

Expert Python Programming
Third Edition

Become a master in Python by learning coding best practices
and advanced programming concepts in Python 3.7

Michał Jaworski
Tarek Ziadé

BIRMINGHAM - MUMBAI

Expert Python Programming
Third Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Chaitanya Nair
Content Development Editor: Zeeyan Pinheiro
Technical Editor: Ketan Kamble
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Alishon Mendonsa
Production Coordinator: Shraddha Falebhai

First published: September 2008
Second edition: May 2016
Third edition: April 2019

Production reference: 1270419

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78980-889-6

www.packtpub.com

http://www.packtpub.com

To my beloved wife, Oliwia, for her love, inspiration, and her endless patience.

To my loyal friends, Piotr, Daniel, and Paweł, for their support.

To my mother, for introducing me to the amazing world of programming.

 – Michał Jaworski

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Michał Jaworski has 10 years' of professional experience in Python. He has been in various
roles at different companies, from an ordinary full-stack developer, through software
architect, to VP of engineering in a fast-paced start-up company. He is currently a senior
backend engineer at Showpad. He is highly experienced in designing high-performance
distributed services. He is also an active contributor to many open source Python projects.

Tarek Ziadé is a Python developer located in the countryside near Dijon, France. He works
at Mozilla in the services team. He founded a French Python user group called Afpy, and
has written several books about Python in French and English. When he is not hacking on
his computer or hanging out with his family, he's spending time between his two passions,
running and playing the trumpet.

You can visit his personal blog (Fetchez le Python) and follow him on Twitter
(tarek_ziade).

About the reviewer
Cody Jackson is a disabled military veteran, the founder of Socius Consulting, an IT and
business management consulting company in San Antonio, and a co-founder of Top Men
Technologies. He is currently employed at CACI International as the lead ICS/SCADA
modeling and simulations engineer. He has been involved in the tech industry since 1994,
when he joined the Navy as a nuclear chemist and radcon technician. Prior to CACI, he
worked at ECPI University as a computer information systems adjunct professor. A self-
taught Python programmer, he is the author of Learning to Program Using Python and Secret
Recipes of the Python Ninja. He holds an Associate in Science degree, a Bachelor of Science
degree, and a Master of Science degree.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Before You Start
Chapter 1: Current Status of Python 8

Technical requirements 9
Where are we now and where we are going to? 9
Why and how Python changes 10
Being up-to-date with changes by following PEP documents 10
Python 3 adoption at the time of writing this book 11
The main differences between Python 3 and Python 2 13

Why should I care? 13
The main syntax differences and common pitfalls 13

Syntax changes 14
Changes in the standard library 15
Changes in data types and collections and string literals 16

The popular tools and techniques used for maintaining cross-version
compatibility 16

Not only CPython 20
Why should I care? 20
Stackless Python 21
Jython 22
IronPython 22
PyPy 23
MicroPython 24

Useful resources 25
Summary 26

Chapter 2: Modern Python Development Environments 27
Technical requirements 28
Installing additional Python packages using pip 28
Isolating the runtime environment 30

Application-level isolation versus system-level isolation 31
Python's venv 32

venv versus virtualenv 34
System-level environment isolation 35

Virtual development environments using Vagrant 37
Virtual environments using Docker 39

Containerization versus virtualization 39
Writing your first Dockerfile 40

Table of Contents

[ii]

Running containers 43
Setting up complex environments 44
Useful Docker recipes for Python 45

Reducing the size of containers 46
Addressing services inside of a Compose environment 47
Communicating between multiple Compose environments 48

Popular productivity tools 50
Custom Python shells – ipython, bpython, ptpython, and so on 50

Setting up the PYTHONSTARTUP environment variable 52
IPython 52
bpython 52
ptpython 53

Incorporating shells in your own scripts and programs 53
Interactive debuggers 54

Summary 55

Section 2: Python Craftsmanship
Chapter 3: Modern Syntax Elements - Below the Class Level 57

Technical requirements 57
Python's built-in types 58

Strings and bytes 58
Implementation details 61
String concatenation 61

Constant folding, the peephole optimizer, and the AST optimizer 63
String formatting with f-strings 63

Containers 65
Lists and tuples 65

Implementation details 66
List comprehensions 67
Other idioms 68

Dictionaries 71
Implementation details 72
Weaknesses and alternatives 73

Sets 75
Implementation details 76

Supplemental data types and containers 77
Specialized data containers from the collections module 77
Symbolic enumeration with the enum module 78

Advanced syntax 81
Iterators 81
Generators and yield statements 84
Decorators 88

General syntax and possible implementations 88
As a function 89
As a class 90
Parametrizing decorators 90
Introspection preserving decorators 91

Usage and useful examples 93
Argument checking 93

Table of Contents

[iii]

Caching 95
Proxy 98
Context provider 99

Context managers – the with statement 100
The general syntax and possible implementations 101

As a class 102
As a function – the contextlib module 104

Functional-style features of Python 105
What is functional programming? 106
Lambda functions 107
map(), filter(), and reduce() 108
Partial objects and partial() functions 111
Generator expressions 112

Function and variable annotations 113
The general syntax 113
The possible uses 114
Static type checking with mypy 115

Other syntax elements you may not know of yet 116
The for ... else ... statement 116
Keyword-only arguments 117

Summary 119

Chapter 4: Modern Syntax Elements - Above the Class Level 120
Technical requirements 121
The protocols of the Python language – dunder methods and
attributes 121
Reducing boilerplate with data classes 123
Subclassing built-in types 126
MRO and accessing methods from superclasses 129

Old-style classes and super in Python 2 131
Understanding Python's Method Resolution Order 132
Super pitfalls 137

Mixing super and explicit class calls 137
Heterogeneous arguments 138

Best practices 140
Advanced attribute access patterns 140

Descriptors 141
Real-life example – lazily evaluated attributes 144

Properties 147
Slots 150

Summary 151

Chapter 5: Elements of Metaprogramming 152
Technical requirements 152
What is metaprogramming? 153

Decorators – a method of metaprogramming 153
Class decorators 154

Table of Contents

[iv]

Using __new__() for overriding the instance creation process 156
Metaclasses 159

The general syntax 160
New Python 3 syntax for metaclasses 163
Metaclass usage 166
Metaclass pitfalls 166

Code generation 167
exec, eval, and compile 168
Abstract syntax tree (AST) 169

Import hooks 171
Projects that use code generation patterns 171

Falcon's compiled router 172
Hy 173

Summary 174

Chapter 6: Choosing Good Names 175
Technical requirements 176
PEP 8 and naming best practices 176

Why and when to follow PEP 8? 176
Beyond PEP 8 – Team-specific style guidelines 177

Naming styles 178
Variables 178

Constants 178
Naming and usage 180
Public and private variables 181
Functions and methods 183
The private controversy 184
Special methods 185
Arguments 186
Properties 186
Classes 186
Modules and packages 187

The naming guide 188
Using the has/is prefixes for Boolean elements 188
Using plurals for variables that are collections 188
Using explicit names for dictionaries 188
Avoid generic names and redundancy 189
Avoiding existing names 190

Best practices for arguments 190
Building arguments by iterative design 191
Trusting the arguments and your tests 191
Using *args and **kwargs magic arguments carefully 192

Class names 194
Module and package names 195
Useful tools 195

Pylint 196
pycodestyle and flake8 197

Table of Contents

[v]

Summary 198

Chapter 7: Writing a Package 199
Technical requirements 200
Creating a package 200

The confusing state of Python packaging tools 201
The current landscape of Python packaging thanks to PyPA 201
Tool recommendations 202

Project configuration 203
setup.py 203
setup.cfg 204
MANIFEST.in 205
Most important metadata 206
Trove classifiers 206
Common patterns 208

Automated inclusion of version string from package 209
README file 211
Managing dependencies 212

The custom setup command 213
Working with packages during development 214

setup.py install 214
Uninstalling packages 214
setup.py develop or pip -e 215

Namespace packages 215
Why is it useful? 216

PEP 420 - implicit namespace packages 218
Namespace packages in previous Python versions 219

Uploading a package 220
PyPI - Python Package Index 220

Uploading to PyPI - or other package index 220
.pypirc 222

Source packages versus built packages 223
sdist 223
bdist and wheels 224

Standalone executables 227
When standalone executables useful? 228
Popular tools 229

PyInstaller 229
cx_Freeze 233
py2exe and py2app 235

Security of Python code in executable packages 236
Making decompilation harder 236

Summary 237

Chapter 8: Deploying the Code 238
Technical requirements 239
The Twelve-Factor App 239
Various approaches to deployment automation 241

Table of Contents

[vi]

Using Fabric for deployment automation 242
Your own package index or index mirror 246

PyPI mirroring 247
Bundling additional resources with your Python package 248

Common conventions and practices 257
The filesystem hierarchy 257
Isolation 258
Using process supervision tools 258
Application code running in user space 260
Using reverse HTTP proxies 261
Reloading processes gracefully 262

Code instrumentation and monitoring 264
Logging errors – Sentry/Raven 264
Monitoring system and application metrics 267
Dealing with application logs 270

Basic low-level log practices 271
Tools for log processing 273

Summary 275

Chapter 9: Python Extensions in Other Languages 276
Technical requirements 277
Differentiating between the C and C++ languages 278

Loading extensions in C or C++ 278
The need to use extensions 280

Improving the performance in critical code sections 281
Integrating existing code written in different languages 282
Integrating third-party dynamic libraries 283
Creating custom datatypes 283

Writing extensions 283
Pure C extensions 285

A closer look at Python/C API 288
Calling and binding conventions 293
Exception handling 295
Releasing GIL 297
Reference counting 299

Writing extensions with Cython 301
Cython as a source-to-source compiler 302
Cython as a language 304

Challenges with using extensions 307
Additional complexity 307
Debugging 308

Interfacing with dynamic libraries without extensions 309
The ctypes module 309

Loading libraries 309
Calling C functions using ctypes 311
Passing Python functions as C callbacks 313

Table of Contents

[vii]

CFFI 316
Summary 318

Section 3: Quality over Quantity
Chapter 10: Managing Code 320

Technical requirements 320
Working with a version control system 321

Centralized systems 321
Distributed systems 324

Distributed strategies 325
Centralized or distributed? 326
Use Git if you can 327
GitFlow and GitHub Flow 328

Setting up continuous development processes 332
Continuous integration 333

Testing every commit 334
Merge testing through CI 335
Matrix testing 336

Continuous delivery 337
Continuous deployment 338
Popular tools for continuous integration 339

Jenkins 339
Buildbot 343
Travis CI 346
GitLab CI 348

Choosing the right tool and common pitfalls 348
Problem 1 – Complex build strategies 349
Problem 2 – Long building time 349
Problem 3 – External job definitions 350
Problem 4 – Lack of isolation 351

Summary 352

Chapter 11: Documenting Your Project 353
Technical requirements 353
The seven rules of technical writing 354

Write in two steps 354
Target the readership 355
Use a simple style 356
Limit the scope of information 357
Use realistic code examples 357
Use a light but sufficient approach 358
Use templates 359

Documentation as code 359
Using Python docstrings 360
Popular markup languages and styles for documentation 362

Popular documentation generators for Python libraries 363

Table of Contents

[viii]

Sphinx 363
Working with the index pages 366
Registering module helpers 366
Adding index markers 367
Cross-references 367

MkDocs 368
Documentation building and continuous integration 368

Documenting web APIs 369
Documentation as API prototype with API Blueprint 369
Self-documenting APIs with Swagger/OpenAPI 371

Building a well-organized documentation system 372
Building documentation portfolio 372

Design 373
Usage 374

Recipe 375
Tutorial 377
Module helper 377

Operations 378
Your very own documentation portfolio 379
Building a documentation landscape 380

Producer's layout 380
Consumer's layout 381

Summary 382

Chapter 12: Test-Driven Development 383
Technical requirements 384
I don't test 384

Three simple steps of test-driven development 384
Preventing software regression 387
Improving code quality 388
Providing the best developer documentation 388
Producing robust code faster 389

What kind of tests? 389
Unit tests 389
Acceptance tests 390
Functional tests 390
Integration tests 391
Load and performance testing 391
Code quality testing 392

Python standard test tools 392
unittest 393
doctest 396

I do test 398
unittest pitfalls 398
unittest alternatives 399

nose 399
Test runner 400
Writing tests 400
Writing test fixtures 401

Table of Contents

[ix]

Integration with setuptools and plugin system 401
Wrap-up 402

py.test 402
Writing test fixtures 403
Disabling test functions and classes 405
Automated distributed tests 406
Wrap-up 407

Testing coverage 407
Fakes and mocks 410

Building a fake 410
Using mocks 415

Testing environment and dependency compatibility 417
Dependency matrix testing 417

Document-driven development 421
Writing a story 421

Summary 423

Section 4: Need for Speed
Chapter 13: Optimization - Principles and Profiling Techniques 425

Technical requirements 425
The three rules of optimization 426

Making it work first 426
Working from the user's point of view 428
Keeping the code readable and maintainable 428

Optimization strategy 429
Looking for another culprit 429
Scaling the hardware 430
Writing a speed test 431

Finding bottlenecks 432
Profiling CPU usage 432

Macro-profiling 433
Micro-profiling 437

Profiling memory usage 441
How Python deals with memory 442
Profiling memory 443

objgraph 445
C code memory leaks 452

Profiling network usage 454
Tracing network transactions 455

Summary 457

Chapter 14: Optimization - Some Powerful Techniques 458
Technical requirements 460
Defining complexity 460

Cyclomatic complexity 461
The big O notation 462

Reducing complexity by choosing proper data structures 465

Table of Contents

[x]

Searching in a list 465
Using sets 466

Using collections 467
deque 467
defaultdict 469
namedtuple 470

Using architectural trade-offs 472
Using heuristics and approximation algorithms 472
Using task queues and delayed processing 473
Using probabilistic data structures 477

Caching 478
Deterministic caching 479
Non-deterministic caching 482
Cache services 483

Memcached 485
Summary 487

Chapter 15: Concurrency 488
Technical requirements 489
Why concurrency? 489
Multithreading 491

What is multithreading? 491
How Python deals with threads 492
When should we use threading? 494

Building responsive interfaces 494
Delegating work 494
Multiuser applications 495
An example of a threaded application 496

Using one thread per item 499
Using a thread pool 500
Using two-way queues 503
Dealing with errors and rate limiting 505

Multiprocessing 510
The built-in multiprocessing module 512

Using process pools 516
Using multiprocessing.dummy as the multithreading interface 518

Asynchronous programming 519
Cooperative multitasking and asynchronous I/O 519
Python async and await keywords 521
asyncio in older versions of Python 525
A practical example of asynchronous programming 526
Integrating non-asynchronous code with async using futures 528

Executors and futures 530
Using executors in an event loop 531

Summary 532

Table of Contents

[xi]

Section 5: Technical Architecture
Chapter 16: Event-Driven and Signal Programming 535

Technical requirements 536
What exactly is event-driven programming? 536

Event-driven != asynchronous 537
Event-driven programming in GUIs 538
Event-driven communication 540

Various styles of event-driven programming 542
Callback-based style 543
Subject-based style 544
Topic-based style 547

Event-driven architectures 549
Event and message queues 551

Summary 553

Chapter 17: Useful Design Patterns 555
Technical requirements 556
Creational patterns 556

Singleton 556
Structural patterns 559

Adapter 560
Interfaces 562

Using zope.interface 563
Using function annotations and abstract base classes 567
Using collections.abc 575

Proxy 576
Facade 577

Behavioral patterns 578
Observer 578
Visitor 581
Template 583

Summary 585

Appendix A: reStructuredText Primer 586
reStructuredText 586

Section structure 588
Lists 590
Inline markup 591
Literal block 592
Links 593

Other Books You May Enjoy 595

Index 598

Preface
Python is a dynamic programming language, used in a wide range of domains thanks to its
simple yet powerful nature. Although writing Python code is easy, making it readable,
reusable, and easy to maintain is challenging. Complete with best practices, useful tools,
and standards implemented by professional Python developers, the third version of Expert
Python Programming will help you overcome this challenge.

The book will start by taking you through the new features in Python 3.7. You'll learn the
Python syntax and understand how to apply advanced object-oriented concepts and
mechanisms. You'll also explore different approaches to implement metaprogramming.
This book will guide you in following best naming practices when writing packages, and
creating standalone executables easily, alongside using powerful tools such as buildout
and virtualenv to deploy code on remote servers. You'll discover how to create useful
Python extensions with C, C++, Cython, and Pyrex. Furthermore, learning about code
management tools, writing clear documentation, and test-driven development will help
you write clean code.

By the end of the book, you will have become an expert in writing efficient and
maintainable Python code.

Who this book is for
This book is written for Python developers who wish to go further in mastering Python.
And by developers, I mean mostly professionals, so programmers who write Python
software for their living. This is because it focuses mostly on tools and practices that are
crucial for creating performant, reliable, and maintainable software in Python.

It does not mean that hobbyists won't find anything interesting. This book should be great
for anyone who is interested in learning advanced-level concepts with Python. Anyone
who has basic Python skills should be able to follow the content of the book, although it
might require some additional effort from less experienced programmers. It should also be
a good introduction to Python 3.7 for those who are still a bit behind and continue to use
Python version 2.7 or older.

Finally, the groups that should benefit most from reading this book are web developers and
backend engineers. This is because of two topics featured in here that are especially
important in their areas of work: reliable code deployments and concurrency.

Preface

[2]

What this book covers
Chapter 1, Current Status of Python, showcases the current state of the Python language and
its community. We will see how Python is constantly changing, why it is changing, and also
why these facts are important for anyone who wants to call themselves a Python
professional. We will also take a look at the most popular and canonical ways for working
on written in Python—popular productivity tools and conventions that are de facto
standards now.

Chapter 2, Modern Python Development Environments, describes modern ways of setting up
repeatable and consistent development environments for Python programmers. We will
concentrate on two popular tools for environment isolation: virtualenv-
type environments and Docker containers.

Chapter 3, Modern Syntax Elements – Below the Class Level, focuses on best practices for
writing code in Python (language idioms) and also provides a summary of selected
elements of Python syntax that may be new for intermediate Python users or those
experienced with older versions of Python. We will also take a look at useful notes about
internal CPython-type implementations and their computational complexities as a rationale
for provided idioms.

Chapter 4, Modern Syntax Elements – Above the Class Level, covers more advanced object-
oriented concepts and mechanisms available in Python.

Chapter 5, Elements of Metaprogramming, presents an overview of common approaches to
metaprogramming available to Python programmers.

Chapter 6, Choosing Good Names, explains what is the most widely-adopted style guide for
Python code (PEP-8) and when and why developers should follow it. We will also take a
look at some of the author's general advice for naming things.

Chapter 7, Writing a Package, describes the current state of Python packaging and best
practices for creating packages that are to be distributed as open source code in the Python
Package Index (PyPI). We will also cover an often overlooked topic of Python – standalone
executables.

Chapter 8, Deploying Code, presents some common lightweight tools for deploying Python
code on remote servers. Deployment is one of the fields where Python shines are backends
for web-based services and applications.

Chapter 9, Python Extensions in Other Languages, explains why writing extensions in C and
C++ for Python can sometimes be a good solution and shows that it is not as hard as it
seems, as long as the proper tools are used.

Preface

[3]

Chapter 10, Managing Code, describes how to properly manage a code base and why
version control systems should be used. We will also leverage the power of version control
systems (especially Git) in implementing continuous processes, such as continuous
integration and continuous delivery.

Chapter 11, Documenting Your Project, describes the general rules for writing technical
documentation that may be applied to software written in any language, and various tools
that are especially useful for creating documentation of your Python code.

Chapter 12, Test-Driven Development, advocates the usage of test-driven development and
provides more information on how to use popular Python tools designed for testing.

Chapter 13, Optimization – Principles and Profiling Techniques, discusses the most basic rules
of optimization that every developer should be aware of. We will also learn how to identify
application performance bottlenecks and use common profiling tools.

Chapter 14, Optimization – Some Powerful Techniques, shows how to use that knowledge to
actually make your application run faster or be more efficient in terms of used resources.

Chapter 15, Concurrency, explains how to implement concurrency in Python using different
approaches and libraries.

Chapter 16, Event-Driven and Signal Programming, describes what event-driven/signal
programming is and how it relates to asynchronous programming and different
concurrency models. We will present the various approaches to event-driven programming
available to Python programmers, along with useful libraries that enable these patterns.

Chapter 17, Useful Design Patterns, implements a set of useful design patterns and example
implementations in Python.

Appendix A, reStructuredText Primer, provides a brief tutorial on how to use
reStructuredText markup language.

To get the most out of this book
This book is written for developers who work under any operating system for which
Python 3 is available.

Preface

[4]

This is not a book for beginners, so I assume you have Python installed in your
environment or know how to install it. Anyway, this book takes into account the fact that
not everyone needs to be fully aware of the latest Python features or officially
recommended tools. This is why the first chapter provides a recap on common utilities
(such as virtual environments and pip) that are now considered standard tools of
professional Python developers.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Expert-Python-Programming-Third-Edition. In case there's an update
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/9781789808896_ColorImages

.pdf.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789808896_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789808896_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789808896_ColorImages.pdf

Preface

[5]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Any attempt to run the code that has such issues will immediately cause the
interpreter to fail, raising a SyntaxError exception."

A block of code is set as follows:

print("hello world")
print "goodbye python2"

Any command-line input or output is written as follows:

$ python3 script.py

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

http://www.packt.com/submit-errata

Preface

[6]

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Before You Start

This part prepares the user for the modern Python development routine. It explains how
Python has changed over the last few years and what the common development tools used
by modern Python programmers are.

The following chapters are included in this section:

Chapter 1, Current Status of Python
Chapter 2, Modern Python Development Environments

1
Current Status of Python

Python is amazing.

For a very long time, one of the most important virtues of Python was interoperability. No
matter what operating system you or your customers were using, if a Python interpreter
was available for that system, your software that was written in Python would work there.
And, most importantly, your software would work the same way. However, that's not
uncommon anymore. Modern languages such as Ruby and Java provide similar
interoperability capabilities. But, interoperability isn't the most important quality of
programming language nowadays. With the advent of cloud computing, web-based
applications, and reliable virtualization software, it isn't that important to have a
programming language that works the same no matter the operating system. What is still
important is the tools that allow programmers to efficiently write reliable and maintainable
software. Fortunately, Python is still one of the languages that allows programmers the
most efficiency, and is definitely a smart choice for a company's primary development
language.

Python stays relevant for so long because it is constantly evolving. This book is focused on
the latest Python 3.7 version, and all code examples are written in this version of the
language unless another version is explicitly mentioned. Because Python has a very long
history, and there are still programmers using Python 2 on a daily basis, this book starts
with a chapter that describes the current status quo of Python 3. In this chapter, you'll find
how and why Python changes, and will learn how to write software that is compatible with
both the historic and latest versions of Python.

Current Status of Python Chapter 1

[9]

In this chapter, we will cover the following topics:

Where are we now and where we are going to?
Why and how Python changes
Being up-to-date with changes to PEP documentation
Python 3 adoption at the time of writing this book
The main difference between Python 3 and Python 2
Not only CPython
Useful resources

Technical requirements
You can download the latest version of Python from https://www.python.org/downloads/
 for this chapter.

Alternative Python interpreter implementations can be found at the following sites:

Stackless Python: https://github.com/stackless-dev/stackless

PyPy: https://pypy.org

Jython: https://www.jython.org

IronPython: https://ironpython.net

MicroPython: https://micropython.org

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Third-Edition/tree/master/chapter1.

Where are we now and where we are going
to?
Python history starts somewhere in the late 1980s, but its 1.0 release date was in the year
1994. So, it isn't a young language. There could be a whole timeline of major Python
releases mentioned here, but what really matters is a single date: Python 3.0—December 3,
2008.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://pypy.org
https://pypy.org
https://pypy.org
https://pypy.org
https://pypy.org
https://pypy.org
https://pypy.org
https://www.jython.org
https://www.jython.org
https://www.jython.org
https://www.jython.org
https://www.jython.org
https://www.jython.org
https://www.jython.org
https://www.jython.org
https://www.jython.org
https://ironpython.net
https://ironpython.net
https://ironpython.net
https://ironpython.net
https://ironpython.net
https://ironpython.net
https://ironpython.net
https://micropython.org
https://micropython.org
https://micropython.org
https://micropython.org
https://micropython.org
https://micropython.org
https://micropython.org
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter1

Current Status of Python Chapter 1

[10]

At the time of writing, almost ten years have passed since the first Python 3 release. It is
also seven years since the creation of PEP 404—the official document that un-
released Python 2.8 and officially closed the 2.x branch. Although a lot of time has passed,
there is a specific dichotomy in the Python community—while the language is developing
very fast, there is a large group of its users that do not want to move forward with it.

Why and how Python changes
The answer is simple—Python changes because there is such a need. The competition does
not sleep. Every few months, a new language pops out, out of nowhere, claiming to solve
every problem of all its predecessors. Most projects like these lose the developers' attention
very shortly, and their popularity is often driven by sudden hype.

This is a sign of some bigger problem. People design new languages because they find that
existing ones do not solve their problems in the best way possible. It would be silly to not
recognize such a need. Also, more and more widespread usage of Python shows that it
could, and should, be improved on in many places.

Many improvements in Python are driven by the needs of particular fields where it is being
used. The most significant one is web development. Thanks to the ever-increasing demand
for speed and performance in this area, we've seen that ways to deal with concurrency in
Python have been drastically improved over the time.

Other changes are simply caused by the age and maturity of the Python project.
Throughout the years, it collected some of the clutter in the form of disorganized and
redundant standard library modules, or some bad design decisions. First, the Python 3
release aimed to bring with it a major cleanup and refreshment to the language.
Unfortunately, time showed that this plan backfired a bit. For a long time, Python 3 was
treated by many developers only like a curiosity. Hopefully, this is changing.

Being up-to-date with changes by following
PEP documents
The Python community has a well-established way of dealing with changes. While
speculative Python language ideas are mostly discussed on specific mailing lists (python-
ideas@python.org), nothing major ever gets changed without the existence of a new
document, called a Python Enhancement Proposal (PEP).

Current Status of Python Chapter 1

[11]

It is a formalized document that describes, in detail, the proposal of change to be made in
Python. It is also the starting point for the community discussion. The whole purpose,
format, and workflow around these documents is also standardized in the form of a
PEP—precisely the PEP 1 document (http://www.python.org/dev/peps/pep-0001).

PEP documentation is very important for Python, and, depending on the topic, they serve
different purposes:

Informing: They summarize the information needed by core Python developers,
and notify about Python release schedules
Standardizing: They provide code style, documentation, or other guidelines
Designing: They describe the proposed features

A list of all proposed PEPs are available in a living PEP 0 document
(https://www.python.org/dev/peps/). Since they are easily accessible in one place, and the
actual URL is also very easy to guess, they are usually referred to by the number in the
book.

The PEP 0 document is a great source of information for those who are wondering what
direction Python language is heading in, but do not have time to track every discussion on
Python mailing lists. It shows which documents were already accepted but not yet
implemented, and also which are still under consideration.

PEPs also serve additional purposes. Very often, people ask questions like the following:

Why does feature A work that way?
Why does Python not have feature B?

In most such cases, the extensive answer is already available in specific PEP documents
where such a feature was already mentioned. There is a lot of PEP documentation
describing Python language features that were proposed but not accepted. This
documentation is left as a historical reference.

Python 3 adoption at the time of writing this
book
So, thanks to new, exciting features, is Python 3 well adopted among its community? It's
hard to say. The once-popular page, Python 3 Wall of Superpowers
(https://python3wos.appspot.com), that tracked the compatibility of the most popular
packages with the Python 3 branch was, at the beginning, named Python 3 Wall of Shame.

https://www.python.org/dev/peps/pep-0001/
https://www.python.org/dev/peps/
https://python3wos.appspot.com

Current Status of Python Chapter 1

[12]

The site is no longer maintained, but in the list from the last time it was updated, on April
22, 2018, it shows that exactly 191 from 200 of the most popular Python packages at that
time were compatible within Python 3. So, we can see that Python 3 seems to be finally
well-adopted in the community of open source Python programmers. Still, this does not
mean that all teams building their applications are finally using Python 3. At least, since
most of the popular Python packages are available in Python 3, the popular excuse packages
that we use have not been ported yet is no longer valid.

The main reason for such a situation is that porting the existing application from Python 2
to Python 3 is always a challenge. There are tools such as 2to3 that can perform automated
code translation, but they do not assure that the result will be 100% correct. Also, such
translated code may not perform as well as in its original form without manual
adjustments. Moving existing complex code bases to Python 3 might involve tremendous
effort, and a cost that some organizations may not be able to afford. Fortunately, such costs
can be split over time. Some good software architecture design methodologies, such as
service-oriented architecture or microservices, can help to achieve this goal gradually. New
project components (services or microservices) can be written using the new technology,
and existing ones can be ported one at a time.

In the long run, moving to Python 3 can have only beneficial effects on a project. According
to PEP 404, there won't be another 2.8 release in the 2.x branch of Python, and the official
end-of-life for Python 2 is scheduled for 2020. Until that time, we can expect only patch
version updates for major security issues, but nothing more. Also, there may be a time in
the future when all major projects, such as Django, Flask, and NumPy will drop any 2.x
compatibility and will be available only in Python 3. Django has already made that step,
and since version 2.0.0 was released, it no longer supports Python 2.7.

My personal opinion on this topic can be considered controversial. I think that the best
incentive for the community would be to completely drop Python 2 support when creating
new packages. This, of course, limits a range of such software, but may be the only right
way to change the way of thinking in those who insist on sticking to Python 2.x.

We'll take a look at the main differences between Python 3 and Python 2 in the next section.

Current Status of Python Chapter 1

[13]

The main differences between Python 3 and
Python 2
It has already been stated that Python 3 breaks backward compatibility with Python 2 on a
syntax level. Still, it is not a complete redesign. Also, it does not cause every Python module
written for some 2.x release to stop working under Python 3. It is possible to write
completely cross-compatible code that will run on both major releases without additional
tools or techniques, but usually it is possible only for simple applications.

Why should I care?
Despite my personal opinion on Python 2 compatibility that I exposed earlier in this
chapter, it is impossible to simply forget about it at this time. There are still some useful
packages that are really worth using, but are not likely to be ported in the very near future.

Also, sometimes, we may be constrained by the organization we work in. The existing
legacy code may be so complex that porting it is not economically feasible. So, even if we
decide to move on and live only in the Python 3 world from now on, it will be impossible to
live completely without Python 2 for some time.

Nowadays, it is very hard to call yourself a professional developer without giving
something back to the community. So, helping the open source developers add Python 3
compatibility to the existing packages is a good way to pay off the moral debt incurred by
using them. This, of course, cannot be done without knowing the differences between
Python 2 and Python 3. By the way, this is also a great exercise for those new to Python 3.

The main syntax differences and common pitfalls
The Python documentation is the best reference for differences between every Python
release. However, for your convenience, this section summarizes the most important ones.
This does not change the fact that the documentation is mandatory reading for those not
familiar with Python 3 yet (see https://docs.python.org/3.0/whatsnew/3.0.html).

https://docs.python.org/3.0/whatsnew/3.0.html

Current Status of Python Chapter 1

[14]

The breaking changes that were introduced by Python 3 can be generally divided into three
groups:

Syntax changes, where some syntax elements were removed/changed and other
elements were added
Changes in the standard library
Changes in datatypes and collections

Syntax changes
Syntax changes that make it difficult for the existing code to run are the easiest to
spot—they will cause the code to not run at all. The Python 3 code that uses new syntax
elements will fail to run on Python 2 and vice versa. The elements that were removed from
official syntax will make Python 2 code visibly incompatible with Python 3. Any attempt to
run the code that has such issues will immediately cause the interpreter to fail, raising a
SyntaxError exception. Here is an example of the broken script that has exactly two
statements, of which none will be executed due to the syntax error:

print("hello world")
print "goodbye python2"

Its actual result when run on Python 3 is as follows:

$ python3 script.py
 File "script.py", line 2
 print "goodbye python2"
 ^
 SyntaxError: Missing parentheses in call to 'print'

When it comes to new elements of Python 3 syntax, the total list of differences is a bit long,
and any new Python 3.x release may add new elements of syntax that will raise such errors
on earlier releases of Python (even on the same 3.x branch). The most important of them are
covered in Chapter 2, Modern Python Development Environments, and Chapter 3, Modern
Syntax Elements – Below the Class Level, so there is no need to list all of them here.

The list of things that used to work in Python 2 that will cause syntax or functional errors in
Python 3 is shorter. Here are the most important backwards incompatible changes:

print is no longer a statement, but a function, so the parenthesis is now
obligatory.
Catching exceptions changed from except exc, var to except exc as var.

Current Status of Python Chapter 1

[15]

The <> comparison operator has been removed in favor of !=.
from module import *

(https://docs.python.org/3.0/reference/simple_stmts.html#import) is now
allowed only on module level, and no longer inside the functions.
from .[module] import name is now the only accepted syntax for relative
imports. All imports not starting with a dot character are interpreted as absolute
imports.
The sorted() function and the list's sort() method no longer accept the cmp
argument. The key argument should be used instead.
Division expressions on integers such as one half return floats. The truncating
behavior is achieved through the // operator like 1//2. The good thing is that
this can be used with floats too, so 5.0//2.0 == 2.0.

Changes in the standard library
Breaking changes in the standard library are the second easiest to catch after syntax
changes. Each subsequent version of Python adds, deprecates, improves, or completely
removes standard library modules. Such a process was also common in the older branches
of Python (1.x and 2.x), so it does not come as a shock in Python 3. In most cases, depending
on the module that was removed or reorganized (such as urlparse being moved to
urllib.parse), it will raise exceptions on the import time just after it is interpreted. This
makes such issues so easy to catch. In order to be sure that all such issues are covered, full
test code coverage is essential. In some cases (for example, when using lazily loaded
modules), the issues that are usually noticed at import time will not appear before some
modules are used in code as function calls. This is why it is so important to make sure that
every line of code is actually executed during tests suite.

Lazily loaded modules
A lazy loaded module is a module that is not loaded on import time. In
Python, the import statements can be included inside functions, so an
import will happen on function call and not on import time. In some
cases, such loading of modules may be a reasonable choice, but in most
cases, it is a workaround for poorly designed module structure (for
example, to avoid circular imports). It is considered bad code smell and
should be generally avoided. There is no justifiable reason to lazily load
standard library modules. In well-structured code, all imports should be
grouped at the top of module.

https://docs.python.org/3.0/reference/simple_stmts.html#import

Current Status of Python Chapter 1

[16]

Changes in data types and collections and string
literals
Changes in how Python represents datatypes and collections require the most effort when
the developer tries to maintain compatibility or simply ports existing code to Python 3.
While incompatible syntax or standard library changes are easily noticeable and often easy
to fix, changes in collections and types are either non-obvious or require a lot of repetitive
work. The list of such changes is long and the official documentation is the best reference.

Still, this section must cover the change in how string literals are treated in Python 3,
because it seems to be the most controversial and discussed change in Python 3, despite
being a very good move that makes things more explicit.

All string literals are now Unicode, and bytestring literals require b or B prefix. For
Python 3.0 and 3.1, the old Unicode u prefix (like u"foo") is illegal and will raise a syntax
error. Dropping off that prefix was the main reason for most of the controversies. It made it
really hard to create code compatible with different branches of Python—Python in version
2.x relied on these prefixes in order to create Unicode literals. This prefix was brought back
in Python 3.3 to ease the integration process, although it now lacks any syntactic meaning.

The popular tools and techniques used for
maintaining cross-version compatibility
Maintaining compatibility between versions of Python is a challenge. It may add a lot of
additional work depending on the size of the project, but is definitely doable and worth
doing. For packages that are meant to be reused in many environments it is absolutely a
must-have. Open source packages without well-defined and tested compatibility bounds
are very unlikely to become popular, but closed third-party code that never leaves the
company network can also greatly benefit from being tested in different environments.

It should be noted here that, while this part focuses mainly on compatibility between
various versions of Python, these approaches apply for maintaining compatibility with
external dependencies such as different package versions, binary libraries, systems, or
external services.

Current Status of Python Chapter 1

[17]

The whole process can be divided into three main areas, ordered by their importance:

Defining and documenting target compatibility bounds and how they will be
managed
Testing in every environment and with every dependency version declared as
compatible
Implementing actual compatibility code

Declaration of what is considered compatible is the most important part of the whole
process because it gives your code users (developers) the ability to have expectations and
make assumptions on how it works and how it can change in the future. Our code can be
used as a dependency in different projects that may also strive to manage compatibility, so
the ability to reason how it behaves is crucial.

While this book tries to always give a few choices and not to give absolute
recommendations on specific options, here is one of the few exceptions. The best way to
define how compatibility may change in the future is by using proper approach to
versioning numbers using Semantic Versioning (semver) (http://semver.org/). It describes a
broadly accepted standard for marking scope of changes in code by the version specifier,
consisting only of three numbers. It also gives some advice on how to handle deprecation
policies. Here is an excerpt from its summary (licensed under Creative Commons - CC BY
3.0):

Given a version number MAJOR.MINOR.PATCH, increment:

MAJOR version when you make incompatible API changes,1.
MINOR version when you add functionality in a backwards-compatible2.
manner, and
PATCH version when you make backward-compatible bug fixes.3.

Additional labels for pre-release and build metadata are available as extensions to the
MAJOR.MINOR.PATCH format.

http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/

Current Status of Python Chapter 1

[18]

When it comes to testing the sad truth, that is, to be sure that code is compatible with every
declared dependency version and in every environment (here Python version), it must be
tested in every combination of these. This, of course, may not be possible when the project
has a lot of dependencies, because the number of combinations grows rapidly with every
new dependency version. So, typically some trade-off needs to be made so that running full
compatibility tests does not need to take ages. The selection of tools that help testing in so-
called matrixes is presented in Chapter 12, Test-Driven Development, which discusses
testing in general.

The benefit of using projects that follow semver is that usually what needs
to be tested are only major releases, because minor and patch releases are
guaranteed to not include backwards incompatible changes. This is, of
course, only true if such projects can be trusted to not break such a
contract. Unfortunately, mistakes happen to everyone, and backwards
incompatible changes happen in a lot of projects, even on patch versions.
Still, since semver declares strict compatibility on minor and patch
versions, breaking it is considered a bug, so it may be fixed in a patch
release.

The implementation of the compatibility layer is the last, and also the least important, step
of the process if the bounds of that compatibility are well-defined and rigorously tested.
Still, there are some tools and techniques that every programmer interested in such a topic
should know.

The most basic is Python's __future__ module. It backports some features from newer
Python releases back into the older ones and takes the form of an import statement:

from __future__ import <feature>

Features provided by the future statements are syntax-related elements that cannot be
easily handled by different means. This statement affects only the module where it was
used. Here is an example of a Python 2.7 interactive session that brings Unicode literals
from Python 3.0:

Python 2.7.10 (default, May 23 2015, 09:40:32) [MSC v.1500 32 bit
(Intel)] on win32
Type "help", "copyright", "credits" or "license" for more
information.
>>> type("foo") # old literals
<type 'str'>
>>> from __future__ import unicode_literals
>>> type("foo") # now is Unicode
<type 'unicode'>

Current Status of Python Chapter 1

[19]

Here is a list of all the available __future__ statement options that developers concerned
with two-thirds compatibility should know:

division: This adds a Python 3 division operator (PEP 238)
absolute_import: This makes every form of an import statement not starting
from dot character be interpreted as absolute imports (PEP 328)
print_function: This changes a print statement into a function call so that
parentheses around print become mandatory (PEP 3112)
unicode_literals: This makes every string literal be interpreted as Unicode
literals (PEP 3112)

A list of the __future__ statement options is very short, and it covers only a few syntax
features. The other things that have changed, such as the metaclass syntax (which is an
advanced feature that's covered in Chapter 5, Elements of Metaprogramming), are a lot
harder to maintain. Reliable handling of multiple standard library reorganizations also
cannot be solved by the future statements. Fortunately, there are some tools that aim to
provide a consistent layer of ready-to-use compatibility code. The most well-known of
these is Six (https://pypi.python.org/pypi/six/), which provides a whole common two-
thirds compatibility boilerplate as a single module. The other promising, but slightly less
popular, tool is the future module (http://python-future.org/).

In some situations, developers may not want to include additional dependencies in some
small packages. A common practice is the additional module that gathers all the
compatibility code, usually named compat.py. Here is an example of such compat
modules taken from the python-gmaps project
(https://github.com/swistakm/python-gmaps):

-*- coding: utf-8 -*-
"""This module provides compatibility layer for
selected things that have changed across Python versions.
"""
import sys

if sys.version_info < (3, 0, 0):
 import urlparse # noqa

 def is_string(s):
 """Return True if given value is considered string"""
 return isinstance(s, basestring)

else:
 # note: urlparse was moved to urllib.parse in Python 3
 from urllib import parse as urlparse # noqa

https://pypi.org/project/six/
http://python-future.org
http://python-future.org
http://python-future.org
http://python-future.org
http://python-future.org
http://python-future.org
http://python-future.org
http://python-future.org
http://python-future.org
http://python-future.org
https://github.com/swistakm/python-gmaps

Current Status of Python Chapter 1

[20]

 def is_string(s):
 """Return True if given value is considered string"""
 return isinstance(s, str)

Such compat.py modules are popular, even in projects that depend on Six for two-thirds
compatibility, because it is a very convenient way to store code that handles compatibility
with different versions of packages being used as dependencies.

In the next section, we'll take a look at what CPython is.

Not only CPython
The reference Python interpreter implementation is called CPython and, as its name
suggests, it is written entirely in the C language. It was always C and probably will be still
for a very long time. That's the implementation that most Python programmers choose
because it is always up to date with the language specification and is the interpreter that
most libraries are tested on. But, besides C, Python interpreter was written in a few other
languages. Also, there are some modified versions of CPython interpreter available under
different names and tailored exactly for some niche applications. Most of them are a few
milestones behind CPython, but provide a great opportunity to use and promote the
language in a specific environment.

In this section, we will discuss some of the most prominent and interesting alternative
Python implementations.

Why should I care?
There are plenty of alternative Python implementations available. The Python wiki page on
that topic (https://wiki.python.org/moin/PythonImplementations) features dozens of
different language variants, dialects, or implementations of Python interpreter built with
something other than C. Some of them implement only a subset of the core language
syntax, features, and built-in extensions, but there are at least a few that are almost fully
compatible with CPython. The most important thing to know is that, while some of them
are just toy projects or experiments, most of them were created to solve some real problems
– problems that were either impossible to solve with CPython or required too much of the
developer's effort.

https://wiki.python.org/moin/PythonImplementations

Current Status of Python Chapter 1

[21]

Examples of such problems are as follows:

Running Python code on embedded systems
Integration with code written for runtime frameworks, such as Java or .NET, or
in different languages
Running Python code in web browsers

The following sections provide a short description of, subjectively, the most popular and
up-to-date choices that are currently available for Python programmers.

Stackless Python
Stackless Python advertises itself as an enhanced version of Python. Stackless is named so
because it avoids depending on the C call stack for its own stack. It is, in fact, a modified
CPython code that also adds some new features that were missing from the core Python
implementation at the time Stackless was created. The most important of these are
microthreads, which are managed by the interpreter as cheap and lightweight alternatives
to ordinary threads, that must depend on system kernel context switching and task
scheduling.

The latest available versions are 2.7.15 and 3.6.6 and implement 2.7 and 3.6 versions of
Python, respectively. All the additional features provided by Stackless are exposed as a
framework within this distribution through the built-in stackless module.

Stackless isn't the most popular alternative implementation of Python, but it is worth
knowing, because some of the ideas that were introduced in it had a strong impact on the
language community. The core switching functionality was extracted from Stackless and
published as an independent package named greenlet, which is now the basis for many
useful libraries and frameworks. Also, most of its features were re-implemented in
PyPy—another Python implementation that will be featured later. The official online
documentation of Stackless Python can be found at https://stackless.readthedocs.io
and the project wiki can be found at https://github.com/stackless-dev/stackless.

https://stackless.readthedocs.io
https://stackless.readthedocs.io
https://stackless.readthedocs.io
https://stackless.readthedocs.io
https://stackless.readthedocs.io
https://stackless.readthedocs.io
https://stackless.readthedocs.io
https://stackless.readthedocs.io
https://stackless.readthedocs.io
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless
https://github.com/stackless-dev/stackless

Current Status of Python Chapter 1

[22]

Jython
Jython is a Java implementation of the language. It compiles the code into Java byte code,
and allows the developers to seamlessly use Java classes within their Python modules.
Jython allows people to use Python as the top-level scripting language on complex
application systems, for example, J2EE. It also brings Java applications into the Python
world. Making Apache Jackrabbit (which is a document repository API based on JCR; see
http://jackrabbit.apache.org) available in a Python program is a good example of what
Jython allows.

The main differences of Jython compared to the CPython implementation are as follows:

True Java's garbage collection instead of reference counting
Lack of global interpreter lock (GIL) allows better utilization of multiple cores in
multi-threaded applications

The main weakness of this implementation of the language is the lack of support for C
Python Extension APIs, so no Python extensions written in C will work with Jython.

The latest available version of Jython is Jython 2.7, and this corresponds to the 2.7 version
of the language. It is advertised as implementing nearly all of the core Python standard
library and using the same regression test suite. Unfortunately, Jython 3.x was never
released, and the project can be now safely considered dead. However, Jython is still worth
mentioning, even if it is not developed anymore, because it was very unique
implementation at the time and had meaningful impact on other alternative Python
implementations.

The official project page can be found at http://www.jython.org.

IronPython
IronPython brings Python into the .NET Framework. The project is supported by Microsoft,
where IronPython's lead developers work. It is quite an important implementation for the
promotion of a language. Besides Java, the .NET community is one of the biggest developer
communities out there. It is also worth noting that Microsoft provides a set of free
development tools that turn Visual Studio into a full-fledged Python IDE. This is
distributed as Visual Studio plugins named Python Tools for Visual Studio (PVTS), and is
available as open source code on GitHub (http://microsoft.github.io/PTVS).

http://jackrabbit.apache.org
http://www.jython.org
http://microsoft.github.io/PTVS

Current Status of Python Chapter 1

[23]

The latest stable release is 2.7.8, and it is compatible with Python 2.7. Unlike Jython, we can
observe active development on both 2.x and 3.x branches of the interpreter, although
Python 3 support still hasn't been officially released yet. Despite the fact that .NET runs
primarily on Microsoft Windows, it is also possible to run IronPython on macOS and
Linux. This is thanks to Mono, a cross platform, open source .NET implementation.

The main differences and advantages of IronPython compared to CPython are as follows:

Similar to Jython, the lack of global interpreter lock (GIL) allows for better
utilization of multiple cores in multi-threaded applications
Code written in C# and other .NET languages can be easily integrated in
IronPython and vice versa
It can be run in all major web browsers through Silverlight (although Microsoft
will stop supporting Silverlight in 2021)

When speaking about weaknesses, IronPython seems very similar to Jython, because it does
not support the Python/C Extension APIs. This is important for developers who would like
to use packages such as NumPy, which are largely based on C extensions. There were a few
community attempts to bring the Python/C Extensions API support to IronPython, or at
least to provide compatibility for the NumPy package, but unfortunately no project had
notable success in that area.

You can learn more about IronPython from its official project page
at http://ironpython.net/.

PyPy
PyPy is probably the most exciting alternative implementation of Python, as its goal is to
rewrite Python in Python. PyPy in the Python interpreter is written in Python. We have a C
code layer carrying out the nuts-and-bolts work for CPython. But in PyPy, this C code layer
is rewritten in pure Python.

This means that you can change the interpreter's behavior during execution time, and
implement code patterns that couldn't be easily done in CPython.

PyPy is currently fully compatible with Python version 2.7.13, while the latest PyPy3 is
compatible with Python version 3.5.3.

http://ironpython.net/

Current Status of Python Chapter 1

[24]

In the past, PyPy was mostly interesting for theoretical reasons, and it interested those who
enjoyed going deep into the details of the language. It was not generally used in
production, but this has changed through the years. Nowadays, many benchmarks show
that, surprisingly, PyPy is often way faster than the CPython implementation. This project
has its own benchmarking site that tracks performance of each version measured using
dozens of different benchmarks (refer to http://speed.pypy.org/). It clearly shows that
PyPy with JIT enabled is usually at least few times faster than CPython. This and other
features of PyPy makes more and more developers decide to use PyPy in their production
environments.

The main differences of PyPy compared to CPython implementation are as follows:

Garbage collection used instead of reference counting
Integrated tracing JIT compiler that allows impressive improvements in
performance
Application-level Stackless features borrowed from Stackless Python

Like almost every other alternative Python implementation, PyPy lacks the full official
support of C's Python Extension API. Still, it at least provides some sort of support for C
extensions through its CPyExt subsystem, although it is poorly documented and still not
feature complete. Also, there is an ongoing effort within the community in porting NumPy
to PyPy because it is the most requested feature.

The official PyPy project page can be found at http://pypy.org.

MicroPython
MicroPython is one of the youngest alternative implementations on that list, as its first
official version was released on May 3, 2014. It is also one of the most interesting
implementations. MicroPython is a Python interpreter that was optimized for use on
microcontrollers and in very constrained environments. Its small size and multiple
optimizations allow it to run in just 256 kilobytes of code space and with just 16 kilobytes of
RAM.

The main reference devices that you can test this interpreter on are BBC's micro:bit devices
and pyboards, which are simple-to-use microcontroller development boards, that are
targeted at teaching programming and electronics.

http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://speed.pypy.org/
http://pypy.org

Current Status of Python Chapter 1

[25]

MicroPython is written in C99 (it's C language standard) and can be built for many
hardware architectures, including x86, x86-64, ARM, ARM Thumb, and Xtensa. It is based
on Python 3, but due to many syntax differences, it's impossible to say that it is fully
compatible with any Python 3.x release. It is certainly a dialect of Python 3, with print()
functions, async/await keywords, and many other Python 3 features, but you can't expect
that your favorite Python 3 libraries will work properly under that interpreter out of the
box.

You can learn more about MicroPython from its official project page at https://
micropython.org.

Useful resources
The best way to know the status of Python is to stay informed about what's new and to
constantly read Python-related resources. The web is full of such resources. The most
important and obvious ones were already mentioned earlier, but here they are repeated to
keep this list consistent:

Python documentation
Python Package Index (PyPI)
PEP 0 – Index of Python Enhancement Proposals (PEPs)

The other resources, such as books and tutorials, are useful, but often get outdated very
fast. What does not get outdated are the resources that are actively curated by the
community or released periodically. The few that are worth recommending are as follows:

Awesome Python (https://github.com/vinta/awesome-python) includes a
curated list of popular packages and frameworks.
r/Python (https://www.reddit.com/r/Python/) is a Python subreddit where you
can find news and interesting questions about Python posted by many members
of Python community every day.
Python Weekly (http://www.pythonweekly.com/) is a popular newsletter that
delivers to its subscriber's dozens of new interesting Python packages and
resources every week.
Pycoder's Weekly (https://pycoders.com) is another popular weekly newsletter
with a digest of new packages and interesting articles. Due to its nature, the
content of that newsletter often overlaps with Python Weekly, but sometimes
you can find something unique that hasn't been posted elsewhere.

https://micropython.org
https://micropython.org
https://micropython.org
https://micropython.org
https://micropython.org
https://micropython.org
https://github.com/vinta/awesome-python
https://www.reddit.com/r/Python/
https://www.reddit.com/r/Python/
https://www.reddit.com/r/Python/
https://www.reddit.com/r/Python/
https://www.reddit.com/r/Python/
https://www.reddit.com/r/Python/
https://www.reddit.com/r/Python/
https://www.reddit.com/r/Python/
https://www.reddit.com/r/Python/
https://www.reddit.com/r/Python/
https://www.reddit.com/r/Python/
https://www.reddit.com/r/Python/
https://www.reddit.com/r/Python/
https://www.reddit.com/r/Python/
http://www.pythonweekly.com/
https://pycoders.com
https://pycoders.com
https://pycoders.com
https://pycoders.com
https://pycoders.com
https://pycoders.com
https://pycoders.com

Current Status of Python Chapter 1

[26]

These resources will provide you with tons of additional reading for countless hours.

Summary
This chapter concentrated on the current status of Python and the process of change that
was visible throughout the history of that language. We started with a discussion of how
and why Python changes and described what the main results of that process are, including
the differences between Python 2 and 3. We've learned how to reliably deal with those
changes and learned some useful techniques that allow us to provide code that is
compatible with various versions of Python and different versions of its libraries.

Then, we took a different look at the idea of changes in programming language. We've
reviewed some of the popular alternative Python interpreters and discussed their main
differences compared to default CPython implementation.

In the next chapter, we will describe modern ways of setting up repeatable and consistent
development environments for Python programmers and discuss the two popular tools for
environment isolation: virtualenv-type environments and Docker containers.

2
Modern Python Development

Environments
A deep understanding of the programming language of choice is the most important thing
in being an expert. This will always be true for any technology. Still, it is really hard to
develop good software without knowing the common tools and practices that are common
within the given language community. Python has no single feature that cannot be found in
some other language. So, in direct comparison of syntax, expressiveness, or performance,
there will always be a solution that is better in one or more fields. But, the area in which
Python really stands out from the crowd is the whole ecosystem built around the language.
The Python community spent years polishing standard practices and libraries that help to
create more reliable software in a shorter time.

The most obvious and important part of the ecosystem is a huge collection of free and open
source packages that solve a multitude of problems. Writing new software is always an
expensive and time-consuming process. Being able to reuse the existing code instead
of reinventing the wheel greatly reduces development times and costs. For some companies,
it is the only reason why their projects are economically feasible.

Because of this, Python developers put a lot of effort into creating tools and standards to
work with open source packages that have been created by others—starting from virtual
isolated environments, improved interactive shells, and debuggers, to programs that help
to discover, search, and analyze the huge collection of packages that are available
on Python Package Index (PyPI).

In this chapter, we will cover the following topics:

Installing additional Python packages using pip
Isolating the runtime environment
Python's venv
System-level environment isolation
Popular productivity tools

Modern Python Development Environments Chapter 2

[28]

Technical requirements
You can download the free system virtualization tools that are mentioned in this chapter
from the following sites:

Vagrant: https://www.vagrantup.com

Docker: https://www.docker.com

The following are Python packages that are mentioned in this chapter that you can
download from PyPI:

virtualenv

ipython

ipdb

ptpython

ptbdb

bpython

bpdb

You can install these packages using the following command:

python3 -m pip install <package-name>

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Third-Edition/tree/master/chapter2.

Installing additional Python packages using
pip
Nowadays, a lot of operating systems come with Python as a standard component. Most
Linux distributions and UNIX-based systems, such as FreeBSD, NetBSD, OpenBSD, or
macOS, come with Python either installed by default or available through system package
repositories. Many of them even use it as part of some core components – Python powers
the installers of Ubuntu (Ubiquity), Red Hat Linux (Anaconda), and Fedora (Anaconda
again). Unfortunately, the preinstalled system version of Python is often Python 2.7, which
is fairly outdated.

https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com
https://www.vagrantup.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://www.docker.com
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter2

Modern Python Development Environments Chapter 2

[29]

Due to Python's popularity as an operating system component, a lot of packages from PyPI
are also available as native packages managed by the system's package management tools,
such as apt-get (Debian, Ubuntu), rpm (Red Hat Linux), or emerge (Gentoo). It should be
remembered, however, that the list of available libraries is very limited, and they are mostly
outdated compared to PyPI. This is the reason why pip should always be used to obtain
new packages in the latest version, as recommended by the Python Packaging Authority
(PyPA). Although it is an independent package, starting from version 2.7.9 and 3.4 of
CPython, it is bundled with every new release by default. Installing the new package is as
simple as this:

pip install <package-name>

Among other features, pip allows specific versions of packages to be forced (using the pip
install package-name==version syntax) and upgraded to the latest version available
(using the --upgrade switch). The full usage description for most of the command-line
tools presented in the book can be easily obtained simply by running the command with
the -h or --help switch, but here is an example session that demonstrates the most
commonly used options:

$ pip show pip
Name: pip
Version: 18.0
Summary: The PyPA recommended tool for installing Python packages.
Home-page: https://pip.pypa.io/
Author: The pip developers
Author-email: pypa-dev@groups.google.com
License: MIT
Location: /Users/swistakm/.envs/epp-3rd-ed/lib/python3.7/site-packages
Requires:
Required-by:

$ pip install 'pip>=18.0'
Requirement already satisfied: pip>=18.0 in (...)/lib/python3.7/site-
packages (18.0)

$ pip install --upgrade pip
Requirement already up-to-date: pip in (...)/lib/python3.7/site-packages
(18.0)

In some cases, pip may not be available by default. From Python 3.4 onward (and also
Python 2.7.9), it can always be bootstrapped using the ensurepip module:

$ python -m ensurepip
Looking in links:
/var/folders/z6/3m2r6jgd04q0m7yq29c6lbzh0000gn/T/tmp784u9bct
Requirement already satisfied: setuptools in /Users/swistakm/.envs/epp-3rd-

Modern Python Development Environments Chapter 2

[30]

ed/lib/python3.7/site-packages (40.4.3)
Collecting pip
Installing collected packages: pip
Successfully installed pip-10.0.1

The most up-to-date information on how to install pip for older Python versions is available
on the project's documentation page at https://pip.pypa.io/en/stable/installing/.

Isolating the runtime environment
pip may be used to install system-wide packages. On UNIX-based and Linux systems, this
will require superuser privileges, so the actual invocation will be as follows:

sudo pip install <package-name>

Note that this is not required on Windows since it does not provide the Python interpreter
by default, and Python on Windows is usually installed manually by the user without
superuser privileges.

Installing system-wide packages directly from PyPI is not recommended, and should be
avoided. This may seem like a contradiction to the previous statement that using pip is a
PyPA recommendation, but there are some serious reasons for that. As we explained
earlier, Python is often an important part of many packages that are available through
operating system package repositories, and may power a lot of important services. System
distribution maintainers put in a lot of effort to select the correct versions of packages to
match various package dependencies. Very often, Python packages that are available from
a system's package repositories contain custom patches, or are purposely kept outdated to
ensure compatibility with some other system components. Forcing an update of such a
package, using pip, to a version that breaks some backward compatibility, might cause
bugs in some crucial system service.

Doing such things on the local computer for development purposes only is also not a good
excuse. Recklessly using pip that way is almost always asking for trouble, and will
eventually lead to issues that are very hard to debug. This does not mean that installing
packages from PyPI is a strictly forbidden thing, but it should be always done
consciously and with an understanding of the related risk.

https://pip.pypa.io/en/stable/installing/

Modern Python Development Environments Chapter 2

[31]

Fortunately, there is an easy solution to this problem: environment isolation. There are
various tools that allow the isolation of the Python runtime environment at different levels
of system abstraction. The main idea is to isolate project dependencies from packages that
are required by different projects and/or system services. The benefits of this approach are
as follows:

It solves the Project X depends on version 1.x but, Project Y needs 4.x dilemma. The
developer can work on multiple projects with different dependencies that may
even collide without the risk of affecting each other.
The project is no longer constrained by versions of packages that are provided in
the developer's system distribution repositories.
There is no risk of breaking other system services that depend on certain package
versions, because new package versions are only available inside such an
environment.
A list of packages that are project dependencies can be easily frozen, so it is very
easy to reproduce such an environment on another computer.

If you're working on multiple projects in parallel, you'll quickly find that is impossible to
maintain their dependencies without any kind of isolation.

Let's discuss the difference between application-level isolation and system-level isolation in
the next section.

Application-level isolation versus system-level
isolation
The easiest and most lightweight approach to isolation is to use application-level virtual
environments. These focus on isolating the Python interpreter and the packages available
within it. Such environments are very easy to set up, and are very often just enough to
ensure proper isolation during the development of small projects and packages.

Unfortunately, in some cases, this may not be enough to ensure enough consistency and
reproducibility. Despite the fact that software written in Python is usually considered very
portable, it is still very easy to run into issues that occur only on selected systems or even
specific distributions of such systems (for example, Ubuntu versus Gentoo). This is very
common in large and complex projects, especially if they depend on compiled Python
extensions or internal components of the hosting operating system.

Modern Python Development Environments Chapter 2

[32]

In such cases, system-level isolation is a good addition to the workflow. This kind of
approach usually tries to replicate and isolate complete operating systems with all of its
libraries and crucial system components, either with classical system virtualization tools
(for example, VMWare, Parallels, and VirtualBox) or container systems (for example,
Docker and Rocket). Some of the available solutions that provide that kind of isolation are
explained later in this chapter.

Let's take a look at Python's venv in the next section.

Python's venv
There are several ways to isolate Python at runtime. The simplest and most obvious,
although hardest to maintain, is to manually change the PATH and PYTHONPATH
environment variables and/or move the Python binary to a different, customized place
where we want to store our project's dependencies, in order to affect the way that it
discovers available packages. Fortunately, there are several tools available that can help in
maintaining the virtual environments and packages that are installed for these
environments. These are mainly virtualenv and venv. What they do under the hood is, in
fact, the same that we would do manually. The actual strategy depends on the specific tool
implementation, but generally they are more convenient to use and can provide additional
benefits.

To create new virtual environment, you can simply use the following command:

python3.7 -m venv ENV

Here, ENV should be replaced by the desired name for the new environment. This will
create a new ENV directory in the current working directory path. Inside, it will contain a
few new directories:

bin/: This is where the new Python executable and scripts/executables provided
by other packages are stored.
lib/ and include/: These directories contain the supporting library files for
new Python inside the virtual environment. The new packages will be installed
in ENV/lib/pythonX.Y/site-packages/.

Once the new environment has been created, it needs to be activated in the current shell
session using UNIX's source command:

source ENV/bin/activate

Modern Python Development Environments Chapter 2

[33]

This changes the state of the current shell sessions by affecting its environment variables. In
order to make the user aware that they have activated the virtual environment, it will
change the shell prompt by appending the (ENV) string at its beginning. To illustrate this,
here is an example session that creates a new environment and activates it:

$ python -m venv example
$ source example/bin/activate
(example) $ which python
/home/swistakm/example/bin/python
(example) $ deactivate
$ which python
/usr/local/bin/python

The important thing to note about venv is that it depends completely on its state, as stored
on a filesystem. It does not provide any additional abilities to track what packages should
be installed in it. These virtual environments are also not portable, and should not be
moved to another system/machine. This means that the new virtual environment needs to
be created from scratch for each new application deployment. Because of this, there is a
good practice that's used by venv users to store all project dependencies in
the requirements.txt file (this is the naming convention), as shown in the following
code:

lines followed by hash (#) are treated as a comments

strict version names are best for reproducibility
eventlet==0.17.4
graceful==0.1.1

for projects that are well tested with different
dependency versions the relative version specifiers
are acceptable too
falcon>=0.3.0,<0.5.0

packages without versions should be avoided unless
latest release is always required/desired
pytz

With such files, all dependencies can be easily installed using pip, because it accepts the
requirements file as its output:

pip install -r requirements.txt

Modern Python Development Environments Chapter 2

[34]

What needs to be remembered is that the requirements file is not always the ideal solution,
because it does not define the exact list of dependencies, only those that are to be installed.
So, the whole project can work without problems in some development environments but
will fail to start in others if the requirements file is outdated and does not reflect the actual
state of the environment. There is, of course, the pip freeze command, which prints all
packages in the current environment, but it should not be used blindly. It will output
everything, even packages that are not used in the project but are installed only for testing.

Note for Windows users
For Windows users, venv under Windows uses a different naming
convention for its internal structure of directories. You need to
use Scripts/, Libs/, and Include/ instead of bin/, lib/,
and include/, to better match development conventions on that
operating system. The commands that are used for activating/deactivating
the environment are also different; you need to
use ENV/Scripts/activate.bat and ENV/Scripts/deactivate.bat
instead of using source on activate and deactivate scripts.

Deprecated pyvenv script
The Python venv module provides an additional pyvenv command-line
script; since Python 3.6, it has been marked as deprecated and its usage is
officially discouraged, as the pythonX.Y -m venv command is explicit
about what version of Python will be used to create new environments,
unlike the pyvenv script.

The differences between venv versus virtualenv are discussed in the next section.

venv versus virtualenv
virtualenv was one of the most popular tools to create lightweight virtual environments
long before the creation of the pyenv standard library module. Its name simply stands for
virtual environment. It's not a part of the standard Python distribution, so it needs to be
obtained using pip. If you want to use it, it is one of the packages that is worth installing
system-wide (using sudo on Linux and UNIX-based systems).

Modern Python Development Environments Chapter 2

[35]

I would recommend using the venv module instead of virtualenv whenever it is
possible. This should be your default choice for projects targeting Python versions 3.4 and
higher. Using venv in Python 3.3 may be a little inconvenient due to the lack of built-in
support for setuptools and pip. For projects targeting a wider spectrum of Python
runtimes (including alternative interpreters and 2.x branch), it seems that virtualenv is
the best choice.

In the next section, we'll take a look at system-level environment isolation.

System-level environment isolation
In most cases, software implementation can iterate quickly because developers reuse a lot
of existing components. Don't Repeat Yourself – this is a popular rule and motto of many
programmers. Using other packages and modules to include them in the code base is only a
part of that culture. What can also be considered under reused components are binary
libraries, databases, system services, third-party APIs, and so on. Even whole operating
systems should be considered as being reused.

The backend services of web-based applications are a great example of how complex such
applications can be. The simplest software stack usually consists of a few layers (starting
from the lowest):

A database or other kind of storage
The application code implemented in Python
An HTTP server, such as Apache or NGINX

Of course, such stacks can be even simpler, but it is very unlikely. In fact, big applications
are often so complex that it is hard to distinguish single layers. Big applications can use
many different databases, be divided into multiple independent processes, and use many
other system services for caching, queuing, logging, service discovery, and so on. Sadly,
there are no limits for complexity, and it seems that code simply follows the second law of
thermodynamics.

Modern Python Development Environments Chapter 2

[36]

What is really important is that not all software stack elements can be isolated on the level
of Python runtime environments. No matter whether it is an HTTP server, such as Nginx,
or RDBMS, such as PostgreSQL, they are usually available in different versions on different
systems. Making sure that everyone in a development team uses the same versions of every
component is very hard without the proper tools. It is theoretically possible that all
developers in a team working on a single project will be able to get the same versions of
services on their development boxes. But all this effort is futile if they do not use the same
operating system as they do in the production environment. Forcing a programmer to work
on something else rather than their beloved system of choice is impossible.

The problem lies in the fact that portability is still a big challenge. Not all services will work
exactly the same in production environments as they do on the developer's machines, and
this is very unlikely to change. Even Python can behave differently on different systems,
despite how much work is put in to make it cross-platform. Usually, this is well-
documented and happens only in places that depend directly on system calls, but relying
on the programmer's ability to remember a long list of compatibility quirks is quite an
error-prone strategy.

A popular solution to this problem is isolating whole systems as an application
environment. This is usually achieved by leveraging different types of system virtualization
tools. Virtualization, of course, reduces performance; but with modern computers that have
hardware support for virtualization, the performance loss is usually negligible. On the
other hand, the list of possible gains is very long:

The development environment can exactly match the system version and services
used in production, which helps to solve compatibility issues
Definitions for system configuration tools, such as Puppet, Chef, or Ansible (if
used), can be reused to configure the development environment
The newly hired team members can easily hop into the project if the creation of
such environments is automated
The developers can work directly with low-level system features that may not be
available on operating systems they use for work, for example, File System in
User Space (FUSE), which is not available in Windows

In the next section, we'll take a look at virtual development environments using Vagrant.

Modern Python Development Environments Chapter 2

[37]

Virtual development environments using Vagrant
Vagrant currently seems to be one of the most popular tools for developers to manage
virtual machines for the purpose of local development. It provides a simple and convenient
way to describe development environments with all system dependencies in a way that
is directly tied to the source code of your project. It is available for Windows, Mac OS, and a
few popular Linux distributions (refer to https://www.vagrantup.com). It does not have
any additional dependencies. Vagrant creates new development environments in the form
of virtual machines or containers. The exact implementation depends on a choice of
virtualization providers. VirtualBox is the default provider, and it is bundled with the
Vagrant installer, but additional providers are available as well. The most notable choices
are VMware, Docker, Linux Containers (LXC), and Hyper-V.

The most important configuration is provided to Vagrant in a single file
named Vagrantfile. It should be independent for every project. The following are the
most important things it provides:

Choice of virtualization provider
A box, which is used as a virtual machine image
Choice of provisioning method
Shared storage between the VM and VM's host
Ports that need to be forwarded between VM and its host

The syntax language for Vagrantfile is Ruby. The example configuration file provides a
good template to start the project and has an excellent documentation, so the knowledge of
this language is not required. Template configuration can be created using a single
command:

vagrant init

This will create a new file named Vagrantfile in the current working directory. The best
place to store this file is usually the root of the related project sources. This file is already a
valid configuration that will create a new VM using the default provider and base box
image. The default Vagrantfile content that's created with the vagrant init command
contains a lot of comments that will guide you through the complete configuration process.

https://www.vagrantup.com

Modern Python Development Environments Chapter 2

[38]

The following is a minimal example of Vagrantfile for the Python 3.7 development
environment based on the Ubuntu operating system, with some sensible defaults that,
among others, enable port 80 forwarding in case you want to do some web development
with Python:

-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure("2") do |config|
 # Every Vagrant development environment requires a box.
 # You can search for boxes at https://vagrantcloud.com/search.
 # Here we use Bionic version Ubuntu system for x64 architecture.
 config.vm.box = "ubuntu/bionic64"

 # Create a forwarded port mapping which allows access to a specific
 # port within the machine from a port on the host machine and only
 # allow access via 127.0.0.1 to disable public access
 config.vm.network "forwarded_port", guest: 80, host: 8080, host_ip:
"127.0.0.1"

 config.vm.provider "virtualbox" do |vb|
 # Display the VirtualBox GUI when booting the machine
 vb.gui = false

 # Customize the amount of memory on the VM:
 vb.memory = "1024"
 end
 # Enable provisioning with a shell script.
 config.vm.provision "shell", inline: <<-SHELL
 apt-get update
 apt-get install python3.7 -y
 SHELL
end

In the preceding example, we have set an additional provision of system packages with
simple shell script. When you feel that Vagrantfile is ready, you can run your virtual
machine using the following command:

vagrant up

Modern Python Development Environments Chapter 2

[39]

The initial start can take a few minutes, because the actual box image must be downloaded
from the web. There are also some initialization processes that may take a while every time
the existing VM is brought up, and the amount of time depends on the choice of provider,
image, and your system's performance. Usually, this takes only a couple of seconds. Once
the new Vagrant environment is up and running, developers can connect to it through SSH
using the following shorthand:

vagrant ssh

This can be done anywhere in the project source tree below the location of Vagrantfile.
For the developers' convenience, Vagrant will traverse all directories above the user's
current working directory in the filesystem tree, looking for the configuration file and
matching it with the related VM instance. Then, it establishes the secure shell connection, so
the development environment can be interacted with just like an ordinary remote machine.
The only difference is that the whole project source tree (root defined as the location
of Vagrantfile) is available on the VM's filesystem under /vagrant/. This directory is
automatically synchronized with your host filesystem, so you can normally work in the IDE
or editor of your choice run on the host, and can treat the SSH session to your Vagrant VM
just like a normal local Terminal session.

Let's take a look at virtual environments using Docker in the next section.

Virtual environments using Docker
Containers are an alternative to full machine virtualization. It is a lightweight method of
virtualization, where the kernel and operating system allow multiple isolated user space
instances to be run. OS is shared between containers and the host, so it theoretically
requires less overhead than in full virtualization. Such a container contains only application
code and its system-level dependencies, but, from the perspective of processes running
inside, it looks like a completely isolated system environment.

Software containers got their popularity mostly thanks to Docker, which is one of the
available implementations. Docker allows to describe its container in the form of a simple
text document called Dockerfile. Containers from such definitions can be built and
stored. It also supports incremental changes, so if new things are added to the container
then it does not need to be recreated from scratch.

Let's compare containerization and virtualization in the next section

Modern Python Development Environments Chapter 2

[40]

Containerization versus virtualization
Different tools, such as Docker and Vagrant, seem to overlap in features – but the main
difference between them is the reason why these tools were built. Vagrant, as we
mentioned earlier, is built primarily as a tool for development. It allows us to bootstrap the
whole virtual machine with a single command, but does not allow us to simply pack such
an environment as a complete deliverable artifact and deploy or release it. Docker, on the
other hand, is built exactly for that purpose – preparing complete containers that can be
sent and deployed to production as a whole package. If implemented well, this can greatly
improve the process of product deployment. Because of that, using Docker and similar
solutions (Rocket for example) during development only makes more sense if such
containers are also to be used in the deployment process on production.

Due to some implementation nuances, the environments that are based on containers may
sometimes behave differently than environments based on virtual machines. If you decide
to use containers for development, but don't decide to use them on target production
environments, you'll lose some of the consistency guarantees that were the main reason for
environment isolation. But, if you already use containers in your target production
environments, then you should always replicate production conditions rather than using
the same technique. Fortunately, Docker, which is currently the most popular container
solution, provides an amazing docker-compose tool that makes the management of local
containerized environments extremely easy.

Let's write our first Dockerfile in the next section.

Writing your first Dockerfile
Every Docker-based environment starts with Dockerfile. Dockerfile is a format description
of how to create a Docker image. You can think about the Docker images in a similar way to
how you would think about images of virtual machines. It is a single file (composed of
many layers) that encapsulates all system libraries, files, source code, and other
dependencies that are required to execute your application.

Every layer of a Docker image is described in the Dockerfile by a single instruction in the
following format:

INSTRUCTION arguments

Modern Python Development Environments Chapter 2

[41]

Docker supports plenty of instructions, but the most basic ones that you need to know in
order to get started are as follows:

FROM <image-name>: This describes the base image that your image will be
based on.
COPY <src>... <dst>: This copies files from the local build context (usually
project files) and adds them to the container's filesystem.
ADD <src>... <dst>: This works similarly to COPY but automatically unpacks
archives and allows <src> to be URLs.
RUN <command>: This runs specified commands on top of previous layers, and
commits changes that this command made to the filesystem as a new image
layer.
ENTRYPOINT ["<executable>", "<param>", ...]: This configures the
default command to be run as your container. If no entry point is specified
anywhere in the image layers, then Docker defaults to /bin/sh -c.
CMD ["<param>", ...]: This specifies the default parameters for image entry
points. Knowing that the default entry point for Docker is /bin/sh -c, this
instruction can also take the form of CMD ["<executable>", "<param>",
...], although it is recommended to define the target executable directly in the
ENTRYPOINT instruction and use CMD only for default arguments.
WORKDIR <dir>: This sets the current working directory for any of the following
RUN, CMD, ENTRYPOINT, COPY, and ADD instructions.

To properly illustrate the typical structure of Dockerfile, let's assume that we want to
dockerize the built-in Python web server available through the http.server module with
some predefined static files that this server should serve. The structure of our project files
could be as follows:

.
├── Dockerfile
├── README
└── static
 ├── index.html
 └── picture.jpg

Locally, you could run that Python's http.server on a default HTTP port with the
following simple command:

python3.7 -m http.server --directory static/ 80

Modern Python Development Environments Chapter 2

[42]

This example is of course, very trivial, and using Docker for it is using a sledgehammer to
crack a nut. So, just for the purpose of this example, let's pretend that we have a lot of code
in the project that generates these static files. We would like to deliver only these static files,
and not the code that generates them. Let's also assume that the recipients of our image
know how to use Docker but don't know how to use Python.

So, what we want to achieve is the following:

Hide some complexity from the user—especially the fact that we use Python and
the HTTP server that's built-in into Python
Package Python3.7 executable with all its dependencies and all static files
primarily available in our project directory
Provide some defaults to run the server on port 80

With all these requirements, our Dockerfile could take the following form:

Let's define base image.
"python" is official Python image.
The "slim" versions are sensible starting
points for other lightweight Python-based images
FROM python:3.7-slim

In order to keep image clean let's switch
to selected working directory. "/app/" is
commonly used for that purpose.
WORKDIR /app/

These are our static files copied from
project source tree to the current working
directory.
COPY static/ static/

We would run "python -m http.server" locally
so lets make it an entry point.
ENTRYPOINT ["python3.7", "-m", "http.server"]

We want to serve files from static/ directory
on port 80 by default so set this as default arguments
of the built-in Python HTTP server
CMD ["--directory", "static/", "80"]

Let's take a look at how to run containers in the next section.

Modern Python Development Environments Chapter 2

[43]

Running containers
Before your container can be started, you'll first need to build an image defined in the
Dockerfile. You can build the image using the following command:

docker build -t <name> <path>

The -t <name> argument allows us to name the image with a readable identifier. It is
totally optional, but without it you won't be able to easily reference a newly created image.
The <path> argument specifies the path to the directory where your Dockerfile is located.
Let's assume that we were already running the command from the root of the project we
presented in the previous section, and we want to tag our image with the name
webserver. The docker build command invocation will be following, and its output
may be as follows:

$ docker build -t webserver .
Sending build context to Docker daemon 4.608kB
Step 1/5 : FROM python:3.7-slim
3.7-slim: Pulling from library/python
802b00ed6f79: Pull complete
cf9573ca9503: Pull complete
b2182f7db2fb: Pull complete
37c0dde21a8c: Pull complete
a6c85c69b6b4: Pull complete
Digest:
sha256:b73537137f740733ef0af985d5d7e5ac5054aadebfa2b6691df5efa793f9fd6d
Status: Downloaded newer image for python:3.7-slim
 ---> a3aec6c4b7c4
Step 2/5 : WORKDIR /app/
 ---> Running in 648a5bb2d9ab
Removing intermediate container 648a5bb2d9ab
 ---> a2489d084377
Step 3/5 : COPY static/ static/
 ---> 958a04fa5fa8
Step 4/5 : ENTRYPOINT ["python3.7", "-m", "http.server", "--bind", "80"]
 ---> Running in ec9f2a63c472
Removing intermediate container ec9f2a63c472
 ---> 991f46cf010a
Step 5/5 : CMD ["--directory", "static/"]
 ---> Running in 60322d5a9e9e
Removing intermediate container 60322d5a9e9e
 ---> 40c606a39f7a
Successfully built 40c606a39f7a
Successfully tagged webserver:latest

Modern Python Development Environments Chapter 2

[44]

Once created, you can inspect the list of available images using the docker images
command:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
webserver latest 40c606a39f7a 2 minutes ago 143MB
python 3.7-slim a3aec6c4b7c4 2 weeks ago 143MB

The shocking size of container images
The 143 MB of image for a simple Python image may seem like a lot, but it
isn't really anything to worry about. For the sake of brevity, we have used
a base image that is simple to use. There are other images that have been
crafted specially to minimize this size, but these are usually dedicated to
more experienced Docker users. Also, thanks to the layered structure of
Docker images, if you're using many containers, the base layers can be
cached and reused, so an eventual space overhead is rarely an issue.

Once your image is built and tagged, you can run a container using the docker run
command. Our container is an example of a web service, so we will have to additionally tell
Docker that we want to publish the container's ports by binding them locally:

docker run -it --rm -p 80:80 webserver

Here is an explanation of the specific arguments of the preceding command:

-it: These are actually two concatenated options: -i and -t. -i (like interactive)
keeps STDIN open, even if the container process is detached, and -t (like tty)
allocates pseudo-TTY for the container. In short, thanks to these two options, we
will be able to see live logs from http.server and ensure that the keyboard
interrupt will cause the process to exit. It will simply behave the same way as we
would start Python, straight from the command line.
--rm: Tells Docker to automatically remove container when it exits.

-p 80:80: Tells Docker to publish the container's port 80 by binding port 80
on the host's interface.

Setting up complex environments
While the basic usage of Docker is pretty straightforward for basic setups, it can be bit
overwhelming once you start to use it in multiple projects. It is really easy to forget about
specific command-line options, or which ports should be published on which images. But
things start to be really complicated when you have one service that needs to communicate
with others. Single docker containers should only contain one running process.

Modern Python Development Environments Chapter 2

[45]

This means that you really shouldn't put any additional process supervision tools, such as
Supervisor and Circus, and should instead set up multiple containers that communicate
with each other. Each service may use a completely different image, provide different
configuration options, and expose ports that may or may not overlap.

The best tool that you can use in both simple and complex scenarios is Compose. Compose
is usually distributed with Docker, but in some Linux distributions (for example, Ubuntu),
it may not be available by default, and must be installed as a separate package from the
packages repository. Compose provides a powerful command-line utility named docker-
compose, and allows you to describe multi-container applications using the YAML syntax.

Compose expects the specially named docker-compose.yml file to be in your project
directory. An example of such a file for our previous project could be as follows:

version: '3'

services:
 webserver:
 # this tell Compose to build image from
 # local (.) directory
 build: .
 # this is equivalent to "-p" option of
 # the "docker build" command
 ports:
 - "80:80"

 # this is equivalent to "-t" option of
 # the "docker build" command
 tty: true

If you create such a docker-compose.yml file in your project, then your whole application
environment can be started and stopped with two simple commands:

docker-compose up

docker-compose down

Useful Docker recipes for Python
Docker and containers in general are such a vast topic that it is impossible to cover them in
one short section of this book. Thanks to Compose, it is really easy to start working with
Docker without knowing a lot about how it works internally. If you're new to Docker, you'll
have to eventually slow down a bit, take the Docker documentation, and read it
thoughtfully in order to use it efficiently and overcome some of the problems that are
inevitable.

Modern Python Development Environments Chapter 2

[46]

The following are some quick tips and recipes that allow you to defer that moment and
solve most of the common problems that you may have to deal with sooner or later.

Reducing the size of containers
A common concern of new Docker users is the size of their container images. It's true that
containers provide a lot of space overhead compared to plain Python packages, but it is
usually nothing if we compare the size of images for virtual machines. However, it is still
very common to host many services on a single virtual machine, but with a container-based
approach, you should definitely have a separate image for every service. This means that
with a lot of services, the overhead may become noticeable.

If you want to limit the size of your images, you can use two complementary techniques:

Use a base image that is designed specifically for that purpose: Alpine Linux is1.
an example of a compact Linux distribution that is specifically tailored to provide
very small and lightweight Docker images. The base image is only 5 MB in size,
and provides an elegant package manager that allows you to keep your images
compact, too.
Take into consideration the characteristics of the Docker overlay filesystem:2.
Docker images consist of layers where each layer encapsulates the difference in
the root filesystem between itself and the previous layer. Once the layer is
committed the size of the image cannot be reduced. This means that if you need a
system package as a build dependency, and it may be later discarded from the
image, then instead of using multiple RUN instructions, it may be better to do
everything in a single RUN instruction with chained shell commands to avoid
excessive layer commits.

These two techniques can be illustrated by the following Dockerfile:

Here we use bare alpine to illustrate
package management as it lacks Python
by default. For Python projects in general
the 'python:3.7-alpine' is probably better
choice.
FROM alpine:3.7

Add python3 package as alpine image lacks it by default
RUN apk add python3

Run multiple commands in single RUN instruction
so space can be reclaimed after the 'apk del py3-pip'
command because image layer is committed only after
whole whole instruction.

Modern Python Development Environments Chapter 2

[47]

RUN apk add py3-pip && \
 pip3 install django && \
 apk del py3-pip

(...)

Addressing services inside of a Compose environment
Complex applications often consist of multiple services that communicate with each other.
Compose allows us to define such applications with ease. The following is an example
docker-compose.yml file that defines the application as a composition of two services:

version: '3'

services:
 webserver:
 build: .
 ports:
 - "80:80"
 tty: true

 database:
 image: postgres
 restart: always

The preceding configuration defines two services:

webserver: This is a main application service container with images built from
the local Dockerfile
database: This is a PostgreSQL database container from an official postgres
Docker image

We assume that the webserver service wants to communicate with the database service
over the network. In order to set up such communications, we need to know the service IP
address or hostname so that it can be used as an application configuration. Thankfully,
Compose is a tool that was designed exactly for such scenarios, so it will make it a lot more
easier for us.

Whenever you start your environment with the docker-compose up command, Compose
will create a dedicated Docker network by default, and will register all services in that
network using their names as their hostnames. This means that the webserver service can
use the database:5432 address to communicate with its database (5432 is the default
PostgreSQL port), and any other service in that Compose applicant will be able to access
the HTTP endpoint of the webserver service under the http://webserver:80 address.

Modern Python Development Environments Chapter 2

[48]

Even though the service hostnames in Compose are easily predictable, it isn't good practice
to hardcode any addresses in your application or its configuration. The best approach
would be to provide them as environment variables that can be read by an application on
startup. The following example shows how arbitrary environment variables can be defined
for each service in a docker-compose.yml file:

version: '3'

services:
 webserver:
 build: .
 ports:
 - "80:80"
 tty: true
 environment:
 - DATABASE_HOSTNAME=database
 - DATABASE_PORT=5432

 database:
 image: postgres
 restart: always

Communicating between multiple Compose environments
If you build a system composed of multiple independent services and/or applications, you
will very likely want to keep their code in multiple independent code repositories
(projects). The docker-compose.yml files for every Compose application are usually kept
in the same code repository as the application code. The default network that was created
by Compose for a single application is isolated from the networks of other applications. So,
what can you do if you suddenly want your multiple independent applications to
communicate with each other?

Fortunately, this is another thing that is extremely easy with Compose. The syntax of
the docker-compose.yml file allows you to define a named external Docker network as
the default network for all services defined in that configuration. The following is an
example configuration that defines an external network named my-interservice-
network:

version: '3'

networks:
 default:
 external:
 name: my-interservice-network

Modern Python Development Environments Chapter 2

[49]

services:
 webserver:
 build: .
 ports:
 - "80:80"
 tty: true
 environment:
 - DATABASE_HOSTNAME=database
 - DATABASE_PORT=5432

 database:
 image: postgres
 restart: always

Such external networks are not managed by Compose, so you'll have to create it manually
with the docker network create command, as follows:

docker network create my-interservice-network

Once you have done this, you can use this external network in other docker-compose.yml
files for all applications that should have their services registered in the same network. The
following is an example configuration for other applications that will be able to
communicate with both database and webserver services over my-interservice-
network, even though they are not defined in the same docker-compose.yml file:

version: '3'

networks:
 default:
 external:
 name: my-interservice-network

services:
 other-service:
 build: .
 ports:
 - "80:80"
 tty: true
 environment:
 - DATABASE_HOSTNAME=database
 - DATABASE_PORT=5432
 - WEBSERVER_ADDRESS=http://webserver:80

Let's take a look at popular productivity tools in the next section.

Modern Python Development Environments Chapter 2

[50]

Popular productivity tools
Productivity tool is bit of a vague term. On one hand, almost every open source code
package that has been released and is available online is a kind of productivity booster – it
provides ready-to-use solutions to some problem, so that no one needs to spend time on it
(ideally speaking). On the other hand, you could say that the whole of Python is about
productivity—and both are undoubtedly true. Almost everything in this language and
community surrounding it seems to be designed in order to make software development as
productive as possible.

This creates a positive feedback loop. Since writing code is fun and easy, a lot of
programmers use their free time to create tools that make it even easier and fun. And this
fact will be used here as a basis for a very subjective and non-scientific definition of a
productivity tool – a piece of software that makes development easier and more fun.

By nature, productivity tools focus mainly on certain elements of the development process,
such as testing, debugging, and managing packages, and are not core parts of products that
they help to build. In some cases, they may not even be referred to anywhere in the project's
codebase, despite being used on a daily basis.

The most important productivity tools, pip and venv, were already discussed earlier in this
chapter. Some of them have packages for specific problems, such as profiling and testing,
which have their own chapters in this book. This section is dedicated to other tools that are
really worth mentioning, but have no specific chapter in this book where they could be
introduced.

Custom Python shells – ipython, bpython,
ptpython, and so on
Python programmers spend a lot of time in interactive interpreter sessions. It is very good
for testing small code snippets, accessing documentation, or even debugging code at
runtime. The default interactive Python session is very simple, and does not provide many
features, such as tab completion or code introspection helpers. Fortunately, the default
Python shell can be easily extended and customized.

Modern Python Development Environments Chapter 2

[51]

If you use an interactive shell very often, you can easily modify the behavior of it prompt.
Python at startup reads the PYTHONSTARTUP environment variable, looking for the path of
the custom initializations script. Some operating system distributions where Python is a
common system component (for example, Linux, macOS) may be already preconfigured to
provide a default startup script. It is commonly found in the users, home directory under
the .pythonstartup name. These scripts often use the readline module (based on the
GNU readline library) together with rlcompleter in order to provide interactive tab
completion and command history.

If you don't have a default python startup script, you can easily build your own. A basic
script for command history and tab completion can be as simple as the following:

python startup file

import atexit
import os

try:
 import readline
except ImportError:
 print("Completion unavailable: readline module not available")
else:
 import rlcompleter
 # tab completion
 readline.parse_and_bind('tab: complete')

 # Path to history file in user's home directory.
 # Can use your own path.
 history_file = os.path.join(os.environ['HOME'],
'.python_shell_history')
 try:
 readline.read_history_file(history_file)
 except IOError:
 pass

 atexit.register(readline.write_history_file, history_file)
 del os, history_file, readline, rlcompleter

Create this file in your home directory and call it .pythonstartup. Then, add
a PYTHONSTARTUP variable in your environment using the path of your file.

Modern Python Development Environments Chapter 2

[52]

Setting up the PYTHONSTARTUP environment variable
If you are running Linux or macOS, the simplest way is to create the startup script in your
home folder. Then, link it with a PYTHONSTARTUP environment variable that's been set in
the system shell startup script. For example, Bash and Korn shell use the .profile file,
where you can insert a line, as follows:

export PYTHONSTARTUP=~/.pythonstartup

If you are running Windows, it is easy to set a new environment variable as an
administrator in the system preferences, and save the script in a common place instead of
using a specific user location.

Writing on the PYTHONSTARTUP script may be a good exercise, but creating a good custom
shell all alone is a challenge that only a few can find time for. Fortunately, there are a few
custom Python shell implementations that immensely improve the experience of interactive
sessions in Python.

IPython
IPython (https://ipython.readthedocs.io/en/stable/overview.html) provides an
extended Python command shell. Among the features that it provides, the most interesting
ones are as follows:

Dynamic object introspection
System shell access from the prompt
Profiling direct support
Debugging facilities

Now, IPython is a part of the larger project called Jupyter, which provides interactive
notebooks with live code that can be written in many different languages.

bpython
bpython (https://bpython-interpreter.org/) advertises itself as a fancy interface to the
Python interpreter. Here are some of the accented features on the projects page:

In-line syntax highlighting
Readline-like autocomplete with suggestions displayed as you type

https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://ipython.readthedocs.io/en/stable/overview.html
https://bpython-interpreter.org/

Modern Python Development Environments Chapter 2

[53]

Expected parameter list for any Python function
Auto-indentation
Python 3 support

ptpython
ptpython (https://github.com/jonathanslenders/ptpython/) is another approach to the
topic of advanced Python shells. What is interesting about this project is that core prompt
utilities implementation is available as a separate package, called prompt_toolkit (from
the same author). This allows us to easily create various aesthetically pleasing interactive
command-line interfaces.

It is often compared to bpython in functionalities, but the main difference is that it enables
compatibility mode with IPython and its syntax enables additional features, such
as %pdb, %cpaste, or %profile.

Incorporating shells in your own scripts and
programs
Sometimes, there is a need to incorporate a read-eval-print loop (REPL), similar to Python's
interactive session, inside of your own software. This allows for easier experimentation
with your code and inspection of its internal state. The simplest module that allows for
emulating Python's interactive interpreter already comes with the standard library and is
named code.

The script that starts interactive sessions consists of one import and single function call:

import code
code.interact()

You can easily do some minor tuning, such as modify a prompt value or add banner and
exit messages, but anything more fancy will require a lot more work. If you want to have
more features, such as code highlighting, completion, or direct access to the system shell, it
is always better to use something that was already built by someone. Fortunately, all of the
interactive shells that were mentioned in the previous section can be embedded in your
own program as easily as the code module.

https://github.com/jonathanslenders/ptpython/

Modern Python Development Environments Chapter 2

[54]

The following are examples of how to invoke all of the previously mentioned shells inside
of your code:

Example for IPython
import IPython
IPython.embed()

Example for bpython
import bpython
bpython.embed()

Example for ptpython
from ptpython.repl import embed
embed(globals(), locals())

Interactive debuggers
Code debugging is an integral element of the software development process. Many
programmers can spend most of their life using only extensive logging
and print statements as their primary debugging tools, but most professional developers
prefer to rely on some kind of debugger.

Python already ships with a built-in interactive debugger called pdb (refer
to https://docs.python.org/3/library/pdb.html). It can be invoked from the command
line on the existing script, so Python will enter post-mortem debugging if the program exits
abnormally:

python -m pdb script.py

Post-mortem debugging, while useful, does not cover every scenario. It is useful only when
the application exits with some exception if the bug occurs. In many cases, faulty code just
behaves abnormally, but does not exit unexpectedly. In such cases, custom breakpoints can
be set on a specific line of code using this single-line idiom:

import pdb; pdb.set_trace()

This will cause the Python interpreter to start the debugger session on this line during
runtime.

https://docs.python.org/3/library/pdb.html

Modern Python Development Environments Chapter 2

[55]

pdb is very useful for tracing issues, and at first glance it may look very familiar to the well-
known GNU Debugger (GDB). Because Python is a dynamic language, the pdb session is
very similar to an ordinary interpreter session. This means that the developer is not limited
to tracing code execution, but can call any code and even perform module imports.

Sadly, because of its roots (bdb), your first experience with pdb can be a bit overwhelming
due to the existence of cryptic short-letter debugger commands such as h, b, s, n, j, and r.
When in doubt, the help pdb command which can be typed during the debugger session,
will provide extensive usage and additional information.

The debugger session in pdb is also very simple and does not provide additional features
such as tab completion or code highlighting. Fortunately, there are a few packages available
on PyPI that provide such features from alternative Python shells, as mentioned in the
previous section. The most notable examples are as follows:

ipdb: This is a separate package based on ipython
ptpdb: This is a separate package based on ptpython
bpdb: This is bundled with bpython

Summary
This chapter was all about development environments for Python programmers. We've
discussed the importance of environment isolation for Python projects. You've learned two
different levels of environment isolation (application-level and system-level), and multiple
tools that allow you to create them in a consistent and repeatable manner. This chapter
ended with a review of a few tools that improve the ways in which you can experiment
with Python or debug your programs.

Now that you all of these tools under your tool belt, you are well-prepared for the next few
chapters, where we will discuss multiple features of modern Python syntax.

In the next chapter, we will focus on the best practices for writing code in Python (language
idioms) and provide a summary of selected elements of Python syntax that may be new for
intermediate Python users, or familiar for those experienced with older versions of Python.

We will also take a look at internal CPython type implementations and their computational
complexities as a rationale for provided idioms.

2
Section 2: Python

Craftsmanship
This section provides an overview of the current landscape of Python development, from
the perspective of the software craftsman – someone who programs for a living and must
know their tools and language inside-out. The reader will learn what the newest exciting
elements of Python syntax are and how to reliably and consistently deliver quality
software.

The following chapters are included in this section:

Chapter 3, Modern Syntax Elements – Below the Class Level
Chapter 4, Modern Syntax Elements – Above the Class Level
Chapter 5, Elements of Metaprogramming
Chapter 6, Choosing Good Names
Chapter 7, Writing a Package
Chapter 8, Deploying the Code
Chapter 9, Python Extensions in Other Languages

3
Modern Syntax Elements -

Below the Class Level
Python has evolved a lot in the last few years. From the earliest version to the current one
(3.7 at this time), a lot of enhancements have been made to make the language clearer,
cleaner, and easier to write. Python basics have not changed drastically, but the tools it
provides are now a lot more ergonomic.

As Python evolves, your software should too. Taking great care over how your program is
written weighs heavily on how it will evolve. Many programs end up being ditched and
rewritten from scratch because of their obtuse syntax, unclear APIs, or unconventional
standards. Using new features of a programming language that make your code more
expressive and readable increases the maintainability of your software and so prolongs its
lifetime.

This chapter presents the most important elements of modern Python syntax, and tips on
their usage. We will also discuss some implementation details of the built-in Python types
that have various implications on your code performance, but we won't be digging too
much into optimization techniques. The code performance tips for speed improvement or
memory usage will be covered later in Chapter 13, Optimization – Principles and Profiling
Techniques, and Chapter 14, Optimization – Some Powerful Techniques.

In this chapter, we will cover the following topics:

Python's built-in types
Supplemental data types and containers
Advanced syntax
Functional-style features of Python
Function and variable annotations
Other syntax elements you may not know yet

Modern Syntax Elements - Below the Class Level Chapter 3

[58]

Technical requirements
The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Third-Edition/tree/master/chapter3.

Python's built-in types
Python provides a great set of data types. This is true for both numeric types and also
collections. Regarding the numeric types, there is nothing special about their syntax. There
are, of course, some differences for defining literals of every type and some (maybe) not
well-known details regarding operators, but there isn't a lot that could surprise you in
Python regarding the syntax for numeric types. Things change when it comes to collections
and strings. Despite the there should be only one way to do something mantra, the Python
developer is really left with plenty of choices. Some of the code patterns that seem intuitive
and simple to beginners are often considered non-Pythonic by experienced programmers,
because they are either inefficient or simply too verbose.

Such Pythonic patterns for solving common problems (many programmers call these
idioms) may often seem like only aesthetics. You couldn't be more wrong in thinking that.
Most of the idioms are driven by the fact that Python is implemented internally and how
the built-in structures and modules work. Knowing more about such details is essential for
a good understanding of the language. Unfortunately, the community itself is not free from
myths and stereotypes about how things in Python work. Only by digging deeper by
yourself will you be able to tell which of the popular statements about Python are really
true.

Let's look at strings and bytes.

Strings and bytes
The topic of strings may provide some confusion for programmers that used to program
only in Python 2. In Python 3, there is only one datatype capable of storing textual
information. It is str, or simply string. It is an immutable sequence that stores Unicode
code points. This is the major difference from Python 2, where str represented byte strings
– something that is now handled by the bytes objects (but not exactly in the same way).

https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter3

Modern Syntax Elements - Below the Class Level Chapter 3

[59]

Strings in Python are sequences. This single fact should be enough to include them in a
section covering other container types. But they differ from other container types in one
important detail. Strings have very specific limitations on what type of data they can store,
and that is Unicode text.

bytes, and its mutable alternative, bytearray, differs from str by allowing only bytes as
a sequence value, and bytes in Python are integers in the 0 <= x < 256 range. This may
be a bit confusing at the beginning, because, when printed, they may look very similar to
strings:

>>> print(bytes([102, 111, 111]))
b'foo'

The bytes and bytearray types allow you to work with raw binary data that may not
always have to be textual (for example, audio/video files, images, and network packets).
The true nature of these types is revealed when they are converted into other sequence
types, such as list or tuple:

>>> list(b'foo bar')
[102, 111, 111, 32, 98, 97, 114]
>>> tuple(b'foo bar')
(102, 111, 111, 32, 98, 97, 114)

A lot of Python 3 controversy was about breaking the backwards compatibility for string
literals and how Python deals with Unicode. Starting from Python 3.0, every string literal
without any prefix is Unicode. So, literals enclosed by single quotes ('), double quotes ("),
or groups of three quotes (single or double) without any prefix represent the str data type:

>>> type("some string")
<class 'str'>

In Python 2, the Unicode literals required a u prefix (like u"some string"). This prefix is
still allowed for backwards compatibility (starting from Python 3.3), but does not hold any
syntactic meaning in Python 3.

Byte literals were already presented in some of the previous examples, but let's explicitly
present their syntax for the sake of consistency. Bytes literals are enclosed by single quotes,
double quotes, or triple quotes, but must be preceded with a b or B prefix:

>>> type(b"some bytes")
<class 'bytes'>

Modern Syntax Elements - Below the Class Level Chapter 3

[60]

Note that Python does not provide a syntax for bytearray literals. If you want to create
a bytearray value, you need to use a bytes literal and a bytearray() type constructor:

>>> bytearray(b'some bytes')
bytearray(b'some bytes')

It is important to remember that Unicode strings contain abstract text that is independent
from the byte representation. This makes them unable to be saved on the disk or sent over
the network without encoding them to binary data. There are two ways to encode string
objects into byte sequences:

Using the str.encode(encoding, errors) method, which encodes the string
using a registered codec for encoding. Codec is specified using
the encoding argument, and, by default, it is 'utf-8'. The second errors,
argument specifies the error handling scheme. It can
be 'strict' (default), 'ignore' , 'replace' , 'xmlcharrefreplace', or
any other registered handler (refer to the built-in codecs module
documentation).
Using the bytes(source, encoding, errors) constructor, which creates a
new bytes sequence. When the source is of the str type, then
the encoding argument is obligatory and it does not have a default value. The
usage of the encoding and errors arguments is the same as for
the str.encode() method.

Binary data represented by bytes can be converted into a string in an analogous way:

Using the bytes.decode(encoding, errors) method, which decodes the
bytes using the codec registered for encoding. The arguments of this method
have the same meaning and defaults as the arguments of str.encode().
Using the str(source, encoding, error) constructor, which creates a new
string instance. Similar to the bytes() constructor, the encoding argument in
the str() call has no default value and must be provided if the bytes sequence is
used as a source.

Modern Syntax Elements - Below the Class Level Chapter 3

[61]

Naming – bytes versus byte string
Due to changes made in Python 3, some people tend to refer to
the bytes instances as byte strings. This is mostly due to historic reasons
– bytes in Python 3 is the sequence type that is the closest one to
the str type from Python 2 (but not the same). Still, the bytes instance is
a sequence of bytes and also does not need to represent textual data. So, in
order to avoid any confusion, it is advised to always refer to them as
either bytes or byte sequence, despite their similarities to strings. The
concept of strings is reserved for textual data in Python 3, and this is now
always str.

Let's look into the implementation details of strings and bytes.

Implementation details
Python strings are immutable. This is also true for byte sequences. This is an important fact,
because it has both advantages and disadvantages. It also affects the way strings should be
handled in Python efficiently. Thanks to immutability, strings can be used as dictionary
keys or set collection elements because, once initialized, they will never change their
value. On the other hand, whenever a modified string is required (even with only tiny
modification), a completely new instance needs to be created. Fortunately, bytearray, as a
mutable version of bytes, does not have such an issue. Byte arrays can be modified in-
place (without creating new objects) through item assignments and can be dynamically
resized, exactly like lists – using appends, pops, inserts, and so on.

Let's discuss string concatenation in the next section.

String concatenation
The fact that Python strings are immutable imposes some problems when multiple string
instances need to be joined together. As we stated previously, concatenating immutable
sequences results in the creation of a new sequence object. Consider that a new string is
built by repeated concatenation of multiple strings, as follows:

substrings = ["These ", "are ", "strings ", "to ", "concatenate."]
s = ""
for substring in substrings:
 s += substring

Modern Syntax Elements - Below the Class Level Chapter 3

[62]

This will result in quadratic runtime costs in the total string length. In other words, it is
highly inefficient. For handling such situations, the str.join() method is available. It
accepts iterables of strings as the argument and returns joined strings. The call to join() of
the str type can be done in two forms:

using empty literal
s = "".join(substrings)

using "unbound" method call
str.join("", substrings)

The first form of the join() call is the most common idiom. The string that provides this
method will be used as a separator between concatenated substrings. Consider the
following example:

>>> ','.join(['some', 'comma', 'separated', 'values'])
'some,comma,separated,values'

It is worth remembering that just because it is faster (especially for large lists), it does not
mean that the join() method should be used in every situation where two strings need to
be concatenated. Despite being a widely recognized idiom, it does not improve code
readability. And readability counts! There are also some situations where join() may not
perform as well as ordinary concatenation with a + operator. Here are some examples:

If the number of substrings is very small and they are not contained already by
some iterable variable (existing list or tuple of strings) – in some cases the
overhead of creating a new sequence just to perform concatenation can
overshadow the gain of using join().
When concatenating short literals – thanks to some interpreter-level
optimizations, such as constant folding in CPython (see the following
subsection), some complex literals (not only strings), such as 'a' + 'b' +
'c', can be translated into a shorter form at compile time (here 'abc'). Of
course, this is enabled only for constants (literals) that are relatively short.

Ultimately, if the number of strings to concatenate is known beforehand, the best
readability is ensured by proper string formatting either using the str.format() method,
the % operator, or f-string formatting. In code sections where the performance is not critical
or the gain from optimizing string concatenation is very little, string formatting is
recommended as the best alternative to concatenation.

Modern Syntax Elements - Below the Class Level Chapter 3

[63]

Constant folding, the peephole optimizer, and the AST optimizer
CPython uses various techniques to optimize your code. The first optimization takes place
as soon as source code is transformed into the form of the abstract syntax tree, just before it
is compiled into byte code. CPython can recognize specific patterns in the abstract syntax
tree and make direct modifications to it. The other kind of optimizations are handled by the
peephole optimizer. It implements a number of common optimizations directly on Python's
byte code. As we mentioned earlier, constant folding is one such feature. It allows the
interpreter to convert complex literal expressions (such as "one" + " " + "thing", " "
* 79, or 60 * 1000) into a single literal that does not require any additional operations
(concatenation or multiplication) at runtime.

Until Python 3.5, all constant folding was done in CPython only by the peephole optimizer.
For strings, the resulting constants were limited in length by a hardcoded value. In Python
3.5, this value was equal to 20. In Python 3.7, most of the constant folding optimizations are
handled earlier on the abstract syntax tree level. These particular details are a curiosity
rather than a thing that can be relied on in your day-to-day programming. Information
about other interesting optimizations performed by AST and peephole optimizers can be
found in the Python/ast_opt.c and Python/peephole.c files of Python's source code.

Let's take a look at string formatting with f-strings.

String formatting with f-strings
F-strings are one of the most beloved new Python features that came with Python 3.6. It's
also one of the most controversial features of that release. The f-strings or formatted string
literals that were introduced by the PEP 498 document add a new way to format strings in
Python. Before Python 3.6, there were two basic ways to format strings:

Using % formatting for example "Some string with included % value" %
"other"

Using the str.format() method for example "Some string with included
{other} value".format(other="other")

Formatted string literals are denoted with the f prefix, and their syntax is closest to the
str.format() method, as they use a similar markup for denoting replacement fields in
the text that has to be formatted. In the str.format() method, the text substitutions refer
to arguments and keyword arguments that are passed to the formatting method. You can
use either anonymous substitutions that will translate to consecutive argument indexes,
explicit argument indexes, or keyword names.

Modern Syntax Elements - Below the Class Level Chapter 3

[64]

This means that the same string can be formatted in different ways:

>>> from sys import version_info
>>> "This is Python {}.{}".format(*version_info)
'This is Python 3.7'

>>> "This is Python {0}.{1}".format(*version_info)
'This is Python 3.7'

>>> "This is Python {major}.{minor}".format(major=version_info.major,
minor=version_info.minor)
'This is Python 3.7'

What makes f-strings special is that replacement fields can be any Python expression, and it
will be evaluated at runtime. Inside of strings, you have access to any variable that is
available in the same namespace as the formatted literal. With f-strings, the preceding
examples could be written in the following way:

>>> from sys import version_info
>>> f"This is Python {version_info.major}.{version_info.minor}"
'This is Python 3.7'

The ability to use expressions as replacement fields make formatting code simpler and
shorter. You can also use the same formatting specifiers of replacement fields (for padding,
aligning, signs, and so on) as the str.format() method, and the syntax is as follows:

f"{replacement_field_expression:format_specifier}"

The following is a simple example of code that prints the first ten powers of the number 10
using f-strings and aligns results using string formatting with padding:

>>> for x in range(10):
... print(f"10^{x} == {10**x:10d}")
...
10^0 == 1
10^1 == 10
10^2 == 100
10^3 == 1000
10^4 == 10000
10^5 == 100000
10^6 == 1000000
10^7 == 10000000
10^8 == 100000000
10^9 == 1000000000

Modern Syntax Elements - Below the Class Level Chapter 3

[65]

The full formatting specification of the Python string is almost like a separate mini-
language inside Python. The best reference for it is the official documentation which you
can find under https://docs.python.org/3/library/string.html. Another useful
internet resource for that topic is https://pyformat.info/, which presents the most
important elements of this specification using practical examples.

Let's take a look at containers in the next section.

Containers
Python provides a good selection of built-in data containers that allow you to efficiently
solve many problems if you choose them wisely. Types that you should already know of
are those that have dedicated literals:

Lists
Tuples
Dictionaries
Sets

Python is, of course, not limited to these four containers, and it extends the list of possible
choices through its standard library. In many cases, solutions to some problems may be as
simple as making a good choice for the data structure to hold your data. This part of the
book aims to ease such decisions by providing deeper insight of the possible options.

Lists and tuples
Two of the most basic collection types in Python are lists and tuples, and they both
represent sequences of objects. The basic difference between them should be obvious for
anyone who has spent more than a few hours with Python; lists are dynamic, so they can
change their size, while tuples are immutable (cannot be modified after they are created).

Lists and tuples in Python have various optimizations that make allocations/deallocations
of small objects fast. They are also the recommended datatypes for structures where the
position of the element is information by itself. For example, a tuple may be a good choice
for storing a pair of (x, y) coordinates. Implementation details regarding tuples are not
interesting. The only important thing about them in the scope of this chapter is
that tuple is immutable and thus hashable. A detailed explanation of this section will be
covered later in the Dictionaries section. More interesting than tuples is its dynamic
counterpart – lists. In the next section, we will discuss how it really works, and how to deal
with it efficiently.

https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html
https://pyformat.info
https://pyformat.info
https://pyformat.info
https://pyformat.info
https://pyformat.info
https://pyformat.info
https://pyformat.info

Modern Syntax Elements - Below the Class Level Chapter 3

[66]

Implementation details
Many programmers easily confuse Python's list type with the concept of linked lists
which are found often in standard libraries of other languages, such as C, C++, or Java. In
fact, CPython lists are not lists at all. In CPython, lists are implemented as variable length
arrays. This should be also true for other implementations, such as Jython and IronPython,
although such implementation details are often not documented in these projects. The
reasons for such confusion is clear. This datatype is named list and also has an interface
that could be expected from any linked list implementation.

Why it is important and what does it mean? Lists are one of the most popular data
structures, and the way in which they are used greatly affects every application's
performance. CPython is the most popular and used implementation, so knowing its
internal implementation details is crucial.

Lists in Python are contiguous arrays of references to other objects. The pointer to this array
and the length is stored in the list's head structure. This means that every time an item is
added or removed, the array of references needs to be resized (reallocated). Fortunately, in
Python, these arrays are created with exponential over allocation, so not every operation
requires an actual resize of the underlying array. This is how the amortized cost of
appending and popping elements can be low in terms of complexity. Unfortunately, some
other operations that are considered cheap in ordinary linked lists have relatively high
computational complexity in Python:

Inserting an item at an arbitrary place using the list.insert method has
complexity O(n)
Deleting an item using list.delete or using the del operator har has
complexity O(n)

At least retrieving or setting an element using an index is an operation where cost is
independent of the list's size, and the complexity of these operations is always O(1).

Let's define n as the length of a list. Here is a full table of average time complexities for
most of the list operations:

Operation Complexity
Copy O(n)
Append O(1)
Insert O(n)
Get item O(1)
Set item O(1)

Modern Syntax Elements - Below the Class Level Chapter 3

[67]

Delete item O(n)
Iteration O(n)
Get slice of length k O(k)
Del slice O(n)
Set slice of length k O(k+n)
Extend O(k)
Multiply by k O(nk)
Test existence (element in list) O(n)
min()/max() O(n)
Get length O(1)

For situations where a real linked list or doubly linked list is required, Python provides
a deque type in the collections built-in module. This is a data structure that allows us to
append and pop elements at each side with O(1) complexity. This is a generalization of
stacks and queues, and should work fine anywhere where a doubly linked list is required.

List comprehensions
As you probably know, writing a piece of code such as this can be tedious:

>>> evens = []
>>> for i in range(10):
... if i % 2 == 0:
... evens.append(i)
...
>>> evens
[0, 2, 4, 6, 8]

This may work for C, but it actually makes things slower for Python for the following
reasons:

It makes the interpreter work on each loop to determine what part of the
sequence has to be changed
It makes you keep a counter to track what element has to be processed
It requires additional function lookups to be performed at every iteration
because append() is a list's method

Modern Syntax Elements - Below the Class Level Chapter 3

[68]

A list comprehension is a better pattern for these kind of situations. It allows us to define a
list by using a single line of code:

>>> [i for i in range(10) if i % 2 == 0]
[0, 2, 4, 6, 8]

This form of writing is much shorter and involves fewer elements. In a bigger program, this
means less bugs and code that is easier to understand. This is the reason why many
experienced Python programmers will consider such forms as being more readable.

List comprehensions and internal array resize
There is a myth among some Python programmers that list
comprehensions can be a workaround for the fact that the internal array
representing the list object must be resized with every few additions.
Some say that the array will be allocated once in just the right size.
Unfortunately, this isn't true.
The interpreter, during evaluation of the comprehension, can't know how
big the resulting container will be, and it can't preallocate the final size of
the array for it. Due to this, the internal array is reallocated in the same
pattern as it would be in the for loop. Still, in many cases, list creation
using comprehensions is both cleaner and faster than using ordinary
loops.

Other idioms
Another typical example of a Python idiom is the use of enumerate(). This built-in
function provides a convenient way to get an index when a sequence is iterated inside of a
loop. Consider the following piece of code as an example of tracking the element index
without the enumerate() function:

>>> i = 0
>>> for element in ['one', 'two', 'three']:
... print(i, element)
... i += 1
...
0 one
1 two
2 three

Modern Syntax Elements - Below the Class Level Chapter 3

[69]

This can be replaced with the following code, which is shorter and definitely cleaner:

>>> for i, element in enumerate(['one', 'two', 'three']):
... print(i, element)
...
0 one
1 two
2 three

If you need to aggregate elements of multiple lists (or any other iterables) in the one-by-one
fashion, you can use the built-in zip(). This is a very common pattern for uniform iteration
over two same-sized iterables:

>>> for items in zip([1, 2, 3], [4, 5, 6]):
... print(items)
...
(1, 4)
(2, 5)
(3, 6)

Note that the results of zip() can be reversed by another zip() call:

>>> for items in zip(*zip([1, 2, 3], [4, 5, 6])):
... print(items)
...
(1, 2, 3)
(4, 5, 6)

One important thing you need to remember about the zip() function is that it expects
input iterables to be the same size. If you provide arguments of different lengths, then it
will trim the output to the shortest argument, as shown in the following example:

>>> for items in zip([1, 2, 3, 4], [1, 2]):
... print(items)
...
(1, 1)
(2, 2)

Another popular syntax element is sequence unpacking. It is not limited to lists and tuples,
and will work with any sequence type (even strings and byte sequences). It allows us to
unpack a sequence of elements into another set of variables as long as there are as many
variables on the left-hand side of the assignment operator as the number of elements in the
sequence. If you paid attention to the code snippets, then you might have already noticed
this idiom when we were discussing the enumarate() function.

Modern Syntax Elements - Below the Class Level Chapter 3

[70]

The following is a dedicated example of that syntax element:

>>> first, second, third = "foo", "bar", 100
>>> first
'foo'
>>> second
'bar'
>>> third
100

Unpacking also allows us to capture multiple elements in a single variable using starred
expressions as long as it can be interpreted unambiguously. Unpacking can also be
performed on nested sequences. This can come in handy, especially when iterating on some
complex data structures built out of multiple sequences. Here are some examples of more
complex sequence unpacking:

>>> # starred expression to capture rest of the sequence
>>> first, second, *rest = 0, 1, 2, 3
>>> first
0
>>> second
1
>>> rest
[2, 3]
>>> # starred expression to capture middle of the sequence
>>> first, *inner, last = 0, 1, 2, 3
>>> first
0
>>> inner
[1, 2]
>>> last
3
>>> # nested unpacking
>>> (a, b), (c, d) = (1, 2), (3, 4)
>>> a, b, c, d
(1, 2, 3, 4)

Modern Syntax Elements - Below the Class Level Chapter 3

[71]

Dictionaries
Dictionaries are one of most versatile data structures in Python. The dict type allows you
to map a set of unique keys to values, as follows:

{
 1: ' one',
 2: ' two',
 3: ' three',
}

Dictionary literals are a very basic thing, and you should already know about them. Python
allows programmers to also create a new dictionary using comprehensions, similar to the
list comprehensions mentioned earlier. Here is a very simple example that maps numbers
in a range from 0 to 99 to their squares:

squares = {number: number**2 for number in range(100)}

What is important is that the same benefits of using list comprehensions apply to dictionary
comprehensions. So, in many cases, they are more efficient, shorter, and cleaner. For more
complex code, when many if statements or function calls are required to create a
dictionary, the simple for loop may be a better choice, especially if it improves readability.

For Python programmers new to Python 3, there is one important note about iterating over
dictionary elements. The keys(), values(), and items() dictionary methods are no
longer return lists. Also, their counterparts, iterkeys(), itervalues(),
and iteritems(), which returned iterators instead, are missing in Python 3. Now,
the keys(), values(), and items() methods return special view objects:

keys(): This returns the dict_keys object which provides a view on all keys of
the dictionary
values(): This returns the dict_values object which provides a view on all
values of the dictionary
items(): This returns the dict_items object, providing views on all (key,
value) two-tuples of the dictionary

View objects provide a view on the dictionary content in a dynamic way so that every time
the dictionary changes, the views will reflect these changes, as shown in this example:

>>> person = {'name': 'John', 'last_name': 'Doe'}
>>> items = person.items()
>>> person['age'] = 42
>>> items
dict_items([('name', 'John'), ('last_name', 'Doe'), ('age', 42)])

Modern Syntax Elements - Below the Class Level Chapter 3

[72]

View objects join the behavior of lists returned by the implementation of old methods with
iterators that have been returned by their iter counterparts. Views do not need to
redundantly store all values in memory (like lists do), but are still allowed to access their
length (using the len() function) and testing for membership (using the in keyword).
Views are, of course, iterable.

The last important thing about views is that both view objects returned by
the keys() and values() methods ensure the same order of keys and values. In Python 2,
you could not modify the dictionary content between these two calls if you wanted to
ensure the same order of retrieved keys and values. dict_keys and dict_values are now
dynamic, so even if the content of the dictionary changes between
the keys() and values() calls, the order of iteration is consistent between these two
views.

Implementation details
CPython uses hash tables with pseudo-random probing as an underlying data structure for
dictionaries. It seems like a very deep implementation detail, but it is very unlikely to
change in the near future, so it is also a very interesting fact for the Python programmer.

Due to this implementation detail, only objects that are hashable can be used as a
dictionary key. An object is hashable if it has a hash value that never changes during its
lifetime, and can be compared to different objects. Every Python built-in type that is
immutable is also hashable. Mutable types, such as list, dictionaries, and sets, are not
hashable, and so they cannot be used as dictionary keys. Protocol that defines if a type is
hashable consists of two methods:

__hash__: This provides the hash value (as an integer) that is needed by the
internal dict implementation. For objects that are instances of user-defined
classes, it is derived from their id().
__eq__: This compares if two objects have the same value. All objects that are
instances of user-defined classes compare as unequal by default, except for
themselves.

Two objects that are compared as equal must have the same hash value. The reverse does
not need to be true. This means that collisions of hashes are possible – two objects with the
same hash may not be equal. It is allowed, and every Python implementation must be able
to resolve hash collisions CPython uses open addressing to resolve such collisions. The
probability of collisions greatly affects dictionary performance, and, if it is high, the
dictionary will not benefit from its internal optimizations.

Modern Syntax Elements - Below the Class Level Chapter 3

[73]

While three basic operations, adding, getting, and deleting an item, have an average time
complexity equal to O(1), their amortized worst case complexities are a lot higher. It is O(n),
where n is the current dictionary size. Additionally, if user-defined class objects are used as
dictionary keys and they are hashed improperly (with a high risk of collisions), this will
have a huge negative impact on the dictionary's performance. The full table of CPython's
time complexities for dictionaries is as follows:

Operation Average complexity Amortized worst case complexity
Get item O(1) O(n)
Set item O(1) O(n)
Delete item O(1) O(n)
Copy O(n) O(n)
Iteration O(n) O(n)

It is also important to know that the n number in worst case complexities for copying and
iterating the dictionary is the maximum size that the dictionary ever achieved, rather than
the size at the time of operation. In other words, iterating over the dictionary that once was
huge but greatly shrunk in time may take a surprisingly long time. In some cases, it may be
better to create a new dictionary object from a dictionary that needs to be shrunk if it has to
be iterated often instead of just removing elements from it.

Weaknesses and alternatives
For a very long time, one of the most common pitfalls regarding dictionaries was expecting
that they preserve the order of elements in which new keys were added. The situation has
changed a bit in Python 3.6, and the problem was finally solved in Python 3.7 on the level
of language specification.

But, before we dig deeper into the situation of Python 3.6 and later releases, we need to
make a small detour and examine the problem as if we were still stuck in the past, when the
only Python releases available were older than 3.6. In the past, you could have a situation
where the consecutive dictionary keys also had hashes that were consecutive values too.
And, for a very long time, this was the only situation when you could expect that you
would iterate over dictionary elements in the same order as they were added to the
dictionary. The easiest way to present this is by using integer numbers, as hashes of integer
numbers are the same as their value:

>>> {number: None for number in range(5)}.keys()
dict_keys([0, 1, 2, 3, 4])

Modern Syntax Elements - Below the Class Level Chapter 3

[74]

Using other datatypes that hash differently could show that the order is not preserved.
Here is an example that was executed in CPython 3.5:

>>> {str(number): None for number in range(5)}.keys()
dict_keys(['1', '2', '4', '0', '3'])
>>> {str(number): None for number in reversed(range(5))}.keys()
dict_keys(['2', '3', '1', '4', '0'])

As shown in the preceding code, for CPython 3.5 (and also earlier versions), the resulting
order is both dependent on the hashing of the object and also on the order in which the
elements were added. This is definitely not what can be relied on, because it can vary with
different Python implementations.

So, what about Python 3.6 and later releases? Starting from Python 3.6, the CPython
interpreter uses a new compact dictionary representation that has a noticeably smaller
memory footprint and also preserves order as a side effect of that new implementation. In
Python 3.6, the order preserving nature of dictionaries was only an implementation detail,
but in Python 3.7, it has been officially declared in the Python language specification. So,
starting from Python 3.7, you can finally rely on the item insertion order of dictionaries.

In parallel to the CPython implementation of dictionaries, Python 3.6 introduced another
change in the syntax that is related to the order of items in dictionaries. As defined in the
PEP 486 "Preserving the order of **kwargs in a function" document, the order of keyword
arguments collected using the **kwargs syntax must be the same as presented in function
call. This behavior can be clearly presented with the following example:

>>> def fun(**kwargs):
... print(kwargs)
...
>>> fun(a=1, b=2, c=3)
{'a': 1, 'b': 2, 'c': 3}
>>> fun(c=1, b=2, a=3)
{'c': 1, 'b': 2, 'a': 3}

However the preceding changes can be used effectively only in the newest releases of
Python. So, what should you do if you have a library that must work on older versions of
Python too, and some parts of its code requires order-preserving dictionaries? The best
option is to be clear about your expectations regarding dictionary ordering and use a type
that explicitly preserves the order of elements.

Modern Syntax Elements - Below the Class Level Chapter 3

[75]

Fortunately, the Python standard library provides an ordered dictionary type
called OrderedDict in the collections module. The constructor of this type accepts
iterable as the initialization argument. Each element of that argument should be a pair of a
dictionary key and value, as in the following example:

>>> from collections import OrderedDict
>>> OrderedDict((str(number), None) for number in range(5)).keys()
odict_keys(['0', '1', '2', '3', '4'])

It also has some additional features, such as popping items from both ends using
the popitem() method, or moving the specified element to one of the ends using
the move_to_end() method. A full reference on that collection is available in the Python
documentation (refer to https://docs.python.org/3/library/collections.html). Even if
you target only Python in version 3.7 or newer, which guarantees the preservation of the
item insertion order, the OrderedDict type is still useful. It allows you to make your
intention clear. If you define your variable with OrderedDict instead of a plain dict, it
becomes obvious that, in this particular case, the order of inserted items is important.

The last interesting note is that, in very old code bases, you can find dict as a primitive set
implementation that ensures uniqueness of elements. While this will give proper results,
you should avoid such use of that type unless you target Python versions lower than 2.3.
Using dictionaries in this way is wasteful in terms of resources. Python has a built-
in set type that serves this purpose. In fact, it has very similar internal implementation to
dictionaries in CPython, but offers some additional features, as well as specific set-related
optimizations.

Sets
Sets are a very robust data structure that are mostly useful in situations where the order of
elements is not as important as their uniqueness. They are also useful if you need to
efficiently check efficiency if the element is contained in a collection. Sets in Python are
generalizations of mathematic sets, and are provided as built-in types in two flavors:

set(): This is a mutable, non-ordered, finite collection of unique, immutable
(hashable) objects
frozenset(): This is an immutable, hashable, non-ordered collection of unique,
immutable (hashable) objects

https://docs.python.org/3/library/collections.html

Modern Syntax Elements - Below the Class Level Chapter 3

[76]

The immutability of frozenset() objects makes it possible for them to be included as
dictionary keys and also other set() and frozenset() elements. A plain
mutable set() object cannot be used within another set() or frozenset(). Attempting
to do so will raise a TypeError exception, as in the following example:

>>> set([set([1,2,3]), set([2,3,4])])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'set'

On the other hand, the following set initializations are completely correct, and do not raise
exceptions:

>>> set([frozenset([1,2,3]), frozenset([2,3,4])])
{frozenset({1, 2, 3}), frozenset({2, 3, 4})}
>>> frozenset([frozenset([1,2,3]), frozenset([2,3,4])])
frozenset({frozenset({1, 2, 3}), frozenset({2, 3, 4})})

Mutable sets can be created in three ways:

Using a set() call that accepts optional iterables as the initialization argument,
such as set([0, 1, 2])
Using a set comprehension such as {element for element in range(3)}
Using set literals such as {1, 2, 3}

Note that using literals and comprehensions for sets requires extra caution, because they
are very similar in form to dictionary literals and comprehensions. Also, there is no literal
for empty set objects – empty curly brackets {} are reserved for empty dictionary literals.

Implementation details
Sets in CPython are very similar to dictionaries. As a matter of fact, they are implemented
like dictionaries with dummy values, where only keys are actual collection elements. Sets
also exploit this lack of values in mapping for additional optimizations.

Thanks to this, sets allow very fast additions, deletions, and checks for element existence
with the average time complexity equal to O(1). Still, since the implementation of sets in
CPython relies on a similar hash table structure, the worst case complexity for these
operations is still O(n), where n is the current size of a set.

Other implementation details also apply. The item to be included in a set must be hashable,
and, if instances of user-defined classes in the set are hashed poorly, this will have a
negative impact on their performance.

Modern Syntax Elements - Below the Class Level Chapter 3

[77]

Despite their conceptual similarity to dictionaries, sets in Python 3.7 do not preserve the
order of elements in specification, or as a detail of CPython implementation.

Let's take a look at the supplemental data types and containers.

Supplemental data types and containers
In the Python's built-in types section, we concentrated mostly on those data types that have
dedicated literals in the Python syntax. These were also the types that are implemented at
the interpreter-level. However, Python's standard library offers a great collection of
supplemental data types that can be effectively used in places where the basic built-in types
show their shortcomings, or places where the nature of the data requires specialized
handling (for example, in the presentation of time and dates).

The most common are data containers that are found in the collections, and we have
already briefly mentioned two of them: deque and OrderedDict. However, the landscape
of data structures available for Python programmers is enormous and almost every module
of the Python standard library defines some specialized types for handling the data of
different problem domains.

In this section, we will focus only on the types that can be considered as general-purpose.

Specialized data containers from the collections
module
Every data structure has its shortcomings. There is no single collection that can suit every
problem, and four basic types of them (tuple, list, set, and dictionary) is still not a wide
range of choices. These are the most basic and important collections that have a dedicated
literal syntax. Fortunately, Python provides far more options in its standard library through
the collections built-in module. Here are the most important universal data containers
provided by this module:

namedtuple(): This is a factory function for creating tuple subclasses whose
indexes can be accessed as named attributes
deque: This is a double-ended queue—a list-like generalization of stacks and
queues with fast appends and pops on both ends
ChainMap: This is a dictionary-like class to create a single view of multiple
mappings

https://docs.python.org/3.5/library/collections.html#collections.namedtuple
https://docs.python.org/3.5/library/collections.html#collections.deque
https://docs.python.org/3.5/library/collections.html#collections.ChainMap

Modern Syntax Elements - Below the Class Level Chapter 3

[78]

Counter: This is a dictionary subclass for counting hashable objects
OrderedDict: This is a dictionary subclass that preserves the order that the
entries were added in
defaultdict: This is a dictionary subclass that can supply missing values using
a user-defined factory function

More details on selected collections from the collections module and some
advice on where it is worth using them is provided in Chapter
14, Optimization – Some Powerful Techniques.

Symbolic enumeration with the enum module
One of the special handy types found in the Python standard is the Enum class from the
enum module. This is a base class that allows you to define symbolic enumerations, similar
in concept to the enumerated types found in many other programming languages (C, C++,
C#, Java, and many more) that are often denoted with the enum keyword.

In order to define your own enumeration in Python, you will need to subclass the Enum
class and define all enumeration members as class attributes. The following is an example
of a simple Python enum:

from enum import Enum

class Weekday(Enum):
 MONDAY = 0
 TUESDAY = 1
 WEDNESDAY = 2
 THURSDAY = 3
 FRIDAY = 4
 SATURDAY = 5
 SUNDAY = 6

The Python documentation defines the following nomenclature for enum:

enumeration or enum: This is the subclass of Enum base class. Here, it would be
Weekday.
member: This is the attribute you define in the Enum subclass. Here, it would be
Weekday.MONDAY, Weekday.TUESDAY, and so on.

https://docs.python.org/3.5/library/collections.html#collections.Counter
https://docs.python.org/3.5/library/collections.html#collections.OrderedDict
https://docs.python.org/3.5/library/collections.html#collections.defaultdict

Modern Syntax Elements - Below the Class Level Chapter 3

[79]

name: This is the name of the Enum subclass attribute that defines the member.
Here, it would be MONDAY for Weekday.MONDAY, TUESDAY for
Weekday.TUESDAY, and so on.
value: This is the value assigned to the Enum subclass attribute that defines the
member. Here, for Weekday.MONDAY it would be one, for Weekday.TUESDAY it
would be two, and so on.

You can use any type as the enum member value. If the member value is not important in
your code, you can even use the auto() type, which will be replaced with automatically
generated values. Here is the previous example rewritten with the use of auto in it:

from enum import Enum, auto

class Weekday(Enum):
 MONDAY = auto()
 TUESDAY = auto()
 WEDNESDAY = auto()
 THURSDAY = auto()
 FRIDAY = auto()
 SATURDAY = auto()
 SUNDAY = auto()

Enumerations in Python are really useful in every place where some variable can take a
finite number of values/choices. For instance, they can be used to define statues of objects,
as shown in the following example:

from enum import Enum, auto

class OrderStatus(Enum):
 PENDING = auto()
 PROCESSING = auto()
 PROCESSED = auto()

class Order:
 def __init__(self):
 self.status = OrderStatus.PENDING

 def process(self):
 if self.status == OrderStatus.PROCESSED:
 raise RuntimeError(
 "Can't process order that has "
 "been already processed"
)

Modern Syntax Elements - Below the Class Level Chapter 3

[80]

 self.status = OrderStatus.PROCESSING
 ...
 self.status = OrderStatus.PROCESSED

Another use case for enumerations is storing selections of non-exclusive choices. This is
something that is often implemented using bit flags and bit masks in languages where bit
manipulation of numbers is very common, like C. In Python, this can be done in a more
expressive and convenient way using FlagEnum:

from enum import Flag, auto

class Side(Flag):
 GUACAMOLE = auto()
 TORTILLA = auto()
 FRIES = auto()
 BEER = auto()
 POTATO_SALAD = auto()

You can combine such flags using bitwise operations (the | and & operators) and test for
flag membership with the in keyword. Here are some examples for a Side enumeration:

>>> mexican_sides = Side.GUACAMOLE | Side.BEER | Side.TORTILLA
>>> bavarian_sides = Side.BEER | Side.POTATO_SALAD
>>> common_sides = mexican_sides & bavarian_sides
>>> Side.GUACAMOLE in mexican_sides
True
>>> Side.TORTILLA in bavarian_sides
False
>>> common_sides
<Side.BEER: 8>

Symbolic enumerations share some similarity with dictionaries and named tuples because
they all map names/keys to values. The main difference is that the Enum definition is
immutable and global. It should be used whenever there is a closed set of possible values
that can't change dynamically during program runtime, and especially if that set should be
defined only once and globally. Dictionaries and named tuples are data containers. You can
create as many instances of them as you like.

The next section will describe various advanced syntax.

Modern Syntax Elements - Below the Class Level Chapter 3

[81]

Advanced syntax
It is hard to objectively tell which element of language syntax is advanced. For the purpose
of this chapter, we will consider advanced syntax elements to be the elements that do not
directly relate to any specific built-in datatypes, and which are relatively hard to grasp in
the beginning. The most common Python features that may be hard to understand are the
following:

Iterators
Generators
Decorators
Context managers

Iterators
An iterator is nothing more than a container object that implements the iterator protocol.
This protocol consists of two methods:

__next__: This returns the next item of the container
__iter__: This returns the iterator itself

Iterators can be created from a sequence using the iter built-in function. Consider the
following example:

>>> i = iter('abc')
>>> next(i)
'a'
>>> next(i)
'b'
>>> next(i)
'c'
>>> next(i)
Traceback (most recent call last):
 File "<input>", line 1, in <module>
StopIteration

When the sequence is exhausted, a StopIteration exception is raised. It makes iterators
compatible with loops, since they catch this exception as a signal to end the iteration. If you
create a custom iterator, you need to provide objects with the implementation of __next__,
which iterates the state of the object, and the __iter__ method, which returns the iterable.

Modern Syntax Elements - Below the Class Level Chapter 3

[82]

Both methods are often implemented inside of the same class. The following is an example
of the CountDown class, which allows us to iterate numbers toward 0:

class CountDown:
 def __init__(self, step):
 self.step = step

 def __next__(self):
 """Return the next element."""
 if self.step <= 0:
 raise StopIteration
 self.step -= 1
 return self.step

 def __iter__(self):
 """Return the iterator itself."""
 return self

The preceding class implementation allows it to iterate over itself. This means that once you
iterate over its content, the iterable is exhausted and cannot be iterated anymore:

>>> count_down = CountDown(4)
>>> for element in count_down:
... print(element)
... else:
... print("end")
...
3
2
1
0
end
>>> for element in count_down:
... print(element)
... else:
... print("end")
...
end

If you want your iterator to be reusable, you can always split its implementation into two
classes in order to separate the iteration state and actual iterator objects, as in the following
example:

class CounterState:
 def __init__(self, step):
 self.step = step

 def __next__(self):

Modern Syntax Elements - Below the Class Level Chapter 3

[83]

 """Move the counter step towards 0 by 1."""
 if self.step <= 0:
 raise StopIteration
 self.step -= 1
 return self.step

class CountDown:
 def __init__(self, steps):
 self.steps = steps

 def __iter__(self):
 """Return iterable state"""
 return CounterState(self.steps)

If you separate your iterator from its state, you will ensure that it can't be exhausted:

>>> count_down = CountDown(4)
>>> for element in count_down:
... print(element)
... else:
... print("end")
...
3
2
1
0
end
>>> for element in count_down:
... print(element)
... else:
... print("end")
...
3
2
1
0
end

Iterators themselves are a low-level feature and concept, and a program can live without
them. However, they provide the base for a much more interesting feature: generators.

Modern Syntax Elements - Below the Class Level Chapter 3

[84]

Generators and yield statements
Generators provide an elegant way to write simple and efficient code for functions that
return a sequence of elements. Based on the yield statement, they allow you to pause a
function and return an intermediate result. The function saves its execution context and can
be resumed later, if necessary.

For instance, the function that returns consecutive numbers of the Fibonacci sequence can
be written using a generator syntax. The following code is an example that was taken
from the PEP 255 (Simple Generators) document:

def fibonacci():
 a, b = 0, 1
 while True:
 yield b
 a, b = b, a + b

You can retrieve new values from generators as if they were iterators, so using
the next() function or for loops:

>>> fib = fibonacci()
>>> next(fib)
1
>>> next(fib)
1
>>> next(fib)
2
>>> [next(fib) for i in range(10)]
[3, 5, 8, 13, 21, 34, 55, 89, 144, 233]

Our fibonacci() function returns a generator object, a special iterator, which knows
how to save the execution context. It can be called indefinitely, yielding the next element of
the sequence each time. The syntax is concise, and the infinite nature of the algorithm does
not disturb the readability of the code. It does not have to provide a way to make the
function stoppable. In fact, it looks similar to how the sequence generating function would
be designed in pseudocode.

In many cases, the resources required to process one element are less than the resources
required to store whole sequences. Therefore, they can be kept low, making the program
more efficient. For instance, the Fibonacci sequence is infinite, and yet the generator that
generates it does not require an infinite amount of memory to provide the values one by
one and, theoretically, could work ad infinitum. A common use case is to stream data
buffers with generators (for example, from files). They can be paused, resumed, and
stopped whenever necessary at any stage of the data processing pipeline without any need
to load whole datasets into the program's memory.

Modern Syntax Elements - Below the Class Level Chapter 3

[85]

The tokenize module from the standard library, for instance, generates tokens out of a
stream of text working on them in a line-by-line fashion:

>>> import io
>>> import tokenize
>>> code = io.StringIO("""
... if __name__ == "__main__":
... print("hello world!")
... """)
>>> tokens = tokenize.generate_tokens(code.readline)
>>> next(tokens)
TokenInfo(type=56 (NL), string='\n', start=(1, 0), end=(1, 1), line='\n')
>>> next(tokens)
TokenInfo(type=1 (NAME), string='if', start=(2, 0), end=(2, 2), line='if
__name__ == "__main__":\n')
>>> next(tokens)
TokenInfo(type=1 (NAME), string='__name__', start=(2, 3), end=(2, 11),
line='if __name__ == "__main__":\n')
>>> next(tokens)
TokenInfo(type=53 (OP), string='==', start=(2, 12), end=(2, 14), line='if
__name__ == "__main__":\n')
>>> next(tokens)
TokenInfo(type=3 (STRING), string='"__main__"', start=(2, 15), end=(2, 25),
line='if __name__ == "__main__":\n')
>>> next(tokens)
TokenInfo(type=53 (OP), string=':', start=(2, 25), end=(2, 26), line='if
__name__ == "__main__":\n')
>>> next(tokens)
TokenInfo(type=4 (NEWLINE), string='\n', start=(2, 26), end=(2, 27),
line='if __name__ == "__main__":\n')
>>> next(tokens)
TokenInfo(type=5 (INDENT), string=' ', start=(3, 0), end=(3, 4), line='
print("hello world!")\n')

Here, we can see that open.readline iterates over the lines of the file
and generate_tokens iterates over them in a pipeline, doing some additional
work. Generators can also help in breaking the complexity of your code, and increasing the
efficiency of some data transformation algorithms if they can be divided into separate
processing steps. Thinking of each processing step as an iterator and then combining
them into a high-level function is a great way to avoid big, ugly, and unreadable functions.
Moreover, this can provide live feedback to the whole processing chain.

Modern Syntax Elements - Below the Class Level Chapter 3

[86]

In the following example, each function defines a transformation over a sequence. They are
then chained and applied together. Each call processes one element and returns its result:

def capitalize(values):
 for value in values:
 yield value.upper()

def hyphenate(values):
 for value in values:
 yield f"-{value}-"

def leetspeak(values):
 for value in values:
 if value in {'t', 'T'}:
 yield '7'
 elif value in {'e', 'E'}:
 yield '3'
 else:
 yield value

def join(values):
 return "".join(values)

Once you split your data processing pipeline into several independent steps, you can
combine them in different ways:

>>> join(capitalize("This will be uppercase text"))
'THIS WILL BE UPPERCASE TEXT'
>>> join(leetspeak("This isn't a leetspeak"))
"7his isn'7 a l337sp3ak"
>>> join(hyphenate("Will be hyphenated by words".split()))
'-Will--be--hyphenated--by--words-'
>>> join(hyphenate("Will be hyphenated by character"))
'-W--i--l--l-- --b--e-- --h--y--p--h--e--n--a--t--e--d-- --b--y-- --c--h--
a--r--a--c--t--e--r-'

Keep the code simple, not the data
It is better to have a lot of simple iterable functions that work over
sequences of values than a complex function that computes the result for
one value at a time.

Modern Syntax Elements - Below the Class Level Chapter 3

[87]

Another important feature that's available in Python regarding generators is the ability to
interact with the code that's called with the next() function. The yield statement becomes
an expression, and some value can be passed through it to the decorator with a new
generator method, named send():

def psychologist():
 print('Please tell me your problems')
 while True:
 answer = (yield)
 if answer is not None:
 if answer.endswith('?'):
 print("Don't ask yourself too much questions")
 elif 'good' in answer:
 print("Ahh that's good, go on")
 elif 'bad' in answer:
 print("Don't be so negative")

Here is an example session with our psychologist() function:

>>> free = psychologist()
>>> next(free)
Please tell me your problems
>>> free.send('I feel bad')
Don't be so negative
>>> free.send("Why I shouldn't ?")
Don't ask yourself too much questions
>>> free.send("ok then i should find what is good for me")
Ahh that's good, go on

The send() method acts similarly to the next() function, but makes
the yield statement return the value passed to it inside of the function definition. The
function can, therefore, change its behavior depending on the client code. Two other
methods are available to complete this behavior: throw() and close(). They allow us to
inject exceptions into the generator:

throw(): This allows the client code to send any kind of exception to be raised.
close(): This acts in the same way, but raises a specific
exception, GeneratorExit. In this case, the generator function must
raise GeneratorExit again, or StopIteration.

Generators are the basis of other concepts that are available in Python,
such as coroutines and asynchronous concurrency, which are covered
in Chapter 15, Concurrency.

Modern Syntax Elements - Below the Class Level Chapter 3

[88]

Decorators
Decorators were added in Python to make function and method wrapping easier to read
and understand. A decorator is simply any function that receives a function and returns an
enhanced one. The original use case was to be able to define the methods as class methods
or static methods on the head of their definition. Without the decorator syntax, it would
require a rather sparse and repetitive definition:

class WithoutDecorators:
 def some_static_method():
 print("this is static method")
 some_static_method = staticmethod(some_static_method)
 def some_class_method(cls):
 print("this is class method")
 some_class_method = classmethod(some_class_method)

Dedicated decorator syntax code is shorter and easier to understand:

class WithDecorators:
 @staticmethod
 def some_static_method():
 print("this is static method")
 @classmethod
 def some_class_method(cls):
 print("this is class method")

Let's take a look at the general syntax and possible implementations of decorators.

General syntax and possible implementations
The decorator is generally a named callable object (lambda expressions are not allowed)
that accepts a single argument when called (it will be the decorated function) and returns
another callable object. Callable is used here instead of a function with premeditation.
While decorators are often discussed in the scope of methods and functions, they are not
limited to them. In fact, anything that is callable (any object that implements
the __call__ method is considered callable) can be used as a decorator, and, often, objects
returned by them are not simple functions but are instances of more complex classes that
are implementing their own __call__ method.

Modern Syntax Elements - Below the Class Level Chapter 3

[89]

The decorator syntax is simply a syntactic sugar. Consider the following decorator usage:

@some_decorator
def decorated_function():
 pass

This can always be replaced by an explicit decorator call and function reassignment:

def decorated_function():
 pass
decorated_function = some_decorator(decorated_function)

However, the latter is less readable and also very hard to understand if multiple decorators
are used on a single function.

Decorator does not even need to return a callable!
As a matter of fact, any function can be used as a decorator, because
Python does not enforce the return type of decorators. So, using some
function as a decorator that accepts a single argument but does not return
a callable object, let's say str, is completely valid in terms of syntax. This
will eventually fail if the user tries to call an object that's been decorated
this way. This part of the decorator syntax creates a field for some
interesting experimentation.

As a function
There are many ways to write custom decorators, but the simplest way is to write a
function that returns a sub-function that wraps the original function call.

The generic patterns is as follows:

def mydecorator(function):
 def wrapped(*args, **kwargs):
 # do some stuff before the original
 # function gets called
 result = function(*args, **kwargs)
 # do some stuff after function call and
 # return the result
 return result
 # return wrapper as a decorated function
 return wrapped

Modern Syntax Elements - Below the Class Level Chapter 3

[90]

As a class
While decorators can almost always be implemented using functions, there are some
situations when using user-defined classes is a better option. This is often true when the
decorator needs complex parameterization, or if it depends on a specific state.

The generic pattern for a non-parameterized decorator defined as a class is as follows:

class DecoratorAsClass:
 def __init__(self, function):
 self.function = function

 def __call__(self, *args, **kwargs):
 # do some stuff before the original
 # function gets called
 result = self.function(*args, **kwargs)
 # do some stuff after function call and
 # return the result
 return result

Parametrizing decorators
In real usage scenarios, there is often a need to use decorators that can be parameterized.
When the function is used as a decorator, then the solution is simple – a second level of
wrapping has to be used. Here is a simple example of the decorator that repeats the
execution of a decorated function the specified number of times every time it is called:

def repeat(number=3):
 """Cause decorated function to be repeated a number of times.
 Last value of original function call is returned as a result.
 :param number: number of repetitions, 3 if not specified
 """
 def actual_decorator(function):
 def wrapper(*args, **kwargs):
 result = None
 for _ in range(number):
 result = function(*args, **kwargs)
 return result
 return wrapper
 return actual_decorator

Modern Syntax Elements - Below the Class Level Chapter 3

[91]

The decorator that's defined this way can accept parameters:

>>> @repeat(2)
... def print_my_call():
... print("print_my_call() called!")
...
>>> print_my_call()
print_my_call() called!
print_my_call() called!

Note that, even if the parameterized decorator has default values for its arguments, the
parentheses after its name is required. The correct way to use the preceding decorator with
default arguments is as follows:

>>> @repeat()
... def print_my_call():
... print("print_my_call() called!")
...
>>> print_my_call()
print_my_call() called!
print_my_call() called!
print_my_call() called!

Missing these parentheses will result in the following error when the decorated function is
called:

>>> @repeat
... def print_my_call():
... print("print_my_call() called!")
...
>>> print_my_call()
Traceback (most recent call last):
 File "<input>", line 1, in <module>
TypeError: actual_decorator() missing 1 required positional
argument: 'function'

Introspection preserving decorators
A common mistake when using decorators is not preserving function metadata (mostly
docstring and original name) when using decorators. All the previous examples have this
issue. They create a new function by composition and return a new object without any
respect to the identity of the original decorated object. This makes the debugging of
functions decorated that way harder and will also break most of the auto-documentation
tools that you may want to use, because the original docstrings and function signatures are
no longer accessible.

Modern Syntax Elements - Below the Class Level Chapter 3

[92]

Let's see this in detail. Let's assume that we have some dummy decorator that does nothing
and some other functions decorated with it:

def dummy_decorator(function):
 def wrapped(*args, **kwargs):
 """Internal wrapped function documentation."""
 return function(*args, **kwargs)
 return wrapped

@dummy_decorator
def function_with_important_docstring():
 """This is important docstring we do not want to lose."""

If we inspect function_with_important_docstring() in the Python interactive
session, we can see that it has lost its original name and docstring:

>>> function_with_important_docstring.__name__
'wrapped'
>>> function_with_important_docstring.__doc__
'Internal wrapped function documentation.'

A proper solution to this problem is to use the wraps() decorator, provided by
the functools module:

from functools import wraps

def preserving_decorator(function):
 @wraps(function)
 def wrapped(*args, **kwargs):
 """Internal wrapped function documentation."""
 return function(*args, **kwargs)
 return wrapped

@preserving_decorator
def function_with_important_docstring():
 """This is important docstring we do not want to lose."""

Modern Syntax Elements - Below the Class Level Chapter 3

[93]

With the decorator defined in such a way, all the important function metadata is preserved:

>>> function_with_important_docstring.__name__
'function_with_important_docstring.'
>>> function_with_important_docstring.__doc__
'This is important docstring we do not want to lose.'

Let's see the usage of decorators in the next section.

Usage and useful examples
Since decorators are loaded by the interpreter when the module is first read, their usage
should be limited to wrappers that can be generically applied. If a decorator is tied to the
method's class or to the signature of the function that it enhances, it should be refactored
into a regular callable to avoid complexity. Often, it is good practice to group them in
dedicated modules that reflect their area of use so that it will be easier to maintain them.

The common patterns for decorators are the following:

Argument checking
Caching
Proxy
Context provider

Argument checking
Checking the arguments that a function receives or returns can be useful when it is
executed in a specific context. For example, if a function is to be called through XML-RPC,
Python will not be able to directly provide its full signature like it does in statically-typed
languages. This feature is needed to provide introspection capabilities when the XML-RPC
client asks for the function signatures.

The XML-RPC protocol
The XML-RPC protocol is a lightweight Remote Procedure Call protocol
that uses XML over HTTP to encode its calls. It is often used instead of
SOAP for simple client-server exchanges. Unlike SOAP, which provides a
page that lists all callable functions (WSDL), XML-RPC does not have a
directory of available functions. An extension of the protocol that allows
the discovery of the server API was proposed, and
Python's xmlrpc module implements it (refer
to https://docs.python.org/3/library/xmlrpc.server.html).

https://docs.python.org/3/library/xmlrpc.server.html)
https://docs.python.org/3/library/xmlrpc.server.html)
https://docs.python.org/3/library/xmlrpc.server.html)

Modern Syntax Elements - Below the Class Level Chapter 3

[94]

A custom decorator can provide this type of signature. It can also makes sure that what
goes in and comes out respects the defined signature parameters:

rpc_info = {}

def xmlrpc(in_=(), out=(type(None),)):
 def _xmlrpc(function):
 # registering the signature
 func_name = function.__name__
 rpc_info[func_name] = (in_, out)
 def _check_types(elements, types):
 """Subfunction that checks the types."""
 if len(elements) != len(types):
 raise TypeError('argument count is wrong')
 typed = enumerate(zip(elements, types))
 for index, couple in typed:
 arg, of_the_right_type = couple
 if isinstance(arg, of_the_right_type):
 continue
 raise TypeError(
 'arg #%d should be %s' % (index,
 of_the_right_type))

 # wrapped function
 def __xmlrpc(*args): # no keywords allowed
 # checking what goes in
 checkable_args = args[1:] # removing self
 _check_types(checkable_args, in_)
 # running the function
 res = function(*args)
 # checking what goes out
 if not type(res) in (tuple, list):
 checkable_res = (res,)
 else:
 checkable_res = res
 _check_types(checkable_res, out)

 # the function and the type
 # checking succeeded
 return res
 return __xmlrpc
 return _xmlrpc

The decorator registers the function into a global dictionary, and keeps a list of the types for
its arguments and for the returned values. Note that this example was highly simplified,
just to demonstrate the idea of argument-checking decorators.

Modern Syntax Elements - Below the Class Level Chapter 3

[95]

A usage example is as follws:

class RPCView:
 @xmlrpc((int, int)) # two int -> None
 def accept_integers(self, int1, int2):
 print('received %d and %d' % (int1, int2))

 @xmlrpc((str,), (int,)) # string -> int
 def accept_phrase(self, phrase):
 print('received %s' % phrase)
 return 12

When it is read, this class definition populates the rpc_infos dictionary and can be used
in a specific environment, where the argument types are checked:

>>> rpc_info
{'meth2': ((<class 'str'>,), (<class 'int'>,)), 'meth1': ((<class
 'int'>, <class 'int'>), (<class 'NoneType'>,))}
>>> my = RPCView()
>>> my.accept_integers(1, 2)
received 1 and 2
>>> my.accept_phrase(2)
Traceback (most recent call last):
 File "<input>", line 1, in <module>
 File "<input>", line 26, in __xmlrpc
 File "<input>", line 20, in _check_types
TypeError: arg #0 should be <class 'str'>

Caching
The caching decorator is quite similar to argument checking, but focuses on those functions
whose internal state does not affect the output. Each set of arguments can be linked to a
unique result. This style of programming is the characteristic of functional programming,
and can be used when the set of input values is finite.

Therefore, a caching decorator can keep the output together with the arguments that were
needed to compute it, and return it directly on subsequent calls.

Modern Syntax Elements - Below the Class Level Chapter 3

[96]

This behavior is called memoizing, and is quite simple to implement as a decorator:

"""This module provides simple memoization arguments
that is able to store cached return results of
decorated function for specified period of time.
"""
import time
import hashlib
import pickle

cache = {}

def is_obsolete(entry, duration):
 """Check if given cache entry is obsolete"""
 return time.time() - entry['time']> duration

def compute_key(function, args, kw):
 """Compute caching key for given value"""
 key = pickle.dumps((function.__name__, args, kw))
 return hashlib.sha1(key).hexdigest()

def memoize(duration=10):
 """Keyword-aware memoization decorator

 It allows to memoize function arguments for specified
 duration time.
 """
 def _memoize(function):
 def __memoize(*args, **kw):
 key = compute_key(function, args, kw)

 # do we have it already in cache?
 if (
 key in cache and
 not is_obsolete(cache[key], duration)
):
 # return cached value if it exists
 # and isn't too old
 print('we got a winner')
 return cache[key]['value']

 # compute result if there is no valid
 # cache available
 result = function(*args, **kw)
 # store the result for later use

Modern Syntax Elements - Below the Class Level Chapter 3

[97]

 cache[key] = {
 'value': result,
 'time': time.time()
 }
 return result
 return __memoize
 return _memoize

A SHA hash key is built using the ordered argument values, and the result is stored in a
global dictionary. The hash is made using a pickle, which is a bit of a shortcut to freeze the
state of all objects that are passed as arguments, ensuring that all arguments are good
candidates. If a thread or a socket is used as an argument, a PicklingError will occur
(refer to https://docs.python.org/3/library/pickle.html). The duration parameter is
used to invalidate the cached value when too much time has passed since the last function
call.

Here's an example of the memoize decorator usage (assuming that the previous snippet is
stored in the memoize module):

>>> from memoize import memoize
>>> @memoize()
... def very_very_very_complex_stuff(a, b):
... # if your computer gets too hot on this calculation
... # consider stopping it
... return a + b
...
>>> very_very_very_complex_stuff(2, 2)
4
>>> very_very_very_complex_stuff(2, 2)
we got a winner
4
>>> @memoize(1) # invalidates the cache after 1 second
... def very_very_very_complex_stuff(a, b):
... return a + b
...
>>> very_very_very_complex_stuff(2, 2)
4
>>> very_very_very_complex_stuff(2, 2)
we got a winner
4
>>> cache
{'c2727f43c6e39b3694649ee0883234cf': {'value': 4, 'time':
1199734132.7102251)}
>>> time.sleep(2)
>>> very_very_very_complex_stuff(2, 2)
4

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html

Modern Syntax Elements - Below the Class Level Chapter 3

[98]

Caching expensive functions can dramatically increase the overall performance of a
program, but it has to be used with care. The cached value could also be tied to the
function instead of using a centralized dictionary itself to better manage the scope and life
cycle of the cache. But, in any case, a more efficient decorator would use a specialized cache
library and/or dedicated caching service based on advanced caching
algorithms. Memcached is a well-known example of such a caching service and can be
easily used in Python.

Chapter 14, Optimization – Some Powerful Techniques, provides detailed
information and examples for various caching techniques.

Proxy
Proxy decorators are used to tag and register functions with a global mechanism. For
instance, a security layer that protects access to the code, depending on the current user,
can be implemented using a centralized checker with an associated permission required by
the callable:

class User(object):
 def __init__(self, roles):
 self.roles = roles

class Unauthorized(Exception):
 pass

def protect(role):
 def _protect(function):
 def __protect(*args, **kw):
 user = globals().get('user')
 if user is None or role not in user.roles:
 raise Unauthorized("I won't tell you")
 return function(*args, **kw)
 return __protect
 return _protect

Modern Syntax Elements - Below the Class Level Chapter 3

[99]

This model is often used in Python web frameworks to define the security over publishable
resources. For instance, Django provides decorators to secure its access to views
representing web resources.

Here's an example, where the current user is kept in a global variable. The decorator checks
his or her roles when the method is accessed (the previous snippet is stored in the users
module):

>>> from users import User, protect
>>> tarek = User(('admin', 'user'))
>>> bill = User(('user',))
>>> class RecipeVault(object):
... @protect('admin')
... def get_waffle_recipe(self):
... print('use tons of butter!')
...
>>> my_vault = RecipeVault()
>>> user = tarek
>>> my_vault.get_waffle_recipe()
use tons of butter!
>>> user = bill
>>> my_vault.get_waffle_recipe()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 7, in wrap
__main__.Unauthorized: I won't tell you

Context provider
A context provider decorator makes sure that the function can run in the correct context, or
executes some code before and/or after executing a decorated function. In other words, it
sets and unsets a specific execution environment. For example, when a data item has to be
shared among several threads, a lock has to be used to ensure that it is protected from
multiple access. This lock can be coded in a decorator as follows:

from threading import RLock
lock = RLock()

def synchronized(function):
 def _synchronized(*args, **kw):
 lock.acquire()
 try:
 return function(*args, **kw)
 finally:
 lock.release()

Modern Syntax Elements - Below the Class Level Chapter 3

[100]

 return _synchronized

@synchronized
def thread_safe(): # make sure it locks the resource
 pass

Context decorators are often being replaced by the usage of context managers
(the with statement) which are also described later in this chapter.

Context managers – the with statement
The try...finally statement is useful to ensure some cleanup code is run, even if an
error is raised. There are many use cases for this, such as the following:

Closing a file
Releasing a lock
Making a temporary code patch
Running protected code in a special environment

The with statement factors out these use cases by providing a simple way to wrap a block
of code with methods defined within the context manager. This allows us to call some code
before and after block execution, even if this block raises an exception. For example,
working with a file is often done like so:

>>> hosts = open('/etc/hosts')
>>> try:
... for line in hosts:
... if line.startswith('#'):
... continue
... print(line.strip())
... finally:
... hosts.close()
...
127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost

This example is specific to Linux, since it reads the host file located in
the /etc/ directory, but any text file could have been used here in the
same way.

Modern Syntax Elements - Below the Class Level Chapter 3

[101]

By using the with statement, it can be rewritten into the following code, which is shorter
and cleaner:

>>> with open('/etc/hosts') as hosts:
... for line in hosts:
... if line.startswith('#'):
... continue
... print(line.strip())
...
127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost

In the preceding example, the open() function is used as a context manager that ensures
that the file will be closed after executing the for loop, even if some exception occurs in the
process.

Some other common items from the Python standard library that are compatible with this
statement are classes from the threading module:

threading.Lock

threading.RLock

threading.Condition

threading.Semaphore

threading.BoundedSemaphore

The general syntax and possible implementations
The general syntax for the with statement in the simplest form is as follows:

with context_manager:
 # block of code
 ...

Additionally, if the context manager provides a context variable, it can be stored locally
using the as clause:

with context_manager as context:
 # block of code
 ...

Modern Syntax Elements - Below the Class Level Chapter 3

[102]

Note that multiple context managers can be used at once, as follows:

with A() as a, B() as b:
 ...

This is equivalent to nesting them, as follows:

with A() as a:
 with B() as b:
 ...

As a class
Any object that implements the context manager protocol can be used as a context
manager. This protocol consists of two special methods:

__enter__(self): This allows you to define what should happen before
executing the code that is wrapped with context manager and returns context
variable
__exit__(self, exc_type, exc_value, traceback): This allows you to
perform additional cleanup operations after executing the code wrapped with
context manager, and captures all exceptions that were raised in the process

In short, the execution of the with statement proceeds as follows:

The __enter__ method is invoked. Any return value is bound to target the1.
specified as clause.
The inner block of code is executed.2.
The __exit__ method is invoked.3.

__exit__ receives three arguments that are filled when an error occurs within the code
block. If no error occurs, all three arguments are set to None. When an error occurs,
the __exit__() method should not re-raise it, as this is the responsibility of the caller. It
can prevent the exception being raised, though, by returning True. This is provided to
allow for some specific use cases, such as the contextmanager decorator, which we will
see in the next section. But, for most use cases, the right behavior for this method is to do
some cleanup, as would be done by the finally clause. Usually, no matter what happens
in the block, it does not return anything.

Modern Syntax Elements - Below the Class Level Chapter 3

[103]

The following is an example of a dummy context manager that implements this protocol to
better illustrate how it works:

class ContextIllustration:
 def __enter__(self):
 print('entering context')

 def __exit__(self, exc_type, exc_value, traceback):
 print('leaving context')

 if exc_type is None:
 print('with no error')
 else:
 print(f'with an error ({exc_value})')

When run without exceptions raised, the output is as follows (the previous snippet is stored
in the context_illustration module):

>>> from context_illustration import ContextIllustration
>>> with ContextIllustration():
... print("inside")
...
entering context
inside
leaving context
with no error

When the exception is raised, the output is as follows:

>>> from context_illustration import ContextIllustration
>>> with ContextIllustration():
... raise RuntimeError("raised within 'with'")
...
entering context
leaving context
with an error (raised within 'with')
Traceback (most recent call last):
 File "<input>", line 2, in <module>
RuntimeError: raised within 'with'

Modern Syntax Elements - Below the Class Level Chapter 3

[104]

As a function – the contextlib module
Using classes seems to be the most flexible way to implement any protocol provided in the
Python language, but may be too much boilerplate for many simple use cases. A module
was added to the standard library to provide helpers that simplify the creation of custom
context managers. The most useful part of it is the contextmanager decorator. It allows us
to provide both __enter__ and __exit__ procedures of the context manager within a
single function, separated by a yield statement (note that this makes the function a
generator). The previous example, when written with this decorator like would look like
the following:

from contextlib import contextmanager

@contextmanager
def context_illustration():
 print('entering context')

 try:
 yield
 except Exception as e:
 print('leaving context')
 print(f'with an error ({e})')
 # exception needs to be reraised
 raise
 else:
 print('leaving context')
 print('with no error')

If any exception occurs, the function needs to re-raise it in order to pass it along. Note that
the context_illustration module could have some arguments if needed. This small
helper simplifies the normal class-based context manager API exactly like generators do
with the class-based iterator API.

The four other helpers provided by this module are as follows:

closing(element): This returns the context manager that calls the element's
close() method on exit. This is useful for classes that deal with streams and
files.
supress(*exceptions): This suppresses any of the specified exceptions if they
occur in the body of the with statement.
redirect_stdout(new_target) and redirect_stderr(new_target):
These redirect the sys.stdout or sys.stderr output of any code within the
block to another file or file-like object.

Modern Syntax Elements - Below the Class Level Chapter 3

[105]

Let's take a look at the functional-style features of Python.

Functional-style features of Python
Programming paradigm is a very important concept that allows us to classify different
programming languages. Programming paradigm defines a specific way of thinking about
language execution models (definition of how work takes place) or about the structure and
organization of the code. There are many programming paradigms, but they are usually
grouped into two main categories:

Imperative paradigms, in which the programmer is mostly concerned about the
program state and the program itself is a definition of how the computer should
manipulate its state to generate the expected result
Declarative paradigms, in which the programmer is concerned mostly about a
formal definition of the problem or properties of the desired result and not
defining how this result should be computed

Due to its execution model and omnipresent classes and objects, the paradigms that are the
most natural to Python are object-oriented programming and structured programming.
These are also the two most common imperative programming paradigms among all
modern programming languages. However Python is considered a multi-paradigm
language and contains features that are common to both imperative and declarative
languages.

One of the great things about programming in Python is that you are never constrained to a
single way of thinking about your programs. There are always various ways to solve given
problem, and sometimes the best one requires an approach that is slightly different from
the one that would be the most obvious. Sometimes, this approach requires the use of
declarative programming. Fortunately, Python, with its rich syntax and large standard
library, offers features of functional programming, and functional programming is one of
the main paradigms of declarative programming.

Let's discuss functional programming in the next section.

Modern Syntax Elements - Below the Class Level Chapter 3

[106]

What is functional programming?
Functional programming is a paradigm where the program is mainly an evaluation of
(mathematical) functions, and is not through a series of defined steps that change the state
of the program. Purely functional programs avoid the change of state (side effects) and
mutable data. In Python, functional programming is realized through the use of complex
expressions and declarations of functions.

One of the best ways to better understand the general concept of functional programming is
through familiarizing yourself with the basic terms of functional programming:

Side-effects: A function is said to have a side-effect if it modifies the state outside
of its local environment. In other words, a side-effect is any observable change
outside of the function scope that happens as a result of a function call. An
example of such side-effects could be the modification of a global variable, the
modification of an attribute or object that is available outside of the function
scope, or saving data to some external service. Side-effects are the core of the
concept of object-oriented programming, where class instances are objects that
are used to encapsulate the state of application, and methods are functions
bound to those objects that are supposed to manipulate the state of these objects.
Referential transparency: When a function or expression is referentially
transparent, it can be replaced with the value that corresponds to its inputs
without changing the behavior of the program. So, a lack of side effects is a
requirement for referential transparency, but not every function that lacks side-
effects is a referentially transparent function. For instance, Python's built-in
pow(x, y) function is referentially transparent, because it lacks side effects, and
for every x and y argument, it can be replaced with the value of xy. On the other
hand, the datetime.now() constructor method of the datetime type does not
seem to have observable side-effects, but will return a different value every time
it is called. So, it is referentially opaque.
Pure functions: A pure function is a function that does not have any side-effects
and which always returns the same value for the same set of input arguments. In
other words, it is a function that is referentially transparent. Every mathematical
function is, by definition, a pure function.
First-class functions: Language is said to contain first-class functions if functions
in this language can be treated as any other value or entity. First-class functions
can be passed as arguments to other functions, returned as function return
values, and assigned to variables. In other words, a language that has first-class
functions is a language that treats functions as first-class citizens. Functions in
Python are first-class functions.

Modern Syntax Elements - Below the Class Level Chapter 3

[107]

Using these concepts, we could describe a purely functional language as a language that
has first-class functions that is concerned only with pure functions, and avoids any state
modification and side-effects. Python, of course, is not a purely functional programming
language, and it would be really hard to imagine a useful Python program that uses only
pure functions without any side-effects. Python offers a large variety of features that, for
years, were only accessible in purely functional languages, so it is possible to write
substantial amounts of code in a functional way, even though Python isn't functional by
itself.

Let's take a look at Lambda functions in the next section.

Lambda functions
Lambda functions are a very popular programming concept that is especially profound in
functional programming. In other programming languages, lambda function are sometimes
known as anonymous functions, lambda expressions, or function literals. Lambda functions
are anonymous functions that don't have to be bound to any identifier (variable).

Lambda functions in Python can be defined only using expressions. The syntax for lambda
functions is as follows:

lambda <arguments>: <expression>

The best way to present the syntax of lambda functions is through comparing a "normal"
function definition with its anonymous counterpart. The following is a simple function that
returns the area of a circle of a given radius:

import math

def circle_area(radius):
 return math.pi * radius ** 2

 The same function expressed as a lambda function would take the following form:

lambda radius: math.pi * radius ** 2

Modern Syntax Elements - Below the Class Level Chapter 3

[108]

Lambda in functions are anonymous, but it doesn't mean they cannot be referred to by any
identifier. Functions in Python are first-class objects, so whenever you use a function name,
you're actually using a variable that is a reference to the function object. As with any other
function, lambda functions are first-class citizens, so they can also be assigned to a new
variable. Once assigned to a variable, they are seemingly undistinguishable from other
functions, except for some metadata attributes. The following transcripts from interactive
interpreter sessions illustrates this:

>>> import math
>>> def circle_area(radius):
... return math.pi * radius ** 2
...
>>> circle_area(42)
5541.769440932395
>>> circle_area
<function circle_area at 0x10ea39048>
>>> circle_area.class
<class 'function'>
>>> circle_area.name
'circle_area'

>>> circle_area = lambda radius: math.pi * radius ** 2
>>> circle_area(42)
5541.769440932395
>>> circle_area
<function <lambda> at 0x10ea39488>
>>> circle_area.__class__
<class 'function'>
>>> circle_area.__name__
'<lambda>'

Let's take a look at the map(), filter(), and reduce() functions in the next sections.

map(), filter(), and reduce()
The map(), filter(), and reduce() functions are three built-in functions that are most
often used in conjunction with lambda functions. They are commonly used in functional
style Python programming because they allow us to declare data transformations of any
complexity, while simultaneously avoiding side-effects. In Python 2, all three functions
were available as default built-in functions that did not require additional imports. In
Python 3, the reduce() function was moved to the functools module, so it requires
additional imports.

Modern Syntax Elements - Below the Class Level Chapter 3

[109]

map(fun, iterable, ...) applies the func function argument to every item of
iterable. You can pass more iterables to the map() function. If you do so, map() will
consume elements from each iterable simultaneously. The func function will receive as
many items as there is iterables on every map step. If iterables are of different sizes, map()
will stop until the shortest one is exhausted. It is worth remembering that map() does not
evaluate the whole result at once, but returns an iterator so that every result item can be
evaluated only when it is necessary.

The following is an example of map() being used to calculate the squares of the first 10
positive integers, including 0:

>>> map(lambda x: x**2, range(10))
<map object at 0x10ea09cf8>

>>> list(map(lambda x: x**2, range(10)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The following is an example of the map() function being used over multiple iterables of
different sizes:

>>> list(map(print, range(5), range(4), range(5)))
0 0 0
1 1 1
2 2 2
3 3 3

filter(function, iterable) works similarly to map() by evaluating input elements
one by one. Unlike map(), the filter() function does not transform input elements into
new values, but allows us to filter out those input values that meet the predicate defined by
the function argument. The following are examples of the filter() functions usage:

>>> evens = filter(lambda number: number % 2 == 0, range(10))
>>> odds = filter(lambda number: number % 2 == 1, range(10))
>>> print(f"Even numbers in range from 0 to 9 are: {list(evens)}")
Even numbers in range from 0 to 9 are: [0, 2, 4, 6, 8]
>>> print(f"Odd numbers in range from 0 to 9 are: {list(odds)}")
Odd numbers in range from 0 to 9 are: [1, 3, 5, 7, 9]

>>> animals = ["giraffe", "snake", "lion", "squirrel"]
>>> animals_with_s = filter(lambda animal: 's' in animal, animals)
>>> print(f"Animals with letter 's' are: {list(animals_with_s)}")
Animals with letter 's' are: ['snake', 'squirrel']

Modern Syntax Elements - Below the Class Level Chapter 3

[110]

The reduce(function, iterable) works completely opposite to map(). Instead of
taking items of iterable and mapping them to the function return values in a one-by-
one fashion, it cumulatively performs operations specified by function to
all iterable items. Let's consider following the example of reduce() calls being used to
sum values of elements contained in various iterable objects:

>>> from functools import reduce
>>> reduce(lambda a, b: a + b, [2, 2])
4
>>> reduce(lambda a, b: a + b, [2, 2, 2])
6
>>> reduce(lambda a, b: a + b, range(100))
4950

One interesting aspect of map() and filter() is that they can work on infinite sequences.
Of course, evaluating infinite sequence to a list type or trying to ordinarily loop over such
a sequence will result in program that does not ever end. However the return values
of map() and filter() are iterators, and we already learned in this chapter that we can
obtain new values from iterators using the next() function. The common range()
function we have used in previous examples unfortunately requires finite input value, but
the itertools module provides a useful count() function that allows you to count from
a specific number in any direction ad infinitum. The following example shows how all these
functions can be used together to generate an infinite sequence in a declarative way:

>>> from itertools import count
>>> sequence = filter(
... # We want to accept only values divisible by 3
... # that are not divisible by 2
... lambda square: square % 3 == 0 and square % 2 == 1,
... map(
... # and all numbers must be squares
... lambda number: number ** 2,
... # and we count towards infinity
... count()
...)
...)
>>> next(sequence)
9
>>> next(sequence)
81
>>> next(sequence)
225
>>> next(sequence)
441

Modern Syntax Elements - Below the Class Level Chapter 3

[111]

Unlike the map() and filter() functions, the reduce() function needs to evaluate all
input items in order to return its value, as it does not yield intermediary results. This means
that it cannot be used on infinite sequences.

Let's take a look at partial objects and partial() functions.

Partial objects and partial() functions
Partial objects are loosely related to the concept of partial functions in mathematics. A prtial
function is a generalization of a mathematical function in a way that isn't forced to map
every possible input value (domain) to its results. In Python, partial objects can be used to
slice the possible input domain of a given function by setting some of its arguments to a
fixed value.

In the previous sections, we used the x ** 2 expression to get the square value of x.
Python provides a built-in function called pow(x, y) that can calculate any power of any
number. So, our lambda x: x ** 2 function is a partial function of the pow(x,
y) function, because we have limited the domain values for y to a single value, 2. The
partial() function from the functools module provides an alternative way to easily
define such partial functions without the need for lambda functions, which can sometimes
become unwieldy.

Let's say that we now want to create a slightly different partial function out of pow(). Last
time, we generated squares of consecutive numbers. Now, let's narrow the domain of other
input arguments and say we want to generate consecutive powers of the number two – so,
1, 2, 4, 8, 16, and so on.

The signature of a partial object constructor is partial(func, *args, **keywords).
The partial object will behave exactly like func, but its input arguments will be pre-
populated with *args (starting from the leftmost) and **keywords. The pow(x, y)
function does not support keyword arguments, so we have to pre-populate the leftmost x
argument as follows:

>>> from functools import partial
>>> powers_of_2 = partial(pow, 2)
>>> powers_of_2(2)
4
>>> powers_of_2(5)
32
>>> powers_of_2(10)
1024

Modern Syntax Elements - Below the Class Level Chapter 3

[112]

Note that you don't need to assign your partial to any identifier if you don't want to reuse
it. You can successfully use it to define one-off functions in the same way that you would
use lambda functions. The following example shows how various functions that have been
presented in this chapter can be used to create a simple generator of infinite powers of the
number two without any explicit function definition:

from functools import partial
from itertools import count
infinite_powers_of_2 = map(partial(pow, 2), count())

The itertools module is a treasury of helpers and utilities for iterating
over any type of iterable objects in various ways. It provides various
functions that, among others, allow us to cycle containers, group their
contents, split iterables in chunks, and chain multiple iterables into one
and many more, and every function in that module returns iterators. If
you are interested in functional-style programming in Python, you should
definitely familiarize yourself with this module.

Let's take a look at generator expressions in the next section.

Generator expressions
Generator expressions are another syntax element that allows you to write code in a more
functional way. Its syntax is similar to comprehensions that are used with dict, set, and list
literals. A generator expression is denoted with parentheses, like in the following example:

(item for item in iterable_expression)

Generator expressions can be used as input arguments in any function that accepts
iterators. They also allow if clauses to filter specific elements. This means that you can
often replace complex map() and filter() constructions with more readable and compact
generator expressions. Consider one of the previous complex map()/filter() examples
compared with the equivalent generator expression:

sequence = filter(
 lambda square: square % 3 == 0 and square % 2 == 1,
 map(
 lambda number: number ** 2,
 count()
)
)

sequence = (
 square for square

Modern Syntax Elements - Below the Class Level Chapter 3

[113]

 in (number ** 2 for number in count())
 if square % 3 == 0 and square % 2 == 1
)

Let's discuss function and variable annotations in the next section.

Function and variable annotations
Function annotation is one of the most unique features of Python 3. The official
documentation states the following:

"Function annotations are completely optional metadata information about the types used
by user-defined functions."

However, they are not restricted to type hinting; also, there is no single feature in Python
and its standard library that leverages such annotations. This is why this feature is unique –
it does not have any syntactic meaning. Annotations can simply be defined for a function
and can be retrieved in runtime, but that is all. What to do with them is left to the
developers.

Let's take a look at their general syntax and possible uses in the following sections

The general syntax
A slightly modified example from the Python documentation shows how to define and
retrieve function annotations:

>>> def f(ham: str, eggs: str = 'eggs') -> str:
... pass
...
>>> print(f.__annotations__)
{'return': <class 'str'>, 'eggs': <class 'str'>, 'ham': <class 'str'>}

Modern Syntax Elements - Below the Class Level Chapter 3

[114]

As we can see, parameter annotations are defined by the expression evaluating the value of
the annotation, preceded by a colon. Return annotations are defined by the expression
between the colon denoting the end of the def statement and literal -> that follows the
parameter list.

Once defined, annotations are available in the __annotations__ attribute of the function
object as a dictionary and can be retrieved during application runtime.

The fact that any expression can be used as the annotation and that it is located just near the
default arguments allows us to create some confusing function definitions, as follows:

>>> def square(number: 0<=3 and 1=0) -> (\
... +9000): return number**2
>>> square(10)
100

However, such usage of annotations serves no other purpose than obfuscation, and, even
without them, it is relatively easy to write code that is hard to read and maintain.

The possible uses
While annotations have great potential, they are not widely used. An article explaining the
new features that were added to Python 3 (refer to https://docs.python.org/3/whatsnew/
3.0.html) says that the intent of this feature as follows:

"The intent is to encourage experimentation through metaclasses, decorators, or
frameworks."

On the other hand, PEP 3107, which officially proposed function annotations, lists the
following set of possible use cases:

Providing typing information:
Type checking
Let IDEs show what types a function expects and returns
Function overloading/generic functions
Foreign language bridges
Adaptation
Predicate logic functions
Database query mapping
RPC parameter marshaling

https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html
https://docs.python.org/3/whatsnew/3.0.html

Modern Syntax Elements - Below the Class Level Chapter 3

[115]

Other information:
Documentation for parameters and return values

Although the function annotations are as old as Python 3, it is still very hard to find any
popular and actively maintained package that uses them for something else other than type
checking. So, except static type checking, function annotations are still mostly only good for
experimentation and playing – the initial purpose for their inclusion in the initial release of
Python 3.

Static type checking with mypy
Static type checking is a technique that allows us to quickly find possible errors and quality
defects in code before it is even executed. It's a natural feature of compiled languages with
static typing. Python, of course, lacks such built-in features, but there are some third-party
packages that allow us to perform static type analysis in Python in order to improve code
quality. Function and variable annotations are currently best utilized as type hints for the
exact purpose of static type checking. The leading type of static checker for Python is
currently mypy. It analyzes functions and variable annotations that can be defined using a
type hinting hierarchy from typing modules (refer to PEP 484 Type Hints).

The best thing about mypy is that type hinting is completely optional. If you have a very
large codebase, you are not forced to suddenly annotate all your code before you start to
reap benefits from the static type checking. You can just start to gradually introduce type
annotation in the most used code and get increasing benefits over time as your type
annotations coverage increases. Also, mypy is supported by mainstream Python
development in the form of a typeshed project. Typeshed (see https://github.com/
python/typeshed) is a collection of library stubs with static type definitions for both the
standard library and many popular third=party projects.

You'll find more information about mypy and its command-line usage on the official project
page at http://mypy-lang.org.

Let's look at some of the other syntax elements you may not know of yet.

https://github.com/python/typeshed
https://github.com/python/typeshed
https://github.com/python/typeshed
https://github.com/python/typeshed
https://github.com/python/typeshed
https://github.com/python/typeshed
https://github.com/python/typeshed
https://github.com/python/typeshed
https://github.com/python/typeshed
https://github.com/python/typeshed
http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org
http://mypy-lang.org

Modern Syntax Elements - Below the Class Level Chapter 3

[116]

Other syntax elements you may not know of
yet
There are some elements of the Python syntax that are not popular and rarely used. This is
because they either provide very little gain, or their usage is simply hard to memorize. Due
to this, many Python programmers (even with years of experience) simply do not know
about their existence. The most notable examples of such features are as follows:

The for ... else ... clause
Keyword-only arguments

The for ... else ... statement
Using the else clause after the for loop only allows us to execute a block of code if the
loop ended naturally, without terminating with the break statement:

>>> for number in range(1):
... break
... else:
... print("no break")
...
>>> for number in range(1):
... pass
... else:
... print("no break")
...
no break

This comes in handy in some situations, because it helps in removing some
sentinel variables that may be required if the user wants to store information if
a break statement occurred. This makes the code cleaner, but can confuse programmers
who are not familiar with such syntax. Some say that such meaning of the else clause is
counterintuitive, but here is an easy tip that will help you remember how does it work –
memorizing that else clause after the for loop simply means no break.

Modern Syntax Elements - Below the Class Level Chapter 3

[117]

Keyword-only arguments
While the for ... else ... form of for loops is rather a curiosity that not many
developers are eager to use, there is at least one lesser-known feature in Python syntax that
should be used more often by every Python programmer. This feature is keyword-only
arguments.

Keyword-only arguments is a feature that has been in Python for a very long time, but
initially was only found in some built-in functions or extensions that were built with the
use of the Python/C API. But, starting from Python 3.0, keyword-only arguments are an
official element of language syntax that can be used in any function signature. In function
signatures, every keyword argument defined after a single literal * argument will be
marked as keyword-only. Being keyword-only means that you cannot pass a value as an
positional argument.

In order to better understand what problem is being solved by keyword-only arguments,
let's consider the following set of function stubs that have been defined without that
feature:

def process_order(order, client, suppress_notifications=False):
 ...

def open_order(order, client):
 ...

def archive_order(order, client):
 ...

The preceding API is pretty consistent. We can clearly see that every function takes exactly
two of the same arguments that are probably crucial for every part of the program that
needs to deal with orders. We can also see that the additional suppress_notifications
argument in the process_order() function stands out. It has a default value, so it is
probably a flag that can be switched on and off. We don't know what this program does,
but from the API, we can guess how these functions could be used. The most simple
example could be as follows:

order = ...
client = ...

open_order(order, client)
process_order(order, client)
archive_order(order, client)

Modern Syntax Elements - Below the Class Level Chapter 3

[118]

Everything seems clear and simple. However, a curious API designer would see that there
is something disturbing in the API design that can become a problem in the future. If there
is a need to suppress notifications in the process_order() function, the API user can do
this in two ways:

process_order(order, client, suppress_notifications=True)
process_order(order, client, True)

The first usage is best, as it makes the semantics of the function call clear. Here, the two
leftmost arguments (order and client) are best when presented as positional arguments,
because they have dedicated meaningful variable names, and it also seems that their
position is conventional to the API. The meaning of the suppress_notifications
argument will be totally lost if we present it as a plain literal True value.

What is more worrisome is that such lax constraints on API usage puts the API designer in
a rather uncomfortable position where he/she must be extremely cautious when extending
the existing interfaces. Let's imagine that there is new requirement to suppress payment on
demand; we should be able to do this by adding a new argument named
suppress_payment. Signature change is rather simple:

def process_order(
 order, client,
 suppress_notifications=False,
 suppress_payment=False,
):
 ...

For us, the intended usage is clear – both suppress_notifications and
suppress_payment should be provided to the function as keyword arguments and not
positional arguments. But, what is clear to us doesn't have to be clear to our users. It is just
a matter of time until we start seeing function calls like the following:

process_order(order, client, True)
process_order(order, client, False)
process_order(order, client, False, False)
process_order(order, client, True, False)
process_order(order, client, False, True)
process_order(order, client, True, True)

This pattern is dangerous for yet another reason. Imagine that someone less familiar with
the general design of the API added a new argument, not at the end of the argument list but
just before other arguments that were supposed to be used as keywords. Such a mistake
would invalidate all existing function calls where keywords arguments were wrongly
passed positionally.

Modern Syntax Elements - Below the Class Level Chapter 3

[119]

In large projects, it is extremely hard to protect your code from such misuse. And, without
enough protection, every misused call to your functions will, over the years, create a large
amount of debt that can greatly reduce your effectiveness. The best way to protect your
function signatures from this kind of erosion is by explicitly stating which arguments
should be used as keywords. In the discussed example, this approach would look as
follows:

def process_order(
 order, client,
 *,
 suppress_notifications=False,
 suppress_payment=False,
):
 ...

Summary
This chapter covered various best syntax practices that do not directly relate to Python
classes and object-oriented programming. We started by dissecting the syntax for basic
built-in types as well as the technical details of their implementation in the CPython
interpreter.

After organizing our basic knowledge about Python built-in types, we finally discussed
concepts that are truly advanced parts of Python programming language: iterators,
generators, decorators, and context managers. Of course, we couldn't make this part
completely class-less, as everything in Python is an object, and even elements of syntax that
are not object-oriented have their underlying language protocols defined at the class-level
object anatomy. So, in order to fulfill the title of this chapter, we then moved our focus to
another major aspect of Python programming – the features of language that allow us to
program in a functional style.

In order to end this chapter with a lighter tone, we've looked at a few lesser known, but still
important and useful, features of Python language.

In the next chapter, we will use everything we learned so far to better understand the
object-oriented features of Python. We will look more closely at the concept of language
protocols and about method resolution order. We will see that, in Python, every paradigm
has its place, and we will discover how object-oriented elements of the language allow for
its plasticity.

4
Modern Syntax Elements -

Above the Class Level
In this chapter, we will focus on modern syntax elements of Python with regard to classes
and object-oriented programming. However, we will not cover the topic of object-oriented
design patterns, as they will be discussed in detail in Chapter 17, Useful Design Patterns.
Here, we will perform an overview of the most advanced Python syntax elements that will
allow you to improve the code of your classes.

The Python class model as we know it evolved greatly during the history of Python 2. For a
long time, we lived in a world where two implementations of the object-oriented
programming paradigm coexisted in the same language. These two models were simply
referred to as old-style and new-style classes. Python 3 ended this dichotomy, so that only
the model known as the new-style class is available to developers. It is still important to
know how both of them worked in Python 2, because it will help you in porting old code
and writing backward compatible applications. Knowing how the object model changed
will also help you to understand why it is designed that way right now. This is the reason
why the following chapter will have many notes about old Python 2 features despite this
book being targeted to the latest Python 3 releases.

The following topics will be discussed in this chapter:

Protocols of the Python language
Reducing boilerplate with data classes
Subclassing built-in types
Accessing methods from superclasses
Slots

Modern Syntax Elements - Above the Class Level Chapter 4

[121]

Technical requirements
Code files for this chapter can be found at https://github.com/PacktPublishing/Expert-
Python-Programming-Third-Edition/tree/master/chapter4.

The protocols of the Python language –
dunder methods and attributes
The Python data model specifies a lot of specially named methods that can be overridden in
your custom classes to provide them with additional syntax capabilities. You can recognize
these methods by their specific naming conventions that wrap the method name with
double underscores. Because of this, they are sometimes referred to as dunder. It is simply
a speech shorthand for double underscores.

The most common and obvious example of such dunder methods is __init__(), which is
used for class instance initialization:

class CustomUserClass:
 def __init__(self, initiatization_argument):
 ...

These methods, either alone or when defined in specific combination, constitute the so-
called language protocols. If an object implements specific language protocols, it becomes
compatible with specific parts of the Python language syntax. The following is the table of
the most important protocols within the Python language:

Protocol name Methods Description

Callable protocol __call__()
Allows objects to be called with the
parentheses syntax:
instance()

Descriptor
protocols

__set__(), __get__(),
and __del__()

Allows us to manipulate the attribute access
pattern of classes (see the Descriptors section)

Container
protocol __contains__()

Allows us to test whether or not an object
contains some value using the in keyword:
value in instance

Iterable protocol __iter__()

Allows objects to be iterated over using the for
keyword:
for value in instance:
...

https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter4

Modern Syntax Elements - Above the Class Level Chapter 4

[122]

Sequence
protocol

__len__(),
__getitem__()

Allows objects to be indexed with square
bracket syntax and queried for length using a
built-in function:
item = instance[index]
length = len(instance)

These are the most important language protocols from the perspective of this chapter. The
full list is, of course, a lot longer. For instance, Python provides over 50 dunder methods
that allow us to emulate numeric values. Each of these methods is correlated to some
specific mathematical operator, and so could be considered a separate language protocol.
The full list of all the dunder methods can be found in the official documentation of the
Python data model (see https://docs.python.org/3/reference/datamodel.html).

Language protocols are the foundation of the concept of interfaces in Python. One
implementation of Python interfaces is in abstract base classes that allow us to define an
arbitrary set of attributes and methods as an interface definition. These definitions of
interfaces in the form of abstract classes can be later used to test whether or not the given
object is compatible with a specific interface. The collections.abc module from the
Python standard library provides a collection of abstract base classes that refer to the most
common Python language protocol. You'll find more information about interfaces and
abstract base classes in the Interfaces section of Chapter 17, Useful Design Patterns.

The same dunder convention is also used for specific attributes of custom user functions
and is used to store various metadata about Python objects. These attributes are as follows:

__doc__: A writable attribute that holds the function's documentation. It is, by
default, populated by the docstring function.
__name__: A writable attribute that holds the function's name.
__qualname__: A writable attribute that holds the function's qualified name.
The qualified name is a full dotted path to the object (with class names) in the
global scope of the module where the object is defined.
__module__: A writable attribute that holds the name of the module that
function belongs to.
__defaults__: A writable attribute that holds the default argument values if the
function has any.
__code__: A writable attribute that holds the function's compile code object.
__globals__: A read-only attribute that holds the reference to the dictionary of
global variables for that function's scope. The global scope for a function is the
namespace of the module where this function is defined.

https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html

Modern Syntax Elements - Above the Class Level Chapter 4

[123]

__dict__: A writable attribute that holds a dictionary of function attributes.
Functions in Python are first-class objects, so they can have any arbitrary
arguments defined, just like any other object.
__closure__: A read-only attribute that holds a tuple of cells with the function's
free variables. Closure cells allow you to create parametrized function decorators.
__annotations__: A writable attribute that holds the function's argument and
return annotations.
__kwdefaults__: A writable attribute that holds the default argument values
for keyword-only arguments if the function has any.

Let's see how to reduce the boilerplate with data classes.

Reducing boilerplate with data classes
Before we dive deeper into details of Python classes, we will take a small detour. We will
discuss a relatively new addition to the Python language, which are data classes. The
dataclasses module, introduced in Python 3.7, provides a decorator and function that
allows you to easily add generated special methods to your own classes.

Consider the following example. We are building a program that does some geometric
computation and want to have a class that allows us to hold information about two-
dimensional vectors. We will display the data of the vectors on the screen and perform
common mathematical operations, such as addition, subtraction, and equality comparison.
We already know that we can use special methods to achieve that goal. We can
implement our Vector class as follows:

class Vector:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __add__(self, other):
 """Add two vectors using + operator"""
 return Vector(
 self.x + other.x,
 self.y + other.y,
)

 def __sub__(self, other):
 """Subtract two vectors using - operator"""
 return Vector(
 self.x - other.x,

Modern Syntax Elements - Above the Class Level Chapter 4

[124]

 self.y - other.y,
)

 def __repr__(self):
 """Return textual representation of vector"""
 return f"<Vector: x={self.x}, y={self.y}>"

 def __eq__(self, other):
 """Compare two vectors for equality"""
 return self.x == other.x and self.y == other.y

The following is the interactive session example that shows how it behaves when used with
common operators:

>>> Vector(2, 3)
<Vector: x=2, y=3>
>>> Vector(5, 3) + Vector(1, 2)
<Vector: x=6, y=5>
>>> Vector(5, 3) - Vector(1, 2)
<Vector: x=4, y=1>
>>> Vector(1, 1) == Vector(2, 2)
False
>>> Vector(2, 2) == Vector(2, 2)
True

The preceding vector implementation is quite simple, but involves a lot of repetitive code
that could be avoided. If your program uses many similar simple classes that do not require
complex initialization, you'll end up writing a lot of boilerplate code just for
the __init__(), __repr__(), and __eq__() methods.

With the dataclasses module, we can make our Vector class code a lot shorter:

from dataclasses import dataclass

@dataclass
class Vector:
 x: int
 y: int

 def __add__(self, other):
 """Add two vectors using + operator"""
 return Vector(
 self.x + other.x,
 self.y + other.y,
)

 def __sub__(self, other):

Modern Syntax Elements - Above the Class Level Chapter 4

[125]

 """Subtract two vectors using - operator"""
 return Vector(
 self.x - other.x,
 self.y - other.y,
)

The dataclass class decorator reads annotations of the Vector class attribute and
automatically creates the __init__(), __repr__(), and __eq__() methods. The default
equality comparison assumes that two instances are equal if all their respective attributes
are equal to each other.

But that's not all. Data classes offer many useful features. They can easily be made
compatible with other Python protocols, too. Let's assume we want our Vector class
instances to be immutable. Thanks to this, they could be used as dictionary keys and as
content sets. You can do this by simply adding a frozen=True argument to the dataclass
decorator, as in the following example:

@dataclass(frozen=True)
class FrozenVector:
 x: int
 y: int

Such a frozen Vector data class becomes completely immutable, so you won't be able to
modify any of its attributes. You can still add and subtract two Vector instances as in our
example; these operations simply create new Vector objects.

The final piece of useful information we will cover about data classes in this chapter is that
you can define default values for specific attributes using the field() constructor. You can
use both static values and constructors of other objects. Consider the following example:

>>> @dataclass
... class DataClassWithDefaults:
... static_default: str = field(default="this is static default value")
... factory_default: list = field(default_factory=list)
...
>>> DataClassWithDefaults()
DataClassWithDefaults(static_default='this is static default value',
factory_default=[])

The next section discusses subclassing built-in types.

Modern Syntax Elements - Above the Class Level Chapter 4

[126]

Subclassing built-in types
Subclassing built-in types in Python is pretty straightforward. A built-in type,
called object is a common ancestor for all built-in types, as well as for all user-defined
classes that have no explicit parent class specified. Thanks to this, every time you need to
implement a class that behaves almost like one of the built-in types, the best practice is to
subtype it.

Now, we will look at the code for a class called distinctdict, which uses this technique.
It will be a subclass of the usual Python dict type. This new class will behave, in most
ways, like an ordinary Python dict type. But, instead of allowing multiple keys with the
same value, when someone tries to add a new entry with an identical value, it raises
a ValueError subclass with a help message.

As already stated, the built-in dict type is an object subclass:

>>> isinstance(dict(), object)
True
>>> issubclass(dict, object)
True

It means that we could easily define our own dictionary-based class as a direct subclass of
that type, as follows:

class distinctdict(dict):
 ...

The previous approach would be totally valid, as a subclassing of dict, list, and str
types has been allowed since Python 2.2. But, usually the better approach is to subclass one
of the corresponding types from the collections module:

collections.UserDict

collections.UserList

collections.UserString

These classes are usually easier to work with, as the underlying regular dict, list, and
str objects are stored as data attributes of these classes.

Modern Syntax Elements - Above the Class Level Chapter 4

[127]

The following is an example implementation of the distinctdict type that overrides part
of the ordinary dictionary protocol to ensure that it contains only unique values:

from collections import UserDict

class DistinctError(ValueError):
 """Raised when duplicate value is added to a distinctdict."""

class distinctdict(UserDict):
 """Dictionary that does not accept duplicate values."""
 def __setitem__(self, key, value):
 if value in self.values():
 if (
 (key in self and self[key] != value) or
 key not in self
):
 raise DistinctError(
 "This value already exists for different key"
)

 super().__setitem__(key, value)

The following is an example of using distinctdict in an interactive session:

>>> my = distinctdict()
>>> my['key'] = 'value'
>>> my['other_key'] = 'value'
Traceback (most recent call last):
 File "<input>", line 1, in <module>
 File "<input>", line 10, in __setitem__
DistinctError: This value already exists for different key
>>> my['other_key'] = 'value2'
>>> my
{'key': 'value', 'other_key': 'value2'}
>>> my.data
{'key': 'value', 'other_key': 'value2'}

If you take a look at your existing code, you may find a lot of classes that partially
implement the protocols or functionalities of the built-in types. These classes could be faster
and cleaner if implemented as subtypes of these types. The list type, for instance,
manages the sequences of any type and you can use it every time your class works
internally with a sequence or collection.

Modern Syntax Elements - Above the Class Level Chapter 4

[128]

 The following is a simple example of the Folder class that subclasses the Python list
type to represent and manipulate the contents of directories in a tree-like structure:

from collections import UserList

class Folder(UserList):
 def __init__(self, name):
 self.name = name

 def dir(self, nesting=0):
 offset = " " * nesting
 print('%s%s/' % (offset, self.name))

 for element in self:
 if hasattr(element, 'dir'):
 element.dir(nesting + 1)
 else:
 print("%s %s" % (offset, element))

Note that we have actually subclassed the UserList class from the collections module
and not the bare list type. It is possible to subclass bare built-in types, such as string,
dict, or set, but it is advisable to use their user counterparts from the collections
module instead because they make subclassing a bit easier.

The following is an example use of our Folder class in an interactive session:

>>> tree = Folder('project')
>>> tree.append('README.md')
>>> tree.dir()
project/
 README.md
>>> src = Folder('src')
>>> src.append('script.py')
>>> tree.append(src)
>>> tree.dir()
project/
 README.md
 src/
 script.py
>>> tree.remove(src)
>>> tree.dir()
project/
 README.md

Modern Syntax Elements - Above the Class Level Chapter 4

[129]

Built-in types cover most of the use cases
When you are about to create a new class that acts like a sequence or a
mapping, think about its features and look over the existing built-in types.
The collections module extends basic lists of built-in types with many
useful containers. You will often end up using one of them without
needing to create your custom subclasses.

Let's take a look at MRO in the next section.

MRO and accessing methods from
superclasses
super is a built-in class that can be used to access an attribute belonging to an object's
superclass.

The Python official documentation lists super as a built-in function, but,
it's a built-in class, even if it is used like a function:
>>> super
<class 'super'>
>>> isinstance(super, type)

Its usage is a bit confusing if you are used to accessing a class attribute or method by calling
the parent class directly and passing self as the first argument. This is a really old pattern,
but still can be found in some code bases (especially in legacy projects). See the following
code:

class Mama: # this is the old way
 def says(self):
 print('do your homework')

class Sister(Mama):
 def says(self):
 Mama.says(self)
 print('and clean your bedroom')

Modern Syntax Elements - Above the Class Level Chapter 4

[130]

Look particularly at the Mama.says(self) line. You can see here an explicit use of parent
class. This means that the says() method belonging to Mama will be called. But, the
instance on which it will be called is provided as the self argument, which is an instance
of Sister in this case.

Instead, the super usage would be as follows:

class Sister(Mama):
 def says(self):
 super(Sister, self).says()
 print('and clean your bedroom')

Alternatively, you can also use the shorter form of the super() call:

class Sister(Mama):
 def says(self):
 super().says()
 print('and clean your bedroom')

The shorter form of super (without passing any arguments) is allowed inside the methods,
but the usage of super is not limited to the body of methods. It can be used in any code
area where the explicit call to the method of superclass implementation is required. Still,
if super is not used inside the body of the method, then, all of its arguments are
mandatory:

 >>> anita = Sister()
 >>> super(anita.__class__, anita).says()
 do your homework

The final and most important thing that should be noted about super is that its second
argument is optional. When only the first argument is provided, then super returns an
unbounded type. This is especially useful when working with classmethod:

class Pizza:
 def __init__(self, toppings):
 self.toppings = toppings

 def __repr__(self):
 return "Pizza with " + " and ".join(self.toppings)

 @classmethod
 def recommend(cls):
 """Recommend some pizza with arbitrary toppings,"""
 return cls(['spam', 'ham', 'eggs'])

Modern Syntax Elements - Above the Class Level Chapter 4

[131]

class VikingPizza(Pizza):
 @classmethod
 def recommend(cls):
 """Use same recommendation as super but add extra spam"""
 recommended = super(VikingPizza).recommend()
 recommended.toppings += ['spam'] * 5
 return recommended

Note that the zero-argument super() form is also allowed for methods decorated with
the classmethod decorator. super(), if called without arguments in such methods, is
treated as having only the first argument defined.

The use cases presented earlier are very simple to follow and understand, but when you
face a multiple inheritance schema, it becomes hard to use super. Before explaining these
problems, you need to first understand when super should be avoided and how
the Method Resolution Order (MRO) works in Python.

Let's discuss old-style classes and super in Python 2.

Old-style classes and super in Python 2
super() in Python 2 works almost exactly the same as in Python 3. The only difference in
its call signature is that the shorter, zero-argument form is not available, so at least one of
the expected arguments must always be provided.

Another important thing for programmers to note who want to write cross-version
compatible code is that super in Python 2 works only for new-style classes. The earlier
versions of Python did not have a common ancestor for all classes in the form of
an object type. The old behavior was left in every Python 2.x branch release for backward
compatibility, so, in those versions, if the class definition has no ancestor specified, it is
interpreted as an old-style class, and it cannot use super:

class OldStyle1:
 pass

class OldStyle2(OldStyle1):
 pass

Modern Syntax Elements - Above the Class Level Chapter 4

[132]

The new-style class in Python 2 must explicitly inherit from the object type or other new-
style class:

class NewStyleClass(object):
 pass

class NewStyleClassToo(NewStyleClass):
 pass

Python 3 no longer maintains the concept of old-style classes, so any class that does not
inherit from any other class implicitly inherits from object. This means that explicitly
stating that a class inherits from object may seem redundant. Standard good practice is to
not include redundant code, but removing such redundancy in this case is a good approach
only for projects that no longer target any of the Python 2 versions. Code that aims for
cross-version compatibility of Python must always include object as an ancestor of base
classes, even if this is redundant in Python 3. Not doing so will result in such classes being
interpreted as old-style, and this will eventually lead to issues that are very hard to
diagnose.

Let's understand Python's MRO in the next section

Understanding Python's Method Resolution
Order
Python MRO is based on C3, the MRO built for the Dylan programming language
(http://opendylan.org). The reference document, written by Michele Simionato, can be
found at http://www.python.org/download/releases/2.3/mro. It describes how C3 builds
the linearization of a class, also called precedence, which is an ordered list of the ancestors.
This list is used to seek an attribute. The C3 algorithm is described in more detail later in
this section.

The MRO change was made to resolve an issue introduced with the creation of a common
base type (that is, object type). Before the change to the C3 linearization method, if a class
had two ancestors (refer to Figure 1), the order in which methods were resolved was quite
simple to compute and track only for simple cases that didn't use multiple inheritance
model in a cascading way.

http://opendylan.org
http://www.python.org/download/releases/2.3/mro

Modern Syntax Elements - Above the Class Level Chapter 4

[133]

Here is an example of code, which, under Python 2, would not use C3 as an MRO:

class Base1:
 pass

class Base2:
 def method(self):
 print('Base2')

class MyClass(Base1, Base2):
 pass

>>> MyClass().method()
Base2

When MyClass().method() is called, the interpreter looks for the method in MyClass,
then Base1, and then eventually finds it in Base2:

Figure 1: Classical hierarchy

When we introduce some CommonBase class at the top of our class hierarchy
(both Base1 and Base2 will inherit from it, refer to Figure 2), things will get more
complicated. As a result, the simple resolution order that behaves according to the left-to-
right depth first rule is getting back to the top through the Base1 class before looking into
the Base2 class. This algorithm results in a counterintuitive output. In some cases, the
method that is executed may not be the one that is the closest in the inheritance tree.

Such an algorithm is still available in Python 2 for old-style classes. Here is an example of
the old method resolution in Python 2 using old-style classes:

class CommonBase:
 def method(self):
 print('CommonBase')

Modern Syntax Elements - Above the Class Level Chapter 4

[134]

class Base1(CommonBase):
 pass

class Base2(CommonBase):
 def method(self):
 print('Base2')

class MyClass(Base1, Base2):
 pass

The following transcript from the interactive session shows that Base2.method() will not
be called despite the Base2 class being closer in the class hierarchy to MyClass
than CommonBase:

>>> MyClass().method()
CommonBase

Figure 2: The Diamond class hierarchy

Such an inheritance scenario is extremely uncommon, so this is more a problem of theory
than practice. The standard library does not structure the inheritance hierarchies in this
way, and many developers think that it is bad practice. But, with the introduction
of object at the top of the types hierarchy, the multiple inheritance problem pops up on
the C side of the language, resulting in conflicts when doing subtyping. You should also
note that every class in Python 3 has now got the same common ancestor. Since making it
work properly with the existing MRO involved too much work, a new MRO was a simpler
and quicker solution.

Modern Syntax Elements - Above the Class Level Chapter 4

[135]

So, the same example run under Python 3 gives a different result:

class CommonBase:
 def method(self):
 print('CommonBase')

class Base1(CommonBase):
 pass

class Base2(CommonBase):
 def method(self):
 print('Base2')

class MyClass(Base1, Base2):
 pass

And here is the usage example showing that C3 serialization will pick the method of the
closest ancestor:

>>> MyClass().method()
Base2

Note that the preceding behavior cannot be replicated in Python 2 without
the CommonBase class explicitly inheriting from object. Reasons as to
why it may be useful to specify object as a class ancestor in Python 3,
even if this is redundant, were already mentioned in the previous
section—Old-style classes and super in Python 2.

The Python MRO is based on a recursive call over the base classes. To summarize the
Michele Simionato paper referenced at the beginning of this section, the C3 symbolic
notation applied to our example is as follows:

L[MyClass(Base1, Base2)] =
 MyClass + merge(L[Base1], L[Base2], Base1, Base2)

Here, L[MyClass] is the linearization of MyClass, and merge is a specific algorithm that
merges several linearization results.

So, a synthetic description would be, as Simionato says:

"The linearization of C is the sum of C plus the merge of the linearizations of the parents
and the list of the parents."

Modern Syntax Elements - Above the Class Level Chapter 4

[136]

The merge algorithm is responsible for removing the duplicates and preserving the correct
ordering. It is described in the paper like this (adapted to our example):

Take the head of the first list, that is, L[Base1][0]; if this head is not in the tail of any of the
other lists, then add it to the linearization of MyClass and remove it from the lists in the
merge, otherwise look at the head of the next list and take it, if it is a good head.

Then, repeat the operation until all the classes are removed or it is impossible to find good
heads. In this case, it is impossible to construct the merge, Python 2.3 will refuse to create
the MyClass class and will raise an exception.

The head is the first element of a list and the tail contains the rest of the elements. For
example, in (Base1, Base2, ..., BaseN), Base1 is the head, and (Base2, ...,
BaseN) is the tail.

In other words, C3 does a recursive depth lookup on each parent to get a sequence of lists.
Then, it computes a left-to-right rule to merge all lists with a hierarchy disambiguation,
when a class is involved in several lists.

So the result is as follows:

def L(klass):
 return [k.__name__ for k in klass.__mro__]

>>> L(MyClass)
['MyClass', 'Base1', 'Base2', 'CommonBase', 'object']

The __mro__ attribute of a class (which is read-only) stores the result of
the linearization computation. Computation is done when the class
definition is loaded.
You can also call MyClass.mro() to compute and get the result. This is
another reason why classes in Python 2 should be taken with an extra
case. While old-style classes in Python 2 have some defined order in
which methods are resolved, they do not provide the __mro__ attribute
and the mro() method. So, despite the order of resolution, it is wrong to
say that they have MRO. In most cases, whenever someone refers to MRO
in Python, it means that they are referring to the C3 algorithm described
in this section.

Let's now discuss some of the shortcomings faced by programmers.

Modern Syntax Elements - Above the Class Level Chapter 4

[137]

Super pitfalls
Now, back to the super() call. If you deal with multiple inheritance hierarchy, it can
become problematic. This is mainly due to the initialization of classes. In Python, the
initialization methods (that is, the __init__() methods) of base classes are not implicitly
called in ancestor classes if ancestor classes override __init__(). In such cases, you need
to call superclass methods explicitly, and this can sometimes lead to initialization problems.

In this section, we will discuss a few examples of such problematic situations.

Mixing super and explicit class calls
In the following example, taken from James Knight's website
(http://fuhm.net/super-harmful), a C class that calls initialization methods of its parent
classes using the super().__init__() method will make the call to
the B.__init__() class to be called twice:

class A:
 def __init__(self):
 print("A", end=" ")
 super().__init__()

class B:
 def __init__(self):
 print("B", end=" ")
 super().__init__()

class C(A, B):
 def __init__(self):
 print("C", end=" ")
 A.__init__(self)
 B.__init__(self)

Here is the output:

>>> print("MRO:", [x.__name__ for x in C.__mro__])
MRO: ['C', 'A', 'B', 'object']
>>> C()
C A B B <__main__.C object at 0x0000000001217C50>

http://fuhm.net/super-harmful

Modern Syntax Elements - Above the Class Level Chapter 4

[138]

In the preceding transcript we see that initialization of class C invokes the B.__init__()
method twice. To avoid such issues, super should be used in the whole class hierarchy.
The problem is that sometimes, a part of such complex hierarchy may be located in a third-
party code. Many other related pitfalls on the hierarchy calls introduced by multiple
inheritances can be found on James's page.

Unfortunately, you cannot be sure that external packages use super() in their code.
Whenever you need to subclass some third-party class, it is always a good approach to take
a look inside its code and the code of other classes in the MRO. This may be tedious, but, as
a bonus, you get some information about the quality of code provided by such a package
and more understanding of its code. You may learn something new that way.

Heterogeneous arguments
Another issue with super usage occurs if methods of classes within the class hierarchy use
inconsistent argument sets. How can a class call its base class an __init__() code if it
doesn't have the same signature? This leads to the following problem:

class CommonBase:
 def __init__(self):
 print('CommonBase')
 super().__init__()

class Base1(CommonBase):
 def __init__(self):
 print('Base1')
 super().__init__()

class Base2(CommonBase):
 def __init__(self, arg):
 print('base2')
 super().__init__()

class MyClass(Base1 , Base2):
 def __init__(self, arg):
 print('my base')
 super().__init__(arg)

Modern Syntax Elements - Above the Class Level Chapter 4

[139]

An attempt to create a MyClass instance will raise TypeError due to a mismatch of the
parent classes' __init__() signatures:

>>> MyClass(10)
my base
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 4, in __init__
TypeError: __init__() takes 1 positional argument but 2 were given

One solution would be to use arguments and keyword arguments packing
with *args and **kwargs magic so that all constructors pass along all the parameters,
even if they do not use them:

class CommonBase:
 def __init__(self, *args, **kwargs):
 print('CommonBase')
 super().__init__()

class Base1(CommonBase):
 def __init__(self, *args, **kwargs):
 print('Base1')
 super().__init__(*args, **kwargs)

class Base2(CommonBase):
 def __init__(self, *args, **kwargs):
 print('base2')
 super().__init__(*args, **kwargs)

class MyClass(Base1 , Base2):
 def __init__(self, arg):
 print('my base')
 super().__init__(arg)

With this approach, the parent class signatures will always match:

>>> _ = MyClass(10)
my base
Base1
base2
CommonBase

This is an awful fix though, because it makes all constructors accept any kind of
parameters. It leads to weak code, since anything can be passed and gone through. Another
solution is to use the explicit __init__() calls of specific classes in MyClass, but this
would lead to the first pitfall.

Modern Syntax Elements - Above the Class Level Chapter 4

[140]

In the next section, we will discuss the best practices.

Best practices
To avoid all the aforementioned problems, and until Python evolves in this field, we need
to take into consideration the following points:

Multiple inheritance should be avoided: It can be replaced with some design
patterns presented in Chapter 17, Useful Design Patterns.

Super usage has to be consistent: In a class
hierarchy, super should be used everywhere or nowhere.
Mixing super and classic calls is a confusing practice. People tend
to avoid super to render their code more explicit.

Explicitly inherit from an object in Python 3 if you target Python 2 too: Classes
without any ancestor specified are recognized as old-style classes in Python 2.
Mixing old-style classes with new-style classes should be avoided in Python 2.
Class hierarchy has to be looked over when a parent class method is called: To
avoid any problems, every time a parent class method is called, a quick glance at
the MRO involved (with __mro__) is necessary.

Let's take a look at the access patterns for advanced attributes.

Advanced attribute access patterns
When many C++ and Java programmers first learn Python, they are surprised by Python's
lack of a private keyword. The nearest concept is name mangling. Every time an attribute
is prefixed by __, it is renamed by the interpreter on the fly:

class MyClass:
 __secret_value = 1

Accessing the __secret_value attribute by its initial name will raise
an AttributeError exception:

>>> instance_of = MyClass()
>>> instance_of.__secret_value
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'MyClass' object has no attribute '__secret_value'
>>> dir(MyClass)
['_MyClass__secret_value', '__class__', '__delattr__', '__dict__',

Modern Syntax Elements - Above the Class Level Chapter 4

[141]

'__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__']
>>> instance_of._MyClass__secret_value
1

This feature is provided to avoid name collision under inheritance, as the attribute is
renamed with the class name as a prefix. It is not a real privacy lock, since the attribute can
be accessed through its composed name. This feature could be used to protect the access of
some attributes, but, in practice, __ should never be used. When an attribute is not public,
the convention to use is a _ prefix. This does not invoke any name mangling algorithm, but
just documents the attribute as a private element of the class and is the prevailing style.

Other mechanisms are available in Python that nicely separate the public part of the class
together with the private code. The descriptors and properties are interesting features of
Python that allow us to cleanly provide this kind of separation.

Descriptors
A descriptor lets you customize what should be done when you refer to an attribute of an
object.

Descriptors are the base of a complex attribute access in Python. They are used internally to
implement properties, methods, class methods, static methods, and the super type. They
are classes that define how attributes of another class can be accessed. In other words, a
class can delegate the management of an attribute to another one.

The descriptor classes are based on three special methods that form the descriptor protocol:

__set__(self, obj, value): This is called whenever the attribute is set. In
the following examples, I will refer to this as a setter.
__get__(self, obj, owner=None): This is called whenever the attribute is
read (referred to as a getter).
__delete__(self, obj): This is called when del is invoked on the attribute.

A descriptor that implements __get__() and __set__() is called a data descriptor. If it
just implements __get__(), then it is called a non-data descriptor.

Modern Syntax Elements - Above the Class Level Chapter 4

[142]

Methods of this protocol are, in fact, called by the object's
special __getattribute__() method (do not confuse it with __getattr__(), which has
a different purpose) on every attribute lookup. Whenever such a lookup is performed,
either by using a dotted notation in the form of instance.attribute, or by using
the getattr(instance, 'attribute') function call, the __getattribute__() method
is implicitly invoked and it looks for an attribute in the following order:

It verifies whether the attribute is a data descriptor on the class object of the1.
instance.
If not, it looks to see whether the attribute can be found in2.
the __dict__ lookup of the instance object.
Finally, it looks to see whether the attribute is a non-data descriptor on the class3.
object of the instance.

In other words, data descriptors take precedence over __dict__ lookup,
and __dict__ lookup takes precedence over non-data descriptors.

To make it clearer, here is an example from the official Python documentation that shows
how descriptors work on real code:

class RevealAccess(object):
 """A data descriptor that sets and returns values
 normally and prints a message logging their access.
 """

 def __init__(self, initval=None, name='var'):
 self.val = initval
 self.name = name

 def __get__(self, obj, objtype):
 print('Retrieving', self.name)
 return self.val

 def __set__(self, obj, val):
 print('Updating', self.name)
 self.val = val

class MyClass(object):
 x = RevealAccess(10, 'var "x"')
 y = 5

Modern Syntax Elements - Above the Class Level Chapter 4

[143]

Here is an example of using it in the interactive session:

>>> m = MyClass()
>>> m.x
Retrieving var "x"
10
>>> m.x = 20
Updating var "x"
>>> m.x
Retrieving var "x"
20
>>> m.y
5

The preceding example clearly shows that, if a class has the data descriptor for the given
attribute, then the descriptor's __get__() method is called to return the value every time
the instance attribute is retrieved, and __set__() is called whenever a value is assigned to
such an attribute. Although the case for the descriptor's __del__ method is not shown in
the preceding example, it should be obvious now: it is called whenever an instance attribute
is deleted with the del instance.attribute statement or the delattr(instance,
'attribute') call.

The difference between data and non-data descriptors is important for the reasons
highlighted at the beginning of the section. Python already uses the descriptor protocol to
bind class functions to instances as methods. They also power the mechanism behind
the classmethod and staticmethod decorators. This is because, in fact, the function
objects are non-data descriptors too:

>>> def function(): pass
>>> hasattr(function, '__get__')
True
>>> hasattr(function, '__set__')
False

This is also true for functions created with lambda expressions:

>>> hasattr(lambda: None, '__get__')
True
>>> hasattr(lambda: None, '__set__')
False

Modern Syntax Elements - Above the Class Level Chapter 4

[144]

So, without __dict__ taking precedence over non-data descriptors, we would not be able
to dynamically override specific methods on already constructed instances at runtime.
Fortunately, thanks to how descriptors work in Python, it is possible; so, developers may
use a popular technique called monkey patching to change the way in which instances
work without the need for subclassing.

Real-life example – lazily evaluated attributes
One example usage of descriptors may be to delay initialization of the class attribute to the
moment when it is accessed from the instance. This may be useful if the initialization of
such attributes depends on the global application context. The other case is when such
initialization is simply expensive, but it is not known whether it will be used anyway when
the class is imported. Such a descriptor could be implemented as follows:

class InitOnAccess:
 def __init__(self, klass, *args, **kwargs):
 self.klass = klass
 self.args = args
 self.kwargs = kwargs
 self._initialized = None

 def __get__(self, instance, owner):
 if self._initialized is None:
 print('initialized!')
 self._initialized = self.klass(*self.args,
 **self.kwargs)
 else:
 print('cached!')
 return self._initialized

Here is an example usage:

>>> class MyClass:
... lazily_initialized = InitOnAccess(list, "argument")
...
>>> m = MyClass()
>>> m.lazily_initialized
initialized!
['a', 'r', 'g', 'u', 'm', 'e', 'n', 't']
>>> m.lazily_initialized
cached!
['a', 'r', 'g', 'u', 'm', 'e', 'n', 't']

Modern Syntax Elements - Above the Class Level Chapter 4

[145]

The official OpenGL Python library available on PyPI under the PyOpenGL name uses a
similar technique to implement a lazy_property object that is both a decorator and a data
descriptor:

class lazy_property(object):
 def __init__(self, function):
 self.fget = function

 def __get__(self, obj, cls):
 value = self.fget(obj)
 setattr(obj, self.fget.__name__, value)
 return value

Such an implementation is similar to using the property decorator (described later), but
the function that is wrapped with it is executed only once and then the class attribute is
replaced with a value returned by that function property. That technique is often useful
when there's a need to fulfil the following two requirements at the same time:

An object instance needs to be stored as a class attribute that is shared between
its instances (to save resources)
This object cannot be initialized at the time of import because its creation process
depends on some global application state/context

In the case of applications written using OpenGL, you can encounter this kind of situation
very often. For example, the creation of shaders in OpenGL is expensive because it requires
a compilation of code written in OpenGL Shading Language (GLSL). It is reasonable to
create them only once, and, at the same time, include their definition in close proximity to
classes that require them. On the other hand, shader compilations cannot be performed
without OpenGL context initialization, so it is hard to define and compile them reliably in a
global module namespace at the time of import.

The following example shows the possible usage of the modified version of
PyOpenGL's lazy_property decorator (here, lazy_class_attribute) in some
imaginary OpenGL-based application. The highlighted change to the
original lazy_property decorator was required in order to allow the attribute to be
shared between different class instances:

import OpenGL.GL as gl
from OpenGL.GL import shaders

class lazy_class_attribute(object):
 def __init__(self, function):
 self.fget = function

Modern Syntax Elements - Above the Class Level Chapter 4

[146]

 def __get__(self, obj, cls):
 value = self.fget(obj or cls)
 # note: storing in class object not its instance
 # no matter if its a class-level or
 # instance-level access
 setattr(cls, self.fget.__name__, value)
 return value

class ObjectUsingShaderProgram(object):
 # trivial pass-through vertex shader implementation
 VERTEX_CODE = """
 #version 330 core
 layout(location = 0) in vec4 vertexPosition;
 void main(){
 gl_Position = vertexPosition;
 }
 """
 # trivial fragment shader that results in everything
 # drawn with white color
 FRAGMENT_CODE = """
 #version 330 core
 out lowp vec4 out_color;
 void main(){
 out_color = vec4(1, 1, 1, 1);
 }
 """

 @lazy_class_attribute
 def shader_program(self):
 print("compiling!")
 return shaders.compileProgram(
 shaders.compileShader(
 self.VERTEX_CODE, gl.GL_VERTEX_SHADER
),
 shaders.compileShader(
 self.FRAGMENT_CODE, gl.GL_FRAGMENT_SHADER
)
)

Like every advanced Python syntax feature, this one should also be used with caution and
documented well in code. For inexperienced developers, the altered class behavior might
be very confusing and unexpected, because descriptors affect the very basic part of class
behavior. Because of that, it is very important to make sure that all your team members are
familiar with descriptors and understand this concept well if it plays an important role in
your project's code base.

Modern Syntax Elements - Above the Class Level Chapter 4

[147]

Properties
The properties provide a built-in descriptor type that knows how to link an attribute to a
set of methods. property takes four optional arguments: fget, fset, fdel, and doc. The
last one can be provided to define a docstring function that is linked to the attribute as if
it were a method. Here is an example of a Rectangle class that can be controlled either by
direct access to attributes that store two corner points or by using
the width and height properties:

class Rectangle:
 def __init__(self, x1, y1, x2, y2):
 self.x1, self.y1 = x1, y1
 self.x2, self.y2 = x2, y2

 def _width_get(self):
 return self.x2 - self.x1

 def _width_set(self, value):
 self.x2 = self.x1 + value

 def _height_get(self):
 return self.y2 - self.y1

 def _height_set(self, value):
 self.y2 = self.y1 + value

 width = property(
 _width_get, _width_set,
 doc="rectangle width measured from left"
)
 height = property(
 _height_get, _height_set,
 doc="rectangle height measured from top"
)

 def __repr__(self):
 return "{}({}, {}, {}, {})".format(
 self.__class__.__name__,
 self.x1, self.y1, self.x2, self.y2
)

Modern Syntax Elements - Above the Class Level Chapter 4

[148]

The following is an example of such defined properties in an interactive session:

>>> rectangle = Rectangle(10, 10, 25, 34)
>>> rectangle.width, rectangle.height
(15, 24)
>>> rectangle.width = 100
>>> rectangle
Rectangle(10, 10, 110, 34)
>>> rectangle.height = 100
>>> rectangle
Rectangle(10, 10, 110, 110)
>>> help(Rectangle)
Help on class Rectangle in module chapter3:
class Rectangle(builtins.object)
 | Methods defined here:
 |
 | __init__(self, x1, y1, x2, y2)
 | Initialize self. See help(type(self)) for accurate signature.
 |
 | __repr__(self)
 | Return repr(self).
 |
 | --
 | Data descriptors defined here:
 | (...)
 |
 | height
 | rectangle height measured from top
 |
 | width
 | rectangle width measured from left

The properties make it easier to write descriptors, but must be handled carefully when
using inheritance over classes. The attribute created is made on the fly using the methods of
the current class and will not use methods that are overridden in the derived classes.

For instance, the following example will fail to override the implementation of
the fget method of the parent's class (Rectangle) width property:

>>> class MetricRectangle(Rectangle):
... def _width_get(self):
... return "{} meters".format(self.x2 - self.x1)
...
>>> Rectangle(0, 0, 100, 100).width
100

Modern Syntax Elements - Above the Class Level Chapter 4

[149]

In order to resolve this, the whole property simply needs to be overwritten in the derived
class:

>>> class MetricRectangle(Rectangle):
... def _width_get(self):
... return "{} meters".format(self.x2 - self.x1)
... width = property(_width_get, Rectangle.width.fset)
...
>>> MetricRectangle(0, 0, 100, 100).width
'100 meters'

Unfortunately, the preceding code has some maintainability issues. It can be a source of
confusion if the developer decides to change the parent class, but forgets to update the
property call. This is why overriding only parts of the property behavior is not advised.
Instead of relying on the parent class's implementation, it is recommended that you rewrite
all the property methods in the derived classes if you need to change how they work. In
most cases, this is the only option, because usually the change to the
property setter behavior implies a change to the behavior of getter as well.

Because of this, the best syntax for creating properties is to use property as a decorator.
This will reduce the number of method signatures inside the class and make the code more
readable and maintainable:

class Rectangle:
 def __init__(self, x1, y1, x2, y2):
 self.x1, self.y1 = x1, y1
 self.x2, self.y2 = x2, y2

 @property
 def width(self):
 """rectangle width measured from left"""
 return self.x2 - self.x1

 @width.setter
 def width(self, value):
 self.x2 = self.x1 + value

 @property
 def height(self):
 """rectangle height measured from top"""
 return self.y2 - self.y1

 @height.setter
 def height(self, value):
 self.y2 = self.y1 + value

Modern Syntax Elements - Above the Class Level Chapter 4

[150]

Slots
An interesting feature that is very rarely used by developers is slots. They allow you to set a
static attribute list for a given class with the __slots__ attribute, and skip the creation of
the __dict__ dictionary in each instance of the class. They were intended to save memory
space for classes with very few attributes, since __dict__ is not created at every instance.

Besides this, they can help to design classes whose signature needs to be frozen. For
instance, if you need to restrict the dynamic features of the language over a class, defining
slots can help:

>>> class Frozen:
... __slots__ = ['ice', 'cream']
...
>>> '__dict__' in dir(Frozen)
False
>>> 'ice' in dir(Frozen)
True
>>> frozen = Frozen()
>>> frozen.ice = True
>>> frozen.cream = None
>>> frozen.icy = True
Traceback (most recent call last): File "<input>", line 1, in <module>
AttributeError: 'Frozen' object has no attribute 'icy'

This feature should be used carefully. When a set of available attributes is limited
using __slots__, it is much harder to add something to the object dynamically. Some
techniques, such as monkey patching, will not work with instances of classes that have slots
defined. Fortunately, the new attributes can be added to the derived classes if they do not
have their own slots defined:

>>> class Unfrozen(Frozen):
... pass
...
>>> unfrozen = Unfrozen()
>>> unfrozen.icy = False
>>> unfrozen.icy
False

Modern Syntax Elements - Above the Class Level Chapter 4

[151]

Summary
In this chapter, we discussed modern Python syntax elements related to class models and
object-oriented programming.

We started with an explanation of the language protocol concept and simple ways to
implement those protocols. We discussed the subclassing of built-in types and how to call
methods from superclasses. After that, we moved on to more advanced concepts of object-
oriented programming in Python. These were useful syntax features that focus on instance
attribute access: descriptors and properties. We demonstrated how they can be used to
create cleaner and more maintainable code.

In the next chapter, we will explore the vast topic of metaprogramming in Python. We will
reuse some of the syntax features that we've learned so far to show various
metaprogramming techniques.

5
Elements of Metaprogramming

Metaprogramming is one of the most complex and powerful approaches to programming
in Python. Metaprogramming tools and techniques have evolved with Python; so, before
we dive into this topic, it is important for you to know all the elements of modern Python
syntax well. We discussed them in the two previous chapters. If you read them carefully,
then you should know enough to fully understand the contents of this chapter.

In this chapter, we will explain what metaprogramming really is and present a few
practical approaches to metaprogramming in Python.

In this chapter, we will cover the following topics:

What is metaprogramming?
Decorators
Metaclasses
Code generation

Technical requirements
The following are the Python packages that are mentioned in this chapter that you can
download from PyPI:

macropy

falcon

hy

You can install these packages using the following command:

python3 -m pip install <package-name>

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Third-Edition/tree/master/chapter5.

https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter5

Elements of Metaprogramming Chapter 5

[153]

What is metaprogramming?
Maybe there is a good academic definition of metaprogramming that we can cite here, but
this is a book that is more about good software craftsmanship than about computer science
theory. This is why we will use the following simple definition:

"Metaprogramming is a technique of writing computer programs that can treat
themselves as data, so they can introspect, generate, and/or modify itself while running."

Using this definition, we can distinguish between two major approaches to
metaprogramming in Python.

The first approach concentrates on the language's ability to introspect its basic elements,
such as functions, classes, or types, and to create or modify them on the fly. Python really
provides a lot of tools in this area. This feature of the Python language is used by IDEs
(such as PyCharm) to provide real-time code analysis and name suggestions. The easiest
possible metaprogramming tools in Python that utilized language introspection are
decorators that allow for adding extra functionality to the existing functions, methods, or
classes. Next are special methods of classes that allow you to interfere with class instance
process creation. The most powerful are metaclasses, which allow programmers to even
completely redesign Python's implementation of object-oriented programming.

The second approach allows programmers to work directly with code, either in its raw
(plain text) format or in more programmatically accessible abstract syntax tree (AST) form.
This second approach is, of course, more complicated and difficult to work with but allows
for really extraordinary things, such as extending Python's language syntax or even
creating your own domain-specific language (DSL).

In the next section, we'll discuss what decorators are.

Decorators – a method of metaprogramming
The decorator syntax was explained in Chapter 3, Modern Syntax Elements – Below the Class
Level, as a syntactic sugar for the following simple pattern:

def decorated_function():
 pass
decorated_function = some_decorator(decorated_function)

Elements of Metaprogramming Chapter 5

[154]

This verbose form of function decoration clearly shows what the decorator does. It takes a
function object and modifies it at runtime. As a result, a new function (or anything else) is
created based on the previous function object with the same name. This decoration may be
a complex operation that performs some code introspection or decorated function to give
different results depending on how the original function was implemented. All this means
is that decorators can be considered as a metaprogramming tool.

This is good news. The basics of decorators are relatively easy to grasp and in most cases
make code shorter, easier to read, and also cheaper to maintain. Other metaprogramming
tools that are available in Python are more difficult to understand and master. Also, they
might not make the code simple at all.

We'll take a look at class decorators in the next section.

Class decorators
One of the lesser known syntax features of Python are the class decorators. Their syntax
and implementation is exactly the same as function decorators, as we mentioned in Chapter
3, Modern Syntax Elements – Below the Class Level. The only difference is that they are
expected to return a class instead of the function object. Here is an example class decorator
that modifies the __repr__() method to return the printable object representation, which
is shortened to some arbitrary number of characters:

def short_repr(cls):
 cls.__repr__ = lambda self: super(cls, self).__repr__()[:8]
 return cls

@short_repr
class ClassWithRelativelyLongName:
 pass

The following is what you will see in the output:

>>> ClassWithRelativelyLongName()
<ClassWi

Of course, the preceding snippet is not an example of good code by any means. Still, it
shows how multiple language features that are explained in the previous chapter can be
used together, for example:

Not only instances but also class objects can be modified at runtime

Elements of Metaprogramming Chapter 5

[155]

Functions are descriptors too, so they can be added to the class at runtime
because the actual method binding is performed on the attribute lookup as part
of the descriptor protocol
The super() call can be used outside of a class definition scope as long as proper
arguments are provided
Finally, class decorators can be used on class definitions

The other aspects of writing function decorators apply to the class decorators as well. Most
importantly, they can use closures and be parametrized. Taking advantage of these facts,
the previous example can be rewritten into the following more readable and maintainable
form:

def parametrized_short_repr(max_width=8):
 """Parametrized decorator that shortens representation"""
 def parametrized(cls):
 """Inner wrapper function that is actual decorator"""
 class ShortlyRepresented(cls):
 """Subclass that provides decorated behavior"""
 def __repr__(self):
 return super().__repr__()[:max_width]

 return ShortlyRepresented

 return parametrized

The major drawback of using closures in class decorators this way is that the resulting
objects are no longer instances of the class that was decorated but instances of the subclass
that was created dynamically in the decorator function. Among others, this will affect the
class's __name__ and __doc__ attributes, as follows:

@parametrized_short_repr(10)
class ClassWithLittleBitLongerLongName:
 pass

Such usage of class decorators will result in the following changes to the class metadata:

>>> ClassWithLittleBitLongerLongName().__class__
<class 'ShortlyRepresented'>
>>> ClassWithLittleBitLongerLongName().__doc__
'Subclass that provides decorated behavior'

Elements of Metaprogramming Chapter 5

[156]

Unfortunately, this cannot be fixed as simply as we explained in the Introspection Preserving
Decorators section of Chapter 3, Modern Syntax Elements – Below the Class Level. In class
decorators, you can't simply use the additional wraps decorator to preserve the original
class type and metadata. This makes use of the class decorators in this form limited in some
circumstances. They can, for instance, break results of automated documentation
generation tools.

Still, despite this single caveat, class decorators are a simple and lightweight alternative to
the popular mixin class pattern. Mixin in Python is a class that is not meant to be
instantiated, but is instead used to provide some reusable API or functionality to other
existing classes. Mixin classes are almost always added using multiple inheritance. Their
usage usually takes the following form:

class SomeConcreteClass(MixinClass, SomeBaseClass):
 pass

Mixins classes form a useful design pattern that is utilized in many libraries and
frameworks. To name one, Django is an example framework that uses them extensively.
While useful and popular, mixins can cause some trouble if not designed well, because, in
most cases, they require the developer to rely on multiple inheritance. As we stated earlier,
Python handles multiple inheritance relatively well, thanks to its clear MRO
implementation. Anyway, try to avoid subclassing multiple classes if you can. Multiple
inheritance makes code more complex and hard to reason about. This is why class
decorators may be a good replacement for mixin classes.

Let's take a look at the use of __new__() to override the instance creation process.

Using __new__() for overriding the instance
creation process
The special method __new__() is a static method that's responsible for creating class
instances. It is special-cased, so there is no need to declare it as static using
the staticmethod decorator. This __new__(cls, [,...]) method is called prior to
the __init__() initialization method. Typically, the implementation of
overridden __new__() invokes its superclass version using super().__new__() with
suitable arguments and modifies the instance before returning it.

Elements of Metaprogramming Chapter 5

[157]

The following is an example class with the overridden __new__() method implementation
in order to count the number of class instances:

class InstanceCountingClass:
 instances_created = 0
 def __new__(cls, *args, **kwargs):
 print('__new__() called with:', cls, args, kwargs)
 instance = super().__new__(cls)
 instance.number = cls.instances_created
 cls.instances_created += 1

 return instance

 def __init__(self, attribute):
 print('__init__() called with:', self, attribute)
 self.attribute = attribute

Here is the log of the example interactive session that shows how
our InstanceCountingClass implementation works:

>>> from instance_counting import InstanceCountingClass
>>> instance1 = InstanceCountingClass('abc')
__new__() called with: <class '__main__.InstanceCountingClass'> ('abc',) {}
__init__() called with: <__main__.InstanceCountingClass object at
0x101259e10> abc
>>> instance2 = InstanceCountingClass('xyz')
__new__() called with: <class '__main__.InstanceCountingClass'> ('xyz',) {}
__init__() called with: <__main__.InstanceCountingClass object at
0x101259dd8> xyz
>>> instance1.number, instance1.instances_created
(0, 2)
>>> instance2.number, instance2.instances_created
(1, 2)

The __new__() method should usually return an instance of the featured class, but it is
also possible for it to return other class instances. If this does happen (a different class
instance is returned), then the call to the __init__() method is skipped. This fact is useful
when there is a need to modify creation/initialization behavior of immutable class instances
like some of Python's built-in types, as shown in the following code:

class NonZero(int):
 def __new__(cls, value):
 return super().__new__(cls, value) if value != 0 else None

 def __init__(self, skipped_value):
 # implementation of __init__ could be skipped in this case
 # but it is left to present how it may be not called

Elements of Metaprogramming Chapter 5

[158]

 print("__init__() called")
 super().__init__()

Let's review these in the following interactive session:

>>> type(NonZero(-12))
__init__() called
<class '__main__.NonZero'>
>>> type(NonZero(0))
<class 'NoneType'>
>>> NonZero(-3.123)
__init__() called
-3

So, when should we use __new__()? The answer is simple: only when __init__() is not
enough. One such case was already mentioned, that is, subclassing immutable built-in
Python types such as int, str, float, frozenset, and so on. This is because there was no
way to modify such an immutable object instance in the __init__() method once it was
created.

Some programmers can argue that __new__() may be useful for performing important
object initialization that may be missed if the user forgets to use
the super().__init__() call in the overridden initialization method. While it sounds
reasonable, this has a major drawback. With such an approach, it becomes harder for the
programmer to explicitly skip previous initialization steps if this is the already desired
behavior. It also breaks an unspoken rule of all initializations performed in __init__().

Because __new__() is not constrained to return the same class instance, it can be easily
abused. Irresponsible usage of this method might do a lot of harm to code readability, so it
should always be used carefully and backed with extensive documentation. Generally, it is
better to search for other solutions that may be available for the given problem, instead of
affecting object creation in a way that will break a basic programmers' expectations. Even
overridden initialization of immutable types can be replaced with more predictable and
well-established design patterns like the Factory Method, which is described in Chapter
17, Useful Design Patterns.

There is at least one aspect of Python programming where extensive usage of
the __new__() method is well justified. These are metaclasses, which are described in the
next section.

Elements of Metaprogramming Chapter 5

[159]

Metaclasses
Metaclass is a Python feature that is considered by many as one of the most difficult things
to understand in this language and thus avoided by a great number of developers. In
reality, it is not as complicated as it sounds once you understand a few basic concepts. As a
reward, knowing how to use metaclasses grants you the ability to do things that are not
possible without them.

Metaclass is a type (class) that defines other types (classes). The most important thing to
know in order to understand how they work is that classes that define object instances are
objects too. So, if they are objects, then they have an associated class. The basic type of
every class definition is simply the built-in type class. Here is a simple diagram that should
make this clear:

Figure 1: How classes are typed

In Python, it is possible to substitute the metaclass for a class object with our own type.
Usually, the new metaclass is still the subclass of the type class (refer to Figure 2) because
not doing so would make the resulting classes highly incompatible with other classes in
terms of inheritance:

Figure 2: Usual implementation of custom metaclasses

Elements of Metaprogramming Chapter 5

[160]

Let's take a look at the general syntaxes for metaclasses in the next section.

The general syntax
The call to the built-in type() class can be used as a dynamic equivalent of the class
statement. The following is an example of a class definition with the type() call:

def method(self):
 return 1

MyClass = type('MyClass', (object,), {'method': method})

This is equivalent to the explicit definition of the class with the class keyword:

class MyClass:
 def method(self):
 return 1

Every class that's created with the class statement implicitly uses type as its metaclass. This
default behavior can be changed by providing the metaclass keyword argument to the
class statement, as follows:

class ClassWithAMetaclass(metaclass=type):
 pass

The value that's provided as a metaclass argument is usually another class object, but it
can be any other callable that accepts the same arguments as the type class and is expected
to return another class object. The call signature is type(name, bases, namespace) and
the meaning of the arguments are as follows:

name: This is the name of the class that will be stored in the __name__ attribute
bases: This is the list of parent classes that will become the __bases__ attribute
and will be used to construct the MRO of a newly created class
namespace: This is a namespace (mapping) with definitions for the class body
that will become the __dict__ attribute

One way of thinking about metaclasses is the __new__() method, but at a higher level of
class definition.

Elements of Metaprogramming Chapter 5

[161]

Despite the fact that functions that explicitly call type() can be used in place of
metaclasses, the usual approach is to use a different class that inherits from type for this
purpose. The common template for a metaclass is as follows:

class Metaclass(type):
 def __new__(mcs, name, bases, namespace):
 return super().__new__(mcs, name, bases, namespace)

 @classmethod
 def __prepare__(mcs, name, bases, **kwargs):
 return super().__prepare__(name, bases, **kwargs)

 def __init__(cls, name, bases, namespace, **kwargs):
 super().__init__(name, bases, namespace)

 def __call__(cls, *args, **kwargs):
 return super().__call__(*args, **kwargs)

The name, bases, and namespace arguments have the same meaning as in the type() call
we explained earlier, but each of these four methods can have the following different
purposes:

__new__(mcs, name, bases, namespace): This is responsible for the actual
creation of the class object in the same way as it does for ordinary classes. The
first positional argument is a metaclass object. In the preceding example, it would
simply be a Metaclass. Note that mcs is the popular naming convention for this
argument.
__prepare__(mcs, name, bases, **kwargs): This creates an empty
namespace object. By default, it returns an empty dict, but it can be overridden
to return any other mapping type. Note that it does not accept namespace as an
argument because, before calling it, the namespace does not exist. Example usage
of that method will be explained later in the New Python 3 syntax for metaclasses
section.
__init__(cls, name, bases, namespace, **kwargs): This is not seen
popularly in metaclass implementations but has the same meaning as in ordinary
classes. It can perform additional class object initialization once it is created
with __new__(). The first positional argument is now named cls by convention
to mark that this is already a created class object (metaclass instance) and not a
metaclass object. When __init__() was called, the class was already
constructed and so this method can do less things than the __new__() method.
Implementing such a method is very similar to using class decorators, but the
main difference is that __init__() will be called for every subclass, while class
decorators are not called for subclasses.

Elements of Metaprogramming Chapter 5

[162]

__call__(cls, *args, **kwargs): This is called when an instance of a
metaclass is called. The instance of a metaclass is a class object (refer to Figure 1);
it is invoked when you create new instances of a class. This can be used to
override the default way of how class instances are created and initialized.

Each of the preceding methods can accept additional extra keyword arguments, all of
which are represented by **kwargs. These arguments can be passed to the metaclass object
using extra keyword arguments in the class definition in the form of the following code:

class Klass(metaclass=Metaclass, extra="value"):
 pass

This amount of information can be overwhelming at the beginning without proper
examples, so let's trace the creation of metaclasses, classes, and instances with
some print() calls:

class RevealingMeta(type):
 def __new__(mcs, name, bases, namespace, **kwargs):
 print(mcs, "__new__ called")
 return super().__new__(mcs, name, bases, namespace)

 @classmethod
 def __prepare__(mcs, name, bases, **kwargs):
 print(mcs, "__prepare__ called")
 return super().__prepare__(name, bases, **kwargs)

 def __init__(cls, name, bases, namespace, **kwargs):
 print(cls, "__init__ called")
 super().__init__(name, bases, namespace)

 def __call__(cls, *args, **kwargs):
 print(cls, "__call__ called")
 return super().__call__(*args, **kwargs)

Using RevealingMeta as a metaclass to create a new class definition will give the
following output in the Python interactive session:

>>> class RevealingClass(metaclass=RevealingMeta):
... def __new__(cls):
... print(cls, "__new__ called")
... return super().__new__(cls)
... def __init__(self):
... print(self, "__init__ called")
... super().__init__()
...
<class 'RevealingMeta'> __prepare__ called
<class 'RevealingMeta'> __new__ called

Elements of Metaprogramming Chapter 5

[163]

<class 'RevealingClass'> __init__ called
>>> instance = RevealingClass()
<class 'RevealingClass'> __call__ called <class 'RevealingClass'> __new__
called <RevealingClass object at 0x1032b9fd0> __init__ called

Let's take a look at the new Python 3 syntax for metaclasses.

New Python 3 syntax for metaclasses
Metaclasses are not a new feature and have been available in Python since version 2.2.
Anyway, the syntax of this changed significantly and this change is neither backward nor
forward compatible. The new syntax is as follows:

class ClassWithAMetaclass(metaclass=type):
 pass

In Python 2, this must be written as follows:

class ClassWithAMetaclass(object):
 __metaclass__ = type

Class statements in Python 2 do not accept keyword arguments, so Python 3 syntax for
defining metaclasses will raise the SyntaxError exception on import. It is still possible
to write code using metaclasses that will run on both Python versions, but it requires some
extra work. Fortunately, compatibility-related packages such as six provide simple and
reusable solutions to this problem, such as the one shown in the following code:

from six import with_metaclass

class Meta(type):
 pass

class Base(object):
 pass

class MyClass(with_metaclass(Meta, Base)):
 pass

Elements of Metaprogramming Chapter 5

[164]

The other important difference is the lack of the __prepare__() hook in Python 2
metaclasses. Implementing such a function will not raise any exceptions under Python 2,
but this is pointless because it will not be called in order to provide a clean namespace
object. This is why packages that need to maintain Python 2 compatibility need to rely on
more complex tricks if they want to achieve things that are a lot easier to implement
using __prepare__(). For instance, the Django REST Framework
(http://www.django-rest-framework.org) in version 3.4.7 uses the following approach to
preserve the order in which attributes are added to a class:

class SerializerMetaclass(type):
 @classmethod
 def _get_declared_fields(cls, bases, attrs):
 fields = [(field_name, attrs.pop(field_name))
 for field_name, obj in list(attrs.items())
 if isinstance(obj, Field)]
 fields.sort(key=lambda x: x[1]._creation_counter)

 # If this class is subclassing another Serializer, add
 # that Serializer's fields.
 # Note that we loop over the bases in *reverse*.
 # This is necessary in order to maintain the
 # correct order of fields.
 for base in reversed(bases):
 if hasattr(base, '_declared_fields'):
 fields = list(base._declared_fields.items()) + fields

 return OrderedDict(fields)

 def __new__(cls, name, bases, attrs):
 attrs['_declared_fields'] = cls._get_declared_fields(
 bases, attrs
)
 return super(SerializerMetaclass, cls).__new__(
 cls, name, bases, attrs
)

http://www.django-rest-framework.org

Elements of Metaprogramming Chapter 5

[165]

This is the workaround for the fact that the default namespace type, which is dict, does
not guarantee to preserve the order of the key-value tuples in Python versions older than
3.7 (see the Dictionaries section of Chapter 3, Modern Syntax Elements – Below the Class Level).
The _creation_counter attribute is expected to be in every instance of the Field class.
This Field.creation_counter attribute is created in the same way
as InstanceCountingClass.instance_number which was presented in the Using
__new__() for overriding the instance creation process section. This is a rather complex solution
that breaks a single responsibility principle by sharing its implementation across two
different classes only to ensure a trackable order of attributes. In Python 3, this could be
simpler because __prepare__() can return other mapping types, such
as OrderedDict, as shown in the following code:

from collections import OrderedDict

class OrderedMeta(type):
 @classmethod
 def __prepare__(cls, name, bases, **kwargs):
 return OrderedDict()
 def __new__(mcs, name, bases, namespace):
 namespace['order_of_attributes'] = list(namespace.keys())
 return super().__new__(mcs, name, bases, namespace)

class ClassWithOrder(metaclass=OrderedMeta):
 first = 8
 second = 2

If you inspect ClassWithOrder in an interactive session, you'll see the following output:

>>> ClassWithOrder.order_of_attributes
['__module__', '__qualname__', 'first', 'second']
>>> ClassWithOrder.__dict__.keys()
dict_keys(['__dict__', 'first', '__weakref__', 'second',
'order_of_attributes', '__module__', '__doc__'])

The uses of metaclasses are given in the next section.

Elements of Metaprogramming Chapter 5

[166]

Metaclass usage
Metaclasses, once mastered, are a powerful feature, but always complicate the code.
Metaclasses also do not compose well and you'll quickly run into problems if you try to mix
multiple metaclasses through inheritance.

For simple things, like changing the read/write attributes or adding new ones, metaclasses
can be avoided in favor of simpler solutions, such as properties, descriptors, or class
decorators.

But there are situations where things cannot be easily done without them. For instance, it is
hard to imagine Django's ORM implementation built without extensive use of metaclasses.
It could be possible, but it is rather unlikely that the resulting solution would be similarly
easy to use. Frameworks are the place where metaclasses really shine. They usually have a
lot of complex internal code that is not easy to understand and follow, but eventually allow
other programmers to write more condensed and readable code that operates on a higher
level of abstraction.

Let's take a look at some of the limitations of metaclasses.

Metaclass pitfalls
Like some other advanced Python features, the metaclasses are very elastic and can be
easily abused. While the call signature of the class is rather strict, Python does not enforce
the type of the return parameter. It can be anything as long as it accepts incoming
arguments on calls and has the required attributes whenever it is needed.

One such object that can be anything-anywhere is the instance of the Mock class that's
provided in the unittest.mock module. Mock is not a metaclass and also does not inherit
from the type class. It also does not return the class object on instantiating. Still, it can be
included as a metaclass keyword argument in the class definition, and this will not raise
any syntax errors. Using Mock as a metaclass is, of course, complete nonsense, but let's
consider the following example:

>>> from unittest.mock import Mock
>>> class Nonsense(metaclass=Mock): # pointless, but illustrative
... pass
...
>>> Nonsense
<Mock spec='str' id='4327214664'>

Elements of Metaprogramming Chapter 5

[167]

It's not hard to predict that any attempt to instantiate our Nonsense pseudo-class will fail.
What is really interesting is the following exception and traceback you'll get trying to do so:

>>> Nonsense()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File
"/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/unittest/m
ock.py", line 917, in __call__
 return _mock_self._mock_call(*args, **kwargs)
 File
"/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/unittest/m
ock.py", line 976, in _mock_call
 result = next(effect)
StopIteration

Does the StopIteration exception give you any clue that there may be a problem with
our class definition on the metaclass level? Obviously not. This example illustrates how
hard it may be to debug metaclass code if you don't know where to look for errors.

We'll discuss code generation in the next section.

Code generation
As we already mentioned, the dynamic code generation is the most difficult approach to
metaprogramming. There are tools in Python that allow you to generate and execute code
or even do some modifications to the already compiled code objects.

Various projects such as Hy (mentioned later) show that even whole languages can be
reimplemented in Python using code generation techniques. This proves that the
possibilities are practically limitless. Knowing how vast this topic is and how badly it is
riddled with various pitfalls, I won't even try to give detailed suggestions on how to create
code this way, or to provide useful code samples.

Anyway, knowing what is possible may be useful for you if you plan to study this field
deeper by yourself. So, treat this section only as a short summary of possible starting points
for further learning.

Let's take a look at the how to use the exec, eval, and compile functions.

Elements of Metaprogramming Chapter 5

[168]

exec, eval, and compile
Python provides the following three built-in functions to manually execute, evaluate, and
compile arbitrary Python code:

exec(object, globals, locals): This allows you to dynamically execute
the Python code. object should be a string or code object (see
the compile() function) representing a single statement or sequence of multiple
statements. The globals and locals arguments provide global and local
namespaces for the executed code and are optional. If they are not provided, then
the code is executed in the current scope. If provided, globals must be a
dictionary, while locals might be any mapping object; it always returns None.
eval(expression, globals, locals): This is used to evaluate the given
expression by returning its value. It is similar to exec(), but it
expects expression to be a single Python expression and not a sequence of
statements. It returns the value of the evaluated expression.
compile(source, filename, mode): This compiles the source into the code
object or AST object. The source code is provided as a string value in the source
argument. The filename should be the file from which the code was read. If it has
no file associated (for example, because it was created dynamically),
then <string> is the value that is commonly used. Mode should be
either exec (sequence of statements), eval (single expression), or single (a
single interactive statement, such as in a Python interactive session).

The exec() and eval() functions are the easiest to start with when trying to dynamically
generate code because they can operate on strings. If you already know how to program in
Python, then you may already know how to correctly generate working source code
programmatically.

The most useful in the context of metaprogramming is obviously exec() because it allows
you to execute any sequence of Python statements. The word any should be alarming for
you. Even eval(), which allows only evaluation of expressions in the hands of a skillful
programmer (when fed with the user input), can lead to serious security holes. Note that
crashing the Python interpreter is the scenario you should be least afraid of. Introducing
vulnerability to remote execution exploits due to irresponsible use
of exec() and eval() can cost you your image as a professional developer, or even your
job.

Elements of Metaprogramming Chapter 5

[169]

Even if used with a trusted input, there is a list of little details
about exec() and eval() that is too long to be included here, but might affect how your
application works in ways you would not expect. Armin Ronacher has a good article that
lists the most important of them, titled Be careful with exec and eval in Python (refer
to http://lucumr.pocoo.org/2011/2/1/exec-in-python/).

Despite all these frightening warnings, there are natural situations where the usage
of exec() and eval() is really justified. Still, in the case of even the tiniest doubt, you
should not use them and try to find a different solution.

eval() and untrusted input
The signature of the eval() function might make you think that if you
provide empty globals and locals namespaces and wrap it with
proper try ... except statements, then it will be reasonably safe. There
could be nothing more wrong. Ned Batcheler has written a very good
article in which he shows how to cause an interpreter segmentation fault
in the eval() call, even with erased access to all Python built-ins
(see http://nedbatchelder.com/blog/201206/eval_really_is_dangerou
s.html). This is single proof that both exec() and eval() should never
be used with untrusted input.

We'll take a look at abstract syntax tree in the next section.

Abstract syntax tree (AST)
The Python syntax is converted into AST before it is compiled into byte code. This is a tree
representation of the abstract syntactic structure of the source code. Processing of Python
grammar is available thanks to the built-in ast module. Raw ASTs of Python code can be
created using the compile() function with the ast.PyCF_ONLY_AST flag, or by using
the ast.parse() helper. Direct translation in reverse is not that simple and there is no
function provided in the standard library that can do so. Some projects, such as PyPy, do
such things though.

The ast module provides some helper functions that allow you to work with the AST, for
example:

>>> tree = ast.parse('def hello_world(): print("hello world!")')
>>> tree
<_ast.Module object at 0x00000000038E9588>
>>> ast.dump(tree)
"Module(
 body=[

http://lucumr.pocoo.org/2011/2/1/exec-in-python/
http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html

Elements of Metaprogramming Chapter 5

[170]

 FunctionDef(
 name='hello_world',
 args=arguments(
 args=[],
 vararg=None,
 kwonlyargs=[],
 kw_defaults=[],
 kwarg=None,
 defaults=[]
),
 body=[
 Expr(
 value=Call(
 func=Name(id='print', ctx=Load()),
 args=[Str(s='hello world!')],
 keywords=[]
)
)
],
 decorator_list=[],
 returns=None
)
]
)"

The output of ast.dump() in the preceding example was reformatted to increase the
readability and better show the tree-like structure of the AST. It is important to know that
the AST can be modified before being passed to compile(). This gives you many new
possibilities. For instance, new syntax nodes can be used for additional instrumentation,
such as test coverage measurement. It is also possible to modify the existing code tree in
order to add new semantics to the existing syntax. Such a technique is used by the MacroPy
project (https://github.com/lihaoyi/macropy) to add syntactic macros to Python using
the already existing syntax (refer to Figure 3):

Figure 3: How MacroPy adds syntactic macros to Python modules on import

https://github.com/lihaoyi/macropy
https://github.com/lihaoyi/macropy
https://github.com/lihaoyi/macropy
https://github.com/lihaoyi/macropy
https://github.com/lihaoyi/macropy
https://github.com/lihaoyi/macropy
https://github.com/lihaoyi/macropy
https://github.com/lihaoyi/macropy
https://github.com/lihaoyi/macropy
https://github.com/lihaoyi/macropy
https://github.com/lihaoyi/macropy

Elements of Metaprogramming Chapter 5

[171]

AST can also be created in a purely artificial manner, and there is no need to parse any
source at all. This gives Python programmers the ability to create Python bytecode for
custom domain-specific languages, or even completely implement other programming
languages on top of Python VMs.

Import hooks
Taking advantage of MacroPy's ability to modify original ASTs would be as easy as using
the import macropy.activate statement if it could somehow override the Python
import behavior. Fortunately, Python provides a way to intercept imports using the
following two kinds of import hooks:

Meta hooks: These are called before any other import processing has occurred.
Using meta hooks, you can override the way in which sys.path is processed for
even frozen and built-in modules. To add a new meta hook, a new meta path
finder object must be added to the sys.meta_path list.
Import path hooks: These are called as part of sys.path processing. They are
used if the path item associated with the given hook is encountered. The import
path hooks are added by extending the sys.path_hooks list with a new path
finder object.

The details of implementing both path finders and meta path finders are extensively
implemented in the official Python documentation
(see https://docs.python.org/3/reference/import.html). The official documentation
should be your primary resource if you want to interact with imports on that level. This is
so because import machinery in Python is rather complex and any attempt to summarize it
in a few paragraphs would inevitably fail. Here, we just noted that such things are possible.

We'll take a look at projects that use code generation patterns in the following sections.

Projects that use code generation patterns
It is hard to find a really usable implementation of the library that relies on code generation
patterns that is not only an experiment or simple proof of concept. The reasons for that
situation are fairly obvious:

Deserved fear of the exec() and eval() functions because, if used
irresponsibly, they can cause real disasters

https://docs.python.org/3/reference/import.html

Elements of Metaprogramming Chapter 5

[172]

Successful code generation is very difficult to develop and maintain because it
requires a deep understanding of the language and exceptional programming
skills in general

Despite these difficulties, there are some projects that successfully take this approach either
to improve performance or achieve things that would be impossible by other means.

Falcon's compiled router
Falcon (http://falconframework.org/) is a minimalist Python WSGI web framework for
building fast and lightweight APIs. It strongly encourages the REST architectural style that
is currently very popular around the web. It is a good alternative to other rather heavy
frameworks, such as Django or Pyramid. It is also a strong competitor to other micro-
frameworks that aim for simplicity, such as Flask, Bottle, or web2py.

One of its features is it's very simple routing mechanism. It is not as complex as the routing
provided by Django urlconf and does not provide as many features, but in most cases is
just enough for any API that follows the REST architectural design. What is most
interesting about Falcon's routing is the internal construction of that router. Falcon's router
is implemented using the code generated from the list of routes, and code changes every
time a new route is registered. This is the effort that's needed to make routing fast.

Consider this very short API example, taken from Falcon's web documentation:

sample.py
import falcon
import json
class QuoteResource:
 def on_get(self, req, resp):
 """Handles GET requests"""
 quote = {
 'quote': 'I\'ve always been more interested in '
 'the future than in the past.',
 'author': 'Grace Hopper'
 }

 resp.body = json.dumps(quote)
api = falcon.API()
api.add_route('/quote', QuoteResource())

http://falconframework.org/

Elements of Metaprogramming Chapter 5

[173]

In short, the highlighted call to the api.add_route() method updates dynamically the
whole generated code tree for Falcon's request router. It also compiles it using
the compile() function and generates the new route-finding function using eval(). Let's
take a closer look at the following __code__ attribute of
the api._router._find() function:

>>> api._router._find.__code__
<code object find at 0x00000000033C29C0, file "<string>", line 1>
>>> api.add_route('/none', None)
>>> api._router._find.__code__
<code object find at 0x00000000033C2810, file "<string>", line 1>

This transcript shows that the code of this function was generated from the string and not
from the real source code file (the "<string>" file). It also shows that the actual code
object changes with every call to the api.add_route() method (the object's address in
memory changes).

Hy
Hy (http://docs.hylang.org/) is the dialect of Lisp, and is written entirely in Python.
Many similar projects that implement other code in Python usually try only to tokenize the
plain form of code that's provided either as a file-like object or string and interpret it as a
series of explicit Python calls. Unlike others, Hy can be considered as a language that runs
fully in the Python runtime environment, just like Python does. Code written in Hy can use
the existing built-in modules and external packages and vice-versa. Code written with Hy
can be imported back into Python.

To embed Lisp in Python, Hy translates Lisp code directly into Python AST. Import
interoperability is achieved using the import hook that is registered once the Hy module is
imported into Python. Every module with the .hy extension is treated as the Hy module
and can be imported like the ordinary Python module. The following is a hello
world program written in this Lisp dialect:

;; hyllo.hy
(defn hello [] (print "hello world!"))

It can be imported and executed with the following Python code:

>>> import hy
>>> import hyllo
>>> hyllo.hello()
 hello world!

http://docs.hylang.org/
http://docs.hylang.org/
http://docs.hylang.org/
http://docs.hylang.org/
http://docs.hylang.org/
http://docs.hylang.org/
http://docs.hylang.org/
http://docs.hylang.org/
http://docs.hylang.org/
http://docs.hylang.org/

Elements of Metaprogramming Chapter 5

[174]

If we dig deeper and try to disassemble hyllo.hello using the built-in dis module, we
will notice that the byte code of the Hy function does not differ significantly from its pure
Python counterpart, as shown in the following code:

>>> import dis
>>> dis.dis(hyllo.hello)
 2 0 LOAD_GLOBAL 0 (print)
 3 LOAD_CONST 1 ('hello world!')
 6 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
 9 RETURN_VALUE
>>> def hello(): print("hello world!")
...
>>> dis.dis(hello)
 1 0 LOAD_GLOBAL 0 (print)
 3 LOAD_CONST 1 ('hello world!')
 6 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
 9 POP_TOP
 10 LOAD_CONST 0 (None)
 13 RETURN_VALUE

Summary
In this chapter, we've explored the vast topic of metaprogramming in Python. We've
described the syntax features that favor the various metaprogramming patterns in detail.
These are mainly decorators and metaclasses.

We've also taken a look at another important aspect of metaprogramming, dynamic code
generation. We described it only briefly as it is too vast to fit into the limited size of this
book. However, it should be a good starting point that gives you a quick summary of the
possible options in that field.

The next chapter will offer you a moment of rest as we focus on the topic of good naming
practices.

6
Choosing Good Names

Most of the standard library was built keeping usability in mind. Python, in this case, can
be compared to the pseudocode you might think about when working on a program. Most
of the code can be read out loud. For instance, this snippet could be understood even by
someone that is not a programmer:

my_list = []
if 'd' not in my_list:
 my_list.append('d')

The fact that Python code is so close to natural language is one of the reasons why Python is
so easy to learn and use. When you are writing a program, the flow of your thoughts is
quickly translated into lines of code.

This chapter focuses on the best practices to write code that is easy to understand and use,
including:

The usage of naming conventions, described in PEP 8
The setting of naming best practices
A short summary of popular tools that allow you to check for compliance with
styling guides

In this chapter, we will cover the following topics:

PEP 8 and naming best practices
Naming styles
The naming guide
Best practices for arguments
Class names
Module and package names
Useful tools

Choosing Good Names Chapter 6

[176]

Technical requirements
Following are Python packages mentioned in this chapter that you can download from
PyPI:

pylint

pycodestyle

flake8

You can install these packages using following command:

python3 -m pip install <package-name>

Code files for this chapter can be found at https://github.com/PacktPublishing/Expert-
Python-Programming-Third-Edition/tree/master/chapter6.

PEP 8 and naming best practices
PEP 8 (http://www.python.org/dev/peps/pep-0008) provides a style guide for writing
Python code. Besides some basic rules, such as indentation, maximum line length, and
other details concerning the code layout, PEP 8 also provides a section on naming
conventions that most of the code bases follow.

This section provides only a quick summary of PEP 8, and a handy naming guide for each
kind of Python syntax element. You should still consider reading the PEP 8 document as
mandatory.

Why and when to follow PEP 8?
If you are creating a new software package that is intended to be open sourced, you should
always follow PEP 8 because it is a widely accepted standard and is used in most of the
open source projects written in Python. If you want to foster any collaboration with other
programmers, then you should definitely stick to PEP 8, even if you have different views on
the best code style guidelines. Doing so has the benefit of making it a lot easier for other
developers to jump straight into your project. Code will be easier to read for newcomers
because it will be consistent in style with most of the other Python open source packages.

https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter6
http://www.python.org/dev/peps/pep-0008

Choosing Good Names Chapter 6

[177]

Also, starting with full PEP 8 compliance saves you time and trouble in the future. If you
want to release your code to the public, you will eventually face suggestions from fellow
programmers to switch to PEP 8. Arguments as to whether it is really necessary to do so for
a particular project tend to be never-ending flame wars that are impossible to win. This is
the sad truth, but you may be eventually forced to be consistent with it or risk losing
valuable contributors.

Also, restyling of the whole project's code base if it is in a mature state of development
might require a tremendous amount of work. In some cases, such restyling might require
changing almost every line of code. While most of the changes can be automated
(indentation, newlines, and trailing whitespaces), such massive code overhaul usually
introduces a lot of conflicts in every version control workflow that is based on branching. It
is also very hard to review so many changes at once. These are the reasons why many open
source projects have a rule that style-fixing changes should always be included in separate
pull/merge requests or patches that do not affect any feature or bug.

Beyond PEP 8 – Team-specific style guidelines
Despite providing a comprehensive set of style guidelines, PEP 8 still leaves some freedom
for the developers. Especially in terms of nested data literals and multiline function calls
that require long lists of arguments. Some teams may decide that they require additional
styling rules and the best option is to formalize them in some kind of document that is
available for every team member.

Also, in some situations, it may be impossible or economically infeasible to be strictly
consistent with PEP 8 in some old projects that had no style guide defined. Such projects
will still benefit from formalization of the actual coding conventions even if they do not
reflect the official set of PEP 8 rules. Remember, what is more important than consistency
with PEP 8 is consistency within the project. If rules are formalized and available as a
reference for every programmer, then it is way easier to keep consistency within a project
and organization.

Let's take a look at the different naming styles in the next section.

Choosing Good Names Chapter 6

[178]

Naming styles
The different naming styles used in Python are:

CamelCase

mixedCase

UPPERCASE and UPPER_CASE_WITH_UNDERSCORES
lowercase and lower_case_with_underscores
leading and trailing underscores, and sometimes __doubled__
underscores

Lowercase and uppercase elements are often a single word, and sometimes a few words
concatenated. With underscores, they are usually abbreviated phrases. Using a single word
is better. The leading and trailing underscores are used to mark the privacy and special
elements.

These styles are applied to the following:

Variables
Functions and methods
Properties
Classes
Modules
Packages

Variables
There are the following two kinds of variables in Python:

Constants: These define values that are not supposed to change during program
execution
Public and private variables: These hold the state of applications that can change
during program execution

Constants
For constant global variables, an uppercase with an underscore is used. It informs the
developer that the given variable represents a constant value.

Choosing Good Names Chapter 6

[179]

There are no real constants in Python like those in C++, where const can
be used. You can change the value of any variable. That's why Python
uses a naming convention to mark a variable as a constant.

For example, the doctest module provides a list of option flags and directives
(http://docs.python.org/lib/doctest-options.html) that are small sentences, clearly
defining what each option is intended for, for example:

from doctest import IGNORE_EXCEPTION_DETAIL
from doctest import REPORT_ONLY_FIRST_FAILURE

These variable names seem rather long, but it is important to clearly describe them. Their
usage is mostly located in the initialization code rather than in the body of the code itself, so
this verbosity is not annoying.

Abbreviated names obfuscate the code most of the time. Don't be afraid of
using complete words when an abbreviation seems unclear.

Some constants' names are also driven by the underlying technology. For instance,
the os module uses some constants that are defined on the C side, such as
the EX_XXX series, that defines UNIX exit code numbers. Same name code can be found, as
in the following example, in the system's sysexits.h C headers files:

import os
import sys
sys.exit(os.EX_SOFTWARE)

Another good practice when using constants is to gather all of them at the top of a module
that uses them. It is also common to combine them under new variables if they are flags or
enumerations that allow for such operations, for example:

import doctest
TEST_OPTIONS = (doctest.ELLIPSIS |
 doctest.NORMALIZE_WHITESPACE |
 doctest.REPORT_ONLY_FIRST_FAILURE)

Let's take a look at the naming and usage of constants in the next section.

http://docs.python.org/lib/doctest-options.html

Choosing Good Names Chapter 6

[180]

Naming and usage
Constants are used to define a set of values the program relies on, such as the default
configuration filename.

A good practice is to gather all the constants in a single file in the package. That is how
Django works, for instance. A module named settings.py provides all the constants as
follows:

config.py
SQL_USER = 'tarek'
SQL_PASSWORD = 'secret'
SQL_URI = 'postgres://%s:%s@localhost/db' % (
 SQL_USER, SQL_PASSWORD
)
MAX_THREADS = 4

Another approach is to use a configuration file that can be parsed with
the ConfigParser module, or another configuration parsing tool. But some people argue
that it is rather an overkill to use another file format in a language such as Python, where a
source file can be edited and changed as easily as a text file.

For options that act like flags, a common practice is to combine them with Boolean
operations, as the doctest and re modules do. The pattern taken from doctest is quite
simple, as shown in the following code:

OPTIONS = {}

def register_option(name):
 return OPTIONS.setdefault(name, 1 << len(OPTIONS))

def has_option(options, name):
 return bool(options & name)

now defining options
BLUE = register_option('BLUE')
RED = register_option('RED')
WHITE = register_option('WHITE')

This code allows for the following usage:

>>> # let's try them
>>> SET = BLUE | RED
>>> has_option(SET, BLUE)
True
>>> has_option(SET, WHITE)
False

Choosing Good Names Chapter 6

[181]

When you define a new set of constants, avoid using a common prefix for them, unless the
module has several independent sets of options. The module name itself is a common
prefix.

Another good solution for option-like constants would be to use the Enum class from the
built-in enum module and simply rely on the set collection instead of the binary operators.
Details of the enum module usage and syntax were explained in the Symbolic enumeration
with enum module section of Chapter 3, Modern Syntax Elements - Below the Class Level.

Using binary bit-wise operations to combine options is common in
Python. The inclusive OR (|) operator will let you combine several
options in a single integer, and the AND (&) operator will let you check
that the option is present in the integer (refer to
the has_option function).

Let's discuss public and private variables in the following section.

Public and private variables
For global variables that are mutable and freely available through imports, a lowercase
letter with an underscore should be used when they do not need to be protected. If a
variable shouldn't be used and modified outside of its origin module we consider it a
private member of that module. A leading underscore, in that case, can mark the variable as
a private element of the package, as shown in the following code:

_observers = []
def add_observer(observer):
 _observers.append(observer)
def get_observers():
 """Makes sure _observers cannot be modified."""
 return tuple(_observers)

Variables that are located in functions, and methods, follow the same rules as public
variables and are never marked as private since they are local to the function context.

For class or instance variables, you should use the private marker (the leading underscore)
if making the variable a part of the public signature does not bring any useful information,
or is redundant. In other words, if the variable is used only internally for the purpose of
some other method that provides an actual public feature, it is better to make it private.

Choosing Good Names Chapter 6

[182]

For instance, the attributes that are powering a property are good private citizens, as shown
in the following code:

class Citizen(object):
 def __init__(self, first_name, last_name):
 self._first_name = first_name
 self._last_name = last_name

 @property
 def full_name(self):
 return f"{self._first_name} {self._last_name}"

Another example would be a variable that keeps some internal state that should not be
disclosed to other classes. This value is not useful for the rest of the code, but participates in
the behavior of the class:

class UnforgivingElephant(object):
 def __init__(self, name):
 self.name = name
 self._people_to_stomp_on = []

 def get_slapped_by(self, name):
 self._people_to_stomp_on.append(name)
 print('Ouch!')

 def revenge(self):
 print('10 years later...')
 for person in self._people_to_stomp_on:
 print('%s stomps on %s' % (self.name, person))

Here is what you'll see in an interactive session:

>>> joe = UnforgivingElephant('Joe')
>>> joe.get_slapped_by('Tarek')
Ouch!
>>> joe.get_slapped_by('Bill')
Ouch!
>>> joe.revenge()
10 years later...
Joe stomps on Tarek
Joe stomps on Bill

Let's take a look at naming styles for functions and methods in the next section.

Choosing Good Names Chapter 6

[183]

Functions and methods
Functions and methods should be in lowercase with underscores. This rule was not always
true in the old standard library modules. Python 3 did a lot of reorganization of the
standard library, so most of the functions and methods have a consistent letter case. Still,
for some modules such as threading, you can access the old function names that
used mixedCase (for example, currentThread). This was left to allow easier backward
compatibility, but if you don't need to run your code in older versions of Python, then you
should avoid using these old names.

This way of writing methods was common before the lowercase norm became the standard,
and some frameworks, such as Zope and Twisted, are also still using mixedCase for
methods. The community of developers working with them is still quite large. So the choice
between mixedCase and lowercase with an underscore is definitely driven by the libraries
you are using.

As a Zope developer, it is not easy to stay consistent because building an application that
mixes pure Python modules and modules that import Zope code is difficult. In Zope, some
classes mix both conventions because the code base is still evolving and Zope developers
try to adopt the common conventions accepted by so many.

A decent practice in this kind of library environment is to use mixedCase only for elements
that are exposed in the framework, and to keep the rest of the code in PEP 8 style.

It is also worth noting that developers of the Twisted project took a completely different
approach to this problem. The Twisted project, same as Zope, predates the PEP 8
document. It was started when there were no official guidelines for Python code style, so it
had its own guidelines. Stylistic rules about the indentation, docstrings, line lengths, and so
on could be easily adopted. On the other hand, updating all the code to match naming
conventions from PEP 8 would result in completely broken backward compatibility. And
doing that for such a large project as Twisted is infeasible. So Twisted adopted as much of
PEP 8 as possible and left things such as mixedCase for variables, functions, and methods
as part of its own coding standard. And this is completely compatible with the PEP 8
suggestion because it exactly says that consistency within a project is more important than
consistency with PEP 8's style guide.

Choosing Good Names Chapter 6

[184]

The private controversy
For private methods and functions, we usually use a single leading underscore. This is only
a naming convention and has no syntactical meaning. But it doesn't mean that leading
underscores have no syntactical meaning at all. When a method has two leading
underscores, it is renamed on the fly by the interpreter to prevent a name collision with a
method from any subclass. This feature of Python is called name mangling.

So some people tend to use a double leading underscore for their private attributes to avoid
name collision in the subclasses, for example:

class Base(object):
 def __secret(self):
 print("don't tell")

 def public(self):
 self.__secret()

class Derived(Base):
 def __secret(self):
 print("never ever")

From this you will see the following output:

>>> Base.__secret
Traceback (most recent call last):
 File "<input>", line 1, in <module>
AttributeError: type object 'Base' has no attribute '__secret'
>>> dir(Base)
['_Base__secret', ..., 'public']
>>> Base().public()
don't tell
>>> Derived().public()
don't tell

The original motivation for name mangling in Python was not to provide the same isolation
primitive as a private keyword in C++ but to make sure that some base classes implicitly
avoid collisions in subclasses, especially if they are intended to be used in multiple
inheritance contexts (for example, as mixin classes). But using it for every attribute that isn't
public obfuscates the code and makes it extremely hard to extend. This is not Pythonic at
all.

Choosing Good Names Chapter 6

[185]

For more information on this topic, an interesting thread occurred in the Python-Dev
mailing list many years ago, where people argued on the utility of name mangling and its
fate in the language. It can be found at http://mail.python.org/pipermail/python-dev/
2005-December/058555.html.

Let's take a look at the naming styles for special methods.

Special methods
Special methods (https://docs.python.org/3/reference/datamodel.html#special-
method-names) start and end with a double underscore and form so-called protocols of the
language (see Chapter 4, Modern Syntax Elements - Above the Class Level). Some developers
used to call them dunder methods as a portmanteau of double underscore. They are used for
operator overloading, container definitions, and so on. For the sake of readability, they
should be gathered at the beginning of class definitions, as shown in the following code:

class WeirdInt(int):
 def __add__(self, other):
 return int.__add__(self, other) + 1

 def __repr__(self):
 return '<weirdo %d>' % self

 # public API
 def do_this(self):
 print('this')

 def do_that(self):
 print('that')

No user-defined method should use this convention unless it explicitly has to implement
one of the Python object protocols. So don't invent your own dunder methods such as this:

class BadHabits:
 def __my_method__(self):
 print('ok')

Let's discuss the naming styles for arguments in the next section.

http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
http://mail.python.org/pipermail/python-dev/2005-December/058555.html
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names

Choosing Good Names Chapter 6

[186]

Arguments
Arguments are in lowercase, with underscores if needed. They follow the same naming
rules as variables because arguments are simply local variables that get their value as
function input values. In the following example, text and separator are arguments of
one_line() function:

def one_line(text, separator=" "):
 """Convert possibly multiline text to single line"""
 return separator.join(text.split())

The naming style of properties is discussed in the next section.

Properties
The names of properties are in lowercase, or in lowercase with underscores. Most of the
time they represent an object's state, which can be a noun or an adjective, or a small phrase
when needed. In the following code example, the Container class is a simple data
structure that can return copies of its contents through unique_items and
ordered_items properties:

class Container:
 _contents = []

 def append(self, item):
 self._contents.append(item)

 @property
 def unique_items(self):
 return set(self._contents)

 @property
 def ordered_items(self):
 return list(self._contents)

Let's take a look at the naming styles used for classes.

Classes
The names of classes are always in CamelCase, and may have a leading underscore when
they are private to a module.

Choosing Good Names Chapter 6

[187]

In object-oriented programming classes are used to encapsulate the application state.
Attributes of objects are record of that state. Methods are used to modify that state, convert
it into meaningful values or to produce side effects. This is why class names are often noun
phrases and form a usage logic with the method names that are verb phrases. The following
code example contains a Document class definition with a single save() method:

class Document():
 file_name: str
 contents: str
 ...

 def save(self):
 with open(self.file_name, 'w') as file:
 file.write(self.contents)

Class instances often use the same noun phrases as the document but spelled with
lowercase. So, actual Document class usage could be as follows:

new_document = Document()
new_document.save()

Let's go through the naming styles for modules and packages.

Modules and packages
Besides the special module __init__, the module names are in lowercase. The following
are some examples from the standard library:

os

sys

shutil

The Python standard library does not use underscores for module names to separate words
but they are used commonly in many other projects. When the module is private to the
package, a leading underscore is added. Compiled C or C++ modules are usually named
with an underscore and imported in pure Python modules. Package names follow the same
rules, since they act more like structured modules.

Let's discuss the naming guide in the next section.

Choosing Good Names Chapter 6

[188]

The naming guide
A common set of naming rules can be applied on variables, methods, functions, and
properties. The names of classes and modules play a very important role in namespace
construction and greatly affect code readability. This section contains a miniguide that will
help you to define meaningful and readable names for your code elements.

Using the has/is prefixes for Boolean elements
When an element holds a Boolean value you can mark it with is and/or has syntax to
make the variable more readable. In the following example, is_connected and
has_cache are such identifiers that hold Boolean states of the DB class instances:

class DB:
 is_connected = False
 has_cache = False

Using plurals for variables that are collections
When an element is holding a sequence, it is a good idea to use a plural form. You can also
do the same for various mapping variables and properties. In following
example, connected_users and tables are class attributes that hold multiple values:

class DB:
 connected_users = ['Tarek']
 tables = {'Customer':['id', 'first_name', 'last_name']}

Using explicit names for dictionaries
When a variable holds a mapping, you should use an explicit name when possible. For
example, if a dict holds a person's address, it can be named persons_addresses:

persons_addresses = {'Bill': '6565 Monty Road',
 'Pamela': '45 Python street'}

Choosing Good Names Chapter 6

[189]

Avoid generic names and redundancy
You should generally avoid using explicit type names list, dict, and set as parts of
variable names even for local variables. Python now offers function and variable
annotations and a typing hierarchy that allows you to easily mark an expected type for a
given variable so there is no longer a need to describe object types in their names. It makes
the code hard to read, understand, and use. Using a built-in name has to be avoided as well
to avoid shadowing it in the current namespace. Generic verbs should also be avoided,
unless they have a meaning in the namespace.

Instead, domain-specific terms should be used as follows:

def compute(data): # too generic
 for element in data:
 yield element ** 2

def squares(numbers): # better
 for number in numbers:
 yield number ** 2

There is also the following list of prefixes and suffixes that, despite being very common in
programming, should be, in fact, avoided in function and class names:

Manager
Object
Do, handle, or perform

The reason for this is that they are vague, ambiguous, and do not add any value to the
actual name. Jeff Atwood, the co-founder of Discourse and Stack Overflow, has a very good
article on this topic and it can be found on his blog at http://blog.codinghorror.com/i-
shall-call-it-somethingmanager/

There is also a list of package names that should be avoided. Everything that does not give
any clue about its content can do a lot of harm to the project in the long term. Names such
as misc, tools, utils, common, or core have a very strong tendency to become endless
bags of various unrelated code pieces of very poor quality that seem to grow in size
exponentially. In most cases, the existence of such a module is a sign of laziness or lack of
enough design efforts. Enthusiasts of such module names can simply forestall the future
and rename them to trash or dumpster because this is exactly how their teammates will
eventually treat such modules.

http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/
http://blog.codinghorror.com/i-shall-call-it-somethingmanager/

Choosing Good Names Chapter 6

[190]

In most cases, it is almost always better to have more small modules even with very little
content but with names that reflect well what is inside. To be honest, there is nothing
inherently wrong with names such as utils and common and there is a possibility to use
them responsibly. But reality shows that in many cases they instead become a stub for
dangerous structural antipatterns that proliferate very fast. And if you don't act fast
enough, you may not be able get rid of them ever. So the best approach is simply to avoid
such risky organizational patterns and nip them in the bud.

Avoiding existing names
It is a bad practice to use names that shadow other names that already exist in the same
context. It makes code reading and debugging very confusing. Always try to define original
names, even if they are local to the context. If you eventually have to reuse existing names
or keywords, use a trailing underscore to avoid name collision, for example:

def xapian_query(terms, or_=True):
 """if or_ is true, terms are combined with the OR clause"""
 ...

Note that the class keyword is often replaced by klass or cls:

def factory(klass, *args, **kwargs):
 return klass(*args, **kwargs)

Let's take a look at some of the best practices to keep in mind while working with
arguments.

Best practices for arguments
The signatures of functions and methods are the guardians of code integrity. They drive its
usage and build its APIs. Besides the naming rules that we have discussed previously,
special care has to be taken for arguments. This can be done through the following three
simple rules:

Build arguments by iterative design.
Trust the arguments and your tests.
Use *args and **kwargs magic arguments carefully.

Choosing Good Names Chapter 6

[191]

Building arguments by iterative design
Having a fixed and well-defined list of arguments for each function makes the code more
robust. But this can't be done in the first version, so arguments have to be built by iterative
design. They should reflect the precise use cases the element was created for, and evolve
accordingly.

Consider the following example of the first versions of some Service class:

class Service: # version 1
 def _query(self, query, type):
 print('done')

 def execute(self, query):
 self._query(query, 'EXECUTE')

If you want to extend the signature of the execute() method with new arguments in a
way that preserves backward compatibility, you should provide default values for these
arguments as follows:

class Service(object): # version 2
 def _query(self, query, type, logger):
 logger('done')

 def execute(self, query, logger=logging.info):
 self._query(query, 'EXECUTE', logger)

The following example from an interactive session presents two styles of calling
the execute() method of the updated Service class:

>>> Service().execute('my query') # old-style call
>>> Service().execute('my query', logging.warning)
WARNING:root:done

Trusting the arguments and your tests
Given the dynamic typing nature of Python, some developers use assertions at the top of
their functions and methods to make sure the arguments have proper content, for example:

def divide(dividend, divisor):
 assert isinstance(dividend, (int, float))
 assert isinstance(divisor, (int, float))
 return dividend / divisor

Choosing Good Names Chapter 6

[192]

This is often done by developers who are used to static typing and feel that something is
missing in Python.

This way of checking arguments is a part of the Design by Contract (DbC) programming
style, where preconditions are checked before the code is actually run.

The two main problems in this approach are as follows:

DbC's code explains how it should be used, making it less readable
This can make it slower, since the assertions are made on each call

The latter can be avoided with the -O option of the Python interpreter. In that case, all
assertions are removed from the code before the byte code is created, so that the checking is
lost.

In any case, assertions have to be done carefully, and should not be used to bend Python to
a statically typed language. The only use case for this is to protect the code from being
called nonsensically. If you really want to have some kind of static typing in Python, you
should definitely try MyPy or a similar static type checker that does not affect your code
runtime and allows you to provide type definitions in a more readable form as function
and variable annotations.

Using *args and **kwargs magic arguments
carefully
The *args and **kwargs arguments can break the robustness of a function or method.
They make the signature fuzzy, and the code often starts to become a small argument
parser where it should not, for example:

def fuzzy_thing(**kwargs):
 if 'do_this' in kwargs:
 print('ok i did this')

 if 'do_that' in kwargs:
 print('that is done')

 print('ok')

>>> fuzzy_thing(do_this=1)
ok i did this
ok
>>> fuzzy_thing(do_that=1)

Choosing Good Names Chapter 6

[193]

that is done
ok
>>> fuzzy_thing(what_about_that=1)
ok

If the argument list gets long and complex, it is tempting to add magic arguments. But this
is more a sign of a weak function or method that should be broken into pieces or refactored.

When *args is used to deal with a sequence of elements that are treated the same way in
the function, asking for a unique container argument such as an iterator is better, for
example:

def sum(*args): # okay
 total = 0
 for arg in args:
 total += arg
 return total

def sum(sequence): # better!
 total = 0
 for arg in sequence:
 total += arg
 return total

For **kwargs, the same rule applies. It is better to fix the named arguments to make the
method's signature meaningful, for example:

def make_sentence(**kwargs):
 noun = kwargs.get('noun', 'Bill')
 verb = kwargs.get('verb', 'is')
 adjective = kwargs.get('adjective', 'happy')
 return f'{noun} {verb} {adjective}'

def make_sentence(noun='Bill', verb='is', adjective='happy'):
 return f'{noun} {verb} {adjective}'

Another interesting approach is to create a container class that groups several related
arguments to provide an execution context. This structure differs
from *args or **kwargs because it can provide internals that work over the values, and
can evolve independently. The code that uses it as an argument will not have to deal with
its internals.

Choosing Good Names Chapter 6

[194]

For instance, a web request passed on to a function is often represented by an instance of a
class. This class is in charge of holding the data passed by the web server, as shown in the
following code:

def log_request(request): # version 1
 print(request.get('HTTP_REFERER', 'No referer'))

def log_request(request): # version 2
 print(request.get('HTTP_REFERER', 'No referer'))
 print(request.get('HTTP_HOST', 'No host'))

Magic arguments cannot be avoided sometimes, especially in metaprogramming. For
instance, they are indispensable in the creation of decorators that work on functions with
any kind of signature.

Let's discuss class names in the next section.

Class names
The name of a class has to be concise, precise, and descriptive. A common practice is to use
a suffix that informs about its type or nature, for example:

SQLEngine
MimeTypes
StringWidget
TestCase

For base or abstract classes, a Base or Abstract prefix can be used as follows:

BaseCookie
AbstractFormatter

The most important thing is to be consistent with the class attributes. For example, try to
avoid redundancy between the class and its attributes' names as follows:

>>> SMTP.smtp_send() # redundant information in the namespace
>>> SMTP.send() # more readable and mnemonic

Let's take a look at module and package names in the next section.

Choosing Good Names Chapter 6

[195]

Module and package names
The module and package names inform about the purpose of their content. The names are
short, in lowercase, and usually without underscores, for example:

sqlite

postgres

sha1

They are often suffixed with lib if they are implementing a protocol, as in the following:

import smtplib
import urllib
import telnetlib

When choosing a name for a module, always consider its content and limit the amount
of redundancy within the whole namespace, for example:

from widgets.stringwidgets import TextWidget # bad
from widgets.strings import TextWidget # better

When a module is getting complex and contains a lot of classes, it is a good practice to
create a package and split the module's elements into other modules.

The __init__ module can also be used to put back some common APIs at the top level of
the package. This approach allows you to organize the code into smaller components
without reducing the ease of use.

Let's take a look at some of the useful tools used while working with naming conventions
and styles.

Useful tools
Common conventions and practices used in a software project should always be
documented. But having proper documentation for guidelines is often not enough to
enforce that these guidelines are actually followed. Fortunately, you can use automated
tools that can check sources of your code and verify if it meets specific naming conventions
and style guidelines.

Choosing Good Names Chapter 6

[196]

The following are a few popular tools:

pylint: This is a very flexible source code analyzer
pycodestyle and flake8: This is a small code style checker and a wrapper that
adds to it some more useful features, such as static analysis and complexity
measurement

Pylint
Besides some quality assurance metrics, Pylint allows for checking of whether a given
source code is following a naming convention. Its default settings correspond to PEP 8 and
a Pylint script provides a shell report output.

To install Pylint, you can use pip as follows:

$ pip install pylint

After this step, the command is available and can be run against a module, or several
modules using wildcards. Let's try it on Buildout's bootstrap.py script as follows:

$ wget -O bootstrap.py https://bootstrap.pypa.io/bootstrap-buildout.py -q
$ pylint bootstrap.py
No config file found, using default configuration
************* Module bootstrap
C: 76, 0: Unnecessary parens after 'print' keyword (superfluous-parens)
C: 31, 0: Invalid constant name "tmpeggs" (invalid-name)
C: 33, 0: Invalid constant name "usage" (invalid-name)
C: 45, 0: Invalid constant name "parser" (invalid-name)
C: 74, 0: Invalid constant name "options" (invalid-name)
C: 74, 9: Invalid constant name "args" (invalid-name)
C: 84, 4: Import "from urllib.request import urlopen" should be placed at
the top of the module (wrong-import-position)

...

Global evaluation

Your code has been rated at 6.12/10

Real Pylint's output is a bit longer and here it has been truncated for the sake of brevity.

Choosing Good Names Chapter 6

[197]

Remember that Pylint can often give you false positive warnings that decrease the overall
quality rating. For instance, an import statement that is not used by the code of the module
itself is perfectly fine in some cases (for example, building top-level __init__ modules in a
package). Always treat Pylint's output as a hint and not an oracle.

Making calls to libraries that are using mixedCase for methods can also lower your rating.
In any case, the global evaluation of your code score is not that important. Pylint is just a
tool that points you to places where there is the possibility for improvements.

It is always recommended to do some tuning of Pylint. In order to do so you need to create
a .pylinrc configuration file in your project's root directory. You can do that using the
following -generate-rcfile option of the pylint command:

$ pylint --generate-rcfile > .pylintrc

This configuration file is self-documenting (every possible option is described with
comment) and should already contain every available Pylint configuration option.

Besides checking for compliance with some arbitrary coding standards, Pylint can also give
additional information about the overall code quality, such as:

Code duplication metrics
Unused variables and imports
Missing function, method, or class docstrings
Too long function signatures

The list of available checks that are enabled by default is very long. It is important to know
that some of the rules are very arbitrary and cannot always be easily applied to every code
base. Remember that consistency is always more valuable than compliance to some
arbitrary rules. Fortunately, Pylint is very tunable, so if your team uses some naming and
coding conventions that are different from the ones assumed by default, you can easily
configure Pylint to check for consistency with your own conventions.

pycodestyle and flake8
pycodestyle (formerly pep8) is a tool that has only one purpose; it provides only style
checking against code conventions defined in PEP 8. This is the main difference from Pylint
that has many more additional features. This is the best option for programmers that are
interested in automated code style checking only for the PEP 8 standard, without any
additional tool configuration, as in Pylint's case.

Choosing Good Names Chapter 6

[198]

pycodestyle can be installed with pip as follows:

$ pip install pycodestyle

When run on the Buildout's bootstrap.py script, it will give the following short list of
code style violations:

$ wget -O bootstrap.py https://bootstrap.pypa.io/bootstrap-buildout.py -q
$ pycodestyle bootstrap.py
bootstrap.py:118:1: E402 module level import not at top of file
bootstrap.py:119:1: E402 module level import not at top of file
bootstrap.py:190:1: E402 module level import not at top of file
bootstrap.py:200:1: E402 module level import not at top of file

The main difference from Pylint's output is its length. pycodestyle concentrates only on
style, so it does not provide any other warnings, such as unused variables, too long
function names, or missing docstrings. It also does not give a rating. And it really makes
sense because there is no such thing as partial consistency or partial conformance. Any,
even the slightest, violation of style guidelines makes the code immediately inconsistent.

The code of pycodestyle is simpler than Pylint's and its output is easier to parse, so it may
be a better choice if you want to make your code style verification part of a continuous
integration process. If you are missing some static analysis features, there is
the flake8 package that is a wrapper on pycodestyle and a few other tools that are easily
extendable and provide a more extensive suite of features. These include the following:

McCabe complexity measurement
Static analysis via pyflakes
Disabling whole files or single lines using comments

Summary
In this chapter, we have discussed the most common and widely accepted coding
conventions. We started with the official Python style guide (the PEP 8 document). The
official style guide was complemented by some naming suggestions that will make your
future code more explicit. We have also seen some useful tools that are indispensable in
maintaining the consistency and quality of your code.

All of this prepares us for the first practical topic of the book—writing and distributing
your own packages. In the next chapter, we will learn how to publish our very own
package on a public PyPI repository and also how to leverage the power of packaging
ecosystems in your private organization.

7
Writing a Package

This chapter focuses on a repeatable process of writing and releasing Python packages. We
will see how to shorten the time needed to set up everything before starting the real work.
We will also learn how to provide a standardized way to write packages and ease the use of
a test-driven development approach. We will finally learn how to facilitate the release
process.

It is organized into the following four parts:

A common pattern for all packages that describes the similarities between all
Python packages, and how distutils and setuptools play a central role the
packaging process.
What are namespace packages and why they can be useful?
How to register and upload packages in the Python Package Index (PyPI) with
emphasis on security and common pitfalls.
The standalone executables as an alternative way to package and distribute
Python applications.

In this chapter, we will cover the following topics:

Creating a package
Namespace packages
Uploading a package
Standalone executables

Writing a Package Chapter 7

[200]

Technical requirements
Here are Python packages mentioned in this chapter that you can download from PyPI:

twine

wheel

cx_Freeze

py2exe

pyinstaller

You can install these packages using following command:

python3 -m pip install <package-name>

Code files for this chapter can be found at
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree

/master/chapter7.

Creating a package
Python packaging can be a bit overwhelming at first. The main reason for that is the
confusion about proper tools for creating Python packages. Anyway, once you create your
first package, you will see that this is not as hard as it looks. Also, knowing proper, state-of-
the art packaging tools helps a lot.

You should know how to create packages even if you are not interested in distributing your
code as open source. Knowing how to make your own packages will give you more insight
in the packaging ecosystem and will help you to work with third-party code that is
available on PyPI that you are probably already using.

Also, having your closed source project or its components available as source distribution
packages can help you to deploy your code in different environments. The advantages of
leveraging the Python packaging ecosystem in the code deployment process will be
described in more detail in the next chapter. Here we will focus on proper tools and
techniques to create such distributions.

We'll discuss the confusing state of Python package tools in the next section.

https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter7
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter7

Writing a Package Chapter 7

[201]

The confusing state of Python packaging tools
The state of Python packaging was very confusing for a long time and it took many years to
bring organization to this topic. Everything started with the distutils package introduced in
1998, which was later enhanced by setuptools in 2003. These two projects started a long and
knotted story of forks, alternative projects, and complete rewrites that tried to (once and for
all) fix the Python packaging ecosystem. Unfortunately, most of these attempts never
succeeded. The effect was quite the opposite. Each new project that aimed to
supersede setuptools or distutils only added to the already huge confusion around
packaging tools. Some of such forks were merged back to their ancestors (such as
distribute which was a fork of setuptools) but some were left abandoned (such as
distutils2).

Fortunately, this state is gradually changing. An organization called the Python Packaging
Authority (PyPA) was formed to bring back the order and organization to the packaging
ecosystem. The Python Packaging User Guide (https://packaging.python.org),
maintained by PyPA, is the authoritative source of information about the latest packaging
tools and best practices. Treat that site as the best source of information about packaging
and complementary reading for this chapter. This guide also contains a detailed history of
changes and new projects related to packaging. So it is worth reading it, even if you already
know a bit about packaging, to make sure you still use the proper tools.

Stay away from other popular internet resources, such as The Hitchhiker's Guide to
Packaging. It is old, not maintained, and mostly obsolete. It may be interesting only for
historical reasons, and the Python Packaging User Guide is in fact a fork of this old
resource.

Let's take a look at the effect of PyPA on Python packaging.

The current landscape of Python packaging thanks to
PyPA
PyPA, besides providing an authoritative guide for packaging, also maintains packaging
projects and a standardization process for new official aspects of Python packaging. All of
PyPA's projects can be found under a single organization on GitHub: https://github.com/
pypa.

https://packaging.python.org/
https://packaging.python.org/
https://packaging.python.org/
https://packaging.python.org/
https://packaging.python.org/
https://packaging.python.org/
https://packaging.python.org/
https://packaging.python.org/
https://packaging.python.org/
https://github.com/pypa
https://github.com/pypa
https://github.com/pypa
https://github.com/pypa
https://github.com/pypa
https://github.com/pypa
https://github.com/pypa
https://github.com/pypa
https://github.com/pypa

Writing a Package Chapter 7

[202]

Some of them were already mentioned in the book. The following are the most notable:

pip

virtualenv

twine

warehouse

Note that most of them were started outside of this organization and were moved under
PyPA patronage when they become mature and widespread solutions.

Thanks to PyPA engagement, the progressive abandonment of the eggs format in favor of
wheels for built distributions has already happened. Also thanks to the commitment of the
PyPA community, the old PyPI implementation was finally totally rewritten in the form of
the Warehouse project. Now, PyPI has got a modernized user interface and many long-
awaited usability improvements and features.

In the next section, we'll take a look at some of the tools recommended while working with
packages.

Tool recommendations
The Python Packaging User Guide gives a few suggestions on recommended tools for
working with packages. They can be generally divided into the following two groups:

Tools for installing packages
Tools for package creation and distribution

Utilities from the first group recommended by PyPA were already mentioned in Chapter
2, Modern Python Development Environments, but let's repeat them here for the sake of
consistency:

Use pip for installing packages from PyPI.
Use virtualenv or venv for application-level isolation of the Python runtime
environment.

The Python Packaging User Guide recommendations of tools for package creation and
distribution are as follows:

Use setuptools to define projects and create source distributions.
Use wheels in favor of eggs to create built distributions.
Use twine to upload package distributions to PyPI.

Writing a Package Chapter 7

[203]

Let's take a look at how to configure your project.

Project configuration
It should be obvious that the easiest way to organize the code of big applications is to split
them into several packages. This makes the code simpler, easier to understand, maintain,
and change. It also maximizes the reusability of your code. Separate packages act as
components that can be used in various programs.

setup.py
The root directory of a package that has to be distributed contains a setup.py script. It
defines all metadata as described in the distutils module. Package metadata is expressed
as arguments in a call to the standard setup() function. Despite distutils being the
standard library module provided for the purpose of code packaging, it is actually
recommended to use the setuptools instead. The setuptools package provides several
enhancements over the standard distutils module.

Therefore, the minimum content for this file is as follows:

from setuptools import setup

setup(
 name='mypackage',
)

name gives the full name of the package. From there, the script provides several commands
that can be listed with the --help-commands option, as shown in the following code:

$ python3 setup.py --help-commands
Standard commands:
 build build everything needed to install
 clean clean up temporary files from 'build' command
 install install everything from build directory
 sdist create a source distribution (tarball, zip file, etc.)
 register register the distribution with the Python package index
 bdist create a built (binary) distribution
 check perform some checks on the package
 upload upload binary package to PyPI

Extra commands:
 bdist_wheel create a wheel distribution
 alias define a shortcut to invoke one or more commands

Writing a Package Chapter 7

[204]

 develop install package in 'development mode'

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
 or: setup.py --help [cmd1 cmd2 ...]
 or: setup.py --help-commands
 or: setup.py cmd --help

The actual list of commands is longer and can vary depending on the available
setuptools extensions. It was truncated to show only those that are most important and
relevant to this chapter. Standard commands are the built-in commands provided
by distutils, whereas extra commands are the ones provided by third-party packages,
such as setuptools or any other package that defines and registers a new command.
Here, one such extra command registered by another package is bdist_wheel, provided
by the wheel package.

setup.cfg
The setup.cfg file contains default options for commands of the setup.py script. This is
very useful if the process for building and distributing the package is more complex and
requires many optional arguments to be passed to the setup.py script commands.
This setup.cfg file allows you to store such default parameters together with your source
code on a per project basis. This will make your distribution flow independent from the
project and also provides transparency about how your package was built/distributed to
the users and other team members.

The syntax for the setup.cfg file is the same as provided by the built-
in configparser module so it is similar to the popular Microsoft Windows INI files. Here
is an example of the setup.cfg configuration file that provides some global, sdist,
and bdist_wheel commands' defaults:

[global]
quiet=1

[sdist]
formats=zip,tar

[bdist_wheel]
universal=1

Writing a Package Chapter 7

[205]

This example configuration will ensure that source distributions (sdist section) will
always be created in two formats (ZIP and TAR) and the built wheel distributions
(bdist_wheel section) will be created as universal wheels that are independent from the
Python version. Also most of the output will be suppressed on every command by the
global --quiet switch. Note that this option is included here only for demonstration
purposes and it may not be a reasonable choice to suppress the output for every command
by default.

MANIFEST.in
When building a distribution with the sdist command, the distutils module browses
the package directory looking for files to include in the archive. By default distutils will
include the following:

All Python source files implied by the py_modules, packages, and scripts
arguments
All C source files listed in the ext_modules argument
Files that match the glob pattern test/test*.py
Files named README, README.txt, setup.py, and setup.cfg

Besides that, if your package is versioned with a version control system such as Subversion,
Mercurial, or Git, there is the possibility to auto-include all version controlled files using
additional setuptools extensions such as setuptools-svn, setuptools-hg ,
and setuptools-git. Integration with other version control systems is also possible
through other custom extensions. No matter if it is the default built-in collection strategy or
one defined by custom extension, the sdist will create a MANIFEST file that lists all files
and will include them in the final archive.

Let's say you are not using any extra extensions, and you need to include in your package
distribution some files that are not captured by default. You can define a template
called MANIFEST.in in your package root directory (the same directory as setup.py file).
This template directs the sdist command on which files to include.

This MANIFEST.in template defines one inclusion or exclusion rule per line:

include HISTORY.txt
include README.txt
include CHANGES.txt
include CONTRIBUTORS.txt
include LICENSE
recursive-include *.txt *.py

Writing a Package Chapter 7

[206]

The full list of the MANIFEST.in commands can be found in the official distutils
documentation.

Most important metadata
Besides the name and the version of the package being distributed, the most important
arguments that the setup() function can receive are as follows:

description: This includes a few sentences to describe the package.
long_description: This includes a full description that can be in
reStructuredText (default) or other supported markup languages.
long_description_content_type: this defines MIME type of long
description; it is used to tell the package repository what kind of markup
language is used for the package description.
keywords: This is a list of keywords that define the package and allow for better
indexing in the package repository.
author: This is the name of the package author or organization that takes care of
it.
author_email: This is the contact email address.
url: This is the URL of the project.
license: This is the name of the license (GPL, LGPL, and so on) under which the
package is distributed.
packages: This is a list of all package names in the package
distribution; setuptools provides a small function called find_packages that
can automatically find package names to include.
namespace_packages: This is a list of namespace packages within package
distribution.

Trove classifiers
PyPI and distutils provide a solution for categorizing applications with the set of
classifiers called trove classifiers. All trove classifiers form a tree-like structure. Each
classifier string defines a list of nested namespaces where every namespace is separated by
the :: substring. Their list is provided to the package definition as
a classifiers argument of the setup() function.

Writing a Package Chapter 7

[207]

Here is an example list of classifiers taken from solrq project available on PyPI:

from setuptools import setup

setup(
 name="solrq",
 # (...)

 classifiers=[
 'Development Status :: 4 - Beta',
 'Intended Audience :: Developers',
 'License :: OSI Approved :: BSD License',
 'Operating System :: OS Independent',
 'Programming Language :: Python',
 'Programming Language :: Python :: 2',
 'Programming Language :: Python :: 2.6',
 'Programming Language :: Python :: 2.7',
 'Programming Language :: Python :: 3',
 'Programming Language :: Python :: 3.2',
 'Programming Language :: Python :: 3.3',
 'Programming Language :: Python :: 3.4',
 'Programming Language :: Python :: Implementation :: PyPy',
 'Topic :: Internet :: WWW/HTTP :: Indexing/Search',
],
)

Trove classifiers are completely optional in the package definition but provide a useful
extension to the basic metadata available in the setup() interface. Among others, trove
classifiers may provide information about supported Python versions, supported operating
systems, the development stage of the project, or the license under which the code is
released. Many PyPI users search and browse the available packages by categories so a
proper classification helps packages to reach their target.

Trove classifiers serve an important role in the whole packaging ecosystem and should
never be ignored. There is no organization that verifies packages classification, so it is your
responsibility to provide proper classifiers for your packages and not introduce chaos to the
whole package index.

At the time of writing this book, there are 667 classifiers available on PyPI that are grouped
into the following nine major categories:

Development status
Environment
Framework

Writing a Package Chapter 7

[208]

Intended audience
License
Natural language
Operating system
Programming language
Topic

This list is ever-growing, and new classifiers are added from time to time. It is thus possible
that the total count of them will be different at the time you read this. The full list of
currently available trove classifiers is available at https://pypi.org/classifiers/.

Common patterns
Creating a package for distribution can be a tedious task for unexperienced developers.
Most of the metadata that setuptools or distuitls accept in their setup() function call
can be provided manually ignoring the fact that this metadata may be also available in
other parts of the project. Here is an example:

from setuptools import setup

setup(
 name="myproject",
 version="0.0.1",
 description="mypackage project short description",
 long_description="""
 Longer description of mypackage project
 possibly with some documentation and/or
 usage examples
 """,
 install_requires=[
 'dependency1',
 'dependency2',
 'etc',
]
)

https://pypi.org/classifiers/
https://pypi.org/classifiers/
https://pypi.org/classifiers/
https://pypi.org/classifiers/
https://pypi.org/classifiers/
https://pypi.org/classifiers/
https://pypi.org/classifiers/
https://pypi.org/classifiers/
https://pypi.org/classifiers/
https://pypi.org/classifiers/

Writing a Package Chapter 7

[209]

Some of the metadata elements are often found in different places in a typical Python
project. For instance, content of long description is commonly included in the project's
README file, and it is a good convention to put a version specifier in the __init__ module
of the package. Hardcoding such package metadata as setup() function
arguments redundancy to the project that allows for easy mistakes and inconsistencies in
future. Both setuptools and distutils cannot automatically pick metadata information
from the project sources, so you need to provide it yourself. There are some common
patterns among the Python community for solving the most popular problems such as
dependency management, version/readme inclusion, and so on. It is worth knowing at least
a few of them because they are so popular that they could be considered as packaging
idioms.

Automated inclusion of version string from package
The PEP 440 Version Identification and Dependency Specification document specifies a standard
for version and dependency specification. It is a long document that covers accepted
version specification schemes and defines how version matching and comparison in Python
packaging tools should work. If you are using or plan to use a complex project version
numbering scheme, then you should definitely read this document carefully. If you are
using a simple scheme that consists just of one, two, three, or more numbers separated by
dots, then you don't have to dig into the details of PEP 440. If you don't know how to
choose the proper versioning scheme, I greatly recommend following the semantic
versioning scheme that was already briefly mentioned in Chapter 1, Current Status of
Python.

The other problem related to code versioning is where to include that version specifier for a
package or module. There is PEP 396 (Module Version Numbers) that deals exactly with
this problem. PEP 396 is only an informational document and has a deferred status, so it is
not a part of the official Python standards track. Anyway, it describes what seems to be a de
facto standard now. According to PEP 396, if a package or module has a specific version
defined, the version specifier should be included as a __version__ attribute of package
root __init__.py INI file or distributed module file. Another de facto standard is to also
include the VERSION attribute that contains the tuple of the version specifier parts. This
helps users to write compatibility code because such version tuples can be easily compared
if the versioning scheme is simple enough.

Writing a Package Chapter 7

[210]

So many packages available on PyPI follow both conventions. Their __init__.py files
contain version attributes that look like the following:

version as tuple for simple comparisons
VERSION = (0, 1, 1)
string created from tuple to avoid inconsistency
__version__ = ".".join([str(x) for x in VERSION])

The other suggestion of PEP 396 is that the version argument provided in
the setup() function of the setup.py script should be derived from __version__, or the
other way around. The Python Packaging User Guide features multiple patterns for single-
sourcing project versioning, and each of them has its own advantages and limitations. My
personal favorite is rather long and is not included in the PyPA's guide, but has the
advantage of limiting the complexity only to the setup.py script. This boilerplate assumes
that the version specifier is provided by the VERSION attribute of the
package's __init__ module and extracts this data for inclusion in the setup() call. Here
is an excerpt from some imaginary package's setup.py script that illustrates this approach:

from setuptools import setup
import os

def get_version(version_tuple):
 # additional handling of a,b,rc tags, this can
 # be simpler depending on your versioning scheme
 if not isinstance(version_tuple[-1], int):
 return '.'.join(
 map(str, version_tuple[:-1])
) + version_tuple[-1]
 return '.'.join(map(str, version_tuple))

path to the packages __init__ module in project
source tree
init = os.path.join(
 os.path.dirname(__file__), 'src', 'some_package',
 '__init__.py'
)

version_line = list(
 filter(lambda l: l.startswith('VERSION'), open(init))
)[0]

VERSION is a tuple so we need to eval 'version_line'.
We could simply import it from the package but we
cannot be sure that this package is importable before
installation is done.

Writing a Package Chapter 7

[211]

PKG_VERSION = get_version(eval(version_line.split('=')[-1]))

setup(
 name='some-package',
 version=PKG_VERSION,
 # ...
)

README file
The Python Package Index can display the project's README file or the value of
long_description on the package page in the PyPI portal. PyPI is able to interpret the
markup used in the long_description content and render it as HTML on the package
page. The type of markup language is controlled through
the long_description_content_type argument of the setup() call. For now, there are
the following three choices for markup available:

Plain text with long_description_content_type='text/plain'
reStructuredText with long_description_content_type='text/x-rst'
Markdown with long_description_content_type='text/markdown'

Markdown and reStructuredText are the most popular choices among Python developers,
but some might still want to use different markup languages for various reasons. If you
want to use something different as your markup language for your project's README, you
can still provide it as a project description on the PyPI page in a readable form. The trick
lies in using the pypandoc package to translate your other markup language into
reStructuredText (or Markdown) while uploading the package to the Python Package
Index. It is important to do it with a fallback to plain content of your README file, so the
installation won't fail if the user has no pypandoc installed. The following is an example of
a setup.py script that is able to read the content of the README file written in AsciiDoc
markup language and translate it to reStructuredText before including
a long_description argument:

from setuptools import setup
try:
 from pypandoc import convert

 def read_md(file_path):
 return convert(file_path, to='rst', format='asciidoc')

except ImportError:
 convert = None
 print(
 "warning: pypandoc module not found, "

Writing a Package Chapter 7

[212]

 "could not convert Asciidoc to RST"
)

 def read_md(file_path):
 with open(file_path, 'r') as f:
 return f.read()

README = os.path.join(os.path.dirname(__file__), 'README')

setup(
 name='some-package',
 long_description=read_md(README),
 long_description_content_type='text/x-rst',
 # ...
)

Managing dependencies
Many projects require some external packages to be installed in order to work properly.
When the list of dependencies is very long, there comes a question as to how to manage it.
The answer in most cases is very simple. Do not over-engineer it. Keep it simple and
provide the list of dependencies explicitly in your setup.py script as follows:

from setuptools import setup
setup(
 name='some-package',
 install_requires=['falcon', 'requests', 'delorean']
 # ...
)

Some Python developers like to use requirements.txt files for tracking lists of
dependencies for their packages. In some situations, you might find some reason for doing
that, but in most cases, this is a relic of times where the code of that project was not
properly packaged. Anyway, even such notable projects as Celery still stick to this
convention. So if you are not willing to change your habits or you are somehow forced to
use requirement files, then at least do it properly. Here is one of the popular idioms for
reading the list of dependencies from the requirements.txt file:

from setuptools import setup
import os

def strip_comments(l):
 return l.split('#', 1)[0].strip()

Writing a Package Chapter 7

[213]

def reqs(*f):
 return list(filter(None, [strip_comments(l) for l in open(
 os.path.join(os.getcwd(), *f)).readlines()]))

setup(
 name='some-package',
 install_requires=reqs('requirements.txt')
 # ...
)

In next section, you'll learn how to add custom commands to your setup script.

The custom setup command
distutils allows you to create new commands. A new command can be registered with
an entry point, which was introduced by setuptools as a simple way to define packages
as plugins.

An entry point is a named link to a class or a function that is made available through some
APIs in setuptools. Any application can scan for all registered packages and use the
linked code as a plugin.

To link the new command, the entry_points metadata can be used in the setup call as
follows:

setup(
 name="my.command",
 entry_points="""
 [distutils.commands]
 my_command = my.command.module.Class
 """
)

All named links are gathered in named sections. When distutils is loaded, it scans for
links that were registered under distutils.commands.

This mechanism is used by numerous Python applications that provide extensibility.

Let's see how to work with packages during the development stage.

Writing a Package Chapter 7

[214]

Working with packages during development
Working with setuptools is mostly about building and distributing packages. However,
you still need to use setuptools to install packages directly from project sources. And the
reason for that is simple. It is a good habit to test if our packaging code works properly
before submitting your package to PyPI. And the simplest way to test it is by installing it. If
you send a broken package to the repository, then in order to re-upload it, you need to
increase the version number.

Testing if your code is packaged properly before the final distribution saves you from
unnecessary version number inflation and obviously from wasting your time. Also,
installation directly from your own sources using setuptools may be essential when
working on multiple related packages at the same time.

setup.py install
The install command installs the package in your current Python environment. It will try
to build the package if no previous build was made and then inject the result into the
filesystem directory where Python is looking for installed packages. If you have an archive
with a source distribution of some package, you can decompress it in a temporary folder
and then install it with this command. The install command will also install
dependencies that are defined in the install_requires argument. Dependencies will be
installed from the Python Package Index.

An alternative to the bare setup.py script when installing a package is to use pip. Since it
is a tool that is recommended by PyPA, you should use it even when installing a package in
your local environment just for development purposes. In order to install a package from
local sources, run the following command:

pip install <project-path>

Uninstalling packages
Amazingly, setuptools and distutils lack the uninstall command. Fortunately, it is
possible to uninstall any Python package using pip as follows:

pip uninstall <package-name>

Uninstalling can be a dangerous operation when attempted on system-wide packages. This
is another reason why it is so important to use virtual environments for any development.

Writing a Package Chapter 7

[215]

setup.py develop or pip -e
Packages installed with setup.py install are copied to the site-packages directory of
your current Python environment. This means that whenever you make a change to the
sources of that package, you are required to reinstall it. This is often a problem during
intensive development because it is very easy to forget about the need to perform
installation again. This is why setuptools provides an extra develop command that
allows you to install packages in the development mode. This command creates a special
link to project sources in the deployment directory (site-packages) instead of copying
the whole package there. Package sources can be edited without the need for reinstallation
and are available in the sys.path as if they were installed normally.

pip also allows you to install packages in such a mode. This installation option is
called editable mode and can be enabled with the -e parameter in the install command
as follows:

pip install -e <project-path>

Once you install the package in your environment in editable mode, you can freely modify
the installed package in place and all the changes will be immediately visible without the
need to reinstall the package.

Let's take a look at namespace packages in the next section.

Namespace packages
The Zen of Python that you can read after writing import this in the interpreter session
says the following about namespaces:

Namespaces are one honking great idea-let's do more of those!

And this can be understood in at least two ways. The first is a namespace in context of the
language. We all use the following namespaces without even knowing:

The global namespace of a module
The local namespace of the function or method invocation
The class namespace

The other kind of namespaces can be provided at the packaging level. These are namespace
packages. This is often an overlooked feature of Python packaging that can be very useful
in structuring the package ecosystem in your organization or in a very large project.

Writing a Package Chapter 7

[216]

Why is it useful?
Namespace packages can be understood as a way of grouping related packages, where each
of these packages can be installed independently.

Namespace packages are especially useful if you have components of your application
developed, packaged, and versioned independently but you still want to access them from
the same namespace. This also helps to make clear to which organization or project every
package belongs. For instance, for some imaginary Acme company, the common
namespace could be acme. Therefore this organization could create the
general acme namespace package that could serve as a container for other packages from
this organization. For example, if someone from Acme wants to contribute to this
namespace with, for example, an SQL-related library, they can create a
new acme.sql package that registers itself in the acme namespace.

It is important to know what's the difference between normal and namespace packages and
what problem they solve. Normally (without namespace packages), you would create a
package called acme with an sql subpackage/submodule with the following file structure:

$ tree acme/
acme/
├── acme
│ ├── __init__.py
│ └── sql
│ └── __init__.py
└── setup.py

2 directories, 3 files

Whenever you want to add a new subpackage, let's say templating, you are forced to
include it in the source tree of acme as follows:

$ tree acme/
acme/
├── acme
│ ├── __init__.py
│ ├── sql
│ │ └── __init__.py
│ └── templating
│ └── __init__.py
└── setup.py

3 directories, 4 files

Writing a Package Chapter 7

[217]

Such an approach makes independent development
of acme.sql and acme.templating almost impossible. The setup.py script will also
have to specify all dependencies for every subpackage. So it is impossible (or at least very
hard) to have an installation of some of the acme components optional. Also, with enough
subpackages it is practically impossible to avoid dependency conflicts.

With namespace packages, you can store the source tree for each of these subpackages
independently as follows:

$ tree acme.sql/
acme.sql/
├── acme
│ └── sql
│ └── __init__.py
└── setup.py

2 directories, 2 files

$ tree acme.templating/
acme.templating/
├── acme
│ └── templating
│ └── __init__.py
└── setup.py

2 directories, 2 files

And you can also register them independently in PyPI or any package index you use. Users
can choose which of the subpackages they want to install from the acme namespace as
follows, but they never install the general acme package (it doesn't even have to exist):

$ pip install acme.sql acme.templating

Note that independent source trees are not enough to create namespace packages in
Python. You need a bit of additional work if you don't want your packages to not overwrite
each other. Also proper handling may be different depending on the Python language
version you target. Details of that are described in the next two sections.

Writing a Package Chapter 7

[218]

PEP 420 - implicit namespace packages
If you use and target only Python 3, then there is good news for you. PEP 420 (Implicit
Namespace Packages) introduced a new way to define namespace packages. It is part of
the standards track and became an official part of the language since version 3.3. In short,
every directory that contains Python packages or modules (including namespace packages
too) is considered a namespace package if it does not contain the __init__.py file. So, the
following are examples of file structures presented in the previous section:

$ tree acme.sql/
acme.sql/
├── acme
│ └── sql
│ └── __init__.py
└── setup.py

2 directories, 2 files

$ tree acme.templating/
acme.templating/
├── acme
│ └── templating
│ └── __init__.py
└── setup.py

2 directories, 2 files

They are enough to define that acme is a namespace package under Python 3.3 and later.
Minimal setup.py for acme.templating package will look like following:

from setuptools import setup
setup(
 name='acme.templating',
 packages=['acme.templating'],
)

Unfortunately, the setuptools.find_packages() function does not support PEP 420 at
the time of writing this book. This may change in the future. Also, a requirement to
explicitly define a list of packages seems to be a very small price to pay for easy integration
of namespace packages.

Writing a Package Chapter 7

[219]

Namespace packages in previous Python versions
You can't use implicit namespace packages (PEP 420 layout) in Python versions older than
3.3. Still, the concept of namespace packages is very old and was commonly used for years
in such mature projects such as Zope. It means that it is definitely possible to use
namespace packages in older version of Python. Actually, there are several ways to define
that the package should be treated as a namespace.

The simplest one is to create a file structure for each component that resembles an ordinary
package layout without implicit namespace packages and leave everything to setuptools.
So, the example layout for acme.sql and acme.templating could be the following:

$ tree acme.sql/
acme.sql/
├── acme
│ ├── __init__.py
│ └── sql
│ └── __init__.py
└── setup.py

2 directories, 3 files

$ tree acme.templating/
acme.templating/
├── acme
│ ├── __init__.py
│ └── templating
│ └── __init__.py
└── setup.py
2 directories, 3 files

Note that for both acme.sql and acme.templating, there is an additional source
file, acme/__init__.py. This file must be left empty. The acme namespace package will be
created if we provide its name as a value of the namespace_packages keyword argument
of the setuptools.setup() function as follows:

from setuptools import setup

setup(
 name='acme.templating',
 packages=['acme.templating'],
 namespace_packages=['acme'],
)

Writing a Package Chapter 7

[220]

Easiest does not mean best. The setuptools module in order to register a new namespace
will call for the pkg_resources.declare_namespace() function in
your __init__.py file. It will happen even if the __init__.py file is empty. Anyway, as
the official documentation says, it is your own responsibility to declare namespaces in
the __init__.py file, and this implicit behavior of setuptools may be dropped in the
future. In order to be safe and future-proof, you need to add the following line to
the acme/__init__.py file:

__import__('pkg_resources').declare_namespace(__name__)

This line will make your namespace package safe from potential future changes regarding
namespace packages in the setuptools module.

Let's see how to upload a package in the next section.

Uploading a package
Packages would be useless without an organized way to store, upload, and download
them. Python Package Index is the main source of open source packages in the Python
community. Anyone can freely upload new packages and the only requirement is to
register on the PyPI site: https://pypi.python.org/pypi.

You are not, of course, limited to only this index and all Python packaging tools support the
usage of alternative package repositories. This is especially useful for distributing closed
source code among internal organizations or for deployment purposes. Details of such
packaging usage with instructions on how to create your own package index will be
explained in the next chapter. Here we focus mainly on open source uploads to PyPI, with
only little mention on how to specify alternative repositories.

PyPI - Python Package Index
Python Package Index is, as already mentioned, the official source of open source package
distributions. Downloading from it does not require any account or permission. The only
thing you need is a package manager that can download new distributions from PyPI. Your
preferred choice should be pip.

Let's see how to upload a package in the next section.

https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://pypi.python.org/pypi

Writing a Package Chapter 7

[221]

Uploading to PyPI - or other package index
Anyone can register and upload packages to PyPI provided that he or she has an account
registered. Packages are bound to the user, so, by default, only the user that registered the
name of the package is its admin and can upload new distributions. This could be a
problem for bigger projects, so there is an option to mark other users as package
maintainers so that they are able to upload new distributions too.

The easiest way to upload a package is to use the following upload command of
the setup.py script:

$ python setup.py <dist-commands> upload

Here, <dist-commands> is a list of commands that creates distributions to upload. Only
distributions created during the same setup.py execution will be uploaded to the
repository. So, if you upload source distribution, built distribution, and wheel package at
once, then you need to issue the following command:

$ python setup.py sdist bdist bdist_wheel upload

When uploading using setup.py, you cannot reuse distributions that were already built in
previous command calls and are forced to rebuild them on every upload. This may be
inconvenient for large or complex projects where creation of the actual distribution may
take a considerable amount of time. Another problem of setup.py upload is that it can
use plain text HTTP or unverified HTTPS connections on some Python versions. This is
why Twine is recommended as a secure replacement for the setup.py upload command.

Twine is the utility for interacting with PyPI that currently serves only one
purpose—securely uploading packages to the repository. It supports any packaging format
and always ensures that the connection is secure. It also allows you to upload files that
were already created, so you are able to test distributions before release. The following
example usage of twine still requires invoking the setup.py script for building
distributions:

$ python setup.py sdist bdist_wheel
$ twine upload dist/*

Let's see what .pypric is in the next section.

Writing a Package Chapter 7

[222]

.pypirc

.pypirc is a configuration file that stores information about Python packages repositories.
It should be located in your home directory. The format for this file is as follows:

[distutils]
index-servers =
 pypi
 other

[pypi]
repository: <repository-url>
username: <username>
password: <password>

[other]
repository: https://example.com/pypi
username: <username>
password: <password>

The distutils section should have the index-servers variable that lists all sections
describing all the available repositories and credentials for them. There are only the
following three variables that can be modified for each repository section:

repository: This is the URL of the package repository (it defaults to https://
pypi.org/).
username: This is the username for authentication in the given repository.
password: This is the user password for authentication in the given repository
(in plain text).

Note that storing your repository password in plain text may not be the wisest security
choice. You can always leave it blank and you should be prompted for it whenever it is
necessary.

The .pypirc file should be respected by every packaging tool built for Python. While this
may not be true for every packaging-related utility out there, it is supported by the most
important ones, such as pip, twine, distutils, and setuptools.

Let's take a look at the comparison between source packages and built packages.

https://pypi.org/
https://pypi.org/
https://pypi.org/
https://pypi.org/
https://pypi.org/
https://pypi.org/
https://pypi.org/

Writing a Package Chapter 7

[223]

Source packages versus built packages
There are generally the following two types of distributions for Python packages:

Source distributions
Built (binary) distributions

Source distributions are the simplest and most platform independent. For pure Python
packages, it is a no-brainer. Such a distribution contains only Python sources and these
should already be highly portable.

A more complex situation is when your package introduces some extensions written, for
example, in C. Source distributions will still work provided that the package user has
proper development toolchain in his/her environment. This consists mostly of the compiler
and proper C header files. For such cases, the build distribution format may be better suited
because it can provide already built extensions for specific platforms.

Let's take a look at what exactly the sdist command.

sdist
The sdist command is the simplest command available. It creates a release tree where
everything that is needed to run the package is copied to. This tree is then archived in one
or many archived files (often, it just creates one tarball). The archive is basically a copy of
the source tree.

This command is the easiest way to distribute a package that would be independent from
the target system. It creates a dist/ directory for storing the archives to be distributed.
Before you create the first distribution, you have to provide a setup() call with a version
number, as follows. If you don't, setuptools module will assume default value
of version = '0.0.0':

from setuptools import setup

setup(name='acme.sql', version='0.1.1')

Every time a package is released, the version number should be increased so that the target
system knows the package has changed.

Writing a Package Chapter 7

[224]

Let's run the following sdist command for acme.sql package in 0.1.1 version:

$ python setup.py sdist
running sdist
...
creating dist
tar -cf dist/acme.sql-0.1.1.tar acme.sql-0.1.1
gzip -f9 dist/acme.sql-0.1.1.tar
removing 'acme.sql-0.1.1' (and everything under it)

$ ls dist/
acme.sql-0.1.1.tar.gz

On Windows, the default archive type will be ZIP.

The version is used to mark the name of the archive, which can be distributed and installed
on any system that has Python. In the sdist distribution, if the package contains C libraries
or extensions, the target system is responsible for compiling them. This is very common for
Linux-based systems or macOS because they commonly provide a compiler. But it is less
usual to have it under Windows. That's why a package should always be distributed with a
prebuilt distribution as well, when it is intended to be run on several platforms.

Let's take a look at what the bdist and wheels commands are in the next section.

bdist and wheels
To be able to distribute a prebuilt distribution, distutils provides the build command.
This commands compiles the package in the following four steps:

build_py: This builds pure Python modules by byte-compiling them and
copying them into the build folder.
build_clib: This builds C libraries, when the package contains any, using
Python compiler and creating a static library in the build folder.
build_ext: This builds C extensions and puts the result in the build folder
like build_clib.
build_scripts: This builds the modules that are marked as scripts. It also
changes the interpreter path when the first line was set (using !# prefix) and
fixes the file mode so that it is executable.

Writing a Package Chapter 7

[225]

Each of these steps is a command that can be called independently. The result of the
compilation process is a build folder that contains everything needed for the package to be
installed. There's no cross-compiler option yet in the distutils package. This means that
the result of the command is always specific to the system it was built on.

When some C extensions have to be created, the build process uses the default system
compiler and the Python header file (Python.h). This include file is available from the time
Python was built from the sources. For a packaged distribution, an extra package for your
system distribution is probably required. At least in popular Linux distributions, it is often
named python-dev. It contains all the necessary header files for building Python
extensions.

The C compiler used in the build process is the compiler that is default for your operating
system. For a Linux-based system or macOS, this would be gcc or clang respectively. For
Windows, Microsoft Visual C++ can be used (there's a free command-line version
available). The open source project MinGW can be used as well. This can be configured
in distutils.

The build command is used by the bdist command to build a binary distribution. It
invokes build and all the dependent commands, and then creates an archive in the same
way as sdist does.

Let's create a binary distribution for acme.sql on macOS as follows:

$ python setup.py bdist
running bdist
running bdist_dumb
running build
...
running install_scripts
tar -cf dist/acme.sql-0.1.1.macosx-10.3-fat.tar .
gzip -f9 acme.sql-0.1.1.macosx-10.3-fat.tar
removing 'build/bdist.macosx-10.3-fat/dumb' (and everything under it)

$ ls dist/
acme.sql-0.1.1.macosx-10.3-fat.tar.gz acme.sql-0.1.1.tar.gz

Notice that the newly created archive's name contains the name of the system and the
distribution it was built on (macOS 10.3).

Writing a Package Chapter 7

[226]

The same command invoked on Windows will create a another system, specific distribution
archive as follows:

C:\acme.sql> python.exe setup.py bdist
...

C:\acme.sql> dir dist
25/02/2008 08:18 <DIR> .
25/02/2008 08:18 <DIR> ..
25/02/2008 08:24 16 055 acme.sql-0.1.1.win32.zip
 1 File(s) 16 055 bytes
 2 Dir(s) 22 239 752 192 bytes free

If a package contains C code, apart from a source distribution, it's important to release as
many different binary distributions as possible. At the very least, a Windows binary
distribution is important for those who most probably don't have a C compiler installed.

A binary release contains a tree that can be copied directly into the Python tree. It mainly
contains a folder that is copied into Python's site-packages folder. It may also contain
cached bytecode files (*.pyc files on Python 2 and __pycache__/*.pyc on Python 3).

The other kind of build distributions are wheels provided by the wheel package. When
installed (for example, using pip), the wheel package adds a new bdist_wheel command
to the distutils. It allows creating platform specific distributions (currently only for
Windows, macOS, and Linux) that are better alternatives to normal bdist distributions. It
was designed to replace another distribution format introduced earlier
by setuptools called eggs. Eggs are now obsolete, so won't be featured in the book. The
list of advantages of using wheels is quite long. Here are the ones that are mentioned on the
Python Wheels page (http://pythonwheels.com/):

Faster installation for pure Python and native C extension packages
Avoids arbitrary code execution for installation. (avoids setup.py)
Installation of a C extension does not require a compiler on Windows, macOS, or
Linux.
Allows better caching for testing and continuous integration.
Creates .pyc files as part of the installation to ensure they match the Python
interpreter used
More consistent installs across platforms and machines

http://pythonwheels.com/
http://pythonwheels.com/
http://pythonwheels.com/
http://pythonwheels.com/
http://pythonwheels.com/
http://pythonwheels.com/
http://pythonwheels.com/
http://pythonwheels.com/

Writing a Package Chapter 7

[227]

According to PyPA's recommendation, wheels should be your default distribution format.
For a very long time, the binary wheels for Linux were not supported, but that has changed
fortunately. Binary wheels for Linux are called manylinux wheels. The process of building
them is unfortunately not as straightforward as for Windows and macOS binary wheels.
For these kind of wheels, PyPA maintains special Docker images that serve as a ready-to-
use build environments. For sources of these images and more information, you can visit
their official repository on GitHub: https://github.com/pypa/manylinux.

Let's take a look at standalone executables in the next section.

Standalone executables
Creating standalone executables is a commonly overlooked topic in materials that cover
packaging of Python code. This is mainly because Python lacks proper tools in its standard
library that could allow programmers to create simple executables that could be run by
users without the need to install the Python interpreter.

Compiled languages have a big advantage over Python in that they allow you to create an
executable application for the given system architecture that could be run by users in a way
that does not require from them any knowledge of the underlying technology. Python code,
when distributed as a package, requires the Python interpreter in order to be run. This
creates a big inconvenience for users who do not have enough technical proficiency.

Developer-friendly operating systems, such as macOS or most Linux distributions, come
with Python interpreter preinstalled. So, for their users, the Python-based application still
could be distributed as a source package that relies on a specific interpreter directive in the
main script file that is popularly called shebang. For most of Python applications, this takes
the following form:

#!/usr/bin/env python

Such directive when used as a first line of script will mark it to be interpreted in the default
Python version for the given environment. This can, of course, take a more detailed form
that requires a specific Python version such as python3.4, python3, python2 and so on.
Note that this will work in most popular POSIX systems, but isn't portable at all. This
solution relies on the existence of specific Python versions and also the availability of
an env executable exactly at /usr/bin/env. Both of these assumptions may fail on some
operating systems. Also, shebang will not work on Windows at all. Additionally,
bootstrapping of the Python environment on Windows can be a challenge even for
experienced developers, so you cannot expect that nontechnical users will be able to do that
by themselves.

https://github.com/pypa/manylinux
https://github.com/pypa/manylinux
https://github.com/pypa/manylinux
https://github.com/pypa/manylinux
https://github.com/pypa/manylinux
https://github.com/pypa/manylinux
https://github.com/pypa/manylinux
https://github.com/pypa/manylinux
https://github.com/pypa/manylinux
https://github.com/pypa/manylinux
https://github.com/pypa/manylinux

Writing a Package Chapter 7

[228]

The other thing to consider is the simple user experience in the desktop environment. Users
usually expect that applications can be run from the desktop by simply clicking on them.
Not every desktop environment will support that with Python applications distributed as a
source.

So it would be best if we are able to create a binary distribution that would work as any
other compiled executable. Fortunately, it is possible to create an executable that has both
the Python interpreter and our project embedded. This allows users to open our application
without caring about Python or any other dependency.

Let's see when standalone executables are useful.

When standalone executables useful?
Standalone executables are useful in situations where simplicity of the user experience is
more important than the user's ability to interfere with the applications code. Note that the
fact that you are distributing applications as executables only makes code reading or
modification harder, not impossible. It is not a way to secure application code and should
only be used as a way to make interacting with the application simpler.

Standalone executables should be a preferred way of distributing applications for
nontechnical end users and also seems to be the only reasonable way of distributing any
Python application for Windows.

Standalone executables are usually a good choice for the following:

Applications that depend on specific Python versions that may not be easily
available on the target operating systems
Applications that rely on modified precompiled CPython sources
Applications with graphical interfaces
Projects that have many binary extensions written in different languages
Games

Let's take a look at some of the popular tools in the next section.

Writing a Package Chapter 7

[229]

Popular tools
Python does not have any built-in support for building standalone executables.
Fortunately, there are some community projects solving that problem with varied amounts
of success. The following four are the most notable:

PyInstaller
cx_Freeze
py2exe
py2app

Each one of them is slightly different in use and also each one of them has slightly different
limitations. Before choosing your tool, you need to decide which platform you want to
target, because every packaging tool can support only a specific set of operating systems.

It is best if you make such a decision at the very beginning of the project's life. None of
these tools, of course, requires deep interaction in your code, but if you start building
standalone packages early, you can automate the whole process and save future integration
time and costs. If you leave this for later, you may find yourself in a situation where the
project is built in such a sophisticated way that none of the available tools will work.
Providing a standalone executable for such a project will be problematic and will take a lot
of your time.

Let's take a look at PyInstaller in the next section.

PyInstaller
PyInstaller (http://www.pyinstaller.org/) is by far the most advanced program to freeze
Python packages into standalone executables. It provides the most extensive multiplatform
compatibility among every available solution at the moment, so it is the most highly
recommended one. PyInstaller supports the following platforms:

Windows (32-bit and 64-bit)
Linux (32-bit and 64-bit)
macOS (32-bit and 64-bit)
FreeBSD, Solaris, and AIX

Supported versions of Python are Python 2.7 and Python 3.3, 3.4, and 3.5. It is available on
PyPI, so it can be installed in your working environment using pip. If you have problems
installing it this way, you can always download the installer from the project's page.

http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/

Writing a Package Chapter 7

[230]

Unfortunately, cross-platform building (cross-compilation) is not supported, so if you want
to build your standalone executable for a specific platform, then you need to perform
building on that platform. This is not a big problem today with the advent of many
virtualization tools. If you don't have a specific system installed on your computer, you can
always use Vagrant, which will provide you with the desired operating system as a virtual
machine.

Usage for simple applications is pretty straightforward. Let's assume our application is
contained in the script named myscript.py. This is a simple hello world application. We
want to create a standalone executable for Windows users and we have our sources located
under D://dev/app in the filesystem. Our application can be bundled with the following
short command:

$ pyinstaller myscript.py
2121 INFO: PyInstaller: 3.1
2121 INFO: Python: 2.7.10
2121 INFO: Platform: Windows-7-6.1.7601-SP1
2121 INFO: wrote D:\dev\app\myscript.spec
2137 INFO: UPX is not available.
2138 INFO: Extending PYTHONPATH with paths ['D:\\dev\\app', 'D:\\dev\\app']
2138 INFO: checking Analysis
2138 INFO: Building Analysis because out00-Analysis.toc is non existent
2138 INFO: Initializing module dependency graph...
2154 INFO: Initializing module graph hooks...
2325 INFO: running Analysis out00-Analysis.toc
(...)
25884 INFO: Updating resource type 24 name 2 language 1033

PyInstaller's standard output is quite long, even for simple applications, so it was truncated
in the preceding example for the sake of brevity. If run on Windows, the resulting structure
of directories and files will be as follows:

$ tree /0066
│ myscript.py
│ myscript.spec
│
├───build
│ └───myscript
│ myscript.exe
│ myscript.exe.manifest
│ out00-Analysis.toc
│ out00-COLLECT.toc
│ out00-EXE.toc
│ out00-PKG.pkg
│ out00-PKG.toc
│ out00-PYZ.pyz

Writing a Package Chapter 7

[231]

│ out00-PYZ.toc
│ warnmyscript.txt
│
└───dist
 └───myscript
 bz2.pyd
 Microsoft.VC90.CRT.manifest
 msvcm90.dll
 msvcp90.dll
 msvcr90.dll
 myscript.exe
 myscript.exe.manifest
 python27.dll
 select.pyd
 unicodedata.pyd
 _hashlib.pyd

The dist/myscript directory contains the built application that can now be distributed to
the users. Note that whole directory must be distributed. It contains all the additional files
that are required to run our application (DLLs, compiled extension libraries, and so on). A
more compact distribution can be obtained with the --onefile switch of
the pyinstaller command as follows:

$ pyinstaller --onefile myscript.py
(...)

$ tree /f
├───build
│ └───myscript
│ myscript.exe.manifest
│ out00-Analysis.toc
│ out00-EXE.toc
│ out00-PKG.pkg
│ out00-PKG.toc
│ out00-PYZ.pyz
│ out00-PYZ.toc
│ warnmyscript.txt
│
└───dist
 myscript.exe

When built with the --onefile option, the only file you need to distribute to other users is
the single executable found in the dist directory (here, myscript.exe). For small
applications, this is probably the preferred option.

Writing a Package Chapter 7

[232]

One of the side effects of running the pyinstaller command is the creation of
the *.spec file. This is an auto generated Python module containing specification on how
to create executables from your sources. This is the example specification file created
automatically for myscript.py code:

-*- mode: python -*-

block_cipher = None

a = Analysis(['myscript.py'],
 pathex=['D:\\dev\\app'],
 binaries=None,
 datas=None,
 hiddenimports=[],
 hookspath=[],
 runtime_hooks=[],
 excludes=[],
 win_no_prefer_redirects=False,
 win_private_assemblies=False,
 cipher=block_cipher)
pyz = PYZ(a.pure, a.zipped_data,
 cipher=block_cipher)
exe = EXE(pyz,
 a.scripts,
 a.binaries,
 a.zipfiles,
 a.datas,
 name='myscript',
 debug=False,
 strip=False,
 upx=True,
 console=True)

This .spec file contains all pyinstaller arguments specified earlier. This is very useful if
you have performed a lot of customizations to your build. Once created, you can use it as
an argument to the pyinstaller command instead of your Python script as follows:

$ pyinstaller.exe myscript.spec

Note that this is a real Python module, so you can extend it and perform more complex
customizations to the building procedure. Customizing the .spec file is especially useful
when you are targeting many different platforms. Also, not all of the pyinstaller options
are available through the command-line interface and can be used only when
modifying .spec file.

Writing a Package Chapter 7

[233]

PyInstaller is an extensive tool, which by its usage is very simple for the great majority of
programs. Anyway, thorough reading of its documentation is recommended if you are
interested in using it as a tool to distribute your applications.

Let's take a look at cx_Freeze in the next section

cx_Freeze
cx_Freeze (http://cx-freeze.sourceforge.net/) is another tool for creating standalone
executables. It is a simpler solution than PyInstaller, but also supports the following three
major platforms:

Windows
Linux
macOS

Like PyInstaller, it does not allow you to perform cross-platform builds, so you need to
create your executables on the same operating system you are distributing to. The major
disadvantage of cx_Freeze is that it does not allow you to create real single-file executables.
Applications built with it need to be distributed with related DLL files and libraries.
Assuming that we have the same application as featured in the PyInstaller section, the
example usage is very simple as well:

$ cxfreeze myscript.py
copying C:\Python27\lib\site-packages\cx_Freeze\bases\Console.exe ->
D:\dev\app\dist\myscript.exe
copying C:\Windows\system32\python27.dll ->
D:\dev\app\dist\python27.dll
writing zip file D:\dev\app\dist\myscript.exe
(...)
copying C:\Python27\DLLs\bz2.pyd -> D:\dev\app\dist\bz2.pyd
copying C:\Python27\DLLs\unicodedata.pyd -> D:\dev\app\dist\unicodedata.pyd
Resulting structure of files is as follows:

 $ tree /f
│ myscript.py
│
└───dist
 bz2.pyd
 myscript.exe
 python27.dll
 unicodedata.pyd

http://cx-freeze.sourceforge.net/

Writing a Package Chapter 7

[234]

Instead of providing the own format for build specification (like PyInstaller does),
cx_Freeze extends the distutils package. This means you can configure how your
standalone executable is built with the familiar setup.py script. This makes cx_Freeze very
convenient if you already distribute your package
using setuptools or distutils because additional integration requires only small
changes to your setup.py script. Here is an example of such a setup.py script
using cx_Freeze.setup() for creating standalone executables on Windows:

import sys
from cx_Freeze import setup, Executable

Dependencies are automatically detected, but it might need fine tuning.
build_exe_options = {"packages": ["os"], "excludes": ["tkinter"]}

setup(
 name="myscript",
 version="0.0.1",
 description="My Hello World application!",
 options={
 "build_exe": build_exe_options
 },
 executables=[Executable("myscript.py")]
)

With such a file, the new executable can be created using the new build_exe command
added to the setup.py script as follows:

$ python setup.py build_exe

The usage of cx_Freeze seems a bit easier than PyInstaller's, and distutils integration is
a very useful feature. Unfortunately this project may cause some trouble for inexperienced
developers due to the following reasons:

Installation using pip may be problematic under Windows.
The official documentation is very brief and lacking in some places.

Let's take a look at py2exe and py2app in the next section.

Writing a Package Chapter 7

[235]

py2exe and py2app
py2exe (http://www.py2exe.org/) and py2app (https://py2app.readthedocs.io/en/
latest/) are two complementary programs that integrate with Python packaging either
via distutils or setuptools in order to create standalone executables. Here they are
mentioned together because they are very similar in both usage and their limitations. The
major drawback of py2exe and py2app is that they target only a single platform:

py2exe allows building Windows executables.
py2app allows building macOS apps.

Because the usage is very similar and requires only modification of the setup.py script,
these packages complement each other. The documentation of the py2app project provides
the following example of the setup.py script, which allows you to build standalone
executables with the right tool (either py2exe or py2app) depending on the platform used:

import sys
from setuptools import setup

mainscript = 'MyApplication.py'

if sys.platform == 'darwin':
 extra_options = dict(
 setup_requires=['py2app'],
 app=[mainscript],
 # Cross-platform applications generally expect sys.argv to
 # be used for opening files.
 options=dict(py2app=dict(argv_emulation=True)),
)
elif sys.platform == 'win32':
 extra_options = dict(
 setup_requires=['py2exe'],
 app=[mainscript],
)
else:
 extra_options = dict(
 # Normally unix-like platforms will use "setup.py install"
 # and install the main script as such
 scripts=[mainscript],
)

setup(
 name="MyApplication",
 **extra_options
)

http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
https://py2app.readthedocs.io/en/latest/
https://py2app.readthedocs.io/en/latest/
https://py2app.readthedocs.io/en/latest/
https://py2app.readthedocs.io/en/latest/
https://py2app.readthedocs.io/en/latest/
https://py2app.readthedocs.io/en/latest/
https://py2app.readthedocs.io/en/latest/
https://py2app.readthedocs.io/en/latest/
https://py2app.readthedocs.io/en/latest/
https://py2app.readthedocs.io/en/latest/
https://py2app.readthedocs.io/en/latest/
https://py2app.readthedocs.io/en/latest/
https://py2app.readthedocs.io/en/latest/

Writing a Package Chapter 7

[236]

With such a script, you can build your Windows executable using the python setup.py
py2exe command and macOS app using python setup.py py2app. Cross-compilation
is, of course, not possible.

Despite py2app and py2exe having obvious limitations and offering less elasticity than
PyInstaller or cx_Freeze, it is always good to be familiar with them. In some cases,
PyInstaller or cx_Freeze might fail to build the executable for the project properly. In such
situations, it is always worth checking whether other solutions can handle your code.

Security of Python code in executable packages
It is important to know that standalone executables do not make the application code
secure by any means. It is not an easy task to decompile the embedded code from such
executable files, but it is definitely doable. What is even more important is that the results
of such decompilation (if done with proper tools) might look strikingly similar to original
sources.

This fact makes standalone Python executables not a viable solution for closed source
projects where leaking of the application code could harm the organization. So, if your
whole business can be copied simply by copying the source code of you application, then
you should think of other ways to distribute the application. Maybe providing software as
a service will be a better choice for you.

Making decompilation harder
As already said, there is no reliable way to secure applications from decompilation with the
tools available at the moment. Still, there are some ways to make this process harder. But
harder does not mean less probable. For some of us, the most tempting challenges are the
hardest ones. And we all know that the eventual price in this challenge is very high—the
code that you tried to secure.

Usually the process of decompilation consists of the following steps:

Extracting the project's binary representation of bytecode from standalone1.
executables
Mapping of a binary representation to bytecode of a specific Python version2.
Translation of bytecode to AST3.
Re-creation of sources directly from AST4.

Writing a Package Chapter 7

[237]

Providing the exact solutions for deterring developers from such reverse engineering of
standalone executables would be pointless for obvious reasons. So here are only some ideas
for hampering the decompilation process or devaluing its results:

Removing any code metadata available at runtime (docstrings) so the eventual
results will be a bit less readable.
Modifying the bytecode values used by the CPython interpreter; so conversion
from binary to bytecode and later to AST requires more effort.
Using a version of CPython sources modified in such a complex way that even if
decompiled sources of the application are available, they are useless without
decompiling the modified CPython binary.
Using obfuscation scripts on sources before bundling them into an executable,
which will make sources less valuable after the decompilation.

Such solutions make the development process a lot harder. Some of the preceding ideas
require a very deep understanding of Python runtime, but each one of them is riddled with
many pitfalls and disadvantages. Mostly, they only defer what is anyway inevitable. Once
your trick is broken, it renders all your additional efforts a waste of time and resources.

The only reliable way to not allow your closed code to leak outside of your application is to
not ship it directly to users in any form. And this is only possible if other aspects of your
organization security stay airtight.

Summary
In this chapter, we have discussed the details of Python's packaging ecosystem. Now, after
reading it, you should know which tools suit your packaging needs and also which types of
distributions your project requires. You should also know the popular techniques for
common problems and how to provide useful metadata to your project.

We also discussed the topic of standalone executables that are very useful in distributing
desktop applications.

The next chapter will build on what we have learned here to show how to efficiently deal
with code deployments in a reliable and automated way.

8
Deploying the Code

Even perfect code (if it exists) is useless if it is not able to run. So, in order to serve any
purpose, our code needs to be installed on the target machine (computer) and executed.
The process of making a specific version of your application or service available to end
users is called deployment.

In the case of desktop applications, this seems to be simple as your job ends with providing
a downloadable package with an optional installer, if necessary. It is the user's
responsibility to download and install the package in their environment. Your
responsibility is to make this process as easy and convenient as possible. Proper packaging
is still not a simple task, but some tools were already explained in the previous chapter.

Surprisingly, things get more complicated when your code is not a standalone product. If
your application only provides a service that is being sold to users, then it is your
responsibility to run it on your own infrastructure. This scenario is typical for a web
application or any X as a service product. In such a situation, the code is deployed to set off
remote machines that are physically accessible to the developers. This is especially true if
you are already a user of cloud computing services such as Amazon Web Services (AWS)
or Heroku.

In this chapter, we will concentrate on the aspect of code deployment to remote hosts due
to very high popularity of Python in the field of building various web-related services and
products. Despite the high portability of this language, it has no specific quality that would
make its code easily deployable. What matters the most is how your application is built and
what processes you use to deploy it to the target environments. So, this chapter will focus
on the following topics:

What are the main challenges in deploying the code to remote environments?
How to build applications in Python that are easily deployable
How to reload web services without downtime
How to leverage a Python packaging ecosystem in code deployment
How to properly monitor and instrument code that runs remotely

Deploying the Code Chapter 8

[239]

Technical requirements
You can download various monitoring and log processing tools mentioned in this chapter
from the following sites:

Munin: http://munin-monitoring.org

Logstash, Elasticsearch, and Kibana: https://www.elastic.co

Fluentd: https://www.fluentd.org

Following are Python packages mentioned in this chapter that you can download from
PyPI:

fabric

devpi

circus

uwsgi

gunicorn

sentry_sdk

statsd

You can install these packages using the following command:

python3 -m pip install <package-name>

Code files for this chapter can be found
at https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/t
ree/master/chapter8.

The Twelve-Factor App
The main requirement for painless deployment is building your application in a way that
ensures that this process will be simple and as streamlined as possible. This is mostly about
removing obstacles and encouraging well-established practices. Following such common
practices is especially important in organizations where only specific people are responsible
for development (the developers team or Dev for short) and different people are
responsible for deploying and maintaining the execution environments (the operations
team or Ops for short).

http://munin-monitoring.org
http://munin-monitoring.org
http://munin-monitoring.org
http://munin-monitoring.org
http://munin-monitoring.org
http://munin-monitoring.org
http://munin-monitoring.org
http://munin-monitoring.org
http://munin-monitoring.org
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.elastic.co
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://www.fluentd.org
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter8
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter8

Deploying the Code Chapter 8

[240]

All tasks related to server maintenance, monitoring, deployment, configuration, and so on
are often put into one single bag called operations. Even in organizations that have no
separate teams for operational tasks, it is common that only some of the developers are
authorized to do deployment tasks and maintain the remote servers. The common name for
such a position is DevOps. Also, it isn't such an unusual situation that every member of the
development team is responsible for operations, so everyone in such a team can be called
DevOps.

No matter how your organization is structured and what the responsibilities of each
developer are, everyone should know how operations work and how code is deployed to
the remote servers because, in the end, the execution environment and its configuration is a
hidden part of the product you are building.

The following common practices and conventions are important mainly for the following
reasons:

At every company people quit and new ones are hired. By using best approaches,
you are making it easier for fresh team members to jump into the project. You
can never be sure that new employees are already familiar with common
practices for system configuration and running applications in a reliable way, but
you can at least make their fast adaptation more probable.
In organizations where only some people are responsible for deployments, it
simply reduces the friction between the operations and development teams.

A good source of such practices that encourage building easy deployable apps is a
manifesto called the Twelve-Factor App. It is a general language-agnostic methodology for
building software-as-a-service apps. One of its purposes is making applications easier to
deploy, but it also highlights other topics such as maintainability or making applications
easier to scale.

As its name says, the Twelve-Factor App consists of 12 rules:

Code base: One code base tracked in revision control and many deploys
Dependencies: Explicitly declare and isolate dependencies
Config: Store configurations in the environment
Backing services: Treat backing services as attached resources
Build, release, run: Strictly separate build and run stages
Processes: Execute the app as one or more stateless processes
Port binding: Export services via port binding
Concurrency: Scale out via the process model
Disposability: Maximize robustness with fast startup and graceful shutdown

Deploying the Code Chapter 8

[241]

Dev/prod parity: Keep development, staging, and production as similar as
possible
Logs: Treat logs as event streams
Admin processes: Run administration/management tasks as one-off processes

Extending each of these rules here is a bit pointless because the official page of Twelve-
Factor App methodology (http://12factor.net/) contains extensive rationale for each app
factor with examples of tools for different frameworks and environments.

This chapter tries to stay consistent with the preceding manifesto, so we will discuss some
of them in detail when necessary. The techniques and examples that are presented may
sometimes slightly diverge from these 12 factors, but remember that these rules are not
carved in stone. They are great as long as they serve the purpose. In the end, what matters
is the working application (product) and not being compatible with some arbitrary
methodology.

Let's take a look at the various deployment automation approaches in the next section.

Various approaches to deployment
automation
With the advent of application containerization (Docker and similar technologies), modern
software provisioning tools (for example, Puppet, Chef, Ansible, and Salt),
and infrastructure management systems (for example, Terraform and SaltStack)
development and operations teams have a variety of ways in which they can organize and
manage their code deployments and configuration of remote systems. Each solution has
pros and cons, so advanced automation tools should be chosen very wisely with respect to
the favored development processes and methodologies.

Fast paced teams that use microservice architecture and deploy code often (maybe even
simultaneously in parallel versions) will definitely favor container orchestration systems
such as Kubernetes or use dedicated services provided by their cloud vendor (for example,
AWS). Teams that build old-style big monolithic applications and run them on their own
bare-metal servers might want to use more low-level automation and software provisioning
systems. Actually, there is no rule and you can find teams of every size using every possible
approach to software provisioning, code deployments, and application orchestration. The
limiting factors here are resources and knowledge.

http://12factor.net/

Deploying the Code Chapter 8

[242]

That's why it's really hard to briefly provide a set of common tools and solutions that
would fit the needs and capabilities of every developer and every team. Because of that, in
this chapter, we will focus only on a pretty simple approach to automation using Fabric.
We could say that this is outdated. And that's probably true. What seem to be the most
modern are container orchestrations systems in the style of Kubernetes that allow you to
leverage Docker containers for fast, maintainable, scalable, and reproducible environments.
But these systems have quite a steep learning curve and it's impossible to introduce them in
just a few sections of a single chapter. Fabric, on the other hand, is very simple and easy to
grasp so it is a really great tool to introduce someone to the concept of automation.

Let's look at the use of Fabric in deployment automation in the next section.

Using Fabric for deployment automation
For very small projects, it may be possible to deploy your code by hand, that is, by manually
typing the sequence of commands through the remote shells that are necessary to install a
new version of code and execute it on a remote shell. Anyway, even for an average-sized
project, this is error-prone and tedious and should be considered a waste of most of the
precious resource you have, your own time.

The solution for that is automation. The simple thumb rule could be the following:

If you needed to perform the same task manually at least twice, you should automate it so
you won't need to do it for the third time.

There are various tools that allow you to automate different things, including the following:

Remote execution tools such as Fabric are used for on-demand automated
execution of code on multiple remote hosts.
Configuration management tools such as Chef, Puppet, CFEngine, Salt, and
Ansible are designed for automatized configuration of remote hosts (execution
environments). They can be used to set up backing services (databases, caches,
and so on), system permissions, users, and so on. Most of them can be used also
as a tool for remote execution (such as Fabric) but, depending on their
architecture, this may be more or less convenient.

Configuration management solutions is a complex topic that deserves a separate book. The
truth is that the simplest remote execution frameworks have the lowest entry barrier and
are the most popular choice, at least for small projects. In fact, every configuration
management tool that provides a way to declaratively specify configuration of your
machines has a remote execution layer implemented somewhere deep inside.

Deploying the Code Chapter 8

[243]

Also, some configuration management tools may not be best suited for actual automated
code deployment. One such example is Puppet, which really discourages the explicit
running of any shell commands. This is why many people choose to use both types of
solution to complement each other: configuration management for setting up a system-level
environment and on-demand remote execution for application deployment.

Fabric (http://www.fabfile.org/) is so far the most popular solution used by Python
developers to automate remote execution. It is a Python library and command-line tool for
streamlining the use of SSH for application deployment or systems administration tasks.
We will focus on it because it is relatively easy to start with. Keep in mind that, depending
on your needs, it may not be the best solution to your problems. Anyway, it is a great
example of a utility that can add some automation to your operations, if you don't have any
yet.

You could, of course, automate all of the work using only Bash scripts but this is very
tedious and error-prone. Python has more convenient ways for string processing and
encourages code modularization. Fabric is in fact only a tool for gluing the execution of
commands via SSH. It means that you still need to know how to use the command-line
interface and its utilities in your remote environment.

So, if you want to strictly follow the Twelve-Factor App methodology, you should not
maintain its code in the source tree of the deployed application.

Complex projects are, in fact, very often built from various components maintained as
separate code bases, so this is another reason why it is a good approach to have one
separate repository for all of the project component configurations and Fabric scripts. This
makes deployment of different services more consistent and encourages good code reuse.

To start working with Fabric, you need to install the fabric package (using pip) and
create a script named fabfile.py. That script is usually located in the root of your project.
Note that fabfile.py can be considered a part of your project configuration.

But before we create our fabfile let's define some initial utilities that will help us to set up
the project remotely. Here's a module that we will call fabutils:

import os

Let's assume we have private package repository created
using 'devpi' project
PYPI_URL = 'http://devpi.webxample.example.com'

This is arbitrary location for storing installed releases.
Each release is a separate virtual environment directory
which is named after project version. There is also a

http://www.fabfile.org/

Deploying the Code Chapter 8

[244]

symbolic link 'current' that points to recently deployed
version. This symlink is an actual path that will be used
for configuring the process supervision tool for example,:
.
├── 0.0.1
├── 0.0.2
├── 0.0.3
├── 0.1.0
└── current -> 0.1.0/

REMOTE_PROJECT_LOCATION = "/var/projects/webxample"

def prepare_release(c):
 """ Prepare a new release by creating source distribution and
 uploading to out private package repository
 """
 c.local(f'python setup.py build sdist')
 c.local(f'twine upload --repository-url {PYPI_URL}')

def get_version(c):
 """ Get current project version from setuptools """
 return c.local('python setup.py --version').stdout.strip()

def switch_versions(c, version):
 """ Switch versions by replacing symlinks atomically """
 new_version_path = os.path.join(REMOTE_PROJECT_LOCATION, version)
 temporary = os.path.join(REMOTE_PROJECT_LOCATION, 'next')
 desired = os.path.join(REMOTE_PROJECT_LOCATION, 'current')

 # force symlink (-f) since probably there is a one already
 c.run(f"ln -fsT {new_version_path} {temporary}")
 # mv -T ensures atomicity of this operation
 c.run(f"mv -Tf {temporary} {desired}")

An example of a final fabfile that defines a simple deployment procedure will look like
this:

from fabric import task
from .fabutils import *

@task
def uptime(c):
 """
 Run uptime command on remote host - for testing connection.
 """
 c.run("uptime")

@task

Deploying the Code Chapter 8

[245]

def deploy(c):
 """ Deploy application with packaging in mind """
 version = get_version(c)

 pip_path = os.path.join(
 REMOTE_PROJECT_LOCATION, version, 'bin', 'pip'
)

 if not c.run(f"test -d {REMOTE_PROJECT_LOCATION}", warn=True):
 # it may not exist for initial deployment on fresh host
 c.run(f"mkdir -p {REMOTE_PROJECT_LOCATION}")

 with c.cd(REMOTE_PROJECT_LOCATION):
 # create new virtual environment using venv
 c.run(f'python3 -m venv {version}')

 c.run(f"{pip_path} install webxample=={version} --index-url
{PYPI_URL}")

 switch_versions(c, version)
 # let's assume that Circus is our process supervision tool
 # of choice.
 c.run('circusctl restart webxample')

Every function decorated with @task is now treated as an available subcommand to
the fab utility provided with the fabric package. You can list all of the available
subcommands using the -l or --list switch. The code is shown in the following snippet:

$ fab --list
Available commands:
 deploy Deploy application with packaging in mind
 uptime Run uptime command on remote host - for testing connection.

Now, you can deploy the application to the given environment type with only the
following single shell command:

$ fab -H myhost.example.com deploy

Note that the preceding fabfile serves only illustrative purposes. In your own code, you
might want to provide extensive failure handling and try to reload the application without
the need to restart the web worker process. Also, some of the techniques presented here
may not be obvious right now but will be explained later in this chapter. These include the
following:

Deploying an application using the private package repository
Using Circus for process supervision on the remote host

Deploying the Code Chapter 8

[246]

In the next section, we will take a look at index mirroring in Python.

Your own package index or index mirror
These are three main reasons why you might want to run your own index of Python
packages:

The official Python Package Index does not have any availability guarantees. It is
run by Python Software Foundation thanks to numerous donations. Because of
that, it means that this site can be down at the most inconvenient time. You don't
want to stop your deployment or packaging process in the middle due to PyPI
outage.
It is useful to have reusable components written in Python properly packaged,
even for the closed source that will never be published publicly. It simplifies code
base because packages that are used across the company for different projects do
not need to be vendored. You can simply install them from the repository. This
simplifies maintenance for such shared code and might reduce development
costs for the whole company if it has many teams working on different projects.
It is a very good practice to have your entire project packaged
using setuptools. Then, deployment of the new application version is often as
simple as running pip install --update my-application.

Code vendoring
Code vendoring is a practice of including sources of the external package
in the source code (repository) of other projects. It is usually done when
the project's code depends on a specific version of some external package
that may also be required by other packages (and in a completely different
version).
For instance, the popular requests package uses some version
of urllib3 in its source tree because it is very tightly coupled to it and is
very unlikely to work with any other version of urllib3. An example of
a module that is particularly often used by others is six. It can be found
in sources of numerous popular projects such as Django
(django.utils.six), Boto (boto.vendored.six), or Matplotlib
(matplotlib.externals.six).
Although vendoring is practiced even by some large and successful open
source projects, it should be avoided if possible. This has justifiable usage
only in certain circumstances and should not be treated as a substitute of
package dependency management.

Deploying the Code Chapter 8

[247]

In the next section, we will discuss PyPI mirroring.

PyPI mirroring
The problem of PyPI outages can be somehow mitigated by allowing the installation tools
to download packages from one of its mirrors. In fact, the official Python Package Index is
already served through Content Delivery Network (CDN), so it is intrinsically mirrored.
This does not change the fact that it seems to have some bad days from time to time. Using
unofficial mirrors is not a solution here because it might raise some security concerns.

The best solution is to have your own PyPI mirror that will have all of the packages you
need. The only party that will use it is you, so it will be much easier to ensure proper
availability. The other advantage is that whenever this service goes down, you don't need
to rely on someone else to bring it up. The mirroring tool maintained and recommended by
PyPA is bandersnatch (https://pypi.python.org/pypi/bandersnatch). It allows you to
mirror the whole content of Python Package Index and it can be provided as the index-
url option for the repository section in the .pypirc file (as explained in the previous
chapter). This mirror does not accept uploads and does not have the web part of PyPI.
Anyway, beware! A full mirror might require hundreds of gigabytes of storage and its size
will continue to grow over time.

But why stop at a simple mirror while we have a much better alternative? There is a very
low chance that you will require a mirror of the whole package index. Even with a project
that has hundreds of dependencies, it will be only a minor fraction of all of the available
packages. Also, not being able to upload your own private package is a huge limitation of
such a simple mirror. It seems that the added value of using bandersnatch is very low for
such a high price. And this is true in most situations. If the package mirror is to be
maintained only for single or a few projects, a much better approach is to
use devpi (http://doc.devpi.net/). It is a PyPI-compatible package index implementation
that provides both of the following:

A private index to upload nonpublic packages
Index mirroring

https://pypi.python.org/pypi/bandersnatch
http://doc.devpi.net/

Deploying the Code Chapter 8

[248]

The main advantage of devpi over bandersnatch is how it handles mirroring. It can, of
course, do a full general mirror of other indexes like bandersnatch does, but it is not its
default behavior. Instead of doing a rather expensive backup of the whole repository, it
maintains mirrors for packages that were already requested by clients. So, whenever a
package is requested by the installation tool (pip, setuptools, and easy_install), if it
does not exist in the local mirror, the devpi server will attempt to download it from the
mirrored index (usually PyPI) and serve. Once the package is downloaded, the devpi will
periodically check for its updates to maintain a fresh state of its mirror.

The mirroring approach leaves a slight risk of failure when you request a new package that
was not yet mirrored when the upstream package index has an outage. Anyway, this risk is
reduced, thanks to the fact that in most deployments you will depend only on packages
that were already mirrored in the index. The mirror state for packages that were already
requested has eventual consistency guarantee and new versions will be downloaded
automatically. This seems to be a very reasonable trade off.

Now let's see how to properly bundle and build additional non-Python resources in your
Python application.

Bundling additional resources with your Python
package
Modern web applications have a lot of dependencies and often require a lot of steps to
properly install on the remote host. For instance, the typical bootstrapping process for a
new version of the application on a remote host consists of the following steps:

Create a new virtual environment for isolation.1.
Move the project code to the execution environment.2.
Install the latest project requirements (usually from the requirements.txt file).3.
Synchronize or migrate the database schema.4.
Collect static files from project sources and external packages to the desired5.
location.
Compile localization files for applications available in different languages.6.

For more complex sites, there might be lot of additional tasks mostly related to frontend
code that is independent from previously defined tasks, as in the following example:

Generate CSS files using preprocessors such as SASS or LESS.1.
Perform minification, obfuscation, and/or concatenation of static files (JavaScript2.
and CSS files).

Deploying the Code Chapter 8

[249]

Compile code written in JavaScript superset languages (CoffeeScript, TypeScript,3.
and so on) to native JS.
Preprocess response template files (minification, style inlining, and so on).4.

Nowadays, for these kind of applications that require a lot of additional assets to be
prepared, most developers would probably use Docker images. Dockerfiles allow you to
easily define all of the steps that are necessary to bundle all assets with your application
image. But if you don't use Docker, it means that all of these steps must be automated using
other tools such as Make, Bash, Fabric, or Ansible. Still, it is not a good idea to do all of
these steps directly on the remote hosts where the application is being installed. Here are
the reasons:

Some of the popular tools for processing static assets can be either CPU or
memory intensive. Running them in production environments can destabilize
your application execution.
These tools very often will require additional system dependencies that may not
be required for the normal operation of your projects. These are mostly
additional runtime environments such as JVM, Node, or Ruby. This adds
complexity to configuration management and increases the overall maintenance
costs.
If you are deploying your application to multiple servers (tens, hundreds, or
thousands), you are simply repeating a lot of work that could be done once. If
you have your own infrastructure, then you may not experience the huge
increase of costs, especially if you perform deployments in periods of low traffic.
But if you run cloud computing services in the pricing model that charges you
extra for spikes in load or generally for execution time, then this additional cost
may be substantial on a proper scale.
Most of these steps just take a lot of time. You are installing your code on remote
servers, so the last thing you want is to have your connection interrupted by
some network issue. By keeping the deployment process quick, you are lowering
the chance of deployment interruption.

Obviously, the results of these predeployment steps can't be included in your application
code repository either. Simply, there are things that must be done with every release and
you can't change that. It is obviously a place for proper automation but the clue is to do it in
the right place and at the right time.

Deploying the Code Chapter 8

[250]

Most of the things, such as static collection and code/asset preprocessing, can be done
locally or in a dedicated environment, so the actual code that is deployed to the remote
server requires only a minimal amount of on-site processing. The following are the most
notable of such deployment steps, either in the process of building distribution or installing
a package:

Installation of Python dependencies and transferring of static assets (CSS files1.
and JavaScript) to the desired location can be handled as a part of
the install command of the setup.py script.
Preprocessing of code (processing JavaScript supersets,2.
minification/obfuscation/concatenation of assets, and running SASS or LESS) and
things such as localized text compilation (for example, compilemessages in
Django) can be a part of the sdist/bdist command of the setup.py script.

Inclusion of preprocessed code other than Python can be easily handled with the
proper MANIFEST.in file. Dependencies are, of course, best provided as
an install_requires argument of the setup() function call from
the setuptools package.

Packaging the whole application, of course, will require some additional work from you,
such as providing your own custom setuptools commands or overriding the existing
ones, but it gives you a lot of advantages and makes project deployment a lot faster and
reliable.

Let's use a Django-based project (in Django 1.9 version) as an example. I have chosen this
framework because it seems to be the most popular Python project of this type, so there is a
high chance that you already know it a bit. A typical structure of files in such a project
might look like the following:

$ tree . -I __pycache__ --dirsfirst
.
├── webxample
│ ├── conf
│ │ ├── __init__.py
│ │ ├── settings.py
│ │ ├── urls.py
│ │ └── wsgi.py
│ ├── locale
│ │ ├── de
│ │ │ └── LC_MESSAGES
│ │ │ └── django.po
│ │ ├── en
│ │ │ └── LC_MESSAGES
│ │ │ └── django.po

Deploying the Code Chapter 8

[251]

│ │ └── pl
│ │ └── LC_MESSAGES
│ │ └── django.po
│ ├── myapp
│ │ ├── migrations
│ │ │ └── __init__.py
│ │ ├── static
│ │ │ ├── js
│ │ │ │ └── myapp.js
│ │ │ └── sass
│ │ │ └── myapp.scss
│ │ ├── templates
│ │ │ ├── index.html
│ │ │ └── some_view.html
│ │ ├── __init__.py
│ │ ├── admin.py
│ │ ├── apps.py
│ │ ├── models.py
│ │ ├── tests.py
│ │ └── views.py
│ ├── __init__.py
│ └── manage.py
├── MANIFEST.in
├── README.md
└── setup.py
15 directories, 23 files

Note that this slightly differs from the usual Django project template. By default, the name
of the package that contains the WSGI application, the settings module, and the URL
configuration has the same name as the project. Because we decided to take the packaging
approach, this would be named as webxample. This can cause some confusion, so it is
better to rename it to conf. Without digging into the possible implementation details, let's
just make the following few simple assumptions:

Our example application has some external dependencies. Here, it will be two
popular Django packages: djangorestframework and django-allauth, plus
one non-Django package: gunicorn.
djangorestframework and django-allauth are provided
as INSTALLED_APPS in the webexample.webexample.settings module.
The application is localized in three languages (German, English, and Polish) but
we don't want to store the compiled gettext messages in the repository.
We are tired of vanilla CSS syntax, so we decided to use a more powerful SCSS
language that we translate into CSS using SASS.

Deploying the Code Chapter 8

[252]

Knowing the structure of the project, we can write our setup.py script in a way that
makes setuptools handle the following:

Compilation of SCSS files under webxample/myapp/static/scss
Compilation of gettext messages
under webexample/locale from .po to .mo format
Installation of the requirements
A new script that provides an entry point to the package, so we will have the
custom command instead of the manage.py script

We have a bit of luck here—Python binding for libsass, a C/C++ port of the SASS engine,
provides some integration with setuptools and distutils. With only a little
configuration, it provides a custom setup.py command for running the SASS compilation.
This is shown in the following code:

from setuptools import setup

setup(
 name='webxample',
 setup_requires=['libsass == 0.6.0'],
 sass_manifests={
 'webxample.myapp': ('static/sass', 'static/css')
 },
)

So, instead of running the sass command manually or executing a subprocess in
the setup.py script, we can type python setup.py build_scss and have our SCSS files
compiled to CSS. This is still not enough. It makes our life a bit easier but we want the
whole distribution fully automated so there is only one step for creating new releases. To
achieve this goal, we are forced to override some of the existing setuptools distribution
commands.

The example setup.py file that handles some of the project preparation steps through
packaging might look like this:

import os

from setuptools import setup
from setuptools import find_packages
from distutils.cmd import Command
from distutils.command.build import build as _build

try:
 from django.core.management.commands.compilemessages \

Deploying the Code Chapter 8

[253]

 import Command as CompileCommand
except ImportError:
 # note: during installation django may not be available
 CompileCommand = None

this environment is requires
os.environ.setdefault(
 "DJANGO_SETTINGS_MODULE", "webxample.conf.settings"
)

class build_messages(Command):
 """ Custom command for building gettext messages in Django
 """
 description = """compile gettext messages"""
 user_options = []

 def initialize_options(self):
 pass

 def finalize_options(self):

 pass

 def run(self):
 if CompileCommand:
 CompileCommand().handle(
 verbosity=2, locales=[], exclude=[]
)
 else:
 raise RuntimeError("could not build translations")

class build(_build):
 """ Overriden build command that adds additional build steps
 """
 sub_commands = [
 ('build_messages', None),
 ('build_sass', None),
] + _build.sub_commands

setup(
 name='webxample',
 setup_requires=[
 'libsass == 0.6.0',
 'django == 1.9.2',
],
 install_requires=[
 'django == 1.9.2',
 'gunicorn == 19.4.5',

Deploying the Code Chapter 8

[254]

 'djangorestframework == 3.3.2',
 'django-allauth == 0.24.1',
],
 packages=find_packages('.'),
 sass_manifests={
 'webxample.myapp': ('static/sass', 'static/css')
 },
 cmdclass={
 'build_messages': build_messages,
 'build': build,
 },
 entry_points={
 'console_scripts': {
 'webxample = webxample.manage:main',
 }
 }
)

With such an implementation, we can build all assets and create the source distribution of a
package for the webxample project using the following single Terminal command:

$ python setup.py build sdist

If you already have your own package index (created with devpi), you can add
the install subcommand or use twine so this package will be available for installation
with pip in your organization. If we look into a structure of source distribution created
with our setup.py script, we can see that it contains the following
compiled gettext messages and CSS style sheets generated from SCSS files:

$ tar -xvzf dist/webxample-0.0.0.tar.gz 2> /dev/null
$ tree webxample-0.0.0/ -I __pycache__ --dirsfirst
webxample-0.0.0/
├── webxample
│ ├── conf
│ │ ├── __init__.py
│ │ ├── settings.py
│ │ ├── urls.py
│ │ └── wsgi.py
│ ├── locale
│ │ ├── de
│ │ │ └── LC_MESSAGES
│ │ │ ├── django.mo
│ │ │ └── django.po
│ │ ├── en
│ │ │ └── LC_MESSAGES
│ │ │ ├── django.mo
│ │ │ └── django.po

Deploying the Code Chapter 8

[255]

│ │ └── pl
│ │ └── LC_MESSAGES
│ │ ├── django.mo
│ │ └── django.po
│ ├── myapp
│ │ ├── migrations
│ │ │ └── __init__.py
│ │ ├── static
│ │ │ ├── css
│ │ │ │ └── myapp.scss.css
│ │ │ └── js
│ │ │ └── myapp.js
│ │ ├── templates
│ │ │ ├── index.html
│ │ │ └── some_view.html
│ │ ├── __init__.py
│ │ ├── admin.py
│ │ ├── apps.py
│ │ ├── models.py
│ │ ├── tests.py
│ │ └── views.py
│ ├── __init__.py
│ └── manage.py
├── webxample.egg-info
│ ├── PKG-INFO
│ ├── SOURCES.txt
│ ├── dependency_links.txt
│ ├── requires.txt
│ └── top_level.txt
├── MANIFEST.in
├── PKG-INFO
├── README.md
├── setup.cfg
└── setup.py

16 directories, 33 files

The additional benefit of using this approach is that we were able to provide our own entry
point for the project in place of Django's default manage.py script. Now, we can run any
Django management command using this entry point, for instance:

$ webxample migrate
$ webxample collectstatic
$ webxample runserver

Deploying the Code Chapter 8

[256]

This required a little change in the manage.py script for compatibility with
the entry_points argument in setup(), so the main part of its code is wrapped with
the main() function call. This is shown in the following code:

#!/usr/bin/env python3
import os
import sys

def main():
 os.environ.setdefault(
 "DJANGO_SETTINGS_MODULE", "webxample.conf.settings"
)

 from django.core.management import execute_from_command_line

 execute_from_command_line(sys.argv)

if __name__ == "__main__":
 main()

Unfortunately, a lot of frameworks (including Django) are not designed with the idea of
packaging your projects that way in mind. It means that, depending on the advancement of
your application, converting it to a package may require a lot of changes. In Django, this
often means rewriting many of the implicit imports and updating a lot of configuration
variables in your settings file.

The other problem here is consistency of releases created using Python packaging. If
different team members are authorized to create application distribution, it is crucial that
this process takes place in the same replicable environment. Especially when you do a lot of
asset preprocessing, it is possible that the package created in two different environments
will not look the same, even if it is created from the same code base. This may be due to
different versions of tools used during the build process. The best practice is to move the
distribution responsibility to some continuous integration/delivery system such as Jenkins,
Buildbot, Travis CI, or similar. The additional advantage is that you can assert that the
package passes all of the required tests before going to distribution. You can even make the
automated deployment as a part of such a continuous delivery system.

Deploying the Code Chapter 8

[257]

Mind that although distributing your code as Python packages using setuptools might
seem elegant, it is actually not simple and effortless. It has potential to greatly simplify your
deployments and so it is definitely worth trying but it comes with the cost of increased
complexity. If your preprocessing pipeline for your application grows too complex, you
should definitely consider building Docker images and deploying your application as
containers.

Deployment with Docker requires some additional setup and orchestration but in the long
term saves a lot of time and resources that are otherwise required to maintain repeatable
build environments and complex preprocessing pipelines.

In the next section, we'll take a look at the common conventions and practices regarding
deployment of Python applications.

Common conventions and practices
There are a set of common conventions and practices for deployment that not every
developer may know but are obvious for anyone who did some operations in their life. As
explained in this chapter's introduction, it is crucial to know at least a few of them, even if
you are not responsible for code deployment and operations, because it will allow you to
make better design decisions during the development.

Let's take a look at the filesystem hierarchy in the next section.

The filesystem hierarchy
The most obvious conventions that may come into your mind are probably about filesystem
hierarchy and user naming. If you are looking for such suggestions here, then you will be
disappointed. There is, of course, a Filesystem Hierarchy Standard (FHS) that defines the
directory structure and directory contents in Unix and Unix-like operating systems, but it is
really hard to find the actual OS distribution that is fully compliant with FHS. If system
designers and programmers cannot obey such standards, it is very hard to expect the same
from its administrators. During my experience, I've seen application code deployed almost
everywhere it is possible, including nonstandard custom directories in the root filesystem
level. Almost always the people behind such decisions had really strong arguments for
doing so. The only suggestions in this matter that I can give you are as follows:

Choose wisely and avoid surprises.
Be consistent across all of the available infrastructure of your project.
Try to be consistent across your organization (the company you work in).

Deploying the Code Chapter 8

[258]

What really helps is to document conventions for your project. Just remember to make sure
that this documentation is accessible for every interested team member and that everyone
knows that such a document exists.

In the next section, we will discuss isolation.

Isolation
Reasons for isolation as well as recommended tools were already discussed in Chapter
2, Modern Python Development Environments. These are: better environment reproducibility
and solving the inevitable problems of dependency conflicts. For the purpose of
deployments, there is only one important thing to add. You should always isolate project
dependencies for each release of your application. In practice, it means that, whenever you
deploy a new version of the application, you should create a new isolated environment for
this release (using virtualenv or venv). Old environments should be left for some time on
your hosts, so that, in case of issues, you can easily perform a rollback to one of the older
versions of your application.

Creating fresh environments for each release helps in managing their clean state and
compliance with a list of provided dependencies. By fresh environment we mean creating a
new directory tree in the filesystem instead of updating already existing files.
Unfortunately, it may make it a bit harder to perform things such as the graceful reload of
services, which is much easier to achieve if the environment is updated in place.

The next section shows how to use process supervision tools.

Using process supervision tools
Applications on remote servers are never usually expected to quit. If it is a web application,
its HTTP server process will indefinitely wait for new connections and requests and will
exit only if some unrecoverable error occurs.

It is, of course, not possible to run it manually in shell and have a never-ending SSH
connection. Using nohup, screen, or tmux to semi-daemonize the process is not an option.
Doing so is like designing your service to fail.

Deploying the Code Chapter 8

[259]

What you need is to have some process supervision tool that can start and manage your
application process. Before choosing the right one, you need to make sure it does the
following things:

Restarts the service if it quits
Reliably tracks its state
Captures its stdout/stderr streams for logging purposes
Runs a process with specific user/group permissions
Configures system environment variables

Most of the Unix and Linux distributions have some built-in tools/subsystems for process
supervision such as initd scripts, upstart, and runit. Unfortunately, in most cases, they
are not well suited for running user-level application code and are really hard to maintain.
In particular, writing reliable init.d scripts is a real challenge because it requires a lot of
Bash scripting that is hard to do right. Some Linux distributions such as Gentoo have a
redesigned approach to init.d scripts, so writing them is a lot easier. Anyway, locking
yourself to a specific OS distribution just for the purpose of a single process supervision
tool is not a good idea.

Two popular tools in the Python community for managing application processes are
Supervisor (http://supervisord.org) and Circus
(https://circus.readthedocs.org/en/latest/). They are both very similar in
configuration and usage. Circus is a bit younger than Supervisor because it was created to
address some weaknesses of the latter. They both can be configured in simple INI-like
configuration format. They are not limited to running Python processes and can be
configured to manage any application. It is hard to say which one is better because they
both provide very similar functionality. Anyway, Supervisor does not run on Python 3, so it
does not get our approval. While it is not a problem to run Python 3 processes under
Supervisor's control, I will take it as an excuse and feature only the example of the Circus
configuration.

Let's assume that we want to run the webxample application (presented previously in this
chapter) using gunicorn webserver under Circus control. In production, we would
probably run Circus under an applicable system-level process supervision tool
(initd, upstart, and runit), especially if it was installed from the system packages
repository. For the sake of simplicity, we will run this locally inside of the virtual
environment. The minimal configuration file (here named circus.ini) that allows us to
run our application in Circus looks like this:

[watcher:webxample]
cmd = /path/to/venv/dir/bin/gunicorn webxample.conf.wsgi:application
numprocesses = 1

http://supervisord.org
https://circus.readthedocs.org/en/latest/

Deploying the Code Chapter 8

[260]

Now, the circus process can be run with this configuration file as the execution argument:

$ circusd circus.ini
2016-02-15 08:34:34 circus[1776] [INFO] Starting master on pid 1776
2016-02-15 08:34:34 circus[1776] [INFO] Arbiter now waiting for commands
2016-02-15 08:34:34 circus[1776] [INFO] webxample started
[2016-02-15 08:34:34 +0100] [1778] [INFO] Starting gunicorn 19.4.5
[2016-02-15 08:34:34 +0100] [1778] [INFO] Listening at:
http://127.0.0.1:8000 (1778)
[2016-02-15 08:34:34 +0100] [1778] [INFO] Using worker: sync
[2016-02-15 08:34:34 +0100] [1781] [INFO] Booting worker with pid: 1781

Now, you can use the circusctl command to run an interactive session and control all
managed processes using simple commands. Here is an example of such a session:

$ circusctl
circusctl 0.13.0
webxample: active
(circusctl) stop webxample
ok
(circusctl) status
webxample: stopped
(circusctl) start webxample
ok
(circusctl) status
webxample: active

Of course, both of the mentioned tools have a lot more features available. All of them are
explained in their documentation, so before making your choice, you should read them
carefully.

The next section discusses the importance of running application code in user space.

Application code running in user space
Your application code should be always run in user space. This means it must not be
executed under super-user privileges. If you design your application following the Twelve-
Factor App, it is possible to run your application under a user that has almost no privileges.
The conventional name for the user that owns no files and is in no privileged groups
is nobody; anyway, the actual recommendation is to create a separate user for each
application daemon. The reason for that is system security. It is to limit the damage that a
malicious user can do if it gains control over your application process. In Linux, processes
of the same user can interact with each other, so it is important to have different
applications separated at the user level.

Deploying the Code Chapter 8

[261]

The next section shows how to use reverse HTTP proxies.

Using reverse HTTP proxies
Multiple Python WSGI-compliant web servers can easily serve HTTP traffic all by
themselves without the need of any other web server on top of them. It is still very common
to hide them behind a reverse proxy such as NGINX or Apache. A reverse proxy creates an
additional HTTP server layer that proxies requests and responses between clients and your
application and appears to your Python server as though it is the requesting client. Reverse
proxies are useful for the following variety of reasons:

TLS/SSL termination is usually better handled by top-level web servers such as
NGINX and Apache. This allows the Python application to speak only simple
HTTP protocol (instead of HTTPS), so complexity and configuration of secure
communication channels are left for the reverse proxy.
Unprivileged users cannot bind low ports (in the range of 0-1000), but the HTTP
protocol should be served to the users on port 80, and HTTPS should be served
on port 443. To do this, you must run the process with super-user privileges.
Usually, it is safer to have your application serving on a high port or on a Unix
domain socket and use that as an upstream for reverse proxy that is run under
the more privileged user.
Usually, NGINX can serve static assets (images, JS, CSS, and other media) more
efficiently than Python code. If you configure it as a reverse proxy, then it is only
a few more lines of configuration to serve static files through it.
When a single host needs to serve multiple applications from different domains,
Apache or NGINX are indispensable for creating virtual hosts for different
domains served on the same port.
Reverse proxies can improve performance by adding additional caching layers or
can be configured as simple load balancers. Reverse proxies can also apply
compression (for example, gzip) to responses in order to limit the amount of
required network bandwidth.

Some of the web servers actually are recommended to be run behind a proxy such as
NGINX. For example, gunicorn is a very robust WSGI-based server that can give
exceptional performance results if its clients are fast as well. On the other hand, it does not
handle slow clients well, so it is easily susceptible to the denial of service attacks based on a
slow client connection. Using a proxy server that is able to buffer slow clients is the best
way to solve this problem.

Deploying the Code Chapter 8

[262]

Mind that, with proper infrastructure, it is possible to almost completely get rid of reverse
proxies in your architecture. Nowadays, things such as SSL termination and compression
can be easily handled with load balancing services such as AWS Load Balancer. Static and
media assets are also better served through Content Delivery Networks (CDNs) that can
also be used to cache other responses of your service.

The mentioned requirement to serve HTTP/HTTPS traffic on low 80/433 ports (that cannot
be bound by unprivileged users) is also no longer a problem if the only entry points that
your clients communicate with are your load balancers and CDN. Still, even with that kind
of architecture, it does not necessarily mean that your system does not facilitate reverse
proxies at all. For instance, many load balancers support proxy protocol. It means that a
load balancer may appear to your application as though it is the requesting client. In such
scenarios, the load balancer acts as it were in fact a reverse proxy.

Process reloading is discussed in the next section.

Reloading processes gracefully
The ninth rule of Twelve-Factor App methodology deals with process disposability and
says that you should maximize robustness with fast start up times and graceful shutdowns.
While fast start up time is quite self-explanatory, the graceful shutdowns require some
additional discussion.

In the scope of web applications, if you terminate the server process in a non-graceful way,
it will quit immediately without the time to finish processing requests and reply with
proper responses to connected clients. In the best scenario case, if you use some kind of
reverse proxy, then the proxy might reply to the connected clients with some generic error
response (for example, 502 Bad Gateway), even though it is not the right way to notify
users that you have restarted your application and have deployed a new release.

According to the Twelve-Factor App, the web serving process should be able to quit
gracefully upon receiving the Unix SIGTERM signal. This means the server should stop
accepting new connections, finish processing all of the pending requests, and then quit with
some exit code when there is nothing more to do.

Obviously, when all of the serving processes quit or start their shutdown procedure, you
are not able to process new requests any longer. This means your service will still
experience an outage. So there is an additional step you need to perform—start new
workers that will be able to accept new connections while the old ones are gracefully
quitting. Various Python WSGI-compliant web server implementations allow you to reload
the service gracefully without any downtime.

Deploying the Code Chapter 8

[263]

The most popular Python web servers are Gunicorn and uWSGI, which provide the
following functionality:

Gunicorn's master process upon receiving the SIGHUP signal (kill -HUP
<process-pid>) will start new workers (with new code and configuration) and
attempt a graceful shutdown on the old ones.
uWSGI has at least three independent schemes for doing graceful reloads. Each
of them is too complex to explain briefly, but its official documentation provides
full information on all of the possible options.

Today, graceful reloads are a standard in deploying web applications. Gunicorn seems to
have an approach that is the easiest to use but also leaves you with the least flexibility.
Graceful reloads in uWSGI on the other hand allow much better control on reloads but
require more effort to automate and set up. Also, how you handle graceful reloads in your
automated deploys is also affected by what supervision tools you use and how they are
configured. For instance, in Gunicorn, graceful reloads are as simple as the following:

kill -HUP <gunicorn-master-process-pid>

But, if you want to properly isolate project distributions by separating virtual environments
for each release and configure process supervision using symbolic links (as presented in
the fabfile example earlier), you will shortly notice that this feature of Gunicorn may not
work as expected. For more complex deployments, there is still no system-level solution
available that will work for you out-of-the-box. You will always have to do a bit of hacking
and sometimes this will require a substantial level of knowledge about low-level system
implementation details.

In such complex scenarios, it is usually better to solve the problem on a higher level of
abstraction. If you finally decide to run your applications as containers and distribute new
releases as new container images (it is strongly advised), then you can leave the
responsibility of graceful reloads to your container orchestration system of choice (for
example, Kubernetes) that can usually handle various reloading strategies out-of-the-box.

Even without advanced container orchestration systems, you can do graceful reloading on
the infrastructure level. For instance, AWS Elastic Load Balancer is able to gracefully switch
traffic from your old application instances (for example, EC2 hosts) to new ones. Once old
application instances receive no new traffic and are done handling their requests, they can
be simply terminated without any observable outage to your service. Other cloud
providers, of course, usually provide analogous features in their service portfolio.

The next section discusses code instrumentation and monitoring.

Deploying the Code Chapter 8

[264]

Code instrumentation and monitoring
Our work does not end on writing an application and deploying it to target the execution
environment. It is possible to write an application, which after deployment will not require
any further maintenance, although it is very unlikely. In reality, we need to ensure that it is
properly observed for errors and performance.

To be sure that your product works as expected, you need to properly handle application
logs and monitor the necessary application metrics. This often includes the following:

Monitoring web application access logs for various HTTP status codes
A collection of process logs that may contain information about runtime errors
and various warnings
Monitoring usage of system resources (CPU load, memory, network traffic, I/O
performance, disk usage, and so on) on the remote hosts where the application is
run
Monitoring application-level performance and metrics that are business
performance indicators (customer acquisition, revenue, conversion rates, and so
on)

Luckily, there are a lot of free tools available for instrumenting your code and monitoring
its performance. Most of them are very easy to integrate.

Logging errors with Sentry/Raven is explained in the next section.

Logging errors – Sentry/Raven
The truth is painful. No matter how precisely your application is tested, your code will
eventually fail at some point. This can be anything—unexpected exception, resource
exhaustion, crash of some backing service, network outage, or simply an issue in the
external library. Some of the possible issues (such as resource exhaustion) can be predicted
and prevented in advance with proper monitoring. Unfortunately, there will
always be something that passes your defenses, no matter how much you try.

What you can do instead is to prepare for such scenarios and make sure that no error
passes unnoticed. In most cases, any unexpected failure scenario results in an exception
raised by the application and logged through the logging system. This can
be stdout, stderr, log file, or whatever output you have configured for logging.
Depending on your implementation, this may or may not result in the application quitting
with some system exit code.

Deploying the Code Chapter 8

[265]

You could, of course, depend solely on the log files stored in the filesystem for finding and
monitoring your application errors. Unfortunately, observing errors in plain textual form is
quite painful and does not scale well beyond anything more complex than running code in
development. You will eventually be forced to use some services designed for log collection
and analysis. Proper log processing is very important for other reasons (that will be
explained a bit later) but does not work well for tracking and debugging errors. The reason
is simple. The most common form of error logs is just Python stack trace. If you stop only
on that, you will shortly realize that it is not enough in finding the root cause of your issues.
This is especially true when errors occur in unknown patterns or in certain load conditions.

What you really need is as much context information about the error occurrence as
possible. It is also very useful to have a full history of the errors that occurred in the
production environment that you can browse and search in some convenient way.

One of the most common tools that gives such capabilities is Sentry
(https://getsentry.com). It is a battle-tested service for tracking exceptions and collecting
crash reports. It is available as open source, written in Python, and originated as a tool for
backend web developers. Now, it outgrew its initial ambitions and has support for many
more languages, including PHP, Ruby, and JavaScript but still stays the most popular tool
of choice for many Python web developers.

Exception stack tracebacks in web applications
It is common that web applications do not exit on unhandled exceptions
because HTTP servers are obliged to return an error response with a
status code from the 5XX group if any server error occurs. Most Python
web frameworks do such things by default. In such cases, the exception is,
in fact, handled either on the internal web framework level or by the
WSGI server middleware. Anyway, this will usually still result in the
exception stack trace being printed (usually on standard output).

The Sentry is available as a paid software-as-a-service model, but it is open source, so it can
be hosted for free on your own infrastructure. The library that provides integration with
Sentry is sentry-sdk (available on PyPI). If you haven't worked with it yet and want to
test it but have no access to your own Sentry server, then you can easily sign up for a free
trial on Sentry's on-premise service site. Once you have access to a Sentry server and have
created a new project, you will obtain a string called Data Source Name (DSN). This DSN
string is the minimal configuration setting needed to integrate your application with sentry.
It contains protocol, credentials, server location, and your organization/project identifier in
the following form:

'{PROTOCOL}://{PUBLIC_KEY}:{SECRET_KEY}@{HOST}/{PATH}{PROJECT_ID}'

https://getsentry.com

Deploying the Code Chapter 8

[266]

Once you have DSN, the integration is pretty straightforward, as shown in the following
code:

import sentry_sdk

sentry_sdk.init(
 dsn='https://<key>:<secret>@app.getsentry.com/<project>'
)

try:
 1 / 0
except Exception as e:
 sentry_sdk.capture_exception(e)

Sentry and Raven
The old library for Sentry integration is Raven. It is still maintained and
available on PyPI but is being phased out, so it is best to start your Sentry
integration using the newer python-sdk package. It is possible though
that some framework integrations or Raven extensions haven't been
ported to new SDK, so in such situations, integration using Raven is still a
feasible integration path.

Sentry SDK has numerous integrations with most popular Python frameworks such as
Django, Flask, Celery, or Pyramid to make integration easier. These integrations will
automatically provide additional context that is specific to the given framework. If your
web framework of choice does not have a dedicated support, the sentry-sdk package
provides generic WSGI middleware that makes it compatible with any WSGI-based web
servers, as shown in the following code:

from sentry_sdk.integrations.wsgi import SentryWsgiMiddleware

sentry_sdk.init(
 dsn='https://<key>:<secret>@app.getsentry.com/<project>'
)

...

note: application is some WSGI application object defined earlier
application = SentryWsgiMiddleware(application)

Deploying the Code Chapter 8

[267]

The other notable integration is the ability to track messages logged through Python's built-
in logging module. Enabling such support requires only the following few additional lines
of code:

import logging

import sentry_sdk
from sentry_sdk.integrations.logging import LoggingIntegration

sentry_logging = LoggingIntegration(
 level=logging.INFO,
 event_level=logging.ERROR,
)

sentry_sdk.init(
 dsn='https://<key>:<secret>@app.getsentry.com/<project>',
 integrations=[sentry_logging],
)

Capturing of logging messages may have caveats, so make sure to read the official
documentation on that topic if you are interested in such a feature. This should save you
from unpleasant surprises.

The last note is about running your own Sentry as a way to save some money. There ain't no
such thing as a free lunch. You will eventually pay additional infrastructure costs and Sentry
will be just another service to maintain. Maintenance = additional work = costs! As your
application grows, the number of exceptions grow, so you will be forced to scale Sentry as
you scale your product. Fortunately, this is a very robust project, but will not give you any
value if overwhelmed with too much load. Also, keeping Sentry prepared for a catastrophic
failure scenario where thousands of crash reports per second can be sent is a real challenge.
So you must decide which option is really cheaper for you, and whether you have enough
resources to do all of this by yourself. There is, of course, no such dilemma if security
policies in your organization deny sending any data to third parties. If so, just host it on
your own infrastructure. There are costs, of course, but ones that are definitely worth
paying.

Next, we will discuss the monitoring system and application metrics.

Monitoring system and application metrics
When it comes to monitoring performance, the amount of tools to choose from may be
overwhelming. If you have high expectations, then it is possible that you will need to use a
few of them at the same time.

Deploying the Code Chapter 8

[268]

Munin (http://munin-monitoring.org) is one of the popular choices used by many
organizations regardless of the technology stack they use. It is a great tool for analyzing
resource trends and provides a lot of useful information, even with a default installation
without additional configuration. Its installation consists of the following two main
components:

The Munin master that collects metrics from other nodes and serves metrics
graphs
The Munin node that is installed on a monitored host, which gathers local
metrics and sends it to the Munin master

The master node and most of the plugins are written in Perl. There are also node
implementations in other languages: munin-node-c is written in C
(https://github.com/munin-monitoring/munin-c) and munin-node-python is written in
Python (https://github.com/agroszer/munin-node-python). Munin comes with a huge
number of plugins available in its contrib repository. This means it provides out-of-the-
box support for most of the popular databases and system services. There are even plugins
for monitoring popular Python web servers, such as uWSGI or Gunicorn.

The main drawback of Munin is the fact that it serves graphs as static images and actual
plotting configuration is included in specific plugin configurations. This does not help in
creating flexible monitoring dashboards and comparing metric values from different
sources at the same graph. But this is the price we need to pay for simple installation and
versatility. Writing your own plugins is quite simple. There is the munin-python package
(http://python-munin.readthedocs.org/en/latest/) that helps to write Munin plugins in
Python.

Unfortunately, the architecture of Munin that assumes that there is always a separate
monitoring daemon process on every host that is responsible for collection of metrics may
not be the best solution for monitoring custom application performance metrics. It is indeed
very easy to write your own Munin plugins, but under the assumption that the monitoring
process can already report its performance statistics in some way.

If you want to collect some custom application-level metrics, it might be necessary to
aggregate and store them in some temporary storage until reporting to a custom Munin
plugin. It makes creation of custom metrics more complicated, so you might want to
consider other solutions for such purposes.

http://munin-monitoring.org
https://github.com/munin-monitoring/munin-c
https://github.com/agroszer/munin-node-python
http://python-munin.readthedocs.org/en/latest/

Deploying the Code Chapter 8

[269]

The other popular solution that makes it especially easy to collect custom metrics is StatsD
(https://github.com/etsy/statsd). It's a network daemon written in Node.js that listens
to various statistics such as counters, timers, and gauges. It is very easy to integrate, thanks
to the simple protocol based on UDP. It is also easy to use the Python package
named statsd for sending metrics to the StatsD daemon, as follows:

>>> import statsd
>>> c = statsd.StatsClient('localhost', 8125)
>>> c.incr('foo') # Increment the 'foo' counter.
>>> c.timing('stats.timed', 320) # Record a 320ms 'stats.timed'.

Because UDP is a connectionless protocol, it has a very low performance overhead on the
application code, so it is very suitable for tracking and measuring custom events inside the
application code.

Unfortunately, StatsD is the only metrics collection daemon, so it does not provide any
reporting features. You need other processes that are able to process data from StatsD in
order to see the actual metrics graphs. The most popular choice is Graphite
(http://graphite.readthedocs.org). It does mainly the following two things:

Stores numeric time-series data
Renders graphs of this data on demand

Graphite provides you with the ability to save graph presets that are highly customizable.
You can also group many graphs into thematic dashboards. Graphs are, similar to Munin,
rendered as static images, but there is also the JSON API that allows other frontends to read
graph data and render it by other means.

One of the great dashboard plugins integrated with Graphite is Grafana
(http://grafana.org). It is really worth trying because it has way better usability than
plain Graphite dashboards. Graphs provided in Grafana are fully interactive and easier to
manage.

Graphite is unfortunately a bit of a complex project. It is not a monolithic service and
consists of the following three separate components:

Carbon: This is a daemon written using Twisted that listens for time-series data.
whisper: This is a simple database library for storing time-series data.
graphite webapp: This is a Django web application that renders graphs on-
demand as static images (using Cairo library) or as JSON data.

https://github.com/etsy/statsd
http://graphite.readthedocs.org
http://grafana.org

Deploying the Code Chapter 8

[270]

When used with the StatsD project, the statsd daemon sends its data to
the carbon daemon. This makes the full solution a rather complex stack of various
applications, where each of them is written using completely different technology. Also,
there are no preconfigured graphs, plugins, and dashboards available, so you will need to
configure everything by yourself. This is a lot of work at the beginning and it is very easy to
miss something important. This is the reason why it might be a good idea to use Munin as a
monitoring backup, even if you decide to have Graphite as your core monitoring service.

Another good monitoring solution for arbitrary metric collection is Prometheus. It has a
completely different architecture than Munin and StatsD. Instead of relying on monitored
applications or daemons to push metrics in configured intervals, Prometheus actively pulls
metrics directly from the source using the HTTP protocol. This requires monitored services
to store (and sometimes preprocess) metrics internally and expose them on HTTP
endpoints.

Fortunately, Prometheus comes with a handful of libraries for various languages and
frameworks to make this kind of integration as easy as possible. There are also various
exporters that act as bridges between Prometheus and other monitoring systems. So, if you
already use other monitoring solutions, it is usually very easy to migrate gradually to a
Prometheus architecture. Prometheus also wonderfully integrates with Grafana.

In the next section, we will see how to deal with application logs.

Dealing with application logs
While solutions such as Sentry are usually way more powerful than ordinary textual output
stored in files, logs will never die. Writing some information to a standard output or file is
one of the simplest things that an application can do and this should never be
underestimated. There is a risk that messages sent to Sentry by Raven will not get
delivered. The network can fail. Sentry's storage can get exhausted or may not be able to
handle the incoming load. Your application might crash before any message is sent (with a
segmentation fault, for example). These are only a few of the possible scenarios.

What is less likely is that your application won't be able to log messages that are going to be
written to the filesystem. It is still possible, but let's be honest, if you face such a condition
where logging fails, probably you have a lot more burning issues than some missing log
messages.

Remember that logs are not only about errors. Many developers used to think about logs
only as a source of data that is useful when debugging issues and/or that can be used to
perform some kind of forensics.

Deploying the Code Chapter 8

[271]

Definitely, less of them try to use it as a source for generating application metrics or to do
some statistical analysis. But logs may be a lot more useful than that. They can even be a
core of the product implementation. A great example of building a product with logs is
Amazon's article presenting example architecture for the real-time bidding service, where
everything is centered around access log collection and processing.
See https://aws.amazon.com/blogs/aws/real-time-ad-impression-bids-using-dynamod
b/

Let's discuss the basic low-level log practices.

Basic low-level log practices
The Twelve-Factor App manifesto says that logs should be treated as event streams. So, the
log file is not a log by itself, but only an output format. The fact that they are streams means
they represent time ordered events. In raw, they are typically in a plaintext format with one
line per event, although in some cases they may span across multiple lines (this is typical
for any back traces related to runtime errors).

According to the Twelve-Factor App methodology, the application should never be aware
of the format in which logs are stored. This means that writing to the file, or log rotation
and retention should never be maintained by the application code.

These are the responsibilities of the environment in which the applications is run. This may
be confusing because a lot of frameworks provide functions and classes for managing log
files as well as rotation, compression, and retention utilities. It is tempting to use them
because everything can be contained in your application code base, but actually it is an
anti-pattern that should be avoided.

The best practices for dealing with logs are as follows:

The application should always write logs unbuffered to the standard output
(stdout).
The execution environment should be responsible for collection and routing of
logs to the final destination.

The main part of the mentioned execution environment is usually some kind of process
supervision tool. The popular Python solutions, such as Supervisor or Circus, are the first
ones responsible for dealing with log collection and routing. If logs are to be stored in the
local filesystem, then only they should write to actual log files.

https://aws.amazon.com/blogs/aws/real-time-ad-impression-bids-using-dynamodb/
https://aws.amazon.com/blogs/aws/real-time-ad-impression-bids-using-dynamodb/

Deploying the Code Chapter 8

[272]

Both Supervisor and Circus are also capable of handling log rotation and retention for
managed processes but you should really consider whether this is a path that you want to
take. Successful operations are mostly about simplicity and consistency. Logs of your own
application are probably not the only ones that you want to process and archive. If you use
Apache or NGINX as a reverse proxy, you might want to collect their access logs.

You might also want to store and process logs for caches and databases. If you are running
some popular Linux distribution, then the chances are very high that each of these services
have their own log files processed (rotated, compressed, and so on) by the popular utility
named logrotate. My strong recommendation is to forget about Supervisor's and Circus'
log rotation capabilities for the sake of consistency with other system
services. logrotate is way more configurable and also supports compression.

logrotate and Supervisor/Circus
There is an important thing to know when using logrotate with
Supervisor or Circus. Rotation of logs will always happen while process
Supervisor still has open descriptor to rotated logs. If you don't take
proper countermeasures, then new events will be still written to the file
descriptor that was already deleted by logrotate. As a result, nothing
more will be stored in a filesystem. Solutions to this problem are quite
simple. Configure logrotate for log files of processes managed by
Supervisor or Circus with the copytruncate option. Instead of moving
the log file after rotation, it will copy it and truncate the original file to
zero size in place. This approach does not invalidate any of the existing
file descriptors and processes that are already running can write to log
files uninterrupted. Supervisor can also accept the SIGUSR2 signal that
will make it reopen all of the file descriptors. It may be included as
the postrotate script in the logrotate configuration. This second
approach is more economical in the terms of I/O operations, but is also
less reliable and harder to maintain.

Different tools for log processing are explained in the next section.

Deploying the Code Chapter 8

[273]

Tools for log processing
If you have no experience in working with big amounts of logs, you will eventually gain it
when working with a product that has some substantial load. You will shortly notice that a
simple approach based on storing them in files and backing them up in some persistent
storage for later retrieval is not enough. Without proper tools, this will become crude and
expensive. Simple utilities such as logrotate help you only to ensure that the hard disk is
not overloaded by the ever-increasing amount of new events, although splitting and
compressing log files only helps in the data archival process but does not make data
retrieval or analysis simpler.

When working with distributed systems that span across multiple nodes, it is nice to have a
single central point from which all logs can be retrieved and analyzed. This requires a log
processing flow that goes way beyond simple compression and backing up. Fortunately,
this is a well-known problem so there are many tools available that aim to solve it.

One of the popular choices among many developers is Logstash. This is the log collection
daemon that can observe active log files, parse log entries, and send them to the backing
service in a structured form. The choice of backing stays almost always the
same—Elasticsearch. Elasticsearch is the search engine built on top of Lucene. Among text
search capabilities, it has a unique data aggregation framework that fits extremely well into
the purpose of log analysis. The other addition to this pair of tools is Kibana. It is a very
versatile monitoring, analysis, and visualization platform for Elasticsearch. The way that
these three tools complement each other is the reason why almost always they are used
together as a single stack for log processing.

The integration of existing services with Logstash is very simple because it can listen on
existing log file changes for the new events with only minimal changes in your logging
configuration. It parses logs in textual form and has preconfigured support for some of the
popular log formats, such as Apache/NGINX access logs. Logstash can be complemented
with Beats. Beats are log shippers compatible with Logstash input protocols that can collect
not only raw log data from files (Filebeat) but also various system metrics (Metricbeat) and
even audit user activities on hosts (Auditbeat).

The other solution that seems to fill some of Logstash gaps is Fluentd. It is an alternative log
collection daemon that can be used interchangeably with Logstash in the mentioned log
monitoring stack. It also has an option to listen and parse log events directly in log files, so
integration requires only a little effort. In contrast to Logstash, it handles reloads very well
and even does not need to be signaled if log files were rotated. Anyway, the most
advantage comes from using one of its alternative log collection options that will require
some substantial changes to logging configuration in your application.

Deploying the Code Chapter 8

[274]

Fluentd really treats logs as event streams (as recommended by the Twelve-Factor App).
The file-based integration is still possible but it is only kind of backward compatible for
legacy applications that treat logs mainly as files. Every log entry is an event and it should
be structured. Fluentd can parse textual logs and has multiple plugin options to handle,
including the following:

Common formats (Apache, NGINX, and syslog)
Arbitrary formats specified using regular expressions or handled with custom
parsing plugins
Generic formats for structured messages such as JSON

The best event format for Fluentd is JSON because it adds the least amount of overhead.
Messages in JSON can also be passed almost without any change to the backing service
such as Elasticsearch or the database.

The other very useful feature of Fluentd is the ability to pass event streams using transports
other than a log file written to the disk. The following are the most notable built-in input
plugins:

in_udp: With this plugin, every log event is sent as UDP packets.
in_tcp: With this plugin, events are sent through TCP connection.
in_unix: With this plugin, events are sent through a Unix domain socket
(named socket).
in_http: With this plugin, events are sent as HTTP POST requests.
in_exec: With this plugin, Fluentd process executes an external command
periodically to pull events in the JSON or MessagePack format.
in_tail: With this plugin, Fluentd process listens for an event in a textual file.

Alternative transports for log events may be especially useful in situations where you need
to deal with poor I/O performance of machine storage. It is very often on cloud computing
services that the default disk storage has a very low number of Input Output Operations
Per Second (IOPS) and you need to pay a lot of money for better disk performance.

If your application outputs a large amount of log messages, you can easily saturate your
I/O capabilities, even if the data size is not very high. With alternate transports, you can use
your hardware more efficiently because you leave the responsibility of data buffering only
to a single process-log collector. When configured to buffer messages in memory instead of
disk, you can even completely get rid of disk writes for logs, although this may greatly
reduce the consistency guarantees of collected logs.

Deploying the Code Chapter 8

[275]

Using different transports seems to be slightly against the 11th rule of the Twelve-Factor
App methodology. Treating logs as event streams when explained in detail suggests that
the application should always log only through a single standard output stream (stdout).
It is still possible to use alternate transports without breaking this rule. Writing
to stdout does not necessarily mean that this stream must be written to file.

You can leave your application logging that way and wrap it with an external process that
will capture this stream and pass it directly to Logstash or Fluentd without engaging the
filesystem. This is an advanced pattern that may not be suitable for every project. It has the
obvious disadvantage of higher complexity, so you need to consider for yourself whether it
is really worth doing.

Summary
Code deployment is not a simple topic and you should already know that after reading this
chapter. Extensive discussion of this problem could easily take a few books. Even though
we limited our scope exclusively to web application, we have barely scratched the surface.
We used the Twelve-Factor App methodology as the basis for showing possible solutions
for various problems related to code deployment. We discussed in detail only a few of
them: log treatment, managing dependencies, and separating build/run stages.

After reading this chapter, you should know how to start automating your deployment
process, taking into consideration best practices, and be able to add proper instrumentation
and monitoring for code that is run on your remote hosts.

In the next chapter, we will be learning why writing extensions in C and C++ for Python
can sometimes be a good solution and show that it is not as hard as it seems to be as long as
the proper tools are used.

9
Python Extensions in Other

Languages
At the time of writing Python-based applications, you are not limited to the Python
language alone. There are tools such as Hy (mentioned briefly in Chapter 5, Elements of
Metaprogramming) that allow you to write modules, packages, or even whole applications
with some other language (a dialect of Lisp) that will run in a Python virtual machine.
Although it gives you the ability to express program logic with completely different syntax,
it is still the same language as it compiles to the same bytecode, which means that it has the
same limitations as ordinary Python code. Let me list some of the following limitations for
you:

Threading usability is greatly reduced due to the existence of Global Interpreter
Lock (GIL) in CPython and dependent on the Python implementation of choice.
Python is not a compiled language so lacks compile-time optimizations.
Python does not provide static typing and the possible optimizations that come
with it.

The solution that helps in overcoming such core limitations is Python extensions that are
entirely written in a different language and expose their interface through Python extension
APIs.

This chapter will discuss the main reasons for writing your own extensions in other
languages and introduce you to the popular tools that help to create them. We will learn
about the following topics in this chapter:

Differentiating between the C and C++ languages
Writing a simple extension in C using Python/C API

Python Extensions in Other Languages Chapter 9

[277]

Writing a simple extension in C using Cython
Understanding the main challenges and problems introduced by extensions
Interfacing with compiled dynamic libraries without creating dedicated
extensions and using only Python code

In the next section, we will look into the difference between the C and C++ languages.

Technical requirements
In order to compile the Python extensions mentioned in this chapter, you will need C and
C++ compilers. The following are suitable compilers that you can download for free on
selected operating systems:

Visual Studio 2019 (Windows): https://visualstudio.microsoft.com

GCC (Linux and most POSIX systems): https://gcc.gnu.org

Clang (Linux and most POSIX systems): https://clang.llvm.org

On Linux, GCC and Clang compilers are usually available through package management
systems specific to the given system distribution. On macOS, the compiler is part of
the Xcode IDE (available through App Store).

The following are Python packages mentioned in this chapter that you can download from
PyPI:

Cython

cffi

You can install these packages using following command:

python3 -m pip install <package-name>

Code files for this chapter can be found
at https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/t
ree/master/chapter9.

https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://visualstudio.microsoft.com
https://gcc.gnu.org
https://gcc.gnu.org
https://gcc.gnu.org
https://gcc.gnu.org
https://gcc.gnu.org
https://gcc.gnu.org
https://gcc.gnu.org
https://gcc.gnu.org
https://gcc.gnu.org
https://clang.llvm.org
https://clang.llvm.org
https://clang.llvm.org
https://clang.llvm.org
https://clang.llvm.org
https://clang.llvm.org
https://clang.llvm.org
https://clang.llvm.org
https://clang.llvm.org
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter9
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter9

Python Extensions in Other Languages Chapter 9

[278]

Differentiating between the C and C++
languages
When we talk about different languages integrated with Python, we think almost
exclusively about C and C++. Even tools such as Cython or Pyrex, which define Python
language supersets only for the purpose of creating Python extensions, are in fact source-to-
source compilers that generate the C code from extended Python-like syntax.

In fact, you can use Python dynamic/shared libraries written in any language if the
language supports compilation in the form of dynamic/shared libraries. So, interlanguage
integration possibilities go way beyond C and C++. It's because libraries are intrinsically
generic. They can be used in any language that supports their loading. So, even if you write
such a library in a completely different language (let's say Delphi or Prolog), you can use it
in Python. Still, it is hard to name such a library as a Python extension if it does not use
Python/C API.

Unfortunately, writing your own extensions only in C or C++ using bare Python/C API is
quite demanding. Not only because it requires a good understanding of one of the two
languages that are relatively hard to master, but also because it requires an exceptional
amount of boilerplate. You will have to write a lot of repetitive code that is used only to
provide an interface that will glue your core C or C++ code with the Python interpreter and
its datatypes. Anyway, it is good to know how pure C extensions are built because of the
following reasons:

You will understand better how Python works in general.
One day, you may need to debug or maintain a native C/C++ extension.
It helps in understanding how higher-level tools for building extensions work.

The next section explains loading extensions in C or C++.

Loading extensions in C or C++
The Python interpreter is able to load extensions from dynamic/shared libraries such as
Python modules if they provide an applicable interface using Python/C API. This API must
be incorporated in a source code of extension using a Python.h C header file that is
distributed with Python sources. In many distributions of Linux, this header file is
contained in a separate package (for example, python-dev in Debian/Ubuntu) but under
Windows, it is distributed by default with the interpreter. On POSIX systems (for example,
Linux and macOS), it can be found in the include/ directory of your Python installation.
On Windows, it can be found in the Include/ directory of your Python installation.

Python Extensions in Other Languages Chapter 9

[279]

Python/C API traditionally changes with every release of Python. In most cases, these are
only additions of new features to the API so are generally source-compatible. Anyway, in
most cases, they are not binary compatible due to changes in the Application Binary
Interface (ABI). This means that extensions must be compiled separately for every version
of Python. Also, different operating systems have incompatible ABIs, so this makes it
practically impossible to create a binary distribution for every possible environment. This is
the reason why most Python extensions are distributed in source form.

Since Python 3.2, a subset of Python/C API has been defined to have stable ABIs. Thanks to
this, it is possible to build extensions using this limited API (with a stable ABI), so
extensions can be compiled only once for a given operating system and it will work with
any version of Python higher or equal to 3.2 without the need for recompilation. Anyway,
this limits the number of API features and does not solve the problems of older Python
versions. It also does not allow you to create a single binary distribution that would work
on multiple operating systems. So this is a trade-off and the price of the stable ABI seems to
be a bit high for a very low gain.

It is important to know that Python/C API is a feature that is limited only to CPython
implementations. Some efforts were made to bring extension support to alternative
implementations such as PyPI, Jython, or IronPython, but it seems that there is no stable
and complete solution for them at the moment. The only alternative Python
implementation that should deal easily with extensions is Stackless Python because it is in
fact only a modified version of CPython.

C extensions for Python need to be compiled into shared/dynamic libraries before they can
be imported because there is no native way to import C/C++ code in Python directly from
sources. Fortunately, distutils and setuptools provide helpers to define compiled
extensions as modules, so compilation and distribution can be handled using the setup.py
script as if they were ordinary Python packages. The following is an example of the
setup.py script from the official documentation that handles the preparation of simple
package distribution that has some extension written in C:

from distutils.core import setup, Extension

module1 = Extension(
 'demo',
 sources=['demo.c']
)

setup(
 name='PackageName',
 version='1.0',

Python Extensions in Other Languages Chapter 9

[280]

 description='This is a demo package',
 ext_modules=[module1]
)

Once prepared this way, the following additional step is required in your distribution flow:

python setup.py build

This step will compile all your extensions defined as the ext_modules argument according
to all additional compiler settings provided with the Extension() constructor. The
compiler that will be used is the one that is a default for your environment. This
compilation step is not required if the package is going to be distributed as a source
distribution. In that case, you need to be sure that the target environment has all the
compilation prerequisites such as the compiler, header files, and additional libraries that
are going to be linked to your binary (if your extension needs any). More details of
packaging the Python extensions will be explained later in the Challenges with using
extensions section.

In the next section, we will discuss why we need to use extensions.

The need to use extensions
It's not easy to say when it is a reasonable decision to write extensions in C/C++. The
general rule of thumb could be, never, unless you have no other choice. But this is a very
subjective statement that leaves a lot of place for the interpretation of what is not doable in
Python. In fact, it is hard to find a thing that cannot be done using pure Python code. Still,
there are some problems where extensions may be especially useful by adding the
following benefits:

Bypassing GIL in the CPython threading model
Improving performance in critical code sections
Integrating third-party dynamic libraries
Integrating source code written in different languages
Creating custom datatypes

Python Extensions in Other Languages Chapter 9

[281]

Of course, for every such problem, there is usually a viable native Python solution. For
example, the core CPython interpreter constraints, such as GIL, can easily be overcome
with a different approach to concurrencies, such as green threads or multiprocessing
instead of a threading model. Third-party libraries can be integrated with the ctypes
module. Every datatype can be implemented in Python. Still, the native Python approach
may not always be optimal. Python-only integration of an external library may be clumsy
and hard to maintain. Implementation of custom datatypes may be suboptimal without
access to low-level memory management. So the final decision of what path to take must
always be taken very carefully and take many factors into consideration and so on. A good
approach is to start with a pure Python implementation first and consider extensions only
when the native approach proves to be not good enough.

The next section will help us to improve the performance in critical code sections.

Improving the performance in critical code
sections
Let's be honest. Python is not chosen by developers because of its performance. It does not
execute fast but allows you to develop fast. Still, no matter how performant we are as
programmers, thanks to this language, we may sometimes find a problem that may not be
solved efficiently using pure Python.

In most cases, solving performance problems is really mostly about choosing proper
algorithms and data structures and not about limiting the constant factor of language
overhead. And usually it is not a good approach to rely on extensions in order to shave off
some CPU cycles if the code is already written poorly or does not use efficient algorithms. It
is often possible that performance can be improved to an acceptable level without the need
to increase the complexity of your project by adding yet another language to your
technology stack. And if it is possible to use only one programming language, it should be
done that way in the first place. Anyway, it is also very likely that even with a state of the art
algorithmic approach and the best-suited data structures, you will not be able to fit some
arbitrary technological constraints using Python alone.

Python Extensions in Other Languages Chapter 9

[282]

The example field that puts some well-defined limits on the application's performance is
the Real-Time Bidding (RTB) business. In short, the whole of RTB is about buying and
selling advertisement inventory (place for ads) in a way that is similar to how real auctions
or stock exchanges work. The whole trading usually takes place through some ad exchange
service that sends the information about available inventory to demand-side platforms
(DSPs) interested in buying areas for their advertisements. And this is the place where
things get exciting. Most of the ad exchanges use the OpenRTB protocol (which is based on
HTTP) for communication with potential bidders. The DSP is the site responsible for
serving responses to its OpenRTB HTTP requests. And ad exchanges always put very strict
time constraints on how long the whole process can take. It can be as low as 50 ms—from
the first TCP packet received to the last byte written by the DSP server. To spice things up,
it is not uncommon for DSP platforms to process tens of thousands of requests per second.
Being able to shave off a few milliseconds from the response times often determines service
profitability. This means that porting even trivial code to C may be reasonable in that
situation but only if it's a part of some performance bottleneck and cannot be improved any
further algorithmically. As Guido once said:

If you feel the need for speed, (...) - you can't beat a loop written in C

Integrating existing code written in different languages is explained in the next section.

Integrating existing code written in different
languages
Although computer science is young when compared to other fields of technical studies,
many programmers have written a lot of useful libraries for solving common problems
using many programming languages. It would be a great loss to forget about all that
heritage every time a new programming language pops out, but it is also impossible to
reliably port any piece of software that was ever written to every possible language.

The C and C++ languages seem to be the most important languages that provide a lot of
libraries and implementations that you would like to integrate into your application code
without the need to port them completely to Python. Fortunately, CPython is already
written in C, so the most natural way to integrate such code is precisely through custom
extensions.

The next section explains how we can integrate third-party dynamic libraries.

Python Extensions in Other Languages Chapter 9

[283]

Integrating third-party dynamic libraries
Integrating code written using different technologies does not end with C/C++. A lot of
libraries, especially third-party software with closed sources, are distributed as compiled
binaries. In C, it is really easy to load such shared/dynamic libraries and call their functions.
This means that you can use any C library as long as you wrap it with extensions using
Python/C API.

This, of course, is not the only solution and there are tools such as ctypes or CFFI that
allow you to interact with dynamic libraries using pure Python without the need for
writing extensions in C. Very often, the Python/C API may still be a better choice because it
provides a better separation between the integration layer (written in C) and the rest of
your application.

The next section shows us how to create custom datatypes.

Creating custom datatypes
Python provides a very versatile selection of built-in datatypes. Some of them really use
state-of-the-art internal implementations (at least in CPython) that are specifically tailored
for usage in the Python language. The number of basic types and collections available out-
of-the-box may look impressive for newcomers, but it is clear that it does not cover all of
our possible needs.

You can, of course, create many custom data structures in Python, either by basing them
completely on some built-in types or by building them from scratch as completely new
classes. Unfortunately, for some applications that may heavily rely on such custom data
structures, the performance of such a data structure may be suboptimal. The whole power
of complex collections such as dict or set comes from their underlying C implementation.
Why not do the same and implement some of your custom data structures in C too?

In the next section, we will discuss how to write extensions.

Writing extensions
As already said, writing extensions is not a simple task but, in return for your hard work, it
can give you a lot of advantages. The easiest approach to creating extensions is to use tools
such as Cython or Pyrex. These projects will increase your productivity and also make code
easier to develop, read, and maintain.

Python Extensions in Other Languages Chapter 9

[284]

Anyway, if you are new to this topic, it is good to start your adventure with extensions by
writing one using nothing more than bare C language and Python/C API. This will improve
your understanding of how extensions work and will also help you to appreciate the
advantages of alternative solutions. For the sake of simplicity, we will take a simple
algorithmic problem as an example and try to implement it using the two following
different approaches:

Writing a pure C extension
Using Cython

Our problem will be finding the nth number of the Fibonacci sequence. It is very unlikely
that you would like to create the compiled extensions solely for this problem, but it is very
simple so it will serve as a very good example of wiring any C function to Python/C API.
Our goals are only clarity and simplicity, so we won't try to provide the most efficient
solution.

Before we create our first extension let's define a reference implementation that will allow
us to compare different solutions. Our reference implementation of the Fibonacci function
implemented in pure Python looks as follows:

"""Python module that provides fibonacci sequence function"""

def fibonacci(n):
 """Return nth Fibonacci sequence number computed recursively.
"""
 if n < 2:
 return 1
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

Note that this is one of the most simple implementations of the fibonnaci() function and
a lot of improvements could be applied to it even in Python. We refuse to improve our
implementation (using memoization pattern, for instance) because this is not the purpose of
our example. In the same manner, we won't optimize our code later when discussing
implementations in C or Cython, even though the compiled code gives us many more
possibilities to do so.

Let's look into pure C extensions in the next section.

Python Extensions in Other Languages Chapter 9

[285]

Pure C extensions
Before we fully dive into the code examples of Python extensions written in C, here is a
huge warning. If you want to extend Python with C, you need to already know both of
these languages pretty well. This is especially true for C. Lack of proficiency with it can
lead to real disasters due to how easily it can be mishandled.

If you have decided that you need to write C extensions for Python, I assume that you
already know the C language at a level that will allow you to fully understand the
examples that are presented. Nothing other than Python/C API details will be explained
here. This book is about Python and not any other language. If you don't know C at all, you
should definitely not try to write your own Python extensions in C until you gain enough
experience and skills. Leave it to others and stick with Cython or Pyrex because they are a
lot safer from the beginner's perspective. It's because Python/C API, despite being crafted
with great care, is definitely not a good introduction to C.

As proposed earlier, we will try to port the fibonacci() function to C and expose it to the
Python code as an extension. Let's start with a base implementation that would be
analogous to the previous Python example. The bare function without any Python/C API
usage could be rough as follows:

long long fibonacci(unsigned int n) {
 if (n < 2) {
 return 1;
 } else {
 return fibonacci(n - 2) + fibonacci(n - 1);
 }
}

And here is the example of a complete, fully functional extension that exposes this single
function in a compiled module:

#include <Python.h>

long long fibonacci(unsigned int n) {
 if (n < 2) {
 return 1;
 } else {
 return fibonacci(n-2) + fibonacci(n-1);
 }
}

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;

Python Extensions in Other Languages Chapter 9

[286]

 long n;

 if (PyArg_ParseTuple(args, "l", &n)) {
 result = Py_BuildValue("L", fibonacci((unsigned int)n));
 }

 return result;
}

static char fibonacci_docs[] =
 "fibonacci(n): Return nth Fibonacci sequence number "
 "computed recursively\n";

static PyMethodDef fibonacci_module_methods[] = {
 {"fibonacci", (PyCFunction)fibonacci_py,
 METH_VARARGS, fibonacci_docs},
 {NULL, NULL, 0, NULL}
};

static struct PyModuleDef fibonacci_module_definition = {
 PyModuleDef_HEAD_INIT,
 "fibonacci",
 "Extension module that provides fibonacci sequence function",
 -1,
 fibonacci_module_methods
};

PyMODINIT_FUNC PyInit_fibonacci(void) {
 Py_Initialize();

 return PyModule_Create(&fibonacci_module_definition);
}

The preceding example might be a bit overwhelming at first glance because we had to add
four times more code just to make the fibinacci() C function accessible from Python. We
will discuss every bit of that code step by step later, so don't worry. But before we do that,
let's see how it can be packaged and executed in Python.

Python Extensions in Other Languages Chapter 9

[287]

The following minimal setuptools configuration for our module needs to use the
setuptools.Extension class in order to instruct the interpreter how our extension is
compiled:

from setuptools import setup, Extension

setup(
 name='fibonacci',
 ext_modules=[
 Extension('fibonacci', ['fibonacci.c']),
]
)

The build process for extensions can be initialized with the setup.py build command,
but it will also be automatically performed upon package installation. Same source files you
can find in the directory chapter9/fibonacci_c of this book's code package. The
following transcript presents the result of the installation in development mode and a
simple interactive session where our compiled fibonacci() function is inspected and
executed:

$ ls -1ap
fibonacci.c
setup.py

$ python3 -m pip install -e .
Obtaining file:///Users/swistakm/dev/Expert-Python-Programming-
Third_edition/chapter9
Installing collected packages: fibonacci
 Running setup.py develop for fibonacci
Successfully installed Fibonacci

$ ls -1ap
build/
fibonacci.c
fibonacci.cpython-35m-darwin.so
fibonacci.egg-info/
setup.py
$ python3
Python 3.7.2 (default, Feb 12 2019, 00:16:38)
[Clang 10.0.0 (clang-1000.11.45.5)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import fibonacci
>>> help(fibonacci.fibonacci)

Help on built-in function fibonacci in fibonacci:

Python Extensions in Other Languages Chapter 9

[288]

fibonacci.fibonacci = fibonacci(...)
 fibonacci(n): Return nth Fibonacci sequence number computed recursively

>>> [fibonacci.fibonacci(n) for n in range(10)]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

 Python/C API is explained in the next section.

A closer look at Python/C API
Since we know how to properly package, compile, and install custom C extensions and we
are sure that it works as expected, now it is the right time to discuss our code in detail.

The extensions module starts with the following single C preprocessor directive that
includes the Python.h header file:

#include <Python.h>

This pulls the whole Python/C API and is everything you need to include to be able to write
your extensions. In more realistic cases, your code will require a lot more preprocessor
directives to benefit from the C standard library functions or to integrate other source files.
Our example was simple, so no more directives were required.

Next, we have the core of our module as follows:

long long fibonacci(unsigned int n) {
 if (n < 2) {
 return 1;
 } else {
 return fibonacci(n - 2) + fibonacci(n - 1);
 }
}

The preceding fibonacci() function is the only part of our code that does something
useful. It is pure C implementation that Python by default can't understand. The rest of our
example will create the interface layer that will expose it through the Python/C API.

The first step of exposing this code to Python is the creation of the C function that is
compatible with the CPython interpreter. In Python, everything is an object. This means
that C functions called in Python also need to return real Python objects. Python/C APIs
provide a PyObject type and every callable must return the pointer to it. The signature of
our function is as follows:

static PyObject* fibonacci_py(PyObject* self, PyObject* args)

Python Extensions in Other Languages Chapter 9

[289]

Note that the preceding signature does not specify the exact list of arguments but only
PyObject* args will hold the pointer to the structure that contains the tuple of the
provided values. The actual validation of the argument list must be performed inside the
function body and this is exactly what fibonacci_py() does. It parses the args argument
list assuming it is the single unsigned int type and uses that value as an argument to the
fibonacci() function to retrieve the Fibonacci sequence element as shown in the
following code:

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;

 if (PyArg_ParseTuple(args, "l", &n)) {
 result = Py_BuildValue("L", fibonacci((unsigned int)n));
 }

 return result;
}

The preceding example function has a serious bug, which the eyes of an
experienced developer should spot very easily. Try to find it as an exercise
in working with C extensions. For now, we leave it as it is for the sake of
brevity. We will try to fix it later when discussing details of dealing with
errors in the Exception handling section.

The "l" string in the PyArg_ParseTuple(args, "l", &n) call means that we expect
args to contain only a single long value. In case of failure, it will return NULL and store
information about the exception in the per thread interpreter state. The details of exception
handling will be described a bit later in the Exception handling section.

The actual signature of the parsing function is int PyArg_ParseTuple(PyObject
*args, const char *format, ...) and what goes after the format string is a variable
length list of arguments that represents parsed value output (as pointers). This is analogous
to how the scanf() function from the C standard library works. If our assumption fails
and the user provides an incompatible arguments list, then PyArg_ParseTuple() will
raise the proper exception. This is a very convenient way to encode function signatures
once you get used to it but has a huge downside when compared to plain Python code.
Such Python call signatures implicitly defined by the PyArg_ParseTuple() calls cannot be
easily inspected inside the Python interpreter. You need to remember this fact when using
the code provided as extensions.

Python Extensions in Other Languages Chapter 9

[290]

As already said, Python expects objects to be returned from callables. This means that we
cannot return a raw long value obtained from the fibonacci() function as a result of
fibonacci_py(). Such an attempt would not even compile and there is no automatic
casting of basic C types to Python objects. The Py_BuildValue(*format, ...) function
must be used instead. It is the counterpart of PyArg_ParseTuple() and accepts a similar
set of format strings. The main difference is that the list of arguments is not a function
output but an input, so actual values must be provided instead of pointers.

After fibonacci_py() is defined, most of the heavy work is done. The last step is to
perform module initialization and add metadata to our function that will make usage a bit
simpler for the users. This is the boilerplate part of our extension code that for some simple
examples, such as this one, can take more place than the actual functions that we want to
expose. In most cases, it simply consists of some static structures and one initialization
function that will be executed by the interpreter on module import.

At first, we create a static string that will be the content of the Python docstring for the
fibonacci_py() function as follows:

static char fibonacci_docs[] =
 "fibonacci(n): Return nth Fibonacci sequence number "
 "computed recursively\n";

Note that this could be inlined somewhere later in fibonacci_module_methods, but it is a
good practice to have docstrings separated and stored in close proximity to the actual
function definition that they refer to.

The next part of our definition is the array of the PyMethodDef structures that define
methods (functions) that will be available in our module. This structure contains exactly the
four following fields:

char* ml_name: This is the name of the method.
PyCFunction ml_meth: This is the pointer to the C implementation of the
function.
int ml_flags: This includes the flags indicating either the calling convention or
binding convention. The latter is applicable only for the definition of class
methods.
char* ml_doc: This is the pointer to the content of the method/function
docstring.

Python Extensions in Other Languages Chapter 9

[291]

Such an array must always end with a sentinel value of {NULL, NULL, 0, NULL}. This
sentinel value simply indicates the end of the structure. In our simple case, we created the
static PyMethodDef fibonacci_module_methods[] array that contains only two
elements (including sentinel value) as follows:

static PyMethodDef fibonacci_module_methods[] = {
 {"fibonacci", (PyCFunction)fibonacci_py,
 METH_VARARGS, fibonacci_docs},
 {NULL, NULL, 0, NULL}
};

And this is how the first entry maps to the PyMethodDef structure:

ml_name = "fibonacci": Here, the fibinacci_py() C function will be
exposed as a Python function under the fibonacci name.
ml_meth = (PyCFunction)fibonacci_py: Here, the casting to PyCFunction
is simply required by Python/C API and is dictated by the call convention
defined later in ml_flags.
ml_flags = METH_VARARGS: Here, the METH_VARARGS flag indicates that the
calling convention of our function accepts a variable list of arguments and no
keyword arguments.
ml_doc = fibonacci_docs: Here, the Python function will be documented
with the content of fibonacci_docs string.

When an array of function definitions is complete, we can create another structure that
contains the definition of the whole module. It is described using the PyModuleDef type
and contains multiple fields. Some of them are useful only for more complex scenarios,
where fine-grained control over the module initialization process is required. Here, we are
interested only in the first five of them:

PyModuleDef_Base m_base: This should always be initialized with
PyModuleDef_HEAD_INIT.
char* m_name: This is the name of the newly created module. In our case, it is
fibonacci.
char* m_doc: This is the pointer to the docstring content for the module. We
usually have only a single module defined in one C source file, so it is OK to
inline our documentation string in the whole structure.
Py_ssize_t m_size: This is the size of the memory allocated to keep the
module state. This is used only when support for multiple subinterpreters or
multiphase initialization is required. In most cases, you don't need that and it
gets the value -1.

Python Extensions in Other Languages Chapter 9

[292]

PyMethodDef* m_methods: This is a pointer to the array containing module-
level functions described by the PyMethodDef values. It could be NULL if the
module does not expose any functions. In our case, it is
fibonacci_module_methods.

The other fields are explained in detail in the official Python documentation (refer to
https://docs.python.org/3/c-api/module.html) but are not needed in our example
extension. They should be set to NULL if not required and they will be initialized with that
value implicitly when not specified. This is why our module description contained in the
fibonacci_module_definition variable can take the following simple form:

static struct PyModuleDef fibonacci_module_definition = {
 PyModuleDef_HEAD_INIT,
 "fibonacci",
 "Extension module that provides fibonacci sequence function",
 -1,
 fibonacci_module_methods
};

The last piece of code that crowns our work is the module initialization function. This must
follow a very specific naming convention, so the Python interpreter can easily pick it when
the dynamic/shared library is loaded. It should be named PyInit_<name>, where <name>
is the name of your module. So it is exactly the same string that was used as the m_base
field in the PyModuleDef definition and as the first argument of the
setuptools.Extension() call. If you don't require a complex initialization process for
the module, it takes a very simple form, exactly like in our example:

PyMODINIT_FUNC PyInit_fibonacci(void) {
 return PyModule_Create(&fibonacci_module_definition);
}

The PyMODINIT_FUNC macro is a preprocessor macro that will declare the return type of
this initialization function as PyObject* and add any special linkage declarations if
required by the platform.

In the next section, we will see how we can call and bind conventions.

https://docs.python.org/3/c-api/module.html

Python Extensions in Other Languages Chapter 9

[293]

Calling and binding conventions
As explained in the A closer look at Python/C API section, the ml_flags bit field of the
PyMethodDef structure contains flags for calling and binding conventions. Calling
convention flags are as follows:

METH_VARARGS: This is a typical convention for the Python function or method
that accepts only arguments as its parameters. The type provided as the ml_meth
field for such a function should be PyCFunction. The function will be provided
with two arguments of the PyObject* type. The first is either the self object
(for methods) or the module object (for module functions). A typical signature
for the C function with that calling convention is PyObject*
function(PyObject* self, PyObject* args).
METH_KEYWORDS: This is the convention for the Python function that accepts
keyword arguments when called. Its associated C type is
PyCFunctionWithKeywords. The C function must accept three arguments of the
PyObject* type—self, args, and a dictionary of keyword arguments. If
combined with METH_VARARGS, the first two arguments have the same meaning
as for the previous calling convention, otherwise, args will be NULL. The typical
C function signature is—PyObject* function(PyObject* self,

PyObject* args, PyObject* keywds).
METH_NOARGS: This is the convention for Python functions that do not accept any
other argument. The C function should be of the PyCFunction type, so the
signature is the same as that of the METH_VARARGS convention (self and args
arguments). The only difference is that args will always be NULL, so there is no
need to call PyArg_ParseTuple(). This cannot be combined with any other
calling convention flag.
METH_O: This is the shorthand for functions and methods accepting single object
arguments. The type of C function is again PyCFunction, so it accepts two
PyObject* arguments: self and args. Its difference from METH_VARARGS is
that there is no need to call PyArg_ParseTuple() because PyObject* provided
as args will already represent the single argument provided in the Python call to
that function. This also cannot be combined with any other calling convention
flag.

A function that accepts keywords is described either with METH_KEYWORDS or bitwise
combinations of calling convention flags in the form of METH_VARARGS |
METH_KEYWORDS. If so, it should parse its arguments with
PyArg_ParseTupleAndKeywords() instead of PyArg_ParseTuple() or
PyArg_UnpackTuple().

Python Extensions in Other Languages Chapter 9

[294]

Here is an example module with a single function that returns None and accepts two
named keyword arguments that are printed on standard output:

#include <Python.h>

static PyObject* print_args(PyObject *self, PyObject *args,
 PyObject *keywds)
{
 char *first;
 char *second;

 static char *kwlist[] = {"first", "second", NULL};

 if (!PyArg_ParseTupleAndKeywords(args, keywds, "ss", kwlist,
 &first, &second))
 return NULL;

 printf("%s %s\n", first, second);

 Py_INCREF(Py_None);
 return Py_None;
}

static PyMethodDef module_methods[] = {
 {"print_args", (PyCFunction)print_args,
 METH_VARARGS | METH_KEYWORDS,
 "print provided arguments"},
 {NULL, NULL, 0, NULL}
};

static struct PyModuleDef module_definition = {
 PyModuleDef_HEAD_INIT,
 "kwargs",
 "Keyword argument processing example",
 -1,
 module_methods
};

PyMODINIT_FUNC PyInit_kwargs(void) {
 return PyModule_Create(&module_definition);
}

Python Extensions in Other Languages Chapter 9

[295]

Argument parsing in Python/C API is very elastic and is extensively described in the
official documentation at https://docs.python.org/3.7/c-api/arg.html. The format
argument in PyArg_ParseTuple() and PyArg_ParseTupleAndKeywords() allows fine-
grained control over argument number and types. Every advanced calling convention
known from Python can be coded in C with this API including the following:

Functions with default values for arguments
Functions with arguments specified as keyword-only
Functions with variable numbers of arguments

The binding convention flags METH_CLASS, METH_STATIC, and METH_COEXIST are
reserved for methods and cannot be used to describe module functions. The first two are
quite self-explanatory. They are C counterparts of classmethod and staticmethod
decorators and change the meaning of the self argument passed to the C function.

METH_COEXIST allows loading a method in place of the existing definition. It is useful very
rarely. This is mostly in the case when you would like to provide an implementation of the
C method that would be generated automatically from the other features of the type that
was defined. The Python documentation gives the example of the __contains__()
wrapper method that would be generated if the type has the sq_contains slot defined.
Unfortunately, defining own classes and types using Python/C API is beyond the scope of
this introductory chapter.

Let's take a look at exception handling in the next section.

Exception handling
C, unlike Python or even C++, does not have syntax for raising and catching exceptions. All
error handling is usually handled with function return values and optional global state for
storing details that can explain the cause of the last failure.

Exception handling in Python/C API is built around that simple principle. There is a global
per thread indicator of the last error that occurred. It is set to describe the cause of a
problem. There is also a standardized way to inform the caller of a function if this state was
changed during the call, for example:

If the function is supposed to return a pointer, it returns NULL.
If the function is supposed to return an int type, it returns -1.

The only exceptions from the preceding rules in Python/C API are the PyArg_*() functions
that return 1 to indicate success and 0 to indicate failure.

https://docs.python.org/3.7/c-api/arg.html

Python Extensions in Other Languages Chapter 9

[296]

To see how this works in practice, let's recall our fibonacci_py() function from the
example in the previous sections:

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;

 if (PyArg_ParseTuple(args, "l", &n)) {
 result = Py_BuildValue("L", fibonacci((unsigned int) n));
 }

 return result;
}

Lines that somehow take part in our error handling are highlighted. Error handling starts at
the very beginning of our function with the initialization of the result variable. This
variable is supposed to store the return value of our function. It is initialized with NULL,
which, as we already know, is an indicator of error. And this is how you will usually code
your extensions—assuming that error is the default state of your code.

Later we have the PyArg_ParseTuple() call that will set error information in case of an
exception and return 0. This is part of the if statement and in that case, we don't do
anything more and return NULL. Whoever calls our function will be notified about the error.

Py_BuildValue() can also raise an exception. It is supposed to return PyObject*
(pointer), so in case of failure, it gives NULL. We can simply store it as our result variable
and pass further as a return value.

But our job does not end with caring for exceptions raised by Python/C API calls. It is very
probable that you will need to inform the extension user about what kind of error or failure
occurred. Python/C API has multiple functions that help you to raise an exception but the
most common one is PyErr_SetString(). It sets an error indicator with the given
exception type and with the additional string provided as the explanation of error cause.
The full signature of this function is as follows:

void PyErr_SetString(PyObject* type, const char* message)

We have already said that the implementation of our fibonacci_py() function has a
serious bug. Now is the right time to uncover it and fix it. Fortunately, we finally have the
proper tools to do that. The problem lies in the insecure casting of the long type to
unsigned int in the following lines:

if (PyArg_ParseTuple(args, "l", &n)) {
 result = Py_BuildValue("L", fibonacci((unsigned int) n));
}

Python Extensions in Other Languages Chapter 9

[297]

Thanks to the PyArg_ParseTuple() call, the first and only argument will be interpreted as
a long type (the "l" specifier) and stored in the local n variable. Then it is cast to
unsigned int so the issue will occur if the user calls the fibonacci() function from
Python with a negative value. For instance, -1 as a signed 32-bit integer will be interpreted
as 4294967295 when casting to an unsigned 32-bit integer. Such a value will cause a very
deep recursion and will result in a stack overflow and segmentation fault. Note that the
same may happen if the user gives an arbitrarily large positive argument. We cannot fix
this without a complete redesign of the C fibonacci() function, but we can at least try to
ensure that the function input argument meets some preconditions. Here, we check
whether the value of the n argument is greater than or equal to 0 and we raise a
ValueError exception if that's not true, as follows:

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;
 long long fib;

 if (PyArg_ParseTuple(args, "l", &n)) {
 if (n<0) {
 PyErr_SetString(PyExc_ValueError,
 "n must not be less than 0");
 } else {
 result = Py_BuildValue("L", fibonacci((unsigned int) n));
 }
 }

 return result;
}

The last note about exception handling is that the global error state does not clear by itself.
Some of the errors can be handled gracefully in your C functions (same as using the try
... except clause in Python) and you need to be able to clear the error indicator if it is no
longer valid. The function for that is PyErr_Clear().

In the next section, we will discuss releasing GIL.

Releasing GIL
We have already mentioned that extensions can be a way to bypass Python's GIL. It is a
famous limitation of the CPython implementation that only one thread at a time can
execute the Python code. While multiprocessing is the suggested approach to circumvent
this problem (see Chapter 15, Concurrency), it may not be a good solution for some highly
parallelizable algorithms, due to the resource overhead of running additional processes.

Python Extensions in Other Languages Chapter 9

[298]

Because extensions are mostly used in cases where a bigger part of the work is performed
in pure C without any calls to Python/C API, it is possible (even advisable) to release GIL in
some application sections while still doing some data processing. Thanks to this, you can
still benefit from having multiple CPU cores and multithreaded application design. The
only thing you need to do is to wrap blocks of code that are known to not use any of the
Python/C API calls or Python structures with specific macros provided by Python/C API.
These two following preprocessor macros are provided to simplify the whole procedure of
releasing and reacquiring the GIL:

Py_BEGIN_ALLOW_THREADS: This declares the hidden local variable where the
current thread state is saved and it releases GIL.
Py_END_ALLOW_THREADS: This reacquires GIL and restores the thread state from
the local variable declared with the previous macro.

When we look carefully at our fibonacci extension example, we can clearly see that the
fibonacci() function does not execute any Python code and does not touch any of the
Python structures. This means that the fibonacci_py() function that simply wraps the
fibonacci(n) execution could be updated to release GIL around that call as follows:

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;
 long long fib;

 if (PyArg_ParseTuple(args, "l", &n)) {
 if (n<0) {
 PyErr_SetString(PyExc_ValueError,
 "n must not be less than 0");
 } else {
 Py_BEGIN_ALLOW_THREADS;
 fib = fibonacci(n);
 Py_END_ALLOW_THREADS;

 result = Py_BuildValue("L", fib);
 }
 }

 return result;
}

Python Extensions in Other Languages Chapter 9

[299]

The preceding technique is fair but requires caution.

Reference counting is discussed in the next section.

Reference counting
Finally, we come to the important topic of memory management in Python. Python has its
own garbage collector, but it is designed only to solve the issue of cyclic references in
the reference counting algorithm. Reference counting is the primary method of managing
the deallocation of objects that are no longer needed.

The Python/C API documentation introduces ownership of references to explain how it deals
with the deallocation of objects. Objects in Python are never owned and they are always
shared. The actual creation of objects is managed by Python's memory manager. It is the
component of CPython interpreter that is the only one responsible for allocating and
deallocating memory for objects that are stored in a private heap. What can be owned
instead is a reference to the object.

Every object in Python that is represented by a reference (PyObject* pointer) has an
associated reference count. When it goes to zero, it means that no one holds any valid
references to that object and the deallocator associated with its type can be called. Python/C
API provides two macros for increasing and decreasing reference
counts—Py_INCREF() and Py_DECREF(). But before we discuss their details, we need to
understand the following terms related to reference ownership:

Passing of ownership: Whenever we say that the function passes the ownership
over a reference, it means that it has already increased the reference count and it
is the responsibility of the caller to decrease the count when the reference to the
object is no longer needed. Most of the functions that return the newly created
objects, such as Py_BuildValue, are doing that. If that object is going to be
returned from our function to another caller, then the ownership is passed again.
We do not decrease the reference count in that case because it is no longer our
responsibility. This is why the fibonacci_py() function does not call
Py_DECREF() on the result variable.

Python Extensions in Other Languages Chapter 9

[300]

Borrowed references: The borrowing of references happens when the function
receives a reference to some Python object as an argument. The reference count
for such a reference should never be decreased in that function unless it was
explicitly increased in its scope. In our fibonacci_py() function, the self and
args arguments are such borrowed references and thus we do not call
PyDECREF() on them. Some of the Python/C API functions may also return
borrowed references. The notable examples are PyTuple_GetItem() and
PyList_GetItem(). It is often said that such references are unprotected. There is
no need to dispose of their ownership unless they will be returned as a function's
return value. In most cases, extra care should be taken if we use such borrowed
references as arguments of other Python/C API calls. It may be necessary for
some circumstances to additionally protect such references with separate
Py_INCREF() before using it as an argument to other functions and then calling
Py_DECREF() when it is no longer needed.
Stolen references: It is also possible for the Python/C API function to steal the
reference instead of borrowing it when provided as a call argument. This is the
case of exactly two functions—PyTuple_SetItem() and PyList_SetItem().
They fully take over the responsibility of the reference passed to them. They do
not increase the reference count by themselves but will call Py_DECREF() when
the reference is no longer needed.

Keeping an eye on the reference counts is one of the hardest things when writing complex
extensions. Some of the non-obvious issues may not be noticed until the code is run in
multithreaded setup.

The other common problem is caused by the very nature of Python's object model and the
fact that some functions return borrowed references. When the reference count goes to 0,
the deallocation function is executed. For user-defined classes, it is possible to define a
__del__() method that will be called at that moment. This can be any Python code and it
is possible that it will affect other objects and their reference counts. The official Python
documentation gives the following example of code that may be affected by this problem:

void bug(PyObject *list) {
 PyObject *item = PyList_GetItem(list, 0);

 PyList_SetItem(list, 1, PyLong_FromLong(0L));
 PyObject_Print(item, stdout, 0); /* BUG! */
}

Python Extensions in Other Languages Chapter 9

[301]

It looks completely harmless, but the problem is in fact that we cannot know what elements
the list object contains. When PyList_SetItem() sets a new value on the list[1]
index, the ownership of the object that was previously stored at that index is disposed of. If
it was the only existing reference, the reference count will become 0 and the object may
become deallocated. It is possible that it was some user-defined class with custom
implementation of the __del__() method. A serious issue will occur if in the result of such
__del__() execution the item[0] will be removed from the list. Note that
PyList_GetItem() returns a borrowed reference! It does not call Py_INCREF() before
returning a reference. So in that code, it is possible that PyObject_Print() will be called
with a reference to an object that no longer exists. This will cause a segmentation fault and
crash the Python interpreter.

The proper approach is to protect borrowed references for the whole time that we need
them because there is a possibility that any call in between may cause deallocation of that
object. This can happen even if they are seemingly unrelated, as shown in the following
code:

void no_bug(PyObject *list) {
 PyObject *item = PyList_GetItem(list, 0);

 Py_INCREF(item);
 PyList_SetItem(list, 1, PyLong_FromLong(0L));
 PyObject_Print(item, stdout, 0);
 Py_DECREF(item);
}

In the next section, we will learn how to write extensions using Cython instead of bare
Python/C API.

Writing extensions with Cython
Cython is both an optimizing static compiler and the name of a programming language that
is a superset of Python. As a compiler, it can perform source-to-source compilation of native
Python code and its Cython dialect to Python C extensions using Python/C API. It allows
you to combine the power of Python and C without the need to manually deal with
Python/C API.

Python Extensions in Other Languages Chapter 9

[302]

Let's discuss Cython as a source-to-source compiler in the next section.

Cython as a source-to-source compiler
For extensions created using Cython, the major advantage you will get is using the superset
language that it provides. Anyway, it is possible to create extensions from plain Python
code using the source-to-source compilation. This is the simplest approach to Cython
because it requires almost no changes to the code and can give some significant
performance improvements at a very low development cost.

Cython provides a simple cythonize utility function that allows you to easily integrate the
compilation process with distutils or setuptools. Let's assume that we would like to
compile a pure Python implementation of our fibonacci() function to a C extension. If it
is located in the fibonacci module, the minimal setup.py script could be as follows:

from setuptools import setup
from Cython.Build import cythonize

setup(
 name='fibonacci',
 ext_modules=cythonize(['fibonacci.py'])
)

Cython, when used as a source compilation tool for the Python language, has another
benefit. Source-to-source compilation to an extension can be a fully optional part of the
source distribution installation process. If the environment where the package needs to be
installed does not have Cython or any other building prerequisites, it can be installed as a
normal pure Python package. The user should not notice any functional difference in the
behavior of code distributed that way. A common approach for distributing extensions
built with Cython is to include both Python/Cython sources and C code that would be
generated from these source files. This way, the package can be installed in the following
three different ways, depending on the existence of building prerequisites:

If the installation environment has Cython available, the extension C code is
generated from the Python/Cython sources that are provided.
If Cython is not available but there are available building prerequisites (C
compiler, Python/C API headers), the extension is built from distributed
pregenerated C files.

Python Extensions in Other Languages Chapter 9

[303]

If neither of the preceding is available but the extension is created from pure
Python sources, the modules are installed like ordinary Python code, and the
compilation step is skipped.

Note that the Cython documentation says that including generated C files as well as
Cython sources is the recommended way of distributing Cython extensions. The same
documentation says that Cython compilation should be disabled by default because the
user may not have the required version of Cython in their environment, and this may result
in unexpected compilation issues. Anyway, with the advent of environment isolation, this
seems to be a less worrying problem today. Also, Cython is a valid Python package that is
available on PyPI, so it can easily be defined as your project requirement in a specific
version. Including such a prerequisite is, of course, a decision with serious implications and
should be considered very carefully. The safer solution is to leverage the power of the
extras_require feature in the setuptools package and allow the user to decide
whether he wants to use Cython with a specific environment variable, for example:

import os

from distutils.core import setup
from distutils.extension import Extension

try:
 # cython source to source compilation available
 # only when Cython is available
 import Cython
 # and specific environment variable says
 # explicitely that Cython should be used
 # to generate C sources
 USE_CYTHON = bool(os.environ.get("USE_CYTHON"))

except ImportError:
 USE_CYTHON = False

ext = '.pyx' if USE_CYTHON else '.c'

extensions = [Extension("fibonacci", ["fibonacci"+ext])]

if USE_CYTHON:
 from Cython.Build import cythonize
 extensions = cythonize(extensions)

setup(
 name='fibonacci',
 ext_modules=extensions,
 extras_require={
 # Cython will be set in that specific version

Python Extensions in Other Languages Chapter 9

[304]

 # as a requirement if package will be intalled
 # with '[with-cython]' extra feature
 'with-cython': ['cython==0.23.4']
 }
)

The pip installation tool supports the installation of packages with the extras option by
adding the [extra-name] suffix to the package name. For the preceding example, the
optional Cython requirement and compilation during the installation from local sources
can be enabled using the following command:

$ USE_CYTHON=1 pip install .[with-cython]

The USE_CYTHON environment variables guarantee that pip will use Cython to compile
.pyx sources to C and [with-cython] guarantees that the Cython compiler will be
actually downloaded before installation.

We will take a look at Cython as a language in the next section.

Cython as a language
Cython is not only a compiler but also a superset of the Python language. Superset means
that any valid Python code is allowed and it can be further updated with additional
features, such as support for calling C functions or declaring C types on variables and class
attributes. So any code written in Python is also written in Cython. This explains why
ordinary Python modules can be so easily compiled to C using the Cython compiler.

But we won't stop at that simple fact. Instead of saying that our reference fibonacci()
function is also code for valid extensions in this superset of Python, we will try to improve
it a bit. This won't be any real optimization to our function design but some minor updates
that will allow it to benefit more from being written in Cython.

Cython sources use a different file extension. It is .pyx instead of .py. We still want to
implement our Fibonacci sequence recursively.

Python Extensions in Other Languages Chapter 9

[305]

The content of fibonacci.pyx might look like this:

"""Cython module that provides fibonacci sequence function."""

def fibonacci(unsigned int n):
 """Return nth Fibonacci sequence number computed recursively."""
 if n < 2:
 return n
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

As you can see, the only thing that has really changed is the signature of the fibonacci()
function. Thanks to optional static typing in Cython, we can declare the n argument as
unsigned int and this should slightly improve the way our function works. Additionally,
it does a lot more than we did previously when writing extensions by hand. If the argument
of the Cython function is declared with a static type, then the extension will
automatically handle conversion and overflow errors by raising proper exceptions as
follows:

>>> from fibonacci import fibonacci
>>> fibonacci(5)
5
>>> fibonacci(-1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "fibonacci.pyx", line 21, in fibonacci.fibonacci (fibonacci.c:704)
OverflowError: can't convert negative value to unsigned int
>>> fibonacci(10 ** 10)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "fibonacci.pyx", line 21, in fibonacci.fibonacci (fibonacci.c:704)
OverflowError: value too large to convert to unsigned int

We already know that Cython compiles only source-to-source and the generated code uses
the same Python/C API that we would use when writing C code for extensions by hand.
Note that fibonacci() is a recursive function, so it calls itself very often. This will mean
that although we declared static type for the input argument, during the recursive call it
will treat itself like any other Python function. So n-1 and n-2 will be packed back into the
Python object and then passed to the hidden wrapper layer of the internal fibonacci()
implementation that will again bring it back to the unsigned int type. This will happen
again and again until we reach the final depth of recursion. This is not necessarily a
problem but involves a lot more argument processing than is really required.

Python Extensions in Other Languages Chapter 9

[306]

We can cut off the overhead of Python function calls and argument processing by
delegating more of the work to the pure C function that does not know anything about
Python structures. We did this previously when creating C extensions with pure C and we
can do that in Cython too. We can use the cdef keyword to declare C-style functions that
accept and return only C types as follows:

cdef long long fibonacci_cc(unsigned int n):
 if n < 2:
 return n
 else:
 return fibonacci_cc(n - 1) + fibonacci_cc(n - 2)

def fibonacci(unsigned int n):
 """ Return nth Fibonacci sequence number computed recursively
 """
 return fibonacci_cc(n)

We can go even further. With a plain C example, we finally showed how to release GIL
during the call of our pure C function, so the extension was a bit nicer for multithreaded
applications. In previous examples, we have used Py_BEGIN_ALLOW_THREADS and
Py_BEGIN_ALLOW_THREADS preprocessor macros from Python/C API headers to mark a
section of code as free from Python calls. The Cython syntax is a lot shorter and easier to
remember. GIL can be released around the section of code using a simple with nogil
statement like the following:

def fibonacci(unsigned int n):
 """ Return nth Fibonacci sequence number computed recursively
 """
 with nogil:
 result = fibonacci_cc(n)

 return fibonacci_cc(n)

You can also mark the whole C-style function as safe to call without GIL as follows:

cdef long long fibonacci_cc(unsigned int n) nogil:
 if n < 2:
 return n
 else:
 return fibonacci_cc(n - 1) + fibonacci_cc(n - 2)

It is important to know that such functions cannot have Python objects as arguments or
return types. Whenever a function marked as nogil needs to perform any Python/C API
call, it must acquire GIL using the with gil statement.

Python Extensions in Other Languages Chapter 9

[307]

The next section discusses challenges with using extensions.

Challenges with using extensions
To be honest, I started my adventure with Python only because I was tired of all the
difficulty of writing software in C and C++. In fact, it is very common that programmers
start to learn Python when they realize that other languages do not deliver what their users
need. Programming in Python, when compared to C, C++, or Java, is a breeze. Everything
seems to be simple and well designed. You might think that there are no places where you
can trip over and there are no other programming languages required anymore.

And of course nothing could be more wrong. Yes, Python is an amazing language with a lot
of cool features and it is used in many fields. But it doesn't mean that it is perfect and
doesn't have any downsides. It is easy to understand and write, but this easiness comes
with a price. It is not as slow as many think, but will never be as fast as C. It is highly
portable, but its interpreter is not available on as many architectures as compilers as other
languages are. We could go on with that list forever.

One of the solutions to fix that problem is to write extensions, so we can bring some of the
advantages of good old C back to Python. And in most cases, it works well. The question
is—are we really using Python because we want to extend it with C? The answer is no. This
is only an inconvenient necessity in situations where we don't have any better options.

Additional complexities are explained in the next section.

Additional complexity
It is not a secret that developing applications in many different languages is not an easy
task. Python and C are completely different technologies and it is very hard to find
anything that they have in common. It is also true that there is no application that is free of
bugs. If extensions become common in your code base, debugging can become painful. Not
only because debugging of C code requires completely different workflow and tools, but
also because you will need to switch context between two different languages very often.

We are all humans and all have limited cognitive capabilities. There are, of course, people
who can handle multiple layers of abstraction at the same time efficiently but they seem to
be a very rare specimen. No matter how skilled you are, there is always an additional price
to pay for maintaining such hybrid solutions. This will either involve extra effort and time
required to switch between C and Python, or additional stress that will make you
eventually less efficient.

Python Extensions in Other Languages Chapter 9

[308]

According to the TIOBE index, C is still one of the most popular programming languages.
Despite this fact, it is very common for Python programmers to know very little or almost
nothing about it. Personally, I think that C should be lingua franca in the programming
world, but my opinion is very unlikely to change anything in this matter. Python also is so
seductive and easy to learn, meaning that a lot of programmers forget about all their
previous experiences and completely switch to the new technology. And programming is
not like riding a bike. This particular skill erodes very fast if not used and polished
sufficiently. Even programmers with a strong C background are risking gradually losing
their previous C proficiency if they decide to dive into Python for too long. All of the above
leads to one simple conclusion—it is harder to find people who will be able to understand
and extend your code. For open source packages, this means fewer voluntary contributors.
In closed source, this means that not all of your teammates will be able to develop and
maintain extensions without breaking things.

Debugging is explained in the next section.

Debugging
When it comes to failures, the extensions may break very badly. Static typing gives you a
lot of advantages over Python and allows you to catch a lot of issues during the
compilation step that would be hard to notice in Python. And that can happen even
without a rigorous testing routine and full test coverage. On the other hand, all memory
management must be performed manually. And faulty memory management is the main
reason for most programming errors in C. In the best case scenario, such mistakes will
result only in some memory leaks that will gradually eat all of your environment resources.
The best case does not mean easy to handle. Memory leaks are really tricky to find without
using proper external tools such as Valgrind. In most cases, the memory management
issues in your extension code will result in a segmentation fault that is unrecoverable in
Python and will cause the interpreter to crash without raising an exception. This means that
you will eventually need to arm up with additional tools that most Python programmers
usually don't need to use. This adds complexity to your development environment and
workflow.

The next section discusses interfacing with dynamic libraries without using extensions.

Python Extensions in Other Languages Chapter 9

[309]

Interfacing with dynamic libraries without
extensions
Thanks to ctypes (a module in the standard library) or cffi (an external package), you
can integrate every compiled dynamic/shared library in Python, no matter what language it
was written in. And you can do that in pure Python without any compilation step, so this is
an interesting alternative to writing own extensions in C.

This does not mean you don't need to know anything about C. Both solutions require from
you a reasonable understanding of C and how dynamic libraries work in general. On the
other hand, they remove the burden of dealing with Python reference counting and greatly
reduce the risk of making painful mistakes. Also interfacing with C code through ctypes
or cffi is more portable than writing and compiling the C extension modules.

Let's take a look at ctypes in the next section.

The ctypes module
The ctypes module is the most popular module to call functions from dynamic or shared
libraries without the need to write custom C extensions. The reason for that is obvious. It is
part of the standard library, so it is always available and does not require any external
dependencies. It is a Foreign Function Interface (FFI) library and provides APIs for
creating C-compatible datatypes.

In the next section, we will take a look at loading libraries.

Loading libraries
There are exactly four types of dynamic library loaders available in ctypes and two
conventions to use them. The classes that represent dynamic and shared libraries are
ctypes.CDLL, ctypes.PyDLL, ctypes.OleDLL, and ctypes.WinDLL. The last two are
available only on Windows, so we won't discuss them here in detail. The differences
between CDLL and PyDLL are as follows:

ctypes.CDLL: This class represents loaded shared libraries. The functions in
these libraries use the standard calling convention and are assumed to return
int. GIL is released during the call.

Python Extensions in Other Languages Chapter 9

[310]

ctypes.PyDLL: This class works like CDLL, but GIL is not released during the
call. After execution, the Python error flag is checked and an exception is raised if
it is set. It is only useful when the loaded library is directly calling functions from
Python/C API or uses callback functions that may be a Python code.

To load the library, you can either instantiate one of the preceding classes with proper
arguments or call the LoadLibrary() function from submodule associated with a specific
class:

ctypes.cdll.LoadLibrary() for ctypes.CDLL
ctypes.pydll.LoadLibrary() for ctypes.PyDLL
ctypes.windll.LoadLibrary() for ctypes.WinDLL
ctypes.oledll.LoadLibrary() for ctypes.OleDLL

The main challenge when loading shared libraries is how to find them in a portable way.
Different systems use different suffixes for shared libraries (.dll on Windows, .dylib on
macOS, .so on Linux) and search for them in different places. The main offender in this
area is Windows, which does not have a predefined naming scheme for libraries. Because of
that, we won't discuss details of loading libraries with ctypes on this system and will
concentrate mainly on Linux and macOS which deal with this problem in a consistent and
similar way. If you are interested in the Windows platform, refer to the official ctypes
documentation which has plenty of information about supporting that system (refer to
https://docs.python.org/3.5/library/ctypes.html).

Both library loading conventions (the LoadLibrary() function and specific library-type
classes) require you to use the full library name. This means all the predefined library
prefixes and suffixes need to be included. For example, to load the C standard library on
Linux, you need to write the following:

>>> import ctypes
>>> ctypes.cdll.LoadLibrary('libc.so.6')
<CDLL 'libc.so.6', handle 7f0603e5f000 at 7f0603d4cbd0>

Here, for macOS X, this would be the following:

>>> import ctypes
>>> ctypes.cdll.LoadLibrary('libc.dylib')

https://docs.python.org/3.5/library/ctypes.html

Python Extensions in Other Languages Chapter 9

[311]

Fortunately, the ctypes.util submodule provides a find_library() function that
allows you to load a library using its name without any prefixes or suffixes and will work
on any system that has a predefined scheme for naming shared libraries:

>>> import ctypes
>>> from ctypes.util import find_library
>>> ctypes.cdll.LoadLibrary(find_library('c'))
<CDLL '/usr/lib/libc.dylib', handle 7fff69b97c98 at 0x101b73ac8>
>>> ctypes.cdll.LoadLibrary(find_library('bz2'))
<CDLL '/usr/lib/libbz2.dylib', handle 10042d170 at 0x101b6ee80>
>>> ctypes.cdll.LoadLibrary(find_library('AGL'))
<CDLL '/System/Library/Frameworks/AGL.framework/AGL', handle 101811610 at
0x101b73a58>

So, if you are writing a ctypes package that is supposed to work both under macOS and
Linux, always use ctypes.util.find_library().

Calling C functions using ctypes is explained in the next section.

Calling C functions using ctypes
When the dynamic/shared library is successfully loaded to the Python object, the common
pattern is to store it as a module-level variable with the same name as the name of loaded
library. The functions can be accessed as object attributes, so calling them is like calling a
Python function from any other imported module, for example:

>>> import ctypes
>>> from ctypes.util import find_library
>>> libc = ctypes.cdll.LoadLibrary(find_library('c'))
>>> libc.printf(b"Hello world!\n")
Hello world!
13

Unfortunately, all the built-in Python types except integers, strings, and bytes are
incompatible with C datatypes and thus must be wrapped in the corresponding classes
provided by the ctypes module. Here is the full list of compatible datatypes that come
from the ctypes documentation:

ctypes type C type Python type
c_bool _Bool bool

c_char char 1-character bytes object
c_wchar wchar_t 1-character string
c_byte char int

Python Extensions in Other Languages Chapter 9

[312]

c_ubyte unsigned char int

c_short short int

c_ushort unsigned short int

c_int int int

c_uint unsigned int int

c_long long int

c_ulong unsigned long int

c_longlong __int64 or long long int

c_ulonglong
unsigned __int64 or unsigned
long long

int

c_size_t size_t int

c_ssize_t ssize_t or Py_ssize_t int

c_float float float

c_double double float

c_longdouble long double float

c_char_p char * (NUL terminated) bytes object or None
c_wchar_p wchar_t * (NUL terminated) string or None
c_void_p void * int or None

As you can see, the preceding table does not contain dedicated types that would reflect any
of the Python collections as C arrays. The recommended way to create types for C arrays is
to simply use the multiplication operator with the desired basic ctypes type as follows:

>>> import ctypes
>>> IntArray5 = ctypes.c_int * 5
>>> c_int_array = IntArray5(1, 2, 3, 4, 5)
>>> FloatArray2 = ctypes.c_float * 2
>>> c_float_array = FloatArray2(0, 3.14)
>>> c_float_array[1]
3.140000104904175

As syntax works for every basic ctypes type.

Let's look at how Python functions are passed as C callbacks in the next section.

Python Extensions in Other Languages Chapter 9

[313]

Passing Python functions as C callbacks
It is a very popular design pattern to delegate part of the work of function implementation
to custom callbacks provided by the user. The most-known function from the C standard
library that accepts such callbacks is a qsort() function that provides a generic
implementation of the quicksort algorithm. It is rather unlikely that you would like to use
this algorithm instead of the default TimSort implemented in CPython interpreter that is
more suited for sorting Python collections. Anyway, qsort() seems to be a canonical
example of an efficient sorting algorithm and a C API that uses the callback mechanism that
is found in many programming books. This is why we will try to use it as an example of
passing the Python function as a C callback.

The ordinary Python function type will not be compatible with the callback function type
required by the qsort() specification. Here is the signature of qsort() from the BSD man
page that also contains the type of accepted callback type (the compar argument):

void qsort(void *base, size_t nel, size_t width,
 int (*compar)(const void *, const void *));

So in order to execute qsort() from libc, you need to pass the following:

base: This is the array that needs to be sorted as a void* pointer.
nel: This is the number of elements as size_t.
width: This is the size of the single element in the array as size_t.
compar: This is the pointer to the function that is supposed to return int and
accepts two void* pointers. It points to the function that compares the size of
two elements that are being sorted.

We already know from the Calling C functions using ctypes section how to construct the C
array from other ctypes types using the multiplication operator. nel should be size_t
and that maps to Python int, so it does not require any additional wrapping and can be
passed as len(iterable). The width value can be obtained using the ctypes.sizeof()
function once we know the type of our base array. The last thing we need to know is how
to create the pointer to the Python function compatible with the compar argument.

The ctypes module contains a CFUNCTYPE() factory function that allows you to wrap
Python functions and represent them as C callable function pointers. The first argument is
the C return type that the wrapped function should return.

Python Extensions in Other Languages Chapter 9

[314]

It is followed by the variable list of C types that the function accepts as the arguments. The
function type compatible with the compar argument of qsort() will be as follows:

CMPFUNC = ctypes.CFUNCTYPE(
 # return type
 ctypes.c_int,
 # first argument type
 ctypes.POINTER(ctypes.c_int),
 # second argument type
 ctypes.POINTER(ctypes.c_int),
)

CFUNCTYPE() uses the cdecl calling convention, so it is compatible only
with the CDLL and PyDLL shared libraries. The dynamic libraries on
Windows that are loaded with WinDLL or OleDLL use the stdcall calling
convention. This means that the other factory must be used to wrap
Python functions as C callable function pointers. In ctypes, it is
WINFUNCTYPE().

To wrap everything up, let's assume that we want to sort a randomly shuffled list of integer
numbers with a qsort() function from the standard C library. Here is the example script
that shows how to do that using everything that we have learned about ctypes so far:

from random import shuffle

import ctypes
from ctypes.util import find_library

libc = ctypes.cdll.LoadLibrary(find_library('c'))

CMPFUNC = ctypes.CFUNCTYPE(
 # return type
 ctypes.c_int,
 # first argument type
 ctypes.POINTER(ctypes.c_int),
 # second argument type
 ctypes.POINTER(ctypes.c_int),
)

def ctypes_int_compare(a, b):
 # arguments are pointers so we access using [0] index
 print(" %s cmp %s" % (a[0], b[0]))

 # according to qsort specification this should return:
 # * less than zero if a < b

Python Extensions in Other Languages Chapter 9

[315]

 # * zero if a == b
 # * more than zero if a > b
 return a[0] - b[0]

def main():
 numbers = list(range(5))
 shuffle(numbers)
 print("shuffled: ", numbers)

 # create new type representing array with lenght
 # same as the lenght of numbers list
 NumbersArray = ctypes.c_int * len(numbers)
 # create new C array using a new type
 c_array = NumbersArray(*numbers)

 libc.qsort(
 # pointer to the sorted array
 c_array,
 # length of the array
 len(c_array),
 # size of single array element
 ctypes.sizeof(ctypes.c_int),
 # callback (pointer to the C comparison function)
 CMPFUNC(ctypes_int_compare)
)
 print("sorted: ", list(c_array))

if __name__ == "__main__":
 main()

The comparison function provided as a callback has an additional print statement, so we
can see how it is being executed during the sorting process as follows:

$ python ctypes_qsort.py
shuffled: [4, 3, 0, 1, 2]
 4 cmp 3
 4 cmp 0
 3 cmp 0
 4 cmp 1
 3 cmp 1
 0 cmp 1
 4 cmp 2
 3 cmp 2
 1 cmp 2
sorted: [0, 1, 2, 3, 4]

Python Extensions in Other Languages Chapter 9

[316]

Of course, using qsort in Python doesn't make a lot of sense because Python has its own
specialized sorting algorithm. Anyway, passing Python functions as C callbacks is a very
useful technique for integrating many third-party libraries.

The next section talks about CFFI.

CFFI
CFFI is an FFI for Python that is an interesting alternative to ctypes. It is not a part of the
standard library but it is easily available as a PyPI as the cffi package. It is different from
ctypes because it puts more emphasis on reusing plain C declarations instead of providing
extensive Python APIs in a single module. It is way more complex and also has a feature
that allows you to automatically compile some parts of your integration layer into
extensions using C compiler. So it can be used as a hybrid solution that fills the gap
between plain C extensions and ctypes.

Because it is a very large project, it is impossible to briefly introduce it in a few paragraphs.
On the other hand, it would be a shame to not say something more about it. We have
already discussed one example of integrating the qsort() function from the standard
library using ctypes. So, the best way to show the main differences between these two
solutions would be to reimplement the same example with cffi. I hope that the following
one block of code is worth more than a few paragraphs of text:

from random import shuffle

from cffi import FFI

ffi = FFI()

ffi.cdef("""
void qsort(void *base, size_t nel, size_t width,
 int (*compar)(const void *, const void *));
""")
C = ffi.dlopen(None)

@ffi.callback("int(void*, void*)")
def cffi_int_compare(a, b):
 # Callback signature requires exact matching of types.
 # This involves less more magic than in ctypes
 # but also makes you more specific and requires
 # explicit casting
 int_a = ffi.cast('int*', a)[0]
 int_b = ffi.cast('int*', b)[0]

Python Extensions in Other Languages Chapter 9

[317]

 print(" %s cmp %s" % (int_a, int_b))

 # according to qsort specification this should return:
 # * less than zero if a < b
 # * zero if a == b
 # * more than zero if a > b
 return int_a - int_b

def main():
 numbers = list(range(5))
 shuffle(numbers)
 print("shuffled: ", numbers)

 c_array = ffi.new("int[]", numbers)

 C.qsort(
 # pointer to the sorted array
 c_array,
 # length of the array
 len(c_array),
 # size of single array element
 ffi.sizeof('int'),
 # callback (pointer to the C comparison function)
 cffi_int_compare,
)
 print("sorted: ", list(c_array))

if __name__ == "__main__":
 main()

The output will be similar to one presented earlier when discussing the example of C
callbacks in ctypes. Using CFFI to integrate qsort in Python doesn't make any more sense
than using ctypes for the same purpose. Anyway, the preceding example should show the
main differences between ctypes and CFFI regarding handling datatypes and function
callbacks.

Python Extensions in Other Languages Chapter 9

[318]

Summary
This chapter explained one of the most advanced topics in the book. We discussed the
reasons and tools for building Python extensions. We started by writing pure C extensions
that depend only on Python/C API and then reimplemented it with Cython to show how
easy it can be if you only choose the proper tool.

There are still some reasons for doing things the hard way and using nothing more than the
pure C compiler and the Python.h headers. Anyway, the best recommendation is to use
tools such as Cython or Pyrex (not featured here) because this will make your code base
more readable and maintainable. It will also save you from most of the issues caused by
incautious reference counting and memory mismanagement.

Our discussion of extensions ended with the presentation of ctypes and CFFI as
alternative ways to solve the problems of integrating shared libraries. Because they do not
require writing custom extensions to call functions from compiled binaries, they should be
your tools of choice for integrating closed-source dynamic/shared libraries—especially if
you don't need to use custom C code.

In the next chapter, we will take a short rest from advanced programming techniques and
delve into topics that are no less important—code management and version control
systems.

3
Section 3: Quality over Quantity

This part deals with various development processes aimed to increase software quality and
streamline the overall development processes. The reader will learn how to properly
manage source code in version-control systems, how to document their code, and how to
ensure that it will be always thoroughly tested.

The following chapters are included in this section:

Chapter 10, Managing Code
Chapter 11, Documenting Your Project
Chapter 12, Test-Driven Development

10
Managing Code

Working on a software project that involves more than one person is tough. Everything
seems to slow down and get harder as you add more people to the team. This happens for
many reasons. In this chapter, we will explore a few of these reasons and also try to provide
some ways of working that aim to improve the collaborative development of code.

First of all, every code base evolves over time, and it is important to track all the changes
that are made, even more so when many developers work on it. That is the role of a version
control system.

It's very common that multiple people expand the same code base simultaneously and in
parallel. It's definitely easier if all these people have different roles and work on different
aspects. But that's rarely true. Therefore, a lack of global visibility generates a lot of
confusion about what is going on, and what is being done by others. This is unavoidable,
and some tools have to be used to provide continuous visibility and mitigate the problem.
This is done by setting up a series of tools for continuous development processes, such as
continuous integration or continuous delivery.

In this chapter, we will cover the following topics:

Working with a version control system
Setting up continuous development processes

Technical requirements
You can download the latest version of Git from https://git-scm.com for this chapter.

https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com
https://git-scm.com

Managing Code Chapter 10

[321]

Working with a version control system
Version control systems (VCSes) provide a way to share, synchronize, and back up any
kind of file, but often concentrate on text files containing source code. They are categorized
into the following two families:

Centralized systems
Distributed systems

Let's take a look at the preceding families in the following sections.

Centralized systems
A centralized version control system is based on a single server that holds the files and lets
people check in and check out the changes that are made to those files. The principle is
quite simple—everyone can get a copy of the files on his/her system and work on them.
From there, every user can commit his/her changes to the server. They will be applied and
the revision number will be raised. The other users will then be able to get those changes by
synchronizing their repository copy through an update.

As the following diagram shows, a repository evolves through all the commits, and the
system archives all revisions into a database in order to be able to undo any change, or
provide information on what has been done and by whom:

Figure 1

Managing Code Chapter 10

[322]

Every user in this centralized configuration is responsible for synchronizing his/her local
repository with the main one, in order to get the other users' changes. This means that some
conflicts can occur when a locally modified file has been changed and checked in by
someone else. A conflict resolution mechanism is carried out, in this case on the user
system, as shown in the following diagram:

Figure 2

The following steps will help you to understand this process better:

Joe checks in a change.1.
Pamela attempts to check in a change on the same file.2.
The server complains that her copy of the file is out of date.3.
Pamela updates her local copy. The version control software may or may not be4.
able to merge the two versions seamlessly (that is, without a conflict).
Pamela commits a new version that contains the latest changes made by Joe and5.
her own.

This process is perfectly fine on small-sized projects that involve a few developers and a
small number of files, but it becomes problematic for bigger projects. For instance, a
complex change involves a lot of files, which is time-consuming, and keeping everything
local before the whole work is done is unfeasible. The following are some problems of such
an approach:

The user may keep his/her changes in private for a long time without a proper
backup
It is hard to share work with others until it is checked in, and sharing it before it
is fully done would leave the repository in an unstable state, and so the other
users would not want to share

Managing Code Chapter 10

[323]

A centralized VCS can resolve this problem by providing branches and merges. It is possible
to fork from the main stream of revisions to work on a separated line, and then to get back
to the main stream.

In the following diagram, Joe starts a new branch from revision 2 to work on a new feature.
The revisions are incremented in the main stream and in his branch, every time a change is
checked in. At revision 7, Joe has finished his work and committed his changes into the
trunk (the main branch). This process often requires some conflict resolution.

But in spite of their advantages, a centralized VCS has the following pitfalls:

Branching and merging is quite hard to deal with. It can become a nightmare.
Since the system is centralized, it is impossible to commit changes offline. This
can lead to a huge and single commit to the server when the user gets back
online.
Lastly, it doesn't work very well for projects such as Linux, where many
companies permanently maintain their own branch of the software and there is
no central repository that everyone has an account on.

For the latter, some tools are making it possible to work offline, such as SVK, but a more
fundamental problem is how the centralized VCS works:

Figure 3

Managing Code Chapter 10

[324]

Despite these pitfalls, centralized VCSes are still quite popular among many companies,
mainly due to the inertia of corporate environments. The main examples of centralized
VCSes used by many organizations are Subversion (SVN) and Concurrent Version
System (CVS). The obvious issues with a centralized architecture for version control
systems is the reason why most of the open source communities have switched already to
the more reliable architecture of Distributed VCS (DVCS).

Distributed systems
Distributed VCS is the answer to the centralized VCS deficiencies. It does not rely on a
main server that people work with, but on peer-to-peer principles. Everyone can hold and
manage his/her own independent repository for a project and synchronize it with other
repositories, as shown in the following diagram:

Figure 4

In preceding diagram, we can see an example of such a system in use:

Bill pulls the files from HAL's repository.1.
Bill makes some changes to the files.2.
Amina pulls the files from Bill's repository.3.
Amina changes the files too.4.
Amina pushes the changes to HAL.5.

Managing Code Chapter 10

[325]

Kenny pulls the files from HAL.6.
Kenny makes changes.7.
Kenny regularly pushes his changes to HAL.8.

The key concept is that people push and pull the files to or from other repositories, and this
behavior changes according to the way people work and the way the project is managed.
Since there is no main repository anymore, the maintainer of the project needs to define a
strategy for people to push and pull the changes.

Furthermore, people have to be a bit smarter when they work with several repositories. In
most distributed version control systems, revision numbers are local to each repository;
there are no global revision numbers anyone can refer to. Therefore, tags have to be used to
make things clearer. Tags are textual labels that can be attached to a revision. Lastly, users
are responsible for backing up their own repositories, which is not the case in a centralized
infrastructure where the administrator usually sets proper backup strategies.

In the next section, distributed strategies are explained.

Distributed strategies
A central server is, of course, still desirable with a DVCS if you're working with other
people. But, the purpose of that server is completely different than in centralized VCSes. It
is simply a hub that allows all developers to share their changes in a single place, rather
than pull and push between each other's repositories. Such a single central repository (often
called upstream also) serves as a backup for all the changes tracked in the individual
repositories of all the following team members.

Different approaches can be applied to sharing code with the central repository in a DVCS.
The simplest one is to set up a server that acts like a regular centralized server, where every
member of the project can push his/her changes into a common stream. But this approach is
a bit simplistic. It does not take full advantage of the distributed system, since people will
use push and pull commands in the same way as they would with a centralized system.

Another approach consists of providing several repositories on a server with the following
different levels of access:

Unstable repository: This is where everyone can push changes.
Stable repository: This is read-only for all members, except the release managers.
They are allowed to pull changes from the unstable repository and decide what
should be merged.
Release repositories: These correspond to the releases and are read-only.

Managing Code Chapter 10

[326]

This allows people to contribute and managers to review the changes before they make it to
the stable repository. But depending on the tools used, this may be too much of an
overhead. In many distributed version control systems, this can also be handled with a
proper branching strategy.

Let' take a look at centralized and distributed version control systems.

Centralized or distributed?
Just forget about the centralized version control systems. Let's be honest, centralized
version control systems are relics of the past. In the times when most of us have the
opportunities to work remotely full-time, it is unreasonable to be constrained by all the
deficiencies of a centralized VCS. For instance, with CVS or SVN, you can't track the
changes when offline. And that's silly.

What should you do when the internet connection at your workplace is temporarily broken
or the central repository goes down? Should you forget about all your workflow and just
allow changes to pile up until the situation changes, and then just commit them as one huge
blob of unstructured updates? No!

Also, most of the centralized version control systems do not handle branching schemes
efficiently. And branching is a very useful technique that allows you to limit the number of
merge conflicts in the projects where many people work on multiple features. Branching in
SVN is so ridiculous that most of the developers try to avoid it at all costs. Instead, most of
the centralized VCSes provide some file locking primitives that should be considered the
anti-pattern for any version system.

The sad truth about every version control tool (and software in general) is that, if it contains
a dangerous option, someone in your team will start using it on a daily basis eventually.
And locking is one such feature that, in return for less merge conflicts, will drastically
reduce the productivity of your whole team. By choosing a version control system that does
not allow for such bad workflows, you are creating an environment that makes it more
likely that your developers will use it effectively.

In the next section, the Git distributed version control system is explained.

Managing Code Chapter 10

[327]

Use Git if you can
Git is currently the most popular distributed version control system. It was created by
Linus Torvalds for the purpose of maintaining versions of the Linux kernel when its core
developers needed to resign from proprietary BitKeeper software that they used
previously.

If you have not used any of the version control systems, then you should start with Git
from the beginning. If you already use some other tools for version control, learn Git
anyway. You should definitely do that, even if your organization is unwilling to switch to
Git in the near future. Otherwise, you risk becoming a living fossil.

I'm not saying that Git is the ultimate and best DVCS. It surely has some disadvantages.
Most of all, it is not an easy to use tool and is very challenging for newcomers. Git's steep
learning curve is already a source of many jokes online. There may be some version control
systems that may perform better for a lot of projects, and the full list of open source Git
contenders would be quite long. Anyway, Git is currently the most popular DVCS, so the
network effect really works in its favor.

Briefly speaking, the network effect means that the overall benefit of using popular tools is
greater than others, even if definitely better alternatives exist, precisely due to its high
popularity (this is how VHS killed Betamax). It is very probable that people in your
organization, as well as new hires, are somewhat proficient with Git, so the cost of
integrating exactly this DVCS will be lower than trying something less popular.

Anyway, it is still always good to know something more, and familiarizing yourself with
other DVCSes won't hurt you. The most popular open source rivals of Git are Mercurial,
Bazaar, and Fossil. The first one is especially neat because it is written in Python and was
the official version control system for CPython sources. There are some signs that it may
change in the near future, so CPython developers may already use Git at the time you read
this book. But it really does not matter. Both systems are great. If there was no Git or it was
less popular, I would definitely recommend Mercurial. There is evident beauty in its
design. It's definitely not as powerful as Git, but is a lot easier to master for beginners.

Let's take a look at GitFlow and GitHub Flow in the next section.

Managing Code Chapter 10

[328]

GitFlow and GitHub Flow
The very popular and standardized methodology for working with Git is simply called
GitFlow. Here is a brief description of the main rules of that flow:

There is a main working branch, usually called develop, where all the
development for the latest version of the application occurs.
New project features are implemented in separate branches called feature branches
that always start from the develop branch. When work on a feature is finished
and the code is properly tested, this branch is merged back to develop.
When the code in develop is stabilized (without known bugs) and there is a
need for a new application release, a new release branch is created. This release
branch usually requires additional tests (extensive QA tests, integration tests, and
so on), so new bugs will definitely be found. If additional changes (such as bug
fixes) are included in a release branch, they need to eventually be merged back to
the develop branch.
When code on a release branch is ready to be deployed/released, it is merged to
the master branch, and the latest commit on the master is labeled with an
appropriate version tag. No other branches but feature branches can be merged
to the master. The only exceptions are hot fixes that need to be immediately
deployed or released.
Hot fixes that require urgent release are always implemented on separate
branches that start from the master. When the fix is done, it is merged to both
the develop and master branches. Merging of the hot fix branch is done as if it
were an ordinary release branch, so it must be properly tagged and the
application version identifier should be modified accordingly.

The visual example of GitFlow in action is presented in the following. For those that have
never worked in such a way and also have never used a distributed version control system,
this may be a bit overwhelming. Anyway, it is really worth trying in your organization if
you don't have any formalized workflow. It has multiple benefits and also solves real
problems. It is especially useful for teams of multiple programmers that are working on
many separate features, and when continuous support for multiple releases needs to be
provided.

Managing Code Chapter 10

[329]

This methodology is also handy if you want to implement continuous delivery using
continuous deployment processes because it makes it clear which version of code
represents a deliverable release of your application or service. It is also a great tool for open
source projects because it provides great transparency to both the users and the active
contributors:

Figure 5

Managing Code Chapter 10

[330]

So, if you think that this short summary of GitFlow makes a bit of sense and it did not scare
you yet, then you should dig deeper into online resources on that topic. It is really hard to
say who is the original author of the preceding workflow, but most online sources point to
Vincent Driessen. Thus, the best starting material to learn about GitFlow is his online article
titled A successful Git branching model (refer to
http://nvie.com/posts/a-successful-git-branching-model/).

Like every other popular methodology, GitFlow gained a lot of criticism over the internet
from programmers that do not like it. The most commented thing about Vincent Driessen's
article is the rule (strictly technical) saying that every merge should create a new artificial
commit representing that merge. Git has an option to do fast forward merges, and Vincent
discourages that option. This is, of course, an unsolvable problem because the best way to
perform merges is a completely subjective matter. Anyway, the real issue of GitFlow is that
it is noticeably complicated. The full set of rules is really long, so it is easy to make some
mistakes. It is very probable that you would like to choose something simpler.

One such simpler flow is used at GitHub and described by Scott Chacon on his blog (refer
to http://scottchacon.com/2011/08/31/github-flow.html). It is referred to as GitHub
Flow, and is very similar to GitFlow in the following two main aspects:

Anything in the master branch is deployable
The new features are implemented on separate branches

The main difference from GitFlow is simplicity. There is only one main development
branch, master, and it is always stable (in contrast to the develop branch in GitFlow).
There are also no release branches and such big emphasis on tagging the code. There is no
such need in GitHub Flow because, as they say, when something is merged into the master,
it is usually deployed to production immediately. A diagram presenting an example of
GitHub Flow in action is shown in here.

GitHub Flow seems like a good and lightweight workflow for teams that want to set up a
continuous deployment process for their project. Such a workflow is, of course, not viable
for any project that has a strong notion of release (with strict version numbers), at least
without any modifications. It is important to know that the main assumption of the always
deployable master branch cannot be ensured without a proper automated testing and
building procedure. This is what continuous integration systems take care of, and we will
discuss that a bit later.

http://nvie.com/posts/a-successful-git-branching-model/
http://scottchacon.com/2011/08/31/github-flow.html

Managing Code Chapter 10

[331]

The following is a diagram presenting an example of GitHub Flow in action:

Figure 6: Visual presentation of GitHub flow in action

Managing Code Chapter 10

[332]

Note that both GitFlow and GitHub Flow are only branching strategies, so despite having
Git in their names, these strategies are not limited to that single DVCS solution. It's true that
the official article describing GitFlow mentions even specific git command parameter that
should be used when performing a merge, but the general idea can be easily applied to
almost any other distributed version control system.

In fact, due to the way it is suggested to handle merges, Mercurial seems like a better tool to
use for this specific branching strategy! The same applies to GitHub Flow. This is the only
branching strategy sprinkled with a bit of specific development culture, so it can be used in
any version control system that allows you to easily create and merge branches of code.

As a last comment, remember that no methodology is carved in stone and no one forces
you to use it. Methodologies are created to solve some existing problems and keep you
from common mistakes or pitfalls. You can take all of their rules or modify some of them to
your own needs. They are great tools for beginners that may easily get into common
pitfalls.

If you are not familiar with any version control systems, you should then start with a
lightweight methodology like GitHub Flow without any custom modifications. You should
start thinking about more complex workflows only when you get enough experience with
Git or any other tool of your choice. Anyway, as you gain more and more proficiency, you
will eventually realize that there is no perfect workflow that suits every project. What
works well in one organization doesn't necessarily work well in others.

Setting up continuous development
processes
There are some processes that can greatly streamline your development and reduce the
time in getting the application ready to be released or deployed to the production
environment. They often have continuous in their name. We will discuss the most important
and popular ones in this section. It is important to highlight that they are strictly technical
processes, so it is almost not related to project management methodologies, although they
can highly dovetail with the latter.

The following are the most important processes that we will mention:

Continuous integration
Continuous delivery
Continuous deployment

Managing Code Chapter 10

[333]

The order of listing is important because each one of them is an extension of the previous
one. Continuous deployment could be simply considered as a variation of the same
process. We will discuss them separately anyway, because what is only a minor difference
for one organization may be critical for others.

The fact that these are technical processes means that their implementation strictly depends
on the usage of proper tools. The general idea behind each of them is rather simple, so you
could build your own continuous integration/delivery/deployment tools, but the best
approach is to choose something that is already built and tested. This way, you can focus
more on building your own product instead of developing the tool chain for continuous
development.

Let's take a look at continuous integration in the next section.

Continuous integration
Continuous integration, often abbreviated as CI, is a process that takes benefit from
automated testing and version control systems to provide a fully automatic integration
environment. It can be used with centralized version control systems, but in practice, it
spreads its wings only when a good DVCS tool is being used to manage the code.

Setting up a repository is the first step toward continuous integration, which is a set of
software practices that have emerged from eXtremeProgramming (XP).

The first and most important requirement to implement continuous integration is to have a
fully automated workflow that can test the whole application in the given revision in order
to decide if it is technically correct. And technically correct means that it is free of known
bugs and that all the features work as expected.

The general idea behind CI is that tests should be run always before merging to the
mainstream development branch. This could be handled only through formal arrangements
in the development team, but practice shows that this is not a reliable approach. The
problem is that, as programmers, we tend to be overconfident and unable to look critically
at our code. If continuous integration is built only on team arrangements, it will inevitably
fail because some of the developers will eventually skip their testing phase and commit
possibly faulty code to the mainstream development branch that should always remain
stable. And, in reality, even simple changes can introduce critical issues.

Managing Code Chapter 10

[334]

The obvious solution is to utilize a dedicated build server that automatically runs all the
required application tests whenever the code base changes. There are many tools that
streamline this process, and they can be easily integrated with version control hosting
services such as GitHub or Bitbucket, and self-hosted services such as GitLab. The benefit of
using such tools is that the developer may locally run only the selected subset of tests (that,
according to them, are related to their current work) and leave the potentially time-
consuming suite of integration tests for the build server. This really speeds up the
development, but still reduces the risk that new features will break the existing stable code
found in the mainstream code branch.

Another plus of using a dedicated build server is that tests can be run in the environment
that is closer to the production. Despite the fact that developers should also use
environments that match the production as much as possible, and there are great tools for
that (such as Vagrantand Docker), it is hard to enforce this in any organization. You can
easily do that on one dedicated build server or even on a cluster of build servers. Many CI
tools make that even less problematic by utilizing various virtualization and/or
containerization tools that help to ensure that tests are run always in the same and
completely fresh testing environment.

Having a build server is also a must if you create desktop or mobile applications that must
be delivered to users in binary form. The obvious thing to do is to always perform such a
building procedure in the same environment. Almost every CI system takes into account
the fact that applications often need to be downloaded in binary form after testing/building
is done. Such building results are commonly referred to as build artefacts.

Because CI tools originated in times where most of the applications were written in
compiled languages, they mostly use the term building to describe their main activity. For
languages such as C or C++, this is obvious because applications cannot be run and tested if
they are not built (compiled). For Python, this makes a bit less sense because most of the
programs are distributed in a source form and can be run without any additional building
step. So, in the scope of our language, the building and testing terms are often used
interchangeably when talking about continuous integration.

Testing every commit
The best approach to continuous integration is to perform the whole test suite on every
change being pushed to the central repository. Even if one programmer pushes a series of
multiple commits in a single branch, it often makes sense to test each change separately. If
you decide to test only the latest change set in a single repository push, then it will be
harder to find sources of possible regression problems that were introduced somewhere in
the middle.

Managing Code Chapter 10

[335]

Of course, many DVCS, such as Git or Mercurial, allow you to limit time spent on searching
regression sources by providing commands to bisect the history of changes, but in practice,
it is much more convenient to do that automatically as part of your continuous integration
process.

There is an issue of projects that have very long running test suites that may require tens of
minutes or even hours to complete. One server may not be enough to perform all the builds
on every commit made in the given time frame. This will make waiting for results even
longer. In fact, long running tests are a problem on their own that will be described later in
the Problem 2 – Too long building time section.

For now, you should know that you should always strive to test every commit pushed to
the repository. If you have no power to do that on a single server, then set up the whole
building cluster. If you are using a paid service, then pay for a higher pricing plan with
more parallel builds. Hardware is cheap. Your developers' time is not. Eventually, you will
save more money by having faster parallel builds and a more expensive CI setup than you
would save on skipping tests for selected changes.

Merge testing through CI
Reality is complicated. If the code on a feature branch passes all the tests, it does not mean
that the build will not fail when it is merged to a stable mainstream branch. Both of the
popular branching strategies mentioned in the GitFlow and GitHub Flow section assume that
code merged to the master branch is always tested and deployable. But how can you be
sure that this assumption is met if you did not perform the merge yet? This is a lesser
problem for GitFlow (if implemented well and used precisely), due to its emphasis on
release branches. But it is a real problem for simple GitHub Flow, where merging to
master is often related with conflicts and is very likely to introduce regressions in tests.
Even for GitFlow, this is a serious concern. This is a complex branching model, so for sure
people will make mistakes when using it. So, you can never be sure that the code on master
will pass the tests after a merge unless you take some special precautions.

One of the solutions to this problem is to delegate the duty of merging feature branches into
a stable mainstream branch to your CI system. In many CI tools, you can easily set up an
on-demand building job that will locally merge a specific feature branch to the stable
branch and push it to the central repository if it passed all the tests. If the build fails, then
such a merge will be reverted, leaving the stable branch untouched.

Managing Code Chapter 10

[336]

Of course, this approach gets more complex in fast paced projects where many feature
branches are developed simultaneously, because there is high risk of conflicts that can't be
resolved automatically by any CI system. There are, of course, solutions to that problem,
like rebasing in Git.

Such an approach to merging anything into the stable branch in a version control system is
practically a must if you about going further and implementing continuous delivery
processes. It is also required if you have a strict rule in your workflow stating that
everything in a stable branch is releasable.

Matrix testing
Matrix testing is a very useful tool if your code needs to be tested in different environments.
Depending on your project's needs, the direct support of such a feature in your CI solution
may be more or less required.

The easiest way to explain the idea of matrix testing is to take the example of some open
source Python packages. Django, for instance, is the project that has a strictly specified set
of supported Python language versions. The 1.9.3 version lists Python 2.7, Python 3.4, and
Python 3.5 versions as required in order to run Django code. This means that every time
Django core developers make a change to the project, the full test suite must be executed on
these three Python versions in order to back this claim. If even a single test fails on one
environment, the whole build must be marked as failed because the backwards
compatibility constraint was possibly broken. For such a simple case, you do not need any
support from CI. There is a great Tox tool (refer to https://tox.readthedocs.org/) that,
among other features, allows you to easily run test suites in different Python versions in
isolated virtual environments. This utility can also be easily used in local development.

But this was only the simplest example. It is not uncommon that the application must be
tested in multiple environments where completely different parameters must be tested. The
following are a few of these:

Different operating systems
Different databases
Different versions of backing services
Different types of filesystems

https://tox.readthedocs.org/

Managing Code Chapter 10

[337]

The full set of combinations forms a multi-dimensional environment parameter matrix, and
this is why such a setup is called matrix testing. When you need such a deep testing
workflow, it is very possible that you require some integrated support for matrix testing in
your CI solution. With a large number of possible combinations, you will also require a
highly parallelizable building process, because every run over the matrix will require a
large amount of work from your building server. In some cases, you will be forced to
decide on some trade-off if your test matrix has too many dimensions.

In the next section, continuous delivery is explained.

Continuous delivery
Continuous delivery is a simple extension of the continuous integration idea. This approach
to software engineering aims to ensure that the application can be released reliably at any
time. The goal of continuous delivery is to release software in short circles. It generally
reduces both costs and the risk of releasing software by allowing the incremental delivery
of changes to the application in production.

The following are the main prerequisites for building successful continuous delivery
processes:

A reliable continuous integration process
An automated process of deployment to the production environment (if the
project has a notion of the production environment)
A well-defined version control system workflow or branching strategy that
allows you to easily define what version of software represents releasable code

In many projects, the automated tests are not enough to reliably tell if the given version of
the software is really ready to be released. In such cases, additional manual user acceptance
tests are usually performed by skilled QA staff. Depending on your project management
methodology, this may also require some approval from the client. This does not mean that
you can't use GitFlow, GitHub Flow, or a similar branching strategy, if some of your
acceptance tests must be performed manually by humans. This only changes the semantics
of your stable and release branches from ready to be deployed to ready for user acceptance tests
and approval.

Managing Code Chapter 10

[338]

Also, the previous paragraph does not change the fact that code deployment should
always be automated. We already discussed some of the tools and benefits of automation in
Chapter 8, Deploying the Code. As stated there, it will always reduce the cost and risk of a
new release. Also, most of the available CI tools allow you to set up special build targets
that instead of testing will perform automated deployment for you. In most continuous
delivery processes, this is usually triggered manually (on demand) by authorized staff
members when they are sure that there is the required approval and all acceptance tests
ended with success.

Let's take a look at continuous deployment in the next section.

Continuous deployment
Continuous deployment is a process that takes continuous delivery to the next level. It is a
perfect approach for projects where all acceptance tests are automated and there is no need
for manual approval from anyone. In short, once code is merged to the stable branch
(usually master), it is automatically deployed to the production environment.

This approach seems to be very nice and robust, but is not often used because it is very
hard to find a project that does not need manual QA testing and someone's approval before
a new version is released. Anyway, it is definitely doable and some companies claim to be
working that way.

In order to implement continuous deployment, you need the same basic prerequisites as
the continuous delivery process. Also, a more careful approach to merging into a stable
branch is often required. What gets merged into the master in continuous integration
usually goes instantly to the production environment. Because of that, it is reasonable to
hand off the merging task to your CI system, as explained in the Merge testing through CI
section.

In the next section, popular tools for continuous integration are described.

Managing Code Chapter 10

[339]

Popular tools for continuous integration
There is a tremendous variety of choices for CI tools nowadays. They greatly vary on ease
of use and also available features, and almost each one of them has some unique features
that others will lack. Therefore, it is hard to give a good general recommendation because
each project has completely different needs and also a different development workflow.
There are, of course, some great free and open source projects, but paid hosted services
are also worth researching. It's because open source software, such as Jenkins or Buildbot,
are freely available to install without any fee, but it is false thinking that they are free to
run. Both hardware and maintenance are added costs of having your own CI system. In
some circumstances, it may be less expensive to pay for such a service instead of paying for
additional infrastructure and spend time on resolving any issues in open source CI
software. Still, you need to make sure if sending your code to any third-party service is in
line with security policies at your company.

Here, we will review some of the most popular, free open source tools, as well as paid
hosted services. I really don't want to advertise any vendor, so we will discuss only those
that are available without any fees for open source projects to justify this rather subjective
selection. No best recommendation will be given, but we will point out both the good and
bad sides of any solution. If you are still in doubt, the next section, which describes
common continuous integration pitfalls, should help you in making good decisions.

Let's take a look at Jenkins in the next section.

Jenkins
Jenkins (https://jenkins-ci.org) seems to be the most popular tool for continuous
integration. It is also one of the oldest open source projects in this field in pair with Hudson
(the development of these two projects split and Jenkins is a fork of Hudson):

https://jenkins-ci.org

Managing Code Chapter 10

[340]

Figure 7: Preview of the Jenkins main interface

Jenkins is written in Java and was initially designed mainly for building projects written in
the Java language. This means that for Java developers, it is a perfect CI system, but you
may struggle a bit if you want to use it with another technology stack.

Managing Code Chapter 10

[341]

One big advantage of Jenkins is a very extensive list of features that Jenkins have
implemented straight out-of-the-box. The most important one, from the Python
programmer's point of view, is the ability to understand test results. Instead of giving only
plain binary information about build success, Jenkins is able to present results of all tests
that were executed during a run in the form of tables and graphs. This will, of course, not
work automatically as you need to provide those results in a specific format at first (by
default, Jenkins understands JUnit files) during your build. Fortunately, a lot of Python
testing frameworks are able to export results in a machine-readable format.

The following is an example presentation of unit test results in Jenkins in its web UI:

Figure 8: Presentation of unit test results in Jenkins

Managing Code Chapter 10

[342]

The following screenshot illustrates how Jenkins presents additional build information,
such as trends or downloadable artefacts:

Figure 9: Test result trends graph of an example Jenkins project

Surprisingly, most of Jenkins' power does not come from its built-in features, but from a
huge repository of free plugins. What is available from clean installation may be great for
Java developers, but programmers using different technologies will need to spend a lot of
time to make it suitable for their project. Even support for Git is provided by some plugin.

Managing Code Chapter 10

[343]

It is great that Jenkins is so easily extendable, but this also has some serious downsides.
You will eventually depend on installed plugins to drive your continuous integration
process, and these are developed independently from the Jenkins core. Most authors of
popular plugins try to keep them up to date and compatible with the latest releases of
Jenkins. Nevertheless, the extensions with smaller communities will be updated less
frequently, and some day you may be either forced to resign from them or postpone the
update of the core system. This may be a real problem when there is an urgent need for an
update (a security fix, for instance), but some of the plugins that are critical for your CI
process will not work with the new version.

The basic Jenkins installation that provides you with a master CI server is also capable of
performing builds. This is different from other CI systems that put more emphasis on
distribution and make strict separation from master and slave build servers. This is both
good and bad. On the one hand, it allows you to set up a wholly working CI server in a few
minutes. Jenkins, of course, supports deferring work to build slaves, so you can scale out in
the future whenever it is needed. On the other hand, it is very common that Jenkins is
underperforming because it is deployed in single server settings, and its users complain
about performance because it is not providing enough resources. It is not hard to add new
building nodes to the Jenkins cluster. It seems that this is a mental challenge rather than a
technical problem for those that have got used to the single server setup.

In the next section, Buildbot is explained.

Buildbot
Buildbot (http://buildbot.net/) is software written in Python that automates the compile
and test cycles for any kind of software projects. It is configurable in a way that every
change made on a source code repository generates some builds and launches some tests,
and then provides some feedback:

http://buildbot.net/

Managing Code Chapter 10

[344]

Figure 10: Buildbot's Waterfall view for the CPython 3.x branch

This tool is used, for instance, by CPython core, and can be found at
http://buildbot.python.org/all/waterfall?&category=3.x.stable.

The default Buildbot's representation of build results is a Waterfall view, as shown in the
preceding diagram. Each column corresponds to a build composed of steps and is
associated with some build slaves. The whole system is driven by the build master as
follows:

The build master centralizes and drives everything
A build is a sequence of steps used to build an application and run tests over it

http://buildbot.python.org/all/waterfall?&category=3.x.stable

Managing Code Chapter 10

[345]

A step is an atomic command that does the following:
Checks out the files of a project
Builds the application
Runs tests

A build slave is a machine that is in charge of running a build. It can be located anywhere
as long as it can reach the build master. Thanks to this architecture, Buildbot scales very
well. All of the heavy lifting is done on build slaves, and you can have as many of them as
you want.

Its very simple and clear design makes Buildbot very flexible. Each build step is just a
single command. Buildbot is written in Python, but it is completely language agnostic. So,
the build step can be absolutely anything. The process exit code is used to decide if the step
ended as a success, and all standard output of the step command is captured by default.
Most of the testing tools and compilers follow good design practices, and they indicate
failures with proper exit codes and return readable error and warning messages on
the stdout or stderr output streams. If that's not true, you can usually easily wrap them
with simple Bash script. In most cases, this is a simple task. Thanks to this, a lot of projects
can be integrated with Buildbot with only minimal effort.

The next advantage of Buildbot is that it supports the following version control systems out
of the box, without the need to install any additional plugins:

CVS
Subversion
Perforce
Bzr
Darcs
Git
Mercurial
Monotone

The main disadvantage of Buildbot is its lack of higher-level presentation tools for
presenting build results. For instance, other projects such as Jenkins can take the notion of
unit tests being run during the build. If you feed them with the test results data presented
in the proper format (usually XML), they can present all the tests in readable form, like
tables and graphs. Buildbot does not have such a built-in feature, and this is the price it
pays for its flexibility and simplicity. If you need some extra bells and whistles, you need to
build them by yourself or search for some custom extensions. On the other hand, thanks to
such simplicity, it is easier to reason about Buildbot's behavior and to maintain it. So, there
is always a trade-off.

Managing Code Chapter 10

[346]

Let's take a look at Travis CI in the next section.

Travis CI
Travis CI (https://travis-ci.org/) is a continuous integration system sold in Software as
a Service form. It is a paid service for enterprises, but can be used for free in open source
projects hosted on GitHub:

Figure 11: Travis CI page for the django-userena project, showing failed builds in its build matrix

https://travis-ci.org/

Managing Code Chapter 10

[347]

Naturally, it is the free part of its pricing plan that made it very popular. Currently, it is one
of the most popular CI solutions for projects hosted on GitHub. But the biggest advantage
over older projects, such as Buildbot or Jenkins, is how the build configuration is stored. All
build definition is provided in a single .travis.yml file in the root of the project
repository. Travis works only with GitHub, so if you have enabled such integration, your
project will be tested on every commit if there is only a .travis.yml file.

Having the whole CI configuration for a project in its code repository is really a great
approach. This makes the whole process a lot clearer for the developers and also allows for
more flexibility. In systems where build configuration must be provided to build a server
separately (using a web interface or through server configuration), there is always some
additional friction when something new needs to be added to the testing rig. In some
organizations where only selected staff are authorized to maintain the CI system, this really
slows the process of adding new build steps down. Also, sometimes, there is a need to test
different branches of the code with completely different procedures. When build
configuration is available in project sources, it is a lot easier to do so.

The other great feature of Travis is the emphasis it puts on running builds in clean
environments. Every build is executed in a completely fresh virtual machine, so there is no
risk of some persisted state that would affect build results. Travis uses a rather big virtual
machine image, so you have a lot of open source software and programming environments
available without the need for additional installs. In this isolated environment, you have
full administrative rights, so you can download and install anything you need to perform
your build, and the syntax of the .travis.yml file makes this very easy. Unfortunately,
you do not have a lot of choice of the operating system available as the base of your testing
environment. Travis does not allow you to provide your own virtual machine images, so
you must rely on the very limited options provided. Usually, there is no choice at all and all
the builds must be done in some version of Ubuntu, macOS, or Windows (still experimental
at the time of writing this book). Sometimes, there is an option to select some legacy version
of one system or the preview of the new testing environment, but such a possibility is
always temporary. There is always a way to bypass this. You can run another virtual
machine or container inside of the one provided by Travis. This should be something that
allows you to easily encode VM configuration in your project sources, such as Vagrant or
Docker. But this will add more time to your builds, so it is not the best approach you could
take. Stacking virtual machines this way may not be the best and most efficient approach if
you need to perform tests under different operating systems. If this is an important feature
for you, then this is a sign that Travis is not a service for you.

The biggest downside of Travis is that it is completely locked to GitHub. If you would like
to use it in your open source project, then this is not a big deal. For enterprises and closed
source projects, this is mostly an unsolvable issue.

Managing Code Chapter 10

[348]

In the next section, GitLab CI is explained.

GitLab CI
GitLab CI is a part of a larger GitLab project. It is available as both a paid service
(Enterprise Edition) and an open source project that you may host on your own
infrastructure (Community Edition). The open source edition lacks some of the paid service
features but, in most cases, is everything that any company needs from the software that
manages version control repositories and continuous integration.

GitLab CI is very similar in feature sets to Travis. It is even configured with very similar
YAML syntax stored in the .gitlab-ci.yml file. The biggest difference is that the GitLab
Enterprise Edition pricing model does not provide you with free accounts for open source
projects. The Community Edition is open source by itself, but you need to have some own
infrastructure in order to run it.

Compared with Travis, GitLab has the obvious advantage of having more control over the
execution environment. Unfortunately, in the area of environment isolation, the default
build runner in GitLab is a bit inferior. The process called GitLab Runner executes all the
build steps in the same environment it is run in, so it works more like Jenkins' or Buildbot's
slave servers. Fortunately, it plays well with Docker, so you can easily add more isolation
with container-based virtualization, but this will require some effort and additional setup.

Choosing the right tool and common pitfalls
As stated previously, there is no perfect CI tool that will suit every project or, most
importantly, every organization and workflow it uses. I can give only a single suggestion
for open source projects hosted on GitHub. For small open source code bases with platform
independent code, Travis CI seems like the best choice. It is easy to start with and will give
you almost instant gratification with minimal amount of work.

For projects with closed sources, the situation is completely different. It is possible that you
will need to evaluate a few CI systems in various setups until you are able decide which
one is best for you. We discussed only four of the popular tools, but it should be seen as a
rather representative group. To make your decision a bit easier, we will discuss some of the
common problems related to continuous integration systems. In some of the available CI
systems, it is more possible to make certain kinds of mistakes than in others. On the other
hand, some of the problems may not be important to every application. I hope that by
combining the knowledge of your needs with this short summary, it will be easier to make
your first decision the right one.

Managing Code Chapter 10

[349]

Let's discuss the problems in the next sections.

Problem 1 – Complex build strategies
Some organizations like to formalize and structure things beyond the reasonable levels. In
companies that create computer software, this is especially true in two areas: project
management tools and build strategies on CI servers.

Excessive configuration of project management tools usually ends with issues processing
workflows on JIRA (or any other management software) so becoming complicated that it
will never fit a single wall when expressed as graphs, no matter how large this wall is. If
your manager has such configuration mania, you can either talk to him or start looking for
a new team. Unfortunately, this does not reliably ensure any improvement in that matter.

But when it comes to CI, we can do more. Continuous integration tools are usually
maintained and configured by us: developers. These are OUR tools that are supposed to
improve OUR work. If someone has an irresistible temptation to toggle every switch and
turn every knob possible, then they should be kept away from the configuration of CI
systems, especially if their main job is to talk the whole day and make decisions.

There is really no need for making complex strategies to decide which commit or branch
should be tested. No need to limit testing to specific tags. No need to queue commits in
order to perform larger builds. No need to disable building via custom commit messages.
Your continuous integration process should be simple to reason about. Test everything!
Test always! That's all! If there are not enough hardware resources to test every commit,
then add more hardware. Remember that the programmer's time is more expensive than
silicon.

Problem 2 – Long building time
Long building times is a thing that kills the performance of any developer. If you need to
wait hours to know if your work was done properly, then there is no way you can be
productive. Of course, having something else to do when your feature is being tested helps
a lot. Anyway, as humans, we are really terrible at multitasking. Switching between
different problems takes time and in the end reduces our programming performance to
zero. It's simply hard to keep focus when working on multiple problems at once.

The solution is obvious: keep your builds fast at any price. At first, try to find bottlenecks
and optimize them. If the performance of build servers is the problem, then try to scale out.
If this does not help, then split each build into smaller parts and parallelize.

Managing Code Chapter 10

[350]

There are plenty of solutions to speed up a slow build, but sometimes nothing can be done
about that problem. For instance, if you have automated browser tests or need to perform
long-running calls to external services, then it is very hard to improve performance beyond
some hard limit. For instance, when the speed of automated acceptance tests in your CI
becomes a problem, then you can loosen the test everything, test always rule a bit. What
matters the most for programmers are usually unit tests and static analysis. So, depending
on your workflow, the slow browser tests may be sometimes deferred in time to the
moment when the release is being prepared.

The other solution to slow build runs is rethinking the overall architecture design of your
application. If testing the application takes a lot of time, it is often a sign that it should be
split into a few independent components that can be developed and tested separately.
Writing software as huge monoliths is one of the shortest paths to failure. Usually, any
software engineering process breaks on software that is not modularized properly.

Problem 3 – External job definitions
Some continuous integration systems, especially Jenkins, allow you to set up most of the
build configurations and testing processes completely through a web UI, without the need
to touch the code repository. However, you should really avoid putting anything more than
simple entry points to the build steps/commands into externals systems. This is the kind of
CI anti-pattern that can cause nothing more than trouble.

Your building and testing process is usually tightly tied to your code base. If you store its
whole definition in an external system, such as Jenkins or Buildbot, then it will be really
hard to introduce changes to that process.

As an example of a problem introduced by a global external build definition, let's assume
that we have some open source project. The initial development was hectic and we did not
care for any style guidelines. Our project was successful, so the development required
another major release. After some time, we moved from 0.x version to 1.0 and decided to
reformat all of our code to conform to PEP 8 guidelines. It is a good approach to have a
static analysis check as part of CI builds, so we decided to add the execution of the pep8
tool to our build definition. If we had only a global external build configuration, then there
would be a problem if some improvement needs to be done to the code in older versions.
Let's say that there is a critical security issue that needs to be fixed in both branches of the
application: 0.x and 1.y. We know that anything below version 1.0 was compliant with
the style guide and the newly introduced check against PEP 8 will mark the build as failed.

Managing Code Chapter 10

[351]

The solution to this problem is to keep the definition of your build process as close to the
source as possible. With some CI systems (Travis CI and GitLab CI), you get that workflow
by default. With other solutions (Jenkins and Buildbot), you need to take additional care in
order to ensure that most of the build process definition is included in your code instead of
some external tool configuration. Fortunately, you have the following choices that allow
that kind of automation:

Bash scripts
Makefiles
Python code

Problem 4 – Lack of isolation
We have discussed the importance of isolation when programming in Python many times
already. We know that the best approach to isolate the Python execution environment on
the application level is to use virtual environments with virtualenv or python -m venv.
Unfortunately, when testing code for the purpose of continuous integration processes, it is
usually not enough. The testing environment should be as close as possible to the
production environment, and it is really hard to achieve that without additional system-
level virtualization.

The following are the main issues you may experience when not ensuring proper system-
level isolation when building your application:

Some state persisted between builds either on the filesystem or in backing
services (caches, databases, and so on)
Multiple builds or tests interfacing with each other through the environment,
filesystem, or backing services
Problems that would occur due to specific characteristics of the production
operating system not caught on the build server

These issues are particularly troublesome if you need to perform concurrent builds of the
same application or even parallelize single builds.

Some Python frameworks (mostly Django) provide some additional level of isolation for
databases that try to ensure that the storage will be cleaned before running tests. There is
also quite a useful extension for py.test called pytest-dbfixtures (refer to
https://github.com/ClearcodeHQ/pytest-dbfixtures) that allows you to achieve that
even more reliably. Anyway, such solutions add even more complexity to your builds
instead of reducing it. Using the always fresh virtual machines on every build (in the style of
Travis CI) seems like a more elegant and simpler approach.

https://github.com/ClearcodeHQ/pytest-dbfixtures

Managing Code Chapter 10

[352]

Summary
In this chapter, we took a look at the difference between centralized and distributed
versions of control systems and why we should prefer a distributed version control system
over the other. We saw why Git should be our first choice for DVCS. We also observed the
common workflows and branching strategies for Git. Finally, we saw what is continuous
integration/delivery/deployment is and what the popular tools that allow us to implement
these processes are.

The next chapter will explain how to clearly document your code.

11
Documenting Your Project

Documentation is the work that is often neglected by developers and their managers. This
is often due to lack of time toward the end of development cycles, and the fact that people
think they are bad at writing. Even though some developers may not be very good
at writing, the majority of them should be able to produce fine documentation.

The common result of neglecting the documentation efforts is a disorganized
documentation landscape that is made up of documents written in a rush. Developers often
hate doing this kind of work. Things get even worse when the existing documents need to
be updated. Many projects out there are just providing poor, out of date documentation
because no one in their team knows how to properly deal with it.

But setting up a documentation process at the beginning of the project and treating
documents as if they were modules of code makes documenting easier. Writing can even be
fun if you start following a few simple rules.

This chapter provides the following few tips to help document your projects:

The seven rules of technical writing that summarize the best practices
Writing documentation as a code
Using documentation generators
Writing self-documenting APIs

Technical requirements
The following are the Python packages that are mentioned in this chapter that you can
download from PyPI:

Sphinx

mkdocs

Documenting Your Project Chapter 11

[354]

You can install these packages using the following command:

python3 -m pip install <package-name>

The seven rules of technical writing
Writing good documentation is easier in many aspects than writing code, but many
developers think otherwise. It will become easy once you start following a simple set of
rules regarding technical writing.

We are not talking here about writing a novel or poems, but a comprehensive piece of text
that can be used to understand software design, an API, or anything that makes up the
code base.

Every developer can produce such material, and this section provides the following seven
rules that can be applied in all cases:

Write in two steps: Focus on ideas, and then on reviewing and shaping your text.
Target the readership: Who is going to read it?
Use a simple style: Keep it straight and simple. Use good grammar.
Limit the scope of the information: Introduce one concept at a time.
Use realistic code examples: Foos and bars should be avoided.
Use a light but sufficient approach: You are not writing a book!
Use templates: Help the readers get used to the common structure of your
documents.

These rules are mostly inspired and adapted from Agile Documentation: A Pattern Guide to
Producing Lightweight Documents for Software Projects, Wiley, a book by Andreas Rüping that
focuses on producing the best documentation in software projects.

Write in two steps
Peter Elbow, in Writing With Power: Techniques for Mastering the Writing Process, Oxford
University Press, explains that it is almost impossible for any human being to produce a
perfect text in one shot. The problem is that many developers write documentation and try
to directly come up with some perfect text. The only way they succeed in this exercise is by
stopping the writing after every two sentences to read them back, and do some corrections.
This means that they are focusing both on the content and the style of the text.

Documenting Your Project Chapter 11

[355]

This is too hard for the brain, and the result is often not as good as it could be. A lot of time
and energy is spent on polishing the style and shape of the text before its meaning is
completely thought through.

Another approach is to drop the style and organization of the text and at first focus on its
content. All ideas are laid down on paper, no matter how they are written. You start to
write a continuous stream of thoughts and do not pause, even if you know that you
are making obvious grammatical mistakes, or know that what you just wrote may read
silly. At this stage, it does not matter if the sentences are barely understandable, as long as
the ideas are written down. You just write down what you want to say, and apply only
minimal structuring to your text.

By doing this, you focus only on what you want to say and will probably get more content
out of your mind than you would initially expect.

Another side effect of doing this free writing is that other ideas that are not directly related
to the topic will easily go through your mind. A good practice is to write them down on the
side as soon as they appear, so they are not lost, and then get back to the main writing.

The second step obviously consists of reading back the draft of your document and
polishing it so that it is comprehensible to everyone. Polishing a text means enhancing its
style, correcting mistakes, reorganizing it a bit, and removing any redundant information it
has.

A rule of thumb is that both steps should take an equal amount of time. If your time for
writing documentation is strictly limited, then plan it accordingly.

Write in two steps
Focus on the content first, and then on style and cleanliness.

Target the readership
When writing content, there is a simple, but important, question the writer should consider:
Who is going to read it?

This is not always obvious, as documentation is often written for every person that might
get and use the code. The reader can be anyone from a researcher who is looking for an
appropriate technical solution to their problem, or a developer who needs to implement a
new feature in the documented software.

Documenting Your Project Chapter 11

[356]

Good documentation should follow a simple rule—each text should target one kind of
reader. This philosophy makes the writing easier, as you will precisely know what kind of
reader you're dealing with.

A good practice is to provide a small introductory document that explains in one sentence
what the documentation is about, and guides different readers to the appropriate parts of
documentation, for example:

Atomisator is a product that fetches RSS feeds and saves them in a database, with a
filtering process.

If you are a developer, you might want to look at the API description (api.txt).

If you are a manager, you can read the features list and the FAQ (features.txt).

If you are a designer, you can read the architecture and infrastructure notes (arch.txt).

Know your readership before you start to write.

Use a simple style
Simple things are easier to understand. That's a fact.

By keeping sentences short and simple, your writing will require less cognitive effort for
their content to be extracted, processed, and then understood. Writing technical
documentation aims to provide a software guide to readers. It is not a fiction book, and
should be closer to your microwave operation manual than to a Dickens novel.

The following are a few tips to keep in mind:

Use short sentences. They should be no longer than 100–120 characters (including
spaces). This is the length of two lines in a typical paperback.
Each paragraph should be composed of three to four sentences at most, which
express one main idea. Let your text breathe.
Don't repeat yourself too much. Avoid journalistic styles where ideas are
repeated again and again to make sure they are understood.
Don't use several tenses. The present tense is enough most of the time.

Documenting Your Project Chapter 11

[357]

Do not make jokes in the text if you are not a really fine writer. Being funny in a
technical book is really hard, and few writers master it. If you really want to
distill some humor, keep it in code examples and you will be fine.

You are not writing fiction; keep the style as simple as possible.

Limit the scope of information
There's a simple sign of bad documentation in software—you cannot find specific
information in it, even if you're sure that it is there. After spending some time reading the
table of contents, you are starting to search through text files using grep with several word
combinations and still cannot find what you are looking for. But you're sure the
information is there because you saw it once.

This often happens when writers do not organize their texts well with meaningful titles and
headings. They might provide tons of information, but it won't be useful if the reader is not
able to scan through all the documentation for a specific topic.

In a good document, paragraphs should be gathered under a meaningful heading for a
given section, and the document title should synthesize the content in a short phrase. A
table of contents could be made of all the sections' titles, in order to help the reader scan
through the document.

A simple yet effective practice to compose your titles and headings is to
ask yourself, "What phrase would I type in Google to find this section?"

Use realistic code examples
Unrealistic code examples simply make your documentation harder to understand.

For instance, if you have to provide some string literals, the Foos and bars are really bad
choices. If you have to show your reader how to use your code, why not to use a real-world
example? A common practice is to make sure that each code example can be cut and pasted
into a real program.

Documenting Your Project Chapter 11

[358]

To show an example of bad usage, let's assume we want to show how to use the
parse() function from the atomisator project, which aims to parse RSS feeds. Here is the
usage example using an unrealistic imaginary source:

>>> from atomisator.parser import parse
>>> # Let's use it:
>>> stuff = parse('some-feed.xml')
>>> next(stuff)
{'title': 'foo', 'content': 'blabla'}

A better example, such as the following, would be using a data source that looks like a
valid URL to RSS feed and shows output that resembles the real article:

>>> from atomisator.parser import parse
>>> # Let's use it:
>>> my_feed = parse('http://tarekziade.wordpress.com/feed')
>>> next(my_feed)
{'title': 'eight tips to start with python', 'content': 'The first tip
is..., ...'}

This slight difference might sound like overkill but, in fact, makes your documentation a lot
more useful. A reader can copy those lines into a shell, understand that parse() expects a
URL as a parameter, and that it returns an iterator that contains web articles.

Of course, giving a realistic example is not always possible or viable. This is especially true
for very generic code. Even this book has a few occurrences of vague "foo" and "bar"
strings. Anyway, you should always strive to reduce the amount of such unrealistic
examples to a minimum.

Code examples should be directly reusable in real programs.

Use a light but sufficient approach
In most agile methodologies, documentation is not the first citizen. Making software that
just works is more important than the detailed documentation. So, a good practice, as Scott
Ambler explains in his book Agile Modeling: Effective Practices for eXtreme Programming and
the Unified Process, John Wiley & Sons, is to define the real documentation needs, rather than
try to document everything possible.

Documenting Your Project Chapter 11

[359]

For instance, let's look at some example documentation of a simple project that is available
on GitHub. ianitor (available at https://github.com/ClearcodeHQ/ianitor) is a tool
that helps to register processes in the Consul service discovery cluster, and it is mostly
aimed at system administrators. If you take a look at its documentation, you will realize
that this is just a single document (the README.md file). It explains only how it works and
how to use it. From the administrator's perspective, this is sufficient. They only need to
know how to configure and run the tool, and there is no other group of people expected to
use ianitor. This document limits its scope by answering one question, "How do I use
ianitor on my server?"

Use templates
Many pages on Wikipedia look similar. There are boxes on the right-hand side that are
used to summarize some information for documents belonging to the same area. The first
section of the article usually contains a table of contents with links that refer to anchors in
the same text. There is always a reference section at the end.

Users get used to it. For instance, they know they can have a quick look at the table of
contents, and if they do not find the information they are looking for, they will go directly
to the reference section to see if they can find another website on the topic. This works for
any page on Wikipedia. Once you learn the format of Wikipedia articles, you become more
efficient in finding useful information.

So, using templates forces a common pattern for documents, and therefore enables more
efficient searching for information. Users get used to the common structure of information
and know how to read it quickly.

Providing a template for each kind of document also provides a quick start for writers.

Documentation as code
The best way to keep the documentation of your project up to date is to treat it as code and
store it in the same repository as the source code it documents. Keeping documentation
sources with the source code has the following benefits:

With a proper version control system, you can track all changes that were made
to the documentation. If you ever wonder if a particular surprising code behavior
is really a bug or just an old and forgotten feature, you can dive into the history
of the documentation to trace how the documentation for the specific feature
evolved over time.

https://github.com/ClearcodeHQ/ianitor
https://github.com/ClearcodeHQ/ianitor
https://github.com/ClearcodeHQ/ianitor
https://github.com/ClearcodeHQ/ianitor
https://github.com/ClearcodeHQ/ianitor
https://github.com/ClearcodeHQ/ianitor
https://github.com/ClearcodeHQ/ianitor
https://github.com/ClearcodeHQ/ianitor
https://github.com/ClearcodeHQ/ianitor
https://github.com/ClearcodeHQ/ianitor
https://github.com/ClearcodeHQ/ianitor

Documenting Your Project Chapter 11

[360]

It is easier to develop different versions of the documentation if the project has to
be maintained on several parallel branches (for example, for different clients). If
the source code of the project diverges from the main development branch, so
does the documentation for it.
There are many tools that allow you to generate the reference documentation of
software APIs straight from the comments included in the source code. This is
one of the best ways to generate documentation for projects that provide APIs for
other components (for example, in the form of reusable libraries and remote
services).

The Python language has some unique qualities that make documenting software
extremely easy and fun. The Python community also provides a huge selection of tools that
allow you to create beautiful and usable API reference documentation straight from Python
sources. The foundation for these tools are so-called docstrings.

Using Python docstrings
Docstrings are special Python string literals that are intended for documenting Python
functions, methods, classes, and modules. If the first statement of the function, method,
class, or module is a string literal, it will automatically become a docstring and be included
as a value of the __doc__ attribute of that related function, method, class, or module.

Many of the code examples in this book already feature docstrings, but for the sake of
consistency, let's look at a general example of a module that contains all possible types of
docstrings, as follows:

"""Example module with doctrings.

This is a module that shows all four types of docstrings:
- module docstring
- function docstring
- method docstring
- class docstring
"""

def show_module_documentation():
 """Prints module documentation.

 Module documentation is available as global __doc__ attribute.
 This attribute can be accessed and modified at any time.
 """
 print(__doc__)

Documenting Your Project Chapter 11

[361]

class DocumentedClass:
 """Class that showcases method documentation.
 """

 def __init__(self):
 """Initialize class instance.
 Interesting note: docstrings are valid statements.
 It means that if function or method doesn't have to
 do nothing and has docstring it doesn't have to
 feature any other statements.

 Such no-op functions are useful for defining abstract
 methods or providing implementation stubs that have
 to be implemented later.
 """

Python also provides a help() function, which is an entry point for the built-in help
system. It is intended for interactive use within the interactive interpreter session in a
similar way as viewing system manual pages using the UNIX man command. If you provide
a module instance as an input argument to the help() function, it will format all
docstrings of that module's objects in a tree-like structure. The following is an example of
help() output for the module we presented in the previous code snippet:

Help on module docexample:

NAME
 docexample - Example module with doctrings.

FILE
 /Users/swistakm/docexample.py

DESCRIPTION
 This is a module that shows all four types of docstrings:
 - module docstring
 - function docstring
 - method docstring
 - class docstring

CLASSES
 DocumentedClass

 class DocumentedClass
 | Class that showcases method documentation.
 |
 | Methods defined here:
 |
 | __init__(self)

Documenting Your Project Chapter 11

[362]

 | Initialize class instance.
 |
 | Interesting note: docstrings are valid statements.
 | It means that if function or method doesn't have to
 | do nothing and has docstring it doesn't have to
 | feature any other statements.
 |
 | Such no-op functions are useful for defining abstract
 | methods or providing implementation stubs that have
 | to be implemented later.

FUNCTIONS
 show_module_documentation()
 Prints module documentation.

 Module documentation is available as global __doc__ attribute.
 This attribute can be accessed and modified at any time.

Popular markup languages and styles for
documentation
Inside docstring, you can put whatever you like in any form you like. There is, of course,
the official PEP 257 (Docstring Conventions) document, which is a general guideline for
docstring conventions, but it concentrates mainly on normalized formatting of multiline
string literals for documentation purposes and does not enforce any markup language.

 Anyway, if you want to have nice and usable documentation, it is a good thing to decide
on some formalized markup language to use in your docstrings, especially if you plan to
use some kind of documentation generation tool. Proper markup allows documentation
generators to provide code highlighting, do advanced text formatting, include hyperlinks to
other documents and functions, or even include non-textual assets like images of
automatically generated class diagrams.

The best markup language is easy to write and is also readable in raw textual form outside
of the autogenerated reference documentation. It is best if it can be easily used to provide
longer documentation sources for documents living outside of Python docstrings. One of
the most common markup languages designed specifically for Python with these goals in
mind is reStructuredText. It is used by the Sphinx documentation system and is a markup
language used to create official Python language documentation. The basic syntax elements
of this markup are described in Appendix A, reStructuredText Primer.

Documenting Your Project Chapter 11

[363]

Other popular choices for lightweight text markup languages for docstrings are Markdown
and AsciiDoc. The former is particularly popular within the community of GitHub users
and is the most common documentation markup language in general. It is also often
supported out of the box by various tools for self-documenting web APIs.

Popular documentation generators for
Python libraries
As stated previously, software documentation may have varied readership. Accessing
documentation directly from project source code is often natural to users that are
programmers developing a given project. But this way of accessing project documentation
may not be the most convenient for others. Also, some companies may have requirements
to deliver documentation to their clients in a printable form.

This is why documentation generation tools are so important. They allow you to benefit
from documentation being treated as code while still maintaining the ability to have a
deliverable document that can be browsed, searched, and read without access to the
original source code. The Python ecosystem comes with a variety of amazing open source
tools that allow you to generate project documentation directly from your source code. The
two most popular tools in the Python community for generating user-friendly
documentations are Sphinx and MkDocs. We will discuss them briefly in the following
sections.

Sphinx
Sphinx (http://sphinx.pocoo.org) is a set of scripts and docutils extensions that can be
used to generate an HTML structure from the tree of plain text documents that are created
using the reStructuredText syntax language (you can find more details on that markup
language in Appendix A, reStructuredText Primer). Sphinx also supports multiple other
documentation output formats, like man pages, PDF, or even LaTex. This tool is used (for
instance) to build official Python documentation and is very popular among many open
source Python projects. It provides a really nice browsing system, together with a light but
sufficient client-side JavaScript search engine. It also uses pygments for rendering code
examples, which produces really nice syntax highlights.

http://sphinx.pocoo.org

Documenting Your Project Chapter 11

[364]

Sphinx can be easily configured to stick with the document landscape we defined in the
previous section. It can be easily installed with pip as a Sphinx package.

The easiest way to start working with Sphinx is to use the sphinx-quickstart script. This
utility will generate a script together with Makefile, which can be used to generate the
web documentation every time it is needed. It will interactively ask you some questions
and then bootstrap the whole initial documentation source tree and configuration file. Once
it is done, you can easily tweak it whenever you want. Let's assume we have already
bootstrapped the whole Sphinx environment and we want to see its HTML representation.
This can be easily done using the make html command, as follows:

project/docs$ make html
sphinx-build -b html -d _build/doctrees . _build/html
Running Sphinx v1.3.6
making output directory...
loading pickled environment... not yet created
building [mo]: targets for 0 po files that are out of date
building [html]: targets for 1 source files that are out of date
updating environment: 1 added, 0 changed, 0 removed
reading sources... [100%] index
looking for now-outdated files... none found
pickling environment... done
checking consistency... done
preparing documents... done
writing output... [100%] index
generating indices... genindex
writing additional pages... search
copying static files... done
copying extra files... done
dumping search index in English (code: en) ... done
dumping object inventory... done
build succeeded.
Build finished. The HTML pages are in _build/html.

Documenting Your Project Chapter 11

[365]

The following screenshot shows an example HTML version of documentation built with
Sphinx:

Besides the HTML versions of the documents, the tool also builds automatic pages, such as
a module list and an index. Sphinx provides a few docutils extensions to drive these
features. These are the main ones:

A directive that builds a table of contents
A marker that can be used to register a document as a module helper
A marker to add an element in the index

Documenting Your Project Chapter 11

[366]

Working with the index pages
Sphinx provides a toctree directive that can be used to inject a table of contents in a
document, with links to other documents. Each line must be a file with its relative path,
starting from the current document. Glob-style names can also be provided to add several
files that match the expression.

For example, the index file in the cookbook folder, which we previously defined in the
producer's landscape, can look like this:

========
Cookbook
========

Welcome to the Cookbook.

Available recipes:

.. toctree::
 :glob:
 *

With this syntax, the HTML page will display a list of all the reStructuredText documents
available in the cookbook folder. This directive can be used in all the index files to build
browsable documentation.

Registering module helpers
For module helpers, a marker can be added so that it is automatically listed and available in
the module's index page, as follows:

=======
session
=======

.. module:: db.session

The module session...

Documenting Your Project Chapter 11

[367]

Notice that the db prefix here can be used to avoid module collision. Sphinx will use it as a
module category and will group all modules that start with db. in this category.

Adding index markers
Another option can be used to fill the index page by linking the document to an entry, as
follows:

=======
session
=======

.. module:: db.session

.. index::
 Database Access
 Session

The module session...

Two new entries, Database Access and Session, will be added in the index page.

Cross-references
Finally, Sphinx provides an inline markup to set cross-references. For instance, a link to a
module can be done like this:

:mod:`db.session`

Here, :mod: is the module marker's prefix and `db.session` is the name of the module
to be linked to (as registered previously). Keep in mind that :mod:, as well as the previous
elements, are the specific directives that were introduced in reStructuredText by Sphinx.

Sphinx provides a lot more features that you can discover on its website.
For instance, the autodoc feature is a great option to automatically extract
your doctests to build the documentation. For more information, refer
to http://sphinx.pocoo.org.

http://sphinx.pocoo.org

Documenting Your Project Chapter 11

[368]

MkDocs
MkDocs (https://www.mkdocs.org/) is a very minimalistic static page generator that can
be used to document your projects. It lacks built-in autodoc features, similar to those in
Sphinx, but uses the lot simpler and readable Markdown markup language. It is also really
extensible. It is definitely easier to write a MkDocs plugin than a docutils extension that
could be used by Sphinx. So, if you have very specific documentation needs that cannot be
satisfied by existing tools and their extensions are available at the moment, then MkDocs
provides a very good foundation for building something custom-tailored.

Documentation building and continuous
integration
Sphinx and similar documentation generation tools really improve the readability and
experience of reading the documentation from the consumer's point of view. As we stated
previously, it is especially helpful when some of the documentation parts are tightly
coupled to the code, as in the form of docstrings. While this approach really makes it easier
to ensure that the source version of the documentation matches with the code it documents,
it does not guarantee that the documentation readership will have access to the latest and
most up-to-date compiled version.

Having only bare source representation is also not enough if the target readers of the
documentation are not proficient enough with command-line tools and will not know how
to build it into a browsable and readable form. This is why it is important to build your
documentation into a consumer-friendly form automatically whenever any change to the
code repository is committed/pushed.

The best way to host the documentation built with Sphinx is to generate an HTML build
and serve it as a static resource with your web server of choice. Sphinx provides a proper
Makefile to build HTML files with the make html command. Because make is a
very common utility, it should be very easy to integrate this process with any of the
continuous integration systems we discussed in Chapter 10, Managing Code.

If you are documenting an open source project with Sphinx, then you will make your life a
lot easier by using Read the Docs (https://readthedocs.org/). It is a free service for
hosting the documentation of open source Python projects with Sphinx. The configuration
is completely hassle-free, and it integrates very easily with two popular code hosting
services: GitHub and Bitbucket. In practice, if you have your accounts properly connected
and code repository properly set up, enabling documentation hosting on Read the Docs is a
matter of just a few clicks.

https://www.mkdocs.org/
https://www.mkdocs.org/
https://www.mkdocs.org/
https://www.mkdocs.org/
https://www.mkdocs.org/
https://www.mkdocs.org/
https://www.mkdocs.org/
https://www.mkdocs.org/
https://www.mkdocs.org/
https://www.mkdocs.org/
https://readthedocs.org/

Documenting Your Project Chapter 11

[369]

Documenting web APIs
The principles for documenting web APIs are almost the same as for other kinds of
software. You want to properly target your readership, provide documentation in a way
and form that is native for the usage environment (here, as a web page), and, most of all,
make sure that readers have access to the up to date and relevant version of your
documentation.

Because of this, it is extremely important to have your documentation of web APIs
generated from the sources of the code that provides these APIs. Unfortunately, due to the
complex architecture of most web frameworks, classical documentation tools like Sphinx
are rarely useful for documenting typical HTTP endpoints of web APIs. In this context, it is
very common that auto-documentation capabilities are built into your web framework of
choice. These kind of frameworks either serve user-readable documentation by themselves
or serve a standardized API description in a machine-readable format that can be later
processed with a specialized documentation browser.

There is also another completely different philosophy for documenting web APIs, and it is
based on the idea of API prototyping. Tools for API prototyping allow you to use
documentation as a software contract that can be used as an API stub, even before service
development starts. Often, this kind of tool allows you to automatically verify if the API
structure matches the one actually implemented in the service. In this approach,
documentation may serve the additional function of an API testing tool.

Documentation as API prototype with API
Blueprint
API Blueprint is a web API description language that is both human-readable and well-
defined. You can think of it like a Markdown for web service description language. It
allows documenting anything from the structure of URL paths, through body structures of
HTTP request/responses and headers, to complex request-response exchanges. The
following is an example of an imaginary Cat API described using API Blueprint:

FORMAT: 1A
HOST: https://cats-api.example.com

Cat API
This API Blueprint demonstrates example documentation of some imaginary
Cat API.

Group Posts

Documenting Your Project Chapter 11

[370]

This section groups Cat resources.

Cat [/cats/{cat_id}]

A Cat is central and only resource utilized by Cat API.

+ Parameters
 + cat_id: `1` (string) - The id of the Cat.

+ Model (application/json)

    ```js
    {
        "data": {
            "id": "1", // note this is a string
            "breed": "Maine Coon",
            "name": "Smokey"
    ```

Retrieve a Cat [GET]

Returns a specific Cat.

+ Response 200

 [Cat][]

Create a Cat [POST]

Create a new Post object. Mentions and hashtags will be parsed out of the
post
text, as will bare URLs...

+ Request

 [Cat][]

+ Response 201

 [Cat][]

Documenting Your Project Chapter 11

[371]

API Blueprint alone is nothing more than a language. Its strength really comes from the fact
that it can be easily written by hand and from the huge selection of tools supporting that
language. At the time of writing this book, the official API Blueprint page lists over 70 tools
that support this language. Some of these tools can even generate functional API mock
servers that are meant to shorten development cycles, as mock servers can be used, for
instance, by frontend code, even before programmers start the development of backend
API services.

Self-documenting APIs with Swagger/OpenAPI
While self-documenting APIs is a more traditional approach for documenting web APIs
(compared to documenting through API prototypes), we can clearly see some interesting
trends that appeared during the past few years. In the past, when API frameworks had to
support auto-documentation capabilities, it almost always meant that the framework had a
built-in API metadata structure with a custom documentation rendering engine. If someone
wanted to have multiple services auto-documented, they had to use the same framework
for every service, or decide to have very a inconsistent documentation landscape.

With the advent of microservice architectures, this approach becomes extremely
inconvenient and inefficient. Nowadays, it's very common that services within the same
projects are written using different frameworks, libraries, and even using completely
different programming languages. Having different documentation libraries for every
framework and language would produce very inconsistent documentation, as every tool
would have different strengths and weaknesses.

One approach that solves this problem requires splitting the documentation display
(rendering and browsing) from the actual documentation definition. This
approach is analogous to API prototyping because it requires a standardized API definition
language. But here, the developer rarely uses this language explicitly. It is the framework's
responsibility to create a machine-readable API definition from the structure of the code
written with this framework.

One such machine-readable web API description languages is OpenAPI. The specification
of OpenAPI is the result of the development of the popular Swagger documentation tool.
At first, it was an internal metadata format of the Swagger tool, but once it became
standardized, many tools around that specification appeared. With OpenAPI, many web
frameworks can describe their API structure using the same metadata format, so their
documentation can be rendered in the same consistent form by a single documentation
browser.

Documenting Your Project Chapter 11

[372]

Building a well-organized documentation
system
An easier way to guide your documentation readers and your writers is to provide each
one of them with helpers and guidelines, as we have learned in the previous section of this
chapter.

From a writer's point of view, this is done by having a set of reusable templates, together
with a guide that describes how and when to use them in a project. This is called a
documentation portfolio.

From a reader's point of view, it is important to be able to browse the documentation with
no pain, and get used to finding the information efficiently. This is done by building a
document landscape.

Obviously, we need to start from guiding documentation writers, because without them,
the readers would not have anything to read. Let's see how such a portfolio looks and how
to build a one.

Building documentation portfolio
There are many kinds of documents a software project can have, from low-level documents
that refer directly to the code, to design papers that provide a high-level overview of the
application.

For instance, Scott Ambler defines an extensive list of document types in his book Agile
Modeling: Effective Practices for eXtreme Programming and the Unified Process, John Wiley &
Sons. He builds a portfolio from early specifications to operations documents. Even the
project management documents are covered, so the whole documenting needs are built
with a standardized set of templates.

Since a complete portfolio is tightly related to the methodologies used to build the software,
this chapter will only focus on a common subset that you can complete with your specific
needs. Building an efficient portfolio takes a long time, as it captures your working habits.

A common set of documents in software projects can be classified into the following three
categories:

Design: This includes all the documents that provide architectural information
and low-level design information, such as class diagrams or database diagrams

Documenting Your Project Chapter 11

[373]

Usage: This includes all the documents on how to use the software; this can be in
the shape of a cookbook and tutorials, or a module-level help
Operations: This provides guidelines on how to deploy, upgrade, or operate the
software

Let's discuss the preceding categories.

Design
The important point when creating such documents is to make sure the target readership is
perfectly known, and that the content scope is limited. So, a generic template for design
documents can provide a light structure with a little advice for the writer.

Such a structure might include the following:

Title
Author
Tags (keywords)
Description (abstract)
Target (who should read this?)
Content (with diagrams)
References to other documents

The content should be three or four pages at most when printed, so be sure to limit the
scope. If it gets bigger, it should be split into several documents or summarized.

The template also provides the author's name and a list of tags to manage its evolutions and
ease its classification. This will be covered later in this chapter.

The example design document template written using reStructuredText markup could be
as follows:

===
Design document title
===

:Author: Document Author
:Tags: document tags separated with spaces

:abstract:

 Write here a small abstract about your design document.

Documenting Your Project Chapter 11

[374]

.. contents ::

Audience
========

Explain here who is the target readership.

Content
=======

Write your document here. Do not hesitate to split it in several
sections.

References
==========

Put here references, and links to other documents.

Usage
The usage documentation describes how a particular part of the software works. This
documentation can describe low-level parts, such as how a function works, but also high-
level parts, such as command-line arguments for calling the program. This is the most
important part of documentation in framework applications, since the target readership is
mainly the developers that are going to reuse the code.

The three main kinds of documents are as follows:

Recipe: This is a short document that explains how to do something. This kind of
document targets one readership and focuses on one specific topic.
Tutorial: This is a step-by-step document that explains how to use a feature of
the software. This document can refer to recipes, and each instance is intended
for one readership.
Module helper: This is a low-level document that explains what a module
contains. This document can be shown (for instance) by calling the help built
into over a module.

Documenting Your Project Chapter 11

[375]

Recipe
A recipe answers a very specific problem and provides a solution to resolve it. For example,
ActiveState provides a huge repository of Python recipes online, where developers can
describe how to do something in Python (refer to
http://code.activestate.com/recipes/langs/python/). Such a set of recipes related to a
single area/project is often called a cookbook.

These recipes must be short and are structured, like this:

Title
Submitter
Last updated
Version
Category
Description
Source (the source code)
Discussion (the text explaining the code)
Comments (from the web)

Often, they are one screen long and do not go into great detail. This structure perfectly fits a
software's needs and can be adapted in a generic structure, where the target readership is
added and the category is replaced by tags:

Title (short sentence)
Author
Tags (keywords)
Who should read this?
Prerequisites (other documents to read, for example)
Problem (a short description)
Solution (the main text, one or two screens)
References (links to other documents)

The date and version are not useful here, since project documentation should be managed
like source code in the project. This means that the best way to handle the documentation is
to manage it through the version control system. In most cases, this is exactly the same code
repository as the one that's used for the project's code.

http://code.activestate.com/recipes/langs/python/

Documenting Your Project Chapter 11

[376]

A simple reusable template for the recipes could be as follows:

===========
Recipe name
===========

:Author: Recipe Author
:Tags: document tags separated with spaces

:abstract:

 Write here a small abstract about your design document.

.. contents ::

Audience
========

Explain here who is the target readership.

Prerequisites
=============

Write the list of prerequisites for implementing this recipe. This can be
additional documents, software, specific libraries, environment settings or
just anything that is required beyond the obvious language interpreter.

Problem
=======

Explain the problem that this recipe is trying to solve.

Solution
========

Give solution to problem explained earlier. This is the core of a recipe.

References
==========

Put here references, and links to other documents.

Documenting Your Project Chapter 11

[377]

Tutorial
A tutorial differs from a recipe in its purpose. It is not intended to resolve an isolated
problem, but rather describes how to use a feature of the application, step by step. This can
be longer than a recipe and can concern many parts of the application. For example, Django
provides a list of tutorials on its website. Writing your first Django App, part 1 (refer to
https://docs.djangoproject.com/en/1.9/intro/tutorial01/) explains in a few screens
how to build an application with Django.

A structure for such a document will be as follows:

Title (short sentence)
Author
Tags (words)
Description (abstract)
Who should read this?
Prerequisites (other documents to read, for example)
Tutorial (the main text)
References (links to other documents)

Module helper
The last template that can be added in our collection is the module helper template. A
module helper refers to a single module and provides a description of its contents, together
with usage examples.

Some tools can automatically build such documents by extracting the docstrings and
computing module help using pydoc, such as Epydoc (refer to
http://epydoc.sourceforge.net). So, it is possible to generate extensive documentation
based on API introspection. This kind of documentation is often provided in Python
frameworks. For instance, Plone provides a server that keeps an up-to-date collection of
module helpers. You can read more about it at http://api.plone.org.

The following are the main problems with this approach:

There is no smart selection performed over the modules that are really
interesting to the document
The code can be obfuscated by the documentation

https://docs.djangoproject.com/en/1.9/intro/tutorial01/
http://epydoc.sourceforge.net
http://api.plone.org
http://api.plone.org
http://api.plone.org
http://api.plone.org
http://api.plone.org
http://api.plone.org
http://api.plone.org
http://api.plone.org
http://api.plone.org

Documenting Your Project Chapter 11

[378]

Furthermore, a module documentation provides examples that sometimes refer to several
parts of the module, and are hard to split between the functions' and classes' docstrings.
The module docstring could be used for that purpose by writing text at the top of the
module. But this ends in having a hybrid file composed of a block of text, then a block of
code. This is rather obfuscating when the code represents less than 50% of the total length.
If you are the author, this is perfectly fine. But when people try to read the code (not the
documentation), they will have to skip the docstrings part.

Another approach is to separate the text in its own file. A manual selection can then be
operated to decide which Python module will have its module helper file. The documents
can then be separated from the code base and allowed to live their own life, as we will see
in the next section. This is how Python is documented.

Many developers will disagree on the fact that doc and code separation is better than
docstrings. This approach means that the documentation process is fully integrated in the
development cycle; otherwise, it will quickly become obsolete. The docstrings approach
solves this problem by providing proximity between the code and its usage example, but
doesn't bring it to a higher level—a document that can be used as part of plain
documentation.

The following template for Module Helper is really simple as it contains just a little
metadata before the content is written. The target is not defined since it is the developers
who wish to use the module:

Title (module name)
Author
Tags (words)
Content

The next chapter will cover test-driven development (TDD) using
doctests and module helpers.

Operations
Operation documents are used to describe how the software can be operated. Consider the
following points:

Installation and deployment documents
Administration documents

Documenting Your Project Chapter 11

[379]

Frequently Asked Questions (FAQ) documents
Documents that explain how people can contribute, ask for help, or provide
feedback

These documents are very specific, but they can probably use the tutorial template we
defined in the earlier section.

Your very own documentation portfolio
The templates that we discussed earlier are just a basis that you can use to document your
software. With time, you will eventually develop your own templates and style for making
documentation. But always keep in mind the light but sufficient approach for project
documentation: each document that's added should have a clearly defined target
readership and should fill a real need. Documents that don't add a real value should not be
written.

Each project is unique and has different documentation needs. For example, small terminal
tools with simple usage can definitely live with only a single README file as its document
landscape. Having such a minimal single-document approach is completely fine if the
target readers are precisely defined and consistently grouped (system administrators, for
instance).

Also, do not take the provided templates too rigorously. Some additional metadata
provided as an example is really useful in either big projects or in strictly formalized teams.
Tags, for instance, are intended to improve textual searches in big documentations, but will
not provide any value in a documentation landscape consisting only of a few documents.

Also, including a document author is not always a good idea. Such an approach may be
especially questionable in open source projects. In such projects, you will want the
community to also contribute to the documentation. In most cases, such documents are
continuously updated whenever there is such a need by whoever makes the contribution.
People tend to treat the document author as the document owner. This may discourage
people to update the documentation if every document has its author always specified.
Usually, the version control software provides clearer and more transparent information
about real document authors than explicitly provided metadata annotations. The situations
where explicit authors are really recommended are various design documents, especially in
projects where the design process is strictly formalized. The best example of this is the
series of PEP documents provided with the Python language enhancement proposals.

Documenting Your Project Chapter 11

[380]

Building a documentation landscape
The document portfolio we built in the previous section provides a structure at the
document level, but does not provide a way to group and organize it to build the
documentation the readers will have. This is what Andreas Rüping calls a document
landscape, referring to the mental map the readers use when they browse the
documentation. He came up with the conclusion that the best way to organize documents is
to build a logical tree.

In other words, the different kinds of documents composing the portfolio need to find a
place to live within a tree of directories. This place must be obvious to the writers when
they create the document and to the readers when they are looking for it.

A great helper in browsing documentation is the index pages at each level that can drive
writers and readers.

Building a document landscape is done in the following two steps:

Building a tree for the producers (the writers)
Building a tree for the consumers (the readers), on top of the producers' tree

This distinction between producers and consumers is important since they access the
documents in different places and different formats.

Producer's layout
From a producer's point of view, each document is processed exactly like a Python module.
It should be stored in the version control system and work like code. Writers do not care
about the final appearance of their prose and where it is available; they just want to make
sure that they are writing a document that is the single source of truth on the topic covered.
reStructuredText files stored in a folder tree are available in the version control system,
together with the software code, and are a convenient solution to build the documentation
landscape for producers.

Documenting Your Project Chapter 11

[381]

By convention, the docs folder is used as a root of documentation tree, as follows:

$ cd my-project
$ find docs
docs
docs/source
docs/source/design
docs/source/operations
docs/source/usage
docs/source/usage/cookbook
docs/source/usage/modules
docs/source/usage/tutorial

Notice that the tree is located in a source folder because the docs folder will be used as a
root folder to set up a special tool in the next section.

From there, an index.txt file can be added at each level (besides the root), explaining
what kind of documents the folder contains, or summarizing what each subfolder contains.
These index files can define a listing of the documents they contain. For instance, the
operations folder can contain a list of operations documents that are available, as follows:

==========
Operations
==========

This section contains operations documents:

− How to install and run the project
− How to install and manage a database for the project

It is important to know that people tend to forget to update such lists of documents and
tables of contents. So, it is better to have them updated automatically.

In the next section, we will discuss one tool that, among many other features, can also
handle this use case.

Consumer's layout
From a consumer's point of view, it is important to work out the index files and to present
the whole documentation in a format that is easy to read and looks good. Web pages are the
best pick and are easy to generate from reStructuredText files.

Documenting Your Project Chapter 11

[382]

Summary
In this chapter, we have discussed an approach that should make documentation
management an organized, lightweight, efficient, and (hopefully) fun process. We started
from the seven rules of technical writing that apply to any kind of technical writing—not
only documentation. From there, we have introduced tools and techniques that convert
these simple rules into a clear and organized engineering process.

One of the hardest things to do when documenting a project is to keep it accurate and up-
to-date. The only way to make this happen is by treating it is as a first-class engineering
artefact. Good documentation is always close to the code it documents. Making the
documentation part of the code repository makes this a lot easier. From there, every time a
developer makes any change in the code, he or she should change the corresponding
documentation as well.

A complementary approach to make sure the documentation is always accurate is to
combine the documentation with tests through doctests. This is covered in the next chapter,
which presents test-driven development principles, and then document-driven
development.

12
Test-Driven Development

Test-driven development (TDD) is a methodology that aims to produce high-quality
software by concentrating on automated tests. It is widely used in the Python community,
but it is also very popular in other communities.

Testing is especially important in Python due to its dynamic nature. Python lacks static
typing, so many, even minute, errors won't be noticed until the code is run and each of its
lines is executed. But the problem is not only how types in Python work. The most
troublesome bugs are not related to bad syntax or wrong type usage, but rather to logical
errors and subtle mistakes that may lead to major failures.

In order to efficiently test your software, you often need to use a wide variety of testing
strategies that will be executed on different abstraction levels of your application.
Unfortunately, not every testing strategy is suitable for every project, and not every testing
framework will be suitable for every kind of testing strategy. This is why it's not
uncommon for larger projects to use multiple testing libraries and frameworks that fulfill
different (often overlapping) testing needs. So, in order to better guide you through the
sophisticated world of software testing and test-driven development, this chapter is split
into the following two parts:

I don't test, which advocates TDD and quickly describes how to do it with the
standard library
I do test, which is intended for developers who practice tests and wish to get more
out of them

Test-Driven Development Chapter 12

[384]

Technical requirements
The following are the Python packages that are mentioned in this chapter that you can
download from PyPI:

pytest

nose

coverage

tox

You can install these packages using the following command:

python3 -m pip install <package-name>

The code files for this chapter can be found
at https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/t
ree/master/chapter12.

I don't test
If you are already convinced by TDD, you should move on to the next section. It will focus
on advanced techniques and tools for making your life easier when working with tests. This
part is mainly intended for those who are not using this approach, and tries to advocate its
usage.

Three simple steps of test-driven development
The test-driven development process, in its simplest form, consists of the following three
steps:

Writing automated tests for a new functionality or improvement that was not1.
implemented yet.
Providing minimal code that just passes all the defined tests.2.
Refactoring code to meet the desired quality standards.3.

The most important fact to remember about this development cycle is that tests should be
written before actual implementation. It is not an easy task for inexperienced developers,
but it is the only approach that reliably guarantees that the code you are going to write will
be testable.

https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter12
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter12

Test-Driven Development Chapter 12

[385]

For example, a developer who is asked to write a function that checks whether the given
number is a prime number may write a few examples on how to use it, and the expected
results, as follows:

assert is_prime(5)
assert is_prime(7)
assert not is_prime(8)

The developer that implements this feature does not need to be the only one responsible for
providing tests. The examples can be provided by another person as well. For instance,
often, official specifications of network protocols or cryptography algorithms provide test
vectors that are intended to verify the correctness of the implementation. These are a
perfect basis for test cases of code that aims to implement such protocols and algorithms.

From there, the function can be iteratively implemented until the preceding example works,
as follows:

def is_prime(number):
 for element in range(2, number):
 if number % element == 0:
 return False
 return True

It is possible that upon usage, code users will find bugs or unexpected results. Such special
cases are new examples of usage that the implemented function should be able to deal with,
as follows:

>>> assert not is_prime(1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

As new problematic usage examples are discovered, the function is gradually improved, as
follows:

def is_prime(number):
 if number in (0, 1):
 return False

 for element in range(2, number):
 if number % element == 0:
 return False

 return True

Test-Driven Development Chapter 12

[386]

This process may be repeated multiple times, as it is often hard to predict all meaningful
and problematic usage examples, for example:

>>> assert not is_prime(-3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

The point of this approach is to find an implementation through a series of gradual
improvements. This process guarantees that the function properly handles all possible edge
cases within the defined usage constraints, as follows:

def is_prime(number):
 if number < 0 or number in (0, 1):
 return False

 for element in range(2, number):
 if number % element == 0:
 return False

 return True

And the collection of discovered or planned usage examples serves as a definition of such
usage constraints. Common usage examples become a test for an implemented function
that verifies that the implementation meets all known requirements. In practice, common
usage examples are gathered in their own names function so, they can be executed every
time the code evolves, as follows:

def test_is_prime():
 assert is_prime(5)
 assert is_prime(7)

 assert not is_prime(8)
 assert not is_prime(0)
 assert not is_prime(1)

 assert not is_prime(-1)
 assert not is_prime(-3)
 assert not is_prime(-6)

In the previous example, every time we come up with a new requirement, the
test_is_prime() function should be updated first to define the expected behavior of the
is_prime() function. Then, a test is run to check if the implementation delivers the
desired results. Only if the tests are known to be failing is there a need to update the code
for the tested function.

Test-Driven Development Chapter 12

[387]

Test-driven development provides a lot of benefits, including the following:

It helps to prevent software regression
It improves software quality
It provides a kind of low-level documentation of code behavior
It allows you to produce robust code faster and to work in shorter development
cycles

The best convention to deal with multiple tests in Python is to gather all of them in a single
module or package (usually named tests) and have an easy way to run their whole suite
using a single shell command. Fortunately, there is no need to build whole test toolchains
all by yourself. Both the Python standard library and Python Package Index come with
plenty of test frameworks and utilities that allow you to build, discover, and run tests in a
convenient way. We will discuss the most notable examples of such packages and modules
later in this chapter.

Let's discuss the benefits of test-driven development in the following sections.

Preventing software regression
We all face software regression issues in our developer lives. Software regression is a new
bug introduced by a change. It manifests when features or functionalities that were known
to be working in the previous versions of the software get broken and stop working at some
point of project development.

The main reason for regressions is high complexity of the software. At some point, it is
impossible to guess what a single change in the code base might lead to. Changing some
code might break some other features, and sometimes lead to vicious side effects, such as
silently corrupting data. And high complexity is not only a problem of huge code bases.
There is, of course, obvious correlation between the amount of code and its complexity, but
even small projects (few hundreds/thousands lines of code) may have such convoluted
architecture that it is hard to predict all possible consequences of a relatively small changes.

To avoid regression, the whole set of features the software provides should be tested every
time a change occurs. Without this, you are not able to reliably tell the difference between
bugs that always existed in your software and the new ones that were introduced with new
code changes.

Opening a code base to several developers amplifies the problem, since each person may
not be fully aware of all the development activities. While having a version control system
prevents unexpected conflicts, it does not prevent all unwanted interactions.

Test-Driven Development Chapter 12

[388]

TDD helps reduce software regression. The whole software can be automatically tested
after each change. This will work as long as each feature has the proper set of tests. When
TDD is done properly, the collection of tests grows together with the main code base.

Since, execution of a full test campaign may take quite a long time, it is good practice to
delegate it to some continuous integration system, which can do the work in the
background. We discussed such solutions already in Chapter 10, Managing Code.
Nevertheless, every developer should be able to launch their tests manually, at least for the
concerned modules. Relying solely on continuous integration will have a negative impact
on the developers' productivity. Programmers should be able to run selections of tests
easily in their environments. This is the reason why you should carefully choose the testing
tools for the project. You should prefer a test frameworks that allows you to easily select
and group tests for execution.

Improving code quality
When writing code, we often focus on algorithms, data structures, and performance, but
lose the code user's point of view—how and when will our function, class, or module be
used? Are the arguments easy and logical to use? Are the names in this new API right? Will
it be easy to extend the code in future?

You can ensure such qualities by applying the tips described in the previous chapters, such
as in Chapter 6, Choosing Good Names. But the only way to do this efficiently is to write
usage examples. This is the moment when you'll realize if the code you wrote is logical and
easy to use. Often, the first refactoring occurs right after the module, class, or function is
finished.

Writing tests, which are use cases for the code, helps in maintaining the user's point of
view. By starting from usage examples defined in tests, you will often produce better code.
It is difficult to test gigantic functions and huge monolithic classes. Code that is written
with testing in mind tends needs to be architected more cleanly and modularly.

Providing the best developer documentation
Tests are the best place for a developer to learn how software works. They are the use cases
the code was primarily created for. Reading them provides a quick and deep insight into
how the code works. Sometimes, an example is worth more than a thousand words.

Test-Driven Development Chapter 12

[389]

The fact that these tests are always up to date with the code base makes them the best
developer documentation that a piece of software can have. Tests don't go stale in the same
way textual documentation does, otherwise they would fail.

Producing robust code faster
Writing without testing leads to long debugging sessions. A consequence of a bug in one
module might manifest itself in a completely different part of the software. Since you don't
know who to blame, you spend an inordinate amount of time debugging. It's better to fight
small bugs one at a time when a test fails, because you'll have a better clue as to where the
real problem is. And testing is often more fun than debugging because it is still a kind of
coding.

If you measure the time taken to fix the code together with the time taken to write it, it will
usually be longer than the time a TDD approach would take. This is not obvious when you
start a new piece of code. This is because the time taken to set up a test environment and
write the first few tests is extremely long compared to the time taken just to write the first
pieces of code.

What kind of tests?
There are several kinds of tests that can be made on any software. The main ones are unit
tests, acceptance tests, and functional tests. These are the ones that most people think of
when discussing the topic of software testing. But there are a few other kinds of tests that
you can use in your project, such as integration tests, load and performance testing, and
code quality testing. We will discuss some of them shortly in the following sections.

Unit tests
Unit tests are low-level tests that perfectly fit test-driven development. As the name says,
they focus on testing software units. A software unit can be understood as the smallest
testable piece of the application code. Depending on the application, the size may vary from
whole modules to a single method or function, but usually unit tests are written for the
smallest fragments of code possible. Unit tests usually isolate the tested unit (module, class,
function, and so on) from the rest of the application and other units. When external
dependencies are required, such as web APIs or databases, they are often replaced by fake
objects or mocks.

Test-Driven Development Chapter 12

[390]

Acceptance tests
An acceptance test focuses on a feature and deals with the software like a black box. It just
makes sure that the software really does what it is supposed to do, using the same media as
that of the users, and observes application output. These tests are sometimes written out of
the ordinary development cycle to validate that the application meets defined
requirements. They are usually run as a checklist over the software. Often, these tests are
not done through TDD, and are built by managers, QA staff, or even customers. In that
case, they are often called user acceptance tests.

Still, they can and they should be done with TDD principles in mind. Acceptance tests can
be provided before the features are written. Developers get a pile of acceptance tests,
usually made out of the functional specifications, and their job is to make sure the code will
pass all of them.

The tools that are used to write these tests depend on the user interface the software
provides. Some popular tools used by Python developers are shown in the following table:

Application type Tool
Web application Selenium (for Web UI with JavaScript)
Web application zope.testbrowser (doesn't test JS)
WSGI application paste.test.fixture (doesn't test JS)
Gnome desktop application dogtail
Win32 desktop application pywinauto

For an extensive list of functional testing tools,
see the PythonTestingToolsTaxonomy page at the Python
Wiki: https://wiki.python.org/moin/PythonTestingToolsTaxonomy.

Functional tests
Functional tests focus on whole features and functionalities instead of small code units.
They are similar in their purpose to acceptance tests. The main difference is that functional
tests do not necessarily need to use the same interface as the user. For instance, when
testing web applications, some of the user interactions (or its consequences) can be
simulated by synthetic HTTP requests or direct database access, instead of simulating real
page loading and mouse clicks.

https://wiki.python.org/moin/PythonTestingToolsTaxonomy

Test-Driven Development Chapter 12

[391]

This approach is often easier and faster than testing with tools that are used in user
acceptance tests. The downside of limited functional tests is that they tend to not cover
enough parts of the application where different abstraction layers and components meet.
Tests that focus on such meeting points are often called integration tests.

Integration tests
Integration tests represent a higher level of testing than unit tests. They test bigger parts of
the code and focus on situations where many application layers or components meet and
interact with each other. The form and scope of integration tests varies depending on the
project's architecture and complexity. For example, in small and monolithic projects, this
may be as simple as running more complex functional tests and allowing them to interact
with real backing services (databases, caches, and so on), instead of mocking or faking
them. For complex scenarios or products that are built from multiple services, the real
integration tests may be very extensive and even require running the whole project in a big
distributed environment that mirrors the production environment.

Integration tests are often very similar to functional tests, and the border between them is
very blurry. It is very common that integration tests are also logically testing separate
functionalities and features.

Load and performance testing
Load tests and performance tests provide objective information about code efficiency rather
than its correctness. The terms load testing and performance testing are used by some
interchangeably, but the first one refers to a limited aspect of performance. Load testing
focuses on measuring how code behaves under some artificial demand (load). This is a very
popular way of testing web applications, where load is understood as web traffic from real
users or programmatic clients. It is important to note that load tests in web applications
tend to cover HTTP transactions. It makes them very similar in behavior to integration and
functional tests. So, it is very important to make sure that the tested application
components are fully verified to be working correctly before attempting load testing.
Performance tests are generally those tests that aim to measure code performance and can
target even small units of code. So, load tests are only a specific subtype of performance
tests.

Test-Driven Development Chapter 12

[392]

Both load and performance tests are special kinds of tests because they do not provide
binary results (failure/success), but only some performance quality measurement. This
means that single results need to be interpreted and/or compared with results of different
test runs. In some cases, the project requirements may define some hard constraint on load
or performance on the code, but this does not change the fact that there is always some
arbitrary interpretation involved in these kinds of testing approaches.

Load and performance tests are great tools during the development of any software that
needs to fulfill some Service Level Agreements (for example, uptime percentage, number
of simultaneous connections), because it helps to reduce the risk of compromising the
performance of critical code paths.

Code quality testing
There is no arbitrary scale that would say definitely if code quality is bad or good.
Unfortunately, the abstract concept of code quality cannot be measured and expressed in
the form of numbers. Instead, we can measure various metrics of the software that are
known to be highly correlated with the quality of code. The following are a few:

The number of code style violations
The amount of documentation
Complexity metrics, such as McCabe's cyclomatic complexity
The number of static code analysis warnings

Many projects use code quality testing in their continuous integration workflows. The good
and popular approach is to test at least basic metrics (static code analysis and code style
violations) and not allow merging of any code to the main stream that makes these metrics
lower.

In, next section, we will discuss some basic testing tools from the Python standard library
that allow you to implement many different types of software tests.

Python standard test tools
Python provides the following two simple modules in the standard library that allow you
to write automated tests:

unittest (https://docs.python.org/3/library/unittest.html): This is the
standard and most common Python unit testing framework based on Java's JUnit
and originally written by Steve Purcell (formerly PyUnit)

https://docs.python.org/3/library/unittest.html

Test-Driven Development Chapter 12

[393]

doctest (https://docs.python.org/3/library/doctest.html): This is a literate
programming testing tool with interactive usage examples

Let's take a look at these two modules in the following sections.

unittest
unittest basically provides what JUnit does for Java. It offers a base class called
TestCase, which has an extensive set of methods to verify the output of function calls and
statements. It is the most basic and common Python testing library and often serves as a
basis for more complex and elaborate testing frameworks.

This module was created with unit tests in mind, but you can use it to write other kinds of
tests. It is even possible to use it in acceptance testing flows with user interface layer
integration, as some testing libraries provide helpers to drive tools such as Selenium on top
of unittest.

Writing a simple unit test for a module using unittest is done by subclassing TestCase
and writing methods with the test prefix. The example test module based on usage
examples from the Test-driven development principles section will look like this:

import unittest

from primes import is_prime

class MyTests(unittest.TestCase):
 def test_is_prime(self):
 self.assertTrue(is_prime(5))
 self.assertTrue(is_prime(7))

 self.assertFalse(is_prime(8))
 self.assertFalse(is_prime(0))
 self.assertFalse(is_prime(1))

 self.assertFalse(is_prime(-1))
 self.assertFalse(is_prime(-3))
 self.assertFalse(is_prime(-6))

if __name__ == "__main__":
 unittest.main()

https://docs.python.org/3/library/doctest.html

Test-Driven Development Chapter 12

[394]

The unittest.main() function is the utility that allows you to make the whole module
executable as a test suite, as follows:

$ python test_is_prime.py -v
test_is_prime (__main__.MyTests) ... ok

--
Ran 1 test in 0.000s

OK

The unittest.main() function scans the context of the current module and looks for
classes that subclass TestCase. It instantiates them, then runs all methods that start with
the test prefix.

A good test suite follows common and consistent naming conventions. For instance, if the
is_prime function is included in the primes.py module, the test class could be called
PrimesTests and put into the test_primes.py file, as follows:

import unittest

from primes import is_prime

class PrimesTests(unittest.TestCase):
 def test_is_prime(self):
 ...

if __name__ == '__main__':
unittest.main()

From there, every time the primes module evolves, the test_primes module gets more
tests.

In order to work, the test_primes module needs to have the primes module available in
the context. This can be achieved either by having both modules in the same package or by
adding a tested module explicitly to the Python path. In practice, the develop command of
setuptools is very helpful here (see Chapter 7, Writing a Package).

Running tests over the whole application presupposes that you have a script that builds a
test campaign out of all test modules. unittest provides a TestSuite class that can
aggregate tests and run them as a test campaign, as long as they are all instances of
TestCase or TestSuite.

Test-Driven Development Chapter 12

[395]

In Python's past, there was a convention that the test module provides a test_suite
function that returns a TestSuite. This function would be used in the __main__ section,
when the module is called in command prompt, or automatically collected by a test runner,
as follows:

import unittest

from primes import is_prime

class PrimesTests(unittest.TestCase):
 def test_is_prime(self):
 self.assertTrue(is_prime(5))

 self.assertTrue(is_prime(7))

 self.assertFalse(is_prime(8))
 self.assertFalse(is_prime(0))
 self.assertFalse(is_prime(1))

 self.assertFalse(is_prime(-1))
 self.assertFalse(is_prime(-3))
 self.assertFalse(is_prime(-6))

class OtherTests(unittest.TestCase):
 def test_true(self):
 self.assertTrue(True)

def test_suite():
 """builds the test suite."""
 suite = unittest.TestSuite()
 suite.addTests(unittest.makeSuite(PrimesTests))
 suite.addTests(unittest.makeSuite(OtherTests))

 return suite

if __name__ == '__main__':
 unittest.main(defaultTest='test_suite')

Test-Driven Development Chapter 12

[396]

Running this module from the shell will print the following test campaign output:

$ python test_primes.py -v
test_is_prime (__main__.PrimesTests) ... ok
test_true (__main__.OtherTests) ... ok

--
Ran 2 tests in 0.001s

OK

The preceding approach was required in the older versions of Python when the unittest
module did not have proper test discovery utilities. Usually, the running of all tests was
done by a global script that browsed the code tree, looking for tests to run. This process is
often called test discovery, and will be covered more extensively later in this chapter. For
now, you should only know that unittest provides a simple command that can discover
all tests from modules and packages that are named with a test prefix, as follows:

$ python -m unittest -v
test_is_prime (test_primes.PrimesTests) ... ok
test_true (test_primes.OtherTests) ... ok

--
Ran 2 tests in 0.001s

OK

If you use the preceding command, then there is no need to manually define the __main__
sections and invoke the unittest.main() function.

doctest
doctest is a module that extracts test snippets in the form of interactive prompt sessions
from docstrings or text files, and replays them to check whether the example output is the
same as the real one.

For instance, the text file with the following content could be run as a test:

Check addition of integers works as expected::

>>> 1 + 1
 2

Test-Driven Development Chapter 12

[397]

Let's assume that this documentation file is stored in the filesystem under the test.rst
name. The doctest module provides some functions to extract and run the tests from such
documentation files, as follows:

>>> import doctest
>>> doctest.testfile('test.rst', verbose=True)
Trying:
 1 + 1
Expecting:
 2
ok
1 items passed all tests:
 1 tests in test.rst
1 tests in 1 items.
1 passed and 0 failed.
Test passed.
TestResults(failed=0, attempted=1)

Using doctest has the following advantages:

Packages can be documented and tested through examples
Documentation examples are always up to date
Using examples in the form of doctests helps to maintain the user's point of view

However, doctests do not make unit tests obsolete; they should be used only to provide
human-readable examples in documents or docstrings. In other words, when the tests are
concerning low-level matters or need complex test fixtures that would obfuscate the
document, they should not be used.

Some Python frameworks such as Zope are using doctests extensively, and they are, at
times, criticized by people who are new to the code. Some doctests are really hard to read
and understand, since the examples break one of the rules of technical writing—they
cannot be taken and run in a simple prompt, and they often need extensive knowledge. So,
documents that are supposed to help newcomers are really hard to read if the code
examples are based on complex test fixtures or even specific test APIs.

When you use doctests that are part of the documentation of your
packages, be careful to follow the seven rules of technical writing that
were explained in Chapter 11, Documenting Your Project.

Test-Driven Development Chapter 12

[398]

I do test
The I don't test section should have familiarized you with the basics of test-driven
development, but there are some more things you should learn before you will be able to
efficiently use this methodology.

This section describes a few problems developers bump into when they write tests, and
some ways to solve them. It also provides a quick review of the popular test runners and
tools that are available in the Python community.

unittest pitfalls
The unittest module was introduced in Python 2.1 and has been massively used by
developers since then. But some alternative test frameworks were created in the community
by people who were frustrated by the weaknesses and limitations of unittest.

The following are the common criticisms that are often made:

You have to prefix the method names with test.
You are encouraged to use assertion methods provided in TestCase instead of
plain assert statements as existing methods may not cover every use case.
The framework is hard to extend because it requires massive subclassing of
classes or tricks such as decorators.
Test fixtures are sometimes hard to organize because the setUp and tearDown
facilities are tied to the TestCase level, though they run once per test. In other
words, if a test fixture concerns many test modules, it is not simple to organize its
creation and cleanup.
It is not convenient to run a test campaign. The default test runner (python -m
unittest) indeed provides some test discovery but does not provide enough
filtering capabilities. In practice, extra scripts have to be written to collect the
tests, aggregate them, and then run them in a convenient way.

A lighter approach is needed to write tests without suffering from the rigidity of a
framework that looks too much like its big Java brother, JUnit. Since Python does not
require working with a 100% class-based environment, it is preferable to provide a more
Pythonic test framework that is not primarily based on subclassing.

Test-Driven Development Chapter 12

[399]

A slightly better framework would include the following:

Provide a simple way to mark any function or any class as a test
Be extendable through a plugin system
Provide a complete test fixture environment for all test levels: at whole
campaign, at module level, and at single test level
Provide a test runner based on test discovery with an extensive set of options

unittest alternatives
Some third-party tools try to solve the problems we mentioned previously by providing
extra features in the shape of unittest extensions.

The Python Wiki provides a very long list of various testing utilities and frameworks
(see https://wiki.python.org/moin/PythonTestingToolsTaxonomy), but there are just the
following two projects that are especially popular:

nose, documented at http://nose.readthedocs.org
py.test, documented at http://pytest.org

nose
nose is mainly a test runner with powerful discovery features. It has extensive options that
allow you to run all kinds of test campaigns in a Python application.

It is not a part of standard library, but is available on PyPI and can be easily installed with
pip, as follows:

pip install nose

In the following sections, we will take a look at a default nose test runner, system of
fixtures, and integration with setup tools and the plugin system in nose.

https://wiki.python.org/moin/PythonTestingToolsTaxonomy
http://nose.readthedocs.org
http://pytest.org

Test-Driven Development Chapter 12

[400]

Test runner
After installing nose, a new command called nosetests is available at the prompt.
Running the tests presented in the first section of this chapter can be done directly with it,
as follows:

$ nosetests -v
test_true (test_primes.OtherTests) ... ok
test_is_prime (test_primes.PrimesTests) ... ok
builds the test suite. ... ok

--
Ran 3 tests in 0.009s

OK

nose takes care of discovering the tests by recursively browsing the current working
directory, and building a test suite on its own. The preceding example at first glance does
not look like any improvement over the simple python -m unittest command. The real
difference becomes noticeable when you execute nosetests with the --help switch. You
will see that nose provides tens of parameters that allow you to finely control test
discovery and execution.

Writing tests
nose goes a step further when executing tests compared to unittest by running all
classes and functions whose name matches the regular expression ((?:^|[b_.-
])[Tt]est). It searches for test units in modules whose names match the same expression.
Roughly, all callables that start with test and are located in a module that match that
pattern will also be executed as a test.

For instance, this test_ok.py module will be recognized and run by nose:

$ cat test_ok.py
def test_ok():
 print('my test')

$ nosetests -v
test_ok.test_ok ... ok

--
Ran 1 test in 0.071s

OK

Test-Driven Development Chapter 12

[401]

Regular TestCase classes and doctests are executed as well.

Last but not least, nose provides assertion functions that are similar to the ones provided in
the unittest.TestCase class methods. But these are provided as functions, with names
that follow the PEP 8 naming conventions, rather than following the Java naming
convention that unittest uses.

Writing test fixtures
nose supports the following three levels of fixtures:

Package level: The setup and teardown functions can be added in the
__init__.py module of a test's package containing all test modules
Module level: A test module can have its own setup and teardown functions
Test level: The callable can also have fixture functions using the @with_setup()
decorator provided

For instance, to set a test fixture at the module and test level, use this code:

def setup():
 # setup code, launched for the whole module
 ...

def teardown():
 # teardown code, launched for the whole module
 ...

def set_ok():
 # setup code used on demand using with_setup decorator
 ...

@with_setup(set_ok)
def test_ok():
 print('my test')

Integration with setuptools and plugin system
The nose framework integrates smoothly with setuptools and so you can use
the setup.py test command to invoke all the tests. Such integration is extremely useful
in ecosystems of packages that require a common test entry point but may use different
testing frameworks.

Test-Driven Development Chapter 12

[402]

This integration is done by adding the test_suite metadata in the setup.py script, as
follows:

setup(
 ...
 test_suite='nose.collector',
)

nose also uses setuptools entry point machinery for developers to write nose plugins.
This allows you to override or modify the main aspects of the tool, such as the test
discovery algorithm or output formatting.

Wrap-up
nose is a complete testing tool that fixes many of the issues unittest has. It is still
designed to use implicit prefix names for tests, which remains a constraint for some
developers. While this prefix can be customized, it still requires you to follow a convention.

This convention over configuration statement is not bad, and a lot better than the
boilerplate code required in unittest. But using explicit decorators, for example, could be
a nice way to get rid of the test prefix.

Also, the ability to extend nose with plugins makes it very flexible, and allows you to
customize this tool to meet your own needs.

If your testing workflow requires overriding a lot of nose parameters, you can easily add a
.noserc or a nose.cfg file in your home directory or project root. It will specify the
default set of options for the nosetests command. For instance, a good practice is to
automatically look for doctests during the test run. An example of the nose configuration
file that enables running doctests is as follows:

[nosetests] with-doctest=1 doctest-extension=.txt

py.test
py.test is very similar to nose. In fact, the latter was inspired by py.test, so we will
focus mainly on details that make these tools different from each other. The tool was born
as part of a larger package called py, but now these are developed separately.

Test-Driven Development Chapter 12

[403]

Like every third-party package mentioned in this book, py.test is available on PyPI and
can be installed with pip as pytest, as follows:

$ pip install pytest

From there, a new py.test command is available in your shell that can be used exactly like
nosetests. The tool uses similar pattern matching and test discovery algorithms to find
tests in your project. The pattern is slightly stricter and will only match the following:

Classes that start with Test, in a file that starts with test
Functions that start with test, in a file that starts with test

Be careful to use the right character case. If a function starts with a capital
T, it will be taken as a class, and thus ignored. And if a class starts with a
lowercase t, py.test will break because it will try to deal with it like a
function.

The following are the advantages of py.test over other frameworks:

The ability to easily disable selected test classes
A flexible and original mechanism for dealing with fixtures
The built-in ability to distribute tests among several computers

In the following sections, we will take a look at writing test fixtures, disabling test functions
and classes, and automated distributed tests in py.test.

Writing test fixtures
py.test supports two mechanisms to deal with fixtures. The first one, modeled after the
xUnit framework, is similar to nose. Of course, the semantics differ a bit. py.test will look
for three levels of fixtures in each test module, as shown in following example, taken from
the official documentation:

def setup_module(module):
 """ Setup up any state specific to the execution
 of the given module.
 """

def teardown_module(module):
 """ Teardown any state that was previously setup
 with a setup_module method.
 """

def setup_class(cls):

Test-Driven Development Chapter 12

[404]

 """ Setup up any state specific to the execution
 of the given class (which usually contains tests).
 """

def teardown_class(cls):
 """ Teardown any state that was previously setup
 with a call to setup_class.
 """

def setup_method(self, method):
 """ Setup up any state tied to the execution of the given
 method in a class. setup_method is invoked for every
 test method of a class.
 """

def teardown_method(self, method):
 """ Teardown any state that was previously setup
 with a setup_method call.
 """

Each function will get the receive module, class, or method as an argument. The test fixture
will, therefore, be able to work on the context without having to look for it, as it does with
nose.

The alternative mechanism for writing fixtures with py.test is built on the concept of
dependency injection and allows you to maintain the test state in a more modular and
scalable way. The non xUnit-style fixtures (setup/teardown procedures) always have
unique names and need to be explicitly activated by declaring their use in test functions,
methods, and modules.

The simplest implementation of fixtures takes the form of a named function declared with
the pytest.fixture() decorator. To mark a fixture as used in test, it needs to be declared
as a function or method argument. To make it more clear, consider the previous example of
the test module for the is_prime function rewritten as follows with the use of py.test
fixtures:

import pytest

from primes import is_prime

@pytest.fixture()
def prime_numbers():
 return [3, 5, 7]

Test-Driven Development Chapter 12

[405]

@pytest.fixture()
def non_prime_numbers():
 return [8, 0, 1]

@pytest.fixture()
def negative_numbers():
 return [-1, -3, -6]

def test_is_prime_true(prime_numbers):
 for number in prime_numbers:
 assert is_prime(number)

def test_is_prime_false(non_prime_numbers, negative_numbers):
 for number in non_prime_numbers:
 assert not is_prime(number)

 for number in negative_numbers:
 assert not is_prime(number)

Disabling test functions and classes
py.test provides a simple mechanism to disable some tests upon certain conditions. This
is called test skipping, and the pytest package provides the @mark.skipif decorator for
that purpose. If a single test function or a whole test class decorator needs to be skipped
upon certain conditions, you need to define it with this decorator and some expression that
verifies if the expected condition was met. Here is an example from the official
documentation that skips running the whole test case class if the test suite is executed on
Windows:

import pytest

@pytest.mark.skipif(
 sys.platform == 'win32',
 reason="does not run on windows"
)
class TestPosixCalls:
 def test_function(self):
 "will not be setup or run under 'win32' platform"

Test-Driven Development Chapter 12

[406]

You can, of course, predefine the skipping condition in order to share them across your
testing modules, as follows:

import pytest

skipwindows = pytest.mark.skipif(
 sys.platform == 'win32',
 reason="does not run on windows"
)

@skip_windows
class TestPosixCalls:
 def test_function(self):
 "will not be setup or run under 'win32' platform"

If test is marked in such a way, it will not be executed at all. However, in some cases, you
want to run an execute specific test that is expected to fail under known conditions. For this
purpose, a different decorator is provided. This is called @mark.xfail, and it ensures that
the test is always run, but it should fail at some point if the predefined condition occurs, as
follows:

import pytest

@pytest.mark.xfail(
sys.platform == 'win32',
 reason="does not run on windows"
)
class TestPosixCalls:

 deftest_function(self):
 "it must fail under windows"

Using xfail is much stricter than skipif. The test is always executed, and if it does not
fail when it is expected to do so, then the whole execution of the test suite will be marked as
a failure.

Automated distributed tests
An interesting feature of py.test is its ability to distribute the tests across several
computers. As long as the computers are reachable through SSH, py.test will be able to
drive each computer by sending tests to be performed.

Test-Driven Development Chapter 12

[407]

However, this feature relies on the network; if the connection is broken, the slave will not
be able to continue working since it is fully driven by the master.

A Buildbot or other continuous integration tools are preferable when a project has large
and long running test campaigns. But the py.test distributed model can be used for the
ad hoc distribution of tests when you don't have a proper continuous integration pipeline
at hand.

Wrap-up
py.test is very similar to nose since no boilerplate code is needed to aggregate the tests in
it. It also has a good plugin system, and there are a great number of extensions available on
PyPI.

py.test focuses on making the tests run fast, and is truly superior compared to the other
tools in this area. The other notable feature is the original approach to fixtures that really
helps in managing a reusable library of fixtures. Some people may argue that there is too
much magic involved, but it really streamlines the development of test suites. This single
advantage of py.test makes it my tool of choice, so I really recommend it.

In the next section, you will learn how to measure how much of your code is actually
covered by tests.

Testing coverage
Code coverage is a very useful metric that provides objective information on how well
project code is tested. It is simply a measurement of how many and which lines of code are
executed during the test execution. It is often expressed as a percentage, and 100% coverage
means that every line of code was executed during tests.

The most popular code coverage tool is called the coverage, and is freely available on
PyPI. Its usage is very simple and consists only of two steps. The first step is to execute
the coverage run command in your shell with the path to your script/program that runs
all the tests, as follows:

$ coverage run --source . `which py.test` -v
===================== test session starts ======================
platformdarwin -- Python 3.5.1, pytest-2.8.7, py-1.4.31, pluggy-0.3.1 --
/Users/swistakm/.envs/book/bin/python3 cachedir: .cache rootdir:
/Users/swistakm/dev/book/chapter10/pytest, inifile: plugins:
capturelog-0.7, codecheckers-0.2, cov-2.2.1, timeout-1.0.0 collected 6
items primes.py::pyflakes PASSED

Test-Driven Development Chapter 12

[408]

primes.py::pep8 PASSED
test_primes.py::pyflakes PASSED
test_primes.py::pep8 PASSED
test_primes.py::test_is_prime_true PASSED
test_primes.py::test_is_prime_false PASSED
========= 6 passed, 1 pytest-warnings in 0.10 seconds ==========

The coverage run also accepts an -m parameter that specifies a runnable module name
instead of a program path that may be better for some testing frameworks, as follows:

$ coverage run -m unittest
$ coverage run -m nose
$ coverage run -m pytest

The next step is to generate a human-readable report of your code coverage from results
cashed in the .coverage file. The coverage package supports a few output formats, and
the simplest one just prints an ASCII table in your Terminal, as follows:

$ coverage report
Name StmtsMiss Cover

primes.py 7 0 100%
test_primes.py 16 0 100%

TOTAL 23 0 100%

The other useful coverage report format is HTML that can be displayed as follows in your
web browser:

$ coverage html

The default output folder of this HTML report is htmlcov/ in your working directory. The
real advantage of the coverage html output is that you can browse annotated sources of
your project with highlighted parts that have missing test coverage (as shown in the
following diagram):

Test-Driven Development Chapter 12

[409]

Figure 1 Example of annotated sources in coverage HTML report

You should know that while you should always strive to ensure 100% test coverage, it is
never a guarantee that code is tested perfectly and there is no place where it can break.
This means that every line of code was reached during execution but not necessarily every
possible condition was tested. In practice, it may be relatively easy to ensure full code
coverage, but it is really hard to make sure that every branch of code was reached. This is
especially true for the testing of functions that may have multiple combinations of if
statements and specific language constructs like list/dict/set comprehensions. You
should always care about good test coverage, but should never treat its measurement as the
final answer of how good your testing suite is.

In the following sections, we will take a look at other testing techniques and tools that allow
you to replace existing third-party dependencies during tests with objects that imitate their
behaviors.

Test-Driven Development Chapter 12

[410]

Fakes and mocks
Writing unit tests presupposes that you isolate the unit of code that is being tested. Tests
usually feed the function or method with some data and verify its return value and/or the
side effects of its execution. This is mainly to make sure the tests include the following:

They are concerning with an atomic part of the application, which can be a
function, method, class, or interface
They provide deterministic, reproducible results

Sometimes, the proper isolation of the program component is not obvious. For instance, if
the code sends emails, it will probably call Python's smtplib module, which will work
with the SMTP server through a network connection. If we want our tests to be
reproducible and are just testing if emails have the desired content, then probably no real
network connection needs to happen. Ideally, unit tests should run on any computer with
no external dependencies and side effects.

Thanks to Python's dynamic nature, it is possible to use the monkey patching technique to
modify the runtime code from the test fixture (that is, modify software dynamically at
runtime without touching the source code), in order to fake the behavior of a third-party
code or library. In the following sections, we will learn how to build such objects.

Building a fake
A fake behavior in the tests can be created by discovering the minimal set of interactions
needed for the tested code to work with the external parts. Then, the output is manually
returned, or uses a real pool of data that has been previously recorded.

You can start this by creating an empty class or function and use it as a replacement for a
component that has to be substituted. You can then iteratively update your class definition
until implementation of this fake object behaves as intended. This is possible thanks to the
nature of a Python type system. The object is considered compatible with the given type, as
long as it behaves as an expected type, and usually does not need to be related to that type
via subclassing. This approach to typing in Python is called duck typing:

If something behaves like a duck it can be treated like a duck.

Test-Driven Development Chapter 12

[411]

Let's take a look at the following example module named mailer with a function
called send that sends emails using smtplib library:

import smtplib
import email.message

def send(
 sender, to,
 subject='None',
 body='None',
 server='localhost'
):
 """sends a message."""
 message = email.message.Message()
 message['To'] = to
 message['From'] = sender
 message['Subject'] = subject
 message.set_payload(body)

 server = smtplib.SMTP(server)
 try:
 return server.sendmail(sender, to, message.as_string())
 finally:
 server.quit()

py.test will be used to demonstrate fakes and mocks in this section.

The corresponding test can be written as follows:

from mailer import send

def test_send():
 res = send(
 'john.doe@example.com',
 'john.doe@example.com',
 'topic',
 'body'
)
 assert res == {}

Test-Driven Development Chapter 12

[412]

This test will pass and work as long as there is an SMTP server on the local host. If not, it
will fail, like so:

$ py.test --tb=short
========================= test session starts =========================
platform darwin -- Python 3.5.1, pytest-2.8.7, py-1.4.31, pluggy-0.3.1
rootdir: /Users/swistakm/dev/book/chapter10/mailer, inifile:
plugins: capturelog-0.7, codecheckers-0.2, cov-2.2.1, timeout-1.0.0
collected 5 items
mailer.py ..
test_mailer.py ..F
============================== FAILURES ===============================
______________________________ test_send ______________________________
test_mailer.py:10: in test_send
 'body'
mailer.py:19: in send
 server = smtplib.SMTP(server)
.../smtplib.py:251: in __init__
 (code, msg) = self.connect(host, port)
.../smtplib.py:335: in connect
 self.sock = self._get_socket(host, port, self.timeout)
.../smtplib.py:306: in _get_socket
 self.source_address)
.../socket.py:711: in create_connection
 raise err
.../socket.py:702: in create_connection
 sock.connect(sa)
E ConnectionRefusedError: [Errno 61] Connection refused
======== 1 failed, 4 passed, 1 pytest-warnings in 0.17 seconds ========

A patch can be added to fake the SMTP class, as follows:

import smtplib
import pytest
from mailer import send

class FakeSMTP(object):
 pass

@pytest.yield_fixture()
def patch_smtplib():
 # setup step: monkey patch smtplib
 old_smtp = smtplib.SMTP
 smtplib.SMTP = FakeSMTP

 yield

Test-Driven Development Chapter 12

[413]

 # teardown step: bring back smtplib to
 # its former state
 smtplib.SMTP = old_smtp

def test_send(patch_smtplib):
 res = send(
 'john.doe@example.com',
 'john.doe@example.com',
 'topic',
 'body'
)
 assert res == {}

In the preceding code, we used a new @pytest.yield_fixture() decorator. It allows us
to use a generator syntax to provide both setup and teardown procedures in a single fixture
function. Now, our test suite can be run again with the patched version of smtplib, as
follows:

$ py.test --tb=short -v
======================== test session starts ========================
platform darwin -- Python 3.5.1, pytest-2.8.7, py-1.4.31, pluggy-0.3.1 --
/Users/swistakm/.envs/book/bin/python3
cachedir: .cache
rootdir: /Users/swistakm/dev/book/chapter10/mailer, inifile:
plugins: capturelog-0.7, codecheckers-0.2, cov-2.2.1, timeout-1.0.0
collected 5 items

mailer.py::pyflakes PASSED
mailer.py::pep8 PASSED
test_mailer.py::pyflakes PASSED
test_mailer.py::pep8 PASSED
test_mailer.py::test_send FAILED

============================= FAILURES ==============================
_____________________________ test_send _____________________________
test_mailer.py:29: in test_send
 'body'
mailer.py:19: in send
 server = smtplib.SMTP(server)
E TypeError: object() takes no parameters
======= 1 failed, 4 passed, 1 pytest-warnings in 0.09 seconds =======

As we see from the preceding transcript, our FakeSMTP class implementation is not
complete yet. We need to update its interface to match the original SMTP class.

Test-Driven Development Chapter 12

[414]

According to the duck typing principle, we only need to provide interfaces that are
required by the tested send() function, as follows:

class FakeSMTP(object):
 def __init__(self, *args, **kw):
 # arguments are not important in our example
 pass

 def quit(self):
 pass

 def sendmail(self, *args, **kw):
 return {}

Of course, the fake class can evolve with new tests to provide more complex behaviors. But
it should be as short and simple as possible. The same principle can be used with more
complex outputs, by recording them to serve them back through the fake API. This is often
done for third-party servers such as LDAP or SQL databases.

It is important to know that special care should be taken when monkey patching any built-
in or third-party module. If not done properly, such an approach might leave unwanted
side effects that will propagate between tests. Fortunately, many testing frameworks and
libraries provide proper utilities that make patching of any code units safe and easy. In our
example, we did everything manually and provided a custom patch_smtplib() fixture
function with separated setup and teardown steps. A typical solution in py.test is much
easier. This framework comes with a built-in monkeypatch fixture that should satisfy most
of our patching needs, as follows:

import smtplib
from mailer import send

class FakeSMTP(object):
def __init__(self, *args, **kw):
 # arguments are not important in our example
 pass

 def quit(self):
 pass

 def sendmail(self, *args, **kw):
 return {}

def test_send(monkeypatch):
 monkeypatch.setattr(smtplib, 'SMTP', FakeSMTP)

Test-Driven Development Chapter 12

[415]

 res = send(
 'john.doe@example.com',
 'john.doe@example.com',
 'topic',
 'body'
)
 assert res == {}

You should keep in mind that fakes have limitations. If you decide to fake an external
dependency, you might introduce bugs or unwanted behaviors that the real server
wouldn't have, or the other way around.

Using mocks
Mock objects are generic fake objects that can be used to isolate the tested code. They
automate the building process of the fake object's input and output. There is a greater use of
mock objects in statically typed languages, where monkey patching is harder, but they are
still useful in Python to shorten the code that mimics external APIs.

There are a lot of mock libraries available in Python, but the most recognized one is
unittest.mock, which is provided in the standard library. It was created as a third-party
package, but was soon included into the standard library as a provisional package (refer to
https://docs.python.org/dev/glossary.html#term-provisional-api). For Python
versions older than 3.3, you will need to install it from PyPI, as follows:

$ pip install Mock

In our following example, using unittest.mock to patch SMTP is way simpler than
creating a fake from scratch:

import smtplib
from unittest.mock import MagicMock
from mailer import send

def test_send(monkeypatch):
 smtp_mock = MagicMock()
 smtp_mock.sendmail.return_value = {}

 monkeypatch.setattr(
 smtplib, 'SMTP', MagicMock(return_value=smtp_mock)
)

 res = send(
 'john.doe@example.com',

https://docs.python.org/dev/glossary.html#term-provisional-api

Test-Driven Development Chapter 12

[416]

 'john.doe@example.com',
 'topic',
 'body'
)
 assert res == {}

The return_value argument of the mock object or method allows you to define what
value will be returned by the call. When the mock object is used, every time an attribute is
called by the code, it creates a new mock object for the attribute on the fly. Thus, no
exception is raised. This is the case (for instance) for the quit method we wrote earlier in
the Building a fake section. With mocks, we don't need to define such methods anymore.

In the preceding example, we have in fact created the following two mocks:

The first one mocks the SMTP type object (class) and not its instance. This allows
you to easily create a new object, regardless of the expected __init__()
method. Mocks, by default, return new Mock() objects if treated as callable. This
is why we needed to provide another mock as its return_value keyword
argument to have control of the instance interface.
The second mock is the actual instance that's returned on the patched
smtplib.SMTP() call. In this mock, we control the behavior of the
sendmail()method.

In the previous examples, we used the monkey patching fixture available from the
py.test framework. But unittest.mock provides its own patching utilities. In some
situations (like patching class objects), it may be simpler and faster to use them instead of
your framework-specific tools. Here is an example of monkey patching with the patch()
context manager provided by the unittest.mock module:

from unittest.mock import patch
from mailer import send

deftest_send():
 with patch('smtplib.SMTP') as mock:
 instance = mock.return_value
 instance.sendmail.return_value = {}
 res = send(
 'john.doe@example.com',
 'john.doe@example.com',
 'topic',
 'body'
)
 assert res == {}

Test-Driven Development Chapter 12

[417]

In the next section, we will discuss testing applications in multiple different environments
and under different dependency versions.

Testing environment and dependency
compatibility
The importance of environment isolation has already been mentioned in this book many
times. By isolating your execution environment on both the application level (virtual
environments) and system level (system virtualization), you are able to ensure that your
tests run under repeatable conditions. This way, you protect yourself from rare and obscure
problems caused by broken dependencies or system interoperability issues.

The best way to allow proper isolation of the test environment is to use good continuous
integration systems that support system virtualization or containerization. There are good
hosted continuous integration systems such as Travis CI (for Linux and macOS) or
AppVeyor (for Windows) that offer such capabilities for open source projects for free. But if
you need such a thing for testing proprietary software, it is very likely that you will have to
either pay for such a service or host it on your own infrastructure with some existing open
source CI tools (such as GitLab CI, Jenkins, or Buildbot).

Dependency matrix testing
Testing matrices for open source Python projects in most cases focuses only on different
Python versions and rarely on different operating systems. Not doing your tests and builds
on different systems is completely OK for simple projects that are purely Python, and there
are no expected system interoperability issues. But some projects, especially distributed as
compiled Python extensions, should be definitely tested on various target operating
systems. For some open source projects, you may even be forced to use a few independent
CI systems to provide builds for just the three most popular ones (Windows, Linux, and
macOS). If you are looking for a good example, you can take a look at the small pyrilla
project (refer to https://github.com/swistakm/pyrilla), which is a simple C audio
extension for Python. It uses both Travis CI and AppVeyor in order to provide compiled
builds for Windows, macOS, and a large range of CPython versions.

https://github.com/swistakm/pyrilla

Test-Driven Development Chapter 12

[418]

But dimensions of test matrices do not end on systems and Python versions. Packages that
provide integration with other software, such as caches, databases, or system services,
should be tested on various versions of integrated applications. A good tool that makes
such testing easy is tox (refer to http://tox.readthedocs.org). It provides a simple way to
configure multiple testing environments and run all tests with a single tox command. It is
a very powerful and flexible tool, but is also very easy to use. The best way to present its
usage is to show an example of a configuration file that is in fact the core of tox. Here is the
tox.ini file from the django-userena project (refer to
https://github.com/bread-and-pepper/django-userena):

[tox]
downloadcache = {toxworkdir}/cache/

envlist =
 ; py26 support was dropped in django1.7
 py26-django{15,16},
 ; py27 still has the widest django support
 py27-django{15,16,17,18,19},
 ; py32, py33 support was officially introduced in django1.5
 ; py32, py33 support was dropped in django1.9
 py32-django{15,16,17,18},
 py33-django{15,16,17,18},
 ; py34 support was officially introduced in django1.7
 py34-django{17,18,19}
 ; py35 support was officially introduced in django1.8
 py35-django{18,19}

[testenv]
usedevelop = True
deps =
 django{15,16}: south
 django{15,16}: django-guardian<1.4.0
 django15: django==1.5.12
 django16: django==1.6.11
 django17: django==1.7.11
 django18: django==1.8.7
 django19: django==1.9
 coverage: django==1.9
 coverage: coverage==4.0.3
 coverage: coveralls==1.1

basepython =
 py35: python3.5
 py34: python3.4
 py33: python3.3
 py32: python3.2
 py27: python2.7

http://tox.readthedocs.org
https://github.com/bread-and-pepper/django-userena

Test-Driven Development Chapter 12

[419]

 py26: python2.6

commands={envpython} userena/runtests/runtests.py userenaumessages
{posargs}

[testenv:coverage]
basepython = python2.7
passenv = TRAVIS TRAVIS_JOB_ID TRAVIS_BRANCH
commands=
 coverage run --source=userena userena/runtests/runtests.py
userenaumessages {posargs}
 coveralls

This configuration allows you to test django-userena on five different versions of Django
and six versions of Python. Not every Django version will work on every Python version,
and the tox.ini file makes it relatively easy to define such dependency constraints. In
practice, the whole build matrix consists of 21 unique environments (including a special
environment for code coverage collection). It would require tremendous effort to create
each of such testing environment without a tool like tox.

Tox is great, but its usage gets more complicated if we want to change other elements of the
testing environment that are not plain Python dependencies. This is a situation where we
need to test under different versions of system packages and backing services. The best way
to solve this problem is to again use good continuous integration systems that allow you to
easily define matrices of environment variables and install system software on virtual
machines. A good example of doing that using Travis CI is provided by the ianitor
project (refer to https://github.com/ClearcodeHQ/ianitor/) that was already mentioned
in Chapter 11, Documenting Your Project. It is a simple utility for the Consul discovery
service. The Consul project has a very active community, and many new versions of its
code are released every year. This makes it very reasonable to test against various versions
of that service. Such an approach makes sure that the ianitor project is still up to date
with the latest version of that software, but also does not break compatibility with previous
Consul versions. Here is the content of the .travis.yml configuration file for Travis CI
that allows you to test against three different Consul versions and four Python interpreter
versions:

language: python

install: pip install tox --use-mirrors
env:
 matrix:
 # consul 0.4.1
 - TOX_ENV=py27 CONSUL_VERSION=0.4.1
 - TOX_ENV=py33 CONSUL_VERSION=0.4.1
 - TOX_ENV=py34 CONSUL_VERSION=0.4.1

https://github.com/ClearcodeHQ/ianitor/

Test-Driven Development Chapter 12

[420]

 - TOX_ENV=py35 CONSUL_VERSION=0.4.1

 # consul 0.5.2
 - TOX_ENV=py27 CONSUL_VERSION=0.5.2
 - TOX_ENV=py33 CONSUL_VERSION=0.5.2
 - TOX_ENV=py34 CONSUL_VERSION=0.5.2
 - TOX_ENV=py35 CONSUL_VERSION=0.5.2

 # consul 0.6.4
 - TOX_ENV=py27 CONSUL_VERSION=0.6.4
 - TOX_ENV=py33 CONSUL_VERSION=0.6.4
 - TOX_ENV=py34 CONSUL_VERSION=0.6.4
 - TOX_ENV=py35 CONSUL_VERSION=0.6.4

 # coverage and style checks
 - TOX_ENV=pep8 CONSUL_VERSION=0.4.1
 - TOX_ENV=coverage CONSUL_VERSION=0.4.1

before_script:
 - wget
https://releases.hashicorp.com/consul/${CONSUL_VERSION}/consul_${CONSUL_VER
SION}_linux_amd64.zip
 - unzip consul_${CONSUL_VERSION}_linux_amd64.zip
 - start-stop-daemon --start --background --exec `pwd`/consul -- agent -
server -data-dir /tmp/consul -bootstrap-expect=1

script:
 - tox -e $TOX_ENV

The preceding example provides 14 unique test environments (including pep8 and
coverage builds) for ianitor code. This configuration also uses tox to create actual
testing virtual environments on Travis VMs. It is actually a very popular approach to
integrating tox with different CI systems. By moving as much of the test environment
configuration as possible to tox, you are reducing the risk of locking yourself to a single CI
vendor. Things like the installation of new services or defining system environment
variables are supported by most of Travis CI's competitors, so it should be relatively easy to
switch to a different service provider if there is a better product available on the market or
Travis changes their pricing model for open source projects.

Test-Driven Development Chapter 12

[421]

Document-driven development
doctests are nice things in Python that you can't find in many other programming
languages. The fact that documentation can use code examples that are also runnable as
tests changes the way TDD can be done, for instance, a part of the documentation can be
done through doctests during the development cycle. This approach also ensures that the
provided examples are always up to date and are really working.

Building software through doctests rather than regular unit tests can be a part of
document-driven development (DDD). Developers explain what the code is doing in plain
English, while they are implementing it.

Writing a story
Writing doctests in DDD is done by building a story about how a piece of code works and
should be used. These principles are described in plain English and then a few code usage
examples are distributed throughout the text. A good practice is to start to write text on
how the code works, and then add some code examples.

To see an example of doctests in practice, let's look at the atomisator package (refer to
https://bitbucket.org/tarek/atomisator). The documentation text for its
atomisator.parser subpackage (under
packages/atomisator.parser/atomisator/parser/docs/README.txt) is as follows:

=================
atomisator.parser
=================

The parser knows how to return a feed content, with
the `parse` function, available as a top-level function::

>>> from atomisator.parser import Parser

This function takes the feed url and returns an iterator
over its content. A second parameter can specify a maximum
number of entries to return. If not given, it is fixed to 10::

>>> import os
>>> res = Parser()(os.path.join(test_dir, 'sample.xml'))
>>> res
<itertools.imap ...>

Each item is a dictionary that contain the entry::

https://bitbucket.org/tarek/atomisator

Test-Driven Development Chapter 12

[422]

>>> entry = res.next()
>>> entry['title']
u'CSSEdit 2.0 Released'

The keys available are:

>>> keys = sorted(entry.keys())
>>> list(keys)
 ['id', 'link', 'links', 'summary', 'summary_detail', 'tags',
 'title', 'title_detail']

Dates are changed into datetime::

>>> type(entry['date'])
>>>

Later, the doctest will evolve to take into account new elements or the required changes.
Such doctests are also good documentation for developers who want to use the package,
and should be evolved with this particular usage in mind.

A common pitfall in writing tests in a document is that they can quickly transform it into an
unreadable piece of text. If this happens, it should not be considered as part of the
documentation anymore.

That said, some developers that are working exclusively through doctests often group their
doctests into two categories: the ones that are readable and usable so that they can be a part
of the package documentation, and the ones that are unreadable and are just used to build
and test the software.

Many developers think that doctests should be dropped for the latter in favor of regular
unit tests. Others even use dedicated doctests for bug fixes. So, the balance between
doctests and regular tests is a matter of taste and is up to the team, as long as the published
part of the doctests is readable. With modern testing frameworks, like nose or py.test, it's
very easy to maintain both collection do doctests and classical function or class-based unit
tests at the same time.

When DDD is used in a project, focus on the readability and decide which
doctests are eligible to be a part of the published documentation.

Test-Driven Development Chapter 12

[423]

Summary
In this chapter, we have discussed the basic TDD methodology and provided more
information on how to efficiently write meaningful automated tests for your software. We
have reviewed a few ways of structuring and discovering tests. We have also mentioned
popular testing tools that make writing tests fun and easy.

We have mentioned that tests can be used not only to verify application validity but also to
assert some claims about its performance. This is a good starting point for the next two
chapters, where we will discuss how to diagnose various performance issues of the Python
application and also learn some powerful optimization principles and techniques.

4
Section 4: Need for Speed

This section is all about speed and resources, from plain optimization techniques that aim
to squeeze as much as possible from the single-program process to various concurrency
models that allow us to distribute and scale a system over many processor cores, or even
computers. The reader will learn how to make their code faster and how to process data in
a highly distributed manner.

The following chapters are included in this section:

Chapter 13, Optimization – Principles and Profiling Techniques
Chapter 14, Optimization – Some Powerful Techniques
Chapter 15, Concurrency

13
Optimization - Principles and

Profiling Techniques
"We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil."

 – Donald Knuth

This chapter is all about optimization—its general principles and common profiling
techniques. We will discuss the most basic rules of optimization that every developer
should be aware of. We will also learn how to identify application performance bottlenecks
and use common profiling tools.

In this chapter, we will cover the following topics:

The three rules of optimization
Optimization strategy
Finding bottlenecks

Let's discuss the three rules of optimization.

Technical requirements
Various profiling utilities for Python that are explained in this chapter require the Graphviz
package. You can download it from https://www.graphviz.org/download/.

https://www.graphviz.org/download/
https://www.graphviz.org/download/
https://www.graphviz.org/download/
https://www.graphviz.org/download/
https://www.graphviz.org/download/
https://www.graphviz.org/download/
https://www.graphviz.org/download/
https://www.graphviz.org/download/
https://www.graphviz.org/download/
https://www.graphviz.org/download/
https://www.graphviz.org/download/
https://www.graphviz.org/download/

Optimization - Principles and Profiling Techniques Chapter 13

[426]

The following are the Python packages that are mentioned in this chapter that you can
download from PyPI:

gprof2dot

memprof

memory_profiler

pympler

objgraph

You can install these packages using the following command:

python3 -m pip install <package-name>

The code files for this chapter can be found
at https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/t
ree/master/chapter13.

The three rules of optimization
Optimization has a price, no matter what the results are. And the most important cost of
optimization apart from the obvious development time is the increase in software
complexity and reduction in maintainability. When a piece of code works, it might be better
(sometimes) to leave it alone than to try making it faster at all costs. This means that if the
optimization process has to be cost-effective, it must be done reasonably. The following are
the three most basic optimization rules to keep in mind when doing any kind of
optimization:

Make it work first
Work from the user's point of view
No matter what, keep the code readable

In the following sections, we will explain these rules in detail.

Making it work first
A very common mistake that 's made by many developers is optimizing the code
continuously from the very beginning. This is often a pointless and wasteful endeavor
because the real bottlenecks are often located where you would have never thought they
would be.

https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter13
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter13

Optimization - Principles and Profiling Techniques Chapter 13

[427]

Even a seemingly simple application is usually composed of very complex interactions, and
it is often impossible to guess how well it will behave until it is actually used by its users in
the real production environment.

Of course, this is not a reason to write every function and algorithm with total negligence of
performance problems and solve every problem by brute forcing it. Some performance hot
spots of your application may be obvious from the very beginning, and therefore it makes
sense to use performant solutions at an early stage of development. But you should do it
very carefully and try to keep your code as simple as possible at all times. Your main goal
should always be to make your code work first. This goal should not be hindered by
optimization efforts.

For line-level code, the Python philosophy is that there's one and preferably only one way
to do it. So, as long as you stick with a Pythonic syntax, as described in Chapter 3, Modern
Syntax Elements - Below the Class Level, and Chapter 4, Modern Syntax Elements - Above the
Class Level, your code (in the micro scale) should be fine. Often, writing less code is better
and faster than writing more code.

Until your code works and is ready to be profiled, you should avoid the following
practices:

Any kind of caching or value memoization, even if it's a simple global dictionary
Externalizing a part of the code in C or hybrid languages, such as Cython
Using specialized external libraries that are focused mainly on performance
optimization

Keep in mind that these are not strict rules. If doing any of the preceding things will, in the
end, result in code that is simpler and more readable, you should definitely do
that. Sometimes, using libraries like NumPy might ease the development of specific
features and produce simpler and faster code in the end. Furthermore, you should not
rewrite a function if there is a good library that does it for you. Also, for some very
specialized areas, such as scientific calculation or computer games, the usage of specialized
libraries and modules written using different languages might also be unavoidable from
the beginning.

For instance, Soya 3D, which is a game engine on top of OpenGL (see
http://home.gna.org/oomadness/en/soya3d/index.html), uses C and Pyrex for fast
matrix operations when rendering real-time 3D.

Optimization is carried out on programs that already work. As Kent Beck
says, "Make it work, then make it right, then make it fast".

http://home.gna.org/oomadness/en/soya3d/index.html

Optimization - Principles and Profiling Techniques Chapter 13

[428]

In the next section, we will take a look at how things work from the user's point of view.

Working from the user's point of view
I have once seen a team spend a lot of time and effort on optimizing the startup time of an
application server that worked fine when it was already up and running. Once they had
finished speeding it up, they announced their achievement to their customers. They were
disappointed to notice that their customers didn't really care about it. This was because the
optimization effort was not motivated by the user feedback and was only a bottom-up
initiative of the developers. The people who built the system were launching the server
multiple times every day. So, the startup time meant a lot to them. But sadly it wasn't that
important to their customers.

While making a program start faster is a good thing from an absolute point of view, teams
should be careful to prioritize the optimization work and ask themselves the following
questions:

Have I been asked to make it faster?
Who finds the program slow?
Is it really slow, or acceptable?
How much will it cost to make it go faster?
Is it worth it?
Exactly what parts of the application need to be fast?

Remember that optimization has a cost, and that the developer's point of view is usually
meaningless to customers (unless you are writing a framework or a library and the
customer is a developer too).

Optimization is not a game. It should be done only when necessary.

In the next section, we will learn how to keep our code readable and maintainable.

Keeping the code readable and maintainable
Even if Python tries to make the common code patterns the fastest, optimization techniques
might obfuscate your code and make it really hard to read, understand, and develop.
There's a balance to keep between readability/maintainability and performance.

Optimization - Principles and Profiling Techniques Chapter 13

[429]

Remember that optimization usually has no bounds. There will always be something that
can be done to make your code a few milliseconds faster. So, if you have reached 90% of
your optimization objectives, and the 10% left to be done would make your code utterly
unreadable and unmaintainable, it might be a good idea to stop the work there or to look
for other solutions.

Optimization should not make your code unreadable. If it happens, you
should look for alternative solutions, such as externalization or redesign.
Look for a good compromise between readability and speed.

We'll take a look at optimization strategy in the next section.

Optimization strategy
Let's say your program has a real performance problem you need to resolve. Do not try to
guess how to make it faster. Bottlenecks are often hard to find by simply looking at the
code, and usually you will have to use a set of specialized tools to find the real problem
cause.

A good optimization strategy can start with the following three steps:

Look for another culprit: Make sure a third-party server or resource is not faulty
Scale the hardware: Make sure the resources are sufficient
Write a speed test: Create a scenario with speed objectives

Let's describe the preceding strategies in the following sections.

Looking for another culprit
Often, a performance problem occurs at production level, and the customer alerts you that
it is not working as it used to when the software was being tested. Performance problems
might occur because the application was not planned to work in the real world with a high
number of users and ever-increasing amounts of data.

But if the application interacts with other applications, the first thing to do is to check if the
bottlenecks are located on those interactions. For instance, if you use a database server or
any kind of external service that needs to be communicated over the network, then it is
possible that performance issues are due to service misuse (for example, heavy SQL
queries) or many serial network connections that could be easily parallelized.

Optimization - Principles and Profiling Techniques Chapter 13

[430]

The physical links between applications should also be considered. Maybe the network link
between your application server and another server in the intranet is becoming really slow
due to a misconfiguration or congestion.

Good and up-to-date architecture design documentation that contains diagrams of all
interactions and the nature of each link is invaluable in providing the overall picture of the
whole system. And that picture is essential when trying to resolve performance issues that
occur on the boundaries of many networked components.

If your application uses third-party servers of resources, every interaction
should be audited to make sure that the bottleneck is not located there.

Scaling the hardware
When the process requests more physical memory than what is currently available on your
system, the system kernel may decide to copy some memory pages to the configured swap
device. When some process tries to access the memory page that was already moved to the
swap device, it will be copied back to RAM. This process is called swapping. This kind of
memory management is common in today's operating systems, and the notion about it is
important because most default system configurations use hard disk drives as their swap
devices. And hard disks, even SSDs, are extremely slow compared to RAM.

Swapping in general is not a bad occurrence. Some systems may use swap devices for less
accessed memory pages, even if there is a lot of free memory available, just to save
resources in advance. But if memory pressure is very high and all processes really request
and start to use more memory than is available, performance will drop drastically. In such
situations, the system kernel might start swapping same memory pages back and forth, and
will spend most of its time constantly writing and reading from disk. From a user's point of
view, the system is considered dead at this stage. So, if your application is memory-
intensive, it is extremely important to scale the hardware to prevent this.

While having enough memory on a system is important, it is also important to make sure
that the applications are not acting crazy and eating too much memory. For instance, if a
program works on big video files that can weigh in at several hundreds of megabytes, it
should not load them entirely in memory, but rather work on chunks or use disk streams.

Optimization - Principles and Profiling Techniques Chapter 13

[431]

Note that scaling up the hardware (vertical scaling) has some obvious limitations. You
cannot fit an infinite amount of hardware into a single server rack. Also, highly efficient
hardware is extremely expensive (law of diminishing returns), so there is also an
economical bound for this approach. From this point of view, it is always better to have a
system that can be scaled out by adding new computation nodes, or workers (horizontal
scaling). This allows you to scale out your service with commodity software that has the
best performance/price ratio.

Unfortunately, designing and maintaining highly scalable distributed systems is both hard
and expensive. If your system cannot be easily scaled horizontally or it is faster and cheaper
to scale vertically, it may be better to scale it vertically instead of wasting time and
resources on a total redesign of your system architecture. Remember that hardware
invariably tends to be faster and cheaper with time. Many products stay in this sweet spot
where their scaling needs to align with the trend of raising hardware performance (for the
same price).

Writing a speed test
When starting with optimization work, it is important to work using a workflow similar to
test-driven development rather than running some manual tests continuously. A good
practice is to dedicate a test module in the application, with test functions that use code
components that have to be optimized. Using this approach will help you track your
progress while you are optimizing the application.

You can even write a few assertions where you set some speed objectives. To prevent speed
regression, these tests can be left after the code has been optimized. Of course, measuring
the execution time depends on the power of the CPU used, so it is extremely hard to collect
objective measurement in a repeatable way on every environment. This is why speed tests
are done best if they are executed on a carefully prepared and isolated environment. It is
also crucial to make sure that only one speed test is done at a time. It is also better to
concentrate on observing performance trends rather than on using hardcoded time limit
assertions. Fortunately, many popular testing frameworks like pytest and nose have
available plugins that can automatically measure test execution time and even compare the
results of multiple test runs.

Let's take a look at finding bottlenecks in the next section.

Optimization - Principles and Profiling Techniques Chapter 13

[432]

Finding bottlenecks
Finding bottlenecks is usually done as follows:

Profiling CPU usage
Profiling memory usage
Profiling network usage
Tracing

Profiling is observing code behavior or specific performance metrics within a single process
or execution thread working on a single host, and is usually done by the process itself.
Adding code to an application that allows it to log and measure different performance
metrics is called instrumentation. Tracing is a generalization of profiling that allows you to
observe and measure across many networked processes running on multiple hosts.

Profiling CPU usage is explained in the next section.

Profiling CPU usage
The first source of bottlenecks is your code. The standard library provides all the tools that
are needed to perform code profiling. They are based on a deterministic approach.

A deterministic profiler measures the time spent in each function by adding a timer at the
lowest level. This introduces a bit of overhead, but provides a good idea of where the time
is consumed. A statistical profiler, on the other hand, samples the instruction pointer usage
and does not instrument the code. The latter is less accurate, but allows you to run the
target program at full speed.

There are the two ways to profile the code:

Macro-profiling: This profiles the whole program while it is being used and
generates statistics
Micro-profiling: This measures a precise part of the program by instrumenting it
manually

Let's discuss the preceding ways to profile the code in the following sections.

Optimization - Principles and Profiling Techniques Chapter 13

[433]

Macro-profiling
Macro-profiling is done by running the application in a special mode, where the interpreter
is instrumented to collect statistics on the code usage. Python provides several tools for this,
including the following:

profile: This is a pure Python implementation
cProfile: This is a C implementation that provides the same interface as that of
the profile tool, but has less overhead

The recommended choice for most Python programmers is cProfile due to its reduced
overhead. Anyway, if you need to extend the profiler in some way, then profile will be a
better choice because it doesn't use C extensions and so is easier to extend.

Both tools have the same interface and usage, so we will use only one of them here. The
following is a myapp.py module with a main function that we are going to profile with
the cProfile module:

import time

def medium():
 time.sleep(0.01)

def light():
 time.sleep(0.001)

def heavy():
 for i in range(100):
 light()
 medium()
 medium()
 time.sleep(2)

def main():
 for i in range(2):
 heavy()

if __name__ == '__main__':
 main()

Optimization - Principles and Profiling Techniques Chapter 13

[434]

This module can be called directly from the prompt, and the results are summarized here:

$ python3 -m cProfile myapp.py
 1208 function calls in 8.243 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)
 2 0.001 0.000 8.243 4.121 myapp.py:13(heavy)
 1 0.000 0.000 8.243 8.243 myapp.py:2(<module>)
 1 0.000 0.000 8.243 8.243 myapp.py:21(main)
 400 0.001 0.000 4.026 0.010 myapp.py:5(medium)
 200 0.000 0.000 0.212 0.001 myapp.py:9(light)
 1 0.000 0.000 8.243 8.243 {built-in method exec}
 602 8.241 0.014 8.241 0.014 {built-in method sleep}

The meaning of each column is as follows:

ncalls: Total number of calls
tottime: Total time spent in the function, excluding time spent in calls of sub
functions
cumtime: Total time spent in the function, including time spent in the calls of sub
functions

The percall column to the left of tottime equals the tottime / ncalls, and
the percall column to the left of cumtime equals the cumtime / ncalls.

These statistics are a print view of a statistic object that was created by the profiler. You can
also create and review this object within the interactive Python session, as follows:

>>> import cProfile
>>> from myapp import main
>>> profiler = cProfile.Profile()
>>> profiler.runcall(main)
>>> profiler.print_stats()
 1206 function calls in 8.243 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall file:lineno(function)
 2 0.001 0.000 8.243 4.121 myapp.py:13(heavy)
 1 0.000 0.000 8.243 8.243 myapp.py:21(main)
 400 0.001 0.000 4.026 0.010 myapp.py:5(medium)
 200 0.000 0.000 0.212 0.001 myapp.py:9(light)
 602 8.241 0.014 8.241 0.014 {built-in method sleep}

Optimization - Principles and Profiling Techniques Chapter 13

[435]

The statistics can also be saved in a file and then read by the pstats module. This module
provides a class that knows how to handle profile files, and gives a few helpers to more
easily review the profiling results. The following transcript shows how to access the total
number of calls and how to display the first three calls, sorted by time metric:

>>> import pstats
>>> import cProfile
>>> from myapp import main
>>> cProfile.run('main()', 'myapp.stats')
>>> stats = pstats.Stats('myapp.stats')
>>> stats.total_calls
1208
>>> stats.sort_stats('time').print_stats(3)
Mon Apr 4 21:44:36 2016 myapp.stats

 1208 function calls in 8.243 seconds

 Ordered by: internal time
 List reduced from 8 to 3 due to restriction <3>

 ncalls tottime percall cumtime percall file:lineno(function)
 602 8.241 0.014 8.241 0.014 {built-in method sleep}
 400 0.001 0.000 4.025 0.010 myapp.py:5(medium)
 2 0.001 0.000 8.243 4.121 myapp.py:13(heavy)

From there, you can browse the code by printing out the callers and callees for each
function, as follows:

>>> stats.print_callees('medium')
 Ordered by: internal time
 List reduced from 8 to 1 due to restriction <'medium'>

Function called...
 ncalls tottime cumtime
myapp.py:5(medium) -> 400 4.025 4.025 {built-in method sleep}

>>> stats.print_callees('light')
 Ordered by: internal time
 List reduced from 8 to 1 due to restriction <'light'>

Function called...
 ncalls tottime cumtime
myapp.py:9(light) -> 200 0.212 0.212 {built-in method sleep}

Optimization - Principles and Profiling Techniques Chapter 13

[436]

Being able to sort the output allows you to work on different views to find the bottlenecks.
For instance, consider the following scenarios:

When the number of small calls (low value of percall for tottime column) is
really high (high value of ncalls) and takes up most of the global time, the
function or method is probably running in a very long loop. Often, optimization
can be done by moving this call to a different scope in order to reduce the
number of operations.
When a single function call is taking a very long time, a cache might be a good
option, if possible.

Another great way to visualize bottlenecks from profiling data is to transform them into
diagrams (see the following diagram). gprof2dot
(https://github.com/jrfonseca/gprof2dot) can be used to turn profiler data into a dot
graph. You can download this simple PyPI script using pip and use it on the stats file that
was created by the cProfile module (you will also require the open source Graphviz
software, see http://www.graphviz.org/). The following is an example of gprof2dot.py
invocation in a Linux shell:

$ gprof2dot.py -f pstats myapp.stats | dot -Tpng -o output.png

The advantage of gprof2dot is that it tries to be language agnostic. It is not limited to
Python profile or cProfile output and can read from multiple other profiles, such as
Linux perf, xperf, gprof, Java HPROF, and many others:

https://github.com/jrfonseca/gprof2dot
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/

Optimization - Principles and Profiling Techniques Chapter 13

[437]

Figure 1: An example of a profiling overview diagram that was generated with gprof2dot

The preceding diagram that was generated by gprof2dot shows different code paths that
were executed by the program and the relative time spent in each path. It is great for
exploring the performance patterns of large applications. Macro-profiling is a good way to
detect the function that has a problem, or at least its neighborhood. When you have found
it, you can proceed to micro-profiling.

Micro-profiling
When the slow function is found, it is sometimes necessary to do more profiling work that
tests just a part of the program. This is done by manually instrumenting a part of the code
in a speed test.

Optimization - Principles and Profiling Techniques Chapter 13

[438]

For instance, the cProfile module can be used in a form of decorator, as in following
example:

import time
import tempfile
import cProfile
import pstats

def profile(column='time', list=3):
 def parametrized_decorator(function):
 def decorated(*args, **kw):
 s = tempfile.mktemp()

 profiler = cProfile.Profile()
 profiler.runcall(function, *args, **kw)
 profiler.dump_stats(s)

 p = pstats.Stats(s)
 print("=" * 5, f"{function.__name__}() profile", "=" * 5)
 p.sort_stats(column).print_stats(list)
 return decorated

 return parametrized_decorator

def medium():
 time.sleep(0.01)

@profile('time')
def heavy():
 for i in range(100):
 medium()
 medium()
 time.sleep(2)

@profile('time')
def main():
 for i in range(2):
 heavy()

if __name__ == '__main__':
 main()

This approach allows for testing only selected parts of the application and sharpens the
statistics output. This way, you can collect many isolated and precisely targeted profiles on
a single application run, as follows:

$ python3 cprofile_decorator.py
===== heavy() profile =====

Optimization - Principles and Profiling Techniques Chapter 13

[439]

Wed Apr 10 03:11:53 2019
/var/folders/jy/wy13kx0s7sb1dx2rfsqdvzdw0000gq/T/tmpyi2wejm5

 403 function calls in 4.330 seconds

 Ordered by: internal time
 List reduced from 4 to 3 due to restriction <3>

 ncalls tottime percall cumtime percall filename:lineno(function)
 201 4.327 0.022 4.327 0.022 {built-in method time.sleep}
 200 0.002 0.000 2.326 0.012 cprofile_decorator.py:24(medium)
 1 0.001 0.001 4.330 4.330 cprofile_decorator.py:28(heavy)

===== heavy() profile =====
Wed Apr 10 03:11:57 2019
/var/folders/jy/wy13kx0s7sb1dx2rfsqdvzdw0000gq/T/tmp8mubgwjw

 403 function calls in 4.328 seconds

 Ordered by: internal time
 List reduced from 4 to 3 due to restriction <3>

 ncalls tottime percall cumtime percall filename:lineno(function)
 201 4.324 0.022 4.324 0.022 {built-in method time.sleep}
 200 0.002 0.000 2.325 0.012 cprofile_decorator.py:24(medium)
 1 0.001 0.001 4.328 4.328 cprofile_decorator.py:28(heavy)

===== main() profile =====
Wed Apr 10 03:11:57 2019
/var/folders/jy/wy13kx0s7sb1dx2rfsqdvzdw0000gq/T/tmp6c0y2oxj

 62 function calls in 8.663 seconds

 Ordered by: internal time
 List reduced from 27 to 3 due to restriction <3>

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 8.662 8.662 8.662 8.662 {method 'enable' of '_lsprof.Profiler'
objects}
 1 0.000 0.000 0.000 0.000 {built-in method posix.lstat}
 8 0.000 0.000 0.000 0.000
/usr/local/Cellar/python/3.7.2_2/Frameworks/Python.framework/Versions/3.7/l
ib/python3.7/random.py:224(_randbelow)

Optimization - Principles and Profiling Techniques Chapter 13

[440]

But at this stage, having a list of callees is probably not interesting, as the function has
already been pointed out as the one to optimize. The only interesting information is to
know how fast it is, and then enhance it.

timeit is a useful module that provides a simple way to measure the execution time of a
small code snippet, with the best underlying timer the host system provides (time.time or
time.clock), as shown in the following example:

>>> from myapp import light
>>> import timeit
>>> t = timeit.Timer('main()')
>>> t.timeit(number=5)
10000000 loops, best of 3: 0.0269 usec per loop
10000000 loops, best of 3: 0.0268 usec per loop
10000000 loops, best of 3: 0.0269 usec per loop
10000000 loops, best of 3: 0.0268 usec per loop
10000000 loops, best of 3: 0.0269 usec per loop
5.6196951866149902

This module allows you to repeat the call multiple times, and can be easily used to try out
isolated code snippets. This is very useful outside the application context—in a prompt, for
instance—but is not really handy to use within an existing application.

A deterministic profiler will provide results depending on what the
computer is doing, and so results may vary each time. Repeating the same
test multiple times and making averages provides more accurate results.
Furthermore, some computers have special CPU features, such as
SpeedStep, which might change the results if the computer is idling when
the test is launched. So, continually repeating the test is good practice for
small code snippets. There are also various caches to keep in mind, such
as DNS caches or CPU caches.

The results of timeit should be used with caution. It is a very good tool to objectively
compare two short snippets of code, but it also allows you to easily make dangerous
mistakes that will lead you to confusing conclusions. Here, for example, is the comparison
of two innocent snippets of code with the timeit module that could make you think that
string concatenation by addition is faster than the str.join() method:

$ python3 -m timeit -s 'a = map(str, range(1000))' '"".join(a)'
1000000 loops, best of 3: 0.497 usec per loop

$ python3 -m timeit -s 'a = map(str, range(1000)); s=""' 'for i in a: s +=
i'
10000000 loops, best of 3: 0.0808 usec per loop

Optimization - Principles and Profiling Techniques Chapter 13

[441]

From Chapter 3, Modern Syntax Elements - Below the Class Level, we know that string
concatenation by addition is not a good pattern. Despite some minor CPython micro-
optimizations that were designed exactly for such use cases, it will eventually lead to
quadratic runtime. The problem lies in nuances about the setup argument of
the timeit() call (or the -s parameter in the command line) and how the range in Python
3 works. I won't discuss the details of the problem, but will leave it to you as an exercise.
Anyway, here is the correct way to compare string concatenation in addition to the
str.join() idiom under Python 3:

$ python3 -m timeit -s 'a = [str(i) for i in range(10000)]' 's="".join(a)'
10000 loops, best of 3: 128 usec per loop
$ python3 -m timeit -s 'a = [str(i) for i in range(10000)]' '
 s = ""
 for i in a:
 s += i
 '
1000 loops, best of 3: 1.38 msec per loop

Profiling memory usage is explained in the next section.

Profiling memory usage
Another problem you may encounter when optimizing an application is memory
consumption. If a program starts to eat so much memory that the system begins to
continuously swap, there is probably a place in your application where too many objects
are being created or objects that are not needed anymore are still kept alive by some
unintended reference. This kind of resource mismanagement isn't easy to detect through
typical CPU profiling techniques. Sometimes, consuming enough memory to make a
system swap may involve a lot of CPU work that can be easily detected with ordinary
profiling techniques. But usually, performance drop can happen suddenly and in an
unexpected moment that is unrelated to the actual programming error. It's often due to
memory leaks that gradually consume memory over longer periods of time. This is why
memory usage usually has to be profiled with specialized tools of different types.

Let's take a look at how Python deals with memory in the next section.

Optimization - Principles and Profiling Techniques Chapter 13

[442]

How Python deals with memory
Memory usage is probably the hardest thing to profile in Python when you use the
CPython implementation. While languages such as C allow you to get the memory size of
any element, Python won't easily let you know how much memory a given object
consumes. This is due to the dynamic nature of the language, and the fact that memory
management is not directly accessible to the language user.

Some raw details of memory management were already explained in Chapter 9, Python
Extensions in Other Languages. We already know that CPython uses reference counting to
manage object allocation. This is the deterministic algorithm that ensures that object
deallocation will be triggered when the reference count of the object goes to zero. Despite
being deterministic, this process is not easy to track manually and to reason about
(especially in complex code bases). Also, deallocation of objects on the reference count level
does not necessarily mean that the actual process heap memory is freed by the interpreter.
Depending on the CPython interpreter compilation flags, system environment, or runtime
context, the internal memory manager layer might decide to leave some blocks of free
memory for future reallocation instead of releasing it completely.

Additional micro-optimizations in CPython implementation also make it even harder to
predict actual memory usage. For instance, two variables that point to the same short string
or small integer value may or may not point to the same object instance in memory (a
mechanism called interning).

Despite being quite scary and seemingly complex, memory management in Python is very
well documented in the official Python documentation (refer to
https://docs.python.org/3/c-api/memory.html). Note that micro memory optimizations
like string or integer interning in most cases can be ignored when debugging memory
issues. Also, reference counting is roughly based on a simple principle—if a given object is
not referenced anymore, it is removed. So, in the context of function execution, every local
object will be eventually removed when the interpreter does the following:

Leaves the function
Makes sure that the object is not being used anymore

So, the following objects remain in memory for longer:

Global objects
Objects that are still referenced in some way

https://docs.python.org/3/c-api/memory.html

Optimization - Principles and Profiling Techniques Chapter 13

[443]

Reference counting in Python is handy and frees you from the obligation of manually
tracking object references, and therefore you don't have to manually destroy them. But
since developers don't have to care about destroying objects, memory usage might grow in
an uncontrolled way if you don't pay attention to the way they use their data structures.

The following are the usual memory eaters:

Caches that grow uncontrollably.
Object factories that register instances globally and do not keep track of their
usage, such as a database connector factory, which is used on the fly every time a
database query is done.
Threads that are not properly finished.
Objects with a __del__ method and involved in a cycle are also memory eaters.
In older versions of Python (prior to 3.4 version), the garbage collector would not
break the reference cycle since it could not be sure which object should be deleted
first. Hence, you would leak memory. Using this method is a bad idea in most
cases.

Unfortunately, when writing C extensions using the Python/C API, the management of
reference counts must be done manually with Py_INCREF() and Py_DECREF() macros.
We discussed the caveats of handling reference counts and reference ownership earlier in
Chapter 9, Python Extensions in Other Languages, so you should already know that it is a
pretty hard topic riddled with various pitfalls. This is the reason why most memory issues
are caused by C extensions that are not written properly.

Profiling memory is explained in the next section.

Profiling memory
Before we start to hunt down memory issues in Python, you should know that the nature of
memory leaks in Python is quite special. In some compiled languages such as C and C++,
the memory leaks are almost exclusively caused by allocated memory blocks that are no
longer referenced by any pointer. If you don't have reference to memory, you cannot
release it, and this very situation is called a memory leak. In Python, there is no low level
memory management available for the user, so we instead deal with leaking
references—references to objects that are not needed anymore but were not removed. This
stops the interpreter from releasing resources, but is not the same situation as a memory
leak in C. Of course, there is always the exceptional case of C extensions, but they are a
different kind of beast that need completely different tools to diagnose, and cannot be easily
inspected from Python code.

Optimization - Principles and Profiling Techniques Chapter 13

[444]

So, memory issues in Python are mostly caused by unexpected or unplanned resource
acquiring patterns. It happens very rarely that this is the effect of real bugs caused by
mishandling of memory allocation and deallocation routines. Such routines are available to
the developer only in CPython when writing C extensions with Python/C APIs, and you
will deal with them very rarely, if ever. Thus, the most so-called memory leaks in Python
are mainly caused by overblown complexity of the software and subtle interactions
between its components that are really hard to track. In order to spot and locate such
deficiencies of your software, you need to know how actual memory usage looks in the
program.

Getting information about how many objects are controlled by the Python interpreter and
inspecting their real size is a bit tricky. For instance, knowing how much memory a given
object takes in bytes would involve crawling down all its attributes, dealing with cross-
references, and then summing up everything. It's a pretty difficult problem if you consider
the way objects tend to refer to each other. The built-in gc module which is the interface of
Python's garbage collector, does not provide high-level functions for this, and it would
require Python to be compiled in debug mode to have a full set of information.

Often, programmers just ask the system about the memory usage of their application after
and before a given operation has been performed. But this measure is an approximation
and depends a lot on how the memory is managed at the system level. Using the top
command under Linux or the task manager under Windows, for instance, makes it possible
to detect memory problems when they are obvious. But this approach is laborious and
makes it really hard to track down the faulty code block.

Fortunately, there are a few tools available to make memory snapshots, and calculate the
number and size of loaded objects. But let's keep in mind that Python does not release
memory easily, and prefers to hold on to it in case it is needed again.

For some time, one of the most popular tools to use when debugging memory issues and
usage in Python was Guppy-PE and its Heapy component. Unfortunately, it seems to be no
longer maintained and it lacks Python 3 support. Luckily, the following are some of the
other alternatives that are Python 3 compatible to some extent:

Memprof (http://jmdana.github.io/memprof/): It is declared to work on
Python 2.6, 2.7, 3.1, 3.2, and 3.3, and some POSIX-compliant systems (macOS and
Linux). Last updated in December 2016.
memory_profiler (https://pypi.python.org/pypi/memory_profiler): It is
declared to support the same Python versions and systems as Memprof, but the
code repository is tested with Python 3.6. Actively maintained.

http://jmdana.github.io/memprof/
http://jmdana.github.io/memprof/
http://jmdana.github.io/memprof/
http://jmdana.github.io/memprof/
http://jmdana.github.io/memprof/
http://jmdana.github.io/memprof/
http://jmdana.github.io/memprof/
http://jmdana.github.io/memprof/
http://jmdana.github.io/memprof/
http://jmdana.github.io/memprof/
http://jmdana.github.io/memprof/
http://jmdana.github.io/memprof/
https://pypi.python.org/pypi/memory_profiler

Optimization - Principles and Profiling Techniques Chapter 13

[445]

Pympler (http://pythonhosted.org/Pympler/): It is declared to support Python
2.7, all versions of Python 3 from 3.3 to 3.7, and is OS independent. Actively
maintained.
objgraph (https://mg.pov.lt/objgraph/): It is declared to support Python 2.7,
3.4, 3.5, 3.6, and 3.7, and is OS independent. Actively maintained.

Note that the preceding information about compatibility is based purely on trove classifiers
that are used by the latest distributions of featured packages, and declaration from the
documentation and inspection of projects' build pipeline definitions. This could easily have
changed since this book was written.

As you can see, there are a lot of memory profiling tools available to Python developers.
Each one has some constraints and limitations. In this chapter, we will focus only on
projects that are known to work well with the latest release of Python (that is, Python 3.7)
on different operating systems. This tool is objgraph. Its APIs seem to be a bit clumsy and
have a very limited set of functionalities. But it works, does what it needs to well, and is
really simple to use. Memory instrumentation is not a thing that is added to the production
code permanently, so this tool does not need to be pretty. Because of its wide support of
Python versions in OS independence, we will focus only on objgraph when discussing
examples of memory profiling. The other tools mentioned in this section are also exciting
pieces of software, but you need to research them by yourself.

Let's take a look at the objgraph module in the next section.

objgraph
objgraph is a simple module for creating diagrams of object references that should be
useful when hunting memory leaks in Python. It is available on PyPI, but it is not a
completely standalone tool and requires Graphviz in order to create memory usage
diagrams. For developer-friendly systems like macOS or Linux, you can easily obtain it
using your preferred system package manager (for example, brew for macOS, apt-get for
Debian/Ubuntu). For Windows, you need to download the Graphviz installer from the
project page (refer to http://www.graphviz.org/) and install it manually.

objgraph provides multiple utilities that allow you to list and print various statistics about
memory usage and object counts. An example of such utilities in use is shown in the
following transcript of interpreter sessions:

>>> import objgraph
>>> objgraph.show_most_common_types()
function 1910
dict 1003
wrapper_descriptor 989

http://pythonhosted.org/Pympler/
http://pythonhosted.org/Pympler/
http://pythonhosted.org/Pympler/
http://pythonhosted.org/Pympler/
http://pythonhosted.org/Pympler/
http://pythonhosted.org/Pympler/
http://pythonhosted.org/Pympler/
http://pythonhosted.org/Pympler/
http://pythonhosted.org/Pympler/
http://pythonhosted.org/Pympler/
https://mg.pov.lt/objgraph/
https://mg.pov.lt/objgraph/
https://mg.pov.lt/objgraph/
https://mg.pov.lt/objgraph/
https://mg.pov.lt/objgraph/
https://mg.pov.lt/objgraph/
https://mg.pov.lt/objgraph/
https://mg.pov.lt/objgraph/
https://mg.pov.lt/objgraph/
https://mg.pov.lt/objgraph/
https://mg.pov.lt/objgraph/
https://mg.pov.lt/objgraph/
http://www.graphviz.org/

Optimization - Principles and Profiling Techniques Chapter 13

[446]

tuple 837
weakref 742
method_descriptor 683
builtin_function_or_method 666
getset_descriptor 338
set 323
member_descriptor 305
>>> objgraph.count('list')
266
>>> objgraph.typestats(objgraph.get_leaking_objects())
{'Gt': 1, 'AugLoad': 1, 'GtE': 1, 'Pow': 1, 'tuple': 2, 'AugStore': 1,
'Store': 1, 'Or': 1, 'IsNot': 1, 'RecursionError': 1, 'Div': 1, 'LShift':
1, 'Mod': 1, 'Add': 1, 'Invert': 1, 'weakref': 1, 'Not': 1, 'Sub': 1, 'In':
1, 'NotIn': 1, 'Load': 1, 'NotEq': 1, 'BitAnd': 1, 'FloorDiv': 1, 'Is': 1,
'RShift': 1, 'MatMult': 1, 'Eq': 1, 'Lt': 1, 'dict': 341, 'list': 7,
'Param': 1, 'USub': 1, 'BitOr': 1, 'BitXor': 1, 'And': 1, 'Del': 1, 'UAdd':
1, 'Mult': 1, 'LtE': 1}

Note that the preceding numbers of allocated objects displayed by
objgraph are already high due to the fact that a lot of Python built-in
functions and types are ordinary Python objects that live in the same
process memory. Also, objgraph itself creates some objects that are
included in this summary.

As we mentioned previously, objgraph allows you to create diagrams of memory usage
patterns and cross-references that link all the objects in the given namespace. The most
useful diagramming utilities of that library are objgraph.show_refs() and
objgraph.show_backrefs(). They both accept a reference to the object being inspected
and save a diagram image to file using the Graphviz package. Examples of such graphs are
presented in Figure 2 and Figure 3. Here is the code that was used to create these diagrams:

from collections import Counter
import objgraph

def graph_references(*objects):
 objgraph.show_refs(
 objects,
 filename='show_refs.png',
 refcounts=True,
 # additional filtering for the sake of brevity
 too_many=5,
 filter=lambda x: not isinstance(x, dict),
)
 objgraph.show_backrefs(
 objects,

Optimization - Principles and Profiling Techniques Chapter 13

[447]

 filename='show_backrefs.png',
 refcounts=True
)

if __name__ == "__main__":
 quote = """
 People who think they know everything are a
 great annoyance to those of us who do.
 """
 words = quote.lower().strip().split()
 counts = Counter(words)
 graph_references(words, quote, counts)

The following diagram shows the diagram of all references held by words and quote, and
counts objects:

Figure 2: An example result of the show_refs() diagram from the graph_references() function

Optimization - Principles and Profiling Techniques Chapter 13

[448]

The following diagram shows only objects that hold references to the objects that we passed
to the show_backrefs() function. They are called back references and are really helpful in
finding objects that stop other objects from being deallocated:

Figure 3: An example result of the show_backrefs() diagram from the graph_references() function

A basic installation of the objgraph package does not install the Graphviz
software that is required to generate diagrams in bitmap form. Without
Graphviz, it will output diagrams in DOT format special graph
description language. Graphviz is a very popular piece of software that is
often found in operating system package repositories. You can also
download it from https://www.graphviz.org/.

In order to show how objgraph may be used in practice, let's review an example of code
that may create memory issues under certain versions of Python. As we already noted
multiple times in this book, CPython has its own garbage collector that exists
independently from its reference counting mechanism. It's not used for general purpose
memory management, and its sole purpose is to solve the problem of cyclic references. In
many situations, objects may reference each other in a way that would make it impossible
to remove them using simple techniques based on tracking the number of references. Here
is the simplest example:

x = []
y = [x]
x.append(y)

https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/

Optimization - Principles and Profiling Techniques Chapter 13

[449]

Such a situation is visually presented in the following diagram. In the preceding case, even
if all external references to x and y objects will be removed (for instance, by returning from
the local scope of a function), these two objects cannot be removed through reference
counting because there will always be two cross-references owned by these two objects.
This is the situation where the Python garbage collector steps in. It can detect cyclic
references to objects and trigger their deallocation if there are no other valid references to
these objects outside of the cycle:

Figure 4: An example diagram of cyclic references between two objects

The real problem starts when at least one of the objects in such a cycle has the custom
__del__() method defined. It is a custom deallocation handler that will be called when the
object's reference count finally goes to zero. It can execute any arbitrary Python code and
thus can also create new references to featured objects. This is the reason why the garbage
collector prior to Python 3.4 could not break reference cycles if at least one of the objects
provided the custom __del__() method implementation. PEP 442 introduced safe object
finalization to Python and became a part of the language standard, starting from Python
3.4. Anyway, this may still be a problem for packages that worry about backwards
compatibility and target a wide spectrum of Python interpreter versions. The following
snippet of code allows you to show difference in behavior of the cyclic garbage collector in
different Python versions:

import gc
import platform
import objgraph

class WithDel(list):
 """ list subclass with custom __del__ implementation """
 def __del__(self):
 pass

Optimization - Principles and Profiling Techniques Chapter 13

[450]

def main():
 x = WithDel()
 y = []
 z = []

 x.append(y)
 y.append(z)
 z.append(x)

 del x, y, z

 print("unreachable prior collection: %s" % gc.collect())
 print("unreachable after collection: %s" % len(gc.garbage))
 print("WithDel objects count: %s" %
 objgraph.count('WithDel'))

if __name__ == "__main__":
 print("Python version: %s" % platform.python_version())
 print()
 main()

The following output of the preceding code, when executed under Python 3.3, shows that
the cyclic garbage collector in the older versions of Python cannot collect objects that have
the __del__() method defined:

$ python3.3 with_del.py
Python version: 3.3.5
unreachable prior collection: 3
unreachable after collection: 1
WithDel objects count: 1

With a newer version of Python, the garbage collector can safely deal with the finalization
of objects, even if they have the __del__() method defined, as follows:

$ python3.5 with_del.py
Python version: 3.5.1

unreachable prior collection: 3
unreachable after collection: 0
WithDel objects count: 0

Optimization - Principles and Profiling Techniques Chapter 13

[451]

Although custom finalization is no longer a memory threat in the latest Python releases, it
still poses a problem for applications that need to work under different environments. As
we mentioned earlier, the objgraph.show_refs() and objgraph.show_backrefs()
functions allow you to easily spot problematic objects that take part in unbreakable
reference cycles. For instance, we can easily modify the main() function to show all back
references to the WithDel instances in order to see if we have leaking resources, as follows:

def main():
 x = WithDel()
 y = []
 z = []

 x.append(y)
 y.append(z)
 z.append(x)

 del x, y, z

 print("unreachable prior collection: %s" % gc.collect())
 print("unreachable after collection: %s" % len(gc.garbage))
 print("WithDel objects count: %s" %
 objgraph.count('WithDel'))

 objgraph.show_backrefs(
 objgraph.by_type('WithDel'),
 filename='after-gc.png'
)

Running the preceding example under Python 3.3 will result in a diagram, which shows
that gc.collect() could not succeed in removing x, y, and z object instances.

Optimization - Principles and Profiling Techniques Chapter 13

[452]

Additionally, objgraph highlights all the objects that have the custom __del__() method
defined in red to make spotting such issues easier:

Figure 5: A diagram showing an example of cyclic references that can't be picked by the Python garbage collector prior to version 3.4

In the next section, we will discuss C code memory leaks.

C code memory leaks
If the Python code seems perfectly fine and the memory still increases when you loop
through the isolated function, the leak might be located on the C side. This happens, for
instance, when a Py_DECREF macro is missing in the critical part of some imported C
extension.

Optimization - Principles and Profiling Techniques Chapter 13

[453]

The C code of CPython interpreter is pretty robust and tested for the existence of memory
leaks, so it is the last place to look for memory problems. But if you use packages that have
custom C extensions, they might be a good place to look first. Because you will be dealing
with code operating on a much lower level of abstraction than Python, you need to use
completely different tools to resolve such memory issues.

Memory debugging is not easy in C, so before diving into extension internals, make sure
that you properly diagnose the source of your problem. It is a very popular approach to
isolate a suspicious package with code similar in nature to unit tests. To diagnose the
source of your problem, you should consider the following actions:

Write a separate test for each API unit or functionality of an extension you are
suspecting to leak memory
Perform the test in a loop for an arbitrarily long time in isolation (one test
function per run)
Observe from outside which of the tested functionalities increases memory usage
over time

By using such an approach, you will eventually isolate the faulty part of the extension and
this will reduce the time required later to inspect and fix its code. This process may seem
burdensome because it requires a lot of additional time and coding, but it really pays off in
the long run. You can always ease your work by reusing some of the testing tools that were
introduced in Chapter 12, Test-Driven Development. Utilities such as pytest and
tox were perhaps not designed exactly for this case, but can at least reduce the time
required to run multiple tests in isolated environments.

If you have successfully isolated the part of the extension that is leaking memory, you can
finally start actual debugging. If you're lucky, a simple manual inspection of the isolated
source code section may give the desired results. In many cases, the problem is as simple as
adding the missing Py_DECREF call. Nevertheless, in most cases, your work won't be that
simple. In such situations, you need to bring out some bigger guns. One of the notable
generic tools for fighting memory leaks in compiled code that should be in every
programmer's toolbelt is Valgrind. It is a whole instrumentation framework for building
dynamic analysis tools. Because of this, it may not be easy to learn and master, but you
should definitely acquaint yourself with the basics of its usage.

Profiling network usage is explained in the next section.

Optimization - Principles and Profiling Techniques Chapter 13

[454]

Profiling network usage
As I said earlier, an application that communicates with third-party programs such as
databases, caches, web services, or an authentication server can be slowed down when
those applications are slow. This can be tracked with a regular code profiling method on
the application side. But if the third-party software works fine on its own, the culprit may
be in the network.

The problem might be misconfigured network hardware, a low-bandwidth network link, or
even a high number of traffic collisions that make computers send the same packets several
times.

Here are a few elements to get you in. To find out what is going on, there are the following
three fields to investigate at first:

Watch the network traffic using tools such as the following:
ntop (Linux only, http://www.ntop.org)
Wireshark (www.wireshark.org)

Track down unhealthy or misconfigured devices using monitoring tools based on
the widely used SNMP protocol (http://www.net-snmp.org).
Estimate the bandwidth between two computers using a statistical tool
like Pathrate (https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.
html).

If you want to delve further into network performance issues, you may also want to read
Network Performance Open Source Toolkit, Wiley by Richard Blum. This book exposes
strategies to tune the applications that are heavily using the network and provides a
tutorial to scan complex network problems.

High Performance MySQL, O'Reilly Media by Jeremy Zawodny, is also a good book to read
when writing an application that uses MySQL.

Let's take a look at tracing network transactions in the next section.

http://www.ntop.org
http://www.wireshark.org
http://www.net-snmp.org
http://www.net-snmp.org
http://www.net-snmp.org
http://www.net-snmp.org
http://www.net-snmp.org
http://www.net-snmp.org
http://www.net-snmp.org
http://www.net-snmp.org
http://www.net-snmp.org
http://www.net-snmp.org
http://www.net-snmp.org
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html
https://www.cc.gatech.edu/~dovrolis/bw-est/pathrate.html

Optimization - Principles and Profiling Techniques Chapter 13

[455]

Tracing network transactions
Nowadays, with the advent of microservice architectures and modern container
orchestration systems, it is very easy to build large distributed systems. It happens very
often that distributed applications behave slow—not because the network is slow, but
because there is too much communication between application components. Complex
distributed systems can have tens or even hundreds of communicating services and
microservices. Very often, those services are replicated across many computing nodes with
various hardware characteristics. These services often communicate with multiple backing
services through many middlewares and intermediate layers, like caching proxies and
authentication servers. It's not a rare situation when a single user interaction under the
hood, like an HTTP API request or web page load, can involve a layered communication
happening between multiple servers.

In such highly distributed systems, the hardest thing may be to identify a single service that
creates a performance bottleneck. Classic tools for code profiling usually work in an
isolated environment and instrument the behavior of a single system process. Some
monitoring software can, of course, do non-deterministic profiling on working production
code, but it is useful only for general statistical performance analysis and only accidentally
allows you to discover problematic hot spots. If you need to diagnose performance issues of
a single well-defined interaction scenario, for instance, user login, you'll have to use a
completely different approach.

The technique that is extremely helpful in inspecting complex network transactions in a
distributed system is called tracing. Tracing requires every component in the distributed
system to have similar instrumentation code that marks every inbound and outbound
communication with unique transaction identifiers. If the instrumented service receives a
request with some transaction identifier (or multiple identifiers) and needs to query other
services during that request processing, it adds those identifiers to its own requests and
creates a new identifier per every request made. In systems where the majority of
communication happens through the HTTP protocol, the natural transport mechanism for
these transaction identifiers are HTTP headers. Thanks to this, every transaction can be
dissected into multiple subtransactions, and this way it is possible to trace the entire
network traffic that was required to process every user interaction (see the following
screenshot).

Optimization - Principles and Profiling Techniques Chapter 13

[456]

Usually, every service logs all processed transactions to a secondary service that's
responsible for aggregating tracing data and also adds various metadata, like the start and
end time of the transaction, hostname, and number of bytes sent/received. Such time and
tag annotated transactions are often called spans. Many tracing systems allow you to define
custom metadata that will be included in spans to ease debugging and monitoring:

Figure 6: Example of tracing information for some example service presented in the Jaeger tracer

Optimization - Principles and Profiling Techniques Chapter 13

[457]

The most important aspect of every tracing solution is the careful selection of a proper
tracing protocol and trace collection/aggregation system. A good choice for tracing is
OpenTracing (https://opentracing.io), which is advertised as a "consistent, expressive,
vendor-neutral API for distributed tracing and context propagation". It provides official
libraries for nine programming languages (Python, Go, JavaScript, Java, Python, Ruby,
PHP, Objective-C, C++, C#), and so it is good even for teams that build their products using
different technology stacks. OpenTracing is neither a standard nor a complete working
program. It's an API specification; a collection of frameworks and libraries, and
documentation. With OpenTracing libraries, you can instrument your code and connect it
to tracers, which are actual systems for collecting, aggregating, and presenting tracing
results. A good tracer implementation to start with is Jaeger (https://www.jaegertracing.
io). You should be able to local a Jaeger instance in just a few minutes using a pre-built
Docker image that is published on Docker Hub under the jaeger name.

Summary
In this chapter, we've learned about the following three basic rules of optimization:

Make it work first
Work from the user's point of view
No matter what, keep the code readable

With these rules in mind, we reviewed some of the tools and techniques that allow us to
identify performance bottlenecks of various kinds. Now that you know how to diagnose
and identify performance issues, you're ready to start mitigating them. In the next chapter,
we will review popular and powerful optimization techniques and strategies that can be
easily applied to the vast majority of performance issues.

https://opentracing.io
https://opentracing.io
https://opentracing.io
https://opentracing.io
https://opentracing.io
https://opentracing.io
https://opentracing.io
https://www.jaegertracing.io
https://www.jaegertracing.io
https://www.jaegertracing.io
https://www.jaegertracing.io
https://www.jaegertracing.io
https://www.jaegertracing.io
https://www.jaegertracing.io
https://www.jaegertracing.io

14
Optimization - Some Powerful

Techniques
Optimization is the process of making an application work more efficiently without
modifying its functionality and accuracy. In the previous chapter, we learned how to
identify performance bottlenecks and observe resource usage in code. In this chapter, we
will learn how to use that knowledge to make an application work faster and use resources
with greater efficiency.

Optimization is not a magical process. It is done by following a simple algorithm
synthesized by Stefan Schwarzer at EuroPython 2006. The original pseudocode of this
example is as follows:

def optimize():
 """Recommended optimization"""
 assert got_architecture_right(), "fix architecture"
 assert made_code_work(bugs=None), "fix bugs"
 while code_is_too_slow():
 wbn = find_worst_bottleneck(just_guess=False,
 profile=True)
 is_faster = try_to_optimize(wbn,
 run_unit_tests=True,
 new_bugs=None)
 if not is_faster:
 undo_last_code_change()

By Stefan Schwarzer, EuroPython 2006

Optimization - Some Powerful Techniques Chapter 14

[459]

This example may not be the neatest or clearest, but the code captures almost all of the
important aspects of an organized optimization procedure. The main things we can learn
from it include the following:

Optimization is an iterative process where not every iteration leads to better
results
The main prerequisite is that code is verified by tests
Optimizing the current application bottleneck is key

Making your code work faster is not an easy task. In the case of abstract mathematical
problems, the solution often lies in choosing the right algorithm and proper data structures.
However, it is difficult to provide generic or universal tips and tricks that can be used to
solve any algorithmic problem. There are, of course, some generic methodologies for
designing a new algorithm, or even meta-heuristics that can be applied to a large variety of
problems, but they are generally language-agnostic and are thus beyond the scope of this
book.

There is a wide range of performance issues that are caused by either code quality defects
or application usage contexts. These kind of problems can often be solved using common
programming approaches, either with specific performance-oriented libraries and services
or with proper software architecture design. Common non-algorithmic culprits of bad
application performance in Python include the following:

Incorrect usage of basic built-in types
Too much complexity
Hardware resource usage patterns that do not match the execution environment
Long response times from third-party APIs or backing services
Requiring too much work in time-critical parts of the application

More often than not, solving such performance issues does not require advanced academic
knowledge, only good software craftsmanship—and a big part of craftsmanship is knowing
when to use the proper tools. Fortunately, there are some well-known patterns and
solutions for dealing with performance problems.

In this chapter, we will discuss some popular and reusable solutions that allow you to non-
algorithmically optimize your program, by covering the following topics:

Defining complexity
Reducing complexity
Using architectural trade offs
Caching

Optimization - Some Powerful Techniques Chapter 14

[460]

Technical requirements
The following are the Python packages that are mentioned in this chapter that you can
download from PyPI:

pymemcached

You can install these packages using the following command:

python3 -m pip install <package-name>

The code files for this chapter can be found
at https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/t
ree/master/chapter14.

Defining complexity
Before we dig further into optimization techniques, let's define what exactly we are going to
deal with. From this chapter's introduction, we know that focusing on improving
application bottlenecks is critical for successful optimization. A bottleneck is a single
component that severely limits the capacity of a program or computer system. Code with
performance issues is usually hit with just a single bottleneck. We have discussed some
profiling techniques in the previous chapter, so you should already be familiar with the
tools required to locate and isolate troublesome pieces of code. If your profiling results
show that there are a few places that need immediate improvement, you should try to treat
each area as a separate component and optimize them independently.

If there is no explicit or evident bottleneck in your application but your application still
under-performs, you may find yourself in a predicament. The success of the optimization
process is proportionate to the performance impact of the optimized bottleneck, so
optimizing every small component—particularly if it does not substantially impact
execution time or resource consumption—may not solve the problem. If your application
does not seem to have any real bottlenecks, there's a possibility that you have missed
something during application profiling. Try using different profiling strategies or tools, or
even looking at the application's performance from a new perspective, such as considering
CPU usage, memory, I/O operations, or network throughput. If that does not help, you
should consider revising your software architecture.

https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter14
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter14

Optimization - Some Powerful Techniques Chapter 14

[461]

If you have successfully found a single and integral component that noticeably limits your
application's performance, you are ready to start the optimization process. There is a high
chance that even a minor code improvement will dramatically improve code execution time
or resource usage. As we mentioned earlier, the benefits of optimization is proportionate to
the bottleneck size.

The first and most obvious thing to look for when trying to improve application
performance is complexity. There are many definitions of what makes a program complex,
and there are many ways to express it. Some measurable complexity metrics can provide
objective information about how code behaves—and such information can often be
extrapolated into performance expectations. An experienced programmer can even reliably
guess how two different implementations will perform in practice, as long as they're aware
of their complexities and the execution context.

The two most popular ways to define application complexity are as follows:

Cyclomatic complexity, which is very often correlated with application
performance
The Landau notation also known as big O notation, is an algorithm classification
method that is useful in objectively judging code performance

The optimization process may therefore be sometimes understood as a process of reducing
complexity. In the following sections, we will take closer look at the definitions of these two
types of code complexity.

Cyclomatic complexity
Cyclomatic complexity is a metric that was developed by Thomas J. McCabe in 1976;
because of its author, it's also known as McCabe's complexity. Cyclomatic complexity
measures the number of linear paths through a piece of code. In short, all branching points
(if statements) and loops (for and while statements) increase code complexity.

Optimization - Some Powerful Techniques Chapter 14

[462]

Depending on the value of measured cyclomatic complexity, code can be classified into
various complexity classes. The following is a table of commonly used McCabe complexity
classes:

Cyclomatic complexity What it means
1 to 10 Not complex
11 to 20 Moderately complex
21 to 50 Really complex
More than 50 Too complex

Cyclomatic complexity is more of a code quality score than a metric that objectively judges
its performance. It does not replace the need of code profiling when looking at performance
bottlenecks. Code that has high cyclomatic complexity often tends to utilize rather complex
algorithms that may not perform well with larger inputs.

Although cyclomatic complexity is not a reliable way to judge application performance, it
has an important advantage: it is a source code metric that can be measured with proper
tools. This cannot be said about other canonical ways of expressing complexity, including
the big O notation. Thanks to its measurability, cyclomatic complexity may be a useful
addition to profiling, as it gives you more information about problematic parts of your
software. Complex parts of code are the first things you should review when considering
radical code architecture redesigns.

Measuring McCabe's complexity is relatively simple in Python because it can be deduced
from its Abstract Syntax Tree. Of course, you don't need to do that by yourself;
pycodestyle (with the mccabe plugin) is a popular measurement tool in Python, which
we introduced in Chapter 6, Choosing Good Names.

The big O notation
The most canonical method of defining function complexity is the big O notation. This
metric defines how an algorithm is affected by the size of input data. For instance, does an
algorithm scale linearly with the size of the input data, or quadratically?

Manually calculating the big O notation for an algorithm is the best approach when trying
to achieve an overview of how its performance is related to the size of input data. Knowing
the complexity of your application's components gives you the ability to detect and focus
on aspects that will significantly slow down code.

Optimization - Some Powerful Techniques Chapter 14

[463]

To measure the big O notation, all constants and low-order terms are removed in order to
focus on the portion that really matters when the size of input data grows. The idea is to try
and categorize the algorithm in one of the following categories, even if it is an
approximation:

Notation Type
O(1) Constant; does not depend on the input data
O(n) Linear; will grow as n grows
O(n log n) Quasi linear
O(n2) Quadratic complexity
O(n3) Cubic complexity
O(n!) Factorial complexity

For instance, we already know from Chapter 3, Modern Syntax Elements - Below the Class
Level, that a dict lookup has an average complexity of O(1); it is considered constant,
regardless of how many elements are in the dict. However, looking through a list for a
particular item is O(n).

To better understand this concept, let's take look at the following example:

>>> def function(n):
... for i in range(n):
... print(i)
...

In the preceding function, the print statement will be executed n times. Loop speed will
depend on n, so its complexity that's expressed using the big O notation will be O(n).

If the function has conditions, the correct notation to keep is the highest one, as follows:

>>> def function(n, print_count=False):
... if print_count:
... print(f'count: {n}')
... else:
... for i in range(n):
... print(i)
...

In this example, the function could be O(1) or O(n), depending on the value of
the print_count argument. The worst case is O(n), so the whole function complexity is
O(n).

Optimization - Some Powerful Techniques Chapter 14

[464]

When discussing complexity expressed in big O notation, we usually review the worst-case
scenario. While this is the best method for defining complexity when comparing two
independent algorithms, it may not be the best approach in every practical situation. Many
algorithms change the runtime performance, depending on the statistical characteristic of
input data, or amortize the cost of worst-case operations by doing clever tricks. This is why,
in many cases, it may be better to review your implementation in terms of average complexity
or amortized complexity.

For example, take a look at the operation of appending a single element to Python's list
type instance. We know that list in CPython uses an array with overallocation for the
internal storage instead of linked lists (see Chapter 3, Modern Syntax Elements - Below the
Class Level, for more information). If an array is already full, appending a new element
requires the allocation of a new array and to copy all existing elements (references) to a new
area in the memory. If we look at this from the point of worst-case complexity, it is clear
that the list.append() method has O(n) complexity, which is a bit expensive compared
to a typical implementation of the linked list structure. We also know, however, that the
CPython list type implementation uses the mechanism of overallocation (it allocates more
space than is required at a given time) to mitigate the complexity of occasional reallocation.
If we evaluate this complexity over a sequence of operations, we will see that the average
complexity of list.append() is O(1)—and this is actually a great result.

When solving problems, we often already know about our input data in great detail,
including its size or statistical distribution. When optimizing an application, it is always
worth using every bit of available knowledge about the input data. This is where another
problem of worst-case complexity can start to show up. The big O notation is intended to
analyze the limiting behavior of a function when input tends toward large values or
infinity, rather than offer a reliable performance approximation for real-life data.
Asymptotic notation is a great tool for defining the growth rate of a function, but it won't
give a direct answer to the simple question of which implementation will take the least
time. Worst-case complexity dumps all the details about both an implementation and its
data characteristics to show you how your program will behave asymptotically. It works
for arbitrarily large inputs that you may not even need to consider.

For instance, let's assume that you have a problem with data consisting of n independent
elements. Let's also suppose that you know two different ways of solving this
problem: program A and program B. You know that program A requires 100n2 operations to
complete the task, and program B requires 5n3 operations to provide a solution. Which one
would you choose?

Optimization - Some Powerful Techniques Chapter 14

[465]

When speaking about very large inputs, program A is the better choice because it behaves
better asymptotically. It has O(n2) complexity compared to program B's O(n3) complexity.
However, by solving a simple 100 n2 > 5 n3 inequality, we can find that program B will take
fewer operations when n is less than 20. Therefore, if we know a bit more about our input
bounds, we can make slightly better decisions.

In the next section, we will take a look at how to reduce complexity by selecting
appropriate data structures.

Reducing complexity by choosing proper
data structures
To reduce the complexity of code, it's important to consider how data is stored. You should
pick your data structure carefully. The following section will provide you with a few
examples of how the performance of simple code snippets can be improved by the correct
data types.

Searching in a list
Due to the implementation details of the list type in Python, searching for a specific value
in a list isn't a cheap operation. The complexity of the list.index() method is O(n),
where n is the number of list elements. Such linear complexity won't be an issue if you
don't need to perform many element index lookups, but it can have a negative performance
impact in some critical code sections—especially if it is done over very large lists.

If you need to search over a list quickly and often, you can try the bisect module from
Python's standard library. The functions in this module are mainly designed for inserting or
finding insertion indexes for given values in a way that will preserve the order of the
already sorted sequence. This module is used to efficiently find an element index using a
bisection algorithm. The following recipe, from the official documentation of the function,
finds an element index using binary search:

def index(a, x):
 'Locate the leftmost value exactly equal to x'
 i = bisect_left(a, x)
 if i != len(a) and a[i] == x:
 return i
 raise ValueError

Optimization - Some Powerful Techniques Chapter 14

[466]

Note that every function from the bisect module requires a sorted sequence in order to
work. If your list is not in the correct order, then sorting it is a task with at least O(n log n)
complexity. This is a worse class than O(n), so sorting the whole list to then perform a
single search will not pay off. However, if you need to perform a number of index searches
across a large list that rarely changes, using a single sort operation for bisect may prove to
be the best trade-off.

If you already have a sorted list, you can also insert new items into that list using bisect
without needing to re-sort it.

In the next section, we will see how to use a set instead of a list.

Using sets
When you need to build a sequence of distinct values from a given sequence, the first
algorithm that might come to mind is as follows:

>>> sequence = ['a', 'a', 'b', 'c', 'c', 'd']
>>> result = []
>>> for element in sequence:
... if element not in result:
... result.append(element)
...
>>> result
['a', 'b', 'c', 'd']

In the preceding example, the complexity is introduced by the lookup in the result list
with the in operator has a time complexity of O(n). It is then used in the loop, which costs
O(n). So, the overall complexity is quadratic, that is, O(n2).

Using a set type for the same work will be faster because the stored values are looked up
using hashes, as in dict. set also ensures the uniqueness of elements, so we don't need to
do anything more than create a new set from the sequence object. In other words, for each
value in sequence, the time taken to see if it is already in the set will be constant, as
follows:

>>> sequence = ['a', 'a', 'b', 'c', 'c', 'd']
>>> unique = set(sequence)
>>> unique
set(['a', 'c', 'b', 'd'])

This lowers the complexity to O(n), which is the complexity of the set object creation. The
additional advantage of using the set type for element uniqueness is shorter and more
explicit code.

Optimization - Some Powerful Techniques Chapter 14

[467]

When you try to reduce the complexity of an algorithm, carefully consider
your data structures.

In the next section, we will take a look at collections.

Using collections
The collections module provides high-performance alternatives to built-in container
types. The main types that are available in this module are as follows:

deque: A list-like type with extra features
defaultdict: A dict-like type with a built-in default factory feature
namedtuple: A tuple-like type that assigns keys for members

We'll discuss these types in the next section.

deque
A deque is an alternative implementation for lists. While the built-in list type is based on
ordinary arrays, a deque is based on a doubly-linked list. Hence, a deque is much faster
when you need to insert something into its middle or head, but much slower when you
need to access an arbitrary index.

Of course, thanks to the overallocation of an internal array in the Python list type, not
every list.append() call requires memory reallocation, and the average complexity of
this method is O(1). Still, pops and appends are generally faster when performed on linked
lists instead of arrays. The situation changes dramatically when the element needs to be
added to an arbitrary point of sequence, however. Because all elements to the right of the
new one need to be shifted in an array, the complexity of list.insert() is O(n). If you
need to perform a lot of pops, appends, and inserts, the deque in place of list may
provide substantial performance improvement. Remember to always profile your code
before switching from list to deque, because a few things that are fast in arrays (such as
accessing an arbitrary index) are extremely inefficient in linked lists.

Optimization - Some Powerful Techniques Chapter 14

[468]

For example, if we measure the time it takes to append one element and remove it from the
sequence with timeit, the difference between list and deque may not be even
noticeable, as follows:

$ python3 -m timeit \
> -s 'sequence=list(range(10))' \
> 'sequence.append(0); sequence.pop();'
1000000 loops, best of 3: 0.168 usec per loop
$ python3 -m timeit \
> -s 'from collections import deque; sequence=deque(range(10))' \
> 'sequence.append(0); sequence.pop();'
1000000 loops, best of 3: 0.168 usec per loop

However, if we perform a similar comparison for situations where we want to add and
remove the first element of the sequence, the performance difference is impressive, as
follows:

$ python3 -m timeit \
> -s 'sequence=list(range(10))' \
> 'sequence.insert(0, 0); sequence.pop(0)'
1000000 loops, best of 3: 0.392 usec per loop
$ python3 -m timeit \
> -s 'from collections import deque; sequence=deque(range(10))' \
> 'sequence.appendleft(0); sequence.popleft()'
10000000 loops, best of 3: 0.172 usec per loop

As you can see, the difference gets bigger as the size of the sequence grows. The following
code snippet is an example of the same test performed on lists that contain 10,000 elements:

$ python3 -m timeit \
> -s 'sequence=list(range(10000))' \
> 'sequence.insert(0, 0); sequence.pop(0)'
100000 loops, best of 3: 14 usec per loop
$ python3 -m timeit \
> -s 'from collections import deque; sequence=deque(range(10000))' \
> 'sequence.appendleft(0); sequence.popleft()'
10000000 loops, best of 3: 0.168 usec per loop

Thanks to the efficient append() and pop() methods, which work at the same speed from
both ends of the sequence, deque makes a perfect example of implementing queues. For
example, a First In First Out (FIFO) queue will be much more efficient if implemented with
deque instead of list.

Optimization - Some Powerful Techniques Chapter 14

[469]

deque works well when implementing queues. Starting from Python 2.6,
there is a separate queue module in Python's standard library that
provides basic implementation for FIFO, LIFO, and priority queues. If you
want to utilize queues as a mechanism of inter-thread communication,
you should use classes from the queue module instead of
collections.deque. This is because these classes provide all the
necessary locking semantics. If you don't use threading and choose not to
utilize queues as a communication mechanism, deque should be enough
to provide queue implementation basics.

defaultdict
The defaultdict type is similar to the dict type, except it adds a default factory for new
keys. This avoids the need to write an extra test to initialize the mapping entry, and is also
more efficient than the dict.setdefault method.

defaultdict may seem like simple syntactic sugar over dict that allows us to write
shorter code. However, the fallback to a pre-defined value on a failed key lookup is lightly
faster than the dict.setdefault() method, as follows:

$ python3 -m timeit \
> -s 'd = {}'
> 'd.setdefault("x", None)'
10000000 loops, best of 3: 0.153 usec per loop
$ python3 -m timeit \
> -s 'from collections import defaultdict; d=defaultdict(lambda: None)' \
> 'd["x"]'
10000000 loops, best of 3: 0.0447 usec per loop

The difference isn't great in the preceding example because the computational complexity
hasn't changed. The dict.setdefault method consists of two steps (key lookup and key
set), both of which have a complexity of O(1), as we saw in the Dictionaries section in
Chapter 3, Modern Syntax Elements - Below the Class Level. There is no way to have a
complexity class lower than O(1), but it is indisputably faster in some situations. Every
small speed improvement counts when optimizing critical code sections.

Optimization - Some Powerful Techniques Chapter 14

[470]

The defaultdict type takes a factory as a parameter, and can therefore be used with built-
in types or classes whose constructors do not take arguments. The following code snippet is
an example from the official documentation that demonstrates how to use defaultdict
for counting:

>>> s = 'mississippi'
>>> d = defaultdict(int)
>>> for k in s:
... d[k] += 1
...
>>> list(d.items())
[('i', 4), ('p', 2), ('s', 4), ('m', 1)]

namedtuple
namedtuple is a class factory that takes a type name and a list of attributes and creates a
class out of it. The class can then be used to instantiate a tuple-like object and also provides
accessors for its elements, as follows:

>>> from collections import namedtuple
>>> Customer = namedtuple(
... 'Customer',
... 'firstname lastname'
...)
>>> c = Customer('Tarek', 'Ziadé')
>>> c.firstname
'Tarek'

As shown in the preceding example, it can be used to create records that are easier to write
compared to a custom class that may require boilerplate code to initialize values. On the
other hand, it is based on tuple, so gaining access to its elements by index is a quick
process. The generated class can also be sub-classed to add more operations.

The advantage of using namedtuple over other data types may not be obvious at first. The
main advantage is that it is easier to use, understand, and interpret than ordinary tuples.
Tuple indexes don't carry any semantics, so it is great to be able to access tuple elements by
attributes. Note that you could also get the same benefits from dictionaries that have a O(1)
average complexity of get and set operations.

Optimization - Some Powerful Techniques Chapter 14

[471]

The first advantage in terms of performance is that namedtuple is still a flavor of tuple.
This means that it is immutable, so the underlying array storage is allocated for the
necessary size. Dictionaries, on the other hand, need to use overallocation in the internal
hash table to ensure the low-average complexity of get/set operations. So, namedtuple
wins over dict in terms of memory efficiency.

The fact that namedtuple is based on tuple may also be beneficial for performance. Its
elements may be accessed by an integer index, as in other simple sequence objects-lists and
tuples. This operation is both simple and fast. In the case of dict or custom class instances
that use dictionaries for storing attributes, the element access requires a hash table lookup.
It is highly optimized to ensure good performance independently from collection size, but
as mentioned, O(1) complexity is actually only considered an average level of complexity.
The actual, amortized worst-case complexity for set/get operations in dict is O(n). The
real amount of work required to perform such an operation is dependent on both collection
size and history. In sections of code that are critical for performance, it may be wise to use
lists or tuples over dictionaries, as they are more predictable. In such a situation,
namedtuple is a great type that combines the following advantages of dictionaries and
tuples:

In sections where readability is more important, the attribute access may be
preferred
In performance-critical sections, elements may be accessed by their indexes

Reduced complexity can be achieved by storing data in an efficient data
structure that works well with the way the algorithm will use it.
That said, when the solution is not obvious, you should consider
dropping and rewriting the incriminating part instead of killing the code's
readability for the sake of performance.
Often, Python code can be both readable and fast, so try to find a good
way to perform the work instead of trying to work around a flawed
design.

In the next section, we'll look at how we can use architectural trade-offs.

Optimization - Some Powerful Techniques Chapter 14

[472]

Using architectural trade-offs
When your code can no longer be improved by reducing the complexity or choosing a
proper data structure, a good approach may be to consider a trade-off. If we review users'
problems and define what is really important to them, we can often relax some of the
application's requirements. Performance can often be improved by doing the following:

Replacing exact solution algorithms with heuristics and approximation
algorithms
Deferring some work to delayed task queues
Using probabilistic data structures

Let's move on and take a look at these improvement methods.

Using heuristics and approximation algorithms
Some algorithmic problems simply don't have good state-of-the-art solutions that could run
within a time acceptable to the user. For example, consider a program that deals with
complex optimization problems, such as the Traveling Salesman Problem (TSP) or
Vehicle Routing Problem (VRP). Both problems are NP-hard problems in combinatorial
optimization. The exact algorithms that have low complexity for such problems are not
known; this means that the size of a problem that can be practically solved is greatly
limited. For very large inputs, it is unlikely that you'll be able to provide the correct
solution in enough time.

Fortunately, it's likely that a user will be interested not in the best possible solution, but one
that is good enough and can be obtained in a timely manner. In these cases, it makes sense
to use heuristics or approximation algorithms whenever they provide acceptable results:

Heuristics solve given problems by trading optimality, completeness, accuracy,
or precision for speed. They concentrate on speed, but it may be hard to prove
the quality of their solutions compared to the result of exact algorithms.
Approximation algorithms are similar in idea to heuristics, but unlike heuristics
have provable solution quality and runtime bounds.

Optimization - Some Powerful Techniques Chapter 14

[473]

There are many known good heuristics and approximation problems that can solve
extremely large TSP problems within a reasonable amount of time. They also have a high
probability of producing results—just 2-5% from the optimal solution.

Another good thing about heuristics is that they don't always need to be constructed from
scratch for every new problem that arises. Their higher-level versions, called
metaheuristics, provide strategies for solving mathematical optimization problems that are
not problem-specific and can thus be applied in many situations. Some popular
metaheuristic algorithms include the following:

Simulated annealing
Genetic algorithms
Tabu search
Ant colony optimization
Evolutionary computation

Using task queues and delayed processing
Sometimes, it's not about doing too much, but about doing things at the right time. A
common example that's often mentioned in literature is sending emails within a web
application. In this case, increased response times for HTTP requests may not necessarily
translate to your code implementation. The response time may be instead dominated by
some third-party service, such as a remote email server. So, can you ever successfully
optimize your application if it spends most of its time waiting on other services to reply?

The answer is both yes and no. If you don't have any control over a service that is the main
contributor to your processing time—and there is no faster solution you can use—you
cannot speed up the service any further. A simple example of processing an HTTP request
that results in sending an email is presented in the following diagram. Here, you cannot
reduce the waiting time, but you can change the way users will perceive it:

Optimization - Some Powerful Techniques Chapter 14

[474]

Figure 1: An example of synchronous email delivery in a web application

The usual solution to this is kind of problem is to use message or task queues. When you
need to do something that could take an indefinite amount of time, add it to the queue of
work that needs to be done and immediately tell the user their request was accepted. This is
why sending emails is such a great example: emails are already task queues! If you submit
a new message to an email server using the SMTP protocol, a successful response does not
mean your email was delivered to the addressee—it means that the email was delivered to
the email server. If a response from the server does not guarantee that an email was
delivered, you don't need to wait for it in order to generate an HTTP response for the user.

Optimization - Some Powerful Techniques Chapter 14

[475]

The updated flow of processing requests via a task queue is illustrated in the following
diagram:

Figure 2: An example of asynchronous email delivery in a web application

Even if your email server is responding at blazing speed, you may need some more time to
generate the message that needs to be sent. Are you generating yearly reports in an XLS
format? Or are you delivering invoices via PDF files? If you use an email transport system
that is already asynchronous, then you can put the whole message generation task to the
message processing system. If you cannot guarantee the exact time of delivery, then you
should not bother generating your deliverables synchronously.

Optimization - Some Powerful Techniques Chapter 14

[476]

The correct usage of task and message queues in critical sections of an application can also
give you other benefits, including the following:

Web workers that serve HTTP requests will be relieved from additional work
and will be able to process requests faster. This means that you will be able to
process more requests with the same resources and thus handle greater load.
Message queues are generally more immune to transient failures of external
services. For instance, if your database or email server times out from time to
time, you can always re-queue the currently-processed task and retry it later.
With a good message queue implementation, you can easily distribute work on
multiple machines. This approach may improve the scalability of some of your
application components.

As you can see in the preceding diagram, adding an asynchronous task process to your
application inevitably increases the complexity of the whole system's architecture. You will,
however, need to set up some new backing services (a message queue such as RabbitMQ)
and create workers that will be able to process asynchronous jobs. Fortunately, there are
some popular tools available for building distributed task queues. The most popular one
among Python developers is Celery (http://www.celeryproject.org/). Celery is a fully-
fledged task queue framework with support of multiple message brokers that also allows
for the scheduled execution of tasks. It can even replace your cron jobs. If you need
something simpler, then RQ (http://python-rq.org/) might be a good alternative. RQ is a
lot simpler than Celery and uses Redis key/value storage as its message broker (RQ actually
stands for Redis Queue).

Although there are some good and battle-hardened tools available, you should always
carefully consider your approach to task queues. Not every kind of task should be
processed in queues. While queues are good at solving a number of issues, they can also
introduce the following problems:

The increased complexity of system architecture
Possible more than once deliveries
More services to maintain and monitor
Larger processing delays
More difficult logging

http://www.celeryproject.org/
http://python-rq.org/

Optimization - Some Powerful Techniques Chapter 14

[477]

Using probabilistic data structures
Probabilistic data structures are structures that are designed to store collections of values in
a way that allows you to answer specific questions within time or resource constraints that
would otherwise be impossible. The most important feature of probabilistic data structures
is that the answers they give are only probable to be true; in other words, they are just
approximations of real values. The probability of a correct answer can be easily estimated,
however. Despite not always giving the correct answer, probabilistic data structures can
still be useful if there is some room for potential error.

There are a lot of data structures with such probabilistic properties. Each one of them solves
specific problems, but due to their stochastic nature, they cannot be used in every situation.
As a practical example, we'll talk about one of the more popular structures, HyperLogLog.

HyperLogLog is an algorithm that approximates the number of distinct elements in a
multiset. With ordinary sets, if you want to know the number of unique elements, you need
to store all of them. This is obviously impractical for very large datasets. HLL is distinct
from the classical way of implementing sets as programming data structures. Without
digging into implementation details, let's say that it only concentrates on providing an
approximation of set cardinality; real values are never stored. They cannot be retrieved,
iterated, and tested for membership. HyperLogLog trades accuracy and correctness for
time complexity and size in memory. For instance, the Redis implementation of HLL takes
only 12k bytes with a standard error of 0.81%, with no practical limit on collection size.

Using probabilistic data structures is an interesting way of solving performance problems.
In most cases, it is about trading off some accuracy for faster processing or more efficient
resource usage. It does not always need to do so, however. Probabilistic data structures are
often used in key/value storage systems to speed up key lookups. One of the most popular
techniques that's used in such systems is called an approximate member query (AMQ). An
interesting probabilistic data structure that is often used for this purpose is the Bloom filter.

In the next section, we'll take a look at caching.

Optimization - Some Powerful Techniques Chapter 14

[478]

Caching
When some of your application functions takes too long to compute, a useful technique to
consider is caching. Caching saves the return values of function calls, database queries,
HTTP requests, and so on for future reference. The result of a function or method that is
expensive to run can be cached as long as the following prerequisites are met:

The function is deterministic and the results have the same value every time,
given the same input
The return value of the function is nondeterministic but continues to be useful
and valid for some period of time

In other words, a deterministic function always returns the same result for the same set of
arguments, whereas a nondeterministic function returns results that may vary in time.
Caching both types of results usually greatly reduces the time of computation and allows
you to save a lot of computer resources.

The most important requirement for any caching solution is a storage system that allows
you to retrieve saved values significantly faster than it takes to calculate them. Good
candidates for caching are usually as follows:

Results from callables that query databases
Results from callables that render static values, such as file content, web requests,
or PDF rendering
Results from deterministic callables that perform complex calculations
Global mappings that keep track of values with expiration times, such as web
session objects
Results that needs to be accessed often and quickly

Another important use case for caching is when saving results from third-party APIs
served over the web. This may greatly improve application performance by cutting off
network latencies, but it also allows you to save money if you are billed for every request to
an API.

Depending on your application architecture, the cache can be implemented in many ways
and with various levels of complexity. There are many ways of providing a cache, and
complex applications can use different approaches on different levels of the application's
architecture stack. Sometimes, a cache may be as simple as a single global data structure
(usually a dict) that is kept in the process memory. In other situations, you may want to
set up a dedicated caching service that will run on carefully tailored hardware. This section
will provide you with basic information on the most popular caching approaches, guiding
you through some common use cases as well as the common pitfalls.

Optimization - Some Powerful Techniques Chapter 14

[479]

So, let's move on and see what deterministic caching is.

Deterministic caching
Deterministic functions are the easiest and safest use case for caching. Deterministic
functions always return the same value if given exactly the same input, so you can
generally store their results indefinitely. The only limitation to this approach is storage
capacity. The simplest way to cache results is to put them into process memory, as this is
usually the fastest place to retrieve data from. Such a technique is often called
memoization.

Memoization is very useful when optimizing recursive functions that may need to evaluate
the same input multiple times. (We already discussed recursive implementations for the
Fibonacci sequence in Chapter 9, Python Extensions in Other Languages.) Earlier on in this
book, we tried to improve the performance of our program with C and Cython. Now, we
will try to achieve the same goal by simpler means—through caching. Before we do that,
let's first recall the code for the fibonacci() function, as follows:

def fibonacci(n):
 """ Return nth Fibonacci sequence number computed recursively
 """
 if n < 2:
 return 1
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

As we can see, fibonacci() is a recursive function that calls itself twice if the input value
is more than two. This makes it highly inefficient. The runtime complexity is O(2n) and its
execution creates a very deep and vast call tree. For a large input value, this function will
take a long time to execute, and there is a high chance that it will exceed the maximum
recursion limit of the Python interpreter.

If you take a closer look at the following diagram, which presents an example call tree, you
will see that it evaluates many of the intermediate results multiple times. A lot of time and
resources can be saved if we reuse some of these values:

Optimization - Some Powerful Techniques Chapter 14

[480]

Figure 3: A call tree for the fibonacci(5) execution

An example of a simple memoization attempt would be to store the results of previous runs
in a dictionary and to retrieve them if they are available. Both the recursive calls in the
fibonacci() function are contained in a single line of code, as follows:

return fibonacci(n - 1) + fibonacci(n - 2)

We know that Python evaluates instructions from left to right. This means that, in this
situation, the call to the function with a higher argument value will be executed before the
call to the function with a lower argument value. Thanks to this, we can provide
memoizaton by constructing a very simple decorator, as follows:

def memoize(function):
 """ Memoize the call to single-argument function
 """
 call_cache = {}

 def memoized(argument):
 try:
 return call_cache[argument]
 except KeyError:
 return call_cache.setdefault(
 argument, function(argument)
)

 return memoized

@memoize
def fibonacci(n):
 """ Return nth Fibonacci sequence number computed recursively
 """
 if n < 2:
 return 1
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

Optimization - Some Powerful Techniques Chapter 14

[481]

We used the dictionary on the closure of the memoize() decorator as a simple storage
solution from cached values. Saving and retrieving values in the preceding data structure
has an average O(1) complexity, so this greatly reduces the overall complexity of the
memoized function. Every unique function call will be evaluated only once. The call tree of
such an updated function is presented in the following diagram. Even without
mathematical proof, we can visually deduce that we have reduced the complexity of the
fibonacci() function from the very expensive O(2n) to the linear O(n):

Figure 4: A call tree for the fibonacci(5) execution with memoization

The implementation of our memoize() decorator is, of course, not perfect. It worked well
for the preceding example, but it isn't a reusable piece of software. If you need to memoize
functions with multiple arguments, or want to control the size of your cache, you will need
something more generic. Luckily, the Python standard library provides a very simple and
reusable utility that can be used in most cases when caching the results of deterministic
functions in-memory is required. This utility is the lru_cache(maxsize, typed)
decorator from the functools module. The name comes from the LRU algorithm, which
stands for last recently used. The following additional parameters allow for finer control of
the memoization behavior:

maxsize: This sets the maximum size of the cache. The None value means no
limit at all.
typed: This defines whether values of different types that compare as equal
should be cached as the same result.

Optimization - Some Powerful Techniques Chapter 14

[482]

The usage of lru_cache in our Fibonacci sequence example would be as follows:

@lru_cache(None)
def fibonacci(n):
 """ Return nth Fibonacci sequence number computed recursively
 """
 if n < 2:
 return 1
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

In the next section, we will take a look at non-deterministic caching.

Non-deterministic caching
Caching non-deterministic functions is trickier that memoization. Due to the fact that every
execution of such a function may give different results, it is usually impossible to use
previous values for an arbitrarily long amount of time. What you need to do instead is to
decide for how long a cached value can be considered valid. After a defined period of time
passes, the stored results are considered stale and the cache will need refreshing with a new
value.

Non-deterministic functions that are usually a subject of caching often depend on some
external state that is hard to track inside your application code. Typical examples of
components include the following:

Relational databases, or generally any type of structured data storage engine
Third-party services accessible through network connection (web APIs)
Filesystems

So, in other words, non-deterministic caching is performed in any situation where pre-
computed results are used temporarily. These results often represent a state that is
consistent with the state of other system components—usually, the backing service.

Note that such an implementation is obviously a trade-off, and is therefore related to the
techniques we looked at in the Using architectural trade-offs section. If you resign from
running part of your code whenever necessary, and instead use historical results, you are
risking using data that is stale or represents an inconsistent state of your system. In this
case, you are trading the accuracy and/or completeness for speed and performance.

Optimization - Some Powerful Techniques Chapter 14

[483]

Of course, such caching is efficient as long as the time taken to interact with the cache is less
than the time the cached function takes to execute. If it's faster to simply recalculate the
value, by all means do so! That's why setting up a cache has to be done only if it's worth it;
setting it up properly has a cost.

Things that can actually be cached are usually the results of interactions with other
components of your system. If you want to save time and resources when communicating
with the database, it is worth caching expensive queries. If you want to reduce the number
of I/O operations, you may want to cache the content of files that are most-frequently
accessed.

Techniques for caching non-deterministic functions are actually very similar to those used
in caching deterministic ones. The most notable difference is that they usually require the
option of invalidating cached values by their age. This means that the lru_cache()
decorator from the functools module has limited use; however, it should not be too
difficult to extend this function to provide the expiration feature. As this is a very common
problem that has been solved numerous times by many developers, you should be able to
find multiple libraries on PyPI that have been designed for caching non-deterministic
values.

In the next section, we will take a look at cache services.

Cache services
We have already said that non-deterministic caching can be implemented using local
process memory, but it is actually rarely done that way. This is because local process
memory is limited in its utility as storage in large applications.

If you run into a situation where non-deterministic caching is your preferred solution to
performance problems, you may well need something more. Usually, non-deterministic
caching is your must-have solution when you need to serve data or a service to multiple
users at the same time. Sooner or later, you may also need to ensure that users can be
served concurrently. While local memory provides a way of sharing data between multiple
threads, it may not be the best concurrency model for every application. It does not scale
well, so you will eventually need to run your application as multiple processes.

Optimization - Some Powerful Techniques Chapter 14

[484]

If you are lucky enough, you may be able to run your application on hundreds or
thousands of machines. If you would like to store cached values in local memory in this
scenario, your cache will need to be duplicated on every process that requires it. This is not
just a total waste of resources—if every process has its own cache that is already a trade-off
between speed and consistency, how you can guarantee that all caches are consistent with
each other?

Consistency across subsequent requests is a serious concern, especially for web applications
with distributed backends. In complex distributed systems, it is extremely hard to ensure
that the user will always be served by the same process hosted on the same machine. It is,
of course, doable to some extent, but once you solve that problem, ten others will pop up.

If you are making an application that needs to serve multiple concurrent users, the best
way to handle a non-deterministic cache is to use a dedicated service. With tools such as
Redis or Memcached, you allow all of your application processes to share the same cached
results. This both reduces the use of precious computing resources and saves you from any
problems caused by having too many independent and inconsistent caches.

Caching services such as Memcached are useful for implementing memoization-like caches
with states that can be easily shared across multiple processes, and even multiple servers.
There is also another way of caching that can be implemented on a system architecture-
level, and such an approach is extremely common in applications working over the HTTP
protocol. Many elements of a typical HTTP application stack provide elastic caching
capabilities that often use mechanisms that are well standardized by HTTP protocol. This
kind of caching can, for instance, take the form of the following:

Caching reverse-proxy (for example, nginx or Apache): Where a proxy caches
full responses from multiple web workers working on the same host
Caching load balancer (for example, Haproxy): Where a load balancer not only
distributes load over multiple hosts but also caches their responses
Content distribution network: Where resources from your servers are cached by
a system that also tries to keep them in close geographical proximity to users,
thus reducing network roundtrip times

In the next section, we will take a look at Memcached.

Optimization - Some Powerful Techniques Chapter 14

[485]

Memcached
If you want to be serious about caching, Memcached is a very popular and battle-hardened
solution. This cache server is used by big applications, including Facebook and Wikipedia,
to scale their websites. Among simple caching features, it has clustering capabilities that
make it possible for you to set up an efficiently distributed cache system in no time.

Memcached is a multi-platform service, and there are a handful of libraries for
communicating with it available in multiple programming languages. There are many
Python clients that differ slightly from each other, but the basic usage is usually the same.
The simplest interaction with Memcached almost always consists of the following three
methods:

set(key, value): This saves the value for the given key
get(key): This gets the value for the given key if it exists
delete(key): This deletes the value under the given key if it exists

The following code snippet is an example of integration with Memcached using one
popular Python package, pymemcached:

from pymemcache.client.base import Client

setup Memcached client running under 11211 port on localhost
client = Client(('localhost', 11211))

cache some value under some key and expire it after 10 seconds
client.set('some_key', 'some_value', expire=10)

retrieve value for the same key
result = client.get('some_key')

One of the downsides of Memcached is that it is designed to store values either as strings or
binary blobs, and this isn't compatible with every native Python type. In fact, it is only
compatible with one-strings. This means that more complex types need to be serialized in
order to be successfully stored in Memcached. A common serialization choice for simple
data structures is JSON. An example of how to use JSON serialization with pymemcached is
as follows:

import json
from pymemcache.client.base import Client

def json_serializer(key, value):
 if type(value) == str:
 return value, 1
 return json.dumps(value), 2

Optimization - Some Powerful Techniques Chapter 14

[486]

def json_deserializer(key, value, flags):
 if flags == 1:
 return value
 if flags == 2:
 return json.loads(value)
 raise Exception("Unknown serialization format")

client = Client(('localhost', 11211), serializer=json_serializer,
 deserializer=json_deserializer)
client.set('key', {'a':'b', 'c':'d'})
result = client.get('key')

Another problem that is very common when working with a caching service that works on
the key/value storage principle is how to choose key names.

For cases when you are caching simple function invocations that have basic parameters, the
solution is usually simple. Here, you can convert the function name and its arguments into
strings and then concatenate them together. The only thing you need to worry about is
making sure there are no collisions between keys that have been created for different
functions if you are caching in different places within an application.

A more problematic case is when cached functions have complex arguments that consist of
dictionaries or custom classes. In that case, you will need to find a way to convert
invocation signatures into cache keys in a consistent manner.

The last problem is that Memcached, like many other caching services, does not tend to like
very long key strings. The shorter is better. Long keys may either reduce performance, or
will simply not fit the hardcoded service limits. For instance, if you cache whole SQL
queries, the query strings themselves are generally suitable unique identifiers that can be
used as keys. On the other hand, complex queries are generally too long to be stored in a
caching service such as Memcached. A common practice is to instead calculate the MD5,
SHA, or any other hash function and use that as a cache key instead. The Python standard
library has a hashlib module that provides implementation for a few popular hash
algorithms. One important thing to note when using hashing functions are hash collisions.
There is no hash function that guarantees that collisions will never occur, so always be sure
to know and mitigate any potential risks.

Optimization - Some Powerful Techniques Chapter 14

[487]

Summary
In this chapter, you learned how to define the complexity of code, and looked at different
ways to reduce it. We also looked at how to improve performance using architectural trade-
offs. Finally, we explored exactly what caching is and how to use it to improve application
performance.

The preceding methods concentrated our optimization efforts inside a single process. We
tried to reduce code complexity, choose better data types, and reuse old function results. If
that did not help, we tried to make trade-offs using approximations, doing less, or leaving
work for later. We also briefly discussed the topic of message queues as a potential solution
for performance problems. We will revisit this topic later in Chapter 16, Event-Driven and
Signal Programming.

In the next chapter, we will discuss some techniques for concurrency and parallel-
processing in Python that can also be considered tools when improving the performance of
your applications.

15
Concurrency

Concurrency and one of its manifestations, parallel processing, is one of the broadest topics
in the area of software engineering. It is so huge that it could take dozens of books and we
would still not be able to discuss all of its important aspects and models.

This is why I won't try to fool you and from the very beginning state that we will barely
touch the surface of this topic. The purpose of this chapter is to show you why concurrency
may be required in your application, when to use it, and what the most important
concurrency models that you may use in Python are, which are the following:

Multithreading
Multiprocessing
Asynchronous programming

We will also discuss some of the language features, built-in modules, and third-party
packages that allow you to implement these models in your code. But we won't cover them
in much detail. Treat the content of this chapter as an entry point for your further research
and reading. It is here to guide you through the basic ideas and help in deciding if you
really need concurrency, and if so, which approach will best suit your needs.

In this chapter, we will cover the following topics:

Why concurrency?
Multithreading
Multiprocessing
Asynchronous programming

Concurrency Chapter 15

[489]

Technical requirements
The following are the Python packages that are mentioned in this chapter that you can
download from PyPI:

aiohttp

You can install these packages using the following command:

python3 -m pip install <package-name>

The code files for this chapter can be found
at https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/t
ree/master/chapter15.

Why concurrency?
Before we answer the question why concurrency, we need to ask, what is concurrency at all?

The answer to the latter question may be surprising for someone who used to think that it is
a synonym for parallel processing. First and foremost, concurrency is not the same as
parallelism. Concurrency is also not a matter of application implementation. It is a property
of a program, algorithm, or problem where parallelism is just one of the possible
approaches to the problems that are concurrent.

Leslie Lamport in his Time, Clocks, and the Ordering of Events in Distributed Systems paper
from 1976, defines the concept of concurrency as follows:

"Two events are concurrent if neither can causally affect the other."

By extrapolating events to programs, algorithms, or problems, we can say that something is
concurrent if it can be fully or partially decomposed into components (units) that are order-
independent. Such units may be processed independently from each other, and the order of
processing does not affect the final result. This means that they can also be processed
simultaneously or in parallel. If we process information this way (that is, in parallel), then
we are indeed dealing with parallel processing. But this is still not obligatory.

Doing work in a distributed manner, preferably using capabilities of multicore processors
or computing clusters, is a natural consequence of concurrent problems. Anyway, it does
not mean that this is the only way of efficiently dealing with concurrency. There are a lot of
use cases where concurrent problems can be approached in other than synchronous ways,
but without the need for parallel execution.

https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter15
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter15

Concurrency Chapter 15

[490]

So, once we know what concurrency really is, it is time to explain what all the fuss is about.
When the problem is concurrent, it gives you the opportunity to deal with it in a special,
preferably more efficient, way.

We often get used to solving problems in a classical way by performing a sequence of steps.
This is how most of us think and process information—using synchronous algorithms that
do one thing at a time, step by step. But this way of processing information is not well-
suited for solving large-scale problems or when you need to satisfy the following demands
of multiple users or software agents simultaneously:

When the time to process the job is limited by the performance of the single
processing unit (single machine, CPU core, and so on)
When you are not able to accept and process new inputs until your program has
finished processing the previous one

So, generally approaching concurrent problems concurrently is the best approach when the
following scenarios apply:

The scale of problems is so big that the only way to process them in an acceptable
time or in the range of available resources is to distribute execution on multiple
processing units that can handle the work in parallel
Your application needs to maintain responsiveness (accept new inputs), even if it
did not finish processing old inputs

These two classes of problems cover most situations where concurrent processing is a
reasonable option. The first group of problems definitely needs the parallel processing
solution, so it is usually solved with multithreading and multiprocessing models. The
second group does not necessarily need be processed in parallel, so the actual solution
really depends on the problem details. This group of problems also covers the case when
the application needs to serve multiple clients (users or software agents) independently,
without the need to wait for others to be successfully served.

It is an interesting observation that these groups of problems are not exclusive. Often, you
will have to maintain application responsiveness and at the same time won't be able to
handle the input on a single processing unit. This is the reason why different and seemingly
alternative or conflicting approaches to concurrency may be often used at the same time.
This is especially common in the development of web servers, where it may be necessary to
use asynchronous event loops, or threads in conjunction with multiple processes, in order
to utilize all the available resources and still maintain low latencies under the high load.

Let's take a look at multithreading in the next section.

Concurrency Chapter 15

[491]

Multithreading
Developers often consider threading to be a very complex topic. While this statement is
totally true, Python provides high-level classes and functions that ease the usage of
threading. CPython implementation of threads unfortunately comes with some
inconvenient details that make them less useful than in other languages. They are still
completely fine for some sets of problems that you may want to solve, but not for as many
as in C or Java.

In this section, we will discuss the limitations of multithreading in CPython, as well as the
common concurrent problems for which Python threads are still a viable solution.

What is multithreading?
Thread is short for a thread of execution. A programmer can split his or her work into
threads that run simultaneously and share the same memory context. Unless your code
depends on third-party resources, multithreading will not speed it up on a single-core
processor, and will even add some overhead for thread management. Multithreading will
benefit from a multiprocessor or multicore machines where each thread can be executed on
a separate CPU core, thus making the program run faster. This is a general rule that should
hold true for most programming languages. In Python, the performance benefit from
multithreading on multicore CPUs has some limits, which we will discuss later. For the
sake of simplicity, let's assume for now that this statement is also true for Python.

The fact that the same context is shared among threads means you must protect data from
uncontrolled concurrent accesses. If two intertwined threads update the same data without
any protection, there might be a situation where subtle timing variation in thread execution
can alter the final result in an unexpected way. To better understand this problem, imagine
that there are two threads that increment the value of a shared variable in a non-atomic
sequence of steps, for example:

counter_value = shared_counter
shared_counter = counter_value + 1

Now, let's assume that the shared_counter variable has the initial value of 0. Now,
imagine that two threads process the same code in parallel, as follows:

Thread 1 Thread 2
counter_value = shared_counter #
counter_value = 0
shared_counter = counter_value + 1 #
shared_counter = 0 + 1

counter_value = shared_counter #
counter_value = 0
shared_counter = counter_value + 1 #
shared_counter = 0 + 1

Concurrency Chapter 15

[492]

Depending on the exact timing and how processor context will be switched, it is possible
that the result of running two such threads will be either 1 or 2. Such a situation is called
a race hazard or race condition, and is one of the most hated culprits of hard to debug
software bugs.

Lock mechanisms help in protecting data, and thread programming has always been a
matter of making sure that the resources are accessed by threads in a safe way. But unwary
usage of locks can introduce a set of new issues on its own. The worst problem occurs
when, due to a wrong code design, two threads lock a resource and try to obtain a lock on
the other resource that the other thread has locked before. They will wait for each other
forever. This situation is called a deadlock, and is similarly hard to debug. Reentrant locks
help a bit in this by making sure a thread doesn't get locked by attempting to lock a
resource twice.

Nevertheless, when threads are used for isolated needs with tools that were built for them,
they might increase the speed of the program.

Multithreading is usually supported at the system kernel level. When the machine has a
single processor with a single core, the system uses a time slicing mechanism. Here, the
CPU switches from one thread to another so fast that there is an illusion of threads running
simultaneously. This is done at the processing level as well. Parallelism without multiple
processing units is obviously virtual, and there is no performance gain from running
multiple threads on such hardware. Anyway, sometimes, it is still useful to implement code
with threads, even if it has to execute on a single core, and we will look at a possible use
case later.

Everything changes when your execution environment has multiple processors or multiple
CPU cores for its disposition. Even if time slicing is used, processes and threads are
distributed among CPUs, providing the ability to run your program faster.

Let's take a look at how Python deals with threads.

How Python deals with threads
Unlike some other languages, Python uses multiple kernel-level threads that can each run
any of the interpreter-level threads. But the standard implementation of the
CPython language comes with a major limitation that renders threads less usable in many
contexts. All threads accessing Python objects are serialized by one global lock. This is done
because much of the interpreter internal structures, as well as third-party C code, are not
thread-safe and need to be protected.

Concurrency Chapter 15

[493]

This mechanism is called the Global Interpreter Lock (GIL), and its implementation details
on Python/C API level were already discussed in the Releasing GIL section of Chapter 9,
Python Extensions in Other Languages. The removal of GIL is a topic that occasionally
appears on the Python-dev emailing list and was postulated by developers multiple times.
Sadly, at the time of writing, no one has ever managed to provide a reasonable and simple
solution that would allow you to get rid of this limitation. It is highly improbable that we
will see any progress in this area anytime soon. It is safer to assume that GIL will stay in
CPython, and so we need to learn how to live with it.

So, what is the point of multithreading in Python?

When threads contain only pure Python code, there is little point in using threads to speed
up the program since the GIL will globally serialize the execution of all threads. But
remember that GIL cares only about Python code. In practice, the global interpreter lock is
released on a number of blocking system calls and can be released in sections of C
extensions that do not use any of Python/C API functions. This means that multiple threads
can do I/O operations or execute C code in certain third-party extensions in parallel.

Multithreading allows you to efficiently utilize time when a program is waiting for a third-
party resource. This is because a sleeping thread that has explicitly released the GIL can
stand by and wake up when the results are back. Last, whenever a program needs to
provide a responsive interface, multithreading can be an answer, even in single-core
environments where the operating system needs to use time slicing. With multithreading,
the program can easily interact with the user while doing some heavy computing in the so-
called background.

Note that GIL does not exist in every implementation of the Python language. It is a
limitation of CPython, Stackless Python, and PyPy, but does not exist in Jython and
IronPython (see Chapter 1, Current Status of Python). There has been some development of
the GIL-free version of PyPy, but at the time of writing this book, it is still at an
experimental stage and the documentation is lacking. It is based on
Software Transactional Memory and is called PyPy-STM. It is really hard to say when (or
if) it will be officially released as a production ready interpreter. Everything seems to
indicate that it won't happen soon.

In the next section, we will discuss when we should use threading.

Concurrency Chapter 15

[494]

When should we use threading?
Despite the GIL limitation, threads can be really useful in some of the following cases:

Building responsive interfaces
Delegating work
Building multiuser applications

Let's discuss the preceding cases in the next sections.

Building responsive interfaces
Let's say you ask your system to copy files from one folder to another through some
program with a graphical user interface. The task will possibly be pushed into the
background and the interface window will be constantly refreshed by the program. This
way, you get live feedback on the progress of the whole process. You will also be able to
cancel the operation. This is less irritating than a raw cp or copy shell command that does
not provide any feedback until the whole work is finished.

A responsive interface also allows a user to work on several tasks at the same time. For
instance, Gimp will let you play around with a picture while another one is being filtered,
since the two tasks are independent.

When trying to achieve such responsive interfaces, a good approach is to try to push long-
running tasks into the background, or at least try to provide constant feedback to the user.
The easiest way to achieve that is to use threads. In such a scenario, threads are not
intended to increase performance but only to make sure that the user can still operate the
interface, even if it needs to process some data for a longer period of time.

If such background tasks perform a lot of I/O operations, you are able to still get some
benefit from multicore CPUs. Then, it's a win-win situation.

Delegating work
If your application depends on many external resources, threads may really help in
speeding it up.

Let's consider the case of a function that indexes files in a folder and pushes the built
indexes into a database. Depending on the type of file, the function calls a different external
program. For example, one is specialized in PDFs and another one in OpenOffice files.

Concurrency Chapter 15

[495]

Instead of processing all files in a sequence, by executing the right program and then
storing the results into the database, your function can set up a single thread for each
converter and push jobs to be done to each one of them through a queue. The overall time
taken by the function will be closer to the processing time of the slowest converter than to
the sum of all the work.

Note that such an approach is somewhat a hybrid between multithreading and
multiprocessing. If you delegate the work to external processes (for example, using the
run() function from the subprocess module), you are in fact doing work in multiple
processes, so this has symptoms of multiprocessing. Still, in our scenario, we are mainly
waiting for the processing of results being handled in separate threads, so it is still mostly
multithreading from the perspective of the Python code.

The other common use case for threads is performing multiple HTTP requests to an
external service. For instance, if you want to fetch multiple results from a remote web API,
it could take a lot of time to do that synchronously, especially if the remote server is located
in a distant location. If you wait for every previous response before making new requests,
you will spend a lot of time just waiting for the external service to respond, and additional
round-trip time delays will be added to every such request. If you are communicating with
some efficient service (Google Maps API, for instance), it is highly probable that it can serve
most of your requests concurrently without affecting the response times of separate
requests. It is then reasonable to perform multiple queries in separate threads. Remember
that when doing an HTTP request, the maximum time is spent on reading from the TCP
socket. This is a blocking I/O operation, so CPython will release the GIL when performing
the recv() C function. This allows for great improvement of your application's
performance.

Multiuser applications
Threading is also used as a concurrency base for multiuser applications. For instance, a web
server will push a user request into a new thread and then will become idle, waiting for
new requests. Having a thread dedicated to each request simplifies a lot of work, but
requires the developer to take care of locking the shared resources. But this is not a problem
when all the shared data is pushed into a relational database that takes care of the
concurrency matters. So, threads in a multiuser application act almost like separate
independent processes. They are under the same process only to ease their management at
the application level.

Concurrency Chapter 15

[496]

For instance, a web server will be able to put all requests in a queue and wait for a thread to
be available to send the work to it. Furthermore, it allows memory sharing that can boost
up some work and reduce the memory load. The two very popular Python WSGI-
compliant webservers Gunicorn (refer to http://gunicorn.org/) and uWSGI (refer to
https://uwsgi-docs.readthedocs.org) allow you to serve HTTP requests with threaded
workers in a way that generally follows this principle.

Using multithreading to enable concurrency in multiuser applications is less expensive than
using multiprocessing. Separate processes cost more resources since a new interpreter
needs to be loaded for each one of them. On the other hand, having too many threads is
expensive too. We know that GIL isn't such a problem for I/O extensive applications, but
there is always a time where you will need to execute Python code. Since you cannot
parallelize all of the application parts with bare threads, you will never be able to utilize all
of the resources on machines with multicore CPUs and a single Python process. This is
why, the optimal solution is often a hybrid of multiprocessing and
multithreading—multiple workers (processes) running with multiple threads. Fortunately,
many of the WSGI-compliant web servers allow such setup.

In the next section, we will take a look at an example of a threaded application.

An example of a threaded application
To see how Python threading works in practice, let's construct some example applications
that can take some benefit from implementing multithreading. We will discuss a simple
problem that you may encounter from time to time in your professional practice making
multiple parallel HTTP queries. This problem was already mentioned as a common use
case for multithreading.

Let's say we need to fetch data from some web service using multiple queries that cannot be
batched into a single big HTTP request. As a realistic example, we will use foreign
exchange reference rates endpoint from Foreign exchange rates API, available at https://
exchangeratesapi.io/. The reasons for that choice are as follows:

This service is open and does not require any authentication keys.
The API of that service is very simple and can be easily queried using popular
the requests library.
Code for this API is open sourced and written in Python. So, in case the official
service goes down, you should be able to download its source code from the
official repository on GitHub, available at https://github.com/
exchangeratesapi/exchangeratesapi.

http://gunicorn.org/
https://uwsgi-docs.readthedocs.org
https://uwsgi-docs.readthedocs.org
https://uwsgi-docs.readthedocs.org
https://uwsgi-docs.readthedocs.org
https://uwsgi-docs.readthedocs.org
https://uwsgi-docs.readthedocs.org
https://uwsgi-docs.readthedocs.org
https://uwsgi-docs.readthedocs.org
https://uwsgi-docs.readthedocs.org
https://uwsgi-docs.readthedocs.org
https://uwsgi-docs.readthedocs.org
https://exchangeratesapi.io/
https://exchangeratesapi.io/
https://exchangeratesapi.io/
https://exchangeratesapi.io/
https://exchangeratesapi.io/
https://exchangeratesapi.io/
https://exchangeratesapi.io/
https://github.com/exchangeratesapi/exchangeratesapi
https://github.com/exchangeratesapi/exchangeratesapi
https://github.com/exchangeratesapi/exchangeratesapi
https://github.com/exchangeratesapi/exchangeratesapi
https://github.com/exchangeratesapi/exchangeratesapi
https://github.com/exchangeratesapi/exchangeratesapi
https://github.com/exchangeratesapi/exchangeratesapi
https://github.com/exchangeratesapi/exchangeratesapi
https://github.com/exchangeratesapi/exchangeratesapi
https://github.com/exchangeratesapi/exchangeratesapi
https://github.com/exchangeratesapi/exchangeratesapi

Concurrency Chapter 15

[497]

In our examples, we will try to exchange rates for selected currencies using multiple
currencies as reference points. We will then present results as an exchange rate currency
matrix, similar to the following:

1 USD = 1.0 USD, 0.887 EUR, 3.8 PLN, 8.53 NOK, 22.7 CZK
1 EUR = 1.13 USD, 1.0 EUR, 4.29 PLN, 9.62 NOK, 25.6 CZK
1 PLN = 0.263 USD, 0.233 EUR, 1.0 PLN, 2.24 NOK, 5.98 CZK
1 NOK = 0.117 USD, 0.104 EUR, 0.446 PLN, 1.0 NOK, 2.66 CZK
1 CZK = 0.044 USD, 0.039 EUR, 0.167 PLN, 0.375 NOK, 1.0 CZK

The API we've chosen offers several ways to query for multiple data points within single
requests, but unfortunately does not allow you to query for data using multiple base
currencies at once. Obtaining the rate for a single base is as simple as doing the following:

>>> import requests
>>> response =
requests.get("https://api.exchangeratesapi.io/latest?base=USD")
>>> response.json()
{'base': 'USD', 'rates': {'BGN': 1.7343265053, 'NZD': 1.4824864769, 'ILS':
3.5777245721, 'RUB': 64.7361000266, 'CAD': 1.3287221779, 'USD': 1.0, 'PHP':
52.0368892436, 'CHF': 0.9993792675, 'AUD': 1.3993970027, 'JPY':
111.2973308504, 'TRY': 5.6802341048, 'HKD': 7.8425113062, 'MYR':
4.0986077858, 'HRK': 6.5923561231, 'CZK': 22.7170346723, 'IDR':
14132.9963642813, 'DKK': 6.6196683515, 'NOK': 8.5297508203, 'HUF':
285.09355325, 'GBP': 0.7655848187, 'MXN': 18.930477964, 'THB':
31.7495787887, 'ISK': 118.6485767491, 'ZAR': 14.0298838344, 'BRL':
3.8548372794, 'SGD': 1.3527533919, 'PLN': 3.8015429636, 'INR':
69.3340427419, 'KRW': 1139.4519819101, 'RON': 4.221867518, 'CNY':
6.7117141084, 'SEK': 9.2444799149, 'EUR': 0.8867606633}, 'date':
'2019-04-09'}

Since our goal is to show how a multithreaded solution of concurrent problems compares
to a standard synchronous solution, we will start with an implementation that doesn't use
threads at all. Here is the code of a program that loops over the list of base currencies,
queries the foreign exchange rates API, and displays the results on standard output as a
text-formatted table:

import time

import requests

SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')
BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')

def fetch_rates(base):
 response = requests.get(

Concurrency Chapter 15

[498]

 f"https://api.exchangeratesapi.io/latest?base={base}"
)
 response.raise_for_status()
 rates = response.json()["rates"]
 # note: same currency exchanges to itself 1:1
 rates[base] = 1.

 rates_line = ", ".join(
 [f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]
)
 print(f"1 {base} = {rates_line}")

def main():
 for base in BASES:
 fetch_rates(base)

if __name__ == "__main__":
 started = time.time()
 main()
 elapsed = time.time() - started

 print()
 print("time elapsed: {:.2f}s".format(elapsed))

Around the execution of the main() function, we added a few statements that are intended
to measure how much time it took to finish the job. On my computer, it sometimes takes
even more than 1 second to complete the following task:

$ python3 synchronous.py
1 USD = 1.0 USD, 0.887 EUR, 3.8 PLN, 8.53 NOK, 22.7 CZK
1 EUR = 1.13 USD, 1.0 EUR, 4.29 PLN, 9.62 NOK, 25.6 CZK
1 PLN = 0.263 USD, 0.233 EUR, 1.0 PLN, 2.24 NOK, 5.98 CZK
1 NOK = 0.117 USD, 0.104 EUR, 0.446 PLN, 1.0 NOK, 2.66 CZK
1 CZK = 0.044 USD, 0.039 EUR, 0.167 PLN, 0.375 NOK, 1.0 CZK
time elapsed: 1.13s

Every run of our script will always take different times because it mostly
depends on a remote service that's accessible through a network
connection. So, there area lots of non-deterministic factors affecting the
final result. The best approach would be to make longer tests, repeat them
multiple times, and also calculate some average from the measurements.
But for the sake of simplicity, we won't do that. You will see later that this
simplified approach is just enough for illustration purposes.

In the next section, we will discuss the use of one thread per item.

Concurrency Chapter 15

[499]

Using one thread per item
Now, it is time for improvement. We don't do a lot of processing in Python, and long
execution times are caused by communication with the external service. We send an HTTP
request to the remote server, it calculates the answer, and then we wait until the response is
transferred back. There is a lot of I/O involved, so multithreading seems like a viable
option. We can start all the requests at once in separate threads and then just wait until we
receive data from all of them. If the service that we are communicating with is able to
process our requests concurrently, we should definitely see a performance improvement.

So, let's start with the easiest approach. Python provides clean and easy to use abstraction
over system threads with the threading module. The core of this standard library is
the Thread class, which represents a single thread instance. Here is a modified version of
the main() function that creates and starts a new thread for every place to geocode and
then waits until all the threads finish:

from threading import Thread

def main():
 threads = []
 for base in BASES:
 thread = Thread(target=fetch_rates, args=[base])
 thread.start()
 threads.append(thread)

 while threads:
 threads.pop().join()

It is a quick and dirty solution that approaches the problem in a bit of a frivolous way. And
it is not a way to write reliable software that will serve thousands or millions of users. It has
some serious issues that we will have to address later. But hey, it works, as we can see from
the following code:

$ python3 threads_one_per_item.py
1 CZK = 0.044 USD, 0.039 EUR, 0.167 PLN, 0.375 NOK, 1.0 CZK
1 NOK = 0.117 USD, 0.104 EUR, 0.446 PLN, 1.0 NOK, 2.66 CZK
1 USD = 1.0 USD, 0.887 EUR, 3.8 PLN, 8.53 NOK, 22.7 CZK
1 EUR = 1.13 USD, 1.0 EUR, 4.29 PLN, 9.62 NOK, 25.6 CZK
1 PLN = 0.263 USD, 0.233 EUR, 1.0 PLN, 2.24 NOK, 5.98 CZK
time elapsed: 0.13s

Concurrency Chapter 15

[500]

And it is also considerably faster.

So, when we know that threads have a beneficial effect on our application, it is time to use
them in a saner way. First, we need to identify the following issues in the preceding code:

We start a new thread for every parameter. Thread initialization also takes some
time, but this minor overhead is not the only problem. Threads also consume
other resources, like memory or file descriptors. Our example input has a strictly
defined number of items, but what if it did not have a limit? You definitely don't
want to run an unbound number of threads that depend on the arbitrary size of
data input.
The fetch_rates() function that's executed in threads calls the built-in
print() function, and in practice it is very unlikely that you would want to do
that outside of the main application thread. It is mainly due to the way the
standard output is buffered in Python. You can experience malformed output
when multiple calls to this function interleave between threads. Also, the
print() function is considered slow. If used recklessly in multiple threads, it
can lead to serialization that will waste all your benefits of multithreading.
Last but not least, by delegating every function call to a separate thread, we make
it extremely hard to control the rate at which our input is processed. Yes, we
want to do the job as fast as possible, but very often, external services enforce
hard limits on the rate of requests from a single client that they can process.
Sometimes, it is reasonable to design the program in a way that enables you to
throttle the rate of processing, so your application won't be blacklisted by
external APIs for abusing their usage limits.

In the next section, we will see how to use a thread pool.

Using a thread pool
The first issue we will try to solve is the unbound limit of threads that are run by our
program. A good solution would be to build a pool of threaded workers with a strictly
defined size that will handle all the parallel work and communicate with workers through
some thread-safe data structure. By using this thread pool approach, we will also make it
easier to solve two other problems that we mentioned in the previous section.

Concurrency Chapter 15

[501]

So, the general idea is to start some predefined number of threads that will consume the
work items from a queue until it becomes empty. When there is no other work to do, the
threads will return and we will be able to exit from the program. A good candidate for our
structure to be used to communicate with the workers is the Queue class from the built-in
queue module. It is a First In First Out (FIFO) queue implementation that is very similar to
the deque collection from the collections module, and was specifically designed to
handle inter-thread communication. Here is a modified version of the main() function that
starts only a limited number of worker threads with a new worker() function as a target
and communicates with them using a thread-safe queue:

import time
from queue import Queue, Empty
from threading import Thread

import requests

THREAD_POOL_SIZE = 4

SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')
BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')

def fetch_rates(base):
 response = requests.get(
 f"https://api.exchangeratesapi.io/latest?base={base}"
)
 response.raise_for_status()
 rates = response.json()["rates"]

 # note: same currency exchanges to itself 1:1
 rates[base] = 1.
 rates_line = ", ".join(
 [f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]
)
 print(f"1 {base} = {rates_line}")

def worker(work_queue):
 while not work_queue.empty():
 try:
 item = work_queue.get(block=False)
 except Empty:
 break
 else:
 fetch_rates(item)
 work_queue.task_done()

def main():

Concurrency Chapter 15

[502]

 work_queue = Queue()

 for base in BASES:
 work_queue.put(base)

 threads = [
 Thread(target=worker, args=(work_queue,))
 for _ in range(THREAD_POOL_SIZE)
]

 for thread in threads:
 thread.start()

 work_queue.join()

 while threads:
 threads.pop().join()

if __name__ == "__main__":
 started = time.time()
 main()
 elapsed = time.time() - started

 print()
 print("time elapsed: {:.2f}s".format(elapsed))

The following result of running a modified version of our program is similar to the
previous one:

$ python3 threads_thread_pool.py
1 EUR = 1.13 USD, 1.0 EUR, 4.29 PLN, 9.62 NOK, 25.6 CZK
1 NOK = 0.117 USD, 0.104 EUR, 0.446 PLN, 1.0 NOK, 2.66 CZK
1 USD = 1.0 USD, 0.887 EUR, 3.8 PLN, 8.53 NOK, 22.7 CZK
1 PLN = 0.263 USD, 0.233 EUR, 1.0 PLN, 2.24 NOK, 5.98 CZK
1 CZK = 0.044 USD, 0.039 EUR, 0.167 PLN, 0.375 NOK, 1.0 CZK

time elapsed: 0.17s

The overall runtime may be slower than in situations with one thread per argument, but at
least now it is not possible to exhaust all the computing resources with an arbitrarily long
input. Also, we can tweak the THREAD_POOL_SIZE parameter for better resource/time
balance.

We will look at how to use two-way queues in the next section.

Concurrency Chapter 15

[503]

Using two-way queues
The other issue that we are now able to solve is the potentially problematic printing of the
output in threads. It would be much better to leave such a responsibility to the main thread
that started the worker threads. We can handle that by providing another queue that will
be responsible for collecting results from our workers. Here is the complete code that puts
everything together, with the main changes highlighted:

import time
from queue import Queue, Empty
from threading import Thread

import requests

SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')
BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')

THREAD_POOL_SIZE = 4

def fetch_rates(base):
 response = requests.get(
 f"https://api.exchangeratesapi.io/latest?base={base}"
)
 response.raise_for_status()
 rates = response.json()["rates"]

 # note: same currency exchanges to itself 1:1
 rates[base] = 1.
 return base, rates

def present_result(base, rates):
 rates_line = ", ".join(
 [f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]
)
 print(f"1 {base} = {rates_line}")

def worker(work_queue, results_queue):
 while not work_queue.empty():
 try:
 item = work_queue.get(block=False)
 except Empty:
 break
 else:
 results_queue.put(
 fetch_rates(item)
)
 work_queue.task_done()

Concurrency Chapter 15

[504]

def main():
 work_queue = Queue()
 results_queue = Queue()

 for base in BASES:
 work_queue.put(base)

 threads = [
 Thread(target=worker, args=(work_queue, results_queue))
 for _ in range(THREAD_POOL_SIZE)
]

 for thread in threads:
 thread.start()

 work_queue.join()

 while threads:
 threads.pop().join()

 while not results_queue.empty():
 present_result(*results_queue.get())

if __name__ == "__main__":
 started = time.time()
 main()
 elapsed = time.time() - started

 print()
 print("time elapsed: {:.2f}s".format(elapsed))

This eliminates the risk of malformed inputs that we could experience if the
present_result() function would do more print() statements or perform some
additional computation. We don't expect any performance improvement from this
approach with small inputs, but in fact we also reduced the risk of thread serialization due
to slow print() execution. Here is our final output:

$ python3 threads_two_way_queues.py
1 USD = 1.0 USD, 0.887 EUR, 3.8 PLN, 8.53 NOK, 22.7 CZK
1 PLN = 0.263 USD, 0.233 EUR, 1.0 PLN, 2.24 NOK, 5.98 CZK
1 EUR = 1.13 USD, 1.0 EUR, 4.29 PLN, 9.62 NOK, 25.6 CZK
1 NOK = 0.117 USD, 0.104 EUR, 0.446 PLN, 1.0 NOK, 2.66 CZK
1 CZK = 0.044 USD, 0.039 EUR, 0.167 PLN, 0.375 NOK, 1.0 CZK

time elapsed: 0.17s

Dealing with errors and rate limiting is explained in the next section.

Concurrency Chapter 15

[505]

Dealing with errors and rate limiting
The last of the issues mentioned earlier that you may experience when dealing with such
types of problems are rate limits that have been imposed by external service providers. In
the case of the foreign exchange rates API, the service maintainer did not inform us about
any rate limits or throttling mechanisms. But many services (even paid ones) often do
impose rate limits. Also, it isn't fair to abuse a service that is provided to users completely
for free.

When using multiple threads, it is very easy to exhaust any rate limit or simply—if the
service does not throttle incoming requests—saturate the service to the level that it will not
be able to respond to anyone (this is known as a denial of service attack). The problem is
even more serious due to the fact that we did not cover any failure scenario yet, and dealing
with exceptions in multithreaded Python code is bit more complicated than usual.

The request.raise_for_status() function will raise an exception response and will
have a status code indicating any type of error (for instance, rate limiting), and this is
actually good news. This exception is raised in a separate thread and will not crash the
entire program. The worker thread will, of course, exit immediately, but the main thread
will wait for all tasks stored on work_queue to finish (with the work_queue.join()
call). Without further improvement, we may end up in a situation where some of the
worker threads crashed and the program will never exit. This means that our worker
threads should gracefully handle possible exceptions and make sure that all items from the
queue are processed.

Let's do some minor changes to our code in order to be prepared for any issues that may
occur. In case of exceptions in the worker thread, we may put an error instance in to the
results_queue queue and mark the current task as done, the same as we would do if
there was no error. That way, we make sure that the main thread won't lock indefinitely
while waiting in work_queue.join(). The main thread might then inspect results and re-
raise any of the exceptions found on the results queue. Here are the improved versions of
the worker() and main() functions that can deal with exceptions in a safer way (the
changes are highlighted):

def worker(work_queue, results_queue):
 while not work_queue.empty():
 try:
 item = work_queue.get(block=False)
 except Empty:
 break
 else:
 try:
 result = fetch_rates(item)
 except Exception as err:

Concurrency Chapter 15

[506]

 results_queue.put(err)
 else:
 results_queue.put(result)
 finally:
 work_queue.task_done()

def main():
 work_queue = Queue()
 results_queue = Queue()

 for base in BASES:
 work_queue.put(base)

 threads = [
 Thread(target=worker, args=(work_queue, results_queue))
 for _ in range(THREAD_POOL_SIZE)
]

 for thread in threads:
 thread.start()

 work_queue.join()

 while threads:
 threads.pop().join()

 while not results_queue.empty():
 result = results_queue.get()
 if isinstance(result, Exception):
 raise result

 present_result(*result)

When we are ready to handle exceptions, it is time to break our code. We don't want to
abuse our free API and cause a denial of service. So, instead of putting a high load on that
API, we will simulate a typical situation that is a result of many service throttling
mechanisms. Many APIs return a 429 Too Many Requests HTTP response when the
client exceeds the allowed rate limit. So, we will update the fetch_rates() function to
override the status code of every few responses in a way that will cause an exception. The
following is the updated version of the function that simulates a HTTP error every few
requests:

def fetch_rates(base):
 response = requests.get(
 f"https://api.exchangeratesapi.io/latest?base={base}"
)

Concurrency Chapter 15

[507]

 if random.randint(0, 5) < 1:
 # simulate error by overriding status code
 response.status_code = 429

 response.raise_for_status()
 rates = response.json()["rates"]
 # note: same currency exchanges to itself 1:1
 rates[base] = 1.
 return base, rates

If you use it in your code, you should get the following similar error:

$ python3 threads_exceptions_and_throttling.py
1 PLN = 0.263 USD, 0.233 EUR, 1.0 PLN, 2.24 NOK, 5.98 CZK
1 EUR = 1.13 USD, 1.0 EUR, 4.29 PLN, 9.62 NOK, 25.6 CZK
1 USD = 1.0 USD, 0.887 EUR, 3.8 PLN, 8.53 NOK, 22.7 CZK
Traceback (most recent call last):
 File "threads_exceptions_and_throttling.py", line 136, in <module>
 main()
 File "threads_exceptions_and_throttling.py", line 129, in main
 raise result
 File "threads_exceptions_and_throttling.py", line 96, in worker
 result = fetch_rates(item)
 File "threads_exceptions_and_throttling.py", line 70, in fetch_rates
 response.raise_for_status()
 File "/usr/local/lib/python3.7/site-packages/requests/models.py", line
940, in raise_for_status
 raise HTTPError(http_error_msg, response=self)
requests.exceptions.HTTPError: 429 Client Error: OK for url:
https://api.exchangeratesapi.io/latest?base=NOK

Let's forget about our simulated failure and pretend that the preceding exception is not a
result of faulty code. In such a situation, our program would be simply a bit too fast for this
free service. It makes too many concurrent requests, and, in order to work correctly, we
need to have a way to limit the program's pace.

Limiting the pace of work is often called throttling. There are a few packages in PyPI that
allow you to limit the rate of any kind of work that are really easy to use. But we won't use
any external code here. Throttling is a good opportunity to introduce some locking
primitives for threading, so we will try to build some throttling solutions from scratch.

Concurrency Chapter 15

[508]

The algorithm we will use is sometimes called token bucket and is very simple. It includes
the following functionality:

There is a bucket with a predefined amount of tokens.1.
Each token corresponds to a single permission to process one item of work.2.
Each time the worker asks for a single or multiple tokens (permissions), we do3.
the following:

We measure how much time was spent from the last time we refilled
the bucket
If the time difference allows for that, we refill the bucket with the
amount of tokens that correspond to this time difference
If the amount of stored tokens is bigger or equal to the amount
requested, we decrease the number of stored tokens and return that
value
If the amount of stored tokens is less than requested, we return zero

The two important things are to always initialize the token bucket with zero tokens and
never allow it to overfill. If we don't follow these precautions, we can release the tokens in
bursts that exceed the rate limit. Because, in our situation, the rate limit is expressed in
requests per second, we don't need to deal with arbitrary quanta of time. We assume that
the base for our measurement is one second, so we will never store more tokens than the
number of requests allowed for that quant of time. Here is an example implementation of
the class that allows for throttling with the token bucket algorithm:

From threading import Lock

class Throttle:
 def __init__(self, rate):
 self._consume_lock = Lock()
 self.rate = rate
 self.tokens = 0
 self.last = 0

 def consume(self, amount=1):
 with self._consume_lock:
 now = time.time()
 # time measument is initialized on first
 # token request to avoid initial bursts
 if self.last == 0:
 self.last = now

 elapsed = now - self.last

 # make sure that quant of passed time is big

Concurrency Chapter 15

[509]

 # enough to add new tokens
 if int(elapsed * self.rate):
 self.tokens += int(elapsed * self.rate)
 self.last = now

 # never over-fill the bucket
 self.tokens = (
 self.rate
 if self.tokens > self.rate
 else self.tokens
)

 # finally dispatch tokens if available
 if self.tokens >= amount:
 self.tokens -= amount
 else:
 amount = 0

 return amount

The usage of this class is very simple. Let's assume that we created only one instance of
Throttle (for example, Throttle(10)) in the main thread and passed it to every worker
thread as a positional argument. Using the same data structure in different threads is safe
because we guarded the manipulation of its internal state with the instance of the Lock
class from the threading module. We can now update the worker() function
implementation to wait with every item until the throttle object releases a new token, as
follows:

def worker(work_queue, results_queue, throttle):
 while True:
 try:
 item = work_queue.get(block=False)
 except Empty:
 break
 else:
 while not throttle.consume():
 pass

 try:
 result = fetch_rates(item)
 except Exception as err:
 results_queue.put(err)
 else:
 results_queue.put(result)
 finally:
 work_queue.task_done()

Concurrency Chapter 15

[510]

Let's take a look at a different concurrency model, which is explained in the next section.

Multiprocessing
Let's be honest, multithreading is challenging—we have already seen that in the previous
section. It's a fact that the simplest approach to the problem required only minimal effort.
But dealing with threads in a sane and safe manner required a tremendous amount of code.

We had to set up a thread pool, communication queues, gracefully handle exceptions from
threads, and also care about thread safety when trying to provide a rate limiting capability.
Dozens of lines of code are needed just to execute one function from some external library
in parallel! And we only assume that this is production ready because there is a promise
from the external package creator that their library is thread-safe. Sounds like a high price
for a solution that is practically applicable only for doing I/O bound tasks.

An alternative approach that allows you to achieve parallelism is multiprocessing. Separate
Python processes that do not constrain each other with GIL allow for better resource
utilization. This is especially important for applications running on multicore processors
that are performing really CPU intensive tasks. Right now, this is the only built-in
concurrent solution available for Python developers (using CPython interpreter) that allows
you to take benefit from multiple processor cores in every situation.

The other advantage of using multiple processes is the fact that they do not share memory
context. So, it is harder to corrupt data and introduce deadlocks in your application. Not
sharing the memory context means that you need some additional effort to pass the data
between separate processes, but fortunately there are many good ways to implement
reliable interprocess communication. In fact, Python provides some primitives that make
communication between processes almost as easy as it is possible between threads.

The most basic way to start new processes in any programming language is usually by
forking the program at some point. On POSIX systems (UNIX, macOS, and Linux), a fork is
a system call that's exposed in Python through the os.fork() function, which will create a
new child process. The two processes then continue the program in their own right after the
forking. Here is an example script that forks itself exactly once:

import os

pid_list = []

def main():
 pid_list.append(os.getpid())

Concurrency Chapter 15

[511]

 child_pid = os.fork()

 if child_pid == 0:
 pid_list.append(os.getpid())
 print()
 print("CHLD: hey, I am the child process")
 print("CHLD: all the pids i know %s" % pid_list)

 else:
 pid_list.append(os.getpid())
 print()
 print("PRNT: hey, I am the parent")
 print("PRNT: the child is pid %d" % child_pid)
 print("PRNT: all the pids i know %s" % pid_list)

if __name__ == "__main__":
 main()

And here is an example of running it in a Terminal:

$ python3 forks.py
PRNT: hey, I am the parent
PRNT: the child is pid 21916
PRNT: all the pids i know [21915, 21915]
CHLD: hey, I am the child process
CHLD: all the pids i know [21915, 21916]

Notice how both processes have exactly the same initial state of their data before the
os.fork() call. They both have the same PID number (process identifier) as a first value of
the pid_list collection. Later, both states diverge, and we can see that the child process
added the 21916 value while the parent duplicated its 21915 PID. This is because the
memory contexts of these two processes are not shared. They have the same initial
conditions but cannot affect each other after the os.fork() call.

After the fork memory context is copied to the child, each process deals with its own
address space. To communicate, processes need to work with system-wide resources or use
low-level tools like signals.

Unfortunately, os.fork is not available under Windows, where a new interpreter needs to
be spawned in order to mimic the fork feature. Therefore, it needs to be different,
depending on the platform. The os module also exposes functions that allow you to spawn
new processes under Windows, but eventually you will use them rarely. This is also true
for os.fork(). Python provides the great multiprocessing module, which creates a
high-level interface for multiprocessing.

Concurrency Chapter 15

[512]

The great advantage of this module is that it provides some of the abstractions that we had
to code from scratch in the An example of threaded application section. It allows you to limit
the amount of boilerplate code, so it improves application maintainability and reduces its
complexity. Surprisingly, despite its name, the multiprocessing module exposes a
similar interface for threads, so you will probably want to use the same interface for both
approaches.

Let's take a look at the built-in multiprocessing module in the next section.

The built-in multiprocessing module
multiprocessing provides a portable way to work with processes as if they were threads.

This module contains a Process class that is very similar to the Thread class, and can be
used on any platform, as follows:

from multiprocessing import Process
import os

def work(identifier):
 print(
 'hey, i am a process {}, pid: {}'
 ''.format(identifier, os.getpid())
)

def main():
 processes = [
 Process(target=work, args=(number,))
 for number in range(5)
]
 for process in processes:
 process.start()
 while processes:
 processes.pop().join()

if __name__ == "__main__":
 main()

Concurrency Chapter 15

[513]

The preceding script, when executed, gives the following result:

$ python3 processing.py
hey, i am a process 1, pid: 9196
hey, i am a process 0, pid: 8356
hey, i am a process 3, pid: 9524
hey, i am a process 2, pid: 3456
hey, i am a process 4, pid: 6576

When processes are created, the memory is forked (on POSIX systems). The most efficient
usage of processes is to let them work on their own after they have been created to avoid
overhead, and check on their states from the parent process. Besides the memory state that
is copied, the Process class also provides an extra args argument in its constructor so that
data can be passed along.

The communication between process modules requires some additional work because their
local memory is not shared by default. To ease this, the multiprocessing module provides
the following few ways of communicating between processes:

Using the multiprocessing.Queue class, which is a functional clone of
queue.Queue that was used earlier for the communication between threads
Using multiprocessing.Pipe, which is a socket-like two-way communication
channel
Using the multiprocessing.sharedctypes module, which allows you to
create arbitrary C types (from the ctypes module) in a dedicated pool of
memory that is shared between processes

The multiprocessing.Queue and queue.Queue classes have the same interface. The
only difference is that the first is designed for usage in multiple process environments,
rather than with multiple threads, so it uses different internal transports and locking
primitives. We already saw how to use Queue with multithreading in the An example of
threaded application section, so we won't do the same for multiprocessing. The usage stays
exactly the same, so such an example would not bring anything new.

A more interesting communication pattern is provided by the Pipe class. It is a duplex
(two-way) communication channel that is very similar in concept to UNIX pipes. The
interface of Pipe is very similar to a simple socket from the built-in socket module. The
difference between raw system pipes and sockets is that it allows you to send any pickable
object (using the pickle module) instead of just raw bytes.

Concurrency Chapter 15

[514]

This allows for a lot easier communication between processes because you can send almost
any basic Python type, as follows:

from multiprocessing import Process, Pipe

class CustomClass:
 pass

def work(connection):
 while True:
 instance = connection.recv()

 if instance:
 print("CHLD: {}".format(instance))

 else:
 return

def main():
 parent_conn, child_conn = Pipe()

 child = Process(target=work, args=(child_conn,))

 for item in (
 42,
 'some string',
 {'one': 1},
 CustomClass(),
 None,
):
 print("PRNT: send {}:".format(item))
 parent_conn.send(item)
 child.start()
 child.join()

if __name__ == "__main__":
 main()

Concurrency Chapter 15

[515]

When looking at the following example output of the preceding script, you will see that
you can easily pass custom class instances and that they have different addresses,
depending on the process:

PRNT: send: 42
PRNT: send: some string
PRNT: send: {'one': 1}
PRNT: send: <__main__.CustomClass object at 0x101cb5b00>
PRNT: send: None
CHLD: recv: 42
CHLD: recv: some string
CHLD: recv: {'one': 1}
CHLD: recv: <__main__.CustomClass object at 0x101cba400>

The other way to share a state between processes is to use raw types in a shared memory
pool with classes provided in multiprocessing.sharedctypes. The most basic ones are
Value and Array. Here is some example code from the official documentation of the
multiprocessing module:

from multiprocessing import Process, Value, Array

def f(n, a):
 n.value = 3.1415927
 for i in range(len(a)):
 a[i] = -a[i]

if __name__ == '__main__':
 num = Value('d', 0.0)
 arr = Array('i', range(10))

 p = Process(target=f, args=(num, arr))
 p.start()
 p.join()

 print(num.value)
 print(arr[:])

And this example will print the following output:

3.1415927
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

Concurrency Chapter 15

[516]

When working with multiprocessing.sharedctypes, you need to remember that you
are dealing with shared memory, so to avoid the risk of data corruption, you need to use
locking primitives. Multiprocessing provides some of the classes similar to those available
in the threading module, such as Lock, RLock, and Semaphore. The downside of classes
from sharedctypes is that they allow you only to share the basic C types from the ctypes
module. If you need to pass more complex structures or class instances, you need to use
Queue, Pipe, or other inter-process communication channels instead. In most cases, it is
reasonable to avoid types from sharedctypes because they increase code complexity and
bring all the dangers known from multithreading.

Let's a take a look at how to use process pools in the next section.

Using process pools
Using multiple processes instead of threads adds some substantial overhead. Mostly, it
increases the memory footprint because each process has its own and independent memory
context. This means allowing unbound numbers of child processes is even more of a
problematic issue than it is in multithreaded applications.

The best pattern to control resource usage in applications that rely on multiprocessing is to
build a process pool in a similar way to what we described for threads in the Using thread
pool section.

And the best thing about the multiprocessing module is that it provides a ready to use Pool
class that handles all the complexity of managing multiple process workers for you. This
pool implementation greatly reduces the amount of required boilerplate and the number of
issues related to two-way communication. You also don't have to use the join() method
manually, because Pool can be used as a context manager (using the with statement). Here
is one of our previous threading examples, rewritten to use the Pool class from the
multiprocessing module:

import time
from multiprocessing import Pool

import requests

SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')
BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')

POOL_SIZE = 4

Concurrency Chapter 15

[517]

def fetch_rates(base):
 response = requests.get(
 f"https://api.exchangeratesapi.io/latest?base={base}"
)

 response.raise_for_status()
 rates = response.json()["rates"]
 # note: same currency exchanges to itself 1:1
 rates[base] = 1.
 return base, rates

def present_result(base, rates):
 rates_line = ", ".join(
 [f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]
)
 print(f"1 {base} = {rates_line}")

def main():
 with Pool(POOL_SIZE) as pool:
 results = pool.map(fetch_rates, BASES)

 for result in results:
 present_result(*result)

if __name__ == "__main__":
 started = time.time()
 main()
 elapsed = time.time() - started

 print()
 print("time elapsed: {:.2f}s".format(elapsed))

As you can see, the code is now a lot shorter. This means that it is now easier to maintain
and debug in case of issues. Actually, there are now only two lines of code that explicitly
deal with multiprocessing. This is a great improvement over the situation where we had to
build the processing pool from scratch. Now, we don't even need to care about
communication channels because they are created implicitly inside of the Pool class
implementation.

Let's take a look at how to use multiprocessing.dummy as a multithreading interface in
the next section.

Concurrency Chapter 15

[518]

Using multiprocessing.dummy as the multithreading
interface
The high-level abstractions from the multiprocessing module, such as the Pool class, are
great advantages over the simple tools provided in the threading module. But it does not
mean that multiprocessing is always better than multithreading. There are a lot of use cases
where threads may be a better solution than processes. This is especially true for situations
where low latency and/or high resource efficiency is required.

Still, it does not mean that you need to sacrifice all the useful abstractions from the
multiprocessing module whenever you want to use threads instead of processes. There
is the multiprocessing.dummy module that replicates the multiprocessing API, but
uses multiple threads instead of forking/spawning new processes.

This allows you to reduce the amount of boilerplate in your code and also have a more
pluggable code structure. For instance, let's take yet another look at our main() function
from the previous examples. We could give the user control over which processing backend
to use (processes or threads). We could do that simply by replacing the pool object
constructor class, as follows:

from multiprocessing import Pool as ProcessPool
from multiprocessing.dummy import Pool as ThreadPool

def main(use_threads=False):
 if use_threads:
 pool_cls = ThreadPool
 else:
 pool_cls = ProcessPool

 with pool_cls(POOL_SIZE) as pool:
 results = pool.map(fetch_rates, BASES)

 for result in results:
 present_result(*result)

Let's take a look at asynchronous programming in the next section.

Concurrency Chapter 15

[519]

Asynchronous programming
Asynchronous programming gained a lot of traction in the last few years. In Python 3.5, it
finally got some syntax features that solidify concepts of asynchronous execution. But this
does not mean that asynchronous programming is possible only starting from Python's 3.5
version. A lot of libraries and frameworks were provided a lot earlier, and most of them
have origins in the old versions of Python 2. There is even a whole alternate
implementation of Python called Stackless (see Chapter 1, Current Status of Python) that
concentrated on this single programming approach. Some of these solutions, such as
Twisted, Tornado, and Eventlet, still have huge and active communities and are really
worth knowing. Anyway, starting from Python 3.5, asynchronous programming is easier
than ever before. Therefore, it is expected that its built-in asynchronous features will
replace the bigger part of the older tools, or external projects will gradually transform to
kind of high-level frameworks based on Python built-ins.

When trying to explain what asynchronous programming is, the easiest way is to think
about this approach as something similar to threads, but without system scheduling
involved. This means that an asynchronous program can concurrently process problems,
but its context is switched internally and not by the system scheduler.

But, of course, we don't use threads to concurrently handle the work in an asynchronous
program. Most of the solutions use a different kind of concept and, depending on the
implementation, it is named differently. The following are some example names that are
used to describe such concurrent program entities:

Green threads or greenlets (greenlet, gevent, or eventlet projects)
Coroutines (Python 3.5 native asynchronous programming)
Tasklets (Stackless Python)

These are mainly the same concepts, but often implemented in a slightly different way.

For obvious reasons, in this section, we will concentrate only on coroutines that are natively
supported by Python, starting from version 3.5.

Cooperative multitasking and asynchronous I/O
Cooperative multitasking is the core of asynchronous programming. In this style of
computer multitasking, it's not a responsibility of the operating system to initiate a context
switch (to another process or thread), but instead every process voluntarily releases the
control when it is idle to enable simultaneous execution of multiple programs. This is why
it is called cooperative. All processes need to cooperate in order to multitask smoothly.

Concurrency Chapter 15

[520]

This model of multitasking was sometimes employed in the operating systems, but now it
is hardly found as a system-level solution. This is because there is a hazard that one poorly
designed service can easily break the whole system's stability. Thread and process
scheduling with context switches managed directly by the operating system is now the
dominant approach for concurrency on the system level. But cooperative multitasking is
still a great concurrency tool on the application level.

When doing cooperative multitasking on the application level, we do not deal with threads
or processes that need to release control because all the execution is contained within a
single process and thread. Instead, we have multiple tasks (coroutines, tasklets, or green
threads) that release the control to the single function that handles the coordination of
tasks. This function is usually some kind of event loop.

To avoid confusion later (due to Python terminology), from now on, we will refer to such
concurrent tasks as coroutines. The most important problem in cooperative multitasking is
when to release control. In most asynchronous applications, the control is released to the
scheduler or event loop on I/O operations. It doesn't matter if the program reads data from
the filesystem or communicates through a socket, as such I/O operation is always related
with some waiting time when the process becomes idle. The waiting time depends on the
external resource, so it is a good opportunity to release the control so that other coroutines
can do their work until they too would need to wait.

This makes such an approach somehow similar in behavior to how multithreading is
implemented in Python. We know that GIL serializes Python threads, but it is also released
on every I/O operation. The main difference is that threads in Python are implemented as
system level threads so that the operating system can preempt the currently running thread
and give control to the other one at any point of time. In asynchronous programming, tasks
are never preempted by the main event loop. This is why this style of multitasking is also
called non-preemptive multitasking.

Of course, every Python application runs on some operating system where there are other
processes competing for resources. This means that the operating system always has the
right to preempt the whole process and give control to another one. But when our
asynchronous application is running back, it continues from the same place where it was
paused when the system scheduler stepped in. This is why coroutines are still considered
non-preemptive.

In the next section, we will take a look at the async and await keywords.

Concurrency Chapter 15

[521]

Python async and await keywords
The async and await keywords are the main building blocks in Python asynchronous
programming.

The async keyword, when used before the def statement, defines a new coroutine. The
execution of the coroutine function may be suspended and resumed in strictly defined
circumstances. Its syntax and behavior are very similar to generators (refer to Chapter 3,
Modern Syntax Elements - Below the Class Level). In fact, generators need to be used in the
older versions of Python whenever you want to implement coroutines. Here is an example
of function declaration that uses the async keyword:

async def async_hello():
 print("hello, world!")

Functions defined with the async keyword are special. When called, they do not execute
the code inside, but instead return a coroutine object, for example:

>>> async def async_hello():
... print("hello, world!")
...
>>> async_hello()
<coroutine object async_hello at 0x1014129e8>

The coroutine object does not do anything until its execution is scheduled in the event loop.
The asyncio module is available in order to provide the basic event loop implementation,
as well as a lot of other asynchronous utilities, as follows:

>>> import asyncio
>>> async def async_hello():
... print("hello, world!")
...
>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(async_hello())
hello, world!
>>> loop.close()

Obviously, since we have created only one simple coroutine, there is no concurrency
involved in our program. In order to see something really concurrent, we need to create
more tasks that will be executed by the event loop.

Concurrency Chapter 15

[522]

New tasks can be added to the loop by calling the loop.create_task() method or by
providing another object to wait for using the asyncio.wait() function. We will use the
latter approach and try to asynchronously print a sequence of numbers that's been
generated with the range() function, as follows:

import asyncio

async def print_number(number):
 print(number)

if __name__ == "__main__":
 loop = asyncio.get_event_loop()

 loop.run_until_complete(
 asyncio.wait([
 print_number(number)
 for number in range(10)
])
)
 loop.close()

The asyncio.wait() function accepts a list of coroutine objects and returns immediately.
The result is a generator that yields objects representing future results (so-called futures).
As the name suggests, it is used to wait until all of the provided coroutines complete. The
reason why it returns a generator instead of a coroutine object is backwards compatibility
with previous versions of Python, which will be explained later in the asyncio in the older
version of Python section. The result of running this script may be as follows:

$ python asyncprint.py
0
7
8
3
9
4
1
5
2
6

As we can see, the numbers are not printed in the same order as the ones we created for our
coroutines. But this is exactly what we wanted to achieve.

Concurrency Chapter 15

[523]

The second important keyword that was added in Python 3.5 was await. It is used to wait
for results of coroutines or a future (explained later), and release the control over execution
to the event loop. To better understand how it works, we need to review a more complex
example of code.

Let's say we want to create the following two coroutines that will perform some simple task
in a loop:

Wait a random number of seconds
Print some text provided as an argument and the amount of time spent in sleep

Let's start with the following simple implementation that has some concurrency issues that
we will later try to improve with the additional await usage:

import time
import random
import asyncio

async def waiter(name):
 for _ in range(4):
 time_to_sleep = random.randint(1, 3) / 4
 time.sleep(time_to_sleep)
 print(
 "{} waited {} seconds"
 "".format(name, time_to_sleep)
)

async def main():
 await asyncio.wait([waiter("first"), waiter("second")])

if __name__ == "__main__":
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main())
 loop.close()

When executed in the Terminal (with time command to measure time), it might give the
following output:

$ time python corowait.py
second waited 0.25 seconds
second waited 0.25 seconds
second waited 0.5 seconds
second waited 0.5 seconds
first waited 0.75 seconds

Concurrency Chapter 15

[524]

first waited 0.75 seconds
first waited 0.25 seconds
first waited 0.25 seconds
real 0m3.734s
user 0m0.153s
sys 0m0.028s

As we can see, both the coroutines completed their execution, but not in an asynchronous
manner. The reason is that they both use the time.sleep() function that is blocking, but
not releasing the control to the event loop. This would work better in a multithreaded
setup, but we don't want to use threads now. So, how can we fix this?

The answer is to use asyncio.sleep(), which is the asynchronous version of
time.sleep(), and await its result using the await keyword. We have already used this
statement in the first version of the main() function, but it was only to improve the clarity
of the code. It clearly did not make our implementation more concurrent. Let's see the
following improved version of the waiter() coroutine that uses await
asyncio.sleep():

async def waiter(name):
 for _ in range(4):
 time_to_sleep = random.randint(1, 3) / 4
 await asyncio.sleep(time_to_sleep)
 print(
 "{} waited {} seconds"
 "".format(name, time_to_sleep)
)

If we run the updated script, we can see how the output of two functions interleave with
each other:

$ time python corowait_improved.py
second waited 0.25 seconds
first waited 0.25 seconds
second waited 0.25 seconds
first waited 0.5 seconds
first waited 0.25 seconds
second waited 0.75 seconds
first waited 0.25 seconds
second waited 0.5 seconds
real 0m1.953s
user 0m0.149s
sys 0m0.026s

Concurrency Chapter 15

[525]

The additional advantage of this simple improvement is that the code ran faster. The
overall execution time was less than the sum of all sleeping times because coroutines were
cooperatively releasing the control.

In the next section, we will take a look at asyncio in older versions of Python.

asyncio in older versions of Python
The asyncio module appeared in Python 3.4, so it is the only version of Python that has
serious support for asynchronous programming that is older than Python 3.5.
Unfortunately, it seems that these two subsequent versions are just enough to introduce
compatibility concerns.

Like it or not, the core of asynchronous programming in Python was introduced earlier
than syntax elements supporting this pattern. Better late than never, but this created a
situation where there are two syntaxes available for working with coroutines.

Starting from Python 3.5, you can use async and await as follows:

async def main():
 await asyncio.sleep(0)

But for Python 3.4, you need to use the asyncio.coroutine decorator and the yield
from statement as follows:

@asyncio.couroutine
def main():
 yield from asyncio.sleep(0)

The other useful fact is that the yield from statement was introduced in Python 3.3 and
there is an asyncio backport available on PyPI. This means that you can use this
implementation of cooperative multitasking with Python 3.3, too.

Let's take a look at a practical example of asynchronous programming in the next section.

Concurrency Chapter 15

[526]

A practical example of asynchronous
programming
As we have already mentioned multiple times in this chapter, asynchronous programming
is a great tool for handling I/O bound operations. So, it's time to build something more
practical than simple printing of sequences or asynchronous waiting.

For the sake of consistency, we will try to handle the same problem we solved previously
with the help of multithreading and multiprocessing. So, we will try to asynchronously
fetch some data about current currency exchange rates from an external resource through
the network connection. It would be great if we could use the same requests library as in
the previous sections. Unfortunately, we can't. Or to be precise, we can't do that effectively.

Unfortunately, requests do not support asynchronous I/O with the async and
await keywords. There are some other projects that aim to provide some concurrency to
the requests project, but they either rely on Gevent (grequests, refer to https://
github.com/kennethreitz/grequests) or thread/process pool execution (requests-
futures, refer to https://github.com/ross/requests-futures). Neither of these solve
our problem.

Knowing the limitation of the library that was so easy to use in the previous examples, we
need to build something that will fill the gap. The foreign exchange rates API is really
simple to use, so we just need to use some natively asynchronous HTTP library for that job.
The standard library of Python in version 3.7 still lacks any library that would make
asynchronous HTTP requests as simple as calling urllib.urlopen(). We definitely don't
want to build the whole protocol support from scratch, so we will use a little help from the
aiohttp package that's available on PyPI. It's a really promising library that adds both
client and server implementations for asynchronous HTTP. Here is a small module built on
top of aiohttp that creates a single get_rates() helper function that makes requests to
the foreign exchange rates API service:

import aiohttp

async def get_rates(session: aiohttp.ClientSession, base: str):
 async with session.get(
 f"https://api.exchangeratesapi.io/latest?base={base}"
) as response:
 rates = (await response.json())['rates']
 rates[base] = 1.

 return base, rates

https://github.com/kennethreitz/grequests
https://github.com/kennethreitz/grequests
https://github.com/kennethreitz/grequests
https://github.com/kennethreitz/grequests
https://github.com/kennethreitz/grequests
https://github.com/kennethreitz/grequests
https://github.com/kennethreitz/grequests
https://github.com/kennethreitz/grequests
https://github.com/kennethreitz/grequests
https://github.com/kennethreitz/grequests
https://github.com/ross/requests-futures

Concurrency Chapter 15

[527]

Let's assume that this code is stored in a module named asyncrates that we are going to
use later. Now, we are ready to rewrite the example used we discussed multithreading and
multiprocessing. Previously, we used to split the whole operation into the following two
separate steps:

Perform all requests to an external service in parallel using the fetch_place()1.
function.
Display all the results in a loop using the present_result() function.2.

But because cooperative multitasking is something completely different from using
multiple processes or threads, we can slightly modify our approach. Most of the issues
raised in the Using one thread per item section are no longer our concern. Coroutines are non-
preemptive, so we can easily display results immediately after HTTP responses are
awaited. This will simplify our code and make it clearer as follows:

import asyncio
import time

import aiohttp

from asyncrates import get_rates

SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')
BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')

async def fetch_rates(session, place):
 return await get_rates(session, place)

async def present_result(result):
 base, rates = (await result)

 rates_line = ", ".join(
 [f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]
)
 print(f"1 {base} = {rates_line}")

async def main():
 async with aiohttp.ClientSession() as session:
 await asyncio.wait([
 present_result(fetch_rates(session, base))
 for base in BASES
])

Concurrency Chapter 15

[528]

if __name__ == "__main__":
 started = time.time()
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main())
 elapsed = time.time() - started

 print()
 print("time elapsed: {:.2f}s".format(elapsed))

That's fairly easy for a simple API. But sometimes, you need a specialized client library that
isn't asynchronous and cannot be easily ported. We will cover such a situation in the next
section.

Integrating non-asynchronous code with async
using futures
Asynchronous programming is great, especially for backend developers interested in
building scalable applications. In practice, it is one of the most important tools for building
highly concurrent servers.

But the reality is painful. A lot of popular packages that deal with I/O bound problems are
not meant to be used with asynchronous code. The main reasons for that are as follows:

The low adoption of advanced Python 3 features (especially asynchronous
programming)
The low understanding of various concurrency concepts among Python
beginners

This means that often, migration of the existing synchronous multithreaded applications
and packages is either impossible (due to architectural constraints) or too expensive. A lot
of projects could benefit greatly from incorporating the asynchronous style of multitasking,
but only a few of them will eventually do that.

This means that right now, you will experience a lot of difficulties when trying to build
asynchronous applications from the start. In most cases, this will be something similar to
the problem mentioned in the A practical example of asynchronous programming
section—incompatible interfaces and synchronous blocking of I/O operations.

Concurrency Chapter 15

[529]

Of course, you can sometimes resign from await when you experience such
incompatibility and just fetch the required resources synchronously. But this will block
every other coroutine from executing its code while you wait for the results. It technically
works, but also ruins all the gains of asynchronous programming. So, in the end, joining
asynchronous I/O with synchronous I/O is not an option. It is a kind of all or nothing game.

The other problem is long-running CPU-bound operations. When you are performing an
I/O operation, it is not a problem to release control from a coroutine. When writing/reading
from a filesystem or socket, you will eventually wait, so using await is the best you can do.
But what should you do when you need to actually compute something and you know it
will take a while? You can, of course, slice the problem into parts and release control every
time you move the work forward a bit. But you will shortly find that this is not a good
pattern. Such a thing will make the code a mess, and also does not guarantee good results.
Time slicing should be the responsibility of the interpreter or operating system.

So, what should you do if you have some code that makes long synchronous I/O operations
that you can't or are unwilling to rewrite? Or should you when you have to make some
heavy CPU-bound operations in an application designed mostly with asynchronous I/O in
mind? Well... you need to use a workaround. And by workaround, I mean multithreading
or multiprocessing.

This may not sound nice, but sometimes the best solution may be the one that we tried to
escape from. Parallel processing of CPU-extensive tasks in Python is always done
better with multiprocessing. And multithreading may deal with I/O operations equally as
well (fast and without lot of resource overhead) as async and await, if you set it up
properly and handle it with care.

So, when something simply does not fit your asynchronous application, use a piece of code
that will defer it to a separate thread or process. You can pretend that this was a coroutine
and release control to the event loop using await. You will eventually process results when
they are ready. Fortunately for us, the Python standard library provides the
concurrent.futures module, which is also integrated with the asyncio module. These
two modules together allow you to schedule blocking functions to execute in threads or
additional processes, as if they were asynchronous non-blocking coroutines.

Let's take a look at executors and futures in the next section.

Concurrency Chapter 15

[530]

Executors and futures
Before we see how to inject threads or processes in to an asynchronous event loop, we will
take a closer look at the concurrent.futures module that will later be the main
ingredient of our so-called workaround.

The most important classes in the concurrent.futures module are Executor and
Future.

Executor represents a pool of resources that may process work items in parallel. This may
seem very similar in purpose to classes from the multiprocessing module—Pool and
dummy.Pool—but it has a completely different interface and semantics. It is a base class not
intended for instantiation and has the following two concrete implementations:

ThreadPoolExecutor: This is the one that represents a pool of threads
ProcessPoolExecutor: This is the one that represents a pool of processes

Every executor provides the following three methods:

submit(func, *args, **kwargs): This schedules the func function for
execution in a pool of resources and returns the Future object representing the
execution of a callable
map(func, *iterables, timeout=None, chunksize=1): This executes the
func function over iterable in a similar way to the
multiprocessing.Pool.map() method
shutdown(wait=True): This shuts down the executor and frees all of its
resources

The most interesting method is submit() because of the Future object it returns. It
represents asynchronous execution of the callable and only indirectly represents its result.
In order to obtain the actual return value of the submitted callable, you need to call the
Future.result() method. And if the callable has already finished, the result() method
will not block and will just return the function output. If it is not true, it will block until the
result is ready. Treat it like a promise of a result (actually, it is the same concept as a
promise in JavaScript). You don't need to unpack it immediately after receiving it (with the
result() method), but if you try to do that, it is guaranteed to eventually return
something like the following:

>>> def loudly_return():
... print("processing")
... return 42
...
>>> from concurrent.futures import ThreadPoolExecutor

Concurrency Chapter 15

[531]

>>> with ThreadPoolExecutor(1) as executor:
... future = executor.submit(loudly_return)
...
processing
>>> future
<Future at 0x33cbf98 state=finished returned int>
>>> future.result()
42

If you want to use the Executor.map() method, it does not differ in usage from the
Pool.map() method of the pool class from the multiprocessing module, as follows:

def main():
 with ThreadPoolExecutor(POOL_SIZE) as pool:
 results = pool.map(fetch_rates, BASES)

 for result in results:
 present_result(*result)

In the next section, we'll see how to use executors in an event loop.

Using executors in an event loop
The Future class instances returned by the Executor.submit() method are conceptually
very close to the coroutines used in asynchronous programming. This is why we can use
executors to make a hybrid between cooperative multitasking and multiprocessing or
multithreading.

The core of this workaround is the BaseEventLoop.run_in_executor(executor,
func, *args) method of the event loop class. It allows you to schedule the execution of
the func function in the process or thread pool represented by the executor argument.
The most important thing about that method is that it returns a new awaitable (an object that
can be awaited with the await statement). So, thanks to this, you can execute a blocking
function that is not a coroutine exactly as if it were a coroutine, and it will not block, no
matter how long it takes to finish. It will stop only the function that is awaiting results from
such a call, but the whole event loop will still keep spinning.

And a useful fact is that you don't need to even create your executor instance. If you pass
None as an executor argument, the ThreadPoolExecutor class will be used with the
default number of threads (for Python 3.7, it is the number of processors multiplied by 5).

Concurrency Chapter 15

[532]

So, let's assume that we did not want to rewrite the problematic part of our API facing
code that was the cause of our headache. We can easily defer the blocking call to a separate
thread with the loop.run_in_executor() call, while still leaving the fetch_rates()
function as an awaitable coroutine, as follows:

async def fetch_rates(base):
 loop = asyncio.get_event_loop()
 response = await loop.run_in_executor(
 None, requests.get,
 f"https://api.exchangeratesapi.io/latest?base={base}"
)
 response.raise_for_status()
 rates = response.json()["rates"]
 # note: same currency exchanges to itself 1:1
 rates[base] = 1.
 return base, rates

Such a solution is not as good as having a fully asynchronous library to do the job, but half a
loaf is better than none.

Summary
It was a long journey, but we successfully struggled through most of the basic approaches
to concurrent programming that are available for Python programmers.

After explaining what concurrency really is, we jumped into action and dissected one of the
typical concurrent problems with the help of multithreading. After identifying the basic
deficiencies of our code and fixing them, we turned to multiprocessing to see how it would
work in our case.

We found that multiple processes with the multiprocessing module are a lot easier to
use than base threads with threading. But just after that, we realized that we can use the
same API for threads too, thanks to the multiprocessing.dummy module. So, the decision
between multiprocessing and multithreading is now only a matter of which solution better
suits the problem and not which solution has a better interface.

And speaking about problem fit, we finally tried asynchronous programming, which
should be the best solution for I/O bound applications, only to realize that we cannot
completely forget about threads and processes. So, we made a circle! Back to the place
where we started.

Concurrency Chapter 15

[533]

And this leads us to the final conclusion of this chapter. There is no silver bullet. There are
some approaches that you may prefer or like more. There are some approaches that may fit
better for a given set of problems, but you need to know them all in order to be successful.
In realistic scenarios, you may find yourself using the whole arsenal of concurrency tools
and styles in a single application, and this is not uncommon.

The preceding conclusion is a great introduction to the topic of the next chapter, Chapter
17, Useful Design Patterns. This is because there is no single pattern that will solve all of
your problems. You should know as many as possible, because eventually you will end up
using all of them on a daily basis.

In next chapter, we will take a look at a topic somehow related to concurrency: event-
driven and signal programming. In that chapter, we will be concentrating on various
communication patterns that are the backbone of distributed asynchronous and highly
concurrent systems.

5
Section 5: Technical

Architecture
In this section, we will explore various architectural patterns and paradigms that aim to
make software architecture simple and sustainable. The reader will learn various ways to
decouple even large and complex systems. They will become familiar with the most
common design patterns used by Python developers.

The following chapters are included in this section:

Chapter 16, Event-Driven and Signal Programming
Chapter 17, Useful Design Patterns

16
Event-Driven and Signal

Programming
In the previous chapter, we discussed various concurrency implementation models
available in Python. To better explain the concept of concurrency, we used the following
definition: Two events are concurrent if neither can causally affect the other.

We often think about events as ordered points in time that happen one after another, often
with some kind of cause-effect relationship. But, in programming, events are understood a
bit differently. They aren't things that happen. Events in programming are just
independent units of information that can be processed by the program. And that very
notion of events is a real cornerstone of concurrency.

Concurrent programming is a programming paradigm for processing concurrent events.
And there is a generalization of that paradigm that deals with the bare concept of events –
no matter whether they are concurrent or not. This approach to programming, which treats
programs as a flow of events, is called event-driven programming.

It is an important paradigm because it allows you to easily decouple even large and
complex systems. It helps in defining clear boundaries between independent components
and improves isolation between them.

In this chapter, we will cover the following topics:

What exactly is event-driven programming?
Various styles of event-driven programming
Event-driven architectures

After reading this chapter, you will have learned what the most common techniques of
event-driven programming are in Python and how to extrapolate these techniques to event-
driven architectures. You'll be also able to easily identify problems that can be modeled
using event-driven programming.

Event-Driven and Signal Programming Chapter 16

[536]

Technical requirements
The following are Python packages that are mentioned in this chapter that you can
download from PyPI:

flask

blinker

To run kinter examples, you will need the Tk library for Python. It should be available by
default with most Python distributions, but on some operating systems, it will require
additional system packages to be installed. This package is usually named python3-tk.

You can install these packages using the following command:

python3 -m pip install <package-name>

The code files for this chapter can be found
at https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/t
ree/master/chapter16.

What exactly is event-driven programming?
Event-driven programming concentrates on the events (messages) and their flow between
different software components. If you think about it longer, you'll notice that the notion of
events can be found in many types of software. Historically, event-based programming is
the most common paradigm for software that deals with direct human interaction. It means
that it is a natural paradigm for graphical user interfaces. Everywhere the program needs to
wait for some human input, that input can be modeled as events or messages. In such
framing, an event-driven program is just a collection of event or message handlers that
react to human interaction.

Events also don't have to be a direct result of user interaction. The architecture of any web
application is also event-driven. Web browsers send requests to web servers on behalf of
the user, and these requests are often processed as separate interaction events. Such
requests are, of course, often the result of direct user input (for example, submitting a form
or clicking on a link), but don't always have to be. Many modern applications can
asynchronously synchronize information with a web server without any interaction from
the user, and that communication happens silently without the user's notice.

https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter16
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter16

Event-Driven and Signal Programming Chapter 16

[537]

In summary, event-driven programming is a general way of coupling software components
of various sizes, and happens on various levels of software architecture. Depending on the
scale and type of software architecture we're dealing with, it can take various forms:

It can be a concurrency model directly supported by a semantic feature of given
programming language (for example, async/await in Python)
It can be a way of structuring application code with event dispatchers/handlers,
signals, and so on
It can be a general inter-process or inter-service communication architecture that
allows for the coupling of independent software components in a larger system

Let's discuss how event-driven programming is different for asynchronous systems in the
next section.

Event-driven != asynchronous
Although event-driven programming is a paradigm that is extremely common for
asynchronous systems, it doesn't mean that every event-driven application must be
asynchronous. It also doesn't mean that event-driven programming is suited only for
concurrent and asynchronous applications. Actually, the event-driven approach is
extremely useful, even for decoupling problems that are strictly synchronous and definitely
not concurrent.

Consider, for instance, database triggers that are available in almost every relational
database system. A database trigger is a stored procedure that is executed in response to a
certain event that happens in the database. This is a common building block of database
systems that, among others, allows the database to maintain data consistency in scenarios
that cannot be easily modeled with the mechanism of database constraints. For instance, the
PostgreSQL database distinguishes three types of row-level events that can occur in either a
table or a view:

INSERT

UPDATE

DELETE

Event-Driven and Signal Programming Chapter 16

[538]

In the case of table rows, triggers can be defined to be executed either BEFORE or AFTER a
specific event. So, from the perspective of event-procedure coupling, we can treat each
AFTER/BEFORE alternative as a separate event. To better understand this, let's consider the
following example of database triggers in PostgreSQL:

CREATE TRIGGER before_user_update
 BEFORE UPDATE ON users
 FOR EACH ROW
 EXECUTE PROCEDURE check_user();

CREATE TRIGGER after_user_update
 AFTER UPDATE ON users
 FOR EACH ROW
 EXECUTE PROCEDURE log_user_update();

In the preceding example, we have two triggers that are executed when a row in the users
table is updated. The first one is executed before a real update occurs and the second one is
executed after the update is done. This means that both events are casually dependent and
cannot be handled concurrently. On the other hand, similar sets of events occurring on
different rows from different sessions can still be concurrent. Whether triggers coming from
different sessions are independent and whether they can be processed asynchronously
depends on multiple factors (transaction or not, isolation level, and many more), and is
really up to the database system. But it doesn't mean that the system as a whole cannot be
modeled as if the events were truly independent.

In the next section, we'll take a look at event-driven programming in GUIs.

Event-driven programming in GUIs
Graphical user interfaces (GUIs) are what most people think of when they hear the term
event-driven programming. Event-driven programming is an elegant way of coupling user
input to code in graphical user interfaces because it naturally captures the way people
interact with graphical interfaces. Such interfaces often present the user with a plethora of
components to interact with, and that interaction is almost always nonlinear. In a complex
interfaces model, this interaction is through a collection of events that can be emitted by the
user from different interface components.

Event-Driven and Signal Programming Chapter 16

[539]

The concept of events is common to most user interface libraries and frameworks, but
different libraries use different design patterns to achieve event-driven
communication. Some libraries even use other notions to describe their architecture (for
example, signals in Qt library). Still, the general pattern is always the same – every interface
component (often called widgets) can emit events upon interaction, and these events can be
either subscribed to by other components or can be directly attached to event handlers.
Depending on the GUI library, events can just be plain named signals stating that
something happened (for example, widget A is clicked), or be more complex messages
containing additional information about interaction context (for example, a keystroke is
pressed or the position of the mouse cursor).

We will discuss the differences of actual design patterns later in the Various styles of event-
driven programming section. Let's take a look at the example Python GUI application that can
be created with the use of the built-in tkinter module:

import this
from tkinter import *
from tkinter import messagebox

rot13 = str.maketrans(
 "ABCDEFGHIJKLMabcdefghijklmNOPQRSTUVWXYZnopqrstuvwxyz",
 "NOPQRSTUVWXYZnopqrstuvwxyzABCDEFGHIJKLMabcdefghijklm"
)

def main_window(root):
 frame = Frame(root, width=100, height=100)
 zen_button = Button(root, text="Python Zen", command=show_zen)
 zen_button.pack()

def show_zen():
 messagebox.showinfo(
 "Zen of Python",
 this.s.translate(rot13)
)

if __name__ == "__main__":
 root = Tk()
 main_window(root)
 root.mainloop()

Event-Driven and Signal Programming Chapter 16

[540]

The Tk library that powers the tkinter module is usually bundled with
Python distributions. If it's somehow not available on your operating
system you should be easily able to install it through your system package
manager. For instance, on Debian-based Linux distributions, you can
easily install it for Python as the python3-tk package using the following
command:
sudo apt-get install python3-tk

The preceding GUI application displays a single Python Zen button. When the button is
clicked, the application will open a new window containing the Zen of Python text that
was imported from the this module. Although tkinter allows specific input events (key
presses or mouse button clicks) on widgets to be bound to specific callbacks using the
bind() method, this is not always useful. Instead of the bind() method, we use
the command argument on the Button widget. This will translate specific raw input events
(mouse press and release) into a proper function callback while maintaining common
interface usability conventions (for example, firing an action only when the mouse is
released over the button). Most of the GUI frameworks work in a similar manner – you
rarely work with raw keyboard and mouse events, but instead attach your
commands/callbacks to higher-level events such as the following:

Checkbox state change
Button clicked
Option selected
Window closed

In the next section, we'll take a look at event-driven communication.

Event-driven communication
Event-driven programming is a very common practice for building distributed network
applications, and even more so with the advent of service-oriented and microservice
architectures. With event-driven programming, it is easier to split complex systems into
isolated components that have a limited set of responsibilities. In service-oriented or
microservice architectures, the flow of events happens not between classes or functions
inside of single process, but between many networked services. In large distributed
architectures, the flow of events between services is often coordinated using special
communication protocols (for example, AMQP and ZeroMQ) and/or dedicated services.
We will discuss some of these solutions later in the Event-driven architectures section.

Event-Driven and Signal Programming Chapter 16

[541]

However, you don't need to have a formalized way of coordinating events, nor a dedicated
event-handling service to consider your networked application as event-based. Actually, if
you take a more detailed look at a typical Python web application, you'll notice that most
Python web frameworks have many things in common with GUI applications. Let's, for
instance, consider a simple web application that was written using the Flask
microframework:

import this

from flask import Flask

app = Flask(__name__)

rot13 = str.maketrans(
 "ABCDEFGHIJKLMabcdefghijklmNOPQRSTUVWXYZnopqrstuvwxyz",
 "NOPQRSTUVWXYZnopqrstuvwxyzABCDEFGHIJKLMabcdefghijklm"
)

def simple_html(body):
 return f"""
 <!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Book Example</title>
 </head>
 <body>
 {body}
 </body>
 </html>
 """

@app.route('/')
def hello():
 return simple_html("Python Zen")

@app.route('/zen')
def zen():
 return simple_html(
 "
".join(this.s.translate(rot13).split("\n"))
)

if __name__ == '__main__':
 app.run()

Event-Driven and Signal Programming Chapter 16

[542]

If you compare the preceding listing with the example of the tkinter application from the
previous section, you'll notice that, structurally, they are very similar. Specific routes
(paths) of HTTP requests translate to dedicated handlers. If we consider our application to
be event-driven, then the request path can be treated as a binding between a specific event
type (for example, a link being clicked) and the action handler. Similar to events in GUI
applications, HTTP requests can contain additional data about interaction context. This
information is, of course, a lot more structured because the HTTP protocol defines multiple
types of requests (for example, POST, GET, PUT, and DELETE) and a few ways to transfer
additional data (query string, request body, and headers).

Of course, in the case of a Flask application, the user does not communicate with it directly,
but instead uses a web browser as their interface. But, is this difference really that big? In
fact, many cross-platform user interface libraries (such as Tcl/Tk, Qt, and GTK+) are just
proxies between your application and system windowing APIs. So, in both cases, we deal
with communication and events flowing through different application layers. It is just that,
in web applications, layers are more evident and communication is always explicit.

In the next section, we will go through the various styles of event-driven programming.

Various styles of event-driven programming
As we already stated, event-driven programming can be implemented on various levels of
a software architecture using multiple different design patterns. It is also often applied to
very specific software engineering areas such as networking, system programming, and
GUI programming. So, event-driven programming isn't a single cohesive programming
approach, but rather a collection of diverse patterns, tools, and algorithms that form a
common paradigm that concentrates on programming around the flow of events.

Due to this, event-driven programming exists in different flavors and styles. The actual
implementations of event-driven programming can be based on different design patterns
and techniques. Some of these event-driven techniques and tools don't even use the term
event. Despite this variety, we can easily identify a few of the major event-driven
programming styles that are the foundation for more concrete patterns.

In the next sections, we will do a brief review of three major styles of event-driven
programming that you can encounter when programming in Python.

Event-Driven and Signal Programming Chapter 16

[543]

Callback-based style
The callback-based style of event programming is one of the most common styles of event-
driven programming. In this style, objects that emit events are the ones that are responsible
for defining their event handlers. This means a one-to-one or (at most) many-to-one relation
between event emitters and event handlers.

This style of event-based programming is the dominating pattern among GUI frameworks
and libraries. The reason for that is simple – it really captures the way how both users and
programmers think about user interfaces. Every action we do, whether we toggle a switch,
press a button, or tick a checkbox, we do it usually with a clear and single purpose.

We've already seen an example of callback-based event-driven programming and discussed
an example of a graphical application written using the tkinter library (see the Event-
driven programming in GUIs section). Let's recall one line from that application listing:

zen_button = Button(root, text="Python Zen", command=show_zen)

The previous instantiation of the Button class defines that the show_zen() function
should be called whenever the button is pressed. Our event is implicit, and
the show_zen() callback (in tkinter, callbacks are called commands) does not receive
any object that would encapsulate the event that invoked its call. This makes sense, because
the responsibility of attaching event handlers lies closer to the event emitter (here, it is the
button), and the event handler is barely concerned about the actual occurrence of the event.

In some implementations of callback-based event-driven programming, the actual binding
between event emitters and event handlers is a separate step that can be performed after
the event emitter is initialized. This style of binding is possible in tkinter too, but only for
raw user interaction events. The following is the updated excerpt of the previous tkinter
application that uses this style of event binding:

def main_window(root):
 frame = Frame(root, width=100, height=100)

 zen_button = Button(root, text="Python Zen")
 zen_button.bind("<ButtonRelease-1>", show_zen)
 zen_button.pack()

def show_zen(event):
 messagebox.showinfo(
 "Zen of Python",
 this.s.translate(rot13)
)

Event-Driven and Signal Programming Chapter 16

[544]

In the preceding example, the event is no longer implicit, so the show_zen() callback must
be able to accept event object. It contains basic information about user interaction, such as
the position of the mouse cursor, the time of the event, and the associated widget. What is
important to remember is that this type of event binding is still unicast. This means that one
event (here, <ButtonRelease-1>) from one object (here, zen_button) can be bound to
only one callback (here, show_zen()). It is possible to attach the same handler to multiple
events and/or multiple objects, but a single event that comes from a single source can be
dispatched to only one callback. Any attempt to attach a new callback using the bind()
method will override the new one.

The unicast nature of callback-based event programming has obvious limitations as it
requires the tight coupling of application components. The inability to attach multiple fine-
grained handlers to single events often means that every handler is specialized to serve a
single emitter and cannot be bound to objects of a different type.

Let's take a look at subject-based style in the next section.

Subject-based style
The subject-based style of event programming is a natural extension of unicast callback-
based event handling. In this style of programming, event emitters (subjects) allow other
objects to subscribe/register for notifications about their events. In practice, this is very
similar to callback-based style, as event emitters usually store a list of functions or methods
to call when some new event happens.

In subject-based event programming, the focus moves from the event to the subject (event
emitter). The most common emanation of that style is the Observer design pattern. We
will discuss the Observer design pattern in detail in Chapter 17, Useful Design Patterns,
but it is so important that we can't discuss subject-based event programming without
introducing it here. So, we will take a sneak peek now just to see how it compares to the
callback-based event programming and will discuss the details of that pattern in the next
chapter.

In short, the Observer design pattern consists of two classes of objects – observers and
subjects (sometimes observable). Subject is an object that maintains a list of Observer
that are interested in what happens to Subject. So, Subject is an event emitter and
Observer are event handlers.

Event-Driven and Signal Programming Chapter 16

[545]

As simple dummy implementation of the Observer pattern could be as follows:

class Subject:
 def __init__(self):
 self._observers = []

 def register(self, observer):
 self._observers.append(observer)

 def _notify_observers(self, event):
 for observer in self._observers:
 observer.notify(self, event)

class Observer:
 def notify(self, subject, event):
 print(f"Received event {event} from {subject}")

The preceding classes are, of course, just a scaffolding. The _notify_observers()
method is supposed to be called internally in the Subject class whenever something
happens that could be interesting to registered observers. This can be any event, but usually
subjects inform their observers about their important state changes.

Just for illustration purposes, let's assume that subjects notify all of their subscribed
observers about new observers registering. Here are the updated Observer and Subject
classes, which are intended to show the process of event handling:

import itertools

class Subject:
 _new_id = itertools.count(1)

 def __init__(self):
 self._id = next(self._new_id)
 self._observers = []

 def register(self, observer):
 self._notify_observers(f"register({observer})")
 self._observers.append(observer)

 def _notify_observers(self, event):
 for observer in self._observers:
 observer.notify(self, event)

 def __str__(self):
 return f"<{self.__class__.__name__}: {self._id}>"

Event-Driven and Signal Programming Chapter 16

[546]

class Observer:
 _new_id = itertools.count(1)

 def __init__(self):
 self._id = next(self._new_id)

 def notify(self, subject, event):
 print(f"{self}: received event '{event}' from {subject}")

 def __str__(self):
 return f"<{self.__class__.__name__}: {self._id}>"

If you try to instantiate and bind the preceding classes in an interactive interpreter session,
you may see the following output:

>>> from subject_based_events import Subject
>>> subject = Subject()
>>> observer1 = Observer()
>>> observer2 = Observer()
>>> observer3 = Observer()
>>> subject.register(observer1)
>>> subject.register(observer2)
<Observer: 1>: received event 'register(<Observer: 2>)' from <Subject: 1>
>>> subject.register(observer3)
<Observer: 1>: received event 'register(<Observer: 3>)' from <Subject: 1>
<Observer: 2>: received event 'register(<Observer: 3>)' from <Subject: 1>

Subject-based event programming allows for multicast event handling. This type of
handling is allowed for more reusable and fine-grained event handlers with visible benefits
to software modularity. Unfortunately, the change of focus from events to subjects can
become a burden. In our example, observers will be notified about every event emitted
from the Subject class. They have no option to register for only specific types of events.
With many subjects and subscribers, this can quickly become a problem. It is either the
observer that must filter all incoming events or the subject that should allow observers to
register for specific events at the source. The first approach will be inefficient if the amount
of events filtered out by every subscriber is large enough. The second approach may make
the observer registration and event dispatch overly complex.

Event-Driven and Signal Programming Chapter 16

[547]

Despite the finer granularity of handlers and multicast capabilities, the subject-based
approach to event programming rarely makes the application components more loosely
coupled than the callback-based approach. This is why it isn't a good choice for the overall
architecture of large applications, but rather a tool for specific problems. It's mostly due to
the focus on subjects that requires all handlers to maintain a lot of assumptions about the
observed subjects. Also, in the implementation of that style (that is, the Observer design
pattern), both observers and subjects must, at one point of time, meet in the same context.
In other words, observers cannot register to events if there is no actual subject that would
emit them.

Fortunately, there is a style of event-driven programming that allows fine-grained multicast
event handling in a way that really fosters loose coupling of large applications. It is a topic-
based style and is a natural evolution of subject-based event programming.

In the next section, we will take a look at topic-based style.

Topic-based style
Topic-based event programming concentrates on the types of events that are passed
between software components without skewing toward either side of the emitter-handler
relation. Topic-based event programming is a generalization of previous styles. Event-
driven applications written with that style allow components (for example, classes, objects,
and functions) to both emit events and/or register to event types, completely ignoring the
other side of the emitter-handler relation.

In other words, handlers can be registered to event types, even if there is no emitter that
would emit them, and emitters can emit events even if there is no one subscribed to receive
them. In this style of event-driven programming, events are first-class entities that are often
defined separately from emitters and handlers. Such events are often given a dedicated
class, or are just global singleton instances of one generic Event class. This is why handlers
can subscribe to events even if there is no object that would emit them.

Depending on the framework or library of choice, the abstraction that's used to encapsulate
such observable event types/classes can be named differently. Popular terms are channels,
topics, and signals. The term signal is particularly popular, and, because of that, this style
of programming is often called signal-driven programming. Signals can be found in such
popular libraries and frameworks as Django (web framework), Flask (web
microframework), SQLAlchemy (database ORM), and Scrapy (web crawling and scrapping
framework).

Event-Driven and Signal Programming Chapter 16

[548]

Amazingly, successful Python projects do not build their own signaling frameworks from
scratch, but instead use an existing dedicated library. The most popular signaling library in
Python seems to be blinker. It is characterized by an extremely wide Python version
compatibility (Python 2.4 or later, Python 3.0 or later, Jython 2.5 or later, or PyPy 1.6 or
later) and has an extremely simple and concise API that allows it to be used in almost any
project.

Blinker is built on the concept of named signals. To create a new signal definition, you
simply use the signal(name) constructor. Two separate calls to the signal(name)
constructor with the same name value will return the same signal object. It allows you to
easily refer to signals at any time. The following is an example of the SelfWatch class,
which uses named signals to make its instances notified every time their new sibling is
created:

import itertools

from blinker import signal

class SelfWatch:
 _new_id = itertools.count(1)

 def __init__(self):
 self._id = next(self._new_id)
 init_signal = signal("SelfWatch.init")
 init_signal.send(self)
 init_signal.connect(self.receiver)

 def receiver(self, sender):
 print(f"{self}: received event from {sender}")

 def __str__(self):
 return f"<{self.__class__.__name__}: {self._id}>"

The following transcript of the interactive session shows how new instances of
the SelfWatch class notify the siblings about their initialization:

>>> from topic_based_events import SelfWatch
>>> selfwatch1 = SelfWatch()
>>> selfwatch2 = SelfWatch()
<SelfWatch: 1>: received event from <SelfWatch: 2>
>>> selfwatch3 = SelfWatch()
<SelfWatch: 2>: received event from <SelfWatch: 3>
<SelfWatch: 1>: received event from <SelfWatch: 3>
>>> selfwatch4 = SelfWatch()

Event-Driven and Signal Programming Chapter 16

[549]

<SelfWatch: 2>: received event from <SelfWatch: 4>
<SelfWatch: 3>: received event from <SelfWatch: 4>
<SelfWatch: 1>: received event from <SelfWatch: 4>

Other interesting features of the blinker library are as follows:

Anonymous signals: Empty signal() calls always create a completely new
anonymous signal. By storing it as a module or class attribute, you type in string
literals or accidental signal naming collisions.
Subject-aware subscription: The signal.connect() method allows us to select
a specific sender; this allows you to use subject-based event dispatching on top of
topic-based dispatching.
Signal decorators: The signal.connect() method can be used as a decorator;
this shortens code and makes event handling more evident in the code base.
Data in signals: The signal.send() method accepts arbitrary keyword
arguments that will be passed to the connected handler; this allows signals to be
used as a message-passing mechanism.

One really interesting thing about the topic-based style of event-driven programming is
that it does not enforce subject-dependent relations between components. Both sides of the
relation can be event emitters and handlers to each other, depending on the situation. This
way of event-handling becomes just a communication mechanism. This makes topic-based
event programming a good choice for the architectural pattern. The loose coupling of
software components allows for smaller incremental changes. Also, an application process
that is loosely coupled internally through a system of events can be easily split into
multiple services that are communicating through message queues. This allows
transforming event-driven applications into distributed event-driven architectures.

Let's take a look at event-driven architectures in the next section.

Event-driven architectures
From event-driven applications, there is only one minor step to event-driven architectures.
Event-driven programming allows you to split your application into isolated components
that communicate with each other only by passing events or signals. If you already did this,
you should be also able to split your application into separate services that do the same, but
transfer events to each other, either through some kind of IPC mechanism or over the
network.

Event-Driven and Signal Programming Chapter 16

[550]

Event-driven architectures transfer the concept of event-driven programming to the level of
inter-service communication. There are many good reasons for considering such
architectures:

Scalability and utilization of resources: If your workload can be split into many
order-independent events, architectures that are event-driven allow the work to
be easily distributed across many computing nodes (hosts). The amount of
computing power can be also dynamically adjusted to the number of events
being processed in the system currently.
Loose coupling: Systems that are composed of many (preferably small) services
communicating over queues tend to be more loosely coupled than monolithic
software. Loose coupling allows for easier incremental changes and the steady
evolution of system architecture.
Failure resiliency: Event-driven systems with proper event transport technology
(distributed message queues with built-in message persistency) tend to be more
resilient to transient issues. Modern message queues, such as Kafka or
RabbitMQ, offer multiple ways to ensure that the message will always be
delivered to at least one recipient and are able to ensure that the message will be
redelivered in case of unexpected errors.

Event-driven architectures work best for problems that can be dealt with asynchronously,
such as file processing or file/email delivery, or for systems that deal with regular and/or
scheduled events (for example, cron jobs). In Python, it can also be used as a way of
overcoming the CPython interpreter's performance limitations (such as GIL, which was
discussed in Chapter 15, Concurrency).

Last, but not least, event-driven architectures seem to have a natural affinity to serverless
computing. In this cloud-computing execution model, you're not concerned about
infrastructure and don't have to purchase computing capacity units. You leave all of the
scaling and infrastructure management for your cloud service operator and provide them
only with your code to run. Often, the pricing for such services is based only on the
resources that are used by your code. The most prominent category of serverless computing
services is Function as a Service (FaaS), which executes small units of code (functions) in
response to events.

In the next section, we will discuss event and message queues.

Event-Driven and Signal Programming Chapter 16

[551]

Event and message queues
Most single-process implementations of event-driven programming are handled as soon as
they appear in a serial fashion. Whether it is a callback-based style GUI application or full-
fledged signaling in the style of the blinker library, an event-driven application usually
maintains some kind of mapping between events and lists of handlers to execute whenever
one of these events happens.

This style of information passing in distributed applications is usually realized through a
request-response communication. A request-response is a bidirectional and obviously
synchronous way of communication between services. It can definitely be a basis for simple
event handling, but has many downsides that make it really inefficient in large-scale or
complex systems. The biggest problem with request-response communication is that it
introduces relatively high coupling between components:

Every communicating component needs to be able to locate dependent services.
In other words, event emitters need to know the network addresses of network
handlers.
A subscription happens directly in the service that emits the event. This means
that, in order to create a new event connection, more than one service often has to
be modified.
Both sides of communication must agree on the communication protocol and
message format. This makes potential changes more complex.
A service that emits events must handle potential errors that are returned in
responses from dependent services.
Request-response communication often cannot be easily handled in an
asynchronous way. This means that event-based architecture built on top of a
request-response communication rarely benefits from concurrent processing
flows.

Due to the preceding reasons, event-driven architectures are usually implemented using
the concept of message queues, rather than request-response cycles. A message queue is a
communication mechanism in the form of a dedicated service or library that is only
concerned about the messages and their intended delivery mechanism. We've already
mentioned a practical usage example of message queues in the Using task queues and delayed
processing section of Chapter 14, Optimization – Some Powerful Techniques.

Event-Driven and Signal Programming Chapter 16

[552]

Message queues allow for the loose coupling of services because they isolate event emitters
and handlers from each other. Event emitters publish messages directly to the queue, but
don't need to care if any other service listens to its events. Similarly, event handlers
consume events directly from the queue and don't need to worry about who produced the
events (sometimes, information about the event emitter is important, but, in such situations,
it is either in the contents of the delivered message or takes part in the message routing
mechanism). In such a communication flow, there is never a direct synchronous connection
between event emitters and event handlers, and all information passing happens through
the queue.

In some circumstances, this decoupling can be taken to such an extreme that a single service
can communicate with itself by an external queuing mechanism. This isn't so surprising,
because message queues are already a great way of inter-thread communication that allows
you to avoid locking (see Chapter 15, Concurrency).

Besides loose coupling, message queues (especially in the form of dedicated services) have
many additional capabilities:

Most message queues are able to provide message persistence. This means that,
even if message queues service dies, no messages will be lost.
Many message queues support message delivery/processing confirmations and
allow you to define a retry mechanism for messages that fail to deliver. This, with
the support of message persistency, guarantees that if a message was successfully
submitted, it will eventually be processed, even in the case of transient network
or service failures.
Message queues are naturally concurrent. With various message distribution
semantics (for example, fan-out and round-robin) it is a great basis of a highly
scalable and distributed architecture.

When it comes to the actual implementation of the message queue, we can distinguish two
major architectures:

Brokered message queues: In this architecture, there is one service (or cluster of
services) that is responsible for accepting and distributing events. The most
common example of open source brokered message queue systems are
RabbitMQ and Apache Kafka. A popular cloud-based service is Amazon SQS.
These types of systems are most capable in terms of message persistence and
built-in message delivery semantics.

Event-Driven and Signal Programming Chapter 16

[553]

Brokerless message queues: These are implemented solely as a programming
library. The leading and most popular brokerless messaging library
is ZeroMQ (often spelled as ØMQ). The biggest advantage of brokerless
messaging is elasticity. They trade operational simplicity (no additional
centralized service or cluster of services to maintain) for feature completeness
(things like persistence and complex message delivery needs to be implemented
inside of services).

Both types of messaging approaches have advantages and disadvantages. In brokered
message queues, there is always an additional service to maintain (in case of open source
queues running on their own infrastructure) or additional entry on your cloud provider
invoice (in case of cloud-based services). Such messaging systems quickly became a critical
part of your architecture. If such service stops working, all your systems stop as well
because of inter-service communication. What you get in return are usually systems where
everything is available out-of-the-box and only a matter of proper configuration or a few
API calls.

With brokerless messaging, your communication is often more distributed. What, in code,
appears to be a simple event publication to some abstract channel is often just code-level
abstraction for peer-to-peer communication that happens under the hood of the brokerless
messaging library. This means that your system architecture does not depend on a single
messaging service or cluster. Even if some services are dead, the rest of the system can still
communicate with each other. The downside of this approach is that you're usually on your
own when it comes to things like message persistency and delivery/processing
confirmations or delivery retries. If you have such needs, you will either have to implement
such capabilities directly in your services or build your own messaging broker using
brokerless messaging libraries.

Summary
In this chapter, we discussed the elements of event-driven programming. We started from
the most common examples and applications of event-driven programming to better
introduce ourselves to this programming paradigm. Then, we precisely described the three
main styles of event-driven programming that is callback-based style, subject-based style
and topic-based style. There are many event-driven design patterns and programming
techniques, but all of them fall into one of these three categories. The last part of this
chapter focused on event-driven programming architectures.

Event-Driven and Signal Programming Chapter 16

[554]

As we are nearing the end of this book, you have probably noticed that the farther we go,
the less we actually speak about Python. In this chapter, we have discussed elements of
event-driven and signal programming, but we have barely talked about Python itself. We
have, of course, discussed some examples of Python code, but these were just to illustrate
concepts of the event-driven programming paradigm rather than make you better at
Python.

This is because Python – like any other programming language – is just a tool. You need to
know your tool well to be a good programmer, but you won't be a good programmer just
by knowing the language and its libraries. That's why we have started from craftsmanship
topics such as modern syntax features, best packaging practices, and deployment strategies,
and then steadily reached topics that are more and more abstract and language agnostic.

The next chapter will be in a similar tone, as we will discuss some useful design patterns.
We will present a lot more code this time, but it won't matter that much, as design patterns
are language agnostic by definition. This language independence is what makes design
patterns one of the most common topics found in programming books. Still, I hope our take
on them won't be a boring read, as we will try to concentrate only on patterns that are
relevant to Python developers.

17
Useful Design Patterns

A design pattern is a reusable, somewhat language-specific solution to a common problem
in software design. The most popular book on this topic is Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional, written by Erich Gamma, John
Vlissides, Ralph Johnson, and Richard Helm, also known as the Gang of Four (GoF). It is
considered a major writing in this area and provides a catalog of 23 design patterns with
examples in Smalltalk and C++.

While designing an application's code, these patterns help solve common problems. They
ring a bell to all developers, since they describe proven development paradigms. But they
should be studied with the used language in mind, since some of them do not make sense
in some languages or are already built in.

This chapter describes the most useful patterns in Python, and patterns that are interesting
to discuss, with implementation examples. The following are the three sections that
correspond to design pattern categories defined by the GoF:

Creational patterns: These are patterns that are used to generate objects with
specific behaviors.
Structural patterns: These are patterns that help structure the code for specific
use cases.
Behavioral patterns: These are patterns that help assign responsibilities and
encapsulate behaviors.

In this chapter, you will learn what the most common designs are and how to implement
them in Python. You will also learn to recognize problems that can successfully be solved
using these patterns in order to improve your application architecture and overall software
maintainability.

Useful Design Patterns Chapter 17

[556]

Technical requirements
The code files for this chapter can be found
at https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/t
ree/master/chapter17.

Creational patterns
Creational patterns deal with the object instantiation mechanism. Such a pattern might
define a way for object instances to be created or even how classes are constructed.

These are very important patterns in compiled languages such as C or C++, since it is
harder to generate types on demand at runtime.

But creating new types at runtime is pretty straightforward in Python. The built-in type
function lets you define a new type object by code:

>>> MyType = type('MyType', (object,), {'a': 1})
>>> ob = MyType()
>>> type(ob)
<class '__main__.MyType'>
>>> ob.a
1
>>> isinstance(ob, object)
True

Classes and types are built-in factories. We have already dealt with the creation of new
class objects, and you can interact with class and object generation using metaclasses. These
features are the basics to implement the factory design pattern, but we won't describe it
further in this section because we extensively covered the topic of class and object creation
in Chapter 3, Modern Syntax Elements - Below the Class Level.

Besides factory, the only other creational design pattern from the GoF that is interesting to
describe in Python is singleton.

Singleton
Singleton restricts the instantiation of a class to only a single object instance.

https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter17
https://github.com/PacktPublishing/Expert-Python-Programming-Third-Edition/tree/master/chapter17

Useful Design Patterns Chapter 17

[557]

The singleton pattern makes sure that a given class has always only one living instance in
the application. This can be used, for example, when you want to restrict resource access to
one and only one memory context in the process. For instance, a database connector class
can be a singleton that deals with synchronization and manages its data in memory. It
makes the assumption that no other instance is interacting with the database in the
meantime.

This pattern can simplify a lot of the way that concurrency is handled in an application.
Utilities that provide application-wide functions are often declared singletons. For instance,
in web applications, a class that is in charge of reserving a unique document ID would
benefit from the singleton pattern. There should be one and only one utility doing this job.

There is a popular semi-idiom to create singletons in Python by overriding the __new__()
method of a class:

class Singleton:
 _instance = None

 def __new__(cls, *args, **kwargs):
 if cls._instance is None:
 cls._instance = super().__new__(cls, *args, **kwargs)

 return cls._instance

If you try to create multiple instances of that class and compare their IDs, you will find that
they all represent the same object:

>>> instance_a = Singleton()
>>> instance_b = Singleton()
>>> id(instance_a) == id(instance_b)
True
>>> instance_a == instance_b
True

I call this a semi-idiom, because it is a really dangerous pattern. The problem starts when
you try to subclass your base singleton class and create an instance of this new subclass, if
you already created an instance of the base class:

>>> class ConcreteClass(Singleton): pass
...
>>> Singleton()
<Singleton object at 0x000000000306B470>
>>> ConcreteClass()
<Singleton object at 0x000000000306B470>

Useful Design Patterns Chapter 17

[558]

This may become even more problematic when you notice that this behavior is affected by
an instance creation order. Depending on your class usage order, you may or may not get
the same result. Let's see what the results are if you first create the subclass instance, and
only then, the instance of the base class:

>>> class ConcreteClass(Singleton): pass
...
>>> ConcreteClass()
<ConcreteClass object at 0x00000000030615F8>
>>> Singleton()
<Singleton object at 0x000000000304BCF8>

As you can see, the behavior is completely different and very hard to predict. In large
applications, it may lead to very dangerous and hard-to-debug problems. Depending on
the runtime context, you may or may not use the classes that you meant to. Because such
behavior is really hard to predict and control, the application may break because of
changed import order or even user input. If your singleton is not meant to be subclassed, it
may be relatively safe to implement that way. Anyway, it's a ticking bomb. Everything may
blow up if someone disregards the risk in the future and decides to create a subclass from
your singleton object. It is safer to avoid this particular implementation and use an
alternative one.

It is a lot safer to use a more advanced technique: metaclasses. By overriding the
__call__() method of a metaclass, you can affect the creation of your custom classes. This
allows the creation of a reusable singleton code:

class Singleton(type):
 _instances = {}

 def __call__(cls, *args, **kwargs):
 if cls not in cls._instances:
 cls._instances[cls] = super().__call__(*args, **kwargs)
 return cls._instances[cls]

By using this Singleton as a metaclass for your custom classes, you are able to get
singletons that are safe to subclass and independent of instance creation order:

>>> ConcreteClass() == ConcreteClass()
True
>>> ConcreteSubclass() == ConcreteSubclass()
True
>>> ConcreteClass()
<ConcreteClass object at 0x000000000307AF98>
>>> ConcreteSubclass()
<ConcreteSubclass object at 0x000000000307A3C8>

Useful Design Patterns Chapter 17

[559]

Another way to overcome the problem of trivial singleton implementation is to use what
Alex Martelli proposed. He came up with something similar in behavior to a singleton, but
completely different in structure. This is not a classical design pattern coming from the GoF
book, but seems to be common among Python developers. It is called Borg or Monostate.

The idea is quite simple. What really matters in the singleton pattern is not the number of
living instances a class has, but rather the fact that they all share the same state at all times.
So, Alex Martelli came up with a class that makes all instances of the class share the
same: __dict__:

class Borg(object):
 _state = {}

 def __new__(cls, *args, **kwargs):
 ob = super().__new__(cls, *args, **kwargs)
 ob.__dict__ = cls._state
 return ob

This fixes the subclassing issue but is still dependent on how the subclass code works. For
instance, if __getattr__ is overridden, the pattern can be broken.

Nevertheless, singletons should not have several levels of inheritance. A class that is
marked as a singleton is already specified.

That said, this pattern is considered by many developers as a heavy way to deal with
uniqueness in an application. If a singleton is needed, why not use a module with functions
instead, since a Python module is already a singleton? The most common pattern is to
define a module-level variable as an instance of a class that needs to be a singleton. This
way, you also don't constrain the developers to your initial design.

The singleton factory is an implicit way of dealing with the uniqueness in
your application. You can live without it. Unless you are working in a
framework à la Java that requires such a pattern, use a module instead of a
class.

Let's take a look at structural patterns in the next section.

Structural patterns
Structural patterns are really important in big applications. They decide how the code is
organized and give developers recipes on how to interact with each part of the application.

Useful Design Patterns Chapter 17

[560]

For a long time, the most well-known implementation of many structural patterns in the
Python world provided the Zope project with its Zope Component Architecture (ZCA). It
implements most of the patterns described in this section and provides a rich set of tools to
work with them. The ZCA is intended to run not only in the Zope framework, but also in
other frameworks such as Twisted. It provides an implementation of interfaces and
adapters among other things. Unfortunately (or not), Zope lost almost all of its momentum
and is not as popular as it used to be. But its ZCA may still be a good reference on
implementing structural patterns in Python. Baiju Muthukadan wrote a Comprehensive
Guide to Zope Component Architecture. It is available both in print and free online (refer to
http://muthukadan.net/docs/zca.html). It was written in 2009, so it does not cover the
latest versions of Python but should still be a good read because it provides a lot of
rationale for some of the mentioned patterns.

Python already provides some of the popular structural patterns through its syntax. For
instance, the class and function decorators can be considered flavors of the decorator
pattern. Also, support for creating and importing modules is an emanation of the module
pattern.

The list of common structural patterns is actually quite long. The original Design Patterns
book featured as many as seven of them and the list was later extended by other literature.
We won't discuss all of them but will focus only on the three most popular and recognized
ones, which are these:

Adapter
Proxy
Facade

Let's examine these structural patterns in the next sections.

Adapter
The adapter pattern allows the interface of an existing class to be used from another
interface. In other words, an adapter wraps a class or an object A so that it works in a
context intended for a class or an object B.

Creating adapters in Python is actually very straightforward due to how typing in this
language works. The typing philosophy in Python is commonly referered to as duck
typing:

"If it walks like a duck and talks like a duck, then it's a duck!"

http://muthukadan.net/docs/zca.html
http://muthukadan.net/docs/zca.html
http://muthukadan.net/docs/zca.html
http://muthukadan.net/docs/zca.html
http://muthukadan.net/docs/zca.html
http://muthukadan.net/docs/zca.html
http://muthukadan.net/docs/zca.html
http://muthukadan.net/docs/zca.html
http://muthukadan.net/docs/zca.html
http://muthukadan.net/docs/zca.html
http://muthukadan.net/docs/zca.html
http://muthukadan.net/docs/zca.html
http://muthukadan.net/docs/zca.html

Useful Design Patterns Chapter 17

[561]

According to this rule, if the value for a function or method is accepted, the decision should
not be based on its type but rather on its interface. So, as long as the object behaves as
expected, that is, has proper method signatures and attributes, its type is considered
compatible. This is completely different than many statically typed languages, where such a
thing is rarely available.

In practice, when some code is intended to work with a given class, it is fine to feed it with
objects from another class, as long as they provide the methods and attributes used by the
code. Of course, this assumes that the code isn't calling instance to verify that the instance
is of a specific class.

The adapter pattern is based on this philosophy and defines a wrapping mechanism, where
a class or an object is wrapped in order to make it work in a context that was not primarily
intended for it. StringIO is a typical example, as it adapts the str type, so it can be used
as a file type:

>>> from io import StringIO
>>> my_file = StringIO('some content')
>>> my_file.read()
'some content'
>>> my_file.seek(0)
>>> my_file.read(1)
's'

Let's take another example. A DublinCoreInfos class knows how to display the summary
of a subset of Dublin Core information (see http://dublincore.org/) for a given
document provided as dict. It reads a few fields such as the author's name or the title, and
prints them. To be able to display Dublin Core for a file, it has to be adapted the same way
StringIO does. The following figure shows an UML-like diagram for such a kind of
adapter pattern implementation:

Figure 1: A UML diagram for a simple adapter pattern example

http://dublincore.org/

Useful Design Patterns Chapter 17

[562]

DublinCoreAdapter wraps a file instance and provides metadata access over it:

from os.path import split, splitext class DublinCoreAdapter: def
__init__(self, filename): self._filename = filename @property def
title(self): return splitext(split(self._filename)[-1])[0] @property def
languages(self): return ('en',) def __getitem__(self, item): return
getattr(self, item, 'Unknown') class DublinCoreInfo(object): def
summary(self, dc_dict): print('Title: %s' % dc_dict['title'])
print('Creator: %s' % dc_dict['creator']) print('Languages: %s' % ',
'.join(dc_dict['languages']))

And here is the example usage:

>>> adapted = DublinCoreAdapter('example.txt')
>>> infos = DublinCoreInfo()
>>> infos.summary(adapted)
Title: example
Creator: Unknown
Languages: en

Besides the fact that it allows substitution, the adapter pattern can also change the way
developers work. Adapting an object to work in a specific context means making the
assumption that the class of the object does not matter at all. What matters is that this class
implements what DublinCoreInfo is waiting for, and this behavior is fixed or completed
by an adapter. So, the code can simply tell somehow whether it is compatible with objects
that are implementing a specific behavior. This can be expressed by interfaces, and we will
take a look at it in the next section.

Interfaces
An interface is a definition of an API. It describes a list of methods and attributes that a
class should have to implement with the desired behavior. This description does not
implement any code, but just defines an explicit contract for any class that wishes to
implement the interface. Any class can then implement one or several interfaces in
whichever way it wants.

While Python prefers duck typing over explicit interface definitions, it may be better to use
the latter sometimes. For instance, an explicit interface definition makes it easier for a
framework to define functionalities over interfaces.

The benefit is that classes are loosely coupled, which is considered as a good practice. For
example, to perform a given process, class A does not depend on class B, but rather on an
interface I. Class B implements I, but it could be any other class.

Useful Design Patterns Chapter 17

[563]

The support for such a technique is built in in many statically typed languages such as Java
or Go. The interfaces allow the functions or methods to limit the range of acceptable
parameter objects that implement a given interface, no matter what kind of class it comes
from. This allows for more flexibility than restricting arguments to given types or their
subclasses. It is like an explicit version of duck typing behavior—Java uses interfaces to
verify a type safety at compile time, rather than using duck typing to tie things together at
runtime.

Python has a completely different typing philosophy than Java, so it does not have native
support for interfaces. Anyway, if you would like to have more explicit control of
application interfaces, there are generally two solutions to choose from:

Use some third-party framework that adds a notion of interfaces.
Use some of the advanced language features to build your methodology for
handling interfaces.

Let's take a look at the some of the solutions in the next sections.

Using zope.interface
There are few frameworks that allow you to build explicit interfaces in Python. The most
notable one is a part of the Zope project. It is the zope.interface package. Although
nowadays, Zope is not as popular as it used to be, the zope.interface package is still one
of the main components of the Twisted framework.

The core class of the zope.interface package is the Interface class. It allows you to
explicitly define a new interface by subclassing. Let's assume that we want to define the
obligatory interface for every implementation of a rectangle:

from zope.interface import Interface, Attribute

class IRectangle(Interface):
 width = Attribute("The width of rectangle")
 height = Attribute("The height of rectangle")

 def area():
 """ Return area of rectangle
 """

 def perimeter():
 """ Return perimeter of rectangle
 """

Useful Design Patterns Chapter 17

[564]

Here are some important things to remember when defining interfaces with
zope.interface:

The common naming convention for interfaces is to use I as the name prefix.
The methods of an interface must not take the self parameter.
As the interface does not provide concrete implementation, it should consist only
of empty methods. You can use the pass statement, raise
NotImplementedError, or provide docstring (preferred).
An interface can also specify the required attributes using the Attribute class.

When you have such a contract defined, you can then define new concrete classes that
provide an implementation for our IRectangle interface. In order to do that, you need to
use the implementer() class decorator and implement all of the defined methods and
attributes:

@implementer(IRectangle)
class Square:
 """ Concrete implementation of square with rectangle interface
 """

 def __init__(self, size):
 self.size = size

 @property
 def width(self):
 return self.size

 @property
 def height(self):
 return self.size

 def area(self):
 return self.size ** 2

 def perimeter(self):
 return 4 * self.size

@implementer(IRectangle)
class Rectangle:
 """ Concrete implementation of rectangle
 """
 def __init__(self, width, height):
 self.width = width
 self.height = height

Useful Design Patterns Chapter 17

[565]

 def area(self):
 return self.width * self.height

 def perimeter(self):
 return self.width * 2 + self.height * 2

It is common to say that the interface defines a contract that a concrete implementation
needs to fulfil. The main benefit of this design pattern is being able to verify consistency
between contract and implementation before the object is being used. With the ordinary
duck-typing approach, you only find inconsistencies when there is a missing attribute or
method at runtime. With zope.interface, you can introspect the actual implementation
using two methods from the zope.interface.verify module to find inconsistencies
early on:

verifyClass(interface, class_object): This verifies the class object for
the existence of methods and correctness of their signatures without looking for
attributes.
verifyObject(interface, instance): This verifies the methods, their
signatures, and also attributes of the actual object instance.

Since we have defined our interface and two concrete implementations, let's verify their
contracts in an interactive session:

>>> from zope.interface.verify import verifyClass, verifyObject
>>> verifyObject(IRectangle, Square(2))
True
>>> verifyClass(IRectangle, Square)
True
>>> verifyObject(IRectangle, Rectangle(2, 2))
True
>>> verifyClass(IRectangle, Rectangle)
True

This is nothing impressive. The Rectangle and Square classes carefully follow the defined
contract, so there is nothing more to see than a successful verification. But what happens
when we make a mistake? Let's see an example of two classes that fail to provide full
IRectangle interface implementation:

@implementer(IRectangle)
class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

Useful Design Patterns Chapter 17

[566]

@implementer(IRectangle)
class Circle:
 def __init__(self, radius):
 self.radius = radius

 def area(self):
 return math.pi * self.radius ** 2

 def perimeter(self):
 return 2 * math.pi * self.radius

The Point class does not provide any method or attribute of the IRectangle interface, so
its verification will show inconsistencies already on the class level:

>>> verifyClass(IRectangle, Point)

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "zope/interface/verify.py", line 102, in verifyClass
 return _verify(iface, candidate, tentative, vtype='c')
 File "zope/interface/verify.py", line 62, in _verify
 raise BrokenImplementation(iface, name)
zope.interface.exceptions.BrokenImplementation: An object has failed to
implement interface <InterfaceClass __main__.IRectangle>
 The perimeter attribute was not provided.

The Circle class is a bit more problematic. It has all the interface methods defined, but
breaks the contract on the instance attribute level. This is the reason, in most cases, that
you need to use the verifyObject() function to completely verify the interface
implementation:

>>> verifyObject(IRectangle, Circle(2))

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "zope/interface/verify.py", line 105, in verifyObject
 return _verify(iface, candidate, tentative, vtype='o')
 File "zope/interface/verify.py", line 62, in _verify
 raise BrokenImplementation(iface, name)
zope.interface.exceptions.BrokenImplementation: An object has failed to
implement interface <InterfaceClass __main__.IRectangle>
 The width attribute was not provided.

Useful Design Patterns Chapter 17

[567]

Using zope.inteface is an interesting way to decouple your application. It allows you to
enforce proper object interfaces without the need for the overblown complexity of multiple
inheritances, and also allows you to catch inconsistencies early. But the biggest downside of
this approach is the requirement to explicitly define that the given class follows some
interface in order to be verified. This is especially troublesome if you need to verify
instances coming from the external classes of built-in libraries. zope.interface provides
some solutions for that problem and you can, of course, handle such issues on your own by
using the adapter pattern, or even monkey-patching. Anyway, the simplicity of such
solutions is at least debatable.

Using function annotations and abstract base classes
Design patterns are meant to make problem-solving easier, and not to provide you with
more layers of complexity. The zope.interface is a great concept and may greatly fit
some projects, but it is not a silver bullet. By using it, you may shortly find yourself
spending more time on fixing issues with incompatible interfaces for third-party classes
and providing never-ending layers of adapters instead of writing the actual
implementation. If you feel that way, then this is a sign that something went wrong.
Fortunately, Python supports for building a lightweight alternative to the interfaces. It's not
a full-fledged solution such as zope.interface or its alternatives, but generally provides
more flexible applications. You may need to write a bit more code, but in the end, you will
have something that is more extensible, better handles external types, and maybe more
future-proof.

Note that Python, at its core, does not have an explicit notion of interfaces, and probably
never will have, but it has some of the features that allow building something that
resembles the functionality of interfaces. The features are as follows:

Abstract base classes (ABCs)
Function annotations
Type annotations

The core of our solution is abstract base classes, so we will feature them first.

As you probably know, direct type comparison is considered harmful and not pythonic. You
should always avoid comparisons, consider the following:

assert type(instance) == list

Useful Design Patterns Chapter 17

[568]

Comparing types in functions or methods this way completely breaks the ability to pass
class subtype as an argument to the function. The slightly better approach is to use the
isinstance() function, which will take the inheritance into account:

assert isinstance(instance, list)

The additional advantage of isinstance() is that you can use a larger range of types to
check the type compatibility. For instance, if your function expects to receive some sort of
sequence as the argument, you can compare it against the list of basic types:

assert isinstance(instance, (list, tuple, range))

And such way of type compatibility checking is OK in some situations but is still not
perfect. It will work with any subclass of list, tuple, or range, but will fail if the user
passes something that behaves exactly the same as one of these sequence types, but does
not inherit from any of them. For instance, let's relax our requirements and say that you
want to accept any kind of iterable as an argument. What would you do? The list of basic
types that are iterable is actually pretty long. You need to cover list, tuple, range, str,
bytes, dict, set, generators, and a lot more. The list of applicable built-in types is long,
and even if you cover all of them it will still not allow checking against the custom class
that defines the __iter__() method, but inherits directly from object.

And this is the kind of situation where abstract base classes are the proper solution, ABC is
a class that does not need to provide a concrete implementation, but instead defines a
blueprint of a class that may be used to check against type compatibility. This concept is
very similar to the concept of abstract classes and virtual methods known in the C++
language.

Abstract base classes are used for two purposes:

Checking for implementation completeness
Checking for implicit interface compatibility

So, let's assume we want to define an interface that ensures that a class has a push()
method. We need to create a new abstract base class using a special ABCMeta metaclass and
an abstractmethod() decorator from the standard abc module:

from abc import ABCMeta, abstractmethod

class Pushable(metaclass=ABCMeta):

 @abstractmethod
 def push(self, x):

Useful Design Patterns Chapter 17

[569]

 """ Push argument no matter what it means
 """

The abc module also provides an ABC base class that can be used instead of the metaclass
syntax:

from abc import ABCMeta, abstractmethod

class Pushable(metaclass=ABCMeta):
 @abstractmethod
 def push(self, x):
 """ Push argument no matter what it means
 """

Once it is done, we can use that Pushable class as a base class for concrete implementation
and it will guard us against instantiation of objects that would have an incomplete
implementation. Let's define DummyPushable, which implements all interface methods
and IncompletePushable that breaks the expected contract:

class DummyPushable(Pushable):
 def push(self, x):
 return

class IncompletePushable(Pushable):
 pass

If you want to obtain the DummyPushable instance, there is no problem because it
implements the only required push() method:

>>> DummyPushable()
<__main__.DummyPushable object at 0x10142bef0>

But if you try to instantiate IncompletePushable, you will get TypeError because of
missing implementation of the interface() method:

>>> IncompletePushable()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class IncompletePushable with
abstract methods push

Useful Design Patterns Chapter 17

[570]

The preceding approach is a great way to ensure implementation completeness of base
classes but is as explicit as the zope.interface alternative. The DummyPushable instances
are of course also instances of Pushable because Dummy is a subclass of Pushable. But how
about other classes with the same methods but not descendants of Pushable? Let's create
one and see:

>>> class SomethingWithPush:
... def push(self, x):
... pass
...
>>> isinstance(SomethingWithPush(), Pushable)
False

Something is still missing. The SomethingWithPush class definitely has a compatible
interface but is not considered as an instance of Pushable yet. So, what is missing? The
answer is the __subclasshook__(subclass) method that allows you to inject your own
logic into the procedure that determines whether the object is an instance of a given class.
Unfortunately, you need to provide it by yourself, as abc creators did not want to constrain
the developers in overriding the whole isinstance() mechanism. We have full power
over it, but we are forced to write some boilerplate code.

Although you can do whatever you want to, usually the only reasonable thing to do in the
__subclasshook__() method is to follow the common pattern. The standard procedure is
to check whether the set of defined methods are available somewhere in the MRO of the
given class:

from abc import ABCMeta, abstractmethod

class Pushable(metaclass=ABCMeta):

 @abstractmethod
 def push(self, x):
 """ Push argument no matter what it means
 """
 @classmethod
 def __subclasshook__(cls, C):
 if cls is Pushable:
 if any("push" in B.__dict__ for B in C.__mro__):
 return True
 return NotImplemented

Useful Design Patterns Chapter 17

[571]

With the __subclasshook__() method defined that way, you can now confirm that the
instances that implement the interface implicitly are also considered instances of the
interface:

>>> class SomethingWithPush:
... def push(self, x):
... pass
...
>>> isinstance(SomethingWithPush(), Pushable)
True

Unfortunately, this approach to verification of type compatibility and implementation
completeness does not take into account the signatures of class methods. So, if the number
of expected arguments is different in implementation, it will still be considered compatible.
In most cases, this is not an issue, but if you need such fine-grained control over interfaces,
the zope.interface package allows for that. As already said, the __subclasshook__()
method does not constrain you in adding much more complexity to the isinstance()
function's logic to achieve a similar level of control.

The two other features that complement abstract base classes are functioning annotations
and type hints. Function annotation is the syntax element described briefly in Chapter 2,
Modern Python Development Environments. It allows you to annotate functions and their
arguments with arbitrary expressions. As explained in Chapter 2, Modern Python
Development Environments, this is only a feature stub that does not provide any syntactic
meaning. There is utility in the standard library that uses this feature to enforce any
behavior. Anyway, you can use it as a convenient and lightweight way to inform the
developer of the expected argument interface. For instance, consider this IRectangle
interface rewritten from zope.interface to abstract the base class:

from abc import (
 ABCMeta,
 abstractmethod,
 abstractproperty
)

class IRectangle(metaclass=ABCMeta):

 @abstractproperty
 def width(self):
 return

 @abstractproperty
 def height(self):
 return

Useful Design Patterns Chapter 17

[572]

 @abstractmethod
 def area(self):
 """ Return rectangle area
 """

 @abstractmethod
 def perimeter(self):
 """ Return rectangle perimeter
 """

 @classmethod
 def __subclasshook__(cls, C):
 if cls is IRectangle:
 if all([
 any("area" in B.__dict__ for B in C.__mro__),
 any("perimeter" in B.__dict__ for B in C.__mro__),
 any("width" in B.__dict__ for B in C.__mro__),
 any("height" in B.__dict__ for B in C.__mro__),
]):
 return True
 return NotImplemented

If you have a function that works only on rectangles, let's say draw_rectangle(), you
could annotate the interface of the expected argument as follows:

def draw_rectangle(rectangle: IRectange):
 ...

This adds nothing more than information to the developer about expected information.
And even this is done through an informal contract because, as we know, bare annotations
contain no syntactic meaning. But they are accessible at runtime, so we can do something
more. Here is an example implementation of a generic decorator that is able to verify
interface from function annotation if it is provided using abstract base classes:

def ensure_interface(function):
 signature = inspect.signature(function)
 parameters = signature.parameters

 @wraps(function)
 def wrapped(*args, **kwargs):
 bound = signature.bind(*args, **kwargs)
 for name, value in bound.arguments.items():
 annotation = parameters[name].annotation

 if not isinstance(annotation, ABCMeta):
 continue

Useful Design Patterns Chapter 17

[573]

 if not isinstance(value, annotation):
 raise TypeError(
 "{} does not implement {} interface"
 "".format(value, annotation)
)

 function(*args, **kwargs)

 return wrapped

Once it is done, we can create some concrete class that implicitly implements the
IRectangle interface (without inheriting from IRectangle) and updates the
implementation of the draw_rectangle() function to see how the whole solution works:

class ImplicitRectangle:
 def __init__(self, width, height):
 self._width = width
 self._height = height

 @property
 def width(self):
 return self._width

 @property
 def height(self):
 return self._height

 def area(self):
 return self.width * self.height

 def perimeter(self):
 return self.width * 2 + self.height * 2

@ensure_interface
def draw_rectangle(rectangle: IRectangle):
 print(
 "{} x {} rectangle drawing"
 "".format(rectangle.width, rectangle.height)
)

Useful Design Patterns Chapter 17

[574]

If we feed the draw_rectangle() function with an incompatible object, it will now raise
TypeError with a meaningful explanation:

>>> draw_rectangle('foo')
Traceback (most recent call last):
 File "<input>", line 1, in <module>
 File "<input>", line 101, in wrapped
TypeError: foo does not implement <class 'IRectangle'> interface

But if we use ImplicitRectangle or anything else that resembles the IRectangle
interface, the function executes as it should:

>>> draw_rectangle(ImplicitRectangle(2, 10))
2 x 10 rectangle drawing

This is our example implementation of ensure_interface() based on the
typechecked() decorator from the typeannotations project that tries to provide
runtime-checking capabilities (refer to https://github.com/ceronman/typeannotations).
Its source code might give you some interesting ideas about how to process type
annotations to ensure runtime interface checking.

The last feature that can be used to complement this interface pattern landscape is type
hints. Type hints are described in detail by PEP 484 and were added to the language quite
recently. They are exposed in the new typing module and are available from Python 3.5.
Type hints are built on top of function annotations and reuse this slightly forgotten syntax
feature of Python 3. They are intended to guide type hinting and checking for various yet-
to-come Python type checkers. The typing module and PEP 484 document aim to provide
a standard hierarchy of types and classes that should be used for describing type
annotations.

Still, type hints do not seem to be something revolutionary because this feature does not
come with any type checker built in into the standard library. If you want to use type
checking or enforce strict interface compatibility in your code, you'll have to integrate some
third-party libraries. This is why we won't dig into the details of PEP 484. Anyway, type
hints and the documents describing them are worth mentioning because if some
extraordinary solution will emerge in the field of type checking in Python, it is highly
probable to be based on PEP 484.

https://github.com/ceronman/typeannotations

Useful Design Patterns Chapter 17

[575]

Using collections.abc
Abstract base classes (ABCs) are like small building blocks for creating a higher level of
abstraction. They allow you to implement really usable interfaces, but are very generic and
designed to handle a lot more than this single design pattern. You can unleash your
creativity and do magical things, but building something generic and really usable may
require a lot of work. Work that may never pay off.

This is the reason custom abstract base classes are not used so often. Despite that, the
collections.abc module provides a lot of predefined ABCs that allow for compatibility
of types with common Python interfaces. With the base classes provided in this module,
you can check, for example, whether a given object is callable, mapping, or whether it
supports iteration. Using them with the isinstance() function is way better than
comparing against the base Python types. You should definitely know how to use these
base classes even if you don't want to define your own custom interfaces with ABCMeta.

The most common abstract base classes from the collections.abc that you will use from
time to time are as follows:

Container: This interface means that the object supports the in operator and
implements the __contains__() method.
Iterable: This interface means that the object supports the iteration and
implements the __iter__() method.
Callable: This interface means that it can be called like a function and
implements the __call__() method.
Hashable: This interface means that the object is hashable (that is, it can be
included in sets and as key in dictionaries) and implements the __hash__
method.
Sized: This interface means that the object has size (that is, it can be a subject of
the len() function) and implements the __len__() method.

A full list of the available abstract base classes from the collections.abc module is
available in the official Python documentation (refer to
https://docs.python.org/3/library/collections.abc.html).

https://docs.python.org/3/library/collections.abc.html

Useful Design Patterns Chapter 17

[576]

Proxy
Proxy provides indirect access to an expensive or distant resource. Proxy sits
between a Client and a Subject, as shown in the following diagram:

It is intended to optimize Subject accesses if they are expensive. For instance, the
memoize() and lru_cache() decorators described in Chapter 12, Test-Driven
Development, can be considered proxies.

A proxy can also be used to provide smart access to a subject. For instance, big video files
can be wrapped into proxies to avoid loading them into memory when the user just asks for
their titles.

An example is given by the urllib.request module. urlopen is a proxy for the content
located at a remote URL. When it is created, headers can be retrieved independently from
the content itself without the need to read the rest of the response:

>>> class Url(object):
... def __init__(self, location):
... self._url = urlopen(location)
... def headers(self):
... return dict(self._url.headers.items())
... def get(self):
... return self._url.read()
...
>>> python_org = Url('http://python.org')
>>> python_org.headers().keys()
dict_keys(['Accept-Ranges', 'Via', 'Age', 'Public-Key-Pins', 'X-Clacks-
Overhead', 'X-Cache-Hits', 'X-Cache', 'Content-Type', 'Content-Length',
'Vary', 'X-Served-By', 'Strict-Transport-Security', 'Server', 'Date',
'Connection', 'X-Frame-Options'])

This can be used to decide whether the page has been changed before getting its body to
update a local copy, by looking at the last-modified header. Let's take an example with a
big file:

>>> ubuntu_iso =
Url('http://ubuntu.mirrors.proxad.net/hardy/ubuntu-8.04-desktop-i386.iso')
>>> ubuntu_iso.headers()['Last-Modified']
'Wed, 23 Apr 2008 01:03:34 GMT'

Useful Design Patterns Chapter 17

[577]

Another use case of proxies is data uniqueness.

For example, let's consider a website that presents the same document in several locations.
Extra fields specific to each location are appended to the document, such as a hit counter
and a few permission settings. A proxy can be used in that case to deal with location-
specific matters, and also to point to the original document instead of copying it. So, a given
document can have many proxies, and if its content changes, all locations will benefit from
it without having to deal with version synchronization.

Generally speaking, the proxy pattern is useful for implementing a local handle of
something that may live somewhere else. Popular reasons for doing so are as follows:

Makes the process faster
Avoids external resource access
Reduces memory load
Ensures data uniqueness

Facade
Facade provides high-level, simpler access to a subsystem.

A facade is nothing but a shortcut to use the functionality of the application, without
having to deal with the underlying complexity of a subsystem. This can be done, for
instance, by providing high-level functions at the package level.

A facade is usually done on existing systems, where a package's frequent usage is
synthesized in high-level functions. Usually, no classes are needed to provide such a
pattern, and simple functions in the __init__.py module are sufficient.

A good example of the project that provides a big facade over complicated and complex
interfaces is the requests package (refer to http://docs.python-requests.org/). It really
simplifies the madness of dealing with HTTP requests and responses in Python by
providing a clean API that is easily readable to developers. It is actually even advertised as
HTTP for humans. Such ease of use always comes at some price but eventual trade-offs and
additional overhead do not scare most of the people from using the Requests project as
their HTTP tool of choice. In the end, it allows us to finish projects quicker, and the
developer's time is usually more expensive than hardware.

http://docs.python-requests.org/

Useful Design Patterns Chapter 17

[578]

Facade simplifies the usage of your packages. Facades are usually added
after a few iterations with user feedback.

Let's take a look at behavioral patterns in the next section.

Behavioral patterns
Behavioral patterns are intended to simplify the interactions between classes by
structuring the processes of their interaction.

This section provides three examples of popular behavioral patterns that you may want to
consider when writing Python code:

Observer
Visitor
Template

Let's examine these three examples in the next sections.

Observer
The observer pattern is used to notify a list of objects about a state change of the observed
component. We have already discussed this pattern briefly in the previous chapter, but here
we will discuss some practical examples of a situation where this pattern could be applied.

For instance, let's imagine we have an application that stores marketing materials (briefs,
presentations, videos, and flyers) and legal documents in digital form for the sales
department of a large company. The company is large, with many sales representatives,
and has multiple documents to maintain. A system performs multiple tasks to process these
digital documents and make sure that sales representatives are always aware which
materials have been updated and that documents can be easily shared with their prospects:

Video materials are converted to files of different sizes and re-encoded with
portable audio-video codecs.
PDF documents have generated previews that are used as thumbnails in the
company's CMS system.
All new documents are collected in a weekly newsletter broadcast to all sales
department employees.

Useful Design Patterns Chapter 17

[579]

New confidential materials are encrypted to provide additional data safety.
Users that have downloaded specific materials previously are notified about
updates.

Therefore, almost every component of the system is concerned about events related to
every document lifetime. We could design our application in such a way that every
component receives information about modifications that are done to documents. The
observer pattern is especially good in this situation because it's an observer's
responsibility to decide which types of events are interesting for it. From there, every
independent component will get notified every time there's an event that it has subscribed
to. Of course, this requires that all the code that deals with the actual state of an observed
object (for example, creating, modifying, or deleting documents) is triggering such events.
But this is way easier than maintaining a manually long list of hooks to call on every time
something happens to the observed object. A popular web framework that supports this
programming pattern is Django, with its mechanism of signals.

An Event class can be implemented for registration of observers in Python by working at
the class level:

class Event:
 _observers = []

 def __init__(self, subject):
 self.subject = subject

 @classmethod
 def register(cls, observer):
 if observer not in cls._observers:
 cls._observers.append(observer)

 @classmethod
 def unregister(cls, observer):
 if observer in cls._observers:
 cls._observers.remove(observer)

 @classmethod
 def notify(cls, subject):
 event = cls(subject)
 for observer in cls._observers:
 observer(event)

Useful Design Patterns Chapter 17

[580]

The idea is that observers register themselves using the Event class method and get
notified with Event instances that carry the subject that triggered them. Here is an example
of the concrete Event subclass with some observers subscribed to its notifications:

class WriteEvent(Event):
 def __repr__(self):
 return 'WriteEvent'

def log(event):
 print(
 '{!r} was fired with subject "{}"'
 ''.format(event, event.subject)
)

class AnotherObserver(object):
 def __call__(self, event):
 print(
 "{!r} trigerred {}'s action"
 "".format(event, self.__class__.__name__)
)

WriteEvent.register(log)
WriteEvent.register(AnotherObserver())

And here is an example result of firing the event with the WriteEvent.notify() method:

>>> WriteEvent.notify("something happened")
WriteEvent was fired with subject "something happened" WriteEvent trigerred
AnotherObserver's action

This implementation is simple and serves only an illustrational purpose. To make it fully
functional, it could be enhanced by the following:

Allowing the developer to change the order or events
Making the event object hold more information than just the subject

De-coupling your code is fun and the observer is the right pattern to do it. It modularizes
your application and makes it more extensible. If you want to use an existing tool, try
Blinker. It provides fast and simple object-to-object and broadcast signaling for Python
objects.

Useful Design Patterns Chapter 17

[581]

Visitor
Visitor helps separate algorithms from data structures and has a similar goal to that of the
observer pattern. It allows extending the functionalities of a given class without changing
its code. But the visitor goes a bit further by defining a class that is responsible for holding
data, and pushes the algorithms to other classes called visitors. Each visitor is specialized in
one algorithm and can apply it to the data. This behavior is quite similar to the MVC
paradigm, where documents are passive containers pushed to views through controllers, or
where models contain data that is altered by a controller.

The visitor pattern is implemented by providing an entry point in the data class that can
be visited by all kinds of visitors. A class that exposes its data through the visitor pattern
will be called visitable and a class that accesses its data will be called the visitor.

The visitable class decides how it calls the visitor class, for instance, by deciding
which method is called. For example, a visitor in charge of printing built-in type content
can implement the visit_TYPENAME() methods, and each of these types can call the given
method in its accept() method:

class VisitableList(list):
 def accept(self, visitor):
 visitor.visit_list(self)

class VisitableDict(dict):
 def accept(self, visitor):
 visitor.visit_dict(self)

class Printer(object):
 def visit_list(self, instance):
 print('list content: {}'.format(instance))

 def visit_dict(self, instance):
 print('dict keys: {}'.format(
 ', '.join(instance.keys()))
)

This is done as shown in the following example:

>>> visitable_list = VisitableList([1, 2, 5])
>>> visitable_list.accept(Printer())
list content: [1, 2, 5]
>>> visitable_dict = VisitableDict({'one': 1, 'two': 2, 'three': 3})
>>> visitable_dict.accept(Printer())
dict keys: two, one, three

Useful Design Patterns Chapter 17

[582]

But this pattern means that each visited class needs to have an accept method to be
visited, which is quite painful.

Since Python allows code introspection, a better idea is to automatically link visitors and
visited classes:

>>> def visit(visited, visitor):
... cls = visited.__class__.__name__
... method_name = 'visit_%s' % cls
... method = getattr(visitor, method_name, None)
... if isinstance(method, Callable):
... method(visited)
... else:
... raise AttributeError(
... "No suitable '{}' method in visitor"
... "".format(method_name)
...)
...
>>> visit([1,2,3], Printer())
list content: [1, 2, 3]
>>> visit({'one': 1, 'two': 2, 'three': 3}, Printer())
dict keys: two, one, three
>>> visit((1, 2, 3), Printer())
Traceback (most recent call last):
 File "<input>", line 1, in <module>
 File "<input>", line 10, in visit
AttributeError: No suitable 'visit_tuple' method in visitor

This pattern is used in this way in the ast module, for instance, by the NodeVisitor class
that calls the visitor with each node of the compiled code tree. This is because Python
doesn't have a match operator like Haskell.

Another example is a directory walker that calls Visitor methods depending on the file
extension:

>>> def visit(directory, visitor):
... for root, dirs, files in os.walk(directory):
... for file in files:
... # foo.txt → .txt
... ext = os.path.splitext(file)[-1][1:]
... if hasattr(visitor, ext):
... getattr(visitor, ext)(file)
...
>>> class FileReader(object):
... def pdf(self, filename):
... print('processing: {}'.format(filename))
...

Useful Design Patterns Chapter 17

[583]

>>> walker = visit('/Users/tarek/Desktop', FileReader())
processing slides.pdf
processing sholl23.pdf

If your application has data structures that are visited by more than one algorithm, the
visitor pattern will help separate concerns. It is better for a data container to focus only on
providing access to data and holding it, and nothing else.

Template
Template helps design a generic algorithm by defining abstract steps, which are
implemented in subclasses. This pattern uses the Liskov Substitution Principle (LSP),
which is defined by Wikipedia as follows:

"If S is a subtype of T, then objects of type T in a program may be replaced with objects of
type S without altering any of the desirable properties of that program."

In other words, an abstract class can define how an algorithm works through steps that are
implemented in concrete classes. The abstract class can also give a basic or partial
implementation of the algorithm, and let developers override its parts. For instance, some
methods of the Queue class in the queue module can be overridden to make its behavior
vary.

Let's implement an example template for a class that deals with text indexing. Indexer is
an indexer class that processes text in five steps. This general process is common to every
concrete indexing technique:

Text normalization1.
Text split2.
Stop words removal3.
Stem words4.
Frequency5.

Indexer provides a partial implementation for the process algorithm, but requires
_remove_stop_words and _stem_words to be implemented in a subclass. BasicIndexer
implements the strict minimum, while LocalIndex uses a stop word file and a stem words
database. FastIndexer implements all steps and could be based on a fast indexer such as
Xapian or Lucene.

Useful Design Patterns Chapter 17

[584]

A toy implementation could be as follows:

from collections import Counter

class Indexer:
 def process(self, text):
 text = self._normalize_text(text)
 words = self._split_text(text)
 words = self._remove_stop_words(words)
 stemmed_words = self._stem_words(words)

 return self._frequency(stemmed_words)

 def _normalize_text(self, text):
 return text.lower().strip()

 def _split_text(self, text):
 return text.split()

 def _remove_stop_words(self, words):
 raise NotImplementedError

 def _stem_words(self, words):
 raise NotImplementedError

 def _frequency(self, words):
 return Counter(words)

From there, a BasicIndexer implementation could be as follows:

class BasicIndexer(Indexer):
 _stop_words = {'he', 'she', 'is', 'and', 'or', 'the'}

 def _remove_stop_words(self, words):
 return (
 word for word in words
 if word not in self._stop_words
)

 def _stem_words(self, words):
 return (
 (
 len(word) > 3 and
 word.rstrip('aeiouy') or
 word
)
 for word in words
)

Useful Design Patterns Chapter 17

[585]

And as always, here is an example usage for the preceding example code:

>>> indexer = BasicIndexer()
>>> indexer.process("Just like Johnny Flynn said\nThe breath I've taken and
the one I must to go on")
Counter({"i'v": 1, 'johnn': 1, 'breath': 1, 'to': 1, 'said': 1, 'go': 1,
'flynn': 1, 'taken': 1, 'on': 1, 'must': 1, 'just': 1, 'one': 1, 'i': 1,
'lik': 1})

A template should be considered for an algorithm that may vary and can be expressed as
isolated substeps. This is probably the most used pattern in Python and does not always
need to be implemented via subclassing. For instance, a lot of built-in Python functions that
deal with algorithmic problems accept arguments that allow to delegate part of the
implementation to the external implementation. For instance, the sorted() function allows
for an optional key keyword argument that is later used by the sorting algorithm. This is
also the same for min() and max() functions that find the minimal and maximal values in
the given collection.

Summary
Design patterns are reusable, somewhat language-specific, solutions to common problems
in software design. They are a part of the culture of all developers, no matter what
language they use.

So, having implementation examples for the most used patterns for a given language is a
great way to document it. In many sources (web articles and books), you will easily find an
implementation for every design pattern mentioned in GoF books. This is why we
concentrated only on patterns that are most common and popular in the context of the
Python language.

We covered the three most important groups of design patterns (creational, structural, and
behavioral) with some practical examples of their implementation. This short and
opinionated selection of patterns should already help you to improve your application
structure. But this list is not complete. Fortunately, after reading this book, you are ready to
explore this, and every other Python-related topic, completely on your own.

reStructuredText Primer
This chapter provides a brief tutorial on how to use the reStructuredText (reST) markup
language (refer to http://docutils.sourceforge.net/rst.html). It is a plain text markup
language widely used in the Python community to document packages. The great thing
about reST is that the text is still readable, since the markup syntax does not obfuscate the
text as LaTeX would.

In this chapter, we will cover the following topics:

reStructuredText
Section structure
Lists
Inline markup
Literal block
Links

reStructuredText
reST comes in docutils, a package that provides a suite of scripts to transform a reST file
into various formats, such as HTML, LaTeX, XML, or even S5, Eric Meyer's slide show
system (refer to http://meyerweb.com/eric/tools/s5).

Here's a sample of such a document:

=====
Title
=====

Section 1
=========
This *word* has emphasis.

Section 2
=========

Subsection
::::::::::

Text.

http://docutils.sourceforge.net/rst.html
http://meyerweb.com/eric/tools/s5

reStructuredText Primer

[587]

Writers can focus on the content and then decide how to render it, depending on their
needs. For instance, Python itself is documented in reST, which is then rendered in
HTML and various other formats. You can visit the official Python documentation
via http://docs.python.org.

The minimum elements you should know to start writing reST are these:

Section structure
Lists
Inline markup
Literal block
Links

This section is a really quick overview of the syntax. A quick reference is available for more
information at http://docutils.sourceforge.net/docs/user/rst/quickref.html, which
is a good place to start working with reST.

To install reStructuredText, install docutils:

$ pip install docutils

For instance, the rst2html script provided by the docutils package will produce HTML
output given a reST file:

$ cat text.txt
Title
=====

content.

$ rst2html.py text.txt
<?xml version="1.0" encoding="utf-8" ?>
(...)
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
(...)
</head>
<body>
<div class="document" id="title">
<h1 class="title">Title</h1>
<p>content.</p>
</div>
</body>
</html>

http://docs.python.org
http://docs.python.org
http://docs.python.org
http://docs.python.org
http://docs.python.org
http://docs.python.org
http://docs.python.org
http://docs.python.org
http://docs.python.org
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html

reStructuredText Primer

[588]

Let's take a look at all of the elements that we need to keep in mind in the next sections.

Section structure
The document's title and its sections are underlined using non-alphanumeric characters.
They can be overlined and underlined, and a common practice is to use a double markup
for the title and keep a simple underline for the section headings.

The most used characters to underline a section title are in the following order of
precedence: =, -, _, :, #, +, and ^.

When a character is used for a section, it is associated with its level and it has to be used
consistently throughout the document.

Consider the following code, for example:

==============
Document title
==============

Introduction to the document content.

Section 1
=========

First document section with two subsections.

Note the ``=`` used as heading underline.

Subsection A

First subsection (A) of Section 1.

Note the ``-`` used as heading underline.

Subsection B

Second subsection (B) of Section 1.

Section 2
=========

reStructuredText Primer

[589]

Second section of document with one subsection.

Subsection C

Subsection (C) of Section 2.

The following screenshot is the output of the code:

Figure 1: reStructuredText converted into HTML and rendered in the browser

reStructuredText Primer

[590]

Let's take a look at lists in the next section.

Lists
reST provides readable syntax for bullet lists, enumerated lists, and definition lists with
auto-enumeration features. This is shown in the following code example:

Bullet list:

- one
- two
- three

Enumerated list:

1. one
2. two
#. auto-enumerated

Definition list:

one
 one is a number.

two
 two is also a number.

reStructuredText Primer

[591]

The output of the code is shown in the following screenshot:

Figure 2: Different types of lists rendered as HTML

The next section talks about inline markup.

Inline markup
The text can be styled using an inline markup:

emphasis: Italics.
strong emphasis: Boldface.
``inline preformatted``: Inline preformatted text (usually monospaced,
terminal-like).

reStructuredText Primer

[592]

`a text with a link`_: This will be replaced by a hyperlink as long as it is
provided in the document (see the Links section).

Literal block is described in the next section.

Literal block
When you need to present some code examples, a literal block can be used. Two colons are
used to mark the block, which is an indented paragraph:

This is a code example

::

 >>> 1 + 1
 2

Let's continue our text

Don't forget to add a blank line after :: and after the block otherwise, it
will not be rendered.

Notice that the colon characters can be put in a text line. In that case, they will be replaced
by a single colon in various rendering formats:

This is a code example:

 >>> 1 + 1
 2

Let's continue our text

reStructuredText Primer

[593]

If you don't want to keep a single colon, you can insert a space between the example
and ::. In that case, :: will be interpreted and totally removed:

Figure 3: Code samples in reST rendered as HTML

We'll take a look at links in the next section

Links
A text can be changed into an external link with a special line starting with two dots, as
long as it is provided in the document:

Try `Plone CMS`_, it is great ! It is based on Zope_.

.. _`Plone CMS`: http://plone.org

.. _Zope: http://zope.org

The usual practice is to group the external links at the end of the document. When the text
to be linked contains spaces, it has to be surrounded with ` (backtick) characters.

Internal links can also be used by adding a marker to the text:

This is a code example

.. _example:

::

 >>> 1 + 1
 2

Let's continue our text, or maybe go back to
the example_.

reStructuredText Primer

[594]

Sections are also targets that can be used:

==============
Document title
==============

Introduction to the document content.

Section 1
=========

First document section.

Section 2
=========

-> go back to `Section 1`_

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Learn Python Programming - Second Edition
Fabrizio Romano

ISBN: 978-1-78899-666-2

Get Python up and running on Windows, Mac, and Linux
Explore fundamental concepts of coding using data structures and control flow
Write elegant, reusable, and efficient code in any situation
Understand when to use the functional or OOP approach
Cover the basics of security and concurrent/asynchronous programming
Create bulletproof, reliable software by writing tests
Build a simple website in Django
Fetch, clean, and manipulate data

https://www.packtpub.com/application-development/learn-python-programming-second-edition

Other Books You May Enjoy

[596]

Mastering Concurrency in Python
Quan Nguyen

ISBN: 978-1-78934-305-2

Explore the concepts of concurrency in programming
Explore the core syntax and features that enable concurrency in Python
Understand the correct way to implement concurrency
Abstract methods to keep the data consistent in your program
Analyze problems commonly faced in concurrent programming
Use application scaffolding to design highly-scalable programs

https://www.packtpub.com/application-development/mastering-concurrency-python

Other Books You May Enjoy

[597]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

_
__new__() method
 used, for overriding instance creation process

156, 158

A
abstract base classes (ABCs)
 about 575
 using 567, 568, 569, 571, 572, 574
abstract syntax tree (AST) 153, 169
adapter pattern
 about 560, 562
 interfaces 562
additional complexity 307, 308
advanced syntax
 about 81
 decorators 88
 generators 84, 85, 87
 iterators 81, 82, 83
 yield statements 84, 85, 87
Amazon Web Services (AWS) 238
API Blueprint
 documentation, as API prototype 369
Application Binary Interface (ABI) 279
application code
 executing, in user space 260
application logs
 dealing with 270
application metrics
 monitoring 267
application-level isolation
 versus system-level isolation 31
approximate member query (AMQ) 477
approximation algorithms
 using 472, 473
architectural trade-offs

 approximation algorithms, using 472, 473
 delayed processing, used 473, 474, 476
 heuristics algorithms, using 472, 473
 probabilistic data structures, using 477
 task queues, using 473, 474, 476
 using 472
arguments
 **kwargs arguments, used 192, 193
 *args arguments, used 192, 193
 best practices 190
 building, by iterative design 191
 testing 191
 trusting 191, 192
async keyword 521, 522
asynchronous I/O 520
asynchronous programming
 about 519
 practical example 526, 527
asyncio module 525
atomisator package
 reference 421
attribute access patterns
 about 140
 descriptors 141, 143
 properties 147, 148, 149
 slots 150
await keyword 521, 523

B
bandersnatch
 reference link 247
bdist command 224, 225, 226, 227
behavioral patterns
 about 555, 578
 observer pattern 578, 579
 template pattern 583, 585
 visitor pattern 581, 582

[599]

big O notation 461, 462
binding convention flags 295
Blinker 580
boilerplate
 reducing, with data classes 123, 125
bottlenecks
 CPU usage, profiling 432
 memory usage, profiling 441
 searching 432
bpython
 about 52
 customizing 50
 reference 52
build artefacts 334
Buildbot
 about 343
 reference 343, 345
built packages
 versus source packages 223
built-in multiprocessing module 512, 513, 514,

515, 516
built-in types, Python
 bytes 58, 60
 containers 65
 strings 58, 60
built-in types
 subclassing 126, 127, 128
bytes
 implementation details 61

C
C code
 memory leaks 452, 453
C extensions
 about 285, 287
 conventions, binding 293, 295
 conventions, calling 293, 295
 exception handling 295, 297
 GIL, releasing 297
 Python/C API 288, 289, 290, 291, 292
 reference counting 299, 301
C languages
 extensions, loading 278
 versus C++ languages 278
C++ languages

 extensions, loading 278
cache services
 about 483, 484
 Memcached 485
caching
 about 478
 cache services 483, 484
 deterministic caching 479, 481, 482
 non-deterministic caching 482, 483
Callable 88
callback-based style 543, 544
calling convention flags 293
Celery
 reference 476
centralized systems 321, 322, 323, 324, 326
CFFI 316
Circus
 reference link 259
class decorators 154, 155, 156
class names 194
code coverage
 testing 407, 409
code generation
 about 167
 abstract syntax tree (AST) 169
 compile function 168
 eval function 168
 exec function 168
 patterns 171, 172
code instrumentation 264
code
 macro-profiling 433, 434, 435, 436, 437
 micro-profiling 437, 438, 440, 441
 profiling, ways 432
collections.abc
 using 575
collections
 defaultdict 469, 470
 deque 467, 468
 namedtuple 470, 471
 using 467
commands 543
common conventions 257
common pattern
 about 199, 208, 209

[600]

 dependencies, managing 212
 README file 211
 version string, from package 209, 210
compile function 168
complex environments
 setting up 44
complexity
 big O notation 462, 463, 464, 465
 Cyclomatic complexity 461, 462
 defining 460, 461
concurrency
 need for 489, 490
Concurrent Version System (CVS) 324
containerization
 versus virtualization 40
containers
 about 77
 dictionaries 71, 72
 lists 65
 running 43, 44
 sets 75, 76
 tuples 65
Content Delivery Network (CDN) 247, 262
content distribution network 484
context manager
 as function 104
 class 102
continuous delivery 320, 337, 338
continuous deployment 338
continuous development processes
 continuous delivery 337, 338
 continuous deployment 338
 continuous integration (CI) 333, 334
 continuous integration (CI) tools 339
 continuous integration (CI) tools, selecting 348
 setting up 332, 333
continuous integration (CI) tools
 about 339
 Buildbot 343, 345
 complex build strategies 349
 external job definition 350, 351
 GitLab CI 348
 isolation, lacking 351
 Jenkins 339, 341, 342, 343
 long building time 349, 350

 Travis CI 346, 347
continuous integration (CI)
 about 320, 333, 334
 commit, testing 334
 matrix testing 336, 337
 merge testing 335, 336
cooperative multitasking 519
CPU usage
 profiling 432
CPython 20
CPython, techniques
 AST optimizer 63
 constant folding 63
 peephole optimizer 63
creational patterns
 about 555, 556
 singleton pattern 556, 558, 559
cron jobs 550
ctypes module
 about 309
 C function, calling 311
 libraries, loading 309, 310, 311
 Python function, passing as C callbacks 313,

314

cx_Freeze
 reference 233
Cyclomatic complexity 461, 462
Cython
 as language 304, 305, 306
 as source-to-source compiler 302, 303
 extensions, writing 301

D
data classes
 boilerplate, reducing with 123, 125
data containers
 specializing, from collections module 77
Data Source Name (DSN) 265
data structure
 complexity, reducing 465
 list, searching 465, 466
data types 77
deadlock 492
debugging 308
decorators

[601]

 about 153, 154
 as class 90
 as function 89
 examples 93
 implementations 88
 introspection preserving 91
 parametrizing 90
 syntax 88
 usage 93
demand-side platforms (DSPs) 282
dependency compatibility
 testing 417
dependency matrix
 testing 417, 420
deployment automation
 approaches 241
 Fabric, used 242
descriptors
 about 141, 143
 evaluating 144, 145, 146
Design by Contract (DbC) 192
design patterns
 about 555
 creational patterns 556
 structural patterns 559
deterministic caching 479, 481, 482
deterministic profiler 432
development mode 215
devpi
 reference link 247
dictionaries, containers
 alternatives 73, 74
 implementing details 72, 73
 weaknesses 73, 74
distributed strategies
 about 325, 326
 release repositories 325
 stable repository 325
 unstable repository 325
distributed systems 324, 325, 326
Django 579
Django REST Framework
 URL 164
django-userena project
 reference 418

Docker recipes for Python
 Compose environment, services addressing 47
 Compose environments, communicating 48, 49
 containers, size reducing 46
 using 45
Docker
 used, for virtual environments 39
Dockerfile
 writing 40, 42
doctest
 reference 393
document landscape 372
document-driven development (DDD) 421
documentation generators, Python libraries
 about 363
 building 368
 continuous integration 368
 MkDocs 368
 Sphinx 363
documentation landscape
 building 380
 consumer's layout 381
 producer's layout 380
documentation portfolio
 about 372, 379
 building 372
 design 372, 373
 operations 373, 378
 usage 373
 usage documentation 374
documentation
 as code, benefits 359
 markup languages 362
 styles 362
domain-specific language (DSL) 153
double underscores 121
duck typing 560
dunder 121
Dylan programming language
 reference 132
dynamic libraries
 interfacing, without extensions 309

[602]

E
editable mode 215
Elasticsearch 273
enum module
 used, for defining symbolic enumeration 80
 used, for defining symbolic enumerations 78
environment
 testing 417
errors
 logging 264, 265, 267
eval function 168
event loop
 executors, using in 531, 532
event-driven architectures
 about 549, 550
 event 551, 552, 553
 message queues 551, 552, 553
event-driven programming
 != asynchronous 537, 538
 about 535, 536, 537
 communication 540, 541, 542
 in GUIs 538, 539, 540
 styles 542
exec function 168
executors
 about 530
 using, in event loop 531, 532
explicit class calls
 merging, with super 137
extensions
 additional complexity 307, 308
 challenges, used 307
 custom datatypes, creating 283
 debugging 308
 dynamic libraries, interfacing 309
 existing code written, integrating in different

languages 282
 performance, improving in critical code sections

281

 third-party dynamic libraries, integrating 283
 using 280, 281
 writing 283
 writing, with Cython 301
eXtremeProgramming (XP) 333

F
f-strings
 used, for formatting strings 63, 65
Fabric
 URL 243
facade pattern 577
fake
 about 410
 building 410, 413, 415
Falcon's compiled router 172
Falcon
 URL 172
File System in User Space (FUSE) 36
Filesystem Hierarchy Standard (FHS) 257
filter() function 108, 110
First In First Out (FIFO) 468, 501
flake8 197, 198
Foreign exchange rates API
 reference 496
Foreign Function Interface (FFI) 309
forking 510
function annotations
 about 113
 general syntax, using 113
 mypy, used for checking static type 115
 using 114, 567, 569, 570, 572
Function as a Service (FaaS) 550
functional programming
 about 106
 reference 95
functional-style features
 of Python 105
futures
 about 522, 530
 non-asynchronous code, integrating with async

528, 529

G
Gang of Four (GoF) 555
generator
 expressions 112
GitFlow 328, 330, 332
GitHub Flow
 about 328, 330, 332

[603]

 reference link 330
GitLab CI 348
Global Interpreter Lock (GIL) 22, 276, 493
GNU Debugger (GDB) 55
Grafana
 URL 269
graphical user interfaces (GUIs) 538
Graphite
 reference link 269
Graphviz
 reference 448
Gunicorn
 reference 496

H
happen 535
hashable 65
heuristics algorithms
 using 472, 473
Hy
 about 173, 174, 276
 URL 173
HyperLogLog 477

I
immutable 65
import hooks
 about 171
 import path hooks 171
 meta hooks 171
index mirror 246
inline markup 591
Input Output Operations Per Second (IOPS) 274
interactive debugger 54
interfaces
 about 562
 collections.abc 575
 zope.interface 563, 565
interpreter directive 227
IPython
 about 52
 customizing 50
 reference 52
IronPython
 about 22

 reference 23
isolation 258
iterators 81, 82, 83

J
Jackrabbit
 reference 22
Jenkins
 about 339, 341, 342, 343
 reference 339
Jython
 about 22
 reference 22

K
Kibana 273

L
lambda functions 107
Landau notation 461
linearization 132
link 593
Linux Containers (LXC) 37
Liskov Substitution Principle (LSP) 583
lists 590
lists, containers
 comprehensions 67
 idiom 68, 70
 implementing details 66, 67
literal block 592
load balancer
 caching 484
log processing
 tools 273, 274
Logstash 273
low-level log practices 271, 272
Lucene 583

M
MacroPy
 reference link 170
manylinux wheels
 about 227
 reference link 227

[604]

map() function 108, 110
McCabe's complexity 461
MD5 486
Memcached 485
memoization 479
memoizing
 about 95
 reference 96
memory usage
 profiling 441
memory
 profiling 443, 445
 Python, dealing with 442, 443
memory_profiler
 reference 444
memprof
 reference 444
message queues
 architectures 552
 capabilities 552
meta path finder
 about 171
 reference link 171
metaclasses
 about 159, 558
 general syntax 160, 161, 162
 pitfalls 166, 167
 Python 3 syntax 163, 164, 165
 usage 166
metaheuristics 473
metaprogramming
 __new__() method, used for overriding instance

creation process 156, 158
 about 153
 class decorators 154, 155, 156
 code generation 167
 decorators 153, 154
 metaclasses 159
Method Resolution Order (MRO) 129, 131
methods
 accessing, from superclasses 129, 130
MicroPython
 about 24
 reference 25
MkDocs

 reference 368
mocks
 about 410
 provisional package, reference 415
 using 415
module names 195
monkey patching 410
multiprocessing.dummy
 using, as multithreading interface 518
multiprocessing
 about 510, 511
 built-in multiprocessing module 512, 513, 514,

515, 516
 process pools 516
multithreading 491, 492, 493
munin-python package
 reference link 268
Munin
 URL 268
mypy
 reference 115

N
namespace packages
 about 199, 215
 in previous Python versions 219, 220
 PEP 420 (Implicit Namespace Packages) 218
 useful 216, 217
naming guide
 about 188
 existing names, avoiding 190
 explicit names, used for dictionaries 188
 generic names, avoiding 189
 has/is prefixes, used for Boolean elements 188
 plurals, used for variables 188
 redundancy 189
naming styles
 about 178
 variables 178
network transactions
 tracing 455, 456, 457
network usage
 profiling 454
new-style classes 120
non-alphanumeric 588

[605]

non-asynchronous code
 integrating, with async 528, 529
non-deterministic caching 482, 483
non-preemptive multitasking 520
nose
 about 399, 402
 integration, with setuptools and plugin system

401

 test fixtures, levels 401
 test runner 400
 tests, writing 400

O
objgraph
 about 445
 reference 445
 used, for creating diagram 447, 448, 449, 450,

451, 452
 used, for creating diagrams 445
observer pattern 578, 579, 580
ode monitoring 264
old-style new-style classes 120
one thread per item
 using 499, 500
OpenGL Shading Language (GLSL) 145
OpenTracing
 reference 457
operations 240
optimization strategy
 about 429
 culprit, looking for 429, 430
 hardware, scaling 430, 431
 speed test, writing 431
optimization, rules
 code maintainable 428, 429
 code readable 428, 429
 user's point of view, working form 428
 work first, creating 426, 427
optimization
 rules 426

P
package index 246
package names 195
package

 uploading 220
parallel processing 489
partial objects 111
partial() function 111
path finder
 about 171
 reference link 171
Pathrate
 reference 454
patterns, decorators
 argument checking 93, 95
 caching 95, 97
 context provider 99
 proxy 98
PEP 420 (Implicit Namespace Packages) 218
PEP 8
 about 176
 best practices 176
 need for 176, 177
 team-specific style guidelines 177
 URL 176
pickle
 reference 97
pip
 used, for installing Python packages 28
precedence 132
probabilistic data structures
 using 477
process disposability
 reloading 262, 263
process pools
 using 516
process supervision tools
 using 258
productivity tools 50
proxy pattern 576, 577
ptpython
 about 53
 customizing 50
py.test
 about 402, 407
 automated distributed tests 406
 test fixtures, writing 403
 test functions and classes, disabling 405, 406
py2app

[606]

 reference link 235
py2exe
 reference 235
pycodestyle 197, 198
PyInstaller
 reference 229
Pylint 196, 197
pympler
 reference 445
PyPy
 about 23
 reference 24
pyrilla project
 reference 417
pytest-dbfixtures
 reference 351
Python 2
 old-style classes 131, 132
 super 131, 132
Python 3, versus Python 2
 about 13
 collections, modifying 16
 cross-version compatibility, maintaining

techniques used 16, 18, 19
 cross-version compatibility, maintaining tools

used 16, 18, 19
 data types, modifying 16
 pitfalls 13
 standard library, modifying 15
 string literals, modifying 16
 syntax 13
 syntax, modifying 14, 15
Python 3
 adoption 11, 12
 reference 11
Python code
 decompilation harder, creating 236, 237
 security, in executable packages 236
Python docstrings
 using 360, 361
Python documentation
 reference 442
Python Enhancement Proposal (PEP)
 about 11
 used, for modifying Python 10

Python implementations
 reference 20
Python language
 attributes 121, 123
 dunder methods 121, 123
 protocols 121, 123
Python libraries
 documentation generators 363
Python Package Index (PyPI) 199
 .pypirc file 222
 about 220
 mirroring 247
 reference link 220
 source package, versus built package 223
 uploading 221
Python packages
 additional resources, bundling 248, 251, 254,

257

 installing, pip used 28
Python Packaging Authority (PyPA)
 about 29, 201
 reference 30
Python Packaging User Guide
 about 201
 URL 201
Python packaging, project configuration
 about 203
 common pattern 208, 209
 MANIFEST.in 205
 metadata 206
 setup.cfg 204, 205
 setup.py 203
 trove classifiers 206, 207, 208
Python packaging
 creating 200
 custom setup command 213
 landscape, to PyPA 201, 202
 pip -e 215
 setup.py develop 215
 setup.py, installing 214
 tool recommendation 202
 tools 201
 uninstalling 214
 working, in development 214
Python shells

[607]

 customizing 50
 incorporating, in programs 53
 incorporating, in scripts 53
Python standard test tools
 about 392
 doctest 396, 397
 unittest 393, 395, 396
Python Tools for Visual Studio (PVTS) 22
Python Wheels
 URL 226
Python's Method Resolution Order 132, 134, 135
Python's venv
 about 32, 34
 versus virtualenv 34
Python
 built-in types 58
 dealing, with memory 442, 443
 functional-style features 105
 history 9
 modification 10
 modifying, PEP documents used 10
 resources 25
PYTHONSTARTUP environment variable
 setting up 52

Q
quicksort algorithm 313

R
race condition 492
race hazard 492
Read the Doc
 reference 368
read-eval-print loop (REPL) 53
Real-Time Bidding (RTB) 282
Redis Queue (RQ)
 about 476
 reference 476
reduce() function 108, 110
reentrant locks 492
reference counting 299
reference ownership
 borrowed reference 300
 ownership, passing 299
 stolen reference 300

reStructuredText
 about 586
 inline markup 591
 link 593
 lists 590
 literal block 592
 section structure 588
reverse HTTP proxies
 using 261
reverse-proxy
 caching 484
runtime environment
 isolating 30, 31

S
sdist command 223, 224
section structure 588
Semantic Versioning (semver)
 reference 17
sentinel variables 116
Service Level Agreements 392
sets, containers
 implementing details 76
sets
 using 466
SHA 486
shebang 227
signals 511
singleton pattern 556, 558, 559
slots 150
SNMP protocol
 reference 454
Software Transactional Memory 493
source packages
 versus built packages 223
special methods
 reference link 185
Sphinx
 about 364, 365
 cross-references 367
 index markers, adding 367
 index pages, working with 366
 module helpers, registering 366
 reference 363, 367
Stackless Python

[608]

 about 21
 reference 21
standalone executables
 about 199, 227, 228
 cx_Freeze 233, 234
 py2app 235
 py2exe 235
 PyInstaller 229, 230, 232, 233
 Python code, security in executable packages

236

 tools 229
 useful 228
statistical profiler 432
StatsD
 reference link 269
strings
 concatenation 61, 62
 formatting, with f-strings 63, 65
 implementation details 61
structural patterns
 about 555, 559, 560
 adapter pattern 560, 562
 facade pattern 577
 proxy pattern 576, 577
style, event-driven programming
 callback-based style 543, 544
 subject-based style 544, 545, 547
 topic-based style 547, 548, 549
subject-based style 544, 545, 547
Subversion (SVN) 324
super
 heterogeneous arguments 138, 139
 merging, with explicit class calls 137
 pitfalls 137
superclasses
 methods, accessing from 129, 130
Supervisor
 reference link 259
Swagger/OpenAPI
 self-documenting APIs 371
symbolic enumeration
 defining, with enum module 78, 80
syntax elements
 about 116
 for ... else ... statement 116

 keyword-only arguments 117, 119
system metrics
 monitoring 267
system-level environment
 isolation 35, 36
system-level isolation
 versus application-level isolation 31

T
technical writing
 rules 354, 355, 356, 357, 358, 359
template pattern 583, 585
test campaign 394
test discovery 396
test-driven development (TDD)
 about 378, 383
 benefits, for non-users 384
 best developer documentation, providing 388
 code quality, improving 388
 Python standard test tools 392
 robust code, producing 389
 software regression, preventing 387, 388
 steps 384, 386
 tests 389
tests
 about 389
 acceptance tests 390
 code quality testing 392
 functional tests 390
 integration tests 391
 load and performance testing 391
 unit tests 389
 writing, issues 398
thread pool
 using 500, 501, 502
threaded application
 example 496, 497, 498
threads
 about 491, 492
 multiuser applications 495, 496
 one thread per item 499, 500
 rate limits issue 505, 506, 507, 508
 responsive interfaces, building 494
 uses 494
 work, delegating 494, 495

[609]

time slicing mechanism 492
TimSort 313
topic-based style 547, 548, 549
Traveling Salesman Problem (TSP) 472
Travis CI
 about 346, 347, 348
 reference 346
trove classifiers
 reference link 208
Twelve-Factor App
 rules 239
two-way queues
 using 503, 504

U
unittest alternatives
 nose 399
 nose, reference 399
 py.test 402
 py.test, reference 399
unittest
 alternatives 399
 pitfalls 398
 reference 392
usage documentation
 module helper 374, 377, 378
 recipe 374, 375
 tutorial 374, 377
useful tools
 about 195
 flake8 197, 198
 pycodestyle 197, 198
 Pylint 196, 197
user acceptance tests 390
uWSGI
 reference 496

V
Vagrant
 reference 37
 used, for virtual development environments 37,

38

Valgrind 453
variable annotations
 about 113

 mypy, used for checking static type 115
variables
 about 178
 arguments 186
 classes 186
 constants 178, 179
 functions 183
 methods 183
 modules and packages 187
 naming 180, 181
 private controversy 184
 private variables 178, 181, 182
 properties 186
 public variables 178, 181, 182
 special methods 185
 usage 180, 181
Vehicle Routing Problem (VRP) 472
version control systems (VCSes)
 about 320, 321
 centralized systems 321, 322, 323, 324, 326
 distributed systems 324, 325, 326
 Git, using 327
 GitFlow 328, 330, 332
 GitHub Flow 328, 330, 332
 working with 321
virtual development environments
 using, Vagrant 37, 38
virtual environments
 using, Docker 39
virtualenv
 versus Python's venv 34
virtualization
 versus containerization 40
visitor pattern 581, 582

W
Warehouse 202
web APIs
 documenting 369
well-organized documentation system
 building 372
 documentation landscape, building 380
 documentation portfolio 379
 documentation portfolio, building 372
wheels command 224, 225, 226, 227

widgets 539
Wireshark
 reference 454
with statement
 context managers 100
 implementations 101
 syntax 101
worst-case complexity 464

X

Xapian 583

Z
ZeroMQ 553
zope.interface
 using 563, 565, 567

Ø
ØMQ 553

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Before You Start
	Chapter 1: Current Status of Python
	Technical requirements
	Where are we now and where we are going to?
	Why and how Python changes
	Being up-to-date with changes by following PEP documents
	Python 3 adoption at the time of writing this book
	The main differences between Python 3 and Python 2
	Why should I care?
	The main syntax differences and common pitfalls
	Syntax changes
	Changes in the standard library
	Changes in data types and collections and string literals

	The popular tools and techniques used for maintaining cross-version compatibility

	Not only CPython
	Why should I care?
	Stackless Python
	Jython
	IronPython
	PyPy
	MicroPython

	Useful resources
	Summary

	Chapter 2: Modern Python Development Environments
	Technical requirements
	Installing additional Python packages using pip
	Isolating the runtime environment
	Application-level isolation versus system-level isolation

	Python's venv
	venv versus virtualenv

	System-level environment isolation
	Virtual development environments using Vagrant
	Virtual environments using Docker
	Containerization versus virtualization
	Writing your first Dockerfile
	Running containers
	Setting up complex environments
	Useful Docker recipes for Python
	Reducing the size of containers
	Addressing services inside of a Compose environment
	Communicating between multiple Compose environments

	Popular productivity tools
	Custom Python shells – ipython, bpython, ptpython, and so on
	Setting up the PYTHONSTARTUP environment variable
	IPython
	bpython
	ptpython

	Incorporating shells in your own scripts and programs
	Interactive debuggers

	Summary

	Section 2: Python Craftsmanship
	Chapter 3: Modern Syntax Elements - Below the Class Level
	Technical requirements
	Python's built-in types
	Strings and bytes
	Implementation details
	String concatenation
	Constant folding, the peephole optimizer, and the AST optimizer

	String formatting with f-strings

	Containers
	Lists and tuples
	Implementation details
	List comprehensions
	Other idioms

	Dictionaries
	Implementation details
	Weaknesses and alternatives

	Sets
	Implementation details

	Supplemental data types and containers
	Specialized data containers from the collections module
	Symbolic enumeration with the enum module

	Advanced syntax
	Iterators
	Generators and yield statements
	Decorators
	General syntax and possible implementations
	As a function
	As a class
	Parametrizing decorators
	Introspection preserving decorators

	Usage and useful examples
	Argument checking
	Caching
	Proxy
	Context provider

	Context managers – the with statement
	The general syntax and possible implementations
	As a class
	As a function – the contextlib module

	Functional-style features of Python
	What is functional programming?
	Lambda functions
	map(), filter(), and reduce()
	Partial objects and partial() functions
	Generator expressions

	Function and variable annotations
	The general syntax
	The possible uses
	Static type checking with mypy

	Other syntax elements you may not know of yet
	The for ... else ... statement
	Keyword-only arguments

	Summary

	Chapter 4: Modern Syntax Elements - Above the Class Level
	Technical requirements
	The protocols of the Python language – dunder methods and attributes
	Reducing boilerplate with data classes
	Subclassing built-in types
	MRO and accessing methods from superclasses
	Old-style classes and super in Python 2
	Understanding Python's Method Resolution Order
	Super pitfalls
	Mixing super and explicit class calls
	Heterogeneous arguments

	Best practices

	Advanced attribute access patterns
	Descriptors
	Real-life example – lazily evaluated attributes

	Properties
	Slots

	Summary

	Chapter 5: Elements of Metaprogramming
	Technical requirements
	What is metaprogramming?
	Decorators – a method of metaprogramming
	Class decorators
	Using __new__() for overriding the instance creation process
	Metaclasses
	The general syntax
	New Python 3 syntax for metaclasses
	Metaclass usage
	Metaclass pitfalls

	Code generation
	exec, eval, and compile
	Abstract syntax tree (AST)
	Import hooks

	Projects that use code generation patterns
	Falcon's compiled router
	Hy

	Summary

	Chapter 6: Choosing Good Names
	Technical requirements
	PEP 8 and naming best practices
	Why and when to follow PEP 8?
	Beyond PEP 8 – Team-specific style guidelines

	Naming styles
	Variables
	Constants
	Naming and usage
	Public and private variables
	Functions and methods
	The private controversy
	Special methods
	Arguments
	Properties
	Classes
	Modules and packages

	The naming guide
	Using the has/is prefixes for Boolean elements
	Using plurals for variables that are collections
	Using explicit names for dictionaries
	Avoid generic names and redundancy
	Avoiding existing names

	Best practices for arguments
	Building arguments by iterative design
	Trusting the arguments and your tests
	Using *args and **kwargs magic arguments carefully

	Class names
	Module and package names
	Useful tools
	Pylint
	pycodestyle and flake8

	Summary

	Chapter 7: Writing a Package
	Technical requirements
	Creating a package
	The confusing state of Python packaging tools
	The current landscape of Python packaging thanks to PyPA
	Tool recommendations

	Project configuration
	setup.py
	setup.cfg
	MANIFEST.in
	Most important metadata
	Trove classifiers
	Common patterns
	Automated inclusion of version string from package
	README file
	Managing dependencies

	The custom setup command
	Working with packages during development
	setup.py install
	Uninstalling packages
	setup.py develop or pip -e

	Namespace packages
	Why is it useful?
	PEP 420 - implicit namespace packages
	Namespace packages in previous Python versions

	Uploading a package
	PyPI - Python Package Index
	Uploading to PyPI - or other package index
	.pypirc

	Source packages versus built packages
	sdist
	bdist and wheels

	Standalone executables
	When standalone executables useful?
	Popular tools
	PyInstaller
	cx_Freeze
	py2exe and py2app

	Security of Python code in executable packages
	Making decompilation harder

	Summary

	Chapter 8: Deploying the Code
	Technical requirements
	The Twelve-Factor App
	Various approaches to deployment automation
	Using Fabric for deployment automation

	Your own package index or index mirror
	PyPI mirroring
	Bundling additional resources with your Python package

	Common conventions and practices
	The filesystem hierarchy
	Isolation
	Using process supervision tools
	Application code running in user space
	Using reverse HTTP proxies
	Reloading processes gracefully

	Code instrumentation and monitoring
	Logging errors – Sentry/Raven
	Monitoring system and application metrics
	Dealing with application logs
	Basic low-level log practices
	Tools for log processing

	Summary

	Chapter 9: Python Extensions in Other Languages
	Technical requirements
	Differentiating between the C and C++ languages
	Loading extensions in C or C++

	The need to use extensions
	Improving the performance in critical code sections
	Integrating existing code written in different languages
	Integrating third-party dynamic libraries
	Creating custom datatypes

	Writing extensions
	Pure C extensions
	A closer look at Python/C API
	Calling and binding conventions
	Exception handling
	Releasing GIL
	Reference counting

	Writing extensions with Cython
	Cython as a source-to-source compiler
	Cython as a language

	Challenges with using extensions
	Additional complexity
	Debugging

	Interfacing with dynamic libraries without extensions
	The ctypes module
	Loading libraries
	Calling C functions using ctypes
	Passing Python functions as C callbacks

	CFFI

	Summary

	Section 3: Quality over Quantity
	Chapter 10: Managing Code
	Technical requirements
	Working with a version control system
	Centralized systems
	Distributed systems
	Distributed strategies

	Centralized or distributed?
	Use Git if you can
	GitFlow and GitHub Flow

	Setting up continuous development processes
	Continuous integration
	Testing every commit
	Merge testing through CI
	Matrix testing

	Continuous delivery
	Continuous deployment
	Popular tools for continuous integration
	Jenkins
	Buildbot
	Travis CI
	GitLab CI

	Choosing the right tool and common pitfalls
	Problem 1 – Complex build strategies
	Problem 2 – Long building time
	Problem 3 – External job definitions
	Problem 4 – Lack of isolation

	Summary

	Chapter 11: Documenting Your Project
	Technical requirements
	The seven rules of technical writing
	Write in two steps
	Target the readership
	Use a simple style
	Limit the scope of information
	Use realistic code examples
	Use a light but sufficient approach
	Use templates

	Documentation as code
	Using Python docstrings
	Popular markup languages and styles for documentation

	Popular documentation generators for Python libraries
	Sphinx
	Working with the index pages
	Registering module helpers
	Adding index markers
	Cross-references

	MkDocs
	Documentation building and continuous integration

	Documenting web APIs
	Documentation as API prototype with API Blueprint
	Self-documenting APIs with Swagger/OpenAPI

	Building a well-organized documentation system
	Building documentation portfolio
	Design
	Usage
	Recipe
	Tutorial
	Module helper

	Operations

	Your very own documentation portfolio
	Building a documentation landscape
	Producer's layout
	Consumer's layout

	Summary

	Chapter 12: Test-Driven Development
	Technical requirements
	I don't test
	Three simple steps of test-driven development
	Preventing software regression
	Improving code quality
	Providing the best developer documentation
	Producing robust code faster

	What kind of tests?
	Unit tests
	Acceptance tests
	Functional tests
	Integration tests
	Load and performance testing
	Code quality testing

	Python standard test tools
	unittest
	doctest

	I do test
	unittest pitfalls
	unittest alternatives
	nose
	Test runner
	Writing tests
	Writing test fixtures
	Integration with setuptools and plugin system
	Wrap-up

	py.test
	Writing test fixtures
	Disabling test functions and classes
	Automated distributed tests
	Wrap-up

	Testing coverage
	Fakes and mocks
	Building a fake
	Using mocks

	Testing environment and dependency compatibility
	Dependency matrix testing

	Document-driven development
	Writing a story

	Summary

	Section 4: Need for Speed
	Chapter 13: Optimization - Principles and Profiling Techniques
	Technical requirements
	The three rules of optimization
	Making it work first
	Working from the user's point of view
	Keeping the code readable and maintainable

	Optimization strategy
	Looking for another culprit
	Scaling the hardware
	Writing a speed test

	Finding bottlenecks
	Profiling CPU usage
	Macro-profiling
	Micro-profiling

	Profiling memory usage
	How Python deals with memory
	Profiling memory
	objgraph

	C code memory leaks

	Profiling network usage
	Tracing network transactions

	Summary

	Chapter 14: Optimization - Some Powerful Techniques
	Technical requirements
	Defining complexity
	Cyclomatic complexity
	The big O notation

	Reducing complexity by choosing proper data structures
	Searching in a list
	Using sets

	Using collections
	deque
	defaultdict
	namedtuple

	Using architectural trade-offs
	Using heuristics and approximation algorithms
	Using task queues and delayed processing
	Using probabilistic data structures

	Caching
	Deterministic caching
	Non-deterministic caching
	Cache services
	Memcached

	Summary

	Chapter 15: Concurrency
	Technical requirements
	Why concurrency?
	Multithreading
	What is multithreading?
	How Python deals with threads
	When should we use threading?
	Building responsive interfaces
	Delegating work
	Multiuser applications
	An example of a threaded application
	Using one thread per item
	Using a thread pool
	Using two-way queues
	Dealing with errors and rate limiting

	Multiprocessing
	The built-in multiprocessing module
	Using process pools
	Using multiprocessing.dummy as the multithreading interface

	Asynchronous programming
	Cooperative multitasking and asynchronous I/O
	Python async and await keywords
	asyncio in older versions of Python
	A practical example of asynchronous programming
	Integrating non-asynchronous code with async using futures
	Executors and futures
	Using executors in an event loop

	Summary

	Section 5: Technical Architecture
	Chapter 16: Event-Driven and Signal Programming
	Technical requirements
	What exactly is event-driven programming?
	Event-driven != asynchronous
	Event-driven programming in GUIs
	Event-driven communication

	Various styles of event-driven programming
	Callback-based style
	Subject-based style
	Topic-based style

	Event-driven architectures
	Event and message queues

	Summary

	Chapter 17: Useful Design Patterns
	Technical requirements
	Creational patterns
	Singleton

	Structural patterns
	Adapter
	Interfaces
	Using zope.interface
	Using function annotations and abstract base classes
	Using collections.abc

	Proxy
	Facade

	Behavioral patterns
	Observer
	Visitor
	Template

	Summary

	Appendix A: reStructuredText Primer
	reStructuredText
	Section structure
	Lists
	Inline markup
	Literal block
	Links

	Other Books You May Enjoy
	Index

