
Building REST 
APIs with Flask

Create Python Web Services  
with MySQL
—
Kunal Relan

www.allitebooks.com

http://www.allitebooks.org


Building REST APIs 
with Flask

Create Python Web Services 
with MySQL

Kunal Relan

www.allitebooks.com

http://www.allitebooks.org


Building REST APIs with Flask: Create Python Web Services with MySQL

ISBN-13 (pbk): 978-1-4842-5021-1		  ISBN-13 (electronic): 978-1-4842-5022-8
https://doi.org/10.1007/978-1-4842-5022-8

Copyright © 2019 by Kunal Relan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Laura Berendson
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, 
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc 
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available 
to readers on GitHub via the book’s product page, located at www.apress.com/9781484250211.  
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Kunal Relan
New Delhi, Delhi, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5022-8
http://www.allitebooks.org


Dedicated to caffeine and sugar, my companions  
through many long night of writing, and  

extra credits to my mom.

www.allitebooks.com

http://www.allitebooks.org


v

Chapter 1: Beginning with Flask�����������������������������������������������������������1

Introduction to Flask����������������������������������������������������������������������������������������������1

Starting Flask���������������������������������������������������������������������������������������������������2

Flask Components Covered in This Book����������������������������������������������������������3

Introduction to RESTful Services���������������������������������������������������������������������������4

Uniform Interface����������������������������������������������������������������������������������������������7

Representations�����������������������������������������������������������������������������������������������8

Messages���������������������������������������������������������������������������������������������������������9

Links Between Resources������������������������������������������������������������������������������12

Caching�����������������������������������������������������������������������������������������������������������13

Stateless���������������������������������������������������������������������������������������������������������13

Planning REST API������������������������������������������������������������������������������������������14

API Design������������������������������������������������������������������������������������������������������15

Setting Up Development Environment�����������������������������������������������������������������16

Working with PIP��������������������������������������������������������������������������������������������17

Choosing the IDE��������������������������������������������������������������������������������������������18

Understanding Python Virtual Environments��������������������������������������������������19

Table of Contents

About the Author����������������������������������������������������������������������������������ix

About the Technical Reviewer��������������������������������������������������������������xi

Acknowledgments������������������������������������������������������������������������������xiii

Introduction�����������������������������������������������������������������������������������������xv

www.allitebooks.com

http://www.allitebooks.org


vi

Setting Up Flask���������������������������������������������������������������������������������������������������24

Installing Flask�����������������������������������������������������������������������������������������������25

Conclusion�����������������������������������������������������������������������������������������������������������26

Chapter 2: Database Modeling in Flask�����������������������������������������������27

Introduction����������������������������������������������������������������������������������������������������������27

SQL Databases�����������������������������������������������������������������������������������������������28

NoSQL Databases�������������������������������������������������������������������������������������������28

Key Differences: MySQL vs. MongoDB�����������������������������������������������������������29

Creating a Flask Application with SQLAlchemy���������������������������������������������������30

Creating an Author Database��������������������������������������������������������������������������33

Sample Flask MongoEngine Application��������������������������������������������������������������46

Conclusion�����������������������������������������������������������������������������������������������������������58

Chapter 3: CRUD Application with Flask (Part 1)���������������������������������59

User Authentication����������������������������������������������������������������������������������������������88

Conclusion�����������������������������������������������������������������������������������������������������������96

Chapter 4: CRUD Application with Flask (Part 2)���������������������������������97

Introduction����������������������������������������������������������������������������������������������������������97

Email Verification�������������������������������������������������������������������������������������������������98

File Upload���������������������������������������������������������������������������������������������������������109

API Documentation���������������������������������������������������������������������������������������������114

Building Blocks of API Documentation���������������������������������������������������������115

OpenAPI Specification����������������������������������������������������������������������������������116

Conclusion���������������������������������������������������������������������������������������������������������134

Table of ContentsTable of Contents



vii

Chapter 5: Testing in Flask����������������������������������������������������������������135

Introduction��������������������������������������������������������������������������������������������������������135

Setting Up Unit Tests������������������������������������������������������������������������������������136

Unit Testing User Endpoints��������������������������������������������������������������������������139

Test Coverage����������������������������������������������������������������������������������������������������155

Conclusion���������������������������������������������������������������������������������������������������������157

Chapter 6: Deploying Flask Applications�������������������������������������������159

Deploying Flask with uWSGI and Nginx on Alibaba Cloud ECS��������������������������160

Deploying Flask on Gunicorn with Apache on Alibaba Cloud ECS����������������������167

Deploying Flask on AWS Elastic Beanstalk��������������������������������������������������������172

Deploying Flask App on Heroku�������������������������������������������������������������������������176

Adding a Procfile������������������������������������������������������������������������������������������177

Deploying Flask App on Google App Engine�������������������������������������������������������180

Conclusion���������������������������������������������������������������������������������������������������������182

Chapter 7: Monitoring Flask Applications�����������������������������������������183

Application Monitoring���������������������������������������������������������������������������������������183

Sentry�����������������������������������������������������������������������������������������������������������185

Flask Monitoring Dashboard�������������������������������������������������������������������������187

New Relic�����������������������������������������������������������������������������������������������������189

Bonus Services���������������������������������������������������������������������������������������������192

Conclusion���������������������������������������������������������������������������������������������������������194

Index��������������������������������������������������������������������������������������������������195

Table of ContentsTable of Contents



ix

About the Author

Kunal Relan is an iOS security researcher 

and a full stack developer with more than 

four years of experience in various fields 

of technology, including network security, 

DevOps, cloud infrastructure, and application 

development, working as a consultant with 

start-ups around the globe. He is an Alibaba 

Cloud MVP and author of iOS Penetration 

Testing (Apress) and a variety of white papers. 

Kunal is a technology enthusiast and an active 

speaker. He regularly contributes to open source communities and writes 

articles for Digital Ocean and Alibaba Techshare.  



xi

About the Technical Reviewer

Saurabh Badhwar is a software engineer 

with a passion to build scalable distributed 

systems. He is mostly working to solve 

challenges related to performance of software 

at a large scale and has been involved in 

building solutions that help other developers 

quickly analyze and compare performance 

of their systems when running at scale. 

He is also passionate about working with 

open source communities and has been 

actively participating as a contributor in various domains, which involve 

development, testing, and community engagement. Saurabh has also been 

an active speaker at various conferences where he has been talking about 

performance of large-scale systems.  



xiii

Acknowledgments

I would like to thank Apress for providing me this platform, without which 

this would have been a lot harder. I would also like to thank Mr. Nikhil 

Karkal for his help and Miss Divya Modi for her perseverance, without 

whom this would have been a farsighted project.

I’d like to mention about the strong Python community which helped 

me understand the core concepts in my early years of programming, which 

inspired me to contribute back to the community with this book.

Last but certainly not the least, I would like to acknowledge all the 

people who constantly reminded me about the deadlines and helped me 

write this book, especially my family and Aparna Abhijit for helping me out 

with editing.



xv

Introduction

Flask is a lightweight microframework for web applications built on top 

of Python, which provides an efficient framework for building web-based 

applications using the flexibility of Python and strong community support 

with the capability of scaling to serve millions of users.

Flask has excellent community support, documentation, and 

supporting libraries; it was developed to provide a barebone framework for 

developers, giving them the freedom to build their applications using their 

preferred set of libraries and tools.

This book takes you through different stages of a REST API–based 

application development process using flask which explains the basics of 

the Flask framework assuming the readers understand Python. We’ll cover 

database integration, understanding REST services, REST APIs performing 

CRUD operations, user authentication, third-party library integrations, 

testing, deployment, and application monitoring.

At the end of this book, you’ll have a fair understanding of Flask 

framework, REST, testing, deploying, and managing Flask applications, 

which will open doors to understanding REST API development.



1© Kunal Relan 2019 
K. Relan, Building REST APIs with Flask, https://doi.org/10.1007/978-1-4842-5022-8_1

CHAPTER 1

Beginning with Flask
Flask is a BSD licensed, Python microframework based on Werkzeug and 

Jinja2. Being a microframework doesn’t make it any less functional; Flask 

is a very simple yet highly extensible framework. This gives developers 

the power to choose the configuration they want, thereby making writing 

applications or plugins easy. Flask was originally created by Pocoo, a 

team of open source developers in 2010, and it is now developed and 

maintained by The Pallets Project who power all the components behind 

Flask. Flask is supported by an active and helpful developer community 

including an active IRC channel and a mailing list.

�Introduction to Flask
Flask has two major components, Werkzeug and Jinja2. While Werkzeug 

is responsible for providing routing, debugging, and Web Server Gateway 

Interface (WSGI), Flask leverages Jinja2 as template engine. Natively, 

Flask doesn’t support database access, user authentication, or any other 

high-level utility, but it does provide support for extensions integration to 

add all such functionalities, making Flask a micro- yet production-ready 

framework for developing web applications and services. A simple Flask 

application can fit into a single Python file or it can be modularized to 

create a production-ready application. The idea behind Flask is to build a 

good foundation for all applications leaving everything else on extensions.



2

Flask community is quite big and active with hundreds of open source 

extensions. The Flask core team continuously reviews extensions and 

ensures approved extensions are compatible with the future releases. Flask 

being a microframework provides flexibility to the developers to choose 

the design decisions appropriate to their project. It maintains a registry of 

extensions which is regularly updated and continuously maintained.

�Starting Flask
Flask, just like all other Python libraries, is installable from the Python 

Package Index (PPI) and is really easy to setup and start developing with, 

and it only takes a few minutes to getting started with Flask. To be able to 

follow this book, you should be familiar with Python, command line (or at 

least PIP), and MySQL.

As promised, Flask is really easy to start with, and just five lines of code 

lets you get started with a minimal Flask application.

Listing 1-1.  Basic Flask Application

from flask import Flask

app = Flask(__name__)

@app.route('/')

def hello_world():

    return 'Hello, From Flask!'

if __name__== '__main__':

      app.run()

The preceding code imports the Flask library, initiates the application 

by creating an instance of the Flask class, declares the route, and then 

defines the function to execute when the route is called. This code is 

enough to start your first Flask application.

Chapter 1  Beginning with Flask



3

The following code launches a very simple built-in server, which 

is good enough for testing but probably not when you want to go in 

production, but we will cover that in the later chapters.

When this application starts, the index route upon request shall return 

“Hello From Flask!” as shown in Figure 1-1.

�Flask Components Covered in This Book
Now that you have been introduced to Flask, we will discuss the 

components that we’ll cover in Flask REST API development in this book.

This book will serve as a practical guide to REST API development 

using Flask, and we’ll be using MySQL as the backend database. As already 

discussed, Flask doesn’t come with native database access support, and 

to bridge that gap, we’ll use a Flask extension called Flask-SQLAlchemy 

which adds support for SQLAlchemy in Flask. SQLAlchemy is essentially 

Figure 1-1.  Flask minimal application

Chapter 1  Beginning with Flask



4

a Python SQL toolkit and Object Relational Mapper which provides the 

developers the full power and flexibility of SQL.

SQLAlchemy provides full support for enterprise-level design patterns 

and is designed for high-performing database access while maintaining 

efficiency and ease of use. We’ll build a user authentication module, CRUD 

(Create, Read, Update, and Delete) REST APIs for object creation, retrieval, 

manipulation, and deletion. We’ll also integrate a documentation utility 

called Swagger for creating API documentation, write unit and integration 

tests, learn application debugging, and, finally, check out different 

methods of deploying and monitoring our REST APIs on cloud platforms 

for production use.

For unit tests, we’ll use pytest which is a full-featured Python testing 

tool—pytest is easy to write tests with and yet is scalable to support 

complex use cases. We’ll also use Postman which is a complete REST API 

Platform—Postman provides integration tools for every stage of the API 

lifecycle, making API development easier and more reliable.

API deployment and monitoring are critical parts of REST API 

development; development paradigm changes drastically when it comes 

to scaling the APIs for production use cases, and for the sake of this book, 

we’ll deploy our REST APIs using uWSGI and Nginx on a cloud Ubuntu 

server. We’ll also deploy our REST APIs on Heroku which is a cloud 

platform that facilitates Flask app deployment and scaling out of the box.

Last but not least, we’ll discuss debugging common Flask errors and 

warnings and debugging Nginx requests and check out Flask application 

monitoring ensuring least amount on the downtime for production use.

�Introduction to RESTful Services
Representational State Transfer (REST) is a software architectural style 

for web services that provides a standard for data communication 

between different kinds of systems. Web services are open standard 

Chapter 1  Beginning with Flask



5

web applications that interact with other applications with a motive of 

exchanging data making it an essential part of client server architecture in 

modern web and mobile applications. In simple terms, REST is a standard 

for exchanging data over the Web for the sake of interoperability between 

computer systems. Web services which conform to the REST architectural 

style are called RESTful web services which allow requesting systems to 

access and manipulate the data using a uniform and predefined set of 

stateless operations.

Since its inception in 2000 by Roy Feilding, RESTful architecture has 

grown a lot and has been implemented in millions of systems since then. 

REST has now become one of the most important technologies for web-

based applications and is likely to grow even more with its integration 

in mobile and IoT-based applications as well. Every major development 

language has frameworks for building REST web services. REST principles 

are what makes it popular and heavily used. REST is stateless, making it 

straightforward for any kind of system to use and also making it possible 

for each request to be served by a different system.

REST enables us to distinguish between the client and the server, 

letting us implement the client and the server independently. The most 

important feature of REST is its statelessness, which simply means that 

neither the client nor the server has to know the state of each other to 

be able to communicate. In this way, both the client and the server can 

understand any message received without seeing the previous message. 

Since we are talking about RESTful web services, let’s take a dive into web 

services and compare other web service standards.

Web services in a simple definition is a service offered by one 

electronic device to another, enabling the communication via the World 

Wide Web. In practice, web services provide resource-oriented, web-

based interface to a database server and so on utilized by another web 

client. Web services provide a platform for different kinds of systems to 

communicate to each other, using a solution for programs to be able to 

communicate with each other in a language they understand (Figure 1-2).

Chapter 1  Beginning with Flask



6

SOAP (Simple Object Access Protocol) is another web service 

communication protocol which has been overtaken by REST in the 

recent years. REST services now dominate the industry representing 

more than 70% of public APIs according to Stormpath. They operate by 

exposing consistent interface to access named resources. SOAP, however, 

exposes components of application logic as services rather than data. 

SOAP is now a legacy protocol originally created by Microsoft and has a 

lot of other constraints when compared to REST. SOAP only exchanges 

data over XML, and REST provides the ability to exchange data over a 

variety of data formats. RESTful services are comparatively faster and less 

resource intensive. However, SOAP still has its own use cases in which it’s a 

preferred protocol over REST.

SOAP is preferred when robust security is essential as it provides 

support for Web Services Security (WS-Security), which is a specification 

defining how security measures are implemented in web services to 

protect them from external attacks. Another advantage of SOAP over REST 

is its built-in retry logic to compensate for failed requests unlike REST in 

which the client has to handle failed requests by retrying. SOAP is highly 

extensible with other technologies and protocols like WS-Security,  

WS-addressing, WS-coordination, and so on which provides it an edge 

over other web service protocols.

Figure 1-2.  REST architecture diagram

Chapter 1  Beginning with Flask



7

Now, when we have briefly discussed web services—REST and SOAP—

let’s discuss features of REST protocol. In general, REST services are 

defined and implemented using the following features:

	 1.	 Uniform interface

	 2.	 Representations

	 3.	 Messages

	 4.	 Links between resources

	 5.	 Caching

	 6.	 Stateless

�Uniform Interface
RESTful services should have a uniform interface to access resources, and 

as the name suggests, APIs’ interface for the system should be uniform 

across the system. A logical URI system with uniform ways to fetch and 

manipulate data is what makes REST easy to work with. HTTP/1.1 provides 

a set of methods to work on noun-based resources; the methods are 

generally called verbs for this purpose.

In REST architecture, there is a concept of safe and idempotent 

methods. Safe methods are the ones that do not modify resources like a GET 

or a HEAD method. An idempotent method is a method which produces 

the same result no matter how many times it is executed. Table 1-1 provides 

a list of commonly used HTTP verbs in RESTful services.

Chapter 1  Beginning with Flask



8

�Representations
RESTful services focus on resources and providing access to the resources. 

A resource can be easily thought of as an object in OOP. The first thing to 

do while designing RESTful services is identifying different resources and 

determining the relation between them. A representation is a machine-

readable explanation defining the current state of a resource.

Once the resources are identified, representations are the next course 

of action. REST provides us the ability to use any format for representing 

the resources in the system. Unlike SOAP which restricts us to use XML to 

represent the data, we can either use JSON or XML. Usually, JSON is the 

preferred method for representing the resources to be called by mobile or 

web clients, but XML can be used to represent more complex resources.

Here is a small example of representing resources in both formats.

Table 1-1.  Commonly used HTTP verbs useful in RESTful services

Verb CRUD Operation Safe Idempotent

GET Read Fetch a single or multiple resource Yes Yes

POST Created Insert a new resource No No

PUT Update/

Create

Insert a new resource or update 

existing

No Yes

DELETE Delete Delete a single or multiple resource No Yes

OPTIONS READ List allowed operations on a resource Yes Yes

HEAD READ Return only response headers and no 

body

Yes Yes

PATCH Update/

Modify

Only update the provided changes to 

the resource

No No

Chapter 1  Beginning with Flask



9

Listing 1-2.  XML Representation of a Book Resource

<?xml version="1.0" encoding="UTF-8"?>

<Book>

  <ID> 1 </ID>

  <Name> Building REST APIs with Flask </Name>

  <Author> Kunal Relan </Author>

  <Publisher > Apress </ Publisher >

</Book>

Listing 1-3.  JSON Representation of a Book resource

{

      "ID": "1",

      "Name": "Building REST APIs wiith Flask",

      "Author": "Kunal Relan",

      "Publisher": "Apress"

}

In REST Systems, you can use either of the methods or both the 

methods depending on the requesting client to represent the data.

�Messages
In REST architecture, which essentially established client–server style 

way of data communication, messages are an important key. The client 

and the server talk to each other via messages in which the client sends 

a message to the server which is often called as a request and the server 

sends a response. Apart from the actual data exchanged between the 

client and the server in the form of request and response body, there is 

some metadata exchanged by the client and the server both in the form 

of request and response headers. HTTP 1.1 defines request and response 

headers formats in the following way in order to achieve a uniform way of 

data communication across different kinds of systems (Figure 1-3).

Chapter 1  Beginning with Flask



10

In Figure 1-4, GET is the request method, “/comments” is the path in 

the server, “postId=1” is a request parameter, “HTTP/1.1” is the protocol 

version that the client is requesting, “jsonplaceholder.typicode.com” is the 

server host, and content type is a part of the request headers. All of these 

combined is what makes a HTTP request that the server understands.

In return, the HTTP server sends the response for the requested 

resources.

[

  {

    "postId": 1,

    "id": 1,

    "name": "id labore ex et quam laborum",

    "email": "Eliseo@gardner.biz",

    "body": �"laudantium enim quasi est quidem magnam voluptate 

ipsam eos\ntempora quo necessitatibus\ndolor quam 

autem quasi\nreiciendis et nam sapiente accusantium"

  },

  {

    "postId": 1,

    "id": 2,

    "name": "quo vero reiciendis velit similique earum",

    "email": "Jayne_Kuhic@sydney.com",

Figure 1-3.  HTTP sample request

Chapter 1  Beginning with Flask



11

    "body": �"est natus enim nihil est dolore omnis voluptatem 

numquam\net omnis occaecati quod ullam at\nvoluptatem 

error expedita pariatur\nnihil sint nostrum voluptatem 

reiciendis et"

  },

  {

    "postId": 1,

    "id": 3,

    "name": "odio adipisci rerum aut animi",

    "email": "Nikita@garfield.biz",

    "body": �"quia molestiae reprehenderit quasi aspernatur\naut 

expedita occaecati aliquam eveniet laudantium\nomnis 

quibusdam delectus saepe quia accusamus maiores nam 

est\ncum et ducimus et vero voluptates excepturi 

deleniti ratione"

  },

  {

    "postId": 1,

    "id": 4,

    "name": "alias odio sit",

    "email": "Lew@alysha.tv",

    "body": �"non et atque\noccaecati deserunt quas accusantium 

unde odit nobis qui voluptatem\nquia voluptas 

consequuntur itaque dolor\net qui rerum deleniti ut 

occaecati"

  },

  {

    "postId": 1,

    "id": 5,

    "name": "vero eaque aliquid doloribus et culpa",

    "email": "Hayden@althea.biz",

Chapter 1  Beginning with Flask



12

    "body": �"harum non quasi et ratione\ntempore iure ex 

voluptates in ratione\nharum architecto fugit 

inventore cupiditate\nvoluptates magni quo et"

  }]

In the preceding figure, “HTTP/2” is the response HTTP version and 

“200” is the response code. The part below that till “cf-ray” is the response 

headers, and the array of post comments below “cf-ray” is the response 

body of the request.

�Links Between Resources
A resource is the fundamental concept in the world of REST architecture. 

A resource is an object with a type, associated data, and relationships to 

other resources alongside a set of methods that can be executed on it.  

The resource in a REST API can contain link to other resources which 

should drive the process flow. Such as in the case of a HTML web page in 

Figure 1-4.  HTTP sample response

Chapter 1  Beginning with Flask



13

which the links in the homepage drive the user flow, resources in REST API 

should be able to drive the flow without the user knowing the process map.

Listing 1-4.  A Book with Link to Buy

{

      "ID": "1",

      "Name": "Building REST APIs wiith Flask",

      "Author": "Kunal Relan",

      "Publisher": "Apress",

       "URI" : "https://apress.com/us/book/123456789"

}

�Caching
Caching is a technique that stores a copy of a given resource and serves it 

back when requested, saving extra DB calls and processing time. It can be 

done at different levels like the client, the server, or a middleware proxy 

server. Caching is an important tool for increasing the API performance 

and scaling the application; however, if not managed properly, it results 

in the client being served old results. Caching in REST APIs is controlled 

using HTTP headers. Cache headers have been an essential part of HTTP 

header specifications and have been an important part of scaling web 

services with efficiency. In REST specification, when a safe method is used 

on a resource URL, usually the reverse proxy caches the results to use the 

cached data when the same resource is requested the next time.

�Stateless
Each request from client to server must contain all of the 
information necessary to understand the request, and can-
not take advantage of any stored context on the server. 
Session state is therefore kept entirely on the client

—Roy Fielding

Chapter 1  Beginning with Flask



14

Statelessness here means that every HTTP response is a complete entity 

in itself and enough to serve the purpose of providing information to 

be executed without any need of another HTTP request. The point of 

statelessness is to defeat the purpose of accord with the server allowing 

intended flexibility in the infrastructure. To facilitate the same, REST 

servers provide enough information in the HTTP response that the client 

may need. Statelessness is an essential part of being able to scale the 

infrastructure enabling us to deploy multiple servers to serve millions 

of concurrent users given the fact that there is no server session state 

dependency. It also enables the caching feature of REST infrastructure as 

it lets the caching server to decide whether to cache the request or not, just 

by looking at the particular request irrespective of any previous requests.

�Planning REST API
Here is a list of things we need to check while planning to create REST APIs:

	 1.	 Understanding the use case. It is really important 

to know why you are building the API and what 

services will the API provide.

	 2.	 Listing down API features to understand what all 

actions your APIs are going to do. This also includes 

listing down actions and grouping them together to 

tackle redundant endpoints.

	 3.	 Identify different platforms that’ll use the API and 

provide support accordingly.

	 4.	 Plan long term on supporting growth and scaling 

the infrastructure.

	 5.	 Plan API versioning strategy ensuring continuous 

support is maintained over different versions of the APIs.

Chapter 1  Beginning with Flask



15

	 6.	 Plan API access strategy, that is, authentication, 

ACL, and throttling.

	 7.	 Plan API documentation and testing.

	 8.	 Understand how to use hypermedia with your APIs.

So, these are the eight important things to ensure while planning your 

API and are really crucial for developing a stable, production-focused API 

system.

�API Design
Now let’s look into API design. Here we’ll cover the standards of designing 

REST APIs keeping in mind the list of things we just talked about.

�Long-Term Implementation

Long-term implementation helps you analyze the flaws in design before 

actual implementation. This helps the developers to choose the right kind 

of platforms and tools to build upon making sure the same system can be 

scaled for more users later.

�Spec-Driven Development

Spec-driven development enforces API design using definition and not just 

the code, which ensures that the changes are made to the codebase while 

the API design is intact. It is good practice to use a tool like API Designer 

to understand the API design before development which also lets you 

foresee the flaws. Tools like swagger or RAML let you keep the API design 

standardized and enable you to port the API to different platforms if needed.

Chapter 1  Beginning with Flask



16

�Prototyping

Once the API specs are put in place, prototyping helps you visualize the 

API before actual development by letting the developers create MOCK API 

to help them understand every potential aspect of the API.

�Authentication and Authorization

Authentication involves the verification process to know who the person 

is, but it just doesn’t involve giving access to all the resources yet, and 

that’s where authorization comes in, which involves authorizing an 

authenticated person to keep a check on resources allowed to access using 

an Access Control List (ACL).

We have different ways of authenticating and authorizing users 

like basic authentication, HMAC, and OAuth. OAuth 2.0 is however 

a preferred method for the same and is a standard protocol used 

by enterprises as well as small companies for authentication and 

authorization in their REST APIs.

So, these are the key features of the REST infrastructure, and we’ll 

discuss more about how REST works and enables better communication in 

later chapters.

Now, we’ll start with setting up our development environment and 

understand some key factors of developing applications with Python.

�Setting Up Development Environment
In this part, we’ll discuss setting up Python development environment 

for a Flask application. We’ll use virtual environments for a separate 

isolated environment for our dependencies. We’ll use PIP for installing and 

managing our dependencies and a couple of other helpful utilities in the 

process of setting up our development environment. For the sake of this 

book, we’ll be doing everything on macOS Mojave and Python 2.7, but you 

Chapter 1  Beginning with Flask



17

can feel free to use any operating system as per your convenience. So if you 

don’t have the right version of Python installed in your operating system, 

you can go ahead with installing Python on your choice of operating 

system using this link: www.python.org/downloads/ (Figure 1-5).

�Working with PIP
PIP is a PyPi recommended tool for project dependency management. PIP 

comes preinstalled with Python if you are using Python downloaded from 

www.python.org.

However, if you don’t have PIP installed in your system, follow the 

guide here to install PIP.

In order to install PIP, download get-pip.py by using the following 

command in your terminal (or command line in Windows).

$ curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

Figure 1-5.  Python download

Chapter 1  Beginning with Flask

https://www.python.org/downloads/
http://www.python.org


18

Once you have the get-pip.py file, install and run the next command:

$ python get-pip.py

The previous command will install PIP, setuptools (required for 

installing source distributions), and wheel.

If you already have PIP, you can upgrade to the latest version of pip 

using the following command:

$ pip install -U pip

To test your installation, you should run the following command 

(Figure 1-6) in your terminal (or command line in Windows):

$ python -V

$ pip -V

�Choosing the IDE
Before we start writing the code, we’ll need something to write with. 

Throughout this book, we’ll use Visual Studio Code which is an open 

source and free IDE available on all major operating systems. Visual Studio 

Code is available to download from www.code.visualstudio.com, and it 

provides good support for developing Python applications with plenty of 

handy plugins to facilitate development. You can choose to use your own 

preferred text editor or IDE to follow this book (Figure 1-7).

Figure 1-6.  Checking Python and PIP installation

Chapter 1  Beginning with Flask

http://www.code.visualstudio.com


19

Once we have the IDE setup, we can move to installing and setting up 

the virtual environment.

�Understanding Python Virtual Environments
Python, just like other modern programming languages, provides a huge 

amount of third-party libraries and SDKs. Different applications might need 

various specific versions of third-party modules, and it won’t be possible for 

one Python installation to meet such requirements of every application. So, 

in the world of Python, the solution for this problem is virtual environment, 

which creates a separate self-contained directory tree containing a Python 

installation of the required version alongside the required packages.

At its core, the main purpose of a virtual environment is to create an 

isolated environment to contain an installation of Python and required 

packages for the application. There is no limit to the number of virtual 

environments you can create, and it’s super easy to create them.

Figure 1-7.  Visual Studio Code

Chapter 1  Beginning with Flask



20

�Using Virtual Environments

In Python 2.7 we need a module called virtualenv which is installed using 

PIP to get started with Python virtual environments.

Note I n Python 3 the venv module comes preshipped as a part of 
the standard library.

To install virtualenv, type the following command in your terminal  

(or command line in case of Windows).

$ pip install virtualenv

Once we have the virtualenv module installed in our system, next we’ll 

create a new directory and create a virtual environment in it.

Now, type the following command to create a new directory and open 

it in your terminal.

$ mkdir pyenv && cd pyenv

The preceding command will create a directory and open it in your 

terminal, and then we’ll use the virtualenv module to create a new virtual 

environment inside the directory.

$ virtualenv venv

The previous command will use the virtualenv module and create a 

virtual environment called venv. You can name your virtual environment 

anything, but for this book, we’ll just use venv for the sake of uniformity.

Once this command stops executing, you’ll see a directory called venv. 

This directory will now hold your virtual environment.

The directory structure of the venv folder should be similar to the one 

in Figure 1-8.

Chapter 1  Beginning with Flask



21

Here is what each folder in the structure contains:

	 1.	 bin: Files to interact with the virtual environment.

	 2.	 include: C headers to compile the Python packages.

	 3.	 lib: This folder contains a copy of the Python version 

and all the other third-party modules.

Next, there are copies of, or symlinks to, different Python tools to 

ensure all the Python code and commands are executed within the current 

environment. The important part here is the activation scripts in bin 

folder, which sets the shell to use the virtual environment’s Python and site 

packages. In order to do so, you need to activate the virtual environment by 

typing the following command in your terminal.

$ source venv/bin/activate

Once this command is executed, your shell prompt will be prefixed 

with the name of the virtual environment, just as in Figure 1-9.

Figure 1-8.  Virtual environment directory structure

Chapter 1  Beginning with Flask



22

Now, let’s install Flask in our virtual environment using the following 

command:

$ pip install flask

The preceding command should install Flask in our virtual 

environment. We’ll use the same code we did in our sample Flask 

application.

$ nano app.py

And type the following code in the nano text editor:

from flask import Flask

app = Flask(__name__)

@app.route('/')

def hello_world():

    return 'Hello, From Flask!'

Now,  try running your app.py using python app.py command.

$ FLASK_APP=app.py flask run

With the preceding command, you should be able to run the simple 

Flask application, and you should see similar output in your terminal 

(Figure 1-10).

Figure 1-9.  Activating virtual environment

Chapter 1  Beginning with Flask



23

Now, to deactivate the virtual environment, you need to execute the 

following command:

$ deactivate

After this command executes, (venv) prefix from the shell will go 

away, and if you try running the application again, it will throw an error 

(Figure 1-11).

So now you understand the concept of virtual environments, we can 

dig a little deeper and understand what’s happening inside the virtual 

environment.

Understanding how virtual environments work can really help you 

debug the application and understand the execution environment. To 

start with, let’s check out the Python executable with virtual environment 

activated and deactivated, in order to understand the basic difference.

Let’s execute the following command with virtual environment 

activated (Figure 1-12):

$ which python

Figure 1-10.  Running Flask application in virtual environment

Figure 1-11.  Running Flask application without virtual 
environment

Chapter 1  Beginning with Flask



24

As you see in the following figure, the shell is using virtual 

environment’s Python executable, and if you deactivate the environment 

and re-run the Python command, you’ll notice the shell is now using the 

system’s Python (Figure 1-13).

So once you activate the virtual environment, the $path environment 

variable is modified to point at our virtual environment, and thus the 

Python in our virtual environment is used rather than the system one. 

However, an important thing to notice here is that it is basically a copy of, 

or a symlink to, the system’s Python executable.

�Setting Up Flask
We have already installed Flask in the earlier module, but let’s start over 

and setup the Flask microframework.

Figure 1-12.  Checking Python executable with virtual environment

Figure 1-13.  Checking Python executable without virtual 
environment

Chapter 1  Beginning with Flask



25

�Installing Flask
With virtual environment activated, execute the following command to 

install the latest version of Flask.

$pip install flask

The preceding command will install Flask in your virtual environment.

However, if you wish to work with the latest Flask before release, 

install/update the Flask module using the master branch of its repository 

by executing the following command:

$pip install -U https://github.com/pallets/flask/archive/

master.tar.gz

When you install Flask, the following distributions are installed with 

the main framework:

	 1.	 Werkzeug (http://werkzeug.pocoo.org/): 

Werkzeug implements WSGI, the standard Python 

interface between the application and the server.

	 2.	 Jinja (http://jinja.pocoo.org/): Jinja is the 

templating engine in Flask which renders the pages 

for the application.

	 3.	 MarkupSafe (https://pypi.org/project/

MarkupSafe/): Markupsafe comes preshipped with 

Jinja, which helps escape an untrusted user input to 

escalate injection attacks.

	 4.	 ItsDangerous(https://pythonhosted.org/

itsdangerous/): ItsDangerous is responsible for 

securely signing data to ensure data integrity and is 

used to protect Flask session cookies.

Chapter 1  Beginning with Flask

http://werkzeug.pocoo.org/
http://jinja.pocoo.org/
https://pypi.org/project/MarkupSafe/
https://pypi.org/project/MarkupSafe/
https://pythonhosted.org/itsdangerous/
https://pythonhosted.org/itsdangerous/


26

	 5.	 Click (http://click.pocoo.org/): Click is a 

framework to write CLI applications. It provides the 

“Flask” CLI command.

�Conclusion
Once you have Flask installed in your virtual environment, you are ready 

to go to the next step of the development phase. Before we do that, we’ll 

discuss about MySQL and Flask-SQLAlchemy which is the ORM that 

we’ll use in our Flask application. Database is an essential part of a REST 

application, and in the next chapter, we’ll discuss the MySQL database 

and Flask-SQLAchemy ORM and also learn how to connect our Flask 

application with Flask-SQLAlchemy.

Chapter 1  Beginning with Flask

http://click.pocoo.org/


27© Kunal Relan 2019 
K. Relan, Building REST APIs with Flask, https://doi.org/10.1007/978-1-4842-5022-8_2

CHAPTER 2

Database Modeling 
in Flask
This chapter covers one of the most important aspects of REST application 

development, that is, connecting and interacting with database systems. 

In this chapter, we’ll discuss about NoSQL and SQL databases, connecting 

and interacting with them.

In this chapter we’ll cover the following topics:

	 1.	 NoSQL vs. SQL databases

	 2.	 Connecting with Flask-SQLAlchemy

	 3.	 Interacting with MySQL DB using Flask-

SQLAlchemy

	 4.	 Connecting with Flask-MongoEngine

	 5.	 Interacting with MongoDB using Flask-

MongoEngine

�Introduction
Flask being a microframework provides flexibility of the data source for 

applications and also provides library support for interacting with different 

kinds of data sources. There are libraries to connect to SQL- and NoSQL-



28

based databases in Flask. It also provides the flexibility to interact with 

databases using raw DB libraries or using ORM (Object Relational Mapper) 

/ODM (Object Document Mapper). In this chapter, we’ll briefly discuss 

NoSQL- and SQL-based databases and learn using ORM layer for our Flask 

application using Flask-SQLAlchemy, after which we’ll use ODM layer 

using Flask-MongoEngine.

Most applications do need databases at some point, and MySQL and 

MongoDB are just two of the many tools for doing it. Choosing the right 

one for your application will entirely depend on the data you are going to 

store. If your datasets in tables are related to each other, SQL databases is 

the way to go or NoSQL databases can serve the purpose too.

Now, let’s have a brief look over SQL vs. NoSQL databases.

�SQL Databases
SQL databases use Structured Query Language (SQL) for data 

manipulation and definition. SQL is a versatile, widely used and accepted 

option which makes it a great choice for data storing. SQL systems 

work great when the data in use needs to be relational and the schema 

is predefined. However, a predefined schema also serves as a con, as it 

requires the whole dataset to follow the same structure which might turn 

out to be tough in some situations. SQL databases store data in forms of 

tables made up of rows and columns and are vertically scalable.

�NoSQL Databases
NoSQL databases have a dynamic schema for unstructured data and store 

data in different ways ranging from column-based (Apache Cassandra), 

document-based (MongoDB), and graph-based (Neo4J) or as a key-

value store (Redis). This provides the flexibility to store data without a 

predefined structure and versatility to add fields to the data structure 

on the go. Being schemaless is the key distinction of NoSQL databases, 

Chapter 2  Database Modeling in Flask



29

and it also makes them better suited for distributed systems. Unlike SQL 

databases, NoSQL databases are horizontally scalable.

Now that we have briefly explained SQL and NoSQL databases, we’ll 

jump to functional differences between MySQL and MongoDB since these 

are the two database engines we’ll be looking at in this chapter.

�Key Differences: MySQL vs. MongoDB
So as discussed earlier, MySQL is a SQL-based database which stores 

data in tables with columns and rows and only works on structured 

data. MongoDB, on the other hand, can handle unstructured data and 

stores JSON-like documents rather than tables and uses MongoDB query 

language to communicate with the DB. MySQL is an extremely established 

database with a huge community and great stability, and MongoDB is 

a fairly new technology with growing community and is developed by 

MongoDB Inc. MySQL is vertically scalable in which the load on the single 

server can be increased by upgrading the RAM, SSD, or CPU, while in 

the case of MongoDB, which is horizontally scalable, it needs to share 

and add more servers in order to increase server load. MongoDB is the 

preferred choice for high write loads and big datasets, and MySQL is a 

perfect fit for applications that depends highly on multi-row transactions 

like accounting systems. MongoDB is a great choice for applications with 

dynamic structure and high data load such as that of a real-time analytics 

application or a content management system.

Flask provides support for interacting with both MySQL and 

MongoDB. There are various native drivers as well as ORM/ODM for 

communication with the database. Flask-MySQL is a Flask extension that 

allows native connection to MySQL; Flask-PyMongo is a native extension 

for working with MongoDB in Flask and is recommended by MongoDB as 

well. Flask-MongoEngine is a Flask extension, ODM for Flask to work with 

MongoDB. Flask-SQLAlchemy is an ORM layer for Flask applications to 

connect with MySQL.

Chapter 2  Database Modeling in Flask



30

Next, we’ll discuss about Flask-SQLAlchemy and Flask- MongoEngine 

and create Flask CRUD applications using them.

�Creating a Flask Application 
with SQLAlchemy
Flask-SQLAlchemy is an extension for flask which adds support for 

SQLAlchemy to the application. SQLAlchemy is a Python toolkit and 

Object Relational Mapper that provides access to the SQL database using 

Python. SQLAlchemy comes with enterprise-level persistence patterns 

and efficient and high performing database access. Flask-SQLAlchemy 

provides support for the following SQL-based database engines given the 

appropriate DBAPI driver is installed:

•	 PostgreSQL

•	 MySQL

•	 Oracle

•	 SQLite

•	 Microsoft SQL Server

•	 Firebird SyBase

We’ll be using MySQL as the database engine in our application, so let’s 

get started with installing SQLAlchemy and start setting up our application.

Let’s create a new directory called flask-MySQL, create a virtual 

environment, and then install flask-sqlalchemy.

$ mkdir flask-mysql && cd flask-mysql

Now, create a virtual environment inside the directory using the 

following command:

$ virtualenv venv

Chapter 2  Database Modeling in Flask



31

As discussed earlier, we can activate the virtual environment using the 

following command:

$ source venv/bin/activate

Once the virtual environment is activated, let’s install flask-sqlalchemy.

Flask and Flask-SQLAlchemy can be installed using PIP with the 

following command.

(venv)$ pip install flask flask-sqlalchemy

Other than SQLite, all other database engines need separate libraries 

to be installed alongside Flask-SQLAlchemy for it to work. SQLAlchemy 

uses MySQL-Python as the default DBAPI for connecting with MySQL.

Now, let’s install PyMySQL to enable MySQL connection with Flask-

SQLAlchemy.

(venv) $ pip install pymysql

Now, we should have everything we need to create our sample flask-

MySQL application with.

Let’s start by creating app.py which will contain the code for our 

application. After creating the file, we’ll initiate the Flask application.

from flask import Flask

from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)

app.config['SQLALCHEMY_DATABASE_URI'] = 

'mysql+pymysql://<mysql_username>:<mysql_password>@<mysql_

host>:<mysql_port>/<mysql_db>'

db = SQLAlchemy(app)

if __name__ == "__main__":

    app.run(debug=True)

Chapter 2  Database Modeling in Flask



32

Here, we import the Flask framework and Flask-SQLAlchemy and 

then initiate an instance of Flask. After that, we configure the SQLAlchemy 

database URI to use our MySQL DB URI, and then we create an object of 

SQLAlchemy named as db, which will handle our ORM-related activities.

Now, if you are using MySQL, make sure you supply connection strings 

of a running MySQL server and that the database name supplied does exist.

Note  Use environment variables for supplying database connection 
strings in your applications.

Make sure that you have a running MySQL server to follow this 

application. However, you can also use SQLite in its place by supplying the 

SQLite config details in the SQLAlchemy database URI which should look 

like this:

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:////tmp/ 

<db_name>.db'

In order to run the application, you need to execute the following code 

in your terminal:

(venv) $ python app.py

And if there are no errors, you should see a similar output in your 

terminal:

(venv) $ python app.py

* Serving Flask app "app" (lazy loading)

 * Environment: production

   �WARNING: Do not use the development server in a production 

environment.

   Use a production WSGI server instead.

 * Debug mode: on

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Chapter 2  Database Modeling in Flask



33

 * Restarting with stat

 * Debugger is active!

 * Debugger PIN: 779-301-240

�Creating an Author Database
We’ll now create an author database application which will provide 

RESTful CRUD APIs. All the authors will be stored in a table titled “authors”.

After the declared db object, add the following lines of code to declare 

a class as Authors which will hold the schema for the author table:

class Author (db.Model):

    id = db.Column(db.Integer, primary_key=True)

    name = db.Column(db.String(20))

    specialisation = db.Column(db.String(50))

    def __init__(self, name, specialisation):

        self.name = name

        self.specialisation = specialisation

    def __repr__(self):

      return '<Product %d>' % self.id

db.create_all()

With this code, we have created a model titled “Authors” which has three 

fields—ID, name, and specialisation. Name and specialisation are strings, 

but ID is a self-generated and auto-incremented integer which will serve 

as a primary key. Notice the last line “db.create_all()” which instructs the 

application to create all the tables and database specified in the application.

In order to serve JSON response from our API using the data returned by 

SQLAlchemy, we need another library called marshmallow which is an add-

on to SQLAlchemy to serialize SQLAlchemy-returned data objects to JSON.

(venv)$ pip install flask-marshmallow

Chapter 2  Database Modeling in Flask



34

The following command will install the Flask version of marshmallow 

in our application, and we’ll define our output schema from the Authors 

model using marshmallow.

Add the following lines on the top, below the other imports in your 

application file to import marshmallow.

from marshmallow_sqlalchemy import ModelSchema

from marshmallow import fields

After the db.create_all(), define your output schema using the 

following code:

class AuthorSchema(ModelSchema):

    class Meta(ModelSchema.Meta):

        model = Authors

        sqla_session = db.session

    id = fields.Number(dump_only=True)

    name = fields.String(required=True)

    specialisation = fields.String(required=True)

The preceding code maps the variable attribute to field objects, and in 

Meta, we define the model to relate to our schema. So this should help us 

return JSON from SQLAlchemy.

After setting up our model and return schema, we can jump to creating 

our endpoints. Let’s create our first GET /authors endpoint to return all 

the registered authors. This endpoint will query for all the objects in the 

Authors model and return them in JSON to the user. But before we write 

the endpoint, edit the first import line to the following to import jsonify, 

make_response, and request from Flask.

from flask import Flask, request, jsonify, make_response

And after the AuthorSchema, write your first endpoint /authors with 

the following code:

Chapter 2  Database Modeling in Flask



35

@app.route('/authors', methods = ['GET'])

def index():

    get_authors = Authors.query.all()

    author_schema = AuthorSchema(many=True)

    authors, error = author_schema.dump(get_authors)

    return make_response(jsonify({"authors": authors}))

In this method, we are fetching all the authors in the DB, dumping it in 

the AuthorSchema, and returning the result in JSON.

If you start the application and hit the endpoint now, it will return an 

empty array since we haven’t added anything in the DB yet, but let’s go 

ahead and try the endpoint.

Run the application using Python app.py, and then query the endpoint 

using your preferred REST client. I’ll be using Postman to request the endpoint.

So just open your Postman and GET http://localhost:5000/authors 

to query the endpoint (Figure 2-1).

Chapter 2  Database Modeling in Flask



36

You should see a similar result in your Postman client. Now let’s create 

the POST endpoint to add authors to our database.

We can add an object to the table by either directly creating an Authors 

class in our method or by creating a classMethod to create a new object in 

Authors class and then calling the method in our endpoint. Let’s add the 

class Method in Authors class to create a new object.

Add the following code in Authors class after fields definition:

    def create(self):

      db.session.add(self)

      db.session.commit()

      return self

Figure 2-1.  GET /authors response

Chapter 2  Database Modeling in Flask



37

The preceding method creates a new object with the data and then 

returns the created object. Now your Authors class should look like this:

class Authors(db.Model):

    id = db.Column(db.Integer, primary_key=True)

    name = db.Column(db.String(20))

    specialisation = db.Column(db.String(50))

    def create(self):

      db.session.add(self)

      db.session.commit()

      return self

    def __init__(self, name, specialisation):

        self.name = name

        self.specialisation = specialisation

    def __repr__(self):

        return '<Author %d>' % self.id

Now we’ll create our POST authors endpoint and write the following 

code after the GET endpoint:

@app.route('/authors', methods = ['POST'])

def create_author():

    data = request.get_json()

    author_schema = AuthorsSchema()

    author, error = author_schema.load(data)

    result = author_schema.dump(author.create()).data

    return make_response(jsonify({"author": authors}),201)

The previous method will take the JSON request data, load the data in 

the marshmallow schema, and then call the create method we created in 

the Authors class which will return the created object with 201 status code.

So let’s request the POST endpoint with sample data and check the 

response. Let’s open Postman and POST /authors with JSON request body. 

Chapter 2  Database Modeling in Flask



38

We need to add name and specialisation fields in our body to create the 

object. Our sample request body should look like the following:

{

      "name" : "Kunal Relan",

      "specialisation" : "Python"

}

Once we request the endpoint, we shall get Author object in response 

with our newly created Author. Notice that in this case, the return status 

code is 201 which is the status code for a new object (Figure 2-2).

So now, if we request our GET /authors endpoint, we shall get our 

newly created author in the response.

Figure 2-2.  POST /authors endpoint

Chapter 2  Database Modeling in Flask



39

Revisit the GET /authors tab in Postman and hit the request again; this 

time you should get an array of authors with our newly created Author 

(Figure 2-3).

So far, we have created endpoints to register new authors and to fetch 

a list of authors. Next we’ll create an endpoint to return author using the 

author ID and then update endpoint to update author details using author 

ID and the last endpoint to delete an author using author ID.

For GET author by ID, we’ll have a route like /authors/<id> which will 

take author ID from the request parameter and find the matching author.

Add the following code for the GET author by ID endpoint below your 

GET all authors route.

@app.route('/authors/<id>', methods = ['GET'])

def get_author_by_id(id):

Figure 2-3.  GET all authors with new object

Chapter 2  Database Modeling in Flask



40

    get_author = Authors.query.get(id)

    author_schema = AuthorsSchema()

    author, error = author_schema.dump(get_author)

    return make_response(jsonify({"author": author}))

Next we need to test this endpoint, and we’ll request for author with 

ID 1 as we see in the preceding GET all authors API response, so let’s open 

Postman again and request /authors/1 on our application server to check 

the response.

As you see in the preceding screenshot, we are returning an object 

with a key author containing the author object with ID 1. You can now 

add more authors using the POST endpoint and fetch them using the 

returned ID.

Figure 2-4.  GET author by ID endpoint

Chapter 2  Database Modeling in Flask



41

Next, we need to create an endpoint to update the author name or 

specialisation, and for updating any object, we’ll use PUT HTTP verb as we 

discussed in the “Introduction to RESTful Services” section. This endpoint 

will be similar to the GET authors by ID endpoint but will use PUT verb 

rather than the GET one.

Here is the code for the PUT endpoint to update an author object

@app.route('/authors/<id>', methods = ['PUT'])

def update_author_by_id(id):

    data = request.get_json()

    get_author = Authors.query.get(id)

    if data.get('specialisation'):

        get_author.specialisation = data['specialisation']

    if data.get('name'):

        get_author.name = data['name']

    db.session.add(get_author)

    db.session.commit()

    �author_schema = AuthorsSchema(only=['id', 'name', 

'specialisation'])

    author, error = author_schema.dump(get_author)

    return make_response(jsonify({"author": author}))

So let’s test our PUT endpoint and change the specialisation of 

author ID 1.

We’ll PUT the following JSON body to update the author specialisation.

{

      "specialisation" : "Python Applications"

}

Chapter 2  Database Modeling in Flask



42

As you can see in Figure 2-5, we updated the author with ID 1, and now 

the specialisation has been updated to “Python Applications”.

Now, the last endpoint to remove an author from the database. Add the 

following code to add a delete endpoint which will look like get author by 

ID endpoint but will use DELETE verb and return 204 status code with no 

content.

@app.route('/authors/<id>', methods = ['DELETE'])

def delete_author_by_id(id):

    get_author = Authors.query.get(id)

    db.session.delete(get_author)

    db.session.commit()

    return make_response("",204)

Figure 2-5.  UPDATE author by ID endpoint

Chapter 2  Database Modeling in Flask



43

And now we’ll request the delete endpoint to remove our author with 

ID 1 (Figure 2-6).

And now if you request GET all authors endpoint, it shall return an 

empty array.

Now your app.py should have the following code:

from flask import Flask, request, jsonify, make_response

from flask_sqlalchemy import SQLAlchemy

from marshmallow_sqlalchemy import ModelSchema

from marshmallow import fields

app = Flask(__name__)

app.config["SQLALCHEMY_DATABASE_URI"] = 'mysql+pymysql://<mysql_

username>:<mysql_password>@<mysql_host>:<mysql_port>/<mysql_db>'

Figure 2-6.  DELETE author by ID

Chapter 2  Database Modeling in Flask



44

db = SQLAlchemy(app)

class Authors(db.Model):

    id = db.Column(db.Integer, primary_key=True)

    name = db.Column(db.String(20))

    specialisation = db.Column(db.String(50))

    def create(self):

      db.session.add(self)

      db.session.commit()

      return self

    def __init__(self, name, specialisation):

        self.name = name

        self.specialisation = specialisation

    def __repr__(self):

        return '<Author %d>' % self.id

db.create_all()

class AuthorsSchema(ModelSchema):

    class Meta(ModelSchema.Meta):

        model = Authors

        sqla_session = db.session

    id = fields.Number(dump_only=True)

    name = fields.String(required=True)

    specialisation = fields.String(required=True)

@app.route('/authors', methods = ['GET'])

def index():

    get_authors = Authors.query.all()

    author_schema = AuthorsSchema(many=True)

    authors, error = author_schema.dump(get_authors)

    return make_response(jsonify({"authors": authors}))

Chapter 2  Database Modeling in Flask



45

@app.route('/authors/<id>', methods = ['GET'])

def get_author_by_id(id):

    get_author = Authors.query.get(id)

    author_schema = AuthorsSchema()

    author, error = author_schema.dump(get_author)

    return make_response(jsonify({"author": author}))

@app.route('/authors/<id>', methods = ['PUT'])

def update_author_by_id(id):

    data = request.get_json()

    get_author = Authors.query.get(id)

    if data.get('specialisation'):

        get_author.specialisation = data['specialisation']

    if data.get('name'):

        get_author.name = data['name']

    db.session.add(get_author)

    db.session.commit()

    �author_schema = AuthorsSchema(only=['id', 'name', 

'specialisation'])

    author, error = author_schema.dump(get_author)

    return make_response(jsonify({"author": author}))

@app.route('/authors/<id>', methods = ['DELETE'])

def delete_author_by_id(id):

    get_author = Authors.query.get(id)

    db.session.delete(get_author)

    db.session.commit()

    return make_response("",204)

@app.route('/authors', methods = ['POST'])

def create_author():

    data = request.get_json()

    author_schema = AuthorsSchema()

Chapter 2  Database Modeling in Flask



46

    author, error = author_schema.load(data)

    result = author_schema.dump(author.create()).data

    return make_response(jsonify({"author": result}),200)

if __name__ == "__main__":

    app.run(debug=True)

So, we have now created and tested our sample Flask-MySQL CRUD 

application. We’ll go over complex object relationships using Flask-

SQLAlchemy in the later chapters, and next we’ll create a similar Flask 

CRUD application using MongoEngine.

�Sample Flask MongoEngine Application
MongoDB, as we discussed, is a powerful document-based NoSQL 

database. It uses a JSON-like document schema structure and is highly 

scalable. In this example, we’ll create an Authors database CRUD 

application again, but this time we’ll use MongoEngine rather than 

SQLAlchemy. MongoEngine adds MongoDB support for Flask and is quite 

similar to SQLAlchemy, but it lacks a couple of features due to the fact that 

MongoDB is still not widely used with Flask.

Let’s get started with setting up our project for the flask-mongodb 

application. Just like the last time, create a new directory flask-mongodb 

and initiate a new virtual environment in there.

$ mkdir flask-mongodb && cd flask-mongodb

After creating the directory, let’s spawn our virtual environment and 

activate it.

$ virtualenv venv

$ source venv/bin/activate

Chapter 2  Database Modeling in Flask



47

Now let’s install our project dependencies using PIP.

(venv) $ pip install flask

We’ll need Flask-MongoEngine and Flask-marshmallow, so let’s install 

them as well.

(venv) $ pip install flask-mongoengine

(venv) $ pip install flask-marshmallow

After we are done installing the dependencies, we can create our app.

py file and start writing the code.

So, the following code is the skeleton of the app where are import 

flask, create an app instance, and then import MongoEngine to create a db 

instance.

from flask import Flask, request, jsonify, make_response

from flask_mongoengine import MongoEngine

from marshmallow import Schema, fields, post_load

from bson import ObjectId

app = Flask(__name__)

app.config['MONGODB_DB'] = 'authors'

db = MongoEngine(app)

Schema.TYPE_MAPPING[ObjectId] = fields.String

if __name__ == "__main__":

    app.run(debug=True)

Here TYPE_MAAPPING helps marshmallow understand the ObjectId 

type while serializing and de-serializing the data.

Note  We don’t need db.create_all() here since MongoDB will create 
it on the fly, during the first time you save the value in your collection.

Chapter 2  Database Modeling in Flask



48

If you now run the application, your server should start, but it’ll 

have nothing to process but just create the db instance and make the 

connection. Next, let’s create an author model using MongoEngine.

The code for creating the author model is fairly simple in this case and 

looks like this:

class Authors(db.Document):

    name = db.StringField()

    specialisation = db.StringField()

Let’s now create the marshmallow schema which we’ll need to dump 

our db objects into serialized JSON.

class AuthorsSchema(Schema):

    name = fields.String(required=True)

    specialisation = fields.String(required=True)

The preceding code lets us create the schema which we’ll use to 

map our db object to marshmallow. Notice that here we are not using 

marshmallow-sqlalchemy which has an extra layer of support for 

SQLAlchemy and the code looks slightly changed due to that here.

Now we can write our GET endpoint to fetch all the authors from our DB.

@app.route('/authors', methods = ['GET'])

def index():

    get_authors = Authors.objects.all()

    �author_schema =AuthorsSchema(many=True,only=['id','name', 

'specialisation'])

    authors, error = author_schema.dump(get_authors)

    return make_response(jsonify({"authors": authors}))

Chapter 2  Database Modeling in Flask



49

Note  MongoEngine returns the unique ObjectId in “id” field which is 
autogenerated and hence not specified in the schema.

Now, let’s start the application again using the following command.

(venv) $ python app.py

If there were no errors, you should see the following output, and your 

application should be up and running.

(venv) $ python app.py

* Serving Flask app "app" (lazy loading)

 * Environment: production

   �WARNING: Do not use the development server in a production 

environment.

   Use a production WSGI server instead.

 * Debug mode: on

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

 * Restarting with stat

 * Debugger is active!

 * Debugger PIN: 779-301-240

Chapter 2  Database Modeling in Flask



50

Now that our GET endpoint is working (Figure 2-7), let’s create a POST 

/authors endpoint to register authors in the database.

@app.route('/authors', methods = ['POST'])

def create_author():

    data = request.get_json()

    �author = Authors(name=data['name'],specialisation=data 

['specialisation'])

    author.save()

    �author_schema = AuthorsSchema(only=['name', 

'specialisation'])

    authors, error = author_schema.dump(author)

    return make_response(jsonify({"author": authors}),201)

Figure 2-7.  Requesting GET /authors

Chapter 2  Database Modeling in Flask



51

The preceding code puts the request JSON data in data variable, 

creates an object of class Authors, and invokes the save() method on it. 

Next it creates a schema using the AuthorsSchema and dumps the new 

object to return it back to the user confirming the user was created with a 

201 status code.

Now re-run the application and request the POST endpoint with 

sample author details to register.

We’ll use the same JSON data to post to this application like we did in 

the other application.

{

      "name" : "Kunal Relan",

      "specialisation" : "Python"

}

Figure 2-8.  Requesting POST /authors

Chapter 2  Database Modeling in Flask



52

Upon requesting you should get a similar output to what you see in 

Figure 2-8, and now just to confirm that our GET endpoint works fine, we’ll 

request it again to see if it returns the data.

As you see in Figure 2-9, we get our recently registered author in the 

GET /authors endpoint.

Next we’ll create an endpoint to return authors using the author ID and 

then update endpoint to update author details using author ID and the last 

endpoint to delete an author using author ID.

For GET author by ID, we’ll have a route like /authors/<id> which will 

take author ID from the request parameter and find the matching author.

Add the following code for the GET author by ID endpoint below your 

GET all authors route.

Figure 2-9.  Requesting GET /authors

Chapter 2  Database Modeling in Flask



53

@app.route('/authors/<id>', methods = ['GET'])

def get_author_by_id(id):

    get_author = Authors.objects.get_or_404(id=ObjectId(id))

    �author_schema = AuthorsSchema(only=['id', 'name', 

'specialisation'])

    author, error = author_schema.dump(get_author)

    return make_response(jsonify({"author": author}))

And now when you request the endpoint /authors/<id>, it shall return 

the user with the matching ObjectId (Figure 2-10).

Figure 2-10.  GET author by ID

Chapter 2  Database Modeling in Flask



54

So next we’ll create PUT endpoint to update author info using author 

ID. Add the following code for the PUT author endpoint.

@app.route('/authors/<id>', methods = ['PUT'])

def update_author_by_id(id):

    data = request.get_json()

    get_author = Authors.objects.get(id=ObjectId(id))

    if data.get('specialisation'):

        get_author.specialisation = data['specialisation']

    if data.get('name'):

        get_author.name = data['name']

    get_author.save()

    get_author.reload()

    �author_schema = AuthorsSchema(only=['id', 'name', 

'specialisation'])

    author, error = author_schema.dump(get_author)

    return make_response(jsonify({"author": author}))

Open Postman and hit the same route as we did in the other module 

to update author info, but here use the ObjectID returned in the GET 

endpoint instead.

Chapter 2  Database Modeling in Flask



55

As you can see in Figure 2-11, we were able to update the author 

specialisation using the PUT endpoint. Next we’ll create the DELETE endpoint 

to delete an author using the author ID to complete our CRUD application.

Add the following code to create the DELETE endpoint to our application.

@app.route('/authors/<id>', methods = ['DELETE'])

def delete_author_by_id(id):

    Authors.objects(id=ObjectId(id)).delete()

    return make_response("",204)

Now let’s delete our newly created author using the author ID, and 

similar to the last application, this endpoint will not return any data but a 

204 status code.

Request the delete endpoint using the author ID you did previously, 

and it shall return a similar response as in Figure 2-12.

Figure 2-11.  PUT author endpoint

Chapter 2  Database Modeling in Flask



56

So this wraps up our flask-mongo CRUD application, and the final 

code in your app.py should look like this.

from flask import Flask, request, jsonify, make_response

from flask_mongoengine import MongoEngine

from marshmallow import Schema, fields, post_load

from bson import ObjectId

app = Flask(__name__)

app.config['MONGODB_DB'] = 'DB_NAME'

db = MongoEngine(app)

Schema.TYPE_MAPPING[ObjectId] = fields.String

class Authors(db.Document):

    name = db.StringField()

Figure 2-12.  DELETE author endpoint

Chapter 2  Database Modeling in Flask



57

    specialisation = db.StringField()

class AuthorsSchema(Schema):

    name = fields.String(required=True)

    specialisation = fields.String(required=True)

@app.route('/authors', methods = ['GET'])

def index():

    get_authors = Authors.objects.all()

    �author_schema = AuthorsSchema(many=True, only=['id', 

'name', 'specialisation'])

    authors, error = author_schema.dump(get_authors)

    return make_response(jsonify({"authors": authors}))

@app.route('/authors/<id>', methods = ['GET'])

def get_author_by_id(id):

    get_author = Authors.objects.get_or_404(id=ObjectId(id))

    �author_schema = AuthorsSchema(only=['id', 'name', 

'specialisation'])

    author, error = author_schema.dump(get_author)

    return make_response(jsonify({"author": author}))

@app.route('/authors/<id>', methods = ['PUT'])

def update_author_by_id(id):

    data = request.get_json()

    get_author = Authors.objects.get(id=ObjectId(id))

    if data.get('specialisation'):

        get_author.specialisation = data['specialisation']

    if data.get('name'):

        get_author.name = data['name']

    get_author.save()

    get_author.reload()

Chapter 2  Database Modeling in Flask



58

    �author_schema = AuthorsSchema(only=['id', 'name', 

'specialisation'])

    author, error = author_schema.dump(get_author)

    return make_response(jsonify({"author": author}))

@app.route('/authors/<id>', methods = ['DELETE'])

def delete_author_by_id(id):

    Authors.objects(id=ObjectId(id)).delete()

    return make_response("",204)

@app.route('/authors', methods = ['POST'])

def create_author():

    data = request.get_json()

    �author = Authors(name=data['name'],specialisation=data 

['specialisation'])

    author.save()

    �author_schema = AuthorsSchema(only=['id','name', 

'specialisation'])

    authors, error = author_schema.dump(author)

    return make_response(jsonify({"author": authors}),201)

if __name__ == "__main__":

    app.run(debug=True)

�Conclusion
So now we have covered the introduction to SQLAlchemy and 

MongoEngine and have created sample CRUD applications using them. In 

the next chapter, we’ll discuss architecting REST APIs in detail and set up 

the base for our Flask REST API application.

Chapter 2  Database Modeling in Flask



59© Kunal Relan 2019 
K. Relan, Building REST APIs with Flask, https://doi.org/10.1007/978-1-4842-5022-8_3

CHAPTER 3

CRUD Application 
with Flask (Part 1)
In the last chapter, we discussed about databases and implemented 

NoSQL- and SQL-based examples. In this chapter we’ll be creating a 

RESTful Flask application from scratch. Here we’ll maintain a database of 

Author objects alongside the books they have written. This application will 

have a user authentication mechanism to only allow logged-in users to 

execute certain functions. We’ll now create the following API endpoints for 

our REST applications:

	 1.	 GET /authors: This gets list of authors alongside 

their books.

	 2.	 GET /authors/<id>: This gets author with the 

specified ID alongside their books.

	 3.	 POST /authors: This creates a new Author object.

	 4.	 PUT /authors/<id>: This will edit author object with 

the given ID.

	 5.	 DELETE /authors/<id>: This will delete the author 

with the given ID.

	 6.	 GET /books: This will return all the books.

	 7.	 GET /books/<id>: This gets the book with the 

specified ID.



60

	 8.	 POST /books: This creates a new book object.

	 9.	 PUT / books/<id>: This will edit book object with 

the given ID.

	 10.	 DELETE /book/<id>: This will delete the book with 

the given ID.

Let’s jump right into it, and we’ll start by creating a new project and 

name it author-manager. So create a new directory and start by creating a 

new virtual environment.

$ mkdir author-manager && cd author-manager

$ virtualenv venv

And now we shall have our virtual environment setup; next we need to 

activate the environment and install the dependencies just like we did in 

the previous chapter.

We’ll start by installing the following dependencies to start with and 

add on more as we need them.

(venv) $ pip install flask flask-sqlalchemy marshmallow-

sqlalchemy

We’ll also use blueprints in this application. Flask uses the concept 

of blueprints to make application components and support common 

patterns across the application. Blueprints help create smaller modules for 

the application making it easy to manage. Blueprint is highly valuable for 

larger applications and simplifies how large applications work.

We’ll structure the application into small modules and keep all our 

application code in the /src folder inside our app folder. So, go ahead and 

create a src folder inside your current working directory and then create 

run.py file inside it.

(venv) $ mkdir src && cd src

Chapter 3  CRUD Application with Flask (Part 1)



61

In src folder we’ll have our run.py file and another directory called api 

which will export our modules, so go ahead and create an api folder inside 

src. We’ll initialize our Flask app in main.py file inside src and then create 

another file run.py which will import main.py, config file, and run the 

application.

Let’s start with main.py.

Add the following code to import the needed libraries and then 

initialize the app object. Here we’ll define a function which will accept app 

config and then initialize our application.

import os

from flask import Flask

from flask import jsonify

app = Flask(__name__)

if os.environ.get('WORK_ENV') == 'PROD':

    app_config = ProductionConfig

elif os.environ.get('WORK_ENV') == 'TEST':

    app_config = TestingConfig

else:

    app_config = DevelopmentConfig

app.config.from_object(app_config)

if __name__ == "__main__":

    app.run(port=5000, host="0.0.0.0", use_reloader=False)

So that is our skeleton of main.py; next we’ll create run.py to call app 

and run the application. Later we’ll add routes, initialize our db object, and 

configure logging in main.py.

Add the following code to run.py to import create_app and run the 

application.

Chapter 3  CRUD Application with Flask (Part 1)



62

from main import app as application

if __name__ == "__main__":

    application.run()

Here we have defined the config, imported create_app, and initialized 

the application. Next we’ll move the config to a separate directory and 

specify environment-specific configuration. We’ll create another directory 

/api inside src and export config, models, and routes from api directory, 

so now create a directory inside src called api and then create another 

directory called config inside api.

Note  Create an empty file called __init__.py inside every directory 
for Python to know it contains modules.

Now create config.py inside config directory and also __init__.py. Next 

add the following code in config.py

class Config(object):

    DEBUG = False

    TESTING = False

    SQLALCHEMY_TRACK_MODIFICATIONS = False

class ProductionConfig(Config):

    SQLALCHEMY_DATABASE_URI =  <Production DB URL>

class DevelopmentConfig(Config):

    DEBUG = True

    SQLALCHEMY_DATABASE_URI =  <Development DB URL>

    SQLALCHEMY_ECHO = False

class TestingConfig(Config):

    TESTING = True

    SQLALCHEMY_DATABASE_URI = <Testing DB URL>

    SQLALCHEMY_ECHO = False

Chapter 3  CRUD Application with Flask (Part 1)



63

The preceding code defines the basic config that we did in main.py and 

then adds environment-specific configuration on the top.

So alongside main, we import development, testing, and production 

config from config module and import OS module to read environment 

modules. After that we check if WORK_ENV environment variable is 

supplied to start the application accordingly; otherwise we start the 

application using development config by default.

So we have supplied the DB config already but haven’t initialized DB in 

our application; next, let’s do that now.

Now create another directory inside api called utils which will hold our 

utility modules; for now we’ll initiate our db object there.

Create database.py inside utility and add the following code in it.

from flask_sqlalchemy import SQLAlchemy

db = SQLAlchemy()

And this shall initiate to create our db object; next we’ll import the db 

object in main.py and initialize it.

Add the following code where we import libraries to import the db 

object.

from api.utils.database import db

def create_app(config):

    app = Flask(__name__)

    app.config.from_object(config)

    db.init_app(app)

    with app.app_context():

        db.create_all()

    return app

And update create_app to initialize the db object.

Chapter 3  CRUD Application with Flask (Part 1)



64

So now we have the base of our REST application, and your app 

structure should look like this.

venv/

src

├── api/
│   ├── __init__.py
│   ├── utils
│   │     └── __init__.py
│   │     └── database.py
│   └── config
│           └── __init__.py
│           └── database.py
├── run.py
├── main.py
└── requirements.txt

Next let’s define our db schema. Here we’ll deal with two resources, 

namely, author and book. So let’s create book schema first. We’ll put all the 

schema inside a directory called models in api directory, so go ahead and 

initiate the models module and then create books.py

Add the following code to books.py to create the books model.

from api.utils.database import db

from marshmallow_sqlalchemy import ModelSchema

from marshmallow import fields

class Book(db.Model):

    __tablename__ = 'books'

    �id = db.Column(db.Integer, primary_key=True, 

autoincrement=True)

    title = db.Column(db.String(50))

    year = db.Column(db.Integer)

Chapter 3  CRUD Application with Flask (Part 1)



65

    �author_id = db.Column(db.Integer, db.ForeignKey('authors.id'))

    def __init__(self, title, year, author_id=None):

        self.title = title

        self.year = year

        self.author_id = author_id

    def create(self):

        db.session.add(self)

        db.session.commit()

        return self

class BookSchema(ModelSchema):

    class Meta(ModelSchema.Meta):

        model = Book

        sqla_session = db.session

    id = fields.Number(dump_only=True)

    title = fields.String(required=True)

    year = fields.Integer(required=True)

    author_id = fields.Integer()

Here we are importing db module, marshmallow, like we did earlier to 

map the fields and help us return JSON objects.

Notice that we have a field here author_id which is a foreign key to ID 

field in authors model. Next we’ll create the authors.py and create authors 

model.

from api.utils.database import db

from marshmallow_sqlalchemy import ModelSchema

from marshmallow import fields

from api.models.books import BookSchema

class Author(db.Model):

    __tablename__ = 'authors'

Chapter 3  CRUD Application with Flask (Part 1)



66

    �id = db.Column(db.Integer, primary_key=True, 

autoincrement=True)

    first_name = db.Column(db.String(20))

    last_name = db.Column(db.String(20))

    �created = db.Column(db.DateTime, server_default=db.func.now())

    �books = db.relationship('Book', backref='Author', 

cascade="all, delete-orphan")

    def __init__(self, first_name, last_name, books=[]):

        self.first_name = first_name

        self.last_name = last_name

        self.books = books

    def create(self):

        db.session.add(self)

        db.session.commit()

        return self

class AuthorSchema(ModelSchema):

    class Meta(ModelSchema.Meta):

        model = Author

        sqla_session = db.session

    id = fields.Number(dump_only=True)

    first_name = fields.String(required=True)

    last_name = fields.String(required=True)

    created = fields.String(dump_only=True)

    �books = fields.Nested(BookSchema, many=True, 

only=['title','year','id']

The preceding code will create our authors model. Notice we also 

import the books model here and create the relationship between the 

author and their books so that when we retrieve the author object, we can 

also get the books associated with their ID, and thus we have set up a one-

to-many relationship between author and books in this model.

Chapter 3  CRUD Application with Flask (Part 1)



67

Now once we have our DB schema in place, next we need is to start 

creating our routes, but before we jump onto writing the routes, there is 

one more thing we should do as part of modularizing our application and 

create another module responses.py to create a standard class of HTTP 

responses.

After that we’ll create global HTTP configurations in main.py

Create responses.py inside api/utils, and here we’ll use jsonify and 

make_response from Flask library to create standard responses for our APIs.

So write the following code in responses.py to initiate the module.

from flask import make_response, jsonify

def response_with(response, value=None, message=None, 

error=None, headers={}, pagination=None):

    result = {}

    if value is not None:

        result.update(value)

    if response.get('message', None) is not None:

        result.update({'message': response['message']})

    result.update({'code': response['code']})

    if error is not None:

        result.update({'errors': error})

    if pagination is not None:

        result.update({'pagination': pagination})

    headers.update({'Access-Control-Allow-Origin': '*'})

    headers.update({'server': 'Flask REST API'})

    �return make_response(jsonify(result), response['http_

code'], headers)

Chapter 3  CRUD Application with Flask (Part 1)



68

The preceding code exposes a function response_with for our API 

endpoints to use and respond back; alongside this we’ll also create 

standard response codes and messages.

So here is a list of responses that our application will support.

Table 3-1 provides the HTTP responses we’ll use in our application. Add 

the following code above response_with to define them in responses.py.

INVALID_FIELD_NAME_SENT_422 = {

    "http_code": 422,

    "code": "invalidField",

    "message": "Invalid fields found"

}

INVALID_INPUT_422 = {

    "http_code": 422,

Table 3-1.  HTTP responses

200 200 Ok Standard response to HTTP requests

201 201 Created Implies the request was fulfilled and a new 

resource has been created

204 204 No Content Successful request and no data has been returned

400 400 Bad Request Implies that the server can’t process the request 

due to a client error

403 403 Not Authorized Valid request but the requesting client is not 

authorized to obtain the resource

404 404 Not Found The requested resource doesn’t exist on the server

422 422 Unprocessable Entity Request can’t be processed due to semantic error

500 500 Internal Server Error Generic error to imply an unexpected condition in 

server

Chapter 3  CRUD Application with Flask (Part 1)



69

    "code": "invalidInput",

    "message": "Invalid input"

}

MISSING_PARAMETERS_422 = {

    "http_code": 422,

    "code": "missingParameter",

    "message": "Missing parameters."

}

BAD_REQUEST_400 = {

    "http_code": 400,

    "code": "badRequest",

    "message": "Bad request"

}

SERVER_ERROR_500 = {

    "http_code": 500,

    "code": "serverError",

    "message": "Server error"

}

SERVER_ERROR_404 = {

    "http_code": 404,

    "code": "notFound",

    "message": "Resource not found"

}

UNAUTHORIZED_403 = {

    "http_code": 403,

    "code": "notAuthorized",

    "message": "You are not authorised to execute this."

}

Chapter 3  CRUD Application with Flask (Part 1)



70

SUCCESS_200 = {

    'http_code': 200,

    'code': 'success'

}

SUCCESS_201 = {

    'http_code': 201,

    'code': 'success'

}

SUCCESS_204 = {

    'http_code': 204,

    'code': 'success'

}

And now we shall have our working responses.py module; next we’ll 

add global HTTP configurations for handling errors.

Next import the status and response_with function in main.py. Add the 

following lines in the top section of main.py import.

from api.utils.responses import response_with

import api.utils.responses as resp

And then just above db.init_app function, add the following code to 

configure global HTTP configs.

    @app.after_request

    def add_header(response):

        return response

    @app.errorhandler(400)

    def bad_request(e):

        logging.error(e)

        return response_with(resp.BAD_REQUEST_400)

Chapter 3  CRUD Application with Flask (Part 1)



71

    @app.errorhandler(500)

    def server_error(e):

        logging.error(e)

        return response_with(resp.SERVER_ERROR_500)

    @app.errorhandler(404)

    def not_found(e):

        logging.error(e)

        return response_with(resp. SERVER_ERROR_404)

The following code adds global responses in error situations. Now your 

main.py should look like this.

from flask import Flask

from flask import jsonify

from api.utils.database import db

from api.utils.responses import response_with

import api.utils.responses as resp

app = Flask(__name__)

if os.environ.get('WORK_ENV') == 'PROD':

    app_config = ProductionConfig

elif os.environ.get('WORK_ENV') == 'TEST':

    app_config = TestingConfig

else:

    app_config = DevelopmentConfig

app.config.from_object(app_config)

db.init_app(app)

with app.app_context():

    db.create_all()

# START GLOBAL HTTP CONFIGURATIONS

@app.after_request

Chapter 3  CRUD Application with Flask (Part 1)



72

def add_header(response):

    return response

@app.errorhandler(400)

def bad_request(e):

    logging.error(e)

    return response_with(resp.BAD_REQUEST_400)

@app.errorhandler(500)

def server_error(e):

    logging.error(e)

    return response_with(resp.SERVER_ERROR_500)

@app.errorhandler(404)

def not_found(e):

    logging.error(e)

    return response_with(resp.SERVER_ERROR_404)

db.init_app(app)

with app.app_context():

    db.create_all()

if __name__ == "__main__":

    app.run(port=5000, host="0.0.0.0", use_reloader=False)

Next we need to create our API endpoints and include them in our 

main.py using Blueprints.

We’ll put our routes inside a directory named routes in api, so go ahead 

and create the folder; next add authors.py to create the books route.

Next import the required modules using the following code.

from flask import Blueprint

from flask import request

from api.utils.responses import response_with

from api.utils import responses as resp

Chapter 3  CRUD Application with Flask (Part 1)



73

from api.models.authors import Author, AuthorSchema

from api.utils.database import db

Here we import Blueprint and request modules from Flask, response_

with and resp method from responses util, Author schema, and the db object.

Next we’ll configure the Blueprint.

author_routes = Blueprint("author_routes", __name__)

Once done, we can start with our POST author route, and add the 

following code below book_routes.

@author_routes.route('/', methods=['POST'])

def create_author():

    try:

        data = request.get_json()

        author_schema = AuthorSchema()

        author, error = author_schema.load(data)

        result = author_schema.dump(author.create()).data

        �return response_with(resp.SUCCESS_201, value={"author": 

result})

    except Exception as e:

        print e

        return response_with(resp.INVALID_INPUT_422)

So the preceding code will take JSON data from the request and 

execute create method on the Author schema and then return the 

response using response_with method, supplying the response type which 

is 201 for this endpoint and the data value which is a JSON object with the 

newly created author.

Now before we set up all other routes, let’s register author routes 

Blueprint in the app and run the application to test if everything is alright.

Chapter 3  CRUD Application with Flask (Part 1)



74

So in your main.py, import the author routes and then register the 

blueprint.

from api.routes.authors import author_routes

And then add the following line right above @app.after_request.

app.register_blueprint(author_routes, url_prefix='/api/

authors')

Now run the application using Python run.py command, and our Flask 

server should be up and running.

Let’s try out POST authors endpoint, so open up postmand request at 

http://localhost:5000/api/authors/ with the following JSON data.

{

       "first_name" : "kunal",

       "last_name" : "Relan"

 }

Figure 3-1.  POST authors endpoint

Chapter 3  CRUD Application with Flask (Part 1)



75

As you can see, books is an empty array since we haven’t created any 

book yet; next let’s add GET authors endpoint (Figure 3-1).

@author_routes.route('/', methods=['GET'])

def get_author_list():

    fetched = Author.query.all()

    �author_schema = AuthorSchema(many=True, only=['first_name', 

'last_name','id'])

    authors, error = author_schema.dump(fetched)

    �return response_with(resp.SUCCESS_200, value={"authors": 

authors})

The preceding code will add GET all authors route, and here we’ll 

respond with an array of authors only containing their ID, First Name, and 

Last Name. So let’s go ahead and test it.

As you can see in Figure 3-2, the endpoint responded with an array of 

authors.

Figure 3-2.  GET authors route

Chapter 3  CRUD Application with Flask (Part 1)



76

Next let’s add another GET route to fetch a specific author using their 

ID and add the following code to add the route.

@author_routes.route('/<int:author_id>', methods=['GET'])

def get_author_detail(author_id):

    fetched = Author.query.get_or_404(author_id)

    author_schema = AuthorSchema()

    author, error = author_schema.dump(fetched)

    �return response_with(resp.SUCCESS_200, value={"author": 

author})

The preceding code takes an integer from the route parameters and 

finds the author with the respective ID and return the author object.

So let’s try fetching author with ID 1 (Figure 3-3).

If the author with the ID exists, we shall get the response back with 

200 status code and the author object, otherwise 404 like in the following 

screenshot. As you can see, there is no author with ID 2, and the get_or_404 

Figure 3-3.  Fetching author with ID 1

Chapter 3  CRUD Application with Flask (Part 1)



77

method throws 404 error on the endpoint which is then handled by app.

errorhandler(404) as per what we mentioned in our main.py (Figure 3-4).

Before we move on to creating PUT and DELETE endpoints for author 

object, let’s initiate book routes. Create books.py in the same routes folder 

and add the following code to initiate the route.

from flask import Blueprint, request

from api.utils.responses import response_with

from api.utils import responses as resp

from api.models.books import Book, BookSchema

from api.utils.database import db

book_routes = Blueprint("book_routes", __name__)

And then register the book routes in main.py like we did for author routes. 

Add the following code right below where you imported author routes.

from api.routes.books import book_routes

Figure 3-4.  No author is found with ID 2

Chapter 3  CRUD Application with Flask (Part 1)



78

Then right below where you added the author route blueprint 

registration, add the following code.

app.register_blueprint(book_routes, url_prefix='/api/books')

Now your main.py should have the following code.

import logging

import sys

import api.utils.responses as resp

from flask import Flask, jsonify

from api.utils.database import db

from api.utils.responses import response_with

from api.routes.authors import author_routes

from api.routes.books import book_routes

def create_app(config):

    app = Flask(__name__)

    app.config.from_object(config)

    db.init_app(app)

    with app.app_context():

        db.create_all()

    �app.register_blueprint(author_routes, url_prefix='/api/

authors')

    �app.register_blueprint(book_routes, url_prefix='/api/books')

    @app.after_request

    def add_header(response):

        return response

    @app.errorhandler(400)

    def bad_request(e):

        logging.error(e)

        return response_with(resp.BAD_REQUEST_400)

Chapter 3  CRUD Application with Flask (Part 1)



79

    @app.errorhandler(500)

    def server_error(e):

        logging.error(e)

        return response_with(resp.SERVER_ERROR_500)

    @app.errorhandler(404)

    def not_found(e):

        logging.error(e)

        return response_with(resp.SERVER_ERROR_404)

    db.init_app(app)

    with app.app_context():

        db.create_all()

    logging.basicConfig(stream=sys.stdout,

                        �format='%(asctime)s|%(levelname)

s|%(filename)s:%(lineno)s|%(message)s',

                        level=logging.DEBUG)

    return app

Next let’s start by creating POST book endpoint; open books.py inside 

routes folder and add the following code below book_routes.

@book_routes.route('/', methods=['POST'])

def create_book():

    try:

        data = request.get_json()

        book_schema = BookSchema()

        book, error = book_schema.load(data)

        result = book_schema.dump(book.create()).data

        �return response_with(resp.SUCCESS_201, value={"book": 

result})

    except Exception as e:

        print e

        return response_with(resp.INVALID_INPUT_422)

Chapter 3  CRUD Application with Flask (Part 1)



80

The preceding code will take user data and then execute the create() 

method on book schema just like what we did in author object; let’s save 

the file and test the endpoint.

{

       "title" : "iOS Penetration Testing",

       "year" : 2016,

       "author_id": 1

 }

We’ll use the preceding JSON data to POST to the endpoint, and we 

should get a response with 200 status code and the newly created book 

object. Also as we discussed earlier, we have set up a relationship between 

authors and books, and in the preceding example, we have specified 

author with ID 1 for the new book, so once this API succeeds, we shall be 

able to fetch author with ID 1, and the books array in response shall have 

this book as an object (Figure 3-5).

Figure 3-5.  Fetch author with ID 1

Chapter 3  CRUD Application with Flask (Part 1)



81

And as you can see in Figure 3-6, when we request /authors/1 endpoint, 

alongside author details, we also get the books array with the list of books 

the author is linked to.

So our model relationship is working fine; now we can move on to 

creating the rest of the endpoints for author routes. Go ahead and add the 

following code to get the PUT endpoint for the author route to update the 

author object.

@author_routes.route('/<int:id>', methods=['PUT'])

def update_author_detail(id):

    data = request.get_json()

    get_author = Author.query.get_or_404(id)

    get_author.first_name = data['first_name']

    get_author.last_name = data['last_name']

    db.session.add(get_author)

    db.session.commit()

    author_schema = AuthorSchema()

Figure 3-6.  GET author endpoint

Chapter 3  CRUD Application with Flask (Part 1)



82

    author, error = author_schema.dump(get_author)

    �return response_with(resp.SUCCESS_200, value={"author": 

author})

The preceding code will create our PUT endpoint to update author 

object. In the previous code, we take a request JSON in the data variable 

and then fetch the author with the provided ID in request parameter. If the 

author with that ID is not found, the request ends with 404 status code, or 

else get_author contains the author object, and then we update the first_

name and last_name with the data supplied in request JSON and then we 

save the session.

So let’s go ahead and update the first and the last name of the author 

we created a while ago (Figure 3-7).

Figure 3-7.  PUT author endpoint

Chapter 3  CRUD Application with Flask (Part 1)



83

So here we updated the first name and the last name of the author. 

However in PUT we need to send the whole request body of the object as 

we discussed in the second chapter, so next we’ll create a PATCH endpoint 

to update only a part of the author object. Add the following code for the 

PATCH endpoint.

@author_routes.route('/<int:id>', methods=['PATCH'])

def modify_author_detail(id):

    data = request.get_json()

    get_author = Author.query.get(id)

    if data.get('first_name'):

        get_author.first_name = data['first_name']

    if data.get('last_name'):

        get_author.last_name = data['last_name']

    db.session.add(get_author)

    db.session.commit()

    author_schema = AuthorSchema()

    author, error = author_schema.dump(get_author)

    �return response_with(resp.SUCCESS_200, value={"author": 

author})

The preceding code gets the request JSON like the other endpoint but 

doesn’t expect the whole request body but only the field that needs to be 

updated in the request body, and similarly it updates the author object and 

saves the session. Let’s try this out and this time we’ll only change the first 

name of the author object.

Chapter 3  CRUD Application with Flask (Part 1)



84

As you see in Figure 3-8, we only supply the first name in the request 

body and it got updated. So next we’ll finally create our DELETE author 

endpoint which will take the author ID from the request parameter and 

delete the author object. Notice that in this one, we’ll respond with 204 

status code and no content.

@author_routes.route('/<int:id>', methods=['DELETE'])

def delete_author(id):

    get_author = Author.query.get_or_404(id)

    db.session.delete(get_author)

    db.session.commit()

    return response_with(resp.SUCCESS_204)

Add the previous code and now this shall create our DELETE endpoint. 

Let’s go ahead and try deleting our author with ID 1 (Figure 3-9).

Figure 3-8.  Change the first name of the author object

Chapter 3  CRUD Application with Flask (Part 1)



85

With this endpoint, our author object should be deleted from the 

database, and while creating the author schema, we configured all cascade 

in the book relationship. Thus all the books related to author ID 1 shall also 

be deleted ensuring we don’t have any books without an author ID.

So this is it for our author routes and next we’ll work on the rest of our 

book endpoints. Next add the following code in books.py to create GET 

books endpoint.

@book_routes.route('/', methods=['GET'])

def get_book_list():

    fetched = Book.query.all()

    �book_schema = BookSchema(many=True, only=['author_id', 

'title', 'year'])

    books, error = book_schema.dump(fetched)

    �return response_with(resp.SUCCESS_200, value={"books": books})

Save the file and try the endpoint; for now you shall get an empty array 

since the book with author ID 1 was deleted when we deleted the author.

Figure 3-9.  DELETE author endpoint

Chapter 3  CRUD Application with Flask (Part 1)



86

As you see in Figure 3-10, there are no books in the table as of now, so 

go ahead and create an author, and then add a couple of books with that 

author ID, since we can’t add a book without an author, or else it’ll end in 

422 unprocessable entity error.

Next we’ll create GET Book by ID endpoint.

@book_routes.route('/<int:id>', methods=['GET'])

def get_book_detail(id):

    fetched = Book.query.get_or_404(id)

    book_schema = BookSchema()

    books, error = book_schema.dump(fetched)

    �return response_with(resp.SUCCESS_200, value={"books": books})

The following code will create GET Book by ID endpoint; next we’ll 

create PUT, PATCH, and DELETE endpoints, and add the following code 

for the same.

Figure 3-10.  GET books endpoint

Chapter 3  CRUD Application with Flask (Part 1)



87

book_routes.route('/<int:id>', methods=['PUT'])

def update_book_detail(id):

    data = request.get_json()

    get_book = Book.query.get_or_404(id)

    get_book.title = data['title']

    get_book.year = data['year']

    db.session.add(get_book)

    db.session.commit()

    book_schema = BookSchema()

    book, error = book_schema.dump(get_book)

    return response_with(resp.SUCCESS_200, value={"book": book})

@book_routes.route('/<int:id>', methods=['PATCH'])

def modify_book_detail(id):

    data = request.get_json()

    get_book = Book.query.get_or_404(id)

    if data.get('title'):

        get_book.title = data['title']

    if data.get('year'):

        get_book.year = data['year']

    db.session.add(get_book)

    db.session.commit()

    book_schema = BookSchema()

    book, error = book_schema.dump(get_book)

    return response_with(resp.SUCCESS_200, value={"book": book})

@book_routes.route('/<int:id>', methods=['DELETE'])

def delete_book(id):

    get_book = Book.query.get_or_404(id)

    db.session.delete(get_book)

    db.session.commit()

    return response_with(resp.SUCCESS_204)

Chapter 3  CRUD Application with Flask (Part 1)



88

So this shall wrap up our book and author routes, and now we have a 

working REST application. Now you can try executing CRUD on the author 

and book routes.

�User Authentication
Once we have all our routes in place, we need to add in user authentication 

to make sure only logged-in users can access certain routes, so now we’ll 

add in user login and signup routes, but before that we need to add user 

schema.

Create users.py inside models. In the schema we’ll add two static 

methods to encrypt the password and verify password, and for the same 

we’ll need a Python library called passlib, so before we create the schema, 

let’s install passlib using PIP.

(venv)$ pip install passlib

Once done add the following code to add user schema and the methods.

from api.utils.database import db

from passlib.hash import pbkdf2_sha256 as sha256

from marshmallow_sqlalchemy import ModelSchema

from marshmallow import fields

class User(db.Model):

    __tablename__ = 'users'

    id = db.Column(db.Integer, primary_key = True)

    �username = db.Column(db.String(120), unique = True, 

nullable = False)

    password = db.Column(db.String(120), nullable = False)

    def create(self):

        db.session.add(self)

Chapter 3  CRUD Application with Flask (Part 1)



89

        db.session.commit()

        return self

    @classmethod

    def find_by_username(cls, username):

        return cls.query.filter_by(username = username).first()

    @staticmethod

    def generate_hash(password):

        return sha256.hash(password)

    @staticmethod

    def verify_hash(password, hash):

        return sha256.verify(password, hash)

class UserSchema(ModelSchema):

    class Meta(ModelSchema.Meta):

        model = User

        sqla_session = db.session

    id = fields.Number(dump_only=True)

    username = fields.String(required=True)

So here we have added a class method to find a user by username, and 

create a user and then two static methods to generate the hash and verify 

it. We’ll use these methods when we create the user routes.

Next create users.py in routes directory, and this is where we’ll add our 

user login and signup routes.

For user authentication across the application, we’ll use JWT (JSON 

Web Tokens) authentication. JWT is an open standard which defines a 

compact and self-contained way of securely transmitting information as a 

JSON object. JWT is a popular way of user authorization in the REST world. 

In Flask there is an open source extension called Flask-JWT-Extended 

which provides JWT support and other helpful methods.

Chapter 3  CRUD Application with Flask (Part 1)



90

Let’s go ahead and install Flask-JWT-Extended.

(venv)$ pip install flask-jwt-extended

Next we’ll initialize JWT module in the app in main.py so import the 

library in main.py.

from flask_jwt_extended import JWTManager

Next initialize JWTManager with the following code right above 

db.init_app().

jwt = JWTManager(app)

Once installed and initialized, let’s import the needed modules for our 

user routes file.

from flask import Blueprint, request

from api.utils.responses import response_with

from api.utils import responses as resp

from api.models.users import User, UserSchema

from api.utils.database import db

from flask_jwt_extended import create_access_token

These are the modules we’ll need for the user routes; next we’ll 

configure the route using Blueprint with the following code.

user_routes = Blueprint("user_routes", __name__)

Next, we’ll import and register the /users routes in our main.py file, so 

add the following code in main.py to import the user routes.

from api.routes.users import user_routes

And now right below where we have declared the other routes, add the 

following line of code.

app.register_blueprint(user_routes, url_prefix='/api/users')

Chapter 3  CRUD Application with Flask (Part 1)



91

Next, we’ll create our POST user route to create a new user and add the 

following code in users.py inside routes.

@user_routes.route('/', methods=['POST'])

def create_user():

    try:

        data = request.get_json()

        data['password'] = User.generate_hash(data['password'])

        user_schmea = UserSchema()

        user, error = user_schmea.load(data)

        result = user_schmea.dump(user.create()).data

        return response_with(resp.SUCCESS_201)

    except Exception as e:

        print e

        return response_with(resp.INVALID_INPUT_422)

Here we are taking the user request data in a variable and then 

executing the generate_hash() function on the password and creating the 

user. Once done we’ll return a 201 response.

Next we’ll create a login route for the signed up users to login. Add the 

following code for the same.

@user_routes.route('/login', methods=['POST'])

def authenticate_user():

      try:

        data = request.get_json()

        current_user = User.find_by_username(data['username'])

        if not current_user:

            return response_with(resp.SERVER_ERROR_404)

        �if User.verify_hash(data['password'], current_user.

password):

            �access_token = create_access_token(identity = 

data['username'])

Chapter 3  CRUD Application with Flask (Part 1)



92

            �return response_with(resp.SUCCESS_201, 

value={'message': 'Logged in as {}'.format(current_

user.username), "access_token": access_token})

        else:

            return response_with(resp.UNAUTHORIZED_401)

      except Exception as e:

        print e

        return response_with(resp.INVALID_INPUT_422)

The following code will take the username and password from request 

data and check if the user with the provided username exists using the 

find_by_username() method we created in the schema. Next if the user 

doesn’t exist, we’ll respond with 404, or else verify the password using 

verify_hash() function in the schema. If the user exists, we’ll generate a 

JWT Token and respond with 200; otherwise respond with 401. So now we 

have our user login in place. Next we need to add jwt required decorator 

to the routes we want to protect. So navigate to authors.py in routes and 

import the decorator using the following code.

from flask_jwt_extended import jwt_required

And then before the endpoint definition, add the decorator using the 

following code.

@jwt_required

We’ll add the decorator to the DELETE, PUT, POST, and PATCH 

endpoints of authors.py and books.py, and the functions should now look 

like this.

@author_routes.route('/', methods=['POST'])

@jwt_required

def create_author():

      ....Function code

Chapter 3  CRUD Application with Flask (Part 1)



93

Let’s go ahead and test our user endpoints. Open Postman and request 

the POST users endpoint with a username and password. We’ll use the 

following sample data.

{

       "username" : "admin",

       "password" : "flask2019"

 }

So our new user has been created (Figure 3-11); next we’ll try logging 

in with the same credentials and get the JWT.

Figure 3-11.  User signup endpoint

Chapter 3  CRUD Application with Flask (Part 1)



94

As you see in Figure 3-12, we have successfully logged in using the 

newly created users. Now let’s try accessing the POST author route to 

which we recently added jwt_required decorator (Figure 3-13).

Figure 3-12.  User login endpoint

Chapter 3  CRUD Application with Flask (Part 1)



95

As you see in Figure 3-14, we are not able to access the POST author 

route anymore, and the jwt_required decorator responded back with 

401 error. Now let’s try accessing the same route by supplying the JWT in 

header. In the header section of the request in Postman, add the token 

with a key called Authorization, and then in the value add Bearer <token> 

to supply the JWT Token like in Figure 3-14.

Figure 3-13.  POST author route without JWT Token

Chapter 3  CRUD Application with Flask (Part 1)



96

As you can see, after adding the JWT Token, we are able to access the 

endpoint again, and this is how we can protect our REST endpoints.

So in the following scenario, we enabled anyone to login to the 

platform and then access the routes. However, in real-world application, 

we can also have email verification and restricted user signup alongside 

that we can also enable user-based access control in which different types 

of users can access certain APIs.

�Conclusion
So this concludes this chapter, and we have successfully created a REST 

application with user authentication. In the next chapter, we’ll work 

on documenting REST APIs, integrating unit tests, and deploying our 

application.

Figure 3-14.  POST author route with JWT

Chapter 3  CRUD Application with Flask (Part 1)



97© Kunal Relan 2019 
K. Relan, Building REST APIs with Flask, https://doi.org/10.1007/978-1-4842-5022-8_4

CHAPTER 4

CRUD Application 
with Flask (Part 2)
In the last chapter, we created REST APIs using Flask, and now we have a 

working CRUD application. In this chapter, we’ll discuss and implement 

features to support and extend our REST APIs. While we have everything 

ready to deploy, however, here are a few more things we’ll discuss before 

deploying the application.

	 1.	 Email verification

	 2.	 File upload

	 3.	 Discuss API documentation

	 4.	 Integrate Swagger

�Introduction
In the last chapter, we created a REST application using Flask and 

MySQL. In this chapter we’ll discuss about extending the application for 

additional features. We’ll start by adding email verification to our users 

model. Next we’ll also add file upload endpoint to users object, and we’ll 

also discuss about the need of API documentation, best practices for 

documenting APIs, and using Swagger as an API documentation tool.



98

�Email Verification
In the last chapter, we created user signup and login using a unique 

username and password. In this chapter we’ll extend the user 

authentication by adding email signup to the user model and also add 

email verification. To do the same, we’ll add email field to the model, 

and once a new user object is created using signup API, we’ll create a 

verification token and send an email to the user with the link to verify the 

account. We’ll also disable user login till the email is verified. First let’s add 

the required fields in the user model.

Browse to users.py in models and add the following lines below 

password in User class.

    �isVerified = db.Column(db.Boolean,  nullable=False, 

default=False)

    �email = db.Column(db.String(120), unique = True, nullable = 

False)

And add the following line below username in UserSchema class.

    �email = db.Column(db.String(120), unique = True, nullable = 

False)

Also since now we have user emails, we’ll update find_by_username 

class method to find by email. So update find_by_username method to the 

following.

    @classmethod

    def find_by_email(cls, email):

        return cls.query.filter_by(email = email).first()

Now your User class should have the following code.

class User(db.Model):

    __tablename__ = 'users'

Chapter 4  CRUD Application with Flask (Part 2)



99

    id = db.Column(db.Integer, primary_key = True)

    �username = db.Column(db.String(120), unique = True, 

nullable = False)

    password = db.Column(db.String(120), nullable = False)

    �isVerified = db.Column(db.Boolean,  nullable=False, 

default=False)

    �email = db.Column(db.String(120), unique = True, nullable = 

False)

    def create(self):

        db.session.add(self)

        db.session.commit()

        return self

    @classmethod

    def find_by_email(cls, email):

        return cls.query.filter_by(email = email).first()

    @classmethod

    def find_by_username(cls, email):

        return cls.query.filter_by(username = username).first()

    @staticmethod

    def generate_hash(password):

        return sha256.hash(password)

    @staticmethod

    def verify_hash(password, hash):

        return sha256.verify(password, hash)

And UserSchema should have the following code.

class UserSchema(ModelSchema):

    class Meta(ModelSchema.Meta):

        model = User

        sqla_session = db.session

Chapter 4  CRUD Application with Flask (Part 2)



100

    id = fields.Number(dump_only=True)

    username = fields.String(required=True)

    email = fields.String(required=True)

Notice here, isVerified field is set to False by default, and once the user 

verifies the email, we’ll set it to True enabling the user to log in.

Next we’ll add a util called token.py which will contain methods 

to generate verification token and confirm the verification token. 

The verification link in the mail will contain a unique URL with the 

verification token which should look like htttp://host/api/users/

confirm/<verification_token> and the token here should always be 

unique. We’ll use itsdangerous package to encode the user email along 

with a timestamp, so let’s go ahead and create token.py in api/utils.

Before we write the code to generate token, we need to add a few 

more variables to app config since itsdangerous needs a secret key and 

password salt for it to work which we’ll supply from our config.py. Add the 

following lines in config/config.py under Development, Testing, as well as 

Production configs ensuring all the keys and salts are different.

    SECRET_KEY= 'your_secured_key_here'

    SECURITY_PASSWORD_SALT= 'your_security_password_here'

Next, in token.py add the following code to import the requirements.

from itsdangerous import URLSafeTimedSerializer

from flask import current_app

And then add the following code to generate the token.

def generate_verification_token(email):

    �serializer = URLSafeTimedSerializer(current_app.

config['SECRET_KEY'])

    �return serializer.dumps(email,salt=current_app.

config['SECURITY_PASSWORD_SALT'])

Chapter 4  CRUD Application with Flask (Part 2)



101

In the previous method, we use URLSafeTimedSerializer to generate 

a token using email address, and the email is encoded in the token. Next 

we’ll create another method to validate the token and expiration, and as 

long as the token is valid and not expired, we’ll return the email and verify 

the user email.

    def confirm_verification_token(token, expiration=3600):

    �serializer = URLSafeTimedSerializer(current_app.

config['SECRET_KEY'])

    try:

        email = serializer.loads(

            token,

            salt=current_app.config['SECURITY_PASSWORD_SALT'],

            max_age=expiration

        )

    except Exception as e :

        return e

    return email

Once we have our token utility in place, we can now modify user 

routes. Let’s start by disabling user login before email verification. Update 

the login route to have the following code; here we have changed find_by_

username to find_by_email, and now we will expect the user to send the 

email address in login endpoint JSON data, and if the user isn’t verified, 

we’ll return the request with a 400 bad code without the token.

Now your login method should contain the following code.

@user_routes.route('/login', methods=['POST'])

def authenticate_user():

      try:

        data = request.get_json()

        if data.get('email') :

            current_user = User.find_by_email(data['email'])

Chapter 4  CRUD Application with Flask (Part 2)



102

        elif data.get('username') :

            �current_user = User.find_by_username(data['username'])

        if not current_user:

            return response_with(resp.SERVER_ERROR_404)

        if current_user and not current_user.isVerified:

            return response_with(resp.BAD_REQUEST_400)

        �if User.verify_hash(data['password'], current_user.

password):

            �access_token = create_access_token(identity = 

current_user.username)

            �return response_with(resp.SUCCESS_201, 

value={'message': 'Logged in as {}'.format(current_

user.username), "access_token": access_token})

        else:

            return response_with(resp.UNAUTHORIZED_401)

      except Exception as e:

        return response_with(resp.INVALID_INPUT_422)

Now let’s create an endpoint to verify the email token.

We’ll start by importing the recently created methods in user.py

from api.utils.token import generate_verification_token, 

confirm_verification_token

Next, add the following GET endpoint to handle email validation right 

below the user signup method.

@user_routes.route('/confirm/<token>', methods=['GET'])

def verify_email(token):

    try:

        email = confirm_verification_token(token)

    except:

        return response_with(resp.SERVER_ERROR_401)

Chapter 4  CRUD Application with Flask (Part 2)



103

    user = User.query.filter_by(email=email).first_or_404()

    if user.isVerified:

        return response_with(resp. INVALID_INPUT_422)

    else:

        user.isVerified = True

        db.session.add(user)

        db.session.commit()

        �return response_with(resp.SUCCESS_200, value={'message': 

'E-mail verified, you can proceed to login now.'})

The next step is to update the user signup method to generate the 

token and send the email to the specified address for verification, so here 

we’ll start with creating an email utility in our utils to send out emails.

In order to do so, we’ll need a flask-mail library; let’s start by installing 

the same. Making sure you are still in the virtual environment, use the 

following line to install flask-mail in your terminal.

(venv) $ pip install Flask-Mail

Once installed, let’s initiate and configure flask-mail. Add the following 

variables in config.py to configure mail.

    MAIL_DEFAULT_SENDER= 'your_email_address'

    MAIL_SERVER= 'email_providers_smtp_address'

    MAIL_PORT= <mail_server_port>

    MAIL_USERNAME= 'your_email_address'

    MAIL_PASSWORD= 'your_email_password'

    MAIL_USE_TLS= False

    MAIL_USE_SSL= True

Next create email.py in utils and add the following code.

from flask_mail import Message,Mail

from flask import current_app

mail = Mail()

Chapter 4  CRUD Application with Flask (Part 2)



104

Next let’s import mail in our main.py and initiate it with app config.

from api.utils.email import mail

Add this among other imports in main.py, and then right below where 

we initiated our JWTManager inside create_app, add the following code.

    mail.init_app(app)

And now our mail object should be initiated with the app config; next 

in email.py, let’s write a method to send out emails.

Add the following code in email.py to create a method send_email 

which will take the sender’s address, subject, and mail template to send.

def send_email(to, subject, template):

    msg = Message(

        subject,

        recipients=[to],

        html=template,

        sender=current_app.config['MAIL_DEFAULT_SENDER']

    )

    mail.send(msg)

So this is all we need to do in order to send out the verification email; 

let’s go back to users.py and update the user signup method to incorporate 

the changes.

Let’s start by importing the send_email, url_for, and render_template_

string method in users.py using the following line.

from api.utils.email import send_email

from flask import url_for, render_template_string

Update the following code for create_user() method in users.py, right 

before the return function.

Chapter 4  CRUD Application with Flask (Part 2)



105

    try:

        data = request.get_json()

        �if(User.find_by_email(data['email']) is not None or 

User.find_by_username(data['username']) is not None):

            return response_with(resp.INVALID_INPUT_422)

        data['password'] = User.generate_hash(data['password'])

        user_schmea = UserSchema()

        user, error = user_schmea.load(data)

        token = generate_verification_token(data['email'])

        �verification_email = url_for('user_routes.verify_

email', token=token, _external=True)

        �html = render_template_string("<p>Welcome! Thanks for 

signing up. Please follow this link to activate your 

account:</p> <p><a href='{{ verification_email }}'>{{ 

verification_email }}</a></p> <br> <p>Thanks!</p>", 

verification_email=verification_email)

        subject = "Please Verify your email"

        send_email(user.email, subject, html)

        result = user_schmea.dump(user.create()).data

        return response_with(resp.SUCCESS_201)

    except Exception as e:

        print e

        return response_with(resp.INVALID_INPUT_422)

Here we are supplying the email to generate_verification_token and 

getting the token in return. Next we use Flask’s url_for to generate the 

verification URL using the verification route we just created and the token. 

After that we render HTML template using render_template_string of 

Jinja2 where we supply the HTML string and the verification variable and 

then we supply all the user-provided email, subject, and HTML to send_

email method to send out the verification email.

Chapter 4  CRUD Application with Flask (Part 2)



106

So this is all we need to setup email verification. Let’s start testing out 

the signup, login, and verification routes to check if everything is working.

Let’s start by signup endpoint; open your Postman and request the 

POST /users API; however, in the JSON body, add a valid email address.

{

      "username" : "kunalrelan",

      "password" : "helloworld",

      "email" : "kunal.relan@hotmail.com"

 }

We’ll use the following JSON in the request data and access the 

endpoint; the response should be similar to earlier; however, you should 

get a verification email from your configured mail address on the email 

you specify in the JSON data with the token (Figure 4-1).

Next, let’s check the email inbox to check if the email arrived and verify 

the user.

Figure 4-1.  User signup API

Chapter 4  CRUD Application with Flask (Part 2)



107

As you can see in Figure 4-2, the verification email arrived with the link 

to validate the user account. Before we activate the user account, let’s try 

logging in with the user credentials to check if email validation works fine 

(Figure 4-3).

Figure 4-2.

Figure 4-3.  User login without verification

Chapter 4  CRUD Application with Flask (Part 2)



108

As you can see in Figure 4-4, the user is not verified and thus can’t 

login. Now let’s open the link provided in the email to verify the user which 

shall then allow the user to login and obtain the JWT token.

Once the user is verified, let’s try logging in again, and nowwe should 

be able to login and obtain the JWT token.

Figure 4-4.  User email verification

Figure 4-5.  User login after verification

Chapter 4  CRUD Application with Flask (Part 2)



109

As you can see in Figure 4-5, we are now again able to login to the 

account after verifying the email address.

So this is it for this section. We have successfully implemented user 

email verifications, and what we did here was just once use case of email 

verification; there are a lot of ways email verification can be used. In a 

lot of applications, users are able to login even before email verification; 

however, there are certain functions which are disabled for the unverified 

users which can be replicated similarly with the change we did in the login 

endpoint. In the next section we’ll implement file upload and handling.

�File Upload
File uploads is another common use case in REST APIs. In this section 

we’ll implement avatar upload for author model and an endpoint to access 

avatar. The idea is pretty straightforward here; we’ll update the author 

model to store avatar URL, create another endpoint for a logged in user to 

upload avatar for an author using author ID, save the file in the file system, 

and create another endpoint to handle static image files.

Before we start developing the feature, let’s talk a bit more about 

handling file uploads in Flask. Here we’ll use multipart/form-data content 

type which indicates the media type of the request resource to the client 

and use request.files. We’ll also define a set of allowed file extensions since 

we don’t need any other file types except images to be uploaded which 

otherwise can lead to big security vulnerability. We’ll then escape the 

uploaded file’s name with werkzeug.secure_filename() which revolves 

around the principle “never trust user input,” and hence the filename may 

contain malicious code which can lead to security vulnerability exploitation. 

Hence the method will escape special characters from the filename.

To start with let’s update the author model to add avatar field. So open 

authors.py in models, and in the model declaration, add the following line 

in Author class

    avatar = db.Column(db.String(20), nullable=True)

Chapter 4  CRUD Application with Flask (Part 2)



110

and the following line in AuthorSchema class

    avatar = fields.String(dump_only=True)

After that, create a new folder in /src and name it images, and add 

upload folder config in the app config which we’ll later use to save and 

fetch the uploaded avatars.

So open config.py in config and add the following parameter.

    UPLOAD_FOLDER= 'images'

Now we’ll import werkzeug.secure_filename() and url_for from 

Flask which we’ll need in the endpoint we are going to create, so add the 

following lines of code below the other imports in authors.py in routes.

from werkzeug.utils import secure_filename

Next where we imported Blueprint and request from Flask, add url_for 

like the following.

from flask import Blueprint, request, url_for, current_app

Right after the import, declare allowed_extensions which will contain a 

set of allowed file extensions.

allowed_extensions = set(['image/jpeg', 'image/png', 'jpeg'])

Once we have the set, let’s create a method to check if the uploaded 

file’s extension is that of an image.

Add the following code right below allowed_extensions.

def allowed_file(filename):

       return filetype in allowed_extensions

The above function will take the filename from the file and 

check if the extension is valid and return.

Chapter 4  CRUD Application with Flask (Part 2)



111

Now add the following endpoint to add avatar upload endpoint.

@author_routes.route('/avatar/<int:author_id>', 

methods=['POST'])

@jwt_required

def upsert_author_avatar(author_id):

    try:

        file = request.files['avatar']

        get_author = Author.query.get_or_404(author_id)

        if file and allowed_file(file.content_type):

            filename = secure_filename(file.filename)

            �file.save(os.path.join(current_app.config['UPLOAD_

FOLDER'], filename))

        �get_author.avatar = url_for('uploaded_file', 

filename=filename, _external=True)

        db.session.add(get_author)

        db.session.commit()

        author_schema = AuthorSchema()

        author, error = author_schema.dump(get_author)

        �return response_with(resp.SUCCESS_200, value={"author": 

author})

    except Exception as e:

        print e

        return response_with(resp.INVALID_INPUT_422)

In the following code, we look for avatar field in request.files and 

then look for the user with the provided user ID. Once we have that, 

we’ll then check if a file was uploaded and then escape the filename 

using the secure_filename function we just imported. Then we’ll use file.

save method and save the file in images folder by supplying the path by 

concatenating UPLOAD_FOLDER from config and filename. Now once 

the file is saved, we’ll use url_for method to create a URL for accessing the 

uploaded file, for that we’ll create a route with a method uploaded_file that 

accepts a filename and serves it from the configured upload folder which 

Chapter 4  CRUD Application with Flask (Part 2)



112

we’ll create next. Once done, we’ll update the author model and update 

the avatar field with the URL for the uploaded avatar.

Next move to main.py and add the following route right after Blueprint 

declarations for the routes in create_app function.

 @app.route('/avatar/<filename>')

  def uploaded_file(filename):

      �return send_from_directory(app.config['UPLOAD_

FOLDER'],filename)

So this function will accept the filename and return the file from the 

configured UPLOAD_FOLDER in the response.

So this is it for file upload, and now we should be able to upload an 

avatar for an author and fetch it back. Let’s go back to Postman and try it out.

So now request the update avatar endpoint with form-data, andspecify 

the key avatar, select the image you want to upload, and send it. We shall 

get 200 success response with user object in response; now notice the 

avatar field with the link to the file (Figure 4-6).

Figure 4-6.  Author avatar upload endpoint

Chapter 4  CRUD Application with Flask (Part 2)



113

Next click the avatar link to fetch the image you just created to check if 

it exists.

As you can see in Figure 4-7, we are able to fetch the image using the 

route we created. Next let’s try uploading an HTML file to check if the 

allowed extension check works well. For this just create an HTML file with 

any text in it or use any HTML file you have and try uploading it.

Now, as you see in Figure 4-8, we got an error trying to upload an 

HTML file which is not allowed on this endpoint, ensuring the extension 

check is working fine for us.

Figure 4-7.  Fetch avatar endpoint

Chapter 4  CRUD Application with Flask (Part 2)



114

�API Documentation
The process of API development does not end just after programming 

them. Since REST APIs are used by a variety of clients and hence are used 

by other developers who either access them directly using a REST client 

or integrate with some kind of REST client, API documentation provides 

an easy way to understand the functioning of REST endpoints which 

makes API documentation an essential part of developing a REST-based 

application.

In this section we’ll discuss about the basics of API documentation, 

OpenAPI spec, and Swagger, generating API docs using OpenAPI spec, 

publishing API docs, and testing APIs using Swagger UI.

Figure 4-8.  Upload avatar endpoint with invalid file type

Chapter 4  CRUD Application with Flask (Part 2)



115

�Building Blocks of API Documentation
In REST API reference documentation, there are five sections on which the 

documentation is based, namely:

	 1.	 Resource Description: As discussed earlier, resources 

refer to the information returned from the API; in 

context of this book, author, books, and users are 

resources. Resource description is generally brief 

ranging from one to two sentences. Every resource has 

certain verbs which can be accessed.

	 2.	 Endpoints and Methods: Endpoints define how the 

provided resources can be accessed, and methods 

indicate the allowed interactions or verbs on the resource, 

for example, GET, POST, PUT, DELETE, and so on. Any 

resource will have related endpoints with different paths 

and methods but will revolve around the same resource.

	 3.	 Parameters: Parameters are the variable parts of the 

endpoint which specifies the data you are working on.

	 4.	 Request Example: Request example includes a sample 

request containing the required fields, optional fields, 

and their sample value. Request example should usually 

be as rich as possible and contains all acceptable fields.

	 5.	 Response Example and Schema: As the name 

suggests, response example contains an elaborate 

example of the API response in accordance to the 

request. Schema on the other hand defines how the 

response is formatted and labeled. The description 

of the response is usually called as response schema 

which is a complex document describing all the 

possible parameters and response types.

Chapter 4  CRUD Application with Flask (Part 2)



116

�OpenAPI Specification
The OpenAPI Specification (OAS) defines a standard, language-agnostic 

interface for REST API allowing both humans and computers to understand 

the capabilities of the application without looking into source code or doing 

network inspection enabling the API consumers to understand the working 

of the application without knowing the implementation logic.

OpenAPI definitions can have multiple use cases including 

documentation generation to display APIs, testing tools, and so on.

For the context of this book, we’ll use OpenAPI specification with 

Swagger UI to generate and display the API reference documentation.

OpenAPI defines a standard set which is then used to describe 

each part of the API; by doing this, publishing tools like Swagger UI can 

programmatically parse information and display it with customized styling 

and interactivity feature. An OpenAPI specification document can either be 

expressed in YAML (YAML Ain’t Markup Language) or JSON, but ultimately 

the spec file will be a JSON document. Since YAML is more readable and a 

more common format, we’ll use YAML for creating OpenAPI specification 

document here which then will be published using Swagger UI.

So before we jump into writing OpenAPI specs for our endpoints, 

let’s understand the basics of OpenAPI specs. An OpenAPI specification 

document has three required components, namely, openapi which 

defines the semantic version number of the OpenAPI specification which 

is essential for users to understand how the document is formatted and 

for the parsing tools to parse the document accordingly; Info which 

contains the metadata of the API which essentially has title and API 

version as required fields alongside additional fields like description, legal 

information, and contact; and Paths which contains information about the 

endpoints and their available operations.

The Paths object is the heart of the OpenAPI specification document 

which contains the details to the available endpoints which is basically the 

five components we discussed in the previous section.

Chapter 4  CRUD Application with Flask (Part 2)



117

OpenAPI specification 3.0 is the newest version; the older version of it 

is Swagger specification 2.0 which was updated and made into OpenAPI 

spec later on. For this book we’ll use Swagger 2.0 specification and define 

the API documentation; to do so you can use Inspector from Swagger or 

generate them using the build time Swagger generation tool. Let’s check out 

both the approaches. We’ll start with checking out Swagger Inspector and 

move on to build time generator which we’ll integrate in our application.

To start with, open https://inspector.swagger.io in your browser 

window (Chrome browser) and login/signup with your preferred modem 

(Figure 4-9).

Once you have logged in, you’ll be able to use all the features of 

Swagger Inspector; next we’ll need to access our API resources using their 

REST client, and once we do so, it’ll appear in the history and we’ll be able 

to convert it into an OpenAPI specification file, but before we can access 

our application running on our local server, we’ll need to add Swagger 

Inspector Chrome Extension, and to do so, add the extension using 

Figure 4-9.  Swagger Inspector

Chapter 4  CRUD Application with Flask (Part 2)

https://inspector.swagger.io/


118

https://chrome.google.com/webstore/detail/swagger-inspector-

extensi/biemppheiopfggogojnfpkngdkchelik. Once you have the 

extension installed, Swagger Inspector will be able to run with requests on 

your local server as well.

Once done, let’s start with accessing our Create user endpoint. So go 

ahead and similar to what we did in Postman, add the URL and choose 

POST method, and in body add the JSON body data and click send 

(Figure 4-10).

And similar to Postman, you should be able to check the API response 

in the response window as you see in the previous figure. Next you can 

verify the email and then access the login endpoint (Figure 4-11).

Figure 4-10.  Create user endpoint Swagger Inspector

Chapter 4  CRUD Application with Flask (Part 2)

https://chrome.google.com/webstore/detail/swagger-inspector-extensi/biemppheiopfggogojnfpkngdkchelik
https://chrome.google.com/webstore/detail/swagger-inspector-extensi/biemppheiopfggogojnfpkngdkchelik


119

Once you have requested all the endpoints you want the API 

documentation to generate, simply click the History tab and choose the 

endpoints you want the specification document to generate and pin 

them. Once you have them pinned, click the little arrow on the side of the 

Create API Definition button and select OAS 2.0 to use version 2.0 of the 

specification (Figure 4-12).

Figure 4-11.  Login endpoint

Figure 4-12.  Pinned requests

Chapter 4  CRUD Application with Flask (Part 2)



120

Now click Create Definition which once completed shall open up a 

popup with link to open SwaggerHub where you can import the OpenAPI 

spec and view the API docs (Figure 4-13).

Now follow the link and SwaggerHub shall open which will ask you to 

enter the title and version of your APIs. Here we’ll add Author DB and let 

the version be default to 0.1, make visibility to private, and click Import API 

like in Figure 4-14.

Figure 4-13.  OpenAPI spec generation

Chapter 4  CRUD Application with Flask (Part 2)



121

Once done, you shall be able to check out the documentation for your 

APIs like in the following figure. Here for this tutorial, I have only selected 

two endpoints, but you can have all your endpoints documented here.

In Figure 4-15 you can see the selected server is the address of our local 

server, and then we have our selected endpoints.

Figure 4-14.  Importing OpenAPI from Inspector

Chapter 4  CRUD Application with Flask (Part 2)



122

Next let’s check out the API documentation by clicking the paper icon 

on the top bar like in Figures 4-16 and 4-17.

Figure 4-15.  SwaggerHub

Figure 4-16.  View documentation

Chapter 4  CRUD Application with Flask (Part 2)



123

Once the page loads, you are now in an interactive mode of your API 

documentation where you can see the endpoints, parameters, sample 

request, and sample response. Next click Try It Out, and the Request body 

window shall become editable where you can fill the request body data like 

in Figure 4-18. Below that you can also see the responses and their formats.

Figure 4-17.  View documentation page

Chapter 4  CRUD Application with Flask (Part 2)



124

So go ahead and edit the email and password and click execute to 

request to access the API.

Next you can also export the YAML/JSON version of the specification 

document to use it with your version of Swagger UI.

Moving on, we’ll now integrate API documentation using our own 

installation of Swagger UI and build time specification.

For the same we’ll use flask_swagger and flask_swagger_ui extension; 

let’s go ahead and install both of them using PIP.

(venv)$ pip install flask_swagger flask_swagger_ui

Once installed let’s integrate it in our application; to do so open main.

py and import both the libraries using the following lines.

from flask_swagger import swagger

from flask_swagger_ui import get_swaggerui_blueprint

We’ll serve Swagger UI on /api/docs endpoint.

Figure 4-18.  API request mode

Chapter 4  CRUD Application with Flask (Part 2)



125

Now we’ll create an endpoint to serve our defined API specs using 

Swagger 2.0

So add the following code below errorhandler functions where we’ll 

define /api/spec route and initiate our Swagger definition and return the 

generated JSON file.

@app.route("/api/spec")

    def spec():

        swag = swagger(app, prefix='/api')

        swag['info']['base'] = "http://localhost:5000"

        swag['info']['version'] = "1.0"

        swag['info']['title'] = "Flask Author DB"

        return jsonify(swag)

Now we’ll initiate flask_swagger_ui to fetch this JSON file and render 

Swagger UI using it. Add the following code below the new route to initiate 

get_swagger_blueprint method we just imported from flask_swagger_ui, 

and here we’ll supply the docs route, JSON file router, and app_name in 

config variable and then register the Blueprint.

    �swaggerui_blueprint = get_swaggerui_blueprint('/api/docs', 

'/api/spec', config={'app_name': "Flask Author DB"})

    �app.register_blueprint(swaggerui_blueprint, url_

prefix=SWAGGER_URL)

And now when you try to access htttp://localhost:5000/api/docs, 

you should be able to see Swagger UI (Figure 4-19).

Figure 4-19.  Swagger UI

Chapter 4  CRUD Application with Flask (Part 2)



126

In the preceding URL bar, you can also provide the URL to the JSON file 

exported from SwaggerHub to explore your APIs.

�Build Time Documentation

Next, we’ll document the APIs using build time documentation and 

generate the JSON documentation file; however, we’ll use YAML while 

describing the endpoints.

Flask Swagger will automatically pick up YAML documentation from 

method definitions using ‘ ‘ “ ” ’ under method followed by the description. 

We’ll learn it using a sample definition in our Create user endpoint. So add 

the following lines after def create_user() in users.py routes.

    """

    Create user endpoint

    ---

    parameters:

        - in: body

          name: body

          schema:

            id: UserSignup

            required:

                - username

                - password

                - email

            properties:

                username:

                    type: string

                    description: Unique username of the user

                    default: "Johndoe"

                password:

                    type: string

                    description: Password of the user

Chapter 4  CRUD Application with Flask (Part 2)



127

                    default: "somethingstrong"

                email:

                    type: string

                    description: email of the user

                    default: "someemail@provider.com"

    responses:

            201:

                description: User successfully created

                schema:

                  id: UserSignUpSchema

                  properties:

                    code:

                      type: string

            422:

                description: Invalid input arguments

                schema:

                    id: invalidInput

                    properties:

                        code:

                            type: string

                        message:

                            type: string

    """

Here we are using YAML to define parameters and responses as you 

can see in the previous example; we define the kind of parameter it is, 

and in our case, it’s a body parameter, and then we define the schema of 

the required parameters with sample data and field names. In responses 

we define the different types of expected responses and their schema 

(Figure 4-20).

Chapter 4  CRUD Application with Flask (Part 2)



128

Now if you reload your application and visit Swagger UI, you should be 

able to see your Create user endpoint and access it using Swagger UI.

Here notice how the description and parameters and responses were 

interpreted and placed in Swagger UI.

Next add this to login method to generate docs for login endpoint.

    """

    User Login

    ---

    parameters:

        - in: body

          name: body

          schema:

            id: UserLogin

            required:

                - password

                - email

            properties:

                email:

                    type: string

                    description: email of the user

                    default: "someemail@provider.com"

                password:

                    type: string

Figure 4-20.  Build time document generation

Chapter 4  CRUD Application with Flask (Part 2)



129

                    description: Password of the user

                    default: "somethingstrong"

    responses:

            200:

                description: User successfully logged In

                schema:

                  id: UserLoggedIn

                  properties:

                    code:

                      type: string

                    message:

                      type: string

                    value:

                      schema:

                        id: UserToken

                        properties:

                            access_token:

                                type: string

                            code:

                                type: string

                            message:

                                type: string

            401:

                description: Invalid input arguments

                schema:

                    id: invalidInput

                    properties:

                        code:

                            type: string

                        message:

                            type: string

    """

Chapter 4  CRUD Application with Flask (Part 2)



130

Next we’ll move on to authors.py route file and create doc for Create 

author, and if you remember, this route needs the user to be logged in and 

here we’ll add an extra header parameter which will accept authorization 

header.

"""

    Create author endpoint

    ---

    parameters:

        - in: body

          name: body

          schema:

            id: Author

            required:

                - first_name

                - last_name

                - books

            properties:

                first_name:

                    type: string

                    description: First name of the author

                    default: "John"

                last_name:

                    type: string

                    description: Last name of the author

                    default: "Doe"

        - in: header

          name: authorization

          type: string

          required: true

    security:

        - Bearer: []

    responses:

Chapter 4  CRUD Application with Flask (Part 2)



131

            200:

                description: Author successfully created

                schema:

                  id: AuthorCreated

                  properties:

                    code:

                      type: string

                    message:

                      type: string

                    value:

                      schema:

                        id: AuthorFull

                        properties:

                            first_name:

                                type: string

                            last_name:

                                type: string

                            books:

                                type: array

                                items:

                                    schema:

                                        id: BookSchema

            422:

                description: Invalid input arguments

                schema:

                    id: invalidInput

                    properties:

                        code:

                            type: string

                        message:

                            type: string

    """

Chapter 4  CRUD Application with Flask (Part 2)



132

Next add the following lines for Upsert author avatar endpoint; notice 

in this case we’ll add a parameter for author ID to be a variable in path.

    """

    Upsert author avatar

    ---

    parameters:

        - in: body

          name: body

          schema:

            id: Author

            required:

                - avatar

            properties:

                avatar:

                    type: file

                    description: Image file

        - name: author_id

          in: path

          description: ID of the author

          required: true

          schema:

            type: integer

    responses:

            200:

                description: Author avatar successfully upserted

                schema:

                  id: AuthorCreated

                  properties:

                    code:

                      type: string

                    message:

Chapter 4  CRUD Application with Flask (Part 2)



133

                      type: string

                    value:

                      schema:

                        id: AuthorFull

                        properties:

                            first_name:

                                type: string

                            last_name:

                                type: string

                            books:

                                type: array

                                items:

                                    schema:

                                        id: BookSchema

            422:

                description: Invalid input arguments

                schema:

                    id: invalidInput

                    properties:

                        code:

                            type: string

                        message:

                            type: string

    """

And now you can reload your Swagger UI, and you should be able to 

see all the endpoints (Figure 4-21) documented.

Chapter 4  CRUD Application with Flask (Part 2)



134

�Conclusion
For this chapter, we’ll only create documentation for the given endpoints, 

and you can build up on the top of it using the same methodologies, which 

will help you create full-fledged documentation for your REST endpoints. 

In the next chapter, we’ll discuss testing our REST endpoints and cover 

topics including unit tests, mocks, code coverage, and so on.

Figure 4-21.  Reload Swagger UI to see endpoints

Chapter 4  CRUD Application with Flask (Part 2)



135© Kunal Relan 2019 
K. Relan, Building REST APIs with Flask, https://doi.org/10.1007/978-1-4842-5022-8_5

CHAPTER 5

Testing in Flask
Something that is untested is broken.

This quote comes from an unknown source; however, it’s not entirely 

true but most of it is right. Untested applications are always an unsafe 

bet to make. While the developers are confident about their work, in real 

world things work out differently; hence it’s always a good idea to test 

the application throughout. Untested applications also make it hard to 

improve the existing code. However with automated tests, it’s always easy 

to make changes and instantly know when something breaks. So testing 

not just only ensures if the application is behaving the way it is expected to, 

it also facilitates continuous development.

This chapter covers automated unit testing of REST APIs, and before 

we get into the actual implementation, we’ll look into what unit testing is 

and the principles behind.

�Introduction
Most software developers out there are usually already familiar with the 

term “unit testing,” but for those who are not, unit testing revolves around 

the concept of breaking a large set of code into individual units to be tested 

in isolation. So typically in such a case, a larger set of code is software, and 

individual components are the units to be tested in isolation. Thus in our 

case, a single API request is a unit to be tested. Unit testing is the first level 

of software development and is usually done by software developers.



136

Let’s look into some benefits of unit testing:

	 1.	 Unit tests are simple tests for a very narrow block 

of code, serving as a building block of the bigger 

spectrum of the application testing.

	 2.	 Being narrowly scoped, unit tests are the easiest to 

write and implement.

	 3.	 Unit tests increase confidence in modifying the code 

and are also the first point of failure if implemented 

correctly prompting the developer about parts of 

logic breaking the application.

	 4.	 Writing unit tests makes the development process 

faster, since it makes developers to do less of fuzzy 

testing and helps them catch the bugs sooner.

	 5.	 Catching and fixing bugs in development using unit 

tests is easier and less expensive than doing it after 

the code is deployed in production.

	 6.	 Unit tests are also a more reliable way of testing in 

contrast to manual fuzz tests.

�Setting Up Unit Tests
So, in this section, we’ll jump right into the action and start on 

implementing the tests; for the same we’ll use a library called unittest2 

which is an extension to the original unit testing framework of Python 

called unittest.

Let’s go ahead and install the library first.

(venv)$ pip install unittest2

Chapter 5  Testing in Flask



137

This shall install unittest2 for us; next we’ll set up a base test class that 

we’ll import in all our test files. This base class will set up the base for the 

tests and initiate the test client as the name suggests. So go ahead and 

create a file called test_base.py in utils folder.

Now let’s configure our testing environment, so open up your config.py 

and add the following code to add testing config.

class TestingConfig(Config):

    TESTING = True

    SQLALCHEMY_ECHO = False

    JWT_SECRET_KEY = 'JWT-SECRET'

    SECRET_KEY= 'SECRET-KEY'

    SECURITY_PASSWORD_SALT= 'PASSWORD-SALT'

    MAIL_DEFAULT_SENDER= '

    MAIL_SERVER= 'smtp.gmail.com'

    MAIL_PORT= 465

    MAIL_USERNAME= "

    MAIL_PASSWORD= "

    MAIL_USE_TLS= False

    MAIL_USE_SSL= True

    UPLOAD_FOLDER= 'images'

Notice that we won’t configure the SQLAlchemy URI here, which we’ll 

do in test_base.py

Next, add the following lines to import the required dependencies in 

test_base.py

import unittest2 as unittest

from main import create_app

from api.utils.database import db

from api.config.config import TestingConfig

import tempfile

Chapter 5  Testing in Flask



138

Next add the BaseTestCase class with the following code.

class BaseTestCase(unittest.TestCase):

    """A base test case"""

    def setUp(self):

        app = create_app(TestingConfig)

        self.test_db_file = tempfile.mkstemp()[1]

        �app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + 

self.test_db_file

        with app.app_context():

            db.create_all()

        app.app_context().push()

        self.app = app.test_client()

    def tearDown(self):

        db.session.close_all()

        db.drop_all()

Here we are creating the SQLAlchemy sqlite database on the fly  

using tempfile.

What we just created previously is called a stub, which is a module that 

acts as a temporary replacement for a called module providing the same 

output as the actual product.

So the preceding method will run before every test is run and it  

spawns a new test client. We’ll import this method in all the tests we create. 

A test is recognized by all the methods in the class which starts with test_ 

prefix. Here we’ll have a unique database URL every time since we have 

configured tempfile, and we’ll postfix it with a timestamp and then we 

have configured TESTING= True in app config which will disable error 

catching to enable better testing, and then finally we run db.create_all() to 

create the DB tables for the application.

Next we have defined another method tearDown which will remove 

the current database file and use a fresh database file for every test.

Chapter 5  Testing in Flask



139

�Unit Testing User Endpoints
So now we’ll start writing the tests, and the first step to it is by creating a 

folder called tests in api directory where we’ll create all our test files. So go 

ahead and create tests folder and create our first test file called test_users.py.

Now add the following imports in test_users.py

import json

from api.utils.test_base import BaseTestCase

from api.models.users import User

from datetime import datetime

import unittest2 as unittest

from api.utils.token import generate_verification_token, 

confirm_verification_token

Once done, we’ll define another method to create users using the 

SQLAlchemy model to facilitate testing.

Add this to the file next.

def create_users():

    �user1 = User(email="kunal.relan12@gmail.com", 

username='kunalrelan12',

    �password=User.generate_hash('helloworld'), 

isVerified=True).create()

    �user2 = User(email="kunal.relan123@gmail.com", 

username='kunalrelan125',

    password=User.generate_hash('helloworld')).create()

Now we have our imports and the method to create users; next we’ll 

define TestUsers class to hold all our tests.

class TestUsers(BaseTestCase):

    def setUp(self):

        super(TestUsers, self).setUp()

Chapter 5  Testing in Flask



140

        create_users()

if __name__ == '__main__':

    unittest.main()

Add this code to the file which will import our base test class and set 

up the test client and call create_users() method to create the users. Notice 

that in create_users() method, we have created one verified and one 

unverified user so that we can cover up all the test cases. Now we can start 

writing our unit tests. Add the following code inside TestUsers() class.

We’ll start by testing the login endpoint, and since we just created a 

verified user, we should be allowed to log in with a valid set of credentials.

    def test_login_user(self):

        user = {

          "email" : "kunal.relan12@gmail.com",

          "password" : "helloworld"

        }

        response = self.app.post(

            '/api/users/login',

            data=json.dumps(user),

            content_type='application/json'

        )

        data = json.loads(response.data)

        self.assertEqual(200, response.status_code)

        self.assertTrue('access_token' in data)

Add the following code inside the TestUsers class, and we should have 

our first unit test in which we create a user object and post the user to 

login endpoint. Once we receive the response, we’ll use assertion to check 

if we got the expected status code and access_token in the response. An 

assertion is a boolean expression which will be true unless there is a bug 

or the conditional statement doesn’t match. Unit test provides a list of 

assertion methods we can use to validate our tests.

Chapter 5  Testing in Flask



141

But assertEqual(), assertNotEqual(), assertTrue(), and assertNotTrue() 

cover most of it.

Here assertEqual() and assertNotEqual() match for values, and 

assertTrue() and assertNotTrue() check if the value of passed variable 

being a boolean.

Now let’s run our first test, so just open your terminal and activate your 

virtual environment.

In your terminal run the following command to run the tests.

(venv)$ python -m unittest discover api/tests

The preceding command will run all the test files inside the tests 

directory; since we have only one test for now, we can see the result of our 

tests in the following figure.

Figure 5-1.  Running unit tests

So this was one way of running our unit tests, and before we process 

further with writing more tests, I’d like to introduce you to another 

extension to unittest library called nose which makes testing easier, so let’s 

go ahead and install nose.

Use the following code to install nose.

(venv)$ pip install nose

And now once we have nose, let’s see how we can use nose to run our 

tests since moving on we’ll use nose to run all our tests.

Chapter 5  Testing in Flask



142

By default nose will find all the test files using a (?:\b|_)[Tt]est regular 

expression; however, you can also specify the filename to test. Let’s run the 

same test again by using nose.

(venv)$ nosetests

As you can see in the preceding figure, we can run our tests using a 

simple nosetest command. Next let’s write unit tests for user model again.

So our goal here is to cover all the scenarios and check the application 

behavior in each of the scenarios; next we’ll test login API when the user is 

not verified and when wrong credentials are submitted.

Add the following code for the respective tests.

    def test_login_user_wrong_credentials(self):

        user = {

          "email" : "kunal.relan12@gmail.com",

          "password" : "helloworld12"

        }

        response = self.app.post(

            '/api/users/login',

            data=json.dumps(user),

            content_type='application/json'

        )

        data = json.loads(response.data)

        self.assertEqual(401, response.status_code)

Figure 5-2.  Running unit tests with nose

Chapter 5  Testing in Flask



143

    def test_login_unverified_user(self):

        user = {

          "email" : "kunal.relan123@gmail.com",

          "password" : "helloworld"

        }

        response = self.app.post(

            '/api/users/login',

            data=json.dumps(user),

            content_type='application/json'

        )

        data = json.loads(response.data)

        self.assertEqual(400, response.status_code)

In the preceding code, in test_login_user_wrong_credentials method, 

we check for 401 status code in the response as we are supplying wrong 

credentials, and in test_login_unverified_user() method, we are trying to 

login with an unverified user which shall throw 400 error.

Next let’s test the create_user endpoint and start by creating a test to 

create a user with correct fields to create a new user.

    def test_create_user(self):

        user = {

          "username" : "kunalrelan2",

          "password" : "helloworld",

          "email" : "kunal.relan12@hotmail.com"

        }

        response = self.app.post(

            '/api/users/',

            data=json.dumps(user),

            content_type='application/json'

        )

Chapter 5  Testing in Flask



144

        data = json.loads(response.data)

        self.assertEqual(201, response.status_code)

        self.assertTrue('success' in data['code'])

The preceding code will request the Create user endpoint with a new 

user object and shall be able to do so and respond with a 201 status code.

Next we’ll add another test when username is not supplied to the 

Create user endpoint, and in this case, we shall get a 422 response. Here is 

the code for that.

    def test_create_user_without_username(self):

        user = {

          "password" : "helloworld",

          "email" : "kunal.relan12@hotmail.com"

        }

        response = self.app.post(

            '/api/users/',

            data=json.dumps(user),

            content_type='application/json'

        )

        data = json.loads(response.data)

        self.assertEqual(422, response.status_code)

Now we can move on to testing our confirm email endpoint, and 

here we’ll first create a unit test with valid email, so you noticed we had 

an unverified user created in create_users() method, and here first we’ll 

generate a validation token since we are not reading the email using the 

unit tests and then send the token to confirm email endpoint.

    def test_confirm_email(self):

        �token = generate_verification_token('kunal.relan123@

gmail.com')

Chapter 5  Testing in Flask



145

        response = self.app.get(

            '/api/users/confirm/'+token

        )

        data = json.loads(response.data)

        self.assertEqual(200, response.status_code)

        self.assertTrue('success' in data['code'])

Next, we’ll write another test with email of an already verified user to 

test if we get 422 in response status code.

    def test_confirm_email_for_verified_user(self):

        �token = generate_verification_token('kunal.relan12@

gmail.com')

        response = self.app.get(

            '/api/users/confirm/'+token

        )

        data = json.loads(response.data)

        self.assertEqual(422, response.status_code)

And the last one for this endpoint is we’ll supply an incorrect email 

and should get a 404 response status code.

    def test_confirm_email_with_incorrect_email(self):

        �token = generate_verification_token('kunal.relan43@

gmail.com')

        response = self.app.get(

            '/api/users/confirm/'+token

        )

        data = json.loads(response.data)

        self.assertEqual(404, response.status_code)

Once we have our tests in place, it’s time to test them all, so go ahead 

and use nosetests and run the tests.

Chapter 5  Testing in Flask



146

So these are all the tests we want to cover with user model; next we can 

move on to authors and books.

Next let’s create test_authors.py and we’ll add the dependencies 

with a few changes, so add the following lines to import the required 

dependencies.

import json

from api.utils.test_base import BaseTestCase

from api.models.authors import Author

from api.models.books import Book

from datetime import datetime

from flask_jwt_extended import create_access_token

import unittest2 as unittest

import io

Next we’ll define two helper methods, namely, create_authors and 

login, and add the following code for the same.

def create_authors():

    author1 = Author(first_name="John", last_name="Doe").create()

    author2 = Author(first_name="Jane", last_name="Doe").create()

We’ll create two authors for the test using the method defined 

previously, and login method will generate a login token and return for 

authorized only routes.

Figure 5-3.  Nosetests on test_users.py

Chapter 5  Testing in Flask



147

def login():

    �access_token = create_access_token(identity = 'kunal.relan@

hotmail.com')

    return access_token

Next let’s define our test class like we did earlier and initiate it.

class TestAuthors(BaseTestCase):

    def setUp(self):

        super(TestAuthors, self).setUp()

        create_authors()

if __name__ == '__main__':

    unittest.main()

Now we have the base of our author unit tests, and we can add the 

following test cases which should be self-explanatory.

Here we’ll create a new author using POST author endpoint with the 

JWT token we generate using login method and expect author object with 

201 status code in response.

    def test_create_author(self):

        token = login()

        author = {

            'first_name': 'Johny',

            'last_name': 'Doee'

        }

        response = self.app.post(

            '/api/authors/',

            data=json.dumps(author),

            content_type='application/json',

            headers= { 'Authorization': 'Bearer '+token }

        )

Chapter 5  Testing in Flask



148

        data = json.loads(response.data)

        self.assertEqual(201, response.status_code)

        self.assertTrue('author' in data)

Here we’ll try creating an author with authorization header, and it 

should return 401 in the response status code.

    def test_create_author_no_authorization(self):

        author = {

            'first_name': 'Johny',

            'last_name': 'Doee'

        }

        response = self.app.post(

            '/api/authors/',

            data=json.dumps(author),

            content_type='application/json',

        )

        data = json.loads(response.data)

        self.assertEqual(401, response.status_code)

In this test case, we’ll try creating an author without last_name field, 

and it should respond back with 422 status code.

    def test_create_author_no_name(self):

        token = login()

        author = {

            'first_name': 'Johny'

        }

        response = self.app.post(

            '/api/authors/',

            data=json.dumps(author),

            content_type='application/json',

Chapter 5  Testing in Flask



149

            headers= { 'Authorization': 'Bearer '+token }

        )

        data = json.loads(response.data)

        self.assertEqual(422, response.status_code)

In this one we’ll test upload avatar endpoint and use io to create a 

temp image file and send it as multipart/form-data to upload the image.

    def test_upload_avatar(self):

        token = login()

        response = self.app.post(

            '/api/authors/avatar/2',

            �data=dict(avatar=(io.BytesIO(b'test'),  

'test_file.jpg')),

            content_type='multipart/form-data',

            headers= { 'Authorization': 'Bearer '+ token }

        )

        self.assertEqual(200, response.status_code)

Here, we’ll test the upload avatar by supplying a CSV file instead, and 

as expected it should not respond with 200 status code.

    def test_upload_avatar_with_csv_file(self):

        token = login()

        response = self.app.post(

            '/api/authors/avatar/2',

            data=dict(file=(io.BytesIO(b'test'), 'test_file.csv)),

            content_type='multipart/form-data',

            headers= { 'Authorization': 'Bearer '+ token }

        )

        self.assertEqual(422, response.status_code)

Chapter 5  Testing in Flask



150

In this test, we’ll get all the authors using GET all authors endpoint.

    def test_get_authors(self):

        response = self.app.get(

            '/api/authors/',

            content_type='application/json'

        )

        data = json.loads(response.data)

        self.assertEqual(200, response.status_code)

        self.assertTrue('authors' in data)

Here we have a unit test for GET author by ID endpoint, and it’ll return 

200 response status code and author object.

    def test_get_author_detail(self):

        response = self.app.get(

            '/api/authors/2',

            content_type='application/json'

            )

        data = json.loads(response.data)

        self.assertEqual(200, response.status_code)

        self.assertTrue('author' in data)

In this test we’ll update the author object on the recently created 

author, and it shall also return 200 status code in the response.

    def test_update_author(self):

        token = login()

        author = {

            'first_name': 'Joseph'

        }

        response = self.app.put(

            '/api/authors/2',

            data=json.dumps(author),

Chapter 5  Testing in Flask



151

            content_type='application/json',

            headers= { 'Authorization': 'Bearer '+token }

        )

        self.assertEqual(200, response.status_code)

In this test we’ll delete author object and expect 204 response status code.

    def test_delete_author(self):

        token = login()

        response = self.app.delete(

            '/api/authors/2',

            headers= { 'Authorization': 'Bearer '+token }

        )

        self.assertEqual(204, response.status_code)

So now you can run authors test like in the previous figure, and it 

should all pass like in that figure; next we’ll move to books model test.

For books model tests, we can modify the author tests and set up unit 

tests for books in the same module, so let’s update create_authors method 

to create some books as well; just go ahead and update the method with 

following code.

def create_authors():

    �author1 = Author(first_name="John", last_name="Doe").

create()

Figure 5-4.  Authors test

Chapter 5  Testing in Flask



152

    �Book(title="Test Book 1", year=datetime(1976, 1, 1), 

author_id=author1.id).create()

    �Book(title="Test Book 2", year=datetime(1992, 12, 1), 

author_id=author1.id).create()

    �author2 = Author(first_name="Jane", last_name="Doe").

create()

    �Book(title="Test Book 3", year=datetime(1986, 1, 3), 

author_id=author2.id).create()

    �Book(title="Test Book 4", year=datetime(1992, 12, 1), 

author_id=author2.id).create()

And then here are the unit tests for book routes.

    def test_create_book(self):

        token = login()

        author = {

            'title': 'Alice in wonderland',

            'year': 1982,

            'author_id': 2

        }

        response = self.app.post(

            '/api/books/',

            data=json.dumps(author),

            content_type='application/json',

            headers= { 'Authorization': 'Bearer '+token }

        )

        data = json.loads(response.data)

        self.assertEqual(201, response.status_code)

        self.assertTrue('book' in data)

    def test_create_book_no_author(self):

        token = login()

Chapter 5  Testing in Flask



153

        author = {

            'title': 'Alice in wonderland',

            'year': 1982

        }

        response = self.app.post(

            '/api/books/',

            data=json.dumps(author),

            content_type='application/json',

            headers= { 'Authorization': 'Bearer '+token }

        )

        data = json.loads(response.data)

        self.assertEqual(422, response.status_code)

    def test_create_book_no_authorization(self):

        author = {

            'title': 'Alice in wonderland',

            'year': 1982,

            'author_id': 2

        }

        response = self.app.post(

            '/api/books/',

            data=json.dumps(author),

            content_type='application/json'

        )

        data = json.loads(response.data)

        self.assertEqual(401, response.status_code)

    def test_get_books(self):

        response = self.app.get(

            '/api/books/',

            content_type='application/json'

        )

Chapter 5  Testing in Flask



154

        data = json.loads(response.data)

        self.assertEqual(200, response.status_code)

        self.assertTrue('books' in data)

    def test_get_book_details(self):

        response = self.app.get(

            '/api/books/2',

            content_type='application/json'

            )

        data = json.loads(response.data)

        self.assertEqual(200, response.status_code)

        self.assertTrue('books' in data)

    def test_update_book(self):

        token = login()

        author = {

            'year': 1992,

            'title': 'Alice'

        }

        response = self.app.put(

            '/api/books/2',

            data=json.dumps(author),

            content_type='application/json',

            headers= { 'Authorization': 'Bearer '+token }

        )

        self.assertEqual(200, response.status_code)

    def test_delete_book(self):

        token = login()

        response = self.app.delete(

            '/api/books/2',

Chapter 5  Testing in Flask



155

            headers= { 'Authorization': 'Bearer '+token }

        )

        self.assertEqual(204, response.status_code)

�Test Coverage
So now we have learned to write test cases for our application, and the goal 

of the unit tests is to test as much code as possible, so we have to make 

sure every function with all its branches are covered, and the closer you 

get to 100%, the more comfortable you will be before making changes. 

Test coverage is an important tool to use in development; however, 100% 

coverage doesn’t guarantee no bugs.

You can install coverage.py using PIP with the following command.

(venv)$ pip install coverage

Nose library has a built-in plugin that works with coverage module, so 

to run test coverage, you need to add two more parameters to the terminal 

while running nosetests.

Use the following command to run nosetests with the test coverage enabled.

(venv)$ nosetests  --with-coverage --cover-package=api.routes

So here we are enabling coverage using --with-coverage flag and 

specifying to only cover routes module, or else by default, it will also cover 

the installed modules.

Figure 5-5.  Test coverage

Chapter 5  Testing in Flask



156

As you can see, we have got a significant amount of code test coverage, 

and you can cover all other edge cases to achieve 100% test coverage.

Next you can also enable --cover-html flag to output information in 

HTML format which is more readable and presetable.

(venv)$ nosetests --with-coverage --cover-package=api.routes 

--cover-html

The preceding command will generate the HTML format result of test 

coverage, and now you should see a folder called cover in your working 

directory; open the folder, and open index.html using your browser to see 

the test coverage report in HTML.

As you can see in the previous figure, we have got the HTML version of 

our test coverage report.

Figure 5-6.  Test coverage report in HTML

Chapter 5  Testing in Flask



157

�Conclusion
So this is it for this chapter; we have learned the basics of unit testing, 

implemented test cases for our application, and covered unit tests for all 

our routes and integrated test coverage using nose testing library. This 

covers our development journey of this application. In the next chapter, 

we’ll discuss about deployment and deploy our application on various 

cloud service providers.

Chapter 5  Testing in Flask



159© Kunal Relan 2019 
K. Relan, Building REST APIs with Flask, https://doi.org/10.1007/978-1-4842-5022-8_6

CHAPTER 6

Deploying Flask 
Applications
So until now in this book, we focused entirely on developing the 

application, and in this chapter, we’ll discuss about the next step which is 

deploying our application and managing the application post deployment 

which is a very crucial part of application development. In this chapter 

we’ll primarily discuss various ways to deploy a Flask application 

securely. There can be various ways of deploying a Flask application, 

and each way has its pros and cons, so we’ll weigh them out and discuss 

their cost effectiveness as well as security and perform ways to deploy 

our application. As I mentioned earlier, Flask’s server is not suitable 

for production deployment and is only intended for development and 

debugging, so we’ll be looking into various options out there.

In this chapter we’ll cover the following topics:

	 1.	 Deploying Flask with uWSGI and Nginx on Alibaba 

Cloud ECS

	 2.	 Deploying Flask with Gunicorn on Alibaba Cloud ECS

	 3.	 Deploying Flask on Heroku

	 4.	 Deploying Flask on AWS Elastic Beanstalk

	 5.	 Deploying Flask on Google App Engine



160

So in this chapter, we’ll entirely focus on deploying our application on 

all these platforms and discuss the pros and cons of each of them. While 

they all are great options, it’s entirely the business use case and resources 

which define where we deploy the application.

�Deploying Flask with uWSGI and Nginx 
on Alibaba Cloud ECS
Deploying applications this way is often called traditional hosting where 

the dependencies are installed manually or through a scripted installer, 

which involves manually installing the application and its dependencies 

and securing it. In this section we’ll install and run our application in 

production using uWSGI and Nginx on a Linux OS hosted on Alibaba 

Cloud Elastic Compute Service.

uWSGI is a full-fledged HTTP server and a protocol capable of running 

production applications. uWSGI is a popular uwsgi (protocol) server, while 

Nginx is a free, open source, high-performing HTTP server and a reverse 

proxy. In our case we’ll use Nginx to reverse proxy our HTTP calls to and 

from the uwsgi server which we’ll deploy on Ubuntu OS.

So let’s get straight into the business and deploy our application, but 

before we do that, we have to freeze our libraries in requirements.txt using 

pip freeze. Run the following commands to make sure the file has the list of 

all the required dependencies.

(venv)$ pip freeze > requirements.txt

So here pip freeze will output all the required installed packages in 

requirements format. Next we need to push our codebase to a version 

management system like GitHub which we’ll pull later on our Linux 

instance. For this we’ll create an Ubuntu instance on Alibaba Cloud for 

which you can signup at www.alibabacloud.com or you can use your 

Ubuntu instance on any other cloud provider or even use a virtual one.

Chapter 6  Deploying Flask Applications

https://www.alibabacloud.com/


161

So before we start deploying, we also need to have a MySQL server, and 

since this is about deploying the Flask app, we won’t be covering deploying 

MySQL server. However, you can deploy one on the same instance or use a 

managed MySQL server service and edit the DB config details in config.py.

Once you have your cloud account setup, create an Ubuntu instance 

preferably version 16.04 or greater. Here we have Alibaba Cloud ECS 

(Elastic Compute Service), and once we have our instance, we’ll SSH into 

using keypair or a password.

Figure 6-1.  Alibaba Cloud ECS Console

Once you have your Ubuntu instance up and running, SSH into it and 

pull the codebase from your preferred version management system.

Chapter 6  Deploying Flask Applications



162

As you can see by default, we have logged in as a root, so before moving 

on, we’ll create another sudo user called Flask which is a good security 

measure. It is a good idea to run each app under its own user account, in 

order to limit the damage that security vulnerabilities in the app can do.

$ adduser flask

Next it’ll prompt you to set a password for the new user and enter a few 

details; you can just enter the password and leave other fields empty if you 

wish to and then run the following command to add the user to sudoers list.

$ usermod -aG sudo flask

Now once we have our new user, let’s login with that user in the shell 

using the following command.

$ su - flask

Next we’ll pull our app from our GitHub repo, so make sure you have 

git client installed, and if you don’t, use the following command to do so.

$ sudo apt-get install git

Figure 6-2.  SSH into Ubuntu instance

Chapter 6  Deploying Flask Applications



163

Use the following command to clone the app repository.

$ sudo git clone <repo_name>

Next change your current directory to the app source code and install 

virtualenv and uwsgi since we won’t have those in our reqiurements.txt.

$ sudo pip install virtualenv uwsgi

Create a virtual env like we did in the previous chapter, and install the 

dependencies after activating the virtual environment with the following 

command.

$ pip install -r requirements.txt

We’ll install all the dependencies needed to set up the application from 

Ubuntu repositories, and we’ll start with installing python-pip which is a 

package manager for Python and python-dev which contains the header 

files needed to compile Python extensions.

$ sudo apt-get install python-pip python-dev

Once we have our dependencies installed, we’ll create a uWSGI 

configuration file which will be called flask-app.ini, so go ahead and create 

a file called flask-app.ini in your current directory and add the following 

lines to it.

[uwsgi]

module = run:application

master = true

processes = 5

socket = flask-app.sock

chmod-socket = 660

vacuum = true

die-on-term = true

Chapter 6  Deploying Flask Applications



164

This file starts with [uwsgi] header so that WSGI knows to apply the 

settings. We also specify the module and the callable which is run.py in our 

case minus the extension and the callable which is application.

Then we instruct uwsgi to start the process as a master and spawn five 

worker processes to handle the requests.

Next we’ll supply the Unix socket file for Nginx to follow the uWSGI 

requests for our application. Let’s also change the permissions on the 

socket. We’ll be giving the Nginx group ownership of the uWSGI process 

later on, so we need to make sure the group owner of the socket can read 

information from it and write to it. We will also clean up the socket when 

the process stops by adding the vacuum option.

The last thing we’ll do is set the die-on-term option. This can help 

ensure that the init system and uWSGI have the same assumptions about 

what each process signal means.

Next, we’ll create a systemd service unit file which will allow Ubuntu’s 

init system to start our application automatically whenever the server 

boots.

This file will be called flask-app.service and will be placed 

in /etc/systemd/system

Directory.

$ sudo nano /etc/systemd/system/flask-app.service

And paste the following lines in the file.

#Metadata and dependencies section

[Unit]

Description=Flask App service

After=network.target

#Define users and app working directory

[Service]

User=flask

Group=www-data

Chapter 6  Deploying Flask Applications



165

WorkingDirectory=/home/flask/flask-api-app/src

Environment="WORK_ENV=PROD"

ExecStart=/home/flask/flask-api-app/src/venv/bin/uwsgi --ini 

flask-app.ini

#Link the service to start on multi-user system up

[Install]

WantedBy=multi-user.target

After this run the following command to enable and start our new 

service.

$ sudo systemctl start flask-app

$ sudo systemctl enable flask-app

Our uWSGI server should now be up and running waiting for requests 

in the socket file we made earlier. We’ll now install and configure Nginx to 

pass and process the requests using the uwsgi protocol.

$ sudo apt-get install nginx

Now we should have an Nginx server up and running, and we’ll begin 

by creating a new server block config file in /etc/nginx/sites-available , and 

we’ll call it flask-app.

$ sudo nano /etc/nginx/sites-available/flask-app

We’ll open a server block and instruct it to listen on port 80 and define 

the server name which should be the domain name of your service. Going 

ahead we’ll define a location block inside the server block to define the 

base location and import uwsgi_params headers inside that specifies some 

general uWSGI parameters that need to be set. We’ll then pass the requests 

to the socket we defined using the uwsgi_pass directive.

server {

    listen 80;

Chapter 6  Deploying Flask Applications



166

    server_name flaskapp;

    location / {

        include uwsgi_params;

        �uwsgi_pass unix:/home/flask/flask-api-app/src/flask-

app.sock;

    }

}

The preceding lines should configure our server block to listen to 

server requests on the socket. Once we have that all ready, next we’ll create 

a symlink to sites-enabled directory.

$ sudo ln -s /etc/nginx/sites-available/flask-app /etc/nginx/

sites-enabled

With that in place, we can now test our changes for syntax errors using 

the following command.

$ sudo nginx -t

If there were no syntax errors, you should see this printed in  

your terminal.

$ nginx: the configuration file /etc/nginx/nginx.conf syntax is 

ok

$ nginx: configuration file /etc/nginx/nginx.conf test is 

successful

And now when you access your domain, it should be working. In case 

you don’t have a domain and want to access the application, you should 

either edit the default server block in sites-enabled rather than creating a 

new one, or delete the default app and you can just access the application 

with the IP address.

Chapter 6  Deploying Flask Applications



167

Also make sure if you are running the Ubuntu server on a cloud 

service, port 80 is allowed on the firewall, and in our case, it’s set using the 

security group.

�Deploying Flask on Gunicorn with Apache 
on Alibaba Cloud ECS
Now we’ll install our Flask application using Gunicorn which is a Python 

WSGI HTTP server for Unix which will run our application, and then we’ll 

reverse proxy the requests using Apache server.

To follow this section, you’ll need the following:

	 1.	 Ubuntu server with a non-root user with sudo privileges

	 2.	 Apache server installed

	 3.	 A copy of our Flask app in home directory

Figure 6-3.  Deployed application

Chapter 6  Deploying Flask Applications



168

As I mentioned, we’ll use Gunicorn to run our application, so let’s 

install Gunicorn using PIP.

$ pip install gunicorn

Next we’ll create a system service just like we did in the earlier section, 

so go ahead and create our new service with the following command.

$ sudo nano /etc/systemd/system/flask-app.service

Next add the following lines in your nano editor.

[Unit]

Description= Flask App service

After=network.target

[Service]

User=flask

Group=www-data

Restart=on-failure

Environment="WORK_ENV=PROD"

WorkingDirectory=/home/flask/flask-api-app/src

ExecStart=/home/flask/flask-api-app/src/venv/bin/gunicorn -c  

/home/flask/flask-api-app/src/gunicorn.conf -b 0.0.0.0:5000 

wsgi:application

[Install]

WantedBy=multi-user.target

Now save the file and exit, and we should have our system service. Next 

we’ll enable and start our service using the following command.

$ sudo systemctl start flask-app

$ sudo systemctl enable flask-app

So now our app should be running on Port 5000; next we need to 

configure Apache to reverse proxy our application.

Chapter 6  Deploying Flask Applications



169

By default reverse proxy module is disabled in Apache, and to enable it 

enter the following command.

$ a2enmod

And it will prompt for modules to activate; enter the following modules 

to be activated:

$ proxy proxy_ajp proxy_http rewrite deflate headers proxy_

balancer proxy_connect proxy_html

Now add our application to Apache web server config file. Add 

the following lines (inside VirtualHost block) to /etc/apache2/sites-

available/000-default.conf

    <Proxy *>

        Order deny,allow

        Allow from all

    </Proxy>

    ProxyPreserveHost On

    <Location "/">

          ProxyPass "http://127.0.0.1:5000/"

          ProxyPassReverse "http://127.0.0.1:5000/"

    </Location>

Now it should be proxying our app on root route, and your final server 

block should look like this.

<VirtualHost *:80>

    # �The ServerName directive sets the request scheme, 

hostname and port that

    # �the server uses to identify itself. This is used when 

creating

    # �redirection URLs. In the context of virtual hosts, the 

ServerName

Chapter 6  Deploying Flask Applications



170

    # �specifies what hostname must appear in the request's 

Host: header to

    # �match this virtual host. For the default virtual host 

(this file) this

    # �value is not decisive as it is used as a last resort host 

regardless.

    # �However, you must set it for any further virtual host 

explicitly.

    #ServerName www.example.com

    ServerAdmin webmaster@localhost

    DocumentRoot /var/www/html

    # �Available loglevels: trace8, ..., trace1, debug, info, 

notice, warn,

    # error, crit, alert, emerg.

    # It is also possible to configure the loglevel for particular

    # modules, e.g.

    #LogLevel info ssl:warn

    ErrorLog ${APACHE_LOG_DIR}/error.log

    CustomLog ${APACHE_LOG_DIR}/access.log combined

     <Proxy *>

        Order deny,allow

        Allow from all

    </Proxy>

    ProxyPreserveHost On

    <Location "/">

          ProxyPass "http://127.0.0.1:5000/"

          ProxyPassReverse "http://127.0.0.1:5000/"

    </Location>

    # For most configuration files from conf-available/, which are

    # enabled or disabled at a global level, it is possible to

Chapter 6  Deploying Flask Applications



171

    # �include a line for only one particular virtual host. For 

example the

    # �following line enables the CGI configuration for this 

host only

    # after it has been globally disabled with "a2disconf".

    #Include conf-available/serve-cgi-bin.conf

</VirtualHost>

# vim: syntax=apache ts=4 sw=4 sts=4 sr noet

Save the file and exit, and we have covered it all. Just restart the server 

with the following command.

$ sudo service apache2 restart

Now visit the application in your browser using the IP address.

Figure 6-4.  Deployed Flask app on Gunicorn

Chapter 6  Deploying Flask Applications



172

�Deploying Flask on AWS Elastic Beanstalk
In this section we’ll deploy our Flask application using AWS Elastic 

Beanstalk. AWS Elastic Beanstalk is an easy-to-use service for deploying 

and scaling web applications and services.

We’ll assume that you already have an active AWS account and  

AWS CLI setup in your development machine or else you can use AWS 

docs on that.

To create the application environment and deploy the application, 

initialize your EB CLI repository with the eb init command.

$ eb init -p python-2.7 flask-app --region <your_region>

Note  For the list of regions, refer to this guide: https://docs.
aws.amazon.com/general/latest/gr/rande.html

You should see the following response in your terminal.

$ Application flask-app has been created.

The preceding command creates a new application named flask-app 

and configures your local repository to create environments with the latest 

Python 2.7.

Next run eb init again to configure a keypair for SSH login.

Next we’ll create an environment and deploy your application to it with 

eb create.

$ eb create

Next enter the environment name, DNS prefix, and load balancer type 

which will eliminate the need to expose the web server to the world.

Chapter 6  Deploying Flask Applications

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html


173

Now it shall take around 5 minutes to be deployed. Once it is deployed, 

we just need to configure a few more details, which we’ll directly do in the 

AWS web console.

Once the application finishes deploying, you should see a similar 

output like in the preceding figure. Next log on to the AWS web console, 

and open Elastic Beanstalk Configuration tab.

Figure 6-6.  eb create success

Figure 6-5.  eb create

Chapter 6  Deploying Flask Applications



174

Next click on modify; on the software tab and inside container options, 

update the WSGIPath to run.py.

Figure 6-8.  WSGIpath set

Figure 6-7.  Elastic Beanstalk Application Configuration

Chapter 6  Deploying Flask Applications



175

Now scroll down, and in environment variable, supply WORK_ENV 

and set it to Prod so that our application runs in production mode. Next 

click on apply and the application should reload and start working.

Now you can go back to dashboard to find the URL of the application, 

and it should be up and running.

Note I n Elastic Beanstalk you can also configure and start a MySQL 
RDS server attached to the environment to run with the application, 
but it is out of the scope of this book.

Figure 6-9.  Elastic Beanstalk Environment variables

Chapter 6  Deploying Flask Applications



176

�Deploying Flask App on Heroku
Heroku is a Platform as a Service (PaaS) which supports a variety of 

modern applications providing a container-based environment for 

deploying and managing apps at scale in the cloud. Deploying applications 

on Heroku is quite straightforward and instant. You can either use Heroku 

git, connect with your current GitHub account, or use container registry. 

Here we’ll deploy our application using Heroku CLI; hence make sure you 

have a working Heroku account at https://signup.heroku.com/ which 

lets you deploy up to five applications for free.

You’ll also need Heroku CLI which is available to download at 

https://devcenter.heroku.com/articles/heroku-command-line. Once 

you have the CLI, login to Heroku CLI using the following command which 

will then prompt you to provide your login credentials.

$ heroku login

Figure 6-10.  Deployed Flask app on Elastic Beanstalk

Chapter 6  Deploying Flask Applications

https://signup.heroku.com/
https://devcenter.heroku.com/articles/heroku-command-line


177

�Adding a Procfile
In order for us to successfully deploy our application on Heroku, we’ll 

have to add Procfile to that application which defines the command to be 

executed for the application to run.

With Heroku we’ll use a web server called Gunicorn, so before we 

create Procfile, install Gunicorn using the following command.

(venv)$ pip install gunicorn

Now update your requirements.txt file using pip freeze command.

(venv)$ pip freeze > requirements.txt

Now let’s first test if Gunicorn is working fine with our application; run 

the following command to locally start a Gunicorn server.

(venv)$ gunicorn run:application

Upon running, you should get the following output on your terminal 

which implies that the server is working fine.

[2019-04-29 22:54:41 +0530] [37191] [INFO] Starting gunicorn 

19.9.0

[2019-04-29 22:54:41 +0530] [37191] [INFO] Listening at: 

http://127.0.0.1:8000 (37191)

[2019-04-29 22:54:41 +0530] [37191] [INFO] Using worker: sync

[2019-04-29 22:54:41 +0530] [37194] [INFO] Booting worker with 

pid: 37194

Note  By default Gunicorn starts on Port 8000.

Chapter 6  Deploying Flask Applications



178

So next, create a file called Procfile inside src directory and add the 

following line in it.

web: gunicorn run:application

Here Web is specified for Heroku to start a web server for the 

application. Now there is just one more thing needed before we create and 

deploy our application on Heroku. Since Heroku by default uses Python 

3.6 runtime, we’ll have to create another file called runtime.txt and add 

the following line so that Heroku uses the right Python version for our 

application.

python-2.7.16

Now we are ready to deploy our application; in src directory of your 

application, run the following command to create a new Heroku app.

$ heroku create <app_name>

It should take a few seconds and you shall see a similar output in your 

terminal.

Creating flask-app-2019... done

https://flask-app-2019.herokuapp.com/ | https://git.heroku.com/

flask-app-2019.git

Next initialize a new Heroku git repo with the following command.

$ git init

$ heroku git:remote -a flask-app-2019

Now add all the files and commit the code with the following command.

$ git add .

$ git commiti -m "init"

Chapter 6  Deploying Flask Applications



179

Before pushing and deploying the code, one last thing we need to do is 

set the WORK_ENV environment variable, so use the following command 

to do so.

$ heroku config:set WORK_ENV=PROD

Next we need to push the code to Heroku git and it’ll be automatically 

deployed.

$ git push heroku master

In a few minutes, your application should be deployed and running. 

The URL of your application is htttps://<app_name>.herokuapp.com

Figure 6-11.  Flask App on Heroku

So this was it for deploying our application on Heroku; you can learn 

more about Heroku on https://devcenter.heroku.com

Chapter 6  Deploying Flask Applications

https://devcenter.heroku.com/


180

�Deploying Flask App on Google App Engine
In this section, we’ll deploy our application on Google Cloud App Engine, 

which is a fully managed serverless platform for deploying and scaling 

applications on the cloud. App Engine supports a variety of platforms 

including Python and provides a fully managed service for deploying 

backend services. So before we start, make sure you have an active Google 

Cloud Account or you can signup at https://cloud.google.com/products/

search/apply/. Google Cloud provides $300 credits for a year as well.

Next install Google Cloud CLI using the following guide:  

https://cloud.google.com/sdk/docs/quickstarts. Once it’s setup run 

the following command to login to your Google Cloud Account.

$ gcloud auth login

Once successful, we can start creating our Google App Engine 

application, but before we do that, we need to create a couple of config files.

First create app.yaml in src directory with the following code to 

configure the app basics for Google App Engine.

runtime: python27

api_version: 1

threadsafe: true

handlers:

- url: /avatar

  static_dir: images

- url: /.*

  script: wsgi.application

libraries:

  - name: ssl

    version: latest

env_variables:

  WORK_ENV: PROD

Chapter 6  Deploying Flask Applications

https://cloud.google.com/products/search/apply/
https://cloud.google.com/products/search/apply/
https://cloud.google.com/sdk/docs/quickstarts


181

Next create appengine_config.py which will get the installed modules 

from our virtual environment for the app engine to know where the third-

party modules are installed.

from google.appengine.ext import vendor

vendor.add('venv/lib/python2.7/site-packages/')

Now we are ready to initialize our app; run the following command for 

the same:

$ gcloud init

which will prompt you to create the application, name, and project and 

select the region, so enter appropriately.

Once done, run the following command to deploy your application on 

Google Cloud App Engine.

Within a couple of minutes, it should be deployed and running. 

Now you can run the following command in your terminal to open the 

application in your default browser.

$ gcloud app browse

Chapter 6  Deploying Flask Applications



182

�Conclusion
So in this chapter, we deployed our application on various cloud platforms 

using different methodologies, which should have given you a primer, 

or various deployment and scaling options for deploying your Flask 

applications. In the next chapter, we’ll discuss about post-deployment 

steps for managing and debugging your deployed application.

Figure 6-12.  Flask App on Google Cloud App Engine

Chapter 6  Deploying Flask Applications



183© Kunal Relan 2019 
K. Relan, Building REST APIs with Flask, https://doi.org/10.1007/978-1-4842-5022-8_7

CHAPTER 7

Monitoring Flask 
Applications
Up until now, we have covered developing, testing, and deploying our flask 

application. In this chapter, we’ll discuss about some add-ons to manage 

and support your Flask application and steps forward from here.

�Application Monitoring
Even after performing various kinds of tests on our application, in real 

world there are always some exceptional scenarios and bottlenecks which 

we are unaware of while development, and they shoot up as bugs and 

errors in production, as people start using the application. That’s when 

we need application monitoring which monitors the behavior of your 

application in production including downtime check, endpoint errors, 

crashes, exceptions, and performance-related issues. Monitoring is crucial 

for applications, since raw log files are hard to interpret, and they get bulky 

overtime for developers to make sense of. Log files can detect functional 

errors most of the time, but it doesn’t tell much about the performance-

related issues which is also crucial to your application since the business 

is dependent upon the application being able to serve its customers in a 

timely fashion. Thus proactive application monitoring is critical to deal 

with stability, performance, and errors in your application.



184

All major Cloud service providers support features for monitoring 

virtual machines. We deploy our application on, for CPU utilization, 

memory utilization and network on the operating system level. However, 

application monitoring usually encompasses the following things:

	 1.	 Application errors and warnings

	 2.	 Application performance of every transaction

	 3.	 Database and third-party integration querying 

performance

	 4.	 Basic server monitoring and metrics

	 5.	 Application log data

There are a lot of great application monitoring tools in the market, and 

here in this chapter, we’ll cover integrating a few of them as they all come 

with different sets of features, payment options, and so on.

Here is a list of few open-source monitoring projects:

	 1.	 Sentry

	 2.	 Sensu

	 3.	 Service canary

	 4.	 Flask monitoring dashboard

There are a couple of monitoring services available in the market as 

well like New Relic, Sentry.io, Scout, and so on which takes the burden 

of deploying the monitoring software away but comes at a price. We’ll 

examine the types of application monitoring tools.

Chapter 7  Monitoring Flask Applications



185

�Sentry
Sentry is an open source application monitoring system developed in 

Python but is available for all major platforms. Sentry also has a Cloud-

hosted service which has different subscription models ranging from a free 

version for developers to business versions which costs around $80 per 

month. In this we’ll be checking out the free version and integrate it with 

ours which is pretty straightforward.

To begin with, signup for sentry on https://sentry.io/signup/, and 

once you have successfully signed up, login to your dashboard. Once done, 

click add project button and select Flask as the framework, input the name, 

and submit on create project.

Once done, it will take us to the next page which has integration 

details, so just install the sentry SDK using PIP with the given command 

and copy paste the integration code in your main.py.

(venv)$pip install sentry-sdk[flask]

Next add the following code before app = Flask(__name__).

sentry_sdk.init(

    dsn="<your_dsn_here>"

    integrations=[FlaskIntegration()]

)

Figure 7-1.  Create new project

Chapter 7  Monitoring Flask Applications

https://sentry.io/signup/


186

Once done, you can deploy the application and sentry will take care of 

the rest. Let’s test it out by hitting a 404 endpoint making an event in sentry 

dashboard.

In your browser, request any endpoint which doesn’t exist, and 

sentry SDK will fire off an event from the application like in the following 

screenshot.

Clicking on the issue will give you insights into the issue and details to 

help you resolve the issue like in the following screenshot.

Figure 7-3.  Sentry issue details

Figure 7-2.  Sentry issues listing

Chapter 7  Monitoring Flask Applications



187

Sentry has a lot more features for you to explore and helo your 

application stable and error free.

�Flask Monitoring Dashboard
Flask Monitoring Dashboard is an extension for Flask applications. It 

outrightly monitors the application performance and utilization, profiles 

the requests, and can also be configured to run specific jobs to manage 

your application. It is open source and free, so let’s get started on it.

Install Flask Monitoring Dashboard using PIP with the following code.

(venv)$pip install flask_monitoringdashboard

Next in your main.py file, import the extension using the following 

code, where we have other library imports.

import flask_monitoringdashboard as dashboard

Now right below where we have initiated our app object, add the 

following code.

dashboard.bind(app)

And that’s pretty much it; now restart your application and visit 

http://<host>:<port>/dashboard, and it will open the login page. The 

default credentials are admin and admin which you should change right 

after.

Chapter 7  Monitoring Flask Applications



188

Once you login, you’ll be redirected to the dashboard which will have 

an overview of your endpoints, and you can click each of them to get a 

deeper insight and can also set the monitoring level for each one of them 

as per your preferences.

Figure 7-5.  Flask Monitoring Dashboard overview

Figure 7-4.  Flask Monitoring Dashboard

Clicking upon endpoints will redirect you to the insights page for each 

endpoint where you can churn out graph data for each requests and get 

more in-depth information about the endpoint usage.

Chapter 7  Monitoring Flask Applications



189

�New Relic
New Relic is one of the most reliable and competitive application 

monitoring tools in the market; they provide a comprehensive database 

with real-time monitoring services. New Relic is a paid subscription-based 

service, but they have a 14-day trial which we’ll use to check it out. So go 

ahead and sign up for the same on https://newrelic.com/signup

Once you sign up, you’ll be asked to choose the platform; go ahead and 

select Python as the platform.

Figure 7-6.  API utilization insights

Figure 7-7.  New Relic setup

Chapter 7  Monitoring Flask Applications

https://newrelic.com/signup


190

In your application directory, go ahead and install the New Relic agent 

using the following command.

(venv)$ pip install newrelic

Next we need to generate the configuration using our New Relic key, 

so click Reveal license key button on the screen which will display your 

private key.

Now execute the following command with your key.

(venv)$ newrelic-admin generate-config <your-key-goes-here> 

newrelic.ini

So now our application should be configured; next use the following 

command to run your application and test the configuration.

(venv)$ NEW_RELIC_CONFIG_FILE=newrelic.ini newrelic-admin run-

program python run.py

Once you do, click Listen for my application button like in the 

following screenshot, which will start listening to requests from your 

application to configure your dashboard, and once it successfully receives 

the data, you’ll see a button to redirect to your New Relic dashboard.

Figure 7-8.  New Relic Listen for application

Chapter 7  Monitoring Flask Applications



191

Now you’ll see the application dashboard which lists your applications; 

click Python Application since we only have one application here.

After clicking, you’ll be redirected to your application dashboard 

which looks quite comprehensive but provides a lot of insights about the 

application state. Refer to the following screenshot as an example.

As you can see, we can check out the latest transactions and check out 

the transaction time graph, and then we have throughput graph and apdex 

score which scores the application on the basis of a set value of 0.5 seconds 

response time. Under events, you can check out error analytics and errors 

which provide an in-depth details of errors raised in the system.

Figure 7-9.  New Relic Application dashboard

Figure 7-10.  Python Application dashboard

Chapter 7  Monitoring Flask Applications



192

You can learn more about New Relic in their official documentation at 

https://docs.newrelic.com/docs/apm/new-relic-apm/guides.

�Bonus Services
So we have covered all the topics to get you started with developing REST 

applications using Flask. However, this is just a beginner’s guide, and 

there are a lot more things to cover for real business use cases including 

integrating third-party services like search, caching, pub-sub, real-time 

communication, and so on. This book covers the basics of Flask REST API 

development which can be used as a base to build your REST applications. 

In this module we’ll cover the basics of some additional libraries and tools 

that could add value to your application.

�Full Text Search with Flask

Flask is compatible with a couple of libraries that provide integration with 

full text search applications like Elasticsearch.

Pyelasticsearch

Pyelasticsearch is a clean library to integrate Elasticsearch which is a very 

popular and powerful search engine in your flask application. However, 

Elasticsearch provides REST endpoints to connect with the search engine, 

but pyelasticsearch makes it easier to communicate with the endpoints. 

You can learn more about pyelasticsearch at https://pyelasticsearch.

readthedocs.io and check this link out to understand more about 

elasticsearch www.elastic.co/guide/en/elasticsearch/reference/

current/getting-started.html

Chapter 7  Monitoring Flask Applications

https://docs.newrelic.com/docs/apm/new-relic-apm/guides
https://pyelasticsearch.readthedocs.io/
https://pyelasticsearch.readthedocs.io/
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html


193

Flask-WhooshAlchemy

Whoosh is a fast, search engine library built in Python and is highly 

flexible and supports complex data searching based on free-form or 

structured text. Flask-WhooshAlchemy is a Flask extension to integrate 

the Whoosh search engine library with SQLAlchemy in Flask. It’s pretty 

straightforward to integrate and get your full text search up without any 

third-party application unlike pyelasticsearch. You can learn more about it 

at https://pythonhosted.org/Flask-WhooshAlchemy/

�Email

We used Flask mail for verifying user emails. Here is a list of other libraries 

you can use for efficient email integration in your application.

Flask-SendGrid

Flask-SendGrid is a Flask extension to simplify sending email using 

sendgrid which is a renowned email service; you can sign up for SendGrid 

at https://sendgrid.com/; they provide a free subscription which 

includes 40,000 emails for first 30 days and 100/day forever. You can check 

out Flask-SendGrid at https://github.com/frankv/flask-sendgrid 

which makes sending email a piece of cake.

AWS SNS Using Boto3

Boto3 is an AWS SDK for Python, and you can use AWS’ SNS (Simple 

Notification Service) to send email and text message using Boto. Here 

is a guide to sending email using Python with Boto https://docs.aws.

amazon.com/ses/latest/DeveloperGuide/send-using-sdk-python.

html. You’ll need an active AWS account for this and Boto installed 

from https://boto3.readthedocs.io/en/latest/guide/quickstart.

html#installation.

Chapter 7  Monitoring Flask Applications

https://pythonhosted.org/Flask-WhooshAlchemy/
https://sendgrid.com/
https://github.com/frankv/flask-sendgrid
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-using-sdk-python.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-using-sdk-python.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-using-sdk-python.html
https://boto3.readthedocs.io/en/latest/guide/quickstart.html#installation
https://boto3.readthedocs.io/en/latest/guide/quickstart.html#installation


194

�File Storage

File storage is an important aspect of an application; we stored user avatars in 

an application server file system which is not a good approach for production 

applications, and in such cases you’d like to store and access your files using 

a file storage service. Here are a handful of suggestions for the same.

AWS S3 Using Boto3

You can leverage Boto3 to manage your files on Amazon AWS S3, which 

is a powerful file management system. This guide will provide you with 

everything you need to manage your files using Flask https://boto3.

amazonaws.com/v1/documentation/api/latest/reference/services/

s3.html

Alibaba Cloud OSS

Alibaba Cloud provides a sophisticated file storage platform called Object 

Storage Service; you can use their Python SDK from https://github.

com/aliyun/aliyun-oss-python-sdk and easily setup file management 

using their OSS guide which is available at https://help.aliyun.com/

document_detail/32026.html

�Conclusion
This marks the end of this chapter and the book. There is a lot more to 

explore in optimizing and upgrading your application, but this will serve 

as the right base to grow from; if you have issues in integrating any of the 

mentioned services, check out their official docs, reach out to support, 

or reach out on Stack Overflow to solve them. You can also use this link 

to ask or read queries regarding Flask https://stackoverflow.com/

search?q=flask.

Chapter 7  Monitoring Flask Applications

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html
https://github.com/aliyun/aliyun-oss-python-sdk
https://github.com/aliyun/aliyun-oss-python-sdk
https://help.aliyun.com/document_detail/32026.html
https://help.aliyun.com/document_detail/32026.html
https://stackoverflow.com/search?q=flask
https://stackoverflow.com/search?q=flask


195© Kunal Relan 2019 
K. Relan, Building REST APIs with Flask, https://doi.org/10.1007/978-1-4842-5022-8

Index

A, B
Alibaba Cloud ECS Console, 161
Amazon AWS S3, 194
Assertion methods, 140

C
Caching, 13
Create, Read, Update, and Delete 

(CRUD), 4
CRUD application

adds global responses, 71, 72
API documentation

building blocks, 115
OAS see (OpenAPI 

Specification (OAS))
application structure, 64
author route blueprint 

registration, 78
blueprints, 60
create authors model, 65, 66
create books model, 64
create __init__.py, 62
create responses.py inside  

api/utils, 67
creating POST book  

endpoint, 79
db.init_app function, 70

DELETE endpoints, 77, 84, 85
email verification

create_user() method,  
104, 105

flask-mail library 
installation, 103

GET endpoint, 102
login method, 101
token.py, 100
URLSafeTimedSerializer, 101
User class code, 98, 99
User email verification, 108
User login after  

verification, 108
User login without 

verification, 107
user signup API, 106, 107
users.py in models, 98

fetch author ID, 76, 80
file upload

add avatar field, 109, 111
avatar endpoint with invalid 

file type, 114
avatar field endpoint, 112
fetch avatar endpoint, 113

GET author endpoint, 81, 82
GET authors route, 75
GET books endpoint, 86

https://doi.org/10.1007/978-1-4842-5022-8


196

HTTP responses, 68
import create_app, 61
PATCH endpoint, 83
POST author route, 73
POST authors endpoint, 74
PUT author endpoint, 82
user authentication

create POST user route, 91
create schema, 88, 89
Flask-JWT-Extended, 89
login endpoint, 94
POST author route, 95, 96
POST users endpoint, 93
user signup endpoint, 93

D
Database modelling

creating author database, 34
db.create_all(), 34
DELETE author by ID, 43–45
GET all authors, 39
GET author by ID  

endpoint, 40
GET/authors response,  

36, 37
POST/authors endpoint, 38
PUT endpoint, 41, 42
RESTful CRUD APIs, 33

Flask-SQLAlchemy, 30–32
MongoEngine application

create db instance, 47, 48
create PUT endpoint, 54, 55

CRUD application, 56–58
delete endpoint, 55
GET endpoint, 48, 50
installation, 47
JSON data, 51
requesting POST /authors, 

51, 52
MySQL vs MongoDB, 29
NoSQL databases, 28
SQLAlchemy, creating author 

database, 34
SQL databases, 28

db.init_app function, 70
Deploying applications

Alibaba Cloud ECS
GitHub repo, 162
Gunicorn, 167–169, 171
Nginx, 160, 162, 164–167
syntax errors, 166
Ubuntu instance, 160, 162
uWSGI, 160, 162, 164–167

AWS Elastic Beanstalk, 172
Google Cloud App Engine, 

180–182
Heroku

Gunicorn, 177–179
PaaS, 176
Procfile, 177–179

E
Elastic Beanstalk application

AWS, 172
configuration, 174

CRUD application (cont.)

INDEX



197

deployed flask app, 176
eb create, 173
environment variables, 175
WSGIpath set, 174

F
find_by_username() method, 92
Flask

application, 2, 3
components, 1–4
installation, 25
python development 

environment
IDE setup, 18, 19
PIP installation, 16–18
running virtual application, 

23, 24
virtual directory structure, 

21, 22
virtualenv, 20

SQLAlchemy, 4
Flask Monitoring Dashboard, 187
Flask-SQLAlchemy, 30
Flask-WhooshAlchemy, 193

G, H
Google Cloud App Engine, 180–182

I
__init__.py, 62

J, K, L
JSON Web Tokens (JWT), 89

M
Monitoring flask applications

bonus services
emails, 193, 194
Flask-WhooshAlchemy, 193
Pyelasticsearch, 192

flask monitoring dashboard, 
187, 188

New Relic, 189–191
Sentry, 185–187

N
New Relic, 189

O
Object Document Mapper  

(ODM), 28
Object Relational Mapper  

(ORM), 28
Object Storage Service (OSS), 194
OpenAPI Specification (OAS), 116

API request mode, 124
build time documentation

author avatar endpoint, 
132–134

create author endpoint,  
130, 131

Index



198

create user endpoint,  
126, 127

Swagger UI, 128
using YAML, 127

definition, 116
importing OpenAPI from 

Inspector, 121
login endpoint, 119
pinned requests, 119
spec generation, 120
SwaggerHub, 122
Swagger Inspector, 117, 118
Swagger UI, 125
view documentation, 122, 123

P, Q
Platform as a Service (PaaS), 176
Pyelasticsearch, 192
Python Package Index (PPI), 2

R
render_template_string  

method, 104
Representational State Transfer 

(REST)
API design, 15, 16
architecture, 6
definition, 4
services

caching technique, 13
messages, 9–12
planning, 14, 15
representation, 8
resources, 12
statelessness, 14
uniform interface, 7
used HTTP verbs, 8

SOAP, 6
response_with function, 70

S
Sentry, 185
Simple Object Access Protocol 

(SOAP), 6
Structured Query Language  

(SQL), 28

T
test_login_unverified_user() 

method, 143
test_login_user_wrong_credentials 

method, 143

U
Unit testing

benefits, 136
setting up, 136–138
test coverage, 155
user endpoints

OpenAPI Specification  
(OAS) (cont.)

INDEX



199

assertion methods, 140
authors test, 151, 153, 155
create temp image file, 149
create test_authors.py, 146
create_user endpoint,  

143, 144
create_users() method, 144
creating author without 

last_name field, 148
CSV file, 149
delete author object, 151
generate login token, 146
GET author ID, 150
POST author endpoint, 147

running with nose, 142
SQLAlchemy model, 139
test login API, 142
TestUsers() class, 140
test_users.py, 139
update author object, 150

V
Virtualenv, 20

W, X, Y, Z
Web Server Gateway Interface 

(WSGI), 1

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Beginning with Flask
	Introduction to Flask
	Starting Flask
	Flask Components Covered in This Book

	Introduction to RESTful Services
	Uniform Interface
	Representations
	Messages
	Links Between Resources
	Caching
	Stateless
	Planning REST API
	API Design
	Long-Term Implementation
	Spec-Driven Development
	Prototyping
	Authentication and Authorization


	Setting Up Development Environment
	Working with PIP
	Choosing the IDE
	Understanding Python Virtual Environments
	Using Virtual Environments


	Setting Up Flask
	Installing Flask

	Conclusion

	Chapter 2: Database Modeling in Flask
	Introduction
	SQL Databases
	NoSQL Databases
	Key Differences: MySQL vs. MongoDB

	Creating a Flask Application with SQLAlchemy
	Creating an Author Database

	Sample Flask MongoEngine Application
	Conclusion

	Chapter 3: CRUD Application with Flask (Part 1)
	User Authentication
	Conclusion

	Chapter 4: CRUD Application with Flask (Part 2)
	Introduction
	Email Verification
	File Upload
	API Documentation
	Building Blocks of API Documentation
	OpenAPI Specification
	Build Time Documentation


	Conclusion

	Chapter 5: Testing in Flask
	Introduction
	Setting Up Unit Tests
	Unit Testing User Endpoints

	Test Coverage
	Conclusion

	Chapter 6: Deploying Flask Applications
	Deploying Flask with uWSGI and Nginx on Alibaba Cloud ECS
	Deploying Flask on Gunicorn with Apache on Alibaba Cloud ECS
	Deploying Flask on AWS Elastic Beanstalk
	Deploying Flask App on Heroku
	Adding a Procfile

	Deploying Flask App on Google App Engine
	Conclusion

	Chapter 7: Monitoring Flask Applications
	Application Monitoring
	Sentry
	Flask Monitoring Dashboard
	New Relic
	Bonus Services
	Full Text Search with Flask
	Pyelasticsearch
	Flask-WhooshAlchemy

	Email
	Flask-SendGrid
	AWS SNS Using Boto3

	File Storage
	AWS S3 Using Boto3
	Alibaba Cloud OSS



	Conclusion

	Index



