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xix

Introduction

I had two main reasons for writing this book. When I first started learning data science, 

I could not find a centralized overview of all the important topics on this subject. 

A practitioner of data science needs to be proficient in at least one programming 

language, learn the various aspects of data preparation and visualization, and also 

be conversant with various aspects of statistics. The goal of this book is to provide 

a consolidated resource that ties these interconnected disciplines together and 

introduces these topics to the learner in a graded manner. Secondly, I wanted to provide 

material to help readers appreciate the practical aspects of the seemingly abstract 

concepts in data science, and also help them to be able to retain what they have learned. 

There is a section on case studies to demonstrate how data analysis skills can be applied 

to make informed decisions to solve real-world challenges. One of the highlights of 

this book is the inclusion of practice questions and multiple-choice questions to help 

readers practice and apply whatever they have learned. Most readers read a book and 

then forget what they have read or learned, and the addition of these exercises will help 

readers avoid this pitfall.

The book helps readers learn three important topics from scratch – the Python 

programming language, data analysis, and statistics. It is a self-contained introduction 

for anybody looking to start their journey with data analysis using Python, as it focuses 

not just on theory and concepts but on practical applications and retention of concepts. 

This book is meant for anybody interested in learning Python and Python-based libraries 

like Pandas, Numpy, Scipy, and Matplotlib for descriptive data analysis, visualization, 

and statistics. The broad categories of skills that readers learn from this book include 

programming skills, analytical skills, and problem-solving skills.

The book is broadly divided into three parts – programming with Python, data analysis 

and visualization, and statistics. The first part of the book comprises three chapters. It 

starts with an introduction to Python – the syntax, functions, conditional statements, 

data types, and different types of containers. Subsequently, we deal with advanced 

concepts like regular expressions, handling of files, and solving mathematical problems 
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with Python. Python is covered in detail before moving on to data analysis to ensure that 

the readers are comfortable with the programming language before they learn how to 

use it for purposes of data analysis.

The second part of the book, comprising five chapters, covers the various aspects of 

descriptive data analysis, data wrangling and visualization, and the respective Python 

libraries used for each of these. There is an introductory chapter covering basic concepts 

and terminology in data analysis, and one chapter each on NumPy (the scientific 

computation library), Pandas (the data wrangling library), and the visualization 

libraries (Matplotlib and Seaborn). A separate chapter is devoted to case studies to 

help readers understand some real-world applications of data analysis. Among these 

case studies is one on air pollution, using data drawn from an air quality monitoring 

station in New Delhi, which has seen alarming levels of pollution in recent years. This 

case study examines the trends and patterns of major air pollutants like sulfur dioxide, 

nitrogen dioxide, and particulate matter for five years, and comes up with insights and 

recommendations that would help with designing mitigation strategies.

The third section of this book focuses on statistics, elucidating important principles in 

statistics that are relevant to data science. The topics covered include probability, Bayes 

theorem, permutations and combinations, hypothesis testing (ANOVA, chi- squared 

test, z-test, and t-test), and the use of various functions in the Scipy library to enable 

simplification of tedious calculations involved in statistics.

By the end of this book, the reader will be able to confidently write code in Python, use 

various Python libraries and functions for analyzing any dataset, and understand basic 

statistical concepts and tests. The code is presented in the form of Jupyter notebooks 

that can further be adapted and extended. Readers get the opportunity to test their 

understanding with a combination of multiple-choice and coding questions. They 

also get an idea about how to use the skills and knowledge they have learned to make 

evidence-based decisions for solving real-world problems with the help of case studies.

InTroduCTIon
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CHAPTER 1

Getting Familiar 
with Python
Python is an open source programming language created by a Dutch programmer 

named Guido van Rossum. Named after the British comedy group Monty Python, 

Python is a high-level, interpreted, open source language and is one of the most sought-

after and rapidly growing programming languages in the world today. It is also the 

language of preference for data science and machine learning.

In this chapter, we first introduce the Jupyter notebook – a web application for running 

code in Python. We then cover the basic concepts in Python, including data types, 

operators, containers, functions, classes and file handling and exception handling, and 

standards for writing code and modules.

The code examples for this book have been written using Python version 3.7.3 and 

Anaconda version 4.7.10.

 Technical requirements
Anaconda is an open source platform used widely by Python programmers and data 

scientists. Installing this platform installs Python, the Jupyter notebook application, and 

hundreds of libraries. The following are the steps you need to follow for installing the 

Anaconda distribution.

 1. Open the following URL: https://www.anaconda.com/products/

individual

 2. Click the installer for your operating system, as shown in Figure 1-1. 

The installer gets downloaded to your system.

https://doi.org/10.1007/978-1-4842-6399-0_1#DOI
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
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 3. Open the installer (file downloaded in the previous step) and run it.

 4. After the installation is complete, open the Jupyter application 

by typing “jupyter notebook” or “jupyter” in the explorer (search 

bar) next to the start menu, as shown in Figure 1-2 (shown for 

Windows OS).

Please follow the following steps for downloading all the data files used in this book:

• Click the following link: https://github.com/DataRepo2019/ 

Data-files

• Select the green “Code” menu and click on “Download ZIP” from the 

dropdown list of this menu

• Extract the files from the downloaded zip folder and import these 

files into your Jupyter application

Now that we have installed and launched Jupyter, let us understand how to use this 

application in the next section.

 Getting started with Jupyter notebooks
Before we discuss the essentials of Jupyter notebooks, let us discuss what an integrated 

development environment (or IDE) is. An IDE brings together the various activities 

involved in programming, like including writing and editing code, debugging, and 

Figure 1-1. Installing Anaconda

Figure 1-2. Launching Jupyter

Chapter 1  GettinG Familiar with python
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creating executables. It also includes features like autocompletion (completing what 

the user wants to type, thus enabling the user to focus on logic and problem-solving) 

and syntax highlighting (highlighting the various elements and keywords of the 

language). There are many IDEs for Python, apart from Jupyter, including Enthought 

Canopy, Spyder, PyCharm, and Rodeo. There are several reasons for Jupyter becoming 

a ubiquitous, de facto standard in the data science community. These include ease 

of use and customization, support for several programming languages, platform 

independence, facilitation of access to remote data, and the benefit of combining output, 

code, and multimedia under one roof.

JupyterLab is the IDE for Jupyter notebooks. Jupyter notebooks are web applications that 

run locally on a user’s machine. They can be used for loading, cleaning, analyzing, and 

modeling data. You can add code, equations, images, and markdown text in a Jupyter 

notebook. Jupyter notebooks serve the dual purpose of running your code as well as 

serving as a platform for presenting and sharing your work with others. Let us look at the 

various features of this application.

 1. Opening the dashboard

Type “jupyter notebook” in the search bar next to the start menu. 

This will open the Jupyter dashboard. The dashboard can be used 

to create new notebooks or open an existing one.

 2. Creating a new notebook

Create a new Jupyter notebook by selecting New from the upper 

right corner of the Jupyter dashboard and then select Python 3 

from the drop-down list that appears, as shown in Figure 1-3.

 3. Entering and executing code

Click inside the first cell in your notebook and type a simple line 

of code, as shown in Figure 1-4. Execute the code by selecting Run 

Cells from the “Cell” menu, or use the shortcut keys Ctrl+Enter.

Figure 1-3. Creating a new Jupyter notebook

Chapter 1  GettinG Familiar with python
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 4. Adding markdown text or headings

In the new cell, change the formatting by selecting Markdown 

as shown in Figure 1-5, or by pressing the keys Esc+M on your 

keyboard. You can also add a heading to your Jupyter notebook by 

selecting Heading from the drop-down list shown in the following 

or pressing the shortcut keys Esc+(1/2/3/4).

 5. Renaming a notebook

Click the default name of the notebook and type a new name, as 

shown in Figure 1-6.

You can also rename a notebook by selecting File ➤ Rename.

 6. Saving a notebook

Press Ctrl+S or choose File ➤ Save and Checkpoint.

 7. Downloading the notebook

You can email or share your notebook by downloading your 

notebook using the option File ➤ Download as ➤ notebook 

(.ipynb), as shown in Figure 1-7.

Figure 1-5. Changing the mode to Markdown

Figure 1-6. Changing the name of a file

Figure 1-4. Simple code statement in a Jupyter cell

Chapter 1  GettinG Familiar with python
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 Shortcuts and other features in Jupyter
Let us look at some key features of Jupyter notebooks, including shortcuts, tab 

completions, and magic commands.

Table 1-1 gives some of the familiar icons found in Jupyter notebooks, the corresponding 

menu functions, and the keyboard shortcuts.

Figure 1-7. Downloading a Jupyter notebook

Chapter 1  GettinG Familiar with python
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If you are not sure about which keyboard shortcut to use, go to: Help ➤ Keyboard 

Shortcuts, as shown in Figure 1-8.

Table 1-1. Jupyter Notebook Toolbar Functions

Icon in Toolbar Function Keyboard shortcut Menu function

Saving a Jupyter notebook Esc+s File ➤ Save as

adding a new cell to a 

Jupyter notebook

Esc+b (adding a cell below the 

current cell), or Esc+a (adding  

a cell above the current cell)

Insert ➤ Insert Cell 
Above or Insert ➤ 
Insert Cell Below

Cutting a selected cell Esc+x edit ➤ Cut Cells

Copying the selected cell Esc+c edit ➤ Copy Cells

pasting a cell above or 

below another selected cell

Esc+v Edit ➤ Paste Cells 
Above or Edit ➤ 
Paste Cells Below

running a given cell Ctrl+Enter (to run selected cell); 

Shift+Enter (to run selected cell 

and insert a new cell)

Cell ➤ Run 
Selected Cells

interrupting the kernel Esc+ii Kernel ➤ Interrupt

rebooting the kernel Esc+00 Kernel ➤ Restart

Figure 1-8. Help menu in Jupyter
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Commonly used keyboard shortcuts include

• Shift+Enter to run the code in the current cell and move to the next 

cell.

• Esc to leave a cell.

• Esc+M changes the mode for a cell to “Markdown” mode.

• Esc+Y changes the mode for a cell to “Code”.

 Tab Completion
This is a feature that can be used in Jupyter notebooks to help you complete the code 

being written. Usage of tab completions can speed up the workflow, reduce bugs, and 

quickly complete function names, thus reducing typos and saving you from having to 

remember the names of all the modules and functions.

For example, if you want to import the Matplotlib library but don’t remember the 

spelling, you could type the first three letters, mat, and press Tab. You would see a drop-

down list, as shown in Figure 1-9. The correct name of the library is the second name in 

the drop-down list.

 Magic commands used in Jupyter
Magic commands are special commands that start with one or more % signs, followed by 

a command. The commands that start with one % symbol are applicable for a single line 

of code, and those beginning with two % signs are applicable for the entire cell (all lines 

of code within a cell).

Figure 1-9. Tab completion in Jupyter
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One commonly used magic command, shown in the following, is used to display 

Matplotlib graphs inside the notebook. Adding this magic command avoids the need 

to call the plt.show function separately for showing graphs (the Matplotlib library is 

discussed in detail in Chapter 7).

CODE:

%matplotlib inline

Magic commands, like timeit, can also be used to time the execution of a script, as shown 

in the following.

CODE:

%%timeit

for i in range(100000):

    i*i

Output:

16.1 ms ± 283 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Now that you understand the basics of using Jupyter notebooks, let us get started with 

Python and understand the core aspects of this language.

 Python Basics
In this section, we get familiar with the syntax of Python, commenting, conditional 

statements, loops, and functions.

 Comments, print, and input
In this section, we cover some basics like printing, obtaining input from the user, and 

adding comments to help others understand your code.

 Comments

A comment explains what a line of code does, and is used by programmers to help others 

understand the code they have written. In Python, a comment starts with the # symbol.
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Proper spacing and indentation are critical in Python. While other languages like Java 

and C++ use brackets to enclose blocks of code, Python uses an indent of four spaces 

to specify code blocks. One needs to take care of indents to avoid errors. Applications 

like Jupyter generally take care of indentation and automatically add four spaces at the 

beginning of a block of code.

 Printing

The print function prints content to the screen or any other output device.

Generally, we pass a combination of strings and variables as arguments to the print 

function. Arguments are the values included within the parenthesis of a function, which 

the function uses for producing the result. In the following statement, “Hello!” is the 

argument to the print function.

CODE:

print("Hello!")

To print multiple lines of code, we use triple quotes at the beginning and end of the 

string, for example:

CODE:

print('''Today is a lovely day.

It will be warm and sunny.

It is ideal for hiking.''')

Output:

Today is a lovely day.

It will be warm and sunny.

It is ideal for hiking.

Note that we do not use semicolons in Python to end statements, unlike some other 

languages.

The format method can be used in conjunction with the print method for embedding 

variables within a string. It uses curly braces as placeholders for variables that are passed 

as arguments to the method.

Let us look at a simple example where we print variables using the format method.
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CODE:

weight=4.5

name="Simi"

print("The weight of {} is {}".format(name,weight))

Output:

The weight of Simi is 4.5

The preceding statement can also be rewritten as follows without the format method:

CODE:

print("The weight of",name,"is","weight")

Note that only the string portion of the print argument is enclosed within quotes. The name 

of the variable does not come within quotes. Similarly, if you have any constants in your 

print arguments, they also do not come within quotes. In the following example, a Boolean 

constant (True), an integer constant (1), and strings are combined in a print statement.

CODE:

print("The integer equivalent of",True,"is",1)

Output:

The integer equivalent of True is 1

The format fields can specify precision for floating-point numbers. Floating-point 

numbers are numbers with decimal points, and the number of digits after the decimal 

point can be specified using format fields as follows.

CODE:

x=91.234566

print("The value of x upto 3 decimal points is {:.3f}".format(x))

Output:

The value of x upto 3 decimal points is 91.235

We can specify the position of the variables passed to the method. In this example, we 

use position “1” to refer to the second object in the argument list, and position “0” to 

specify the first object in the argument list.
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CODE:

y='Jack'

x='Jill'

print("{1} and {0} went up the hill to fetch a pail of water".format(x,y))

Output:

Jack and Jill went up the hill to fetch a pail of water

 Input

The input function accepts inputs from the user. The input provided by the user is stored 

as a variable of type String. If you want to do any mathematical calculations with any 

numeric input, you need to change the data type of the input to int or float, as follows.

CODE:

age=input("Enter your age:")

print("In 2010, you were",int(age)-10,"years old")

Output:

Enter your age:76

In 2010, you were 66 years old

Further reading on Input/Output in Python: https://docs.python.org/3/tutorial/

inputoutput.html

 Variables and Constants
A constant or a literal is a value that does not change, while a variable contains a value 

can be changed. We do not have to declare a variable in Python, that is, specify its data 

type, unlike other languages like Java and C/C++. We define it by giving the variable a 

name and assigning it a value. Based on the value, a data type is automatically assigned 

to it. Values are stored in variables using the assignment operator (=). The rules for 

naming a variable in Python are as follows:

• a variable name cannot have spaces

• a variable cannot start with a number
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• a variable name can contain only letters, numbers, and underscore 

signs (_)

• a variable cannot take the name of a reserved keyword (for example, 

words like class, continue, break, print, etc., which are predefined 

terms in the Python language, have special meanings, and are invalid 

as variable names)

 Operators
The following are some commonly used operators in Python.

Arithmetic operators: Take two integer or float values, perform an operation, and return 

a value.

The following arithmetic operators are supported in Python:

• **(Exponent)

• %(modulo or remainder),

• //(quotient),

• *(multiplication)

• -(subtraction)

• +(addition)

The order of operations is essential. Parenthesis takes precedence over exponents, 

which takes precedence over division and multiplication, which takes precedence 

over addition and subtraction. An acronym was designed - P.E.D.M.A.S.(Please Excuse 

My Dear Aunt Sally) - that can be used to remember the order of these operations to 

understand which operator first needs to be applied in an arithmetic expression. An 

example is given in the following:

CODE:

(1+9)/2-3

Output:

2.0
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In the preceding expression, the operation inside the parenthesis is performed first, 

which gives 10, followed by division, which gives 5, and then subtraction, which gives the 

final output as 2.

Comparison operators: These operators compare two values and evaluate to a true or 

false value. The following comparison operators are supported in Python:

• >: Greater than

• < : Less than

• <=: Less than or equal to

• >=: Greater than or equal to

• == : equality. Please note that this is different from the assignment 

operator (=)

• !=(not equal to)

Logical (or Boolean) operators: Are similar to comparison operators in that they 

also evaluate to a true or false value. These operators operate on Boolean variables or 

expressions. The following logical operators are supported in Python:

• and operator: An expression in which this operator is used evaluates 

to True only if all its subexpressions are True. Otherwise, if any of 

them is False, the expression evaluates to False

An example of the usage of the and operator is shown in the following.

CODE:

(2>1) and (1>3)

Output:

False

• or operator: An expression in which the or operator is used, evaluates 

to True if any one of the subexpressions within the expression is True. 

The expression evaluates to False if all its subexpressions evaluate to 

False.

An example of the usage of the or operator is shown in the following.

CODE:

(2>1) or (1>3)
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Output:

True

• not operator: An expression in which the not operator is used, 

evaluates to True if the expression is False, and vice versa.

An example of the usage of the not operator is shown in the following.

CODE:

not(1>2)

Output:

True

 Assignment operators

These operators assign a value to a variable or an operand. The following is the list of 

assignment operators used in Python:

• = (assigns a value to a variable)

• += (adds the value on the right to the operand on the left)

• -= (subtracts the value on the right from the operand on the left)

• *= (multiplies the operand on the left by the value on the right)

• %= (returns the remainder after dividing the operand on the left by 

the value on the right)

• /= (returns the quotient, after dividing the operand on the left by the 

value on the right)

• //= (returns only the integer part of the quotient after dividing the 

operand on the left by the value on the right)

Some examples of the usage of these assignment operators are given in the following.

CODE:

x=5 #assigns the value 5 to the variable x

x+=1 #statement adds 1 to x (is equivalent to x=x+1)

x-=1 #statement subtracts 1 from x (is equivalent to x=x-1)

x*=2 #multiplies x by 2(is equivalent to x=x*2)
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x%=3 #equivalent to x=x%3, returns remainder

x/=3 #equivalent to x=x/3, returns both integer and decimal part of quotient

x//=3 #equivalent to x=x//3, returns only the integer part of quotient 

after dividing x by 3

Identity operators (is and not is)

These operators check for the equality of two objects, that is, whether the two objects 

point to the same value and return a Boolean value (True/False) depending on whether 

they are equal or not. In the following example, the three variables “x”, “y”, and “z” 

contain the same value, and hence, the identity operator (is) returns True when “x” and 

“z” are compared.

Example:

x=3

y=x

z=y

x is z

Output:

True

Membership operators (in and not in)

These operators check if a particular value is present in a string or a container (like lists and 

tuples, discussed in the next chapter). The in operator returns “True” if the value is present, 

and the not in operator returns “True” if the value is not present in the string or container.

CODE:

'a' in 'and'

Output:

True

 Data types
The data type is the category or the type of a variable, based on the value it stores.

The data type of a variable or constant can be obtained using the type function.

Chapter 1  GettinG Familiar with python



16

CODE:

type(45.33)

Output:

float

Some commonly used data types are given in Table 1-2.

Table 1-2. Common Data Types in Python

Type of data Data type Examples

numeric data int: for numbers without a decimal point

float: for numbers with a decimal point

#int

a=1

#float

b=2.4 

Sequences Sequences store more than one value.  

Some of the sequences in python are:

• list
• range
• tuple

#tuple

a=(1,2,3)

#list

b=[1,2,3]

#range

c=range(5) 

Characters or text str is the data type for storing a single  

character or a sequence of characters  

within quotes

#single character

X='a'

#multiple characters

x='hello world'

#multiple lines

x='''hello world

good morning''' 

Boolean data bool is the data type for storing true or  

False values

X=True

Y=False 

mapping objects dict is the data type for a dictionary  

(an object mapping a key to a value)

x={'Apple':'fruit', 

'Carrot':'vegetable'}
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Representing dates and times

Python has a module called datetime that allows us to define a date, time, or duration.

We first need to import this module so that we can use the functions available in this 

module for defining a date or time object, using the following statement.

CODE:

import datetime

Let us use the methods that are part of this module to define various date/time objects.

Date object

A date consisting of a day, month, and year can be defined using the date method, as 

shown in the following.

CODE:

date=datetime.date(year=1995,month=1,day=1)

print(date)

Output:

1995-01-01

Note that all three arguments of the date method – day, month, and year – are 

mandatory. If you skip any of these arguments while defining a date object, an error 

occurs, as shown in the following.

CODE:

date=datetime.date(month=1,day=1)

print(date)

Output:

TypeError                         Traceback (most recent call last)

<ipython-input-3-7da76b18c6db> in <module>

----> 1 date=datetime.date(month=1,day=1)

      2 print(date)

TypeError: function missing required argument 'year' (pos 1)
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Time object

To define an object in Python that stores time, we use the time method.

The arguments that can be passed to this method may include hours, minutes, seconds, 

or microseconds. Note that unlike the date method, arguments are not mandatory for 

the time method (they can be skipped).

CODE:

time=datetime.time(hour=12,minute=0,second=0,microsecond=0)

print("midnight:",time)

Output:

midnight: 00:00:00

Datetime object

We can also define a datetime object consisting of both a date and a time, using the 

datetime method, as follows. For this method, the date arguments – day, month, and 

year – are mandatory, but the time argument (like hour, minute, etc.) can be skipped.

CODE:

datetime1=datetime.datetime(year=1995,month=1,day=1,hour=12,minute=0,second

=0,microsecond=0)

print("1st January 1995 midnight:", datetime1)

Output:

1st January 1995 midnight: 1995-01-01 12:00:00

Timedelta object

A timedelta object represents a specific duration of time, and is created using the 

timedelta method.

Let us create a timedelta object that stores a period of 17 days.

CODE:

timedelta1=datetime.timedelta(weeks=2,days=3)

timedelta1
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Output:

datetime.timedelta(days=17)

You can also add other arguments like seconds, minutes, and hours, while creating a 

timedelta object.

A timedelta object can be added to an existing date or datetime object, but not to a time 

object

Adding a duration (timedelta object) to a date object:

CODE:

#adding a duration to a date object is supported

date1=datetime.date(year=1995,month=1,day=1)

timedelta1=datetime.timedelta(weeks=2,days=3)

date1+timedelta1

Output:

datetime.date(1995, 1, 18)

Adding a duration (timedelta object) to a datetime object:

CODE:

#adding a duration to a datetime object is supported

datetime1=datetime.datetime(year=1995,month=2,day=3)

timedelta1=datetime.timedelta(weeks=2,days=3)

datetime1+timedelta1

Output:

datetime.datetime(1995, 2, 20, 0, 0)

Adding a duration to a time object leads to an error:

CODE:

#adding a duration to a time object is not supported

time1=datetime.time(hour=12,minute=0,second=0,microsecond=0)

timedelta1=datetime.timedelta(weeks=2,days=3)

time1+timedelta1

Chapter 1  GettinG Familiar with python



20

Output:

TypeError                             Traceback (most recent call last)

<ipython-input-9-5aa64059a69a> in <module>

      2 time1=datetime.time(hour=12,minute=0,second=0,microsecond=0)

      3 timedelta1=datetime.timedelta(weeks=2,days=3)

----> 4 time1+timedelta1

TypeError: unsupported operand type(s) for +: 'datetime.time' and 

'datetime.timedelta'

Further reading:

Learn more about the Python datetime module

https://docs.python.org/3/library/datetime.html

 Working with Strings
A string is a sequence of one or more characters enclosed within quotes (both single and 

double quotes are acceptable). The data type for strings is str. Python does not support 

the character data type, unlike older languages like Java and C. Even single characters, 

like ‘a’, ‘b’, are stored as strings. Strings are internally stored as arrays and are immutable 

(cannot be modified). Let us see how to define a string.

Defining a string

Single-line strings can be defined using single or double quotes.

CODE:

x='All that glitters is not gold'

#OR

x="All that glitters is not gold"

For multiline strings, use triple quotes:

CODE:

x='''Today is Tuesday.

Tomorrow is Wednesday'''

Chapter 1  GettinG Familiar with python

https://docs.python.org/3/library/datetime.html


21

String operations

Various functions can be used with strings, some of which are explained in the following.

 1. Finding the length of a string: The len function can be used to 

calculate the length of a string, as shown in the following.

CODE:

len('Hello')

Output:

5

 2. Accessing individual elements in a string:

The individual characters in a string can be extracted using the 

indexing operator, [].

CODE:

x='Python'

x[3]

Output:

'h'

 3. Slicing a string: Slicing refers to the extraction of a portion or 

subset of an object (in this case, the object is a string). Slicing 

can also be used with other iterable objects like lists and tuples, 

which we discuss in the next chapter. The colon operator is used 

for slicing, with an optional start, stop, and step index. Some 

examples of slicing are provided in the following.

CODE:

x='Python'

x[1:] #from second character to the end

Output:

'ython'
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Some more examples of slicing:

CODE:

x[:2] #first two characters. The starting index is assumed to be 0

Output:

'Py'

CODE:

x[::-1]#reversing the string, the last character has an index -1

Output:

'nohtyP'

 4. Justification:

To add spaces to the right or left, or center the string, the rjust, ljust, or center 

method is used. The first argument passed to such a method is the length of 

the new string, and the optional second argument is the character to be used 

for padding. By default, spaces are used for padding.

CODE:

'123'.rjust(5,"*")

Output:

'**123'

 5. Changing the case: To change the case of the string, the upper or 

lower method is used, as shown in the following.

CODE:

'COLOR'.lower()

Output:

'color'
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 6. Checking what a string contains:

In order to check whether a string starts or ends with a given 

character, the startswith or endswith method is used.

CODE:

'weather'.startswith('w') 

Output:

True

 7. Removing whitespaces from a string:

To remove spaces from a string, use the strip method (to remove 

spaces at both ends), rstrip (to remove spaces from the right end), 

or the lstrip method (to remove spaces from the left end). An 

example is shown in the following.

CODE:

'  Hello'.lstrip() 

Output:

'Hello'

 8. Examining the contents of a string:

There are several methods to check what a string contains, like 

isalpha, isupper, isdigit, isalnum, etc. All these methods 

return “True” only if all the characters in the string satisfy a given 

condition.

CODE:

'981'.isdigit()#to check for digits 

Output:

True
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CODE:

'Abc'.isupper()

#Checks if all characters are in uppercase. Since all letters are 

not uppercase, the condition is not satisfied

Output:

False

 9. Joining a list of strings:

The join method combines a list of strings into one string. On the 

left-hand side of the join method, we mention the delimiter in 

quotes to be used for joining the strings. On the right-hand side, 

we pass the list of individual strings.

CODE:

' '.join(['Python','is','easy','to','learn']) 

Output:

'Python is easy to learn'

 10. Splitting a string:

The split method does the opposite of what the join method does. 

It breaks down a string into a list of individual words and returns 

the list. If we just pass one word to this method, it returns a list 

containing just one word and does not split the string further.

CODE:

'Python is easy to learn'.split()

Output:

['Python', 'is', 'easy', 'to', 'learn']
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 Conditional statements
Conditional statements, as the name indicates, evaluate a condition or a group of conditions. 

In Python, the if-elif-else construct is used for this purpose. Python does not have the switch-

case construct, which is used in some other languages for conditional execution.

Conditional statements start with the if keyword, and the expression or a condition 

to be evaluated. This is followed by a block of code that executes only if the condition 

evaluates to “True”; otherwise it is skipped.

The else statement (which does not contain any condition) is used to execute a block of 

code when the condition mentioned in the if statement is not satisfied. The elif statements 

are used to evaluate specific conditions. The order of elif statements matters. If one of the 

elif statements evaluates to True, the elif statements following it are not executed at all. The 

if statement can also exist on its own, without mentioning the else or elif statements.

The following example demonstrates the if-elif-else construct.

CODE:

#if-elif-else

color=input('Enter one of the following colors - red, orange or blue:')

if color=='red':

    print('Your favorite color is red')

elif color=='orange':

    print('Your favorite color is orange')

elif color=='blue':

    print('Your favorite color is blue')

else:

    print("You entered the wrong color")

Output:

Enter one of the following colors - red, orange or blue:pink

You entered the wrong color

Conditional statements can be nested, which means that we can have one conditional 

statement (inner) within another (outer). You need to be particularly careful with 

indentation while using nested statements. An example of nested if statements is shown 

in the following.
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CODE:

#nested conditionals
x=20
if x<10:
    if x<5:
        print("Number less than 5")
    else:
        print("Number greater than 5")
else:
    print("Number greater than 10")

Output:

Number greater than 10

Further reading: See more on the if statement: https://docs.python.org/3/tutorial/

controlflow.html#if-statements

 Loops
Loops are used to execute a portion of the code repeatedly. A single execution of a block 

of code is called an iteration, and loops often go through multiple rounds of iterations. 

There are two types of loops that are used in Python – the for loop and the while loop.

 While loop

The while loop is used when we want to execute particular instructions as long as a 

condition is “True”. After the block of code executes, the execution goes back to the 

beginning of the block. An example is shown in the following.

CODE:

#while loop with continue statement

while True:

    x=input('Enter the correct color:')

    if(x!='red'):

        print("Color needs to be entered as red")

        continue

    else:

        break
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Output:

Enter the correct color:blue

Color needs to be entered as red

Enter the correct color:yellow

Color needs to be entered as red

Enter the correct color:red

In the preceding example, the first statement (while True) is used to execute an infinite 

loop. Once the username entered is of the right length, the break statement takes 

execution outside the loop; otherwise, a message is displayed to the user asking for a 

username of the right length. Note that execution automatically goes to the beginning of 

the loop, after the last statement in the block of code.

The break statement is used to take the control outside the loop. It is useful when we 

have an infinite loop that we want to break out of.

The continue statement does the opposite - it takes control to the beginning of the 

loop. The keywords break and continue can be used both with loops and conditional 

statements, like if/else.

Further reading:

See more about the following:

• break and continue statements: https://docs.python.org/3/

tutorial/controlflow.html#break-and-continue-statements-

and-else-clauses-on-loops

• while statement: https://docs.python.org/3/reference/

compound_stmts.html#while

 for loop

The for loop is used to execute a block of a code a predetermined number of times. The 

for loop can be used with any kind of iterable object, that is, a sequence of values that 

can be used by a loop for running repeated instances or iterations. These iterable objects 

include lists, tuples, dictionaries, and strings.
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The for loop is also used commonly in conjunction with the range function. The range 

function creates a range object, another iterable, which is a sequence of evenly spaced 

integers. Consider the following example where we calculate the sum of the first five odd 

integers using a for loop.

CODE:

#for loop
sum=0
for i in range(1,10,2):
    sum=sum+i
print(sum)

Output:

25

The range function has three arguments: the start argument, the stop argument, and 

the step argument. None of these three arguments are mandatory. Numbers from 0 to 9 

(both 0 and 9 included) can be generated as range(10), range(0,10), or range(0,10,1). The 

default start argument is 0, and the default step argument is 1.

For loops can also be nested (with an outer loop and any number of inner loops), as 

shown in the following.

CODE:

#nested for loop
for i in 'abcd':
    for j in range(4):
        print(i,end=" ")
    print("\n")

Output:

a a a a

b b b b

c c c c

d d d d

Further reading: See more about the for statement: https://docs.python.org/3/

tutorial/controlflow.html#for-statements
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 Functions
A function can be thought of as a “black box” (the user need not be concerned with the 

internal workings of the function) that takes an input, processes it, and produces an 

output. A function is essentially a block of statements performing a specific task.

In Python, a function is defined using the def keyword. This is followed by the name of a 

function and one or more optional parameters. A parameter is a variable that exists only 

within a function. Variables defined within a function have local scope, which means 

that they cannot be accessed outside the function. They are also called local variables. 

External code or functions cannot manipulate the variables defined within a function.

A function may have an optional return value. The return value is the output produced 

by a function that is returned to the main program. Calling a function means giving the 

function inputs (arguments) to perform its task and produce an output.

The utility of functions lies in their reusability. They also help in avoiding redundancy 

and organizing code into logical blocks. We just need to supply it with the set of inputs 

it needs to run the instructions. A function can be called repeatedly instead of manually 

typing out the same lines of code.

For example, say you want to find out the prime numbers in a given list of numbers. 

Once you have written a function for checking whether an integer is a prime number, 

you can simply pass each number in the list as an argument to the function and call it, 

instead of writing the same lines of code for each integer you want to test.

CODE:

def checkPrime(i):

     #Assume the number is prime initially

    isPrime=True

    for j in range(2,i):

        # checking if the number is divisible by any number between 2 and i

        if i%j==0:

            #If it is divisible by any number in the j range, it is not prime

            isPrime=False

    # This is the same as writing if isPrime==True

    if isPrime:

        print(i ,"is prime")
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    else:

        print(i, "is not prime")

for i in range(10,20):

    checkPrime(i)

Output:

10 is not prime

11 is prime

12 is not prime

13 is prime

14 is not prime

15 is not prime

16 is not prime

17 is prime

18 is not prime

19 is prime

Further reading: See more about defining functions: https://docs.python.org/3/

tutorial/controlflow.html#defining-functions

Anonymous or lambda functions are defined using the lambda keyword. They 

are single-expression functions and provide a compact way of defining a function 

without binding the function object to a name. The reason these functions are called 

“anonymous” is that they do not need a name. Consider the following example where we 

use a lambda function to calculate the sum of two numbers.

CODE:

(lambda x,y:(x+y))(5,4)

Output:

9

Note the syntax of an anonymous function. It starts with the lambda keyword, followed 

by the parameters (‘x’ and ‘y’, in this case). Then comes the colon, after which there 

is an expression that is evaluated and returned. There is no need to mention a return 

statement since there is an implicit return in such a function. Notice that the function 

also does not have a name.
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 Syntax errors and exceptions
Syntax errors are errors that may be committed inadvertently by the user while writing 

the code, for example, spelling a keyword wrong, not indenting the code, and so on. An 

exception, on the other hand, is an error that occurs during program execution. A user 

may enter incorrect data while running the program. If you want to divide a number 

(say, ‘a’) by another number (say, ‘b’), but give a value of 0 to the denominator (‘b’), this 

will generate an exception. The exceptions, which are autogenerated in Python and 

displayed to the user, may not lucidly convey the problem. Using exception handling 

with the try-except construct, we can frame a user-friendly message to enable the user to 

better correct the error.

There are two parts to exception handling. First, we put the code that is likely to cause an 

error under a try clause. Then, in the except clause, we try to deal with whatever caused 

an error in the try block. We mention the name of the exception class in the except 

clause, followed by a code block where we handle the error. A straightforward method 

for handling the error is printing a message that gives the user more details on what they 

need to correct.

Note that all exceptions are objects that are derived from the class BaseException, and 

follow a hierarchy.

Further reading: The class hierarchy for exceptions in Python can be found here: 

https://docs.python.org/3/library/exceptions.html#exception-hierarchy

A simple example of a program, with and without exception handling, is shown below.

while True:

    try:

        n=int(input('Enter your score:'))

        print('You obtained a score of ',n)

        break

    except ValueError:

        print('Enter only an integer value')

Output:

Enter your score(without a decimal point):abc

Enter only an integer value

Enter your score(without a decimal point):45.5
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Enter only an integer value

Enter your score(without a decimal point):90

You obtained a score of  90

Same program (Without exception handling):

CODE:

n=int(input('Enter your score:'))

print('You obtained a score of ',n)

Output:

Enter your score:ninety three

---------------------------------------------------------------------------

ValueError                         Traceback (most recent call last)

<ipython-input-12-aa4fbda9d45f> in <module>

----> 1 n=int(input('Enter your score:'))

      2 print('You obtained a score of ',n)

ValueError: invalid literal for int() with base 10: 'ninety three'

The statement that is likely to cause an error in the preceding code is: int(input('Enter 

your score:')). The int function requires an integer as an argument. If the user enters a 

floating-point or string value, a ValueError exception is generated. When we use the try-

except construct, the except clause prints a message asking the user to correct the input, 

making it much more explicit.

 Working with files
We can use methods or functions in Python to read or write to files. In other words, we 

can create a file, add content or text to it, and read its contents by using the methods 

provided by Python.

Here, we discuss how to read and write to comma-separated value (CSV) files. CSV files 

or comma-separated files are text files that are a text version of an Excel spreadsheet.

The functions for all of these operations are defined under the CSV module. This module 

has to be imported first, using the import csv statement, to use its various methods.

Chapter 1  GettinG Familiar with python



33

 Reading from a file
Reading from a file from Python involves the following steps:

 1. Using the with open statement, we can open an existing CSV 

file and assign the resulting file object to a variable or file handle 

(named ‘f’ in the following example). Note that we need to specify 

the path of the file using either the absolute or relative path. After 

this, we need to specify the mode for opening the file. For reading, 

the mode is ‘r’. The file is opened for reading by default if we do 

not specify a mode.

 2. Following this, there is a block of code that starts with storing the 

contents of the file in a read object, using the csv.reader function 

where we specify the file handle, f, as an argument.

 3. However, the contents of this file are not directly accessible 

through this read object. We create an empty list (named 

‘contents’ in the following example), and then we loop through 

the read object we created in step 2 line by line using a for loop 

and append it to this list. This list can then be printed to view the 

lines of the CSV file we created.

CODE:

#Reading from a file

import csv

with open('animals.csv') as f:

    contents=csv.reader(f)

    lines_of_file=[]

    for line in contents:

        lines_of_file+=line

lines_of_file
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 Writing to a file
Writing to a file involves the following steps.

 1. Using the open function, open an existing CSV file or if the file 

does not exist, the open function creates a new file. Pass the name 

of the file (with the absolute path) in quotes and specify the mode 

as ‘w’, if you want to overwrite the contents or write into a new file. 

Use the ‘a’ or ‘append’ mode if you simply want to append some 

lines to an existing file. Since we do not want to overwrite in this 

case, we open the file using the append (‘a’) mode. Store it in a 

variable or file handle and give it a name, let us say ‘f’.

 2. Using the csv.writer() function, create a writer object to add the 

content since we cannot directly write to the CSV file. Pass the 

variable (file handle), ‘f ’, as an argument to this function.

 3. Invoke the writerow method on the writer object created in the 

previous step. The argument to be passed to this method is the 

new line to be added (as a list).

 4. Open the CSV file on your system to see if the changes have been 

reflected.

CODE:

#Writing to a file

with open(r'animals.csv',"w") as f:

    writer_object=csv.writer(f,delimiter=",")

    writer_object.writerow(['sheep','lamb'])

The modes that can be used with the open function to open a file are:

• “r”: opens a file for only reading.

• “w”: opens a file for only writing. It overwrites the file if it already 

exists.

• “a”: opens a file for writing at the end of the file. It retains the original 

file contents.

• “w+”: opens the file for both reading and writing.
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Further reading: See more about reading and writing to files in Python: https://docs.

python.org/3/tutorial/inputoutput.html#reading-and-writing-files

 Modules in Python
A module is a Python file with a .py extension. It can be thought of as a section of a 

physical library. Just as each section of a library (for instance, fiction, sports, fitness) 

contains books of a similar nature, a module contains functions that are related to one 

another. For example, the matplotlib module contains all functions related to plotting 

graphs. A module can also contain another module. The matplotlib module, for instance, 

contains a module called pyplot. There are many built-in functions in Python that are 

part of the standard library and do not require any module to be imported to use them.

A module can be imported using the import keyword, followed by the name of the module:

CODE:

import matplotlib

You can also import part of a module (a submodule or a function) using the from 

keyword. Here, we are importing the cosine function from the math module:

CODE:

from math import cos

Creating and importing a customized module in Python requires the following steps:

 1. Type “idle” in the search bar next to the start menu. Once the 

Python shell is open, create a new file by selecting: File ➤ New File

 2. Create some functions with similar functionality. As an example, 

here, we are creating a simple module that creates two functions - 

sin_angle and cos_angle. These functions calculate the sin and 

cosine of an angle (given in degrees).

CODE:

import math

def sin_angle(x):

    y=math.radians(x)

    return math.sin(y)
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def cos_angle(x):

    y=math.radians(x)

    return math.cos(y)

 3. Save the file. This directory, where the file should be saved, is the 

same directory where Python runs. You can obtain the current 

working directory using the following code:

CODE:

import os

os.getcwd()

 4. Using the import statement, import and use the module you have 

just created.

 Python Enhancement Proposal (PEP) 8 – standards 
for writing code
Python Enhancement Proposal (PEP) is a technical document that provides 

documentation for new features introduced in the Python language. There are many 

types of PEP documents, the most important among these being PEP 8. The PEP 8 

document provides style guidelines for writing code in Python. The main emphasis of 

PEP 8 is on providing a set of consistent rules that enhance code readability – anybody 

who reads your code should be able to understand what you are doing. You can find the 

complete PEP8 document here: https://www.python.org/dev/peps/pep-0008/

There are several guidelines in PEP8 for different aspects of the code, some of which are 

summarized in the following.

• Indentation: Indentation is used to indicate the starting of a block of 

code. In Python, four spaces are used for indentation. Tabs should be 

avoided for indentation.

• Line length: The maximum character length for a line of code is 79 

characters. For comments, the limit is 72 characters.
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• The naming conventions for naming different types of objects in 

Python are also laid out in PEP 8. Short names should be used, 

and underscores can be used to improve readability. For naming 

functions, methods, variables, modules, and packages, use the 

lowercase (all small letters) notation. With constants, use the 

uppercase (all capitals) notation, and for classes, use the CapWords 

(two words each starting with a capital letter, not separated by 

spaces) notation for naming.

• Comments: Block comments, starting with a # and describing an 

entire block of code, are recommended. Inline comments, which are 

on the same line as the line of code, as shown in the following, should 

be avoided. If they are used at all, they should be separated by two 

spaces from the code.

CODE:

sum+=1 #incrementing the sum by 1

• Imports:

While importing a module to use it in your code, avoid wildcard 

imports (using the * notation), like the one shown in the following.

CODE:

from module import *

Multiple packages or classes should not be imported on the same 

line.

CODE:

import a,b

They should be imported on separate lines, as shown in the 

following.

CODE:

import a

import b
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Absolute imports should be used as far as possible, for example:

CODE:

import x.y

Alternatively, we can use this notation for importing modules:

CODE:

from x import y

• Encoding: The encoding format to be used for writing code in Python 

3 is UTF-8

 Summary
• The syntax of Python differs from other languages like Java and C, in 

that statements in Python do not end with a semicolon, and spaces 

(four spaces), are used for indentation, instead of curly braces.

• Python has basic data types like int, float, str, and bool, among 

many others, and operators (arithmetic, Boolean, assignment, and 

comparison) that operate on variables depending on their data type.

• Python has the if-elif-else keywords for the conditional execution of 

statements. It also has the for loop and the while loop for repeating a 

specific portion of the program.

• Functions help with reusing a part of code and avoiding redundancy. 

Each function should perform only one task. Functions in Python 

are defined using the def keyword. Anonymous or lambda functions 

provide a shortcut for writing functions in a single line without 

binding the function to a name.

• A module is a collection of similar functions and is a simple Python 

file. Apart from the functions that are part of the standard library, any 

function that is part of an external module requires the module to be 

imported using the import keyword.

Chapter 1  GettinG Familiar with python



39

• Python has functions for creating, reading, and writing to text and 

CSV files. The files can be opened in various modes, depending on 

whether you want to read, write, or append data.

• Exception handling can be used to handle exceptions that occur 

during the execution of the program. Using the try and except 

keywords, we can deal with the part of the program that is likely to 

cause an exception.

• PEP 8 sets standards for a range of coding-related aspects in Python, 

including usage of spaces, tabs, and blank lines, and conventions for 

naming and writing comments.

The next chapter delves deep into topics like containers, like lists, tuples, dictionaries, 

and sets. We also discuss a programming paradigm known as object-oriented 

programming, and how it is implemented using classes and objects.

 Review Exercises
Question 1

Calculate the factorial of numbers from 1 to 5 using nested loops.

Question 2

A function is defined using which of the following?

 1. def keyword

 2. function keyword

 3. void keyword

 4. No keyword is required

Question 3

What is the output of the following code?

x=True

y=False

z=True

x+y+z
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Question 4

Write a Python program to print the following sequence:

 

Question 5

Which of these variables has been defined using the correct syntax?

 1. 1x=3

 2. x 3=5

 3. x

 4. x_3=5

 5. x$4=5

Question 6

What is the output of the following code? (Hint: The id function returns the memory 

address of an object.)

str1="Hello"

str2=str1

id(str1)==id(str2)

Question 7

Convert the string “123-456-7890” into the format “1234567890”. Use the join and split 

string functions.
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Question 8

Write a function that performs the following tasks (the name of the file is passed as a 

parameter):

• Create a new text file with the name passed as an argument to the 

function

• Add a line of text (“Hello World”) to the file

• Read the contents of the file

• Opens the file again, add another line (“This is the next line”) below 

the first line

• Reread the file and print the contents on the screen

Answers

Question 1

Solution:

#Question 1

for i in range(1,6):

    fact=1

    for j in range(1,i+1):

        fact=fact*j

    print("Factorial of number ",i," is:",fact)

Question 2

Option 1: Functions in Python require the def keyword.

Question 3

Output: 2

Explanation: The Boolean value “True” is treated as value 1, and ‘False’ as value 0. 

Applying the addition operator on Boolean variables is valid.
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Question 4

Solution

#question 4

l=range(6)

for i in l[::-1]:

    print("*"*i)

    print("\n")

Question 5

Option 4 is correct.

Let us go through the options, one by one:

 1. 1x=3: incorrect, as a variable cannot start with a number

 2. x 3=5: incorrect, as a variable name cannot contain a space

 3. x : incorrect, as a variable needs an initial value

 4. x_3=5: correct; underscore is an acceptable character while 

defining variables

 5. x$4=5: incorrect; special characters like $ are not permissible

Question 6

Both the strings have the same value and memory address.

Output:

True

Question 7

This problem can be solved in one line – simply split the string, convert it to a list, and 

join it back into a string.

CODE:

"".join(list("123-456-7890".split("-")))
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Question 8

Solution:

#Question 8

def filefunction(name):

    #open the file for writing

    with open(name+".txt","w") as f:

        f.write("Hello World")

    #read and print the file contents

    with open(name+".txt","r") as f:

        print(f.read())

    #open the file again the append mode

    with open(name+".txt","a") as f:

        f.write("\nThis is the next line")

    #reread and print the lines in the file

    with open(name+".txt","r") as f:

        print(f.read())

filename=input("Enter the name of the file ")

filefunction(filename)
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CHAPTER 2

Exploring Containers, 
Classes, and Objects
In this chapter, we progress to some other essential concepts in Python - various types of 

containers, the methods that can be used with each of these containers, object-oriented 

programming, classes, and objects.

 Containers
In the previous chapter, we saw that a variable could have a data type like int, float, str, 

and so on, but holds only a single value. Containers are objects that can contain multiple 

values. These values can have the same data type or different data types. The four built- 

in containers in Python are:

• Lists

• Tuples

• Dictionaries

• Sets

Containers are also called iterables; that is, you can visit or traverse through each of the 

values in a given container object.

In the following sections, we discuss each container and its methods in more detail.

 Lists
A list contains a set of values that are stored in sequential order. A list is mutable, that is, 

one can modify, add, or delete values in a list, making it a flexible container.
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An individual list item can be accessed using an index, which is an integer mentioned in 

square brackets, indicating the position of the item. The indexing for a list starts from 0.

Let us have a look at how to define and manipulate a list now.

Defining a list

A list can be defined by giving it a name and a set of values that are enclosed within 

square brackets.

CODE:

colors=['violet','indigo','red','blue','green','yellow']

Adding items to a list

Different methods can be used to add values to a list, explained in Table 2-1. The “colors” 

list created in the preceding code is used in the examples given in the below table.

Table 2-1. Adding Items to a List

Method Description Example

Append Adds one item at the end of a list. The 

method takes only a single value as an 

argument.

CODE:

colors.append('white')

#the value 'white' is added after 

the last item in the 'colors' list 

Insert Adds one item at a given location or 

index. This method takes two  

arguments - the index and the value to  

be added.

CODE:

colors.insert(3,'pink')

#the value 'pink' is added at the 

fourth position in the 'colors' 

list 

Extend Adds multiple elements (as a list) at the 

end of a given list. This method takes 

another list as an argument.

CODE:

colors.extend(['purple','magenta'])

#values 'purple' and 'magenta' 

added at the end of the 'colors' 

list
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Removing elements from a list

Just as there are multiple ways of adding an item to a list, there is more than one way to 

remove values from a list, as explained in Table 2-2. Note that each of these methods can 

remove only a single item at a time.

Finding the index (location) of an object in the list

The index method is used to find out the location (or index) of a specific item or value in 

a list, as shown in the following statement.

CODE:

colors.index('violet')

Output:

0

Table 2-2. Removing Items from a List

Method Description Example

Del The del keyword deletes an item at a given location. CODE:

del colors[1]

#removes the second item 

of the 'colors' list

Remove This method is used when the name of the item to be 

removed is known, but not its position.

CODE:

colors.remove('white')

#removes the item 'white' 

from the 'colors' list

Pop This method removes and returns the last item in the 

list.

CODE:

colors.pop()

#removes the last item and 

displays the item removed
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Calculating the length of a list

The len function returns the count of the number of items in a list, as shown in the 

following. The name of the list is passed as an argument to this function. Note that len is 

a function, not a method. A method can be used only with an object.

CODE:

len(colors)

Output:

7

Sorting a list

The sort method sorts the values in the list, in ascending or descending order. By default, this 

method sorts the items in the ascending order. If the list contains strings, the sorting is done 

in alphabetical order (using the first letter of each string), as shown in the following.

CODE:

colors.sort()

colors

Output:

['blue', 'green', 'purple', 'red', 'violet', 'white', 'yellow']

Note that the list must be homogeneous (all values in the list should be of the same 

data type) for the sort method to work. If the list contains items of different data types, 

applying the sort method leads to an error.

If you want to sort your elements in the reverse alphabetical order, you need to add the 

reverse parameter and set it to “True”, as shown in the following.

CODE:

colors.sort(reverse=True)

colors

Output:

['yellow', 'white', 'violet', 'red', 'purple', 'green', 'blue']
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Note that if you want to just reverse the order of the items in a list, without sorting the 

items, you can use the reverse method, as shown in the following.

CODE:

colors=['violet','indigo','red','blue','green','yellow']

colors.reverse()

colors

Output:

['yellow', 'green', 'blue', 'red', 'indigo', 'violet']

Further reading:

See more on the methods that can be used with lists:

https://docs.python.org/3/tutorial/datastructures.html#more- on- lists

Slicing a list

When we create a slice from a list, we create a subset of the original list by choosing 

specific values from the list, based on their position or by using a condition. Slicing of a 

list works similar to slicing a string, which we studied in the previous chapter.

To create a slice using an index, we use the colon operator (:) and specify the start and 

stop values for the indexes that need to be selected.

If we provide no start or stop value before and after the colon, it is assumed that the 

start value is the index of the first element (0), and the stop value is the index of the last 

element, as shown in the following statement.

CODE:

`colors[:]

Output:

['Violet', 'Indigo', 'Blue', 'Green', 'Yellow', 'Orange', 'Red']

We can also use the colon operator twice if we are using a step index. In the following 

statement, alternate elements of the list are extracted by specifying a step index of two.

CODE:

colors[::2]
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Output:

['Violet', 'Blue', 'Yellow', 'Red']

Just like strings, lists follow both positive and negative indexing. Negative indexing (starts 

from –1, which is the index of the last element in the list) works from right to left, while 

positive indexing (starts from 0, which is the index of the first element in the list) works 

from left to right.

An example of slicing with negative indexing is shown in the following, where we extract 

alternate elements starting from the last value in the list.

CODE:

colors[-1:-8:-2]

Output:

['Red', 'Yellow', 'Blue', 'Violet']

 Creating new lists from existing lists

There are three methods for creating a new list from an existing list – list 

comprehensions, the map function, and the filter function – which are explained in the 

following.

 1. List comprehensions

List comprehensions provide a shorthand and intuitive way of 

creating a new list from an existing list.

Let us understand this with an example where we create a new list 

(‘colors1’) from the list (‘colors’) we created earlier. This list only 

contains only those items from the original list that contain the 

letter ‘e’.

CODE:

colors1=[color for color in colors if 'e' in color]

colors1

Output:

['violet', 'red', 'blue', 'green', 'yellow']
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The structure of a list comprehension is explained in Figure 2-1. 

The output expression (‘color’) for items in the new list comes 

first. Next comes a for loop to iterate through the original list (note 

that other loops like the while loop are not used for iteration in a 

list comprehension). Finally, you can add an optional condition 

using the if/else construct.

If we tried to create the same list without a list comprehension, 

using loops and conditions, the code would be more extended, as 

shown in the following.

CODE:

colors1=[]

for color in colors:

    if 'e' in color:

        colors1.append(color)

The critical point to keep in mind while using list comprehensions 

is that the readability of the code should not be compromised. If 

there are too many conditional expressions and loops involved in 

creating a new list, it is better to avoid list comprehensions.

Further reading: See more about list comprehensions: https://

docs.python.org/3/tutorial/datastructures.html#list- 

comprehensions

 2. Map function

The map function is used to create a new list by applying a user- 

defined or inbuilt function on an existing list. The map function 

returns a map object, and we need to apply the list function to 

convert it to a list.

colors1=[color for color in colors if 'e' in color]

new list output expression                 original list optional condition

Figure 2-1. List comprehension
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The map function accepts two arguments:

• The function to be applied

• The list on which the function is to be applied

In the following example, we are creating a new list (‘colors1’) 

from the ‘colors’ list converting its elements to uppercase. An 

anonymous (lambda) function is used, which is followed by the 

name of the original list.

CODE:

colors=['violet','indigo','red','blue','green','yellow']

colors1=map(lambda x:x.upper(),colors)

colors1

Output:

<map at 0x2dc87148630>

The function returns a map object, and the list function needs to 

be used to convert it to a list.

CODE:

list(colors1)

Output:

['VIOLET', 'INDIGO', 'RED', 'BLUE', 'GREEN', 'YELLOW']

 3. Filter function

The syntax of the filter function is similar to that of the map 

function. Whereas the map function returns all the objects in 

the original list after the function is applied, the filter function 

returns only those items that satisfy the condition specified when 

the filter function is called. Similar to the map function, we pass 

two arguments (a lambda function or a user-defined function, 

followed by the name of the list).

In the following example, we are creating a list from the original list, keeping only those 

items that have less than five characters.
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CODE:

colors2=filter(lambda x:len(x)<5,colors)

list(colors2)

Output:

['red', 'blue']

Let us now discuss how we can iterate through two or more lists simultaneously.

Iterating through multiple lists using the zip function

The zip function provides a way of combining lists and performing operations jointly on 

these lists, as shown in the following. The lists that need to be combined are passed as 

arguments to the list function.

CODE:

#zip function and lists

colors=['Violet','Indigo','Blue','Green','Yellow','Orange','Red']

color_ids=[1,2,3,4,5,6,7]

for i,j in zip(colors, color_ids):

    print(i,"has a serial number",j)

Output:

Violet has a serial number 1

Indigo has a serial number 2

Blue has a serial number 3

Green has a serial number 4

Yellow has a serial number 5

Orange has a serial number 6

Red has a serial number 7

The zip function returns a list of tuples that are stored in an object of type “zip”. The type 

of this object needs to be changed to the list type to view the tuples.

CODE:

list(zip(colors,color_ids))
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Output:

[('Violet', 1),

 ('Indigo', 2),

 ('Blue', 3),

 ('Green', 4),

 ('Yellow', 5),

 ('Orange', 6),

 ('Red', 7)]

The next function, enumerate, helps us access the indexes of the items in the list.

 Accessing the index of items in a list

The enumerate function is useful when you want to access the object as well as its index 

in a given list. This function returns a series of tuples, with each tuple containing the 

item and its index. An example of the usage of this function is shown in the following.

CODE:

colors=['Violet','Indigo','Blue','Green','Yellow','Orange','Red']

for index,item in enumerate(colors):

    print(item,"occurs at index",index)

Output:

Violet occurs at index 0

Indigo occurs at index 1

Blue occurs at index 2

Green occurs at index 3

Yellow occurs at index 4

Orange occurs at index 5

Red occurs at index 6

 Concatenating of lists

The concatenation of lists, where we combine two or more lists, can be done using the 

‘+’ operator.
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CODE:

x=[1,2,3]

y=[3,4,5]

x+y

Output:

[1, 2, 3, 3, 4, 5]

We can concatenate any number of lists. Note that concatenation does not modify any of 

the lists being joined. The result of the concatenation operation is stored in a new object.

The extend method can also be used for the concatenation of lists. Unlike the ‘+’ 

operator, the extend method changes the original list.

CODE:

x.extend(y)

x

Output:

[1, 2, 3, 3, 4, 5]

Other arithmetic operators, like -, *, or /, cannot be used to combine lists.

To find the difference of elements in two lists containing numbers, we use list 

comprehension and the zip function, as shown in the following.

CODE:

x=[1,2,3]

y=[3,4,5]

d=[i-j for i,j in zip(x,y)]

d

Output:

[-2, -2, -2]
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 Tuples
A tuple is another container in Python, and like a list, it stores items sequentially. Like the 

items in a list, the values in a tuple can be accessed through their indexes. There are, however, 

some properties of tuples that differentiate it from lists, as explained in the following.

 1. Immutability: A tuple is immutable, which means that you 

cannot add, remove, or change the elements in a tuple. A list, on 

the other hand, permits all these operations.

 2. Syntax: The syntax for defining a tuple uses round brackets (or 

parenthesis) to enclose the individual values (in comparison with 

the square brackets used for a list).

 3. Speed: In terms of speed of access and retrieval of individual 

elements, a tuple performs better than a list.

Let us now learn how to define a tuple and the various methods that can be used with a 

tuple.

Defining a tuple

A tuple can be defined with or without the parenthesis, as shown in the following code.

CODE:

a=(1,2,3)

#can also be defined without parenthesis

b=1,2,3

#A tuple can contain just a simple element

c=1,

#Note that we need to add the comma even though there is no element 

following it because we are telling the interpreter that it is a tuple.

Just like a list, a tuple can contain objects of any built-in data type, like floats, strings, 

Boolean values, and so on.

 Methods used with a tuple

While tuples cannot be changed, there are a few operations that can be performed with 

tuples. These operations are explained in the following.
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Frequency of objects in a tuple

The count method is used to count the number of occurrences of a given value in a tuple:

CODE:

x=(True,False,True,False,True)

x.count(True)

Output:

3

Location/Index of a tuple item

The index method can be used to find the location of an item in a tuple. Using the tuple 

created in the previous statement, let us find the occurrence of the value, “False”.

CODE:

x.index(False)

Output:

1

Only the location of the first occurrence of the item is returned by the index method.

Tuple unpacking

Tuple unpacking is the process of extracting the individual values in a tuple and storing 

each of these items in separate variables.

CODE:

a,b,c,d,e=x

If we do not know the number of items in a tuple, we can use the “*_” symbols to unpack 

the elements occurring after the first element into a list, as shown in the following.

CODE:

a,*_=x

print(a,_)
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Output:

True [False, True, False, True]

Length of a tuple

The length of a tuple can be calculated using the len function:

CODE:

len(x)

Output:

5

Slicing of a tuple

Slicing or creation of a smaller subset of values can be performed on tuples (similar to 

lists and strings in this respect).

An example follows.

CODE:

x[::-1]

Output:

(True, False, True, False, True)

 Applications of tuples

The following are some scenarios where tuples can be used.

 1. Creating a dictionary with tuples

A dictionary, which we discuss in detail in the next section, is 

a container containing a set of items (with a key mapping to a 

value). Tuples can be used for defining the items while creating a 

dictionary.

A dictionary item is a tuple, and a dictionary can be defined as a 

list of tuples using the dict method, as shown in the following.
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CODE:

x=dict([('color','pink'),('flower','rose')])

x

Output:

{'color': 'pink', 'flower': 'rose'}

 2. Multiple assignments

Tuple unpacking, as discussed earlier, is the process of separating a 

tuple into its components. This principle can be used for initializing 

multiple variables in one line, as shown in the following.

CODE:

#tuple unpacking

(a,b,c,d)=range(4)

print(a,b,c,d)

Output:

0 1 2 3

Further reading: See more about tuples here:  https://docs.python.org/3/tutorial/

datastructures.html#tuples- and- sequences

 Dictionaries
A dictionary is a container that contains a set of items, with each item mapping a “key” to 

a “value”. Each individual item is also called a key/value pair. Some other points to note 

about a dictionary are:

• Unlike the values in lists and tuples, the items in a dictionary are not 

stored in sequential order.

• Dictionaries are mutable, like lists (i.e., one can make modifications 

to a dictionary object).

• Curly braces are used to enclose the items in a dictionary.

Let us understand how to define a dictionary and the different methods that can be used 

with a dictionary object.
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Defining a dictionary

A dictionary is defined as a set of comma-separated key/value pairs enclosed within a 

pair of curly braces, as shown in the following code.

CODE:

numbers={'English':'One','Spanish':'Uno','German':'Ein'}

numbers

Output:

{'English': 'One', 'Spanish': 'Uno', 'German': 'Ein'}

“English”, “Spanish”, and “German” form the keys, while “One”, “Uno”, and “Ein” are the 

values in the dictionary.

A dictionary can also be defined using the dict function, as explained earlier when 

we discussed tuples. The argument to this function is a list of tuples, with each tuple 

representing a key/value pair, as shown in the following.

numbers=dict([('English','One'),('Spanish','Uno'),('German','Ein')])

Adding an item (key/value pair) to a dictionary

Using the key as an index, a new item can be added to a dictionary, as shown in the 

following.

CODE:

numbers['French']='un'

numbers

#A new key/value pair with the key as 'French' and value as 'un' has been 

added.

Output:

{'English': 'One', 'Spanish': 'Uno', 'German': 'Ein', 'French': 'un'}

Accessing the keys in a dictionary

The keys method to access the keys in a dictionary:
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CODE:

numbers.keys()

Output:

dict_keys(['English', 'Spanish', 'German', 'French'])

Access the values in a dictionary

The values method to access the values in a dictionary:

CODE:

numbers.values()

Output:

dict_values(['One', 'Uno', 'Ein', 'un'])

Access all the key/value pairs in a dictionary

The items method is used to access the list of key/value pairs in a dictionary.

CODE:

numbers.items()

Output:

dict_items([('English', 'One'), ('Spanish', 'Uno'), ('German', 'Ein'), 

('French', 'un')])

Accessing individual values

The value corresponding to a given key can be retrieved using the key as an index, as 

shown in the following.

CODE:

numbers['German']

Output:

'Ein'
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The get method can also be used for retrieving values. The key is passed as an argument 

to this method, as shown in the following.

CODE:

numbers.get('German')

The output is the same as that obtained in the previous statement.

Setting default values for keys

The get method discussed in the preceding can also be used to add a key/value pair and 

set the default value for a key. If the key/value pair is already defined, the default value is 

ignored. There is another method, setdefault, which can also be used for this purpose.

Note that the get method does not change the dictionary object, while the setdefault 

method ensures that the changes are reflected in the object.

An example of the usage of the setdefault method is shown in the following.

CODE:

numbers.setdefault('Mandarin','yi')

numbers

Output:

{'English': 'One',
 'Spanish': 'Uno',
 'German': 'Ein',
 'French': 'un',
 'Mandarin': 'yi'}

As we can see, a new key/value pair is added.

An example of the get method is shown in the following.

CODE:

numbers.get('Hindi','Ek')
numbers

Output:

{'English': 'One',
 'Spanish': 'Uno',
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 'German': 'Ein',

 'French': 'un',

 'Mandarin': 'yi'}

The value set by the get method is not added to the dictionary.

Clearing a dictionary

The clear method removes all the key/value pairs from a dictionary, in other words, it 

clears the contents of the dictionary without removing the variable from the memory.

#removing all the key/value pairs

numbers.clear()

Output:

  {}

Further reading: See more about dictionaries:

https://docs.python.org/3/tutorial/datastructures.html#dictionaries

 Sets
A set is a container that contains elements that are not ordered or indexed. The primary 

characteristic of a set is that it is a collection of unique elements. Note that Python does 

not throw an error if we add duplicate elements while creating a set. However, while we 

perform operations on sets, all the duplicate elements are ignored, and only distinct 

elements are considered.

Set definition

Just like a dictionary, a set is declared using curly braces and has unordered elements. 

However, while the values in a dictionary can be accessed using the keys as indexes, the 

values in a set cannot be accessed through indexes.

The following is an example of a set definition:

CODE:

a={1,1,2}

a
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Output:

{1, 2}

As we can see from the output, the duplicate value of 1 (which is present in the set 

definition) is ignored.

Set operations

The methods and functions that can be used with sets are explained in Table 2-3.

Table 2-3. Set Operations

Operation Method/Function Example

Finding the 

length of a set

The len function counts the number 

of elements in a set, considering 

only the distinct values.

len(a)

set iteration The for loop can iterate through a 

set and print its elements.

for x in a:

print(x)

Adding items 

or values

A single item can be added to a set 

using the add method. For adding 

multiple values, the update method 

is used.

a.add(3)

#or

a.update([4,5])

removing 

items

Items can be removed using either 

the remove or the discard method.

a.remove(4)

# Or

a.discard(4)

#Note: When we try to delete an 

element that is not in the set, 

the discard method does not give 

an error, whereas the remove 

method gives a KeyError.
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Further reading: See more about sets:  https://docs.python.org/3/tutorial/

datastructures.html#sets

Now that we have covered all the essentials of the Python language - the concepts we 

learned in the previous chapter and what we understood in this chapter about the 

various containers and their methods, we need to decide which style or paradigm 

of programming to use. Among the various programming paradigms, which include 

procedural, functional, and object-oriented programming, we discuss object-oriented 

programming in the next section.

 Object-oriented programming
Object-oriented programming (also commonly called “OOPS”) emerged as an 

alternative to procedural programming, which was the traditional programming 

methodology.

Procedural programming involved sequential execution of a program using a series 

of steps. One major drawback of procedural programming is the presence of global 

variables that are vulnerable to accidental manipulation. OOPS offers several advantages 

vis-à-vis procedural programming, including the ability to reuse code, doing away with 

global variables, preventing unauthorized access to data, and providing the ability to 

manage code complexity.

Python follows the object-oriented paradigm. Classes and objects form the building 

blocks of object-oriented programming. Classes provide the blueprint or structure, while 

objects implement this structure. Classes are defined using the class keyword.

As an example, say you have a class named “Baby” with attributes as the name of the 

baby, its gender, and weight. The methods (or the functions defined within a class) for 

this class could be the actions performed by a baby like smiling, crying, and eating. An 

instance/object is an implementation of the class and has its own set of attributes and 

methods. In this example, each baby would have its unique characteristics (data) and 

behavior (functionality)

A class can have a set of attributes or variables, which may be either class variables or 

instance variables. All instances of the class share class variables, whereas instance 

variables are unique to each instance.
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Let us see how classes are defined in Python, using the following example:

CODE:

#example of a class

class Rectangle:

    sides=4

    def __init__(self,l,b):

        self.length=l

        self.breadth=b

    def area(self):

        print("Area:",self.length*self.breadth)

my_rectangle=Rectangle(4,5)

my_rectangle.area()

Output:

Area: 20

The class keyword is followed by the name of a class and a colon sign. Following this, 

we are defining a class variable named “sides”, and initializing it to 4. This variable is 

common to all objects of the class.

After this, there is a constructor function that sets or initializes the variables. Note the 

special syntax of the constructor function - a space follows the def keyword and then two 

underscore signs, the init keyword, again followed by two underscore signs.

The first parameter of any method defined in a class is the self keyword, which refers to 

an instance of the class. Then come the initialization parameters, “l” and “b”, that refer 

to the length and breadth of the rectangle. These values are provided as arguments 

when we create the object. The instance variables, “self.length” and “self.breadth”, 

are initialized using the parameters mentioned earlier. This is followed by another 

method that calculates the area of the rectangle. Remember that we need to add self as a 

parameter whenever we define any method of a class.

Once the class is defined, we can define an instance of this class, also called an object.  

We create an object just like we would create a variable, give it a name, and initialize it. 

“my_rectangle” is the name of the object/instance created, followed by an ‘=’ sign.  
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We then mention the name of the class and the parameters used in the constructor 

function to initialize the object. We are creating a rectangle with length as 4 and breadth as 

5. We then call the area method to calculate the area, which calculates and prints the area.

Further reading: See more about classes in Python: https://docs.python.org/3/

tutorial/classes.html

 Object-oriented programming principles
The main principles of object-oriented programming are encapsulation, polymorphism, 

data abstraction, and inheritance. Let us look at each of these concepts.

Encapsulation: Encapsulation refers to binding data (variables defined within a class) 

with the functionality (methods) that can modify it. Encapsulation also includes data 

hiding, since the data defined within the class is safe from manipulation by any function 

defined outside the class. Once we create an object of the class, its variables can be 

accessed and modified only by the methods (or functions) associated with the object.

Let us consider the following example:

CODE:

class Circle():

    def __init__(self,r):

        self.radius=r

    def area(self):

        return 3.14*self.r*self.r

c=Circle(5)

c.radius #correct way of accessing instance variable

Here, the class Circle has an instance variable, radius, and a method, area. The variable, 

radius, can only be accessed using an object of this class and not by any other means, as 

shown in the following statement.

CODE:

c.radius #correct way of accessing instance variable

radius #incorrect, leads to an error
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Polymorphism

Polymorphism (one interface, many forms) provides the ability to use the same interface 

(method or function) regardless of the data type.

Let us understand the principle of polymorphism using the len function.

CODE:

#using the len function with a string

len("Hello")

Output:

5

CODE:

#using the len function with a list

len([1,2,3,4])

Output:

4

CODE:

#using the len function with a tuple

len((1,2,3))

Output:

3

CODE:

#using the len function with a dictionary

len({'a':1,'b':2})

Output:

2
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The len function, which calculates the length of its argument, can take any type of 

argument. We passed a string, list, tuple, and dictionary as arguments to this function, 

and the function returned the length of each of these objects. There was no need to write 

a separate function for each data type.

Inheritance: Inheritance refers to the ability to create another class, called a child class, 

from its parent class. A child class inherits some attributes and functions from the parent 

class but may also have its own functionality and variables.

An example of inheritance in Python is demonstrated in the following.

#inheritance

class Mother():

    def __init__(self,fname,sname):

        self.firstname=fname

        self.surname=sname

    def nameprint(self):

        print("Name:",self.firstname+" "+self.surname)

class Child(Mother):

    pass

The parent class is called “Mother”, and its attributes “firstname” and “surname” are 

initialized using the init constructor method. The child class, named “Child”, is inherited 

from the “Mother” class. The name of the parent class is passed as an argument when we 

define the child class. The keyword pass instructs Python that nothing needs to be done 

for the child class (this class just inherits everything from the parent class without adding 

anything).

However, even if the child class does not implement any other method or add any extra 

attribute, the keyword pass is essential to prevent any error from being thrown.

Further reading: Learn more about inheritance: https://docs.python.org/3/

tutorial/classes.html#inheritance

Data abstraction

Data abstraction is the process of presenting only the functionality while hiding the 

implementation details. For instance, a new user to Whatsapp needs to only learn its 

essential functions like sending messages, attaching photos, and placing calls, and not 

how these features were implemented by the developers who wrote the code for this app.
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In the following example, where we declare an object of the “Circle” class and calculate 

the area using the area method, we do not need to know how the area is being calculated 

when we call the area method.

class Circle():

    def __init__(self,r):

        self.r=r

    def area(self):

        return 3.14*self.r*self.r

circle1=Circle(3)

circle1.area()

Output:

28.259999999999998

 Summary
• A container is a collection of objects that belong to basic data types 

like int, float, str. There are four inbuilt containers in Python – lists, 

tuples, dictionaries, and sets.

• Each container has different properties, and a variety of functions 

that can be applied to Containers differ from each other depending 

on whether the elements can be ordered and changed (mutability) 

or not. Lists are mutable and ordered, tuples are immutable and 

ordered, and dictionaries and sets are mutable and unordered.

• Python follows the principles of object-oriented programming like 

inheritance (deriving a class from another class), data abstraction 

(presenting only the relevant detail), encapsulation (binding data 

with functionality), and polymorphism (ability to use an interface 

with multiple data types).

• A class contains a constructor function (which is defined using a 

special syntax), instance variables, and methods that operate on 

these variables. All methods must contain the keyword self as a 

parameter that refers to an object of the class.
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In the next chapter, we will learn how Python can be applied in regular expressions and 

for solving problems in mathematics, and the libraries used for these applications.

 Review Exercises
Question 1

How do you convert a list to a tuple and vice versa?

Question 2

Just like a list comprehension, a dictionary comprehension is a shortcut to create a 

dictionary from existing iterables. Use dictionary comprehension to create the following 

dictionary (from two lists, one containing the keys (a–f) and the other containing the 

values (1–6)):

{'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'f': 5}

Question 3

Which of the following code statements does not lead to an error?

 a) 'abc'[0]='d'

 b) list('abc')[0]='d'

 c) tuple('abc')[0]='d'

 d) dict([('a',1),('b',2)])[0]=3

Question 4

Write a program to calculate the number of vowels in the sentence “Every cloud has a 

silver lining”.

Question 5

What is the output of the following code?

x=1,2

y=1,

z=(1,2,3)

type(x)==type(y)==type(z)
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Question 6

What is the output of the following code?

numbers={

    'English':{'1':'One','2':'Two'},

    'Spanish':{'1':'Uno','2':'Dos'},

    'German':{'1':'Ein','2':'Zwei'}

}

numbers['Spanish']['2']

Question 7

Consider the following dictionary:

eatables={'chocolate':2,'ice cream':3}

Add another item (with “biscuit” as the key and value as 4) to this dictionary using the

• If statement

• setdefault method

Question 8

Create a list that contains odd numbers from 1 to 20 and use the appropriate list method 

to perform the following operations:

• Add the element 21 at the end

• insert the number 23 at the 4th position

• To this list, add another list containing even numbers from 1 to 20

• Find the index of the number 15

• Remove and return the last element

• Delete the 10th element

• Filter this list to create a new list with all numbers less than or equal to 13

• Use the map function to create a new list containing squares of the 

numbers in the list
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• Use list comprehension to create a new list from the existing one. 

This list should contain the original number if it is odd. Otherwise it 

should contain half of that number.

Answers

Question 1

Use the list method to convert a tuple to a list:

list((1,2,3))

Use the tuple method to convert a list to a tuple:

tuple([1,2,3])

Question 2

CODE:

#list containing keys

l=list('abcdef')

#list containing values

m=list(range(6))

#dictionary comprehension

x={i:j for i,j in zip(l,m)}

x

Question 3

Correct options: b and d

In options a and c, the code statements try to change the items in a string and tuple, 

respectively, which are immutable objects, and hence these operations are not 

permitted. In options b (list) and d (dictionary), item assignment is permissible.

Question 4

Solution:

message="Every cloud has a silver lining"

m=message.lower()

count={}
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vowels=['a','e','i','o','u']

for character in m:

    if character.casefold() in vowels:

        count.setdefault(character,0)

        count[character]=count[character]+1

print(count)

Question 5

Output:

True

All three methods are accepted ways of defining tuples.

Question 6

Output:

'Dos'

This question uses the concept of a nested dictionary (a dictionary within a dictionary).

Question 7

Solution:

eatables={'chocolate':2,'ice cream':3}

#If statement

if 'biscuit' not in eatables:

    eatables['biscuit']=4

#setdefault method(alternative method)

eatables.setdefault('biscuit',4)

Question 8

Solution:

odd_numbers=list(range(1,20,2))

#Add the element 21 at the end

odd_numbers.append(21)

#insert the number 23 at the 4th position
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odd_numbers.insert(3,23)

#To this list, add another list containing even numbers from 1 to 20

even_numbers=list(range(2,20,2))

odd_numbers.extend(even_numbers)

#find the index of the number 15

odd_numbers.index(15)

#remove and return the last element

odd_numbers.pop()

#delete the 10the element

del odd_numbers[9]

#filter this list with all numbers less than or equal to 13

nos_less_13=filter(lambda x:x<=13,odd_numbers)

list(nos_less_13)

#use the map function to create a list containing squares

squared_list=map(lambda x:x**2,odd_numbers)

#use list comprehension for the new list

new_list=[x/2 if x%2==0 else x for x in odd_numbers]

new_list
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CHAPTER 3

Regular Expressions 
and Math with Python
In this chapter, we discuss two modules in Python: re, which contains functions that can 

be applied for regular expressions, and SymPy, for solving mathematical problems in 

algebra, calculus, probability, and set theory. Concepts that we will learn in this chapter, 

like searching and replacing strings, probability, and plotting graphs, will come in handy 

for subsequent chapters, where we cover data analysis and statistics.

 Regular expressions
A regular expression is a pattern containing both characters (like letters and digits) and 

metacharacters (like the * and $ symbols). Regular expressions can be used whenever we 

want to search, replace, or extract data with an identifiable pattern, for example, dates, 

postal codes, HTML tags, phone numbers, and so on. They can also be used to validate 

fields like passwords and email addresses, by ensuring that the input from the user is in 

the correct format.

 Steps for solving problems with regular expressions
Support for regular expressions is provided by the re module in Python, which can be 

imported using the following statement:

import re

If you have not already installed the re module, go to the Anaconda Prompt and enter the 

following command:

pip install re
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Once the module is imported, you need to follow the following steps.

 1. Define and compile the regular expression: After the re module 

is imported, we define the regular expression and compile it. The 

search pattern begins with the prefix “r” followed by the string 

(search pattern). The “r” prefix, which stands for a raw string, tells 

the compiler that special characters are to be treated literally and 

not as escape sequences. Note that this “r” prefix is optional. The 

compile function compiles the search pattern into a byte code as 

follows and the search string (and) is passed as an argument to the 

compile function.

CODE:

search_pattern=re.compile(r'and')

 2. Locate the search pattern (regular expression) in your string:

In the second step, we try to locate this pattern in the string to be 

searched using the search method. This method is called on the 

variable (search_pattern) we defined in the previous step.

CODE:

search_pattern.search('Today and tomorrow')

Output:

<re.Match object; span=(6, 9), match="and">

A match object is returned since the search pattern (“and”) is found in the string (“Today 

and tomorrow”).

Shortcut (combining steps 2 and 3)

The preceding two steps can be combined into a single step, as shown in the 

following statement:

CODE:

re.search('and','Today and tomorrow')

Using one line of code, as defined previously, we combine the three steps of defining, 

compiling, and locating the search pattern in one step.
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Further reading: Refer to this document for an introduction to using regular expressions 

with Python:

https://docs.python.org/3/howto/regex.html#regex-howto

 Python functions for regular expressions
We use regular expressions for matching, splitting, and replacing text, and there is a 

separate function for each of these tasks. Table 3-1 provides a list of all these functions, 

along with examples of their usage.

Table 3-1. Functions for Working with Regular Expressions in Python

Python function Example

re.findall( ): searches for all possible matches 

of the regular expression and returns a list of 

all the matches found in the string.

Code:

re.findall('3','98371234')

output:

['3', '3']

re.search( ): searches for a single match and 

returns a match object corresponding to the 

first match found in the string.

Code:

re.search('3','98371234')

output:

<re.Match object; span=(2, 3), 

match="3">

re.match( ):
this function is similar to the re.search 

function. the limitation of this function is that 

it returns a match object only if the pattern is 

present at the beginning of the string.

Code:

re.match('3','98371234')

since the search pattern (3) is not present at the 

beginning of the string, the match function does not 

return an object, and we do not see any output.

(continued)
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Further reading:

Learn more about the functions discussed in the above table:

• Search and match function: https://docs.python.org/3.4/

library/re.html#search-vs-match

• Split function: https://docs.python.org/3/library/ 

re.html#re.split

• Sub function: https://docs.python.org/3/library/re.html#re.sub

• Findall function: https://docs.python.org/3/library/

re.html#re.findall

 Metacharacters

Metacharacters are characters used in regular expressions that have a special 

meaning. These metacharacters are explained in the following, along with examples to 

demonstrate their usage.

Python function Example

re.split( ): splits the string at the locations 

where the search pattern is found in the 

string being searched.

Code:

re.split('3','98371234')

output:

['98', '712', '4']

the string is split into smaller string wherever the 

search pattern, “3”, is found.

re.sub( ): substitutes the search pattern with 

another string or pattern.

Code:

re.sub('3','three','98371234')

output:

'98three712three4'

the character “3” is replaced with the string ‘three’ 

in the string.

Table 3-1. (continued)
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 1. Dot (.) metacharacter

This metacharacter matches a single character, which could be a 

number, alphabet, or even itself.

In the following example, we try to match three-letter words (from 

the list given after the comma in the following code), starting with 

the two letters “ba”.

CODE:

re.findall("ba.","bar bat bad ba. ban")

Output:

['bar', 'bat', 'bad', 'ba.', 'ban']

Note that one of the results shown in the output, “ba.”, is an 

instance where the . (dot) metacharacter has matched itself.

 2. Square brackets ([]) as metacharacters

To match any one character among a set of characters, we use 

square brackets ([ ]). Within these square brackets, we define a 

set of characters, where one of these characters must match the 

characters in our text.

Let us understand this with an example. In the following example, 

we try to match all strings that contain the string “ash”, and start 

with any of following characters – ‘c’, ‘r’, ‘b’, ‘m’, ‘d’, ‘h’, or ‘w’.

CODE:

regex=re.compile(r'[crbmdhw]ash')

regex.findall('cash rash bash mash dash hash wash crash ash')

Output:

['cash', 'rash', 'bash', 'mash', 'dash', 'hash', 'wash', 'rash']

Note that the strings “ash” and “crash” are not matched because 

they do not match the criterion (the string needs to start with 

exactly one of the characters defined within the square brackets).
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 3. Question mark (?) metacharacter

This metacharacter is used when you need to match at most one 

occurrence of a character. This means that the character we are 

looking for could be absent in the search string or occur just once. 

Consider the following example, where we try to match strings 

starting with the characters “Austr”, ending with the characters, 

“ia”, and having zero or one occurrence of each the following 

characters – “a”, “l”, “a”, “s”.

CODE:

regex=re.compile(r'Austr[a]?[l]?[a]?[s]?ia')

regex.findall('Austria Australia Australasia Asia')

Output:

['Austria', 'Australia', 'Australasia']

Note that the string “Asia” does not meet this criterion.

 4. Asterisk (*) metacharacter

This metacharacter can match zero or more occurrences of a 

given search pattern. In other words, the search pattern may not 

occur at all in the string, or it can occur any number of times.

Let us understand this with an example, where we try to match all 

strings starting with the string, “abc”, and followed by zero or more 

occurrences of the digit –“1”.

CODE:

re.findall("abc[1]*","abc1 abc111 abc1 abc abc111111111111 abc01")

Output:

['abc1', 'abc111', 'abc1', 'abc', 'abc111111111111', 'abc']

Note that in this step, we have combined the compilation and 

search of the regular expression in one single step.
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 5. Backslash (\) metacharacter

The backslash symbol is used to indicate a character class, which 

is a predefined set of characters. In Table 3-2, the commonly used 

character classes are explained.

Another usage of the backslash symbol: Escaping 
metacharacters

As we have seen, in regular expressions, metacharacters like . 

and *, have special meanings. If we want to use these characters 

in the literal sense, we need to “escape” them by prefixing these 

characters with a \(backslash) sign. For example, to search for 

the text W.H.O, we would need to escape the . (dot) character to 

prevent it from being used as a regular metacharacter.

CODE:

regex=re.compile(r'W\.H\.O')

regex.search('W.H.O norms')

Output:

<re.Match object; span=(0, 5), match='W.H.O'>

Table 3-2. Character Classes

Character Class Characters covered

\d Matches a digit (0–9)

\d Matches any character that is not a digit

\w Matches an alphanumeric character, which could be a lowercase letter (a–z), 

an uppercase letter (a–Z), or a digit (0–9)

\w Matches any character which is not alphanumeric

\s Matches any whitespace character

\s Matches any non-whitespace character
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 6. Plus (+) metacharacter

This metacharacter matches one or more occurrences of a search 

pattern. The following is an example where we try to match all 

strings that start with at least one letter.

CODE:

re.findall("[a-z]+123","a123 b123 123 ab123 xyz123")

Output:

['a123', 'b123', 'ab123', 'xyz123']

 7. Curly braces {} as metacharacters

Using the curly braces and specifying a number within these 

curly braces, we can specify a range or a number representing the 

number of repetitions of the search pattern.

In the following example, we find out all the phone numbers in 

the format “xxx-xxx-xxxx” (three digits, followed by another set of 

three digits, and a final set of four digits, each set separated by a 

“-” sign).

CODE:

regex=re.compile(r'[\d]{3}-[\d]{3}-[\d]{4}')

regex.findall('987-999-8888 99122222 911-911-9111')

Output:

['987-999-8888', '911-911-9111']

Only the first and third numbers in the search string (987-999-

8888, 911-911-9111) match the pattern. The \d metacharacter 

represents a digit.

If we do not have an exact figure for the number of repetitions but 

know the maximum and the minimum number of repetitions, we 

can mention the upper and lower limit within the curly braces. 

In the following example, we search for all strings containing a 

minimum of six characters and a maximum of ten characters.
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CODE:

regex=re.compile(r'[\w]{6,10}')

regex.findall('abcd abcd1234,abc$$$$$,abcd12 abcdef')

Output:

['abcd1234', 'abcd12', 'abcdef']

 8. Dollar ($) metacharacter

This metacharacter matches a pattern if it is present at the end of 

the search string.

In the following example, we use this metacharacter to check if the 

search string ends with a digit.

CODE:

re.search(r'[\d]$','aa*5')

Output:

<re.Match object; span=(3, 4), match="5">

Since the string ends with a number, a match object is returned.

 9. Caret (^) metacharacter

The caret (^) metacharacter looks for a match at the beginning of 

the string.

In the following example, we check if the search string begins with 

a whitespace.

CODE:

re.search(r'^[\s]','   a bird')

Output:

<re.Match object; span=(0, 1), match=' '>

Further reading: Learn more about metacharacters: https://docs.python.org/3.4/

library/re.html#regular-expression-syntax

Let us now discuss another library, Sympy, which is used for solving a variety of math-

based problems.
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 Using Sympy for math problems
SymPy is a library in Python that can be used for solving a wide range of mathematical 

problems. We initially look at how SymPy functions can be used in algebra - for solving 

equations and factorizing expressions. After this, we cover a few applications in set 

theory and calculus.

The SymPy module can be imported using the following statement.

CODE:

import sympy

If you have not already installed the sympy module, go to the Anaconda Prompt and 

enter the following command:

pip install sympy

Let us now use this module for various mathematical problems, beginning with the 

factorization of expressions.

 Factorization of an algebraic expression
Factorization of expressions involves splitting them into simpler expressions or factors. 

Multiplying these factors gives us the original expression.

As an example, an algebraic expression, like x2 − y2, can be factorized as: (x-y)*(x+y).

SymPy provides us functions for factorizing expressions as well as expanding expressions.

An algebraic expression contains variables which are represented as “symbols” in 

SymPy. Before SymPy functions can be applied, a variable in Python must be converted 

into a symbol object, which is created using the symbols class (for defining multiple 

symbols) or the Symbol class (for defining a single symbol). We then import the factor 

and expand functions, and then pass the expression we need to factorize or expand as 

arguments to these functions, as shown in the following.

CODE:

#importing the symbol classes

from sympy import symbols,Symbol

#defining the symbol objects

Chapter 3  regular expressions and Math with python



87

x,y=symbols('x,y')
a=Symbol('a')
#importing the functions
from sympy import factor,expand
#factorizing an expression
factorized_expr=factor(x**2-y**2)
#expanding an expression
expanded_expr=expand((x-y)**3)
print("After factorizing x**2-y**2:",factorized_expr)
print("After expanding (x-y)**3:",expanded_expr)

Output:

After factorizing x**2-y**2: (x - y)*(x + y)
After expanding,(x-y)**3: x**3 - 3*x**2*y + 3*x*y**2 - y**3

 Solving algebraic equations (for one variable)
An algebraic equation contains an expression, with a series of terms, equated to zero. Let 

us now solve the equation x2 − 5x + 6 = 0, using the solve function in SymPy.

We import the solve function from the SymPy library and pass the equation we want 

to solve as an argument to this function, as shown in the following. The dict parameter 

produces the output in a structured format, but including this parameter is optional.

CODE:

#importing the solve function
from sympy import solve
exp=x**2-5*x+6
#using the solve function to solve an equation
solve(exp,dict=True)

Output:

[{x: 2}, {x: 3}]

 Solving simultaneous equations (for two variables)
The solve function can also be used to solve two equations simultaneously, as shown in 

the following code block.
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CODE:

from sympy import symbols,solve

x,y=symbols('x,y')

exp1=2*x-y+4

exp2=3*x+2*y-1

solve((exp1,exp2),dict=True)

Output:

[{x: -1, y: 2}]

Further reading: See more on the solve function:

https://docs.sympy.org/latest/modules/solvers/solvers.html#algebraic-

equations

 Solving expressions entered by the user
Instead of defining the expressions, we can have the user enter expressions using the 

input function. The issue is that the input entered by the user is treated as a string, and 

SymPy functions are unable to process such an input.

The sympify function can be used to convert any expression to a type that is compatible 

with SymPy. Note that the user must enter mathematical operators like *, **, and so on 

when the input is entered. For example, if the expression is 2*x+3, the user cannot skip 

the asterisk symbol while entering the input. If the user enters the input as 2x+3, an error 

would be produced. A code example has been provided in the following code block to 

demonstrate the sympify function.

CODE:

from sympy import sympify,solve

expn=input("Input an expression:")

symp_expn=sympify(expn)

solve(symp_expn,dict=True)

Output:

Input an expression:x**2-9

[{x: -3}, {x: 3}]
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 Solving simultaneous equations graphically
Algebraic equations can also be solved graphically. If the equations are plotted on a 

graph, the point of intersection of the two lines represents the solution.

The plot function from the sympy.plotting module can be used to plot the equations, 

with the two expressions being passed as arguments to this function.

CODE:

from sympy.plotting import plot

%matplotlib inline

plot(x+4,3*x)

solve((x+4-y,3*x-y),dict=True)

Output (shown in Figure 3-1).

Figure 3-1. Solving simultaneous equations with graphs
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 Creating and manipulating sets
A set is a collection of unique elements, and there is a multitude of operations that can 

be operations that can be applied on sets. Sets are represented using Venn diagrams, 

which depict the relationship between two or more sets.

SymPy provides us with functions to create and manipulate sets.

First, you need to import the FiniteSet class from the SymPy package, to work with sets.

CODE:

from sympy import FiniteSet

Now, declare an object of this class to create a set and initialize it using the numbers you 

want in your set.

CODE:

s=FiniteSet(1,2,3)

Output:

{1,2,3}

We can also create a set from a list, as shown in the following statement.

CODE:

l=[1,2,3]

s=FiniteSet(*l)

 Union and intersection of sets
The union of two sets is the list of all distinct elements in both the sets while the 

intersection of two sets includes the elements common to the two sets.

SymPy provides us a means to calculate the union and intersection of two sets using the 

union and intersect functions.

We use the FiniteSet class to create sets, and then apply the union and intersect functions 

on them, as demonstrated below.
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CODE:

s1=FiniteSet(1,2,3)

s2=FiniteSet(2,3,4)

union_set=s1.union(s2)

intersect_set=s1.intersect(s2)

print("Union of the sets is:",union_set)

print("Intersection of the sets is:",intersect_set)

Output:

Union of the sets is: {1, 2, 3, 4}

Intersection of the sets is: {2, 3}

 Finding the probability of an event
The probability of an event is the likelihood of the occurrence of an event, defined 

numerically.

Using sets to define our events and sample space, we can solve questions in probability 

with the help of SymPy functions.

Let us consider a simple example, where we find the probability of finding a multiple of 3 

among the first ten natural numbers.

To answer this, we first define our sample space, “s”, as a set with numbers from 1 to 10. 

Then, we define the event, denoted by the letter ‘a’, which is the occurrence of a multiple 

of 3. We then find the probability of this event (‘a’) by defining the number of elements in 

this event by the number of elements in the sample space using the len function. This is 

demonstrated in the following.

CODE:

s=FiniteSet(1,2,3,4,5,6,7,8,9,10)

a=FiniteSet(3,6,9)

p=len(a)/len(s)

p

Output:

0.3
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Further reading:

See more about the operations that can be performed on sets: https://docs.sympy.

org/latest/modules/sets.html#compound-sets

All information related to sets in SymPy: https://docs.sympy.org/latest/modules/

sets.html#module-sympy.sets.sets

 Solving questions in calculus
We will learn how to use SymPy to calculate the limiting value, derivate, and the definite 

and indefinite integral of a function.

 Limit of a function

The limiting value of the function, f(x), is the value of the function as x approaches a 

particular value.

For example, if we take the function 1/x, we see that as x increases, the value of 1/x goes 

on reducing. As x approaches an infinitely large value, 1/x becomes closer to 0. The 

limiting value is calculated using the SymPy function - limit, as shown below.

CODE:

from sympy import limit,Symbol

x=Symbol('x')

limit(1/x,x,0)

Output:

∞

 Derivative of a function

The derivative of a function defines the rate of change of this function with respect to an 

independent variable. If we take distance as the function and time as the independent 

variable, the derivate of this function is the rate of change of this function with respect to 

time, which is speed.

SymPy has a function, diff, which takes the expression (whose derivative is to be calculated) 

and the independent variable as arguments, and returns the derivative of the expression.
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CODE:

from sympy import Symbol,diff

x=Symbol('x')

#defining the expression to be differentiated

expr=x**2-4

#applying the diff function to this expression

d=diff(expr,x)

d

Output:

2𝑥

 Integral of a function

The integral of a function is also called an anti-derivate. The definite integral of a 

function for two points, say “p” and “q”, is the area under the curve between limits. For an 

indefinite integral, these limits are not defined.

In SymPy, the integral can be calculated using the integrate function.

Let us calculate the indefinite integral of the differential (2x) of the function we saw in 

the last example.

CODE:

from sympy import integrate

#applying the integrate function

integrate(d,x)

Output:

𝑥2

Let us calculate the definite integral of the above output, using the integrate function. 

The arguments accepted by the integrate function include the limits, 1 and 4 (as a tuple), 

along with the variable (symbol), “x”.

CODE:

integrate(d,(x,1,4))
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Output:

15

Further reading: See more on the functions for differentiation, integration, and 

calculating limits: https://docs.sympy.org/latest/tutorial/calculus.html

 Summary

 1. A regular expression is a combination of literals and 

metacharacters and has a variety of applications.

 2. A regular expression can be used to search and replace words, 

locating files in your system, and web crawling or scraping 

programs. It also has applications in data wrangling and cleaning 

operations, in validating the input of the user in email and HTML 

forms, and in search engines.

 3. In Python, the re module provides support for regular expressions. 

The commonly used functions in Python for regular expression 

matching are: findall, search, match, split, and sub.

 4. Metacharacters are characters with special significance in regular 

expressions. Each metacharacter has a specific purpose.

 5. Character classes (beginning with a backslash symbol) are used 

to match a predefined character set, like numbers, alphanumeric 

characters, whitespace characters, and so on.

 6. Sympy is a library used for solving mathematical problems. The 

basic building block used in Sympy is called a “symbol”, which 

represents a variable. We can use the functions of the Sympy 

library to factorize or expand an expression, solve an equation, 

differentiate or integrate a function, and solve problems involving 

sets.

In the next chapter, we will learn another Python module, NumPy, which is used 

for creating arrays, computing statistical aggregation measures, and performing 

computations. The NumPy module also forms the backbone of Pandas, a popular library 

for data wrangling and analysis, which we will discuss in detail in Chapter 6.
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 Review Exercises
Question 1

Select the incorrect statement(s):

 1. A metacharacter is considered a metacharacter even when used in 

sets

 2. The . (dot/period) metacharacter is used to match any (single) 

character except a newline character

 3. Regular expressions are case insensitive

 4. Regular expressions, by default, return only the first match found

 5. None of the above

Question 2

Explain some use cases for regular expressions.

Question 3

What is the purpose of escaping a metacharacter, and which character is used for this?

Question 4

What is the output of the following statement?

re.findall('bond\d{1,3}','bond07 bond007 Bond 07')

Question 5

Match the following metacharacters with their functions:

    1. + a. Matching zero or one character

    2. * b. Matching one or more characters

    3. ? c. Matching character sets

    4. [ ] d. Matching a character at the end of a search string

    5. $ e. Matching zero or more characters

    6. { } f. specifying an interval
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Question 6

Match the following metacharacters (for character classes) with their functions:

    1. \d a. Matching the start or end of a word

    2. \d b. Matching anything other than a whitespace character

    3. \s c. Matching a nondigit

    4. \w d. Matching a digit

    5. \b e. Matching an alphanumeric character

Question 7

Write a program that asks the user to enter a password and validate it. The password 

should satisfy the following requirements:

• Length should be a minimum of six characters

• Contain at least one uppercase alphabet, one lowercase alphabet, 

one special character, and one digit

Question 8

Consider the two expressions y=x**2-9 and y=3*x-11.

Use SymPy functions to solve the following:

• Factorize the expression x**2-9, and list its factors

• Solve the two equations

• Plot the two equations and show the solution graphically

• Differentiate the expression x**2-9, for x=1

• Find the definite integral of the expression 3*x-11 between points x=0 

and x=1
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Answers

Question 1

The incorrect options are options 1 and 3.

Option 1 is incorrect because when a metacharacter is used in a set, it is not considered a 

metacharacter and assumes its literal meaning.

Option 3 is incorrect because regular expressions are case sensitive (“hat” is not the 

same as “HAT”).

The other options are correct.

Question 2

Some use cases of regular expressions include

 1. User input validation in HTML forms. Regular expressions can be 

used to check the user input and ensure that the input is entered 

as per the requirements for various fields in the form.

 2. Web crawling and web scraping: Regular expressions are 

commonly used for searching for general information from 

websites (crawling) and for extracting certain kinds of text or data 

from websites (scraping), for example phone numbers and email 

addresses.

 3. Locating files on your operating system: Using regular 

expressions, you can search for files on your system that have file 

names with the same extension or following some other pattern.

Question 3

We escape a metacharacter to use it in its literal sense. The backslash character (\) 

symbol precedes the metacharacter you want to escape. For instance, the symbol “*” has 

a special meaning in a regular expression. If you want to use this character it without the 

special meaning, you need to use \*

Question 4

Output

['bond07', 'bond007']
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Question 5

1-b; 2-e; 3-a; 4-d; 5-c; 6-f

Question 6

1-d; 2-c; 3-b; 4-e; 5-a

Question 7

CODE:

import re

special_characters=['$','#','@','&','^','*']

while True:

    s=input("Enter your password")

    if len(s)<6:

        print("Enter at least 6 characters in your password")

    else:

        if re.search(r'\d',s) is None:

            print("Your password should contain at least 1 digit")

        elif re.search(r'[A-Z]',s) is None:

            print("Your password should contain at least 1 uppercase letter")

        elif re.search(r'[a-z]',s) is None:

            print("Your password should contain at least 1 lowercase letter")

        elif not any(char in special_characters for char in s):

            print("Your password should contain at least 1 special character")

        else:

            print("The password you entered meets our requirements")

            break

Question 8

CODE:

from sympy import Symbol,symbols,factor,solve,diff,integrate,plot

#creating symbols

x,y=symbols('x,y')

y=x**2-9

y=3*x-11
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#factorizing the expression

factor(x**2-9)

#solving two equations

solve((x**2-9-y,3*x-11-y),dict=True)

#plotting the equations to find the solution

%matplotlib inline

plot(x**2-9-y,3*x-11-y)

#differentiating at a particular point

diff(x**2-9,x).subs({x:1})

#finding the integral between two points

integrate(3*x-11,(x,0,1))
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CHAPTER 4

Descriptive Data  
Analysis Basics
In previous chapters, you were introduced to the Python language – the syntax, 

functions, conditional statements, data types, and different types of containers. You also 

reviewed more advanced concepts like regular expressions, handling of files, and solving 

mathematical problems with Python. Our focus now turns to the meat of the book, 

descriptive data analysis (also called exploratory data analysis).

In descriptive data analysis, we analyze past data with the help of methods like 

summarization, aggregation, and visualization to draw meaningful insights. In contrast, 

when we do predictive analytics, we try to make predictions or forecasts about the future 

using various modeling techniques.

In this chapter, we look at the various types of data, how to classify data, which 

operations to perform based on the category of data, and the workflow of the descriptive 

data analysis process.

 Descriptive data analysis - Steps
Figure 4-1 illustrates the methodology followed in descriptive data analysis, step by step.

https://doi.org/10.1007/978-1-4842-6399-0_4#DOI
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 Let us understand each of these steps in detail.

 1) Data retrieval: Data could be stored in a structured format (like 

databases or spreadsheets) or an unstructured format (like web 

pages, emails, Word documents). After considering parameters 

such as the cost and structure of the data, we need to figure out 

how to retrieve this data. Libraries like Pandas provide functions 

for importing data in a variety of formats.

 2) Cursory data review and problem identification: In this step, 

we form first impressions of the data that we want to analyze. We 

aim to understand each of the individual columns or features, 

the meanings of various abbreviations and notations used in the 

dataset, what the records or data represent, and the units used 

for the data storage. We also need to ask the right questions and 

figure out what we need to do before getting into the nitty-gritty 

of our analysis. These questions may include the following: which 

Retrieving and 
importing data 

Cursory data 
review & problem 

identification

Data wrangling: 
tidying, cleansing , 
transformation & 

enrichment

Data exploration 
and visualization

Publishing and 
presenting findings

Figure 4-1. Steps in descriptive data analysis
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are the features that are relevant for analysis, is there an increasing 

or decreasing trend in individual columns, do we see any missing 

values, are we trying to develop a forecast and predict one feature, 

and so on.

 3) Data wrangling: This step is the crux of data analysis and the 

most time-consuming activity, with data analysts and scientists 

spending approximately 80% of their time on this.

Data in its raw form is often unsuitable for analysis due to any of 

the following reasons: presence of missing and redundant values, 

outliers, incorrect data types, presence of extraneous data, more 

than one unit of measurement being used, data being scattered 

across different sources, and columns not being correctly identified.

Data wrangling or munging is the process of transforming raw 

data so that it is suitable for mathematical processing and plotting 

graphs. It involves removing or substituting missing values and 

incomplete entries, getting rid of filler values like semicolons 

and commas, filtering the data, changing data types, eliminating 

redundancy, and merging data with other sources.

Data wrangling comprises tidying, cleansing, and enriching data. 

In data tidying, we identify the variables in our dataset and map 

them to columns. We also structure data along the right axis and 

ensure that the rows contain observations and not features. The 

purpose of converting data into a tidy form is to have data in a 

structure that facilitates ease of analysis. Data cleansing involves 

dealing with missing values, incorrect data types, outliers, and 

wrongly entered data. In data enrichment, we may add data from 

other sources and create new columns or features that may be 

helpful for our analysis.

 4) Data exploration and visualization: After the data has been 

prepared, the next step involves finding patterns in data, 

summarizing key characteristics, and understanding relationships 

among various features. With visualization, you can achieve all of 

this, and also lucidly present critical findings. Python libraries for 

visualization include Matplotlib, Seaborn, and Pandas.
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 5) Presenting and publishing our analysis: Jupyter notebooks 

serve the dual purpose of both executing our code and serving 

as a platform to provide a high-level summary of our analysis. By 

adding notes, headings, annotations, and images, you can spruce 

up your notebook to make it presentable to a broader audience. 

The notebook can be downloaded in a variety of formats, like PDF, 

which can later be shared with others for review.

We now move on to the various structures and levels of data.

 Structure of data
The data that we need to analyze could have any of the following structures, 

demonstrated in Figure 4-2.

Classifying data into different levels
There are broadly two levels of data: Continuous and Categorical. Continuous data can 

further be classified as ratio and interval, while categorical data can be either nominal or 

ordinal. The levels of data are demonstrated in Figure 4-3.

Data

Structured Data: Is arranged in the 
form of rows and columns. Examples: 

Spreadsheets, CSV/Excel files, 
relational databases

Unstructured Data: Lacks a structure 
or form. Examples: photos, videos, 

web pages , documents

Semi-structured Data: Not strucured 
like data in relational databases but 

has some properties like tags for 
easier analysis: Example: JSON, XML

Figure 4-2. Structure of data
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The following are some essential points to note:

• Numeric values for categorical variables: Categorical data is not 

restricted to non-numeric values. For example, the rank of a student, 

which could take values like 1/2/3 and so on, is an example of an 

ordinal (categorical) variable that contains numbers as values. 

However, these numbers do not have mathematical significance; for 

instance, it would not make sense to find the average rank.

• Significance of a true zero point: We have noted that interval 

variables do not have an absolute zero as a reference point, while 

ratio variables have a valid zero point. An absolute zero denotes the 

absence of a value. For example, when we say that variables like 

height and weight are ratio variables, it would mean that a value of 0 

for any of these variables would mean an invalid or nonexistent data 

point. For an interval variable like temperature (when measured in 

degrees Celsius or Fahrenheit), a value of 0 does not mean that data 

Categorical/Discrete 
or Qualitative Data

Nominal: Take a finite set of 
values, that cannot be ordered.
Examples: Blood group, gender, 

color, marital status. 

Ordinal: Accept a finite set of 
values that can be ordered. 

Examples: 
grades(‘A’,’B’,’C’),income 

level(‘low’,’medium’,’high’) 

Continuous or 
Quantitative Data

Interval: Can take infinitely many 
values. Difference between 
values is of significance. No 

absolute or true zero is defined.
Examples: Temperature(in

degrees Fahrenheit and Celsius),
pH value. 

Ratio: Accept infinitely many 
values, and have an absolute 
zero defined. Ratios between 

any two values is of significance. 
Examples: 

Temperature(measured in 
kelvin), height, age, weight, price 

Figure 4-3. Levels of data
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is absent. 0 is just one among the values that the temperature variable 

can assume. On the other hand, temperature, when measured in the 

Kelvin scale, is a ratio variable since there is an absolute zero defined 

for this scale.

• Identifying interval variables: Interval variables do not have an 

absolute zero as a reference point, but identifying variables that have 

this characteristic may not be apparent. Whenever we talk about the 

percentage change in a figure, it is relative to its previous value. For 

instance, the percentage change in inflation or unemployment is 

calculated with the last value in time as the reference point. These are 

instances of interval data. Another example of an interval variable is the 

score obtained in a standardized test like the GRE (Graduate Record 

Exam). The minimum score is 260, and the maximum score is 340. The 

scoring is relative and does not start from 0. With interval data, while 

you can perform addition and subtraction operations. You cannot 

divide or multiply values (operations that are permissible for ratio data).

Visualizing various levels of data
Whenever you need to analyze data, first understand if the data is structured or 

unstructured. If the data is unstructured, convert it to a structured form with rows and 

columns, which makes it easier for further analysis using libraries like Pandas. Once you 

have data in this format, categorize each of the features or columns into the four levels of 

data and perform your analysis accordingly.

Note that in this chapter, we only aim to understand how to categorize the variables in 

a dataset and identify the operations and plots that would apply for each category. The 

actual code that needs to be written to visualize the data is explained in Chapter 7.

We look at how to classify the features and perform various operations using the famous 

Titanic dataset. The dataset can be imported from here:

https://github.com/DataRepo2019/Data- files/blob/master/titanic.csv

Background information about the dataset: The RMS Titanic, a British passenger ship, 

sank on its maiden voyage from Southampton to New York on 15th April 1912, after it 

collided with an iceberg. Out of the 2,224 passengers, 1,500 died, making this event a 
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tragedy of epic proportions. This dataset describes the survival status of the passengers 

and other details about them, including their class, name, age, and the number of relatives.

Figure 4-4 provides a snapshot of this dataset.

The features in this dataset, classified according to the data level, are captured in 

Table 4-1.

Table 4-1. Titanic Dataset – Data Levels

Feature in the 
dataset

What it represents Level of data

passengerid identity number of passenger nominal

pclass passenger class (1:1st class; 2: 2nd class; 3: 3rd 

class), passenger class is used as a measure of the 

socioeconomic status of the passenger

Ordinal

survived survival status (0:not survived; 1:survived) nominal

name name of passenger nominal

sibsp number of siblings/spouses aboard ratio

ticket ticket number nominal

Cabin Cabin number nominal

sex Gender of passenger nominal

age age ratio

parch number of parents/children aboard ratio

Fare passenger fare (British pound) ratio

embarked port of embarkation (with C being Cherbourg, Q 

being Queenstown, and s being southampton)

nominal

Figure 4-4. Titanic dataset
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Let us now understand the rationale behind the classification of the features in this 

dataset.

 1. Nominal variables: Variables like “PassengerId”, “Survived”, 

“Name”, “Sex”, “Cabin”, and “Embarked” do not have any intrinsic 

ordering of their values. Note that some of these variables have 

numeric values, but these values are finite in number. We cannot 

perform an arithmetic operation on these values like addition, 

subtraction, multiplication, or division. One operation that is 

common with nominal variables is counting. A commonly used 

method in Pandas, value_counts (discussed in the next chapter), is 

used to determine the number of values per each unique category 

of the nominal variable. We can also find the mode (the most 

frequently occurring value). The bar graph is frequently used to 

visualize nominal data (pie charts can also be used), as shown in 

Figure 4-5.

 2. Ordinal variables: “Pclass” (or Passenger Class) is an ordinal 

variable since its values follow an order. A value of 1 is equivalent 

to first class, 2 is equivalent to the second class, and so on. These 

class values are indicative of socioeconomic status.

Figure 4-5. Bar graph showing the count of each category
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We can find out the median value and percentiles. We can also 

count the number of values in each category, calculate the mode, 

and use plots like bar graphs and pie charts, just as we did for 

nominal variables.

In Figure 4-6, we have used a pie chart for the ordinal variable 

“Pclass”.

 3. Ratio Data: The “Age” and “Fare” variables are examples of ratio 

data, with the value zero as a reference point. With this type of 

data, we can perform a wide range of mathematical operations.

For example, we can add all the fares and divide it by the total 

number of passengers to find the mean. We can also find out the 

standard deviation. A histogram, as shown in Figure 4-7, can be 

used to visualize this kind of continuous data to understand the 

distribution.

Figure 4-6. Pie chart showing the percentage distribution of each class
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In the preceding plots, we looked at the graphs for plotting individual categorical or 

continuous variables. In the following section, we understand which graphs to use when 

we have more than one variable or a combination of variables belong to different scales 

or levels.

 Plotting mixed data
In this section, we’ll consider three scenarios, each of which has two variables that may 

or may not belong to the same level and discuss which plot to use for each scenario 

(using the same Titanic dataset).

 1. One categorical and one continuous variable: A box plot shows 

the distribution, symmetry, and outliers for a continuous variable. 

A box plot can also show the continuous variable against a 

categorical variable. In Figure 4-8, the distribution of ‘Age’ (a ratio 

variable) for each value of the nominal variable – ‘Survived’ (0 is 

the value for passengers who did not survive and 1 is the value for 

those who did).

Figure 4-7. Histogram showing the distribution of a ratio variable
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 2. Both continuous variables: Scatter plots are used to depict the 

relationship between two continuous variables. In Figure 4-9, 

we plot two ratio variables, ‘Age’ and ‘Fare’, on the x and y axes to 

produce a scatter plot.

Figure 4-8. Box plot, showing the distribution of age for different categories

Figure 4-9. Scatter plot
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 3. Both categorical variables: Using a clustered bar chart (Figure 4- 10), 

you can combine two categorical variables with the bars depicted 

side by side to represent every combination of values for the two 

variables.

We can also use a stacked bar chart to plot two categorical variables. Consider the 

following stacked bar chart, shown in Figure 4-11, plotting two categorical variables – 

“Pclass” and “Survived”.

Figure 4-10. Clustered bar chart

Figure 4-11. Stacked bar chart
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In summary, you can use a scatter plot for two continuous variables, a stacked or 

clustered bar chart for two categorical variables, and a box plot when you want to display 

a continuous variable across different values of a categorical variable.

 Summary

 1. Descriptive data analysis is a five-step process that uses past data 

and follows a stepwise methodology. The core of this process - 

data wrangling - involves dealing with missing values and 

other anomalies. It also deals with restructuring, merging, and 

transformations.

 2. Data can be classified based on its structure (structured, 

unstructured, or semistructured) or based on the type of values it 

contains (categorical or continuous).

 3. Categorical data can be classified as nominal and ordinal 

(depending on whether the values can be ordered or not). 

Continuous data can be of either ratio or interval type (depending 

on whether the data has 0 as an absolute reference point).

 4. The kind of mathematical operations and graphical plots that can 

be used varies, depending on the level of data.

Now that you have gained a high-level perspective of the descriptive data analysis 

process, we get into the nitty-gritty of data analysis in the next chapter. We look at how 

to write code for various tasks that we perform in data wrangling and preparation in the 

following chapter that covers the Pandas library.

 Review Exercises
Question 1

Classify the following variables based on the type of data.

• pH scale

• Language proficiency
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• Likert Scale (used in surveys)

• Work experience

• Time of the day

• Social security number

• Distance

• Year of birth

Question 2

Arrange the following five steps in the order in which they occur during the data analysis 

process.

 1. Visualization

 2. Publishing and presentation of analysis

 3. Importing data

 4. Data wrangling

 5. Problem statement formulation

Question 3

For each of the following operations or statistical measures, list the compatible data 

types.

• Division

• Addition

• Multiplication

• Subtraction

• Mean

• Median

• Mode

• Standard deviation

• Range
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Question 4

For each of the following list the compatible data types.

• Bar graphs

• Histograms

• Pie charts

• Scatter plots

• Stacked bar charts

Answers

Question 1

• pH scale: Interval

The pH scale does not have an absolute zero point. While the 

values can be compared, we cannot calculate ratios.

• Language proficiency: Ordinal

Proficiency in a language has various levels like “beginner”, 

“intermediate”, and “advanced” that are ordered, and hence come 

under the ordinal scale.

• Likert Scale (used in surveys): Ordinal.

The Likert Scale is often used in surveys, with values like “not 

satisfied”, “satisfied”, and “very satisfied”. These values form a 

logical order, and therefore any variable representing the Likert 

Scale is an ordinal variable.

• Work experience: Ratio

As there is an absolute zero for this variable and one can perform 

arithmetic operations, including calculation of ratios, this variable 

is a ratio variable.

• Time of the day: Interval

Time (on a 12-hour scale) does not have an absolute zero point. 

We can calculate the difference between two points of time, but 

cannot calculate ratios.
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• Social security number: Nominal

Values for identifiers like social security numbers are not ordered 

and do not lend themselves to mathematical operations.

• Distance: Ratio

With a reference point as 0 and values that can be added, 

subtracted, multiplied, and divided, distance is a ratio variable.

• Year of birth: Interval

There is no absolute zero point for such a variable. You can calculate 

the difference between two years, but we cannot find out ratios.

Question 2

The correct order is 3, 5, 4, 1, 2

Question 3

• Division: Ratio data

• Addition: Ratio data, interval data

• Multiplication: Ratio data

• Subtraction: Interval data, ratio data

• Mean: Ratio data, interval data

• Median: Ordinal data, ratio data, interval data

• Mode: All four levels of data (ratio, interval, nominal, and ordinal)

• Standard deviation: Ratio and interval data

• Range: Ratio and interval data

Question 4

• Box plots: Ordinal, ratio, interval

• Histograms: Ratio, interval

• Pie charts: Nominal, ordinal

• Scatter plots: Ratio, interval

• Stacked bar charts: Nominal, ordinal
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CHAPTER 5

Working with NumPy Arrays
NumPy, or Numerical Python, is a Python-based library for mathematical computations 

and processing arrays. Python does not support data structures in more than one 

dimension, with containers like lists, tuples, and dictionaries being unidimensional. The 

inbuilt data types and containers in Python cannot be restructured into more than one 

dimension, and also do not lend themselves to complex computations. These drawbacks 

are limitations for some of the tasks involved while analyzing data and building models, 

which makes arrays a vital data structure.

NumPy arrays can be reshaped and utilize the principle of vectorization (where an 

operation applied to the array reflects on all its elements).

In the previous chapter, we looked at the basic concepts used in descriptive data 

analysis. NumPy is an integral part of many of the tasks we perform in data analysis, 

serving as the backbone of many of the functions and data types used in Pandas. In 

this chapter, we understand how to create NumPy arrays using a variety of methods, 

combine arrays, and slice, reshape, and perform computations on them.

 Getting familiar with arrays and NumPy functions
Here, we look at various methods of creating and combining arrays, along with 

commonly used NumPy functions.

Importing the NumPy package

The NumPy package has to be imported before its functions can be used, as shown in 

the following. The shorthand notation or alias for NumPy is np.

CODE:

import numpy as np

If you have not already installed NumPy, go to the Anaconda Prompt and enter the 

following command:

pip install numpy

https://doi.org/10.1007/978-1-4842-6399-0_5#DOI
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Creating an array
The basic unit in NumPy is an array. In Table 5-1, we look at the various methods for 

creating an array.

Table 5-1. Methods of Creating NumPy Arrays

Method Example

Creating an array 

from a list

The np.array function is used to create a one-dimensional or multidimensional 

array from a list.

CODE:

np.array([[1,2,3],[4,5,6]])

Output:

array([[1, 2, 3],

              [4, 5, 6]])

Creating an array 

from a range

The np.arange function is used to create a range of integers.

CODE:

np.arange(0,9)

#Alternate syntax:

np.arange(9)

#Generates 9 equally spaced integers starting from 0

Output:

array([0, 1, 2, 3, 4, 5, 6, 7, 8])

Creating an array 

of equally spaced 

numbers

The np.linspace function creates a given number of equally spaced values 

between two limits.

CODE:

np.linspace(1,6,5)

# This generates five equally spaced values between 1 and 6

Output:

array([1.  , 2.25, 3.5 , 4.75, 6.  ])

(continued)
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Table 5-1. (continued)

Method Example

Creating an array 

of zeros

The np.zeros function creates an array with a given number of rows and 

columns, with only one value throughout the array – “0”.

CODE:

np.zeros((4,2))

#Creates a 4*2 array with all values as 0

Output:

array([[0., 0.],

       [0., 0.],

       [0., 0.],

       [0., 0.]])

Creating an array 

of ones

The np.ones function is similar to the np.zeros function, the difference being 

that the value repeated throughout the array is “1”.

CODE:

np.ones((2,3))

#creates a 2*3 array with all values as 1

Output:

array([[1., 1., 1.],

       [1., 1., 1.]])

Creating an array 

with a given 

value repeated 

throughout

The np.full function creates an array using the value specified by the user.

CODE:

np.full((2,2),3)

#Creates a 2*2 array with all values as 3

Output:

array([[3, 3],

       [3, 3]])

(continued)
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One point to note is that arrays are homogeneous data structures, unlike containers (like 

lists, tuples, and dictionaries); that is, an array should contain items of the same data 

type. For example, we cannot have an array containing integers, strings, and floating- 

point (decimal) values together. While defining a NumPy array with items of different 

data types does not lead to an error while you write code, it should be avoided.

Table 5-1. (continued)

Method Example

Creating an empty 

array

The np.empty function generates an array, without any particular initial value 

(array is randomly initialized).

CODE:

np.empty((2,2))

#creates a 2*2 array filled with random values

Output:

array([[1.31456805e-311, 9.34839993e+025],

       [2.15196058e-013, 2.00166813e-090]])

Creating an array 

from a repeating 

list

The np.repeat function creates an array from a list that is repeated a given 

number of times.

CODE:

np.repeat([1,2,3],3)

#Will repeat each value in the list 3 times

Output:

array([1, 1, 1, 2, 2, 2, 3, 3, 3])

Creating an 

array of random 

integers

The randint function (from the np.random module) generates an array containing 

random numbers.

CODE:

np.random.randint(1,100,5)

#Will generate an array with 5 random numbers between 1 and 100

Output:

array([34, 69, 67,  3, 96])
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Now that we have looked at the various ways of defining an array, we look at the 

operations that we can perform on them, starting with the reshaping of an array.

 Reshaping an array
Reshaping an array is the process of changing the dimensionality of an array. The 

NumPy method “reshape” is important and is commonly used to convert a 1-D array to a 

multidimensional one.

Consider a simple 1-D array containing ten elements, as shown in the following statement. 

CODE:

x=np.arange(0,10)

Output:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

We can reshape the 1-D array “x” into a 2-D array with five rows and two columns:

CODE:

x.reshape(5,2)

Output:

array([[0, 1],

       [2, 3],

       [4, 5],

       [6, 7],

       [8, 9]])

As another example, consider the following array:

CODE:

x=np.arange(0,12)

x

Output:

array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
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Now, apply the reshape method to create two subarrays - each with three rows and 

two columns:

CODE:

x=np.arange(0,12).reshape(2,3,2)

x

Output:

array([[[ 0,  1],

        [ 2,  3],

        [ 4,  5]],

       [[ 6,  7],

        [ 8,  9],

        [10, 11]]])

The product of the dimensions of the reshaped array should equal the number of elements in 

the original array. In this case, the dimensions of the array (2,3,2) when multiplied equal 12, 

the number of elements in the array. If this condition is not satisfied, reshaping fails to work.

Apart from the reshape method, we can also use the shape attribute to change the shape 

or dimensions of an array:

CODE:

x.shape=(5,2)

#5 is the number of rows, 2 is the number of columns

Note that the shape attribute makes changes to the original array, while the reshape 

method does not alter the array.

The reshaping process can be reversed using the “ravel” method:

CODE:

x=np.arange(0,12).reshape(2,3,2)

x.ravel()

Output:

array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
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Further reading: See more on array creation routines: https://numpy.org/doc/stable/

reference/routines.array- creation.html#

The logical structure of arrays

The cartesian coordinate system, which is used to specify the location of a point, consists 

of a plane with two perpendicular lines known as the “x” and “y” axes. The position of a 

point is specified using its x and y coordinates. This principle of using axes to represent 

different dimensions is also used in arrays.

A 1-D array has one axis (axis=0) as it has one dimension, as shown in Figure 5-1.

A 2-D array has an axis value of “0” to represent the row axis and a value of “1” to 

represent the column axis, as shown in Figure 5-2.

A 3-D array has three axes, representing three dimensions, as shown in Figure 5-3.

Extending the logic, an array with “n” dimensions has “n” axes.

axis=0

Figure 5-1. 1-D array representation

axis=0 

axis=1

Figure 5-2. A 2-D array representation

axis=0 

axis=1
axis=2

Figure 5-3. A 3-D array representation
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Note that the preceding diagrams represent only the logical structure of arrays. When 

it comes to storage in the memory, elements in an array occupy contiguous locations, 

regardless of the dimensions.

Data type of a NumPy array

The type function can be used to determine the type of a NumPy array:

CODE:

type(np.array([1,2,3,4]))

Output:

numpy.ndarray

Modifying arrays

The length of an array is set when you define it. Let us consider the following array, “a”:

CODE:

a=np.array([0,1,2])

The preceding code statement would create an array of length 3. The array length is not 

modifiable after this. In other words, we cannot add a new element to the array after its 

definition.

The following statement, where we try to add a fourth element to this array, would lead 

to an error:

CODE:

a[3]=4

Output:

---------------------------------------------------------------------------

IndexErrorTraceback (most recent call last)

<ipython-input-215-94b083a55c38> in <module>

----> 1a[3]=4

IndexError: index 3 is out of bounds for axis 0 with size 3

---------------------------------------------------------------------------
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However, you can change the value of an existing element. The following statement 

would work fine:

CODE:

a[0]=2

In summary, while you can modify the values of existing items in an array, you cannot 

add new items to it.

Now that we have seen how to define and reshape an array, we look at the ways in which 

we can combine arrays.

 Combining arrays
There are three methods for combining arrays: appending, concatenation, and stacking.

 1. Appending involves joining one array at the end of another array. 

The np.append function is used to append two arrays.

CODE:

x=np.array([[1,2],[3,4]])

y=np.array([[6,7,8],[9,10,11]])

np.append(x,y)

Output:

array([ 1,  2,  3,  4,  6,  7,  8,  9, 10, 11])

 2. Concatenation involves joining arrays along an axis (either 

vertical or horizontal). The np.concatenate function concatenates 

arrays.

CODE:

x=np.array([[1,2],[3,4]])

y=np.array([[6,7],[9,10]])

np.concatenate((x,y))
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Output:

array([[ 1,  2],

       [ 3,  4],

       [ 6,  7],

       [ 9, 10]])

By default, the concatenate function joins the arrays vertically 

(along the “0” axis). If you want the arrays to be joined side by 

side, the “axis” parameter needs to be added with the value as “1”:

CODE:

np.concatenate((x,y),axis=1)

The append function uses the concatenate function internally.

 3. Stacking: Stacking can be of two types, vertical or horizontal, as 

explained in the following.

Vertical stacking

As the name indicates, vertical stacking stacks arrays one below 

the other. The number of elements in each subarray of the arrays 

being stacked vertically must be the same for vertical stacking to 

work. The np.vstack function is used for vertical stacking.

CODE:

x=np.array([[1,2],[3,4]])

y=np.array([[6,7],[8,9],[10,11]])

np.vstack((x,y))

Output:

array([[ 1,  2],

       [ 3,  4],

       [ 6,  7],

       [ 8,  9],

       [10, 11]])
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See how there are two elements in each subarray of the arrays “x” 

and “y”.

Horizontal stacking

Horizontal stacking stacks arrays side by side. The number of 

subarrays needs to be the same for each of the arrays being 

horizontally stacked. The np.hstack function is used for horizontal 

stacking.

In the following example, we have two subarrays in each of the 

arrays, “x” and “y”.

CODE:

x=np.array([[1,2],[3,4]])

y=np.array([[6,7,8],[9,10,11]])

np.hstack((x,y))

Output:

array([[ 1,  2,  6,  7,  8],

[ 3,  4,  9, 10, 11]])

In the next section, we look at how to use logical operators to test for conditions in 

NumPy arrays.

 Testing for conditions
NumPy uses logical operators (&,|,~), and functions like np.any, np.all, and np.where 

to check for conditions. The elements in the array (or their indexes) that satisfy the 

condition are returned.

Consider the following array:

CODE:

x=np.linspace(1,50,10)

x
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Output:

array([ 1.        ,  6.44444444, 11.88888889, 17.33333333, 22.77777778,

       28.22222222, 33.66666667, 39.11111111, 44.55555556, 50.        ])

Let us check for the following conditions and see which elements satisfy them:

• Checking if all the values satisfy a given condition: The np.all 

function returns the value “True” only if the condition holds for all 

the items of the array, as shown in the following example.

CODE:

np.all(x>20)

#returns True only if all the elements are greater than 20

Output:

False

• Checking if any of the values in the array satisfy a condition: The np.

any function returns the value “True” if any of the items satisfy the 

condition.

CODE:

np.any(x>20)

#returns True if any one element in the array is greater than 20

Output:

True

• Returning the index of the items satisfy a condition: The np.where 

function returns the index of the values in the array satisfying a given 

condition.

CODE:

np.where(x<10)

#returns the index of elements that are less than 10
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Output:

(array([0, 1], dtype=int64),)

The np.where function is also useful for selectively retrieving or 

filtering values in an array. For example, we can retrieve those items 

that satisfy the condition “x<10”, using the following code statement:

CODE:

x[np.where(x<10)]

Output:

array([1.        , 6.44444444])

• Checking for more than one condition:

NumPy uses the following Boolean operators to combine conditions:

• & operator (equivalent to and operator in Python): Returns True 

when all conditions are satisfied:

CODE:

x[(x>10) & (x<50)]

#Returns all items that have a value greater than 10 and less 

than 50

Output:

array([11.88888889, 17.33333333, 22.77777778, 28.22222222, 

33.66666667,

39.11111111, 44.55555556])

• | operator (equivalent to or operator in Python): Returns True when 

any one condition, from a given set of conditions, is satisfied.

CODE:

x[(x>10) | (x<5)]

#Returns all items that have a value greater than 10 or less 

than 5
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Output:

array([ 1.        , 11.88888889, 17.33333333, 22.77777778, 

28.22222222,

        33.66666667, 39.11111111, 44.55555556, 50.        ])

• ~ operator (equivalent to not operator in Python) for negating a 

condition.

CODE:

x[~(x<8)]

#Returns all items greater than 8

Output:

array([11.88888889, 17.33333333, 22.77777778, 28.22222222, 

33.66666667,

39.11111111, 44.55555556, 50.        ])

We now move on to some other important concepts in NumPy like broadcasting and 

vectorization. We also discuss the use of arithmetic operators with NumPy arrays.

 Broadcasting, vectorization, and arithmetic 
operations
Broadcasting

When we say that two arrays can be broadcast together, this means that their dimensions 

are compatible for performing arithmetic operations on them. Arrays can be combined 

using arithmetic operators as long as the rules of broadcasting are followed, which are 

explained in the following.

 1. Both the arrays have the same dimensions.

In this example, both arrays have the dimensions 2*6.

CODE:

x=np.arange(0,12).reshape(2,6)

y=np.arange(5,17).reshape(2,6)

x*y
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Output:

array([[  0,   6,  14,  24,  36,  50],

[ 66,  84, 104, 126, 150, 176]])

 2. One of the arrays is a one-element array.

In this example, the second array has only one element.

CODE:

x=np.arange(0,12).reshape(2,6)

y=np.array([1])

x-y

Output:

array([[-1,  0,  1,  2,  3,  4],

[ 5,  6,  7,  8,  9, 10]])

 3. An array and a scalar (a single value) are combined.

In this example, the variable y is used as a scalar value in the 

operation.

CODE:

x=np.arange(0,12).reshape(2,6)

y=2

x/y

Output:

array([[0. , 0.5, 1. , 1.5, 2. , 2.5],

[3. , 3.5, 4. , 4.5, 5. , 5.5]])

We can add, subtract, multiply, and divide arrays using either the arithmetic operators 

(+/-/* and /), or the functions (np.add, np.subtract, np.multiply, and np.divide)

CODE:

np.add(x,y)

#Or

x+y
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Output:

array([[ 6,  8],

       [11, 13]])

Similarly, you can use np.subtract (or the – operator) for subtraction, np.multiply (or the 

* operator) for multiplication, and np.divide (or the / operator) for division.

Further reading: See more on array broadcasting: https://numpy.org/doc/stable/

user/basics.broadcasting.html

Vectorization

Using the principle of vectorization, you can also conveniently apply arithmetic 

operators on each object in the array, instead of iterating through the elements, which is 

what you would do for applying operations to items in a container like a list.

CODE:

x=np.array([2,4,6,8])

x/2

#divides each element by 2

Output:

array([1., 2., 3., 4.])

Dot product

We can obtain the dot product of two arrays, which is different from multiplying two 

arrays. Multiplying two arrays gives an element-wise product, while a dot product of two 

arrays computes the inner product of the elements.

If we take two arrays,

|PQ|

|RS|

and

|UV|

|WX|
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The dot product is given by

|PQ| . |UV| = |P*U+Q*VP*V+Q*X|

|R S|   |WX|   |R*U+S*WR*V+S*X|

Multiplying the arrays gives the following result:

|PQ| * |UV| = |P*U Q*V|

|R S|   |WX|   |R*WS*X|

As discussed earlier, arrays can be multiplied using the multiplication operator (*) or the 

np.multiply function.

The NumPy function for obtaining the dot product is np.dot.

CODE:

np.dot(x,y)

Output:

array([[21, 24],

       [47, 54]])

We can also combine an array with a scalar.

In the next topic, we discuss how to obtain the various properties or attributes of an array.

 Obtaining the properties of an array
Array properties like their size, dimensions, number of elements, and memory usage can 

be found out using attributes.

Consider the following array:

x=np.arange(0,10).reshape(5,2)

• The size property gives the number of elements in the array.

CODE:

x.size
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Output:

10

• The ndim property gives the number of dimensions.

CODE:

x.ndim

Output:

2

• The memory (total number of bytes) occupied by an array can be 

calculated using the nbytes attribute.

CODE:

x.nbytes

Output:

40

Each element occupies 4 bytes (since this is an int array); 

therefore, ten elements occupy 40 bytes

• The data type of elements in this array can be calculated using the 

dtype attribute.

CODE:

x.dtype

Output:

dtype('int32')

Note the difference between the dtype and the type of an array. The type function gives 

the type of the container object (in this case, the type is ndarray), and dtype, which is an 

attribute, gives the type of individual items in the array.

Further reading: Learn more about the list of data types supported by NumPy:

https://numpy.org/devdocs/user/basics.types.html
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Transposing an array

The transpose of an array is its mirror image.

Consider the following array:

CODE:

x=np.arange(0,10).reshape(5,2)

There are two methods for transposing an array:

• We can use the np.transpose method.

CODE:

np.transpose(x)

• Alternatively, we can use the T attribute to obtain the transpose.

CODE:

x.T

Both methods give the same output:

array([[0, 2, 4, 6, 8],

[1, 3, 5, 7, 9]])

Masked arrays

Let us say that you are using a NumPy array to store the scores obtained in an exam for a 

class of students. While you have data for most students, there are some missing values. 

A masked array, which is used for storing data with invalid or missing entries, is useful in 

such scenarios.

A masked array can be defined by creating an object of the “ma.masked_array” class 

(part of the numpy.ma module):

CODE:

import numpy.ma as ma

x=ma.masked_array([87,99,100,76,0],[0,0,0,0,1])

#The last element is invalid or masked

x[4]
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Output:

Masked

Two arrays are passed as arguments to the ma.masked_array class – one containing the 

values of the items in the array, and one containing the mask values. A mask value of “0” 

indicates that the corresponding item value is valid, and a mask value of “1” indicates 

that it is missing or invalid. For instance, in the preceding example, the values 87, 99, 

100, and 76 are valid since they have a mask value of “0”. The last item in the first array 

(0), with a mask value of “1”, is invalid.

The mask values can also be defined using the mask attribute.

CODE:

x=ma.array([87,99,100,76,0])

x.mask=[0,0,0,0,1]

To unmask an element, assign it a value:

CODE:

x[4]=82

The mask value for this element changes to 1 since it is no longer invalid.

Let us now look at how to create subsets from an array.

 Slicing or selecting a subset of data
Slicing of arrays is similar to the slicing of strings and lists in Python. A slice is a subset 

of a data structure (in this case, an array), which can represent a set of values or a single 

value.

Consider the following array:

CODE:

x=np.arange(0,10).reshape(5,2)
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Output:

array([[0, 1],

       [2, 3],

       [4, 5],

       [6, 7],

       [8, 9]])

Some examples of slicing are given in the following.

• Select the first subarray [0,1]:

CODE:

x[0]

Output:

array([0, 1])

• Select the second column:

CODE:

x[:,1]

#This will select all the rows and the 2ndcolumn (has an  

index of 1)

Output:

array([1, 3, 5, 7, 9])

• Select the element at the fourth row and first column:

CODE:

x[3,0]

Output:

6

• We can also create a slice based on a condition:

CODE:

x[x<5]
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Output:

array([0, 1, 2, 3, 4])

When we slice an array, the original array is not modified (a copy of the array is created).

Now that we have learned about creating and working with arrays, we move on to 

another important application of NumPy – calculation of statistical measures using 

various functions.

 Obtaining descriptive statistics/aggregate 
measures
There are methods in NumPy that enable simplification of complex calculations and 

determination of aggregate measures.

Let us find the measures of central tendency (the mean, variance, standard deviation), 

sum, cumulative sum, and the maximum value for this array:

CODE:

x=np.arange(0,10).reshape(5,2)

#mean

x.mean()

Output:

4.5

Finding out the variance:

CODE:

x.var() #variance

Output:

2.9166666666666665
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Calculating the standard deviation:

CODE:

x.std()  #standard deviation

Output:

1.707825127659933

Calculating the sum for each column:

CODE:

x.sum(axis=0) #calculates the column-wise sum

Output:

array([ 6, 15])

Calculating the cumulative sum:

CODE:

x.cumsum()

#calculates the sum of 2 elements at a time and adds this sum to the next 

element

Output:

array([ 0,  1,  3,  6, 10, 15, 21, 28, 36, 45], dtype=int32)

Finding out the maximum value in an array:

CODE:

x.max()

Output:

9

Before concluding the chapter, let us learn about matrices – another data structure 

supported by the NumPy package.
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 Matrices
A matrix is a two-dimensional data structure, while an array can consist of any number 

of dimensions.

With the np.matrix class, we can create a matrix object, using the following syntax:

CODE:

x=np.matrix([[2,3],[33,3],[4,1]])

#OR

x=np.matrix('2,3;33,3;4,1') #Using semicolons to separate the rows

x

Output:

matrix([[ 2,  3],

        [33,  3],

        [ 4,  1]])

Most of the functions that can be applied to arrays can be used on matrices as well. 

Matrices use some arithmetic operators that make matrix operations more intuitive. For 

instance, we can use the * operator to get the dot product of two matrices that replicates 

the functionality of the np.dot function.

Since matrices are just one specific case of arrays and might be deprecated in future 

releases of NumPy, it is generally preferable to use NumPy arrays.

 Summary
• NumPy is a library used for mathematical computations and creating 

data structures, called arrays, that can contain any number of 

dimensions.

• There are multiple ways for creating an array, and arrays can also be 

reshaped to add more dimensions or change the existing dimensions.
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• Arrays support vectorization that provides a quick and intuitive 

method to apply arithmetic operators on all the elements of the array.

• A variety of statistical and aggregate measures can be calculated 

using simple NumPy functions, like np.mean, np.var, np.std, and so 

on.

 Review Exercises
Question 1

Create the following array:

array([[[ 1,  2,  3,  4],

        [ 5,  6,  7,  8]],

       [[ 9, 10, 11, 12],

        [13, 14, 15, 16]],

       [[17, 18, 19, 20],

        [21, 22, 23, 24]]])

Slice the preceding array to obtain the following:

• Elements in the third subarray (17,18,19,20,21,22,23,24)

• Last element (24)

• Elements in the second column (2,6,10,14,18,22)

• Elements along the diagonal (1,10,19,24)

Question 2

Use the appropriate NumPy function for creating each of these arrays:

• An array with seven random numbers

• An uninitialized 2*5 array

• An array with ten equally spaced floating-point numbers between 1 

and 3

• A 3*3 array with all the values as 100
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Question 3

Write simple code statements for each of the following:

• Create an array to store the first 50 even numbers

• Calculate the mean and standard deviation of these numbers

• Reshape this array into an array with two subarrays, each with five 

rows and five columns

• Calculate the dimensions of this reshaped array

Question 4

Compute the dot product of these two data structures:

[[ 2,  3],

[33,  3],

[ 4,  1]]

AND

[[ 2,  3, 33],

[ 3,  4,  1]]

Using

 1. Matrices

 2. Arrays

Question 5

What is the difference between the code written in parts 1 and 2, and how would the 

outputs differ?

Part 1:

CODE:

x=np.array([1,2,3])

x*3
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Part 2:

CODE:

a=[1,2,3]

a*3

Answers

Question 1

x=np.arange(1,25).reshape(3,2,4)

• Elements in the third subarray (17,18,19,20,21,22,23,24):

CODE:

x[2]

• Last element (24):

CODE:

x[2,1,3]

• Elements in the second column (2,6,10,14,18,22):

CODE:

x[:,:,1]

• Elements along the diagonal (1,10,19,24):

CODE:

x[0,0,0],x[1,0,1],x[2,0,2],x[2,1,3]

Question 2

• An array with seven random numbers:

CODE:

np.random.randn(7)
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• An uninitialized 2*5 array:

CODE:

np.empty((2,5))

• An array with ten equally spaced floating-point numbers between 1 

and 3:

CODE:

np.linspace(1,3,10)

• A 3*3 array with all the values as 100:

CODE:

np.full((3,3),100)

Question 3

CODE:

#creating the array of first 50 even numbers

x=np.arange(2,101,2)

#calculating the mean

x.mean()

#calculating the standard deviation

x.std()

#reshaping the array

y=x.reshape(2,5,5)

#calculating its new dimensions

y.ndim

Question 4

Computing the dot product using matrices requires the use of the * arithmetic operator

CODE:

x=np.matrix([[2,3],[33,3],[4,1]])

y=np.matrix([[2,3,33],[3,4,1]])

x*y
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Computing the dot product using arrays requires the use of the dot method.

CODE:

x=np.array([[2,3],[33,3],[4,1]])

y=np.array([[2,3,33],[3,4,1]])

x.dot(y)

Question 5

Outputs:

 1. array([3, 6, 9])

An array supports vectorization, and thus the * operator is applied 

to each element.

 2. [1, 2, 3, 1, 2, 3, 1, 2, 3]

For a list, vectorization is not supported, and applying the 

* operator simply repeats the list instead of multiplying the 

elements by a given number. A “for” loop is required to apply an 

arithmetic operator on each item.
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CHAPTER 6

Prepping Your Data 
with Pandas
With the explosion of the Internet, social networks, mobile devices, and big data, the 

amount of data available is humongous. Managing and analyzing this data to derive 

meaningful inferences can drive decision making, improve productivity, and reduce 

costs. In the previous chapter, you learned about NumPy – the library that helps us work 

with arrays and perform computations, also serving as the backbone for the Pandas 

library that we discuss in this chapter. Pandas, the Python library for data wrangling, has 

the advantage of being a powerful tool with many capabilities to manipulate data.

The rising popularity of Python as the preferred programming language is closely 

related to its widespread applications in the field of data science. In a survey conducted 

in 2019 among Python developers, it was found that NumPy and Pandas are the most 

popular data science frameworks (Source: https://www.jetbrains.com/lp/python-

developers-survey-2019/).

In this chapter, we learn about the building blocks of the Pandas (Series, DataFrames, 

and Indexes), and understand the various functions in this library that are used to tidy, 

cleanse, merge, and aggregate data in Pandas. This chapter is more involved than the 

other chapters you have read so far since we are covering a wide range of topics that will 

help you develop the skills necessary for preparing your data.

 Pandas at a glance
Wes McKinney developed the Pandas library in 2008. The name (Pandas) comes from 

the term “Panel Data” used in econometrics for analyzing time-series data. Pandas has 

many features, listed in the following, that make it a popular tool for data wrangling and 

analysis.

https://doi.org/10.1007/978-1-4842-6399-0_6#DOI
https://www.jetbrains.com/lp/python-developers-survey-2019/
https://www.jetbrains.com/lp/python-developers-survey-2019/
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 1. Pandas provides features for labeling of data or indexing, which 

speeds up the retrieval of data.

 2. Input and output support: Pandas provides options to read data 

from different file formats like JSON (JavaScript Object Notation), 

CSV (Comma-Separated Values), Excel, and HDF5 (Hierarchical 

Data Format Version 5). It can also be used to write data into 

databases, web services, and so on.

 3. Most of the data that is needed for analysis is not contained 

in a single source, and we often need to combine datasets to 

consolidate the data that we need for analysis. Again, Pandas 

comes to the rescue with tailor-made functions to combine data.

 4. Speed and enhanced performance: The Pandas library is based 

on Cython, which combines the convenience and ease of use 

of Python with the speed of the C language. Cython helps to 

optimize performance and reduce overheads.

 5. Data visualization: To derive insights from the data and make it 

presentable to the audience, viewing data using visual means is 

crucial, and Pandas provides a lot of built-in visualization tools 

using Matplotlib as the base library.

 6. Support for other libraries: Pandas integrates smoothly with 

other libraries like Numpy, Matplotlib, Scipy, and Scikit-learn. 

Thus we can perform other tasks like numerical computations, 

visualizations, statistical analysis, and machine learning in 

conjunction with data manipulation.

 7. Grouping: Pandas provides support for the split-apply-combine 

methodology, whereby we can group our data into categories, 

apply separate functions on them, and combine the results.

 8. Handling missing data, duplicates, and filler characters: Data 

often has missing values, duplicates, blank spaces, special 

characters (like $, &), and so on that may need to be removed or 

replaced. With the functions provided in Pandas, you can handle 

such anomalies with ease.
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 9. Mathematical operations: Many numerical operations and 

computations can be performed in Pandas, with NumPy being 

used at the back end for this purpose.

 Technical requirements
The libraries and the external files needed for this chapter are detailed in the following.

Installing libraries

If you have not already installed Pandas, go to the Anaconda Prompt and enter the 

following command.

>>>pip install pandas

Once the Pandas library is installed, you need to import it before using its functions. In 

your Jupyter notebook, type the following to import this library.

CODE:

import pandas as pd

Here, pd is a shorthand name or alias that is a standard for Pandas.

For some of the examples, we also use functions from the NumPy library. Ensure that 

both the Pandas and NumPy libraries are installed and imported.

External files

You need to download a dataset, “subset-covid-data.csv”, that contains data about the 

number of cases and deaths related to the COVID-19 pandemic for various countries on 

a particular date. Please use the following link for downloading the dataset: https://

github.com/DataRepo2019/Data-files/blob/master/subset-covid-data.csv

 Building blocks of Pandas
The Series and DataFrame objects are the underlying data structures in Pandas. In a 

nutshell, a Series is like a column (has only one dimension), and a DataFrame (has two 

dimensions ) is like a table or a spreadsheet with rows and columns. Each value stored in 

a Series or a DataFrame has a label or an index attached to it, which speeds up retrieval 

and access to data. In this section, we learn how to create a Series and DataFrame, and 

the functions used for manipulating these objects.
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Creating a Series object

The Series is a one-dimensional object, with a set of values and their associated indexes. 

Table 6-1 lists the different ways of creating a series.

Table 6-1. Various Methods for Creating a Series Object

METHOD SYNTAX

using a scalar value CoDe (for creating a series using a scalar value):
pd.Series(2)

#Creating a simple series with just one value. Here, 

0 is the index label, and 2 is the value the Series 

object contains.

output:
0    2

dtype: int64

using a list CoDe (for creating a series using a list):
pd.Series([2]*5)

#Creating a series by enclosing a single value (2) in 

a list and replicating it 5 times. 0,1,2,3,4 are the 

autogenerated index labels.

output:
0    2

1    2

2    2

3    2

4    2

dtype: int64

using characters in a 
string

CoDe (for creating a series using a string):
pd.Series(list('hello'))

#Creating a series by using each character in the 

string "hello" as a separate value in the Series.

(continued)
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Table 6-1. (continued)

METHOD SYNTAX

output:
0    h

1    e

2    l

3    l

4    o

dtype: object

using a dictionary CoDe (for creating a series from a dictionary):
pd.Series({1:'India',2:'Japan',3:'Singapore'})

#the key/value pairs correspond to the index labels and values in the 
series object.

output:
1        India

2        Japan

3    Singapore

dtype: object

using a range CoDe (for creating a series from a range):
pd.Series(np.arange(1,5))

#Using the NumPy arrange function to create a series 

from a range of 4 numbers (1-4), ensure that the 

NumPy library is also imported

output:
0    1

1    2

2    3

3    4

dtype: int32

(continued)
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To summarize, you can create a Series object from a single (scalar) value, list, dictionary, 

a set of random numbers, or a range of numbers. The pd.Series function creates a Series 

object (note that the letter “S” in “Series” is in uppercase; pd.series will not work). Use 

the index parameter if you want to customize the index.

 Examining the properties of a Series
In this section, we will look at the methods used for finding out more information about 

a Series object like the number of elements, its values, and unique elements.

Table 6-1. (continued)

METHOD SYNTAX

using random numbers CoDe (for creating a series from random numbers):
pd.Series(np.random.normal(size=4))

#Creating a set of 4 random numbers using the 

np.random.normal function

output:
0   -1.356631

1    1.308935

2   -1.247753

3   -1.408781

dtype: float64

Creating a series with 
customized index labels

CoDe (for creating a custom index):
pd.Series([2,0,1,6],index=['a','b','c','d'])

#The list [2,0,1,6] specifies the values in the 

series, and the list for the index['a','b','c','d'] 

specifies the index labels

output:
a    2

b    0

c    1

d    6

dtype: int64
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 Finding out the number of elements in a Series

There are three ways of finding the number of elements a Series contains: using the size 

parameter, the len function, or the shape parameter

The size attribute and the len function return a single value - the length of the series, as 

shown in the following.

CODE:

#series definition

x=pd.Series(np.arange(1,10))

#using the size attribute

x.size

Output:

9

We can also use the len function for calculating the number of elements, which would 

return the same output (9), as shown in the following.

CODE:

len(x)

The shape attribute returns a tuple with the number of rows and columns. Since the 

Series object is one-dimensional, the shape attribute returns only the number of rows, as 

shown in the following.

CODE:

x.shape

Output:

(9,)

 Listing the values of the individual elements in a Series

The values attribute returns a NumPy array containing the values of each item in the 

Series.
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CODE:

x.values

Output:

array([1, 2, 3, 4, 5, 6, 7, 8, 9])

 Accessing the index of a Series

The index of the Series can be accessed through the index attribute. An index is an object 

with a data type and a set of values. The default type for an index object is RangeIndex.

CODE:

x.index

Output:

RangeIndex(start=0, stop=9, step=1)

The index labels form a range of numbers, starting from 0. The default step size or the 

difference between one index label value and the next is 1.

 Obtaining the unique values in a Series and their count

The value_counts() method is an important method. When used with a Series object, it 

displays the unique values contained in this object and the count of each of these unique 

values. It is a common practice to use this method with a categorical variable, to get an 

idea of the distinct values it contains.

CODE:

z=pd.Series(['a','b','a','c','d','b'])
z.value_counts()

Output:

a    2
b    2
c    1
d    1
dtype: int64
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The preceding output shows that in the Series object named “z”, the values “a” and “b” 

occur twice, while the characters “c” and “d” occur once.

 Method chaining for a Series

We can apply multiple methods to a series and apply them successively. This is called 

method chaining and can be applied for both Series and DataFrame objects.

Example:

Suppose we want to find out the number of times the values “a” and “b” occur for the 

series “z” defined in the following. We can combine the value_counts method and the 

head method by chaining them.

CODE:

z=pd.Series(['a','b','a','c','d','b'])

z.value_counts().head(2)

Output:

a    2

b    2

dtype: int64

If multiple methods need to be changed together and applied on a Series object, it 

is better to mention each method on a separate line, with each line ending with a 

backslash. It would make the code more readable, as shown in the following.

CODE:

z.value_counts()\

.head(2)\

.values

Output:

array([2, 2], dtype=int64)

We have covered the essential methods that are used with the Series object. If you want 

to learn more about the Series object and the methods used with Series objects, refer to 

the following link.
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https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html

We now move ovn to DataFrames, another important Pandas object.

 DataFrames
A DataFrame is an extension of a Series. It is a two-dimensional data structure for storing 

data. While the Series object contains two components - a set of values, and index 

labels attached to these values - the DataFrame object contains three components - the 

column object, index object, and a NumPy array object that contains the values.

The index and columns are collectively called the axes. The index forms the axis “0” and 

the columns form the axis “1”.

We look at various methods for creating DataFrames in Table 6-2.

Table 6-2. Different Methods for Creating a DataFrame

Method Syntax

By combining series 

objects

CoDe:

student_ages=pd.Series([22,24,20]) #series 1

teacher_ages=pd.Series([40,50,45])#series 2

combined_ages=pd.DataFrame([student_ages, 

teacher_ages]) #DataFrame

combined_ages.columns=['class 1','class 2', 

'class 3']#naming columns

combined_ages

output:

here, we are defining two series and then using the pd.DataFrame 

function to create a new DataFrame called “combined_ages”. we give 

names to columns in a separate step.

(continued)
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Table 6-2. (continued)

Method Syntax

From a dictionary CoDe:

combined_ages=pd.DataFrame({'class 1':[22,40],'class 

2':[24,50],'class 3':[20,45]})

combined_ages

output:

a dictionary is passed as an argument to the pd.DataFrame function 

(with the column names forming keys, and values in each column 

enclosed in a list).

From a numpy array CoDe:

numerical_df=pd.DataFrame(np.arange(1,9).reshape(2,4))

numerical_df

output:

here, we create a numpy array first using the np.arange function. then 

we reshape this array into a DataFrame with two rows and four columns.

(continued)
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To sum up, we can create a DataFrame using a dictionary, a set of tuples, and by combining 

Series objects. Each of these methods uses the pd.DataFrame function. Note that the 

characters “D” and “F” in this method are in uppercase; pd.dataframe does not work.

 Creating DataFrames by importing data from other formats
Pandas can read data from a wide variety of formats using its reader functions (refer to 

the complete list of supported formats here: https://pandas.pydata.org/pandas-docs/

stable/user_guide/io.html). The following are some of the commonly used formats.

 From a CSV file:

The read_csv function can be used to read data from a CSV file into a DataFrame, as 

shown in the following.

CODE:

titanic=pd.read_csv('titanic.csv')

Reading data from CSV files is one of the most common ways to create a DataFrame. 

CSV files are comma-separated files for storing and retrieving values, where each line is 

equivalent to a row. Remember to upload the CSV file in Jupyter using the upload button 

on the Jupyter home page (Figure 6-1), before calling the “read_csv” function.

Method Syntax

using a set of tuples CoDe:

combined_ages=pd.DataFrame([(22,24,20),(40,50,45)],col

umns=['class 1','class 2','class 3'])

combined_ages

output:

we have re-created the “combined_ages” DataFrame using a set of 

tuples. each tuple is equivalent to a row in a DataFrame.

Table 6-2. (continued)
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 From an Excel file:

Pandas provides support for importing data from both xls and xlsx file formats using the 

pd.read_excel function, as shown in the following.

CODE:

titanic_excel=pd.read_excel('titanic.xls')

 From a JSON file:

JSON stands for JavaScript Object Notation and is a cross-platform file format for 

transmitting and exchanging data between the client and server. Pandas provides the 

function read_json to read data from a JSON file, as shown in the following.

CODE:

titanic=pd.read_json('titanic-json.json')

 From an HTML file:

We can also import data from a web page using the pd.read_html function.

In the following example, this function parses the tables on the web page into 

DataFrame objects. This function returns a list of DataFrame objects which correspond 

to the tables on the web page. In the following example, table[0] corresponds to the first 

table on the mentioned URL.

CODE:

url="https://www.w3schools.com/sql/sql_create_table.asp"

table=pd.read_html(url)

table[0]

Figure 6-1. Jupyter file upload
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Output:

Further reading: See the complete list of supported formats in Pandas and the functions 

for reading data from such formats:

https://pandas.pydata.org/pandas-docs/stable/reference/io.html

 Accessing attributes in a DataFrame
In this section, we look at how to access the attributes in a DataFrame object.

We use the following DataFrame:

CODE:

combined_ages=pd.DataFrame({'class 1':[22,40],'class 2':[24,50], 

'class 3':[20,45]})

Attributes

The index attribute, when used with a DataFrame object, gives the type of an index 

object and its values.

CODE:

combined_ages.index

Output:

RangeIndex(start=0, stop=2, step=1)

The columns attribute gives you information about the columns (their names and data type).

CODE:

combined_ages.columns

Output:

Index(['class 1', 'class 2', 'class 3'], dtype="object")
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The index object and column object are both types of index objects. While the index 

object has a type RangeIndex, the columns object has a type “Index”. The values of the 

index object act as row labels, while those of the column object act as column labels.

 Accessing the values in the DataFrame

Using the values attribute, you can obtain the data stored in the DataFrame. The output, 

as you can see, is an array containing the values.

CODE:

combined_ages.values

Output:

array([[22, 24, 20],

       [40, 50, 45]], dtype=int64)

 Modifying DataFrame objects
In this section, we will learn how to change the names of columns and add and delete 

columns and rows.

 Renaming columns

The names of the columns can be changed using the rename method. A dictionary is 

passed as an argument to this method. The keys for this dictionary are the old column 

names, and the values are the new column names.

CODE:

combined_ages.rename(columns={'class 1':'batch 1','class 2':'batch 

2','class 3':'batch 3'},inplace=True)

combined_ages

Output:
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The reason we use the inplace parameter so that the changes are made in the actual 

DataFrame object.

Renaming can also be done by accessing the columns attribute directly and mentioning 

the new column names in an array, as shown in the following example.

CODE:

combined_ages.columns=['batch 1','batch 2','batch 3']

Renaming using the dictionary format is a more straightforward method for renaming 

columns, and the changes are made to the original DataFrame object. The disadvantage 

with this method is that one needs to remember the order of the columns in the 

DataFrame. When we used the rename method, we used a dictionary where we knew 

which column names we were changing.

 Replacing values or observations in a DataFrame

The replace method can be used to replace values in a DataFrame. We can again use the 

dictionary format, with the key/value pair representing the old and new values. Here, we 

replace the value 22 with the value 33.

CODE:

combined_ages.replace({22:33})

Output:

 

 Adding a new column to a DataFrame

There are four ways to insert a new column in a DataFrame, as shown in Table 6-3.
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Table 6-3. Adding a New Column to a DataFrame

Method of column 
insertion

Syntax

with the indexing 
operator, [ ]

CoDe:
combined_ages['class 4']=[18,40]

combined_ages

output:

By mentioning the column name as a string within the indexing operator and 
assigning it values, we can add a column.

using the insert 
method

CoDe:
combined_ages.insert(2,'class 0',[18,35])

combined_ages

output:

the insert method can be used for adding a column. three arguments need 
to be passed to this method, mentioned in the following.

the first argument is the index where you want to insert the new column (in 
this case the index is 2, which means that the new column is added as the 
third column of our DataFrame)

the second argument is the name of the new column you want to insert 
(“class 0” in this example)

the third argument is the list containing the values of the new column (18 
and 35 in this case)

all the three parameters are mandatory for the insert method to be able to 
add a column successfully.

(continued)
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Table 6-3. (continued)

Method of column 
insertion

Syntax

using the loc indexer CoDe:
combined_ages.loc[:,'class 4']=[20,40]

combined_ages

output:

the loc indexer is generally used for retrieval of values in from series and 
DataFrames, but it can also be used for inserting a column. in the preceding 
statement, all the rows are selected using the : operator. this operator 
is followed by the name of the column to be inserted. the values for this 
column are enclosed within a list.

using the concat 
function

CoDe:
class5=pd.Series([31,48])

combined_ages=pd.concat([combined_ages,class5],axis=1)

combined_ages

output:

First, the column to be added (“class5” in this case) is defined as a series 
object. it is then added to the DataFrame object using the pd.concat 
function. the axis needs to be mentioned as “1” since the new data is being 
added along the column axis.

Chapter 6  prepping Your Data with panDas



165

In summary, we can add a column to a DataFrame using the indexing operator, loc 

indexer, insert method, or concat function. The most straightforward and commonly 

used method for adding a column is by using the indexing operator [].

 Inserting rows in a DataFrame

There are two methods for adding rows in a DataFrame, either by using the append 

method or with the concat function, as shown in Table 6-4.

Table 6-4. Adding a New Row to a DataFrame

Method for row 
insertion

Syntax

using the append 

method

CoDe:

combined_ages=combined_ages.append({'class 1':35,'class 2': 

33,'class 3':21},ignore_index=True)

combined_ages

output:

the argument to the append method- the data that needs to be added - is 

defined as a dictionary. this dictionary is then passed as an argument to the 

append method. setting the ignore_index=True parameter prevents an error 

from being thrown. this parameter resets the index. while using the append 

method, we need to ensure that we either use the ignore_index parameter 

or give a name to a series before appending it to a DataFrame. note that the 

append method does not have an inplace parameter that would ensure that the 

changes reflect in the original object; hence we need to set the original object to 

point to the new object created using append, as shown in the preceding code.

(continued)
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In summary, we can use either the append method or concat function for adding rows to 

a DataFrame.

 Deleting columns from a DataFrame

Three methods can be used to delete a column from a DataFrame, as shown in Table 6-5.

Table 6-4. (continued)

Method for row 
insertion

Syntax

using the pd.
concat function

CoDe:

new_row=pd.DataFrame([{'class 1':32,'class 2':37, 

'class 3':41}])

pd.concat([combined_ages,new_row])

output:

the pd.concat function is used to add new rows as shown in the preceding 

syntax. the new row to be added is defined as a DataFrame object. then the 

pd.concat function is called and the names of the two DataFrames (the original 

DataFrame and the new row defined as a DataFrame) are passed as arguments.
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Table 6-5. Deleting a Column from a DataFrame

Method for deletion of 
column

Syntax

del function CoDe:

del combined_ages['class 3']

combined_ages

output:

the preceding statement deletes the last column (with the 

name,“class 3”).

note that the deletion occurs inplace, that is, in the original 

DataFrame itself.

using the pop method CoDe:

combined_ages.pop('class 2')

output:

0    24

1    50

Name: class 2, dtype: int64

the pop method deletes a column inplace and returns the deleted 

column as a series object

(continued)
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To sum up, we can use the del function, pop method, or drop method to delete a column 

from a DataFrame.

 Deleting a row from a DataFrame

There are two methods for removing rows from a DataFrame – either by using a Boolean 

selection or by using the drop method, as shown in Table 6-6.

Table 6-5. (continued)

Method for deletion of 
column

Syntax

using the drop method CoDe:

combined_ages.drop(['class 1'],axis=1,inplace=True)

combined_ages

output:

the column(s) that needs to be dropped is mentioned as a string 

within a list, which is then passed as an argument to the drop 

method. since the drop method removes rows (axis=0) by default, 

we need to specify the axis value as “1” if we want to remove a 

column.

unlike the del function and pop method, the deletion using the 

drop method does not occur in the original DataFrame object, and 

therefore, we need to add the inplace parameter.
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Thus, we can use either a Boolean selection or the drop method to remove rows from a 

DataFrame. Since the drop method works with the removal of both rows and columns, it 

can be used uniformly. Remember to add the required parameters to the drop method. 

For removing columns, the axis (=1) parameter needs to be added. For changes to reflect 

in the original DataFrame, the inplace (=True) parameter needs to be included.

 Indexing
Indexing is fundamental to Pandas and is what makes retrieval and access to data much 

faster compared to other tools. It is crucial to set an appropriate index to optimize 

performance. An index is implemented in NumPy as an immutable (cannot be modified) 

Table 6-6. Deleting Row from a DataFrame

Method of row 
deletion

Syntax

using a Boolean 

selection

CoDe:

combined_ages[~(combined_ages.values<50)]

output:

we use the not operator (~) to remove the rows that we do not want.  

here, we remove all values in the DataFrame that are less than 50.

using the drop 

method

CoDe:

combined_ages.drop(1)

output:

here, we remove the second row, which has a row index of 1. if there is more 

than one row to be removed, we need to specify the indexes of the rows in a list.
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array and contains hashable objects. A hashable object is one that can be converted to 

an integer value based on its contents (similar to mapping in a dictionary). Objects with 

different values will have different hash values.

Pandas has two types of indexes - a row index (vertical) with labels attached to rows, and 

a column index with labels (column names) for every column.

Let us now explore index objects – their data types, their properties, and how they speed 

up access to data.

 Type of an index object
An index object has a data type, some of which are listed here.

• Index: This is a generic index type; the column index has this type.

• RangeIndex: Default index type in Pandas (used when an index is not 

defined separately), implemented as a range of increasing integers. 

This index type helps with saving memory.

• Int64Index: An index type containing integers as labels. For this index 

type, the index labels need not be equally spaced, whereas this is 

required for an index of type RangeIndex.

• Float64Index: Contains floating-point numbers (numbers with a 

decimal point) as index labels.

• IntervalIndex: Contains intervals (for instance, the interval between 

two integers) as labels.

• CategoricalIndex: A limited and finite set of values.

• DateTimeIndex: Used to represent date and time, like in time-series data.

• PeriodIndex: Represents periods like quarters, months, or years.

• TimedeltaIndex: Represents duration between two periods of time or 

two dates.

• MultiIndex: Hierarchical index with multiple levels.

Further reading:

Learn more about types of indexes here: https://pandas.pydata.org/pandas-docs/

stable/reference/api/pandas.Index.html
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 Creating a custom index and using columns as indexes
When a Pandas object is created, a default index is created of the type RangeIndex, as 

mentioned earlier. An index of this type has the first label value as 0 (which corresponds 

to the first item of the Pandas Series or DataFrame), and the second label as 1, following 

an arithmetic progression with a spacing of one integer.

We can set a customized index, using either the index parameter or attribute. In the 

Series and DataFrame objects we created earlier, we were just setting values for the 

individual items, and in the absence of labels for the index object, the default index (of 

type RangeIndex) was used.

We can use the index parameter when we define a Series or DataFrame to give custom 

values to the index labels.

CODE:

periodic_table=pd.DataFrame({'Element':['Hydrogen','Helium','Lithium', 

'Beryllium','Boron']},index=['H','He','Li','Be','B'])

Output:

 

If we skip the index parameter during the creation of the object, we can set the labels 

using the index attribute, as shown here.

CODE:

periodic_table.index=['H','He','Li','Be','B']

The set_index method can be used to set an index using an existing column, as 

demonstrated in the following:
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CODE:

periodic_table=pd.DataFrame({'Element':['Hydrogen','Helium','Lithium', 

'Beryllium','Boron'],'Symbols':['H','He','Li','Be','B']})

periodic_table.set_index(['Symbols'])

Output:

 

The index can be made a column again or reset using the reset_index method:

CODE:

periodic_table.reset_index()

Output:
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We can also set the index when we read data from an external file into a DataFrame, 

using the index_col parameter, as shown in the following.

CODE:

titanic=pd.read_csv('titanic.csv',index_col='PassengerId')

titanic.head()

Output:

 

 Indexes and speed of data retrieval
We know that indexes dramatically improve the speed of access to data. Let us 

understand this with the help of an example.

Consider the following DataFrame:

CODE:

periodic_table=pd.DataFrame({'Atomic Number':[1,2,3,4,5],'Element': 

['Hydrogen','Helium','Lithium','Beryllium','Boron'],'Symbol':['H','He', 

'Li','Be','B']})

Output:
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 Searching without using an index

Now, try retrieving the element with atomic number 2 without the use of an index and 

measure the time taken for retrieval using the timeit magic function. When the index 

is not used, a linear search is performed to retrieve an element, which is relatively time 

consuming.

CODE:

%timeit periodic_table[periodic_table['Atomic Number']==2]

Output:

1.66 ms ± 99.1 μs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

 Search using an index

Now, set the “Atomic Number” column as the index and use the loc indexer to see how 

much time the search takes now:

CODE:

new_periodic_table=periodic_table.set_index(['Atomic Number'])

%timeit new_periodic_table.loc[2]

Output:

281 μs ± 14.4 μs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

The search operation, when performed without using an index, was of the order 

of milliseconds (around 1.66 ms). With the use of indexes, the time taken for the 

retrieval operation is now of the order of microseconds (281 μs), which is a significant 

improvement.

 Immutability of an index
As mentioned earlier, the index object is immutable - once defined, the index object or 

its labels cannot be modified.

As an example, let us try changing one of the index labels in the periodic table 

DataFrame we just defined, as shown in the following. We get an error in the output 

since we are trying to operate on an immutable object.
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CODE:

periodic_table.index[2]=0

Output:

---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

<ipython-input-24-cd2fece917cb> in <module>

----> 1periodic_table.index[2]=0

~\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in __setitem__

(self, key, value)

   3936

   3937def __setitem__(self, key, value):

-> 3938raiseTypeError("Index does not support mutable operations")

   3939

   3940def __getitem__(self, key):

TypeError: Index does not support mutable operations

While the values of an Index object cannot be changed, we can retrieve information 

about the index using its attributes, like the values contained in the Index object, 

whether there are any null values, and so on.

Let us look at some of the index attributes with some examples:

Considering the column index in the following DataFrame:

CODE:

periodic_table=pd.DataFrame({'Element':['Hydrogen','Helium','Lithium','Bery

llium','Boron']},index=['H','He','Li','Be','B'])

column_index=periodic_table.columns

Some of the attributes of the column index are

1.values attribute: Returns the column names

CODE:

column_index.values
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Output:

array(['Element'], dtype=object)

2.hasnans attribute: Returns a Boolean True or False value based on the presence of null 

values.

CODE:

column_index.hasnans

Output:

False

3.nbytes attribute: Returns the number of bytes occupied in memory

CODE:

column_index.nbytes

Output:

8

Further reading: For a complete list of attributes, refer to the following documentation: 

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html

 Alignment of indexes
When two Pandas objects are added, their index labels are checked for alignment. For items 

that have matching indexes, their values are added or concatenated. Where the indexes do 

not match, the value corresponding to that index in the resultant object is null (np.NaN).

Let us understand this with an example. Here, we see that the 0 index label in s1 does not 

have a match in s2, and the last index label (10) in s2 does not have a match in s1. These 

values equal null when the objects are combined. All other values, where the index 

labels align, are added together.

CODE:

s1=pd.Series(np.arange(10),index=np.arange(10))

s2=pd.Series(np.arange(10),index=np.arange(1,11))

s1+s2
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Output:

0      NaN

1      1.0

2      3.0

3      5.0

4      7.0

5      9.0

6     11.0

7     13.0

8     15.0

9     17.0

10     NaN

dtype: float64

 Set operations on indexes
We can perform set operations like union, difference, and symmetric difference on 

indexes from different objects.

Consider the following indexes, “i1” and “i2”, created from two Series objects (“s1” and 

“s2”) we created in the previous section:

CODE:

i1=s1.index

i2=s2.index

 Union operation

All elements present in both sets are returned.

CODE:

i1.union(i2)

Output:

Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype="int64")
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 Difference operation

Elements present in one set, but not in the other, are returned.

CODE:

i1.difference(i2) #elements present in i1 but not in i2

Output:

Int64Index([0], dtype="int64")

 Symmetric difference operation

Elements not common to the two sets are returned. This operation differs from the 

Difference operation in that it takes into the uncommon elements in both sets:

CODE:

i1.symmetric_difference(i2)

Output:

Int64Index([0, 10], dtype="int64")

You can also perform arithmetic operations on two index objects, as shown in the following.

CODE:

i1-i2

Output:

Int64Index([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], dtype="int64")

 Data types in Pandas
The data types used in Pandas are derived from NumPy, except for the “category” data 

type for qualitative data, which is defined in Pandas. The common data types include

• object (for storing mixed data like numbers, strings, etc.)

• int64 (for integer values)

• float64 (for numbers with decimal points)
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• Datetime (for storing date and time data)

• Category (for variables containing only a few distinct values, 

like ‘True’/’False’, or some limited ordered categories like 

‘one’/’two’/’three’/’four’)

 Obtaining information about data types
We now understand how to retrieve information about the data types of columns.

Import the subset-covid-data.csv file and read the data into a DataFrame, as shown in the 

following.

CODE:

data=pd.read_csv('subset-covid-data.csv')

data.head()

Output:

 

Using the dtypes attribute, we can obtain the type of columns in this DataFrame.

CODE:

data.dtypes

Output:

country          object

continent        object

date             object
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day               int64

month             int64

year              int64

cases             int64

deaths            int64

country_code     object

population      float64

dtype: object

As we discussed in the previous chapter, the kind of mathematical operations and graphs 

that can be used differ for categorical and continuous variables. Knowing the data types 

of columns helps us figure out how to analyze the variables. The columns that have the 

Pandas data type “object” or “category” are categorical variables, whereas variables with 

data types like “int64” and “float64” are continuous.

 Get the count of each data type

To obtain the number of columns belonging to each data type, we use the get_dtype_

counts method:

CODE:

data.get_dtype_counts()

Output:

float64    1

int64      5

object     4

dtype: int64

 Select particular data types

Using the select_dtypes method, we can filter the columns based on the type of data you 

want to select:

CODE:

data.select_dtypes(include='number').head()
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#This will select all columns that have integer and floating-point data and 

exclude the rest. The head parameter has been used to limit the number of 

records being displayed.

Output:

 

 Calculating the memory usage and changing data types of columns

We can find the memory usage (in bytes) of a Series or a DataFrame by using the 

memory_usage method. We include the deep parameter while using this method to get a 

more comprehensive picture of the memory usage at the system level.

CODE:

data['continent'].memory_usage(deep=True)

Output:

13030

Let us see if we can reduce the memory usage of this column. First, let us find its current 

data type.

CODE:

data['continent'].dtype

Output:

dtype('O')
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As we can see, this column occupies 13030 bytes of memory and has a data type of “O”. 

The Pandas categorical data type is useful for storing qualitative variables that have only 

a few unique values, as this reduces memory usage. Since the continent column has only 

a few unique values (“Europe”, “Asia”, “America”, “Africa”, “Oceania”), let us change the 

data type of this column from object to categorical, and see if this reduces memory usage. 

We use the astype method for changing data types.

CODE:

data['continent']=data['continent'].astype('category')

data['continent'].memory_usage(deep=True)

Output:

823

The memory usage seems to have reduced quite a bit after changing the data type. Let us 

calculate the exact percentage reduction.

CODE:

(13030-823)/13030

Output:

0.936838066001535

A significant reduction in memory usage, around 93%, has been achieved by changing 

the data type from object to categorical.

 Indexers and selection of subsets of data
In Pandas, there are many ways of selecting and accessing data, as listed in the following.

• loc and iloc indexers

• ix indexer

• at and iat indexers

• indexing operator []
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The preferred method for data retrieval is through the use of the loc and iloc indexers. 

Both indexers and the indexing operator enable access to an object using indexes. Note 

that an indexer is different from the indexing operator, which is a pair of square brackets 

containing the index. While we have used the indexing operator [], for selecting data 

from objects like lists, tuples, and NumPy, the use of this operator is not recommended.

For instance, if we want to select the first row in Pandas, we would use the first statement 

given in the following.

CODE:

data.iloc[0] #correct

data[0] #incorrect

 Understanding loc and iloc indexers
The loc indexer works by selecting data using index labels, which is similar to how data 

is selected in dictionaries in Python, using keys associated with values.

The iloc indexer, on the other hand, selects data using the integer location, which is 

similar to how individual elements are in lists and arrays.

Note that loc and iloc being indexers, and are followed by square brackets, not round 

brackets (like in the case of functions or methods). The index values before the comma 

refer to the row indexes, and the index values after the comma refer to the column indexes.

Let us consider some examples to understand how the loc and iloc indexers work. We 

again use the covid-19 dataset (“subset-covid-data.csv”) for these examples.

CODE:

data=pd.read_csv('subset-covid-data.csv',index_col='date')

Here, we are using the column ‘date’ as the index.

 Selecting consecutive rows

We can use iloc for this, since we know the index (first five) of the rows to be retrieved:

CODE:

data.iloc[0:5]
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Output:

 

Note that we mention only the row indexes, and in the absence of a column index, all the 

columns are selected by default.

 Selecting consecutive columns

We can use iloc for this since the index values (0,1,2) for the first three columns are known.

CODE:

data.iloc[:,:3]

Or

data.iloc[:,0:3]

Output (only first five rows shown)
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While we can skip the column indexes, we cannot skip the row indexes.

The following syntax would not work:

CODE:

data.iloc[,0:3] #incorrect

In this example, we are selecting all the rows and three columns. On either side of 

the colon (:) symbol, we have a start and a stop value. If both start and stop values are 

missing, it means all values are to be selected. If the starting index is missing, it assumes 

a default value of 0. If the stop index value is missing, it assumes the last possible 

positional value of the index (one minus the number of columns or rows).

 Selecting a single row

Let us select the 100th row using the iloc indexer. The 100th row has an index of 99 (since 

the index numbering starts from 0).

CODE:

data.iloc[99]

Output:

country             Jamaica
continent           America
day                      12
month                     4
year                   2020
cases                     4
deaths                    0
country_code            JAM
population      2.93486e+06
Name: 2020-04-12, dtype: object

 Selecting rows using their index labels

Select the rows with the date as 2020-04-12. Here, we use the loc indexer since we know 

the index labels for the rows that need to be selected but do not know their position.

data.loc['2020-04-12']
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Output (only first five rows shown):

 

 Selecting columns using their name

Let us select the column named “cases”. Since the name of a column acts as its index 

label, we can use the loc indexer.

CODE:

data.loc[:,'cases']

Output:

date

2020-04-12       34

2020-04-12       17

2020-04-12       64

2020-04-12       21

2020-04-12        0

 Using negative index values for selection

Let us select the first five rows and last three columns. Here, we are using negative 

indices to select the last three columns. The last column has a positional index value  

of –1, the last but one column has an index value of –2, and so on. The step size is –1. We 

skip the start value for the row slice (:5) since the default value is 0.

CODE:

data.iloc[:5,-1:-4:-1]
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Output:

 

 Selecting nonconsecutive rows and columns

To select a set of rows or columns that are not consecutive, we need to enclose the rows 

or column index positions or labels in a list. In the following example, we select the 

second and fifth row, along with the first and fourth columns.

CODE:

data.iloc[[1,5],[0,3]]

Output:
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 Other (less commonly used) indexers for data access
The reason the indexers loc and iloc are recommended for slicing or selecting subsets 

of data from Series and DataFrame objects is that they have clear rules to select data 

either exclusively by their labels (in case of loc) or through their position (in case of iloc). 

However, it is essential to understand the other indexers supported in Pandas, explained 

in the following section.

 ix indexer

The ix indexer allows us to select data by combining the index label and the location. 

This method of selection is in contrast to the method used by the loc and iloc indexers, 

which do not allow us to mix up the position and the label. With the ix indexer not 

having a clear rule to select data, there is room for much ambiguity, and this indexer has 

now been deprecated (which means that although it is still supported, it should not be 

used). For demonstration purposes, let us see how the ix indexer works. Let us select the 

first five rows of the column `cases’ in our dataset.

CODE:

data.ix[:5,'cases']

Output:

 C:\Users\RA\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: 

DeprecationWarning:

.ix is deprecated. Please use

.loc for label based indexing or

.iloc for positional indexing

See the documentation here:

http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-

deprecated

  """Entry point for launching an IPython kernel.

date

2020-04-12    34

2020-04-12    17

2020-04-12    64

Chapter 6  prepping Your Data with panDas



189

2020-04-12    21

2020-04-12     0

Name: cases, dtype: int64

Note that the use of the ix indicator leads to a warning asking the user to use either loc or 

iloc in its place.

 The indexing operator - [ ]

Even though the indexing operator is not the preferred mode for data selection or slicing 

in Pandas, it still has its uses. One appropriate application of this operator is for selecting 

columns from a DataFrame. The argument is the name of the column that is mentioned 

as a string (enclosed within quotes).

For instance, the following statement would select the population column from our 

COVID dataset.

CODE:

data['population']

Output (only first five rows shown):

date

2020-04-12     37172386.0

2020-04-12      2866376.0

2020-04-12     42228429.0

2020-04-12        77006.0

2020-04-12     30809762.0

To select multiple columns, we pass the column names as strings within a list, as shown 

in the example in the following:

CODE:

data[['country','population']]
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Output (truncated):

 

The indexing operator can also be used for selecting a set of consecutive rows.

CODE:

data[:3]

Output:

 

However, it cannot be used to select a series of nonconsecutive rows, as this will raise an 

error. The following statement would not work.

CODE:

data[[3,5]] #incorrect

Another limitation of the indexing operator is that it cannot be used to select rows and 

columns simultaneously. The following statement would also not work.

CODE:

data[:,3] #incorrect
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 at and iat indexers

There are two other less commonly used indexers – at (similar to loc, works with labels) 

and iat (similar to iloc, works with positions). The three main features of the at and iat 

indexers are

• They can be used only for selecting scalar (single) values from a 

Series or DataFrame.

• Both row and column indexes need to be supplied as arguments to 

these indexers since they return a single value. We cannot obtain a 

set of rows or columns with this indexer, which is possible with the 

other indexers.

• These indexers are quicker at retrieving data than loc and iloc.

Let us understand how these indexers work with the help of an example.

Import the subset-covid-data.csv dataset.

data=pd.read_csv('subset-covid-data.csv')

The at indexer works just like loc, and you need to pass the row index label and the 

column name as arguments.

Let us try to retrieve the population value in the first row. Since we have not set an index 

for this DataFrame, the index labels and positions would be the same.

CODE:

data.at[0,'population']

#0 is the index label as well as the position

Output:

37172386.0

The iat indexer is similar to the iloc indexer, with the row/column indexes being passed 

as arguments.

CODE:

data.iat[0,9]

#0,9 is the position of the first record of the population column

The output is the same as the one for the previous statement.
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 Boolean indexing for selecting subsets of data
In the previous examples that we looked at, we used various indexers to retrieve data 

based on the position or label. With Boolean indexing, we use conditional statements 

to filter data based on their values. A single condition may be specified, or multiple 

conditions can be combined using the bitwise operators - & (and), | (or), ~ (not).

Let us consider an example to understand this. Here, we select all records where the 

name of the continent is “Asia”, and the country name starts with the letter “C”.

CODE:

data[(data['continent']=='Asia') & (data['country'].str.startswith('C'))]

Output:

 

 Using the query method to retrieve data
While we combine multiple conditions as in the previous example, the readability of the 

code may suffer. The query method can be used in such cases.

Let us retrieve all the records where the name of the continent is “Asia” and the number 

of cases is higher than 500. Note the syntax where we enclose each condition within 

double quotes and use the logical and operator, instead of the bitwise operator, &.

CODE:

data.query("(continent=='Asia')""and (cases>=500)")

Output:
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 Further reading

See more on:

• Query method: https://pandas.pydata.org/pandas-docs/stable/

reference/api/pandas.DataFrame.query.html

• Indexing in Pandas: https://pandas.pydata.org/docs/user_guide/

indexing.html

 Operators in Pandas
Pandas uses the following operators that can be applied to a whole series. While Python 

would require a loop to iterate through every element in a list or dictionary, Pandas 

takes advantage of the feature of vectorization implemented in NumPy that enables 

these operators to be applied on every element in a sequence, eliminating the need for 

iteration and loops. The different types of operators are listed in Table 6-7.

Table 6-7. Pandas Operators

Type of operator Operators included

arithmetic operators +addition), -(subtraction), *(multiplication),**(power),%(remainder 

operator),/(division),//(floor division, for getting the quotient).

the functions performed by arithmetic operators can be replicated using 

the following methods: add for +, sub for -, mul for *, div for /, mod for 

%, and pow for **.

Comparison operators == ( equality),<(less than),>(greater than),<=(less than or equal 

to),>=(greater than or equal to),!=(not equal to)

Logical operators &,|,~. pandas, like numpy, uses the bitwise operators (&,|,~) as logical 

operators, as these operators operate on every element of a series. note 

that these operators are different from the logical operators used in 

python, where the keywords and, or, and not are used.
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 Representing dates and times in Pandas
In Pandas, there is a single Timestamp function that can be used to define a date, time, 

or a combination of a date and a time. This is in contrast to the implementation in 

Python, which requires separate objects to define a date or time. The pd.Timestamp 

function is equivalent to the following functions in Python: datetime.date, datetime.time, 

datetime.datetime.

As an example, let us represent the date 25th December 2000 in Pandas using the pd.

Timestamp function.

CODE:

pd.Timestamp('25/12/2000')

Output:

Timestamp('2000-12-25 00:00:00')

The Timestamp function is very flexible and accepts parameters in a variety of formats. 

The preceding output can also be replicated using any of the following statements.

#different input formats for creating a Timestamp object

pd.Timestamp('25 December 2000')

pd.Timestamp('December 25 2000')

pd.Timestamp('12/25/2000')

pd.Timestamp('25-12-2000')

pd.Timestamp(year=2000,month=12,day=25)

pd.Timestamp('25-12-2000 12 PM')

pd.Timestamp('25-12-2000 0:0.0')

The pd.Timestamp function helps us define a date, time, and a combination of these 

two. However, this function does not work if we need to define a duration of time. A 

separate function, pd.Timedelta, helps us create objects that store a time duration. This is 

equivalent to the datetime.timedelta function in Python.

Let us define a duration of time in Pandas using the Timedelta function.
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CODE:

pd.Timedelta('45 days 9 minutes')

Output:

Timedelta('45 days 00:09:00')

Like the Timestamp function, the Timedelta function is flexible in what it accepts as 

input parameters. The preceding statement can also be written as follows.

CODE:

pd.Timedelta(days=45,minutes=9)

We can also add the unit parameter to create a Timedelta object. In the following line of 

code, the parameter unit with the value ’m’ denotes minutes, and we add 500 minutes to 

the base time of 00:00:00 hours.

CODE:

pd.Timedelta(500,unit='s')

Output:

Timedelta('0 days 08:20:00')

 Converting strings into Pandas Timestamp objects
Dates are generally represented as strings and need to be converted to a type that 

can be understood by Pandas. The pd.to_datetime function converts the date to a 

Timestamp object. Converting it to this format helps with comparing two dates, adding 

or subtracting a time duration from a given date, and extracting individual components 

(like day, month, and year) from a given date. It also helps with representing dates that 

are not in the traditional “day-month-year” or “month-day-year” format.

Let us consider an example to understand this. Consider the date represented as a string 

“11:20 AM, 2nd April 1990”. We can convert this into a Timestamp object and specify 

the format parameter so that the individual components like the day, month, and year 

are parsed correctly. The format parameter in the pd.to_datetime function with its 

formatting codes (like %H, %M), helps with specifying the format in which this date is 

written. %H represents the hour, %M represents the minutes, %d is for the day, %m is for 

the month, and %Y is for the year.
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CODE:

a=pd.to_datetime('11:20,02/04/1990', format='%H:%M,%d/%m/%Y')

a

Output:

Timestamp('1990-04-02 11:20:00')

Now that this date has been converted into a Timestamp object, we can perform 

operations on it. A Timedelta object can be added to a Timestamp object.

Let us add four days to this date:

CODE:

a+pd.Timedelta(4,unit='d')

Output:

Timestamp('1990-04-06 11:20:00')

 Extracting the components of a Timestamp object
Once the date is converted to a Pandas Timestamp object using the pd.to_datetime 

function, the individual components of the date variable can be extracted using the 

relevant attributes.

CODE:

#extracting the month

a.month

Output:

4

CODE:

#extracting the year

a.year

Output:

1990
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CODE:

#extracting the day

a.day

Output:

2

We can also use the minute and hour attribute to extract the minutes and hour from the 

date.

 Further reading

Learn more about the Pandas Timestamp function: https://pandas.pydata.org/

pandas-docs/stable/reference/api/pandas.Timestamp.html

 Grouping and aggregation
Aggregation is the process of summarizing a group of values into a single value.

Hadley Wickham, a statistician, laid down the “Split-Apply-Combine” methodology (the 

paper can be accessed here: https://www.jstatsoft.org/article/view/v040i01/

v40i01.pdf), which has three steps:

 1. Split the data into smaller groups that are manageable and 

independent of each other. This is done using the groupby method 

in Pandas.

 2. Apply functions on each of these groups. We can apply any of the 

aggregation functions, including minimum, maximum, median, 

mean, sum, count, standard deviation, variance, and size. Each 

of these aggregate functions calculate the aggregate value of the 

entire group. Note that we can also write a customized aggregation 

function.

 3. Combine the results after applying functions to each group into a 

single combined object.
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In the following section, we look at the groupby method, aggregation functions, the 

transform, filter, and apply methods, and the properties of the groupby object.

Here, we again use the same COVID-19 dataset, which shows the number of cases and 

deaths for all countries on 12th April 2020.

CODE:

df=pd.read_csv('subset-covid-data.csv')

df.head()

Output:

 

As we can see, there are several countries belonging to the same continent. Let us find 

the total number of cases and deaths for each continent. For this, we need to do grouping 

using the ‘continent’ column.

CODE:

df.groupby('continent')['cases','deaths'].sum()

Output:
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Here, we are grouping by the column “continent”, which becomes the grouping column. 

We are aggregating the values of the number of cases and deaths, which makes the 

columns named “cases” and “deaths” the aggregating columns. The sum method, 

which becomes our aggregating function, calculates the total of cases and deaths for all 

countries belonging to a given continent. Whenever you perform a groupby operation, it 

is recommended that these three elements (grouping column, aggregating column, and 

aggregating function) be identified at the outset.

The following thirteen aggregate functions can be applied to groups: sum(), max(), 

min(), std(), var(), mean(), count(), size(), sem(), first(), last(), describe(), nth().

We can also use the agg method, with np.sum as an attribute, which produces the same 

output as the previous statement:

CODE:

df.groupby('continent')['cases','deaths'].agg(np.sum)

The agg method can accept any of the aggregating methods, like mean, sum, max, and so 

on, and these methods are implemented in NumPy.

We can also pass the aggregating column and the aggregating method as a dictionary to 

the agg method, as follows, which would again produce the same output.

CODE:

df.groupby('continent').agg({'cases':np.sum,'deaths':np.sum})

If there is more than one grouping column, use a list to save the column names as strings 

and pass this list as an argument to the groupby method.

Further reading on aggregate functions: https://pandas.pydata.org/pandas-docs/

stable/user_guide/groupby.html#aggregation

 Examining the properties of the groupby object
The result of applying the groupby method is a groupby object. This groupby object has 

several properties that are explained in this section.
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 Data type of groupby object

The data type of a groupby object can be accessed using the type function.

CODE:

grouped_continents=df.groupby('continent')

type(grouped_continents)

Output:

pandas.core.groupby.generic.DataFrameGroupBy

Each group of the groupby object is a separate DataFrame.

 Obtaining the names of the groups

The groupby object has an attribute called groups. Using this attribute on the groupby 

object would return a dictionary, with the keys of this dictionary being the names of the 

groups.

CODE:

grouped_continents.groups.keys()

Output:

dict_keys(['Africa', 'America', 'Asia', 'Europe', 'Oceania', 'Other'])

 Returning records with the same position in each group using 
the nth method

Let us say that you want to see the details of the fourth country belonging to each 

continent. Using the nth method, we can retrieve this data by using a positional index 

value of 3 for the fourth position.

CODE:

grouped_continents.nth(3)
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Output:

 

 Get all the data for a particular group using the get_group 
method

Use the get_group method with the name of the group as an argument to this method. In 

this example, we retrieve all data for the group named ‘Europe’.

CODE:

grouped_continents.get_group('Europe')

Output (contains 54 records; only first four records shown in the following):

 

We have seen how to apply aggregate functions to the groupby object. Now let us look 

at some other functions, like filter, apply, and transform, that can also be used with a 

groupby object.

 Filtering groups
The filter method removes or filters out groups based on a particular condition. While 

the agg (aggregate) method returns one value for each group, the filter method returns 

records from each group depending on whether the condition is satisfied.
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Let us consider an example to understand this. We want to return all the rows for the 

continents where the average death rate is greater than 40. The filter method is called 

on a groupby object and the argument to the filter method is a lambda function or 

a predefined function. The lambda function here calculates the average death rate 

for every group, represented by the argument “x”. This argument is a DataFrame 

representing each group (which is the continent in our example). If the condition is 

satisfied for the group, all its rows are returned. Otherwise, all the rows of the group are 

excluded.

CODE:

grouped_continents=df.groupby('continent')

grouped_continents.filter(lambda x:x['deaths'].mean()>=40)

Output (only first five rows shown):

 

In the output, we see that only the rows for the groups (continents) ‘America’ and 

‘Europe’ are returned since these are the only groups that satisfy the condition (group 

mean death rate greater than 40).

 Transform method and groupby
The transform method is another method that can be used with the groupby object, 

which applies a function on each value of the group. It returns an object that has the 

same rows as the original data frame or Series and is similarly indexed as well.

Let us use the transform method on the population column to obtain the population in 

millions by dividing each value in the row by 1000000.

CODE:

grouped_continents['population'].transform(lambda x:x/1000000)
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Output (only first five rows and last two rows shown; actual output contains 206 rows):

0       37.172386

1        2.866376

2       42.228429

3        0.077006

4       30.809762

.

..

...

204     17.351822

205     14.439018

Name: population, Length: 206, dtype: float64

Notice that while the filter method returns lesser records as compared to its input object, 

the transform method returns the same number of records as the input object.

In the preceding example, we have applied the transform method on a Series. We can 

also use it on an entire DataFrame. A common application of the transform method is 

used to fill null values. Let us fill the missing values in our DataFrame with the value 0. 

In the output, notice that the values for the country code and population for the country 

‘Anguilla’ (which were missing earlier) are now replaced with the value 0.

CODE:

grouped_continents.transform(lambda x:x.fillna(0))

Output:

 

The transform method can be used with any Series or a DataFrame and not just 

with groupby objects. Creating a new column from an existing column is a common 

application of the transform method.
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 Apply method and groupby
The apply method “applies” a function to each group of the groupby object. The 

difference between the apply and transform method is that the apply method is more 

flexible in that it can return an object of any shape while the transform method needs to 

return an object of the same shape.

The apply method can return a single (scalar) value, Series or DataFrame, and the output 

need not be in the same structure as the input. Also, while the transform method applies 

the function on each column of a group, the apply method applies the function on the 

entire group.

Let us use the apply method to calculate the total missing values in each group 

(continent).

CODE:

grouped_continents.apply(lambda x:x.isna().sum())

Output:

 

The apply method, similar to the transform method, can be used with Series and 

DataFrame objects in addition to the groupby object.

 How to combine objects in Pandas
In Pandas, there are various functions to combine two or more objects, depending on 

whether we want to combine them horizontally or vertically. In this section, we cover the 

four methods used for combining objects - append, join, concat, and merge.
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 Append method for adding rows
This method is used to add rows to an existing DataFrame or Series object, but cannot be 

used to add columns. Let us look at this with an example:

Let us create the following DataFrame:

CODE:

periodic_table=pd.DataFrame({'Atomic Number':[1,2,3,4,5],'Element': 

['Hydrogen','Helium','Lithium','Beryllium','Boron'],'Symbol':['H','He', 

'Li','Be','B']})

We now add a new row (in the form of a dictionary object) by passing it as an argument 

to the append method.

We also need to remember to set the value of the ignore_index parameter as True. Setting 

it to “True” replaces the old index with a new index.

CODE:

periodic_table.append({'Atomic Number':6,'Element':'Carbon','Symbol':'C'},i

gnore_index=True)

Output:

 

Note that if we skip the ignore_index parameter while using the append function, we will 

get an error, as shown in the following:
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CODE:

periodic_table.append({'Atomic Number':6,'Element':'Carbon','Symbol':'C'})

Output:

 

Using the append method, we can also add multiple rows by defining each row as a 

Series object and passing these Series objects as a list to the append method. The pd.

Series method has a name attribute that assigns an index label to a Series.

CODE:

series1=pd.Series({'Atomic Number':7,'Element':'Carbon','Symbol':'C'},name=

len(periodic_table))

series2=pd.Series({'Atomic Number':8,'Element':'Oxygen','Symbol':'O'},name=

len(periodic_table)+1)

periodic_table.append([series1, series2])

Output:
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Note that we did not use the ignore_index parameter this time, since we have used the 

name parameter (refer to the error message shown earlier where it is mentioned that we 

can use either the ignore_index parameter or name parameter with the append method). 

Using the name parameter prevents the resetting of the index, which happens when we 

include the ignore_index parameter.

 Understanding the various types of joins

Before we move on to the other methods for combining Pandas objects, we need to 

understand the concepts of an inner, outer, left, and right join. When you join two 

objects, the type of join determines which records from these objects get included in the 

final result set.

• Left join: All rows from the object on the left included in the 

combined object. Rows from the object on the right that match those 

from the left included.

• Right join: All rows from the object on the right included in the 

combined object. Rows from the object on the left that match those 

from the left included.

• Outer join: All rows from both objects included in the combined 

object (whether they match or not).

• Inner join: Only matching rows from both objects included.

 Concat function (adding rows or columns from  
other objects)
This function gives us the option to add both rows and columns to a Pandas object. By 

default, it works on the row axis and adds rows.

Let us look at how the concat function works with an example. Here, we join two 

DataFrame objects vertically. The second DataFrame object is added after the last row of 

the first DataFrame object.

CODE:

periodic_table=pd.DataFrame({'Atomic Number':[1,2,3,4,5],'Element': 

['Hydrogen','Helium','Lithium','Beryllium','Boron'],'Symbol':['H','He', 

'Li','Be','B']})
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periodic_table_extended=pd.DataFrame({'Atomic Number':[8,9,10],'Element':['

Oxygen','Fluorine','Neon'],'Symbol':['O','F','Ne']})

#Join these two DataFrames just created vertically using the concat 

function:

pd.concat([periodic_table,periodic_table_extended])

Output:

 

We can also concatenate objects side-by-side along the column axis, as shown in the 

following.

CODE:

pd.concat([periodic_table,periodic_table_extended],axis=1)
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Output:

 

By default, the concat function performs an outer join, which returns all records of both 

the objects. The concatenated result set will have five records (equal to the length of the 

longer object – the first DataFrame). Since the second DataFrame has only three rows, 

you can see null values for the fourth and fifth row in the final concatenated object.

We can change this to an inner join by adding the join parameter. By using an inner join 

as shown in the following, the final result set with contain only those records from both 

the objects where the indices match.

CODE:

pd.concat([periodic_table,periodic_table_extended],axis=1,join='inner')

Output:

 

We can use the keys parameter to identify each of the objects that are being 

concatenated, in the final result set.

CODE:

pd.concat([periodic_table,periodic_table_extended],axis=1,keys=['1st 

periodic table','2nd periodic table'])
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Output:

 

 Join method – index to index
The join method aligns two Pandas objects based on common index values. That is, 

it looks for matching index values in both objects and then align them vertically. The 

default type of join for this method is a left join.

Let us consider the following example where we join two objects.

CODE:

periodic_table.join(periodic_table_extended,lsuffix='_left',rsuffix='_right')

Output:

 

Since the two DataFrame objects have common column names in the preceding 

example, we need to use the lsuffix and rsuffix parameters to differentiate between them. 

The indexes 0, 1, and 2 are common to both objects. The result set includes all the rows 

in the first DataFrame, and if there are rows with indices not matching in the second 

DataFrame, the value in all these rows is a null (denoted by NaN). The default join type 

used for the join method is a left join.

Chapter 6  prepping Your Data with panDas



211

 Merge method – SQL type join based on common  
columns
Like the join method, the merge method is also used to join objects horizontally. It is 

used when we join two DataFrame objects with a common column name. The main 

difference between the join and merge methods is that the join method combines the 

objects based on common index values, while the merge method combines the objects 

based on common column names. Another difference is that the default join type in the 

merge method is an inner join, while the join method performs a left join of the objects 

by default.

Let us look at how the merge method works with an example. The two DataFrame 

objects defined here have a column name that is common – Atomic Number. This is a 

scenario where we can apply the merge method.

CODE:

periodic_table=pd.DataFrame({'Atomic Number':[1,2,3,4,5],'Element': 

['Hydrogen','Helium','Lithium','Beryllium','Boron'],'Symbol':['H','He', 

'Li','Be','B']})

periodic_table_extended=pd.DataFrame({'Atomic Number':[1,2,3],'Natural': 

'Yes'})

periodic_table.merge(periodic_table_extended)

Output:

 

The presence of a common column name is essential for a merge operation, otherwise 

we would get an error. If there is a more than one column common between the two 

DataFrames, we can mention the column on which the merge is to be performed using 

the on parameter.

We can change the default join type (which is an inner join) using the how parameter.
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CODE:

periodic_table.merge(periodic_table_extended,how='outer')

Output:

 

If we have the same column in both the objects that are being joined but their names are 

different, we can use parameters in the merge method to differentiate these columns.

In the following example, there are two columns with the same values but different 

names. In the first DataFrame object, the name of the column is ‘Atomic Number’, while 

in the second DataFrame object, the name of the column is ‘Number’.

CODE:

periodic_table=pd.DataFrame({'Atomic Number':[1,2,3,4,5],'Element': 

['Hydrogen','Helium','Lithium','Beryllium','Boron'],'Symbol':['H','He', 

'Li','Be','B']})

periodic_table_extended=pd.DataFrame({'Number':[1,2,3],'Natural':'Yes'})

Using the left_on parameter for the column on the left, and right_on parameter for the 

column on the right, we merge the two objects as follows:

CODE:

periodic_table.merge(periodic_table_extended,left_on='Atomic Number', 

right_on='Number')
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Output:

 

Note that append, merge, and join are all DataFrame methods used with DataFrame 

objects while concat is a Pandas function.

Further reading:

Merge method: https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.merge.html

Join method: https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.join.html#pandas.DataFrame.join

Concat function: https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.concat.html

Append method: https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.DataFrame.append.html

 Restructuring data and dealing with anomalies
As we have discussed earlier, data in its raw state is often messy and unfit for analysis. Most 

datasets require extensive treatment before they become fit for analysis and visualization. 

The most common problems encountered in datasets are given in the following.

• Data has missing values.

• Names of columns are not comprehensible.

• Variables are stored in rows as well as columns.

• A column may represent more than one variable.

• There are different observational units in a single table.

• There is data duplication.
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• Data is structured around the wrong axis (for instance, horizontally 

instead of vertically).

• Variables are categorical, but we need them to be in a numeric format 

for performing calculations and visualizing them.

• The data type of a variable is not correctly recognized.

• Data contains spaces, commas, special symbols, and so on which 

need to be removed.

In the following sections, we understand how to handle missing and duplicate data, 

convert data from wide to long format, and how to use various methods like pivot, stack, 

and melt.

 Dealing with missing data
Missing data in Pandas is represented by the value NaN (Not a Number), denoted as 

the keyword np.nan. We can use the isna or isnull method for finding null values. Both 

methods return a True (for a missing value) or False (for all other values) Boolean value 

for each object in the Series or DataFrame.

Let us see how many null values there are in the rainfall dataset.

CODE:

df=pd.read_csv('subset-covid-data.csv')

df.isna().sum().sum()

Output:

8

There are eight null values in this dataset. The sum method is used twice. The first sum 

method calculates the total number of missing values for each column, and the second 

sum method adds up these values to give the number of missing values in the entire 

DataFrame.

We have two options for dealing with this missing data - either we get rid of these values 

(drop them), or we substitute these values with a suitable measure (like the mean, 

median, or mode) that can be used as an approximation for the missing value. Let us 

look at each of these methods.
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 Dropping the missing data

The dropna method removes all the missing values in a DataFrame or Series.

CODE:

df.dropna()

Note that this method creates a copy of the data frame and does not modify the original 

DataFrame. To modify the original DataFrame, we use the inplace=True parameter.

CODE:

df.dropna(inplace=True)

 Imputation

Imputation is the process of replacing missing values. In Pandas, there is an option to 

substitute the missing values with measures of central tendencies like the mean, median, 

or mode, using the fillna method. You can also fill the missing values with a fixed or 

constant value like 0.

We can use the forward fill technique to fill the missing value with the value just before it, 

or the backward fill technique to substitute the null value with the value just after it.

Using the same dataset (subset-covid-data.csv), let us try to understand the concepts of 

forward fill and backward fill.

CODE:

data=pd.read_csv('subset-covid-data.csv')

df=data[4:7]

df

As we can see, the DataFrame object, df (created from the original dataset), has missing 

values.
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Let us substitute the NaN value for the country `Anguilla’ with the values preceding it (in 

the previous row), using the forward fill technique (ffill), as shown in the following.

CODE:

df.fillna(method='ffill')

Output:

 

As we can see, the population field for Anguilla is substituted with the corresponding 

value of Angola (the record that precedes it).

We can also substitute the missing values using the backward fill technique, “bfill”, which 

substitutes the missing values with the next valid observation that occurs in the row 

following it.

CODE:

df.fillna(method='bfill')

Output:

 

The missing population value for Anguilla is now substituted with the corresponding 

value from the next row (that of Antigua_and_Barbuda).

A standard method for imputation of missing values is to substitute the null values with 

the mean value of the other valid observations. The fillna method can be used for this 

purpose, as well.

Here, we are substituting the missing value in each column with the mean of the other 

two values in the column.
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CODE:

df.fillna(df.mean())

Output:

 

The missing population value for Anguilla is now substituted with the mean of the 

population figures for the other two countries (Angola &Antigua_and_Barbuda) in the 

DataFrame object, df.

Interpolation is another technique for estimating missing values in numeric columns, 

with the most straightforward interpolation technique being the linear interpolation 

method. In linear interpolation, the equation of a straight line is used to estimate 

unknown values from known values. If there are two points, (x0, y0) and (x1,y1), then an 

unknown point (x,y) can be estimated using the following equation:
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In Pandas, there is an interpolate method that estimates an unknown value from known 

values.

CODE:

df.interpolate(method='linear')

Output:

 

The missing values in each column are interpolated using the other values in the column.

Further reading: See more on missing data in Pandas: https://pandas.pydata.org/

pandas-docs/stable/user_guide/missing_data.html
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 Data duplication
Redundancy in data is a common occurrence with many records containing the same data.

Let us consider the following DataFrame:

CODE:

periodic_table=pd.DataFrame({'Atomic Number':[1,2,3,4,5,5],'Element':['Hydr

ogen','Helium','Lithium','Beryllium','Boron','Boron'],'Symbol':['H','He','L

i','Be','B','B']})

 

As we can see, there are duplicates in this data (the last two rows are the same).

In Pandas, the presence of duplicates can be detected using the duplicated method. 

The duplicated method returns a Boolean value for each row, as shown in the following. 

Since the fifth row is the duplicate of the fourth row, the Boolean value is True.

CODE:

periodic_table.duplicated()

Output:

0    False

1    False

2    False

3    False
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4    False

5     True

dtype: bool

By chaining this method with the sum method, we can find the total number of 

duplicates in the DataFrame.

CODE:

periodic_table.duplicated().sum()

Output:

1

Let us now get rid of the duplicates using the drop_duplicates method.

CODE:

periodic_table.drop_duplicates(inplace=True)

Output:

 

The duplicate row has been removed. Since the drop_duplicates method does not make 

changes to the actual DataFrame object, we need to use the inplace parameter.

By default, the drop_duplicates method keeps the first row among all the duplicate rows. If we 

want to keep the last row, we can use the parameter keep=’last’, as shown in the following.

CODE:

periodic_table.drop_duplicates(keep='last')
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Output:

 

Apart from dealing with redundant or missing data, we may need to replace data that 

does not add value to our analysis, like blank spaces or special characters. Removal or 

replacement of values can be done using the replace method, discussed earlier. We may 

also need to change the data types of the columns since Pandas may not recognize all 

the data types correctly, which can be done using the “astype” method.

 Tidy data and techniques for restructuring data
Tidy data is a term developed by Hadley Wickham. According to a paper authored 

by him (Link: http://vita.had.co.nz/papers/tidy-data.pdf), these are the three 

principles of tidy data:

 1. Columns correspond to variables in the data, and each variable 

maps to a single column.

 2. The rows contain only observations, not variables.

 3. Each data structure or table contains only one observational unit.

Note that making data tidy is different from data cleansing. Data cleansing is concerned 

with dealing with missing values and redundant information, removing filler characters, 

and changing inaccurate data types. On the other hand, converting data to a tidy format 

involves restructuring the data and arranging it along the right axis, to facilitate ease of 

analysis.
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Let us understand this with an example, using the following DataFrame.

 

The preceding DataFrame displays the age (in years) and height (in centimeters) of four 

students. Though this data is readable, it is not in the “tidy” form. There are three issues 

with this DataFrame that go against the principles of tidy data:

• The names of the students cannot be used as column names. Instead, 

we need to have a single variable for all the names.

• The attributes “Age” and “Height” should not be used as observations 

in rows. They are in fact separate variables and should be individual 

columns.

• There are two different observational units in the same DataFrame – 

years for measuring the age and centimeters for measuring the height

Data in the long format is considered to be tidy, and in the following section we will 

cover the methods in Pandas to convert a dataset to this structure.

 Conversion from wide to long format (tidy data)
The following are two DataFrames, with the same data but having different structures 

(wide and long).

Wide Format
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Long Format

 

The main benefit of converting to the long format is that this format facilitates ease of data 

manipulation, like adding or retrieving data, as we don’t need to worry about the structure 

of the data. Also, data retrieval is significantly faster when data is stored in a long format.

Let us understand with this an example.

First, create the following DataFrame:

CODE:

grades=pd.DataFrame({'Biology':[90,87,45],'Chemistry':[46,56,87],'Mathemati

cs':[95,74,45],'Physics':[75,65,33]},index=['Andrew','Sarah','Jason'])

grades

Output:
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In this DataFrame, we can see that the principles of tidy data are not followed. There are 

two primary variables (students and subjects) that have not been identified as columns. 

The values for the variable subjects, like Biology, Chemistry, Mathematics, and Physics, 

are observations and should not be used as columns.

 Stack method (wide-to-long format conversion)
We can correct the anomalies observed in the grades DataFrame using the stack method, 

which takes all the column names and moves them to the index. This method returns a 

new DataFrame or Series, with a multilevel index.

CODE:

grades_stacked=grades.stack()

grades_stacked

Output:

Andrew  Biology        90

        Chemistry      46

        Mathematics    95

        Physics        75

Sarah   Biology        87

        Chemistry      56

        Mathematics    74

        Physics        65

Jason   Biology        45

        Chemistry      87

        Mathematics    45

        Physics        33

dtype: int64

As seen in the preceding output, the structure has been changed to a long format from a 

wide one.

Let us examine the data type of this stacked object.

CODE:

type(grades_stacked)
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Output:

pandas.core.series.Series

As we can see, this is a Series object. We can convert this object to a DataFrame using the 

reset_index method so that the two variables – Name and Subject – can be identified as 

two separate columns:

CODE:

grades_stacked.reset_index()

Output:

 

In the preceding output, we change the name of the columns using the rename_axis 

method and reset the index, as shown in the following.

CODE:

grades_stacked.rename_axis(['student_name','subject']).reset_

index(name='marks')
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Output:

 

To convert this DataFrame back to its original (wide) format, we use the unstack method, 

as shown in the following:

CODE:

grades_stacked.unstack()
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Output:

 

 Melt method (wide-to-long format conversion)
In addition to the stack method, the melt method can also be used for converting data 

to the long format. The melt method gives more flexibility than the stack method by 

providing an option to add parameters for customizing the output.

Let us create the same DataFrame (in the wide format):

CODE:

grades=pd.DataFrame({'Student_Name':['Andrew','Sarah','Jason'],'Biology': 

[90,87,45],'Chemistry':[46,56,87],'Mathematics':[95,74,45],'Physics': 

[75,65,33]})

 

Now, convert it into the long format using the melt method.

CODE:

grades.melt(id_vars='Student_Name',value_vars=['Biology','Chemistry', 

'Physics','Mathematics'],var_name='Subject',value_name='Marks')
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Output:

 

We have used four variables in the melt method:

• id_vars: Column(s) that we don’t want to reshape and preserve in 

its current form. If we look at the original wide format of the grades 

DataFrame, the Student_Name is correctly structured and can be left 

as it is.

• value_vars: Variable or the variables that we want to reshape into a 

single column. In the wide version of the grades DataFrame, there is 

a column for each of the four subjects. These are actually values of a 

single column.

• var_name: Name of the new reshaped column. We want to create 

a single column – “Subject”, with the values “Biology”, “Chemistry”, 

“Physics”, and “Mathematics”.

• value_name: This is the name of the column (“Marks”) containing 

the values corresponding to the values of the reshaped column 

(“Subject”).
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 Pivot method (long-to-wide conversion)
The pivot method is another method for reshaping data, but unlike the melt and stack 

methods, this method converts the data into a wide format. In the following example, we 

reverse the effect of the melt operation with the pivot method.

CODE:

#original DataFrame

grades=pd.DataFrame({'Student_Name':['Andrew','Sarah','Jason'],'Biolo

gy':[90,87,45],'Chemistry':[46,56,87],'Mathematics':[95,74,45],'Physi

cs':[75,65,33]})

#Converting to long format with the wide method

grades_melted=grades.melt(id_vars='Student_Name',value_vars=['Biology','Che

mistry','Physics','Mathematics'],var_name='Subject',value_name='Marks')

#Converting back to wide format with the pivot method

grades_melted.pivot(index='Student_Name',columns='Subject',values='Marks')

Output:

 

The following parameters are used with the pivot method:

• index: Refers to the column(s) to be used as an index. In the wide 

format of the grades DataFrame, we are using the Student_Name as 

the index.

• columns: Name of the column whose values are used to create a new 

set of columns. Each of the values of the “Subject” column forms a 

separate column in the wide format.
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• values: The column used to populate the values in the DataFrame. In 

our grades example, the “Marks” column is used for this purpose.

Further reading:

Melt function: https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.melt.html

Pivot function: https://pandas.pydata.org/pandas-docs/stable/reference/api/

pandas.pivot.html

 Summary

 1. Pandas, a Python library for data wrangling, offers a host of 

advantages, including support for a variety of input formats for 

data to be imported, integration with other libraries, speed, and 

functions for cleaning, grouping, merging, and visualizing data.

 2. Series, DataFrames, and Indexes form the core of Pandas. A 

Series is one-dimensional and equivalent to a column, while 

a DataFrame is two-dimensional and equivalent to a table 

or spreadsheet. Series and DataFrames use indexes that are 

implemented using hash tables to speed up data retrieval.

 3. There are various methods to create and modify Series and 

DataFrame objects. Python objects like lists, tuples, and 

dictionaries, as well as NumPy arrays, can be used to create 

Pandas objects. We can add and remove rows or columns, replace 

values, and rename columns.

 4. Data retrieval in Pandas can be done by using either the position 

(iloc indexer) or the index label (loc indexer), or by specifying a 

condition (Boolean conditioning).

 5. Pandas uses the groupby function for aggregation. Various 

functions can be used in conjunction with the groupby function 

to calculate aggregate measures for each group, filter the groups 

based on a condition, transform the values, or apply an operation 

on them.
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 6. Pandas provides support for combining, joining, and merging two 

or more objects. The append method adds an object to an existing 

object vertically, and the concat function can add objects either 

side by side or vertically. The join and merge methods join objects 

horizontally based on a common column or index values.

 7. Tidy data refers to a structure where the columns correspond 

to variables in the dataset, the rows contain observations, and 

there is only one observational unit. Generally, data in the long 

(vertical) format is considered tidy. Functions like melt and stack 

convert a DataFrame into the long format. The unstack and pivot 

functions convert the data into the wide format.

Now that we have learned how to prepare data and make it ready for analysis, let us look 

at data visualization in the next chapter.

 Review Exercises
 Question 1
Write the function/indexer/attribute in Pandas for

• Importing data from an HTML file

• Exporting data to an Excel file

• Selecting data using the index position

• Selecting data using its label

• Replacing null values with the median

• Renaming columns

• Obtaining the number of rows and columns in a DataFrame

• Converting to the wide format using the pivot function

• Performing an inner join of two tables

• Changing the data type of a series
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Question 2

The df.describe function returns the following summary statistical values: the count, 

minimum, maximum, standard deviation, percentiles, and means.

Which parameter would you add to obtain the following: the number of unique values, 

the value that occurs most frequently, and the frequency of this value?

Question 3

Import the “subset-covid-data.csv” in a DataFrame. Select the following data:

 1. The country and continent columns

 2. Set the ‘country’ column as the index and retrieve the population 

for the country “Algeria” using the at or loc indexers.

 3. Select the value at the 50th row and the 3rd column using the iloc or 

iat indexers.

 4. Retrieve the country code and population data for the last three 

records.

 5. Select the data for the countries where the population is greater 

than 2.5 million, and the number of cases is greater than 3000.

Question 4

Import the data for the file “subset-covid-data.csv” in a DataFrame and write code 

statements for the following:

 1. Deleting the “country_code” column

 2. Inserting this column back at the same position that it was present 

earlier

 3. Deleting the first three rows

 4. Adding these rows back (at their original position)

Question 5

Create the following DataFrames:

DataFrame name: orders_df
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DataFrame name: orders1_df

 

DataFrame name:customers_df

 

Which function or method would you use to:

 1. Combine the details of the first two DataFramesorders_df and 

orders1_df?

 2. Create a DataFrame to show the customers and the items they 

ordered?
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 3. Make the order_id column as the index for orders_df and 

customers_df? Which method would you now use to combine 

these two objects to show which orders were placed by 

customers?

Question 6

The following DataFrame records the weight fluctuations of four people:

 

 1. Create the preceding DataFrame.

 2. Convert this DataFrame into a tidy format.

 3. Determine who among these four people had the least fluctuation 

in weight.

 4. For people whose average weight is less than 65 kgs, convert their 

weight (on all four days) into pounds and display this data.

 Question 7

The object data type is used for columns that contain the following data:

 1. Strings

 2. Numbers (int and float)

 3. Booleans

 4. A combination of all the preceding data types

Chapter 6  prepping Your Data with panDas



234

 Question 8

A column can be accessed using the dot notation (a.column_name) as well as the 

indexing operator (a[column_name]). Which is the preferred notation, and why?

 Question 9

Which method is used to obtain the metadata in a DataFrame?

 1. Describe method

 2. Value_counts method

 3. Info method

 4. None of the above

 Question 10 (fill in the blanks)

• The default join type for the join method is ____ and the parameter 

for adding a join type is ____

• The default join type for the merge method is ____ and the parameter 

for adding a join type is ____

• The default join type for the concat function is ____ and the 

parameter for adding a join type is ____

• The function in Pandas that created an object representing a date/

time value and is equivalent to the following Python functions: 

datetime.date, datetime.time, or datetime.datetime is ____

• The function in Pandas equivalent to the datetime.timedelta function 

in Python for representing a duration of time is ____

 Answers

 Question 1

• Importing data from an HTML file:

CODE:

pd.read_html(url)
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• Exporting data to an Excel file:

CODE:

df.to_excel(name_of_file)

• Selecting data using the index position:

CODE:

df.iloc[index position]

• Selecting data using its label:

CODE:

df.loc[column name or index label]

• Replacing null values in a DataFrame with the median:

CODE:

df.fillna(df.median())

• Renaming columns:

df.rename(columns={'previous_name:'new_name'})

• Obtaining the number of rows and columns in a DataFrame:

CODE:

df.shape

• Converting to the wide format using the pivot function:

CODE:

df.pivot(index=column_name1,

columns=column_name2, values=column_name3)
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• Performing an inner join of two DataFrame objects

CODE:

df1.merge(df2)

The default join type is inner for the merge method; hence we 

need not explicitly mention it.

• Changing the data type of a Series object/column:

CODE:

series_name.astype(new data type)

 Question 2

We can obtain all three values using the include=’all’ parameter, as shown in the 

following:

CODE:

df.describe(include='all')

 Question 3

CODE:

df=pd.read_csv('subset-covid-data.csv')

1.Retrieving the country and continent columns

CODE:

df[['country','continent']]

2.Set the ‘country’ column as the index and retrieve the population for the country 

“Algeria” using the at or loc indexers.

CODE:

df.set_index('country',inplace=True)
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Retrieve the population using this statement:

CODE:

df.at['Algeria','population']

or

df.loc['Algeria','population']

3.Select the value at the 50th row and the 3rd column using the iloc or iat indexers.

df.iat[49,2]

Or

df.iloc[49,2]

4.Retrieve the country code and population data for the last three records:

CODE:

df.iloc[203:,-1:-3:-1]

Or

CODE:

df.iloc[203:,7:]

5.Select the data for the countries where the population is greater than 2.5 million, and 

the number of cases is greater than 3000.

CODE:

df[(df['cases']>=3000) & (df['population']>=25000000)]

 Question 4 (addition and deletion of rows and columns)

 1. Delete the “country_code” column:

CODE:

x=df.pop('country_code')
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 2. Insert this column back at the same position that it was present 

earlier:

CODE:

df.insert(8,'country_code',x)

 3. Delete the first three rows:

CODE:

df.drop([0,1,2],inplace=True)

 4. Add these rows back to the DataFrame at their original positions:

CODE:

x=df.iloc[0:3]

pd.concat([x,df])

 Question 5

Create the following DataFrames:

CODE:

orders_df=pd.DataFrame({'order_id':[1,2,3],'item':['pens','shirts', 

'coffee']})

orders1_df=pd.DataFrame({'order_id':[4,5,6],'item':['crayons','tea', 

'fruits']})

customers_df=pd.DataFrame({'order id':[1,2,3],'customer_name':['anne', 

'ben','carlos']})

Functions for combining objects

• Combine the details of the two DataFrames orders_df and orders1_

df:

CODE:

         pd.concat((orders_df,orders1_df))
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• Create a combined DataFrame to show the customers and the items 

they ordered:

CODE:

pd.merge(orders_df,customers_df,left_on='order_id',right 

_on='order id')

• Make the order_id/order id column as the index for the “orders_df” 

and “customers_df” DataFrames:

CODE:

orders_df.set_index('order_id',inplace=True)

customers_df.set_index('order id',inplace=True)

• Method to combine these two objects to show which orders were 

placed by customers:

CODE:

orders_df.join(customers_df)

 Question 6 (tidy data and aggregation)

 1. Create this DataFrame.

CODE:

df=pd.DataFrame({'Anna':[51,52,51.4,52.8,50.5],'Ben': 

[70,70.5,69.1,69.8,70.5],'Carole':[64,64.2,66.8,66,63.4], 

'Dave':[81,81.3,80.5,80.9,81.4]})

 2. Convert this into a tidy format.

We use the melt method to convert the DataFrame to a long 

format and then rename the columns.

CODE:

df_melted=df.melt()

df_melted.columns=['name','weight']
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 3. In order to find out who among these four people had the least 

fluctuation in weight with respect to their mean weight, we need 

to first aggregate the data.

We use the groupby function to group the data according to the 

name of the person and use the standard deviation (np.std) 

aggregation function.

CODE:

df_melted.groupby('name').agg({'weight':np.std})

Output:

 

Dave had the least standard deviation as seen from the preceding 

output, and therefore, the least fluctuation in his weight.

 4. For people whose average weight is less than 65 kgs, we now need 

to convert their weight to pounds and display their weight for all 

the four days.

We use the filter method to filter out the groups where the average 

weight is greater than 65 kgs using the filter method and then 

apply the transform method to convert the weight into pounds.

CODE:

df_melted.groupby('name').filter(lambda x:x.mean()>65) 

['weight'].transform(lambda x:float(x)*2.204)
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 Question 7

Options 1 and 4

The object data type in Pandas is used for strings or columns that contain mixed data 

like numbers, strings, and so on.

 Question 8

The indexing operator [] is preferred since it does not clash with built-in methods and 

works with column names that have spaces and special characters. The dot notation 

does not work when you have to retrieve a column that contains spaces.

 Question 9

Option 3 – info method.

The info method is used to obtain the metadata for a Series or DataFrame object. It gives 

us the name of the columns, their data types, and number of non-null values and the 

memory usage.

 Question 10 (fill in the blanks)

The default join type for the join method is a “left join” and the parameter for adding a 

join type is the “how” parameter

The default join type for the merge method is an “inner join” and the parameter for 

adding a join type is the “how” parameter

The default join type for the concat function is an “outer join” and the parameter for 

adding a join type is the “join” parameter

The function in Pandas that created an object representing a date/time value and is 

equivalent to the following Python functions: datetime.date, datetime.time, or datetime.

datetime is pd.Timestamp

The function in Pandas equivalent to the datetime.timedelta function in Python for 

representing a duration of time is pd.Timedelta
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CHAPTER 7

Data Visualization 
with Python Libraries
In the last chapter, we read about Pandas, the library with various functions for 

preparing data in order to make it ready for analysis and visualization. Visualization 

is a means to understand patterns in your data, identify outliers and other points of 

interest, and present our findings to an outside audience, without having to sift through 

data manually. Visualization also helps us to glean information from raw data and gain 

insights that would otherwise be difficult to draw.

After going through this chapter, you will be able to understand the commonly used 

plots, comprehend the object-oriented and stateful approaches in Matplotlib and apply 

these approaches for visualization, learn how to use Pandas for plotting, and understand 

how to create graphs with Seaborn.

 Technical requirements
In your Jupyter notebook, type the following to import the following libraries.

CODE:

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

Here, plt is a shorthand name or an alias for the pyplot module of Matplotlib that we use 

for plotting, sns is an alias for the Seaborn library, and pd is an alias for Pandas.

https://doi.org/10.1007/978-1-4842-6399-0_7#DOI
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In case these libraries are not installed, go to the Anaconda Prompt and install them as 

follows:

pip install matplotlib

pip install seaborn

pip install pandas

 External files
We use the Titanic dataset in this chapter to demonstrate the various plots.

Please download the dataset using the following link: https://github.com/

DataRepo2019/Data-files/blob/master/titanic.csv

You can also download this dataset using the following steps:

• Click the following link: https://github.com/DataRepo2019/ 

Data-files

• Click: Code ➤ Download ZIP

 

• From the downloaded zip folder, open the “titanic.csv” file
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Table 7-1. Commonly Used Plots to Visualize Data in Descriptive Data Analysis

Type of Chart 
or Plot

Description Shape

bar chart a bar chart enables visualization of 

categorical data, with the width or 

height of the bar representing the value 

for each category. the bars can be 

shown either vertically or horizontally.

histogram a histogram is used to visualize the 

distribution of a continuous variable. 

it divides the range of the continuous 

variable into intervals and shows where 

most of the values lie.

(continued)

 Commonly used plots
Some of the basic plots that are widely used in exploratory or descriptive data analysis 

include bar plots, pie charts, histograms, scatter plots, box plots, and heat maps; these 

are explained in Table 7-1.
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(continued)

Table 7-1. (continued)

Type of Chart 
or Plot

Description Shape

box plots box plots help with visually depicting 

the statistical characteristics of the 

data. a box plot provides a five-point 

summary with each line in the figure 

representing a statistical measure 

of the data being plotted (refer to 

the figure on the right). these five 

measures are

• Minimum value

• 25th percentile

• Median (50th percentile)

• 75th percentile

• Maximum value

the small circles/dots that you see in 

the figure on the right represent the 

outliers (or extreme values).

the two lines on either side of the 

box, representing the minimum and 

maximum values, are also called 

“whiskers”. any point outside these 

whiskers is called an outlier. the middle 

line in the box represents the median.

a box plot is generally used for 

continuous (ratio/interval) variables, 

though it can be used for some 

categorical variables like ordinal 

variables as well.
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Type of Chart 
or Plot

Description Shape

pie charts a pie chart shows the distinct values 

of a variable as sectors within a circle. 

pie charts are used with categorical 

variables.

scatter plots a scatter plot displays the values of two 

continuous variables as points on the x 

and y axes and helps us visualize if the 

two variables are correlated or not.

heat maps a heat map shows the correlation 

between multiple variables using a 

color-coded matrix, where the color 

saturation represents the strength of 

the correlation between the variables. a 

heat map can aid in the visualization of 

multiple variables at once.

Table 7-1. (continued)
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Let us now have a look at some of the Python libraries that are used for visualization, 

starting with Matplotlib.

 Matplotlib
The main library for data visualization in Python is Matplotlib. Matplotlib has many 

visualization features that are similar to Matlab (a computational environment cum 

programming language with plotting tools). Matplotlib is mainly used for plotting two-

dimensional graphs, with limited support for creating three-dimensional graphs.

Plots created using Matplotlib require more lines of code and customization of the 

parameters of the plot, as compared to other libraries like Seaborn and Pandas (which 

use some default setting to simplify the writing of code to create plots).

Matplotlib forms the backbone of most of the visualizations that are performed using 

Python.

There are two interfaces in Matplotlib, stateful and object-oriented, that are described in 

Table 7-2.
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Table 7-2. Interfaces in Matplotlib

Stateful interface Object-oriented interface

this interface uses the pyplot class, 

which is based on Matlab. a single 

object of this class is created, which 

is used for all plotting purposes.

in this interface, we use different objects for different 

elements of the plot. the two main objects that are used in 

this interface for plotting are

•  the figure object, which acts as the container for other 

objects.

•  the axes object, which is the actual plotting area 

containing the x axis, y axis, points, lines, legends, and 

labels. note that the axes here does not refer to the x and 

y axes but the entire subplot.

Code example (visualization using 

stateful interface):

import matplotlib.pyplot  

as plt

%matplotlib inline

x=[1,2,3,4]

y=[3,6,9,12]

plt.plot(x,y) # The plot 

function plots a line 

between the x and y 

coordinates

plt.xlim(0,5) # Sets limits 

for the x axis

plt.ylim(0,15) # Sets 

limits for the y axis

Code example (visualization using object-oriented interface):

import matplotlib.pyplot as plt

%matplotlib inline

x=[1,2,3,4]

y=[3,6,9,12]

fig,ax=plt.subplots(figsize=(10,5)) #The 

subplots method creates a tuple returning a 

figure and one or more axes.

ax.plot(x,y) #Creating a plot with an axes 

object

(continued)
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Stateful interface Object-oriented interface

plt.xlabel('X axis') #labels 

the x axis

plt.ylabel('Y axis') 

#labels the y axis

plt.title('Basic plot') 

#Gives a title

plt.suptitle('Figure 

title',size=20,y=1.02) 

# Gives a title to the 

overall figure

Customization (with the stateful 

interface):

in this interface, all changes are 

made using the current state of the 

pyplot object that points to the figure 

or axes, as shown in the following.

Code example:

#This code makes changes to 

the graph created using the 

plt object

ax=plt.gca() # current axes

ax.set_ylim(0,12) #use it 

to set the y axis limits

fig=plt.gcf() #current figure

fig.set_size_inches(4,4) 

#use it to set the figure 

size

Customization (with the object-oriented interface):

in this interface, since we have different objects for the 

figure and each of the subplots or axes, these objects 

are customized and labeled individually, as shown in the 

following.

Code example:

#this code makes changes to the graph created 

using the preceding object-oriented interface

ax.set_xlim(0,5) # Sets limit for the x axis

ax.set_ylim(0,15) # Sets limit for the y axis

ax.set_xlabel('X axis') #Labels x axis

ax.set_ylabel('Y axis') #Labels y axis

ax.set_title('Basic plot') # Gives a title to 

the graph plotted

fig.suptitle('Figure title',size=20,y=1.03) 

#Gives a title to the overall figure

Table 7-2. (continued)
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Further reading: See more about these two different interfaces: https://matplotlib.

org/3.1.1/tutorials/introductory/lifecycle.html

 Approach for plotting using Matplotlib
The object-oriented approach is the recommended approach for plotting in Matplotlib 

because of the ability to control and customize each of the individual objects or plots. 

The following steps use the object-oriented methodology for plotting.

 1. Create a figure (the outer container) and set its dimensions:

The plt.figure function creates a figure along with setting its 

dimensions (width and height), as shown in the following.

CODE:

fig=plt.figure(figsize=(10,5))

 2. Determine the number of subplots and assign positions for 
each of the subplots in the figure:

In the following example, we are creating two subplots and 

placing them vertically. Hence, we divide the figure into two rows 

and one column with one subplot in each section.

The fig.add_subplot function creates an axes object or subplot 

and assigns a position to each subplot. The argument –211 (for 

the add_subplot function that creates the first axes object - “ax1”) 

means that we are giving it the first position in the figure with two 

rows and one column.

The argument -212 (for the add_subplot function that creates the 

second axes object - “ax2”) means that we are giving the second 

position in the figure with two rows and one column. Note that the 

first digit indicates the number of rows, the second digit indicates 

the number of columns, and the last digit indicates the position of 

the subplot or axes.
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CODE:

ax1=fig.add_subplot(211)

ax2=fig.add_subplot(212)

 3. Plot and label each subplot:

After the positions are assigned to each subplot, we move on to 

generating the individual subplots. We are creating one histogram 

(using the hist function) and one bar plot (using the bar function). 

The x and y axes are labeled using the set_xlabel and set_ylabel 

functions.

CODE:

labelling the x axis

ax1.set_xlabel("Age")

#labelling the yaxis

ax1.set_ylabel("Frequency")

#plotting a histogram using the hist function

ax1.hist(df['Age'])

#labelling the X axis

ax2.set_xlabel("Category")

#labelling the Y axis

ax2.set_ylabel("Numbers")

#setting the x and y lists for plotting the bar chart

x=['Males','Females']

y=[577,314]

#using the bar function to plot a bar graph

ax2.bar(x,y)
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Output :

Note that the top half of Figure 7-1 is occupied by the first axes object (histogram), and 

the bottom half of the figure contains the second subplot (bar plot).

 Plotting using Pandas
The Pandas library uses the Matplotlib library behind the scenes for visualizations, but 

plotting graphs using Pandas functions is much more intuitive and user-friendly. Pandas 

requires data to be in the wide or aggregated format.

The plot function (based on the Matplotlib plot function) used in Pandas allows us to 

create a wide variety of plots simply by customizing the value of the kind parameter, 

which specifies the type of plot. This is also an example of polymorphism in object-

oriented programming (one of the principles of OOPS, which we studied in Chapter 2), 

where we are using the same method for doing different things. The kind parameter in 

the plot method changes with the kind of graph you want to plot.

Figure 7-1. Subplots within a figure
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Let us learn how to create plots in Pandas using the Iris dataset.

The Iris dataset contains samples from various species of the iris plant. Each sample 

contains five attributes: sepal length, sepal width, petal length, petal width, and species 

(Iris setosa, Iris versicolor, and Iris virginica). There are 50 samples of each species. The 

Iris dataset is inbuilt in the sklearn library and can be imported as follows:

CODE:

import pandas as pd

from sklearn.datasets import load_iris

data=load_iris()

iris=pd.DataFrame(data=data.data,columns=data.feature_names)

iris['species']=pd.Series(data['target']).map({0:'setosa',1:'versicolor',2:

'virginica'})

 Scatter plot
A scatter plot helps us understand if there is a linear relationship between two variables. 

To generate a scatter plot in Pandas, we need to use the value scatter with the parameter 

kind and mention the columns (specified by the parameters “x” and “y”) to be used for 

plotting in the argument list of the plot function. The graph in Figure 7-2 suggests that 

the two variables (“petal length” and “petal width”) are linearly correlated.

CODE:

iris.plot(kind='scatter',x='petal length (cm)',y='petal width (cm)')
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Output :

 Histogram
A histogram is used to visualize the frequency distribution with various bars 

representing the frequencies across various intervals (Figure 7-3). The value ‘hist’ is used 

with the kind parameter in the plot function to create histograms.

CODE:

iris['sepal width (cm)'].plot(kind='hist')

Figure 7-2. Scatter plot in Pandas
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Output:

As we can see from this histogram, the “sepal width” variable is normally distributed 

approximately.

 Pie charts
A pie chart shows different values that form a variable as sectors in a circle (Figure 7-4). 

Note that Pandas requires the value_counts function to calculate the number of values 

in each category as aggregation is not performed on its own when plotting is done in 

Pandas (we will later see that aggregation is taken care of if plotting is done using the 

Seaborn library). We need to use the value “pie” with the kind parameter to create pie 

charts.

CODE:

iris['species'].value_counts().plot(kind='pie')

Output:

Figure 7-3. An example of a histogram
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We see that the three species (“virginica”, “setosa”, and “versicolor”) form equal parts of a 

circle, that is, they have the same number of values.

The Pandas plot method is very intuitive and easy to use. By merely changing the value 

of the kind parameter, we can plot a variety of graphs.

Further reading: See more about the kinds of plots that can be used in Pandas:

https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.

html#other-plots

 Seaborn library
Seaborn is another Python-based data visualization library. Seaborn changes the 

default properties of Matplotlib to adjust the color palettes and perform aggregation 

automatically on columns. The default settings make it easier to write the code needed 

for creating various plots.

Seaborn offers the ability to customize these plots as well, but the customization options 

are less as compared to Matplotlib.

Seaborn enables the visualization of data in more than two dimensions. It also requires 

data to be in the long (tidy) format, which is in contrast to Pandas, which needs data to 

be in a wide form.

Let us see how to plot graphs using Seaborn with the Titanic dataset.

We use the functions in Seaborn to create different plots for visualizing different 

variables in this dataset.

Figure 7-4. Creating a pie chart with Pandas
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The Seaborn library needs to be imported first before its functions can be used. The alias 

for the Seaborn library is sns, which is used for invoking the plotting functions.

CODE:

import seaborn as sns

titanic=pd.read_csv('titanic.csv')

 Box plots
A box plot gives an idea of the distribution and skewness of a variable, based on statistical 

parameters, and indicates the presence of outliers (denoted by circles or dots), as shown 

in Figure 7-5. The boxplot function in Seaborn can be used to create box plots. The column 

name of the feature to be visualized is passed as an argument to this function.

CODE:

sns.boxplot(titanic['Age'])

Output:

Figure 7-5. Box plot demonstrating the “Age” variable
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 Adding arguments to any Seaborn plotting function
There are two methods we can use when we pass arguments to any function used in 

Seaborn:

• We can either use the full column name (that includes the name of 

the DataFrame), skipping the data parameter.

CODE:

sns.boxplot(titanic['Age'])

• Or, mention the column names as strings and use the data parameter 

to specify the name of the DataFrame.

CODE:

sns.boxplot(x='Age',data=titanic)

 Kernel density estimate
The kernel density estimate is a plot for visualizing the probability distribution of a 

continuous variable, as shown in Figure 7-6. The kdeplot function in Seaborn is used for 

plotting a kernel density estimate.

CODE:

sns.kdeplot(titanic['Age'])
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Further reading: https://seaborn.pydata.org/generated/seaborn.kdeplot.html

 Violin plot
A violin plot merges the box plot with the kernel density plot, with the shape of the violin 

representing the frequency distribution, as shown in Figure 7-7. We use the violinplot 

function in Seaborn for generating violin plots.

CODE:

sns.violinplot(x='Pclass',y='Age',data=titanic)

Figure 7-6. An example of a kernel density estimate (KDE) plot
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Output:

Further reading: https://seaborn.pydata.org/generated/seaborn.violinplot.html

 Count plots
Count plots are used to plot categorical variables, with the length of the bars 

representing the number of observations for each unique value of the variable. In 

Figure 7-8, the two bars are showing the number of passengers who did not survive 

(corresponding to a value of 0 for the “Survived” variable) and the number of passengers 

who survived (corresponding to a value of 1 for the “Survived” variable). The countplot 

function in Seaborn can be used for generating count plots.

CODE:

sns.countplot(titanic['Survived'])

Figure 7-7. An example of a violin plot in Seaborn
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Output:

Further reading: https://seaborn.pydata.org/generated/seaborn.countplot.html

 Heatmap
A heatmap is a graphical representation of a correlation matrix, representing the correlation 

between different variables in a dataset, as shown in Figure 7-9. The intensity of the color 

represents the strength of the correlation, and the values represent the degree of correlation 

(a value closer to one represents two strongly correlated variables). Note that the values 

along the diagonal are all one since they represent the correlation of the variable with itself.

The heatmap function in Seaborn creates the heat map. The parameter annot (with the 

value “True”) enables the display of values representing the degree of correlation, and 

the cmap parameter can be used to change the default color palette. The corr method 

creates a DataFrame containing the degree of correlation between various pairs of 

variables. The labels of the heatmap are populated from the index and column values in 

the correlation DataFrame (titanic.corr in this example).

Figure 7-8. An example of a countplot in Seaborn
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CODE:

sns.heatmap(titanic.corr(),annot=True,cmap='YlGnBu')

Further reading:

See more about the “heatmap” function and its parameters:

https://seaborn.pydata.org/generated/seaborn.heatmap.html

See more about customizing color palettes and color maps: https://seaborn.pydata.

org/tutorial/color_palettes.html

 Facet grid
A facet grid represents the distribution of a single parameter or the relationship between 

parameters across a grid containing a row, column, or hue parameter, as shown in 

Figure 7-10. In the first step, we create a grid object (the row, col, and hue parameters are 

Figure 7-9. An example of a heatmap in Seaborn
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optional), and in the second step, we use this grid object to plot a graph of our choice 

(the name of the plot and the variables to be plotted are supplied as arguments to the 

map function). The FacetGrid function in Seaborn is used for plotting a facet grid.

Example:

CODE:

g = sns.FacetGrid(titanic, col="Sex",row='Survived') #Initializing the grid

g.map(plt.hist,'Age')#Plotting a histogram using the grid object

Output:

Figure 7-10. An example of a facet grid
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 Regplot
This plot uses the linear regression model to plot a regression line between the data 

points of two continuous variables, as shown in Figure 7-11. The Seaborn function 

regplot is used for creating this plot.

CODE:

sns.regplot(x='Age',y='Fare',data=titanic)

Output:

Further reading:

https://seaborn.pydata.org/generated/seaborn.regplot.html#seaborn.regplot

Figure 7-11. An example of a regplot
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 lmplot
This plot is a combination of a regplot and a facet grid, as shown in Figure 7-12. Using 

the lmplot function, we can see the relationship between two continuous variables 

across different parameter values.

In the following example, we plot two numeric variables (“Age” and “Fare”) across a grid 

with different row and column variables.

CODE:

sns.lmplot(x='Age',y='Fare',row='Survived',data=titanic,col='Sex')

Output:

Figure 7-12. An example of lmplot
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The following summarizes the differences between regplot and lmplot:

• The regplot function takes only two variables as arguments, whereas 

the lmplot function accepts multiple arguments.

• The lmplot function works at the level of the figure object, while the 

regplot function works at the level of an axes object.

Further reading on the lmplot: https://seaborn.pydata.org/generated/seaborn.

lmplot.html

See more on the differences between regplot and lmplot: https://seaborn.pydata.

org/tutorial/regression.html#functions-to-draw-linear-regression-models

 Strip plot
A strip plot is similar to a scatter plot. The difference lies in the type of variables used 

in a strip plot. While a scatter plot has both variables as continuous, a strip plot plots 

one categorical variable against one continuous variable, as shown in Figure 7-13. The 

Seaborn function striplot generates a strip plot.

Consider the following example, where the “Age” variable is continuous, while the 

“Survived” variable is categorical.

CODE:

sns.stripplot(x='Survived',y='Age',data=titanic)

Chapter 7  Data Visualization with python libraries

https://seaborn.pydata.org/generated/seaborn.lmplot.html
https://seaborn.pydata.org/generated/seaborn.lmplot.html
https://seaborn.pydata.org/tutorial/regression.html#functions-to-draw-linear-regression-models
https://seaborn.pydata.org/tutorial/regression.html#functions-to-draw-linear-regression-models


268

Output:

Further reading: https://seaborn.pydata.org/generated/seaborn.stripplot.html

 Swarm plot
A swarm plot is similar to a strip plot, the difference being that the points in a swarm plot 

are not overlapping like those in a strip plot. With the points more spread out, we get a 

better idea of the distribution of the continuous variable, as shown in Figure 7-14. The 

Seaborn function swarmplot generates a swarm plot.

CODE:

sns.swarmplot(x='Survived',y='Age',data=titanic)

Figure 7-13. An example of a strip plot
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Output:

Further reading: https://seaborn.pydata.org/generated/seaborn.swarmplot.

html#seaborn.swarmplot

 Catplot
A catplot is a combination of a strip plot and a facet grid. We can plot one continuous 

variable against various categorical variables by specifying the row, col, or hue 

parameters, as shown in Figure 7-15. Note that while the strip plot is the default plot 

generated by the catplot function, it can generate other plots too. The type of plot can be 

changed using the kind parameter.

CODE:

sns.catplot(x='Survived',y='Age',col='Survived',row='Sex',data=titanic)

Figure 7-14. An example of a swarm plot
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Output:

Further reading: https://seaborn.pydata.org/generated/seaborn.catplot.html

 Pair plot
A pair plot is one that shows bivariate relationships between all possible pairs of variables 

in the dataset, as shown in Figure 7-16. The Seaborn function pairplot creates a pair 

plot. Notice that you do not have to supply any column names as arguments since all the 

variables in the dataset are considered automatically for plotting. The only parameter that 

Figure 7-15. An example of a catplot in Seaborn
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you need to pass is the name of the DataFrame. In some of the plots displayed as part of 

the pair plot output, any given variable is also plotted against itself. The plots along the 

diagonal of a pair plot show these plots.

CODE:

sns.pairplot(data=titanic)

Output:

Figure 7-16. An example of a pair plot in Seaborn
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 Joint plot
The joint plot displays the relationship between two variables as well as the individual 

distribution of the variables, as shown in Figure 7-17. The jointplot function takes the 

names of the two variables to be plotted as arguments.

CODE:

sns.jointplot(x='Fare',y='Age',data=titanic)

Output:

Figure 7-17. An example of a jointplot in Seaborn
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Further reading on the jointplot: https://seaborn.pydata.org/generated/seaborn.

jointplot.html#seaborn.jointplot

Further reading on the Seaborn library:

Examples of various graphs that can be created in Seaborn: https://seaborn.pydata.

org/examples/index.html

Getting started and solved examples in Seaborn: https://seaborn.pydata.org/

introduction.html

 Summary

 1. Three Python-based libraries can be used for visualization in  

Python – Matplotlib (which is based on Matlab), Pandas, and Seaborn.

 2. Before we draw graphs, we need to figure out the type of variable 

that needs to be plotted and the number of variables that need to 

be plotted. Use bar charts and pie charts for categorical variables, 

and histograms and scatter plots for continuous variables.

 3. Matplotlib has two interfaces that are used for plotting – the 

stateful interface and the object-oriented interface. The stateful 

interface uses the pyplot class and keeps track of the current state 

of the object of this class. The object-oriented interface uses a 

hierarchy of objects to represent various elements of the plot and 

uses these objects for plotting.

 4. The plot function, which is used in Pandas for plotting, uses 

Matplotlib at the back end. This function makes it easy to draw 

any kind of graph just by changing the arguments passed to it, thus 

utilizing the principle of polymorphism (one name, many forms).

 5. Seaborn is another library that uses Matplotlib at the back end. By 

changing its default parameters, it minimizes the need to perform 

aggregations, label, and color code the elements of your graph. It 

also provides the ability to visualize more than two variables.

In the next chapter, we examine some real-world case studies where we will put into 

practice what we have learned about visualization and data wrangling.
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 Review Exercises
Question 1

Which plot would you use when you have the following variables?

• One categorical variable

• One continuous variable

• Two continuous variables

• Three or more continuous variables

• One continuous and one categorical variable

• Two continuous and two or more categorical variables

Question 2

Match the functions on the left with the correct description on the right

    1. Facet grid a.  plot showing relationships between all possible pairs of variables and 

distributions of individual variables

    2. Catplot b. plot of a continuous variable across a grid of categorical parameters

    3. swarm plot c.  plot of one continuous and one categorical variable, with points not overlapping

    4. pair plot d. plot that combines a box plot with a kernel density estimate

    5. Violin plot e. Combination of a facet grid and strip plot

Question 3

Which among the following is true about the visualization performed using the Pandas 

library?

 1. Aggregation is performed automatically while plotting graphs

 2. Pandas requires data in the long format

 3. The plot method is used to plot graphs

 4. The type parameter is used to specify the type of plot

 5. The kind parameter to specify the type of plot
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Question 4

The magic command needed for displaying Matplotlib and Pandas graphs inline is

 1. %matplotlib

 2. %inline

 3. %matplotlib inline

 4. None of the above

Question 5

The axes object refers to the

 1. x axis

 2. y axis

 3. Both the x and y axis

 4. The subplot containing the graph

Question 6

For a given DataFrame, df, how do we specify the following parameters used in the 

heatmap function?

 1. Correlation matrix

 2. Color map for coloring the squares in a heatmap

 3. The numeric value of the degree of correlation between each of 

the parameters

Question 7

The Sklearn library has a built-in dataset, Iris. It contains samples from various species 

of the iris plant. Each sample contains four attributes: sepal length, sepal width, petal 

length, petal width, and species (Iris setosa, Iris versicolor, and Iris virginica), and there 

are 50 samples of each species.

• Read the data from this dataset into a DataFrame.

• Create a 10*5 figure with two subplots.

• In the first subplot, plot the petal length vs. petal width.
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• In the second subplot, plot the sepal length vs. sepal width.

• For each of the plots, label the x and y axes and set a title.

Question 8

Load the data from tips dataset (built into Seaborn) using the load_dataset function 

in Seaborn. This dataset contains the total bill amounts and the tip values for different 

customers visiting a restaurant. The customers are categorized according to their gender, 

smoking preference, and the day and time of their visit.

• Create a plot that shows the distribution (strip plot) of the total bill for 

smokers and nonsmokers, across a grid containing different values 

for the time and sex columns.

• Create a plot to show the relationship between the “tip” and “total_

bill” columns for: males and smokers, males and nonsmokers, 

females and smokers, and females and nonsmokers.

Answers

Question 1

• One categorical variable: count plot

• One continuous variable: histogram, kernel density estimate

• Two continuous variables: scatter plot, line plot

• Three or more continuous variables: heat map

• One continuous and one categorical variable: strip plot, swarm plot, 

bar plot

• Two continuous and two or more categorical variables: catplot, facet 

grid, lmplot

Question 2

1-b; 2-e; 3-c; 4-a; 5-d

Question 3

Options 3 and 5
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Pandas uses the plot method with the kind parameter to create various graphs. Pandas 

requires data to be in the wide or aggregated form. Aggregation is not done by default, 

unlike Seaborn. The value_counts method is required for aggregation before the plot 

method is applied.

Question 4

Option 3

We use the magic command (%matplotlib inline) for displaying graphs inline in 

Matplotlib and Pandas.

Question 5

Option 4

The term “axes” is a misnomer and does not refer to the x or y axis. It refers to the 

subplot or plotting area, which is a part of the figure object. A figure can contain multiple 

subplots.

Question 6

• Correlation matrix: df.corr()(generated a DataFrame representing the 

correlation matrix)

• Color map for coloring the squares in a heatmap: cmap parameter

• Denoting the numeric value of the degree of correlation: annot 

parameter (annot=True)

Question 7

import matplotlib.pyplot as plt

from sklearn.datasets import load_iris

import pandas as pd

#importing the iris dataset

data=load_iris()

iris=pd.DataFrame(data=data.data,columns=data.feature_names)

iris['species']=data.target

iris['species']=iris['species'].map({0:'setosa',1:'versicolor',2:'virginica'})

iris['species'].value_counts().plot(kind='bar')

fig=plt.figure(figsize=(10,5))
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ax1=fig.add_subplot(121) #defining the first subplot

#plotting petal length vs petal width in the first subplot

iris.plot(kind='scatter',x='petal length (cm)',y='petal width (cm)',ax=ax1)

#adding the title for the first subplot

ax1.set_title("Petal length vs width")

#adding the label for the X axis

ax1.set_xlabel("Petal length")

#adding the label for the Y axis

ax1.set_ylabel("Petal width")

ax2=fig.add_subplot(122) #defining the second subplot

#plotting sepal length vs sepal width in the second subplot

iris.plot(kind='scatter',x='sepal length (cm)',y='sepal width (cm)',ax=ax2)

ax2.set_xlabel("Sepal length")

ax2.set_ylabel("Sepal width")

ax2.set_title("Sepal length vs width")

#Increasing the distance width between the subplots

fig.subplots_adjust(wspace=1)

Question 8

import seaborn as sns

#loading the data into a DataFrame using the load_dataset function

tips = sns.load_dataset("tips")

#creating a catplot for showing the distribution of the total bill for 

different combinations of parameters

sns.catplot(x='smoker',y='total_bill',row='time',col='sex',data=tips)

#defining the FacetGrid object and setting the row and column values

g=sns.FacetGrid(tips,row='sex',col='smoker')

#specifying the plot and the columns we want to display

g.map(plt.scatter,'tip','total_bill')
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CHAPTER 8

Data Analysis Case 
Studies
In the last chapter, we looked at the various Python-based visualization libraries and 

how the functions from these libraries can be used to plot different graphs. Now, we aim 

to understand the practical applications of the concepts we have discussed so far with 

the help of case studies. We examine the following three datasets:

• Analysis of unstructured data: Using data from a web page providing 

information about the top 50 highest-grossing movies in France 

during the year 2018

• Air quality analysis: Data from an air quality monitoring station at 

New Delhi (India), providing the daily levels for four pollutants – 

sulfur dioxide (SO2), oxides of nitrogen as nitrogen dioxide (NO2), 

ozone, and fine particulate matter (PM2.5)

• COVID-19 trend analysis: Dataset capturing the number of cases and 

deaths for various countries across the world daily for the first six 

months in the year 2020

 Technical requirements
External files

For the first case study, you need to refer to the following Wikipedia URL (data is taken 

directly from the web page):

https://en.wikipedia.org/wiki/List_of_2018_box_office_number-one_films_in_

France

https://doi.org/10.1007/978-1-4842-6399-0_8#DOI
https://en.wikipedia.org/wiki/List_of_2018_box_office_number-one_films_in_France
https://en.wikipedia.org/wiki/List_of_2018_box_office_number-one_films_in_France
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For the second case study, download a CSV file from the following link:

https://github.com/DataRepo2019/Data-files/blob/master/NSIT%20Dwarka.csv

For the third case study, download an Excel file from the following link: https://

github.com/DataRepo2019/Data-files/blob/master/COVID-19-geographic-

disbtribution-worldwide-2020-06-29.xlsx

Libraries

In addition to the modules and libraries we used in the previous chapters (including 

Pandas, NumPy, Matplotlib, and Seaborn), we use the requests module in this chapter to 

make HTTP requests to websites.

To use the functions contained in this module, import this module in your Jupyter 

notebook using the following line:

import requests

If the requests modules is not installed, you can install it using the following command 

on the Anaconda Prompt.

pip install requests

 Methodology
We will be using the following methodology for each of the case studies:

 1. Open a new Jupyter notebook, and perform the following steps:

• Import the libraries and data necessary for your analysis

• Read the dataset and examine the first five rows (using the head 

method)

• Get information about the data type of each column and the 

number of non-null values in each column (using the info 

method) and the dimensions of the dataset (using the shape 

attribute)

• Get summary statistics for each column (using the describe 

method) and obtain the values of the count, min, max, standard 

deviation, and percentiles
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 2. Data wrangling

• Check if the data types of the columns are correctly identified 

(using the info or dtype method). If not, change the data types, 

using the astype method

• Rename the columns if necessary, using the rename method

• Drop any unnecessary or redundant columns or rows, using the 

drop method

• Make the data tidy, if needed, by restructuring it using the melt or 

stack method

• Remove any extraneous data (blank values, special characters, 

etc.) that does not add any value, using the replace method

• Check for the presence of null values, using the isna method, and 

drop or fill the null values using the dropna or fillna method

• Add a column if it adds value to your analysis

• Aggregate the data if the data is in a disaggregated format, using 

the groupby method

 3. Visualize the data using univariate, bivariate, and multivariate plots

 4. Summarize your insights, including observations and 

recommendations, based on your analysis

 Case study 8-1: Highest grossing movies 
in France – analyzing unstructured data
In this case study, the data is read from an HTML page instead of a conventional CSV file.

The URL that we are going to use is the following: https://en.wikipedia.org/wiki/

List_of_2018_box_office_number-one_films_in_France

This web page has a table that displays data about the top 50 films in France by revenue, 

in the year 2018. We import this data in Pandas using methods from the Requests library. 

Requests is a Python library used for making HTTP requests. It helps with extracting 

HTML from web pages and interfacing with APIs.
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Questions that we want to answer through our analysis:

 1. Identify the top five films by revenue

 2. What is the percentage share (revenue) of each of the top ten 

movies?

 3. How did the monthly average revenue change during the year?

Step 1: Importing the data and examining the characteristics of the dataset

First, import the libraries and use the necessary functions to retrieve the data.

CODE:

#importing the libraries

import requests

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

#Importing the data from the webpage into a DataFrame

url='https://en.wikipedia.org/wiki/List_of_2018_box_office_number-one_

films_in_France'

req=requests.get(url)

data=pd.read_html(req.text)

df=data[0]

We import all the libraries and store the URL in a variable. Then we make an HTTP 

request to this URL using the get method to retrieve information from this web page. 

The text attribute of the requests object contains the HTML data, which is passed to 

the pd.read_html function. This function returns a list of DataFrame objects containing 

the various tables on the web page. Since there is only one table on the web page, the 

DataFrame (df) contains only one table.

Examining the first few records:

CODE:

df.head()
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Output:

Obtaining the data types and missing values:

CODE:

df.info()

Output:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
#        50 non-null int64
Date     50 non-null object
Film     50 non-null object
Gross    50 non-null object
Notes    50 non-null object
dtypes: int64(1), object(4)
memory usage: 2.0+ KB

As we can see, the data types of the columns are not in the format we need. The “Gross” 

column represents the gross revenue, which is a numeric column. This column, however, 

has been assigned an object data type because it contains numeric as well as non-numeric 

data (characters like “,”, “$” symbol, and letters like “U” and “S”). In the next step, we deal with 

problems such as these.

Step 2: Data wrangling

In this step, we will:

 1. Remove unnecessary characters

 2. Change data types
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 3. Remove columns that are not needed

 4. Create a new column from an existing column

Let us remove the unwanted strings from the “Gross” column, retaining only the 

numeric values:

CODE:

#removing unnecessary characters from the Gross column

df['Gross']=df['Gross'].str.replace(r"US\$","").str.replace(r",","")

In the preceding statement, we use a series of chained replace methods and the 

principle of regular expressions to replace the non-numeric characters. The first replace 

method removes “US$” and the second replace method removes the commas. Replacing 

a character with an empty string (“”) is equivalent to removing the character.

Now, let us use the astype method to typecast or change the data type of this column to 

int64 so that this column can be used for computations and visualizations:

CODE:

#changing the data type of the Gross column to make the column numeric

df['Gross']=df['Gross'].astype('int64')

To check whether these changes have been reflected, we examine the first few records of 

this column and verify the data type:

CODE:

df['Gross'].head(5)

Output:

0     6557062

1     2127871

2     2006033

3     2771269

4    16604101

Name: Gross, dtype: int64

As we can see from the output, the data type of this column has been changed, and the 

values do not contain strings any longer.
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We also need to extract the month part of the date, which we will do by first changing the 
data type of the “Date” column and then applying the DatetimeIndex method to it, as 
shown in the following.

CODE:

#changing the data type of the Date column to extract its components
df['Date']=df['Date'].astype('datetime64')
#creating a new column for the month
df['Month']=pd.DatetimeIndex(df['Date']).month

Finally, we remove two unnecessary columns from the DataFrame, using the following 
statement.

CODE:

#dropping the unnecessary columns
df.drop(['#','Notes'],axis=1,inplace=True)

Step 3: Visualization

To visualize our data, first we create another DataFrame (df1), which contains a subset of 
the columns the original DataFrame (df) contains. This DataFrame, df1, contains just two 
columns – “Film” (the name of the movie) and “Gross” (the gross revenue). Then, we sort 
the values of the revenue in the descending order. This is shown in the following step.

CODE:

df1=df[['Film','Gross']].sort_values(ascending=False,by='Gross')

There is an unwanted column (“index”) that gets added to this DataFrame that we will 
remove in the next step.

CODE:

df1.drop(['index'],axis=1,inplace=True)

Top Five Films: 

The first plot we create is a bar graph showing the top five films in terms of revenue: 
(Figure 8-1).

#Plotting the top 5 films by revenue
#setting the figure size
plt.figure(figsize=(10,5))

#creating a bar plot
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ax=sns.barplot(x='Film',y='Gross',data=df1.head(5))

#rotating the x axis labels

ax.set_xticklabels(labels=df1.head()['Film'],rotation=75)

#setting the title

ax.set_title("Top 5 Films per revenue")

#setting the Y-axis labels

ax.set_ylabel("Gross revenue")

#Labelling the bars in the bar graph

for p in ax.patches:

ax.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()), 

ha='center',va='bottom')

Output:

Figure 8-1. Pie chart showing the individual percentage share of each of the top 
five films
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To depict the share of the top ten films (by revenue), we create a pie chart (Figure 8-2).

CODE:

#Pie chart showing the share of each of the top 10 films by percentage in 

the revenue

df1['Gross'].head(10).plot(kind='pie',autopct='%.2f%%',labels=df1['Film'],

figsize=(10,5))

Output:

We first create another DataFrame that aggregates the data for a month by calculating an 

average for each month (Figure 8-3).

CODE:

#Aggregating the revenues by month

df2=df.groupby('Month')['Gross'].mean()

#creating a line plot

df2.plot(kind='line',figsize=(10,5))

Figure 8-2. Pie chart depicting the share of top ten movies by revenue
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Output:

Step 4: Drawing inferences based on analysis and visualizations

 1. The average monthly revenue shows wide variation, possibly 

dependent on the month of release of the movies, which may 

necessitate further analysis across the years.

 2. The top three highest-revenue-grossing movies in France in the 

year 2018 were Avengers, La Ch’tite Famille, and Les Tuche 3.

 Case study 8-2: Use of data analysis for air quality 
management
To monitor the status of ambient air quality, The Central Pollution Control Board 

(CPCB), India, operates a vast network of monitoring stations spread across the country. 

Parameters regularly monitored include sulfur dioxide (SO2), oxides of nitrogen as 

nitrogen dioxide (NO2), ozone, and fine particulate matter (PM2.5). Based on trends over 

the years, air quality in the national capital of Delhi has emerged as a matter of public 

Figure 8-3. Average box office monthly revenue in 2018 (France)
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concern. A stepwise analysis of daily air quality data follows to demonstrate how data 

analysis could assist in planning interventions as part of air quality management.

Note: The name of the dataset used for this case study is: “NSIT Dwarka.csv”. Please 

refer to the technical description section for details on how to import this dataset.

Questions that we want to answer through our analysis:

 1. Yearly averages: Out of the four pollutants - SO2, NO2, ozone, and 

PM2.5 - which have yearly average levels that regularly surpass the 

prescribed annual standards?

 2. Daily standards: For the pollutants of concern, on how many days 

in each year are the daily standards exceeded?

 3. Temporal variation: Which are the months where the pollution 

levels exceed critical levels on most days?

Step 1: Importing the data and examining the characteristics of the dataset

CODE:

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

#aqdata is the name of the DataFrame, short for Air Quality Data.

aqdata=pd.read_csv('NSIT Dwarka.csv')

aqdata.head()

Output:
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Checking for the data types of the columns:

CODE:

aqdata.info()

Output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 2192 entries, 0 to 2191

Data columns (total 6 columns):

From Date    2191 non-null object

To Date      2191 non-null object

PM2.5        2191 non-null object

SO2          2187 non-null object

Ozone        2187 non-null object

NO2          2190 non-null object

dtypes: object(6)

memory usage: 102.8+ KB

Observation: Even though the values for SO2, NO2, ozone, and PM2.5 are numeric, Pandas 

reads the data type of these columns as “object”. To work with these columns (i.e., plot 

graphs, observe trends, calculate aggregate values), we need to change the data types of 

these columns. Also, there seem to be some missing entries.

Step 2: Data wrangling

Based on the observations in the previous step, in this step, we will

 1. Deal with missing values: We have the option of either dropping 

the null values or substituting the null values.

 2. Change the data types for the columns.

Checking for missing values in the dataset:

CODE:

aqdata.isna().sum()
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Output:

From Date    1
To Date      1
PM2.5        1
SO2          5
Ozone        5
NO2          2
dtype: int64

There do not seem to be many missing values, but herein lies the catch. When we 

examined the first few rows using the head statement, we saw that some missing values 

are represented as None in the original dataset. However, these are not being recognized 

as null values by Pandas. Let us replace the value, None, with the value np.nan so that 

Pandas acknowledges these values as null values:

CODE:

aqdata=aqdata.replace({'None':np.nan})

Now, if we count the number of null values, we see a vastly different picture, indicating a 

much higher presence of missing values in the dataset.

CODE:

aqdata.isna().sum()

Output:

From Date      1
To Date        1
PM2.5        562
SO2           84
Ozone        106
NO2          105
dtype: int64

Let us check the current data types of the columns:

CODE:

aqdata.info()
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Output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 2192 entries, 0 to 2191

Data columns (total 6 columns):

From Date    2191 non-null object

To Date      2191 non-null object

PM2.5        1630 non-null object

SO2          2108 non-null object

Ozone        2086 non-null object

NO2          2087 non-null object

dtypes: object(6)

memory usage: 102.8+ KB

We see that the columns containing numeric values are not recognized as numeric 

columns, and the columns containing dates are also not recognized correctly. Having 

columns with incorrect data types becomes an impediment for the next step, where we 

analyze trends and plot graphs; this step requires the data types of the columns to be in a 

format that is appropriate for Pandas to read.

In the following lines of code, we use the pd.to_datetime method to convert the data type 

of the “From Date” and “To Date” columns to the datetime type, which makes it easier to 

analyze individual components of the date like months and years.

CODE:

aqdata['From Date']=pd.to_datetime(aqdata['From Date'], format='%d-%m-%Y %H:%M')

aqdata['To Date']=pd.to_datetime(aqdata['To Date'], format='%d-%m-%Y %H:%M')

aqdata['SO2']=pd.to_numeric(aqdata['SO2'],errors='coerce')

aqdata['NO2']=pd.to_numeric(aqdata['NO2'],errors='coerce')

aqdata['Ozone']=pd.to_numeric(aqdata['Ozone'],errors='coerce')

aqdata['PM2.5']=pd.to_numeric(aqdata['PM2.5'],errors='coerce')

Use the info method to check whether the data types have been changed.

CODE:

aqdata.info()
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Output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 2192 entries, 0 to 2191

Data columns (total 6 columns):

From Date    2191 non-null datetime64[ns]

To Date      2191 non-null datetime64[ns]

PM2.5        1630 non-null float64

SO2          2108 non-null float64

Ozone        2086 non-null float64

NO2          2087 non-null float64

dtypes: datetime64[ns](2), float64(4)

memory usage: 102.8 KB

Since most of our analysis considers yearly data, we create a new column to extract the 

year, using the pd.DatetimeIndex function.

CODE:

aqdata['Year'] = pd.DatetimeIndex(aqdata['From Date']).year

Now, we create separate DataFrame objects for each year so that we can analyze the data 

yearly.

CODE:

#extracting the data for each year

aq2014=aqdata[aqdata['Year']==2014]

aq2015=aqdata[aqdata['Year']==2015]

aq2016=aqdata[aqdata['Year']==2016]

aq2017=aqdata[aqdata['Year']==2017]

aq2018=aqdata[aqdata['Year']==2018]

aq2019=aqdata[aqdata['Year']==2019]

Now, let us have a look at the number of null values in the data for each year:

CODE:

#checking the missing values in 2014

aq2014.isna().sum()
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Output:

From Date      0
To Date        0
PM2.5        365
SO2            8
Ozone          8
NO2            8
Year           0
dtype: int64

#checking the missing values in 2015
aq2015.isna().sum()

Output:

From Date      0
To Date        0
PM2.5        117
SO2           12
Ozone         29
NO2           37
Year           0
dtype: int64

CODE:

#checking the missing values in 2016
aq2016.isna().sum()

Output:

From Date     0
To Date       0
PM2.5        43
SO2          43
Ozone        47
NO2          42
Year          0
dtype: int64

#checking the missing values in 2017
aq2017.isna().sum()
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Output:

From Date     0
To Date       0
PM2.5        34
SO2          17
Ozone        17
NO2          12
Year          0
dtype: int64

CODE:

#checking the missing values in 2018
aq2018.isna().sum()

Output:

From Date    0
To Date      0
PM2.5        2
SO2          2
Ozone        2
NO2          2
Year         0
dtype: int64

CODE:

#checking the missing values in 2019
aq2019.isna().sum()

Output:

From Date    0
To Date      0
PM2.5        0
SO2          1
Ozone        2
NO2          3
Year         0
dtype: int64
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From the analysis of null values for each year, we see that data for the years 2014 and 

2015 have the majority of the missing values. Hence, we choose to disregard data from 

the years 2014 and 2015, and analyze data for 4 years from 2016 to 2019. As per norms 

set by the Central Pollution Control Board, India, we need at least 104 daily monitored 

values to arrive at annual averages.

2016, 2017, 2018, and 2019 are the four years for which air quality data would be 

analyzed. Before moving on to the next step, we drop the missing values for each year 

from 2016 to 2019 instead of substituting them since we have sufficient data (more than 

104 readings) for each of these four years to calculate annual averages, as shown below.

CODE:

#dropping the null values for the four years chosen for analysis
aq2016.dropna(inplace=True) # inplace=True makes changes in the original 
dataframe
aq2017.dropna(inplace=True)
aq2018.dropna(inplace=True)
aq2019.dropna(inplace=True)

Step 3: Data visualization

Part 1 of analysis: Plotting the yearly averages of the pollutants

Based on monitored 24-hourly average ambient air concentrations of PM2.5, SO2, 

NO2, and ozone (O3), yearly averages are plotted to identify parameters for which the 

prescribed national ambient air quality standards for annual average are exceeded.

First, we calculate the yearly averages for each pollutant (PM2.5, SO2, NO2, and ozone), as 

follows:

CODE:

#Yearly averages for SO2 in each year
s16avg=round(aq2016['SO2'].mean(),2)
s17avg=round(aq2017['SO2'].mean(),2)
s18avg=round(aq2018['SO2'].mean(),2)
s19avg=round(aq2019['SO2'].mean(),2)
#Yearly averages for PM2.5 in each year
p16avg=round(aq2016['PM2.5'].mean(),2)
p17avg=round(aq2017['PM2.5'].mean(),2)
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p18avg=round(aq2018['PM2.5'].mean(),2)

p19avg=round(aq2019['PM2.5'].mean(),2)

#Yearly averages for NO2 in each year

n16avg=round(aq2016['NO2'].mean(),2)

n17avg=round(aq2017['NO2'].mean(),2)

n18avg=round(aq2018['NO2'].mean(),2)

n19avg=round(aq2019['NO2'].mean(),2)

Explanation: The notation for naming variables representing the averages of pollutants 

is as follows: the first letter of the pollutant, the year, and the abbreviation “avg” for 

average. For instance, s15avg denotes the average level of SO2 in the year 2015. We use 

the mean method to calculate the average and the round function to round the average 

value to two decimal points. We do not consider ozone since yearly standards do not 

apply to ozone.

Next, we create a DataFrame for each pollutant with two columns each. One of the 

columns represents the year, and the other column shows the yearly average level for 

that year.

CODE:

#Creating data frames with yearly averages for each pollutant

dfs=pd.DataFrame({'Yearly average':[s16avg,s17avg,s18avg,s19avg]},ind

ex=['2016','2017','2018','2019']) #dfs is for SO2

dfp=pd.DataFrame({'Yearly average':[p16avg,p17avg,p18avg,p19avg]},ind

ex=['2016','2017','2018','2019']) #dfp is for PM2.5

dfn=pd.DataFrame({'Yearly average':[n16avg,n17avg,n18avg,n19avg]},ind

ex=['2016','2017','2018','2019']) #dfn is for NO2

Now, we are ready to plot the graphs for the yearly averages of each pollutant (Figure 8-4).

CODE:

#Creating a figure with 3 subplots - 1 for each pollutant

fig,(ax1,ax2,ax3)=plt.subplots(1,3)

#Creating a DataFrame the yearly averages for NO2

dfn.plot(kind='bar',figsize=(20,5),ax=ax1)

#Setting the title for the first axes object

ax1.set_title("NO2", fontsize=18)
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#Setting the X-axis label for the NO2 graph

ax1.set_xlabel("Years", fontsize=18)

ax1.legend().set_visible(False)

#Setting the Y-axis label

ax1.set_ylabel("Yearly average", fontsize=18)

#Creating a dashed line to indicate the annual standard

ax1.hlines(40, -.9,15, linestyles="dashed")

#Labelling this dashed line

ax1.annotate('Annual avg. standard for NO2',(-0.5,38))

#labelling the bars

for p in ax1.patches:

     ax1.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()), 

color="black", ha="left", va ='bottom',fontsize=12)

#Plotting the yearly averages similarly for PM2.5

dfp.plot(kind='bar',figsize=(20,5),ax=ax2)

ax2.set_title("PM2.5", fontsize=18)

ax2.hlines(40, -.9,15, linestyles="dashed")

ax2.annotate('Annual avg. standard for PM2.5',(-0.5,48))

ax2.legend().set_visible(False)

for p in ax2.patches:

     ax2.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()), 

color="black", ha="center", va ='bottom',fontsize=12)

#Plotting the yearly averages similarly for SO2

dfs.plot(kind='bar',figsize=(20,5),ax=ax3)

ax3.hlines(50, -.9,15, linestyles="dashed")

ax3.annotate('Annual avg. standard for SO2',(-0.5,48))

ax3.set_title("SO2", fontsize=18)

ax3.legend().set_visible(False)

for p in ax3.patches:

     ax3.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()), 

color="black", ha="center", va ='bottom',fontsize=12)
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Output:

Observation: It is evident that standards for annual average are exceeded only for PM2.5. 

For NO2, the observed values are relatively close to the prescribed standard. For SO2, the 

observed values are much less than the annual standard. Therefore, for further analysis, 

only these two pollutants (NO2 and PM2.5) are considered.

Part 2 of air quality analysis: Plotting the number of days in each year where 24-hourly 

standards are exceeded for PM2.5 and NO2

While step 1 of the analysis indicates pollutants of concern for air quality management 

and planning of interventions, in step 2, for each year, we show how various levels of 

exceedance above standards for 24-hourly values are distributed. In the case of PM2.5, we 

plot the number of days in each year for which observed values fall in the following ranges.

 a. 0 to 60 μg/m3

 b. 61 to 120 μg/m3

 c. 121 to 180 μg/m3

 d. > 180 μg/m3

To plot this data, we need to create DataFrame objects for each year from 2016 to 2019 

capturing the number of days with PM2.5 levels falling in each of these intervals, as shown 

in the following:

CODE:

#Creating intervals for 2016 with the number of days with PM2.5 

concentration falling in that interval

a2=aq2016[(aq2016['PM2.5']<=60)]['PM2.5'].count()

Figure 8-4. The yearly average level for the pollutants (NO2, PM2.5, and SO2), vis-
à-vis their annual average standard
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b2=aq2016[((aq2016['PM2.5']>60) & (aq2016['PM2.5']<=120))]['PM2.5'].count()

c2=aq2016[((aq2016['PM2.5']>120) & (aq2016['PM2.5']<=180))]['PM2.5'].count()

d2=aq2016[(aq2016['PM2.5']>180)]['PM2.5'].count()

dfpb2016=pd.DataFrame({'year':'2016','pm levels':['<60','between 61 

and 120','between 121 and 180','greater than 180'],'number of critical 

days':[a2,b2,c2,d2]})

#Creating intervals for 2017 with the number of days with PM2.5 

concentration falling in each interval

a3=aq2017[(aq2017['PM2.5']<=60)]['PM2.5'].count()

b3=aq2017[((aq2017['PM2.5']>60) & (aq2017['PM2.5']<=120))]['PM2.5'].count()

c3=aq2017[((aq2017['PM2.5']>120) & (aq2017['PM2.5']<=180))]['PM2.5'].count()

d3=aq2017[(aq2017['PM2.5']>180)]['PM2.5'].count()

dfpb2017=pd.DataFrame({'year':'2017','pm levels':['<60','between 61 

and 120','between 121 and 180','greater than 180'],'number of critical 

days':[a3,b3,c3,d3]})

#Creating intervals for 2018 with the number of days with PM2.5 

concentration falling in each interval

a4=aq2018[(aq2018['PM2.5']<=60)]['PM2.5'].count()

b4=aq2018[((aq2018['PM2.5']>60) & (aq2018['PM2.5']<=120))]['PM2.5'].count()

c4=aq2018[((aq2018['PM2.5']>120) & (aq2018['PM2.5']<=180))]['PM2.5'].count()

d4=aq2018[(aq2018['PM2.5']>180)]['PM2.5'].count()

dfpb2018=pd.DataFrame({'year':'2018','pm levels':['<60','between 61 

and 120','between 121 and 180','greater than 180'],'number of critical 

days':[a4,b4,c4,d4]})

#Creating intervals for 2019 with the number of days with PM2.5 

concentration falling in each interval

a5=aq2019[(aq2019['PM2.5']<=60)]['PM2.5'].count()

b5=aq2019[((aq2019['PM2.5']>60) & (aq2019['PM2.5']<=120))]['PM2.5'].count()

c5=aq2019[((aq2019['PM2.5']>120) & (aq2019['PM2.5']<=180))]['PM2.5'].

count()

d5=aq2019[(aq2019['PM2.5']>180)]['PM2.5'].count()

dfpb2019=pd.DataFrame({'year':'2019','pm levels':['<60','between 61 

and 120','between 121 and 180','greater than 180'],'number of critical 

days':[a5,b5,c5,d5]})
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Now, we plot a stacked bar chart for each year with these intervals. To do so, we need to 

create pivot tables as follows:

CODE:

dfpivot2019=dfpb2019.pivot(index='year',columns='pm levels',values='number 

of critical days')

dfpivot2018=dfpb2018.pivot(index='year',columns='pm levels',values='number 

of critical days')

dfpivot2017=dfpb2017.pivot(index='year',columns='pm levels',values='number 

of critical days')

dfpivot2016=dfpb2016.pivot(index='year',columns='pm levels',values='number 

of critical days')

Using these pivot tables, we create stacked bar charts (Figure 8-5) as follows:

CODE:

#Creating a figure with 4 sub-plots, one for each year from 2016-19

fig,(ax1,ax2,ax3,ax4)=plt.subplots(1,4)

fig.suptitle("Number of days per year in each interval")

cmp=plt.cm.get_cmap('RdBu')

#Plotting stacked horizontal bar charts for each year to represent 

intervals of PM2.5 levels

dfpivot2019.loc[:,['<60','between 61 and 120','between 121 and 180', 

'greater than 180']].plot.barh(stacked=True, cmap=cmp,figsize=(15,5),ax=ax1)

dfpivot2018.loc[:,['<60','between 61 and 120','between 121 and 

180','greater than 180']].plot.barh(stacked=True, cmap=cmp, 

figsize=(15,5),ax=ax2)

dfpivot2017.loc[:,['<60','between 61 and 120','between 121 and 

180','greater than 180']].plot.barh(stacked=True, cmap=cmp, 

figsize=(15,5),ax=ax3)

dfpivot2016.loc[:,['<60','between 61 and 120','between 121 and 

180','greater than 180']].plot.barh(stacked=True, cmap=cmp, 

figsize=(15,5),ax=ax4)

#Setting the properties - legend, yaxis and title

ax1.legend().set_visible(False)

ax2.legend().set_visible(False)

ax3.legend().set_visible(False)
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ax4.legend(loc='center left',bbox_to_anchor=(1,0.5))

ax1.get_yaxis().set_visible(False)

ax2.get_yaxis().set_visible(False)

ax3.get_yaxis().set_visible(False)

ax4.get_yaxis().set_visible(False)

ax1.set_title('2019')

ax2.set_title('2018')

ax3.set_title('2017')

ax4.set_title('2016')

Output:

Observation:

It is seen that PM2.5 values above 180 μg/m3 are observed every year, and therefore, to 

start with, restrictions on major polluting activities, including traffic, could be confined 

to this category.

NO2 interval-wise plotting

Likewise, for NO2, the number of days in each year on which monitored values exceed 

the 24-hourly standards of 80 μg/m3 is plotted (Figure 8-6).

First, we create a data frame for NO2 that captures the number of days in each year with 

values higher than 80 μg/m3, as shown in the following.

Figure 8-5. Number of days per year in each interval level for PM2.5
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CODE:

#Calculating the number of days in each year with regard to critical days 

of NO2 concentration

a=aq2015[(aq2015['NO2']>=80)]['NO2'].count()

b=aq2016[(aq2016['NO2']>=80)]['NO2'].count()

c=aq2017[(aq2017['NO2']>=80)]['NO2'].count()

d=aq2018[(aq2018['NO2']>=80)]['NO2'].count()

e=aq2019[(aq2019['NO2']>=80)]['NO2'].count()

dfno=pd.DataFrame({'years':['2015','2016','2017','2018','2019'],'number of 

days with NO2>80 μg':[a,b,c,d,e]})
ax=dfno.plot(kind='bar',figsize=(10,5))

ax.set_xticklabels(['2015','2016','2017','2018','2019'])

ax.set_title("NO2 number of days in each year with critical levels of 

concentration")

for p in ax.patches:

     ax.annotate(p.get_height(), (p.get_x() + p.get_width() / 2, p.get_

height()), ha = 'center', va = 'bottom')

Output:

Figure 8-6. Number of days per year with critical levels of NO2 concentration
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Inference: Observed 24-hourly NO2 values are exceeded only for three of the five years.

Since observed 24-hourly NO2 values exceed standard only marginally and that too only 

for a few days, the next step is confined to further analysis of PM2.5.

Part 3 of air quality analysis: Identifying the months where PM2.5 daily values exceed 

critical levels on the majority of the days

Before imposing restrictions on activities like vehicular traffic and construction, which 

significantly contribute to ambient PM2.5 concentrations, it is necessary to provide 

sufficient notice to avoid inconvenience to the general public. Hence, for daily PM2.5 

values significantly above 180 μg/m3, we plot temporal variation year-wise during each 

month of the year. To do this, for each of the twelve months, we capture the number of 

critical air pollution days every year with 24-hourly PM2.5 values exceeding 180 μg/m3.

First, we create data frames for each year with the number of days in each month where 

the PM2.5 values exceed 180 μg/m3, as shown in the following.

CODE:

#Creating a dataframe for 2016 with the number of days in each month where 

the PM2.5 concentration is >180

aq2016['Month']=pd.DatetimeIndex(aq2016['From Date']).month #extracting the 

month

aq2016['condition']=(aq2016['PM2.5']>=180 ) # creating a boolean column 

that is True when the PM2.5 value is greater than 180 and false when it is 

less than 180

aq2016['condition']=aq2016['condition'].replace({False:np.nan}) # replacing 

the False values with null values, so that the count method in the next 

statement only counts the True values or the values corresponding to PM 

2.5>180

selection1=aq2016.groupby('Month')['condition'].count() #Using the groupby 

method to calculate the number of days for each month that satisfy the 

condition(PM2.5>180)

#Repeating the above process for 2017, creating a dataframe with the number 

of days in each month where the PM2.5 concentration is >180

aq2017['Month']=pd.DatetimeIndex(aq2017['From Date']).month

aq2017['condition']=(aq2017['PM2.5']>=180 )

aq2017['condition']=aq2017['condition'].replace({False:np.nan})
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selection2=aq2017.groupby('Month')['condition'].count()

#Repeating the above process for 2018, creating a dataframe with the number 

of days in each month where the PM2.5 concentration is >180

aq2018['Month']=pd.DatetimeIndex(aq2018['From Date']).month

aq2018['condition']=(aq2018['PM2.5']>=180 )

aq2018['condition']=aq2018['condition'].replace({False:np.nan})

selection3=aq2018.groupby('Month')['condition'].count()

#Repeating the above process for 2019, creating a dataframe with the number 

of days in each month where the PM2.5 concentration is >180

aq2019['Month']=pd.DatetimeIndex(aq2019['From Date']).month

aq2019['condition']=(aq2019['PM2.5']>=180 )

aq2019['condition']=aq2019['condition'].replace({False:np.nan})

selection4=aq2019.groupby('Month')['condition'].count()

Now, we concatenate all the DataFrame objects into one object (which we will call 

‘selectionc’) to get a consolidated picture of the number of days in each month where 

PM2.5 > 180 μg/m3, as shown in the following.

CODE:

#selectionc data frame is a consolidated dataframe showing month-wise 

critical values of PM2.5 for every year

selectionc=pd.concat([selection1,selection1,selection3,selection4],axis=1)

#renaming the columns

selectionc.columns=['2016','2017','2018','2019']

selectionc
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Output:

 

We can observe from this table that month 1 (January), month 11 (November), and 

month 12 (December), are the most critical months for all four years, as these months 

had the highest number of days with PM2.5 > 180 μg/m3.

Now that we have all the data in place, let us visualize the critical days for PM2.5 

(Figure 8-7), using the following code.

CODE:

#creating a bar chart representing number of days with critical levels of 

PM2.5(>180) concentrations

ax=selectionc.plot(kind='bar',figsize=(20,7),width=0.7,align='center',color

map='Paired')

bars = ax.patches

#creating patterns to represent each year

patterns =('-','x','/','O')

#ax.legend(loc='upper left', borderpad=1.5, labelspacing=1.5)

ax.legend((patterns),('2016','2017','2018','2019'))

hatches = [p for p in patterns for i in range(len(selectionc))]

#setting a pattern for each bar
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for bar, hatch in zip(bars, hatches):

    bar.set_hatch(hatch)

#Labelling the months, the X axis and Y axis

ax.set_xticklabels(['Jan','Feb','Mar','Apr','May','June','July','Aug','Sept

','Oct','Nov','Dec'],rotation=30)

ax.set_xlabel('Month',fontsize=12)

ax.set_ylabel('Number of days with critical levels of PM2.5',fontsize=12)

#Labelling the bars

for i in ax.patches:

    ax.text(i.get_x()-.003, i.get_height()+.3,

            round(i.get_height(),2), fontsize=10,

                color='dimgrey')

ax.legend()

ax.set_title("Number of days with critical levels of PM2.5 in each month of 

years 2016-19")

Output:

Step 4: Drawing inferences based on analysis and visualizations

From the preceding graph, it is observed that most of the critically polluted days fall in 

January, November, and December. Therefore, based on daily average concentrations 

of PM2.5 recorded over the past four years, restrictions on vehicular traffic, construction 

activities, use of diesel pump sets, diversion of traffic entering Delhi from neighboring 

Figure 8-7. PM2.5 – Number of days with critical levels per month per year

Chapter 8  Data analysis Case stuDies



308

states, and other similar activities are likely to be imposed in January, November, and 

December. To make such decisions for Delhi as a whole, analysis of data from other 

monitoring stations would also be necessary. Dissemination of data and analysis on 

the preceding lines would help people prepare in advance for restrictions and also 

appreciate the rationale behind such measures.

The approach demonstrated in the preceding, using data analysis as a tool to assist in 

air quality management, uses the data recorded at one monitoring station located at the 

Netaji Subhas Institute of Technology (NSIT), Delhi. The methodology could be carried 

forward on the following lines.

 a. Repeat the preceding step for NO2 to show critical months that 

account for most of the days with NO2 recorded values exceeding 

24-hourly standards. Doing this exercise would again help identify 

months facing pollution levels of concern for both parameters, 

PM2.5 and NO2, and plan.

 b. Repeat the analysis carried out with data from the air quality 

monitoring station at NSIT with the use of similar data from 

other stations so that interventions for Delhi as a whole could be 

planned.

 Case study 8-3: Worldwide COVID-19 cases – an 
analysis
This dataset contains data about the geographic distribution of COVID-19 cases as of 

29th June 2020 (Source: European Center for Disease Control, source URL: https://

www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-

distribution-covid-19-cases-worldwide). Note that this link contains the latest 

data, but we have used the data as on 29th June (the link to the dataset is provided in the 

“Technical requirements” section at the beginning of the chapter).

Questions that we want to answer through our analysis include:

 1. Which are the countries with the worst mortality rates, maximum 

cases, and the most fatalities?
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 2. What is the monthly trend vis-à-vis the number of cases and 

fatalities since the start of the pandemic?

 3. In some of the countries, lockdowns were imposed to help flatten 

the curve. Did this measure aid in reducing the number of cases?

Step 1: Importing the data and examining the characteristics of the dataset

Read the dataset and examine the first five rows (using the head method) using the pd.

read_excel function:

CODE:

df=pd.read_excel('COVID-19-geographic-distribution-worldwide-2020-06-29.xlsx')

df.head()

Output:

 

Get information about the data type of each column and the number of non-null values 

in each column (using the info method).

CODE:

df.info()

Output:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 26562 entries, 0 to 26561

Data columns (total 11 columns):

dateRep                    26562 non-null datetime64[ns]

day                        26562 non-null int64

month                      26562 non-null int64

year                       26562 non-null int64

cases                      26562 non-null int64
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deaths                     26562 non-null int64

countriesAndTerritories    26562 non-null object

geoId                      26455 non-null object

countryterritoryCode       26498 non-null object

popData2019                26498 non-null float64

continentExp               26562 non-null object

dtypes: datetime64[ns](1), float64(1), int64(5), object(4)

memory usage: 2.2+ MB

Get summary statistics for each column (using the describe method) and obtain the 

values of the count, min, max, standard deviation, and percentiles:

CODE:

df.describe()

Output:

 

Step 2: Data wrangling

In this step, we will:

• Check if the data types of the columns are accurately identified. If 

not, change the data types: From the output of the info method, we 

see that all data types of the columns have been correctly identified.

• Rename the columns if necessary: In the following code, we are 

renaming the columns of the DataFrame.
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CODE:

#changing the column names

df.columns=['date','day','month','year','cases','deaths','country', 

'old_country_code','country_code','population','continent']

• Drop any unnecessary columns or rows:

• We see the country code column is present twice (with two different 

names: 'old_country_code' and 'country_code') in the DataFrame, 

hence we remove one of the columns (“old_country_code”):

CODE:

#Dropping the redundant column name

df.drop(['old_country_code'],axis=1,inplace=True)

• Remove any extraneous data that does not add any value:

There are no blank spaces, special characters, or any other extraneous 

characters in this DataFrame. We see that there is data for only one 

day in December 2019; hence we remove data for this month and 

create a new DataFrame (df1) for the remaining 11 months.

CODE:

df1=df[df.month!=12]

• Check if there are any null values, using the isna or isnull method, 

and apply appropriate methods to deal with them if they are present:

Calculating the percentage of null values:

CODE:

df1.isna().sum().sum()/len(df1)

Output:

0.008794112096622004

Since the percentage of null values is less than 1%, we drop the 

null values in the following step.
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CODE:

df1.dropna(inplace=True)

• Aggregate the data if the data is in a disaggregated format:

The data in this DataFrame is not in an aggregated format, and we 

convert it into this format using the groupby method in this step. 

We can group either by country, by continent, or by date. Let us 

group by the name of the country.

CODE:

#Aggregating the data by country name

df_by_country=df1.groupby('country')['cases','deaths'].sum()

df_by_country

Output (only first nine rows shown):

 

The preceding output shows a consolidated picture of the number of cases and deaths 

for each country.
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Let us add another column to this aggregated DataFrame – the mortality rate, which is 

the ratio of the number of deaths to the number of cases.

CODE:

#Adding a new column for the mortality rate which is the ratio of the 

number of deaths to cases

df_by_country['mortality_rate']=df_by_country['deaths']/df_by_

country['cases']

Step 3: Visualizing the data

In our first visualization in this case study, we use the aggregated data in the DataFrame, 

“df_by_country”, to display the top twenty countries by mortality rate (Figure 8-8).

CODE:

#Sorting the values for the mortality rate in the descending order

plt.figure(figsize=(15,10))

ax=df_by_country['mortality_rate'].sort_values(ascending=False).head(20).

plot(kind='bar')

ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right")

for p in ax.patches:

    ax.annotate(p.get_height().round(2),(p.get_x()+p.get_width()/2,p.get_he

ight()),ha='center',va='bottom')

ax.set_xlabel("Country")

ax.set_ylabel("Mortality rate")

ax.set_title("Countries with highest mortality rates")
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Output:

In the second visualization, we display the ten countries with the highest number of 

COVID-19 cases, using a pie chart, as shown in Figure 8-9.

CODE:

#Pie chart showing the countries with the highest number of COVID cases

df_cases=df_by_country['cases'].sort_values(ascending=False)

ax=df_cases.head(10).plot(kind='pie',autopct='%.2f%%',labels=df_cases.

index,figsize=(12,8))

ax.set_title("Top ten countries by case load")

Figure 8-8. Bar chart depicting countries with the highest mortality rates for 
COVID-19
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Output:

In the next visualization, we find out the five countries that have suffered the most in 

terms of loss to human life from the COVID-19 pandemic, using a bar chart (Figure 8-10).

CODE:

#sorting the number of deaths in the descending order
plt.figure(figsize=(10,6))
ax=df_by_country['deaths'].sort_values(ascending=False).head(5).
plot(kind='bar')
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha="right")
for p in ax.patches:
     ax.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()), 

ha='center',va='bottom')

Figure 8-9. Pie chart depicting the share of the top ten countries by COVID-19 cases
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ax.set_title("Countries suffering the most fatalities from COVID-19")
ax.set_xlabel("Countries")
ax.set_ylabel("Number of deaths")

Output:

Now, we plot line graphs to see the month-wise trend in the number of COVID-19 cases 

and fatalities.

To plot the line graphs, we first aggregate the data by month and then plot two line 

graphs side by side, showing the number of cases and deaths, as shown in Figure 8-11.

CODE:

df_by_month=df1.groupby('month')['cases','deaths'].sum()
fig=plt.figure(figsize=(15,10))
ax1=fig.add_subplot(1,2,1)

Figure 8-10. Bar chart depicting the five countries with the maximum fatalities
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ax2=fig.add_subplot(1,2,2)
df_by_month['cases'].plot(kind='line',ax=ax1)
ax1.set_title("Total COVID-19 cases across months in 2020")
ax1.set_xlabel("Months in 2020")
ax1.set_ylabel("Number of cases(in million)")
df_by_month['deaths'].plot(kind='line',ax=ax2)
ax2.set_title("Total COVID-19 deaths across months in 2020")
ax2.set_xlabel("Months in 2020")
ax2.set_ylabel("Number of deaths")

Output:

Many countries imposed a lockdown to stem the tide of increasing cases and flatten 

the curve. We now look at four countries – India, the UK, Italy, and Germany – where 

lockdowns were imposed in March, to see if this measure had the desired impact.

First, we create DataFrame objects for each of these countries, with data aggregated 

month-wise.

Figure 8-11. Impact of lockdown on flattening the curve
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CODE:

#Creating DataFrames for each country

#Monthwise aggregated data for Germany

df_germany=df1[df1.country=='Germany']

df_germany_monthwise=df_germany.groupby('month')['cases','deaths'].sum()

df_germany_grouped=df_germany_monthwise.reset_index()

#Monthwise aggregated data for UK

df_uk=df1[df1.country=='United_Kingdom']

df_uk_monthwise=df_uk.groupby('month')['cases','deaths'].sum()

df_uk_grouped=df_uk_monthwise.reset_index()

#Monthwise aggregated data for India

df_india=df1[df1.country=='India']

df_india_monthwise=df_india.groupby('month')['cases','deaths'].sum()

df_india_grouped=df_india_monthwise.reset_index()

#Monthwise aggregated data for Italy

df_italy=df1[df1.country=='Italy']

df_italy_monthwise=df_italy.groupby('month')['cases','deaths'].sum()

df_italy_grouped=df_italy_monthwise.reset_index()

Now, we use the DataFrame objects created in the previous steps to plot line graphs for 

these countries to see the number of cases across various months in 2020, as shown in 

Figure 8-12.

CODE:

#Plotting the data for four countries (UK, India, Italy and Germany) where 

lockdowns were imposed

fig=plt.figure(figsize=(20,15))

ax1=fig.add_subplot(2,2,1)

df_uk_grouped.plot(kind='line',x='month',y='cases',ax=ax1)

ax1.set_title("Cases in UK across months")

ax2=fig.add_subplot(2,2,2)

df_india_grouped.plot(kind='line',x='month',y='cases',ax=ax2)

ax2.set_title("Cases in India across months")

ax3=fig.add_subplot(2,2,3)

df_italy_grouped.plot(kind='line',x='month',y='cases',ax=ax3)
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ax3.set_title("Cases in Italy across months")

ax4=fig.add_subplot(2,2,4)

df_germany_grouped.plot(kind='line',x='month',y='cases',ax=ax4)

ax4.set_title("Cases in Germany across months")

Output:

Step 4: Drawing inferences based on analysis and visualizations

• Number of cases: The United States, Brazil, Russia, India, and the UK 

had the highest number of cases.

• Number of deaths: The United States, Brazil, the UK, Italy, and 

France had the highest death tolls.

Figure 8-12. Total cases in UK, India, Germany, and Italy in the first 6 months of 
2020
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• Mortality rate: Yemen, St. Maarten, France, Belgium, and Italy had 

the highest mortality rates.

• Trends:

• The total number of cases has been increasing steadily, while 

the total number of fatalities (deaths) has shown a decrease after 

April.

• Impact of lockdown: We analyzed four countries – India, the UK, 

Germany, and Italy – where lockdowns were imposed in March. 

Except for India, all these countries experienced an overall 

decrease in cases after the lockdown was imposed. In the UK and 

Germany, the cases went up initially (during the early phase of 

the lockdown) but started decreasing after this spike.

 Summary
• In this chapter, we looked at various case studies where we imported 

data from both structured and unstructured data sources. Pandas 

provides support for reading data from a wide variety of formats.

• The requests module has functions that enable us to send HTTP 

requests to web pages and store the content from the page in an 

object.

• A typical descriptive or exploratory data analysis of a case starts with 

framing the questions that we want to answer through our analysis 

and figuring out how to import the data. After this, we get more 

information about the data – the meanings of various columns, the 

units of measurement, the number of missing values, the data types 

of different columns, and so on.

• Data wrangling, where we prepare, clean, and structure the data to 

make it suitable for analysis, is the crux of descriptive or exploratory 

data analysis. Typical activities involved removing extraneous data, 

handling null values, renaming columns, aggregating data, and 

changing data types.
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• Once the data is prepared and made suitable for analysis, we 

visualize our data using libraries like Matplotlib, Seaborn, and 

Pandas to help us gain insights that would answer the questions we 

initially framed.

 Review Exercises
Question 1 (mini case study)

Consider the first table on the following web page: https://en.wikipedia.org/

wiki/Climate_of_South_Africa. It contains data about the maximum and minimum 

temperatures (in degrees centigrade) in various cities in South Africa, during summers 

and winters.

• Use the appropriate method from the requests module to send a get 

request to this URL and store the data from the first table on this page 

in a Pandas DataFrame.

• Rename the columns as follows: 'City', 'Summer(max)', 

'Summer(min)', 'Winter(max)', 'Winter(min)'.

• Replace the negative value in the first row of the ‘Winter(min)’ 

column with 0, and convert the data type of this column to int64.

• Plot a graph to display the hottest cities in South Africa during 

summers (use the Summer(max) column).

• Plot a graph to display the coldest cities in South Africa during the 

winters (use the Winter(min) column).

Question 2

The weekly wages of ten employees (with the initials A–J) are as follows: 100, 120, 80, 155, 

222, 400, 199, 403, 345, 290. Store the weekly wages in a DataFrame.

• Plot a bar graph to display the wages in the descending order

• Label each of the bars in the bar graphs using the annotate method
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Question 3

    1. Module for sending http requests a. url of a web page

    2. Get method b. req.text

    3. argument passed to get method c. Fetches information using a given url

    4. attribute containing unicode content d. requests

Question 4

The read_html Pandas function reads

 1. All the HTML content on the web page

 2. HTML tags in a web page

 3. All the HTML tables as a list of DataFrame objects

 4. HTML lists in a web page

Answers

Question 1

CODE:

import requests

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

url='https://en.wikipedia.org/wiki/Climate_of_South_Africa'

#making a get request to the URL

req = requests.get(url)

#storing the HTML data in a DataFrame

data = pd.read_html(req.text)

#Reading the first table

df=data[0]

#Renaming the columns

df.columns=['City','Summer(max)','Summer(min)','Winter(max)','Winter(min)']

#Replacing the negative value with 0

df['Winter(min)']=df['Winter(min)'].str.replace(r"–2","0")
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#Changing the data type from object to int64

df['Winter(min)']=df['Winter(min)'].astype('int64',errors='ignore')

#Using the city as the index to facilitate plotting

df1=df.set_index('City')

#Hottest five cities during Summer

df1['Summer(max)'].sort_values(ascending=False).head(5).plot(kind='bar')

#Coldest five cities during Winter

df1['Winter(min)'].sort_values().head(5).plot(kind='bar')

Question 2

CODE:

numbers=pd.Series([100,120,80,155,222,400,199,403,345,290])

#converting the data to a DataFrame

numbers.to_frame()

#labelling the index

numbers.index=list('ABCDEFGHIJ')

#labelling the column

numbers.columns=['Wages']

ax=numbers.sort_values(ascending=False).plot(kind='bar')

#labelling the bars

for p in ax.patches:

    ax.annotate(p.get_height(),(p.get_x()+p.get_width()/2,p.get_height()),h

a='center',va='bottom')

Question 3

1-d; 2-c; 3-a; 4-b

Question 4

Option 3

Content from each table on the web page is stored in a separate DataFrame object.
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CHAPTER 9

Statistics and Probability 
with Python
In the previous chapter, we learned about how to apply your knowledge of data analysis 

by solving some case studies.

Now, in the final part of this book, we learn about essential concepts in statistics and 

probability and understand how to solve statistical problems with Python. The topics 

that we cover include permutations and combinations, probability, rules of probability 

and Bayes theorem, probability distributions, measures of central tendency, dispersion, 

skewness and kurtosis, sampling, central limit theorem, and hypothesis testing. We also 

look at confidence levels, level of significance, p-value, hypothesis testing, parametric 

tests (one- and two-sample z-tests, one- and two-sample t-tests, paired tests, analysis of 

variance [ANOVA]), and nonparametric tests (chi-square test).

 Permutations and combinations
Let us look at a few definitions, formulae, and examples that will help us understand the 

concepts of permutations and combinations.

Combinations: The various ways in which we can select a group of objects.

The following formula gives the number of combinations we can form from a given 

number of objects:

 
nc

n

r n rr = -( )
!

! !  
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In the preceding formula, n is the total number of objects in the set from which a smaller 

subset of objects is drawn, c is the number of combinations, and r is the number of 

objects in the subset. The exclamation mark symbol (!) denotes the factorial of a number. 

For example, x! is the product of all integers from 1 up to and including x.

(x! =x*(x-1) *(x-2) …. *1)

Let us now solve a simple question involving combinations.

Question: Find the number of ways in which an ice cream sundae containing three 

flavors can be created out of a total of five flavors.

Answer: Let the five flavors be A, B, C, D, and E. Working out this problem manually, the 

following combinations can be obtained:

A, B, C|B, C, D|A, C, D|A, B, D|C, D, E|B, D, E|A, B, E|A, D, E|A, C, 

E|B, C, E

There are ten combinations, as we can see. If we apply the ncr formula, where n is 5 and r 

is 3, we get the same answer (5C3 = 10).

Let us now look at what permutations are.

Permutations are similar to combinations, but here, the order in which the objects are 

arranged matters.

The following formula gives the number of permutations:

 
n

n

n rPr
=

-( )
!

!  

Considering the same ice cream example, let us see how many permutations we can 

obtain, that is, the number of ways in which three flavors can be selected and arranged 

out of a total of five flavors.

 1. ABC|CBA|BCA|ACB|CAB|BAC

 2. BCD|CDB|BDC|CBD|DBC|DCB

 3. ACD|ADC|DAC|DCA|CAD|CDA

 4. ABD|ADB|BAD|BDA|DAB|DBA

 5. CDE|CED|DCE|DEC|ECD|EDC
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 6. BDE|BED|DBE|DEB|EBD|EDB

 7. ABE|AEB|BEA|BAE|EAB|EBA

 8. ADE|AED|DAE|DEA|EAD|EDA

 9. ACE|AEC|CAE|CEA|EAC|ECA

 10. BCE|BEC|CBE|CEB|EBC|ECB

As we can see, we can get six possible arrangements for each combination. Hence, the 

total number of arrangements = 10*6 = 60. The formulanPr
 (where n=5 and r=3) also 

gives the same answer (60).

Another approach to solving questions involving permutations is as follows:

 1. First, select the items: Select three flavors from five in 5C3 ways

 2. Now arrange the three items in 3! ways

 3. Multiply the results obtained in step 1 and step 2. Total number of 

permutations = 5C3 ∗ 3 !  = 60

Now that we have understood the concepts of permutations and combinations, let us 

look at the essentials of probability.

 Probability
Given below are a few important concepts related to probability.

Random experiment: This is any procedure that leads to a defined outcome and can be 

repeated any number of times under the same conditions.

Outcome: The result of a single experiment.

Sample space: Exhaustive list containing all possible outcomes of an experiment.

Event: An event can comprise a single outcome or a combination of outcomes. An event 

is a subset of the sample space.

Probability: A quantitative measure of the likelihood of the event. The probability of 

any event always lies between 0 and 1. 0 denotes that the event is not possible, while 1 

indicates that the event is certain to occur.

If the letter X denotes our event, then the probability is given by the notation P(X)= 

N(X)/N(S)
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Where N(X)=number of outcomes in event x

N(S)= total number of outcomes in the sample space

 Solved example: Probability

The following is a simple probability question.

Question: In an experiment, a die is rolled twice. Find the probability that the numbers 

obtained in the two throws add up to 10.

Solution:

Event A: The first die is rolled.

Event B: The second die is rolled.

Sample space: A die contains the numbers 1 to 6, which are equally likely to appear. The 

total number of outcomes, when one die is rolled, is six. Since events “A” and “B” are 

independent, the total number of outcomes for both the events = 6*6 = 36.

Event X: The sum of the two numbers is 10. The possible outcomes that lead to this result 

include {4,6}, {6,4}, and {5,5}; that is, three possible outcomes lead to a sum of 10.

P(X)=Probability of obtaining a sum of 10=Number of outcomes in event X/Total Sample 

Space=3/36=0.0833

 Rules of probability
Let us understand the various rules of probability, explained in Table 9-1.

Table 9-1. Rules of Probability

(continued)

Rule Description Formula Venn diagram

Addition rule the addition rule 

determines the 

probability of either 

of two events 

occurring.

p (a U b) = p(a)+p(b)-p (a ∩ b) A   B

A B

∩
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Rule Description Formula Venn diagram

Special rule of 
addition

this rule applies to 

mutually exclusive 

events. Mutually 

exclusive events are 

those that cannot 

co-occur.

For mutually 

exclusive events, 

the probability of 

either of the events 

occurring is simply 

the sum of the 

probability of each of 

the events.

p(a U b)= p(a)+p(b) MUTUALLY EXCLUSIVE

A B

Multiplication 
rule

the multiplication 

rule is a general  

rule that provides 

the probability 

of two events 

occurring together.

p(a ∩ b)=p(a)*p(b/a)

p(b/a) is the conditional 
probability of event b 

happening given that event a 

has already occurred.

A ∩ B BA

Special rule of 
multiplication

this rule applies to 

independent events. 

For independent 

events, the 

probability of the 

events occurring 

together is simply 

the product of 

probabilities of the 

events.

p(a∩b)=p(a)*p(b)
A ∩ B BA

Table 9-1. (continued)
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Note that the formulae listed in Table 9-1 provide the rules for two events, but these can 

be extended to any number of events.

 Conditional probability
Conditional probability involves calculating the probability of an event, after taking 

into consideration the probability of another event that has already occurred. Consider 

Figure 9-1, which illustrates the principle of conditional probability.

Figure 9-1 shows that if the event “A” is dependent on event “B,” then the sample space is 

event “B” itself. For example, let A be the event that a customer purchases a product from 

an online retailer. Let the probability of the event be 0.5., or in other words, P(A)=0.5.

Now, let B be the event in which the product that the customer intends to purchase has 

received a negative review. The probability of the customer buying the product may now 

be less than what it was earlier due to this negative review. Let us say that now there is 

only a 30% chance that they purchase the product. In other words, P(A/B) = probability 

of the customer buying a product given that it has received a negative review = 0.3.

The formula for conditional probability is P(A/B) =P (A ∩ B)/P(B).

 Bayes theorem
Bayes theorem is a theorem used to calculate the conditional probability of an event, 

given some evidence related to the event. Bayes theorem establishes a mathematical 

relationship between the probability of an event and prior knowledge of conditions 

related to it. As evidence related to an event accumulates, the probability of this event 

can be determined more accurately.

Figure 9-1. Conditional probability
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Questions involving Bayes theorem are different from conventional probability 

questions, where we generally calculate the probability of events that may occur in the 

future. For instance, in a simple conditional probability question, we might be asked to 

calculate the probability of a person getting diabetes, given that they are obese. In Bayes 

theorem, we go backward and calculate the probability of a person being obese, given 

that they have diabetes. That is, if a person tested positive for diabetes, Bayes theorem 

tests the hypothesis that he is obese. The formula for Bayes theorem is as follows:

P(A/B)=
P B A P A

P B

/( )* ( )
( )

P(A/B), also known as the posterior probability, is what we want to compute, that is, the 

probability of the hypothesis being true, given the data on hand.

P(B/A) is the probability of obtaining the evidence, given the hypothesis.

P(A) is the prior probability, that is, the probability of the hypothesis being true before 

we have any data related to it.

P(B) is the general probability of occurrence of the evidence, without any hypothesis, 

also called the normalizing constant.

Applications of Bayes theorem: Given below are a few areas where Bayes theorem can be 

applied.

• Medical diagnostics

• Finance and risk assessment

• Email spam classification

• Law enforcement and crime detection

• Gambling

Now, let us understand the practical application of Bayes theorem in a few of these areas 

using a couple of examples.

 Application of Bayes theorem in medical diagnostics
Bayes theorem has applications in the field of medical diagnostics, which can be 

understood with the help of the following hypothetical example.
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Question: Consider a scenario where a person has tested positive for an illness. This 

illness is known to impact about 1.2% of the population at any given time. The diagnostic 

test is known to have an accuracy of 85%, for people who have the illness. The test 

accuracy is 97% for people who do not have the illness. What is the probability that this 

person suffers from this illness, given that they have tested positive for it?

Solution:

Assessing the accuracy of medical tests is one of the applications of Bayes theorem.

Let us first define the events:

A: The person has the illness, also called the hypothesis.

~A: The person does not have the illness.

B: The person has tested positive for the illness, also called the evidence.

P(A/B): Probability that this person has the illness given that they have tested positive for 

it, also called the posterior probability (which is what we need to calculate).

P(B/A): Probability that the person has tested positive for it given that they have the 

illness. This value is 0.85 (as given in the question that this test has 85% accuracy for 

people who suffer from the illness).

P(A): Prior probability or the probability that the person has the illness, without any 

evidence (like a medical test). This value is 0.012 (as given in the question that this 

illness affects 1.2% of the population).

P(B): Probability that this person has tested positive for this illness. This probability can 

be calculated in the following manner.

There are two ways this person could test positive for this illness:

• They have the illness and have tested positive (true POSITIVE) - the 

probability of this occurring can be calculated as follows:

P(B/A)*P(A)=0.85*0.012=0.0102.

• They do not have the illness, but the test was inaccurate,  

and they have tested positive for it (false positive) – the  

probability of this occurring can be calculated as follows:

P(B/~A)*P(~A)=(1-0.97)*(1-0.012)=0.02964.
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Here, P(B/~A) refers to the probability that the test was positive for 

a person who did not have the illness, that is, the probability that 

the test was inaccurate for the person who does not suffer from 

the illness.

Since this test is 97% accurate for people who do not have this 

illness, it is inaccurate for 3% of the cases.

In other words, P(B/~A) = 1-0.97.

Similarly, P(~A) refers to the probability that the person does not 

have the illness. Since we have been provided the data that the 

incidence of this illness is 1.2%, P(~A) is = 1-0.012.

P(B), the denominator in the Bayes theorem equation, is the union of the preceding two 

probabilities = (P(B/A)*P(A)) + (P(B/~A)*P(~A))=0.0102+0.2964=0.03984

We can now calculate our final answer by plugging in the values for the numerator and 

denominator in the Bayes theorem formula.

P(A/B)=P(B/A)*P(A)/P(B) =0.85*0.012 / 0.03984 = 0.256

Using the Bayes theorem, we can now conclude that even with a positive medical test, 

this person only has a 25.6% chance of suffering from this illness.

 Another application of Bayes theorem: Email spam  
classification
Let us look at another application of Bayes theorem in the area of email spam classification. 

Before the era of spam filters, there was no way of separating unsolicited emails from 

legitimate ones. People had to sift through their emails to identify spam manually. 

Nowadays, email spam filters have automated this task and are quite efficient at identifying 

spam emails and keeping only ham (nonspam) emails in the box. The Bayesian approach 

forms the principle behind many spam filters. Consider the following example:

Question: What is the probability of a mail being spam, given that it contains the word 

“offer”? Available data indicates that 50% of all emails are spam mails. 9% of spam emails 

contain the word “offer,” and 0.4 % of ham emails contain the word “offer.”

Chapter 9  StatiStiCS and probability with python



334

Answer:

Defining the events and probabilities as follows:

A: Email is “spam”

~A: Email is “ham”

B: Email contains the word “offer”

P(A) = 0.5 (assuming 50% of emails are spam mails)

P(B/A) = Probability of spam mail containing the word “offer” = 0.09 (9%)

P(B/~A) = Probability of ham mail containing the word “offer” = 0.004 (0.4%)

Applying the Bayes theorem:

P(A/B) = (0.09*0.5)/(0.09*0.5)+(0.004)*(0.5) = 0.957

In other words, the probability of the mail being a spam mail given that it has the word 

“offer” is 0.957.

 SciPy library
Scipy, a library for mathematical and scientific computations, contains several 

functions and algorithms for a wide range of domains, including image processing, 

signal processing, clustering, calculus, matrices, and statistics. Each of these areas 

has a separate submodule in SciPy. We use the scipy.stats submodule in this chapter, 

and apply the functions from this submodule for statistical tests and different types of 

distributions. This module also contains functions for distance calculations, correlations, 

and contingency tables.

Further reading:

Read more about the scipy.stats module and its functions:

https://docs.scipy.org/doc/scipy/reference/stats.html
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 Probability distributions
To understand probability distributions, let us first look at the concept of random 

variables, which are used to model probability distributions.

Random variable: A variable whose values equal the numeric values associated with the 

outcomes of a random experiment.

Random variables are of two types:

 1. Discrete random variables can take a finite, countable number 

of values. For example, a random variable for the Likert scale, 

used for surveys and questionnaires to assess responses, can 

take values like 1, 2, 3, 4, and 5. The probability mass function, 

or PMF, associated with a discrete random variable is a function 

that provides the probability that this variable is exactly equal to a 

certain discrete value.

 2. Continuous random variables can take infinitely many values. 

Examples include temperature, height, and weight. For a 

continuous variable, we cannot find the absolute probability. 

Hence, we use the probability density function, or PDF, for 

continuous variables (the equivalent of PMF for discrete 

variables). The PDF is the probability that the value of a 

continuous random variable falls within a range of values.

The cumulative distribution function (CDF) gives the probability 

of a random variable being less than or equal to a given value. It is 

the integral of the PDF and gives the area under the curve defined 

by the PDF up to a certain point.

In the following section, we cover the two types of probability 

distributions for discrete random variables: binomial and Poisson.

 Binomial distribution
In a binomial experiment, there are several independent trials, with every trial having 

only two possible outcomes. These outcomes are the two values of the binomial discrete 

random variable. A basic example of a binomial distribution is the repeated toss of a 

coin. Each toss results in only two outcomes: Heads or Tails.
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The following are the characteristics of a binomial distribution:

 1. There are n identical trials

 2. Each trial results in either one of only two possible outcomes

 3. The outcomes of one trial do not affect the outcomes of other 

trials

 4. The probability of success (p) and failure (q) is the same for each 

trial

 5. The random variable represents the number of successes in these 

n trials and can at most be equal to n

 6. The mean and variance of the binomial distribution are as follows:

Mean = n*p (number of trials*probability of success)

Variance = n*p*q (number of trials*probability of 

success*probability of failure)

The PMF, or the probability of r successes in n attempts of an experiment, is given by the 

following equation:

P(X=r)= nCrprqn-r

Where p is the probability of success, q is the probability of failure, and n is the number 

of trials

 The shape of a binomial distribution

The binomial distribution resembles a skewed distribution, but it approaches symmetry 

and looks like a normal curve as n increases and p becomes smaller, as shown in Figure 9-2.
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Question: The metro rail company surveys eight senior citizens traveling in a subway 

train about their satisfaction with the new safety features introduced in the subway 

trains. Each response has only two values: yes or no. Let us assume that the probability 

of a “yes” response is 0.6, and the probability of a “no” response is 0.4 based on historical 

survey.

Calculate the probability that

 1. Exactly three people are satisfied with the metro’s new safety 

features

 2. Fewer than five people are satisfied

Solution:

 1. For part 1 of the question: We can either use the formula nCrprqn-r 

or solve it using a Scipy function (stats.binom.pmf), as shown in 

the following:

CODE:

import scipy.stats as stats

n,r,p=8,3,0.6

stats.binom.pmf(r,n,p)

Output:

0.12386304000000009

Figure 9-2. Binomial distribution for different values
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Explanation: First, the scipy.stats module needs to be imported. 

Then we define three variables – n (the number of trials), r (the 

number of successes), and p (the probability of failure). After this, 

the PMF for binomial distributions (stats.binom.pdf) is called, 

and we pass three parameters - r, n, and p in that order. The pmf 

function is used since we are calculating the probability of a 

discrete variable.

 2. For part two of the question: Since we need to calculate the 

probability that fewer than five people are satisfied, the limiting 

value of the variable is 4.

The following equation gives the probability we need to calculate:

P(X<=4)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)

We can either apply the formula nCrprqn-r to calculate the values 

for r = 0, 1, 2, 3, and 4 or solve using the stats.binom.cdf function in 

Scipy as follows:

CODE:

import scipy.stats as stats

n,r,p=8,4,0.6

stats.binom.cdf(r,n,p)

Output:

0.40591359999999976

Explanation: We use the CDF function when we calculate the  

probability for more than one value of x.

 Poisson distribution
A Poisson distribution is a distribution that models the number of events that occur over 

a given interval (usually of time, but can also be an interval of distance, area, or volume). 

The average rate of occurrence of events needs to be known.
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The PMF for a Poisson distribution is given by the following equation:

 
P x r

r

r

=( ) =
-l le

!  

where P(x=r) is the probability of the event occurring r number of times, r is the 

number of occurrences of the event, and λr represents the average/expected number of 

occurrences of that event.

The Poisson distribution can be used to calculate the number of occurrences that occur 

over a given period, for instance:

• number of arrivals at a restaurant per hour

• number of work-related accidents occurring at a factory over a year

• number of customer complaints at a call center in a week

Properties of a Poisson distribution:

 1. Mean=variance=λ. In a Poisson distribution, the mean and 

variance have the same numeric values.

 2. The events are independent, random, and cannot occur at the 

same time.

 3. When n is >20 and p is <0.1, a Poisson distribution can 

approximate the binomial distribution. Here, we substitute λ = np.

 4. When the value of n is large, p is around 0.5, and np > 0.5, a 

normal distribution can be used to approximate a binomial 

distribution.

 The shape of a Poisson distribution

A Poisson distribution is skewed in shape but starts resembling a normal distribution as 

the mean (λ) increases, as shown in Figure 9-3.
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Solved example for the Poisson distribution:

In a subway station, the average number of ticket-vending machines out of operation 

is two. Assuming that the number of machines out of operation follows a Poisson 

distribution, calculate the probability that a given point in time:

 1. Exactly three machines are out of operation

 2. More than two machines are out of operation

Solution:

 1. We can either use the formula 
l lr

r

e-

!
 or solve it in Python as 

follows:

CODE:

import scipy.stats as stats

λ=2
r=3

stats.poisson.pmf(r,λ)

Output:

0.18044704431548356

Explanation: First, the scipy.stats module needs to be imported. 

Then we define two variables - λ (the average) and r (the number 

of occurrences of the event). Then, the PMF for a Poisson 

distribution (stats.poisson.pmf) is called, and we pass the two 

arguments to this function, r and λ, in that order.

Figure 9-3. Poisson distribution
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 2. Since we need to calculate the probability that more than two 

machines are out of order, we need to calculate the following 

probability:

P(x>2), or (1-p(x=0)-p(x=1)-p(x=2)).

This can be computed using the stats.poisson.cdf function, with r=2.

CODE:

import scipy.stats as stats

λ=2
r=2

1-stats.poisson.cdf(r,λ)

Output:

0.3233235838169366

Explanation: We follow a similar method as we did for the first part of the question but 

use the CDF function (stats.poisson.cdf) instead of PMF (stats.poisson.pmf).

 Continuous probability distributions
There are several continuous probability distributions, including the normal 

distribution, Student’s T distribution, the chi-square, and ANOVA distribution. In the 

following section, we explore the normal distribution.

 Normal distribution
A normal distribution is a symmetrical bell-shaped curve, defined by its mean (μ) and 

standard deviation (σ), as shown in Figure 9-4.
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All the four curves in Figure 9-4 are normal distributions. The mean is represented by the 

symbol μ (mu) and the standard deviation by the symbol σ (sigma)

Characteristics of a normal distribution

 1. The central value (μ) is also the mode and the median for a 

normal distribution

 2. Checking for normality: In a normal distribution, the difference 

between the 75th percentile value (Q3) and the 50th percentile 

value (median or Q2) equals the difference between the median 

(Q2) and the 25th percentile. In other words,

 Q Q Q Q3 2 2 1- = -  

Figure 9-4. Normal distribution
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If the distribution is skewed, this equation does not hold.

In a right-skewed distribution, (Q3 − Q2)> (Q2 - Q1)

In a left-skewed distribution, (Q2 - Q1) > (Q3 - Q2)

 Standard normal distribution
To standardize units and compare distributions with different means and variances, we 

use a standard normal distribution.

Properties of a standard normal distribution:

• The standard normal distribution is a normal distribution with a 

mean value of 0 and a standard deviation as 1.

• Any normal distribution can be converted into standard normal 

distribution using the following formula:

z=
x -( )m
s

, where μ and σ are the mean and variance of the 

original normal distribution.

• In a standard normal distribution,

• 68.2% of the values lie within 1 standard deviation of the mean

• 95.4% of the values lie between 2 standard deviations of the mean

• 99.8% lie within 3 standard deviations of the mean

This distribution of values is shown in Figure 9-5.

Figure 9-5. Standard normal distribution
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• The area under the standard normal distribution between any two 

points represents the proportion of values that lies between these two 

points. For instance, the area under the curve on either side of the 

mean is 0.5. Put in another way, 50% of the values lie on either side of 

the mean.

There are two types of questions involving normal distributions:

 1. Calculating probability/proportion corresponding to the value of 

a variable: The z-value is calculated using the formula z=
x -( )m
s

,  

and this z-value is then passed as an argument to the stats.norm.

cdf function

 2. Calculating the value of the variable corresponding to a 

given probability: First, the z-value is obtained by passing the 

probability value as an argument to the stats.norm.ppf function. 

Then, we obtain the value of the variable (x) corresponding to the 

z-value by substituting values in the following formula: z=
x -( )m
s

 Solved examples: Standard normal distribution

Question: An IT team in a software company is inspecting some laptops. The team needs 

to select the top 1% of the laptops, with the criterion being the fastest boot times. The 

average boot time is 7 seconds, with a standard deviation of 0.5 seconds. What would be 

the cutoff boot time necessary for selection?

Solution:

Step 1: Since the criterion is fast boot time, the boot times of interest lie on the lower left 

end of the distribution, as shown in Figure 9-6.

Figure 9-6. Lower-tail test (standard normal distribution)
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The area of the curve to the right of this tail is 0.99. We calculate the z-value, 

corresponding to a probability value of 0.99, using the stats.norm.ppf function:

CODE:

stats.norm.ppf(0.99)

Output:

2.3263478740408408

Since this is a lower-tail test, we take the value of z as –2.33 (this value is negative as it 

lies to the left of the mean). We can also verify this using the z-table by calculating the 

z-value corresponding to a probability of 0.99.

Step 2: Apply the following formula and calculate x

z=(x-μ)/σ

where z = -2.33, μ = 7, and σ = 0.5. We need to calculate the value of x:

CODE:

x=(-2.33*0.5)+7

Output: 5.835

Inference: The required boot time is 5.835 seconds

Example 2 (standard normal distribution):

A company manufactures tube lights, where the life (in hours) of these tube lights 

follows a normal distribution with a mean of 900 (hrs) and a standard deviation of 150 

(hrs). Calculate the following:

 (1) The proportion of tube lights that fail within the first 750 hours

 (2) The proportion of tube lights that fail between 800 and 1100 hours

 (3) After how many hours would 20% of the tube lights fail?

Solution for Example 2 (standard normal distribution):

 (1) Calculate the z-value corresponding to X=750 and obtain the 

corresponding probability:
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CODE:

x=750

μ=900
σ=150
z=(x-μ)/σ
z

stats.norm.cdf(z)

Output:

0.15865525393145707

Inference: 15.8% of the tube lights fail within the first 750 hours.

 (2) Calculate the z-values corresponding to x-values of 800 and 1100, 

respectively, and subtract the probabilities corresponding to these 

z-values.

CODE:

x1=800

x2=1100

μ=900

σ=150

z1=(x1-μ)/σ

z2=(x2-μ)/σ

p2=stats.norm.cdf(z2)

p1=stats.norm.cdf(z1)

p2-p1

Output:

0.6562962427272092
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Inference: Around 65.6% of the tube lights, with a lifetime between 

800 and 1100 hours, fail.

 (3) Calculate the z-value corresponding to a probability of 0.2 and 

calculate x by substituting z, μ, and σ in the formula z=
x -( )m
s

CODE:

z=stats.norm.ppf(0.2)

μ=900
σ=150
x=μ+σ*z
x

Output:

773.7568149640629

Inference: After a lifetime of around 774 hours, 20% of the tube lights fail.

 Measures of central tendency
The central tendency is a measure of the central value among a set of values in a dataset. 

The following are some of the measures of central tendency:

Mean: This is the average of values in a dataset.

Median: This is the middle number when the values in the dataset are arranged size-wise.

Mode: The most frequently occurring value in a dataset with discrete values.

Percentile: A percentile is a measure of the percentage of values below a particular 

value. The median corresponds to the 50th percentile.

Quartile: A quartile is a value that divides the values in an ordered dataset into 

four equal groups. Q1 (or the first quartile) corresponds to the 25th percentile, Q2 

corresponds to the median, and Q3 corresponds to the 75th percentile.
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 Measures of dispersion
The measures of dispersion give a quantitative measure of the spread of a distribution. 

They provide an idea of whether the values in a distribution are situated around 

the central value or spread out. The following are the commonly used measures of 

dispersion.

Range: The range is a measure of the difference between the lowest and highest values 

in a dataset.

Interquartile range: A measure of the difference between the third quartile and the first 

quartile. This measure is less affected by extreme values since it focuses on the values 

lying in the middle. The interquartile range is a good measure for skewed distributions 

that have outliers. The interquartile range is denoted by IQR = Q3 - Q1.

Variance: This is a measure of how much values in a dataset are scattered around 

the mean value. The value of the variance is a good indication of whether the mean is 

representative of values in the dataset. A small variance would indicate that the mean is 

an appropriate measure of central tendency. The following formula gives the variance:

 
s

m2

2

=
å -( )x

N
,  

Where μ is the mean, and N is the number of values in the dataset.

Standard deviation: This measure is calculated by taking the square root of the 

variance. The variance is not in the same units as the data since it takes the square of the 

differences; hence taking the square root of the variance brings it to the same units as 

the data. For instance, in a dataset about the average rainfall in centimeters, the variance 

would give the value in cm2, which would not be interpretable, while the standard 

deviation in cm would give an idea of the average rainfall deviation in centimeters.
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 Measures of shape
Skewness: This measures the degree of asymmetry of a distribution, as shown in 

Figure 9-7.

We can observe the following from the Figure 9-7:

In a positively skewed distribution, mean > median

In a negatively skewed distribution, mean < median

In a perfectly symmetrical distribution, mean = median = mode

 Kurtosis

Kurtosis is a measure of whether a given distribution of data is curved, peaked, or flat.

A mesokurtic distribution has a bell-shaped curve. A leptokurtic distribution is one with 

a marked peak. A platykurtic distribution, as the name indicates, has a flat curve. These 

distributions are shown in Figure 9-8.

Figure 9-7. Distributions with varied skewness
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 Solved Example:

The weight of children (in kgs) aged 3-7 in a primary school is as follows: 19, 23, 19, 18, 

25, 16, 17, 19, 15, 23, 21, 23, 21, 11, 6. Let us calculate the measures of central tendency, 

dispersion, skewness, and kurtosis.

Creating a Pandas Series object:

CODE:

import pandas as pd

a=pd.Series([19,23,19,18,25,16,17,19,15,23,21,23,21,11,6])

The Pandas describe method can be used with either the series object or the DataFrame 

object and is a convenient way of obtaining most of the measures of central tendency in 

one line of code. The mean is 18.4 kgs, the first quartile (Q1 or 25th percentile) is 16.5 kgs, 

the median (50th percentile) is 19 kgs, and the third quartile (75th percentile) is 22 kgs.

Figure 9-8. Representation of kurtosis
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CODE:

a.describe()

Output:

count    15.000000

mean     18.400000

std       4.997142

min       6.000000

25%      16.500000

50%      19.000000

75%      22.000000

max      25.000000

dtype: float64

Obtain the mode using the mode method:

CODE:

a.mode()

Output:

0    19

1    23

dtype: int64

The values 19 and 23 are the most frequently occurring values.

Obtain the measures of dispersion

The range can be calculated using the max and min functions and taking the difference 

between these two values:

CODE:

range_a=max(a)-min(a)

range_a

Output:

19
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Obtain the standard deviation and variance using the std and var methods, respectively:

CODE:

a.std()

Output:

4.99714204034952

CODE:

a.var()

Output:

24.97142857142857

Obtain the measures of skewness and kurtosis by using the skew and kurtosis functions 

from the scipy.stats module:

CODE:

from scipy.stats import skew,kurtosis

stats.kurtosis(a)

Output:

0.6995494033062934

A positive value of kurtosis means that the distribution is leptokurtic.

Skewness:

CODE:

stats.skew(a)

Output:

-1.038344732097918

A negative value of skewness implies that the distribution is negatively skewed, with the 

mean less than the median.
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Points to note:

 1. The mean value is affected by outliers (extreme values). Whenever 

there are outliers in a dataset, it is better to use the median.

 2. The standard deviation and variance are closely tied to the mean. 

Thus, if there are outliers, standard deviation and variance may 

not be representative measures too.

 3. The mode is generally used for discrete data since there can be 

more than one modal value for continuous data.

 Sampling
When we try to find out something about a population, it is not practical to collect data 

from every subject in the population. It is more feasible to take a sample and make 

an estimate of the population parameters based on the sample data. The sample’s 

characteristics should align with that of the population. The following are the main 

methods of collecting samples.

 Probability sampling
Probability sampling involves a random selection of subjects from the population. There 

are four main methods of doing probability sampling:

 1. Simple random sampling: Subjects are chosen randomly, without 

any preference. Every subject in the population has an equal 

likelihood of being selected.

 2. Stratified random sampling: The population is divided into 

mutually exclusive (non-overlapping) groups, and then subjects 

are randomly selected from each group. Example: If you are 

surveying to assess preference for subjects in a school, you may 

divide students into male and female groups and randomly select 

subjects from each group. The advantage of this method is that it 

represents all categories or groups in the population.
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 3. Systematic random sampling: Subjects are chosen at regular 

intervals. Example: To take a sample of 100 people from a 

population of 500, first divide 500 by 100, which equals 5. Now, 

take every 5th person for our sample. It is easier to perform but 

may not be representative of all the subjects in the population.

 4. Cluster sampling: Here, the population is divided into non-

overlapping clusters covering the entire population between 

them. From these clusters, a few are randomly selected. Either all 

the members of the chosen clusters are selected (one-stage), or a 

subset of members from the selected clusters is randomly chosen 

(two-stage). The advantage of this method is that it is cheaper and 

more convenient to carry out.

 Non-probability sampling
When it is not possible to collect samples using probability sampling methods due to a lack 

of readily available data, we use non-probability sampling techniques. In non-probability 

sampling, we do not know the probability of a subject being chosen for the study.

It is divided into the following types:

 1. Convenience sampling: Subjects that are easily accessible or 

available are chosen in this method. For example, a researcher 

can select subjects for their study from their workplace or the 

university where they work. This method is easy to implement but 

may not be representative of the population.

 2. Purposive: Subjects are chosen based on the purpose of the sampling. 

For example, if a survey is being carried out to assess the effectiveness 

of intermittent fasting, it needs to consider the age group of the 

population that can undergo this fast, and the survey may only 

include people aged 25-50. Purposive sampling is further divided into

• Quota sampling: Quotas are taken in such a way that the 

significant characteristics of the population are taken into 

account while samples are chosen. If a population has 60% 

Caucasians, 20% Hispanics, and 20% Asians, the sample you 

choose should have the same percentages.
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• Snowball sampling: In this method, the researcher identifies 

someone they know who meets the criteria of the study. This 

person then introduces to others the person may know, and 

the sample group thus grows through word-of-mouth. This 

technique may be used for populations that lack visibility, for 

example, a survey of people suffering from an under-reported 

illness.

 Central limit theorem
The central limit theorem states that if we choose samples from a population, the means 

of the samples are normally distributed, with a mean as μ and standard deviation as s x .

Even if the population distribution is not a normal distribution by itself, the distribution 

of the sample means resembles a normal distribution. As the sample size increases, 

the distribution of sample means becomes a closer approximation to the normal 

distribution, as seen in Figure 9-9.

The sample mean is used as an estimate for the population mean, but the standard 

deviation of this sampling distribution (s x ) , is not the same as the population standard 

deviation, σ. The sample standard deviation is related to the population standard 

deviation as follows:

Figure 9-9. Distribution of sample means. As the sample size increases, the 
distribution of sample means resembles a normal distribution
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s

s
x

n
=

 

 where is the population standard deviation and n is the sample sizes  

s x  is known as the standard error (of the distribution of sample means). As the 

sample size (n increases), the standard error approaches 0, and the sample mean ( x)

approaches the population mean (μ).

 Estimates and confidence intervals
Point estimate: A single statistic extracted from a sample that is used to estimate an 

unknown population parameter. The sample mean is used as a point estimate for the 

population mean.

Interval estimate: The broad range of values within which the population parameter 

lies. It is indicative of the error in estimating the population parameter.

Confidence interval: The interval within which the value of the population mean lies. 

For a random sample of size n and mean x  taken from a population (with standard 

deviation as σ, and mean as μ), the confidence interval for the population mean is given 

by the following equations:

x
z

n
x

z

n
- £ £ +

s
m

s
: when population standard deviation, σ, is known

x
zs

n
x

zs

n
- £ £ +m : when population standard deviation is unknown (s in this 

equation is the sample standard deviation)

 Solved example: Confidence intervals

Question: A sample (consisting of ten subjects) is taken from a certain population of 

students. The grade point averages of these students are normally distributed. The 

population standard deviation is not known. Calculate the 95% confidence interval for 

the population mean (grade point average for the whole student population), based on 

the following sample values: 3.1, 2.9, 3.2, 3.4, 3.7, 3.9, 3.9, 2.8, 3.4, 3.6.
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Solution:

The following code calculates the 95% confidence interval for the population mean:

CODE:

import numpy as np

import scipy.stats as stats

grades = np.array([3.1,2.9,3.2,3.4,3.7,3.9,3.9,2.8,3.4,3.6])

stats.t.interval(0.95, len(grades)-1, loc=np.mean(grades), scale=stats.

sem(grades))

Output:

(3.1110006165952773, 3.668999383404722)

Interpretation: There is a 95% probability that the grade point average for the population 

of students falls between 3.11 and 3.67.

Explanation of the preceding code: We first define a NumPy array for the sample 

observations, and then call the stats.t.interval function. To this function, we pass the 

following arguments: the values of the confidence interval (0.05), degrees of freedom 

(total number of observations: 1), the sample mean, and standard error (calculated by 

the function stats.sem). The function returns two values – the lower confidence interval 

(LCI) and the upper confidence interval (UCI). Note that the stats.t.interval function 

is used because the population standard deviation is not known. If it were known, we 

would use the function stats.norm.interval.

 Types of errors in sampling
If we take a sample and make inferences about the entire population based on this 

sample, errors inevitably arise. These errors can broadly be classified as follows:

• Sampling error: Difference between the sample estimate for the 

population and the actual population estimate

• Coverage error: Occurs when the population is not adequately 

represented, and some groups are excluded
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• Nonresponse errors: Occurs when we fail to include nonresponsive 

subjects that satisfy the criteria of the study, but are excluded since 

they do not answer the survey questions

• Measurement error: Not measuring the correct parameters due to 

flaws in the method or tool used for measurement

We now move on to concepts in hypothesis testing.

 Hypothesis testing
A hypothesis is a statement that gives the estimate of an unknown variable or parameter. 

If we are trying to find the average age of people in a city from a sample drawn from 

this population, and we find that the average age of people in this sample is 34, our 

hypothesis statement could be as follows: “The average age of people in this city is 34 

years.”

 Basic concepts in hypothesis testing
In a hypothesis test, we construct two statements known as the null and alternate 

hypothesis.

Null hypothesis: Denoted by the term H0,this is the hypothesis that needs to be tested. It 

is based on the principle that there is no change from the status quo. If the sample mean 

is 70, while the historical population mean is 90, the null hypothesis would state that the 

population mean equals 90.

Alternate hypothesis: Denoted by the term H1, this hypothesis is what one would believe 

if the null hypothesis does not hold. The alternate hypothesis (using the preceding 

example) would state that the mean is greater than, less than, or not equal to 90.

We either reject the null hypothesis or fail to reject the null hypothesis. Note that 

rejecting the null hypothesis does not imply that the alternative hypothesis is true. The 

result of a hypothesis test is only suggestive or indicative of something regarding the 

population, and it does not conclusively prove or disprove any hypothesis.
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 Key terminology used in hypothesis testing
Let us look at some commonly used terms in hypothesis testing:

Type 1 error, or the level of significance, denoted by the symbol  α, is the error of 

rejecting the null hypothesis when it is true. It can also be defined as the probability that 

the population parameter lies outside its confidence interval. If the confidence interval 

is 95%, the level of significance is 0.05, or there is a 5% chance that the population 

parameter does not lie within the confidence interval calculated from the sample.

Example of a Type 1 error: Mr. X has a rash and goes to a doctor to get a test for 

chickenpox. Let the null hypothesis be that he does not have this illness. The doctor 

incorrectly makes a diagnosis for chickenpox based on some faulty tests, but the reality 

is that Mr. X does not have this illness. This is a typical example of rejecting the null 

hypothesis when it is true, which is what a Type 1 error is.

Type 2 error, denoted by the symbol β,is the error that occurs when the null hypothesis 

is not rejected when it is false. In the preceding chickenpox example, if Mr. X suffers from 

chickenpox, but the doctor does not diagnose it, the doctor is making a Type 2 error.

One-sample test: This is a test used when there is only one population under 

consideration, and a single sample is taken to see if there is a difference between the 

values calculated from the sample and population parameter.

Two-sample test: This is a test used when samples are taken from two different 

populations. It helps to assess whether the population parameters are different based on 

the sample parameters.

The critical test statistic: The limiting value of the sample test statistic to decide whether 

or not to reject the null hypothesis. In Figure 9-10, z=1.96 and z=-1.96 are critical values. 

Z-values greater than 1.96 and less than -1.96 lead to rejection of the null hypothesis.

Region of rejection: The range of values where the null hypothesis is rejected. The region of 

acceptance is the area corresponding to the limits where the null hypothesis holds.
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The regions of rejection and acceptance are shown in Figure 9-10.

Two-tail test: The region of rejection is located on both tails of the distribution.

Example of a two-tail test: A sample of 10 students is taken from a class of 50 students 

to see if there is a change in the mean score of the class with respect to its historical 

average. This is an example of a case where we will conduct a two-tail test because we 

are just testing for a change in the mean, and we do not know if this change is positive or 

negative.

One-tail test: The region of rejection is located on the right tail (upper one-tail) or the 

left tail (lower-tail) but not on both tails.

Example of upper-tail test: Afterschool classes are being conducted to improve scores 

in a class of 50 students. These special classes are believed to have improved the 

scores. To test this hypothesis, we perform a one-tail test (upper) using a sample from 

the population because we are testing if the mean score has increased. The region of 

rejection will be located on the right tail.

Example of lower-tail test: Due to political unrest, there has been an increase in 

absenteeism among students. It is believed that these events may negatively affect the 

scores of the students. To test this hypothesis, we conduct a one-tail test (lower) using a 

sample from the population because we are testing if the mean score has reduced. The 

region of rejection is located on the left tail.

The p-value (denoted by the letter p) is the probability of obtaining a value of the test 

statistic at least as extreme as the one observed, assuming the null hypothesis is true. 

Figure 9-10. Regions of acceptance and rejection
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The p-value is often used in hypothesis tests to decide whether or not to reject a null 

hypothesis. The p-value is commonly compared with a significance level of 0.05.

If p < 0.05, it would mean that the probability that the sample data was random and not 

representative of the population is very low. We reject the null hypothesis in this case.

If p > 0.05, there is a greater chance that this sample is not representative of the 

population. We fail to reject the null hypothesis in this case.

 Steps involved in hypothesis testing

 1. State the null and alternate hypothesis

 2. Fix the level of significance and obtain the critical value of the test 

statistic

 3. Select the appropriate test:

Choose the test based on the following parameters:

• Number of samples

• Whether the population is normally distributed

• The statistic being tested

• The sample size

• Whether the population standard deviation is known

 4. Obtain the relevant test statistic (z statistic/t statistic/chi-square 

statistic/f statistic) or the p-value

 5. Compare the critical test statistic with the calculated test static or 

compare the p-value with 0.05

Reject the null hypothesis based on either the test statistic or the 

p-value:

• Using the test statistic:

• calculated test static>critical test statistic (upper-tail test)

• calculated test static<critical test statistic (lower-tail test)
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OR

• Using the p-value (p) if p<0.05

 6. Draw an inference based on the preceding comparison

 One-sample z-test
This test is used when we want to verify if the population mean differs from its historical 

or hypothesized value.

Criteria for a one-sample z-test:

• The population from which the sample is drawn is normally 

distributed

• The sample size is greater than 30

• A single sample is drawn

• We are testing for the population mean

• The population standard deviation is known

Formula for calculating test statistic: z
x

n
=

-( )m
s /

,

where x  is the sample mean, μ is the population mean, σ is the population standard 

deviation, and n is the sample size

 Solved example: One-sample z-test

Question: A local Italian restaurant has an average delivery time of 45 minutes with a 

standard deviation of 5 minutes. The restaurant has received some complaints from 

its customers and has decided to analyze the last 40 orders. The average delivery time 

for these 40 orders was found to be 48 minutes. Conduct the appropriate test at a 

significance level of 5% to decide whether the delivery times have increased.
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Answer:

 1. State the hypothesis:

Let μ be the average delivery time for the restaurant  

(population mean)

Null hypothesis: H0: μ=45

Alternate hypothesis: H1 : μ > 45

 2. Fix the level of significance: α=0.05

 3. Select the appropriate hypothesis test:

• Number of samples: 1

• Sample size: n=40 (Large)

• What we are testing: Whether there is a difference between the 

sample mean ( x = 48) and the population mean (μ=45)

• Population standard deviation (σ=5) is known

We select the one-sample z-test based on the preceding data.

 4. Obtain the test statistic and p-value, with the help of the following 

equation:

 
z

x

n
=

-( )m
s /  

Substituting the values x = 48, μ=45, σ = 5, and n=40:

z=3.7947

Calculate the p-value corresponding to this z-value using the stats.norm.cdf 

function:

CODE:

import scipy.stats as stats

stats.norm.cdf(z)
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Output:

0.999

 5. Compare the p-value with the level of significance (0.05):

Since the calculated p-value is >α, we fail to reject the null 

hypothesis.

 6. Inference:

There is no significant difference, at a level of 0.05, between the 

average delivery time of the sample and the historical population 

average.

 Two-sample sample z-test
A two-sample z-test is similar to a one-sample z-test, the only differences being as follows:

• There are two groups/populations under consideration and we draw 

one sample from each population

• Both the population distributions are normal

• Both population standard deviations are known

• The formula for calculating test statistic: : z
x x

n n

=
-( )

+
é

ë
ê

ù

û
ú

1 2

1
2

1

2
2

2

s s

 Solved example: Two-sample sample z-test

An organization manufactures LED bulbs in two production units, A and B. The 

quality control team believes that the quality of production at unit A is better than 

that of B. Quality is measured by how long a bulb works. The team takes samples from 

both units to test this. The mean life of LED bulbs at units A and B are 1001.3 and 

810.47, respectively. The sample sizes are 40 and 44. The population variances are 

known: s A
2 =48127 and s B

2 =59173.

Conduct the appropriate test, at 5% significance level, to verify the claim of the quality 

control team.
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Solution:

 1. State the hypothesis:

Let the mean life of LED bulbs at unit A and B be μA and μB, 

respectively.

Null hypothesis: H0: μA ≤ μB

Alternate hypothesis: H1 : μA > μB

This is a one-tail (upper-tail) test

 2. Fix the level of significance: α=0.05

 3. Select the appropriate hypothesis test:

• Number of samples: 2 samples (taking samples from two different 

populations)

• Sample size: Large (nA = 40, and nB = 44)

• What we are testing: Comparing the mean lifetime of LED bulbs 

in unit A with that of unit B

• Population characteristics: The distribution of population is not 

known, but population variances are known

• Hence, we conduct the two-sample z-test.

 4. Calculate the test statistic and p-value

Use the following equation:

 

z
x x

n n

=
-( )

+
é

ë
ê

ù

û
ú

1 2

1
2

1

2
2

2

s s
 

Substituting the values x x1 21001 3= . , =810.47, n1 = 40, n2 = 44 and the 

variance(sigma) values of 48127 and 59173 in the preceding formula 

to calculate z:

CODE:

z=(1001.34-810.47)/(48127/40+59173/44)**0.5

Output:

3.781260568723408
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Calculate the p-value corresponding to this z-value using the stats.norm.cdf 

function:

CODE:

import scipy.stats as stats

p=1-stats.norm.cdf(z)

p

Output:

7.801812433294586e-05

Explanation: Since this is an upper-tail test, we need to calculate 

the area/proportion of values in the right tail. Hence, we subtract 

the area calculated (stats.norm.cdf) from 1.

 5. Comparing the calculated p-value with the level of significance:

Since the calculated p-value (0.000078)<α(0.05), we reject the null 

hypothesis.

 6. Inference: The LED bulbs produced at unit A have a significantly 

longer life than those at unit B, at a 5% level.

 Hypothesis tests with proportions
Proportion tests are used with nominal data and are useful for comparing percentages 

or proportions. For example, a survey collecting responses from a department in an 

organization might claim that 85% of people in the organization are satisfied with its policies. 

Historically the satisfaction rate has been 82%. Here, we are comparing a percentage or a 

proportion taken from the sample with a percentage/proportion from the population. The 

following are some of the characteristics of the sampling distribution of proportions:

• The sampling distribution of the proportions taken from the sample 

is approximately normal

• The mean of this sampling distribution ( p  ) = Population proportion (p)

• Calculating the test statistic: The following equation gives the z-value

 

z
p p

p p

n

=
-( )
-( )1
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Where p  is the sample proportion, p is the population proportion, and n is the sample size.

 Solved example: One-sample proportion z-test

Here, we understand the one-sample proportion z-test using a solved example.

Question: It is known that 40% of the total customers are satisfied with the services 

provided by a mobile service center. The customer service department of this center 

decides to conduct a survey for assessing the current customer satisfaction rate. It 

surveys 100 of its customers and finds that only 30 out of the 100 customers are satisfied 

with its services. Conduct a hypothesis test at a 5% significance level to determine if the 

percentage of satisfied customers has reduced from the initial satisfaction level (40%).

Solution:

 1. State the null and alternate hypothesis

Let the average customer satisfaction rate be p

Ho: p = 0 · 4

H1: p < 0 · 4

The < sign indicates that this is a one-tail test (lower-tail)

 2. Fix the level of significance: α=0.05

 3. Select the appropriate test:

We choose the one-sample z-test for proportions since

• The sample size is large (100)

• A single sample is taken

• We are testing for a change in the population proportion

 4. Obtain the relevant test statistic and p-value

 

z
p p

p p

n

=
-( )
-( )1

 

Where p p n= = =0 3 0 4 100. , . ,
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Calculate z and p:

CODE:

import scipy.stats as stats

z=(0.3-0.4)/((0.4)*(1-0.4)/100)**0.5

p=stats.norm.cdf(z)

p

Output:

0.02061341666858179

 5. Decide whether or not to reject the null hypothesis

p-value (0.02)<0.05 → We reject the null hypothesis

 6. Inference: At a 5% significance level, the percentage of customers 

satisfied with the service center’s services has reduced

 Two-sample z-test for the population proportions
Here, we compare proportions taken from two independent samples belonging to two 

different populations. The following equation gives the formula for the critical test statistic:

 

z
p p

p p

N

p p

N
c c c c

=
-( )

-( )
+

-( )
1 2

1 2

1 1

 

In the preceding formula, p1  is the proportion from the first sample, and p2  is the 

proportion from the second sample. N1is the sample size of the first sample, and N2 is the 

sample size of the second sample.

pc is the pooled variance.

p1
 = x

N
1

1

; p2
 =

x

N
2

2

; p
x x

N Nc =
+
+

1 2

1 2

In the preceding formula, x1 is the number of successes in the first sample, and x2 is the 

number of successes in the second sample.

Let us understand the two-sample proportion test with the help of an example.
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Question: A ride-sharing company is investigating complaints by its drivers that some of 

the passengers (traveling with children) do not conform with child safety guidelines (for 

example, not bringing a child seat or not using the seat belt). The company undertakes 

surveys in two major cities. The surveys are collected independently, with one sample 

being taken from each city. From the data collected, it seems that the passengers in City 

B are more noncompliant than those in City A. The law enforcement authority wants to 

know if the proportion of passengers conforming with child safety guidelines is different 

for the two cities. The data for the two cities is given in the following table:

City A City B

total surveyed 200 230

number of people compliant 110 106

Conduct the appropriate test, at 5% significance level, to test the hypothesis.

Solution:

 1. State the hypothesis:

Let pA be the proportion of people in City A who are compliant 

with the norms and pB be the proportion of people in City B who 

are compliant with the standards.

Null hypothesis: H0: pA = pB

Alternate hypothesis: H1 : pA !  = pB

This would be a two-tail test, because the region of rejection could 

be located on either side.

 2. Select the appropriate hypothesis test:

• Number of samples: 2 (taking samples from two different cities)

• Sample size: Large (N1 = 200 and N2= 230)

• What we are testing: Whether the proportion of passengers 

conforming with child safety guidelines is different for the two cities

• Population characteristics: The distribution of the population 

is not known; population variances are unknown. Since sample 

sizes are large, we select the two-sample z-test for proportions
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 3. Fix the level of significance: α=0.05

 4. Calculate the test statistic and p-value

Using the following equation:

 

z
p p

p p

N

p p

N
c c c c

=
-( )

-( )
+

-( )
1 2

1 2

1 1

 

Calculate the p-value corresponding to this z-value using the stats.

norm.cdf function:

CODE:

x1,n1,x2,n2=110,200,106,230

p1=x1/n1

p2=x2/n2

pc=(x1+x2)/(n1+n2)

z=(p1-p2)/(((pc*(1-pc)/n1)+(pc*(1-pc)/n2))**0.5)

p=2*(1-stats.norm.cdf(z))

p

Output:

0.06521749465064053

 5. Comparing the p-value with the level of significance:

Since the calculated p-value (0.065)>α(0.05), we fail to reject the 

null hypothesis.

 6. Inference: There is no significant difference between the 

proportion of passengers in these cities complying with child 

safety norms, at a 5% significance level.

 T-distribution
There may be situations where the standard deviation of the population is unknown, 

and the sample size is small. In such cases, we use the T-distribution. This distribution 

is also called Student’s T distribution. The word “Student” does not assume its literal 
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meaning here. William Sealy Gosset, who first published this distribution in 1908, used 

the pen name “Student,” and thus this distribution became widely known as Student’s 

T-distribution.

The following are the chief characteristics of the T-distribution:

• The T-distribution is similar in shape to a normal distribution, except 

that it is slightly flatter.

• The sample size is small, generally less than 30.

• The T-distribution uses the concept of degrees of freedom. The 

degrees of freedom are the number of observations in a statistical test 

that can be estimated independently. Let us understand the concept 

of degrees of freedom using the following example:

Say we have three numbers: a, b, and c. We do not know their 

values, but we know the mean of the three numbers, which 

is 5. From this mean value, we calculate the sum of the three 

numbers – 15 (mean*number of values, 5*3).

Can we assign any value to these three unknown numbers? No; 

only two of these three numbers can be assigned independently. 

Say we randomly assign the value 4 to a and 5 to b. Now, c can 

only be 6 since the total sum has to be 15. Hence, even though we 

have three numbers, only two are free to vary.

• As the sample size decreases, the degrees of freedom reduce, or in 

other words, the certainty with which the population parameter can 

be predicted from the sample parameter reduces.

The degrees of freedom (df) in the T-distribution is the number of 

samples (n) -1, or in other words, df = n - 1.

The formula for the critical test statistic in a one-sample t-test is given by the following 

equation:

 
t =

-x
s n

m
/  
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where x  is the sample mean, μ is the population mean, s is the sample standard 

deviation and n is the sample size.

 One sample t-test
A one-sample t-test is similar to a one-sample z-test, with the following differences:

 1. The size of the sample is small (<30).

 2. The population standard deviation is not known; we use the 

sample standard deviation(s) to calculate the standard error.

 3. The critical statistic here is the t-statistic, given by the following 

formula:

 
t

x

s n
=

-( )m
/  

 Two-sample t-test
A two-sample t-test is used when we take samples from two populations, where both the 

sample sizes are less than 30, and both the population standard deviations are unknown.

Formula:

 

t
x x

S
n np

=
-

+
æ

è
ç

ö

ø
÷

1 2

2

1 2

1 1

 

Where  x x1 2and  are the sample means

The degrees of freedom: df=n1 + n2 − 2

The pooled variance: S
n S n S

n np
2 1

2
2 2

2

2

1

1

1 1

2
=

-( ) + -( )
-+ 
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 Two-sample t-test for paired samples
This test is used to compare population means from samples that are dependent on each 

other, that is, sample values are measured twice using the same test group.

This equation gives the critical value of the test statistic for a paired two-sample t-test:

 
t

d

s n
=

/  

Where d  is the average of the difference between the elements of the two samples. Both 

the samples have the same size, n.

S = standard deviation of the differences between the elements of the two samples =

 

å - å( )
-

d d n

n

2 2

1

/
 

 Solved examples: Conducting t-tests using Scipy 
functions
The Scipy library has various functions for the t-test. In the following examples, we look 

at the functions for the one-sample t-test, the two-sample t-test, and the paired t-test.

 1. One-sample t-test with Scipy:

Question: A coaching institute, preparing students for an exam, has 

200 students, and the average score of the students in the practice 

tests is 80. It takes a sample of nine students and records their 

scores; it seems that the average score has now increased. These are 

the scores of these ten students: 80, 87, 80, 75, 79, 78, 89, 84, 88.

Conduct a hypothesis test at a 5% significance level to verify if 

there is a significant increase in the average score.
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Solution:

We use the one-sample t-test since the sample size is small, and 

the population standard deviation is not known. Let us formulate 

the null and alternate hypotheses.

H0:μ = 80

H1: μ > 80

First, create a NumPy array with the sample observations :

CODE:

a=np.array([80,87,80,75,79,78,89,84,88])

Now, call the stats.ttest_1samp function and pass this array and 

the population mean. This function returns the t-statistic and the 

p-value.

CODE:

stats.ttest_1samp(a,80)

Output:

Ttest_1sampResult(statist

ic=1.348399724926488,  pvalue=0.21445866072113726)

Decision: Since the p-value is greater than 0.05, we fail to reject 

the null hypothesis. Hence, we cannot conclude that the average 

score of students has changed.

 2. Two-sample t-test (independent samples):

Question: A coaching institute has centers in two different cities. It 

takes a sample of ten students from each center and records their 

scores, which are as follows:

Center A: 80, 87, 80, 75, 79, 78, 89, 84, 88

Center B: 81, 74, 70, 73, 76, 73, 81, 82, 84

Conduct a hypothesis test at a 5% significance level, and verify 

if there a significant difference in the average scores of the 

students in these two centers.
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Solution:

We use the two-sample t-test since we are taking samples from 

two independent groups. The sample size is small, and the 

standard deviations of the populations are not known. Let the 

average scores of students in each of these centers be μ1 and μ2. 

The null and alternate hypothesis is as follows:

   H0:μ1 = μ2

   H1:μ1 !  = μ2

Create NumPy arrays for each of these samples:

CODE:

a=np.array([80,87,80,75,79,78,89,84,88])

b=np.array([81,74,70,73,76,73,81,82,84])

Call the stats.ttest_ind function to conduct the two-sample t-test 

and pass these arrays as arguments:

CODE:

stats.ttest_ind(a,b)

Output:

Ttest_indResult(statistic=2.1892354788555664, 

pvalue=0.04374951024120649)

Inference: We can conclude that there is a significant difference in 

the average scores of students in the two centers of the coaching 

institute since the p-value is less than 0.05.

 3. T-test for paired samples:

Question: The coaching institute is conducting a special program 

to improve the performance of the students. The scores of the 

same set of students are compared before and after the special 

program. Conduct a hypothesis test at a 5% significance level to 

verify if the scores have improved because of this program.
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Solution:

CODE:

a=np.array([80,87,80,75,79,78,89,84,88])

b=np.array([81,89,83,81,79,82,90,82,90])

Call the stats.ttest_rel function to conduct the two-sample t-test 

and pass these arrays as arguments:

CODE:

stats.ttest_rel(a,b)

Output:

Ttest_relResult(statistic=-2.4473735525455615, 

pvalue=0.040100656419513776)

We can conclude, at a 5% significance level, that the average score has improved after the 

special program was conducted since the p-value is less than 0.05.

 ANOVA
ANOVA is a method used to compare the means of more than two populations. So far, we 

have considered only a single population or at the most two populations. The statistical 

distribution used in ANOVA is the F distribution, whose characteristics are as follows:

 1. The F-distribution has a single tail (toward the right) and contains 

only positive values, as shown in Figure 9-11.
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Figure 9-11. Shape of the F-distribution

 2. The F-statistic, which is the critical statistic in ANOVA, is the ratio 

of variation between the sample means to the variation within the 

sample. The formula is as follows.

 
F =

( )
variation between samplemeans

variationwithin the samples  

 3. The different populations are referred to as treatments.

 4. A high value of the F statistic implies that the variation between 

samples is considerable compared to variation within the samples. 

In other words, the populations or treatments from which the 

samples are drawn are actually different from one another.

 5. Random variations between treatments are more likely to occur 

when the variation within the sample is considerable.
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 Solved example: ANOVA

Question:

A few agricultural research scientists have planted a new variety of cotton called “AB 

cotton.” They have used three different fertilizers – A, B, and C – for three separate 

plots of this variety. The researchers want to find out if the yield varies with the type of 

fertilizer used. Yields in bushels per acre are mentioned in the below table. Conduct an 

ANOVA test at a 5% level of significance to see if the researchers can conclude that there 

is a difference in yields.

Fertilizer A Fertilizer B Fertilizer C

40 45 55

30 35 40

35 55 30

45 25 20

Solution:

 1. State the null and alternative hypothesis:

Let the average yields of the three populations be μ1, μ2 andμ3

Null hypothesis: H0 : μ1 = μ2 = μ3

Alternative hypothesis: H1 : μ1 !  = μ2 !  = μ3

 2. Select the appropriate test:

We select the ANOVA test because we are comparing averages 

from three populations

 3. Fix the level of significance: α=0.05

 4. Calculate the critical test statistic/p-value:

The f_oneway function gives us the test statistic or the p-value for 

the ANOVA test. The arguments to this function include three lists 

containing sample values of each of the groups.
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CODE:

import scipy.stats as stats

a=[40,30,35,45]

b=[45,35,55,25]

c=[55,40,30,20]

stats.f_oneway(a,b,c)

Output:

F_onewayResult(statistic=0.10144927536231883,  

pvalue=0.9045455407589628)

 5. Since the calculated p-value (0.904)>0.05, we fail to reject the null 

hypothesis.

 6. Inference: There is no significant difference between the three 

treatments, at a 5% significance level.

 Chi-square test of association
The chi-square test is a nonparametric test for testing the association between two 

variables. A non-parametric test is one that does not make any assumption about the 

distribution of the population from which the sample is drawn. Parametric tests (which 

include z-tests, t-tests, ANOVA) make assumptions about the distribution/shape of the 

population from which the sample is drawn, assuming that the population is normally 

distributed. The following are some of the characteristics of the chi-square test.

• The chi-square test of association is used to test if the frequency of 

occurrence of one categorical variable is significantly associated with 

that of another categorical variable.

• The chi-square test statistic is given by: X
f f

f
e

e

2 0

2

=
å -( )

,where 

f0 denotes the observed frequencies, fe denotes the expected 

frequencies, and X is the test statistic. Using the chi-square test of 

association, we can assess if the differences between the frequencies 

are statistically significant.

Chapter 9  StatiStiCS and probability with python



380

• A contingency table is a table with frequencies of the variable listed 

under separate columns. The formula for the degrees of freedom in 

the chi-square test is given by:

df=(r-1)*)(c-1), where df is the number of degrees of freedom, r is 

the number of rows in the contingency table, and c is the number 

of columns in the contingency table.

• The chi-square test compares the observed values of a set of variables 

with their expected values. It determines if the differences between 

the observed values and expected values are due to random chance 

(like a sampling error), or if these differences are statistically 

significant. If there are only small differences between the observed 

and expected values, it may be due to an error in sampling. If there 

are substantial differences between the two, it may indicate an 

association between the variables.

• The shape of the chi-square distribution for different values of 

k (degrees of freedom) is shown in Figure 9-12. The chi-square 

distribution’s shape varies with the degrees of freedom (denoted by k 

in Figure 9-12). When the degrees of freedom are few, it looks like an 

F-distribution. It has only one tail (toward the right). As the degrees 

of freedom increase, it looks like a normal curve. Also, the increase 

in the degrees of freedom indicates that the difference between the 

observed values and expected values could be meaningful and not 

just due to a sampling error.
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 Solved example: Chi-square test

Question: A career counseling service guides students to help them understand their 

strengths and weaknesses so that they make appropriate career choices. They would 

like to assess if there is an association between the gender of a student and the career 

he or she chooses. The following table shows the number of males and females, and the 

careers (given by career IDs like I001, I002, etc.) they choose to pursue.

Career Males Females Total

i001 41 79 120

i002 32 28 60

i003 58 78 130

i004 59 31 90

Figure 9-12. Chi-square distribution for different degrees of freedom
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Answer:

 1. State the hypothesis:

• Null hypothesis: H0: gender and career preference are not related

• Alternative hypothesis: H1: gender and career preference are related

 2. Select the appropriate hypothesis test:

• Number of variables: two categorical variables (gender and career)

• What we are testing: Testing for an association between career 

and gender

We conduct a chi-square test of association based on the 

preceding characteristics.

 3. Fix the level of significance: α=0.05

 4. Calculate the test statistic and p-value. The chi2_contingency 

function calculates the test statistic and p-value. This function 

returns the test statistic, the p-value, the degrees of freedom, and 

the expected frequencies (in the form of an array). The arguments 

to this function are the observations from the contingency table in 

the form of arrays. Each array represents a row in the contingency 

table.

CODE:

import scipy.stats as stats

observations=np.array([[41,79],[32,28],[52,78],[59,31]])

chi2stat,pval,dof,expvalue=stats.chi2_contingency(observations)

print(chi2stat,pval,dof,expvalue)

Output:

23.803453211665776 2.7454871071500803e-05 3 [[55.2 64.8]

 [27.6 32.4]

 [59.8 70.2]

 [41.4 48.6]]
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The highlighted value in the preceding output is the p-value for this test.

 5. Comparing the p-value with the level of significance:

Since the calculated p-value (0.000027)<α(0.05), we reject the null 

hypothesis.

 6. Inference: There is a significant association between the gender of 

the student and career choice, at a 5% significance level.

Caveat while using p-value:

The power of a hypothesis test is measured by its ability to yield statistically significant 

results, which is represented by a p-value that is less than 0.05. The results of many 

research trials and experiments conducted in the fields of medical and social sciences 

are presented using p-values. The p-value, however, is hard to interpret. It is also 

dependent on the sample size and the size of the bias that we measure. A result that is 

statistically significant does not conclusively disprove the null hypothesis or prove the 

alternate hypothesis. Confidence intervals are generally preferable to using p-values, as 

they are more easily interpretable.

 Summary

 1. Combinations refer to the number of ways in which we can select 

items, whereas permutations refer to the number of ways in which 

we can arrange them.

 2. Probability is the likelihood of an event.

Two events are independent when the probability of occurrence 

of one event does not affect the other. Independent events follow 

the special rule of multiplication, where P(A ∩ B)= P(A)*P(B).

Mutually exclusive events are those that cannot occur together, 

and such events follow the special rule of addition, where 

P(AUB)=P(A)+P(B).

 3. The Bayes theorem calculates the posterior probability of an 

event, or in other words, the probability of a hypothesis being true 

given some evidence related to it.
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 4. A random variable takes the values associated with the outcomes 

of an experiment. There are two types of random variables: 

discrete (which take only a few values) and continuous (which can 

take any number of values).

 5. Discrete variables can be used for binomial distributions (a single 

experiment repeated multiple times with each trial having two 

possible outcomes) or Poisson distributions (which model the 

number of occurrences that occur over an interval, given the 

average rate of occurrence).

 6. The normal distribution is a symmetric bell-shaped curve, using 

a continuous random variable with most of its values centered 

around the mean. The standard normal distribution has a mean 

of 0 and a standard deviation of 1. The formula used in standard 

normal distributions is as follows:

 
z

x
=

-( )m
s

.  

 7. Continuous distributions have various measures of central tendency 

(mean, median, mode), dispersion (range, variance, standard 

deviation), and shape (skewness is a measure of asymmetry while 

kurtosis is a measure of the curvedness of the distribution).

 8. A sample is used when it is impractical to collect data about all 

the subjects in a large population. The main methods of collecting 

a sample are probability sampling (where subjects are randomly 

selected from a large population) and non-probability sampling 

(when data is not readily available, and samples are taken based 

on availability or access).

 9. A hypothesis test is used to make an inference about a population 

based on a sample, but it does not conclusively establish anything 

about the population. It is only suggestive. The two kinds of 

estimates that can be made about a population from a sample are 

point estimates (using a single value) and interval estimates (using 
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a range of values). The confidence interval, which is the range of 

values within which the population mean lies, is an example of an 

interval estimate.

 10. The null hypothesis indicates that nothing has changed, while the 

alternate hypothesis is used when we have reason to reject the 

null hypothesis. A Type 1 error occurs when the null hypothesis is 

incorrectly rejected when it is true. In contrast, a Type 2 error occurs 

when we fail to reject the null hypothesis when it is not true.

 11. Either the test statistic (which is different for every hypothesis 

test) or the p-value can be used to decide whether or not to reject 

the null hypothesis. The p-value measures the likelihood that the 

observed data occurred merely by chance.

 12. A two-tail test is used when we are testing whether the population 

parameter(s) is not equal to a particular value. In contrast, a one-

tail test is used when the population parameter(s) is either greater 

than or less than a particular value.

A one-sample test is used when a single sample is taken from a 

population, while a two-sample test compares samples taken from 

different populations.

 13. Hypothesis tests can be either parametric (when we assume 

that the population from which a sample is drawn is normally 

distributed) or nonparametric (when we do not make such 

assumptions about the population distribution).

 14. A parametric hypothesis test could be used to compare means 

using the z-test (when the sample size is large, and the population 

standard deviation is known) or the t-test (small sample size <30 

and the population standard deviation is unknown). Z-tests can 

also be used to compare proportions. The ANOVA test is used when 

we need to compare the means of more than two populations. The 

chi-square test, one commonly used nonparametric test, is used for 

testing the association between variables.
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 Review Exercises
Question 1

Match the Scipy function (column on the right) with the appropriate hypothesis test 

(column on the left).

Hypothesis test Scipy function

1. Chi-square a. stats.ttest_rel

2. anoVa b. stats.ttest_1samp

3. paired t-test c. stats.f_oneway

4. one-sample t-test d. stats.chi2_contingency

5. two-sample (independent) t-test e. stats.ttest_ind

Question 2

Skewness is a measure of:

 1. Dispersion

 2. Central tendency

 3. Curvedness

 4. Asymmetry

Question 3

Mr. J underwent a test for a widespread pandemic. The doctor made a clinical diagnosis 

that Mr. J does not have this illness. Later, when a blood test was conducted, it came out 

positive. Which of the following errors has the doctor committed?

 1. Type 0 error

 2. Type 1 error

 3. Type 2 error

 4. No error was committed
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Question 4

Which of the following is correct?

 1. A normal curve is an example of a mesokurtic curve

 2. A playtykurtic curve is flat

 3. A leptokurtic curve has a high peak

 4. All of the above

 5. None of the above

Question 5

Let us assume that you are testing the effectiveness of e-learning programs in improving 

the score of students. The average score of the students is measured before and after the 

introduction of the e-learning programs. After comparing the means using a hypothesis 

test, you obtain a p-value of 0.02. This means that

 1. The probability of the null hypothesis being true is 2%.

 2. You have definitively disproved the null hypothesis (which states 

that there is no difference between the average scores before and 

after the introduction of the e-learning programs).

 3. There is a 2% probability of getting a result as extreme as or more 

extreme than what has been observed.

 4. You have definitively proved the alternative hypothesis.

Question 6

A new health drink claims to have 100 calories. The company manufacturing conducts 

periodic quality control check by selecting random independent samples (100 calories). 

The most recent 13 samples of this drink show the following calorie values: 78, 110, 105, 

72, 88, 107, 85, 92, 82, 92, 91, 82, 103. At a significance level of 5%, conduct a hypothesis 

test whether there is a change in the calorific value of the health drink from what was 

originally claimed.
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Question 7

Silver Gym is offering a fitness–cum–weight loss program for its clients and claims that 

this program will result in a minimum weight loss of 3 kgs after 30 days. To verify this 

claim, 20 clients who joined this program were studied. Their weights were compared 

before and after they underwent this program.

The weights of the 20 clients before and after the fitness program are as follows:

before_weights=[56,95,78,67,59,81,60,56,70,78,84,71,90,101,54,60]

after_weights=[52,91,77,65,54,78,54,55,65,76,82,66,88,94,53,55]

Conduct the appropriate test to test the hypothesis that there is a 3-kg weight loss 

(assuming that the weights of the population are normally distributed).

Answers

Question 1

1-d; 2-c; 3-a; 4-b; 5-e

Question 2

Option 4: Asymmetry (skewness is a measure of asymmetry)

Question 3

Option 3: Type 2 error

A Type 2 error is committed when the null hypothesis is not rejected when it does not 

hold true. Here, the null hypothesis is that the patient does not have this illness. The 

doctor should have rejected the null hypothesis and made a diagnosis for this illness 

since the blood test result is positive.

Question 4

Option 4: All of the above
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Question 5

Option 3

Remember that the p-value only gives us the probability of getting a result as extreme as 

or more extreme than what is observed. It does not prove or disprove any hypothesis.

Question 6

 1. State the hypothesis:

Let the mean calorie value of this drink be μ

Null hypothesis: H0: μ=100

Alternative hypothesis: H1 : μ !  = 100

This is a two-tail test.

 2. Select the appropriate hypothesis test:

We select the one-sample t-test based on the following 

characteristics:

• Number of samples: one sample

• Sample size: small (n=13)

• What we are testing: mean calorific value

• Population characteristics: population is normally distributed, 

and the population standard deviation is not known

 3. Fix the level of significance: α=0.05

 4. Calculate the test statistic and p-value:

CODE:

import numpy as np

import scipy.stats as stats

values=np.array([78,110,105,72,88,107,85,92,82,92,91,82,103])

stats.ttest_1samp(values,100)

Output:

Ttest_1sampResult(statistic=-2.6371941582527527, 

pvalue=0.02168579243588164)
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 5. Comparison: Since the calculated p-value <α, we reject the null 

hypothesis.

 6. Inference: It can be concluded, at a 5% level, that there is a 

significant difference between the calorific value of the sample 

and that of the population.

Question 7

 1. State the hypothesis:

Let μd be the average difference in weights before and after the 

weight loss program for the population

Null hypothesis: H0:μd < 3

Alternative hypothesis: μd ≥ 3

One-tail test since there is a greater-than-or-equal-to sign in the 

alternative hypothesis

 2. Select the appropriate hypothesis test:

• Number of samples: Two samples (taking two different samples 

with the same subjects)

• Sample size: Small (20)

• What we are testing: Testing the average difference in weight loss

• Population characteristics: Distribution of population is normal, 

but population variances are not known.

Based on the preceding characteristics and since the samples 

are related to each other (considering that we are comparing 

the weights of the same clients), we conduct a paired two-

sample t-test.

 3. Fix the level of significance: α=0.05

 4. Calculate the p-value:

The p-value can be calculated using the stats.ttest_rel equation as 

shown in the following code.
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CODE:

import scipy.stats as stats

before_weights=[56,95,78,67,59,81,60,56,70,78,84,71,90,101,54,60]

after_weights=[52,91,77,65,54,78,54,55,65,76,82,66,88,94,53,55]

stats.ttest_rel(before_weights,after_weights)

Output:

Ttest_relResult(statistic=7.120275558034701, 

pvalue=3.504936069662947e-06)

 5. Conclusion/interpretation

Since the calculated p-value <α(0.05), we reject the null hypothesis.

It can be concluded that there is a significant difference between the two groups before 

and after the weight loss program.
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