my_func3():
pass

Implementation

Nothing will be done

Create functions with codes and then call them

The code

 def my_func1():

def my_func2():

'''This is my function 1'''

print('Welcome to function 2')

print('Function 2 is easy')

def my_func3():

 print('Welcome to function 3') print('Function 3
is easy')

 my_func2()

my_func3()

my_func1()

'''This is my function 1''' print('Welcome to function 1') print('Function
1 is easy')

 Create a function that receives arguments But this
function say_hello Make a function called What follows has been
done

Then this variable is only used inside it name you receive a variable
named Functions are useful because you use them more

than once and with different uses for the same function functions
save time and effort, are very useful and should be

intensely focused that on her

The code

 def say_hello(name):

 print('Hello ' + name)

 say_hello('Ahmed')

 say_hello('Adel')

 say_hello('Amr')

 94

Create a function that receives the first number and the second

number to calculate what you want when called either What follows
has been done operation and process It was addition,

subtraction, division, or multiplication in the same function

The code

 def calc(num1 , num2 , ope):
if ope == '+':
print(num1 + num2)
elif ope == '-':
print(num1 - num2)
elif ope == '*':
print(num1 * num2)
elif ope == '/':
if num2==0: num2=1

print(num1 / num2)
calc(7, 3, '+')

calc(7, 3, '-')

calc(7, 3, '*') calc(7, 3, '/') calc(7, 3, '%')

Create a function with infinite arguments use the function with

one or more arguments, and note that each What follows has

been done one tuple the media collects

The code

def names(*names):
print(type(names), names)
names('Adel','Amr','Ali','Ezz','Akl')

Implementation

 The code

 def get_values(*values):
print(values)
for val in values:

print(type(val), val)

 get_values(111,'Amr',4655.50,True)

 Create a function that returns a value returns a value, that
is,

when calling this function what follows has been done

It will return a value that can be printed or put into a variable it

has no value return the code after return

The code

def my_func():
print('Before Return')
return 'Test Return'
print('After Return')

my_return_val = my_func()
print(my_return_val)
Implementation

 def say_hello(name): return 'Hello
' + name

print(say_hello('Ahmed')) print(say_hello('Adel')) print(
say_hello('Amr'))

Implementation

Create a function based on the idea of the dictionary here it is used
to return a value for a dictionary inside the function, such

that A function that is to be returned from the dictionary

The value it will send

 The
code

def num_name(number):
return {
0:'zero', 1:'one', 2:'two', 3:'three',

4:'four', 5:'five', 6:'siz', 7:'seven',
8:'eight', 9:'nine', 10:'ten'
}[number]

 98
print(num_name(0))

print(num_name(1)) print(num_name(2)) print(num_name(3))

print(num_name(4)) print(num_name(5)) print(num_name(6))
print(num_name(7)) print(num_name(8)) print(num_name(9))
print(num_name(10))

 As if it were a function Lambda use expressions

The code

calc = lambda num1, num2: num1 + num2
print(calc(7,3))
print(calc(5,8))
print(calc(6,9))

 Implementation

 Create a reference function that calls itself create a
function to

calculate and return the factorial what follows has been done

Factorial that the reference function has a special understanding,

to understand it well we advise

def fact(num):
if num == 0: return 1
else: return num * fact(num - 1)

print('Factorial 3 is:', fact(3)) print('Factorial 4 is:', fact(4)) print(
'Factorial 5 is:', fact(5))

Implementation

As an executable code library module build up in the same

location as the executable file that we are trying my.py first,

create a file named he who expresses the model and save it

my.py secondly, the basic codes have to be written for the file,

and the following code should be written in the file

def say_hello(name):
print('Hello ' + name)
def calc(num1 , num2 , ope): if ope == '+':
print(num1 + num2) elif ope == '-':
print(num1 - num2) elif ope == '*':
print(num1 * num2) elif ope == '/':
if num2==0: num2=1 print(num1 / num2) elif ope == '%':
if num2==0: num2=1 print(num1 % num2)

Third, try the following on the main code file

The code

import my
my.calc(10,3,'+')
my.calc(10,3,'-')
my.calc(10,3,'*')
my.calc(10,3,'/')
my.calc(10,3,'%')
my.say_hello('Ahmed')

 Implementation

from my import calc
from my import say_hello
calc(81,18,'+')
calc(150,51,'-')
calc(33,3,'*')
calc(495,5,'/')
calc(23,12,'%')
say_hello('Adel')

 Implementation

 Execute codes from an external file or from text in the
same

place as the executable mycode.py first, create a file named

on which we try the basic codes and save it mycode.py

second, write the following code in the file

print('Test From mycode.py')
for x in range(3):
print('Test From mycode.py ' + str(x)) def calc(num1 , num2 , ope):
if ope == '+':
print(num1 + num2)

elif ope == '-':
print(num1 - num2)
elif ope == '*':
print(num1 * num2)
elif ope == '/':
if num2==0: num2=1
print(num1 / num2)
elif ope == '%':
if num2==0: num2=1
print(num1 % num2)

Third, try the following on the main code file

The code

 exec(open('mycode.py').read())
exec('print("This Code from string")')
Implementation

 The code

 exec(
open('mycode.py').read())

 calc(81,18,'+')

calc(150,51,'-')
calc(33,3,'*')

calc(495,5,'/') 103
calc(23,12,'%')

 The code

 exec("""
for x in range(3):
print('X=' + str(x))
""")
Implementation

Show help to show help to me help use the function what follows
has been done A topic, whether you are of a craft like

functions and others, or it exists such as print, str, tuple, etc., even if
a module you made yourself or a module already exists

in the language, even if it is a variable, it tells you that

Uses equivalent in language

The code

def say_hello(name):
'''Send any name for say hello''' print('Hello ' + str(name))

help(say_hello)

 Implementation

 The code

 help(print)

 Implementation

 The code

 import my
help(my)

 The code

 help('Hello')

 Implementation

Exploring what is in the Python language dir show all users in

your code file what follows has been done dir then it worked

import or work when increasing a variable or function

it's about a specific variable or function dir with the existing and

can be searched complete that

The code appears

 print(dir())
Implementation

 The code

import math
import os
my_name = 'Mohamed'
def get_name():return 'Mohamed'
def print_name():print(get_name())
print(dir())

 Implementation

 The code

my_name = 'Mohamed'
def get_name():return 'Mohamed'
def print_name():print(get_name())
print(dir(get_name))

Features only class build up and bears the number employee

callus worked in the name what follows has been done and

salary address and address name and name number active and

potency salary The properties inside the callus are variables

The code

class employee:
number = 0
name = ''

address = ''
salary = 0.0
active = True

Implementation

Nothing is running because the callus has not been used

It has only class functions. Create functions for the class which

are functions, and start from receiving a variable for the lucky
object!

That the code

 class my_print:
def print1(self):
print('Test Print 1')

def print2(self):
print('Test Print 2')
def print3(self):
print('Test Print 3')

 Implementation nothing is executed because it does not
use a class

it has both features and functions a variable must be defined within
each function in callus to express this class It follows

build up complete the variable about the object that will be defined,
knowing that this variable will not be sent when calling

the function, but it is a default of the object call the elements of

a callus inside the functions using what follows has been done he is
the famous or something else self the default variable for

the function, either we call it

The code

class employee:
number = 0
name = ''
address = ''
salary = 0.0
active = True
def get_data(o):

info = str(o.number)+';'+o.name+';'+o.address info +=
';'+str(o.salary)+';'+str(o.active) return info

def print_data(o):
print(o.get_data())

Nothing is running because the class has not been used

Use it class build up define an object Emp 1 From him as

The code

class employee:
number = 0
name = ''
address = ''
salary = 0.0
active = True
def get_data(o):

info = str(o.number)+';'+o.name+';'+o.address info +=
';'+str(o.salary)+';'+str(o.active) return info

def print_data(o):
print(o.get_data())
emp1 = employee()
emp1.number = 1
emp1.name = 'Adel'
emp1.address = 'Giza'
emp1.salary = 9500.5
emp1.print_data()

Implementation

His object and more work class build up of the function color and
model send two variables what follows has been done does

not exist self as if the variable set_data

class car:
model = ''
color = ''
def set_data(self, model, color):

self.model = model
self.color = color
def get_data(self):

return self.model+' , '+self.color def print_data(self):
print(self.get_data())
car1 = car()
car2 = car()
car3 = car()
car1.set_data('Renault BMW','Red')
car2.set_data('Audi Mercedes Benz','Silver') car3.set_data('MG Motor
Maruti Suzuki','White')

car1.print_data() car2.print_data() car3.print_data()

Implementation

Building function in a class Write the init code for the class

what follows has been done this function is executed automatically
when defining a new object employee

The code

 class employee:
def init (self):
print('New object from ' + str(type(self)))

emp1 = employee()
emp2 = employee()
emp3 = employee()

Implementation

Arguments with a construct function media submission is
mandatory, with each object defined from what follows has been

done class because it is requested in the construct function

Implementation

class employee:
emp_id = 0
emp_name = ''

def init (self, emp_id, emp_name):

self.emp_id = emp_id
self.emp_name = emp_name

def print_data(self):

print(self.emp_id, self.emp_name)
emp1 = employee(1,'Ahmed') emp2 = employee(2,'Adel') emp3 =
employee(3,'Amr')

emp1.print_data() emp2.print_data() emp3.print_data()

Objects for the create a counter and index objects_count make a

counter for the number of objects what follows has been done

his own index and every being retains the

The code

 from itertools import count

class employee:
objects_count = count(0)
index = 0

def init (self):

self.index = next(self.objects_count)

 e1 = employee()

 e2 = employee()

 e3 = employee()

 print(e1.index, e2.index, e3.index) print(e1.objects_count)

 Implementation

The catabolism function in the class use the del demolition function
to execute at what follows has been done the object delete

 class
employee:
def init (self):
print('Create object from employee')

def del (self):
print('Object is deleted')
e1 = employee()
e2 = employee()
e3 = employee()
del e1
del e2
del e3

 Implementation

Include new properties for the object and the property number use
the what follows has been done name although they are not

constructed with a callus build, and luck it exists of a way to do that
more html code

class employee:
pass
e1 = employee()
e1.number = 1
e1.name = 'Amr'
print(e1.number, e1.name)

 The code

 class employee:

 pass

 e1 = employee()

setattr(e1, 'number', 1)

setattr(e1, 'name', 'Amr')
print(e1.number, e1.name)

Implementation

Include properties that implement code to execute a specific code
appeal to the property only what follows has been done its like a
function

 The code

class employee:
pass
e1 = employee()
setattr(e1, 'test', exec('print("test")'))
e1.test

Create secret elements inside the class twice or underscore

everything begins with a symbol that more without adding an
underscore in the end, it becomes a secret element, whether it is

a property or a function, and if it is class to use it, an error will
occur

 The code

class my_class:
my_attr1 = 'attr1'
my_attr2 = 'attr2'

my_attr3 = 'attr3'

def func1(self):
print(self. my_attr1) self. func2()

self. func3()

def func2(self):
print(self. my_attr2)
def func3(self):
print(self. my_attr3)
my = my_class()
Implementation
my. my_attr1 += ', OK'

 my.func1()

Checks for an object inside the object presence test and presence

test what follows has been done by function a function inside the
object this way we can test the existence of an object before using it

it's a to avoid errors

The code

 class employee:
def test():
print('Employee')

emp1 = employee()
emp2 = employee()
emp1.name = 'Ahmed'

print(hasattr(emp1, 'name')) print(hasattr(emp2, 'name')) print(
hasattr(emp2, 'test'))

Implementation

 Delete properties from the object Delattr Completely
omit the

property of the function what follows has been done

 118

 class employee: pass

 emp = employee()

 emp.name
= 'Ahmed'

print(hasattr(emp, 'name'))

delattr(emp, 'name')

print(hasattr(emp, 'name'))

 Implementation

Class inner inline class and other class inside what follows has been
done the basic callus can be used and the class can be used

it's a branching from it

 Implementation

class computer: name
= 'pc' generation = 5
class hard:
name = 'hard' capacity = 0

 speed = 0
class ram:

name = 'ram' ramtype = 'ram' size = 0

 r1 =

computer.ram()
print(r1.name)
com1 = computer()

print(com1.name) print(com1.ram.name) print(com1.hard.name)

Heredity Class Person that here is the process of inheritance
between class he inherited everything in the employee where the

employee after definition person and that by parentheses out

person

 The code

 class person:
name = 'Person'

 address =
'Egypt'

 def
printdata(self):
print(self.name + ' ; ' + self.address)

 class employee(person):

 pass

 emp1 =
employee()

print(emp1.name)

print(emp1.address)

print('=============')

emp1.printdata()

Implementation

multiple inheritance other data from the person inherit the what

follows has been done so it became hereditary person from the
employee then the

 The code

 class otherdata:
email = 'example@domain.com'
phone = '000000'

class person(otherdata): name = 'Person' address = 'Egypt'

 def
printdata(self):

print(self.name + ' ; ' + self.address)

 class employee(person):
pass

 emp1 = employee()

 print(emp1.email)

 print(emp1.phone)

Implementation

Employee do multiple inheritance within parentheses of the

It was done

The code

 class otherdata:
email = 'example@domain.com'
phone = '000000'

class person():
name = 'Person'

 address =
'Egypt'
def printdata(self):

print(self.name + ' ; ' + self.address)
class employee(person , otherdata):

pass

emp1 = employee()
print(emp1.email)

 print(emp1.phone)

Implementation

 Show documentation of objects use doc to show
documentation what follows has been done

class person:
'''This is person class
This for Employee or docto or student
'''

class employee:
'This is employee class'

print(employee. doc)
print(person. doc)

print('=============')

 Implementation

 emp = employee()

 print(emp. doc)

 Reveal the dictionary of things find out everything in
anything

using dict what follows has been done

class employee:
'This is employee class' name = 'empty'
def printname(self):

print(self.name) print(employee. dict) print('================')
emp = employee()
emp.city = 'Cairo'
print(emp. dict)

Implementation

 Show the name of a Class

The code

class employee: pass
class doctor: pass
class computer:

class hard: pass
class student: pass

print(employee. name)
print(doctor. name)
print(computer. name

)
print(computer.hard. name)
print(student. name)

Implementation

 Show the module for Class And put the following code
inside

my.py First, create a file

class person:
pass

 Second, apply the following to the main implementation
file test.py

 Use the module to display the module

What follows has been done

 The code

 import my
class employee:
pass
print(employee. module
print(my.person. name
)

)
print(my.person. module
)

Implementation

Show the parent class Use base to show the class created What
follows has been done The process of inheriting it automatically

object inheritance from the What follows has been done

The code

 class other:

 pass

 class person:

 name = ''

 address = ''

 class
employee(person , other):

 pass

 class doctor(employee):

 pass

 print(employee. base)

 print(doctor. base)
print(person. base)

Implementation

Show all parents' dials to show inspect from getmro use what

follows has been done The life story of a Class

The code

class other:pass
class person:pass
class employee(person , other):pass

import inspect
print(inspect.getmro(employee))

 Implementation

 Use bases to show all dials what follows has been done

that were inherited from

 The code

class otherdata2:pass class otherdata: email = ''
phone = ''

class person: name = '' address = ''

class employee(person , otherdata , otherdata2): employeeid = 0
class doctor(employee):pass

print('---------------')
print(otherdata. bases)
print('---------------')
print(employee. bases)
print('---------------')
print(doctor. bases)
print('---------------')

 Implementation

 129

Rewrite of functions rewrite of functions by writing the function

what follows has been done once again in the callus that he

inherited to be dedicated to him

The code

 class person:
def printtype(self):

print('Person')
class customer(person): def printtype(self): print('Customer') pass

class employee(person): def printtype(self): print('Employee') pass

 p = person()

c = customer()

e = employee()

d = doctor()

 p.printtype()

c.printtype()

e.printtype()

d.printtype() class doctor(employee):

 def
printtype(self): print('Doctor') pass

 Show the name of the object class knowing the name of
the class for any object by means of what follows has been done

Easily name then class

The code

 class person:
def printtype(self):
print(self. class . name)
class customer(person):pass
class employee(person):pass
class doctor(employee):pass

 p = person()

c = customer()
e = employee()

d = doctor()

 p.printtype()

c.printtype()

e.printtype()

d.printtype()

THANK YOU

	Cover

