
Django
Standalone Apps

Learn to Develop Reusable Django Libraries
—
Ben Lopatin

Django Standalone Apps
Learn to Develop Reusable

Django Libraries

Ben Lopatin

Django Standalone Apps: Learn to Develop Reusable Django Libraries

ISBN-13 (pbk): 978-1-4842-5631-2			 ISBN-13 (electronic): 978-1-4842-5632-9
https://doi.org/10.1007/978-1-4842-5632-9

Copyright © 2020 by Ben Lopatin

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5631-2. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Ben Lopatin
New York, NY, USA

https://doi.org/10.1007/978-1-4842-5632-9

iii

Part I: �Basic Components of a Django App��� 1

Chapter 1: �Defining the scope of a Django standalone app��������������������������������������� 3

Benefits of creating standalone apps�� 3

Sharing your work�� 3

Improved code quality�� 4

Don’t repeat yourself�� 4

Commonality across a company�� 4

Commonalities across client projects�� 5

The currency of prestige��� 5

With or without Django?�� 6

Choosing your dependencies��� 7

Necessary functionality�� 7

Version compatibility�� 8

Testing and documentation�� 8

Maintenance cadence�� 9

Specific vs. generalized��� 9

Summary��� 10

Chapter 2: �Structuring standalone Django apps�� 11

Django apps as Python modules�� 11

What about middleware and URLs and views?�� 13

Example app: currency��� 13

Summary��� 15

Table of Contents

About the Author�� ix

About the Technical Reviewer�� xi

Introduction�� xiii

iv

Chapter 3: �Testing�� 17

Why test?��� 17

Testing apps from a Django project�� 18

Testing the app��� 19

Testing outside of a project�� 19

Using a testing script�� 20

Testing application relationships�� 22

Where to include tests�� 24

Testing without Django��� 25

Summary��� 25

Chapter 4: �Model migrations��� 27

Migrations outside of a project�� 27

Testing migrations��� 28

Additional migration guidelines��� 29

Summary��� 30

Chapter 5: �Templates��� 31

Three basic strategies��� 31

What to include�� 31

Email and miscellaneous templates��� 34

Summary��� 34

Chapter 6: �Using static files�� 35

Static files in standalone apps��� 35

In the Django admin��� 37

Summary��� 38

Chapter 7: �Namespacing in your app�� 39

Namespaces at a glance�� 39

App itself�� 40

URLs��� 40

Settings�� 41

Table of Contents

v

Management commands��� 41

Template tags�� 43

Models and database tables�� 44

Chapter 8: �Creating a basic package��� 45

An example blog app��� 45

A basic setup.py file��� 46

Adding templates and static files��� 48

Installing and using�� 49

Summary��� 50

Part II: �Scoping and Extracting a Reusable App����������������������������������� 51

Chapter 9: �Scoping and drawing boundaries�� 53

Scoping and the nature of the problem��� 53

The job of a standalone app��� 54

The dimensions for creation and extraction�� 55

Sizing the scope of an app��� 57

When an app is too big��� 57

When an app is too small��� 58

Summary��� 59

Chapter 10: �Separating your app��� 61

Getting started��� 61

Refactor first�� 62

Model renaming and migrations�� 63

Allowing customization�� 66

Backend classes��� 67

Signals�� 68

Finalization and removing from the project��� 69

Summary��� 69

Table of Contents

vi

Chapter 11: �Adding your app back in�� 71

Verifying locally�� 71

Source control–based packages�� 72

Published packaged��� 74

Summary��� 76

Part III: �Beyond the Basics��� 77

Chapter 12: �Handling app settings�� 79

Settings naming��� 79

Settings formats�� 80

Sourcing app settings�� 81

Summary��� 85

Chapter 13: �Internationalization�� 87

Why translation�� 87

Translatable strings and how translation works�� 88

Prioritizing translation steps�� 89

Model content and translations��� 91

Summary��� 93

Chapter 14: �Managing version compatibility�� 95

Python version��� 95

Django and dependencies�� 97

Solving for incompatibilities�� 100

Future proofing�� 100

Summary��� 101

Chapter 15: �Mixed dependency support�� 103

Beyond Django��� 103

The nuts and bolts��� 104

Real-world examples��� 106

Summary��� 108

Table of Contents

vii

Chapter 16: �Modularity�� 109

Additional standalone apps�� 109

Using sub-apps�� 111

Embracing horizontal modularity��� 111

Summary��� 112

Chapter 17: �Better packaging�� 113

Version consolidation��� 113

Using a source directory�� 116

Using setup.cfg�� 118

The pyproject.toml and more tooling��� 119

Summary��� 121

Part IV: �Managing Your Standalone App��� 123

Chapter 18: �Licensing�� 125

What licenses do�� 125

Varieties of licenses��� 126

How and where to include your license��� 127

How to include other licenses�� 128

Summary��� 130

Chapter 19: �Documenting your standalone app�� 131

Starting with questions�� 131

The forms of documentation�� 133

Code comments and docstrings��� 135

Tools for documentation�� 136

Summary��� 137

Chapter 20: �Additional Testing�� 139

Testing migrations��� 139

Testing against different versions�� 140

Using pytest��� 141

Summary��� 144

Table of Contents

viii

Chapter 21: �Automating��� 145

What is it and why bother?�� 145

Starting to automate�� 146

Continuous integration services�� 146

Travis CI�� 147

GitHub��� 147

GitLab��� 148

CircleCI��� 149

Others��� 150

Summary��� 150

Chapter 22: �Databases and other backend-specific considerations��������������������� 151

Backend-specific implementation and features�� 151

Approaching database-specific functionality��� 152

Summary��� 154

Chapter 23: �Collaborating�� 155

Why contributions�� 155

What to expect��� 156

Setting expectations�� 156

The role and obligations of an open source maintainer��� 159

Summary��� 160

Chapter 24: �Using app templates�� 161

startapp�� 161

Cookiecutter��� 162

Summary��� 164

�Index�� 165

Table of Contents

ix

About the Author

Ben Lopatin is cofounder and principal consultant at

Wellfire Interactive and has been developing with Django

since the pre-version 1.0 days. Over that time he has

led a variety of CMS and SaaS projects, using numerous

standalone apps and releasing a few himself. He writes a

newsletter devoted to working with existing production

Django apps called “This Old Pony,” named after his

most recent DjangoCon talk, and he can be reached at

https://benlopatin.com.  

https://benlopatin.com

xi

About the Technical Reviewer

Ahmed Fawzy Gad is a machine learning engineer who

received his BSc and MSc in Information Technology.

Ahmed is interested in machine/deep learning, computer

vision, and Python. He has a number of open source projects

at GitHub (github.com/ahmedfgad). He is a machine

learning technical reviewer and consultant helping others

do their projects. Ahmed has contributed more than 80

written tutorials and articles to a number of blogs including

Paperspace, Real Python, KDnuggets, Heartbeat, and

Towards Data Science. 

Ahmed has authored three books titled TensorFlow:

A Guide to Build Artificial Neural Networks using Python

(Labmert 2017), Practical Computer Vision Applications Using Deep Learning with CNNs

(Apress, 2018), and Building Android Apps in Python Using Kivy with Android Studio

(Apress, 2019).

Ahmed is enthusiastic to find new work opprotunities and a chance to start his PhD.

You can reach him through LinkedIn (linkedin.com/in/AhmedFGad), Facebook

(fb.com/AhmedFGadd), and email (ahmed.f.gad@gmail.com).

https://github.com/ahmedfgad
https://github.com/ahmedfgad
https://blog.paperspace.com/author/ahmed
https://realpython.com/team/agad
https://kdnuggets.com/author/ahmed-gad
https://heartbeat.fritz.ai/@ahmedfgad
https://towardsdatascience.com/@ahmedfgad
https://www.amazon.com/TensorFlow-Artificial-Networks-artificial-explanation/dp/6202073128
https://www.amazon.com/TensorFlow-Artificial-Networks-artificial-explanation/dp/6202073128
https://www.amazon.com/TensorFlow-Artificial-Networks-artificial-explanation/dp/6202073128
https://www.amazon.com/Practical-Computer-Vision-Applications-Learning/dp/1484241665
https://www.amazon.com/Practical-Computer-Vision-Applications-Learning/dp/1484241665
https://www.amazon.com/Building-Android-Python-Using-Studio/dp/1484250303
https://www.amazon.com/Building-Android-Python-Using-Studio/dp/1484250303
https://www.linkedin.com/in/ahmedfgad
http://linkedin.com/in/AhmedFGad
https://www.facebook.com/ahmed.f.gadd
http://fb.com/AhmedFGadd

xiii

Introduction

At 15 years old, the Django web framework is arguably the most popular Python web

framework today and one of the most successful open source Python projects ever. Many

things and people have contributed to this, and one of them is the architecture of the

framework. Django sites, or projects, are made up of several to many "apps," packages

that may include everything from database models to forms and HTTP views required

to support one particular part of the project. Not only do apps help organize larger web

projects, they also make it possible to reuse that functionality by reusing apps across

other projects as their own installable Python packages: Django standalone apps.

This book is for Django developers who are either new to writing their own

standalone apps or who have written them before but are looking for some common

guidance. You don’t need to be a Django guru-ninja-wizard-whatever to write standalone

apps, but you will need at least moderate familiarity with Django to use this book.

This book is for developers in two categories:

•	 You have been working with Django for at least a little while and

would like to create a standalone app.

•	 You have written at least one Django standalone app already but

there are aspects of creating another or managing your app, from

process to corner cases, that you’re unsure of.

The book is roughly grouped into four parts.

The first part is geared toward the developer who has not yet written a standalone

app and maybe who finds the idea of putting together, and publishing, a Python package

a bit daunting (it’s not!). What we’ll cover in this part is designed to be enough to get

you started with a basic but working and publishable standalone app. In the first eight

chapters, you'll learn how to structure a standalone app, manage features like templates

and migrations, and create a separate installable package.

The second part is a little bit more strategic. Here we’re concerned with the concepts

around pulling standalone apps out from existing projects. In this situation you

seemingly have an advantage since you already have working code written; however, if

you want to extract for reuse, you have to identify where to draw the line between likely

xiv

coupled code in your own project. More challenging is the prospect of not just making

a reusable app based on your code, but replacing your original code with your new

standalone app. This part deals with those questions, decisions, and some strategies for

these real-world situations.

The third part carries forward the topics in Part 1 including how to work through

further issues. How do you best deal with app-specific configuration? How can you

support multiple versions of Django or Python? Some of the topics here overlap with

issues you’ll face in any Django project; however, the details of implementing them, and

implementing them well in a standalone app, pose different challenges. This is when

you’ll need to start considering scenarios beyond your own immediate use case, those

things you haven’t yet had to worry about in your own projects. If the goal of creating

a reusable app is to streamline and simplify the process of building Django websites,

then here we want to streamline and simplify the process of building and maintaining

reusable apps themselves.

The fourth part is about managing a Django standalone app in the wild. How do you

ensure you have a good release every time? What’s the best way of ensuring a Django

version–compatible pipeline? While there is overlap here with managing any software

package, Python or otherwise, we’ll focus especially on issues and solutions to Django

apps.

Introduction

PART I

Basic Components
of a Django App

3
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_1

CHAPTER 1

Defining the scope of a
Django standalone app
Every software project is defined by boundaries, whether you have deliberately chosen

them or not. In this chapter, we’ll begin our adventure with Django standalone apps by

exploring the benefits of developing – and sharing – your standalone app, as well as how

to consider what other dependencies to bring along and even whether your Django app

should be a Django app at all.

�Benefits of creating standalone apps
The benefits of creating a Django standalone app are varied, from the altruistic, the

egoistic, and the purely practical.

�Sharing your work
Presuming that you’re planning on publishing your app as an open source package, the

first benefit that most people think about is the value of sharing your work with other

people. There’s a long history of sharing code in the software community (as long as

there is a history of hoarding, too!) because in most cases it’s a way that other people can

benefit from what you’ve already done without any opportunity losses to you. Unless you

think you’d be able to license and sell your Django app, it is unlikely to be a profitable

enterprise in and of itself. So given that you’re already benefiting yourself from the work

that other people have shared freely, why not share back?

4

�Improved code quality
Once you start sharing your work, a knock-on effect tends to be improvements in the

quality of your app itself. Most people feel a little nervous the first time they share their

work publicly as it is now available for everyone to scrutinize. But just knowing that

other people will read and/or use your code tends to make you more careful about

how you design and develop it. Once enough people are using it, you’ll start attracting

contributions from other people, whether in the form of bug reports (yes, identifying

bugs is a contribution!), bug fixes, feature suggestions, and new features in and of

themselves.

�Don’t repeat yourself
If you’re looking for more hard-nosed reasons, it’s time to start dwelling on what it

means for apps to be “reusable.” As a developer, having reusable code is a time saver and

risk reducer. You can use what’s already been created and what you know already works.

Imagine if every time you created a new Django project you had to write your

own authentication system from scratch, including views, middleware, and models.

Inevitably you’d probably just end up copying and pasting code from one project

to another, hopefully leaving the mistakes behind, and never really having a single

collection of best practices to point to. Thankfully you don’t have to, because such a

reusable app exists in Django’s contrib module.

That gets to the point about risk. Risks in your code can range from bugs to important

features you hadn’t thought of, and, all things being equal, these risks increase when

you’re starting from scratch and on your own. What we’re seeking from our reusable

apps isn’t just time saved from having to write code from scratch, it’s also the accretion

of best practices, of features contributed from real-world use, and bugs that have had an

opportunity to be squashed.

�Commonality across a company
For developers and teams supporting a variety of deployed Django apps, supporting a

product or variety of products in a single company, for example, extracting common

functionality into reusable apps, is a way of ensuring that functionality works as expected

everywhere and gives you leverage in fixing bugs or adding critical new features such

that this can be deployed with a version update wherever it’s used.

Chapter 1 Defining the scope of a Django standalone app

5

Examples include customized user apps, domain-specific models (e.g., health

sciences, finance), asset management, and generic utilities.

�Commonalities across client projects
For developers and teams in freelancer or agency roles, working with varieties of clients

and projects, reusable apps are a way of carrying useful functionality across projects.

Most of the popular content management and ecommerce solutions in Django

came about this way. Both Django CMS and Wagtail, two popular Django-based content

management systems and also standalone Django apps, were developed by creative

agencies as solutions for client projects.

�The currency of prestige
Lastly, though usually unspoken, is the perceived prestige - we won’t use the word

“vanity” - of having a popular or at least useful standalone app. For product teams,

agency teams, and freelancers alike, a shared standalone app is a demonstration of

competence, opinion, and vision. It can be used to attract potential hires and potential

clients.

The aforementioned content management systems, Django CMS and Wagtail, were

created by Divio and Torchbox, respectively. They did great work, but how many Django

developers would know their names were not for the contribution of their respective

CMSs? Their name recognition in hiring is now certainly improved. I can’t speak to

any special notoriety myself, but several clients have discovered me both directly and

indirectly due to Django apps I’ve published myself.

Now, if this is the only reason you want to create and publish a Django standalone

app, I’d gently suggest pointing your attention elsewhere. The knock-on effects of having

an app that people use even in large numbers may accrue slowly, and you’re unlikely

to either enjoy the process of building and maintaining an app, and your user base will

probably suffer, too.

But if your goals include sharing with the community, creating ever-improving code

libraries, and reducing development time and risk, then the effort’s worth it regardless of

how many fake Internet points your GitHub profile earns you.

Chapter 1 Defining the scope of a Django standalone app

6

�With or without Django?
In defining the scope of a potential Django standalone app, the first questions you need

to ask are whether the package you have in mind needs to be a Django app or just a

Python package using Django and secondly how Django-specific your package ought to

be even if it isn’t an app.

The first question is a somewhat minor question, but gets at how your app should

be integrated into other Django projects and development workflows. It’s easy to see

Django imports in your Python files and think “ah, this is an app,” when in fact it’s

non-installable library code (non-installable in the sense of your INSTALLED_APPS,

not in the sense of an installed package). For example, if you had some additional form

fields that you wanted to distribute, these could be distributed and used as a “regular”

Python library, without adding the module to your list of INSTALLED_APPS. You’ll still

have to consider the issues discussed in subsequent chapters, such as testing (3, 21),

documentation (22), and packaging (8), but with minor differences in how you set up

your tests and document usage.

On the other hand, your prospective package may be incredibly useful in Django

projects but have no hard requirements on Django, being agnostic to web framework or

even to being used for web applications at all. If this is the case, then you should head

down this road.

Why ensure this separation? For starters, if you’re going to be sharing this with

the rest of the world, and the core functionality doesn’t actually depend on Django,

then you’ve broadened the audience. You’re also reducing yet another dependency

in your package, which, even if you’re using it in Django projects, is another line of

dependencies that can break. Where it makes sense, reference the standard library

instead of Django utilities. If something moves in a new Django version, you’re now

insulated from that change.

It’s worth keeping in mind that you can add functionality to Django projects without

Django-specific modules, or without necessarily requiring Django. In Chapter 16 on

mixed dependency support, we’ll examine how to separate out what’s Django specific

and what’s not.

Chapter 1 Defining the scope of a Django standalone app

7

�Choosing your dependencies
The great thing about packages like the one you’re creating is that they give you

functionality for free - maybe not free, but without the cost of writing the code and

figuring out the edge cases yourself. These benefits presume that the dependencies

you’re using are tested and work as advertised and that they continue to be supported

with new versions of Python, Django, and their own individual dependencies.

Each dependency you add increases the surface area that you need to test as well

as opportunities for broken interactions. This is true in a Django project and it’s equally

true in your own standalone app. Now, it’s certainly unwise to rewrite everything

yourself! But give careful thought to whether you really need to add each dependency in

your project.

Among the guiding questions, you should consider

	 1.	 Does the dependency provide necessary functionality for

your app?

	 2.	 Is it up-to-date with the Django version(s) you will be supporting?

	 3.	 What kind of test and documentation coverage does it have?

	 4.	 How committed do the maintainers seem?

�Necessary functionality
It’s easy to add dependencies to projects and libraries alike. In most Django projects,

there’s one “consumer” of the project, that is, the project team. It could be a large team

with several different environment deployments and millions of users, but that team

and that app are still the sole consumer. With a reusable library like a Django standalone

app, you can expect that it will be used across dozens, maybe thousands, of other

projects. Each dependency for your app is a dependency for projects using your app.

And each dependency you add to your app is a potential blocker if it contains bugs or

incompatible code and exposes you to risks.

That’s not significantly different from how you might look at adding dependencies

into a Django project; however, it’s easier to back out of these changes when you control

the end deploy and other people haven’t come to depend on your own code.

So ask if it’s necessary to add this, not in the strictest logical sense but whether it’s

adding more than a minor convenience.

Chapter 1 Defining the scope of a Django standalone app

8

This is a “mistake” I’ve made. An example of this in my own case is a decision to
use the otherwise fantastic django-extensions app as a dependency for my own,
django-organizations. I wanted a timestamped model – a good thing to have which
you’ll notice when it is missing – and moreover I wanted slug fields that took care
of themselves. For this I wanted the AutoslugField. This wasn’t a bad decision so
much as a restrictive one. However, I could have used a typical Django slug field,
but for my own needs, the Autoslug was where it was at. Later I realized that some
people, including myself, might need to be able to configure how slugs are made,
and this should not be so fixed.

�Version compatibility
Thanks to the end of life of Python 2, the considerations of Python version

compatibility are less significant today than they were two or even one year ago.

However, Django compatibility is still an issue. Does the dependency in question

support the current version of Django that you mostly work with? That’s an obvious

starting question.

But you’ll also want to know whether it supports older versions and whether it looks

like there’s any effort to support future versions. It’s important that any dependencies

you add support the same versions of both Python and Django that your app will

support.

A good rule of thumb to look for is support for Django’s long-term support (LTS) versions.

�Testing and documentation
When looking for tests and documentation in a dependency, we’re looking for

several things:

	 1.	 Verification that the code works and that bugs can be tested

against

	 2.	 Explanations for how to install and use the package, as well as why

it exists

	 3.	 Signals that someone cares

Chapter 1 Defining the scope of a Django standalone app

9

Certainly you should find tests in the dependency and tests that extensively cover the

package’s functionality. You should also look for automated test runs using a continuous

integration (CI) system, such that you can see that tests are always run when someone

pushes code to the repository. It’s much harder to trust that someone is just running the

tests on their own, and if there is no CI system tied to the repository, then you’ll have to

trust that contributors are running the tests and that they’re passing.

Basic documentation is important to ensure you know how to set up the

dependency and what the edge cases might be. For example, what does it do that is

unexpected or what related packages is it incompatible with? For larger dependencies,

extensive documentation is a must, but for smaller dependencies, documentation is

as much a help as it is a signal that the package has a specific mission (use case) and

providing sufficient context that you can judge whether the author and/or maintainers

have considered and support various use cases and developers beyond their own

initial problem.

The third point leads directly to maintenance cadence.

�Maintenance cadence
Does it look like this dependency is and will be actively supported? Is there a significant

number of unresolved issues, specifically bugs, that have not been addressed? Are there

pull requests, especially for bugs, that are outstanding and old? And a more significant

question that many people overlook is, even if issues are reported and pull requests

merged, do these result in new published releases? If pull requests have been merged

over the last year but no new releases have been issued in that time period, it may not be

sufficiently maintained.

�Specific vs. generalized
As programmers, we have a tendency to build a solution and then see how that

solution can be abstracted to solve more problems. This is, arguably, a very good thing.

However, it’s easy to get carried away and try to cover too much ground, to go down

a rabbit hole of making beautiful abstractions instead of “just” solving the concrete

problem in front of you.

Chapter 1 Defining the scope of a Django standalone app

10

For example, you might have a subscription management library for SaaS apps

which is built with Stripe. A more generalizable approach would account for different

subscription and payment backends. However, unless you actively make use of these

different scenarios yourself, trying to handle them all is likely to lead to halfway

solutions. And creating a more general system capable of handling user-customized

scenarios when you start out with your app will cause you to spend more time on

abstractions that could be better spent getting your app polished.

Writing your app to cover every use case you can think of is almost certainly a

mistake, regardless of how useful the more general case is. You’re likely to spend time

anticipating nonissues and failing to anticipate actual needs. It’s a much better position

to add more use cases, or make more general, working solutions, than to build an overly

abstract solution that solves no clear problems.

�Summary
In this chapter, you learned about the benefits of creating standalone apps, including the

opportunity to share solutions to common problems, aiding code quality through open

source scrutiny, and improving the development process by standardizing frequently

encountered problems. You also learned about differentiating between Django-

related Python projects and Django apps and how to weigh the inclusion of additional

dependencies. In the next chapter, we’ll examine the structure of a standalone app.

Chapter 1 Defining the scope of a Django standalone app

11
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_2

CHAPTER 2

Structuring standalone
Django apps
Beyond the scope of functionality that you include in your standalone Django app,

at a more practical level, you’ll also need to structure the code for reuse. There’s little

fundamentally different about the structure of a standalone Django app from a Django

app embedded directly in your Django project’s codebase. However, there are several

practices you’ll want to follow to maximize the usability of your app. We’ll look at those

in this chapter.

�Django apps as Python modules
Let’s reiterate that a Django app, standalone or otherwise, is a Python package. That

is, it’s made up of multiple Python modules, that is, Python files, and can import from

other packages and from which other packages can import as well. What makes a Python

package a Django app, specifically, is that it has functionality, classes, and functions that

can only be made use of in a Django project by explicitly including them in the project’s

INSTALLED_APPS list. It’s not sufficient that the package exists in your Python path.

You can add any Python package you want to INSTALLED_APPS, but if it’s not a

Django app, it will do absolutely nothing for you. We can think of a Django app like an

interface, or if we had something abstract like base classes (Python’s abc module), but

for modules it would probably look like this:

–– The package includes a models package with one or more concrete

models.

–– The package includes a template tags module containing tag module

libraries.

12

–– The package includes a templates directory of HTML templates.

–– The package includes a static assets directory including images, CSS

files, JavaScript files, and many more.

–– The package includes management commands, that is, modules

within the myapp.management.commands module of your app

(myapp) defining a Command class inheriting from django.core.

management.BaseCommand

–– The package defines a default AppConfig class.

Any of the first five is sufficient to provide functionality that requires having an

installed Django app. The last, defining a default AppConfig class, is a best practice, but

in and of itself, it doesn’t provide much in the way of functionality itself. It does allow you

to make changes to basic app configuration and namespace (more on this later).

It is sufficient to match the expected interfaces to provide installable content from

your Django app, standalone or otherwise. Knowing that, avoid relying solely on the

module interface for your standalone app, even if this works just fine within your own

projects. The point of creating a standalone app is to allow for reuse across all kinds of

Django projects, and so you should be as explicit as possible.

Historically, the one and only step to ensure a package was identified as a Django

app was to include a models module. If you’re working under the assumption that this

is still the case, it is not. It is not necessary to include a models module unless you are

including model classes in your app. If your app consists only of template tags, you can

include nothing more than the following, including the __init__.py file for ensuring the

directory is a package, the templatetags module for including any and all template tag

libraries, and the boo_tags.py file for defining a tag library including template tags and/

or filters which can be loaded into templates using {% load boo_tags %}:

boo

|── __init__.py
|── templatetags
│ |── __init__.py
│ |── boo_tags.py

Now if you want to make use of the template tag boo from boo_tags, all you need to

do is add boo to your INSTALLED_APPS and you can load the tag library anywhere in

your project.

Chapter 2 Structuring standalone Django apps

13

The app that contains the custom tags must be in INSTALLED_APPS

in order for the {% load %} tag to work. This is a security feature: it

allows you to host Python code for many template libraries on a

single host machine without enabling access to all of them for every

Django installation.1

�What about middleware and URLs and views?
Many Django apps include additional Django-related features like middleware, views, URL

definitions, and context processors. It even suggests so right in the Django documentation:

Applications include some combination of models, views, templates,

template tags, static files, URLs, middleware, among others.

They’re generally wired into projects with the INSTALLED_APPS

setting and optionally with other mechanisms such as URLconfs, the

MIDDLEWARE setting, or template inheritance.

These features are beneficial and even necessary for some Django apps, but strictly

speaking they do not require a Django app to use. You can include URLs, middleware

classes, forms, and even views from any Python package, whether it’s a Django app in

your INSTALLED_APPS or a Python package available on your path.

A Django library is no less useful just because it’s not an installable app. Forms,

middleware, and views, for instance, are core components of Django projects. How your

library is integrated into other Django projects will differ slightly, but the steps to plan,

test, develop, and maintain your library will not differ significantly.

�Example app: currency
We’ll start with a very basic example app. This is an app to make working with currencies

easier. At their base, currencies values are just numeric values, specifically decimal

values, that refer to an amount in a specific denomination and often at a specific point in

time. About $10 is not the same as €10, and $10 in 2015 dollars is not the same as $10 in

1990 dollars.

1�Django docs: https://docs.djangoproject.com/en/2.2/howto/custom-template-tags/
#custom-template-tags-and-filters

Chapter 2 Structuring standalone Django apps

https://docs.djangoproject.com/en/2.2/howto/custom-template-tags/#custom-template-tags-and-filters
https://docs.djangoproject.com/en/2.2/howto/custom-template-tags/#custom-template-tags-and-filters

14

What we want to do is to make it easier to toggle the display of currency amounts

and easily format them. To start with, we just want to change the formatting of certain

numbers, so we’re just adding a couple of template filters.

The question in front of us is this: is it necessarily a Django app? As we build this

out, more and more of the functionality may be mostly non-Django specific, but if we’re

going to add template tags, they necessarily must be part of a Django app. Otherwise, we

can’t load the tags library. Since this includes a feature that must be accessed from an

installed app in INSTALLED_APPS, this will be a Django app.

We’ll start out the app, called currency, with just the necessary files at first. The file

structure will look like this:

currency

|── __init__.py
|── apps.py
|── templatetags
│ |── __init__.py
│ |── currency_tags.py
|── tests.py

The currency folder including an __init__.py file defines our module. Our core

functionality is just template tags and filters for now, so we just have a template tags

module, again with the __init__.py file and then the tag library name.

There’s one tests.py file for our tests and then an apps.py file. In order to satisfy the

requirements of a Django app, our package must define a models.py file or an apps.py

file, ideally including the latter even with a models.py. This allows us to define things

about our app and ensure that it’s picked up by Django as an app.

So now let’s look at the content. Our __init__.py files are empty (for now).

Here’s our apps.py file:

from django.apps import AppConfig

class CurrencyConfig(AppConfig):

 name = "currency"

 verbose_name = "Currency"

Chapter 2 Structuring standalone Django apps

15

Here’s our tags library in currency_tags.py:

from django import template

register = template.Library()

@register.filter

def accounting(value):

 return "({0})".format(value) if value < 0 else "{0}".format(value)

And here’s our tests.py file:

import unittest

from currency.templatetags.currency_tags import accounting

class TestTemplateFilters(unittest.TestCase):

 def test_positive_value(self):

 self.assertEqual("10", accounting(10))

 def test_zero_value(self):

 self.assertEqual("0", accounting(0))

 def test_negative_value(self):

 self.assertEqual("(10)", accounting(-10))

�Summary
In this chapter, you learned what constitutes, and how to structure, a Django app and

how to differentiate between a Python package that includes functionality useful to

Django projects and one that is necessarily a Django app. In the next chapter, we’ll look

at tests for your Django app, including their value and how to include them.

Chapter 2 Structuring standalone Django apps

17
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_3

CHAPTER 3

Testing
Tests ensure that our code does what we expect it to do. They also ensure that changes

to the codebase don’t break something unexpected, and they signal to other users of our

app that they can depend on the code.

In this chapter, you’ll learn exactly how tests provide value in a standalone

Django app, how to run your app’s tests outside of a Django project, how to test more

complicated multi-app relationships, how to include your tests, and also whether or not

you need to configure Django in order to test your app.

�Why test?
Everyone says that you should test. It sounds obvious - if testing is good, we should do it.

But this begs the question about the benefits of testing.

Testing your Django app several purposes. Written in conjunction with, or before

your application code, tests helps provide a working specification against which your

code can be verified. In this capacity they can also help shape the code and interface, as

if you’re adding some feature from scratch, a test will give you your first chance of using it.

Once in place, even otherwise trivial tests serve to protect against regressions

introduced by seemingly trivial changes to the codebase.

While not their primary use, tests can also provide an example of how to use your

code. In this capacity they’re certainly not a replacement for proper documentation,

but tests as code examples - especially when tests are run automatically - are a form of

documentation that you can verify is up to date.

Underlying all of this is the fact that computer programs are written by human beings

and we humans are terribly unreliable when it comes to writing reliable code on our own

(apologies if this does not apply to you). There are all kinds of things we can’t predict,

edge cases we’re not good at seeing right away, and interactions that aren’t obvious at

the surface of our code.

18

Testing doesn’t solve all of these problems, but tests provide a potent tool to

remove a lot of uncertainty about our code. Ultimately tests provide confidence, both

for you and other users of your app - and don’t forget that “future you” is likely one of

those users!

�Testing apps from a Django project
Django projects provide a way to run tests with the test management command:

python manage.py test

This command will run all tests in your Django project. The scope can be narrowed

to run only individually namedi apps by using the test management command

combined with the app name, like so:

python manage.py test myapp

So if the very simple myapp looks like this

myapp/

 __init__.py

 models.py

 tests.py

with a simple tests.py file like so

from django.test import TestCase

from myapp.models import SomeModel

class TestSomeModel(TestCase):

 def test_str_method(self):

 instance = SomeModel()

 self.assertEqual(f"{instance}", "<Unnamed Instance>")

then the command python manage.py test myapp will run all of the test in myapp.

tests using Django’s default test runner, for example, with the example tests file given, the

command will run the TestSomeModel.test_str_method.

Chapter 3 Testing

19

This works just fine when you’re working from a larger Django project, for example,

if you’re developing your app in the context of a working project. It’s of much less help if

your app is a standalone library where the code is intended to be managed from outside

of a project. For a standalone app, it’d be much preferable to be able to run tests just like

any other Python package.

�Testing the app
If you’ve worked with other Python packages before, you’ll have noticed that they’re

tested in a straightforward way. There’ll be a test module somewhere and usually the

setup.py file defines a test script to run using the python setup.py test command. That

works for packages using Django, too, with the caveat that much Django functionality

must be run from the context of a Django project, something Python’s unittest won’t take

care of for you.

To motivate some reasonable ways of testing a standalone app, let’s consider the

most immediately available strategy for testing the app: testing from whatever project

you’re using the app in (presuming you are extracting it).

This means that to test the myapp app, it needs to be installed on the same path as

your working project, that is, the same virtual environment, and that it needs to be in

your working project’s INSTALLED_APPS. When it’s time to test changes to myapp, you’ll

need to go back to the working project to run them, that is, running ./manage.py test

myapp.

If this sounds less than sensible, you’re on the right track. However, this strategy

doesn’t allow testing a standalone app, which means it’s not repeatable for anyone else

who isn’t working with your project. And if you’re going to package the app for reuse, you

won’t have recourse to your original project. Thankfully there’s a better way.

�Testing outside of a project
To motivate our subsequent solutions, we’ll set up the most obvious solution possible.

This will entail setting up a dummy, or holder, project and running the tests from there.

To do, we would create new Django project in our app’s root folder, parallel to the app

source folder itself. This project will then include our app in the INSTALLED_APPS list.

Then, running the tests and any other commands is as simple as invoking the holder

project’s manage.py file just like any other project.

Chapter 3 Testing

20

Next step is to create an example project in the package root that will be a stripped

down project only including our app. Now we can run manage.py commands directly in

our package and test the app. You might even add a bash script at the project root that

will execute the tests no matter where they’re located.

#!/bin/bash

cd sample_project

python manage.py test myapp

Here’s what the layout would look like:

sample_project

 __init__.py

 settings.py

 url.spy

 wsgi.py

 __init__.py

 manage.py

myapp/

 __init__.py

 models.py

 tests.py

Then to run the tests for your app, you’d run them from the example project just as if

it were a production-ready Django project:

python manage.py test myapp

This works and is an improvement over the original example, but it still adds more

than necessary just to run our tests.

�Using a testing script
Of course, Django doesn’t demand that we have project scaffolding, just that Django

settings are configured. So a better solution is a Python script that configures those

minimalist settings and then runs the tests.

Chapter 3 Testing

21

The script needs to do three things:

	 1.	 Define or configure Django settings

	 2.	 Trigger Django initialization (i.e., with django.setup())

	 3.	 Execute the test runner

There are two ways to provide Django settings. One is to configure them directly in a

test script with keyword arguments for settings.configure(). The other is to point to a test-

only settings.py module, just as you would, running a production app. The following is a

small example of the former:

#!/usr/bin/env python

import sys

import django

from django.conf import settings

from django.test.utils import get_runner

if __name__ == "__main__":

 settings.configure(

 DATABASES={"default": {

 "ENGINE": "django.db.backends.sqlite3"

 }},

 ROOT_URLCONF="tests.urls",

 INSTALLED_APPS=[

 "django.contrib.auth",

 "django.contrib.contenttypes",

 "myapp",

],

) # Minimal Django settings required for our tests

 django.setup() # configures Django

 TestRunner = get_runner(settings) # Gets the test runner class

 �test_runner = TestRunner() # Creates an instance of the test runner

 �failures = test_runner.run_tests(["tests"]) # �Run tests and gather

failures

 �sys.exit(bool(failures)) # Exits script with error code 1 if any failures

Chapter 3 Testing

22

And using a settings module instead (from the following Django documentation).

This is functionally the same as the preceding code except it breaks out the settings into

a more typical settings file, in this case tests/test_settings.py

#!/usr/bin/env python

import os

import sys

import django

from django.conf import settings

from django.test.utils import get_runner

if __name__ == "__main__":

 os.environ['DJANGO_SETTINGS_MODULE'] = 'tests.test_settings'

 django.setup()

 TestRunner = get_runner(settings)

 test_runner = TestRunner()

 failures = test_runner.run_tests(["tests"])

 sys.exit(bool(failures))

Why choose one over the other? Using a separate settings module will be more

flexible if you have other needs for the settings. The in-script configuration style suffices

for simpler apps, for example, those without models.

In Chapter 22 we’ll examine a more ergonomic way of managing your tests and test

configuration.

�Testing application relationships
What happens though when your Django app is designed to be used with other apps, or

used in conjunction with them? Testing only your app in isolation is not enough. In this

case you’ll need to create sample apps and include them in your test settings.

Let’s say your app provides base models. For our example it’s a very basic

ecommerce module that lets people make a product out of any model they want, adding

some basic fields like price, a SKU, and whether it’s actively sold or not. The app also

includes a queryset class with some helpful methods defined. Since our model class is

abstract, the queryset class has to be associated with a concrete model in the user’s app.

Chapter 3 Testing

23

class ProductsQuerySet(models.QuerySet):

 def in_stock(self):

 return self.filter(is_in_stock=True)

class ProductBase(models.Model):

 sku = models.CharField()

 price = models.DecimalField()

 is_in_stock = models.BooleanField()

 class Meta:

 abstract = True

Now to test this, we need a concrete model (and it would be helpful to have

tests actually using the base model anyhow). To do this we’ll need another app that

defines a concrete model inheriting from our abstract model, and that uses the

provided queryset.

Such an app need only provide the bare minimum to be an app, specifically the

models.py module:

test_app/

 migrations/ ...

 __init__.py

 models.py

And in your models file, define a model using your app’s abstract base model:

from myapp.models import ProductBase, ProductQuerySet

class Pen(ProductBase):

 """Testing app model"""

 name = models.CharField()

 pen_type = models.CharField()

 objects = ProductQuerySet.as_manager()

Chapter 3 Testing

24

With the models defined, make sure the test app is included in your test settings

INSTALLED_APPS:

INSTALLED_APPS = [

 'myapp',

 'test_app',

]

Note that this applies to Django packages that are not installable apps as well if they

require any level of integration testing.

�Where to include tests
When you add tests to apps inside of your Django projects, you probably include test

modules inside each app, either with a single file or a directory:

myapp/

 __init__.py

 models.py

 tests.py

This will work for standalone apps too, but generally should be avoided. Your tests

in this case should live in a separate, top-level module outside of your app. If you’re

testing with additional modules, like test apps, then this ensures that there are no

dependencies on non-installed modules within the code that ships with your app. It

also keeps the installed package cleaner (although it’s worth noting that this is not a

unanimous opinion).

myapp/

 __init__.py

 models.py

test_app/

 __init__.py

 models.py

tests/

 __init__.py

 test_models.py

Chapter 3 Testing

25

�Testing without Django
The emphasis here is on Django apps, that is, Python modules that can be installed and

included in a Django project to use models, template tags, management commands,

among others. But in many cases the functionality provided by apps can be tested as

plain old Python code.

This will be the case with anything in your app that requires setup, like models.

However, this isn’t true of every part of Django or every part of your app. And in fact if

your app doesn’t have any models, and you don’t have any request-related functionality

to test - especially at an integration test level - then you can forgo with setting up or using

Django’s test modules, sticking to the standard library’s unittest, or any other testing

framework you so choose.

You will only need to invoke a test runner through Django if you’re loading the Django

project, for example, anything involving models, settings, or a full request/response cycle.

In most cases, testing features like forms, the logic in template tags and filters and others,

is not dependent on any of the parts of Django that require project setup.

Why would you do this? It’s extraordinarily doubtful that the performance gains from

using unittest over django.test are going to be noticeable to say nothing of impactful.

However, if these are the only tests that you need, then your testing environment will be

simpler to set up and run.

�Summary
In this chapter, you learned why it’s important to have tests for your standalone app and

how to begin testing a Django app when it’s no longer part of a parent Django project.

You also learned how to simplify test execution with a Python script that handles Django

setup and how to test app features that are predicated on relationships defined by

other apps outside of your own. Lastly, you learned where to include the tests for you

standalone app, in a top-level tests directory, and that, for some types of apps that don’t

rely on the database or template engine, it may be sufficient to use Python’s unittest

library without the Django setup.

In the next chapter, you’ll learn how to manage database migrations for your app

without a Django project.

Chapter 3 Testing

27
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_4

CHAPTER 4

Model migrations
Database migrations allow you to track changes in your database models and propagate

them to the underlying database schema. If your standalone app includes concrete

models, then you’ll need to include migrations with your app. As with running tests, this

is not fundamentally different in a standalone app than in an app in your own project;

however, there are a few gotchas to watch out for.

In this chapter, you’ll learn how to manage your app’s database migrations outside of

your Django project and a couple of practices that will make using these migrations safer

and clearer.

�Migrations outside of a project
When you create migrations for an app in your project, you simply run the management

command to do this from project root:

./manage.py makemigrations app

With migrations then we run into the same problem as we did for running tests – we

don’t have a project from which to run the migrations command.

The runtests.py script used for running tests could be adapted to run the migration

command; however, it’d be simpler to adopt an existing pattern: the manage.py script

that ships with every Django project.

In your project root, create a manage.py file. The name itself is not important, but

with this name its purpose will be obvious to you and anyone else. Just in the runtests.

py example, you can configure Django directly from the file calling settings.configure or

pointing to a separate settings module. The end result looks almost indistinguishable

from the standard manage.py script.

import sys

import django

from django.conf import settings

28

INSTALLED_APPS = [

 "django.contrib.auth",

 "django.contrib.admin",

 "django.contrib.contenttypes",

 "django.contrib.sites",

 "myapp",

]

settings.configure(

 DATABASES={

 "default": {

 "ENGINE": "django.db.backends.sqlite3",

 }

 },

 INSTALLED_APPS=INSTALLED_APPS,

 ROOT_URLCONF="tests.urls",

)

django.setup()

if __name__ == '__main__':

 from django.core.management import execute_from_command_line

 execute_from_command_line(sys.argv)

�Testing migrations
Occasionally a developer pushes updates only to discover surprising failed builds,

or, worse, a failed deployment, all because one or more migrations weren’t added or

included. This could be as simple as changing the value of a field, or adding an entirely

new model and database table.

Alternatively, an update might work just fine, but the changes involved created a

gap between the state of the current models and the state defined by the migrations.

Changing an attribute on a model field is enough to do this, even if it doesn’t entail any

changes to the database schema. The problem in this scenario is that it puts end users

in a situation where they may create the missing migration themselves, which when

applied may conflict with subsequent migrations you add to the package.

Chapter 4 Model migrations

29

Both scenarios can be avoided by double checking that there are no changes

available to migrate. And better than double checking, this can be added to your

automated test suite.

from django.test import TestCase

from django.core.management import call_command

class TestMigrations(TestCase):

 def test_no_missing_migrations(self):

 call_command("makemigrations", check=True, dry_run=True)

All the preceding test does is run the makemigrations command with two command

line options, --check and --dry-run. The check flag makes the command exit with a

failing, nonzero status if there are any changes detected, and the dry-run flag is just

insurance that no other output is created. This test will then fail if you have missing

migrations.

�Additional migration guidelines
If you’re not in the habit of descriptively naming your migrations, creating a standalone

app is a good opportunity to pick up the habit. Django will try to provide a descriptive

name if the migration is simple enough, but this isn’t always possible, and instead you’ll

be left with timestamped migration. While it’s true that you can read the source code, it’d

be helpful to have an idea of the contents and purpose from the name. You specify the

name for your files with the -n option:

./manage.py makemigrations myapp -n add_missing_choices

A good guideline for migration names is to treat them like even more concise Git

commit message subjects: (i) what kind of change was made (e.g., adding, updating,

removing) and (ii) the subject of the migration itself. This will help you later when

you’re adding new features and it will help contributors understand the progression of

database changes.

Chapter 4 Model migrations

30

�Summary
In this chapter, you learned how to create database migrations for your standalone

app by taking advantage of the same basic strategies used for testing outside of your

project, how to add tests for missing migrations to your test suite, and why constructive

migration naming is valuable. In the next chapter, we’ll look at including HTML

templates in your standalone app, including how to include them but just as important

as what to include to optimize usefulness for your users.

Chapter 4 Model migrations

31
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_5

CHAPTER 5

Templates
The mechanics of including HTML templates in your standalone app are no different

than including templates in an app within a Django project. However, you do need to

give careful consideration to naming and also to the content that you include in your

templates. In this chapter, you’ll learn how to name your templates for end users and

how to optimize your template content for developer users.

�Three basic strategies
If your app includes views that return rendered HTML responses, it’ll be doing so by

rendering HTML templates. Because of how Django loads templates, you have three

options for handling initial template content:

	 1.	 Do not include the templates – after all, it’s the user’s site.

	 2.	 Include basic HTML templates.

	 3.	 Include detailed, even stylized, templates.

In most cases you should include basic HTML templates with your app that show

both the rendered results during development and the structure of the template context

included by your views.

�What to include
The first option, shipping your standalone app without HTML templates that are

referenced by your views should be considered a nonstarter. The primary benefit of

excluding templates is that it makes it obvious where users of your app need to add their

own templates. However, while the end users of your app are capable of providing their

32

own templates, and you can document which ones should be included, it adds friction

for using the app. It makes exploratory use more difficult and makes it less obvious what

should be expected in the resulting template.

There is no bright line for differentiating between the second and third options, but

beyond styling we can identify a more detailed template as one that introduces some

combination of elements that are not strictly necessary to deliver the app’s functionality.

This brief template, which we might imagine included for a simple app view, introduces

a couple of assumptions that are unnecessary.

{% extends "base.html" %}

{% block content %}

<h3>Here is a list of other fruits reported by the app</h3>

{% for fruit in fruit_list %}

 <li class="fruit-{{fruit.category }}">{{ fruit }}

{% endfor %}

{% endblock content %}

We’d expect the page to render like Figure 5-1.

Figure 5-1.  Rendered web page

Chapter 5 Templates

33

While a good and popular convention, there’s nothing that requires anyone to

name a base template base.html, nor is there any requirement that if such a template

exists, it should be the direct base template at this particular level. Likewise, there’s no

requirement that any project templates include a template block named content. It may

make sense, and it may be the singularly most consistent thing you’ve ever seen used in

Django projects, but it’s still a convention by convenience. So while this template will

create a richer initial experience for people with a base.html and content blocks, it’ll fail

for those who don’t.

A far better strategy – in most cases – is to include basic templates that show a user

the full range of template context with only minimal structure and styling. Here’s the

earlier example stripped down:

<h3>Here is a list of other fruits reported by the app.</h3>

{% for fruit in fruit_list %}

 <li class="fruit-{{fruit.category }}">{{ fruit }}

{% endfor %}

The result in Figure 5-2 is not exciting, but the expectation is that users will be

overriding our

templates eventually such that it’s not valuable to make them look production ready

in the shipped app.

There are cases where it is of use to provide significantly more detailed templates,

namely, where the business goal of the app is to provide a stylized outcome, customized

admin skins, for example.

Figure 5-2.  Minimal structuring and styling

Chapter 5 Templates

34

It’s a good idea to include translation strings in your templates but for simple

example templates not necessary. Given the expectation that your developer users will

be overriding these, they can include this or the language of their choice. See Chapter 13

for more on how to approach this problem.

�Email and miscellaneous templates
The same that can be said about rendering HTML responses from views can be said about

any other templated content, including emails. Email templates are a common feature in

apps involving user registration, invitations, and any other kind of outbound notice.

The one addition with regard to email and notification templates is to include them

in their own templates subfolder, for example, email/.

FLAT IS BETTER THAN NESTED: THE ZEN OF PYTHON

“Isn’t using an extra directory unnecessary nesting?” Remember that practicality beats purity,

and directories are “just” namespaces. The difference in namespace depth between myapp/

email/welcome_body.html and myapp/email_welcome_body.html is zero; they’re just split on

a different character. The difference in viewing the folder system is that they’re always obvious,

both in the file system and, more importantly, in the calling source code.

�Summary
In this chapter, you learned how best to include HTML templates in your standalone

app and what to include in them. You learned that rather than including heavily styled

templates that depend on specific base templates, it is better to include only the core

structure of the template to demonstrate what is available in the template. In the next

chapter, you’ll learn how to include static assets like CSS and JavaScript to provide base

styles and front-end functionality.

Chapter 5 Templates

35
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_6

CHAPTER 6

Using static files
In your own Django projects, you likely have static files, static assets including style

sheets, JavaScript, fonts, and images, all intended to be served directly to end users'

browsers. These static files, or static assets, allow you to control the layout and styling of

rendered HTML and introduce client-side (browser) interactivity.

While less common, some standalone apps may include their own static files, meant

to be referenced either directly by name from an end user’s project or through your

own app’s templates. Various types of standalone apps might use static files, typically

including apps that provide custom admin functionality and apps bundling front-end

framework components. In this chapter, we’ll step through when it makes sense to

include static assets in a standalone app and how to include them.

�Static files in standalone apps
Historically there have been two primary reasons to include static files in a reusable app:

	 1.	 To add interface-based functionality provided by the app, for

example, a core component of a greater whole.

	 2.	 To include static files for inclusion in a projects build process,

for example, including a JavaScript framework so that when you

run collectstatic, the required framework files are automatically

available to the project.

The latter reason, including static files like a JS framework in the project, is largely

obsolete. With the prevalence of front-end application code and build management

systems like Gulp, Webpack, and Parcel, it’s far more common for developers and

teams to include and build these files from those build systems, in parallel to the

Django static pipeline.

36

If the purpose of the app is to include the Vue.js framework for inclusion in project

templates, for example, it would be a better idea to eschew creating a Django app and

configure a project JavaScript build system (like Webpack) to include the framework

directly. Among other things, this enables fine-grained and portable control over

JavaScript dependency versions.

That's not to say that there is no use case for creating a reusable app to provide this

functionality. For smaller internal projects that don't warrant JavaScript build processes

or very narrow use cases, this could still be beneficial.

Rather, the primary use case for including static files in a standalone Django app is to

include interface-based functionality or styling. The mechanics of including static files

are simple:

	 1.	 Add a static/ directory within your app directory.

	 2.	 Add your static files into your new static/ directory.

Note  We still have one more step to take to ensure these files are included in
the final package for distribution, but this suffices to populate the project. Provided
end users have app directory–based static file collection enabled (which is
included by default), running collectstatic in a project with your app installed and in
INSTALLED_APPS will copy these files to the project's STATIC_ROOT directory.

STATICFILES_FINDERS = [

 ...

 'django.contrib.staticfiles.finders.AppDirectoriesFinder',

]

It's important to note that when you run the collectstatic command to collect

all of your project's static files, all of the files will be aggregated into the project's

STATIC_ROOT directory including their path relative to your app's static directory.

Chapter 6 Using static files

37

What this means is that if you include static/style.css, it will be included as /static/

style.css in the end project. This not only obscures the source of the file but also

allows for naming conflicts.

As with templates, the solution is to include a named subdirectory to namespace

the files:

myapp/

static/

 myapp/

 style.css

 templates/

 myapp/

 list.html

Now your file will be available as /static/myapp/style.css. The final name of your

assets may not be that critical if end users aggregate and minify these files, but you

always want to avoid naming conflicts.

�In the Django admin
If your Django app includes any kind of visual customization to the Django admin,

from full-blown style replacement to minor JavaScript widgets, you can include the

necessary files exactly as previously described. These files can be included in the same

kind of directory-based namespace or using an admin/subdirectory. This is a good way

of segmenting larger collections of files, although to avoid name conflicts, you should

ensure files have app-specific names and/or use an additional layer of directory-based

namespacing.

This layout will include myapp.css as /static/admin/myapp.css:

myapp/

 static/

 admin/

 myapp.css

 myapp/

 style.css

Chapter 6 Using static files

38

It is not necessary to use the admin/namespace for these files, however, especially if

the only static files your app includes are admin specific. If on the other hand your app

aims to override or supplant existing admin files, then you should namespace them such

that the file paths are exactly the same as the files you want to override.

myapp/

 static/

 admin/

 css/

 login.css

Now provided myapp is included after django.contrib.admin in a project's

INSTALLED_APPS, its login.css file will be used in place of Django's.

Lastly, if you include jQuery-based JavaScript for inclusion in the Django admin,

make sure your plugins or functions are compatible with the version or versions that

ship with the Django versions you aim to support. If you do this, and use the special

namespacing employed by the Django admin – Django's admin uses the django.jQuery

namespace for its included jQuery to avoid conflict with other introduced versions – you

won't need to include jQuery yourself. On the other hand, if your bespoke functionality

is dependent on a very specific version of jQuery for some reason, you'd want to include

that version with your app. In this case, you can refer to using the "normal" jQuery

namespace or your own, following Django's lead, to avoid any subsequent conflicts with

any other introduced JavaScript.

�Summary
In this chapter, you have learned how to include static assets in your standalone app,

what kind of static assets make sense to include in your standalone app, and how to

include JavaScript assets for Django admin–specific functionality. In the next chapter, we

will further pursue the issue of namespacing, motivating the challenges and building up

a set of strategies for creating sensible and coherent naming systems.

Chapter 6 Using static files

39
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_7

CHAPTER 7

Namespacing in your app
Namespaces are one honking great idea -- let’s do more of those!

—The Zen of Python

In the previous several chapters, we walked through how to add several features to your

app, including HTML templates and static files, which are organized and accessed by

using app namespacing.

In this chapter, we’ll learn how namespacing decisions pervade the rest of your

standalone app and how to take advantage of namespacing to make integration and use

of your app easier.

�Namespaces at a glance
Namespaces are a way of organizing named objects – in Python and beyond – such that

they have both a parent identifier and, more importantly, their names don’t conflict.

We’ve addressed namespaces a few times already, primarily in the context of template

and static file directories, but their use extends well beyond configuring directories for

collecting files.

With namespacing

–– Two different modules can each define a function with the same

name as the other, such that my_module.does_a_thing and your_

module.does_a_thing don’t conflict.

–– Two different classes can each define a method with the same name

as the other, such that MyClass.does_a_thing doesn’t conflict with

YourClass.does_a_thing.

40

–– Two different dictionaries can each contain the same key mapped

to different values, such that my_dict[“key”] = 4 while your_

dict[“key”] = 1.

The use of varied namespaces is easy to take for granted in your own project, but

when introducing code into varied Django projects, you should take the time to ensure

it’s sensibly namespaced.

�App itself
Our entrypoint to namespacing a standalone Django app is the app itself, more

specifically, its module name and how it’s named in its AppConfig. This is the easiest

but also most important step. In order to avoid name collisions in Django project

codebases, and, more importantly, to make distinctions obvious, the app name should

be descriptive and not obviously overlap known existing app names, either those that

ship with Django or are published for shared use.

If, for example, you built a standalone app for interfacing with the Stripe billing

service, you might be tempted to name it stripe. But if you did this, you’d run into

conflicts with the authoritative Stripe Python SDK. Instead, you might decide to name it

something related to Django, like django_stripe or djstripe, except now the latter at least

conflicts with an existing published standalone app! If your app is a substitute for the

functionality of djstripe, then they’re unlikely to be used in the same project and thus

collide; however, unless your app is a fork of djstripe, it’s likely to cause confusion for

developers working with the app. In this case choose a different name.

When the descriptive name for an app is unavailable or ill-advised because of a

conflict, choosing an adapted name with extra context, like stripe_billing, or using a

synonym or allusion, works too, like zebra. The zebra app is a now unmaintained app for

integrating Stripe payments in Django projects, so named because zebras have stripes.

�URLs
There are multiple ways of adding namespaces to URLs to make identifying them in

a project obvious and to avoid naming conflicts. In the event of a naming conflict,

the first matching named URL will be used. This can be confusing especially if no

exception is raised.

Chapter 7 Namespacing in your app

41

It’s entirely possible to use the base URL name itself to establish the namespace.

There’s little fundamental difference between myapp_list and myapp:list. The latter is

clearer about where the namespace “breaks,” but both ensure that a list-related view is

unique to the myapp name.

�Settings
If your standalone app allows configuration via django.conf.settings, then these will also

need to be consistently namespaced. What may work locally in your own Django project

is not guaranteed to work across every other project.

For example, for an app called organizations that manages accounts with multiple

users, you might have several settings that regulate the user model to use, the number of

members allowed per group, and whether admin users can invite new members:

GROUP_USER_MODEL = AUTH_USER_MODEL

GROUPS_LIMIT = 8

ADMINS_CAN_INVITE = True

While confusing enough in the original Django project, the scope of impact is quite

limited. Transferring this motley set of names across projects in a reusable app scales

out the problem however. So instead, ensure that each setting as named in the project

settings has a consistent preface, for example:

ORGANIZATIONS_USER_MODEL = AUTH_USER_MODEL

ORGANIZATIONS_USER_LIMIT = 8

ORGANIZATIONS_ADMINS_CAN_INVITE = True

For more on structuring settings and handling defaults within apps, see Chapter 7.

�Management commands
Django’s management commands function as command line–based interfaces to Django

projects. A good way to think about them is views but for terminal processing instead of

HTTP requests. There are many reasons for a standalone app to include management

commands: syncing data, importing and exporting data, or providing a way to create

default data.

Chapter 7 Namespacing in your app

42

For a quick review, management command names come from the module (file)

name. A module within management/commands in an app that defines a subclass

of BaseCommand simply named Command will be treated as a named management

command by Django.

myapp/

 __init__.py

 management/

 __init__.py

 commands/

 __init__.py

 migrate_user_data.py

Unlike URL names, however, management command names are global. If you want

to include a management command that will migrate user data across systems, using the

name migrate would conflict with the Django ORM’s migrate command, overriding the

base migrate command causing no small amount of heartburn.

Two solutions present themselves for both avoiding name conflicts and making clear

the purpose of the command:

	 1.	 Prefacing the command name (module name) with an application

identifier

	 2.	 Making each command name as descriptive and unique as

possible

Using the application name as a namespace for management commands is not a

common practice, but this doesn’t mean it’s not a good one. This is a good strategy if

your app has several management commands or if your app has a simple name. Both

django-jet and dj-stripe follow this practice, prefacing management commands with

jet_ and dj_stripe, respectively. In the case of dj-stripe, this means that a command to

sync_models is clearly defined as being related to dj-stripe, instead of being a globally

ambiguous command.

In the case of management commands, making the command names explicit even

without a name prefix is often sufficient. This can involve including the app name

elsewhere or referencing something unique to the app, like a class of data or service.

django-cachalot provides the invalidate_cachalot management command, which is

both an obviously app-specific name and also clear in what it does. django-reversions

provides createinitialrevisions and deleterevisions.

Chapter 7 Namespacing in your app

43

Absent a URL-like namespacing scheme for management commands, which strategy

you choose will be context dependent.

�Template tags
There’s no limit on how many modules you put in the templatetags pack-
age. Just keep in mind that a {% load %} statement will load tags/filters for
the given Python module name, not the name of the app.

—Django docs

Template tags – and filters – add both logical and formatting functionality to

templates at render time. Adding new template tags is as simple as including a

templatetags module in your app and then one or more tag libraries as submodules.

myapp/

 templatetags/

 __init__.py

 myapp_tags.py

Template tags and filters present two namespacing challenges:

	 1.	 The tag library names are global, that is, not namespaces with

regard to the app.

	 2.	 Individual tags and filters are similarly loaded into a single

namesapce, though only in the context of a template that loads the

library.

The implication is that you should aim to use name prefixing to keep your template

tag modules uniquely named and name individual tags and filters such that they’re

implicitly app namespaced, at least where they provide some kind of app-specific

functionality. If the tags or filters are intended to be used or useful beyond the context of

data in your app, then it may make sense to name them more generally.

Chapter 7 Namespacing in your app

44

�Models and database tables
App models and their respective database table names have default namespaces thanks

to the application name itself. A project could have fifteen different apps each with its

own model class named User and this would not pose any special conflict, so long as

they’re imported with aliases where they might come into conflict.

from app1.models import User as UserApp1

from app2.models import User as UserApp2

from app3.models import User as UserApp3

Nonetheless, import conflicts are not the only issues we seek to avoid with naming but

also descriptiveness. Where a model both serves in a very app-specific way (i.e., it would

be difficult to construe how it could be used outside of the app) and it is expected to be

used with other models outside of the app, then app-specific naming should be used.

class MyAppUser(models.User):

 """A user model specific to the myapp app"""

Database table naming is largely an afterthought in developing Django projects

since the ORM generates default table names. While there’s something to be said about

creating descriptive and human friendly table names, the primary concern for a reusable

app is simply that the app preface in the table name can be expected to be unique.

Let’s say you have an app that provides a kind of user-facing logging, and you name

the app logs; it’s not a very good name for a standalone app, but let’s take it as a given.

The database table names will be prefaced with logs_, for example, for a model named

LogEntry, the table name would be logs_logentry.

If you’re writing any SQL outside of the Django application, the table name lacks

the context that the model class does in the scope of the source code. So in this

example, if you absolutely had to maintain the app name logs, then it would be wise to

specify db_table values in your model Meta classes:

class LogEntry(models.Model):

 ...

 class Meta:

 db_table = "activitylogs_logentry"

Now, anyone writing SQL queries or inspecting the database will have a much

clearer understanding of what the table represents and what kind of data it contains.

Chapter 7 Namespacing in your app

45
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_8

CHAPTER 8

Creating a basic package
The last item left in taking a Django app and making it standalone is turning it into

an installable package. This itself is a rich topic which we’ll revisit in more depth in

Chapter 18, but for now our goal is to meet the minimum requirements to make a simple

Django app installable from outside the Django project.

�An example blog app
The simple blog app has been used for countless tutorials and examples, and where

it would otherwise be stale, here it lets us focus on the new features as a working

standalone app.

We’ll go into greater detail about setting up a package in Section 4, but this will

be enough to create a package that is testable, deployable, and publishable. Our blog

app is very simple, including only one model, Post, two views post_list and post_detail

and their respective URLs, a single template filter for rendering reading times, basic

templates for the two views, and a single CSS file for initial blog styles.

blog

├── __init__.py
├── admin.py
├── apps.py
├── migrations
│ ├── 0001_initial.py
│ ├── __init__.py
├── models.py
├── static
│ └── blog
│ └── blog.css

46

├── templates
│ └── blog
│ ├── post_detail.html
│ └── post_list.html
├── templatetags
│ ├── __init__.py
│ └── blog_tags.py
├── urls.py
└── views.py

We’ll include the blog app directory in the root blog_app directory, in addition to our

files for running tests and creating migrations.

blog_app

├── blog
├── manage.py
├── runtests.py
├── setup.py
|-- tests

The one thing we’ve included here is the setup.py file.

�A basic setup.py file
In order to package this, we need a way of defining the package: what is it called, what

version is it, and where is the code. If you’re familiar with Ruby Gemspec or Node

package.json files, the setup.py file serves a similar purpose. And it’s just Python. Let’s

look at the file.

from setuptools import setup, find_packages

setup(

 name="blog",

 version="0.1.0",

Chapter 8 Creating a basic package

47

 author="Ben Lopatin",

 author_email="ben@benlopatin.com",

 url="http://www.django-standalone-apps.com",

 packages=find_packages(exclude=["tests"]),

)

This is about as basic and stripped down as we can get. This isn’t enough to

release our package, but it should be enough to build it so we can install it locally as a

standalone Python package.

The ordering of the arguments to the setup function is not meaningful since they

are keyword arguments, and they are grouped and spaced here only for convenience of

explanation:

	 1.	 The first argument is the package name. If this is omitted, you

can still create a build directory for your package, but any build

artifacts, from wheel files to zipped source code, will be named

UNTITLED obviating publishing and installing elsewhere.

	 2.	 The second argument specifies the version number. This is critical

for replacing older versions when bug fixes or new features are

released.

	 3.	 The author name, which would be you.

	 4.	 Author email, which is your email address.

	 5.	 Project URL, which indicates where someone can find more

information about the project (e.g. documentation site, source

repository).

	 6.	 The final line specifies where the package is to be found. This is

the critical argument, and here by relying on the find_packages

function, we can avoid having to specify individual path names.

With this file we can run python setup.py check and see that we are not missing

anything and then run python setup.py build to generate a copy of the package as it will

appear in distributed form in the build/ directory.

Chapter 8 Creating a basic package

48

�Adding templates and static files
If you build the project using the python setup.py build command and list the files in

your newly created (or updated) build/ directory, you’ll find that your template and

static asset files are missing:

build/

 lib/

 blog/

 __init__.py

 admin.py

 apps.py

 migrations/

 0001_initial.py

 __init__.py

 models.py

 templatetags/

 __init__.py

 blog_tags.py

 urls.py

 views.py

This is because setuptools only look for Python files to include in your package (and

a few specific non-Python files as well). In order to include these, we’ll need to include a

manifest file, that is, MANIFEST.in.

The MANIFEST.in file allows you to specify files that should be included in your package

using a very simple named or wildcard format. In our case, we don’t want to have to

necessarily specify every single template and static asset individually, so we’ll want to make

use of wildcards. For examples sake, and because we only have the one CSS file, we’ll use both.

include blog/static/blog/blog.css

recursive-include blog/templates ∗.html

Both lines specify files by location with regard to the directory root, that is, the

MANIFEST.in parent directory. The first line includes a single file by path name, while

the second will include all HTML files located in the blog/templates directory, including

subdirectories. Files matching these lines will be copied into the build product along

with the Python files.

Chapter 8 Creating a basic package

49

Now if you build your app using python setup.py build, you will find your static and

templates directories including all of your CSS, JavaScript, and HTML templates:

build/

 lib/

 blog/

 __init__.py

 admin.py

 apps.py

 migrations/

 0001_initial.py

 __init__.py

 models.py

 static/

 blog/

 blog.css

 templates/

 blog/

 post_detail.html

 post_list.html

 templatetags/

 __init__.py

 blog_tags.py

 urls.py

 views.py

�Installing and using
There are two ways to install a usable, local copy of your app now. You can run python

setup.py install which will predictably install a copy of your app into the site-packages

directory relevant to your current Python path (e.g., system Python site-packages or a

virtualenv site-packages). Or you can run python setup.py develop. This will instead

install a link from site-packages to your project root in the form of a file named

blog.egg-info which contains the path to your package.

Chapter 8 Creating a basic package

50

The benefit of using the develop command is that since your package directory

is effectively symlinked into your site-packages, every change to your package is

immediately available anywhere you are using that package. Thus it makes it easier to

develop a package, here your standalone app, in parallel with another project without

having to reinstall with every change.

The downside is that you may end up developing the other project against an

untagged version of your standalone app (i.e., a specific release). The risk then is that

your other package doesn’t accurately capture the features or the published API of your

standalone app. You may also run into conflicts if you try to install your app in your

Python environment using python setup.py develop and then subsequently install using

pip. As such this should be used for exploratory work and not as a full-time strategy for

installing your standalone apps.

In Chapter 18 we’ll delve into some improved strategies for building a package that

make maintenance easier and publishing to share simpler.

�Summary
In this chapter, you learned about the basic structure and requirements of creating

an installable Python package for your standalone app. This provides a minimal first

step to working with your standalone app outside the context of your Django project

and gives you a foundation to publish on a package index. In the next chapter, we’ll

begin looking at how to assess and extract a standalone app from part of your existing

Django project.

Chapter 8 Creating a basic package

PART II

Scoping and Extracting a
Reusable App

53
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_9

CHAPTER 9

Scoping and drawing
boundaries
In the first chapter, we discussed in brief what it means to scope a Django standalone

app, including your goals in creating a standalone app, the considerations of third-party

dependencies, and the job the app is expected to perform.

In this chapter, we’ll revisit these same considerations in more depth and specifically

with respect to looking at a possible Django standalone app in the context of an existing

codebase.

�Scoping and the nature of the problem
Defining the scope of a software project is one of the first challenges in a project,

and one of the most important. The scope defines what it will do and where the

boundaries are and influences not just the size of a project in lines of code but also

how complicated it is, how many features it can support, and how challenging it is to

test and maintain the software.

The app as written in your own project may have an explicit scope, but it’s easy for

the boundaries to become blurred when it’s an integrated part of your project source

code. This may be because of feature creep or because of some immediate convenience –

it was simpler or more expedient to include some new small feature within the app even

though the purpose of that feature is orthogonal to the app’s core job, or is overly specific

to your particular project.

The scope of the app will influence what dependencies are required as well. As the

“dependency surface area” increases, so does the brittleness of the app with regard to

maintenance and version support. If your standalone app depends on Django, then

it’s simply tied to Django versions. If however it requires Django, and one or more

54

additional standalone apps, then it’s most likely limited by the degree to which all of the

dependencies overlap in their support of Django and Python versions. Reducing the

scope of your standalone app from what you might have included in your own project

has the expected effect of making it far simpler to maintain.

�The job of a standalone app
What would you say you do here?

If you’re looking for a heuristic for scoping and defining the boundaries of the app,

you can do worse than to simply write a brief job description. As an employee you may

have an ill-fitting job title and a multitude of varied responsibilities, but if you strip it

down, then more than likely you can define a purpose for your job beyond the things you

do. As a software developer, your job is to translate business needs into working software.

As a CEO your job is to lead the company to growth and profitability (in most places, at

least). There may be more job responsibilities, and these may be important, but nearly

every job has a singular purpose. Likewise, your standalone app should have a guiding

purpose that can be briefly and concisely described.

Put yourself in the shoes of a marketer (no, really). How would you describe your

app? What problem does it solve? How does it solve that problem? How does it solve this

problem for many other applications?

The answers to these questions will be helpful in marketing an open source package,

but that’s not why we’re asking them.

Here are several popular standalone Django apps and, in my own words, their brief

job description:

–– The job of Wagtail is to make it easier to model and serve user-edit-

able content in a user friendly way.

–– The job of Django REST Framework is to provide a Django-like

experience for creating RESTful APIs and connecting existing Django

apps to the API.

–– The job of django-taggit is to make it easy to add tags, in the taxo-

nomical sense, to any kind of object in a Django project

–– The job of Easy Thumbnails is to create resized images for a single

uploaded image.

Chapter 9 Scoping and drawing boundaries

55

These apps vary in their size and the scope of features they provide, but in each case

all of those features can be traced back to a singularly stated purpose.

�The dimensions for creation and extraction
There are a number of dimensions by which you can look at a standalone app; here I

want to focus on the axis that I’ll call vertical and horizontal segmentation, or in other

words, business feature vs. technical foundation. In the following figure, we see that a

feature (yellow bar) is a vertical slice through the horizontal components of any app or

project (Figure 9-1).

Figure 9-1.  Vertical and horizontal segmentation

Chapter 9 Scoping and drawing boundaries

56

Do not be persuaded that this allows for some kind of scientific taxonomy; rather, it’s

a handy way of assessing how modules are broken up and organized and, in the context

of standalone Django apps, how to define the job they do.

Horizontally segmented modules – apps or otherwise – provide some kind

of common “infrastructure” that can be used across projects that supports the

development of features. This is code that delivers something only a developer will

experience (by and large).

Examples include

–– django-model-utils

–– django-extensions

–– django-crisyforms

These primarily solve problems that development teams face, like making it

easier to render complex forms and providing common base classes to avoid repeated

boilerplate code.

Horizontally organized code within a project looks like this, emphasizing

organization by what the code does first and what business domain it solves for second:

app/

 forms/

 models/

 ...

 image_models.py

 user_models.py

 subscription_models.py

 views/

This will look familiar since this is the convention for organizing code within a

Django app, but it’s also the convention for organizing project code in other frameworks.

Vertically segmented modules, on the other hand, are organized first around a

business need, that is to say, usually something that a user will experience.

Examples include

–– django.contrib.auth

–– Haystack

–– django-suit

Chapter 9 Scoping and drawing boundaries

57

It should be obvious that this isn’t an “either/or” distinction of course. But Django’s

app-centric architecture encourages vertical or feature-based organization. A Django

app includes everything from models to URL routes to forms and views. This is

necessarily how standalone apps ship, but this is also the default pattern for apps within

a Django project.

If the functionality you’re targeting looks like something that’s feature agnostic, it

probably warrants inclusion in an app separate from features.

�Sizing the scope of an app
A standalone Django app should be big enough to do its job, and no bigger. But how big

is that? What are the consequences of mis-sizing the scope a standalone app? And how

can you solve for an app that looks too small or unwieldy large?

First, an app should be no bigger than its job. But it should also be big enough. If it

is too big, it’s either doing too much, or it’s another framework in and of itself. Too small

and it may not warrant creating a standalone app, or even an installable package.

�When an app is too big
What does it mean for an app to be too big? There are some rather large standalone

apps that aren’t necessarily too big. The answer is as clear as mud: it depends. The

first thing that makes an app too big is including extraneous features that either

aren’t critical to the app or would be sufficiently useful in their own app. A tractable

example of this would be an app that includes its own utility base classes, like the kind

you’d find in django-model-utils. These extra features can become distractions when

maintaining the app and adding features down the road. They increase the amount of

code that needs to be tested, as well. Don’t jettison them if they’re necessary, but make

sure they’re necessary.

A couple of solutions stand out for apps that are too large:

–– Break it up into separate packages.

–– Organize into sub-apps.

Chapter 9 Scoping and drawing boundaries

58

Breaking into separate packages is a good idea if at least one of the potential

packages is sufficiently useful on its own. The benefit of separate packages in such a

case is of a wider net for more use cases. However, each additional package, whether

a standalone app or not, increases the cost of maintenance and may make it more

challenging to ensure that the two components continue to work well together.

If they’re mutually interdependent, then there’s no benefit in creating separate

packages, and using sub-apps or mini apps in a single package is a superior choice.

Organizing a standalone app into sub-apps requires then that each app be added

individually to a target project’s INSTALLED_APPS like so:

INSTALLED_APPS = [

 ...

 "cms",

 "cms.pages",

 "cms.photos",

 ...

]

This strategy consists of a primary, top-level app with subsidiary and constituent

feature apps included as their own installable apps. While clunkier than adding only the

one “core” app, this may allow you to better structure the components logically and to

allow developer users to exclude functionality that they don’t need. This doesn’t reduce

the footprint of your app’s source code, but it does reduce the scope that anyone using

the app must consider.

�When an app is too small
The problems of making an app that is too small are different and arguably less

significant than those of an app that is too large. The main issue is that it risks leading to

a preponderance of tiny dependencies that all need to be included and maintained. The

benefit of using standalone packages decreases when their number transcends what you

can easily remember. And we’d like to minimize the dependencies our app introduces

into other people’s projects.

Chapter 9 Scoping and drawing boundaries

59

If you are looking at creating multiple small apps, first consider whether they really

make sense on their own, or if they have sufficient commonality, in either functionality

or business domain to bundle together. If you find yourself using these features together

in more than one project, that is likely the case.

Creating a tiny standalone app shouldn’t be treated as forbidden though. And there’s

an obvious tension between the two ends of the spectrum.

�Summary
In this chapter, you learned how to approach scoping your app, by defining the job that

the app is to accomplish, by assessing the possible feature and component dimensions

of the app, and additionally identifying how the size of the scope can be assessed and

adjusted. In the next chapter, we’ll learn how to begin the process of refactoring and

extracting your app from an existing Django project.

Chapter 9 Scoping and drawing boundaries

61
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_10

CHAPTER 10

Separating your app
While some packages start their lives fully born as standalone installable libraries, it’s

more typical to begin in one form or another as functionality in an existing project. This

may be spread throughout or in its own app within the project.

The goal in this chapter is to extract functionality from one or more apps, either

removing a monolith or consolidating functionality from across multiple apps and

putting this into a distinct and project-agnostic app in your project. That means not only

its own individual app but one that “knows” nothing about nor depends on the specifics

of your original Django project.

�Getting started
For example, this might mean extracting and removing specific subscription plan

information out from a software-as-a-service (SaaS) project. It means using only

settings that are core to Django or specific to the app. And it often means dropping the

assumption of specific backend services such as an email provider or cloud file storage

provider where this assumption is not necessary to the core functionality of the app.

The key to all of this is understanding where your app(s) currently fit in your project’s

hierarchy of dependence and where they ought to fit in that hierarchy. The hierarchy

of dependence describes how various modules are related to each other in a Django

project (it can be used with any software project, even an individual Python package, too)

and which depend on each other. It includes your soon-to-be-standalone app, project-

specific Django apps, other third-party standalone Django apps, Django itself, third-party

Python packages that are Django-agnostic, and even the Python standard library.

Diagram of architecture here. We want to show that you’re pull

foundational apps or perhaps from above, what this is depending on.

Thus our goal is to move the app up the hierarchy of dependence, if necessary, so

that it is used in outside Django projects.

62

�Refactor first
Anytime you’re coming back to or even starting to work on code, there is going to

be a temptation to rewrite or edit the source code, or what’s popularly referred to as

refactoring. In its original meaning however, refactoring means only modifying the code

without affecting how it works, or in Martin Fowler’s words (emphasis added):

Refactoring is the process of changing a software system in such a way that
it does not alter the external behavior of the code yet improves its internal
structure.

—Refactoring, 1st Ed., Martin Fowler

The term’s colloquial meaning is much looser, and it’s often used to describe

any kind of editing to source code. Here however we focus on the stricter definition

of refactoring. This includes things from reformatting the source code to renaming

variables, up to breaking apart or moving functions, methods, classes, and even

modules. It does not involve adding new functions or replacing algorithms. Those may

be good or even necessary steps, but they are not refactoring.

Despite using the word temptation with regard to refactoring, refactoring is a good

thing. It tends to make code easier to understand and easier to reuse as well. These are

desirable benefits in extracting a standalone app. However, in some cases, it can become

a distraction if it obscures other changes undertaken in the code, so when there is an

estimated level of refactoring ahead, it makes sense to tackle that first. This gets it out of

the way and makes the code easier to work with for the more significant efforts.

Code formatting – from standardized indentation to the organization of package

imports – is a great starting point. The diffs in your code can be helpful to track as you

progress, and these are less useful if they’re filled with spurious changes. If you decide to

use an autoformatter like black and you haven’t before, its first run may result in a large

diff. Isolate this first as a commit and move on, so you know what changes you made and

which were just cleaning up whitespace.

Next you’ll likely want to rename some variables or functions, especially if they’re

named in such a way that’s overly reflective of the larger Django project. The second

reason for undertaking this refactoring as the first step is that changes to function and

class names, function signatures, or class initialization signatures will likely cascade into

your existing Django project. There’s a benefit to front loading as much of this work as

possible, so that subsequent updates can focus as narrowly as possible on the app itself.

Chapter 10 Separating your app

63

�Model renaming and migrations
Renaming your models and/or database tables is a refactoring exercise, but it comes

with some Django-specific caveats. This is because changes to the class and even

module name of Django models affects the migration state, as well as the default

database table name when the table name is not explicitly specified. And carelessly

changing table names in this way can be destructive.

The first step is to ensure your app models use a common and sensible database

table namespace. Your existing app name may not be appropriate for a standalone app,

and it’s possible too that your models started life in another app within your project.

As a result the table names might be inconsistent and they might be insignificantly

descriptive.

So for each model in your app, ensure that it has its current table name explicitly

named in the model’s Meta class:

class LogCategory(models.Model):

 class Meta:

 db_table = "tracking_logcategory"

class Entry(models.Model):

 class Meta:

 db_table = "someapp_entry"

At this point you should create a migration file that captures this state change,

though at this time it will have no effects on the database (since the name is not actually

changing):

class Migration(migrations.Migration):

 dependencies = [

 ('myapp', '0001_initial'),

]

 operations = [

 migrations.AlterModelTable(

 name='entry',

 table='someapp_entry',

),

]

Chapter 10 Separating your app

64

The second step is to rename these tables, as necessary, using the Meta.db_

table attribute:

class LogCategory(models.Model):

 class Meta:

 db_table = "tracking_logcategory"

class Entry(models.Model):

 class Meta:

 db_table = "tracking_entry"

Again, create an individual migration file for this change. The resulting migration

when run will alter the underlying database table names but otherwise not affect the

structure of your database.

class Migration(migrations.Migration):

 dependencies = [

 ('myapp', '0001_initial'),

]

 operations = [

 migrations.AlterModelTable(

 name='entry',

 table='tracking_entry',

),

]

At this point you are free to rename the model classes within your app without

affecting the database.

One point: If you have many-to-many fields defined on any of

your app's models, you should ensure you have an explicitly

defined through model with a table name defined in the

preceding example. You will need to start with the existing table

name as well.

A further wrinkle you may run into if you’re moving model classes between apps

–for example, extracting a project-specific model or consolidating a few models – is

that Django migrations when models change apps are destructive. If we want to move a

model out of an app, here’s the resultant migration:

Chapter 10 Separating your app

65

class Migration(migrations.Migration):

 dependencies = [

 ('myappp', '0001_initial'),

]

 operations = [

 migrations.DeleteModel(

 name='Entry',

),

]

That migration operation right there is a deletion and if run would result in

dropping the underlying database table. There are, of course, various ways around

this. You could fake the migration, running ./manage.py migrate myapp 0001 --fake,

for example, to advance the migration state without affecting the database. This

subsequently needs to be executed for the target or recipient app and suffice to say is

a bit cumbersome in local development. It's downright nasty to try orchestrating in

production deployments.

You could also subclass the migration operation class, to make its database_forwards

method not do anything, thus effecting no change in the database:

class DeleteNothing(migrations.DeleteModel):

 def database_forwards(self, *args, **kwargs):

 """Do nothing"""

 pass

This is arguably superior to faking migrations, but similarly cumbersome,

potentially confusing, and thankfully unnecessary. This is a use case for the migrations.

SeparateDatabaseAndState operation class.

A database migration like our DeleteModel has two effects: one on the database,

which we're trying to prevent from happening, and one on the cumulative state of the

app's models. The latter we do need. The migrations.SeparateDatabaseAndState class

allows you to separate out the two, so that the state affecting migrations can be run.

The result is an updated migration state that “knows” what the table name is and that

won’t effect any changes on the underlying database.

Chapter 10 Separating your app

66

Implementing this is simple; we insert the class initializing call in the top-level

Migration.operations and then move the deleting operation into the state_operations

keyword argument to SeparateDatabaseAndState. The previous migration then

becomes this:

class Migration(migrations.Migration):

 dependencies = [

 ('myappp', '0001_initial'),

]

 operations = [

 migrations.SeparateDatabaseAndState(

 state_operations=[

 migrations.DeleteModel(

 name='Entry',

),

]

)

]

When run, this will advance the state of the myapp migration history so that the

Entry model is no longer a part of the app, but it will not make any changes to the

database.

�Allowing customization
Likely your app makes some assumptions that are based on your use of it. These could

include specific backing services or even workflows that are close to what you’d need

in another project but still sufficiently over-specific to be useful as shared functionality.

There are a few ways of accounting for this, and while not necessary to do now, it is

advantageous to make these changes while they’re still in your working project.

Chapter 10 Separating your app

67

�Backend classes
You’ve probably used standalone apps that provide options for customized

functionality, including

–– django-anymail (email)

–– django-allauth (authentication)

–– Haystack (search)

Each of these solves a specific business problem that has several solutions. In the

case of the aforementioned apps, this is accomplished by allowing the developer user

to pick a specific backend or provider. As with database support in the Django ORM,

each defined backend or provider handles the specifics required for that integration, but

exposes a common interface to the developer user for a seamless experience.

The crux of using this option is that every backend or provider class inherits from a

base class or otherwise matches a base interface. If your app is supposed to manage a

workflow, but currently has a very project-specific workflow, this workflow can be moved

into a separate module in your project and referenced by import in the app.

In the project settings, you might require a dotted path to the class or module:

MYAPP_WORKFLOW = "core.workflows.CustomerWorkflow"

And then in your app, where you have a requirement to kick off this workflow, you

can simply import the correct class or module by path:

from django.conf import settings

from django.utils.module_loading import import_string

def get_myapp_workflow():

 """Returns the class by dotted path from settings"""

 import_string(backend or MYAPP_WORKFLOW)

def run_workflow():

 """Calls the user/project defined class"""

 workflow_class = get_myapp_workflow()

 customer_workflow = workflow_class().start()

 ...

Chapter 10 Separating your app

68

�Signals
Django’s signals provide for a way of dispatching named events and handling them with

synchronous callback functions. The prototypical examples include Django’s built-in

signals emitted at lifecycle milestones in ORM objects, including pre_save, post_save,

pre_delete, and post_delete.

Signals allow you to respond to these events, from specific classes, and modify the

objects in question or trigger some other workflow as a result of the specific action or

parameters. When overly used, signals can be confusing, obfuscating the flow of the

program, making it harder to debug, to test, to manage performance, and on the whole to

maintain. That being said, they do solve the problem of how to change how some object

is treated or how some function should work when you know access to the originating

code is unavailable. For example, it would be trivial to add some statements to the save

method of a model class in your own project; this becomes infeasible when working with

a standalone app.

class Entry(models.Model):

 def save(self, **kwargs):

 some_webhook(self)

 return super().save(**kwargs)

Especially if the custom functionality looks like a one off, or is a way of tying changes

in one model to another such that it follows a fairly standard pattern marked out by

Django itself, signals can help you unravel project-specific logic from your app and

keeping it in your project:

from django.db.models.signals import pre_save

from django.dispatch import receiver

from myapp.models import Entry

@receiver(pre_save, sender=MyModel)

def webhook_sender(sender, ∗∗kwargs):
 some_webhook(kwargs["instance"])

And if you’re looking for somewhere to be liberal with debug logging, signal handlers

are a good place to start.

Chapter 10 Separating your app

69

�Finalization and removing from the project
As a last step before removing the code, take this opportunity to clean up and squash the

app migrations so that when you remove the code from the project, it starts life without

any references to your project. And nobody wants to run spurious migrations.

Once the code has been extracted, you can move it out of the project. There’s no

need to race off and publish to the Python Package Index (PyPI) just yet.

From here you can include the code in your project as a submodule, using Git, or

set up the basics of an installable package and include the requirement from a remote

source repository. This allows you to start using a single codebase in multiple projects.

�Summary
In this chapter, we reviewed some strategies from removing your app from your project,

including how to preserve your existing database structures and how to enable project-

level customization when the app code is no longer part of the project.

In the next chapter, we’ll look at some strategies for adding your app back into your

project.

Chapter 10 Separating your app

71
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_11

CHAPTER 11

Adding your app back in
Extracting your app from your project entails several steps:

	 1.	 Refactoring the app

	 2.	 Moving it to a top-level namespace (if necessary)

	 3.	 Removing it from the project

Step three leaves you with a conundrum if you want to continue using the app in

your original project(s). Unless you have no need for your new standalone app or, as may

be the case in some instances, you need to keep an original, un-refactored source in your

project, you’ll need to include the new standalone app in the project or projects that

spawned it.

�Verifying locally
The first step is to verify integration using your project from a locally installed source

outside of your project. For this you can rely on installing within your project’s

Python environment using python setup.py develop as described in Chapter 8. Note

that if your project is only available via a virtual machine (e.g., using Vagrant) or a

container (e.g., Docker), it would be expeditious to skip to the next step with regard

to deployment.

Our presumption at this point is that you have removed the app from your project,

either from the project root or the project repository altogether, such that it’s not in the

project path. At the very least, this means if you try to run your project without installing

the app in some explicit way, you can expect to run into an ImportError or two.

However, simply installing from the app’s own root outside of the project root means

that you can verify that the project still runs as expected with the code removed from the

project itself.

72

�Source control–based packages
Installing and using your app from a locally installed package works fine for testing and

developing new features, but it won’t work when it’s time to deploy your project. For

this we’ll need the app available remotely, and a simple way to start is by providing the

package via source control. As a starting point, or for private reusable apps without a

private package index, this is an easy starting point.

The Python package installer, pip, allows you to install packages a number of ways.

You can of course provide nothing more than the package name, and pip will look for

the named package on the Python Package Index. However, pip can also install packages

from remote source control links, that is, Git repositories.

The full details are documented on the pip website itself, but in short it works by

providing (i) the version control protocol, (ii) the path to the repository, and (iii) the

target package name. In the following example, the package myapp is installed from a

Git repo with the full path to the Git repository:

pip install git://githost.org/myapp.git@v1.0#egg=myapp

This example also installs a specific version by using a Git tag. The fragment @v1.0 is

comprised of two parts: the @ which indicates that what follows is a named head in the

repository, that is, a branch name, tag name, or commit SHA, and the rest which is that

name itself. Then the end of the line, egg=myapp, is what specifies the target package name.

This can be added to a requirements.txt file just like a package name.

If you were installing this from your GitHub repository, the same line would look like

this, presuming your username is me:

pip install git://github.com/me/myapp.git@v1.0#egg=myapp

The source control version specification using a tag or commit is technically optional,

but for the purposes of actually installing packages using this strategy, you should always

use a commit version either by tag name or commit SHA. Branch names may be tempting

but are moving targets and will not allow you to effectively declare a version.

The advantages of using and installing your package from Git rather than from

the Python Package Index (PyPI) are mostly related to control and the overhead of

publishing a package. You don’t need to register the name on PyPI, you don’t need to

build anything, and you don’t need to seriously worry about the changelog or if your

package metadata is correct. These are not weighty concerns, but if you just want to start

reusing your app yourself, you can skip those preliminaries at first.

Chapter 11 Adding your app back in

73

The limitations include not just decreased visibility, which is provided by being on

PyPI and being installable via a short pip install myapp, but also less reusability. The

visibility affects this, but more than anything the lack of sequentially available versions is

the obstacle. Using Git tags and commit SHAs lets you pin specific versions, which is an

excellent strategy for individual projects, but an untenable one for other packages, as you

lose the ability to select versions based on ranges (e.g., django>=3.0). When packages

pin the versions of their requirements, they will force that version in the environment,

even when other packages may require the same package.

If two packages both require the same dependency by providing minimum and/or

maximum supported version numbers (as shown in Figure 11-1), then we can usually

expect to find some range of versions that are mutually compatible. If, instead, one of

these packages pins a specific version, then it may end up installing this specific version

which is outside the compatible range specified by the other package, even if the specific

pinned version wasn’t necessary.

Figure 11-1.  The shaded region is the range of mutually compatible versions

Chapter 11 Adding your app back in

74

Source control–based package installation precludes the use of version ranges like

this and will require version pinning.

�Published packaged
For ease of use and consistency installing, as well as visibility and access in the greater

Django ecosystem, you’ll want to publish your app to a package index. And publishing

also allows you to take full advantage of version numbers in requirement specifications,

even to a private index.

The very basics of publishing a package include (i) registering the package name on

the index, (ii) building the package, and (iii) uploading the build files.

You’ll need two additional packages, wheel and twine. The wheel package is used

for building Python wheels, which are prebuilt Python packages that are uploaded and

downloaded as archive files using the .whl extension. Wheel files are much faster to

install for the developer user than a plain source package. The twine package is used for

uploading for your package build to the package index. You can do this without twine,

but twine will ensure that HTTPS is used and also simplifies the steps of registering and

uploading multiple package formats.

pip install wheel twine

Registering the name is a one-time step that reserves the name of the package. This

prevents name conflicts, and so you’ll need to make sure your chosen package name

hasn’t been used yet. However, this is one step we won’t take explicitly. You can use the

setup.py “register” command; however, it’s not necessarily secure, and twine will do this

securely and without adding an explicit user step. Nonetheless it’s a step worth noting!

In order to take advantage of installing based on version number, your package will

need a version number. There are two places we want to include the version number,

the setup.py file and your module root. In the case of a standalone Django app, the latter

would be myapp/__init__.py. In lieu of a more sophisticated way of propagating version

numbers, you can start by hardcoding it both places.

Chapter 11 Adding your app back in

75

setup.py

from setuptools import setup, find_packages

setup(

 name="blog",

 version="0.1.0",

 author="Ben Lopatin",

 author_email="ben@benlopatin.com",

 url="http://www.django-standalone-apps.com",

 packages=find_packages(exclude=["tests"]),

)

__init__.py

__version__ = "0.1.0"

The version number in your setup.py file is used to register a version number on the

package index and to manage the version at installation. The version number included

in your package, that is, in the __init__.py file, is helpful metadata to verify what version

of the package is installed and in use. This doesn’t make it superfluous, but it does

mean that changing only the version in the __init__.py file will not, in and of itself, have

any material impact on what is published to the package index as a new version. These

changes must be made in or through the setup.py file.

We’ll look at some improved ways of handling updates to version

numbers in Section 4.

Before building and uploading, it’s a good idea to quickly check that your package

metadata is valid. You can do that by running python setup.py check:

python setup.py check -r -s

The check command will perform minimal validation on your package metadata.

You should always run this step to ensure it’s formatted correctly. The -s option will

cause the script to exit with an error code if it fails the check, and the -r option checks

that all your strings are reStructuredText compliant. You should skip this option if you

plan on using Markdown in your README and read into your setup.py file; otherwise

this guards against broken formatting on the package index.

Chapter 11 Adding your app back in

76

With the version number set and the metadata validated, you next need to build a

distribution, that is, the file that people will actually download when they install your

app. There are, roughly, two ways to build the package: using a source distribution and

using a wheel distribution. They are not mutually exclusive, so we’ll build both (keeping

in mind that you’ll need the wheel package installed to build a wheel with the following):

python setup.py sdist bdist_wheel

This will create an archive with a .whl extension in the dist/ directory of your package

and an archive, both named with respect to your package name and version (the

particular extension created by sdist varies by system and is configurable).

Then it’s time to upload the distributions, and having installed twine, the command

looks like this:

twine upload dist/*

If you haven’t registered the package name yet, the twine upload step will do this

first before uploading. If it’s successful, you’ll see your new version – or new package –

installed on the package index. If for some reason the upload fails, for example, for only

one of the distribution choices, you can fix the problem, if any, and try re-uploading the

failed distribution. It’s not possible to re-upload a distribution with the same version, but

if that distribution wasn’t successfully uploaded, then this restriction is inapplicable.

The last step is to tag your release version. With Git you can use the tag command, like so:

git tag -a v0.1.0 -m "Initial version"

The purpose of tagging is to make sure you can track what exactly was deployed at

each version. For this reason you should tag your commits in your repository after you

have successfully published a new version. This precludes tagging the wrong version if

you have to make final changes before uploading the package version.

�Summary
In this chapter, you learned some strategies for adding your extracted app back into your

project as a standalone app. You learned how to do this locally by installing the app in

your project’s path, making this work remotely using source control and version tags,

and finally by releasing to PyPI as a published installable package. We’ll go further into

ways of improving the packaging process in subsequent chapters.

Chapter 11 Adding your app back in

PART III

Beyond the Basics

79
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_12

CHAPTER 12

Handling app settings
Every Django project is configurable by its settings module, its settings.py file. This is

how you specify what database you’re using and how to connect to it, how to configure

your template system, and of course what apps to install. A typical settings file contains

a mix of general Django settings (like databases and the secret key), project app settings,

and of course settings for standalone apps.

Not every standalone app has a need for its own user configurable settings. But there

are all kinds of reasons standalone apps do require their own settings, including

	 1.	 Third-party API integrations

•	 App-specific caching behavior

•	 Feature toggling

•	 Specifying dependencies

•	 Limiting allowed file types

Adding settings to your own project is simple enough, and it’s hardly a dark art

adding them to a standalone app. However, because the app will be integrated into

other projects and likely include settings with various value and type constraints, some

forethought is required for naming, structuring, and including these in your app.

�Settings naming
The first consideration is naming. Not only should your settings values be clearly named,

they should be named so that they’re easily associated with your app. In practice this

means they should be namespaced with an app-specific prefix.

80

An available example of this can be found in Django itself, in the contrib.auth app.

The auth app allows you to specify a custom user model like so:

AUTH_USER_MODEL = "custom_users.User"

This could easily and more succinctly be named with USER_MODEL, but the AUTH_

preface ensures it’s obvious that this corresponds to the auth app.

Thus if your app exposes some settings like this

MAX_API_TIMEOUT = 10

SERVICE_API_KEY = "helloworld123"

ensure they’re namespaced to correspond to your app:

MYAPP_MAX_API_TIMEOUT = 10

MYAPP_SERVICE_API_KEY = "helloworld123"

�Settings formats
Settings are ultimately Python objects accessible via django.conf.settings in a Django

project. So while we think of settings like DEBUG with a Boolean value and SECRET_

KEY with a string value, they’re not restricted to simple types, or even built-in types.

The DATABASES setting is a dictionary, TEMPLATES is a list of dictionaries, and

INSTALLED_APPS and MIDDLEWARE are lists of strings.

Flat is better than nested.

In exposing your app’s settings for configuration, the simpler the exposed values, the

better. In the question of "what format?" the root question is primarily whether to use

multiple top-level settings or one or more dictionaries of nested settings.

It may be tempting to use a single dictionary for all of your app’s setting values, for

instance, so that there’s only one "setting." The benefit of this approach is guaranteed

simplicity in end users’ setting files, but in many instances it can obfuscate the source

of these settings. If, for example, an end user is running their Django project using the

12 Factor app style and using environment variables to populate settings values, these

should ideally have a 1:1 relationship to a top-level setting value.

Although practicality beats purity.

Chapter 12 Handling app settings

81

This should be used as a good default though, and not a hard rule. The primary

advantage of exposing settings using dictionaries is that it makes it more obvious when

groups of settings are interrelated. In the settings snippet here, it’s more readily apparent

that the cache settings are tightly related (especially if there are other app settings).

MYAPP_CACHE_TTL = 10

MYAPP_CACHE_KEY_PREFIX = "myapp"

MYAPP_CACHE = {

 "TTL": 10,

 "KEY_PREFIX": "myapp",

}

However, one drawback of using dictionaries is that it may be less clear how default

values are overridden. Does the entire dictionary as provided count as the imported

setting? Or are the end user’s settings used instead to update existing defaults? At least

when a top-level app setting is not added in the end user’s settings, it is clear that the

default will be used.

One final note on the topic of environment variables: I should stress that the use

of environment variables in a Django project is the prerogative of the end user, not

the standalone app developer. Avoid the temptation to expect values in the process

environment and always rely on the settings module. Doing otherwise unnecessarily

constrains end users in how they provide their settings, and it also enforces environment

variable naming conventions which, though they seem sensible, are not appropriate for

the end user’s own situation.

�Sourcing app settings
The final consideration is how to actually pull these settings into your app where they’re

needed. This primarily affects your use of the app, as these settings can be expected to

mostly be used from within the app itself.

Here’s a short example of views.py extract in which several app-specific settings are

sources from django.conf.settings:

myapp/views.py

from django.conf import settings

from myapp.client import ApiClient

Chapter 12 Handling app settings

82

USE_CACHING = settings.MYAPP_CACHE_SETTINGS["USE_CACHING"]

CACHE_PREFIX = settings.MYAPP_CACHE_SETTINGS["CACHE_PREFIX"]

CACHE_TTL = settings.MYAPP_CACHE_SETTINGS["CACHE_TTL"]

def list_api_resources(request):

 client = ApiClient(settings.MYAPP_API_KEY)

 api_results = cache.get(f"{CACHE_PREFIX}:results")

 if not api_results:

 api_results = client.list()

 cache.set(f"{CACHE_PREFIX}:results", api_results, CACHE_TTL)

 return render(request, "myapp/api_resources.html", {

 "api_results": api_results,

 })

To start with, there are a number of things that could go wrong here:

–– The MYAPP_CACHE_SETTINGS name might not be defined in the

settings, or it might be assigned the wrong type, resulting in an

AttributeError.

–– The MY_API_KEY could be missing, also resulting in an

AttributeError.

–– Similarly, any of the individual MYAPP_CACHE_SETTINGS values

might be missing, resulting in a confusing KeyError.

–– And any of the individually provided cache settings might have the

wrong type, or wrong value, if there are reasonable value bounds for a

settings.

In your own project, you can check and bound your settings values in your settings

module, but this isn’t something you should assume you can delegate to end users of

your app. Instead, these should be checked and errors caught within your standalone

app as early as possible. In practice what this means is checking for missing or

malformed values and raising ImproperlyConfigured errors as soon as possible.

myapp/views.py

from django.conf import settings

from django.core.exceptions import ImproperlyConfigured

Chapter 12 Handling app settings

83

from myapp.client import ApiClient

if not getattr(settings, "MYAPP_API_KEY"):

 raise ImproperlyConfigured("MYAPP_API_KEY must be set")

try:

 USE_CACHING = settings.MYAPP_CACHE_SETTINGS["USE_CACHING"]

except (AttributeError, KeyError):

 USE_CACHING = False

try:

 CACHE_PREFIX = settings.MYAPP_CACHE_SETTINGS["CACHE_PREFIX"]

except (AttributeError, KeyError):

 USE_CACHING = "myappp"

try:

 CACHE_TTL = int(settings.MYAPP_CACHE_SETTINGS["CACHE_TTL"])

except (AttributeError, KeyError):

 CACHE_TTL = 3600

except (TypeError, ValueError):

 raise ImproperlyConfigured("MYAPP cache TTL must be a number")

def list_api_resources(request):

 """"""

 client = ApiClient(settings.MYAPP_API_KEY)

 api_results = cache.get(f"{CACHE_PREFIX}:results")

 if not api_results:

 api_results = client.list()

 cache.set(f"{CACHE_PREFIX}:results", api_results, CACHE_TTL)

 return render(request, "myapp/api_resources.html", {

 "api_results": api_results,

 }

Now at least if an end user forgets to provide MYAPP_API_KEY or accidentally sets the

cache TTL to “helloworld”, you can catch these errors with comprehensible and helpful

error messages. And if a value is missing that can be missing, a sensible default is provided.

Chapter 12 Handling app settings

84

However, it is a jumble of code to include in a module with a different purpose, and

in the event any of these values are required in other modules, then either this needs to

be repeated or those other modules will need to selectively import these cleaned values

from your views.py file. Instead, let’s move all of these app-specific settings into their

own module. This will let you encapsulate all of the value checks in one place, and no

other module needs to know about how these settings are sourced or given.

An obvious name for such a module is settings.py although conf.py and app_settings.

py are also common choices. My own preference is for conf.py. The first is the most

popular route to take, and while sensible, it means it’s more likely to cause confusion,

especially in the event any other module in your app imports django.conf.settings; of

course a solution to that is to simply import those individually needed global settings

into your app settings module.

Now with an app-specific settings module from which these can be imported

from, the views.py and other modules only need to import it and can avoid any kind of

additional error and default value handling:

myapp/conf.py

from django.conf import settings

from django.core.exceptions import ImproperlyConfigured

Required values

MYAPP_API_KEY = getattr(settings, "MYAPP_API_KEY")

if not MYAPPP_API_KEY:

 raise ImproperlyConfigured("MYAPP_API_KEY is missing")

Values with defaults

USE_CACHING = True

CACHE_PREFIX = "myapp"

CACHE_TTL = 60 ∗ 60

try:

 USE_CACHING = settings.MYAPP_CACHE_SETTINGS["USE_CACHING"]

except (AttributeError, KeyError):

 pass

Chapter 12 Handling app settings

85

try:

 CACHE_PREFIX = settings.MYAPP_CACHE_SETTINGS["CACHE_PREFIX"]

except (AttributeError, KeyError):

 pass

try:

 CACHE_TTL = int(settings.MYAPP_CACHE_SETTINGS["CACHE_TTL"])

except (AttributeError, KeyError):

 pass

except (TypeError, ValueError):

 raise ImproperlyConfigured("MYAPP cache TTL must be a number")

�Summary
In this chapter, we walked through strategies for handling app-specific settings,

including how to namespace and structure app-specific settings, how to source them in

your app, and how to best handle missing and bad values.

In the next chapter, we’ll look at how to make your standalone app useable in

languages other than your own.

Chapter 12 Handling app settings

87
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_13

CHAPTER 13

Internationalization
Internationalization and localization allow applications to be used by people in different

languages and using different written contexts (e.g., date formats). Conceptually simple,

it’s a powerful way to make software available to more people.

As a native English speaker in a predominantly English-speaking country, I think it’s fair

to say that most native English speakers in English-speaking countries give little thought to

how their software will be used by people who speak other languages or by those in other

countries. However, writing software for only one language “market” works against your

benefit since the cost to you to make the software available in other languages is fairly low,

and the consequence is a larger user base, both end users and potential contributors.

There are several steps to making your standalone Django app useful to speakers of

other languages, which are simultaneously sequential and in order of priority.

�Why translation
As a simple example, let’s assume your app includes a form class that performs some

basic validation. In our case, it checks to see if the value provided in the coupon field

matches a currently active Coupon. If it doesn’t, then the data does not validate, and an

error string is returned with the form to be displayed to the user.

class CouponForm(forms.Form):

 coupon = forms.CharField(required=False)

 def clean_coupon(self):

 data = self.cleaned_data.get('coupon', '')

 �if data and not Coupon.objects.active().filter(code=data).

exists():

88

 raise forms.ValidationError(

 "Invalid coupon code"

)

 return data

Now for every user of your app, the validation message displayed will always be

“You have entered an invalid coupon code” regardless of what language(s) they have

their site configured for. If you wanted to provide this in Spanish, instead, you’d need

to check for the field or specific message in your Django project and then return a

custom message.

class CouponView(FormView):

 def form_invalid(self, form):

 context = super().get_context_data(form=form)

 spanish_errors = {}

 if (

 form.errors.get("coupon", [""])[0] ==

 "Invalid coupon code"

):

 spanish_errors["coupon"] = "Cupón inválido"

 context["spanish_errors"] = spanish_errors

 return self.render_to_response(context)

This is obviously a contrived example which you can probably see some ways to

simplify already. But it would be nice if such custom changes where wholly unnecessary.

And with a few minor tweaks, they are unnecessary.

�Translatable strings and how translation works
The solution can be implemented wholly in the form class with one import and

“wrapping” the string in a function call to gettext:

from django.utils.translation import gettext as _

class CouponForm(forms.Form):

 coupon = forms.CharField(required=False)

Chapter 13 Internationalization

89

 def clean_coupon(self):

 data = self.cleaned_data.get('coupon', '')

 �if data and not Coupon.objects.active().filter(code=data).

exists():

 raise forms.ValidationError(

 _("Invalid coupon code")

)

 return data

I’ll call it “wrapping” the string because using the common _ alias that’s what it looks

like, but make no mistake about it, this is a function call. When executed, the string

returned will be sourced by using the external program gettext based on the locale set

in the calling context, which will either be the default locale or the locale chosen by the

end user in their session.

In this manner internationalization is nothing more than a simple dictionary lookup.

Unlike an English-Spanish dictionary, however, there are no subtle options for a chosen

word or phrase; rather this lookup behaves more like a Python dictionary where every

string is an exact key that returns another string.

A common objection to internationalization is that the original developer

doesn’t know what the potential languages are or know them well enough to provide

translations, so there’s little point in making the effort. Fortunately, there are no such

requirements to making standalone apps translatable, or even translated!

�Prioritizing translation steps
The first step in enabling translation is making your strings translatable. At its simplest,

this means “wrapping” your strings in a call to one of the gettext functions as

previously described. There are a couple of gettext functions in the django.utils.

translation module, as well as a template tag library; their detailed use is documented

in the official Django documentation and unnecessary to cover here. The number
one priority in your app is ensuring that user-facing strings in Python code are
“wrapped” with gettext and translatable. If you do nothing else but this, you’ll have

accomplished that critical 80%.

Chapter 13 Internationalization

90

The reason this is the singular priority is twofold: one, it is entirely possible to

create the necessary language files for any language given that the strings are available

for lookup, and two, this is the only user-facing content that the end developer cannot

change.

By user-facing strings, I mean here any string that would be

expected to be displayed to the application user and seen in their

browser. Unless an exception is used to raise a message to the

end user (e.g., via a validation error), you probably don’t want to

translate exception messages.

Making templates translatable is the second priority, and whether this is

a close or distant second will depend entirely on the nature of templates in your

Django standalone app. The reason here is that templates are entirely extendable and

overridable by developer users. If your templates are sparse and fully intended to be

replaced by developers, then the value of making these translatable is negligible. On the

other hand, if the templates in your application are richly structured and intended to be

part of the user-facing experience, then making sure these are translatable – by using the

template tags from the i18n tag library – should be high priority.

With these two tasks out of the way, the necessity and value of further efforts now

steeply decline unless you have known use cases in specific languages and ready

resources for creating translations. Those additional steps include generating and

adding po files, the text-based source files for gettext translations, integrating with

a translations service, and compiling and including mo files, the binary lookup files

used by gettext.

Generating and adding po files is simple enough and requires absolutely no

knowledge of the target language. However, it does involve choosing a language! This is a

bit like optimizing without measuring. Until you know what demand there is for specific

languages, you’re in no position to make this choice. It might make it more obvious that

your app is ready for translation contributions, but even this is a suspect strategy. Of the

three most widely spoken languages in the Western Hemisphere, there are numerous

country-specific varieties; and where translations are used, these otherwise small

differences are often significant.

Chapter 13 Internationalization

91

�Model content and translations
There are several sources of user-facing content in a Django application: from the

templates, from the Python code itself, and from user-controlled model-based content.

In most websites and web applications with non-trivial amounts of content, model-

based content makes up the bulk of the content. While you as the standalone app author

are not providing this content, you can provide affordances for developer users to add

translations. Of course, how you do this and whether it’s necessary or valuable depend

on the nature of your standalone app.

In your own Django project, using models you control, there are several solutions

available, beyond those described in the following. Third-party standalone apps like

[django-modeltranslation] (https://django-modeltranslation.readthedocs.io/en/

latest/registration.html) let you add locale-specific fields to existing models and access

these seamless from your app with minimal intervention. However, this involves modifying

database tables, which means database migrations, and in the case of third-party apps,

this means trying to manage migrations for a library not under your control and moreover

losing track of these migrations if you’re using any kind of ephemeral deployment system,

all of which is to say that for the developer user managing a Django project, trying to add

translation support to the models in third-party apps is not viable. Thankfully, there are

affordances you can provide as the developer of a Django standalone app.

For a content heavy application, where a model has several or numerous fields

representing user-facing content, an excellent and flexible strategy is to include a locale

field and allow translations to vary by instance or, more specifically, by database row.

This means that for an Email model, for instance, you might allow multiple instances

with the same base:

from django.conf import settings

from django.db import models

class EmailType:

 confirmation = "confirmation"

 notification = "notification"

 @classmethod

 def choices(cls):

 return [(cls.notification, cls.notification),

 (cls.confirmation, cls.confirmation)]

Chapter 13 Internationalization

https://django-modeltranslation.readthedocs.io/en/latest/registration.html
https://django-modeltranslation.readthedocs.io/en/latest/registration.html

92

class EmailMessage(models.Model):

 email_type = models.CharField(

 max_length=20,

 choices=EmailType.choices(),

)

 locale = models.CharField(

 max_length=10,

 choices=settings.LANGUAGES,

 default="",

)

 message = models.TextField()

 class Meta:

 unique_together = ("email_type", "locale")

Now there’s a built-in way to include translated content in the database, without any

further modification of the database. This strategy makes the most sense for “content

heavy” models, though, that represent either a significant amount of content or a large

number of fields that should all be translated together.

For models with only a few fields requiring translation, another option, and one

that has not been pursued to much fanfare as of this writing, is to make use of built-

in lookup fields. If you’re willing to commit your developer users to the PostgreSQL

database, then using either the HStoreField or JSONField is an option. Both can be

used to represent dictionaries; HStoreField is simpler and restricted to strings, but

JSONField uses default database functionality (HStoreField requires that you install a

database extension).

Taking this strategy to its maximum potential is an encouraged exercise for the

reader, but at its simplest it involves storing core field data in a dictionary:

from django.contrib.postgres.fields import JSONField

from django.db import models

class Product(models.Model):

 title_source = JSONField()

 price = models.IntegerField()

Chapter 13 Internationalization

93

 def title(self, locale=""):

 if locale:

 try:

 return self.title_source[locale]

 except KeyError:

 pass

 return self.title_source[""]

This neatly solves for the data storage problem, as well as explicit retrieval.

 The usability of such an interface warrants vast improvement, including for updating

data and especially for the simplified querying as afforded by something like django-

translation. Maybe that could be your first Django standalone app!

�Summary
In this chapter, we reviewed what internationalization is and why it’s important to

accommodate in your standalone app. You learned how to prioritize adding translation

support to your app, when to include specific language translations for your app, and

also how to approach translating model-based content.

In the next chapter, we’ll learn about the problems of managing version

compatibility with different Python and Django versions and some strategies for solving

these problems.

Chapter 13 Internationalization

95
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_14

CHAPTER 14

Managing version
compatibility
When you write a Django app to include in your own project, you have known versions

of Python, Django, and every other dependency used. When you create a standalone

app, you have neither knowledge nor control over these versions since this will be

deployed in other people’s projects. As a result what "works for me" may turn out not to

work in even subtlety different environments for other developers. You may not be able

to know exactly which versions every user and prospective user have deployed, but you

can anticipate major combinations of Python, Django, and even dependency versions

and ensure that your app works in each. This has the added bonus of making upgrades

easier for you wherever you use your own standalone app.

The critical tools here are strategies for testing these version differences and

strategies for simultaneously supporting different possibly incompatible versions of

Python, Django, and additional library dependencies.

�Python version
Differences in Python version may seem like the gnarliest of version differences to

address, but with the end of official support for Python 2, the practical differences that

most standalone apps will need to address are no longer quite so significant. That said,

there will be cases where you find functionality that works in one Python version, but not

in another. Python’s f-strings, for example, were added in Python 3.6, and if your goal is

to fully support Django 2.2 as a long-term support release, then you’d need to support

Python 3.5. Thus f-strings should be replaced with standard string formatting. Similarly

assignment expressions, colloquially known as the walrus operator, were added only

added in Python 3.8, so their use in your standalone app precludes anyone running

Python 3.7 from using your app.

96

This gets to the primary question you’ll need to address regarding Python versions,

that is, which versions to support. If the cost of supporting additional versions is low,

it’s good to err on the side of supporting these versions. This could mean another

version number of Python or other interpreters. The majority of deployments

assuredly run on CPython, but it’s not the only way to run Python. As of this writing,

the only major alternative implementation that supports Python 3 is PyPy, a JIT

compiler; Jython and IronPython, Java, and .NET runtime implementations only

support up to Python 2.7.

Testing against different versions of Python works much like one would expect –

setting up version-unique virtual environments and running the tests in each:

$ python3.6 -m venv venvs/python36

$ source venvs/python36/bin/activate

$ python setup.py install

$./runtests.py

$ python3.7 -m venv venvs/python37

$ source venvs/python3.7/bin/activate

$ python setup.py install

$./runtests.py

$ python3.8 -m venv venvs/python38

$ source venvs/python3.8/bin/activate

$ python setup.py install

$./runtests.py

This, however, would quickly become tedious and error prone. Instead, we can

replace the entire structure and process with the testing tool tox, like so:

$ pip install tox

$ tox

First, we’ll need a minimal tox.ini configuration file so that tox knows what

environments to create and what to install in them:

[tox]

envlist = py36, py37, py38

Chapter 14 Managing version compatibility

97

[testenv]

setenv =

 PYTHONPATH = {toxinidir}:{toxinidir}/myapp

commands = python runtests.py

basepython =

 py36: python3.6

 py37: python3.7

 py38: python3.8

deps =

 -r{toxinidir}/requirements.txt

This file has two component blocks, tox and testenv. The first is where we declare the

default environments. These will be created, if they do not exist, and tests run in them

every time tox is run without environments specified.

The second block for testenv is where we specify what goes into the test

environments, how to run the tests, and where we specify the Python versions. Each item

described in basepython should correspond to an executable name. This is also where

you would include alternative Python implementations:

basepython =

 pypy: pypy

 py36: python3.6

 py37: python3.7

 py38: python3.8

The other item to point out here is the deps configuration. This allows you to specify

which dependencies are installed and in which environments. For this base example,

we’ll assume that all app and testing dependencies are defined in a requirements.txt file,

from which each will be installed in the respective tox environment when the tool is run.

�Django and dependencies
The most obvious and practically important version difference you’ll need to concern

yourself with is different Django versions. Major version changes bring deprecations and

breaking changes, and running your standalone app with a different version of Django

than you originally tested it against may result in unexpected errors.

Chapter 14 Managing version compatibility

98

A word about version pinning: While it’s a good idea to include

Django as a requirement for your standalone app, be careful

about being overly aggressive about setting version boundaries.

Upper boundaries should only be set when there’s a known

incompatibly between the current version of your standalone

app and a released or soon-to-be released version. Lower

boundaries similarly should represent safety from known and

unsupported version issues. If you decide not to support a lower

version of Django, setting a minimum version requirement will

help ensure developer users are using only known-to-be-working

environment with your app. It also means that even if it happens

to work for that version of Django that someone else needs to use,

they won’t be able to.

The primary question you’ll face is which versions to test and support. Absent any

special requirements from your own projects that would demand features in newer

versions, a good rule of thumb is to target Django versions supported by the Django

open source project itself. That means the latest release and current long-term support

releases. At the start of 2020, this would mean Django 3.0 and 2.2 (LTS).

You may face similar issues if your standalone app has outside dependencies on

other Django apps. Here things may become more complicated if these apps do not offer

similar version coverage.

In the Figure 14-1, we compare three different dependencies (helpfully named A, B,

and C) with their own range of Django version support. If each of these dependencies

is required, then your own standalone app’s supported versions are bounded by their

supported Django versions, represented by the dotted line.

Chapter 14 Managing version compatibility

99

You may also run into an issue where Dependency C, for example, only supports

Django 3.0 and above and Dependency A only supports up through Django 2.2 but as

optional dependencies, rather than required dependencies.f. If such an incompatibility

arises, the main recourse you’ll have is documenting the version combinations that

must be used in combination. This scenario is unlikely to arise but can when supporting

optional features in the app.

Figure 14-1.  The range of compatible Django versions

Chapter 14 Managing version compatibility

100

�Solving for incompatibilities
Changes in APIs require conditional feature naming and importing. Likely this means

trying to get the proper names imported multiple times across multiple modules in

your standalone app, whether or not these are the same name. The problem with this

is not that it won’t work, but that it clutters your modules and tends to require code

duplication.

The solution is to combine all of your feature and version-conditional imports and

definitions into a single module, much like was achieved for app settings.

try:

 from django.urls import reverse

except ImportError:

 from django.core.urlresolvers import reverse

try:

 from third_party.lib import cool_function

except ImportError:

 from third_party.utils import cool_function

A common convention is to simply include these in a compat.py module. Historically

this was critical for supporting both Python 2 and Python 3, but you may find it

necessary for differences in Django versions, third-party dependencies, and, yes, even

Python versions.

If necessary, don’t be afraid to vendor. This could be copying an individual function

or even a module wholesale if it’s critical to your standalone app but not available in one

of the versions of Django or other dependencies that you want to support. Remember to

include and abide by all licensing terms when you do this.

�Future proofing
Even if you decide there are no feature updates you want to make to your app after

publishing it, you may find that it makes use of Django features that become depreciated.

The foundation for ensuring that your app continues to work with new versions of

Django (and Python) is continually testing with the latest versions of Django and Python,

even unreleased or unsupported versions.

Chapter 14 Managing version compatibility

101

A basic tox file as follows is designed to test two different LTS versions of Django and

also the (hypothetical) pre-release version 4.0a1. Pre-release packages can be published

to PyPI and downloaded using their pinned version, but are not installable using ranges.

The downside is that you may need to update this as subsequent pre-release versions are

published.

[tox]

envlist = py37, py38

[testenv]

setenv =

 PYTHONPATH = {toxinidir}:{toxinidir}

commands = python runtests.py

basepython =

 py37: python3.7

 py38: python3.8

deps =

 django22: Django>=2.2,<3

 django32: Django>=3.2,<4

 django40: Django==4.0a1

 -r{toxinidir}/requirements-test.txt

�Summary
In this chapter, you learned about the challenges posed by supporting different versions

of Python and Django, dependency scope issues when using additional dependencies,

and strategies for solving these issues. These solutions include relying on dedicated

compatibility modules as well as rigorously testing against combinations of Python and

Django versions.

In the next chapter, we’ll look into providing multiple framework and backend

targets for apps that go beyond supporting Django.

Chapter 14 Managing version compatibility

103
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_15

CHAPTER 15

Mixed dependency
support
In the previous chapter, you learned how to manage version compatibility between

your app and different versions of Python and Django. In this chapter, we’ll look beyond

Django and toward offering feature compatibility with both Django and other non-

Django-related libraries.

�Beyond Django
The functionality in a Django app, even a “standalone” app, is not required to ship in

a Django-only package. You may find that the core functionality you want to extract

or include in a standalone Django app is largely not Django-specific and, further, that

you’d like to make that core functionality available outside of Django projects. This

leaves with you a couple of choices. One would be to create a distinct base package, one

that is Django or generally framework agnostic, and then a separate Django-specific

package. This is a perfectly valid strategy. The second strategy would be to create a single

package that includes Django-specific functionality, or even that for other frameworks,

as separate contrib modules that ship with your package.

For cases where the framework-specific functionality, that is, the bundled Django

standalone app, is primarily a framework adapter for the core and framework-

agnostic functionality, the second strategy should simplify development and package

maintenance. The “downside” of shipping a module that someone might not use

should be considered minimal, especially compared to the costs of maintaining

separate packages and increasing the dependency requirements for other developer

users.

104

�The nuts and bolts
Consider an advanced lorem ipsum generator. Lorem ipsum is the pseudo Latin text

used frequently by designers to fill in the content areas of designs, including websites,

so that other stakeholders can get a feel for the design when the final content is

unavailable, for example:

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do

eiusmod tempor incididunt ut labore et dolore magna aliqua.

Django even ships with a built-in template tag, lorem, that will generate this text:

{% lorem 5 p %}

But you’ve decided to go beyond this, to allow your team or anyone to be able to

generate lorem-like placeholder text from a different and tag-specific corpus, including

tech buzzwords, MBA jargon, and hipster-lorem.

The solution is obviously implemented with a new template tag, which you call

lorem_plus, and has a similar interface to the built-in lorem tag:

{% lorem_plus 'hipster' 1 %}

This returns some placeholder text from the specified corpus:

Taxidermy meditation humblebrag, stumptown migas messenger

bag slow-carb.

And while the implementation required to use this in a Django project is Django

specific – Django template tags are more or less useless anywhere else – the core

functionality is pretty general. This involves selecting a corpus, assembling some

“sentences,” packing these into paragraphs of one format or another, and then optionally

wrapping the output (e.g., as safe markup). It would be quite useful for Jinja templates,

too, whether in a Django project or a Flask project.

This can be accomplished by segmenting not just the Django template-specific

code from Jinja-specific code, but from the core functionality itself. Instead of having a

structure like this

Chapter 15 Mixed dependency support

105

templatetags/

 __init__.py

 lorem_tags.py

__init__.py

the package module might have a structure like this:

templatetags/

 __init__.py

 lorem_tags.py

__init__.py

core.py

jinja_tags.py

The core.py module would have all of the “business logic,” including the lorem

generating function, lorem_generator, which returns the base string which each

template implementation can then mark as safe for rendering. Here could be our

function signature (the body is omitted as unnecessary for our purposes here):

core.py

def lorem_generator(corpus, count=1, method="b"):

 """

 Returns randomized placeholder text

 Args:

 corpus: string identifying the corpus

 count: number of words or paragraphs

 method: words 'w', HTML paragraphs 'p',

 or plaintext paragraphs 'b'

 Returns: a string

 """

Then all that’s required for the template backend implementations is to call this

function and return the string marked safe for rendering, for Django:

Chapter 15 Mixed dependency support

106

lorem_tags.py

@register.tag

def lorem_plus(corpus, count=1, method="b"):

 placeholder = lorem_generator(corpus, count, method)

 return mark_safe(placeholder)

And for Jinja:

jinja_tags.py

def lorem_plus(corpus, count=1, method="b"):

 placeholder = lorem_generator(corpus, count, method)

 return jinja2.Markup(placeholder)

Now, the same functionality can be used across not just template backends but

frameworks, as the Django feature in the app is only an implementation detail of the core

functionality.

�Real-world examples
This particular scenario is not very common, though it is quite useful.

WhiteNoise is a static file serving utility, designed to simplify serving static files

in production websites. It’s a Python package that supports the same WSGI (Web

Server Gateway Interface) protocol that Django relies on to interface with a production

application server. As such it can be used with any WSGI application, Django or

otherwise. However, there are certain affordances for Django that allow integrating

WhiteNoise within the Django project, rather than at the WSGI level, making for

convenient integration in development, the collectstatic management command for pre-

release tasks, and middleware.

All of these features can be supported by including this functionality in modules

that are not required, that is, not imported, by any of the core functionality. In order

to simplify using WhiteNoise in development – which is otherwise enabled by passing

--nostatic to the runserver management command – you can add an included Django

app to your project’s INSTALLED_APPS list.

Chapter 15 Mixed dependency support

107

INSTALLED_APPS = [

 'whitenoise.runserver_nostatic',

 'django.contrib.staticfiles',

 # everything else

]

The runserver_nostatic app is, functionally, nothing more than a single management

command which extends the runserver command. However, combined with the

included middleware, it enables all of the functionality of WhiteNoise to be used

seamlessly within a Django project and without compromising the usefulness of the core

functionality for someone using it with Flask.

That’s a real-world example of including some minor adaptations or integrations

from generalized functionality into a Django project. As should take little motivation to

see now, this can also be done with more deeply integrated functionality.

nplusone is a utility for “detecting the n+1 queries problem in Python ORMs.” This

is one of the most common database-related performance problems in ORM-based

applications, in which returning a list (queryset) of some model from the database

results not in one query but in one query for every single item returned plus the original

query. It’s a result of fetching attributes from related models and in Django apps is

most often simply solved by using select_related or prefetch_related. However, this

isn’t a Django-specific problem, and nplusone supports the major Python ORMs in one

package, including Django, SQLAlchemy, and Peewee.

The major problem here is not simply providing some minor adaptions of the core

functionality. Instead, each supported ORM requires its own set of unique features. The

base or core module provides some common “scaffolding”-like exceptions and signal

management, but the ORM-specific implementations are unique.

The natural question is why not ship these as separate packages then? Without

speaking for the maintainer, it does offer simpler development and maintenance,

not to mention project marketing. And probably more importantly, or specifically,

Chapter 15 Mixed dependency support

108

it allows capturing domain-specific changes across implementations. A release that

adds checks for unused data attributes in queries, motivated by a problem that isn’t

specific to any one ORM, lends itself to release across each implementation in a

single new version, rather than a series of individual releases for the same domain

feature.

�Summary
In this chapter, you learned how to separate Django-specific and backend-specific

features from more general features to allow reusing app functionality outside of Django

projects and/or with different backing classes (e.g., template backends). You learned

that you can separate functionality into different published packages or simply make

use of alternate modules within your published package to simplify development while

keeping your library extensible. In the next chapter, you’ll learn what horizontal and

vertical modularity mean and how these two segmentation paradigms can be used to

help organize your app.

Chapter 15 Mixed dependency support

109
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_16

CHAPTER 16

Modularity
We break Django projects into apps to segment by horizontal programming functionality

and vertical business features to make them easier to work with and reason about, and of

course so these components are easier to reuse.

Some of these segments are more tightly defined than others, resulting in smaller

and/or more narrowly written apps. Compare, for example, django-model-utils and

django-extensions. Both offer some overlapping features in the form of helpful model

and field classes, but django-model-utils has a primary focus on solving for repeated

model-related functionality, and django-extensions has a primary focus on solving more

general features which are useful across Django projects, and happens to include such

model-related functionality. It’s not that one is better than the other; rather the scope of

each stems from the problem area for which it’s solving.

This is to say that some problem areas lend themselves to broader scopes, even when

the problem can be concisely defined. “Managing user-created content on a website”

is a nicely defined business problem, but in practice includes a variety of non-trivial

sub-requirements. Further, these sub-requirements – like managing multimedia or user-

specific content – may not be required in a plurality of use cases.

This leads to decisions about whether and how to further modularize your

standalone app, including using sub-apps and yet additional standalone apps.

�Additional standalone apps
Breaking a larger standalone app into yet further standalone apps would be apropos. It’s

a way of further segmenting the app, for examples, by vertical business feature, so that

the subcomponents are tightly focused. It has its uses but also some costs especially as a

primary strategy.

110

The benefits of pursuing this strategy and breaking a larger standalone app into

component standalone apps track with the benefits of creating a standalone app in

the first place. The separated apps can be developed, tested, and reused with smaller

codebases, allowing users to install only the components they need for their projects.

This strategy has some obvious and less than obvious drawbacks however.

First, maintaining separate packages has decreasing marginal value and increasing

marginal cost for the maintainer. A backward incompatible or breaking change in the

core app means parallel changes must be orchestrated across the component apps and

parallel releases, too. This work is easier when all of the changes can be orchestrated

within a single package, taking better advantage of refactoring tools and a common test

of tests.

Second, it begs the question that the core app – which we’re presuming here – is

sufficiently useful on its own. There certainly could be value in having a core app that is

little more than a commonly used foundation package, but if that’s the case, then most

likely it’s not so much a standalone app on its own so much as a useful foundational

package to use with separate standalone apps.

Third, this is extra hassle for your developer users. There are benefits to using

more granular dependencies like not including code you don’t need, which may cause

unwanted deployment bloat, or exposure to extraneous bugs and compatibility issues. It

also adds more individual dependencies to track.

When this strategy should be taken up is when the secondary functionality is

expected to be opt in, and of a plug in nature, when the functionality may have non-

trivial use cases absent the core app such that it’s useful as an installed package

on its own, or when its management is better decoupled from the core app. If the

subcomponent benefits from a faster release cycle, this may be the case. Where the

package coupling would otherwise make it easier to keep subcomponents in sync with

core, it now would likely hold back valuable releases for the subcomponents.

An example of this decoupling is django-localflavor which was formerly django.

contrib.localflavor. As a repository of country-specific utilities, like lists of states and

provinces, and form and model field which validate postal codes and phone numbers,

it functions as much as a knowledge repository as it does functional library. Separating

out this subcomponent allows a separation of focus from programmatic utilities of the

framework and locale-specific knowledge accrual.

Chapter 16 Modularity

111

�Using sub-apps
A viable and well-traveled alternative path to creating separate standalone apps is to

break up your standalone app into sub-apps which are all included in the main package.

This is the strategy employed by nearly every Django-based CMS, including Wagtail,

Django CMS, and Mezzanine. And of course Django itself ships multiple related apps in

one consolidated package, django.contrib.

The django.contrib example is both an exception to how this works and illustrative.

It’s an exception because of course it ships with the very framework, but also there isn’t

truly a single "core" app, for example, you can’t add django.contrib to your INSTALLED_

APPS. There is a network of dependence in the django.contrib; contrib.auth, contrib.

admin, and contrib.sites all require contrib.contenttypes, but each solves for a generally

unrelated business requirement.

Despite aiming at different business requirements, these apps are frequently used

together, hence their common packaging. They do not all need to be installed in your

project’s INSTALLED_APPS apps, and the presence of the unused apps is of little

downside as a developer user.

When your subcomponents are separate installable apps, they need to be

individually installed to be used as apps (e.g., using models, templates, template tags):

INSTALLED_APPS = [

 "myapp",

 "myapp.virtual_reality",

 "myapp.augmented_reality",

 ...

]

�Embracing horizontal modularity
If in fact there is no obvious way of subdividing a very large app into vertically segmented

subcomponents by sub-feature, you can always fall back on "horizontal" segmentation.

Once again, this mean organizing code along programmatic utility as opposed to

business requirement or feature (vertical).

Chapter 16 Modularity

112

myapp/

 forms/

 ...

 models/

 __init__.py

 augmented_reality_models.py

 core_models.py

 virtual_reality_models.py

 ...

If nothing else, such a pattern is better than a contrived attempt at vertical

segmentation where no clear business feature divide exists.

For most new standalone apps though, all of these questions will be more

hypothetical than real.

�Summary
In this chapter, you learned about the importance of modularity in your standalone app

and the ramifications of different code organization schemes for both code reuse and

legibility for other developers. In the next chapter, we’ll return to the issue of packaging

and learn how to better track package versions, ensure your tests run against installable

code, and configure your project to create package index-ready releases.

Chapter 16 Modularity

113
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_17

CHAPTER 17

Better packaging
In Chapter 8 we took a Django app and created a simple Python package to distribute

that app. What we’re after here is simpler package configuration code, that is, easier to

read and simpler to update, as well as maximal assurance that what we test is what we

ship.

In this chapter, we revisit our package from Chapter 8 and explore some ways to

improve upon the package we set up in order to include additional information and to

make updating that information easier.

�Version consolidation
Our setup.py file in Chapter 8 looked like this:

from setuptools import setup, find_packages

setup(

 name="blog",

 version="0.1.0",

 author="Ben Lopatin",

 author_email="ben@benlopatin.com",

 url="http://www.django-standalone-apps.com",

 packages=find_packages(exclude=["tests"]),

)

The package version is specified here as a string in the setup file. We need the version

included here in order to inform the package index of the specific version. The problem

with using a string literal as we have here is that you’ll end up with this string repeated

114

throughout. If you include the version in your package itself, as you should, then you

have two places you need to update the version every time you update for a release.

The benefit of having the version defined within your package, for

example, as a variable set in your __init__.py file, is that it is always

available for verifying the version from other packages. It’s trivial,

for example, to open up a Python console, import the package,

and check what the value of myapp.__version__ is.

The crux of the solution is to include the version in one canonical location and

reuse it elsewhere. There are a few ways to do this which ultimately rely on treating your

module root – that is, __init__.py or a specialized file – as the source of truth.

The most obvious strategy is to simply declare the version in your __init__.py file like

so

__version__ = "2.4.0"

and then import the package in your setup.py file

from setuptools import setup, find_packages

import myapp

setup(

 name="blog",

 version=myapp.__version__,

 author="Ben Lopatin",

 author_email="ben@benlopatin.com",

 url="http://www.django-standalone-apps.com",

 packages=find_packages(exclude=["tests"]),

)

It is an appealing strategy but also one that should be avoided. Importing the

package that is being installed, before it is installed, can pose problems during

installation, especially if your app specifies any dependencies that are only installed by

your app. An alternative is to use a separate module only for package metadata, from

which it is safe to import the version. Let’s call it __meta__.py:

__version__ = "2.4.0"

__author__ = "Ben Lopatin"

Chapter 17 Better packaging

115

Your __init__.py file can import the values from this __meta__.py file, and your setup.

py can, too, without risk or importing uninstalled dependencies.

from setuptools import setup, find_packages

import myapp.__meta__

setup(

 name="blog",

 version=myapp.__meta__.__version__,

 author=myapp.__meta__.__author__,

 author_email="ben@benlopatin.com",

 url="http://www.django-standalone-apps.com",

 packages=find_packages(exclude=["tests"]),

)

A proven alternative to importing these values is to read and parse the file without

even importing it into the namespace. The value of this strategy will show itself shortly.

from setuptools import setup, find_packages

with open("myapp/__init__.py", "r") as module_file:

 for line in module_file:

 if line.startswith("__version__"):

 version_string = line.split("=")[1]

 version = version_string.strip().replace("\"", "")

setup(

 name="blog",

 version=version,

 author="Ben Lopatin",

 author_email="ben@benlopatin.com",

 url="http://www.django-standalone-apps.com",

 packages=find_packages(exclude=["tests"]),

)

This entertains no risk of importing modules and can be done even when the code

itself is not yet importable.

Chapter 17 Better packaging

116

�Using a source directory
In our basic package example (Chapter 8), the source directory looked like this:

blog_app

├── blog/
├── ...
├── manage.py
├── runtests.py
├── setup.py
|── tests/
|── ...

where blog/ represents the package directory for the code. When installed, the packaged

contents of blog will be available using import blog. This is the most natural way of

packing a Python app, but it has one significant drawback.

Your tests do not run against the package as it will be installed by

its users. They run against whatever the situation in your project

directory is.1

Regardless of the code layout you use, one problem you may encounter is that you

may end up running your tests against code that differs from what you publish to the

package index. It could be because of changes to your local repository that you haven’t

committed or files that are not included in your repository. That problem is easily solved

by running tests automatically using a continuous integration system.

The problem entailed by the directory layout is similar enough but deviously

different. It’s possible to run the tests against the exact same files present in the

published repository and yet have them miss errors in the deployed code because what

is in your package directory is not necessarily what is installed by the package! Based on

how you defined both the packages parameter and what you define in your MANIFEST.

in file, you may end up with different – that is, missing – source code in the installed

version.

The goal of putting this source code in your src/ directory is that it enforces testing

against only installed code in order to reduce the likelihood that you ship a broken or

incomplete package.

1�Hynek Schlawack, https://hynek.me/articles/testing-packaging/

Chapter 17 Better packaging

https://hynek.me/articles/testing-packaging/

117

blog_app

├── src/
├────blog/
├── manage.py
├── runtests.py
├── setup.py
|── tests/

This works due to several factors. The first is that the src/ directory is not a Python

module. It includes only your code package(s), it does not include its own __init__.

py file. This precludes importing from the package directory directly. Second, the tests

are in their own top-level module rather than located inside the package directory.

This enforces running the tests against the installed package, and not the code in your

directory.

Despite the benefits for package releases, moving the code to a separate directory

brings with it a few minor challenges. The first is that you can no longer run your tests

directly! Your app code is not in your Python path any longer. Using tox or nox to test in

isolated test-specific virtual environments solves several problems, including allowing

you to reinstall the app in isolation for test runs. A more immediate though less reliable

strategy is to add the src/ directory to your path.

PYTHONPATH=src/ pytest tests

This method is convenient for development, but should not be depended on for

releases since it circumvents the protections afforded by moving the code to the

src/ directory.

One of the challenges of moving our code with a Django standalone app is that we

want to use the code to create artifacts that are included in the source code and in the

package. If we wanted to use a manage.py script to create migrations for the standalone

app, we’d run into the same problem with testing in place. Thankfully this can be

resolved using similar strategies as with testing. Here it makes more sense to use the

simple path modified command:

PYTHONPATH=src/ ./manage.py makemigrations myapp

Chapter 17 Better packaging

118

Creating migrations – and any other app-specific tasks – can also be encapsulated in

a tox environment or nox session, simply for convenience or to ensure that such tasks are

running against the installed package:

@nox.session

def migrate_on_path(session):

 session.install("-r", "requirements-test.txt")

 env = {"PYTHONPATH": "src/"}

 session.run("python", "manage.py", "check", env=env)

 session.run(

 "python", "manage.py", "makemigrations", "myapp", env=env)

@nox.session

def migrate_from_installed(session):

 session.install("-e", ".")

 session.run("python", "manage.py", "check", env=env)

 session.run(

 "python", "manage.py", "makemigrations", "myapp", env=env)

Each of these “sessions” will run in its own isolated virtual environment. The first will

run the check command and build migrations against the source as laid out in your src/

directory. This session would need to install any requirements otherwise added when

you install your app or expected to be installed, for example, Django itself. The second

nox “session” installs the app and then executes the commands against the installed

package.

�Using setup.cfg
Removing the version from the setup.py file as a string literal is a quality improvement,

reducing the likelihood of versioning errors in your package. There are additional

improvements that can be made in your package configuration that make it easier to

read and update.

Instead of providing all of the metadata as arguments to the setup function in your

setup.py file, you can instead add these in a more readable ini-formatted setup.cfg file.

There are several benefits to doing this instead, aside from readability. One is that the

file can be used for other tools’ metadata (e.g., linting tools), and secondly it provides a

Chapter 17 Better packaging

119

native strategy for extracting the version from a module attribute. Provided that

__version__ is the version identifier and it’s defined in or imported in the __init__.py file,

the following example setup.cfg file will adequately replace the metadata definition in

our setup.py file:

[metadata]

name = blog

version = attr: myapp.__version__

author = Ben Lopatin

author_email = ben@benlopatin.com

url = http://www.django-standalone-apps.com

[options]

packages = find:

[options.packages.find]

where = src

It’s now possible to reduce your setup.py file to only the following, although the

setup.py file is still required by setuptools for building your package:

from setuptools import setup

setup()

This has added a file and some additional lines of code; however, the result is

arguably easier to understand, and with the affordances built into setuptools for reading

attributes for version and loading files (like your README) to populate description

fields, it’s arguably a much simpler configuration format.

�The pyproject.toml and more tooling
To close out this chapter, we’re going to add yet another configuration file and then look

at using it as a total replacement for both setup.py and setup.cfg. PEP 518, “Specifying

Minimum Build System Requirements for Python Projects,”2 specifies a top-level TOML

file that can be used to define which packages are required just to build the package in

question, that is, your standalone Django app.

2�https://www.python.org/dev/peps/pep-0518/

Chapter 17 Better packaging

https://www.python.org/dev/peps/pep-0518/

120

TOML, “Tom’s Obvious, Minimal Language,” is a specified,

INI-like configuration language that allows nesting.

The pyproject.toml file is designed to be a top-level file with a PEP-specified

format, one that is tool agnostic (contra setup.py) and also can be reused by various

development tools for their configuration.

The example file in the documentation represents the base one would need to

include: setuptools for building the package and wheel for building the wheel archives:

[build-system]

requires = ["setuptools", "wheel"]

However, PEP 518 also specifies a customizable (tool) header, wherein configuration

can be added for various development tools, including build and testing (note that this

support is entirely dependent on the tools themselves, too). This allows alternative build

systems to use the pyproject.toml file as a source of build instructions and package

metadata.

One such tool is Poetry, and by using it to build your Django standalone app – or

any Python project – you can rely entirely on the pyproject.toml file without a setup.py

or setup.cfg file. Here’s a short example that includes the requisite package metadata

and separate dependency definitions for building the project and for development. This

precludes needing one or more pip requirements files, as well, because the dependency

definitions are used to create a “lock” file with precisely pinned versions resolved by

Poetry for version compatibility.

[build-system]

requires = ["poetry>=0.12"]

build-backend = "poetry.masonry.api"

[tool.poetry]

name = "myapp"

version = "2.5.0"

description = "Support for multi user accounts"

authors = ["Ben Lopatin <ben@benlopatin.com>"]

license = "MIT"

packages = [

 { include = "myapp", from = "src" },

]

Chapter 17 Better packaging

121

[tool.poetry.dependencies]

python = "^3.5"

Django = "^3.0"

[tool.poetry.dev-dependencies]

pytest = "~5.0"

pytest-django = "~3.7.0"

The benefits of clarity, version management, and file consolidation make using

a tool like Poetry a tempting alternative to using setup.py and setuptools. It is worth

considering a few potential downsides however. There’s no simple way to provide the

version in one canonical source in your package, meaning you will need redundant

version declarations. More complicated build procedures scripted with Python may not

benefit from or lend themselves to a declarative configuration. And the project itself is

still relatively new and driven largely by a single developer, meaning the “bus factor” of

the project is quite small. That being said, as long as alternatives exist,3 the lock-in cost is

small.

�Summary
In this chapter, you learned how to improve your experience packaging your standalone

Django app by creating a single source for the package version to prevent errors due to

duplication, by using a separate source directory to ensure that tests are run against the

package as installed, and by relying on additional files like setup.cfg and pyproject.toml

to build Python wheel packages and simplify build requirements.

In the next chapter, you will learn about licensing for your standalone app including

what software licenses provide and how to include them.

3�Including setuptools and Flit, another pyproject.toml centric build tool

Chapter 17 Better packaging

PART IV

Managing Your
Standalone App

125
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_18

CHAPTER 18

Licensing
As users of open source software, most developers probably take for granted the

copyright and licensing conditions of the software we use. This is a little harder to do

when you’re distributing your own software. It may get further complicated if you need

to include other software with your own.

Author’s note: Nothing in this chapter should be construed as

legal advice. If you have legal concerns around licensing or using

licensed software, you should seek professional legal advice.

�What licenses do
The first thing that licenses do is explicitly state the copyright ownership of the software.

In most jurisdictions around the world, copyright is granted merely by the act of creating

a new work. Many countries provide means for registering copyrights, but this step is not

necessary; copyright is automatic. Possessing copyright and asserting it are two different

things however.

Second, licenses are an agreement. They are an agreement on terms between the

creator of the software and the user. In the case of a web application, the user would be

the developer or whoever is deploying the software (e.g., a business). The terms included

are diverse, but the mechanism of agreement is most often use in one way or another of

the software.

The terms of the license may be strict, such as those included in common

commercial licenses. Some licenses may prohibit copying or redistributing the software,

modifying it, or even using it in certain ways. Other licenses, like common open source

licenses, may freely allow you to do whatever you want with the software just so long

as you include the license with its copyright and terms. These terms consist of some

combination of rights and obligations.

126

At a basic level, the terms of most open source licenses deny any warranty or liability

from the use of the software. It’s provided for free with access to the source code, after all.

This probably seems unnecessary especially in the context of a Django standalone app.

However, given the close-to-zero cost of disclaiming any liability from something shared

with unknown people in a potentially litigious society, it’s not a bad step to take.

Beyond this though, it may seem unnecessary to declare any terms if your intent is

to share your standalone app with the world for free (there are licenses just for that!).

However, a key aspect of a license is the fact that it does explicitly allow anyone to

do what they want with it. It means that someone else can’t claim your software for

themselves and then dictate different terms.

�Varieties of licenses
There are a multitude of licenses in use today, but they fall into several categories:

	 1.	 Commercial licenses

	 2.	 Open source licenses

	 3.	 Public domain licenses

Commercial licenses are those enacted by and only by paying customers. Microsoft

Windows and Apple macOS, for example, are commercial licensed software. These

typically disallow any kind of modification or redistribution and more often than not

come without any access to the source code.

Open source licenses are diverse, but are united in that they provide access to the

source code. Most software licensed under open source licenses can be freely modified

and redistributed, although the terms beyond this may vary significantly. These terms

can broadly be further divided into two categories: (1) permissive and (2) copyleft.

A "permissive" license is simply a non-copyleft open source license — one
that guarantees the freedoms to use, modify, and redistribute, but that per-
mits proprietary derivative works.

—Open Source Initiative

Chapter 18 Licensing

127

Permissive licenses include the MIT, BSD, and Apache licenses. These licenses

largely grant the user free right to use the software however they see fit. They can

repackage it in a closed source and commercially licensed software distribution if they

want. The only requirement is that they pass along your license.

"Copyleft" refers to licenses that allow derivative works but require them to
use the same license as the original work.

—Open Source Initiative

Copyleft licenses include the variants of the GPL or GNU Public License. These

licenses require not only that their license is passed along but that the terms of that

license are applied to any other software that uses it. The key activator for copyleft

licensing is modification of the source.

Public domain licenses are essentially anti-licenses. They make no assertion of any

rights to the source code or on the ability to restrict how the source code is used. They

also grant no rights or permissions and as such are not as practically attractive as they

may be philosophically.

Which should you choose? The specific license you choose for your own project or

projects is less important than (a) choosing one and including it in your standalone app

and (b) choosing a preexisting license. The former will give other people the confidence

that they can use and if need be modify your software. The latter ensures that you have a

license that other people can understand and recognize.

�How and where to include your license
There are several obvious places to include your license, depending on how much of the

license you include in any given place. This can include

–– The license identifier, for example, “MIT”

–– The license summary

–– The entire license

At a minimum you should include the entirety of the license and copyright notice in

a top-level license file. This ensures that you check off every box, and this is an expected

place to find it.

Chapter 18 Licensing

128

The next spot for your license is in your setup.py file, using the license argument

to the setup() function to identify the license. This ensures that the information is

immediately available on package indexes, in a highly visible and searchable way.

Where else might you want to include it?

–– In you README, to at least identify the license at a glance

–– In your root module, for example, __init__.py, using a

dunder value such as __license__

–– In your project documentation

–– In the individual Python files themselves

As far as including the license in individual Python files, this is unnecessary.

It’s a common practice in enterprise-sponsored open source projects that makes it

abundantly clear who owns the copyright and what the license entails. The primary

benefit to any other developers is that it makes it easier for people using extracts of

your code, for example, vendoring a single module, to include your copyright and your

license.

�How to include other licenses
In some cases you may want or need to directly include other preexisting software in

your standalone app, whether this is "vendoring" an entire package or including only

an individual module. If you do this, you must ensure first that predecessor license of

that software allows this kind of distribution. Next you must ensure that the license with

which you distribute your app is compatible with the predecessor license. And lastly you

must include the predecessor license.

The first question is really whether or not the predecessor software has a license

and whether it is an open source license. Whatever the license used, it should explicitly

permit the redistribution and modification (if using only a part) of the software. The

answer to this question will be fairly obvious if predecessor license is a common one, like

an MIT or GPL license. For custom or "vanity" licenses, you may have to do a little bit of

research.

Chapter 18 Licensing

129

The second question pertains to the specific rights and obligations granted and

required by the predecessor license. Some licenses, like the MIT license, make no

obligation for how the software is reused so long as the original license is included.

Others, like variants of the GPL, obligate any redistribution to be licensed in the same

way. As such if you wanted to license your standalone app using the GPL and include

some software that was MIT licensed, this would be feasible, provided of course you

made clear which components were covered by which license. On the other hand, if you

wanted to license your standalone app using the MIT license, you would not be able

to include GPL-licensed software in your distribution. To be clear, this does not mean

your app cannot use software with incompatible licensed packages, only that you cannot

include the software in what you distribute. Reuse through installable packages is fine.

The third and final question is how to include the predecessor license. Even if

the predecessor software uses the same license as your app, you must still include

predecessor license. This captures more than just the terms of software license, but

copyright ownership, too. A good place to start is your top-level license file. Here you can

append to your own the copyright notice of the predecessor software in reference to the

components that it pertains to. In many cases, this will be sufficient.

If you’re using an individual module, you should include the license or at least an

abbreviated reference to it directly in the module. Using code comments is a fine idea for

this purpose; using a module docstring may confuse how to documentation with license

notice.

-*- coding: utf-8 -*-

COPYRIGHT (c) Some Other Developer

This source code is licensed under the MIT license found in the

LICENSE file in the root directory of package.

For shorter licenses, it’s customary to reiterate the entirety of the license in such

a comment, but you need not do this provided you include the license and make the

reference obvious. If you’re vendoring a package, including the entirety of it, you can

rely on the inclusion of licensing in the modules themselves and, notwithstanding that,

include the original license file to the package directory for inclusion.

Chapter 18 Licensing

130

�Summary
In this chapter, we reviewed what software licenses are and what they do, both for

you and for the users of your standalone app. We also examined some of the options

available to you as a software author for licensing app, the tradeoffs involved, how to

approach licensing when including other software, and some sensible strategies for

including the license information itself in your standalone app.

In the next chapter, we’ll learn about releasing new versions of your app, what’s

required in this process, and how to streamline it.

Chapter 18 Licensing

131
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_19

CHAPTER 19

Documenting your
standalone app
Once you’ve released your standalone app to the world, someone else will want to use it.

How will they use it? How will they install it? And does it solve the same kind of problem

they have? In this chapter, we’ll look at how you can start addressing the challenge of

documenting your standalone app.

�Starting with questions
Regardless of what formats and tools you use to document your standalone app, or

how you decide to distribute documentation throughout your codebase, all of your

documentation should be motivated by answering the questions that someone else –

even future you – will have when approaching your standalone app.

Several of the questions you should ask are who will be reading this and what are

they trying to do. Most often the “who” will be a developer user, someone who is either

assessing whether to use your standalone app or looking for help in integrating it into

their project. But it may also be someone else, another project stakeholder trying to

assess whether your standalone app should be considered one of the project options.

The “what” someone is trying to do is more important and more straightforward to

break down. Let’s categorize these questions as follows:

	 1.	 Is this standalone app a good fit for my project?

	 2.	 How do I start using it?

	 3.	 What is it fully capable of doing?

	 4.	 How can I report a bug or get involved?

132

The first question is about assessment. By assessment I don’t mean ranking or

scoring your app for some kind of arbitrary scale, but judging whether someone should

use it. This is the broadest and most subjective kind of questioning someone will have

looking at your standalone app, and there is no single, surefire way of addressing this

question.

However, there are several critical questions you can and should address that go a

long way toward helping people assess your app, including (i) answering what problem

it solves, (ii) how it solves that problem, and/or (iii) how it solves this problem differently

from other solutions.

A concise example of this is from the standalone app django-rq:

Django integration with RQ, a Redis-based Python queuing library.

Django-RQ is a simple app that allows you to configure your

queues in Django’s settings.py and easily use them in your project.

We now know exactly what this is for and what it does. We don’t know how to install

it or use it yet, but from only those two sentences, you’ll probably have a fairly good idea

as to whether this app will be of help to you.

Once someone has decided to use your app, they’ll next want to know how to

start using it. This includes (i) installation, (ii) configuration, and (iii) any subsequent

integration or usage steps.

Installation is typically straightforward, including a pip install and adding the app

to INSTALLED_APPS, but you should be sure to make explicit the names used here and

document any differences from the expected. As to configuration, at a minimum you’ll

need to include any changes or additions to project settings (beyond INSTALLED_APPS)

that are required, such as MIDDLEWARE additions, and also additions to the project

urls.py configuration.

Integration and usage include changes to the user’s own code required to make use

of your standalone app and any commands or output that the user should know about. If

your standalone app includes mixin classes for views, what attributes or methods should

the user be aware of immediately? If it includes management commands, what are they

named and what are the required arguments? There is much more you can include, but

for immediate answers, questions like this will guide what to include.

Chapter 19 Documenting your standalone app

https://github.com/rq/django-rq

133

Lastly are the questions of how a user can provide feedback or contribute back to

the project. It’s easy to take these questions for granted and to think that the answers are

self-evident – just create a new issue on the repo of course! – but that’s not always the

case and you should make this clear for your users. A simple statement about where to

file issues or whether there is an email for asking questions suffices as a start, but you can

and should include more guidance, including not just where to record issues but how.

This will save your users time and you as well.

�The forms of documentation
Documentation should start with a README file. This is a single, top-level text file with

or without basic markup formatting (e.g., README.rst or README.md). It describes

what your app does and how to install it and configure your project to use it and either

includes some basic usage documentation or points to where that can be found. This file

is typically the first thing someone will see when they see your app in a public repository,

and it’s easy to include the content here in the long_description used by setuptools to

include in PyPI. It’s also a long-running convention, so regardless where you include the

rest of your docs or how you structure them, someone can expect to find this file at the

source root.

Beyond this it helps to start your documentation in either separate files or sections in

a way that address the hierarchy of needs in using your app (Figure 19-1).

Chapter 19 Documenting your standalone app

134

This hierarchy of needs mimics Maslow’s popular hierarchy of needs, which is
intended to illustrate a hierarchy of human needs, whereby the lowest level must be
satisfied before those above can be met. Whether or not the psychological theory is true,
it’s a useful analogue for approaching documentation.

At the base level come installation and configuration. Without knowing how
to actually get your app and what "dials" need to be turned, all the subsequent
documentation is of little practical value. Often the README itself will suffice for
this purpose, but if the available settings are more than a few, then installation and
configuration, or just configuration, may warrant their own section in the documentation.

Subsequent to this is the basic usage and integration described in the preceding
section. A handy way to think about this is getting started with your app quickly, and a
quickstart is an excellent way of showing how to make practical use of your app without
needing to dive into the full documentation. This is usually the bare minimum required
to start using the app, from the most commonly used command to a simple practical

example integrating your app into another.

Figure 19-1.  Maslow’s hierarchy of needs, illustrated by Wikipedia user
FireflySixtySeven (CC BY-SA 4.0)

Chapter 19 Documenting your standalone app

135

For apps that require non-trivial integration, such as building blocks or even

additional frameworks, a tutorial on doing so is a valuable next step. A tutorial guides

the user through the steps of using software by example with a clearly defined end goal

that each step helps achieve. This won’t be necessary for many standalone apps, but

for apps with significant features, it is useful for showing how to use the app where a

quickstart is insufficient.

As an example, the django-graphene app, a standalone app for adding GraphQL

functionality to Django project, uses two such tutorials in its documentation. The basic

tutorial guides the user through the typical quickstart steps and then proceeds through

creating example models and views in a sample app and even loading provided test data

to match the prescribed models. From here the user can actually see how the app works

by building a small app and compare the results described in the documentation to the

results they see on their own computer.

Whereas tutorials provide a "horizontal" approach to documenting a standalone app

by starting with a problem whose example solution includes many different aspects of

functionality, API references provide a "vertical" source of documentation, with details

that are organized by implementation. The Django docs are largely organized this way.

Rather than including tutorials for every type of problem, the Django docs include a basic

tutorial and then detailed documentation organized logically by functionality. There is

no tutorial on how to create an app that sends out aggregated book ranking information

in email reports, but there is detailed documentation about how to use email, how to use

Django’s model classes, and about the various database aggregates and expressions.

Lastly, and at the top of our hierarchy, sits the cookbook. As might be expected

from the name, cookbook documentation is a collection of recipes, of small real-world

examples, that both demonstrate how to use the features of your standalone app and

provide a measure of inspiration for how it can be applied. These can be extracted from

real use cases or contrived, though they should be useful whether made up or not.

�Code comments and docstrings
Many Python programmers are careful to document their code, including comments

for "interesting" code blocks; detailed docstrings explaining modules, classes, and

functions; and even type hints. Clearly written and well-documented code is a fantastic

aid for development, especially for new contributors, and can be an asset for developer

users who simply want to better understand the internals of your app. That said, there is

a difference between code documentation and usage documentation.

Chapter 19 Documenting your standalone app

https://docs.graphene-python.org/projects/django/en/latest/

136

The reasons why include not just how one reads the documentation (see the section

“Tools for documentation”) but organization and level of detail. Simply put, source code

isn’t typically organized to answer the questions of why and how when those questions

have to do with the problem the app is solving; it’s organized to solve the problem. The

entry points are designed for execution and importing, not for reading and browsing.

There’s also value in decoupling documentation from source code when that separation

makes contributing to the documentation easier.

Be wise about not mistaking code documentation for user or project documentation.

�Tools for documentation
Once you have documentation for your standalone app, the next step is to make it

readable for potential users without needing to look through source code. Whether you

have used reStructuredText or Markdown, there are several tools that will make turning

your documentation into web deployable HTML a snap.

The most commonly used tool for this is Sphinx, which is designed primarily for

working with reStructuredText documentation, although it does have support for

Markdown as well. If you’ve ever read either the Python or Django documentation,

you’ve read through documentation generated by Sphinx. It is a powerful tool, but

getting started is straightforward. To install it and create your initial configuration, run

the following commands in your console from within your docs source directory:

pip install Sphinx

sphinx-quickstart

The sphinx-quickstart command will guide you through several prompts to help

identify where to include the built HTML, basic project information, and the natural

language in which docs will be written. The generated Makefile – or make.bat if you’re

using Windows – can then be used to read your reStructuredText source files and create

browsable and searchable HTML files. You can also build to other formats, including

PDF, though this may require additional software, such as LaTeX.

The details of structuring your documentation using Sphinx and reStructuredText

are beyond the scope of our discussion here; however, reStructuredText allows you to

create rich indexes and also build documentation from your standalone app’s source

code.

Chapter 19 Documenting your standalone app

137

An alternative to Sphinx for those who strongly prefer using Markdown is MkDocs.

What Markdown and MkDocs lack in features, they make up for in simplicity. MkDocs

projects are configured using Yaml files instead of Python, and Markdown’s syntax – as

well as features – are more stripped down compared to reStructuredText. This can be

an asset if you’re working with other people who are already familiar with Markdown.

Just like Sphinx, MkDocs will take your documentation source and create browsable,

searchable HTML documentation.

Once you have a tool that can turn documentation source into HTML, you’re nearly

ready to deploy it so that developer users can browse the documentation online. The

simplest way to do this is to simply provide the built HTML over the Web, for example,

copying it to a web server, adding to a repository branch to serve using GitHub pages,

among others. While this works, it does introduce a lot of manual work.

Instead, you can use Read the Docs to automatically build and host your project

documentation. Read the Docs will work with either Sphinx or MkDocs, and provided

you are using GitHub, Bitbucket, or GitLab, it will allow you to connect your repository

using a project integration to build from repository updates (you can use it with other

source code platforms too; however, it will require more manual setup).

�Summary
In this chapter, you’ve learned how to get started with user-facing documentation for

your standalone app, including what kind of questions to ask in guiding it, forms of

documentation suitable for users, and tools for actually deploying documentation.

In the next chapter, we’ll delve into additional topics in testing including testing

migrations and how to test against different versions of Python and Django.

Chapter 19 Documenting your standalone app

https://readthedocs.org/

139
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_20

CHAPTER 20

Additional Testing
Once you have your standalone app successfully tested outside of your project, it might

seem like you’re entirely done with testing. However, there’s quite a bit more than you

can test for and guard against, which becomes especially important as more people use

your app and decide to contribute.

In this chapter, you’ll learn how to test for bugs that aren’t caught by typical unit

tests, how to test against multiple versions of Python and Django, and the pytest test

framework as an alternative to the Django test runner.

�Testing migrations
There are a few aspects of your database migrations that you may wish to test, including

the schema changes themselves, the accuracy of data migrations, and whether you have

any unmigrated changes.

For testing the schema migrations, it should suffice to have tests in place for your

models. You typically don’t need any special tests for these changes. In the event

your migrations include non-trivial data migrations, you may wish to test that these

populate or modify app data as expected. If this is the case, you’ll want to test the specific

migration or the migration function itself (i.e., the code run by operations.RunPython in

the migration file). If you’re testing the full migration as a complete unit, this necessitates

managing the migration flow, which can be accomplished with a modified TestCase

class or by using a purpose-built library such as django-test-migrations. In the event

the data migration uses concrete models – which is generally considered an anti-pattern

because of the lack of point in time model attributes – you can often treat the individual

migrating function as a unit and test directly. This involves setting up some test data as

expected in the initial phase, executing the migration function, and verifying that the

data in the test database now matches the expected result.

140

When it comes to unmigrated changes, what we want to discover is if there are any

outstanding model changes that would result in a new database migration and treat this

scenario as an error. There are two reasons to do this. The first is that you risk shipping

what is effectively an incomplete model state. If you’ve changed the allowed states of a

model field, for instance, such that it can no longer be nullable, and your test data fill this

field, then you may not notice that the migration is missing, leading to a problem when

someone else deploys an updated version of the app. The second reason is that you will

end up shipping the app in a state where end users running makemigrations make their

own new migration for your app, which is likely to conflict with subsequent migrations

that ship with your app (I have done this myself and it proved very annoying!).

Related to both of these reasons, it’s entirely possible that you have all the necessary

migrations but accidentally fail to commit them to your source control repository. As a

result your tests will pass locally, but you’ll ship it in a broken state. Having tests in place

means that you can tests for missing migrations in a continuous integration system that

only works with what you’ve committed and pushed.

�Testing against different versions
More exciting and important than testing migrations is being able to sensibly test against

multiple versions of both Python and Django. There are several reasons to test against

different versions of Python and Django. Most obviously, if you’re publishing your

standalone app for other people to use, you simply cannot assume that everyone else is

using the same version of either Python or Django. For every single version of Django

your app supports, there is a set of supported Python versions which that version of

Django will run on. There can be no guarantee that an app or library supporting a given

Django version also supports all of the associated Python versions; however, it is a very

reasonable expectation that it will support all of the associated versions.

Secondly, testing against multiple versions of Python and Django makes the job of

future proofing your app much easier. You can continue building versions that support

your current chosen environments while ensuring compatibility with new versions of

Python and Django, even before they’re officially released.

There are several tools that will let you do this, including continuous integration

services and local tools like tox and nox. We previously covered how to use tox in

Chapter 15. nox is a somewhat similar tool, in that like tox it will create, manage, and use

Chapter 20 Additional Testing

141

individual test-specific virtual environments for running your tests. However, unlike tox

it uses a Python-based configuration. This allows you to do things like chain “sessions”,

the task related blocks nox lets you write to run tests and other tasks.

Here is a fully functional nox configuration file (noxfile.py) extracted from a work-in-

progress branch from django-organizations:

import nox

pytest = '4.4.1'

@nox.session(python=['3.6'])

@nox.parametrize('django', ['1.11', '2.0'])

def tests(session, django):

 session.install(f'pytest=={pytest}')

 session.install(f'Django=={django}')

 session.install('-r', 'requirements-test.txt')

 session.install('-e', '.')

 session.run('pytest')

Why use nox instead of tox? The primary reason would be personal preference

for composable Python-based configuration rather than an ini file-like configuration

format. A more compelling reason would be the ability to use it to both run tests and

execute non-test commands, like building or publishing, thus consolidating the use

cases for tox and a Makefile.

�Using pytest
Django uses the Python standard library’s unittest test framework by default. The

bundled TestCase classes are based on unittest.TestCase and the test runner at root

is too. However, the unittest library is not the only way to test Python code, and one

alternative which has grown increasingly popular is pytest.

pytest has a few primary advantages over the unittest library for writing and

running tests. The first is that pytest lets you write tests using individual functions

without needing to create whole classes. Second, pytest makes use of the built-in assert

statement for comparisons, so there is no need to make use of methods like assertEqual.

For example, given this form class

Chapter 20 Additional Testing

142

from django import forms

from dateutil.relativedelta import relativedelta

class AgeValidity(forms.Form):

 birthdate = forms.DateField()

 def clean_birthdate(self):

 dob = self.cleaned_data["birthdate"]

 if dob + relativedelta(years=18) < date.today()

 raise forms.ValidationError("Min. age not met")

 return dob

you can write a basic validation check in a single function:

import datetime

from dateutil.relativedelta import relativedelta

def test_form_date_validity():

 given_date = date.today() - relativedelta(years=18, days=-1)

 form = AgeValidity(data={"birthdate": given_date})

 assert not form.is_valid()

It’s a simple test, of course, but it doesn’t require anything more than what would

be the test method in a test class, however a test class doesn’t need to be written. By

themselves these features are conveniences. Rather, it is the combination of composable

test fixtures, test running, and the plugin ecosystem which make it a compelling

alternative.

Instead of creating instances of test data in setUp or setUpTestData of each TestCase

class, you can create individual and reusable functions that return (or yield) your test

data. pytest then matches these with test function argument names and passes the data

through, without requiring an explicit import statement. Here are two pytest fixtures –

generators that yield test data – including one that relies on the other.

@pytest.fixture

def account_user():

 yield User.objects.create(

 username="183jkjd", email="akjdkj@kjdk.com")

Chapter 20 Additional Testing

143

@pytest.fixture

def account_account(account_user):

 vendor = create_organization(

 account_user, "Acme", org_model=Account)

 yield vendor

These can then be used in any test by naming the arguments to match the fixtures:

def test_invite_returns_invitation(

 account_user,

 account_account,

):

 backend = ModelInvitation(org_model=Account)

 invitation = backend.invite_by_email(

 "bob@newuser.com",

 user=account_user,

 organization=account_account)

 assert isinstance(invitation, OrganizationInvitationBase)

The accumulated benefit over your test suite is less setup and teardown through the

tests and less effort spent creating the requisite test data.

In order to use pytest like this to test your standalone app, you’ll most likely need

to use the pytest-django plugin. This makes interaction with the database a snap and

comes with some fixtures (or fixture generators, if you want to think of them that way) for

typical Django-related testing, like a test client for accessing views. Using pytest-django

to mark a test as having access to the database, here is a pytest test function for verifying

that there are no uncreated migrations:

@pytest.mark.django_db

def test_no_missing_migrations():

 call_command("makemigrations", check=True, dry_run=True)

There are reasons not to use pytest. For one, your unittest-based test suite may be

working just fine for you. The implicit loading of fixtures during test runs is convenient

but can obfuscate where fixtures were sourced from, and the magic of this feature may

be unappealing. However, for small standalone apps, it can make it easier to start writing

tests, and for very large standalone apps, it can make it easier to reuse test data and run

unique, feature-specific sets of tests.

Chapter 20 Additional Testing

144

�Summary
In this chapter, you’ve learned about verifying migrations during testing, tools for testing

against different versions of Python and Django, and using pytest as an alternative test

framework. In the next chapter, we’ll tie this all together through automation, adding

both local and remotely executed processes which simplify the development process for

you and provide a good foundation for enabling other developers to contribute as well.

Chapter 20 Additional Testing

145
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_21

CHAPTER 21

Automating
In the previous chapter, we extended what you can do to test your standalone app

by testing against different versions of Python and Django, as well as alternative test

runners. You learned how to use tox or nox to test against different versions and how to

test your migrations and got a brief introduction to the pytest testing framework.

In this chapter, we’ll look at how to go beyond this by automating as much as

possible, not merely for our convenience but also to help improve the quality of our app

and the shared experience for other contributing developers.

�What is it and why bother?
There are a number of ways you can define automation, but for our purposes, we’ll start

with this definition: it’s any process that sequences other processes without requiring

subsequent intervention. Our emphasis here on some kind of parent process is because

something or someone still needs to kick off the process, and moreover, automation is

not something that’s only satisfied by robots or some kind of cloud-based system. Test

automation, after all, can be executed by running a command on your own computer.

What makes it automated is that the entirety of the test suite can be run with just that one

command.

So if “automation” sounds daunting, start by substituting “scripting” and you’ll get

80% of the benefit.

The first reason to start automating is that you’re likely to have to do these things

again, and you want to ensure that you do them exactly the same way every time. You

don’t want to forget a step; you don’t want to have to wait at the keyboard to kick off the

next step.

Less obviously, it saves time and mental energy from thinking about the tasks you

automate. You likely want a certain outcome, and even knowing that doing X will get

you Y, if it’s easy to skip X, you likely will. Much like staying healthy, your best bet is

146

making enforceable decisions ahead of time. Automating is a way of not just ensuring

better outcomes but spending fewer mental cycles on the work required to achieve those

outcomes.

Automating development processes also makes it much easier to get other people

involved. Should you simply hope that everyone will follow the same steps when testing

their code and creating pull requests? Are you going to make them follow steps in

documentation and copy and paste like code monkeys? Of course not! You can give them

a single script that automates all the steps they need to follow to do the same thing you

did. And better than this, if you set up a separate service, you don’t even need to rely on

contributors running these tasks themselves. This saves onboarding time, debugging

time, and stress.

�Starting to automate
There are a number of different things you can start automating, including tests, related

code checks, the release process, and also different places you can start automating,

for example, locally or using remote processes. Absent an urgent and specific need,

you should start automating (i) critical tasks that would be blockers for release or even

further deployment, like tests, (ii) development-related tasks that make it easier for other

developers to participate, and (iii) later tasks related to release that make life easier and

can reduce the short-term bus-factor.

Testing is the most straightforward to automate because you already have tests

that you can run. Once you have usable and useful tests, it’s helpful to have them run

automatically, for example, every time you push code to your repository. This ensures that

the tests are always run, whether you remember to run them locally or not. This is a little

fringe benefit if you’re working on your own, but it’s a benefit that scales up with each

additional developer. You no longer need to worry if someone else ran the tests before

pushing up their code or submitting a pull request, you can see the results for yourself.

�Continuous integration services
The foundation of most automation is a continuous integration service. This is a

service – whether a self-managed process like Jenkins or a third-party SaaS – that runs

specified tasks for your project. These can include, and most often do, running the test

Chapter 21 Automating

147

suite and reporting the results, as well as deploying updates, and can be run in response

to updates to the codebase or triggered from some other action.

Here we cover a few of the more popular third-party services, with basic

configurations for a standalone app that requires only Django and uses a runtests.py file

to kick off the tests. These can be used as starters, but more importantly, in combination

their commonalities describe at a high level how these services work.

�Travis CI
Travis CI is the granddaddy of continuous integration as a service, at least for open

source software. Using this service requires a configuration file, named .travis.yml, in the

root of your project and following your project on GitHub through the Travis web app.

The Travis service only supports GitHub-based projects.

A simple test set up is extremely simple:

os: linux

dist: bionic

language: python

python:

 - "3.8"

install:

 - pip install django==3.0

script:

 - python runtests.py

Beyond this, Travis offers good support of version matrixing (similar to tox), natively

supporting running tests against multiple versions of Python concurrently.

�GitHub
GitHub has long been the most popular choice for hosting open source software projects

with Git. More recently GitHub added their “Actions” feature which allows running

various workflows on a per project basis. These are added with individual YAML files in

the .github/worflows/ directory of your project.

Chapter 21 Automating

148

An example to achieve the same test run as the Travis example is as follows:

name: Blog

on: [push]

jobs:

 build:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v1

 - name: Set up Python 3.8

 uses: actions/setup-python@v1

 with:

 python-version: 3.8

 - name: Install dependencies

 run: |

 pip install Django==3.0

 - name: Run the tests

 run: |

 python runtests.py

The GitHub Actions test job configuration here is more verbose than the Travis

configuration, in large part because GitHub Actions is not a continuous integration per

se, but a generic workflow building tool on which you can compose your own required

continuous integration tasks. This makes it more flexible but a bit more complicated.

The primary benefit of using GitHub Actions for most people is simply that for projects

already hosted with GitHub, it’s immediately available without any further integration.

�GitLab
GitLab is another Git-hosting service and an alternative to GitHub that integrates a CI

product directly into both the web app and the installable self-hosted version, which is

open source:

Chapter 21 Automating

149

image: "python:3.8"

before_script:

 - pip install django==3.0

stages:

 - Test

test:

 stage: Test

 script:

 - python runtests.py

GitLab’s CI service is purpose built, and as such a basic configuration is simple.

However, it is highly customizable and unlike the other CI-as-a-service products is open

source and can be self-managed.

�CircleCI
CircleCI is in the business of continuous integration, and like Travis they offer various

options for free and paid plans available for open source projects. A brief example of a

test workflow looks like this:

version: 2

jobs:

 build:

 docker:

 - image: circleci/python:3.8.0

 working_directory: ~/repo

 steps:

 - checkout

 - run:

 name: install dependencies

 command: |

 python3 -m venv venv

 . venv/bin/activate

 pip install django==3.0

Chapter 21 Automating

150

 - run:

 name: run tests

 command: |

 . venv/bin/activate

 python runtests.py

�Others
This is hardly an exhaustive list of services or software you can use to automate testing

your standalone app.

�Summary
In this chapter, you have learned how to take advantage of automation systems to

make it easier to test your code, to test it in different environments, and to provide an

authoritative test oracle for your app. Each of these steps serves to reduce friction in the

development process for both the original author and subsequent contributors. In the

next chapters, we’ll look at when to use database-specific functionality in your app and

how to encourage collaboration on your standalone app from other developers.

Chapter 21 Automating

151
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_22

CHAPTER 22

Databases and other
backend-specific
considerations
One of the benefits of using a framework like Django is that it provides abstracted

interfaces to differing backend services, ranging from databases to email and caching.

A typical deployed Django project only needs to support one, or maybe two, of any given

database or backend, and this lends itself to using backend-specific features within

individual projects. These features may grant additional functionality or performance

benefits, but in a published standalone app will limit the app’s usage to only uses of the

specific database or backend.

In this chapter, we’ll briefly but separately review questions about using specific

database choices in your app, including when to include backend-specific features and

how to approach them when you do.

�Backend-specific implementation and features
One of the benefits of using an ORM like Django’s is that it is database agnostic. The

same application code can be run using PostgreSQL, MySQL, or even SQLite. Yet there

are times when it may seem, or indeed be, advantageous to use database-specific

functionality. Beyond the commonalities, each database works differently, offers slightly

different functionality, and has different strengths and weaknesses. If you know what

database your project is going to use, it makes sense to take full advantage of those

specifics.

152

We should note here that an overall assumption to this question is that your

standalone app is intended for a broader audience. If your standalone app is for internal

use only within a larger organization using a common technology stack, this is going to

be less important.

The most straightforward example of database-specific code is that of raw

SQL. Putting aside whether it’s a good idea to ship raw SQL in a deployed project, the

typical benefit of using straight SQL is that you can directly rely on database features,

including database functions, which have not been exposed in the ORM. You can often

also write more expressive queries on a one-off basis.

However, the ORM is database agnostic; even Django ships with database-specific

features! The contrib.postgres app includes PostgreSQL-specific database functions,

fields like RangeField and ArrayField, indexes, and full-text search functionality that isn’t

available (in Django) for other databases.

�Approaching database-specific functionality
As a rule of thumb, unless your app is specifically focused on some kind of database

or backend-specific functionality, try to avoid relying on those database or backend-

specific features unless absolutely needed.

An obvious candidate for relying on backend-specific functionality is geospatial

functionality. GeoDjango, that is, contrib.gis, supports multiple database backends;

however, only PostgreSQL’s PostGIS is fully feature supported. The model fields can

be used across the supported database backends; however, a number of lookups and

functions are supported inconsistently by the different geospatial database backends.

If in fact there’s significant value in using one of these, such as geospatial aggregates or

bounding box overlaps, then this is a fair use of backend-specific (or backend-limiting)

functionality.

There are workarounds for this, of course, to include database-specific functionality

without limiting the scope of use for developer users. One is including the functionality

without directly integrating it into some other critical functionality, for example,

adding a query method that relies on backend-specific functionality but not using it in

a provided view or admin class. A further benefit to your developer users would be to

include warnings if their database backend does not support the given features, or if it is

unknown if it does (any custom backend classes may obscure this to your code).

Chapter 22 Databases and other backend-specific considerations

153

import warnings

from django.conf import settings

if (

 'django.contrib.gis.db.backends.postgis' not in

 [db['ENGINE'] for db in settings.DATABASES.values()]

):

 warnings.warn("""PostGIS not found, not all App features

 may be supported.""")

A bolder approach which will work in some cases is to back out of the backend-

specific functionality altogether. There are two ways of approaching this: (i) using a

simpler implementation and (ii) allowing developer users to integrate their own classes

(using inversion of control). The first strategy will work in limited cases, and a proven

geospatial example is storing geospatial data such as coordinates or even polygons.

If your app makes no use of this data for lookups or geospatial querying and does not

present a clear use case for doing this, non-geospatial fields will suffice. Coordinates can

be stored in a pair of fields using DecimalField and access with a property.

class Place(models.Model):

 latitude = models.DecimalField(...)

 longitude = models.DecimalField(...)

 @property

 def coords(self):

 return self.latitude, self.longitude

 @coords.setter

 def coords(self, lat, lng):

 self.latitude, self.longitude = lat, lng

Polygons are a bit tougher, but again, if the data is only being stored or represented

in another layer, for example, provided via an API for a front-end application to render,

then its storage requirements are less specific. An ArrayField might suffice (though also

be PostgreSQL limiting) or a JSONField could as well (now supported by MySQL in

Django 3).

Chapter 22 Databases and other backend-specific considerations

154

An alternative where some kind of backend-specific feature is needed is to allow

some component class to be registered or used as an initializing argument that adheres

to a baseline interface but can otherwise be wholly controlled by the end user. The

way Django’s database backends works meets this requirement, as do similar features

in other projects like Haystack, for search. In either case you provide the library with

the dotted path to the backend class or module using Django settings, and the library

loads and uses that specific class or module. This means the backends are infinitely

customizable (or nearly so), allowing users to swap between different search engines

and also to create modified versions that suit their specific needs whether those needs

are small features or working with a new and totally different backing service.

�Summary
In this chapter, you’ve learned about various types of backend-specific options and how

to judge whether using them is a good strategy for your standalone app.

Chapter 22 Databases and other backend-specific considerations

155
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_23

CHAPTER 23

Collaborating
Open source software tends to imply – though it doesn’t necessitate – collaboration with

other developers, often strangers from around the world. Our previous chapters have

largely been predicated on the idea that you will be publishing and sharing your source

code with the world. This is such standard practice that we rarely think about why we’d

do this and what the benefits and costs might be, to say nothing about how to achieve

them.

Collaboration can be a challenge, but it’s one that’s almost always worthwhile.

In this chapter, we’ll look at how you can expect people to collaborate, your role as a

maintainer, and some strategies to maximize the effectiveness of those contributions

and to minimize the burdens of open source maintenance.

�Why contributions
It’s a good idea to start with laying a framework for answering “why” to allow and

foster collaboration on your projects and also to understand why other people seek to

contribute in one way or another to your projects.

As the maintainer the expected or desired benefits from contribution include:

	 1.	 Identifying bugs

	 2.	 Updating documentation

	 3.	 Suggesting features

	 4.	 Developing features

Regardless of the type of contribution, the common thread behind most

contributions is a desire to use your software. A user may report a bug because they

just want to help out and make the software better (improving an otherwise fruitful

experience), or because it’s something they want fixed so they can start or continue using

the software (fixing a blocking bug). Someone suggesting a feature probably wants to see

156

that feature in your app because they are using or want to use your app, and that feature

would further improve it (for them, at least!).

Similar reasons for authoring and maintaining an open source project can be found

in contributing, too. It’s not just a desire to help others, but a desire to improve their own

technology solutions and sometimes to see their suggestions triumph as well. Vanity

should always be considered in open source software!

We can summarize by stating that the three motivations for contributions will be

some combination of a pure desire to help or make right (altruism), a desire to improve

the product for their own use (practicality), and at times a desire to see their own

suggestions take flight (vanity).

�What to expect
The most common forms of contribution are not fully tested, well-documented pull

requests that satisfy a proposed feature or even solve an outstanding bug. The most

common forms of contribution will be bug reports and feature requests. Moreover, many

bug reports will simply be questions (some even answered in documentation). In part,

these are the easiest forms of “contribution” to a project with the lowest barriers to entry.

Regardless of what’s contributed to your project, you’ll need to understand that

there are benefits as well as costs to allowing and inviting other people to collaborate

with you. It takes time to review and respond to issues and to pull requests, and it can

require emotional energy to manage other peoples’ expectations and even, occasionally,

demands! Sometimes even well-intentioned people will forget or fail to realize that the

project is run by other human beings, more often than not of their own good will and on

their own time.

So whatever you can do to minimize the friction for all parties involved will tend to

not only improve the quality of collaboration but also your life as a maintainer.

�Setting expectations
There are two strategies to take in combination to help contributors add to your project

while minimizing the extra work required of you. The first is automation (discussed

already in Chapter 24) and the second is being abundantly clear and upfront about how

collaborators are expected to contribute and what to expect from you in turn.

Chapter 23 Collaborating

157

The benefits of automation from locally run scripts to server run tests and

deployment processes are several fold. A significant benefit is that where tests and

checks are run by a continuous integration service, you don’t need to check and run the

tests yourself locally to verify new code. Yet another one with a more social angle is that

having an automated oracle for some decisions reduces the decision-making burden

from you and also the focus of blame if the contributor might disagree or otherwise feel

threatened by a decision. Some simple examples include code formatting and coverage.

If you have automated checks for these things, even though you’ve set them up, if

someone’s contribution fails them, you don’t need to say “I’m not accepting this because

I did or looked at X and it’s not good enough”, you can simply say “Ah, once you get the

thing passing over there, we can merge it in.” The rule codified in automation is less

likely to suffer any anger and you have fewer decisions to make and communicate.

There will always be significant aspects of the collaboration process that cannot

be automated though, and in a similar vein, these can be solved or improved through

clearly documenting expectations. This will not only make your life easier but make it

easier for contributors and typically improve the quality of their contributions.

The first place to start with is a contribution guideline, often included as a top-level

standalone file like CONTRIBUTING.rst. Whether this is a standalone file or included

in your readme is less important than what it includes. Here you have the opportunity

to express to potential users what the best channels of communication are, where they

should report bugs, what information should be included when reporting bugs, and even

what to expect from you or other maintainers after they report a bug.

Depending on what code publishing service you use (e.g., GitHub, GitLab), you

can create templates from which collaborating users can make a report or request.

The benefit of a template is that you can ask upfront for the kind of information you’d

need to start assessing what the issue is. A simple issue template for a GitHub-based

project might look like the following,1 which would prompt the reporter for the required

debugging information:

Bug reports:

Please replace this line with a brief summary of your issue **AND**

the following information:

1�Based on public domain issues from https://github.com/stevemao/github-issue-templates/
blob/master/checklist/ISSUE_TEMPLATE.md

Chapter 23 Collaborating

https://github.com/stevemao/github-issue-templates
https://github.com/stevemao/github-issue-templates

158

- [] 1. Python version:

- [] 2. Django version:

- [] 3. MyApp version:

- [] 4. Reproducible test code (if feasible/relevant):

Features:

**Please note by far the quickest way to get a new feature is to file a

Pull Request.**

We will consider your request, but it may be closed if it's something we're

not actively planning to work on.

The same kind of template can be replicated for pull requests as well2:

Types of changes

<!--- What types of changes does your code introduce? Put an `x` in all the

boxes that apply: -->

- [] Bug fix (non-breaking change which fixes an issue).

- [] New feature (non-breaking change which adds functionality).

- [] �Breaking change (fix or feature that would cause existing

functionality to change).

- [] I have read the **CONTRIBUTING** document.

- [] My code follows the code style of this project.

- [] My change requires a change to the documentation.

- [] I have updated the documentation accordingly.

- [] I have added tests to cover my changes.

- [] All new and existing tests passed.

This allows a submitter to check off what they represent was done, making explicit

and upfront what’s expected, making your review easier, and also delegating to a policy

the decision making and possible requests for updates. However, if you look through the

pull request template, you’ll note at least a few items that could be further delegated to

automated scripts, for example, verifying that all tests pass and, to a reasonable extent,

that the code matches the desired project style.

2�Also from the GitHub issues template repository

Chapter 23 Collaborating

159

Another feature to aid documentation that you might consider is a code of conduct.

At its simplest, a code of conduct is an expectations document, stating upfront how

people collaborating on the project are expected to work and communicate together.

These have become more popular largely in response to toxic or hostile behavior that

can be manifested in open source collaboration. However, even if you’re not actively

worried about trolls, a code of conduct is something that can be delegated to instead of

perceived ad hoc decisions.

�The role and obligations of an open source
maintainer
What is the role of the maintainer? How should you define your obligations both to users

and to contributors? These are intentionally goading questions that share some popular

assumptions about the “job” of a maintainer. The short answer is that both questions are

ultimately up to you to decide.

The role of the maintainer is to answer questions and shepherd development, and

this will vary largely based on how active development is on your project, including how

many other contributors are involved. If there are active contributors and development,

you may turn your role largely into that of a traffic cop, pointing people in the right

direction and stopping them from getting into accidents. Or you may be the primary

author for all subsequent updates.

The question of obligation is trickier. It’s of less direct impact to the processes you

use and more critical simply for your own well-being. When you choose to publish

and release open source software for free, people will use it. Subsequently, even well-

intentioned users and contributors may make requests or demands of the project

maintainers that they feel you are obligated to fulfill. This can range from issuing new

releases to adding new requested features. These can be overwhelming for big projects

with high adoption, and even small projects at the wrong time can be beleaguering for

maintainers.

The key to answering the question of your obligation is the tension between taking

responsibility for the things we share for use and the fact that your users and your

contributors are using free (as in “free beer”) software. Every subsidiary question rests

on the latter fact, and because of this, any obligation you have to issue new releases or

develop new features is solely of your own construction and your freedom to dispense

with.

Chapter 23 Collaborating

160

What this ultimately means is taking care to be upfront and transparent about both

the state of your published Django app and the state of known issues. It may be the case

that your app isn’t production ready or that a particular bug is going to take more time

to resolve than you currently have. You do not have an obligation to make your app

production ready on anyone else’s schedule or to fix the bug – really. You don’t even have

an obligation to tell anyone when you will, though a good faith effort in communicating

about that goes a long way toward building good will among current and potential

contributors.

Ultimately our free, open source software is given freely. The code can be assessed

and it can be modified for one’s own use, and barring a transaction in which you

explicitly require some kind of payment from your users, the old adage caveat emptor,

“let the buyer beware,” is the core obligation.

�Summary
In this chapter, you’ve learned about the ways in which potential contributors will want

to collaborate on your project, as well as some strategies for encouraging high-value

and effective collaboration. This includes communicating how to make different kinds

of contributions as well as how to envision your relationship to the project and users to

avoid feeling overwhelmed.

In the next chapter, we’ll take a brief tour of how to use app templates for creating

Django standalone apps.

Chapter 23 Collaborating

161
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9_24

CHAPTER 24

Using app templates
Once you’ve got the hang of creating your own standalone apps, you might want to start

writing more. At this point you’ll likely find there are a number of decisions you don’t

want to make over and over again and necessary boilerplate that you don’t want to deal

with writing. One solution to this is to start creating apps from templates.

In this chapter, we’ll review some of the options for creating new standalone apps

from templates, including Django’s own startapp management command for starting

new apps and the venerable Cookiecutter tool.

�startapp
You’ve probably read about and used Django’s startapp management command to

create new apps within your own Django projects:

./manage.py startapp myapp

By default this command will take an app name and create a directory with minimal

file structure, including models.py and tests.py files, based on a templates directory

structure in the Django package:

myapp/

 migrations/

 __init__.py

 admin.py

 app.py

 models.py

 tests.py

 views.py

162

The core functionality of the command is described for creating apps within the

context of an existing project. However, there is no reason the command cannot be used

to create the app structure anywhere else; simply use the django-admin script instead:

django-admin startapp myapp

By itself this isn’t terribly useful, as the only benefit is a small collection of all-but-

blank files created in a specific directory. This can be improved by creating and using

your own template directory and providing this an argument to the startapp command

using the --template flag, for example:

django-admin.py startapp myapp --template ~/app.template

By using your own template, you can not only choose different files to use, you

can pre-populate them with common imports and other code you use. The startapp

command has support for a few specific context variables, including the app name,

so you can also include some app-specific references in these files. Moreover, you can

change the entire structure, including the app as a package within a parent directory

with your setup files, README, among others.

This strategy will likely suffice if you’re creating apps based on the exact same

structure and feature set each time. However, the minimally supported template context

means that even with templating support, there’s little room for configurability.

�Cookiecutter
For a more robust alternative, consider using Cookiecutter. Cookiecutter is a Python

package described as “A command-line utility that creates projects from cookiecutters

(project templates).” Using a combination of Jinja templates and a cookiecutter JSON

configuration file, you can create highly configurable projects based on a single

cookiecutter from an interactive prompt.

After installation using pip, brew on macOS, or apt-get on Debian, creating a project

from a remote template is a single command:

cookiecutter https://location.com/of-the-cookiecutter.git

It’s worth noting that while Cookiecutter is a Python package

and is widely used in the Python community, cookiecutter

project templates can be created and used for any kind of project,

irrespective of the language.

Chapter 24 Using app templates

163

Perhaps more significant than the feature set provided by Cookiecutter is the

community of publicly shared cookiecutter project templates, including templates for

creating both “vanilla” Python packages and Django standalone apps. The benefit of

using a community-built template is several fold, including eliminating the time and

sundry decisions required to create a template from scratch, as well as getting a number

of best practices “for free” which have been vetted by numerous users.

The primary downside is less that a template might exclude some feature that you

want and more that they might be overly complex and feature rich for your needs. It

may be more effort to edit than to start from scratch. In the case of the most popular

Django package cookiecutter, pydanny/cookiecutter-djangopackage, there aren’t

many overly specific decisions included, meaning it’s a safe starting point that won’t

add unneeded cruft. It will enforce a top-level package (as opposed to using a source

directory) and the specific Python and Django versions may not be quite up to date.

Thankfully you can change these things. Figure 24-1 provides an example of the prompt

provided by pydanny/cookiecutter-djangopackage for configuring a new Django

standalone app.

Figure 24-1.  Prompt provided by pydanny/cookiecutter-djangopackage

Chapter 24 Using app templates

164

There are two ways to create your own cookiecutter project template for starting

Django standalone apps: from scratch or by adapting an existing project template.

Adapting an existing cookiecutter is as simple as cloning the source repository, making

the requisite changes, and using your local clone as the template.

cookiecutter path/to/local/cookiecutter

Adapting an existing template means you don’t have to start everything from scratch,

from figuring out templated names for files to deciding how to track various package

dependencies. If the changes you need are too radical, you can always start from scratch.

When starting from scratch, keep in mind that despite the vast value of templating, the

core of a template is copying files from one source to another. In other words, create your

structure with as little configuration as possible to start and build up the configurability

only as you need.

�Summary
In this chapter, we looked at two ways of creating new Django standalone apps

from templates: using Django’s startapp command and the general-purpose project

templating tool Cookiecutter. Both can be used with custom starting templates to

enforce project design decisions for subsequent Django standalone apps; however,

Cookiecutter’s templating is more flexible than startapp and should be given first

consideration as a standalone app templating solution.

Chapter 24 Using app templates

165
© Ben Lopatin 2020
B. Lopatin, Django Standalone Apps, https://doi.org/10.1007/978-1-4842-5632-9

Index

A
Admin–specific functionality, 38
Automation

continuous integration
service, 146–150

definition, 145
development processes, 146
migration, 27–28
starting, 146
testing, 28–29, 146

B
Backend classes, 67
Backend-specific implementation

application code, 151
database agnostic, 152
functionality or performance

benefits, 151
blog_app directory, 46
boo_tags.py file, 12
Business feature vs. technical

foundation, 55
Business logic, 105

C
CircleCI, 149
Code of conduct, 159

Collaboration
automation, 157
bug reports, 156
cod od conduct, 159
contribution, 155, 156
GitHub-based project, 157
open source maintainer, 159, 160
template, 158

Continuous integration (CI) system, 9
Cookiecutter

benefit, 163
cloning, 164
command-line utility, 162
package dependencies, 164
remote template, 162
top-level package, 163

Copyleft licenses, 127
Currencies values, 13, 14

D, E
database_forwards method, 65
Database migrations

guidelines, 29
outside project, 27
testing, 28, 29

Database-specific functionality
approach, 153
ArrayField, 153
component class, 154

https://doi.org/10.1007/978-1-4842-5632-9#ESM

166

DecimalField, 153
modified versions, 154
scope, 152

Database table naming, 44
DeleteModel, 65
Django documentation, 13
Django projects

add tests, 24
application, 22, 23
testing, 18, 19
testing script, 20, 22
test, outside, 19, 20
without testing, 25

Django-related features, 13
Django’s signals, 68
Django standalone app

code quality, 4
commonality across client projects, 5
commonality across company, 4
guiding questions, 7
maintenance cadence, 9
necessary functionality, 7
prestige, 5
risk in code, 4
sharing work, 3
specific vs. generalized, 9, 10
testing/documentation, 8, 9
version compatibility, 8
web applications, 6

Documentation
API references, 135
assesment, 132
categories, 131
code comments/docstrings, 135
configuration, 132
cookbook, 135
decoupling, 136

formats and tools, 131
GraphQL functionality, 135
installation, 132
integration/usage, 132
markup formatting, 133
Maslow’s hierarchy of needs, 134
quickstart, 134
tools, 136, 137

F
Framework-specific functionality, 103

G
GitHub, 147, 148
GitLab, 148
GPL-licensed software, 129

H
Hierarchy of dependence, 61
HTML templates

email, 34
include, 31
nested, 34
strategies, 31
structuring/styling, 33
web page, 32

I
__init__.py file, 12, 14
Internationalization

invalid coupon code, 88
storing core field data, 92, 93
template tag library, 89
translation, 87
use cases, 90

Database-specific functionality (cont.)

Index

167

user-controlled model-based
content, 91, 92

user-facing content, 90
wrapping, 88, 89

J, K
jQuery-based JavaScript, 38

L
Licensing

agreement, 125
categories, 126, 127
copyright, 125
documentation, 129
identifier, 127
MIT/GPL, 128
open source, 126
predecessor, 129

Locally installed source, 71
Long-term support (LTS), 8
Lorem ipsum, 104, 105

M
MANIFEST.in file, 48
Meta.db_table attribute, 64
Model renaming/migrations, 63–66
Modularity

apropos, 109
benefits, 110
core app, 110
decoupling, 110
developer users, 110
horizontal modularity, 111, 112
model-related functionality, 109
sub-apps, 111

N
Namespacing

challenge, 43
configuring directories, 39
management commands, 41, 42
models/database tables, 44
settings, 41
standalone Django app, 40
template tags/filters, 43
URLs, 40, 41

O
Open source maintainer

bug, 160
obligation, 159
role, 159

ORM-specific implementations, 107
Override, 38

P, Q
Package directory, 116
Package version

appealing strategy, 114
__init__.py file, 115
__meta__.py file, 115
module root, 114
pyproject.toml, 119–121
setup.cfg, 118, 119
setup.py file, 113
source directory, 116, 118

PEP 518, 120
Permissive licenses, 127
Public domain licenses, 127
Published packaged

advantage, 74
HTTPS, 74

Index

168

setup.py file, 74, 75
tag command, 76
wheel distribution, 76

pyproject.toml file, 120
Python modules, 11–13
Python Package Index (PyPI), 69, 72
Python path, 49
Python standard library, 61
Python version

basic tox file, 101
dependencies, 98
functionality, 95
incompatibilities, 100
pre-release versions, 101
special requirements, 98
standalone app, 98
testenv, 97
tox.ini configuration file, 96
unique virtual environments, 96

R
README file, 133
Refactoring, 62
reStructuredText documentation, 136
runserver_nostatic app, 107

S
Scope

definition, 53
dependencies, 53

Settings formats, 80, 81
Settings naming, 79, 80
setup() function, 128

setup.py build command, 48
Simple blog app

adding templates/static files, 48, 49
arguments, 47
directory, 46
installing/using, 49, 50
setup.py file, 46
single CSS file, 45

Software-as-a-service (SaaS), 61
Source control–based packages

documentation, 72
GitHub repository, 72
installation, 72
limitations, 73
mutually compatible versions, 73

Sourcing app settings, 83
error and default value handling, 84, 85
missing/malformed values, 82
views.py extract, 81

sphinx-quickstart command, 136
Standalone app

job description, 54, 55
less significant, 58
too big, 57, 58

Startapp management command
app-specific references, 162
core functionality, 162
Django projects, 161
templates directory structure, 161

Static files, 106
Django admin, 37, 38
interface-based functionality, 35
JS framework, 35
package, 36
standalone apps, 35–37

STATIC_ROOT directory, 36

Published packaged (cont.)

Index

169

T, U
Template backend implementations, 105
Temptation, 62
Testing, 17

migrations, 139, 140
Pytest, 141–143
versions, 140, 141

TestSomeModel.test_str_method, 18
Third-party API integrations, 79
Travis CI, 147

V
Vertical and horizontal

segmentation, 55, 56

W, X, Y, Z
Walrus operator, 95
Web Server Gateway Interface

(WSGI), 106

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Part I: Basic Components of a Django App
	Chapter 1: Defining the scope of a Django standalone app
	Benefits of creating standalone apps
	Sharing your work
	Improved code quality
	Don’t repeat yourself
	Commonality across a company
	Commonalities across client projects
	The currency of prestige

	With or without Django?
	Choosing your dependencies
	Necessary functionality
	Version compatibility
	Testing and documentation
	Maintenance cadence
	Specific vs. generalized

	Summary

	Chapter 2: Structuring standalone Django apps
	Django apps as Python modules
	What about middleware and URLs and views?
	Example app: currency
	Summary

	Chapter 3: Testing
	Why test?
	Testing apps from a Django project
	Testing the app
	Testing outside of a project
	Using a testing script
	Testing application relationships
	Where to include tests
	Testing without Django

	Summary

	Chapter 4: Model migrations
	Migrations outside of a project
	Testing migrations
	Additional migration guidelines
	Summary

	Chapter 5: Templates
	Three basic strategies
	What to include
	Email and miscellaneous templates

	Summary

	Chapter 6: Using static files
	Static files in standalone apps
	In the Django admin
	Summary

	Chapter 7: Namespacing in your app
	Namespaces at a glance
	App itself
	URLs
	Settings
	Management commands
	Template tags
	Models and database tables

	Chapter 8: Creating a basic package
	An example blog app
	A basic setup.py file
	Adding templates and static files

	Installing and using
	Summary

	Part II: Scoping and Extracting a Reusable App
	Chapter 9: Scoping and drawing boundaries
	Scoping and the nature of the problem
	The job of a standalone app
	The dimensions for creation and extraction
	Sizing the scope of an app
	When an app is too big
	When an app is too small

	Summary

	Chapter 10: Separating your app
	Getting started
	Refactor first
	Model renaming and migrations
	Allowing customization
	Backend classes
	Signals

	Finalization and removing from the project
	Summary

	Chapter 11: Adding your app back in
	Verifying locally
	Source control–based packages
	Published packaged
	Summary

	Part III: Beyond the Basics
	Chapter 12: Handling app settings
	Settings naming
	Settings formats
	Sourcing app settings
	Summary

	Chapter 13: Internationalization
	Why translation
	Translatable strings and how translation works
	Prioritizing translation steps
	Model content and translations
	Summary

	Chapter 14: Managing version compatibility
	Python version
	Django and dependencies
	Solving for incompatibilities
	Future proofing
	Summary

	Chapter 15: Mixed dependency support
	Beyond Django
	The nuts and bolts
	Real-world examples
	Summary

	Chapter 16: Modularity
	Additional standalone apps
	Using sub-apps
	Embracing horizontal modularity
	Summary

	Chapter 17: Better packaging
	Version consolidation
	Using a source directory
	Using setup.cfg
	The pyproject.toml and more tooling
	Summary

	Part IV: Managing Your Standalone App
	Chapter 18: Licensing
	What licenses do
	Varieties of licenses
	How and where to include your license
	How to include other licenses
	Summary

	Chapter 19: Documenting your standalone app
	Starting with questions
	The forms of documentation
	Code comments and docstrings

	Tools for documentation
	Summary

	Chapter 20: Additional Testing
	Testing migrations
	Testing against different versions
	Using pytest
	Summary

	Chapter 21: Automating
	What is it and why bother?
	Starting to automate
	Continuous integration services
	Travis CI
	GitHub
	GitLab
	CircleCI
	Others

	Summary

	Chapter 22: Databases and other backend-specific considerations
	Backend-specific implementation and features
	Approaching database-specific functionality
	Summary

	Chapter 23: Collaborating
	Why contributions
	What to expect
	Setting expectations
	The role and obligations of an open source maintainer
	Summary

	Chapter 24: Using app templates
	startapp
	Cookiecutter
	Summary

	Index

