
brian d foy

Learning
 Perl 6
KEEPING THE EASY, HARD, AND IMPOSSIBLE WITHIN REACH

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

brian d foy

Learning Perl 6
Keeping the Easy, Hard, and Impossible

Within Reach

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-97768-2

[LSI]

Learning Perl 6
by brian d foy

Copyright © 2018 brian d foy. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Jeff Bleiel
Production Editor: Nicholas Adams
Copyeditor: Rachel Head
Proofreader: Kim Cofer

Indexer: Lucie Haskins
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2018: First Edition

Revision History for the First Edition
2018-08-24: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491977682 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Perl 6, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491977682
http://www.allitebooks.org

Table of Contents

Preface. xiii

1. Introduction. 1
Why Perl 6? 1
First Steps with the REPL 2
Reading the Documentation 4
Basic Syntax 4

Terms 5
Operators and Expressions 5
Statements 8
Blocks 8
Comments 9
Unspace 10
Objects and Classes 10

Variables 11
Simple Output 13
Lexical Scope 13
Predefined Variables 14

Making and Running a Program 15
Summary 16

2. Number Guessing. 17
Binding and Assignment 17
A MAIN Program 18

Program Arguments 19
Prompting for Values 21

Literal Numbers 22
Formatting Numbers 23

iii

www.allitebooks.com

http://www.allitebooks.org

Numeric Operations 24
Conditional Execution 27

Boolean Values 27
Comparing Things 30
Conditional Branching 33

Putting It All Together 35
Summary 37

3. Numbers. 39
Number Types 39
Integers 40

Type Constraints 40
Smart Matching 42

Rational Numbers 44
Imaginary and Complex Numbers 46
Numbers Small and Large 48
The Numeric Hierarchy 49
Summary 50

4. Strings. 51
Literal Quoting 51
Escaped Strings 52

Adverbs for Quoting 53
String Operators and Methods 54
Looking Inside Strings 56
Normal Form Grapheme 57
String Comparisons 58
Prompting for Input 59
Number to String Conversions 61
String to Number Conversions 61

Interpolated Strings 63
Here Docs 66
Shell Strings 67

Shell Safety 68
Fancier Quoting 69
Summary 70

5. Building Blocks. 71
Blocks 71

Lexical Scope 72
Control Structures 73
Phasers 75

iv | Table of Contents

Storing Blocks 78
Blocks with Parameters 79

Simple Subroutines 82
Named Subroutines 84

Whatever Code 85
Subsets 85

Summary 87

6. Positionals. 89
Constructing a List 89

Iterating All the Elements 92
Ranges 96

The @ Coercer 97
Sequences 98

Infinite Lazy Lists 100
Gathering Values 102

Single-Element Access 103
Changing a Single Element 105
Multiple-Element Access 106

Arrays 106
Constructing an Array 107
Interpolating Arrays 108
Array Operations 109
Lists of Lists 110
Flattening Lists 111
Interesting Sublists 112

Combining Lists 113
The Zip Operator, Z 113
The Cross Operator, X 114
The Hyperoperators 115
The Reduction Operator 116

Filtering Lists 117
Transforming a List 118
Sorting Lists 119
Sorting on Multiple Comparisons 121
Summary 122

7. When Things Go Wrong. 123
Exceptions 123

Catching Exceptions 124
Backtraces 126
Rethrowing Errors 129

Table of Contents | v

Throwing Your Own Exceptions 130
Defining Your Own Exception Types 131

Failures 131
Warnings 132
The Wisdom of Exceptions 133
Summary 134

8. Files and Directories, Input and Output. 135
File Paths 135

File Test Operators 137
File Metadata 139
Linking and Unlinking Files 140
Renaming and Copying Files 142

Manipulating Directories 143
Directory Listings 144
Creating Directories 145
Removing Directories 145

Formatted Output 146
Common Formatting Tasks 148

The Standard Filehandles 149
Standard Output 149
Standard Error 150
Standard Input 151

Reading Input 151
Reading Lines 152
Reading a File 153

Writing Output 154
Opening a File for Writing 154

Binary Files 155
Moving Around 156
Writing Binary Files 156

Summary 157

9. Associatives. 159
Pairs 159

Adverbs 160
Modifying a Pair 161

Maps 162
Checking Keys 163
Creating from a Positional 163
Checking Allowed Values 164

Hashes 165

vi | Table of Contents

Accumulating with a Hash 167
Multilevel Hashes 169
Summary 170

10. Using Modules. 171
Installing Modules 171
Loading Modules 172

Finding the Module 173
Lexical Effect 175
Loading a Module at Runtime 176

Fetching Data from the Web 179
Running Perl 5 in Perl 6 179
Summary 180

11. Subroutines. 181
A Basic Subroutine 181

Extra Arguments 182
Explicit Returns 182

Recursing 184
Iterating Instead of Recursing 184

Storing Subroutines in Libraries 185
Exporting Subroutines 186

Positional Parameters 187
Slurpy Parameters 188
Have It Both Ways 189
Combining Slurpies 190
Optional and Default Arguments 191
Parameter Traits 191
Parameter Constraints 192

Same Name, Different Signature 193
Literal Value Parameters 193
Number of Arguments 195
Parameter Types 195

Named Parameters 197
Required Named Parameters 198
Named Parameters for Free 198
Mixed Parameters 199

Return Types 199
Summary 201

12. Classes. 203
Your First Class 203

Table of Contents | vii

Defining Methods 204
Private Methods 205
Defining Subroutines 206

Objects 206
Private Attributes 207
Public Attributes 209

multi Methods 210
Inheriting Types 212

Checking Inheritance 214
Stub Methods 214

Controlling Object Creation 215
Building Objects 216
Tweaking Objects 219

Private Classes 220
Summary 221

13. Roles. 223
Adding Behavior to Classes 223

Applying Multiple Roles 224
Methods in Roles 225
De-Conflicting Roles 226
Anonymous Roles 229
Summary 231

14. Junctions and Sets. 233
Junctions 233

any 233
all 237
one 237
none 238
Some Junctive Tricks 238

Sets 239
Set Operations 242

Summary 243

15. Regular Expressions. 245
The Match Operator 245

Match Operator Syntax 246
Successful Matches 247
Defining a Pattern 248
Predefined Patterns 249

Matching Nonliteral Characters 250

viii | Table of Contents

Matching Any Character 251
Matching Types of Characters 253
User-Defined Character Classes 255

Matching Adverbs 257
Matching Either Case 257
Ignoring Marks 259
Global Matches 259

Things That Use Patterns 260
Substitutions 260

Summary 261

16. Fancier Regular Expressions. 263
Quantifiers 263

Zero or More 264
Greediness 265
Zero or One 265
Minimal and Maximal 266

Controlling Quantifiers 267
Turning Off Backtracking 267

Captures 268
Named Captures 269
A Capture Tree 271
Backreferences 272

Surrounders and Separators 273
Assertions 274

Anchors 275
Conditions 276
Code Assertions 277

Alternations 279
First Match 279
Longest Token Matching 281

Summary 283

17. Grammars. 285
A Simple Grammar 285
Multiple Rules 288
Debugging Grammars 290

Grammar::Tracer 290
Grammar::Debugger 291

A Simple Action Class 291
Creating an Abstract Syntax Tree 292

Ratcheting 294

Table of Contents | ix

Parsing JSON 295
Parsing CSV 298

Adjusting the Grammar 300
Using Roles in Grammars 301

Summary 302

18. Supplies, Channels, and Promises. 303
Supplies 303

Multiple Taps 305
Live Supplies 306

Channels 307
Promises 309

Waiting for Promises 310
Waiting for Multiple Promises 311
Managing Your Own Promises 312
Promise Junctions 314

Reactive Programming 315
Reacting in the Background 318

Summary 320

19. Controlling Other Programs. 321
Quick and Easy 321

Quoted Commands 322
Safer Commands 323
Writing to a Proc 324

Procs 325
Asynchronous Control 326
Summary 327

20. Advanced Topics. 329
One-Liners 329
Declarator Block Comments 329
Feed Operators 330
Destructuring Signatures 331
Defining Your Own Operators 331
Perl 5 Patterns 332
Shaped Arrays 332
Typed Containers 332
NativeCall 333
The with Topicalizer 333

21. Conclusion. 335

x | Table of Contents

Glossary. 337

A. Exercise Answers. 349

Index. 435

Table of Contents | xi

Preface

Welcome to the first edition of Learning Perl 6, a book title that sounds similar to oth‐
ers you may have read and I may have written. This one, however, is my first book
about the language called “Perl 6.” I know the name is a bit confusing; I’m not in
charge of that part. I’m just the book writer.

Okay, I can see you’re not satisfied with that.

Here’s the short answer you probably want: if you need to learn Perl because someone
made that choice for you, you’re probably looking for my other book, Learning Perl,
that covers the widely used Perl 5. That’s the stable ol’ workhorse that’s been around
virtually forever. This one is about the new language that’s still growing up and isn’t in
wide use yet.

Here’s the longer answer for those of you who are still reading. You either know that
you want Perl 6 or you don’t really care which one you get as long as you learn a new
language.

The Backstory of Perl 6
At the Perl Conference in 2000, a group of Perl people got together in a hotel confer‐
ence room in Monterey, California. It was a Tuesday. Later that day the Perl 5 Porters
would meet to talk about the immediate future of Perl. Chip Salzenberg had organ‐
ized this mostly secret pre-meeting to come up with some ideas. Somehow he drag‐
ged me into the pre-meeting.

We started chatting about the roadblocks Perl 5 was facing at the time: the developers
hated each other, the source code was intractable, and Perl was losing the popularity
contest.

Chip had tried a complete rewrite of Perl in C++ (a project he called Topaz) but had
hit some brick walls. That was part of his motivation for the meeting.

xiii

http://my.safaribooksonline.com/book/programming/perl/9781449311063

We prattled on about small potatoes stuff until Jon Orwant, publisher of The Perl
Journal, started throwing coffee mugs against the wall. He wanted to shake things up
because we were all being annoyingly polite. We weren’t thinking big enough. I think
he underestimated the violence of the gesture, but it got our attention. We started
thinking big. Infinitely big.

And that’s when Perl 6 was born. Perl’s creator, Larry Wall, announced it the next day
in his State of the Onion address. Most notably, he said “Perl 6 is going to be designed
by the community.” Everyone thought that Perl 6 would be the version after the just-
released Perl v5.6. That didn’t happen, but that’s why “Perl” was in the name “Perl 6.”

For a few months people submitted comments about what they wanted in the new
language. Larry digested those comments into a series of “Apocalypse” documents
and formed a response for each one. He let those suggestions shape his own thoughts
as chief designer. Eventually he put together the “Synopses” to unify all of his ideas.
Damian Conway explored those ideas in the “Exegeses.” You can find all of them at
https://design.perl6.org. They’re a bit dated, but that’s how it goes.

The Perl 6 developers invented a new interpreter named Parrot that was intended to
handle multiple languages and make it easy to transpile code and do many other nifty
things. It didn’t quite work out that way.

At the same time, another group revitalized Perl 5 development. Jarkko Hietaniemi
released Perl v5.8 in 2003. That version stuck around for a bit, and people then
expected that one to be the last version of Perl 5.

In 2005, Audrey Tang implemented Perl 6 on top of the Glasgow Haskell Compiler
(GHC). She called it Pugs—the Perl 6 User’s Golfing System. People finally had some‐
thing that would run Perl 6, and they started to get excited. They began to fill out the
feature list and the canonical tests an implementation must pass. But development
stalled again.

Perl v5.10 came out in 2007. It had new features—some stolen from Perl 6. The Perl 5
Porters developed some formal policies and processes. Perl 5 got back on track. Peo‐
ple started to clean up the internals. Core developers got excited about Perl 5 again.
Instead of dying, Perl 5 surged. As I write this, the current version of Perl 5 is v5.26
and v5.28 is only a few months away.

This left Perl 6 with competition from what people had thought it would replace.
That’s where the confusion in the name comes from. Some people want to rename it
to avoid the “Perl” part, but the universe has resisted that effort.

Perl 6 kept plodding away until the developers got to the “Christmas” release. They
decided that whatever was working by Christmas 2015 would be the first official
release. They hit that target, and the development has been consistent since then.

xiv | Preface

http://www.perl.com/pub/2000/10/23/soto2000.html
https://perl6.org/archive/rfc/
https://design.perl6.org
https://github.com/perl6/Pugs.hs

What You Should Already Know
I assume that you know how to create plain-text files using a code editor (not a word
processor) and how to run basic commands in a terminal (Unix-like or Windows).

These are basic skills that you’ll need as a programmer, but I understand that you
might be working on those at the same time you are learning to program. I suggest a
few online code runners in the next section that allow you to avoid terminals and
files. Don’t rely on these, though.

I try to gently introduce programming, but that could be a long book on its own. Perl
6 is an object-oriented language and I mostly ignore the theory and practice of that to
focus on the language itself. Sadly, this book can’t teach you to be a programmer—
take heart, though. Many programmers learned their craft by struggling through
books that didn’t teach them programming.

You aren’t going to learn everything about Perl 6 or programming in this book. You’re
never done learning, though, so don’t be discouraged.

Getting Rakudo
Perl 6 was designed from the start to run on multiple implementations even though
no one knew what those would be at the time. There’s an effort to compile Perl 6 to
the Java Virtual Machine (JVM), and another one to run it on top of JavaScript.
There’s also MoarVM (“Metamodel On A Runtime”), which is the one furthest along
and the one I use in this book.

The version of Perl 6 is defined by the version of the test specification and what that
covers; as I write this that’s v6.c (with v6.d on the horizon). Rakudo 2018.04 is Perl 6
on top of Moar 2018.04, but it’s still v6.c. You can see this when you ask for the
version:

% perl6 -v
This is Rakudo Star version 2018.04 built on MoarVM version 2018.04
implementing Perl 6.c.

For the purposes of this book “Rakudo” and “Perl 6” are the same thing, even though
that’s not really true. If you know how that isn’t true you’re probably fine choosing
your own implementation.

You can try Perl 6 without installing it. Glot.io and Try It Online have Perl 6 browser-
based environments. You can run single-file programs; that should get you through
most of this book.

There’s also a Perl 6 Docker container if you’re into that sort of thing:

% docker run -it rakudo-star

Preface | xv

http://www.moarvm.org
https://glot.io/new/perl6
https://tio.run/#perl6
https://hub.docker.com/_/rakudo-star/

Your local package manager might have it; look for something like perl6, rakudo, or
rakudo-star. If you use Chocolatey on Windows you can install it with a package I
maintain:

C:\ choco install rakudo-star

You can also download source or binaries from Rakudo.org. That’s how I get my
macOS packages.

Once you have Rakudo installed you should have a perl6 binary. Give it a go to ensure
that it works. The -v switch tells you some information about your perl6:

% perl6 -v
This is Rakudo Star version 2018.04 built on MoarVM version 2018.04
implementing Perl 6.c.

Without an argument perl6 drops you into the REPL (Read-Eval-Print-Loop). At the
> prompt you can type some text between single quotes and the REPL will echo that
to you:

% perl6
To exit type 'exit' or '^D'
> 'Hello Camelia!'
Hello Camelia!

You can also inspect the values of variables. There are special variables that tell you
about your setup and might be useful if you have to report a problem:

% perl6
To exit type 'exit' or '^D'
> $*VM
moar (2018.04)
> $*PERL
Perl 6 (6.c)

If you have gotten this far you have a working Perl 6!

How to Use This Book
This is a tutorial book. My job is to find the parts of the language that you need to
understand so you can teach yourself the rest. This isn’t a reference book, and there’s
more that I’ll leave out than I include. It’s not laid out by topic and the chapter titles
only roughly describe the contents. I’ll introduce new topics as soon as I can; most of
them need a little buildup though.

Sometimes the terminology can get a bit heavy. I’ve included a glossary toward the
end. If you forget what something means try looking for it there.

Along the way you’ll find exercises. Do them! Practice what you just read as you
encounter the exercises, then read my answers (Appendix A); there’s additional infor‐
mation in them. I don’t hide information from you but I let you wrestle with some

xvi | Preface

http://www.rakudo.org/

concepts so you can have some fun. Part of the practice is the struggle. Let’s do an
exercise right now to see how it works.

Exercise 0.1
Install Perl 6. Use the REPL to find the version of Perl 6 you have.

How did that work for you? Let’s try another one. This is a bit easier but requires you
to download a few things from this book’s website. I’ll put interesting things and exer‐
cise aids at https://www.learningperl6.com/downloads/ and https://github.com/briand
foy/LearningPerl6_Downloads. I’ll note when something is useful for an exercise.

Exercise 0.2
In the Downloads section of LearningPerl6.com, find the Preface/
find_moth_genera.p6 program and the DataFiles/Butterflies_and_Moths.txt data file.
Run that program with that data file. Assuming you have them in the same directory,
that would be:

% perl6 find_moth_genera.p6 Butterflies_and_Moths.txt

It’s the same on Windows, although your prompt will be different.

I’ve designed this book for you to finish in a couple of weeks. Go through the chap‐
ters in order because they build on each other. With some exceptions, anything I use
in a later chapter I should have explained earlier. Some concepts may show up in
chapters with a different major topic or even in an exercise answer. Do the exercises!
Try a chapter, go through its exercises, and take a break. Don’t try to do too much at
once.

How to Get Help
If you can’t quite figure out your Perl 6 issue, you have a few options. The official
website, https://www.perl6.org, lists several ways you can interact with other Perl 6
users. I tend to like Stack Overflow as a question-and-answer site.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Preface | xvii

https://www.learningperl6.com/downloads/
https://github.com/briandfoy/LearningPerl6_Downloads
https://github.com/briandfoy/LearningPerl6_Downloads
http://www.LearningPerl6.com
https://www.perl6.org/community/
https://stackoverflow.com

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords. Also used for commands and command-
line options.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://www.learningperl6.com/.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

xviii | Preface

http://www.learningperl6.com/

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning Perl 6 by brian d foy
(O’Reilly). Copyright 2018 brian d foy, 978-1-491-97768-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning-perl-6.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Preface | xix

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari
http://bit.ly/learning-perl-6
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I’ve tried to write this book several times since 2000. The first try involved my fre‐
quent coauthor Randal L. Schwartz, who taught me most of everything I know about
writing about programming. Even though he didn’t take part in this book he’s been
immensely helpful throughout the years.

Audrey Tang got a hold of my laptop and changed all my Perl 6 slides before my first
ever Perl 6 talk. Things had changed overnight. Even during the talk things changed,
and Damian Conway would yell out “Not anymore!” They were committing code
during the talk. Sometimes you run your fastest and still can’t keep up.

Wendy Van Dijk and Liz Mattijsen got serious about a Perl 6 tutorial book a couple of
years ago. They put their money where their mouths were. We talked about doing the
book as a Kickstarter project with them as the major contributors. Their generosity
guided so many other people to help—and thanks to everyone who contributed
through my fundraising campaign.

Brian Jepson was an O’Reilly editor at the time I was running my Kickstarter cam‐
paign and saw what I was doing. He helped me turn it into a proposal that ultimately
turned into this book. He imparted many great ideas before he moved on to a new
job.

Allison Randal, my editor on Mastering Perl, had many encouraging things to say
early in the process. She also had many words of wisdom for the inevitable discourag‐
ing things she knew I’d encounter. My good friend Sinan Ünür provided great
insights into the workings of non-Perl languages and helped me sort out the structure
of the book. He was especially helpful with issues related to Windows. David Farrell,
the publisher of PerlTricks.com and now Perl.com, had many interesting insights and
angles. Chris Nandor was a constant source of reason and sanity.

I asked many, many questions on Stack Overflow. Some of those were just for me, but
many were for the people who will search for the same answers. Many people were
quite helpful, including Christopher Bottoms, Brad Gilbert, Moritz Lens, Liz Mattij‐
sen (again), JJ Merelo, Timo Paulssen, Stefan Seifert, Jonathan Worthington, and
numerous others.

Other people were helpful along the way. I filed several bug reports and documenta‐
tion issues, and many people worked on those. They’ve all made the world a slightly
better place.

xx | Preface

http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://my.safaribooksonline.com/book/programming/perl/9781449364946
https://www.perl.com/
https://stackoverflow.com/questions/tagged/perl6

CHAPTER 1

Introduction

This chapter is the big picture view of the language; don’t worry if you don’t under‐
stand everything that’s going on just yet. Worry if you get to the end of the book and
you still don’t! There’s much going on, so you’ll spiral around some topics, revisit oth‐
ers, and with some practice see how it all fits together—it really is all about the
practice.

Why Perl 6?
For starters, you have Learning Perl 6. You might as well get your money’s worth by
using the language!

But what makes this an attractive language? The Perl family has always been fond of
DWIM—Do What I Mean. Things that you do frequently should be easy to do, and
the hardest things should still be possible. The usefulness of any programming lan‐
guage is measured by the extent to which it solves your problems.

Perl 6 is a great text processing language—possibly even better than Perl 5. The regu‐
lar expressions (Chapter 15) have many new and exciting features that make it even
easier to match and extract bits of text. The builtin grammar (Chapter 17) features
allow you to easily write complex rules to handle and react to text.

Gradual typing (Chapter 3) allows you to annotate variables with restrictions about
what you can store there. For example, you can specify that a number must be a
whole number, or a positive number, or between two other numbers. You don’t have
to use it (that’s the gradual part). You’ll be able to annotate what a subroutine accepts
and what it should return. That can quickly reveal bugs at data boundaries.

1

Builtin concurrency (Chapter 18) features allow you to decompose problems into
parts that you run separately and perhaps simultaneously. The language handles most
of that for you.

Lazy lists and infinite lists allow you to process sequences without excessive copying
or even having the entire list at one time (Chapter 6). You can easily create your own
infinite lazy lists.

I could keep going, but you’ll run into more amazing features as you work your way
through this book.

There will be times that you won’t want to use Perl 6. No language is the right tool for
every job. If you like something else better or can finish a task faster with a different
tool, more power to you! I hope, though, that this book helps you do what you need
to do quickly and efficiently in Perl 6.

First Steps with the REPL
The REPL is a Read-Evaluate-Print-Loop tool that provides an interactive prompt.
The REPL evaluates the code you type, shows you the result, then prompts you again.
It’s a quick way to try out small snippets. When you run perl6 without arguments it
starts its REPL:

% perl6
To exit type 'exit' or '^D'
>

The > is the prompt that waits for you to type something. When you type Return the
REPL does its work. Try it by adding two numbers:

% perl6
> 2 + 2
4

If there’s an error it lets you know about it and prompts you again:

% perl6
> 2 + Hamadryas
===SORRY!=== Error while compiling:
Undeclared name:
 Hamadryas used at line 1
>

You don’t know why this failed yet because you’re at the beginning of the book. That
doesn’t really matter as long as you know the REPL catches the error and gives you a
new prompt. If you need to correct a mistake you should be able to use the up arrow
to go back to the previous line (or further) to edit and rerun something.

Before you move on, you should know a few other tricks that can help you learn the
geography of the language.

2 | Chapter 1: Introduction

When I write about methods in this book I generally preface them
with the method call dot so you know they’re methods, as in .is-
prime. The dot is not part of the name.

A method is a label for predefined behavior of an object. Every object has a type, and
the .^name method tells you that type:

% perl6
> 3.^name
Int

The literal 3 is an object of type Int, for integer. Once you know what type something
is you can read its documentation to find out what you can do with it.

Behavior is defined in classes (Chapter 12), and these classes can be based on more
general classes through inheritance. You can use the .^mro method to see the inheri‐
tance chain (although the documentation also tells you):

% perl6
> 3.^mro
((Int) (Cool) (Any) (Mu))

An object can do all the behavior of all the classes it inherits from. This shows that 3
is an Int, which is a Cool (Convenient Object-Oriented Loop), which is an Any (a
base class for just about everything), which is, finally, a Mu (a thingy that is not a
thingy—think on that for awhile!).

Use .^methods to see the list of methods for an object:

% perl6
> 3.^methods
(Int Num Rat FatRat abs Bridge chr sqrt base
polymod expmod is-prime floor ceiling round
...)

The type is also an object (a type object). It’s the abstract expression of the thingy
without a concrete value. It has methods too:

% perl6
> Int.^methods
(Int Num Rat FatRat abs Bridge chr sqrt base
polymod expmod is-prime floor ceiling round
...)

You can’t call many of those methods on a type object, though. You get an error
because there’s no value yet:

% perl6
> Int.sqrt

First Steps with the REPL | 3

https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Cool.html
https://docs.perl6.org/type/Any.html
https://docs.perl6.org/type/Mu.html

Invocant of method 'sqrt' must be an object instance of
type 'Int', not a type object of type 'Int'.

The methods .^name, .^mro, and .^methods come from the language’s metaprogram‐
ming underpinnings. That’s a bit advanced for this book given the number of pages I
have, so you won’t read more about that here.

Reading the Documentation
Now that you know about the REPL and how to find the type of an object, you proba‐
bly want to read about those in the documentation. The p6doc program can do that:

% p6doc Int
... lots of text

If you want to know about a method you can add it to the type:

% p6doc Int.polymod
 method polymod

Defined as:
 method polymod(Int:D: +@mods)

Usage:
 INTEGER.polymod(LIST)
...

Sometimes you don’t find the docs where you expect them. When that happens try
one of the inherited classes:

% p6doc Int.sqrt
No documentation found for method 'sqrt'

% p6doc Cool.sqrt
 routine sqrt

Defined as:
 sub sqrt(Numeric(Cool) $x)
 method sqrt()

...

I find myself mostly reading the docs online at https://docs.perl6.org. Worse than that,
I Google something like “perl6 Int” and follow the first result. That site also has a
handy search feature to help you find things without using a full text search. You can
run the same site locally. Look for those details at the bottom of each page.

Basic Syntax
You often need to read code from the inside out, as you would a math formula, so
that’s how I approach it here: starting from the very tiny and building up from there.

4 | Chapter 1: Introduction

https://docs.perl6.org

This is a survey of the things you need to know and will read about in upcoming
chapters. Don’t worry if you are a bit overwhelmed at this point. You’ll get used to
these things as you practice.

Terms
At the lowest level a program has terms. These are the building blocks that form
everything else. Think of these as the nouns of the language. Here are some terms:

2
e
π
'Hello'
$x
now

These include literal data, such as 2 and 'Hello'; variables, such as $x; and defined
symbols, such as π. now is a term that represents the current time as an Instant
object.

A variable typically starts with a sigil—a special character that denotes something
about that variable. The variable $x has the $ sigil. Don’t worry about those just yet,
although you’ll see more later in this chapter.

Operators and Expressions
An expression is a combination of terms and operators that produce a new value. If
the terms are the nouns, operators are the verbs that specify the action. They turn one
or more terms into a new value. Operands are the values that an operator uses. A
unary operator does something to a single operand:

- 137 # negate 137 to make -137
+ '137' # convert the string '137' to a number
$x++ # add 1 to the current value in $x

That # and the text following it is a comment (which you’ll see more about in a
moment). It’s some text that the program ignores and is a convenient way for you to
leave notes about your code. I’ll often use comments to reinforce a point or show the
output of an expression.

A binary operator works on two operands. Normally these operators show up
between the operands (infixed):

2 + 2 # add two numbers
$object.method() # the . method call operator
$x = 137 # assign a value to a variable

A ternary operator, such as the conditional operator, ?? !!, has three operands:

$some_value ?? 'Yes' !! 'No' # choose one of two values

Basic Syntax | 5

https://docs.perl6.org/type/Instant.html

If the first thingy evaluates to True, it selects the second thingy. Otherwise it selects
the third thingy. You’ll see more of these in Chapter 3.

Before, after, and around
Operators come in several varieties, with names that describe their position and the
number of operands they expect. You’ll see these terms throughout the book. A prefix
operator comes before its operand and usually takes only one operand. The increment
operator is an example. It adds one to the number in $x:

++$x

A postfix operator comes after its operand. There are increment forms of this type as
well:

$x++

A circumfix operator surrounds its operand. Examples include the parentheses and
the double quote marks:

(1, 2, 3)
"Hello"

A postcircumfix operator surrounds its operand but comes after something else. A
single-element access to an Array or a Hash surrounds the index and comes after the
variable name. The [] and <> are the operators that come after the name but sur‐
round the key:

@array[0]
%hash<key>

Those terms are in the documentation. There are other ways you can arrange opera‐
tors that don’t have standard terms, so I’ve fashioned my own that I don’t expect to
use that much.

A precircumfix operator surrounds an operand and comes before other operands. The
reduction operator (Chapter 6) surrounds an operator that it places between each of
the items that follow it. This adds all the numbers without having to specify a +
between every pair:

[+] 1, 2, 3

A circumfix infix operator surrounds an infix operator. The hyperoperators <<>> sur‐
round an operator and distribute that infix operator along the two lists (Chapter 6):

(1, 2, 3) <<+>> (4, 5, 6)

There are other arrangements you might encounter in this book, but you can gener‐
ally tell how they work by picking apart the name.

6 | Chapter 1: Introduction

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Hash.html

Operators are actually methods. Their names look a bit complicated because they
start with the sort of operator they are and have the symbol in angle brackets:

infix:<+>(1, 2) # 3

my @array = 1, 2, 3
postcircumfix:<[]>(@array, 1)

You won’t need these forms, but you should know that the operators figure out what
to do based on the arguments.

Precedence
You can chain operations one after the other. Try this in the REPL:

1 + 2 + 3 + 4

The expression is evaluated in order of operator precedence and associativity. Prece‐
dence decides which operators go first and associativity figures out the order among
operators of the same precedence (or even two of the same operator).

An operator’s precedence is relatively looser or tighter than other operators. With a
chain of terms the tighter operator goes first. Multiplication (*) happens before addi‐
tion (+), just like in high school algebra:

2 + 3 * 4 # 14

If you don’t like the order you can change it with parentheses. Things inside paren‐
theses are computed before things outside. Another way to say that is that parenthe‐
ses have the highest precedence. Now the addition happens first:

(2 + 3) * 4 # 20

If you have two operators of the same precedence then associativity decides the order
of evaluation. Operators can be either left associative or right associative. The expo‐
nentiation operator is right associative, so the operation on the right happens first:

2 ** 3 ** 4 # 2.4178516392293e+24

It’s the same order as if you put explicit parentheses around the right two numbers:

2 ** (3 ** 4) # 2.4178516392293e+24

Use parentheses to make the left operation happen first:

(2 ** 3) ** 4 # 4096

Some operators can’t be combined and don’t have associativity. The range operator is
one of the operators you can’t combine:

0 .. 5 # Range operator, nonassociative
0 .. 3 .. 5 # Illegal

Basic Syntax | 7

Statements
A statement is a complete, standalone part of a program. An expression can be a
statement but it can also be part of a statement. Here’s a statement using put to output
a message. It adds a newline for you:

put 'Hello Perl 6!'

You separate statements with a semicolon. Here are two statements; they are on sepa‐
rate lines but you still need a semicolon between them:

put 'Hello Perl 6!';
put 'The time is ', now;

You don’t need the ; unless another statement follows, but I tend to put a semicolon
at the end of every statement because I know I’ll forget to add it when I add more
code:

put 'Hello Perl 6!';
put 'The time is ', now;

Most whitespace is insignificant, which means you can use it how you like to format
your program. These statements have a differently organized manner:

put
 'Hello Perl 6!'

; put 'The time is ',
now ;

There are a few situations where whitespace matters, but you’ll read about that when
you need to know about it.

Blocks
A block (Chapter 5) combines one or more statements into a single unit by surround‐
ing them with a set of braces. Sometimes the block has a control keyword, such as
loop, attached to it. This block continually evaluates its statements until you stop the
program with Control-C. This is an infinite loop:

loop {
 state $count = 0;
 sleep 1;
 print $count, "\r";
 }

Each statement is separated by a semicolon and the last statement has a semicolon for
good measure.

8 | Chapter 1: Introduction

You don’t see a ; after the closing brace for that loop, but it’s implicitly there. A }
followed by nothing more than whitespace until the end of the line implies a ;. If you
have more stuff on the same line, though, you need a ; after the }:

loop { ... }; put "Done";

The ... (yada yada) operator is the way you signal that there’s something there but
you don’t care to say what it is at the moment. Use it when you intend to fill in the
details later. I’ll use those to hide code to save space in examples. It compiles but gives
you an error when you run it. You’ll see this used throughout the book to shorten
examples to fit on the page.

A block creates a lexical scope. You can see what this scope is based on the position of
the braces (hence, lexical). Things you define inside a scope only matter inside that
scope and the deeper scopes it defines. This limits the effects of many things to
exactly where you need them. The effects of variables and modules are limited to
their lexical scope.

Comments
Comments are a way to leave ourselves notes that the program doesn’t care about. The
compiler mostly ignores these things. You can make a comment with a # when the
compiler is expecting a new token. The compiler skips everything from that # to the
end of the line. Here’s a mostly useless comment:

put 'Hello Perl 6!'; # output a message

A better comment expounds on the purpose, not the effect, of the code. This type of
little program is often used as a first exercise to check that everything is working. The
comment can say that:

put 'Hello Perl 6!'; # show that the program ran

An alternative is an embedded comment. Put your message inside the parentheses in
#`() somewhere in your statement (or even between statements):

put #`(Marketing asked for this) 'Hello Perl 6!';

This is a nice way to have multiline comments:

#`(
* show that the program ran
* need to add blockchain email AI feature
)
put 'Hello Perl 6!';

Since a closing parenthesis ends the comment, you can’t have one in your comment.

Basic Syntax | 9

Both of those are fine for short comments. Sometimes you want to comment out sev‐
eral lines to prevent them from running. If you put the # at the beginning of a line
you effectively remove that line from the program:

loop {
 state $count = 0;
sleep 1;
 print $count, "\r";
 }

You might add another comment to remind yourself why that line is still in the code.
Often programmers do this as they are debugging so they remember what was there
before they started:

loop {
 state $count = 0;
Testing this for ticket 1234 (bug://1234)
I think that the sleep slows the program down too much
sleep 1;
 print $count, "\r";
 }

Unspace
In most places Perl 6 doesn’t care about whitespace, but there are some parts of the
Perl 6 syntax that don’t allow spaces. Space between the name of a subroutine and its
opening parenthesis for an argument list changes the meaning:

my-sub 1, 2, 3; # three arguments
my-sub(1, 2, 3); # three arguments
my-sub (1, 2, 3); # one argument (a List)

In that last line there’s a space between my-sub and the (. That compiles and runs, but
instead of three arguments the subroutine gets a single List argument (Chapter 6).
You can unspace that space with a backslash. Any whitespace following the \ is basi‐
cally invisible to the compiler:

my-sub\ (1, 2, 3);

You might want to do this to format code into columns to make it easier to read:

my-sub\ (2, 4, 8);
my-much-longer-name(1, 3, 7);

Objects and Classes
Perl 6 is a class-based object system. I’ll skip most of the theory of object-oriented
programming (that could be a whole other book), but you should know that in these
systems a class (Chapter 12) defines the abstract structure and behavior of an object.
The object is a particular concrete version of that class.

10 | Chapter 1: Introduction

https://docs.perl6.org/type/List.html

Most of the data in Perl 6 are objects, and each object knows what class defines it.
Classes define methods, which are the behaviors of the object. Classes can inherit
from another class to include its behavior, but they can also include roles that add
behavior without inheritance. When you see class names in the digital version of this
book the name should link to the online documentation for that class (for example,
the Int class).

You create objects by calling a constructor method, often called .new (Chapter 12).
You pass arguments to the method in parentheses after the method name:

my $fraction = Rat.new(5, 4);

There’s also a colon syntax for method arguments which relieves you from the burden
of typing the closing parenthesis as long as there’s nothing more in the statement:

my $fraction = Rat.new: 5, 4;

Type objects represent the abstract idea of a class but aren’t objects. Sometimes they
are useful as placeholders when you know what sort of object you want but you don’t
know its value yet:

my $fraction = Rat;

With gradual typing you can restrict variables to fit into a type. These are runtime
checks, so you don’t know that it didn’t work until you try it:

my Int $n;

Since you haven’t assigned a value to $n yet, it’s an Int type object. When you want to
assign a value it must match that type:

$n = 137; # works because it's an integer
$n = 'Hamadryas'; # fails

Look through a class’s documentation to see what sorts of things its objects can do. In
many of the exercises I’ll ask you to use a method that I haven’t shown you. This
trains you to go to the docs, but also lets you learn things about seeing what’s out
there. This saves some space in the book. Let’s try some of those now.

Exercise 1.1
What type of object is 137? Compute its square root. Is it a prime number? You
should be able to do each of these with a simple method.

Variables
Perl 6 has named values. They can be immutable, which means you can’t change the
values once you set them. They can also be mutable, which means you can change the

Variables | 11

https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Int.html

values. The mutable ones are commonly called variables, but they are also known as
containers. A container holds a value and you can replace that value with another.
You’ll read more about that in the next chapter. Despite the possibility that you can’t
change the value, I’ll still call all of these “variables.”

A named value has an identifier—a fancy word for “name.” Names can include letters,
digits, the underscore, the hyphen, and the apostrophe ('). You must start your name
with a letter or digit. These are valid identifiers:

butterfly_name
butterfly-name
butterfly'name

The underscore, hyphen, or apostrophe can separate words to make them easier to
read. Sometimes the underscore pattern is called snake case since the word separators
crawl along the ground. The hyphen pattern is called kebab case (or sometimes lisp
case).

Some people might feel more at home capitalizing the first letter of each word
instead. This is known as camel case since it imitates the humps on a camel’s back. In
this example there’s one hump, which is the best number of humps for a camel:

butterflyName

There are some rules with - and '. You can’t have two - or ' characters in a row, and
the character after either must be a letter (not a number). Also, you cannot start an
identifier with these characters. None of these are valid:

butterfly--name
butterfly''name
'butterfly
butterfly-1

A variable name combines a sigil with an identifier. The sigil is a character that gives
some context to the identifier. A scalar is a single thingy. A scalar variable holds a sin‐
gle value and has a $ sigil. The $ looks similar to S, for scalar:

$butterfly_name

As you encounter the different types you’ll encounter the other sigils. The @ is for
positionals (Chapter 6), the % is for associatives (Chapter 9), and the & is for callables
(Chapter 11).

The first time you use a variable you must declare it. You do this so the compiler
knows you definitely want to use that name and to avoid problems with misspelling
variables. The my keyword declares the variable to be private to the current scope:

my $number;

The next time you use $number in that same scope you don’t need to declare it. You
probably want to assign it a value. The = is the assignment operator:

12 | Chapter 1: Introduction

$number = 137;

You initialize a variable first time you assign a value to it. You can do this at the same
time that you declare it:

my $number = 137;

Since Perl 6 already knows which variables you intend to use it knows when you mis‐
spell one:

$numbear = 137;

You get an error that’s often aware enough to guess what you meant:

Variable '$numbear' is not declared. Did you mean '$number'?

Simple Output
To see what’s in a variable you can use (or “call”) the put routine. This outputs the
value to standard output and adds a newline to the end:

put $number;

If you use say it calls the .gist method for you. This often results in the same output,
but some complicated objects may summarize or elide data to give you something
easier to read. These two do the same thing:

say $number;
put $number.gist;

If you don’t want to add a newline you can use print:

print $number;

There are also method forms of each of these:

$number.put;
$number.say;
$number.print;

Lexical Scope
A variable is only visible in its lexical scope. If you define a variable inside braces you
can’t use it outside the braces:

{
my $number = 137;
}

$number = 5; # a compilation error

This is caught when you try to compile the program:

Variable '$number' is not declared

Variables | 13

A variable of the same name can exist in the outer scope and isn’t disturbed when the
same name is reused in a deeper scope:

my $number = 5;
put $number;

{
my $number = 137;
put $number;
}

put $number;

These are two different variables that happen to use the same name. The compiler can
tell them apart based on where you declared them. The inner scope declaration
“hides” the outer scope one, so the result is:

5
137
5

Sometimes a named value doesn’t have a sigil. These sigilless variables don’t create
containers, which means that you can’t change their values. This makes them handy
for values you don’t want anyone to accidentally change. Prefix the identifier with a \:

my \magic-number = 42;
magic-number.put;

These statements actually create terms, but since you declare them like variables it’s
slightly easier to be a little wrong than pedantically correct.

Predefined Variables
Perl 6 defines several variables for you. These are prefixed with a sigil and then an
additional character called a twigil. The combination of characters tells you some‐
thing about the variable. Don’t worry about all the sorts of twigils that exist. Know
that they do exist and that you can read about them at https://docs.perl6.org/language/
variables or with p6doc:

% p6doc language/variables

The ? twigil marks values that the compiler sets as it does its work. These are compile-
time variables. If you want to know the file the compiler is working on you can look
in $?FILE. The $ is the sigil and the ? is the twigil:

put $?FILE;

The * twigil marks dynamic variables. These are looked up through the caller’s scope,
but that’s not the important part for this section. Your program automatically sets
these values. Some of them are about the environment of the program:

14 | Chapter 1: Introduction

https://doc.perl6.org/language/variables
https://doc.perl6.org/language/variables

% perl6
To exit type 'exit' or '^D'
> $*EXECUTABLE
"/Applications/Rakudo/bin/perl6".IO
> $*PROGRAM
"interactive".IO
> $*USER
hamadryas
> $*CWD
"/Users/hamadryas".IO

Others provide information about your version of Perl 6. This information might be
useful if you need to report an issue:

> $*PERL
Perl 6 (6.c)
> $*VM
moar (2018.04)

There are other dynamic variables for the standard filehandles. Each program gets
output, input, and error filehandles. The standard output (the default place where
output goes) is in $*OUT and standard error is in $*ERR. These are IO::Handle objects
and you can call .put on them to make output:

$*OUT.put: 'Hello Hamadryas!';
$*ERR.put: 'Hello Hamadryas!';

Exercise 1.2
What is the $*CWD variable? What’s its value on your system?

Making and Running a Program
It’s time you wrote a program. That’s just a plain-text file that contains your source
code. You don’t need any special software to create these files. They must be plain text
though; word processors insert extra stuff and the compiler won’t tolerate that.

The first line in the program is typically the shebang line. That’s a Unix thing that lets
a text file pretend to be a program. When you “run” the text file the system sees that
the first two characters are #!. It uses the rest of that line as the name of the program
that will actually run the code. That’s the interpreter:

#!/Applications/Rakudo/bin/perl6

Your package (or custom installation) may have installed it somewhere else, in which
case you’d use that path:

#!/usr/local/bin/perl6

Making and Running a Program | 15

Some people use env since that looks through your PATH to find the program:

#!/bin/env perl6

Windows doesn’t know about shebangs, but it’s a good idea to include the shebang
anyway since useful programs tend to escape into the world (life will find a way). For
the rest of the book I’ll leave off the shebang line just to save space.

The rest of your file is your program. Here’s a common one that tests that you’ve
probably done everything right. If you can run this program you’ve probably installed
everything correctly:

put 'Hello World!';

Ensure your editor is set to encode your file as UTF-8. Save the file using any name
that you like. perl6 doesn’t care about the name, although the docs suggest a .p6
or .pl6 extension.

Run your program from the command line:

% perl6 hello-world.p6

When you do this perl6 first compiles the program. It sees all of your program text
and parses it. That’s the compile time part of the process. If it finds no problem it then
runs what it has already compiled.

If you want to check your program without running it you can use the -c switch. This
is a syntax check:

% perl6 -c hello-world.p6

Most errors at this point are syntax errors; you wrote a program that Perl 6 couldn’t
parse.

Exercise 1.3
Create the “Hello World” program and get it to run. Use any tools you like for that.

Summary
You’ve seen the basic structure of a program and how you build up a program from
smaller elements. You wrote some very small programs. You have some insights into
the documentation; you’ll get more practice with that throughout your programming
career. Now the trick is to make slightly larger programs.

16 | Chapter 1: Introduction

CHAPTER 2

Number Guessing

You’re about to be thrown in the deep end. There are some basic things you need to
know to write useful programs, and you’ll meet a lot of them in this chapter so you
can write a number-guessing program by the end. It’s quite a bit to take in all at once
but it should make the rest of the chapters more interesting.

Binding and Assignment
You read a little about variables in Chapter 1. To store a value in a variable you assign
to it. The item assignment operator, =, stores a single thingy for you. $number is a
scalar variable; it can store exactly one thingy. This is item assignment because there’s
one thingy. This “sets” the value:

my $number = 2;

If you decide that you don’t want that value you can replace it:

$number = 3;

Sometimes you want a value that you can’t change (more likely a value you don’t want
another part of your program to change). Instead of the assignment operator you can
use the binding operator, :=, to set the value:

my $sides-of-a-square := 4;
$sides-of-a-square = 5

When you try to change the value you get an error:

Cannot assign to an immutable value

It’s not the binding operator that makes the variable immutable. It merely makes the
thingy on the left the same as the one on the right. In this case, $sides-of-square is

17

actually 4 and not just a variable that happens to store 4. You can’t assign to 4, so you
can’t assign to $sides-of-a-square.

If you first assign to a scalar variable then bind to that variable you end up with two
names for the same variable:

my $number = 3;
my $sides := $number;

You can change $sides or $number, and the “other” will change. But there is no
“other” to change because they are the same thing! You might think of these as aliases,
but it’s a bit more complicated.

There’s an important concept here that you should learn early. A variable assignment
with = creates a container, then puts a value in that container. A container is just a box
that can store a value. You can add, remove, and replace the value in that box. This is
mostly invisible to you because the language handles it for you.

The binding operator skips this containerization. It aliases the thingy on the right side
directly. If it’s already a container that’s what you bind to. You can break down the
action of assignment into two steps. First you bind to an anonymous container. That’s
right: a container can exist without a name. An anonymous container is just the $
sigil:

my $number := $;

After that you can change the value in the container using =:

$number = 3;

Sometimes you’ll need to know if the thingy you have is a container, and there will be
times you’ll want to skip the container. Start thinking about this early, before you
develop bad habits, and your programming life will be easier.

A MAIN Program
In Chapter 1 you saw some examples of statements. This is a complete program:

put 'Hello Perl 6!';

If you’ve programmed in some other languages you may have encountered a subrou‐
tine called main or something similar. Those languages probably required you to put
your program inside that routine; when you ran your program it automatically ran
that subroutine for you. Perl 6 is a little different because it assumes that your entire
file is already that main.

You can still have such a subroutine though. If you define a MAIN subroutine (all
caps!) your program will call that automatically if you run the program:

18 | Chapter 2: Number Guessing

sub MAIN {
 put 'Hello Perl 6!'
 }

You won’t read about subroutines until Chapter 11, so trust me for a bit on this one.
You’ll read more of an explanation of MAIN as you go through the book.

Exercise 2.1
Create both versions of the “Hello Perl 6” program. The one-line version and MAIN
version should give you the same output.

Program Arguments
You probably have seen other command-line programs that take arguments. The file‐
names you give to more or type are arguments that tell those programs which file’s
contents you want to see:

% more hello-world.p6

C:\ type hello-world.p6

Your Perl 6 program can take arguments too. When you try it with your existing pro‐
gram you get a help message instead of the output that you expected:

% perl6 hello-world-main.p6 1 2 3
Usage:
 hello-world-main.p6

To accept arguments you have to tell MAIN to expect them. Your program had an
implicit set of empty parentheses in it. Those parentheses define the parameters,
which are the templates for the arguments. Arguments are what you get; parameters
are what you wanted. In this case you didn’t specify any parameters, so your program
expects no arguments and complains if you try to give it some:

sub MAIN () {
 put 'Hello Perl 6!'
 }

You can change this. You can specify a variable in the parameter list. One parameter
allows your MAIN subroutine to take exactly one argument. Change your put state‐
ment to output the value in $thingy by defining a signature after the subroutine
name:

sub MAIN ($thingy) {
 put $thingy;
 }

A MAIN Program | 19

When you run this program with no command-line arguments you get a different
help message. You needed one argument and gave it none. Curiously, the help mes‐
sage tells you the name of the variable you used in the parameter:

% perl6 main-one-thingy.p6
Usage:
 main-one-thingy.p6 <thingy>

% perl6 main-one-thingy.p6 Hello
Hello

Quote the entire value or escape the whitespace (Unix shells only) to preserve white‐
space inside a value you want to give to the thingy:

% perl6 main-one-thingy.p6 "Hello Perl 6"
Hello Perl 6

% perl6 main-one-thingy.p6 Hello\ Perl\ 6
Hello Perl 6

You can specify more than one parameter by separating them with commas. You can
also output multiple things in a single put by separating them with commas:

sub MAIN ($thingy1, $thingy2) {
 put '1: ', $thingy1;
 put '2: ', $thingy1;
 }

Now you have to give your program two arguments. If you don’t give it exactly two
arguments it doesn’t work:

% perl6 main-two-thingys.p6 Hamadryas
Usage:
 main-two-thingys.p6 <thingy1> <thingy2>

% perl6 main-two-thingys.p6 Hamadryas perlicus
1: Hamadryas
2: perlicus

Hamadryas perlicus is the (un)scientific name I’ve given to the but‐
terfly on the cover. Sometimes I call him “Hama” for short because
it rhymes with “llama.”

Sometimes you don’t want to specify two arguments even though you need two val‐
ues. You can specify a default value for some parameters. Use the = to specify the
default:

sub MAIN ($thingy1, $thingy2 = 'perlicus') {
 put '1: ', $thingy1;

20 | Chapter 2: Number Guessing

 put '2: ', $thingy2;
 }

When you call it with two arguments it works as before, but when you specify exactly
one argument it uses the default for the second:

% perl6 main-two-thingys-default.p6 Hamadryas februa
1: Hamadryas
2: februa

% perl6 main-two-thingys-default.p6 Hamadryas
1: Hamadryas
2: perlicus

Any parameters with defaults have to show up after those without them. You’ll see
much more about parameters in Chapter 11.

Exercise 2.2
Create a program that takes three command-line arguments and outputs them on
separate, numbered lines. Give two of the parameters default values.

Prompting for Values
The prompt routine outputs a message asking for input. When you type some text fol‐
lowed by Return prompt reads that text and returns it. You can assign that value to a
variable:

my $answer = prompt 'What is your favorite number? ';
put 'Your answer was [', $answer, ']';

When you run the program you see the prompt and start typing right after it on the
same line:

% perl6 prompt.p6
What is your favorite number? 137
Your answer was [137]

The value you get back from prompt does not include the line ending from Return.

Exercise 2.3
Write a program that asks for your name and then outputs a greeting to that name. If
your name is Gilligan it should output “Hello Gilligan.” Can you use a MAIN subrou‐
tine and only prompt if there’s no command-line argument?

A MAIN Program | 21

Literal Numbers
Literal values are those that you type directly into the program. They are fixed and are
sometimes called “hardcoded” values because they exist directly in the program
instead of coming from input or configuration. These are terms, and you can write
them in several ways.

An integer is a whole number. These are the numbers of everyday life expressed with
the digits from 0 to 9:

137
4
-19
0

Digital computers are more comfortable with powers of two. Prefix a literal number
with 0x to specify a hexadecimal number. That’s base 16 and uses the digits 0 to 9 and
the letters A to F (in either case) to represent 0 to 15:

0x89
0xBEEF
-0x20

Octal numbers are base 8 and use the digits 0 to 7. Prefix a literal octal number with
0o:

0o211
-0o177

Binary numbers are base 2 and use the digits 0 and 1. These are handy when you deal
with binary formats. Prefix them with 0b:

0b10001001

Choose a representation that’s easy for you to understand or that’s natural for the task.
The compiler converts those representations into values that the physical computer
can use. It doesn’t care which one you use; they are just numbers. These are all the
same value:

137 # decimal, base 10
0b10001001 # binary, base 2
0o211 # octal, base 8
0x89 # hexadecimal, base 16

Exercise 2.4
In the REPL try the different base examples. What decimal value does the REPL echo?

22 | Chapter 2: Number Guessing

Perhaps you don’t like the ASCII digits 0 to 9. You can use any digits that Unicode
supports; Perl 6 knows about anything that’s a number character. Eastern Arabic
numerals work. Notice that the radix prefixes are the same:

١٣٧
0b١٠٠٠١٠٠١
0o٢١١
0x٨٩

So do Bengali digits:

১৩৭
0b১০০০১০০১
0o২১১
0x৮৯

I don’t encourage you to represent numbers like this in your program, but Perl 6
understands them. This is useful when you are processing text that contains them.
Your program will be able to convert these to a number type.

You can choose other bases up to base 36. You’ve already seen base 16, which uses 0 to
9 and A to F. Base 17 would add G, and so on up to base 36, which includes Z. Use a
colon before the base (in decimal), then put the digits inside angle brackets:

:7<254>
:19<IG88>
:26<HAL9000>
:36<THX1138>

Exercise 2.5
Try the unusual base examples in the REPL. What decimal numbers are they?

Formatting Numbers
Literal numbers are objects. You can call methods on objects. The .base method
allows you to specify the base that you want to represent:

put 0x89.base: 10; # 137

You can choose some other base, up to 36:

put 0x89.base: 2; # 10001001
put 0x89.base: 8; # 211
put 0x89.base: 16; # 89

Literal Numbers | 23

Exercise 2.6
Write a program that takes a decimal number as its single command-line argument.
Output its binary, octal, decimal, and hexadecimal values. What happens if you give it
a hexadecimal number on the command line? What if you specify the decimal num‐
ber in Eastern Arabic digits?

In the previous exercise you couldn’t specify a hexadecimal number as an argument.
That’s because you weren’t actually specifying a number as an argument. It was text
made up of digit characters. If you want to use a hexadecimal number you have to tell
your program how to convert the number. You can use .parse-base for that. You tell
it which base you expect and it does the rest:

my $number = $thingy.parse-base: 16;

Exercise 2.7
Modify your answer from the previous exercise to accept a hexadecimal number
command-line argument. Your program will now only handle hexadecimal numbers
if you’re using only what you’ve seen so far.

Numeric Operations
Numeric operators transform numbers into new values. The simplest demonstration
is to immediately output the result. The + is the addition operator:

put 2 + 2;

You can also store the result in a variable and then output it. The item assignment is
an operation and so is the addition. The + happens first because it has higher prece‐
dence:

my $sum = 2 + 2;
put $sum;

There are operators for subtraction (-), multiplication (*), division (/), and exponen‐
tiation (**). You’ll see more in the next chapter.

Outputting a single number is easy. If you want to output a series of numbers, you
could have multiple lines:

my $sum = 0;
put $sum + 1;
put $sum + 1 + 1;
put $sum + 1 + 1 + 1;

24 | Chapter 2: Number Guessing

Each time you add one more to it. That repeats a lot of structure. You can back up a
little to make an improvement where the put statement is the same in each case:

my $sum = 0;

$sum = $sum + 1;
put $sum;

$sum = $sum + 1;
put $sum;

$sum = $sum + 1;
put $sum;

The $sum variable shows up on the left and right of the assignment. That’s okay; the
compiler’s not going to get confused. It evaluates everything on the right side using
the current value of $sum. When it’s reduced the right side to its value it assigns that
to $sum, replacing the value that’s already there. You’re still doing the same thing over
and over again, but now that same thing looks exactly like the other things.

Now it’s time to introduce loop. It repeatedly executes the code inside its braces. This
code will run until you interrupt the program (probably with Control-C):

my $sum = 0;
loop {
 $sum = $sum + 1;
 put $sum;
 }

You can combine the two statements inside loop. The result of an assignment is the
value that you assigned. Here, you add to $sum then assign that result back to $sum,
and use that expression as the value you give to put:

my $sum = 0;
loop {
 put $sum = $sum + 1;
 }

This sort of structure is so common that it has its own operator: the ++ unary prefix
autoincrement operator. It adds one before you use the value:

my $sum = 0;
loop {
 put ++$sum;
 }

There’s also a unary postfix version. It adds one to the value, but after you use it:

my $sum = 0;
loop {
 put $sum++;
 }

Numeric Operations | 25

Exercise 2.8
What’s the difference in output in the two programs that use the prefix and postfix
autoincrement operators? Can you figure it out without running the programs?

So far you’ve declared variables with my. That limits their definition to the current
scope. That’s a problem for variables you want in a loop if they should keep their val‐
ues. This wouldn’t work because each time through the loop would get a new variable
even though you used the same name:

loop {
 my $sum = 0;
 put $sum++;
 }

Declare the variable with state instead: this makes the variable private to the block
but doesn’t reset it each time through it. A state declaration only executes the first
time through the block and is ignored after that. The assignment to $sum happens
once:

loop {
 state $sum = 0;
 put $sum++;
 }

This is a bit nicer because everything about $sum is contained inside the block.
Always try to give variables the smallest scope they need. If they don’t need to be out‐
side the block define them inside it.

Those operators add or subtract one. If you want to increment by a different number
you’re back to using +:

loop {
 state $sum = 0;
 put $sum = $sum + 2;
 }

That’s still one too many $sums in that code. There’s a special form of the assignment
operator that lets you shorten this. You can put the infix operator before the =, like
this:

$sum += 2;

This convenient shorthand is binary assignment. It’s the same as using the variable on
both sides of the = but it’s easier to type:

$sum = $sum + 2;

26 | Chapter 2: Number Guessing

Most binary operators can do this, even if they are multiple characters:

$product *= 5;
$quotient /= 2;
$is-divisible %%= 3;

Exercise 2.9
Rewrite the looping program to output only multiples of three by adding the appro‐
priate interval to the previous value. Further modify the program to accept the multi‐
ple as a command-line argument.

Conditional Execution
This chapter has been working its way to a number-guessing program. You know a
little bit about numbers, command-line arguments, prompting, and looping. Next
you need to know how to decide between two or more paths in your code. That
comes in two parts: comparing things to get an answer and using that answer to select
the next thing to do.

Boolean Values
Boolean values are logical values that can be one thing or the other: yes or no, on or
off, or True or False. These are of type Bool. You’ll use these values to decide
between different paths in your program. First, a little Boolean math.

You can combine Boolean values with logical operators. The && logical AND operator
evaluates to True if both operands are True. The || logical OR operator evaluates to
True if one or more operators are True:

% perl6
> True && True
True
> True && False
False
> True || True
True
> True || False
True

All of these operators have spelled out “word” versions. These are the lowest-
precedence operators (aside from the sequence operators). These operations always
happen last:

Conditional Execution | 27

https://docs.perl6.org/type/Bool.html

% perl6
> True and True
True
> True and False
False
> True or False
True

The ! unary prefix operator changes one Bool value to the other one: True becomes
False, and the other way around. This is called negating the condition. not is the low-
precedence version of that:

% perl6
> ! True
False
> ! False
True
> not True
False
> not False
True

Many objects can collapse themselves to a Bool value when needed, but it’s up to each
object how it does that. For numbers, 0 is False and everything else is True.

For most objects (not just numbers) you can use a prefix ? to coerce into either True
or False. It calls the .Bool method on the object. The builtin types know how to con‐
vert their values to Booleans using whatever rule they decide. For numbers, 0 is False
and everything else is True:

% perl6
> ?1
True
> ?0
False
> ?-1
True
> 1.Bool
True
> 0.Bool
False
> (-1).Bool
True

The .so method and so routine do the same thing:

> 1.so
True
> 0.so
False
> (-1).so
True

28 | Chapter 2: Number Guessing

https://docs.perl6.org/type/Bool.html
https://docs.perl6.org/type/Bool.html

> so 0
False
> so 1
True

Type objects know what they are but they have no concrete value. They are always
False:

% perl6
> Int.so
False

Some things that want Boolean values will implicitly do these coercions for you.

Short-circuit operators

The logical operators don’t really evaluate to Boolean values. && and || test their
expressions for True or False, but the entire structure evaluates to the last expression
it evaluated.

|| needs only one expression to be True for the entire thing to be True. If it gets back
anything that’s True, then the entire thing is True. All of these are False, but you can
see the last expression || evaluated:

% perl6
> 0 || Nil
Nil
> 0 || False
False
> 0 || Failure
(Failure)

These are True. When || finds any value that would evaluate to True as a Boolean it
stops right away. These are sometimes called short-circuit operators:

% perl6
> True || 0
True
> 137 || True
137

It’s the same with &&. It returns the last expression it evaluated. If that value is False
then one of those expressions was False:

% perl6
> 0 && 137
0
> 42 && 8
8

There’s a third operator that’s similar. The defined-or operator, //, tests its left side for
definedness. If the left value is defined that’s the result, even if that value is False:

Conditional Execution | 29

% perl6
> 0 // 137
0
> Nil // 19
19

A type object is never defined:

% perl6
> Int // 7
7

The defined-or is part of a common technique to set a value if a variable doesn’t
already have one (or has one that is not defined). You’ll see it as a binary assignment:

$value //= 137;

Comparing Things
A comparator evaluates to True or False based on some relative measure. The
numeric equality operator, ==, compares two numbers to test if they are exactly the
same. If they are the same it evaluates to True; otherwise it evaluates to False:

% perl6
> 1 == 1
True
> 1 == 3
False

The numeric inequality operator != tests that two numbers are not the same:

% perl6
> 1 != 1
False
> 1 != 3
True

Some operators have two versions. You just saw the “ASCII” version, but there’s also a
“fancy” Unicode version with ≠:

% perl6
> 1 ≠ 3
True

Instead of a literal value you can compare a variable. It doesn’t matter which side you
put the values on:

% perl6
> my $number = 37
37
> $number == 38
False
> 39 == $number
False

30 | Chapter 2: Number Guessing

> $number == 37
True

You can have an expression on either side of the comparator or variables on both
sides:

% perl6
> 2 + 2 == 4
True
> 5 == 2
False
> my $thing1 = 17
17
> my $thing2 = 13
13
> $thing1 == $thing2
False
> $thing1 != $thing2
True

The > tests that the first operand is numerically greater than the second number and
the < tests that the first is less than the second:

% perl6
> 1 > 3
False
> 1 < 3
True
> 3 < 3
False

With an equals sign the test can include the number. >= tests that the first number is
numerically equal to or greater than the second, and <= tests that it is less than or
equal:

% perl6
> 3 < 3
False
> 3 <= 3
True
> 7 > 7
False
> 7 >= 7
True

You can also write these with fancier symbols: >= as ≥ and <= as ≤.

Although not a comparator, the %% operator also returns a Boolean. It tests if the
number on the left side is evenly divisible by the number on the right side. This is
quite handy:

% perl6
> 10 %% 2

Conditional Execution | 31

True
> 10 %% 3
False

Chained comparisons
You can chain comparison operators. You can test that a number is inside or outside
of a window (remember the > at the start of the input lines is the REPL prompt) like
this:

% perl6
> $n = 10
10
> 7 < $n < 15
True
> 7 <= $n < 15
True
> 7 < $n > 15
False
> 7 > $n < 15
False

Without this you’d have to perform additional and separate comparisons:

> 7 < $n and $n < 15
True

Conditionally running a statement

The if keyword allows you to evaluate a statement only when some condition is satis‐
fied. The postfix form is the easiest. The part after the if is the condition; it evaluates
to True or False:

my $number = 10;
put 'The number is even' if $number %% 2;

The condition is satisfied when it evaluates to True. “Satisfaction” is getting what you
want; the if wants (roughly) its condition to be True before it allows the statement to
run. If the condition is False the program skips that statement.

The if condition is a Boolean context; it calls .Bool for you when you don’t do it
explicitly. All of these are the same, but you’ll probably do the last one:

put 'Always outputs' if 1.Bool;
put 'Always outputs' if 1.so;
put 'Always outputs' if ?1;
put 'Always outputs' if 1;

With this you can improve your looping program. Previously you had no way to stop
it. The last keyword immediately leaves the loop:

32 | Chapter 2: Number Guessing

loop {
 state $sum = 0;
 put $sum++;
 last;
 }

This outputs one line then finishes the loop. That’s what last said to do, but that’s not
very useful. This version evaluates last only when $sum is 5:

loop {
 state $sum = 0;
 put $sum++;
 last if $sum == 5;
 }

Exercise 2.10
What is the output of this program? Can you work it out without running the pro‐
gram?

The next command is similar to last, but it goes on to the next iteration of the loop.
You can use a postfix if to skip numbers that are divisible by two (when more than
one thingy is using a variable in a condition it’s probably better to change it in a sepa‐
rate step):

loop {
 state $sum = 0;
 $sum += 1;
 next if $sum %% 2;
 put $sum;
 last if $sum > 5;
 }

Now you get the odd numbers:

1
3
5
7

Conditional Branching
You can also write if in a block form. The code inside the block runs only when the
if is satisfied:

if $number %% 2 {
 put 'The number is even';
 }

Conditional Execution | 33

You can use parentheses for grouping if you like but they can’t be immediately next to
the if; there must be some whitespace:

if ($number %% 2) {
 put 'The number is even';
 }

With no space between the if and the (it looks like a subroutine call, which it isn’t.
This is a syntax error:

if($number %% 2) { # ERROR!
 put 'The number is even';
 }

An unless is the opposite sense of if. It executes its block when the condition is
False. Another way to think about that is that it skips the block when the condition is
True:

unless $number %% 2 {
 put 'The number is odd';
 }

Some people prefer an if with a negated condition:

if ! $number %% 2 {
 put 'The number is odd';
 }

An else allows you to provide a default block to run when the if is not satisfied:

if $number %% 2 {
 put 'The number is even';
 }
else {
 put 'The number is odd';
 }

These different possibilities are branches of your code. You go down one or the other
branch but not both. This is one example of a control structure that decides which
code runs.

The entire if structure evaluates to a value when you put a do in front of it. The do
allows you to treat a control structure as an expression. The result is the last evaluated
expression from inside the structure. This way you can isolate only the parts that are
different, then use one statement for output:

my $type = do if $number %% 2 { 'even' }
 else { 'odd' }

put 'The number is ', $type;

You can skip the intermediate variable (although if that’s confusing it’s okay to do it
the longer way):

34 | Chapter 2: Number Guessing

put 'The number is ',
 do if $number %% 2 { 'even' }
 else { 'odd' }

There’s a shortcut for this. The conditional operator has three parts: the condition,
the True branch, and the False branch. Between those parts are ?? and !!:

CONDITION ?? TRUE BRANCH !! FALSE BRANCH

Using this operator you can rewrite the preceding example. The particular formatting
isn’t important, but this fits nicely on the page and lines up the different parts. You
don’t use a block, which makes this useful for short bits of code:

put 'The number is ',
 $number %% 2 ?? 'even' !! 'odd';

An elsif specifies another branch with its own condition, so you have three ways
this code might run. Some people think zero is neither odd nor even, and they can
add another branch for that:

if $number == 0 {
 put 'The number is zero';
 }
elsif $number %% 2 {
 put 'The number is even';
 }
else {
 put 'The number is odd';
 }

This code works, but it has some repeated structure because each branch has a put. A
do cleans that up nicely. Here’s another way to write that:

put 'The number is ', do
 if $number == 0 { 'zero' }
 elsif $number %% 2 { 'even' }
 else { 'odd' }

Exercise 2.11
Create a program that outputs the numbers from 1 to 100. However, if the number is
a multiple of three, output “Fizz” instead of the number. If it’s a multiple of five, out‐
put “Buzz”. If it’s a multiple of both three and five, output “FizzBuzz”.

Putting It All Together
With a few more things you can now write the number-guessing program. The .rand
method returns a fractional number between 0 and the integer (exclusively):

Putting It All Together | 35

% perl6
> 100.rand
62.549491627582

The .Int method coerces that to a whole number. It discards the fractional portion; it
does not round the number. Put that together with .rand and you get a whole num‐
ber between 0 and the starting number:

% perl6
> 100.rand.Int
23

Put that together in a complete program. Choose the number, then test what side of
another number (sometimes called the “pivot”) it’s on:

my $number = 100.rand.Int;

if $number > 50 {
 put 'The number is greater than 50';
 }
elsif $number < 50 {
 put 'The number is less than 50';
 }
else {
 put 'The number is 50';
 }

Run that several times and you should get different output eventually:

% perl6 random.p6
The number is less than 50
% perl6 random.p6
The number is less than 50
% perl6 random.p6
The number is greater than 50

Exercise 2.12
Wrap the pivot program in a MAIN subroutine so you can specify the highest possible
number as a command-line argument. Default to 100 if you don’t supply an argu‐
ment. Adjust that so the program can take another command-line argument to spec‐
ify the pivot number.

In the previous exercise you set the default for the second argument using a hard-
coded literal integer:

sub MAIN ($highest = 100, $pivot = 50) { ... }

If you run the program with one command-line argument that is less than 50 (or
whatever you chose as your default) the output will always be the same:

36 | Chapter 2: Number Guessing

% perl6 number-program.p6 37
The number is less than 50

You can use parameters you’ve already specified to compute defaults for other param‐
eters. Use $highest to compute $pivot:

sub MAIN ($highest = 100, $pivot = $highest / 2) {

Exercise 2.13
Modify your answer to the previous exercise so you can set the pivot to half the high‐
est value. Default to 50 if you don’t specify two arguments.

Now you have everything you need to write your number-guessing program. Your
program chooses a secret number that you then have to figure out. This early in the
book that seems like a complicated program, but you’ve seen just enough to make it:

• Choose a secret number (.rand).
• Loop repeatedly until the person guesses the number (next and last).
• Get the person’s guess (prompt).
• Give the person a hint about their guess. Tell them if they are too high or low

(comparators, if).

Exercise 2.14
Implement the number-guessing program. If you supply a command-line argument
use that as the maximum number; otherwise use 100. It may help to immediately out‐
put the secret number as you get your program working.

Summary
You made it! First chapters are typically the toughest because you’re getting your
bearings. You’ve made at least one meaty program that incorporates several things
that you haven’t seen in depth yet. You can take input from the command line or
from a prompt. You can compare values and follow different code branches. Not bad
for a first chapter.

Summary | 37

CHAPTER 3

Numbers

This chapter steps back from the breadth of the previous chapter to focus on the idea
of numbers and their representation in your programs. Perl 6 supports several types
of numbers and works hard to keep them exact as long as it can.

Number Types
Not all numbers are created alike. You’ve seen whole numbers, how to do basic math‐
ematical operations on them, and how to compare them. But whole numbers are just
one of the numeric types. You can see what type a number is by calling .^name on it:

% perl6
> 137.^name
Int

That’s an Int, short for “integer”—whole numbers, positive or negative, and zero. The
compiler recognizes it because it has decimal digits; it parses it and creates the object
for you. But try it with a negative number:

% perl6
> -137.^name
Cannot convert string to number

The minus sign isn’t actually part of the number. It’s an operator (a unary prefix one)
that negates the positive number. That means that -137 isn’t a term; it’s an expression.
The .^name happens first and evaluates to Int as before. When - tries to negate the
type name it realizes it can’t do that and complains. You can fix the ordering problem
with parentheses—things inside parentheses happen before those outside:

% perl6
> (-137).^name

There are other types of numbers, some of which are shown in Table 3-1.

39

https://docs.perl6.org/type/Int.html

Table 3-1. Examples of different number types

Value Class Description
137 Int Positive integer (whole number)
-17 Int Negative integer (whole number)
3.1415926 Rat Fractional number
6.026e34 Num Scientific notation
0+i Complex Complex number with real and imaginary parts

Exercise 3.1
Call .^name on some of the other kinds of numbers from Table 3-1. What other sorts
of numbers does Perl 6 support? Which ones need parentheses to group them?

Integers
The integers are the whole numbers. You’ve seen that they can be represented in
many ways and in different bases:

137
-19
0x89
:7<254>

Including underscores between digits can make larger numbers easier to read. They
aren’t part of the number and can only come between digits (so, not two in a row).
You could separate by thousands:

123_456_789

Two hexadecimal digits represent an octet; it’s easy to see those when you have under‐
scores between pairs of digits:

0x89_AB_CD_EF

Type Constraints
When you declare a variable without assigning to it there’s still “something” there. It’s
a type object with the type Any—a generic type that’s the basis for most Perl 6 objects:

my $number;
put $number.^name; # Any

If you coerce Any to a Boolean value you get False. Any type object is undefined, but
this is slightly more undefined because it’s a general class.

40 | Chapter 3: Numbers

https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Rat.html
https://docs.perl6.org/type/Num.html
https://docs.perl6.org/type/Complex.html
https://docs.perl6.org/type/Any.html
https://docs.perl6.org/type/Any.html

When you want to assign to a container that holds a type object you have to replace it
with a value of the same type or something based on that type. You can replace Any
with almost any literal value:

my $number; # starts as Any
$number = 137;
$number = 'Hamadryas';

That’s the same as explicitly constraining the value to the Any type. Without an
assignment the variable gets the type object of its constraint:

my Any $number; # starts as Any
$number = 137;
$number = 'Hamadryas';

You can be as specific as you like. If your variable should only store an integer you
can use the Int type to constrain it even before you assign to it. Even without a value
it knows its type:

my Int $number;
put $number2.^name; # Int

Whatever you assign to it must be an Int (or something derived from an Int):

my Int $number;
$number = 137;
$number = 'Hamadryas'; # NOPE! Error

When you try to assign something that is not the correct type you get an error:

Type check failed in assignment to $n; expected Int but got Str

This check happens when you assign to the variable. Perl 6 calls this “gradual typing.”
You don’t have to use it until you want it, but you still have to be careful to obey it
when you do use it. The compiler can’t catch all type errors before you run the pro‐
gram.

You can use types in your MAIN signature too. These types apply to the command-line
arguments. If you don’t supply appropriate values you’ll get an error right away:

sub MAIN (Int $n) { ... }

Exercise 3.2
Create a program that takes two arguments from the command line and outputs their
types. Try it with numbers and text in each position. What types do you get?

When you ran your program for the previous exercise you saw the type name IntStr.
This is an allomorph—a type that’s both an Int and a Str at the same time.

Integers | 41

https://docs.perl6.org/type/Any.html
https://docs.perl6.org/type/Any.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Str.html

All of the command-line arguments are actually text, even though some of them look
like numbers. There’s a hidden val routine that inspects the arguments and turns
those that look like some sort of number into the appropriate allomorph. This type
has the behavior of both numbers and strings at the same time. You might think that’s
a little weird at first, but it’s one of the things that allows a language such as Perl 6 to
easily process text.

Smart Matching
The smart match operator, ~~, stands in for many sorts of comparisons and picks the
right one for its operands. With a value or variable on the left side and a type on the
right side it returns True if the value is that type or derives from that type:

% perl6
> 1 ~~ Int
True
> 1.^mro
((Int) (Cool) (Any) (Mu))
> 1 ~~ Cool
True
> 1 ~~ Any
True

This works because literals are implicitly created objects and know what they are.
Comparing it to any other type returns False even if the value could be a valid value
for that type:

% perl6
> 1 ~~ Complex
False

However, you can easily convert between number types with a coercer method
named after the type you want (if the type provides one):

% perl6
To exit type 'exit' or '^D'
> 1.Complex
1+0i
> 1.Complex ~~ Complex
True

Smart matching is easy with given-when. Two things happen with this feature. First,
given binds $_ to the value of the variable you specify. The $_ is the topic; this allows
you to write some code that uses $_ to process the current thing you care about
without knowing what that thing is.

Second, when looks at the condition you supply. If there’s no explicit comparator it
smart matches $_ against the value you gave it. The first when block that is satisfied is
the one that wins. A default block (no condition!) catches it when no when does.

42 | Chapter 3: Numbers

The conditions for these whens are type objects to smart match against $_:

given $some-number {
 when Int { put 'Saw an integer' }
 when Complex { put 'Saw a complex number' }
 when Rat { put 'Eek! Saw a rat!' }
 default { put 'Saw something' }
 }

Making everything explicit, you’d get something like this mess of repeated typing:

given $some-number -> $_ {
 when $_ ~~ Int { put 'Saw an integer' }
 when $_ ~~ Complex { put 'Saw a complex number' }
 when $_ ~~ Rat { put 'Eek! Saw a rat!' }
 default { put 'Saw something' }
 }

You can make this shorter using do in the same way you did with if. The last evalu‐
ated expression becomes the value of the entire given structure:

put 'Saw ', do given $some-number {
 when Int { 'an integer' }
 when Complex { 'a complex number' }
 when Rat { 'a rat! Eek!' }
 default { 'something' }
 }

Exercise 3.3
Using given, create a program that reports the type of number you specify on the
command line. Try it with arguments such as 17, 17.0, 17i, and Hamadryas.

There’s another interesting thing you can do with $_. A method call dot with no
object to the left uses $_ as the object:

$_.put;
.put;

put $_.roots unless $_.is-prime;
put .roots unless .is-prime;

You can use a postfix given to set $_ for a single statement to avoid typing out a vari‐
able multiple times. You’ll see the implicit topic much more as you go through the
book:

my $some-number = 19;
put .^name, ' ', .is-prime given $some-number;

Integers | 43

Rational Numbers
Perl 6 represents nonwhole numbers as fractions using integers. You might literally
represent it as a number with a decimal point (sometimes called a floating-point num‐
ber), but the compiler turns that into a fraction. You can see the numerator and
denominator for that reduced fraction:

% perl6
> 3.1415926
3.1415926
> 3.1415926.^name
Rat
> 3.1415926.numerator
15707963
> 3.1415926.denominator
5000000

Exercise 3.4
Create a program that takes a single decimal number command-line argument and
shows it to you as a fraction. What are the numerator and denominator?

You can add rational numbers to get another fraction; Perl 6 does the work for you:

% perl6
> 1/7 + 1/3
0.476190

The .perl method shows you how Perl 6 thinks about it. You can see the fraction
with the least common multiple in the denominator:

% perl6
> (1/7 + 1/3).perl
<10/21>

It didn’t divide the numbers then try to store the result as a floating-point number;
that would lose accuracy. It keeps it as an exact fraction as long as it can. This means
that these sums are exactly right.

Try this in your favorite programming language:

% perl6
> 0.1 + 0.2
0.3

Another way to define a Rat is to write it as a literal fraction inside angle brackets, <>:

% perl6
> <10/21>
0.476190

44 | Chapter 3: Numbers

https://docs.perl6.org/type/Rat.html

> <10/21>.^name
Rat
> <10/21>.perl
<10/21>

It’s the same in a program:

my $seventh = <1/7>;
my $third = <1/3>;

my $added = $seventh + $third;

put $added.perl;

You can’t do this with a variable inside the angle brackets. You’ll see what’s going on
in the next chapter, but inside the <> that’s not really a variable. The $ is a literal char‐
acter:

% perl6
> <1/$n>
1/$n

At some point the fractions will be too large and you’ll get an error. Here’s a program
that adds the reciprocals of the powers of two. It uses loop and uses ++ to make
higher powers of two:

my $n = 0;
my $sum = 0;
loop {
 $sum += 1 / 2**$n++;
 put .numerator, '/', .denominator, ' = ' given $sum;
 }

You get progressively larger fractions even though this series converges on 2. Eventu‐
ally it fails because the denominator is limited to a 64-bit integer size:

% perl6 converging.p6
1/1 = 1
3/2 = 1.5
7/4 = 1.75
15/8 = 1.875
31/16 = 1.9375
63/32 = 1.96875
...
4611686018427387903/2305843009213693952 = 2
9223372036854775807/4611686018427387904 = 2
18446744073709551615/9223372036854775808 = 2
No such method 'numerator' for invocant of type 'Num'.

There’s another class that can handle this. A FatRat is a fraction with an arbitrarily
large denominator. This is the first time you get to construct an object directly. Call
the .new method with the numerator and denominator:

Rational Numbers | 45

https://docs.perl6.org/type/FatRat.html

my $sum = FatRat.new: 0, 1;

If you have an existing Rat you can turn it into a FatRat with a method. You’d do that
when you know you are going to need it later when you do math with another
FatRat:

my $fatrat = <10/21>.FatRat;

When you need to add a FatRat to the existing one, you can construct that one in the
same way:

FatRat.new: 1, 2**$n++

Otherwise the program is the same, although this version will run much longer.
Notice that all the fractions need to be FatRats to keep it going:

my $n = 0;
my $sum = FatRat.new: 0, 1;
loop {
 $sum += FatRat.new: 1, 2**$n++;
 put $sum.^name;
 put .numerator, '/', .denominator, ' = ', $_ given $sum;
 }

Exercise 3.5
Create a program that sums the series of fractions 1, 1/2, 1/3, and so on. This is the
harmonic series. Calculate the partial sum up to a denominator of 100. Output the
value at each stage of the sum.

Imaginary and Complex Numbers
Imaginary numbers are multiples of the square root of –1. Impossible, you say? I’m
not going to explain that in this book but Perl 6 has them. If you’re an electrical engi‐
neer you’ve likely run into complex numbers when modeling certain properties.

Perl 6 has a term for the imaginary unit; it’s i. The number 5i is imaginary; it’s five
times the imaginary unit. Try it in the REPL:

% perl6
> 5i
0+5i
> 5*i
0+5i
> 5\i
0+5i
> 5\ i
0+5i

46 | Chapter 3: Numbers

https://docs.perl6.org/type/Rat.html
https://docs.perl6.org/type/FatRat.html
https://docs.perl6.org/type/FatRat.html
https://docs.perl6.org/type/FatRat.html
https://docs.perl6.org/type/FatRat.html

That was four ways to write the same thing. The first way puts two terms, 5 and i,
next to each other with no whitespace or separator. That works and is likely to be the
way you’ll type it most of the time. The second multiplies 5 and i to get the same
result. The last two use \ to create unspace. One has no space and the other has some
space.

You can’t have only whitespace between the digits and the i, or the compiler will
think that you have terms in a row (because you do):

% perl6
> 5 i
===SORRY!=== Error while compiling:
Two terms in a row
------> 5⏏ i

When you tried the imaginary number 5i in the REPL you got back 0 + 5i. That’s a
real number added to an imaginary number. Taken together they form a complex
number that has real and imaginary parts.

To get the real or imaginary parts of the number you can use the .re or .im methods,
which take their short names from the common math notation:

% perl6
> my $z = 137+9i;
137+9i
> $z.^name
Complex
> $z.re
137
> $z.im
9

You can add, subtract, and multiply Complex numbers. Multiplication involves cross
terms with the real part of one number multiplied by the imaginary part of the other:

% perl6
> (5+9i) * (6+3i)
3+69i
> (5+9i) + (6+3i)
11+12i
> (5+9i) - (6+3i)
-1+6i
> (5+9i) / (6+3i)
1.26666666666667+0.866666666666667i

You can even multiply i by itself:

% perl6
> i*i
-1

Imaginary and Complex Numbers | 47

https://docs.perl6.org/type/Complex.html

Numbers Small and Large
Everything that doesn’t fit into the specific numeric types is in the general Num type.
The number e (the natural base) is one of those numbers:

% perl6
> e.^name
Num
> e
2.71828182845905

You can also use infinities. Putting all the nuances and uses aside, for this book Inf is
just something that’s larger than any integer. You’ll see it in use later:

% perl6
> Inf.^name
Num
> (-Inf).^name
Num

You can write numbers in exponential notation. You can specify a power of 10 after
an e of either case. This is a different sort of e than the term you just saw:

6.02214e23
6.02214E23

These are the same as multiplying the number by a power of 10 that you construct
explicitly:

6.02214 * 10**23

These numbers aren’t Ints or Rats, although you might be able to convert them. They
are the more general Num type:

put 1e3.^name; # 1000, but still a Num
put 1e3.Int; # 1000, but now an Int

Very small numbers have a negative power of 10:

6.626176e-34

You can use this on not-so-small numbers too:

7.297351e-3

Exercise 3.6
What is 7.297351e-3 as a fraction? What’s its reciprocal?

48 | Chapter 3: Numbers

https://docs.perl6.org/type/Num.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Rat.html
https://docs.perl6.org/type/Num.html

The Numeric Hierarchy
Perl 6 thinks about numbers relative to their “width.” Int comprises the positive and
negative whole numbers and is relatively narrow. The Rat type includes the whole
numbers and some of the numbers between them (the ones that can be fractions).

Rat is “wider” not because its endpoints are greater but because there are more num‐
bers between the same endpoints. FatRat is even wider because it pushes the end‐
points farther apart to contain even more numbers.

Even wider than the rationals, fat or otherwise, are plain ol’ Nums. Those include the
rest of the numbers; the ones that you can’t represent as fractions. We typically call
this wider set the Reals but Perl 6 calls them Nums.

And when you think that you are the widest that you can go, the numbers go side‐
ways into the plane of the Complex numbers.

Sometimes you may want to go narrower or wider. Many Perl 6 objects have coercer
methods that can do that for you. Start with an Int and turn it into a Complex num‐
ber. This goes wider:

% perl6
> 6.Complex
6+0i

Or start with a Complex number and go narrower. This one can also be an Int:

% perl6
> (6+0i).Int
6

You can do those coercions because you know something about the numbers. If you
want the narrowest type without knowing what it is beforehand, you can use .nar
row. If you tried to convert π to an Int you wouldn’t get an error, but you wouldn’t get
π. If you use .narrow you get a Num, the narrowest you can go:

% perl6
> (π+0i).Int
3
> (π+0i).Int == π
False
> (π+0i).narrow.^name
Num
> (π+0i).narrow == π
True

The Numeric Hierarchy | 49

https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Rat.html
https://docs.perl6.org/type/Rat.html
https://docs.perl6.org/type/FatRat.html
https://docs.perl6.org/type/Num.html
https://docs.perl6.org/type/Num.html
https://docs.perl6.org/type/Complex.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Complex.html
https://docs.perl6.org/type/Complex.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Num.html

Sometimes you can’t go any narrower:

% perl6
> (6+3i).narrow.^name
Complex

Exercise 3.7
Modify the number-guessing program from the previous chapter so you have to guess
a complex number. You have to decide high and low in two directions this time.

Summary
That’s most of the story with numbers. You saw some of the methods you can use,
and you’ll find even more in the documentation for each type. You also saw a bit
about constraining variables to only the type you want, and you’ll become more
sophisticated with that.

50 | Chapter 3: Numbers

CHAPTER 4

Strings

Strings represent the text data in your program as Str objects. Perl 6’s facility with text
data and its manipulation is one of its major attractions. This chapter focuses on the
many ways that you can create Strs; for any job you have there’s likely a feature that
makes that easy for you. Along with that you’ll see a bit about inspecting, extracting,
and comparing text in preparation for loftier goals coming up.

Literal Quoting
You can type literal text directly into your program. What you type is what the text is,
and the compiler does not interpret it as anything other than exactly what you typed.
You can surround literal text with half-width corner brackets, ｢ and ｣:

｢Literal string｣

This is your first encounter with a paired delimiter. These characters mark the begin‐
ning and end of the Str. There’s an opening character and a closing character that
surround your text.

Any character that you use is interpreted as exactly what it is, with no special process‐
ing:

｢Literal '" string with \ and {} and /｣

You can’t use only one of the delimiter characters in the Str. These won’t work:

｢ Unpaired ｢ Delimiters ｣
｢ Unpaired ｣ Delimiters ｣

However, if you pair delimiters in the text the compiler will figure out if they are bal‐
anced—the opening delimiter comes first and a closing delimiter pairs with it:

｢ Del｢i｣miters ｣

51

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

The Perl 6 language is a collection of sublanguages, or slangs. Once
inside a particular slang the compiler parses your source code by
that slang’s rules. The quoting language is one of those slangs.

If your literal text has corner brackets in it you can use a generalized quoting mecha‐
nism. These start with a Q (or q) and can get as limiting or as permissive as you like,
as you’ll see in this chapter.

After the Q you can select almost any character to be the delimiter. It can’t be a charac‐
ter valid in a variable name, because that would make it look like a name instead of a
delimiter. The paired characters are common; the opening character has to be on the
left and its closing partner has to be on the right. Perhaps you want to use square
brackets instead of corner brackets. Now the ｣ isn’t special because it’s not a delimiter:

Q[Unpaired ｣ Delimiters]

Most of the paired characters act the same:

Q{Unpaired ｣ Delimiters}
Q<Unpaired ｣ Delimiters>
Q<<Unpaired ｣ Delimiters>>
Q«Works»

There’s one exception. You can’t have an open parenthesis right after the Q because
that makes it look like a subroutine call (but it’s not):

Q(Does not compile)

You don’t have to use paired characters. You can use the same character for the open‐
ing and closing delimiter:

Q/hello/

You can store a Str in a variable or output it immediately:

my $greeting = Q/Hello World!/;
put Q/Hello World!/;

And you can call methods on your Str just like you could do with numbers:

Q/Hello World!/.^name; # Str
Q/Hello World!/.put;

Escaped Strings
One step up from literal Strs are escaped strings. The single tick acts as the delimiter
for these Strs. These are often called single-quoted strings:

52 | Chapter 4: Strings

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

% perl6
> 'Hamadryas perlicus'
Hamadryas perlicus

If you want to have the single tick as a character in the Str you can escape it with a
backslash. That tells the quoting slang that the next character isn’t the delimiter but
belongs as literal text:

% perl6
> 'The escaped \' stays in the string'
The escaped ' stays in the string

Since the \ is the escape character, you can escape it to get a literal backslash:

% perl6
> 'Escape the \\ backslash'
Escape the \ backslash

A DOS path can be quite annoying to type, but escaped and literal Strs take care of
that:

% perl6
> 'C:\\Documents and Settings\\Annoying\\Path'
C:\Documents and Settings\Annoying\Path
> Q/C:\Documents and Settings\Annoying\Path/
C:\Documents and Settings\Annoying\Path

If you want to use a different delimiter for an escaped string you use the lowercase q
followed by the delimiter that you want (following the same rules as for the literal
quoting delimiters):

q{Unpaired ' Delimiters}
q<Unpaired ' Delimiters>
q<<Unpaired ' Delimiters>>
q«Works»

Adverbs for Quoting
Adverbs modify how something works and are a big part of Perl 6. You’ll see more of
these in Chapter 9, but you’ll get a taste for them in this chapter. Adverbs start with a
colon followed by letters or numbers.

All of the quoting methods you’ll see in this chapter are modifications of basic literal
quoting. You use adverbs to adjust the quoting behavior.

The :q adverb modifies Q to become an escaping quote. There must be some white‐
space after the adverb, but it’s optional after the Q:

% perl6
> Q:q 'This quote \' escapes \\'
This quote ' escapes \
> Q :q 'This quote \' escapes \\'
This quote ' escapes \

Escaped Strings | 53

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

This form doesn’t specifically escape the single tick; it escapes the backslash and the
delimiter characters. A backslash that doesn’t precede a delimiter or another back‐
slash is interpreted as a literal backslash:

% perl6
> Q :q ｢This quote \' escapes｣
This quote \' escapes
> Q :q ｢This quote \｢ escapes｣
This quote ｢ escapes
> Q :q ｢This quote \｢\｣ escapes｣
This quote ｢ escapes

The :single adverb is a longer version of :q and might help you remember what you
want:

% perl6
> Q :single 'This quote \' escapes'
This quote ' escapes

Most of the time you aren’t going to work this hard. The common uses of quoting
have default delimiters so you don’t even see the Q. Even though many Strs would be
more correctly represented with strict literal quoting, most people tend to use the sin‐
gle ticks simply because it’s easier to type. No matter which quoting method you use
you get the same type of object.

String Operators and Methods
Use the concatenation operator, ~, to combine Strs. Some people call this “string
addition.” The output shows the two Strs as one with nothing else between them:

my $name = 'Hamadryas' ~ 'perlicus';
put $name; # Hamadryasperlicus

You could add a space yourself by putting it in one of the Strs, but you can also con‐
catenate more than two Strs at a time:

put 'Hamadryas ' ~ 'perlicus';
put 'Hamadryas' ~ ' ' ~ 'perlicus';

The join routine glues together Strs with the first Str you give it:

my $butterfly-name = join ' ', 'Hamadryas', 'perlicus'

You can make larger Strs by repeating a Str. The x is the Str replication operator. It
repeats the Str the number of times you specify. This is handy for making a text-
based divider or ruler for your output:

put '-' x 70;
put '.123456789' x 7;

The .chars methods tells you how many characters are in the Str:

54 | Chapter 4: Strings

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

put 'Hamadryas'.chars; # 9

Any Str with at least one character is True as a Boolean, including the Str of the sin‐
gle character 0:

put ?'Hamadryas'; # True
put ?'0'; # True

The empty string has no characters. It consists only of the opening delimiter and the
closing delimiter. It’s False as a Boolean:

put ''.chars; # 0
put ?''; # False

Be careful that when you test a Str you test the right thing. A Str type object is also
False, but .DEFINITE can tell them apart:

put ''.DEFINITE # True
put Str.DEFINITE # False

This is handy in a conditional expression where you don’t care what the Str is
(empty, '0', or anything else) as long as it’s not a type object:

given $string {
 when .DEFINITE {
 put .chars ?? 'Has characters' !! 'Is empty';
 }
 default { put 'Type object' }
 }

The .lc method changes all the characters in a Str to lowercase, and .uc changes
them to uppercase:

put 'HaMAdRyAs'.lc; # hamadryas
put 'perlicus'.uc; # PERLICUS

The .tclc method uses title case, lowercasing everything then capitalizing the first
character of the Str:

put 'hamadryas PERLICUS'.tc; # Hamadryas perlicus

Exercise 4.1
Write a program to report the number of characters in the text you enter.

Exercise 4.2
Modify the previous exercise to continually prompt for text and report the number of
characters in your answers until you provide an empty answer.

Escaped Strings | 55

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Looking Inside Strings
You can also inspect a Str to find out things about it. The .contains method returns
a Boolean value indicating whether it finds one Str—the substring—inside the target
Str:

% perl6
> 'Hamadryas perlicus'.contains('perl')
True
> 'Hamadryas perlicus'.contains('Perl')
False

Instead of parentheses you can put a colon followed by the substring to search for:

% perl6
> 'Hamadryas perlicus'.contains: 'perl'
True
> 'Hamadryas perlicus'.contains: 'Perl'
False

The .starts-with and .ends-with methods do the same thing as .contains but
require the substring to appear at a particular location:

> 'Hamadryas perlicus'.starts-with: 'Hama'
True
> 'Hamadryas perlicus'.starts-with: 'hama'
False
> 'Hamadryas perlicus'.ends-with: 'us'
True

These methods are case sensitive. The case of each character in the substring must
match the case in the target Str. If it’s uppercase in the substring it must be uppercase
in the target. If you want case insensitivity you can use .fc to make a “caseless” Str.
This “case folding” method is especially designed for comparisons:

> 'Hamadryas perlicus'.fc.starts-with: 'hama'
False

.fc also knows about equivalent characters such as the ss and the sharp ß. The
method doesn’t change the text; it evaluates to a new Str based on a long list of rules
about equivalence defined by Unicode. You should case fold both the target and sub‐
strings if you want to allow these sorts of variations:

> 'Reichwaldstrasse'.contains: 'straße'
False
> 'Reichwaldstrasse'.fc.contains: 'straße'
False
> 'Reichwaldstrasse'.contains: 'straße'.fc
True
> 'Reichwaldstrasse'.fc.contains: 'straße'.fc
True

56 | Chapter 4: Strings

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

.substr extracts a substring by its starting position and length inside the Str. The
counting starts with zero at the first character:

put 'Hamadryas perlicus'.substr: 10, 4; # perl

The .index method tells you where it finds a substring inside the larger Str (still
counting from zero), or returns Nil if it can’t find the substring:

my $i = 'Hamadryas perlicus'.index: 'p';
put $i ?? 'Found at ' ~ $i !! 'Not in string'; # Found at 10

Use both of them together to figure out where to start:

my $s = 'Hamadryas perlicus';
put do given $s.index: 'p' {
 when Nil { 'Not found' }
 when Int { $s.substr: $_, 4 }
 }

Exercise 4.3
Repeatedly prompt for text and report if it contains the substring “Hamad”. Stop
prompting if the answer has no characters (an empty answer). Can you make this
work regardless of casing?

Normal Form Grapheme
Perl 6 is Unicode all the way down. It works on graphemes, which most of us think of
as “characters” in the everyday sense. These are the full expression of some idea, such
as e, é, or . It expects your source code to be UTF-8 encoded and outputs UTF-8
text. All of these work, although they each represent a different language:

'көпөлөк'
'तििली'
'蝴蝶'
'Con bướm'
'tauriņš'
'πεταλούδα'
'भंबीरा'
'פרפר'

You can use emojis too:

my $string = ' ';
put $string;

One of the Perl 6 “characters” might be made of up two or more entries in the Univer‐
sal Character Database (UCD). Perl 6 refers to entries in the UCD as codes and to
their composition as a “character.” It’s not the best terminology. In this book, character
means grapheme and code point refers to an entry in the UCD.

Escaped Strings | 57

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Why does any of that matter? The .chars method tells you the length of the Str in
graphemes. Consider the Hebrew word for “caterpillar.” It has 11 graphemes but 14
code points:

% perl6
chars.'קאַטערפּיללאַר' <
11
codes.'קאַטערפּיללאַר' <
14

Why the different counts? There are graphemes such as ַא that are more than one
code point (in that case, the two code points are the Hebrew Aleph and patah diacriti‐
cal mark). Most of the time you won’t care about this. If you do, you can get a list of
the code points with .ords:

ords.'קאַטערפּיללאַר' <
(1511 1488 1463 1496 1506 1512 1508 1468 1497 1500
1500 1488 1463 1512)

String Comparisons
Str objects know if they are relatively greater than, less than, or the same as another
Str. Perl 6 uses lexicographic comparison to go through the Strs character by
character.

The numbers comparison operators are symbols, but the Strs use operators made up
of letters. The eq operator tests if the Strs are exactly equal. Case matters. Every char‐
acter at each position in the Str must be exactly the same in each Str:

% perl6
> 'Hamadryas' eq 'hamadryas'
False
> 'Hamadryas' eq 'Hamadryas'
True

The gt operator evaluates to True if the first Str is strictly lexicographically greater
than the second (ge allows it to be greater than or equal to the second Str). This is
not a dictionary comparison, so case matters. The lowercase letters come after the
uppercase ones and so are “greater”:

% perl6
> 'Hama' gt 'hama'
False
> 'hama' gt 'Hama'
True

The uppercase letters come before the lowercase ones, so any Str that starts with a
lowercase letter is greater than any Str that starts with an uppercase letter:

% perl6
> 'alpha' gt 'Omega'

58 | Chapter 4: Strings

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

True
> 'α' gt 'Ω'
True

You can get some weird results if you compare numbers as Strs. The character 2 is
greater than the character 1, so any Str starting with 2 is greater than any Str starting
with 1:

% perl6
> '2' gt '10'
True

The lt operator evaluates to True if the first Str is lexicographically less than the sec‐
ond (le allows it to be less than or equal to the second Str):

% perl6
> 'Perl 5' lt 'Perl 6'
True

If you don’t care about their case you can lowercase both sides with .lc:

% perl6
> 'Hamadryas'.lc eq 'hamadryas'.lc
True

This wouldn’t work for the Reichwaldstrasse example you saw previously. If you
wanted to allow for equivalent representations you’d use .fc:

% perl6
> 'Reichwaldstrasse'.lc eq 'Reichwaldstraße'.lc
False
> 'Reichwaldstrasse'.fc eq 'Reichwaldstraße'.fc
True

As with numbers, you can chain the comparisons:

% perl6
> 'aardvark' lt 'butterfly' lt 'zebra'
True

Prompting for Input
You’ve already used prompt for simple things. When you call it your program reads a
single line and chops off the newline that you typed. A small modification of the pro‐
gram shows you what sort of type you get back:

my $answer = prompt('What\'s your favorite animal? ');
put '$answer is type ', $answer.^name;
put 'You chose ', $answer;

When you answer the question you get a Str:

% perl6 prompt.p6
What's your favorite animal? Fox

Escaped Strings | 59

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

$answer is type Str
You chose Fox

When you don’t type anything other than a Return the answer is still a Str, but it’s an
empty Str:

% perl6 prompt.p6
What's your favorite animal?
$answer is type Str
You chose

You end input with Control-D, which is the same as not typing anything. In that case
it returns an Any type object. Notice that the line showing the type appears on the
same line as the prompt text—you never typed a Return. There’s also a warning about
that Any value, and finally your last line of output:

% perl6 prompt.p6
What's your favorite animal? $answer is type Any
Use of uninitialized value $answer of type Any in string context.
You chose

To guard against this problem you can test $answer. The Any type object is always
False. So is the empty Str:

my $answer = prompt('What\'s your favorite animal? ');
put do
 if $answer { 'You chose ' ~ $answer }
 else { 'You didn\'t choose anything.' }

prompt takes whatever you type, including whitespace. If you put some spaces at the
beginning and end that’s what shows up in the Str:

% perl6 prompt.p6
What's your favorite animal? Butterfly
You chose Butterfly

You can see this better if you put in something to surround the answer portion of the
output, such as <> in this example:

my $answer = prompt('What\'s your favorite animal? ');
put do
 if $answer { 'You chose <', $answer, '>' }
 else { 'You didn't choose anything' }

Now you can easily see the extra space in $answer:

% perl6 prompt.p6
What's your favorite animal? Butterfly
You chose < Butterfly >

The .trim method takes off the surrounding whitespace and gives you back the
result:

my $answer = prompt('What\'s your favorite animal? ').trim;

60 | Chapter 4: Strings

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Any.html
https://docs.perl6.org/type/Any.html
https://docs.perl6.org/type/Any.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

If you apply it to $answer by itself it doesn’t work:

$answer.trim;

You need to assign the result to $answer to get the updated value:

$answer = $answer.trim;

That requires you to type $answer twice. However, you know about binary assign‐
ment so you can shorten that to use the variable name once:

$answer .= trim;

If you don’t want to remove the whitespace from both sides you can use either .trim-
leading or .trim-trailing for the side that you want.

Number to String Conversions
You can easily convert numbers to Strs with the .Str method. They may not look
like what you started with. These look like number values but they are actually Str
objects where the digits you see are characters:

% perl6
> 4.Str
4
> <4/5>.Str
0.8
> (13+7i).Str
13+7i

The unary prefix version of ~ does the same thing:

% perl6
> ~4
4
> ~<4/5>
0.8
> ~(13+7i)
13+7i

If you use a number in a Str operation it automatically converts it to its Str form:

% perl6
> 'Hamadryas ' ~ <4/5>
Hamadryas 0.8
> 'Hamadryas ' ~ 5.5
Hamadryas 5.5

String to Number Conversions
Going from Strs to numbers is slightly more complicated. If the Str looks like a
number you can convert it to some sort of number with the unary prefix version of +.

Escaped Strings | 61

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

It converts the Str to the number of the narrowest form, which you can check
with .^name:

% perl6
> +'137'
137
> (+'137').^name
Int
> +'1/2'
0.5
> (+'1/2').^name
Rat

This only works for decimal digits. You can have the decimal digits 0 to 9 and a possi‐
ble decimal point followed by more decimal digits. An underscore is allowed with the
same rules as for literal numbers. The conversion ignores surrounding whitespace:

% perl6
> +' 1234 '
1234
> +' 1_234 '
1234
> +' 12.34 '
12.34

Anything else, such as two decimal points, causes an error:

> +'12.34.56'
Cannot convert string to number: trailing characters after number

When you perform numerical operations on a Str it’s automatically converted to a
number:

% perl6
> '2' + 3
5
> '2' + '4'
6
> '2' ** '8'
256

Exercise 4.4
Write a program that prompts for two numbers then outputs their sum, difference,
product, and quotient. What happens if you enter something that’s not a number?
(You don’t need to handle any errors.)

In the previous exercise you should have been able to create a conversion error even
though you didn’t have the tools to handle it. If you want to check if a Str can convert
to a number you can use the val routine. That gives you an object that does the

62 | Chapter 4: Strings

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Numeric role if it can convert the Str. Use the smart match operator to check that it
worked:

my $some-value = prompt('Enter any value: ');
my $candidate = val($some-value);

put $candidate, ' ', do
 if $candidate ~~ Numeric { ' is numeric' }
 else { ' is not numeric' }

This seems complicated now because you haven’t read about interpolated Strs yet. It
will be much clearer by the end of this chapter.

Exercise 4.5
Update the previous exercise to handle nonnumeric values that would cause a conver‐
sion error. If one of the values isn’t numeric, output a message saying so.

Sometimes your text is numeric but not decimal. The .parse-base method can con‐
vert it for you. It takes a Str that looks like a nondecimal number and turns it into a
number:

my $octal = '0755'.parse-base: 8; # 493
my $number = 'IG88'.parse-base: 36; # 860840

This is the same thing the colon form was doing in Chapter 3:

:8<0755>
:36<IG88>

Interpolated Strings
You’ve taken a long path through this chapter to get to the quoting mechanism that
you’re likely to use the most. An interpolated string replaces special sequences within
the Str with other characters. These Strs will also make easier some of the code
you’ve already seen.

Interpolated Strs use the double quote, ", as the default delimiter and are sometimes
called double-quoted strings. You need to escape the " if you want one in the Str, and
you can escape the \:

% perl6
> "Hamadryas perlicus"
Hamadryas perlicus
> "The escaped \" stays in the string"
The escaped " stays in the string
> "Escape the \\ backslash"
Escape the \ backslash

Interpolated Strings | 63

https://docs.perl6.org/type/Numeric.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

The backslash also starts other special interpolating sequences. A \t represents a tab
character. A \n represents a newline:

put "First line\nSecond line\nThird line";

If you want a character that’s not easy to type you can put its code number (a hexa‐
decimal value) after \x or inside \x[]. Don’t use the 0x prefix; the \x already assumes
that:

put "The snowman is \x[2603]";

Several comma-separated code numbers inside \x[] turn into multiple characters:

put "\x[1F98B, 2665, 1F33B]"; #

If you know the name of the character you can put that inside \c[]. You don’t quote
these names and the names are case insensitive:

put "\c[BUTTERFLY, BLACK HEART, TACO]"; #

Those are nice, but it’s much more handy to interpolate variables. When a double-
quoted Str recognizes a sigiled variable name it replaces the variable with its value:

my $name = 'Hamadryas perlicus';
put "The best butterfly is $name";

The quoting slang looks for the longest possible variable name (and not the longest
name actually defined). If the text after the variable name looks like it could be a vari‐
able name that’s the variable it looks for:

my $name = 'Hamadryas perlicus';
put "The best butterfly is $name-just saying!";

This is a compile-time error:

Variable '$name-just' is not declared

If you need to separate the variable name from the rest of the text in the double-
quoted Str you can surround the entire variable in braces:

my $name = 'Hamadryas perlicus';
put "The best butterfly is {$name}-just saying!";

Escape a literal $ where it might look like a sigil that starts a variable name:

put "I used the variable \$name";

Now here’s the powerful part. You can put any code you like inside the braces. The
quoting slang will evaluate the code and replace the braces with the last evaluated
expression:

put "The sum of two and two is { 2 + 2 }";

64 | Chapter 4: Strings

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

This means that the previous programs in this chapter are much easier to type than
they first appear. You can construct the Str inside the delimiters rather than using a
series of separate Strs:

my $answer = prompt('What\'s your favorite animal? ');
put "\$answer is type {$answer.^name}";
put "You chose $answer";

Like with the previous Strs, you can choose a different delimiter for interpolated
Strs. Use qq (double q for double quoting) in front of the delimiter:

put qq/\$answer is type {$answer.^name}/;

The \n is interpolated as a newline and the \t becomes a tab:

put qq/\$answer is:\n\t$answer/;

This Str has two lines and the second one is indented:

answer is:
 Hamadryas perlicus

qq// is the same as Q with the :qq or :double adverb:

put Q :qq /\$answer is type {$answer.^name}/;
put Q :double /\$answer is type {$answer.^name}/;

If you want to interpolate only part of a Str you can use \qq[] for that part:

my $genus = 'Hamadryas';
put '$genus is \qq[$genus]';

Going the other way, you can turn off interpolation for part of a Str by making that
part act like a single-quoted Str with \q[]:

put "\q[$genus] is $genus";

Table 4-1 shows many other special sequences available inside a double-quoted con‐
text.

Table 4-1. Selected backslash-escape sequences

Escape sequence Description
\a The ASCII bell character
\b Backspace
\r Carriage return
\n Newline
\t Tab
\f Form feed
\c[NAME] Character by name
\q[…] Single quote the part inside the brackets
\qq[…] Double quote the part inside the brackets

Interpolated Strings | 65

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Escape sequence Description
\x[ABCD] Character by code number in hex

Exercise 4.6
Modify your character-counting program to show the Str as well as the number of
characters it counts. For example, 'Hamadryas' has 10 characters. You should be
able to output a single interpolated Str.

Here Docs
For multiline quoting you could use the quoting you’ve seen so far, but every charac‐
ter between those delimiters matters. This often results in ugly outdenting:

my $multi-line = '
 Hamadryas perlicus: 19
 Vanessa atalanta: 17
 Nymphalis antiopa: 0
 ';

Interpolating \n doesn’t make it any prettier:

my $multi-line = "Hamadryas perlicus: 19\n...";

A here doc is a special way of quoting a multiline text. Specify a delimiter with
the :heredoc adverb. The Str ends when the slang finds that same Str on a line by
itself:

my $multi-line = q :heredoc/END/;
 Hamadryas perlicus: 19
 Vanessa atalanta: 17
 Nymphalis antiopa: 0
 END

put $multi-line;

This also strips the same indentation it finds before the closing delimiter. The output
ends up with no indention even though it had it in the literal code:

Hamadryas perlicus: 19
Vanessa atalanta: 17
Nymphalis antiopa: 0

The :to adverb does the same thing as :heredoc:

my $multi-line = q :to<HERE>;
 Hamadryas perlicus: 19
 Vanessa atalanta: 17
 Nymphalis antiopa: 0
 HERE

66 | Chapter 4: Strings

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

This works with the other quoting forms too:

put Q :to/END/;
 These are't special: $ \
 END

put qq :to/END/;
 The genus is $genus
 END

Shell Strings
Shell strings are the same sort of quoting that you’ve seen so far, but they don’t con‐
struct a Str to store in your program. They create an external command to run in the
shell. A shell string captures the command’s output and gives it to you. Chapter 19
covers this, but here’s something to get you started.

qx uses the same rules as escaped Strs. The hostname command works on both Unix
and Windows systems:

my $uname = qx/hostname/;
put "The hostname is $uname";
put "The hostname is { qx/hostname/ }"; # quoting inside quoting

In this output there’s a blank line between the lines because it includes the newline in
the normal command output:

The hostname is hamadryas.local

The hostname is hamadryas.local

Use .chomp to fix that. If there’s a newline on the end of the text it removes it
(although put adds its own):

my $uname = qx/hostname/.chomp;
put "The hostname is $uname";
put "The hostname is { qx/hostname/.chomp }";

print doesn’t add a newline for you, so you don’t need to remove the one from the
command output:

print "The hostname is { qx/hostname/ }";

qx and qqx are shortcuts for single and double quoting Strs with the :x or :exec
adverbs:

print Q :q :x /hostname/;
print Q :q :exec /hostname/;
print Q :single :exec /hostname/;

Shell Strings | 67

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Shell Safety
In the previous examples, the shell looks through its PATH environment variable to
find the hostname command and executes the first one that it finds. Since people can
set their PATH (or something can set it for them), you might not get the command you
expect. If you use an absolute path you don’t have this problem. Literal quoting is
handy to avoid inadvertent escaping:

put Q :x '/bin/hostname';
put Q :x 'C:\Windows\System32\hostname.exe'

I won’t cover secure programming techniques here, but I do write
more about these problems in Mastering Perl. Although that’s a Perl
5 book, the risks to your program are the same.

Although you have not seen hashes yet (Chapter 9), you could change the environ‐
ment for your program. If you set PATH to the empty Str your program won’t be able
to search for any programs:

%*ENV<PATH> = '';
print Q :x 'hostname'; # does not find this
print Q :x '/bin/hostname'; # this works

If that’s too restrictive you can set the PATH to exactly the directories that you consider
safe:

%*ENV<PATH> = '/bin:/sbin';
print Q :x 'hostname'; # does not find this
print Q :x '/bin/hostname'; # this works

There’s also a double-quoted form of shell Strs:

my $new-date-string = '...';
my $output = qqx/date $new-date-string/

What’s in that $new-date-string? If it descends from user data, external configura‐
tion, or something else that you don’t control, you might be in for a surprise. That
could be malicious or merely accidental, so be careful:

my $new-date-string = '; /bin/rm -rf';
my $output = qqx/date $new-date-string/

68 | Chapter 4: Strings

http://my.safaribooksonline.com/book/programming/perl/9781449364946
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Exercise 4.7
Write a program to capture the output of hostname. Make it work on both Windows
and Unix systems. $*DISTRO.is-win is True if you are on Windows and False other‐
wise.

Fancier Quoting
You can combine adverbs in generalized quoting to use just the features that you
need. Suppose that you want to interpolate only things in braces but nothing else. You
can use the :c adverb:

% perl6
> Q :c "The \r and \n stay, but 2 + 2 = { 2 + 2 }"
The \r and \n stay, but 2 + 2 = 4

To get only variable interpolation use the :s adverb. No other processing happens:

% perl6
> my $name = 'Hamadryas'
Hamadryas
> Q :s "\r \n { 2 + 2 } $name"
\r \n { 2 + 2 } Hamadryas

You can combine adverbs to get any mix of features that you like. Cluster the adverbs
or space them out. They work the same either way:

% perl6
> Q :s:c "\r \n { 2 + 2 } $name"
\r \n 4 Hamadryas
> Q :s:c:b "\r \n { 2 + 2 } $name"

 4 Hamadryas
> Q :s :c :b "\r \n { 2 + 2 } $name"

 4 Hamadryas

The :qq adverb is actually the combination of :s :a :h :f :c :b. This interpolates
all of the variables, the stuff in braces, and all backslash sequences. If you don’t want
to interpolate everything, you can turn off an adverb. This might be easier than speci‐
fying several just to leave one out. Put a ! in front of the one to disable. :!c turns off
brace interpolation:

qq :!c /No { 2+2 } interpolation/;

Selected quoting forms and adverbs are summarized in Table 4-2 and Table 4-3.

Fancier Quoting | 69

Table 4-2. Selected quoting forms

Short name Long name Description
｢…｣ Literal Default delimiter, corner brackets
Q ‘…’ Literal Generalized quoting with alternate delimiter
Q[…] Literal Generalized quoting with paired delimiter
‘…’ Escaped Default delimiter, single quote
q{…} Escaped Use alternate paired delimiter
Q:q […] Escaped Generalized quoting with :q adverb
“…” Interpolated Default delimiter, double quote
qq[…] Interpolated Use alternate paired delimiter
Q:qq ‘…’ Interpolated Generalized quoting with :qq adverb
Q:c ‘…{ }…’ Interpolated Generalized quoting only interpolating closures
Q:to(HERE) Literal Here doc
q:to(HERE) Escaped Here doc
qq:to(HERE) Interpolated Here doc

Table 4-3. Selected quoting adverbs

Short name Long name Description
:x :exec Execute shell command and return results
:q :single Interpolate \\, \qq[…], and an escaped delimiter
:qq :double Interpolate with :s, :a, :h, :f, :c, :b
:s :scalar Interpolate $ variables
:a :array Interpolate @ variables
:h :hash Interpolate % variables
:f :function Interpolate & calls
:c :closure Interpolate code in {…}
:b :backslash Interpolate \n, \t, and others
:to :heredoc Parse result as here doc terminator
:v :val Convert to allomorph if possible

Summary
The quoting slang offers several ways to represent and combine text, so you can get
exactly what you need in an easy fashion. Once you have the text, you have many
options for looking inside the Str to find or extract parts of it. This is still early in the
book, though. You’ll see more features along the way and then really have fun in
Chapter 15.

70 | Chapter 4: Strings

https://docs.perl6.org/type/Str.html

CHAPTER 5

Building Blocks

Blocks are the thingys that group multiple statements into a single thingy. You’ve
already used some of them, based on the faith I asked you to have in the introduction.
Now it’s time to look at those more closely. This chapter covers the basics and works
up to simple subroutines. You’ll see just enough here to get you through the next cou‐
ple of chapters, then quite a bit more in Chapter 11.

Blocks
A Block is a group of statements surrounded by braces. You’ve already used loop to
repeat a group of statements. You also used the if-else structure, which used a
Block in each branch and executed only one of them:

loop { ... }

if $n %% 2 { put "Even!" }
else { put "Odd!" }

A bare block is one that has nothing around it. It is in sink context because you do
nothing with its result. It provides a scope and runs once immediately. The result is
the last evaluated expression (not necessarily the last lexical expression) in the Block.
Here’s a simple one that does nothing:

{ ; }

There’s a bit of discouraged syntax that’s just {}. It constructs an
empty hash (Chapter 9). With a statement separator inside the
braces the compiler recognizes it as a Block.

71

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

Here, you can’t tell which expression your program will evaluate last until the Block
knows what time it is. now is a term that gives the current time, which you can coerce
to an Int:

{ now.Int %% 2 ?? 'Even' !! 'Odd' }

Sometimes you’ll get Even and sometimes you’ll get Odd. However, since you do noth‐
ing with the result, you’ll never find out. You do get warnings:

Useless use of constant string "Odd" in sink context
Useless use of constant string "Even" in sink context

The compiler knows when it’s doing useless work and complains about it. That data
goes into the “sink” never to be seen again.

A do in front of the Block does the same thing it did in front of if or given. The
Block becomes its last evaluated expression:

my $parity = do { now.Int %% 2 ?? 'Even' !! 'Odd' }
put do { now.Int %% 2 ?? 'Even' !! 'Odd' }

The Block is actually an expression itself, so you need to use a semicolon to separate a
Block and a following statement:

{ print 'Hamadryas ' }; put 'perlicus';

But there’s a special rule: if the closing curly brace is the last character on the line (not
counting whitespace), you get the statement-separating semicolon for free:

{ print 'Hamadryas ' }
put 'perlicus';

Lexical Scope
A Block defines a scope. The variables that you define in a Block aren’t available out‐
side of that Block. You can use a bare Block to limit the visibility or lifetime of your
variables:

{
my $n = 2;
my $m = 3;
put 'The sum is ';
put $n + $m;
}

Your code inside the Block won’t change variables of the same name outside the
Block. Here you have a few variables outside the Block (the outer scope). The bare
Block reuses the same names:

my $n = 2;
my $m = 3;

72 | Chapter 5: Building Blocks

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

{
my $n = 'Hamadryas';
my $m = 'perlicus';
put "$n $m"; # Hamadryas perlicus
}

put "n $n m $m"; # n 2 m 3

Scoping liberates you from any requirement to know every variable name in the
entire program when choosing the ones you’d like to use in a short piece of code. It
allows you to choose the names that make sense for your task without worrying
about some other part of the code using the same names.

Control Structures
Bare Blocks don’t have a keyword that controls them. You can put loop in front of a
Block and call it repeatedly, forever:

my $n = 0;
loop {
 put $n++;
 }

That loop controls how you execute the Block. Since you haven’t been specific, it
keeps looping. Forever.

Some time in your career you’ll accidentally make an infinite loop.
You’ll probably sit there awhile looking at your screen wondering
why nothing is happening. In this case, you can interrupt (stop)
your program with Control-C.

It’s a bit ugly to have the statement that declares $n before the loop. Often you want
that variable only inside the loop, but if you declare it with my each time through the
Block gets a new version of $n. What you do think this outputs?

loop {
 my $n = 0;
 put $n++;
 }

The first time through the Block, you define a new lexical variable $n, assign it 0, out‐
put its value (0), and finally increment the value. The second time through, you do
the same thing: you define a new lexical $n, assign it 0, and so on. You do this until
you give up.

You don’t want a new variable, though. You’d like the loop to have one variable $n that
retains its value. Instead of my, declare your variable with state:

Blocks | 73

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

loop {
 state $n = 0;
 put $n++;
 }

A state declaration runs only the first time through a Block. It defines a persistent
variable that remembers its value between runs of the loop.

There’s another trick possible here. You can skip the declaration, and even the name.
The anonymous $ creates a persistent scalar variable that’s limited not only to its
scope but to the one place that you use it:

loop {
 put $++; # an anonymous scalar
 }

Now take care of that incessant looping:

loop {
 state $n = 0;
 put $n++;
 last;
 }

The last immediately breaks out of the loop, so you get a single line of output:

0

Often you’ll combine last with a condition to specify when you want to break out of
the loop. This loop ends once $n is greater than 2:

loop {
 state $n = 0;
 put $n++;
 if $n > 2 { last }
 }

Here’s the same thing in its postfix form, which you’ll probably see more often:

loop {
 state $n = 0;
 put $n++;
 last if $n > 2
 }

Either program makes it through a few iterations of the loop before the last breaks
out:

0
1
2

There are other loop controls. A next skips the rest of the Block and starts a new pass
through the Block:

74 | Chapter 5: Building Blocks

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

loop {
 state $n = 0;
 next unless $n %% 2;
 put $n++;
 last unless $n < 3;
 }

A redo restarts the current iteration:

loop {
 state $n = 0;
 put $n++;
 redo if $n == 3;
 last if $n > 2;
 }

Here, when $n is 3 it goes back to the top of the loop and tries again. It calls put again
and increments $n to 4. That’s why you see 3 in the output even though the last
would have stopped it:

0
1
2
3

Phasers
There are some other interesting Block features that I’ll merely introduce here. A
phaser is a special subroutine that runs at a particular time in the Block lifecycle. The
LAST phaser runs at the end of the last Block iteration:

loop {
 state $n = 0;
 put $n++;
 last if $n > 2;
 LAST { put "Finishing loop. \$n is $n" }
 }

The output shows that the LAST Block knows the ending value for $n:

0
1
2
Finishing loop. $n is 3

Similarly, FIRST runs before the first loop starts. You can put phasers anywhere in the
Block; they don’t execute in the order they appear:

loop {
 state $n = 0;
 put $n++;
 last if $n > 2;
 FIRST { put "Starting loop. \$n is $n" }

Blocks | 75

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

 LAST { put "Finishing loop. \$n is $n" }
 }

This one throws a warning; you haven’t initialized $n yet. The FIRST phaser knows
that the scope has an $n, but its value is undefined when that phaser runs because the
state declaration hasn’t done its job yet. The starting value for $n is the type object
Any, and all type objects are undefined:

Starting loop. $n is
0
1
2
Finishing loop. $n is 3
Use of uninitialized value $n of type Any in string context.

The NEXT phaser kicks in for each additional iteration past the first one:

loop {
 state $n = 0;
 put $n++;
 last if $n > 2;
 FIRST { put "Starting loop. \$n is $n" }
 NEXT { put "Next loop. \$n is $n" }
 LAST { put "Finishing loop. \$n is $n" }
 }

The output shows up after the first loop:

Starting loop. $n is
0
Next loop. $n is 1
1
Next loop. $n is 2
2
Finishing loop. $n is 3
Use of uninitialized value $n of type Any in string context.

There’s another form of loop where you can specify the initialization, test, and incre‐
ment steps. This C-style version does the same thing that you were doing before:

loop (my $n = 0; $n < 3; $n++) {
 put $n;
 }

This is the same thing, with separate statements for each of the three things in the
parentheses:

my $n = 0;
loop {
 put $n;
 last unless $n < 3;
 $n++
 };

76 | Chapter 5: Building Blocks

https://docs.perl6.org/type/Any.html

Notice that $n is defined in a more expansive scope than it needs in that case. This
might surprise you. If you already have a variable of the same name, you’ll get an
error about redeclaration of that name in the scope:

my $n = 5;
loop (my $n = 0; $n < 3; $n++) { # redefinition error!
 put $n;
 }

put "Outside: $n"; # Outside: 3

Exercise 5.1
Create a loop that outputs the numbers from 12 to 75 in multiples of 3. On the first
run through the loop, output “Starting”.

The while structure

A while executes the Block as long as its condition is True. This produces the same
output as the loop examples from the previous section. You must define the variable
outside the Block so the condition can see it:

my $n = 0;
while $n < 3 {
 put $n++;
 }

The while evaluates its condition first. If $n starts off greater than 5 this Block does
not execute at all:

my $n = 6;
while $n < 5 {
 put $n++;
 }

The repeat while, however, executes the Block first and then checks the condition:

my $n = 6;
repeat while $n < 3 {
 put $n++;
 }

Even though $n is not less than 3 the Block executes and produces a single line of
output before while checks the condition and finds that it is False:

6

You can put the Block between the repeat and the while. You might like this better
because it’s in the order that everything happens:

Blocks | 77

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

my $n = 6;
repeat {
 put $n++;
 } while $n < 3;

Exercise 5.2
Modify your answer from the previous exercise to use while instead of loop. Also
output a message on the last time through the Block.

Storing Blocks
You can store a Block in a variable without executing it immediately. now is a builtin
term that gives you an Instant. Binding with := makes the right side the same thing
as the left side. This means that $block is the same as the Block:

my $block := { now };

You won’t be able to assign to $block, though, because there’s no container involved.

You don’t have to bind a Block. Assignment works too, and you can change the value
later:

my $block = { now };
$block = 'Hamadryas';

This isn’t that interesting, because you could simply use now anywhere you would use
this. But how about a Block that evaluates to a time that’s a minute later? Add 60 sec‐
onds to now:

my $minute-later := { now + 60 };

When you execute the Block its result is the last evaluated expression. Execute the
Block with the () operator:

put $minute-later(); # some Instant
sleep 2;
put $minute-later(); # some Instant 62 seconds later

Since $block is an object you could call the () like a method:

put $minute-later.(); # some Instant
sleep 2;
put $minute-later.(); # some Instant 62 seconds later

Instead of a scalar variable you can use a callable variable; those use the & sigil:

my &hour-later := { now + 3_600 };

put &hour-later(); # some Instant

78 | Chapter 5: Building Blocks

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Instant.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

sleep 2;
put &hour-later(); # some some Instant an hour later

With the &block form you can call it without the & and even without the parentheses:

my &hour-ago := { now - 3_600 };

put &hour-ago(); # some Instant
sleep 2;
put hour-ago(); # some Instant two seconds later

put hour-ago; # some Instant immediately

Either way, a Block isn’t quite a subroutine (coming up), so you can’t use return
(more on that later). It doesn’t know how to pass a result to the code that called it.
This will compile even though it isn’t going to work:

my $block := -> { return now };

You’ll get a runtime error, which you’ll read more about in Chapter 11:

Attempt to return outside of any Routine

Blocks with Parameters
A signature defines the parameters for a Block. This includes the number (arity),
type, and restrictions on the arguments you give to the Block.

If a Block has no signature it expects zero arguments. However, if you use $_ inside
the Block it creates a signature with a single optional parameter:

my $one-arg := { put "The argument was $_" };

$one-arg(); # The argument was (with warning!)
$one-arg(5); # The argument was 5
$one-arg('Hamadryas'); # The argument was Hamadryas

If you change that $_ you change the original value (if it’s mutable) because the
implicit signature makes the argument writable:

my $one-arg := {
 put "The argument is $_";
 $_ = 5;
 };

my $var = 'Hamadryas';
say "\$var starts as $var";
$one-arg($var);
say "\$var is now $var";

The output shows that the Block changed the variable’s value:

Blocks | 79

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

$var starts as Hamadryas
The argument is Hamadryas
$var is now 5

If you use @_ in the Block you can pass zero or more parameters:

my $many-args := {
 put "The arguments are @_[]";
 }

$many-args('Hamadryas', 'perlicus');

That @_ is an Array, but you’ll have to wait until the next chapter to see what those
can do.

Exercise 5.3
Create a Block that trims the whitespace and lowercases its argument. The original
value should change. This is the sort of thing you’d want to use when you normalize
data.

Implicit parameters

The Blocks get fancier. You can use placeholder variables (or implicit parameters)
inside them to specify how many parameters you want:

my $adding-block := { $^a + $^b }

The ^ denotes a placeholder variable, which tells the compiler to construct an implicit
signature for the Block. Your Block has exactly the same number of parameters as
there are placeholder values and you must provide one argument per parameter:

my $adding-block := { $^a + $^b }

$adding-block(); # Nope - too few parameters
$adding-block(1); # Nope - too few still
$adding-block(1, 37); # Just right!
$adding-block(1, 2, 3); # Nope - too many parameters

The arguments are assigned to the placeholder variables in the lexicographical order
of their names and not the order you use them. Each of these Blocks divides two
numbers; the difference is the order in which they use the placeholder variables:

my $forward-division := { $^a / $^b };
my $backward-division := { $^b / $^a };

You can call them with the same arguments in the same order. Even though you use
the same placeholder variable names and pass the same arguments, you get different
answers:

80 | Chapter 5: Building Blocks

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

put $forward-division(2, 3); # 0.66667
put $backward-division(2, 3); # 1.5

You can reuse the same placeholder variable without it creating an additional param‐
eter. This is still one parameter and multiplies the single argument by itself:

my $square := { $^a * $^a }

Calling .signature gives you the Signature object for that Block. Outputting it with
say gives you a .gist representation:

my $square := { $^a * $^a }
say $square.signature; # ($a)

Exercise 5.4
Create a Block that uses three placeholder variables and evaluates to the maximum
number. The max routine can help. Run the Block with different arguments.

Explicit signatures

The pointy arrow (->) is the start of a signature in which you can specify your param‐
eters. With nothing between the -> and the {, your signature has zero parameters:

my $block := -> { put "You called this block"; };

When you call the Block you have to specify one argument per parameter:

put $block(); # No argument, so it works
put $block(2); # Error - too many parameters

You define parameters between the -> and the {:

my $block := -> $a { put "You called this block with $a"; };

The order of parameters in a signature defines the order in which the arguments will
fill them. If $b is the first parameter, it gets the first argument. Their lexicographical
order doesn’t matter:

my $block := -> $b, $a { $a / $b };
put $block(2, 3); # 1.5
put $block(3, 2); # 0.666667

These sorts of parameters are positional parameters. There’s another sort where you
can specify which argument goes with which parameter. These are named parameters:

my $block := -> :$b, :$a { $a / $b };
put $block(b => 3, a => 2); # 0.666667
put $block(a => 3, b => 2); # 1.5

You’ll see more about signatures in Chapter 11, but this is enough to get you started.

Blocks | 81

https://docs.perl6.org/type/Signature.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

Type constraints

The parameter variables can constrain the types they allow. This Block numerically
divides two values but it doesn’t force you to give it numbers:

my $block := -> $b, $a { $a / $b };

$block(1, 2);
$block('Hamadryas', 'perlicus');

The second call fails:

Cannot convert string to number: base-10 number must
begin with valid digits ...

That fails inside the Block. It should have never reached that code. If you are doing
numeric operations you should only allow numbers:

my $block := -> Numeric $b, Numeric $a { $a / $b };

put $block(1, 2);
put $block('Hamadryas', 'perlicus');

The first call works but the second call tries to use Strs and fails:

2
Type check failed in binding to parameter '$b';
expected Numeric but got Str ("Hamadryas")

Choose another type if the Numeric type is too wide for you:

my $block := -> Int $b, Int $a { $a / $b };

This still has a problem, though. The Int constraint allows anything that smart
matches as an Int. An Int type object satisfies that:

$block(Int, 3); # call still works

That makes it past the parameter gatekeeper and fails in the division. Add a :D after
the type to constrain it to a defined value. Type objects are always undefined:

my $block := -> Int:D $b, Int:D $a { $a / $b };

You’ll see more of this in Chapter 11.

Simple Subroutines
A subroutine is a Block of code with some additional features. Instead of the pointy
arrow you use sub:

my $subroutine := sub { put "Called subroutine!" };

You execute it in the same way:

$subroutine();

82 | Chapter 5: Building Blocks

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Numeric.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Block.html

A subroutine can return a value (a Block can’t). Calling a Sub computes some value
and makes it available to you in the calling scope.

Previously the Blocks handled the output. It’s generally poor form to handle that
from a subroutine since that’s giving it the double job of computing the value and
then outputting. It’s less flexible because it decides what to do with the value. Return‐
ing the value lets you decide later:

my $subroutine := sub { return "Called subroutine!" };
put $subroutine();

Instead of outputting it you could save the result:

my $result = $subroutine();

A return exits the innermost Routine (a superclass of Sub) that it finds itself in. You
can have a return in a Block if that Block is inside some sort of Routine. In this sub‐
routine you declare a Block that includes a return statement and you execute it
immediately. This ends the subroutine right away:

my $subroutine := sub {
 -> { # not a sub!
 return "Called subroutine!"
 }.(); # execute immediately
 put 'This is unreachable and will never run';
 };

put $subroutine(); # Called subroutine!

You’re more likely to use this with something that uses a Block, such as an if con‐
struct. Both of these Blocks can use return because they are inside of a Routine,
which knows how to handle it:

my $subroutine := sub {
 if now.Int %% 2 { return 'Even' }
 else { return 'Odd' }
 };

put $subroutine();

The do if only needs one return:

my $subroutine := sub {
 return do if now.Int %% 2 { 'Even' }
 else { 'Odd' }
 };

put $subroutine();

Simple Subroutines | 83

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Sub.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Routine.html
https://docs.perl6.org/type/Sub.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Routine.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Routine.html

Named Subroutines
A subroutine can have a name. Specify it after the sub. You can then execute the sub‐
routine through its name as well as through its variable. They both do the same thing
because they actually are the same thing:

my $subroutine := sub show-me { return "Called subroutine!" };
put $subroutine.(); # Called subroutine!
put show-me(); # Called subroutine!

More often you’ll probably skip the variable altogether:

sub show-me { return "Called subroutine!" };
put show-me(); # Called subroutine!

To define its signature, put it in parentheses after the subroutine name (that’s slightly
different than with a Block):

sub divide (Int:D $a, Int:D $b) { $a / $b }
put divide(5, 7); # 0.714286

If it won’t confuse the parser, you can omit the parentheses. This is the same thing:

put divide 5, 7; # 0.714286

The subroutine definition is an expression just like a Block. If you have something
other than trailing space after the closing brace, you need the semicolon:

sub divide (Int:D $a, Int:D $b) { $a / $b }; put divide(5, 6);

Subroutines are lexically scoped by default. If you define one in a Block it exists only
inside that Block. The outer scope doesn’t know that divide exists, so this is an error:

{
 sub divide (Int:D $a, Int:D $b) { $a / $b }
 put divide(3, 2);
}

put divide(3, 2); # Error!

This has the same advantage as lexical variable names: you don’t have to know all the
other subroutines to define your own. This also means that if you have a subroutine
you would like to temporarily replace, you can create your own version in the scope
that you need:

sub divide (Int:D $a, Int:D $b) { $a / $b }

put divide 1, 137;

{ # a scope for the fixed version of divide
sub divide (Numeric $b, Numeric $a) {
 put "Calling my private divide!";
 $a / $b
 }

84 | Chapter 5: Building Blocks

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

put divide 1.1, 137.003;
}

Whatever Code
The intent of this chapter was to get to this interesting feature that you’ll use through‐
out the language. You’ll need this for the next few chapters.

The Whatever, *, is a stand-in for something that you will fill in later. The thing that
fills in that value decides what it should be. Here’s what it looks like in an expression
where you add two to something:

my $sum = * + 2;

You know that’s not the * for multiplication because that would need two operands.
So what happens? The compiler recognizes the * and creates a WhateverCode (also
called a thunk). It’s a bit of code that doesn’t define its own scope but isn’t executed
immediately. It’s almost like a Block with one argument:

my $sum := { $^a + 2 }

Call the WhateverCode with an argument to get the final value:

$sum = * + 2;
put $sum(135); # 137

Perhaps you want to have two arguments. You can use two *s and your WhateverCode
will take two arguments:

my $sum = * + *;
put $sum(135, 2); # 137

The Whatever * shows up in many other interesting constructs; that’s the reason
you’re reading about subroutines so early in this book. There are two interesting uses
right away.

Subsets
WhateverCodes allow you to insert code into statements. You can use them to create
more interesting types with subset and where. First define a new type with no con‐
straint. You tell subset which existing type you want to start with. This creates some‐
thing that’s the same as Int:

subset PositiveInt of Int;
my PositiveInt $x = -5;
put $x;

This checks the assignment at runtime. The type you put in $x must be a
PositiveInt, but that’s the same as an Int (so far). -5 is an Int, so this works.

Whatever Code | 85

https://docs.perl6.org/type/Whatever.html
https://docs.perl6.org/type/WhateverCode.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/WhateverCode.html
https://docs.perl6.org/type/WhateverCode.html
https://docs.perl6.org/type/Whatever.html
https://docs.perl6.org/type/WhateverCode.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Int.html

Now constrain the valid values of Int by specifying a where clause with a Block of
code:

subset PositiveInt of Int where { $^a > 0 };
my PositiveInt $x = -5;
put $x;

When you try to assign to $x you trigger the runtime type checking. The variable $x
knows it needs to be a PositiveInt. It takes a value that might fit into PositiveInt
and gives it to the Block in the where clause. If that code evaluates to True, the vari‐
able accepts that value. If it is False you get an error:

Type check failed in assignment to $x;
expected PositiveInt but got Int (-5)

The Whatever allows you to omit some of the typing. The * will do most of that work
for you. It stands in for the thingy you want to test. These aren’t full types but act like
they are:

subset PositiveInt of Int where * > 0;
my PositiveInt $x = -5;
put $x;

Once you have a subset you can use it in a signature. If an argument is not a positive
integer you get a runtime error:

subset PositiveInt of Int where * > 0;

sub add-numbers (PositiveInt $n, PositiveInt $m) {
 $n + $m
 }

put add-numbers 5, 11; # 16
put add-numbers -5, 11; # Error

You don’t need to define an explicit subset, though. You can use where inside the sig‐
nature. This is handy when you only need the constraint once:

sub add-numbers ($n where * > 0, $m where * > 0) {
 $n + $m
 }

You’ll see more subsets as you go along; they are handy ways to limit values without a
lot of code. You haven’t read about modules yet, but Subset::Common has several
examples you might find handy.

Exercise 5.5
Use subset to create a divide subroutine that doesn’t allow the denominator to be
zero.

86 | Chapter 5: Building Blocks

https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Whatever.html

Summary
This chapter provided a brief introduction to subroutines and code-like things. There
are simple Blocks that group code and define a scope, and there are more sophistica‐
ted subroutines that know how to pass a value back to their caller. Each of these have
sophisticated ways to handle arguments. This chapter gave you enough detail so you
can use them in the next couple of chapters. You’ll see more powerful subroutine fea‐
tures in Chapter 11.

Summary | 87

https://docs.perl6.org/type/Block.html

CHAPTER 6

Positionals

Your programming career is likely to be, at its heart, about moving and transforming
ordered lists of some kind. Those might be to-do lists, shopping lists, lists of web
pages, or just about anything else.

The broad term for such as list is Positional. Not everything in this chapter is
strictly one of those; it’s okay to pretend that they are, though. The language easily
interchanges among many of the types you’ll see in this chapter, and it’s sometimes
important to keep them straight. Mind their differences and their different uses to get
exactly the behavior you want.

This is the first chapter where you’ll experience the laziness of the language. Instead
of computing things immediately as you specify them in your code, your program
will remember it needs to do something. It then only does it if you later use it. This
feature allows you to have infinite lists and sequences without actually creating them.

Constructing a List
A List is an immutable series of zero or more items. The simplest List is the empty
list. You can construct one with no arguments. The List as a whole is one thingy and
you can store it in a scalar:

my $empty-list = List.new;
put 'Elements: ', $empty-list.elems; # Elements: 0

The .elems method returns the number of elements, which is 0 for the empty List.
This might seem like a trivial result, but imagine those cases where you want to
return no results: an empty List can be just as meaningful as a nonempty one.

Instead of the call to .new, you can use empty parentheses to do the same thing. Nor‐
mally parentheses simply group items, but this is special syntax:

89

https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html

my $empty-list = (); # Also the empty List

There’s also a special object for that. Empty clearly shows your intent:

my $empty-list = Empty;

You can specify elements in .new by separating the elements with commas. Both the
colon and parentheses forms work:

my $butterfly-genus = List.new:
 'Hamadryas', 'Sostrata', 'Junonia';

my $butterfly-genus = List.new(
 'Hamadryas', 'Sostrata', 'Junonia'
);

You cannot make an empty List with $(): that’s just Nil.

The $(...) with a list inside also constructs a List. The $ indicates that it is an item.
This one happens to be a List object. You can check the number of elements in it
with .elems:

my $butterfly-genus = $('Hamadryas', 'Sostrata', 'Junonia');
put $butterfly-genus.elems; # 3

Or you can leave off the $ in front of the parentheses. You still need the grouping
parentheses because item assignment is higher precedence than the comma:

my $butterfly-genus = ('Hamadryas', 'Sostrata', 'Junonia');
put $butterfly-genus.elems; # 3

A container can be an element in a List. When you change the value in the container
it looks like the List changes, but it doesn’t actually change because the container is
the List item and that container itself was still the List item:

my $name = 'Hamadryas perlicus';
my $butterflies = ($name, 'Sostrata', 'Junonia');
put $butterflies; # (Hamadryas perlicus Sostrata Junonia)

$name = 'Hamadryas';
put $butterflies; # (Hamadryas Sostrata Junonia)

You don’t need the named variable, though. You can use an anonymous scalar con‐
tainer as a placeholder that you’ll fill in later. Since it has no value (or even a type), it’s
an Any type object:

my $butterflies = ($, 'Sostrata', 'Junonia');
put $butterflies; # ((Any) Sostrata Junonia)

90 | Chapter 6: Positionals

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Any.html

All of this quoting and comma separating is a bit tedious, but there’s a shortcut. You
can quote a list with qw. It creates items by breaking the text apart by whitespace. This
makes a three-element List:

my $butterfly-genus = qw<Hamadryas Sostrata Junonia>;
put 'Elements: ', $butterfly-genus.elems; # Elements: 3

qw is another form of the generalized quoting you saw in Chapter 4. It uses the :w
adverb and returns a List. You won’t see this form much, but it’s what you’re doing
here:

my $butterfly-genus = Q :w/Hamadryas Sostrata Junonia/

That’s still too much work. You can enclose the Strs in angle brackets and leave out
the item quoting and the separating commas. This acts the same as qw:

my $butterfly-genus = <Hamadryas Sostrata Junonia>;

The <> only works if you don’t have whitespace inside your Strs. This gives you four
elements because the space between 'Hamadryas and perlicus' separates them:

my $butterflies = < 'Hamadryas perlicus' Sostrata Junonia >;
put 'Elements: ', $butterflies.elems; # Elements: 4

Perl 6 has thought of that too and provides a List quoting mechanism with quote
protection. The <<>> keeps the thingy in quotes as one item even though it has white‐
space in it:

my $butterflies = << 'Hamadryas perlicus' Sostrata Junonia >>;
put 'Elements: ', $butterflies.elems; # Elements: 3

With the <<>> you can interpolate a variable. After that the value of the variable is an
item but isn’t linked to the original variable:

my $name = 'Hamadryas perlicus';
my $butterflies = << $name Sostrata Junonia >>;
say $butterflies;

Instead of <<>>, you can use the fancier quoting with the single-character «» version
(double angle quotes). These are sometimes called French quotes:

my $butterflies = « $name Sostrata Junonia »;

Both of these quote-protecting forms are the same as the :ww adverb for Q:

my $butterflies = Q :ww/ 'Hamadryas perlicus' Sostrata Junonia /;
put 'Elements: ', $butterflies.elems; # Elements: 3

Sometimes you want a List where all the elements are the same. The xx list replica‐
tion operator does that for you:

my $counts = 0 xx 5; # (0, 0, 0, 0, 0)

A List interpolates into a Str like any other scalar variable:

Constructing a List | 91

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Str.html

my $butterflies = << 'Hamadryas perlicus' Sostrata Junonia >>;
put "Butterflies are: $butterflies";

The List stringifies by putting spaces between its elements. You can’t tell where one
element stops and the next starts:

Butterflies are: Hamadryas perlicus Sostrata Junonia

The .join method allows you to choose what goes between the elements:

my $butterflies = << 'Hamadryas perlicus' Sostrata Junonia >>;
put "Butterflies are: ", $butterflies.join: ', ';

Now the output has commas between the elements:

Butterflies are: Hamadryas perlicus, Sostrata, Junonia

You can combine both of these, which makes it easier to also surround the List items
with characters to set them off from the rest of the Str:

my $butterflies = << 'Hamadryas perlicus' Sostrata Junonia >>;
put "Butterflies are: /{$butterflies.join: ', '}/";

If you needed to parse this Str in some other program you’d know to grab the ele‐
ments between the slashes:

Butterflies are: /Hamadryas perlicus, Sostrata, Junonia/

Exercise 6.1
Write a program that takes two arguments. The first is a Str and the second is the
number of times to repeat it. Use xx and .join to output the text that number of
times on separate lines.

Iterating All the Elements
Iteration is the repetition of a set of operations for each element of a collection. The
for control structure iterates through each element of a List and runs its Block once
for each element as the topic. You can use the .List method to treat the one thing in
your scalar variable (your List) as its individual elements:

for $butterfly-genus.List {
 put "Found genus $_";
 }

You get one line per element:

Found genus Hamadryas
Found genus Sostrata
Found genus Junonia

92 | Chapter 6: Positionals

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/List.html

Although I tend to call these things Positionals there is actually a
separate role for Iterables that does the magic to make for work.
The Positionals I present in this book also do the Iterable role,
so I don’t distinguish them even though I’m strictly wrong.

Calling .List is a bit annoying though, so there’s a shortcut for it. Prefix the variable
with @ to do the same thing:

for @$butterfly-genus {
 put "Found genus $_";
 }

Skip the $ sigil altogether and use the @ sigil to store a List in a variable:

my @butterfly-genus = ('Hamadryas', 'Sostrata', 'Junonia');

for @butterfly-genus {
 put "Found genus $_";
 }

This is actually different from the item assignment you’ve seen before. It’s a list
assignment where the = operator has a lower precedence:

my @butterfly-genus = 'Hamadryas', 'Sostrata', 'Junonia';

Why would you choose $ or @? Assigning to $butterfly-genus gives you a List and
all the restrictions of that type. You can’t add or remove elements. You can change the
values inside a container but not the container itself. What do you get when you
assign this way?

my @butterfly-genus = 'Hamadryas', 'Sostrata', 'Junonia';
put @butterfly-genus.^name; # Array

You get an Array, which you’ll see more of later in this chapter. An Array relaxes all
those restrictions. It allows you to add and remove elements and change values.
Choose the type that does what you want. If you want the data to stay the same,
choose the one that can’t change.

This looks a little better with interpolation, which means you’re less likely to forget
explicit whitespace around words:

for @butterfly-genus {
 put "$_ has {.chars} characters";
 }

You’ll often want to give your variable a meaningful name. You can use a pointy
Block to name your parameter instead of using the topic variable, $_:

for @butterfly-genus -> $genus {
 put "$genus has {$genus.chars} characters";
 }

Constructing a List | 93

https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Iterable.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Iterable.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Block.html

That looks a lot like the definition of a subroutine with -> { ... }, because that’s
what it is. That parameter is lexical to that Block just as it would be in a subroutine.

If your Block has more than one parameter, then the for takes as many elements as it
needs to fill in all of them. This goes through the List by twos:

my @list = <1 2 3 4 5 6 7 8>;

for @list -> $a, $b {
 put "Got $a and $b";
 }

Each iteration of the Block takes two elements:

Got 1 and 2
Got 3 and 4
Got 5 and 6
Got 7 and 8

Ensure that you have enough elements to fill all of the parameters or you’ll get an
error. Try that bit of code with one less element to see what happens!

You can use placeholder variables in your Block, but in that case you don’t want to
use a pointy Block, which would already create a signature for you. Using placeholder
variables also works:

my @list = <1 2 3 4 5 6 7 8>;

for @list {
 put "Got $^a and $^b";
 }

Reading lines of input

The lines routine reads lines of input from the files you specify on the command
line, or from standard input if you don’t specify any. You’ll read more about this in
Chapter 8 but it’s immediately useful with for:

for lines() {
 put "Got line $_";
 }

Your programs reads and reoutputs all of the lines from all of the files. The line end‐
ing was autochomped; it was automatically stripped from the value because that’s
probably what you wanted. The put adds a line ending for you:

% perl6 your-program.p6 file1.txt file2.txt
Got line ...
Got line ...
...

94 | Chapter 6: Positionals

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

You need those parentheses even without an argument. The lines routine can take
an argument that tells it how many lines to grab:

for lines(17) {
 put "Got line $_";
 }

You can break the lines into “words.” This takes a Str (or something that can turn
into a Str) and gives you back the nonwhitespace chunks as separate elements:

say "Hamadryas perlicus sixus".words; # (Hamadryas perlicus sixus)
put "Hamadryas perlicus sixus".words.elems; # 3

Combine this with lines to iterate one word at a time:

for lines.words { ... }

The .comb method takes it one step further by breaking it into characters:

for lines.comb { ... }

You’ll see more about .comb in Chapter 16, where you’ll learn how to tell it to divide
up the Str.

With those three things you can implement your own wc program:

for lines() {
 state $lines = 0;
 state $words = 0;
 state $chars = 0;
 $lines++;
 $words += .words;
 $chars += .comb;
 LAST {
 put "lines: $lines\nwords: $words\nchars: $chars";
 }
 }

The character count with this version doesn’t count all of the characters because the
line ending was automatically removed.

Exercise 6.2
Read the lines from the files you specify on the command line. Output each line pre‐
fixed by the line number. At the end of each line show the number of “words” in the
line.

Constructing a List | 95

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Exercise 6.3
Output all of the lines of the butterfly census file (from https://www.learning
perl6.com/downloads/) that contain the genus Pyrrhogyra. How many lines did you
find? If you don’t want to use that file try something else you have lying around.

Ranges
A Range specifies the inclusive bounds of possible values without creating all of the
items that would be in that List. A Range can be infinite because it doesn’t create all
the elements; a List would take up all your memory.

Create a Range with .. and your bounds on either side:

my $digit-range = 0 .. 10;
my $alpha-range = 'a' .. 'f';

If the lefthand value is larger than the righthand value you still get a Range, but it will
have no elements and you won’t get a warning:

my $digit-range = 10 .. 0;
put $digit.elems; # 0

You can exclude one or both endpoints with ^ on the appropriate side of the .. oper‐
ator. Some people call these the cat ears:

my $digit-range = 0 ^.. 10; # exclude 0 (1..10)
my $digit-range = 0 ..^ 10; # exclude 10 (0..9)
my $digit-range = 0 ^..^ 10; # exclude 0 and 10 (1..9)

As a shortcut for a numeric range starting from 0, use the ^ and the upper (exclusive)
bound. This is very common Perl 6 code:

my $digit-range = ^10; # Same as 0 ..^ 10

This gives you the values 0 to 9, which is 10 values altogether even though 10 is not
part of the range.

Exercise 6.4
How many items are in the range from 'aa' to 'zz'? How many from 'a' to 'zz'?

A Range knows its bounds. To see all of the values it would produce you can
use .List to turn it into a list. Be aware that if your Range is very large you might
suddenly hog most of the memory on your system, so this isn’t something you’d nor‐
mally want to do. It’s nice for debugging though:

96 | Chapter 6: Positionals

https://www.learningperl6.com/downloads/
https://www.learningperl6.com/downloads/
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Range.html

% perl6
> my $range = 'a' .. 'f';
"a".."f"
> $range.elems
6
> $range.List
(a b c d e f)

Exercise 6.5
Show all of the spreadsheet cell addresses from B5 to F9.

A smart match against a Range checks if a value is between the Range’s bounds:

% perl6
> 7 ~~ 0..10
True
> 11 ~~ ^10
False

A Range isn’t a List, though. Any value between the bounds is part of the Range, even
if it’s not a value that you would get if you listified the Range:

% perl6
> 1.37 ~~ 0..10
True
> 9.999 ~~ 0..10
True
> -137 ~~ -Inf..Inf # infinite range!
True

Excluding the endpoint doesn’t mean that the last element is the next-lowest integer.
Here, it’s the exact value 10 that’s excluded; everything positive and less than 10 is still
in the Range:

% perl6
> 9.999 ~~ ^10
True

This is quite different from the listified version!

The @ Coercer
A Range isn’t a List. In some situations it acts like separate elements instead of
merely bounds but in others it maintains its rangeness. Usually that works because
something implicitly coerces it for you.

Ranges | 97

https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/List.html

Start with a Range. Output it using put and say. These show you different representa‐
tions because their text representations of the object are different: put uses .Str and
say uses .gist:

my $range = 0..3;
put $range.^name; # Range
say $range; # 0..3
put $range; # 0 1 2 3

This distinction in the representation of the object is important. When you see say in
this book it’s because I want to show you .gist because that’s closer to a summary of
the object.

You can make that a List by coercing it with the .List method:

my $list = $range.List;
put $list.^name; # List
say $list; # (0 1 2 3)

Which one of these you have matters. A List works differently in a smart match
because the element must be part of the List:

put "In range? ", 2.5 ~~ $range; # True
put "In list? ", 2.5 ~~ $list; # False

Instead of typing .List everywhere that you want something treated as such, you can
use the prefix list context operator, @, just like you’ve seen with the context operators
+ and ~:

my $range = 0..3;

put "In range? ", 2.5 ~~ $range; # True (Range object)
put "In .List? ", 2.5 ~~ $range.List; # False (List object)
put "In @? ", 2.5 ~~ @$range; # False (List object)

Later you’ll use the @ sigil for Array variables. For now it’s a convenient way to treat
something like a List.

Sequences
A sequence, Seq, knows how to make a future List. It’s similar to a List but it’s lazy.
It knows where its values will come from and defers producing them until you
actually need them.

A Seq isn’t really a Positional but it has a way to fake it. Rather
than explain that I’m going to fake it too.

98 | Chapter 6: Positionals

https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Positional.html

You call .reverse on a List to flip the list around. When you call List methods it
just works:

my $countdown = <1 2 3 4 5>.reverse;
put $countdown.^name; # Seq
put $countdown.elems; # 5

The result isn’t actually a Seq, but in most common cases that isn’t important. The
things that try to use it as a List will get what they expect, and there’s no immediate
need to create another List when the Seq knows the values from the original one.

However, calling .eager converts the Seq to a List:

my $countdown = <1 2 3 4 5>.reverse.eager;
put $countdown.^name; # Seq
put $countdown.elems; # 5

If you assign the Seq to a variable with the @ sigil the Seq also turns into a List. This
is an eager assignment to an Array (coming up soon):

my @countdown = <1 2 3 4 5>.reverse;
put @countdown.^name; # Array
put @countdown.elems; # 5

The .pick method chooses a random element from a List:

my $range = 0 .. 5;
my $sequence = $range.reverse;
say $sequence.^name; # Seq;

put $sequence.pick; # 5 (or maybe something else)

By default you can only iterate through a Seq once. You use an item, then move on to
the next one. This means that a Seq needs to know how to make the next element,
and once it uses it it can discard it—it doesn’t remember past values. If you try to use
the Seq after it’s gone through all of its elements you get an error:

put $sequence.pick; # 3 (or maybe something else)
put $sequence; # Error

The error tells you what to do:

This Seq has already been iterated, and its values consumed
(you might solve this by adding .cache on usages of the Seq, or
by assigning the Seq into an array)

Adding .cache remembers the elements of the Seq so you can reuse them. After
the .pick there’s no error:

my $range = 0 .. 5;
my $sequence = $range.reverse.cache;
say $sequence.^name; # Seq;

Sequences | 99

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html

put $sequence.pick; # 5 (or maybe something else)
put $sequence; # 5 4 3 2 1 0

This isn’t something you want to do carelessly, though. Part of the benefit of the Seq is
the memory saving it provides by not duplicating data unless it needs to.

Infinite Lazy Lists
The Seq has to make all of the elements to .pick one of them. Once it does that it
forgets them and doesn’t have a way to make more elements. Perl 6 does this to sup‐
port infinite lazy lists. You make these with the triple-dot sequence operator, By
binding to the Seq you give it a name without immediately reducing it to its values:

my $number-sequence := 1 ... 5;

That’s the integers from 1 to 5. The Seq looks at the start and figures out how to get to
the end. That sequence is easy; it adds a whole number.

You can make an exclusive endpoint (but not an exclusive startpoint). This Seq is the
integers from 1 to 4:

my $exclusive-sequence := 1 ...^ 5;

A Range can’t count down, but a Seq can. This one subtracts whole numbers:

my $countdown-sequence := 5 ... 1;

The same thing works for letters:

my $alphabet-sequence := 'a' ... 'z';

You can tell the Seq how to determine the next element. You can specify more than
one item for the start to give it the pattern:

my $s := 0, 1, 2 ... 256; # 257 numbers, 0 .. 256

This is the series of whole numbers from 0 to 256. That’s the easiest pattern there. But
add a 4 after the 2 and it’s a different series. Now it’s the powers of 2:

my $s := 0, 1, 2, 4 ... 256; # powers of 2
say $s; # (0 1 2 4 8 16 32 64 128 256)

The ... can figure out arithmetic or geometric series. But it gets better. If you have a
more complicated series you can give it a rule to make the next item. That rule can be
a Block that grabs the previous argument and transforms it. Here it adds 0.1 to the
previous element until it gets to 1.8. You couldn’t do this with a Range:

my $s := 1, { $^a + 0.1 } ... 1.8;
say $s; # (1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8)

If you have more than one positional parameter in your Block it looks farther back in
the series. Here are the Fibonacci numbers up to 21:

100 | Chapter 6: Positionals

https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Block.html

my $s := 1, 1, { $^a + $^b } ... 21;
say $s; # (1 1 2 3 5 8 13 21)

The Seq only ends when it creates an item that is exactly equal to the endpoint. If you
change that to 20 you get an infinite series and your program hangs while it creates
every element so it can count them:

my $s := 1, 1, { $^a + $^b } ... 20;
say $s.elems; # never gets an answer but keeps trying

Instead of a literal endpoint you can give it a Block. The Seq stops when the Block
evaluates to True (but keeps the element that makes it True):

my $s := 1, 1, { $^a + $^b } ... { $^a > 20 };
say $s.elems; # (1 1 2 3 5 8 13 21)

Those Blocks are unwieldy, but you know that you can shorten them with Whatevers.
Do the endpoint first:

my $s := 1, 1, { $^a + $^b } ... * > 20;

You can reduce the first Block with two Whatevers. That WhateverCode sees two *s
and knows it needs two elements:

my $s := 1, 1, * + * ... * > 20;

That stops the Fibonacci numbers at 21. What if you wanted all of the Fibonacci
numbers? The Whatever by itself can be the endpoint and in that context it is never
True; this series never ends:

my $s := 1, 1, * + * ... *;

This is one of the reasons .gist exists. It gives a summary of the object. It knows that
this is an infinite Seq so it doesn’t try to represent it:

put $s.gist; # (...)
say $s; # (...), .gist implicitly

That’s it. That’s the heart of Seq. It can produce an infinite number of values but it
doesn’t do it immediately. It knows the pattern to get to the next one.

Recall that a Seq doesn’t remember all the values. Once it goes through them it
doesn’t store them or regenerate them. In this example it reverses the list and exhausts
the series. That’s all in the first put. There’s nothing left for the second put:

my $s := 1 ... 5;

put $s.reverse; # (5 4 3 2 1)
put $s; # Error

You get this error:

Sequences | 101

https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Whatever.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Whatever.html
https://docs.perl6.org/type/WhateverCode.html
https://docs.perl6.org/type/Whatever.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html

This Seq has already been iterated, and its values consumed
(you might solve this by adding .cache on usages of the Seq, or
by assigning the Seq into an array)

The error tells you what to do. You can call .cache on a Seq to force it to remember
the values, even if this will eat up all of your memory:

my $s := 1 ... 5;
put $s.cache.reverse; # 5 4 3 2 1
put $s; # 1 2 3 4 5

Should you need to treat a Seq as a List, coerce it with @. This generates all of its
values:

my $s = (1 ... 5);
put $s.^name; # Seq

my $list-from-s = @$s;
put $list-from-s.^name; #List

Most of the time a Seq will act like a List, but sometimes you need to give some
hints.

Gathering Values
The previous Seqs could easily compute their next values based on the ones that came
before. That’s not always the case. A gather with a Block returns a Seq. When you
want the next value the gather runs the code. A take produces a value. Here’s the
same thing as 1 ... 5 using gather:

my $seq := gather {
 state $previous = 0;

 while $previous++ < 5 { take $previous }
 }

say $seq;

Each time the code encounters a take it produces a value, then waits until the next
time something asks for a value. The Seq stops when the code gets to the end of the
gather Block. In this example, the while Block runs once for each access to the Seq.

You don’t need the braces for the Block if the statement fits on one line. This is an
infinite Seq:

my $seq := gather take $++ while 1;

Those are easily done with the tools you already had. What about a random Seq of
random values? This gather keeps choosing one value from @array, forever:

my @array = <red green blue purple orange>;
my $seq := gather take @array.pick(1) while 1;

102 | Chapter 6: Positionals

https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html

Here’s a gather that provides only the lines of input with eq in them. It doesn’t have
to wait for all of the input to start producing values. And since the Seq controls access
to the lines, you don’t need to use or store them right away:

my $seq := gather for lines() { next unless /eq/; take $_ };

for $seq -> $item {
 put "Got: $item";
 }

You can store these in a Positional without being eager:

my @seq = lazy gather for lines() { next unless /eq/; take $_ };

for @seq -> $item {
 put "Got: $item";
 }

It doesn’t matter how you create the Seq. Once you have it you can use it and pass it
around like any other sequence.

Exercise 6.6
Use gather and take to produce an infinite cycle of alternating values from an Array
of color names. When you get to the end of the array, go back to the beginning and
start again.

Single-Element Access
You can extract a particular element by its position in the object, whether that’s a
List, Range, Seq, or other type of Positional thingy. Each position has an index
that’s a positive integer (including 0). To get the element, append [POSITION] to your
thingy:

my $butterfly-genus = <Hamadryas Sostrata Junonia>;
my $first-butterfly = $butterfly-genus[0];
put "The first element is $first-butterfly";

[POSITION]is a postcircumfix operator. Operators are actually methods (Chapter 12),
so you can use the method dot between the object and the [POSITION] (although you
mostly won’t):

my $first-butterfly = $butterfly-genus.[0];

You can interpolate either form in double-quoted Strs:

put "The first butterfly is $butterfly-genus[0]";
put "The first butterfly is $butterfly-genus.[0]";

Single-Element Access | 103

https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Str.html

Since the index counts from zero the last position is one less than the number of ele‐
ments. The .end method knows that position:

my $end = $butterfly-genus.end; # 2
my $last-butterfly = $butterfly-genus[$end]; # Junonia

If the thingy happens to be a lazy list you’ll get an error trying to find its end element;
you can check if it is with .is-lazy and perhaps do something different in that case:

my $butterfly-genus = <Hamadryas Sostrata Junonia>;
$butterfly-genus = (1 ... *);
put do if $butterfly-genus.is-lazy { 'Lazy list!' }
 else {
 my $end = $butterfly-genus.end;
 $butterfly-genus[$end]
 }

If you specify a position less than 0 you get an error. If you try to do it with a literal
value the error message tells you that you’ve carried a habit over from a different lan‐
guage:

$butterfly-genus[-1]; # fine in Perl 5, but error in Perl 6!

The error message tells you to use *-1 instead, which you’ll read more about in just a
moment:

Unsupported use of a negative -1 subscript to index from the end;
in Perl 6 please use a function such as *-1

But if you’ve put that index in a variable, perhaps as the result of poor math, you get a
different error:

my $end = -1;
$butterfly-genus[$i];

This time it tells you that you are out of bounds:

Index out of range. Is: -1, should be in 0..^Inf

This doesn’t work the same way on the other side. If you try to access an element
beyond the last one, you get back Nil with no error message:

my $end = $butterfly-genus.end;
$butterfly-genus[$end + 1]; # Nil!

Curiously, though, you can’t use Nil to tell if you specified a wrong position because
Nil can be an element of a List:

my $has-nil = ('Hamadryas', Nil, 'Junonia', Nil);
my $butterfly = $has-nil.[3]; # works, but still Nil!

You can also put almost any code you like inside the square brackets. It should evalu‐
ate to an Int, but if it doesn’t the operator will try to convert it to one. You can skip
the $end variable you’ve used so far and use .end directly:

104 | Chapter 6: Positionals

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Int.html

my $last-butterfly = $butterfly-genus[$butterfly-genus.end];

If you wanted the next-to-last element, you could subtract one:

my $next-to-last = $butterfly-genus[$butterfly-genus.end - 1];

This way of counting from the end is quite tedious though, so there’s a shorter way to
do it. A Whatever star inside the [] is the number of elements in the list (not the last
index!). That * is one greater than the last position. Subtract 1 from * to get the index
for the last element:

my $last-butterfly = $butterfly-genus[*-1];

To get the next-to-last element, subtract one more:

my $next-to-last = $butterfly-genus[*-2];

If you subtract more than the number of elements, you’ll get Nil (rather than an out-
of-index error like you would without the *).

If you have a Seq it will create whatever items it needs to get to the one that you ask
for. The triangle numbers add the index of the element to the previous number to get
the next number in the series. If you want the fifth one ask for that index:

my $triangle := 0, { ++$ + $^a } ... *;
say $triangle[4];

Exercise 6.7
The squares of numbers is the sequence where you add 2n–1 to the previous value. n
is the position in the sequence. Use the sequence operator ... to compute the square
of 25.

Changing a Single Element
If your List element is a container you can change its value. Previously you used an
anonymous scalar container as a placeholder in one of your lists:

my $butterflies = ($, 'Sostrata', 'Junonia');
say $butterflies; # ((Any) perlicus Sostrata Junonia)

You can’t change the container, but you can change the value that’s in the container:

$butterflies.[0] = 'Hamadryas';
say $butterflies; # (Hamadryas Sostrata Junonia)

If you try to change an item that is not a container you get an error:

$butterflies.[1] = 'Ixias';

The error tells you that the element there is something that you cannot change:

Single-Element Access | 105

https://docs.perl6.org/type/Whatever.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/List.html

Cannot modify an immutable Str (...)

Multiple-Element Access
You can access multiple elements at the same time. A slice specifies more than one
index in the brackets:

my $butterfly-genus = <Hamadryas Sostrata Junonia>;
my ($first, $last) = $butterfly-genus[0, *-1];
put "First: $first Last: $last";

Notice that you can declare multiple variables at the same time by putting them in
parentheses after the my. Since that’s not a subroutine call you still need a space after
my. The output shows the first and last elements:

First: Hamadryas Last: Junonia

The indices can come from a Positional. If you’ve stored that in a scalar variable you
have to coerce or flatten it:

put $butterfly-genus[1 .. *-1]; # Sostrata Junonia

my $indices = (0, 2);
put $butterfly-genus[@$indices]; # Hamadryas Junonia
put $butterfly-genus[|$indices]; # Hamadryas Junonia

my @positions = 1, 2;
put $butterfly-genus[@positions]; # Sostrata Junonia

Assigning to multiple elements works the same way inside the brackets. However, the
elements must be mutable. If they aren’t containers you won’t be able to change them:

my $butterfly-genus = ($, $, $);
$butterfly-genus[1] = 'Hamadryas';
$butterfly-genus[0, *-1] = <Gargina Trina>;
put $butterfly-genus;

You can fix that by using an Array, which you’re about to read more about. The Array
automatically containerizes its elements:

my @butterfly-genus = <Hamadryas Sostrata Junonia>;
@butterfly-genus[0, *-1] = <Gargina Trina>;
put @butterfly-genus;

Arrays
You can’t change a List. Once constructed it is what it is and keeps the same number
of elements. You can’t add or remove any elements. Unless the item is a container,
each List item’s value is fixed.

106 | Chapter 6: Positionals

https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html

Arrays are different. They containerize every item so that you can change any of
them, and the Array itself is a container. You could start with the Array class to make
an object:

my $butterfly-genus = Array.new: 'Hamadryas', 'Sostrata', 'Junonia';

You’ll probably never see that, though. Instead, you can use square brackets to make
an Array. Each item in the Array becomes a container even if it didn’t start as one:

my $butterfly-genus = ['Hamadryas', 'Sostrata', 'Junonia'];

Since every item is a container you can change any value by assigning to it through a
single-element access:

$butterfly-genus.[1] = 'Paruparo';
say $butterflies; # [Hamadryas Paruparo Junonia]

This new behavior gets its own sigil, the @ (which looks a bit like an a for Array).
When you assign a listy thing to an @ variable you get an Array:

my @butterfly-genus = <Hamadryas Sostrata Junonia>;
put @butterfly-genus.^name; # Array

The = here is the list assignment operator you met earlier. Since you have an Array on
the left side of the operator the = knows it’s the list variety. That one is lower prece‐
dence than the comma, so you can leave off the grouping parentheses you’ve been
using so far:

my @butterfly-genus = 1, 2, 3;

Exercise 6.8
You’ve already used an Array that you haven’t seen. @*ARGS is the collection of Strs
that you’ve specified on the command line. Output each element on its own line.

Constructing an Array
There’s a hidden list assignment here that makes this possible. In its expanded form
there are a couple of steps. Greatly simplified, the Array sets up a scalar container for
the number of items it will hold and binds to that:

my @butterfly-genus := ($, $, $); # binding

Then it assigns the items in the incoming list to the containers in the Array:

@butterfly-genus = <Hamadryas Sostrata Junonia>;

You don’t need to do any of this yourself because it happens automatically when you
assign to an Array (the @ variable). Array items are always containers, and the Array
itself is a container.

Arrays | 107

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html

The square brackets construct an Array (and it’s the square brackets that index
Arrays). You can assign to a scalar or Array variable:

my $array = [<Hamadryas Sostrata Junonia>];
put $array.^name; # Array
put $array.elems; # 3
put $array.join: '|'; # Hamadryas|Sostrata|Junonia

my @array = [<Hamadryas Sostrata Junonia>];
put @array.^name; # Array
put @array.elems; # 3
put @array.join: '|'; # Hamadryas|Sostrata|Junonia

If you are going to assign to @array you don’t need the brackets, though. This is the
same thing:

my @array = <Hamadryas Sostrata Junonia>;
put @array.^name; # Array
put @array.elems; # 3

The brackets are handier when you want to skip the variable. You would do this for
temporary data structures or subroutine arguments. You’ll see more of those as you
go on.

Interpolating Arrays
A double-quoted Str can interpolate single or multiple elements of a Positional or
even all the elements. Use the brackets to select the elements that you want:

my $butterflies = <Hamadryas Sostrata Junonia>;
put "The first butterfly is $butterflies[0]";
put "The last butterfly is $butterflies[*-1]";
put "Both of those are $butterflies[0,*-1]";
put "All the butterflies are $butterflies[]";

When it interpolates multiple elements it inserts a space between the elements:

The first butterfly is Hamadryas
The last butterfly is Junonia
Both of those are Hamadryas Junonia
All the butterflies are Hamadryas Sostrata Junonia

You can interpolate Ranges too:

my $range = 7 .. 13;
put "The first is $range[0]"; # The first is 7
put "The last is $range[*-1]"; # The last is 13
put "All are $range"; # All are 7 8 9 10 11 12 13

The other Positionals behave similarly based on how they generate their elements.

108 | Chapter 6: Positionals

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Positional.html

Array Operations
Since the Array is a container you can change it. Unlike with a List, you can add and
remove items. The .shift method removes the first item from the Array and gives it
back to you. That item is no longer in the Array:

my @butterfly-genus = <Hamadryas Sostrata Junonia>;
my $first-item = @butterfly-genus.shift;
say @butterfly-genus; # [Sostrata Junonia]
say $first-item; # Hamadryas

If the Array is empty you get a Failure, but you won’t learn about those until Chap‐
ter 7. You don’t get an immediate error; the error shows up when you try to use it
later:

my @array = Empty;
my $element = @array.shift;
put $element.^name; # Failure (soft exception)

That error is False but won’t complain when it’s in a conditional:

while my $element = @array.shift { put $element }

The .pop method removes the last item:

my @butterfly-genus = <Hamadryas Sostrata Junonia>;
my $first-item = @butterfly-genus.pop;
say @butterfly-genus; # [Hamadryas Sostrata]
say $first-item; # Junonia

To add one or more items to the front of the list, use .unshift. One top-level item
becomes one element in the Array:

my @butterfly-genus = Empty;
@butterfly-genus.unshift: <Hamadryas Sostrata>;
say @butterfly-genus; # [Hamadryas Sostrata]

.push adds a list of items to the end of the list:

@butterfly-genus.push: <Junonia>;
say @butterfly-genus; # [Hamadryas Sostrata Junonia]

With .splice you can add elements to or remove them from anywhere in the Array.
It takes a starting index, a length, and the items to remove from the list. It gives you
the elements it removed:

my @butterfly-genus = 1 .. 10;
my @removed = @butterfly-genus.splice: 3, 4;
say @removed; # [4 5 6 7]
say @butterfly-genus; # [1 2 3 8 9 10]

You can give .splice items to replace those that you removed:

Arrays | 109

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html

my @butterfly-genus = 1 .. 10;
my @removed = @butterfly-genus.splice: 5, 2, <a b c>;
say @removed; # [6 7]
say @butterfly-genus; # [1 2 3 4 5 a b c 8 9 10]

If the length is 0 you don’t remove anything, but you can still insert items. You get an
empty Array back:

my @butterfly-genus = 'a' .. 'f';
my @removed = @butterfly-genus.splice: 5, 0, <X Y Z>;
say @removed; # []
say @butterfly-genus; # [a b c d e X Y Z f]

Each of these Array methods have routine versions:

my $first = shift @butterfly-genus;
my $last = pop @butterfly-genus;

unshift @butterfly-genus, <Hamadryas Sostrata>;
push @butterfly-genus, <Junonia>

splice @butterfly-genus, $start-pos, $length, @elements;

Exercise 6.9
Start with an Array that holds the letters from a to f. Use the Array operators to move
those elements to a new Array that will have the same elements in reverse order.

Exercise 6.10
Start with the Array that holds the letters from a to f. Use only .splice to make these
changes: remove the first element, remove the last element, add a capital A to the
front of the list, and add a capital F to the end of the list.

Lists of Lists
A List can be an element of another List (or Seq). Depending on your previous lan‐
guage experience your reaction to this idea will be either “Of course!” or “This is so
wrong!”

The .permutations method produces a Seq of sublists where each one represents a
unique ordering of all the elements of the original:

my $list = (1, 2, 3);
say $list.permutations;
put "There are {$list.permutations.elems} elements";

The output shows a List of Lists where each element is another List:

110 | Chapter 6: Positionals

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html

((1 2 3) (1 3 2) (2 1 3) (2 3 1) (3 1 2) (3 2 1))
There are 6 elements

You can make these directly. This List has two elements, both of which are Lists:

my $list = (<a b>, <1 2>);
put $list.elems; # 2
say $list; # ((a b) (1 2))

You can explicitly create the sublists with parentheses:

my $list = (1, 2, ('a', 'b'));
put $list.elems; # 3
say $list; # (1 2 (a b))

You can separate sublists with semicolons. Elements between ; end up in the same
sublist, although sublists of a single element are just that element:

my $list = (1; 'Hamadryas'; 'a', 'b');
put $list.elems; # 3
say $list; # (1 2 (a b))
put $list.[0].^name; # Int
put $list.[1].^name; # Str
put $list.[*-1].^name; # List

Flattening Lists
You may be more comfortable with flat Lists, if you want a bunch of elements with
no structure. .flat extracts all the elements of the sublist and makes it a single-level
simple list. The flat List created here has four elements instead of three:

my $list = (1, 2, ('a', 'b'));
put $list.elems; # 3

my $flat = $list.flat;
put $flat.elems; # 4
say $flat; # (1 2 a b)

This works all the way down into sublists of sublists (of sublists…). Here, the last ele‐
ment is a sublist that has a sublist. The flat List ends up with six elements:

my $list = (1, 2, ('a', 'b', ('X', 'Z')));
put $list.elems; # 3

my $flat = $list.flat;
put $flat.elems; # 6
say $flat; # (1 2 a b X Z)

Sometimes you don’t want a sublist to flatten. In that case you can itemize it by
putting a $ in front of the parentheses. An itemized element resists flattening:

my $list = (1, 2, ('a', 'b', $('X', 'Z')));
put $list.elems; # 3

Arrays | 111

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html

my $flat = $list.flat;
put $flat.elems; # 5
say $flat; # (1 2 a b (X Z))

A List held in a scalar variable is already itemized and does not flatten:

my $butterfly-genus = ('Hamadryas', 'Sostrata', 'Junonia');

my $list = (1, 2, ('a', 'b', $butterfly-genus));
my $flat = $list.flat;
say $flat; # (1 2 a b (Hamadryas Sostrata Junonia))

Then what do you do to un-itemize something? You can use the prefix | to flatten it.
This decontainerizes the thingy:

my $butterfly-genus = ('Hamadryas', 'Sostrata', 'Junonia');

my $list = (1, 2, ('a', 'b', |$butterfly-genus));
my $flat = $list.flat;
put $flat.elems; # 7
say $flat; # (1 2 a b Hamadryas Sostrata Junonia)

The | takes certain types (Capture, Pair, List, Map, and Hash) and flattens them.
You’ll see more of this in Chapter 11. It actually creates a Slip, which is a type of List
that automatically flattens into an outer list. You could coerce your List with .Slip
to get the same thing:

my $list = (1, 2, ('a', 'b', $butterfly-genus.Slip));

Now the elements in $butterfly-genus are at the same level as the other elements in
its sublist:

(1 2 (a b Hamadryas Sostrata Junonia))

The slip routine does the same thing:

my $list = (1, 2, ('a', 'b', slip $butterfly-genus));

These Slips will be handy later in this chapter.

Interesting Sublists
Here’s something quite useful. The .rotor method breaks up a flat List into a List
of Lists where each sublist has the number of elements you specify. You can get five
sublists of length 2:

my $list = 1 .. 10;
my $sublists = $list.rotor: 2;
say $sublists; # ((1 2) (3 4) (5 6) (7 8) (9 10))

This is especially nice to iterate over multiple items at the same time. It grabs the
number of items that you specify and supplies them as a single List:

112 | Chapter 6: Positionals

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Capture.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Slip.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Slip.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html

my $list = 1 .. 10;
for $list.rotor: 3 {
 .say
 }

By default it only grabs exactly the number you specify. If there aren’t enough ele‐
ments it doesn’t give you a partial List. This output is missing 10:

(1 2 3)
(4 5 6)
(7 8 9)

If you want a short sublist at the end, the :partial adverb will do that:

my $list = 1 .. 10;
for $list.rotor: 3, :partial {
 .say
 }

Now there’s a short list in the last iteration:

(1 2 3)
(4 5 6)
(7 8 9)
(10)

Exercise 6.11
Use lines and .rotor to read chunks of three lines from input. Output the middle
line in each chunk.

Combining Lists
Making and manipulating Positionals is only the first level of your programming
skill. Perl 6 has several facilities to manage, combine, and process multiple
Positional things together.

The Zip Operator, Z
The Z operator takes elements from the same positions in the lists you provide and
creates sublists from them:

say <1 2 3> Z <a b c>; # ((1 a) (2 b) (3 c))

When it reaches the end of the shortest list, it stops. It doesn’t matter which list is
shorter:

say <1 2 3> Z <a b>; # ((1 a) (2 b))

say <1 2> Z <a b c>; # ((1 a) (2 b))

Combining Lists | 113

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Positional.html

The zip routine does the same thing:

say zip(<1 2 3>, <a b>); # ((1 a) (2 b))

This one gives the same output because $letters doesn’t have enough elements to
make more sublists:

my $numbers = (1 .. 10);
my $letters = ('a' .. 'c');

say @$numbers Z @$letters; # ((1 a) (2 b) (3 c))

You can do it with more than two lists:

my $numbers = (1 .. 3);
my $letters = ('a' .. 'c');
my $animals = < 🐈 🐇 🐀 >; # cat rabbit rat
say @$numbers Z @$letters Z @$animals;

Each sublist has three elements:

((1 a 🐈)(2 b 🐇)(3 🐀))

zip does the same thing as Z:

say zip @$numbers, @$letters, @$animals;

You can use it with for:

for zip @$numbers, @$letters, @$animals {
 .say;
 }

(1 a 🐈)
(2 b 🐇)
(3 c 🐀)

Exercise 6.12
Use the Z operator to make an Array of Lists that pair each letter with its position in
the alphabet.

The Cross Operator, X
The X cross operator combines every element of one Positional with every element
of another:

my @letters = <A B C>;
my @digits = 1, 2, 3;

114 | Chapter 6: Positionals

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Positional.html

my @crossed = @letters X @digits;
say @crossed;

The output shows that every letter was paired with every number:

[(A 1) (A 2) (A 3) (B 1) (B 2) (B 3) (C 1) (C 2) (C 3)]

Exercise 6.13
A deck of 52 playing cards has four suits, ♣ ♡ ♠ ♢, each with 13 cards, 2 to 10, jack,
queen, king, and ace. Use the cross operator to make a List of Lists that represents
each card. Output the list of cards so all the cards of one suit show up on the same
line.

The Hyperoperators
Instead of combining Positionals, you can operate on pairs of them to create a List
of the results. The hyperoperators can do that. Surround the + operator with <<>>.
This numerically adds the first element of @right to the first element of @left. The
result of that addition becomes the first element of the result. This happens for the
second elements, then the third, and so on:

my @right = 1, 2, 3;
my @left = 5, 9, 4;

say @left <<+>> @right; # [6 11 7]

Pick a different operator and follow the same process. The concatenation operator
joins the Str versions of each element:

my @right = 1, 2, 3;
my @left = 5, 9, 4;

say @left <<~>> @right; # [51 92 43]

If one of the sides has fewer elements the <<>> hyper recycles elements from the
shorter one. It doesn’t matter which side the shorter list is on. Here, @left has fewer
elements. When it’s time to operate on the third elements the hyper starts at the
beginning of @left again to reuse 11:

my @right = 3, 5, 8;
my @left = 11, 13;

say @left <<+>> @right; # [14 18 19]
say @right <<+>> @left; # [14 18 19]

Point the angle brackets toward the inside to insist that both sides have the same
number of elements. You’ll get an error when the sizes don’t match:

Combining Lists | 115

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Str.html

say @left >>+<< @right; # Error!

Another option is to allow one side to be smaller than the other but to not recycle
elements. If both sets of angle brackets point away from the shorter side then the
hyper does not reuse elements from the shorter side:

my @long = 3, 5, 8;
my @short = 11, 13;

say @short >>+>> @long; # [14 18] no recycling
say @long >>+>> @short; # [14 18 19]

say @short <<+<< @long; # [14 18 19]
say @long <<+<< @short; # [14 18] no recycling

Instead of the double angle brackets you can use the fancier »« versions:

my @long = 3, 5, 8;
my @short = 11, 13;

say @short «+» @long; # [14 18 19]
say @short »+« @long; # Error

say @short »+» @long; # [14 18] no recycling
say @long »+» @short; # [14 18 19]

say @short «+« @long; # [14 18 19]
say @long «+« @short; # [14 18] no recycling

The Reduction Operator
The reduction operator is a bit different from Z, X, or the hyperoperators. It turns a
Positional into a single value by operating on two elements at a time to turn them
into one element.

The prefix [] is the reduction operator. On the inside you put a binary operator. It
applies that operator to the first two elements of its Positional to get a single value.
It replaces those two values with the result; this makes the input one element shorter.
It keeps doing this until there’s one element left. That’s the final value.

Here’s a quick way to sum some numbers:

my $sum = [+] 1 .. 10; # 55

This is the same as this expression if you write out the steps:

(((((((((1 + 2) + 3) + 4) + 5) + 6) + 7) + 8) + 9) + 10)

And to do a factorial:

my $factorial = [*] 1 .. 10; # 3628800

116 | Chapter 6: Positionals

https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Positional.html

Are all the values True? Apply the && to the first two elements and replace them with
the result until there’s one element left. At the end use the ? (or .so) to coerce the
result to a Boolean:

my $condition = ?([&&] 1 .. 10); # True
my $condition = ?([&&] ^10); # False

There’s a binary max operator too:

my $max = 1 max 137; # 137;

You can put that inside the brackets. This makes one pass through the elements to
discover the largest numeric value:

my $max = [max] @numbers

If you want to use your own subroutine, use an extra set of braces and the & sigil to
make it look like an operator:

sub longest {
 $^a.chars > $^b.chars ?? $^a !! $^b;
 }

my $longest =
 [[&longest]] <Hamadryas Rhamma Asterocampa Tanaecia>;

put "Longest is $longest"; # Longest is Asterocampa

That trick works to convert a subroutine to a binary operator:

$first [&longest] $second

Filtering Lists
The .grep method filters a Positional to get the elements that satisfy your condi‐
tion. Any element that satisfies the condition becomes part of the new Seq:

my $evens = (0..10).grep: * %% 2; # (0 2 4 6 8 10)

A Block works too. The current element shows up in $_:

my $evens = (0..10).grep: { $_ %% 2 }; # (0 2 4 6 8 10)

If your condition is only a type .grep smart matches the current element against that
type:

my $allomorphs = <137 2i 3/4 a b>;
my $int-strs = $allomorphs.grep: IntStr; # (137)
my $rat-strs = $allomorphs.grep: RatStr; # (3/4)
my $img-strs = $allomorphs.grep: ComplexStr; # (2i)
my $strs = $allomorphs.grep: Str; # (a b)

Filtering Lists | 117

https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Block.html

Remember that a smart match against a type includes matching anything that type is
based on. Trying to get all the Strs finds everything since the <> creates allomorphs
and every element matches Str:

my $everything = $allomorphs.grep: Str; # (1 2i 3/4 a b)

The .does method checks if the element has a role. Here, you want the elements that
don’t do that role—if it can be a number, you don’t want it:

my $just-str = $allomorphs.grep: { ! .does(Numeric) }; # (a b)

You can specify some adverbs with .grep. The :v adverb (for “values”) gives the same
list you get without it:

my $int-strs = $allomorphs.grep: IntStr, :v; # same thing

The :k adverb (for key) gives the positions of the matching elements. This returns 1
because that’s the index of the matching element:

my $int-strs = $allomorphs.grep: ComplexStr, :k; # (1)

You can get both the key and the value with :kv. You get a flat List in key-value
order:

my $int-strs = $allomorphs.grep: RatStr, :kv; # (2 3/4)

If multiple elements match you get a longer Seq. The even positions are still keys:

$allomorphs.grep: { ! .does(Numeric) }, :kv; # (3 a 4 b)

There’s also a routine form of grep. The Positional comes after the matcher:

my $matched = grep IntStr, @$allomorphs;

Transforming a List
.map creates a new Seq based on an existing one by creating zero or more elements
from each input element. Here’s an example that returns a Seq of squares. .map can
take a Block or WhateverCode (although that’s a lot of *s):

my $squares = (1..5).map: { $_ ** 2 }; # (0 1 4 9 16 25)
my $squares = (1..5).map: * ** 2;

There’s a routine version of map that does the same :

my $even-squares = map { $_ ** 2 }, @(1..5);

Perhaps you want to lowercase everything:

my $lowered = $words.map: *.lc;

You might return no output elements, but you can’t merely return the empty List
because it will show up as an element in the new Seq. In this example the |() indi‐
cates an empty List slipped into the bigger List:

118 | Chapter 6: Positionals

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/WhateverCode.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html

my $even-squares = (0..9).map: { $_ %% 2 ?? $_**2 !! |() }; # (0 4 16 36 64)

You can use these methods together. This selects the even numbers then squares
them:

my $squares = $allomorphs
 .grep({ ! .does(Numeric) })
 .map({ $_ %% 2 ?? $_**2 !! |() });

Sorting Lists
Often you want a list in some order. Perhaps that’s increasing numerical or alphabetic
order, by the length of the Strs, or anything else that makes sense for you. You can do
this with .sort:

my $sorted = (7, 5, 9, 3, 2).sort; # (2 3 5 7 9)

my $sorted = <p e r l 6>.sort; # (6 e l p r)

By default, .sort compares each pair of elements with cmp. If the two elements are
numbers, it compares them as numbers. If it thinks they are Strs, it compares them
as such. Here’s a Str comparison that may surprise you the first time you see it (and
annoy you hereafter):

my $sorted = qw/1 11 10 101/.sort; # (1 10 101 11)

What happened? Since you constructed the list with qw, you got a list of Str objects.
These compare character by character, so the text 101 is “less than” the text 11. This
isn’t dictionary sorting, though. Try it with upper- and lowercase letters:

my $sorted = qw/a A b B c C/.sort;

Did you get what you expected? Some of you probably guessed incorrectly. The low‐
ercase code points come after the uppercase ones, for they are greater:

(A B C a b c)

cmp sorts by the code number in the Universal Character Set (UCS). If you are used to
ASCII, the code number is the same thing. Above ASCII, you may not get what you
expect.

There is a .collate method that can handle Unicode collation for
language-specific sorting, but it’s experimental.

You can tell .sort how to compare the elements. For dictionary order (so case does
not matter), you have to do a bit more work. The .sort method can take a routine

Sorting Lists | 119

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

that decides how to sort. Start with the default .sort fully written out with its com‐
parison:

my $sorted = qw/a A b B c C/.sort: { $^a cmp $^b }

You can also write that with two Whatevers so you don’t have to type the braces. This
is the same thing:

my $sorted = qw/a A b B c C/.sort: * cmp *

If you want to compare them case insensitively, you can call the .fc method to do a
proper case folding:

my $sorted = qw/a A b B c C/.sort: *.fc cmp *.fc

Now you get the order that ignores case:

(A a B b C c)

However, if you want to make the same transformation on both elements, you don’t
need to write it twice; .sort will figure it out. It saves the result and reuses it for all
comparisons. This means that Perl 6 has a builtin Schwartzian transform (a Perl 5
idiom for a cached-key sort)!

my $sorted = qw/a A b B c C/.sort: *.fc;

There’s a problem with cmp, though. The order of elements you get depends on the
type and order of elements in your input:

for ^5 {
 my @numbers = (1, 2, 11, '21', 111, 213, '7', 77).pick: *;
 say @numbers.sort;
 }

The .pick method randomly chooses from the List the number of elements you
specify. The * translates to the number of elements in the List. The effect is a shuffled
List of the same elements. Some of these are Ints and some are Strs. Depending on
which element shows up where, they sort differently:

(1 2 11 111 21 77 213 7)
(1 2 11 111 21 213 7 77)
(1 2 11 21 77 111 213 7)
(1 2 11 111 21 7 77 213)
(1 2 11 21 77 111 213 7)

Use leg (less-equal-greater) if you want to order these by their Str values every time:

say @numbers.sort: * leg *;

If you want numbers, use <=>:

say @numbers.sort: * <=> *;

Alternatively, you can coerce the input to the type you want:

120 | Chapter 6: Positionals

https://docs.perl6.org/type/Whatever.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

say @numbers.sort: +*; # numbers

say @numbers.sort: ~*; # strings

Finally, there’s a routine version of .sort. It has a single-argument form that takes a
List and a two-argument form that takes a sort routine and a List:

my $sorted = sort $list;
my $sorted = sort *.fc, $list;

Exercise 6.14
Represent a deck of cards as a List of Lists. Create five poker hands of five cards
from that. Output the cards in ascending order of their ranks.

Sorting on Multiple Comparisons
You can use a Block to create more complicated comparisons, comparing two things
that are the same in one regard in another way. When two people’s lasts names are the
same, you can sort by the first name. If you sort these with the default .sort you
probably won’t get what you want:

my @butterflies = (
 <John Smith>,
 <Jane Smith>,
 <John Doe>,
 <Jon Smithers>,
 <Jim Schmidt>,
);

my @sorted = @butterflies.sort;

put @sorted.join: "\n";

This comes out in alphabetical order, if you consider the Str to be the combination of
the sublist elements as a single Str:

Jane Smith
Jim Schmidt
John Doe
John Smith
Jon Smithers

Change the sort to work only on the second element of each sublist:

my @sorted = @butterflies.sort: *.[1];

put @sorted.join: "\n";

Sorting on Multiple Comparisons | 121

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

The last names sort in alphabetical order now, but the first names show up out of
order (though that may depend on the ordering of your input):

John Doe
Jim Schmidt
John Smith
Jane Smith
Jon Smithers

A more complex comparison can fix that. In each sublist, compare the last names to
each other. If they are the same, add another comparison with the logical or:

my @sorted = @butterflies.sort: {
 $^a.[1] leg $^b.[1] # last name
 or
 $^a.[0] leg $^b.[0] # first name
 };

When it compares the sublists for (John Smith) and (Jane Smith) it tries the last
names and finds that they are the same. It then sorts on the first names and produces
the result that you probably want:

John Doe
Jim Schmidt
Jane Smith
John Smith
Jon Smithers

Exercise 6.15
Create a deck of cards and create five hands of five cards each. In each hand sort the
cards by their rank. If the ranks are the same sort them by their suits.

Summary
The List, Range, and Array types are Positionals, and the Seq type can fake it when
it needs to. This allows some amazing lazy features where you don’t have to do any‐
thing until you actually need it. Not only that, but with a little practice you won’t even
need to think about it.

Once you have your data structures, you have some powerful ways to combine them
to make much more complex data structures. Some of these may be daunting at first.
Don’t ignore them. You’ll find that your programming career will be easier with judi‐
ciously chosen structures that are easy to manipulate.

122 | Chapter 6: Positionals

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Seq.html

CHAPTER 7

When Things Go Wrong

Perl 6 doesn’t always immediately give up when something goes wrong. It can fail
softly. If the result of that problem doesn’t affect anything else in the program there’s
no need to complain about it. However, the moment it becomes a problem that pas‐
sive failure demands your attention.

This chapter shows you the error mechanisms and how to deal with them. You’ll see
how to handle the problems that your program notices on your behalf as well as
detect and report problems on your own.

Exceptions
Here’s a bit of code that tries to convert nonnumeric text into a number. Maybe some‐
thing else didn’t put the right value in the variable:

my $m = 'Hello';
my $value = +$m;
put 'Hello there!'; # no error, so, works?

Your program doesn’t complain because you don’t do anything with the problematic
result. Change the program to output the result of what you think was a numeric
conversion:

my $m = 'Hello';
my $value = +$m;
put $value;

Now you get some error output instead:

Cannot convert string to number: base-10 number must
begin with valid digits or '.' in '⏏Hello' (indicated by ⏏)
 in block <unit> at ... line 2

123

Actually thrown at:
 in block <unit> at ... line 3

Look at that error message. It reports two line numbers. The error occurred on line 2,
but it wasn’t until line 3 (the one with put) that it became a problem. That’s the soft
failure. What’s actually in $result? It’s a Failure object:

my $m = 'Hello';
my $value = +$m;
put "type is {$value.^name}"; # type is Failure

These soft failures can be quite handy in cases where you don’t care if something
didn’t work. If you can’t log a message because the logger is broken what are you
going to do about it? Log the failure? Similarly, sometimes you don’t care if some‐
thing fails because that might be a common case. It’s up to you to make those deci‐
sions, though.

The Failure is really a wrapper around an Exception, so you need to know about
exceptions first.

Catching Exceptions
Something that wants to report an exception throws it. You’d say “the subroutine
threw an exception.” Some people might say it “raised an exception.” It’s the same
thing. If you don’t handle an exception it stops your program.

A try wraps some code and can catch an Exception. If it catches an Exception it puts
it into the $! special variable:

try {
 my $m = 'Hello';
 my $value = +$m;
 put "value is {$value.^name}";
 }
put "ERROR: $!" if $!;

put 'Got to the end.';

You catch the Exception and your program continues:

ERROR: Cannot convert string to number
Got to the end.

With a single line you don’t need the braces:

my $m = 'Hello';
try my $value = +$m;

If the code succeeds try gives back the value. You can move the try to the other side
of the assignment:

124 | Chapter 7: When Things Go Wrong

https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html

my $m = 'Hello';
my $value = try +$m;

Most Exception types are under X and inherit from Exception—in this example it’s
X::Str::Numeric:

put "Exception type is {$!.^name}";

If there was no Exception, the thingy in $! is Any. This is a bit annoying because
Exception inherits from Any too. The $! in a condition is defined if there was a prob‐
lem. Use it with given and smart match against the types you want to handle. A
default Block handles anything you don’t:

put 'Problem was ', do given $! {
 when X::Str::Numeric { ... }
 default { ... }
 };

Exception types use different methods to give you more information. Each type
defines a method that makes sense for its error. Look at each type to see which infor‐
mation it captures for you. The X::Str::Numeric Exception type knows at which
position in the Str it discovered the problem:

put 'Problem was ', do given $! {
 when X::Str::Numeric { "Char at {.pos} is not numeric" }
 when X::Numeric::Real { "Trying to convert to {.target}" }
 default { ... }
 };

The $! and given happen outside of the try. A CATCH Block inside the try can do the
same thing. The X::Str::Numeric Exception shows up in $_:

try {
 CATCH {
 when X::Str::Numeric { put "ERROR: {.reason}" }
 default { put "Caught {.^name}" }
 }
 my $m = 'Hello';
 my $value = +$m;
 put "value is {$value.^name}";
 }

put 'Got to the end.';

The X::Str::Numeric Exception is thrown at the line my $value = +$m;, then it
skips the rest of the Block. Handle this by outputting an error and continuing with
the program:

ERROR: base-10 number must begin with valid digits or '.'
Got to the end.

Exceptions | 125

https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Any.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Any.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/X::Str::Numeric
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/X::Str::Numeric
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Block.html

Most of these objects inherit from Exception and have a .message method that pro‐
vides more information. Catch those with default where you can output the name of
the type:

try {
 CATCH {
 default { put "Caught {.^name} with ｢{.message}｣" }
 }
 my $m = 'Hello';
 my $value = +$m;
 put "value is {$value.^name}";
 }

put "Got to the end.";

Now the output has the same message that the unhandled error showed you:

Caught X::Str::Numeric with ｢Cannot convert string to number:
base-10 number must begin with valid digits or '.' in '⏏Hello'
(indicated by ⏏)｣
Got to the end.

Exercise 7.1
Divide a number by zero. What Exception type do you get?

Backtraces
The Exception contains a Backtrace object that documents the path of the error.
This example has three levels of subroutine calls with some code at the end that
throws an Exception:

sub top { middle() }
sub middle { bottom() }
sub bottom { 5 + "Hello" }

top();

You don’t handle the Exception in middle, you don’t handle it in top, and finally, you
don’t handle it at the top level. The Exception complains and shows you its path
through the code:

Cannot convert string to number: base-10 number must
begin with valid digits or '.' in '⏏Hello' (indicated by ⏏)
 in sub bottom at backtrace.p6 line 3
 in sub middle at backtrace.p6 line 2
 in sub top at backtrace.p6 line 1
 in block <unit> at backtrace.p6 line 5

Actually thrown at:

126 | Chapter 7: When Things Go Wrong

https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Backtrace.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html

 in sub bottom at backtrace.p6 line 3
 in sub middle at backtrace.p6 line 2
 in sub top at backtrace.p6 line 1
 in block <unit> at backtrace.p6 line 5

Don’t fret when you see long messages like this. Find the first level of the error and
think about that. Work your way through the chain one level at a time. Often a simple
fix makes it all go away.

You can handle the Exception anywhere in that chain. The simplest option might be
to wrap the call to bottom in a try. With a single-line expression you can omit the
Block around the code. In middle, you don’t specify a CATCH so there’s a default han‐
dler that discards the Exception:

sub top { middle() }
sub middle { try bottom() }
sub bottom { 137 + 'Hello' }

put top();

That program doesn’t produce an error (or any output). That’s probably not what you
want. The middle layer can handle the case where you can’t convert a Str to a number
by returning the special number NaN (for “not a number”):

sub top { middle() }
sub middle {
 try {
 CATCH { when X::Str::Numeric { return NaN } }
 bottom()
 }
 }

sub bottom { 137 + 'Hello' }

put top();

Change the code to make a different error that the CATCH in middle doesn’t handle.
Try to divide by zero and convert the result to a Str:

sub top { middle() }
sub middle {
 try {
 CATCH { when X::Str::Numeric { return NaN } }
 bottom()
 }
 }

sub bottom { (137 / 0).Str }

put top();

Exceptions | 127

https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

The CATCH in middle doesn’t handle this new type of error, so the Exception inter‐
rupts the program at the call to top:

Attempt to divide 137 by zero using div
 in sub bottom at nan.p6 line 12
 in sub middle at nan.p6 line 8
 in sub top at nan.p6 line 4
 in block <unit> at nan.p6 line 14

Catch this one inside top. The Exception passes through middle, which has nothing
to handle it. Since nothing handles that error it continues up the chain and ends up in
top, which handles it by returning the special value Inf (for infinity):

sub top {
 try {
 CATCH {
 when X::Numeric::DivideByZero { return Inf }
 }
 middle()
 }
 }
sub middle {
 try {
 CATCH {
 when X::Str::Numeric { return NaN }
 }
 bottom()
 }
 }

sub bottom { (137 / 0).Str }

put top();

Extend this process as far up the chain as you like. The next example changes the
error by trying to call an undefined method on 137:

sub top {
 try {
 CATCH {
 when X::Numeric::DivideByZero { return Inf }
 }
 middle()
 }
 }

sub middle {
 try {
 CATCH {
 when X::Str::Numeric { return NaN }
 }
 bottom()

128 | Chapter 7: When Things Go Wrong

https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html

 }
 }

sub bottom { 137.unknown-method }

try {
 CATCH {
 default { put "Uncaught exception {.^name}" }
 }
 top();
 }

That’s a new sort of error that you don’t handle so far:

Uncaught exception X::Method::NotFound

Sometimes you don’t care about unfound methods. If it’s there you call it and if not
you want to ignore it. There’s special syntax for this. If you place a ? after the method
call dot, you don’t get an Exception if the method is not found:

sub bottom { 137.?unknown-method }

Rethrowing Errors
It gets better. You can catch an exception but not handle it. Modify the CATCH in
middle to intercept X::Method::NotFound and output a message, then .rethrow it:

sub top {
 try {
 CATCH {
 when X::Numeric::DivideByZero { return Inf }
 }
 middle()
 }
 }

sub middle {
 try {
 CATCH {
 when X::Str::Numeric { return NaN }
 when X::Method::NotFound {
 put "What happened?";
 .rethrow
 }
 }
 bottom()
 }
 }

sub bottom { 137.unknown-method }

try {
 CATCH {

Exceptions | 129

https://docs.perl6.org/type/Exception.html

 default { put "Uncaught exception {.^name}" }
 }
 top();
 }

You can see that middle was able to do its work but the Exception was ultimately
handled by top:

What happened?
Uncaught exception X::Method::NotFound

Exercise 7.2
Implement a subroutine whose only code is That denotes code that you intend to
fill in later. Call that from another subroutine and catch the Exception. What’s the
type you get? Can you output your own Backtrace?

Throwing Your Own Exceptions
Up to now you’ve seen exceptions that come from problems in the source code.
Those are easy to see without complicating the examples. You can also throw your
own Exceptions. The easiest way is to use die with a Str argument:

die 'Something went wrong!';

The die subroutine takes the Str as the message for an Exception of type X::AdHoc.
That’s a catch-all type for anything that doesn’t have a more appropriate type.

Dying with a Str is the same as constructing an X::AdHoc. You can die with a partic‐
ular Exception type by constructing it yourself:

die X::AdHoc.new(payload => "Something went wrong!");

You’re actually creating a Pair here, but you won’t see the => until
Chapter 9 or named parameters until Chapter 11, so take this on
faith.

The die is important. Merely constructing the Exception does not throw it:

nothing happens
X::AdHoc.new(payload => "Something went wrong!");

You can .throw it yourself if you like, though. This is the same as die:

X::AdHoc
 .new(payload => "Something went wrong!")
 .throw;

130 | Chapter 7: When Things Go Wrong

https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Backtrace.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/X::AdHoc.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/X::AdHoc.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Exception.html

You can also create Exceptions of other predefined types. The X::NYI type is for fea‐
tures not yet implemented:

X::NYI.new: features => 'Something I haven't done yet';

Exercise 7.3
Modify the previous exercise to die with a Str argument. What type do you catch?
Further modify that to die with an X::StubCode object that you construct yourself.

Defining Your Own Exception Types
It’s a bit early to create subclasses—you’ll see how to do that in Chapter 12—but with
a little faith you can do this right away. Base your class on Exception without doing
anything else:

class X::MyException is Exception {}

sub my-own-error {
 die X::MyException.new: payload => 'I did this';
 }

my-own-error();

When you run the my-own-error subroutine it dies with the new error type that
you’ve defined:

Died with X::MyException

Now that your new type exists you can use it in a CATCH (or smart match). Even
without any sort of customization its name is enough to tell you what happened:

try {
CATCH {
 when X::MyException { put 'Caught a custom error' }
 }

my-own-error();
}

Chapter 12 will cover class creation and show you more about what you can do inside
a class and how to reuse existing classes.

Failures
Failures are wrappers around unthrown Exceptions. They’re passive until you try to
use them later—hence “soft” exceptions. They don’t interrupt your program until

Failures | 131

https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/X::NYI.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Exception.html

something tries to use them as a normal value. It’s then that they throw their
Exceptions.

As a Boolean a Failure is always False. You can “disarm” the Failure by checking it.
That might be with an if, with a logical test, or by Booleanizing it with .so or ?. All
of those mark the Failure as handled and prevent it from implicitly throwing its
Exception:

my $result = do-something();
if $result { ... }
my $did-it-work = ?$results;

A Failure is always undefined; maybe you want to set a default value if you
encounter one:

my $other-result = $result // 0;

You can handle a Failure yourself without the try. The .exception method extracts
that object so you can inspect it:

unless $result {
 given $result.exception {
 when X::AdHoc { ... }
 default { ... }
 }
 }

Create your own Failures by substituting die with fail:

fail "This ends up as an X::AdHoc";

fail My::X::SomeException.new(
 :payload('Something wonderful'));

When you use fail in a subroutine the Failure object becomes the return value.
Instead of die-ing you should probably use fail so that the programmers who use
your code can decide for themselves how to handle the problem.

Exercise 7.4
Create a subroutine that takes two arguments and returns their sum. If either argu‐
ment is not a number return a Failure object saying so. How would you handle the
Failure?

Warnings
Instead of die-ing you can use warn to give the same message without stopping the
program or forcing the program to catch the Exception:

132 | Chapter 7: When Things Go Wrong

https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Exception.html

warn 'Something funny is going on!';

Warnings are a type of Exception and you can catch them. They aren’t the same type
of exception so they don’t show up in a CATCH Block. They are control exceptions that
you catch in a CONTROL Block:

try {
 CONTROL {
 put "Caught an exception, in the try";
 put .^name;
 }
 do-that-thing-you-do();
 }

sub do-that-thing-you-do {
 CONTROL {
 put "Caught an exception, in the sub";
 put .^name;
 }
 warn "This is a warning";
 }

If you don’t care about the warnings (they are annoying after all) you can wrap the
annoying code in a quietly Block:

quietly {
 do-that-thing-you-do();
 }

Exercise 7.5
Modify the previous exercise to warn for each argument that cannot be converted to a
number. Once you’ve seen those warnings, further modify the program to ignore the
warnings.

The Wisdom of Exceptions
Exceptions can be a contentious subject. Some people love them and some hate
them. Since they are a feature, you need to know about them. I want to leave you with
some words of caution before you get yourself in too much trouble. Your love/hate
relationship with Exceptions will most likely fluctuate over your career.

Exceptions are a way of communicating information. By design this feature expects
you to recognize the type of error and handle it appropriately. This implies that you
can actually handle the error. If you encounter a situation that your program cannot
correct, an Exception might not be the appropriate feature to use.

The Wisdom of Exceptions | 133

https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html

Even if your program could correct the error, many people don’t expect most pro‐
grammers to handle errors. Your Exception may be a nuisance that they catch and
ignore. Think about that before you spend too much time crafting fine-grained
Exception types that cover all situations.

As part of program flow Exceptions are really a fancy break mechanism. You’re in
one bit of code, then suddenly in another. Those cases should truly be exceptional
and rare. Anything else that you expect to happen you should handle with normal
program flow.

That’s all I’ll say about that. Perhaps you have a different opinion. That’s fine. Read
more about this on your own and judge your particular situation.

Summary
Exceptions are a feature of Perl 6, but it doesn’t hit you over the head with them.
They can be soft failures until they would actually cause a problem.

Don’t become overwhelmed by the different types of Exceptions your program may
report. You’ll continue to see these throughout the rest of the book. Use them appro‐
priately (whatever definition you choose) and effectively to note problems in your
program. Try to detect those as early as you can.

134 | Chapter 7: When Things Go Wrong

https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html

CHAPTER 8

Files and Directories, Input and Output

Reading and writing text are the bread and butter of many of the programs you’ll
want to write. You’ll store data in files and retrieve that data later. This chapter is all
about the features you need to do that. Along the way you’ll see how to deal with file
paths, move files around, and work with directories. Most of this is done with the
same syntax that you’ve already seen, but now with different types of objects.

Many of the tasks in this chapter can fail for reasons that exist outside of your pro‐
gram. If you expected to work in a different directory or a certain file to exist, you
might not want to continue if those conditions aren’t true. That’s just the reality of a
program that deals with external resources.

File Paths
An IO::Path object represents a file path. It knows how to put together and take
apart paths based on your filesystem’s rules. It doesn’t matter if that path is to a file
that actually exists, as long as the form of the path obeys those rules. You’ll see how to
deal with missing files in a moment. For now, call .IO on any Str to turn it into an
IO::Path object:

my $unix-path = '/home'.IO;
my $windows-path = 'C:/Users'.IO;

To build a deeper path, use .add. You can more than one level at a time. .add doesn’t
change the original object; it gives you a new object:

my $home-directory = $unix-path.add: 'hamadryas';
my $file = $unix-path.add: 'hamadryas/file.txt';

Assign back to your original object if you want to build the path there:

$unix-path = $unix-path.add: 'hamadryas/file.txt';

135

https://docs.perl6.org/type/IO::Path.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/IO::Path.html

The binary assignment form may be more useful:

$unix-path .= add: 'hamadryas/file.txt';

.basename and .parent methods break apart the path:

my $home = '/home'.IO;
my $user = 'hamadryas'; # Str or IO::File will work
my $file = 'file.txt'.IO;

my $path = $home.add($user).add($file);

put 'Basename: ', $path.basename; # Basename: file.txt
put 'Dirname: ', $path.parent; # Dirname: /home/hamadryas

.basename returns a Str, not another IO::Path. You can use .IO
again if you need that.

With .parent you decide how many levels you want to go up:

my $home = '/home'.IO;
my $user = 'hamadryas';
my $file = 'file.txt'.IO;

my $path = $home.add($user).add($file);

put $path; # /home/hamadryas/file.txt
put 'One up:', $path.parent; # One up: /home/hamadryas
put 'Two up: ', $path.parent(2); # Two up: /home

You can ask questions to find out if you have an absolute or relative path:

my $home = '/home'.IO;
my $user = 'hamadryas';
my $file = 'file.txt'.IO;

for $home, $file {
 put "$_ is ", .is-absolute ?? 'absolute' !! 'relative';
 # put "$_ is ", .is-relative ?? 'relative' !! 'absolute';
 }

Make a relative path an absolute one. With no argument .absolute uses the current
working directory when you created the IO::Path object. Give it an argument if you
want some other base directory. Either way you get a Str instead of another IO::Path
object. The .absolute method doesn’t care if that path actually exists:

my $file = 'file.txt'.IO;
put $file.absolute; # /home/hamadryas/file.txt
put $file.absolute('/etc'); # /etc/file.txt
put $file.absolute('/etc/../etc'); # /etc/../etc/file.txt

136 | Chapter 8: Files and Directories, Input and Output

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/IO::Path.html
https://docs.perl6.org/type/IO::Path.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/IO::Path.html

Calling .resolve checks the filesystem. It figures out . and .. and translates sym‐
bolic links to their targets. Notice that /etc/.. is replaced with /private since /etc is a
symbolic link to /private/etc on macOS:

my $file = 'file.txt'.IO;
put $file.absolute('/etc/..'); # /etc/../file.txt
put $file.absolute('/etc/..').IO.resolve; # /private/file.txt

You can insist that the file exist with the :completely adverb. If any part (other than
the last part) of the path does not exist or can’t resolve you get an error:

my $file = 'file.txt'.IO;

{
CATCH {
 default { put "Caught {.^name}" } # Caught X::IO::Resolve
 }
put $file.absolute('/homer/..').IO.resolve: :completely; # fails
}

File Test Operators
A file test operator answers a question about a file path. Most of them return True or
False. Start with a Str and call the .IO method to create the IO::Path object. Use .e
to check if the file exists (Table 8-1 shows other file tests):

my $file = '/some/path';

unless $file.IO.e {
 put "The file <$file> does not exist!";
 }

Why .e? It comes from the Unix test program that used command-line switches
(such as -e) to answer a question about a path. Those same letters become the names
of methods. Table 8-1 shows the file tests. Most of these are the same as in similar
languages, although a few multiletter ones combine several tests into one.

Table 8-1. File test methods

Method The question it answers
e Exists
d Is a directory
f Is a plain file
s Size in bytes
l Is a symbolic link
r Is readable by the current user
w Is writable by the current user
rw Is readable and writable by the current user

File Paths | 137

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/IO::Path.html

Method The question it answers
x Is executable by the current user
rwx Is readable, writable, and executable by the current user
z Exists with zero size

Almost all of the file tests return a Boolean value. The one odd test is .s, which asks
for the file size in bytes. That’s not a Boolean, so how would it note a problem such as
a missing file? It might return 0 in that case, because a file can have nothing in it
(hence the .z method to ask if it exists with zero size). .s returns a Failure instead of
False if there’s a problem:

my $file = 'not-there';
given $file.IO {
 CATCH {
 # $_ in here is the exception
 when X::IO::NotAFile
 { put "$file is not a plain file" }
 when X::IO::DoesNotExist
 { put "$file does not exist" }
 }
 put "Size is { .s }";
 }

You might check that the file exists and is a plain file before you try to get its size
(although .f implies .e), but this way is probably less safe since the file might disap‐
pear between the time you enter the Block and when you try to get the file size:

my $file = 'not-there';
given $file.IO {
 when .e && .f { put "Size is { .s }" }
 when .e { put "Not a plain file" }
 default { put "Does not exist" }
 }

This isn’t the only syntax for file tests, though. There are also the adverbial versions.
You can smart match against the tests that you want. This example uses a Junction to
combine tests, even though you won’t see those until Chapter 14:

if $file.IO ~~ :e & :f { # Junction!
 put "Size is { .s }"
 }

Exercise 8.1
Create a program that takes a list of files from the command-line arguments and
reports if they are readable, writable, or executable by the current user. What would
you do if a file doesn’t exist?

138 | Chapter 8: Files and Directories, Input and Output

https://docs.perl6.org/type/Bool
https://docs.perl6.org/type/Bool
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Junction.html

File Metadata
Files record more than just their contents. They retain extra information about them‐
selves; this is the metadata. The .mode method returns the POSIX permissions for a
file (if your filesystem supports such a thing). This is a single integer that represents
the settings for the user, group, and everyone else:

my $file = '/etc/hosts';
my $mode = $file.IO.mode;
put $mode.fmt: '%04o'; # 0644

Some POSIX- or Unix-specific ideas won’t work on Windows. As I
write, this there aren’t Windows-specific modules to fill in those
gaps.

Each set of permissions takes three bits: one for each read, write, and execute. You use
bit operators (you haven’t seen those yet) to extract the individual permissions from
the single number.

The bitwise AND operator, +&, isolates the set using a bitmask (such as 0o700 in the
following example). The bitwise right shift operator, +>, extracts the right numbers:

my $file = '/etc/hosts';
my $mode = $file.IO.mode;
put $mode.fmt: '%04o'; # 0644

my $user = ($mode +& 0o700) +> 6;
my $group = ($mode +& 0o070) +> 3;
my $all = ($mode +& 0o007);

Inside each permission set you can use another mask to isolate the bit you want. In
this part you’ll end up with True or False:

put qq:to/END/;
mode: { $mode.fmt: '%04o' }
 user: $user
 read: { ($user +& 0b100).so }
 write: { ($user +& 0b010).so }
 execute: { ($user +& 0b001).so }
 group: { $group }
 all: { $all }
END

You can change these permissions with the chmod subroutine. Give it the same num‐
ber. It’s probably easiest to represent it as a decimal number:

chmod $file.IO.chmod: 0o755;

File Paths | 139

File times

The .modified, .accessed, and .changed methods return Instant objects represent‐
ing the modification, access, and inode change times of the file (if your system sup‐
ports those). You can use the .DateTime method to turn the Instant into a human-
readable date:

my $file = '/home/hamadryas/.bash_profile';

given $file.IO {
 if .e {
 put qq:to/HERE/
 Name: $_
 Modified: { .modified.DateTime }
 Accessed: { .accessed.DateTime }
 Changed: { .changed.DateTime }
 Mode: { .mode }
 HERE
 }
 }

This gives something like this:

Name: /home/hamadryas/.bash_profile
 Modified: 2018-08-15T01:19:09Z
 Accessed: 2018-08-16T10:07:00Z
 Changed: 2018-08-15T01:19:09Z
 Mode: 0664

Linking and Unlinking Files
A filename is a label for some data that you’ve stored somewhere. It’s important to
remember that the name is not the data. Likewise, the metaphor of a directory or
folder is just that. It doesn’t really “contain” files. It knows the list of filenames it
should remember. Keeping that in mind should make the next parts easier to grasp.

The name is a link to data, and the same data can have multiple links to it. As long as
there are links you can get to that data. This doesn’t mean that the data disappears
when it has no links. Those parts of storage are merely available for something else.
This is why you can sometimes recover data. Your particular filesystem might do
things differently, but that’s the basic idea.

Typically your ability to remove the link depends on the directory
permissions and not the file permissions. You are really removing
the file from the list of files the directory comprises.

140 | Chapter 8: Files and Directories, Input and Output

https://docs.perl6.org/type/Instant.html
https://docs.perl6.org/type/Instant.html

To get rid of a file, you use .unlink to remove the link to it. You aren’t removing the
data; that’s why it’s not called .delete or something similar. Other links to the same
data may still be there. If .unlink could remove the file it returns True. It fails with
X::IO::Unlink:

my $file = '/etc/hosts'.IO;

try {
CATCH {
 when X::IO::Unlink { put .message }
 }
$file.unlink;
}

You can get rid of several files at the same time with the subroutine form. It returns
the names of the files that you’ll have to restore from backups (also known as the files
successfully unlinked):

my @unlinked-files = unlink @files;

A Set difference is useful here, although you won’t see Sets until Chapter 14. Note
that you are able to unlink files that don’t exist, and they won’t show up in @error-
files:

my @error-files = @files.Set (-) @unlinked-files.Set;

You can get rid of the original filename but the data will still be there. The data
behind the file sticks around until all the links are gone. None of this works to remove
directories, but you’ll see how to do that in a moment.

Create a new label for some data with .link. The path must be on the same disk or
partition as the data. If that doesn’t work it fails with X::IO::Link:

my $file = '/Users/hamadryas/test.txt'.IO;

{
CATCH {
 when X::IO::Unlink { ... }
 when X::IO::Link { ... }
 }

$file.link: '/Users/hamadryas/test2.txt';
$file.unlink;
}

There’s another sort of link, called a symbolic link (“symlink” for short). It’s not an
actual link; it’s a file that points to another filename (the “target”). When the filesys‐
tem encounters a symlink it uses the target path instead.

The target is the final filename. The symlink you create points to that. Call .symlink
on the target to create the file that points to it:

File Paths | 141

https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html

{
CATCH {
 when X::IO::Symlink { ... }
 }

$target.symlink: '/opt/different/disk/test.txt';
}

Renaming and Copying Files
To change the name of a file, use .rename. Like .link, this only works on the same
disk or partition. It changes the label without moving data around. If it can’t do that it
fails with X::IO::Rename:

my $file = '/Users/hamadryas/test.txt'.IO;

{
CATCH {
 when X::IO::Rename { put .message }
 }
$file.rename: '/home/hamadryas/other-dir/new-name.txt';
}

You can .copy the data to a different device or partition. This physically puts the data
in a new place on the disk. The original data and its links stay there and the copied
data has its own link. After that the two are not connected and you have two separate
copies of the data. If it doesn’t work it fails with X::IO::Copy:

my $file = '/Users/hamadryas/test.txt'.IO;

{
CATCH {
 when X::IO::Copy { put .message }
 }
$file.copy: '/opt/new-name.txt';
}

Using .move first copies the data then removes the original. The .copy will replace
the new file if it already exists (and it has the right permissions):

my $file = '/Users/hamadryas/test.txt'.IO;

{
CATCH {
 when X::IO::Move { put .message }
 }
$file.copy: '/opt/new-name.txt';
}

Use the :create-only adverb to prevent that:

$file.copy: '/opt/new-name.txt', :create-only;

142 | Chapter 8: Files and Directories, Input and Output

The .move method combines a .copy and an .unlink:

$file.move: '/opt/new-name.txt';

After copying the file .move might not be able to remove the original. You might want
to check that permission before you start, but there’s no guarantee that the permis‐
sions won’t change.

Manipulating Directories
When your program starts it has some notion of its current working directory. That’s
stored in the special variable $*CWD. When you deal with relative file paths your pro‐
gram looks in the current directory to find them:

put "Current working directory is $*CWD";

To change that directory, use chdir. Give it an absolute path to change to exactly that
directory:

chdir('/some/other/path');

Give it a relative path to change into a subdirectory of the current working directory:

chdir('a/relative/path');

If this fails it returns a Failure with an X::IO::Chdir Exception:

unless my $dir = chdir $subdir {
 ... # handle the error
 }

chdir with no argument gives you an error. You may have expected that to go to your
home directory. If you want that, use $*HOME as the argument. That’s the special vari‐
able that stores your home directory:

chdir($*HOME);

How $*HOME is set depends on your particular system. On something Unix-like, that’s
probably the HOME environment variable. On Windows, it’s probably HOMEPATH.

Exercise 8.2
Output your home directory path. Create a new path to an existing subdirectory and
change into that directory. Output the value of the current working directory. What
happens if the subdirectory doesn’t exist?

Sometimes you only need to change the directory for a short part of your program
and after that you’d like to be back where you started. The indir subroutine takes a

Manipulating Directories | 143

https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Exception.html

directory and a code block and runs that code as if that were the current working
directory. It doesn’t actually mess with $*CWD:

my $result = indir $dir, { ... };
unless $result {
 ... # handle the error
 }

If everything works out indir returns the result of the block, although that might be
a False value or even a Failure. If indir can’t change to the directory it returns a
Failure. Be careful which situation you are handling!

Directory Listings
dir gets a Seq of the files in a directory as IO::Path objects. It includes hidden files
(but not the . and .. virtual files). With no argument it uses the current directory:

my @files = dir();
my $files = dir();

With an argument it gets a Seq of the files in the specified directory:

my @files = dir('/etc');

for dir('/etc') -> $file {
 put $file;
 }

The elements in the Seq have that path component included. A relative directory
argument returns relative paths. Those paths probably won’t be valid if you change
the working directory after you create the Seq:

say dir('/etc'); # ("/etc/emond.d".IO ...)
say dir('lib'); # ("lib/perl6".IO ...)

dir returns a Failure if it runs into a problem, such as a directory that does not exist.

There’s another nice feature of dir: it knows what entries to skip. There’s an optional
second parameter that can test the entries to decide if they should be part of the
result. By default the test is a Junction (Chapter 14) that excludes the . and .. virtual
directories:

say dir('lib', test => none(<. ..>));

Exercise 8.3
Output a list of all the files in another directory. Show them one per line and number
each line. Can you sort the file list? If you don’t have a directory you’d like to explore,
try /etc on Unix-like systems or C:\rakudo on Windows.

144 | Chapter 8: Files and Directories, Input and Output

https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/IO::Path.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Junction.html

Exercise 8.4
Create a program that takes a directory name and lists all the files in it. Descend into
subdirectories and list their files. You’ll be able to use this program later, in Chap‐
ter 19.

Creating Directories
You can create your own directories with mkdir. It can create multiple levels of sub‐
directories for you at once if that’s what you ask for. If mkdir can’t create the directory
it throws an X::IO::Mkdir Exception:

try {
 CATCH {
 when X::IO::Mkdir { put "Exception is {.message}" }
 }
 my $subdir = 'Butterflies'.IO.add: 'Hamadryas';
 mkdir $subdir;
 }

The optional second argument is the Unix-style octal mode (Windows ignores this
argument). Unix permissions are easiest to read as octal numbers:

mkdir $subdir, 0o755;

You can also start with a Str and turn it into an IO::Path object with .IO, then
call .mkdir on all that. You can leave off the mode or not:

$subdir.IO.mkdir;
$subdir.IO.mkdir: 0o755;

Exercise 8.5
Write a program to create a subdirectory that you specify on the command line. What
happens when you specify a full path as the argument? What if the directory already
exists?

Removing Directories
There are two ways to remove a directory, but you’ll probably only want to use one of
them. Before you start playing with these you might consider working in a snapshot
of a virtual machine or in a special account where you can’t delete anything impor‐
tant. Be careful!

The first, rmdir, removes one or more directories as long as they are empty (no files
or subdirectories):

Manipulating Directories | 145

https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/IO::Path.html

my @directories-removed = rmdir @dirs;

With the method form you can remove one at a time. If it fails it throws an
X::IO::Rmdir Exception:

try {
 CATCH {
 when X::IO::Rmdir { ... }
 }
 $directory.IO.rmdir;
 }

That’s a bit inconvenient. Often you want to remove a directory and everything that it
contains. The rmtree subroutine from File::Directory::Tree is useful for that:

use File::Directory::Tree;
my $result = try rmtree $directory;

Formatted Output
You can format values before you output them or interpolate them into Strs. The
options follow what you may have already seen in other languages so you only get a
taste of them here.

Give the template Str to .fmt to describe how the value should appear. The template
uses directives; these start with % and have characters to describe the format. Here is
the same number formatted in hexadecimal (%x), octal (%o), and binary (%b):

$_ = 108;

put .fmt: '%x'; # 6c
put .fmt: '%X'; # 6C (uppercase!)
put .fmt: '%o'; # 154
put .fmt: '%b'; # 1101100

Some directives have additional options that show up as characters between the % and
the letter. A number specifies the minimum width of the column (it may overflow
though). A leading zero pads unused columns with zeros. You can see this when you
interpolate the Str; the characters around the formatted output make it clear
what .fmt created:

put "$_ is ={.fmt: '%b'}="; # 108 is =1101100=
put "$_ is ={.fmt: '%8b'}="; # 108 is = 1101100=
put "$_ is ={.fmt: '%08b'}="; # 108 is =01101100=

The template text can have other characters. If those aren’t part of a directive they are
literal characters. This turns the previous example inside out so all the characters are
in the template:

put .fmt: "$_ is =%08b="; # 108 is =01101100=

146 | Chapter 8: Files and Directories, Input and Output

https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

If you want a literal % sign escape it with another %. The %f directive formats a
floating-point number and is handy for percentages. You can specify a total width
(including the decimal point) and the number of decimal places:

my $n = 1;
my $d = 7;
put (100*$n/$d).fmt: "$n/$d is %5.2f%%"; # 1/7 is 14.29%

Leaving off the total width still works and allows you to specify just the number of
decimal places. This rounds the final displayed decimal digit:

put (100*$n/$d).fmt: "$n/$d is %.2f%%"; # 1/7 is 14.29%

Calling .fmt on a Positional formats each element according to the template, joins
them with a space, and gives you a single Str:

put (222, 173, 190, 239).fmt: '%02x'; # de ad be ef

A second argument to .fmt changes the separator:

put (222, 173, 190, 239).fmt: '%02x', ''; # deadbeef

sprintf can do the same job with a bit more control. It’s a routine that takes the same
template as its first argument, then a list of values. Each value fills in one directive in
order. You don’t have to output the result:

my $string = sprintf('%2d %s', $line-number, $line);

printf does the same thing and directly outputs the result to standard output
(without adding a newline):

printf '%2d %s', $line-number, $line;

Table 8-2 lists some of the available sprintf directives.

Table 8-2. Selected sprintf directives

Directive Description
%d A signed integer in decimal
%u An unsigned integer in decimal
%o An unsigned integer in octal
%x An unsigned integer in hexadecimal (lowercase)
%X An unsigned integer in hexadecimal (uppercase)
%b An unsigned integer in binary
%f A floating-point number
%s A text value

Formatted Output | 147

https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Str.html

Exercise 8.6
Create a program that uses printf and outputs right-justified text to the number of
columns that you specify. Outputting a ruler line might help you.

Common Formatting Tasks
Round numbers with %f. Specify the width of the entire template and the number of
decimal places. The decimal point and following digits count as part of the width:

put (2/3).fmt: '%4.2f'; # 0.67;

The total width doesn’t limit the columns, though. It will be at least that number of
columns but could be more:

put (2/3).fmt: '%4.5f'; # 0.66667;

If you don’t care about the width you can leave it off. This merely rounds the value to
the number of decimal places you specified:

put (2/3).fmt: '%.3f'; # 0.667;

A # after the % adds the number system prefix, but not the one that Perl 6 uses. It’s the
prefix that the rest of the universe uses; the octal number gets a leading zero:

put 108.fmt: '%#x'; # 0x6c
put 108.fmt: '%#o'; # 0154

%s formats a text value. With a width it pushes the value to the right and pads it with
spaces if necessary. A - in front of the width pushes it to the left:

put 'Hamadryas'.fmt: '|%s|'; # |Hamadryas|
put 'Hamadryas'.fmt: '|%15s|'; # | Hamadryas|
put 'Hamadryas'.fmt: '|%-15s|'; # |Hamadryas |

Use sprintf to create columnar output. The width makes everything line up:

my $line = sprintf '%02d %-20s %5d %5d %5d', @values;

Exercise 8.7
Output the percentage of the two numbers you specify on the command line. Limit
your output to three decimal places.

Exercise 8.8
Output a 12-by-12 multiplication table.

148 | Chapter 8: Files and Directories, Input and Output

The Standard Filehandles
A filehandle is a connection between your program and a file. You get three of these
for free. Two are for output and one is for input. Standard output is the one you’ve
been using since the very beginning of this book. It’s the default filehandle for your
output. You’ve also used standard error, because that’s the filehandle for warnings and
errors. Standard input connects your program to the data someone is trying to give it.

You may find it useful to review the basic filehandles before you move on to the gen‐
eral process of reading and writing arbitrary files. If you already know about these
things don’t feel bad about skipping this section.

Standard Output
Standard output is the default filehandle for most output methods. When you use any
of these in their routine form you are using standard output:

put $up-the-dishes;
say $some-stuff;
print $some-stuff;
printf $template, $thing1, $thing2;

Calling methods on $*OUT makes that explicit. That’s the special variable that holds
the default filehandle:

$*OUT.put: $up-the-dishes;
$*OUT.say: $some-stuff;
$*OUT.print: $some-stuff;
$*OUT.printf: $template, $thing1, $thing2;

You’ve probably used redirection on the command line at some point. A > sends the
standard output of your program to a file (or somewhere else):

% perl6 program.p6 > output.txt

If you want to run your program but don’t care to see the output you can send it to
the null device. The output goes nowhere and disappears. That’s slightly different for
Unix systems and Windows:

% perl6 program.p6 > /dev/null
C:\ perl6 program.p6 > NUL

Exercise 8.9
Create a program that writes something to standard output. Run the program and
redirect the output to a file. Run it again and redirect the output to the null device.

The Standard Filehandles | 149

Standard Error
Standard error is another avenue for output. Programs typically use standard error
for warnings and other messages when they don’t want to infect normal output. You
can get the warning without messing up your nicely formatted output.

warn outputs its message to standard error and your program continues. As its name
suggests, it’s designed for warnings when you run into a situation that you can antici‐
pate and you think someone should know about:

warn 'You need to use a number between 0 and 255';

fail and die are similar. They send their messages to standard error, but they can
also stop your program unless you catch or handle them.

note is like say; it calls .gist on its argument and outputs the result to standard
error. This could be useful for debugging output:

note $some-object;

Often this sort of output is enabled by some command-line switch or other setting:

note $some-object if $debugging > 0;

The output methods work on $*ERR—that holds the default error filehandle:

$*ERR.put: 'This is a warning message';

When you work in a terminal you normally see both standard output and standard
error together (or “merged”). Redirect the error output with 2>; that takes file
descriptor number 2 (standard error) and sends it to somewhere that is not the termi‐
nal. If you don’t understand any of that just follow the example:

% perl6 program.p6 2> error_output.txt
C:\ perl6 program.p6 2> error_output.txt

% perl6 program.p6 2> /dev/null
C:\ perl6 program.p6 2> NUL

Redirect file descriptor 2 to file descriptor 1 to merge standard output and error.
Again, you can follow the example without delving into the plumbing:

% perl6 program.p6 2>&1 /dev/null

Exercise 8.10
Create a program that outputs something to standard output and to standard error.
Run it and redirect standard output to a file. Run it again but redirect standard error
to the null device.

150 | Chapter 8: Files and Directories, Input and Output

Standard Input
When you use lines() without command-line arguments it reads from standard
input. The data flows through into your program:

for lines() {
 put ++$, ': ', $_;
 }

Your program waits for you to type something and outputs it back to you:

% perl6 no-args.p6
Hello Perl 6
0: Hello Perl 6
this is the second line
1: this is the second line

If you only want standard input you can explicitly use $*IN. Call .lines as follows:

for $*IN.lines() {
 put ++$, ': ', $_;
 }

Standard input can also come from another program. You can pipe the output of one
program into the input of another one:

% perl6 out-err.p6 | perl6 no-args.p6

Exercise 8.11
Create two programs. The first one should output all the lines from the command-
line files that contain the first argument. Pipe that output to the second program,
which reads its input and outputs it as all uppercase. Pipe the output from the first
program into the second.

Reading Input
You’ve already seen a few ways to get data into your program. The prompt routine
outputs a message and waits for a single line of input:

my $answer = prompt('Enter some stuff> ');

Read an entire file in one shot with slurp. It works as a method or a routine:

my $entire-file = $filename.IO.slurp;
my $entire-file = slurp $filename;

If you can’t read the file you’ll get a Failure. Always check that you were able to do
what you wanted:

Reading Input | 151

https://docs.perl6.org/type/Failure.html

unless my $entire-file = slurp $filename.IO.slurp {
 ... # handle error
 }

Reading Lines
In Chapter 6 you saw how to use lines() to read from the filenames you specify on
the command line. Do this yourself by going through @*ARGS and calling lines on
the individual files. You can filter out the files that don’t exist or have other problems
(something lines() doesn’t do):

for @*ARGS {
 put '=' x 20, ' ', $_;

 # maybe more error checking here
 unless .IO.e { put 'Does not exist'; next }

 for .IO.lines() {
 put "$_:", ++$, ' ', $_;
 }
 }

That’s a bit too much work. lines() reads from the $*ARGFILES filehandle. That’s the
same as using it explicitly:

for $*ARGFILES.lines() {
 put ++$, ': ', $_;
 }

Extract the current filename with $*ARGFILES.path:

for $*ARGFILES.lines() {
 put "{$*ARGFILES.path}:", ++$, ' ', $_;
 }

This doesn’t handle starting the line numbering a fresh for each file, but there’s a trick
for that: $*ARGFILES knows when it’s switching files and lets you run some code when
that happens. Give .on-switch a block of code to run when the file changes. Use that
to reset a persistent counter:

for lines() {
 state $lines = 1;
 FIRST { $*ARGFILES.on-switch = { $lines = 1 } }

 put "{$*ARGFILES.path}:{$lines++} $_";
 }

As I write this, if lines encounters a file it can’t read it throws an
Exception that you can’t resume. I’ll ignore that here because I
expect the situation to change soon.

152 | Chapter 8: Files and Directories, Input and Output

https://docs.perl6.org/type/Exception.html

Exercise 8.12
Create a program to output all the lines of the files you specify on the command line.
Output a file banner showing its name before you output each file’s lines. What hap‐
pens after you finish the last file?

Reading a File
Both slurp and lines handle the details implicitly. open lets you do it in whatever
manner you like. It returns a filehandle that you use to get the data from the file. If
there’s a problem open returns a Failure:

my $fh = open 'not-there';
unless $fh {
 put "Error: { $fh.exception }";
 exit;
 }

for $fh.lines() { .put }

You might like the method form instead:

my $fh = $filename.IO.open;

You can change the encoding, line ending processing, and the particular line ending.
The :enc adverb sets the input encoding:

my $fh = open 'not-there', :enc('latin1');

To keep the line endings instead of autochomping them, use :chomp:

my $fh = open 'not-there', :chomp(False);

The line ending is set with :nl-in and can be multiple Strs where any will work:

my $fh = open 'not-there', :nl-in("\f");
my $fh = open 'not-there', :nl-in(["\f", "\v"]);

If you want no line ending (like with slurp), an empty Str or False works:

my $fh = open 'not-there', :nl-in('');
my $fh = open 'not-there', :nl-in(False);

You can read a single line. Tell .lines how many you want:

my $next-line = $fh.lines: 1;

.lines is lazy. That didn’t actually read a line. It’s not until you try to use $next-line
that it will do that. If you want to make it happen right away you can make it eager:

my $next-line = $fh.lines(1).eager;

Reading Input | 153

https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

If you want all of the lines you can still .slurp from the filehandle:

my $rest-of-data = $fh.slurp;

Close the filehandle when you are done with it. The program will do this for you
automatically at some point, but you don’t want these things to hang around poten‐
tially to the end of the program:

$fh.close;

Exercise 8.13
Open each file you specify on the command line. Output its first line and last line.
Between those two report the number of lines that you left out.

Writing Output
The easiest way to write a file is with spurt. Give it a filename and some data and it
does the rest for you:

spurt $path, $data;

If the file already exists it overwrites anything that is already there. To add to what’s
already there use the :append adverb:

spurt $path, $data, :append;

You can output the data only when the file doesn’t yet exist by specifying :exclusive.
If the file is already there this will fail:

spurt $path, $data, :exclusive;

When spurt works it returns True. If there’s a problem it returns a Failure:

unless spurt $path, $data {
 ... # handle error
 }

Opening a File for Writing
Using spurt might be convenient, but every time you use it you’re really opening a
file, writing to it, and closing it. If you want to keep adding to the file you can open
the file yourself and keep it open until you are done:

unless my $fh = open $path, :w {
 ...;
 }

$fh.print: $data;
$fh.print: $more-data;

154 | Chapter 8: Files and Directories, Input and Output

https://docs.perl6.org/type/Failure.html

Any of the output methods work on the filehandle:

$fh.put: $data;
$fh.say: $data;

Call .close when you are done with the file. This ensures that any data the lower lev‐
els may have been buffering makes it into the file:

$fh.close;

If you don’t like the default line separator you can specify your own. The form feed,
\f, is handy as a “line” separator when you have items that have multiple lines that
you want to keep together as a single record:

unless my $fh = open $path, :w, :nl-out("\f") {
 ...; # handle the error
 }

$fh.print: ...;

Using try might be cleaner here:

my $fh = try open $path, :w, :exclusive, :enc('latin1'), :nl-out("\f");
if $! {
 ... # handle the error
 }

Exercise 8.14
Create a program that writes to a file all the prime numbers between the two numbers
you specify on the command line. What should you do if the file already exists?

Binary Files
Binary files aren’t character based. Images, movies, and so on are examples. You don’t
want your file reader to decode these into Perl’s internal character format; you want
the raw data just as it is. Use the :bin adverb with slurp for this. Instead of returning
a Str it returns a Buf. You can process that Buf like any other Positional:

my $buffer = slurp $filename, :bin; # Buf object
for @$buffer { ... }

Open a file with the same :bin adverb to get its raw contents:

unless my $fh = open $path, :bin {
 ... # handle the error
 }

Binary Files | 155

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Buf.html
https://docs.perl6.org/type/Buf.html
https://docs.perl6.org/type/Positional.html

Moving Around
Tell .read how many octets you want to read and it returns a Buf where each element
is a whole number between 0 and 255 (the unsigned 8-bit range):

my Buf $buffer = $fh->read($count);

A Buf is a sort of Positional. Each octet is one element of the buffer and you can get
an octet by its position:

my $third_byte = $buffer[2];

The next time you call .read you get the octets starting where you left off in the file.
Move to a different position with .seek. Specifying SeekFromCurrent moves from
the position where you left off:

my $relative_position = 137;
$fh.seek($relative_position, SeekFromCurrent);

Move backward with a negative value:

my $negative_position = -137;
$fh.seek($negative_position, SeekFromCurrent);

If you specify SeekFromBeginning it counts from the beginning of the file and moves
to the absolute position you specify:

my $absolute_position = 1370;
$fh.seek($absolute_position, SeekFromBeginning);

Exercise 8.15
Write a little hex dump program. Read a raw file 16 octets at a time. Print the hexa‐
decimal values for each of those octets, with spaces between them and a newline at
the end. Each line should have a form like this:

20 50 65 72 6c 20 36 2c 20 4d 6f 61 72 56 4d 20

Writing Binary Files
Going the other way, you can write octets to a file. Open the file for writing with the
same :bin adverb:

unless my $fh = open $path, :w, :bin {
 ...;
 }

Use .write and give it a Buf object. Each element must be a whole number between 0
and 255:

156 | Chapter 8: Files and Directories, Input and Output

https://docs.perl6.org/type/Buf.html
https://docs.perl6.org/type/Buf.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Buf.html

my $buf = Buf.new: 82, 97, 107, 117, 100, 111, 10;
$fh.write: $buf;

It might be easier to note them in hexadecimal:

my $buf = Buf.new: <52 61 6b 75 64 6f 0a>.map: *.parse-base: 16;

Exercise 8.16
Implement the program to write that Buf to the file. What ends up in the file?

Summary
The features you saw in this chapter are likely to be the heart of many useful pro‐
grams you write. You can put data in files and retrieve that data later. You can create
directories, move files into those directories, or get rid of them all. Most of the opera‐
tions are simple and straightforward; you’ll easily find the method you need once you
know the right object. However, most of these thingys interact with the outside world
and complain forcefully when things don’t work out. Don’t ignore those complaints!

Summary | 157

https://docs.perl6.org/type/Buf.html

CHAPTER 9

Associatives

An Associative indexes to a value with an arbitrary name called the key.
Associatives are unordered because the keys have no relative order. Other languages
have similar data types they call associative arrays, dictionaries, hashes, maps, or
something similar that do the same thing. There are several types of specialized asso‐
ciative data structures, and you’ve already been using some of them.

Pairs
A Pair has a single key and a value. You’ve already used these in their adverbial form,
although you didn’t know they were Pairs. Create a Pair through general object con‐
struction with the name and value as arguments:

my $pair = Pair.new: 'Genus', 'Hamadryas';

The => is the Pair constructor. You don’t have to quote the lefthand side because the
=> does that for you as long as it looks like a term:

my $pair = Genus => 'Hamadryas'; # this works
my $nope = ⛇ => 'Hamadryas'; # this doesn't

Any value can be a Pair value. Here’s a value that’s a List:

my $pair = Pair.new: 'Colors', <blue black grey>;

Combining .new and => probably doesn’t do what you want. Passing it a single Pair
means that you are missing its value. The .new method thinks that the Pair is the key
and you forgot the value:

my $pair = Pair.new: 'Genus' => 'Hamadryas'; # WRONG!

159

https://docs.perl6.org/type/Associative.html
https://docs.perl6.org/type/Associative.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Pair.html

Adverbs
A more common syntax is the adverbial form that you have already seen with Q quot‐
ing. Start with a colon, add the unquoted name, and specify the value inside <> for
allomorphic quoting or inside () where you quote the value yourself:

my $pair = :Genus<Hamadryas>;
my $pair = :Genus('Hamadryas');

my $genus = 'Hamadryas';
my $pair = :Genus($genus);

Without an explicit value an adverb has the value True:

my $pair = :name; # name => True

Using an adverb with Q with no value means you turn on that feature (everything else
is False by default):

Q :double /The name is $butterfly/;

If you’d like it to be False instead, put a ! in front of the key name:

my $pair = :!name; # name => False

You can create a Pair from a scalar variable. The identifier becomes the key and the
value is the variable’s value. You’ll see more of this coming up:

my $Genus = 'Hamadryas';
my $pair = :$Genus; # same as 'Genus' => 'Hamadryas';

There’s also a tricky syntax that reverses a numeric value and alpha-headed text key.
This is a bit prettier for adverbs representing positions, such as 1st, 2nd, 3rd, and so
on:

my $pair = :2nd; # same as nd => 2

The .key and .value methods extract those parts of the Pair:

put "{$p.key} => {$pair.value}\n";

The .kv method returns both as a Seq:

put join ' => ', $pair.kv;

Exercise 9.1
Develop a subroutine that creates Pairs for the numbers from 0 to 10. Given the
argument 1, it returns the Pair :1st. Given 2, it returns :2nd. Given 3, it
returns :3rd. For all other numbers, it uses th as the suffix.

160 | Chapter 9: Associatives

https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Pair.html

Modifying a Pair
You can’t change the key of a Pair. You’d have to make a new Pair to get a different
key:

my $pair = 'Genus' => 'Hamadryas';
$pair.key = 'Species'; # Nope!

If the Pair value is a container you can change the value inside the container, but if
you constructed it with a literal Str there’s no container and you can’t change the
value:

my $pair = 'Genus' => 'Hamadryas';
$pair.value = 'Papillo'; # Nope!

You can assign to it if that value came from a variable storing a container:

my $name = 'Hamadryas';
my $pair = 'Genus' => $name;
$pair.value = 'Papillo';

Remember that not all variables are mutable. You may have bound to a value:

my $name := 'Hamadryas'; # bound directly to value, no container
my $pair = 'Genus' => $name;
$pair.value = 'Papillo'; # Nope! Still a fixed value

To ensure that you get a container, assign the value to an anonymous scalar. You don’t
create a new named variable and you end up with a container:

my $pair = 'Genus' => $ = $name;
$pair.value = 'Papillo'; # Works!

.freeze the Pair to make the value immutable no matter how it came to you:

my $name = 'Hamadryas';
my $pair = 'Genus' => $name;
$pair.freeze;
$pair.value = 'Papillo'; # Nope!

There’s one last thing about Pairs. You can line up the colon forms head-to-foot and
it will create a list even though you don’t use commas:

my $pairs = (:1st:2nd:3rd:4th);

That’s the same as the form with commas:

my $pairs = (:1st, :2nd, :3rd, :4th);

You’ve already seen this with Q: you can turn on several features by lining up adverbs.
The :q:a:c here are three separate adverbs:

Q :q:a:c /Single quoting @array[] interpolation {$name}/;

Pairs | 161

https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Pair.html

Maps
A Map is an immutable mapping of zero or more keys to values. You can look up the
value if you know the key. Here’s a translation of color names to their RGB values.
The .new method takes a list of Strs and their values:

my $color-name-to-rgb = Map.new:
 'red', 'FF0000',
 'green', '00FF00',
 'blue', '0000FF',
 ;

You can use the fat arrow to make a list of Pairs:

my $color-name-to-rgb = Map.new:
 'red' => 'FF0000',
 'green' => '00FF00',
 'blue' => '0000FF',
 ;

Using the fat arrow notation with autoquoting won’t work; the method thinks these
are named arguments instead of Pairs for the Map and they are treated as options to
the method instead of keys and values. This gives you a Map with no keys or values:

don't do this!
my $color-name-to-rgb = Map.new:
 red => 'FF0000',
 green => '00FF00',
 blue => '0000FF',
 ;

A Map is fixed; you can’t change it once you’ve created it. This may be exactly what
you want since it can keep something else from accidentally modifying it:

$color-name-to-rgb<green> = '22DD22'; # Error!

To look up one of the color codes you subscript the object. This is similar to Posi
tionals but uses different postcircumfix characters. Use the autoquoting <> or quote
it yourself with {}:

put $color-name-to-rgb<green>; # quoted key with allomorph
put $color-name-to-rgb{'green'}; # quoted key
put $color-name-to-rgb{$color}; # quoted key with interpolation

If you want to look up more than one key at a time, you can use a slice to get a List
of values:

my @rgb = $color-name-to-rgb<red green>

162 | Chapter 9: Associatives

https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/List.html

Checking Keys
To check that a key exists before you try to use it, add the :exists adverb after the
single-element access. This won’t create the key. You’ll get True if the key is in the Map
and False otherwise:

if $color-name-to-rgb{$color}:exists {
 $color-name-to-rgb{$color} = '22DD22';
 }

The .keys method returns a Seq of keys:

for $color-name-to-rgb.keys {
 put "$^key => {$color-name-to-rgb{$^key}}";
 }

You do something similar to get only the values:

my @rgb-values = $color-name-to-rgb.values;

The .kv method returns a key and its value at the same time. This saves you some
complexity inside the Block:

for $color-name-to-rgb.kv -> $name, $rgb {
 put "$name => $rgb";
 }

Placeholder values inside the Block (but not a pointy Block) can do most of the work
for you:

for $color-name-to-rgb.kv {
 put "$^k => $^v";
 }

Creating from a Positional
You can create a Map from a Positional using .map. That returns a Seq that you can
use as arguments to .new. These create new values based on the original ones:

my $plus-one-seq = (1..3).map: * + 1;
my $double = (^3).map: { $^a + $^a }

Although the Map type and the .map method have the same name
and do a similar job, one is an immutable object that provides the
translation whereas the other is a method that transforms a
Positional into a Seq.

Your Block or thunk can take more than one parameter. Use two parameters to con‐
struct Pairs:

Maps | 163

https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Pair.html

my $pairs = (^3).map: { $^a => 1 }; # (0 => 1 1 => 1 2 => 1)
my $pairs = (^3).map: * => 1; # same thing

There’s also a routine form of map where the code comes first and the values come
after it. There’s a required comma between them in either form:

my $pairs = map { $^a => 1 }, ^3;
my $pairs = map * => 1, ^3;

The result of the .map can go right into the arguments for .new:

my $map-thingy = Map.new: (^3).map: { $^a => 1 }

These examples work because you want to produce Pairs. If you want to simply cre‐
ate multiple items for a larger list you need to create a Slip so you don’t end up with a
List of Lists:

my $list = map { $^a, $^a * 2 }, 1..3; # ((1 2) (2 4) (3 6))
put $list.elems; # 3

You can fix that with slip. This creates a Slip object that automatically flattens into
the structure that contains it:

my $list = map { slip $^a, $^a * 2 }, 1..3; # (1 2 2 4 3 6)
put $list.elems; # 6

Exercise 9.2
Rewrite the subroutine from the previous section using a Map to decide which Pair
you should return. If a number is not in the Map, use th. Add a new rule that numbers
ending in 5 (but not 15) should get the suffix ty (like, 5ty).

Checking Allowed Values
A common use for a Map is to look up permissible values. Perhaps you only allow cer‐
tain inputs in your subroutines. You can make those the keys of a Map. If they are in
the Map they are valid. If they aren’t, well, they aren’t.

Go through the list of colors and return the color names, which you’ll use as the keys,
and some value (1 is serviceable). You really want just the keys, so you can look them
up later:

my @permissable_colors = <red green blue>;
my $permissable_colors =
 Map.new: @permissable_colors.map: * => 1;

loop {
 my $color = prompt 'Enter a color: ';
 last unless $color;

164 | Chapter 9: Associatives

https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Slip.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Slip.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Map.html

 if $permissable_colors{$color}:exists {
 put "$color is a valid color";
 }
 else {
 put "$color is an invalid color";
 }
 }

This sort of data structure makes the lookup time the same no matter how many keys
you have. Consider what you’d have to do with just the List. This scan-array sub‐
routine checks each element of the array until it finds a match:

sub scan-array ($list, $item) {
 for @$list {
 return True if $^element eq $item;
 }
 return False;
 }

You might shorten your search by using .first to stop when it finds an appropriate
element. At worst this checks every element every time:

sub first-array (Array $array, $item) {
 $array.first(* eq $item).Bool;
 }

Exercise 9.3
Use the .map technique to construct a Map from numbers between 1 and 10 (inclu‐
sively) to their squares. Create a loop to prompt for a number. If the number is in the
Map, print its square.

Hashes
The Hash is like a Map but mutable. You can add or delete keys and update values.
This is the Associative type you’ll probably use the most. Create a Hash through its
object constructor:

my $color-name-to-rgb = Hash.new:
 'red', 'FF0000',
 'green', '00FF00',
 'blue', '0000FF',
 ;

That’s a bit tedious. You can enclose the key-value list in %() instead:

my $color-name-to-rgb = %(# Still makes a Hash
 'red', 'FF0000',
 'green', '00FF00',

Hashes | 165

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Associative.html
https://docs.perl6.org/type/Hash.html

 'blue', '0000FF',
);

Curly braces also work, but this is a discouraged form. With the fat arrow there are
Pairs inside the braces so the parser thinks this is a Hash:

my $color-name-to-rgb = { # Still makes a Hash
 'red' => 'FF0000',
 'green' => '00FF00',
 'blue' => '0000FF',
 };

If the parser doesn’t get enough hints about the contents of the braces, you might end
up with a Block instead of a Hash:

my $color-name-to-rgb = { # This is a Block!
 'red', 'FF0000',
 'green', '00FF00',
 'blue', '0000FF',
 };

There’s a special sigil for Associative. If you use the % sigil you can assign a List to
create your Hash:

my %color-name-to-rgb =
 'red', 'FF0000',
 'green', '00FF00',
 'blue', '0000FF'
 ;

Perhaps you don’t like your definition of blue. You can assign a new value to it. Notice
that the sigil does not change for the single-element access:

%color<blue> = '0000AA'; # a bit darker

You can remove a key with the :delete adverb. It returns the value of the just-deleted
key:

my $rgb = %color<blue>:delete

You can add new colors by assigning to the key that you want:

%color<mauve> = 'E0B0FF';

Exercise 9.4
Update your ordinal suffix program to use a Hash. That’s the easy part. Once you’ve
got that working, use your Hash to cache values so you don’t have to compute their
result again.

166 | Chapter 9: Associatives

https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Associative.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Hash.html

Accumulating with a Hash
Counting is another common use for a Hash. The key is the thing you want to count
and its value is the number of times you’ve encountered it. First, you need something
to count. Here’s a program that simulates rolling some dice:

sub MAIN ($die-count = 2, $sides = 6, $rolls = 137) {
 my $die_sides = 6;

 for ^$rolls {
 my $roll = (1..$sides).roll($die-count).List;
 my $sum = [+] $roll;
 put "($roll) is $sum";
 }
 }

The .roll method picks an element from your List the number of times you specify.
Each time it picks an element is independent of other times, so it might repeat some
values. This produces output that shows the individual die values and the sum of the
values:

(3 4) is 7
(4 1) is 5
(6 4) is 10
(2 6) is 8
(6 6) is 12
(1 4) is 5
(5 6) is 11

Now you have several things to count. Start by counting the sums. Inside that for, use
the sum as the Hash key and the number of times you encounter it as the value:

sub MAIN ($die-count = 2, $sides = 6, $rolls = 137) {
 my $die_sides = 6;

 my %sums;
 for ^$rolls {
 my $roll = (1..$sides).roll($die-count).List;
 my $sum = [+] $roll;
 %sums{$sum}++;
 }

 # sort the hash by its value
 my $seq = %sums.keys.sort({ %sums{$^a} }).reverse;

 for @$seq {
 put "$^a: %sums{$^a}"
 }
 }

Hashes | 167

https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Hash.html

Now you get a dice sum frequency report:

7: 27
8: 25
5: 19
4: 13
9: 12
6: 11
11: 9
10: 8
3: 7
2: 3
12: 3

If you are motivated enough, you can compare those values to the probabilities for
perfect dice. But there’s another interesting thing you can count—the rolls them‐
selves. If you use $roll as the key it stringifies it. You can then count the unique
stringifications. Sort the results so equivalent rolls such as (1 6) and (6 1) become
the same key:

sub MAIN ($die-count = 2, $sides = 6, $rolls = 137) {
 my $die_sides = 6;

 my %sums;
 for ^$rolls {
 my $roll = (1..$sides).roll($die-count).sort.List;
 %sums{$roll}++;
 }

 my $seq = %sums.keys.sort({ %sums{$^a} }).reverse;

 for @$seq {
 put "$^a: %sums{$^a}"
 }
 }

Now you get a sorted list of your dice rolls:

3 4: 15
1 4: 11
1 2: 10
2 5: 9
3 5: 9
3 6: 9
2 3: 8

168 | Chapter 9: Associatives

Exercise 9.5
Create a program to count the occurrences of words in a file and output the words
sorted by their count. Store each lowercased word as the key in a hash and increment
its value every time you see it. Don’t worry about punctuation or other characters;
you’ll learn how to deal with those later. What happens if two words have the same
count?

Multilevel Hashes
Hash values can be almost anything, including another Hash or Array. Here’s an
example with a couple of Hashes that count the number of butterflies in the Hama‐
dryas and Danaus genera:

my %Hamadryas = map { slip $_, 0 }, <
 februa
 honorina
 velutina
 >;

my %Danaus = map { slip $_, 0 }, <
 gilippus
 melanippus
 >;

But you want to contain all of that in one big Hash, so you construct that. The Hash
value is another Hash:

my %butterflies = (
 'Hamadryas' => %Hamadryas,
 'Danaus' => %Danaus,
);

say %butterflies;

The %butterflies data structure looks like this (using the discouraged braces form):

{Danaus => {gilippus => 0, melanippus => 0},
Hamadryas => {februa => 0, honorina => 0, velutina => 0}}

Suppose you want to see the count for Danaus melanippus. You have to look in the
top-level Hash to get the value for Danaus, then take that value and look at its
melanippus keys:

my $genus = %butterflies<Danaus>;
my $count = $genus<melanippus>;

That’s too much work. Line up the subscripts in one expression:

put "Count is %butterflies<Danaus><melanippus>";

Multilevel Hashes | 169

https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Hash.html

When you want to count a particular butterfly, you can do that:

%butterflies<Danaus><melanippus>++;

Exercise 9.6
Read the lines from the butterfly census file (from https://www.learningperl6.com/
downloads/) and break each line into a genus and species. Count each combination of
genus and species. Report your results.

Exercise 9.7
Modify the previous exercise to write the genus and species counts to a file. Each line
of the file should have the genus, species, and count separated by a tab. You’ll need
this file for an exercise in Chapter 15.

Summary
Associatives let you quickly get from a Str to another value. There are several types
that facilitate this. At the lowest level is the Pair of one key and one value. A Map fixes
those once created (much like a List), while a Hash is more flexible (much like an
Array). These will probably be some of the most useful and hard-working data struc‐
tures that you’ll encounter.

170 | Chapter 9: Associatives

https://www.learningperl6.com/downloads/
https://www.learningperl6.com/downloads/
https://docs.perl6.org/type/Associative.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Array.html

CHAPTER 10

Using Modules

Modules allow you to compartmentalize, distribute, and reuse code. Someone creates
a general solution to something, then packages it so you can reuse it in your pro‐
grams. Sometimes people make these modules available to everyone. You can find
some Perl 6 modules at https://modules.perl6.org or by looking for them on GitHub.

You don’t have to understand the code inside a module to benefit from its features.
You can usually follow the examples in its documentation even if it uses syntax that
you haven’t already seen.

Installing Modules
zef is one of the Perl 6 module managers. It can install, update, and uninstall modules.
It comes with Rakudo Star but you can install it yourself:

% git clone https://github.com/ugexe/zef.git
% cd zef
% perl6 -Ilib bin/zef install .

Once you have zef you can install modules. The Task::Popular module installs those
most used by other modules:

% zef install Task::Popular

You can install a module by name if the author has registered it in the module ecosys‐
tem:

% zef install HTTP::Tiny

You can also tell it to install the code directly from a Git repository:

% zef install https://github.com/sergot/http-useragent.git

% zef install git://github.com/sergot/http-useragent.git

171

https://modules.perl6.org
https://www.github.com

Ensure that you are using the clone URL and not the project page URL.

You can install from a local directory if the module infrastructure is there and there’s
a META6.json file. You have to make the argument to zef not look like a module
name. This one looks for a module directory in the current directory:

% zef install ./json-tiny

You can install the modules from the current directory by using the . as the current
working directory:

% zef install .

You may find references to panda, an early module installation
tool. It’s the old, unsupported tool. zef is the new hotness. Double-
check the documentation, though, since the favored tool may
change by the time you read this book.

Exercise 10.1
Install the Inline::Perl5 module by its name. You’ll use that module later in this
chapter. Install the Grammar::Debugger module by its repository URL. You’ll use that
module in Chapter 17. Find and clone the Grammar::Tracer module repository,
change into its local directory, and install it from that directory.

Loading Modules
You load a module into your program with need. This searches through the module
repository looking for a match. If you’ve installed modules with zef they should be in
the repository (in the next section I show you how to tell your program to look in
other places too):

need Number::Bytes::Human;
my $human = Number::Bytes::Human.new;

put $human.format(123435653); # '118M'
put $human.parse('3GB'); # 3221225472

Loading a module with use does the same thing but also automatically imports any‐
thing the module has set to export. This allows modules to define thingys in your cur‐
rent scope as if you’d defined the code there yourself:

use Number::Bytes::Human;

This is the same as doing a need and then an import:

172 | Chapter 10: Using Modules

https://docs.perl6.org/language/modules

need Number::Bytes::Human;
import Number::Bytes::Human;

Some modules import things automatically and others wait until you ask for them.
You can specify a list after the module name that asks for specific imports. The
Number::Bytes::Human module uses an adverb for that:

use Number::Bytes::Human :functions;

put format-bytes(123435653); # '118M'
put parse-bytes('3GB'); # 3221225472

No matter which way you load it, follow the examples in the documentation (or
maybe look in the module tests).

Finding the Module
When you install a module with zef the module’s filename becomes a digest of that
file and is saved in one of the module repositories—this allows several versions and
sources of the file to be simultaneously installed. You can see this path with the com‐
mand zef locate:

% zef locate Number::Bytes::Human
===> From Distribution: Number::Bytes::Human:ver<0.0.3>:auth<>:api<>
Number::Bytes::Human => /opt/perl6/site/sources/A5EA...

As you can see in the output, the module shows up in a cryptically named file. Perl 6
uses several methods to store and retrieve compunits in repositories. This is very flexi‐
ble but also much more than I have space to explain here. For the most part you don’t
need to worry about that.

The repository system is complicated because it can manage the
same module name with different versions or authors. This means
it’s possible to store or load old and new module versions simulta‐
neously.

The lib pragma
No matter where the module is, you need to tell your program where to find it. zef
uses the repositories that perl6 has configured by default. The lib pragma can add a
directory as a repository. You can store plain files in there (that is, unmanaged by Perl
6). The module name is translated to a path by replacing :: with a / and adding a .pm
or .pm6 extension:

use lib </path/to/module/directory>;
use Number::Bytes::Human

This looks for Number/Bytes/Human.pm or Number/Bytes/Human.pm6 in /path/to/
module/directory.

Loading Modules | 173

You can specify multiple directories:

use lib </path/to/module/directory /other/path>;

Or specify lib multiple times:

use lib '/path/to/module/directory';
use lib '/other/path';

Relative paths resolve themselves according to the current working directory:

use lib <module/directory>; # looks for module/ in current dir

The . works as the current working directory. People tend to do this if the module file
and the program are in the same directory:

use lib <.>:

You should carefully consider using the current working directory in your library
search path. Since it’s a relative location you’re never quite sure where it’s looking.
Running your program from a different directory (with a command like the follow‐
ing) means your program looks in a different directory and probably won’t find the
module:

% perl6 bin/my-program

It takes a bit more work to figure out the relative directory. Your program’s path is in
the special variable $*PROGRAM. You can turn that into an IO::Path object with .IO
and use .parent to get its directory. You can use that to add a lib directory at the
same level as your program:

random-between.p6
use lib $*PROGRAM.IO.parent;
use lib $*PROGRAM.IO.parent.add: 'lib';

There’s also the $?FILE compile-time variable:

use lib $?FILE.IO.parent;
use lib $?FILE.IO.parent.add: 'lib';

For this to work you must add the paths to search before you try to load the library. It
does no good to tell it where to look after it has already looked!

The environment

The PERL6LIB environment variable applies to every program you run in the current
session. Separate the directories with commas (no matter which system you are
using). Here it is in bash syntax:

% export PERL6LIB=/path/to/module/directory,/other/path

And in Windows syntax:

 C:\ set PERL6LIB=C:/module/directory,C:/other/path

174 | Chapter 10: Using Modules

https://docs.perl6.org/type/IO::Path.html

The -I switch

The -I switch to perl6 works for a single run of a program. This is handy inside a
project repository (a different sort of repository!) that you haven’t installed. You can
use the development version of the module from the project repository instead of a
previous one you might have installed:

% perl6 -Ilib bin/my_program.p6

Specify more than one extra directory with multiple -I switches or by separating
them with commas:

% perl6 -Ilib -I../lib bin/my_program.p6
% perl6 -Ilib,../lib bin/my_program.p6

You can see the -I at work if you want to use prove to run Perl 6 module tests. The
argument to -e is the interpreter to use (with Perl 5 being the default). You want a
perl6 that looks for the development modules in the current repository:

% prove -e "perl6 -Ilib"

The $*REPO variable can tell you where Perl 6 will look for modules. These aren’t just
directories. The repositories could be almost anything—including other code:

for $*REPO.repo-chain -> $item {
 say $item;
 }

Exercise 10.2
Create a program to show the repository chain. Run it in several situations using
PERL6LIB, -I, and use lib.

Lexical Effect
Loading a module only affects the current scope. If you load a module in a Block it’s
only available in that Block, and anything it imports is only available in that Block.
Outside of the Block the program doesn’t know about the module:

{
use Number::Bytes::Human;

my $human = Number::Bytes::Human.new; # works in here

put $human.format(123435653); # '118M'
}

my $human = Number::Bytes::Human.new; # ERROR: not defined here

Loading Modules | 175

https://docs.perl6.org/type/Block
https://docs.perl6.org/type/Block
https://docs.perl6.org/type/Block
https://docs.perl6.org/type/Block

You’ll get an odd error where your program is looking for a subroutine that has a
name that’s the same as the last part of the module name:

Could not find symbol '&Human'

You can limit module imports to just where you need them. If you only need it in a
subroutine you can load it there:

sub translate-it (Int $bytes) {
 use Number::Bytes::Human;
 state $human = Number::Bytes::Human.new;
 $human.format($bytes);
 }

This means that you could load different versions of the same module for different
parts of your program. The lib declaration is lexically scoped as well:

sub stable-version {
 use Number::Bytes::Human;
 ...
 }

sub experimental-version {
 use lib </home/hamadryas/dev-module/lib>;
 use Number::Bytes::Human;
 ...
 }

This sort of thing is often handy to convert data formats when they change between
module versions:

sub translate-to-new-format (Str $file) {
 my $data = do {
 use lib </path/to/legacy/lib>;
 use Module::Format;
 Module::Format.new.load: $file;
 };

 use Module::Format; # new version
 Module::Format.new.save: $data, $file;
 }

Loading a Module at Runtime
need and use load a module as the program compiles. Sometimes you don’t know
which module you want until you want to use it, or you know that you might use one
of several modules but only want to load the one you’ll actually use. You can wait
until runtime to load it with require. If the module isn’t there the require throws an
exception:

try require Data::Dump::Tree;
if $! { die "Could not load module!" }

176 | Chapter 10: Using Modules

Even if the module fails to load, the require still creates the type.
You can’t rely on the type being defined as a signal of successful
loading.

Perhaps you want to check that a module is installed before you try to load it. The
$*REPO object has a .resolve method that can find a module from its dependency
specification:

my $dependency-spec =
 CompUnit::DependencySpecification.new: :short-name($module);

if $*REPO.resolve: $dependency-spec {
 put "Found $module";
 }

Exercise 10.3
Write a program that reports whether a module is installed. Try this with
Number::Bytes::Human (assuming you installed it so it is present) and
Does::Not::Exist (or any other name that isn’t a module).

Interpolating module names

You can interpolate a Str where you’d normally have a literal class name by putting
the Str inside ::():

require ::($module);

Anywhere you’d use the literal class name you can use that ::($module). When you
want to create an object but you don’t know the literal module name, you interpolate
it just as you did in the require:

my $new-object = ::($module).new;

Not only that, but you can use a method name from a Str by putting it in double
quotes. You must use the parentheses for the argument list when you do this:

$new-object."$method-name"(@args);

You can use the return value of require. If it was able to load the module that value is
the type:

my $class-i-loaded = (require ::($module));
my $object = $class-i-loaded.new;

This might work better with a literal name that you don’t want to repeatedly type:

Loading Modules | 177

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

my $class-i-loaded = (require Digest::MD5);
my $object = $class-i-loaded.new;

Checking this is a bit tricky. You can’t simply check for the type because that will be
defined no matter which way it goes. Check that it’s not a Failure:

my $module = 'Hamadryas';

try require ::($module);
put ::($module).^name; # Failure
say ::($module).^mro; # ((Failure) Nil (Cool) (Any) (Mu))
if ::($module) ~~ Failure {
 put "Couldn't load $module!"; # Couldn't load Hamadryas!
 }

These aren’t tricks to use frequently, but they are there as a last resort should you
need them. Here’s a program that lets you choose which dumper class to use. It uses a
Hash to translate the class name to the method name it uses. At the end it merely
dumps the only Hash defined in the program:

sub MAIN (Str $class = 'PrettyDump') {
 my %dumper-adapters = %(
 'Data::Dump::Tree' => 'ddt',
 'PrettyDump' => 'dump',
 'Pretty::Printer' => 'pp',
);

 CATCH {
 when X::CompUnit::UnsatisfiedDependency {
 note "Could not find $class";
 exit 1;
 }
 default {
 note "Some other problem with $class: {.message}";
 exit 2;
 }
 }
 require ::($class);

 my $method = %dumper-adapters{$class};
 unless $method {
 note "Do not know how to dump with $class";
 exit 2;
 }

178 | Chapter 10: Using Modules

https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Hash.html

 put ::($class).new."$method"(%dumper-adapters);
 }

Exercise 10.4
Modify the dumping program. Create another subroutine that takes a list of modules
and returns the ones that are installed. Use that subroutine to provide the default for
MAIN.

Fetching Data from the Web
HTTP::UserAgent is a handy module to fetch data from the web. Install it with zef and
follow the example:

use HTTP::UserAgent;
my $ua = HTTP::UserAgent.new;
$ua.timeout = 10;

my $url = ...;
my $response = $ua.get($url);
my $data = do with $response {
 .is-success ?? .content !! die .status-line
 }

Once you have the data you can do whatever you like, including reading some lines
from it:

for $data.lines(5) -> $line {
 put ++$, ': ', $line;
 }

Exercise 10.5
Write a program that fetches the URL you provide on the command line, then out‐
puts its contents to standard output.

Running Perl 5 in Perl 6
One of Perl 6’s original goals was Perl 5 interoperability. Larry Wall said that if the
new Perl 6 could run “with 95-percent accuracy 95 percent of the [Perl 5] scripts, and
100-percent accuracy 80 percent of the [Perl 5] scripts, then that’s getting into the
ballpark.” This meant, as a goal, that a lot of the current Perl 5 contents of the Com‐
prehensive Perl Archive Network (CPAN) would be available in Perl 6.

Fetching Data from the Web | 179

The Inline::Perl5 module allows you to load Perl 5 modules or evaluate Perl 5
snippets from a Perl 6 program. Add the source :from<Perl5> after the module you
want to load, then translate the syntax to Perl 6 (so, . for a method call and so on).
You don’t have to load Inline::Perl5 explicitly in this case:

use Business::ISBN:from<Perl5>;
my $isbn = Business::ISBN.new('9781491977682');
say $isbn.as_isbn10.as_string;

You can have Perl 5 code in your program and call it when you need it, dropping in
and out of it as you like. Create an object that will handle the Perl 5 code for you:

use Inline::Perl5;
my $p5 = Inline::Perl5.new;

$p5.run: q:to/END/;
 sub p5_test { return 'Hello from Perl 5!' }
END

put 'Hello from Perl 6!';

$p5.run: 'print p5_test()';

Exercise 10.6
Compare the results of the Perl 5 and 6 versions of Digest::MD5 by loading them into
the same program. Get the digest of the program itself. You can use slurp to read the
entire contents of a file.

Summary
You’ve learned how to find and install modules with zef. You can often simply follow
the example in the module’s documentation to get what you want. Before you set out
to program something, see if someone else has already done it.

You’re not limited to modules from Perl 6 either. The Inline modules allow you to
use code from other languages. If you have a favorite module you might not have to
give it up.

180 | Chapter 10: Using Modules

CHAPTER 11

Subroutines

Now it’s time for more sophisticated subroutines. You were introduced to them in
Chapter 5 but you only saw enough to support the upcoming chapters. Now that
you’ve seen Arrays and Hashes, there’s much more you can do with subroutine signa‐
tures.

A Basic Subroutine
When you run a subroutine you get some sort of result: the last evaluated expression.
That’s the return value. This sets basic routines apart from the simpler Blocks you saw
in Chapter 5. A Routine knows how to send a value back to the code that called it.
This subroutine returns a different Str if the argument is odd or even:

sub odd-or-even {
 if (@_[0] %% 2) { 'Even' }
 else { 'Odd' }
 }

odd-or-even(2); # Even
odd-or-even(137); # Odd

Without a signature the arguments show up in @_. Each subroutine has its own ver‐
sion of that variable so it doesn’t conflict with any other subroutine’s @_. This code
calls one subroutine that calls another. top-call shows its @_ before and after show-
args:

top-call(<Hamadryas perlicus>);

sub show-args { say @_ }
sub top-call {
 put "Top: @_[]";
 show-args(<a b c>);

181

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Routine.html
https://docs.perl6.org/type/Str.html

 put "Top: @_[]";
 }

Even though both use @_ they are separate. The @_ in top-call isn’t disturbed by
show-args:

Top: Hamadryas perlicus
[a b c]
Top: Hamadryas perlicus

The subroutine definition is lexically scoped. If you need it for only part of the code
you can hide it in a Block. Outside the Block that subroutine is not visible:

{
put odd-or-even(137);
sub odd-or-even { ... } # only defined in this block
}

put odd-or-even(37); # undeclared routine!

Extra Arguments
What does odd-or-even accept, though? The parameter is an Array but you only use
the first element. These calls still work without warnings or errors:

put odd-or-even(2, 47); # Even
put odd-or-even(137, 'Hello'); # Odd

This isn’t necessarily wrong. It depends on what you are trying to do. Maybe you
specifically want as many arguments as the caller decides to send:

sub plus-minus {
 [-]
 @_
 .rotor(2, :partial)
 .map: { $^a[0] + ($^a[1] // 0) }
 }

put plus-minus(9,1,2,3);

With the signatures you’ll see later in the chapter you’ll be able to control this to get
the situation that you want.

Explicit Returns
You can explicitly return from anywhere in a subroutine with return. This distin‐
guishes a subroutine from the Blocks you used in Chapter 5. This version is the same
thing but with an explicit return:

182 | Chapter 11: Subroutines

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Block.html

sub odd-or-even ($n) {
 if ($n %% 2) { return 'Even' }
 else { return 'Odd' }
 }

Call this with extra arguments and you get an error:

put odd-or-even(2, 47); # Error

The message tells you the argument list does not match the signature:

Calling odd-or-even(Int, Int) will never work with declared signature ($n)

You could write this differently. do converts the entire if structure into something
that evaluates to its last evaluated expression. Return the value of the do instead of
repeating the return:

sub odd-or-even ($n) {
 return do {
 if ($n %% 2) { 'Even' }
 else { 'Odd' }
 }
 }

The conditional operator is the same thing expressed differently:

sub odd-or-even ($n) {
 return $n %% 2 ?? 'Even' !! 'Odd'
 }

Another way to do the same thing is to have a default return value but return sooner
for other situations:

sub odd-or-even ($n) {
 return 'Even' if $n %% 2;
 'Odd';
 }

Or back to where you started with an implicit return:

sub odd-or-even ($n) { $n %% 2 ?? 'Even' !! 'Odd' }

These techniques are more appealing in more complex situations that I’m not going
to show here. No matter which of these serves your situation, they all do the same
thing: they send a value back to the code that called it.

Exercise 11.1
Create a subroutine that returns the least common multiple of two integers. Use that
in a program that takes two integers from the command line. The particulars of this
exercise are very simple but it’s the structure of the subroutine definitions that matter.

A Basic Subroutine | 183

Recursing
Subroutines can call themselves; this is called recursion. The classic example is Fibo‐
nacci numbers, where the next number in the series is the sum of the preceding two
given that the first two numbers are 0 and 1:

sub fibonacci ($n) {
 return 0 if $n == 0; # special case of n = 0
 return 1 if $n == 1;
 return fibonacci($n - 1) + fibonacci($n - 2);
 }

say fibonacci(10); # 55

When you call this subroutine with the value of 10 it calls itself twice to get the values
for 9 and 8. When it calls itself for 9, it creates two more calls for 8 and 7. It keeps
creating more and more calls to itself until the arguments are 0 or 1. It can then
return a value one level up, working its way back to where it started.

A Perl 6 subroutine knows what it is inside its own Block. The variable &?ROUTINE is
the same subroutine object. You don’t have to know the current subroutine’s name.
This is the same thing:

sub fibonacci ($n) {
 return 0 if $n == 0;
 return 1 if $n == 1;
 return &?ROUTINE($n - 1) + &?ROUTINE($n - 2);
 }

This is only slightly better. You’ll read more about this later when you encounter
multi subroutines.

Exercise 11.2
Another favorite example of recursion is the factorial function. Start with a positive
whole number and multiply it by all the strictly positive numbers that come before it.
The factorial of 6 would be 6*5*4*3*2*1. Implement this as a recursive function. Once
you’ve done that, implement it in the amazingly simple Perl 6 fashion. How big a
number can you get your program to produce?

Iterating Instead of Recursing
You can turn many recursive solutions into iterative ones. Instead of repeatedly call‐
ing subroutines with all the overhead they entail (each call sets up a new scope,
defines new variables, and so on), rearrange things so you don’t need a subroutine.

184 | Chapter 11: Subroutines

https://docs.perl6.org/type/Block.html

The factorial case is easy. The reduction operator does that for you:

my $factorial = [*] 1 .. $n;

The operators are actually methods, so you don’t actually avoid
calling something.

The Fibonacci case is easy too when you use a Seq:

my $fibonacci := 1, 1, * + * ... *;
put "Fib(5) is ", $fibonacci[5];

You can make a queue of things to work on. With a queue you can add items any‐
where you like. Instead of processing the next thingy immediately you can put it at
the end of the queue. When it’s time to process the next thingy you can take it from
the beginning, end, or middle. You can add as many elements as you want:

my @queue = (...);
while @queue {
 my $thingy = @queue.shift; # or .pop
 ... # generate more items to process
 @queue.append: @additional-items; # or .push or .unshift
 }

Storing Subroutines in Libraries
Start with a simple subroutine to choose a random integer between two integers
(including the endpoints). Use .rand and coerce the result with .Int, then shift the
result into the right range:

sub random-between ($i, $j) {
 ($j - $i).rand.Int + $i;
 }

say random-between(-10, -3);

You might need to convince yourself that works. Your program gets its job done, so
you don’t think about it again. Then you write a different program doing something
similar and you want to use that subroutine again. You do what many people don’t
want to admit to: you cut and paste the subroutine into a different program. Again, it
works. Or does it?

Did you really get a number between $i and $j inclusively?

Storing Subroutines in Libraries | 185

https://docs.perl6.org/type/Seq.html

Exercise 11.3
What’s the maximum number that random-between produces for any $i and $j?
Write a program that figures it out by running random-between repeatedly to see the
actual range of results.

Once you’ve done that exercise you know that random-between didn’t ever select the
second endpoint as one of the random values. If you had copied it into other pro‐
grams it would have been wrong in several places. There’s a way to fix that.

To use the same subroutine in several programs you can define it once in a library.
That’s a separate file that you can import into your program.

Move random-between to a new file that has the .pm or .pm6 extension:

MyRandLibrary.pm6
sub random-between ($i, $j) {
 ($j - $i).rand.Int + $i;
 }

In your original program import your library with use. Set lib as you saw in Chap‐
ter 10:

random-between.p6
use lib <.>
use MyRandLibrary;
say random-between(-10, -3);

Your program finds your library but now you get a different error:

% perl6 random-between.p6
===SORRY!=== Error while compiling ...
Undeclared routine:
 random-between used at line ...

Exporting Subroutines
Subroutines are lexically scoped by default, so they can’t be seen outside their files. If
you want another file to use them you need to export those subroutines. The is
export trait does that and comes right after the signature:

MyRandLibrary.pm6
sub random-between ($i, $j) is export {
 ($j - $i).rand.Int + $i;
 }

Your program now finds the library, imports the subroutine, and produces a number
between your endpoints:

186 | Chapter 11: Subroutines

% perl6 random-between.p6
11

Exercise 11.4
Create the library that exports the random-between subroutine and use it in a pro‐
gram to get a random number between the two command-line arguments. What hap‐
pens when the first argument is greater than the second? What happens if one of the
arguments is not a number?

Positional Parameters
There are two types of parameters. The first are the positional parameters that you’ve
seen already in Chapter 5. These parameters handle the arguments by their order in
the argument list. We’ll look at them in a bit more detail here. You’ll see the other
sort, named parameters, later in this chapter.

With no explicit signature the arguments show up in the array @_. Each subroutine
gets its own @_ so it doesn’t conflict with that for any other subroutine. So, if you
write this:

sub show-the-arguments {
 put "The arguments are: ", @_.gist;
 }

show-the-arguments(1, 3, 7);

You get:

The arguments are: [1 3 7]

Using @_ inside the subroutine automatically adds the implicit signature. But it’s not
as simple as an explicit @_ parameter by itself. This signature expects a single
Positional argument:

sub show-the-arguments (@_) { # Single Positional argument
 put "The arguments are: ", @_.gist;
 }

Calling it with multiple arguments is a compile-time error:

show-the-arguments(1, 3, 7); # Won't compile

The (@_) signature wants a single argument that’s some sort of Positional (not
necessarily an Array):

show-the-arguments([1, 3, 7]); # Single argument

Positional Parameters | 187

https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Array.html

Slurpy Parameters
A slurpy parameter gets all of the remaining arguments into a single Array. Prefix the
array parameter with a *. This is the same as the version with no explicit signature:

sub show-the-arguments (*@_) { # slurpy
 put "The arguments are: ", @_.gist;
 }

show-the-arguments(1, 3, 7);

The output shows the three numbers:

The arguments are: [1 3 7]

There’s not much special about @_. You can use your own variable name instead:

sub show-the-arguments (*@args) { # slurpy
 put "The arguments are: ", @args.gist;
 }

Try it with something slightly different now. Include a List as one of the arguments:

sub show-the-arguments (*@args) { # slurpy
 put "The arguments are: ", @args.gist;
 }

show-the-arguments(1, 3, (7, 6, 5));

Did you expect this output? It’s a flat List with no structure:

The arguments are: [1 3 7 6 5]

This isn’t a problem with formatting the data; the slurpy parameter flattens the data.
Try it again with another level:

show-the-arguments(1, 3, (7, (6, 5)));

You get the same output with no structure:

The arguments are: [1 3 7 6 5]

The slurpy parameter only flattens objects that you can iterate. If you itemize one of
the Lists that item is no longer iterable. Items resist flattening:

show-the-arguments(1, 3, (7, $(6, 5)));

The output is a bit different:

The arguments are: [1, 3, 7, (6, 5)]

How about this one?

show-the-arguments([1, 3, (7, $(6, 5))]);

Instead of a List you have an Array. Remember that an Array already itemizes each
of its elements. The (7, $(6, 5)) is itemized because it’s an element of an Array:

188 | Chapter 11: Subroutines

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html

The arguments are: [1, 3, (7, $(6, 5))]

Use a ** in front of the parameter if you don’t want this automatic flattening:

sub show-nonflat-arguments (**@args) { # nonflattening slurpy
 put "The nonflat arguments are: ", @args.gist;
 }

show-nonflat-arguments([1, 3, (7, $(6, 5))]);

This output has a double set of square brackets around the data. The single argument
is the inner Array and the entire argument list is the outer one:

The nonflat arguments are: [[1 3 (7 (6 5))]]

Exercise 11.5
Create a subroutine that outputs its argument count and shows each argument on a
separate line. Try it with these argument lists:

1, 3, 7
1, 3, (7, 6, 5)
1, 3, (7, $(6, 5))
[1, 3, (7, $(6, 5))]

Have It Both Ways
What if you want both flattening and nonflattening at the same time? If there’s one
argument, you want to flatten that. If there’s more than one argument you want to
leave that List alone. Use a + in front of a parameter to use the single argument rule:

sub show-plus-arguments (+@args) { # single argument rule
 put "There are {@args.elems} arguments";
 put "The nonflat arguments are: ", @args.gist;
 }

If you pass one argument that argument is flattened into @args. With more than one
argument you don’t get flattening:

my @a = (1,3,7);

show-plus-arguments(@a); # flattened
show-plus-arguments(@a, 5); # not flattened

The output shows the difference. In your first call to show-plus-arguments it looks
like you have single Array argument. By the time it gets inside the subroutine that
Array has been flattened into three Int arguments:

There are 3 arguments
The nonflat arguments are: [1 3 7]

Positional Parameters | 189

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html

There are 2 arguments
The nonflat arguments are: [[1 3 7] 5]

Your second call has the Array along with 5. With more than one argument you don’t
get flattening and the argument list has an Array argument and an Int argument.

Combining Slurpies
You can have only one slurpy Array parameter, since it will take up the rest of the
positional arguments. However, you can have positional parameters before a slurpy
parameter:

sub show-the-arguments ($i, $j, *@args) { # slurpy
 put "The arguments are i: $i j: $j and @args[]";
 }

show-the-arguments(1, 3, 7, 5);

The first two arguments fill in $i and $j and anything left over goes into @args:

The arguments are i: 1 j: 3 and 7 5

What if you put all but one of the arguments into an Array?

my @a = (3, 7, 5);
show-the-arguments(1, @a);

Now the output shows that $j has an Array value and @args has nothing:

The arguments are i: 1 j: 3 7 5 and

Exercise 11.6
Create a library that provides a head and a tail function that each take a List
parameter. Make your head function return the first item in the List and your tail
function return everything else. Do not change the original List. If you’re used to
Lisp you might call these car and cdr:

use lib <.>;
use HeadsTails;

my @a = <1 3 5 7 11 13>;

say head(@a); # 1
say tail(@a); # [3 5 7 11 13]

190 | Chapter 11: Subroutines

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html

Optional and Default Arguments
By default all positional parameters require arguments. A question mark, ?, after a
parameter marks it as optional so that you don’t need to supply an argument. This
subroutine takes one or two arguments:

sub one-or-two ($a, $b?) {
 put $b.defined ?? "Got $a and $b" !! "Got $a";
 }

one-or-two('Hamadryas');
one-or-two('Hamadryas', 'perlicus');

If you have an optional argument you probably want a default value. Assign to a
parameter to give it a default value. That assignment occurs only when you don’t sup‐
ply an argument:

sub one-or-two ($a, $b = 137) {
 put $b.defined ?? "Got $a and $b" !! "Got $a";
 }

one-or-two(19); # one number
one-or-two('Hamadryas', 'perlicus'); # two strings
one-or-two(<Hamadryas perlicus>); # one array
one-or-two(|<Hamadryas perlicus>); # flattened array

The output shows that the arguments fill in the parameters differently each time:

Got 19 and 137
Got Hamadryas and perlicus
Got Hamadryas perlicus and 137
Got Hamadryas and perlicus

You can’t have required positional parameters after an optional one:

sub one-or-two ($a?, $b) {
 put $b.defined ?? "Got $a and $b" !! "Got $a";
 }

That’s a compile-time error:

Error while compiling
Cannot put required parameter $b after optional parameters

Parameter Traits
The parameter variables are filled in with read-only aliases to the original data. You
see the same values but you can’t change them. This subroutine tries to add one to its
value:

Positional Parameters | 191

sub increment ($a) { $a++ }

my $a = 137;
put increment($a);

This doesn’t work because you can’t change the parameter variable:

Cannot resolve caller postfix:<++>(Int); the following candidates
match the type but require mutable arguments:

The read-only alias is the default. You can change that by applying traits to the
parameters. Apply the is copy trait to get a mutable value that’s separate from the
original argument. You can change it without changing the original value:

sub mutable-copy ($a is copy) { $a++; put "Inside: $a" }

my $a = 137;

put "Before: $a";
mutable-copy($a);
put "After: $a";

The output shows that the original variable’s value did not change:

Before: 137
Inside: 138
After: 137

Use the is rw trait to change the original value. If the argument is a writable con‐
tainer you can change the value. If the value is not some sort of container you’ll get an
error:

sub read-write ($a is rw) { $a++ }

my $a = 137;
my $b := 37;
my \c = 7;

read-write($a); # writable so okay
read-write($b); # literal, not mutable - ERROR!
read-write(c); # constant, not mutable - ERROR!
read-write(5); # literal, not mutable - ERROR!

Parameter Constraints
You can constrain a parameter to a particular type. You already saw some of this in
Chapter 5:

sub do-something (Int:D $n) { ... }

The sigils impose their own constraints. An @ accepts something that is a Positional,
the % accepts something that does Associative, and the & accepts something that
does Callable:

192 | Chapter 11: Subroutines

https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Associative.html
https://docs.perl6.org/type/Callable.html

sub wants-pos (@array) { put "Got a positional: @array[]" }
sub wants-assoc (%hash) { put "Got an associative: {%hash.gist}" }
sub wants-code (&code) { put "Got code" }

wants-pos(<a b c>);
wants-assoc(Map.new: 'a' => 1);
wants-code({ put "Mini code" });

These won’t work because they don’t supply the right types of arguments:

wants-pos(%hash);
wants-assoc(<x y z>);
wants-code(1);

Additionally, something that accepts a code block can specify its own signature that
must match the argument’s signature. Put the desired signature after the parameter
variable:

sub one-arg (&code:($a), $A) { &code.($A) }
sub two-args (&code:($a, $b), $A, $B) { &code.($A, $B) }

one-arg({ put "Got $^a" }, 'Hamadryas');

two-args({ put "Got $^a and $^b" }, 'Hamadryas', 'perlicus');

Same Name, Different Signature
You can define the same subroutine name twice by giving it different signatures. Each
of these is a candidate. A dispatcher decides which candidate to call based on your
arguments. There are several things the dispatcher considers, in this order:

1. Literal value
2. Number of arguments (arity)
3. Types of arguments
4. Other constraints

To define candidates, declare the subroutine with multi. And since multi works on a
subroutine by default (you’ll see methods in Chapter 12), you can leave off the sub:

multi sub some-subroutine { ... }
multi some-subroutine { ... }

Literal Value Parameters
You can also make a signature that has a literal value. These multis are selected when
the argument value is the same as the literal parameter:

multi something (1) { put "Got a one" }
multi something (0) { put "Got a zero" }

Same Name, Different Signature | 193

multi something ($a) { put "Got something else" }

something(1);
something(0);
something(137);

The literal value parameters decide the appropriate subroutine for the first two cases:

Got a one
Got a zero
Got something else

What if you wanted a Rat as one of the literal values? Put the value inside <> so the
compiler doesn’t think the / is the start of a regex (Chapter 15):

multi something (1) { put "Got a one" }
multi something (0) { put "Got a zero" }
multi something (<1/137>) { put "Got something fine" }
multi something ($b) { put "Got something else" }

something(1);
something(0);
something(1/137);
something('Hello');

Think about the previous Fibonacci example:

sub fibonacci ($n) {
 return 0 if $n == 0;
 return 1 if $n == 1;
 return &?ROUTINE($n - 1) + &?ROUTINE($n - 2);
 }

That implementation has two special cases for 0 and 1. You have to provide special
code to handle those. You can move those special cases away from the main idea by
giving each case its own multi:

multi fibonacci (0) { 0 }
multi fibonacci (1) { 1 }

multi fibonacci ($n) {
 return fibonacci($n - 1) + fibonacci($n - 2);
 }

put fibonacci(0);
put fibonacci(1);
put fibonacci(5);

Notice that you can’t use &?ROUTINE because $n-1 might not be handled by the same
subroutine.

194 | Chapter 11: Subroutines

https://docs.perl6.org/type/Rat.html

Number of Arguments
Declare the sub with multi. One candidate takes a single positional argument and the
other candidate takes two positional arguments:

multi subsomething ($a) { put "One argument"; }
multi subsomething ($a, $b) { put "Two arguments"; }

something(1);
something(1, 3);
something();

The output shows that you called two different subroutines:

One argument
Two arguments

Uncomment the call with no arguments, and you’ll get a compile-time error. The
compiler knows no signatures can match:

Calling something() will never work with any of these multi signatures:
 ($a)
 ($a, $b)

You can shorten the multi sub to simply multi since that implies sub:

multi something ($a) { put "One argument"; }
multi something ($a, $b) { put "Two arguments"; }

This sort of dispatch depends on arity—the number of arguments that you supply.
This means that the compiler also knows when you try to define subroutines with the
same arity, like this:

multi something ($a) { put "One argument"; }
multi something ($b) { put "Also one arguments"; } # Error

This is also a runtime error because the dispatcher can’t choose one candidate over
the other (and it won’t run all of them):

Ambiguous call to 'something'; these signatures all match:
:($a)
:($b)

Parameter Types
You can also choose amongst multis by parameter type. These each take the same
number of arguments but distinguish them by type:

multi something (Int:D $a) { put "Int argument"; }
multi something (Str:D $a) { put "Str arguments"; }

something(137);
something('Hamadryas');

Same Name, Different Signature | 195

These call different subroutines because the argument types are different:

Int argument
Str arguments

You might have the different subroutines take the same type. In those cases you can
select the right one by a custom constraint. The dispatcher chooses the most specific
one:

multi something (Int:D $a) { put "Odd arguments"; }
multi something (Int:D $a where * %% 2) { put "Even argument" }

something(137);
something(538);

Notice that this works regardless of the order in which you define the subroutines:

Odd arguments
Even arguments

In the next example the first subroutine constrains its parameter to numbers that are
odd. The second subroutine constrains its parameter to numbers greater than 5.
These both have one parameter and they both have a where clause, so the dispatcher
chooses the first one it encounters:

multi sub something (Int:D $a where * % 2) { put "Odd number" }
multi sub something (Int:D $a where * > 5) { put "Greater than 5" }

something(137);

The argument satisfies either signature. The output shows that the first subroutine
ran:

Odd number

Reverse the order of definition:

multi sub something (Int:D $a where * > 5) { put "Greater than 5" }
multi sub something (Int:D $a where * % 2) { put "Odd number" }

something(137);

The first defined subroutine still runs even though it’s a different definition:

Greater than 5

What if you do not want multiple definitions with the same name? Declare one of the
subroutines without multi:

sub something (Int $a) { put "Odd arguments" }

multi something (Int $a where * %% 2) { # redefinition!
 put "Even argument";
 }

196 | Chapter 11: Subroutines

You get a compile-time error asking if you meant that to be a multi sub:

===SORRY!=== Error while compiling
Redeclaration of routine 'something' (did you mean to declare a multi-sub?)

Named Parameters
Named parameters do not depend on their position in the parameter or argument
lists. By default they are optional. You can specify them anywhere in the arguments
and in any order. These are often used to set options for a routine or method.

Specify named parameters with a colon before the parameter variable. In the signa‐
ture, use the unquoted parameter variable name, the fat arrow, and the value that you
want to supply. The order of the names or values does not matter:

sub add (Int:D :$a, Int:D :$b) {
 $a + $b;
 }

put add(a => 1, b => 36); # 37
put add(b => 36, a => 1); # Same thing

For this to work you cannot quote the keys or use variables as the keys. This call is
actually two Pair objects treated as positional parameters:

put add('a' => 1, 'b' => 36); # Will not work!
put add($keya => 1, $keyb => 36); # Will not work!

More often you’ll use the adverb syntax. With values that are positive integers you can
specify the value first and the name after it:

put add(:a(1), :b(36)); # 37
put add(:36b, :1a); # 37

Default values and other constraints work the same as they do with positional param‐
eters:

sub add (Int:D :$a = 0, Int:D :$b = 0) {
 $a + $b;
 }

put add(); # 0
put add(:36b); # 36

You don’t have to use the same names for the arguments and the parameter variables.
In complicated code in power-of you might not want to retype $base or $power every
time. The subroutine still uses the long names for the interface but the implementa‐
tion can use the short names:

sub power-of (Int:D :power($n) = 0, Int:D :base($a)) {
 $a ** $n
 }

Named Parameters | 197

https://docs.perl6.org/type/Pair.html

put power-of(base => 2, power => 5); # 32

So far these named parameters have all taken values. Without any other constraints
and no argument value, a named parameter is a Boolean. The adverb form with no
value (and no constraint) gets True (because that’s what Pairs do):

sub any-args (:$state) { say $state }
any-args(:state); # True

A ! in front of the adverb name makes it a False value:

any-args(:!state); # False

Required Named Parameters
A positional parameter is required simply because it exists, and you have to mark it as
optional to make it such. That’s reversed with named parameters, which are optional
unless you say otherwise. The parameters get their default values if you don’t specify
them:

sub not-required (:$option) { say $option; }

not-required(); # (Any)
not-required(:option); # True
not-required(:!option); # False
not-required(:5option); # 5

To make option mandatory put a ! after it in the signature (this is not the same as !
before an argument):

sub not-required (:$option!) { say $option; }

not-required(); # Error!

The error tells you that you forgot an argument:

Required named parameter 'option' not passed

Named Parameters for Free
Rather than define every named parameter, you can accept all of them. Don’t specify
any in your parameters and they all show up in %_. This is the equivalent of @_ but for
named parameters. Each routine gets its own version of this variable:

sub any-args { say %_ }
any-args(genus => 'Hamadryas');
any-args(genus => 'Hamadryas', species => 'perlicus');

You didn’t define either :genus or :species but they show up in %_:

{genus => Hamadryas}
{genus => Hamadryas, species => perlicus}

198 | Chapter 11: Subroutines

https://docs.perl6.org/type/Pair.html

A slurpy Hash does the same thing:

sub any-args (*%args) { say %args }
any-args(genus => 'Hamadryas');
any-args(genus => 'Hamadryas', species => 'perlicus');

That’s how that implicit %_ worked. When you use it in a subroutine you automati‐
cally get a slurpy for it in the signature:

sub any-args { say %_ }
sub any-args (*%_) { say %_ }

Mixed Parameters
You can mix positional and named parameters. If you use @_ and %_ in the code they
are both in the implicit signature:

sub any-args {
 put '@_ => ', @_.gist;
 put '%_ => ', %_.gist;
 }

any-args('Hamadryas', 137, :status, :color('Purple'));

@_ => [Hamadryas 137]
%_ => {color => Purple, status => True}

You can mix in the named parameters in any order that you like. The positional
parameters have to be in the right order but named parameters can come between
them:

any-args(:color('Purple'), 'Hamadryas', :status, 137);

It’s the same if you name the parameters yourself:

sub any-args (*@args, *%named) {
 put '@args => ', @args.gist;
 put '%named => ', %named.gist;
 }

any-args(:color('Purple'), 'Hamadryas', :status, 137);

Return Types
You can constrain the return values of subroutines. If you try to return a value that
doesn’t fit the restriction you get a runtime Exception. Specify the type after the sig‐
nature with a -->. You want this subroutine to return a defined Int:

sub returns-an-int (Int:D $a, Int:D $b --> Int:D) { $a + $b }

put returns-an-int(1, 3);

Return Types | 199

https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Int.html

That works:

4

But what if you make a mistake where you return a Str?

sub returns-an-int (Int:D $a, Int:D $b --> Int:D) { ($a + $b).Str }

put returns-an-int(1, 3);

At runtime you get an error because the types do not match:

Type check failed for return value; expected Int but got Str ("4")

An alternate way is to note it with returns (with an s at the end) outside of the signa‐
ture’s parentheses:

sub returns-an-int (Int $a, Int $b) returns Int { $a + $b }

You might also see these forms that do the same thing:

sub returns-an-int (Int $a, Int $b) of Int { $a + $b }

my Int sub returns-an-int (Int $a, Int $b) { $a + $b }

No matter which way you define the return type you can always return either Nil or a
Failure object (usually to signal that something went wrong). All of these calls “suc‐
ceed” even though some of them don’t return a Str:

sub does-not-work (Int:D $a --> Str) {
 return Nil if $a == 37;
 fail 'Is not a fine number' unless $a == 137;
 return 'Worked!'
 }

put does-not-work(37).^name; # Nil
put does-not-work(137).^name; # Str
put does-not-work(538).^name; # Failure

You can’t make complex checks in the constraint, but you can define a subset that
does these. Here’s one that returns either a Rat or, if you try to divide by zero, an Inf:

subset RatInf where Rat:D | Inf;

sub divide (Int:D $a, Int:D $b --> RatInf) {
 return Inf if $b == 0;
 $a / $b;
 }

put divide(1, 3); # <1/3>
put divide(1, 0); # Inf

That Rat:D | Inf is a Junction. You’ll see those in Chapter 14.

200 | Chapter 11: Subroutines

https://docs.perl6.org/type/Failure.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Rat.html
https://docs.perl6.org/type/Junction.html

Summary
Much of the work of ensuring your program does the right things can be done with
the judicious use of constraints on the inputs and outputs of subroutines. With a little
planning these features will catch the cases that you did not expect and that shouldn’t
show up in your program. Once they’ve been found you can work your way through
the code to find them even sooner—and the sooner you find them, the easier your
debugging life should be.

Summary | 201

CHAPTER 12

Classes

A class is the blueprint for an object and manages an object and its behavior. It
declares attributes to define what an object will store and methods to define how an
object can behave. Classes model the world in a way that makes it easier for your pro‐
gram to do its job.

I’m mostly going to ignore object-oriented analysis and design. This chapter is about
the mechanism of classes and objects. The examples show you how things work and
do not endorse a particular way. Use what works for your task and stop using that
when it doesn’t.

Your First Class
Declare a class by giving it a name and a Block of code:

class Butterfly {}

That’s it! It looks like this class is empty, but it’s not. You get much of its basic behav‐
ior for free even though you don’t see it explicitly. Try calling some methods on it.
You can see that it derives from Any and Mu and that you can create new objects:

% perl6
> class Butterfly {}
(Butterfly)
> Butterfly.^mro
((Butterfly) (Any) (Mu))
> my $object = Butterfly.new
Butterfly.new
> $object.^name
Butterfly
> $object.defined
True

203

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Any.html
https://docs.perl6.org/type/Mu.html

You can have as many of these class declarations as you like in one file:

class Butterfly {}
class Moth {}
class Lobster {}

These types are available to your program as soon as they are defined in the code, but
not before. If you try to use one before you define it you get a compilation error:

my $butterfly = Butterfly.new; # Too soon!

class Butterfly {}; # Error: Illegally post-declared type

Instead of defining all of your classes at the beginning of the file (and having to scroll
past all of them to get to the good stuff), you’re more likely to want one class per file
so you can easily find the class definition again. In that case you can use unit to
declare that the entire file is your class definition. You don’t use a Block:

unit class Butterfly;

Put your class in Butterfly.pm6 (or Butterfly.pm) and load it from your program:

use Butterfly;

Exercise 12.1
Create a single-file program that has the Butterfly, Moth, and Lobster empty class
definitions. Create a new object for each, even though the objects don’t do anything
interesting yet.

Exercise 12.2
Define the Butterfly, Moth, and Lobster classes in separate files named after the
classes they contain. The class files should be in the same directory as the program
that loads them. Load those files in your program and create new objects for each.

Defining Methods
Methods are like subroutines but know who called them and can be inherited; instead
of sub you define these with method. This example uses it to output the type name:

class Butterfly {
 method who-am-i () { put "I am a " ~ self.^name }
 }

Butterfly.who-am-i;

204 | Chapter 12: Classes

https://docs.perl6.org/type/Block.html

That self term is the invocant of the method. That’s the object that called the
method. It doesn’t need to be in the signature. It also doesn’t need to be in the
method. Calling a method on $ does the same thing (you’ll see why later):

class Butterfly {
 method who-am-i () { put "I am a " ~ $.^name }
 }

Butterfly.who-am-i; # I am a Butterfly

Give the invocant a different name by putting it before a colon in the signature. C++
people might like $this:

method who-am-i ($this :) { put "I am a " ~ $this.^name }

A backslash makes the invocant name a term so you don’t need a sigil:

method who-am-i (\this :) { put "I am a " ~ this.^name; }

The default topic can be the invocant, which means that it’s implicit inside the Block:

method who-am-i ($_ :) { put "I am a " ~ .^name; }

If you want to change the invocant name, choose something that describes what it
represents:

method who-am-i ($butterfly :) { ... }

Private Methods
A private method is available only inside the class where it’s defined. You use these to
compartmentalize code that you don’t want code outside the class to know about.

Previously who-am-i directly called .^name. That’s a very specific way to figure out the
“type.” You might want to change that later or use other methods to figure it out, and
other methods in your class may need the same thing. Hide it in a method, what's-
the-name:

class Butterfly {
 method who-am-i () { put "I am a " ~ self.what's-the-name }

 method what's-the-name () { self.^name }
 }

Butterfly.who-am-i; # I am a Butterfly
put Butterfly.what's-the-name; # Butterfly

That works, but it’s now available as a method that you didn’t intend anyone to use
outside of the class. Prefix the method name with a ! to hide it from code outside the
class. Replace the method call dot with a ! too:

class Butterfly {
 method who-am-i () { put "I am a " ~ self!what's-the-name }

Defining Methods | 205

https://docs.perl6.org/type/Block.html

 method !what's-the-name () { self.^name }
 }

Butterfly.who-am-i; # I am a Butterfly
put Butterfly.what's-the-name; # Butterfly

Now you get an error if you try to use it outside the class:

No such method 'what's-the-name' for invocant of type 'Butterfly'.

Defining Subroutines
A class can contain subroutines. Since subroutines are lexically scoped they are also
invisible outside the class. A subroutine can do the same job as a private method. To
make this work you need to pass the object as a subroutine argument:

class Butterfly {
 method who-am-i () { put "I am a " ~ what's-the-name(self) }

 sub what's-the-name ($self) { $self.^name }
 }

Butterfly.who-am-i; # I am a Butterfly

Objects
Objects are particular instances of a class; sometimes those terms are used inter‐
changeably. Each object has its own variables and data, separate from all the others.
Each object, however, still shares the behavior of the class.

Start with the simplest class, as before. To create an object you need a constructor
method. Any method that creates an object is a constructor. By default that is .new:

class Butterfly {}

my $butterfly = Butterfly.new;

The object is a defined instance of the class (the type object is the undefined one).
The .DEFINITE method tells you which one you have:

put $butterfly.DEFINITE
 ?? 'I have an object' !! 'I have a type';

Every object also has a .defined method, but each class can change
what that means. Any object of the Failure class is undefined, so
it’s always False as a conditional. Use .DEFINITE to avoid that
gotcha.

206 | Chapter 12: Classes

https://docs.perl6.org/type/Failure.html

Private Attributes
Attributes are per-object data. You declare these with has. The attribute variables use
a twigil to denote their access. Before you see the easy way you should see the hard
way so you appreciate it more. The $! twigil defines a private attribute:

class Butterfly {
 has $!common-name;
 }

By itself this has definition doesn’t effectively add anything to your class. Nothing can
see the attribute, so you have no way to change its value.

The special .BUILD method is automatically called after .new with the same argu‐
ments. You can define your own .BUILD to bind or assign a value to your private
attribute (or do any other work that you want):

class Butterfly {
 has $!common-name;

 method BUILD (:$common-name) {
 $!common-name = $common-name;
 }
 }

my $butterfly = Butterfly.new: :common-name('Perly Cracker');

Be careful here. This .BUILD accepts all named parameters without warning. It
doesn’t know which ones you intend to use or what they mean to your class. It’s a
default way that almost everything uses to set up objects—but if you misspell a name,
you won’t get a warning:

my $butterfly = Butterfly.new: :commen-name('Perly Cracker');

You also don’t get a warning for leaving something out. Maybe you don’t want to
require every setting any time you build an object. You might not want this to fail:

my $butterfly = Butterfly.new;

But if you want to require a named parameter you know how to do that. Put a ! after
it:

class Butterfly {
 has $!common-name;

 method BUILD (:$common-name!) { # required now
 $!common-name = $common-name;
 }
 }

For the rest of this example that’s not what you want. You’re going to set default val‐
ues and provide other ways to change the name.

Objects | 207

You can add an accessor method to allow you to see the name that you’ve stored in the
private attribute:

class Butterfly {
 has $!common-name;

 method BUILD (:$common-name) {
 $!common-name = $common-name;
 }

 method common-name { $!common-name }
 }

my $butterfly = Butterfly.new: :common-name('Perly Cracker');
put $butterfly.common-name; # Perly Cracker

This is a problem if you don’t supply a :common-name. There’s nothing in $!common-
name and you didn’t give .BUILD anything to work with. When you try to output it
you get a warning about the empty value:

my $butterfly = Butterfly.new;
put $butterfly.common-name; # Warning!

A default value in the common-name method could solve this. If the attribute is not
defined you could return an empty Str (or fail or warn):

method common-name { $!common-name // '' }

The attribute can have a default value:

class Butterfly {
 has $!common-name = '';
 ...
 }

Instead of the empty Str you can make the default something a little more interest‐
ing:

class Butterfly {
 has $!common-name = 'Unnamed Butterfly';
 ...
 }

my $butterfly = Butterfly.new;
put $butterfly.common-name; # Unnamed Butterfly!

To change the value for $!common-name you can mark .common-name with the rw trait
to make it read-write. If you assign to the method you change the value of the last
thingy in the Block (if you can modify it, that is). The last thingy in this Block is a
container for $!common-name:

208 | Chapter 12: Classes

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

class Butterfly {
 has $!common-name = 'Unnamed butterfly';

 method BUILD (:$common-name) {
 $!common-name = $common-name;
 }

 method common-name is rw { $!common-name }
 }

my $butterfly = Butterfly.new;
$butterfly.common-name = 'Perly Cracker';

put $butterfly.common-name; # Perly Cracker!

The attributes can be typed like other variables. Constraining the type to Str means
you can assign only that type to .common-name:

class Butterfly {
 has Str $!common-name = 'Unnamed butterfly';
 ...
 }

Exercise 12.3
Implement the Butterfly class with the $!common-name private attribute. Add a
$!color private attribute. Create a new Butterfly object, set its name and color, then
output those values.

Public Attributes
But enough of the hard way. Public attributes do a lot of that work for you. Use
$.common-name with a dot instead of a bang (!). The accessor method is automatically
defined for you and the default .BUILD handles the setup by filling in the attributes
from the named parameters in your call to .new:

class Butterfly {
 has $.common-name = 'Unnamed Butterfly'
 }

my $butterfly = Butterfly.new: :common-name('Perly Cracker');
put $butterfly.common-name; # Perly Cracker

Make it read-write with the rw trait immediately after the attribute name but before
the default value. After you create the object you can assign to the .common-name
method:

Objects | 209

https://docs.perl6.org/type/Str.html

class Butterfly {
 has $.common-name is rw = 'An unknown butterfly';
 }

my $butterfly = Butterfly.new;
put $butterfly.common-name; # An unknown butterfly

$butterfly.common-name = 'Hamadryas perlicus';
put $butterfly.common-name; # Hamadryas perlicus

The attributes can have types just like other variables. Try to assign the wrong type
and you get an exception:

class Butterfly {
 has Str $.common-name is rw = 'Unnamed butterfly';
 }

my $butterfly = Butterfly.new;
$butterfly.common-name = 137; # Error!

To have a mixture of private and public attributes you have to do some work. You
probably don’t want to define your own .BUILD since you’d have to handle everything
that the default one does for you. Instead, you can define a private attribute and
assign to it later through a method. An rw trait on the method either returns or
assigns to the value of the last thingy in the Block:

class Butterfly {
 has Str $.common-name is rw = 'Unnamed butterfly';
 has Str $!color;

 method color is rw { $!color }
 }

my $butterfly = Butterfly.new;
$butterfly.common-name = 'Perly Cracker';
$butterfly.color = 'Vermillion';

put "{.common-name} is {.color}" with $butterfly;

multi Methods
Read-write methods are one way to handle private attributes, but you can also create
multi methods for each case. Although this example looks simple, your validation
and conversion requirements can be arbitrarily complex inside the Blocks:

class Butterfly {
 has $!common-name = 'Unnamed butterfly';
 has $!color = 'White';

 multi method common-name () { $!common-name }
 multi method common-name (Str $s) { $!common-name = $s }

210 | Chapter 12: Classes

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

 multi method color () { $!color }
 multi method color (Str $s) { $!color = $s }
 }

my $butterfly = Butterfly.new;
$butterfly.common-name: 'Perly Cracker';
$butterfly.color: 'Vermillion';

put $butterfly.common-name; # Perly Cracker!

This gets annoying when you have many attributes. There’s another way that you
could do this. Return the object in every method that sets a value. This allows you to
chain methods to set many attributes in one statement where you don’t repeat the
object each time:

class Butterfly {
 has $!common-name = 'Unnamed butterfly';
 has $!color = 'White';

 multi method common-name () { $!common-name; }
 multi method common-name (Str $s) {
 $!common-name = $s; self
 }

 multi method color () { $!color; }
 multi method color (Str $s) { $!color = $s; self }
 }

my $butterfly = Butterfly
 .new
 .common-name('Perly Cracker')
 .color('Vermillion');

put "{.common-name} is {.color}" with $butterfly;

That looks similar to using do given to topicalize the object and call methods on it:

my $butterfly = do given Butterfly.new {
 .common-name('Perly Cracker');
 .color('Vermillion');
 };

put "{.common-name} is {.color}" with $butterfly;

Which technique you use depends on your task and personal preferences. You haven’t
seen this with error handling or complex code, either. Those impact your choice too.

multi Methods | 211

Inheriting Types
An existing type might already do most of what you want. Instead of redefining
everything that class already does, you can extend it, also known as inheriting from it.
Declare the class with is and the type you want to extend:

class Butterfly is Insect {};

You can do this inside the class definition with also:

class Butterfly {
 also is Insect
 };

Here, Insect is a parent class (or super class or base class). Butterfly is the child class
(or derived type). The terminology isn’t particularly important; the base type is the
more general one and the derived type is the more specific one.

Everything you’ve seen in the Butterfly class so far (a name and a color) applies to
any insect. The name and color attributes are general things that describe any insect,
so should be in the more general class. The Butterfly class now has nothing in it (a
“null subclass”), but it should still work the same as it did before:

class Insect {
 has $.common-name is rw = 'Unnamed insect';
 has $.color is rw = 'Brown';
 }

class Butterfly is Insect {}

my $butterfly = Butterfly.new;
$butterfly.common-name = 'Perly Cracker';
$butterfly.color = 'Vermillion';

put "{.common-name} is {.color}" with $butterfly;

Butterfly can have its own $.color that overrides the one from Insect. Declaring
the attribute in Butterfly effectively hides the one in its parent class:

class Insect {
 has $.common-name is rw = 'Unnamed insect';
 has $.color is rw = 'Brown';
 }

class Butterfly is Insect {
 has $.color is rw = 'Mauve';
 }

my $butterfly = Butterfly.new;
$butterfly.common-name = 'Perly Cracker';

212 | Chapter 12: Classes

Perly Cracker is Mauve
put "{.common-name} is {.color}" with $butterfly;

Sometimes that’s not the right thing to do. The parent class might need to run some
code in its version of the method to make everything else work. Instead of hiding the
parent method you want to wrap it (or extend it).

The callsame routine can do this for you. It redispatches the call with the same argu‐
ments. You run the parent method in your child method:

class Insect {
 has $.common-name is rw = 'Unnamed insect';
 has $!color = 'Brown';

 method color is rw {
 put "In Insect.color!";
 $!color
 }
 }

class Butterfly is Insect {
 has $!color = 'Mauve';

 method color is rw {
 put "In Butterfly.color!";
 my $insect-color = callsame;
 put "Insect color was {$insect-color}!";
 $!color
 }
 }

my $butterfly = Butterfly.new;
$butterfly.common-name = 'Perly Cracker';

put "{.common-name} is {.color}" with $butterfly;

Inheritance isn’t the only way to add features to your class. You should save inheri‐
tance for specific cases where your class is a more specific type of the same thingy.

Exercise 12.4
Create classes for the kingdom, phylum, class, order, family, and genus of a Hama‐
dryas butterfly. The phylum inherits from kindgom, the class inherits from phylum,
and so on. Each class notes its place in the hierarchy:

class Nymphalidae is Lepidoptera { }

Define a .full-name method in Hamadryas to join all the levels together.

Inheriting Types | 213

The genus Hamadryas is classified in Animalia, Arthropodia, Insecta, Lepidoptera, and
Nymphalidae.

Checking Inheritance
You’ve already seen .^mro to get a List of classes. The .isa method returns True or
False if the type you specify is in that List. You can test a type or an object with a
type object as the argument (a Str):

put Int.isa: 'Cool'; # True
put Int.isa: Cool; # True

put Butterfly.isa: Insect; # True;
put Butterfly.isa: Int # False;

my $butterfly-object = Butterfly.new;
put $butterfly.isa: Insect; # True

Smart matching does the same job. That’s what when is checking if you give it only a
type:

if Butterfly ~~ Insect {
 put "Butterfly is an Insect";
 }

if $butterfly ~~ Insect {
 put "Butterfly is an Insect";
 }

put do given $butterfly {
 when Int { "It's a integer" }
 when Insect { "It's an insect" }
 }

You may have been wondering about the name of the .^mro method. That’s for
method resolution order in cases where you inherit from multiple classes:

class Butterfly is Insect is Flier {...}

I’m not going to tell you more about multiple inheritance in the hopes that you never
do it. It’s possible, but you’ll likely solve your problem with the roles you’ll see in
Chapter 13.

Stub Methods
A parent class can define a method but not implement it—this is known as an
abstract method (or stub method). Use !!! inside the Block to denote that something
later will implement a method with that name:

214 | Chapter 12: Classes

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Block.html

class Insect {
 has $.color is rw = 'Brown';

 method common-name { !!! }
 }

class Butterfly is Insect {
 has $.color is rw = 'Mauve';
 }

my $butterfly = Butterfly.new;
$butterfly.common-name = 'Perly Cracker';

put "{.common-name} is {.color}" with $butterfly;

When you run this the !!! throws an exception:

Stub code executed

Instead of the !!! you can use The triple dot calls fail instead of die. Either way
something else needs to implement that method. A public attribute would do that for
you:

class Butterfly is Insect {
 has $.common-name is rw;
 has $.color is rw = 'Mauve';
 }

Controlling Object Creation
Sometimes you want more control over your object creation. When you call .new
there are several steps and you’re able to hook into each of them. You don’t need all
the gory details at the programmer level so I’ll spare you.

When you call .new you’re reaching into the root of the object system, Mu. .new
calls .bless, which actually creates your object. Now you have an empty object. It’s
not quite ready for use yet.

.bless does some more work by calling .BUILDALL on your empty object, passing it
all the same arguments that you passed to .new. .BUILDALL visits each class in your
inheritance chain, starting with Mu. You typically don’t want to mess with .BUILDALL
since it’s driving the process rather than affecting your objects.

.BUILDALL calls the .BUILD method in your class if you’ve defined one. .BUILD gets
the same arguments as .new. This is how your attributes get their values from your
arguments. If no class defined a .BUILD you get the default one that fills in your
attributes from the named parameters.

Controlling Object Creation | 215

https://docs.perl6.org/type/Mu.html
https://docs.perl6.org/type/Mu.html

The default object creation mechanism wants to work with named
parameters. You could rework everything for positional parameters
but that would be a lot of work.

After .BUILD is done you have a completely built object that’s ready for use (but not
the final object yet). The .TWEAK method gives you a chance to adjust that object
before you move on to the next class to go through the process again.

You should declare both .BUILD and .TWEAK with submethod. This is a hybrid of sub
and method; it acts just like a method but a subclass doesn’t inherit it (just like you
don’t inherit subroutines):

$?CLASS is a compile-time variable for the current class
&?ROUTINE is a compile-time variable for the current routine
class Insect {
 submethod BUILD { put "In {$?CLASS.^name}.{&?ROUTINE.name}" }
 submethod TWEAK { put "In {$?CLASS.^name}.{&?ROUTINE.name}" }
 }

class Butterfly is Insect {
 submethod BUILD { put "In {$?CLASS.^name}.{&?ROUTINE.name}" }
 submethod TWEAK { put "In {$?CLASS.^name}.{&?ROUTINE.name}" }
 }

my $b = Butterfly.new;

The .TWEAK method is called before .BUILDALL moves on to the next class:

In Insect.BUILD
In Insect.TWEAK
In Butterfly.BUILD
In Butterfly.TWEAK

Now that you’ve seen the order in which things happen, let’s look at each step a little
more closely.

Building Objects
.BUILD lets you decide how to treat your newly created object. Start with a submethod
that does nothing:

class Butterfly {
 has $.color;
 has $.common-name;

 submethod BUILD {} # does nothing
 }

my $butterfly = Butterfly.new: :color('Magenta');

216 | Chapter 12: Classes

put "The butterfly is the color {$butterfly.color}";

The color isn’t set and you get a warning about an uninitialized value:

The butterfly is the color
Use of uninitialized value of type Any in string context.

.BUILDALL found your .BUILD so it used your version to set up the object. The color
value in your call to .new isn’t assigned to the $!color attribute because your
empty .BUILD didn’t handle that. You need to do that yourself. By default all the
named parameters are in %_ and .BUILD gets all of the same arguments as .new:

class Butterfly {
 has $.color;
 has $.common-name;

 submethod BUILD {
 $!color = %_<color>;
 }
 }

Use the argument list for .BUILD to automatically define some named parameters to
variables:

class Butterfly {
has $.color;
has $.common-name;

submethod BUILD (:$color) {
 $!color = $color;
 }
}

If you don’t specify a color named argument you get another warning because the
value in $color is uninitialized. In some cases you might want that named parameter
to be required, so you put a ! after it:

class Butterfly {
 has $.color;
 has $.common-name;

 submethod BUILD (:$color!) {
 $!color = $color;
 }
 }

Other times you might want to set a default value. Another attribute won’t work
because the object build process hasn’t set its default value yet:

class Butterfly {
 has $!default-color = 'Wine'; # Won't work
 has $.color;

Controlling Object Creation | 217

 has $.common-name;

 submethod BUILD (:$color!) {
 $!color = $color // $!default-color; # No setup yet!
 }
 }

A private method could work; a private method can only be seen from code inside
the class and cannot be inherited. A submethod isn’t inheritable either but is still a
public method:

class Butterfly {
 method default-color { 'Wine' }
 has $.color;
 has $.common-name;

 submethod BUILD (:$color) {
 $!color = $color // self.default-color;
 }
 }

Class variables can do the same job. A lexical variable defined in the class Block is
only visible to the code in the same Block and the Blocks inside it:

class Butterfly {
 my $default-color = 'Wine';
 has $.color;
 has $.common-name;

 submethod BUILD (:$color) {
 $!color = $color // $default-color;
 }
 }

What’s more interesting to .BUILD is the extra setup you don’t want to be part of the
interface. Perhaps you want to track when you used the default value so you can dis‐
tinguish it from the case where the specified color happened to be the same:

class Butterfly {
 my $default-color = 'Wine';
 has $.used-default-color;
 has $.color;

 submethod BUILD (:$color) {
 if $color {
 $!color = $color;
 $!used-default-color = False;
 }
 else {
 $!color = $default-color;
 $!used-default-color = True;
 }
 }

218 | Chapter 12: Classes

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

 }

my $without = Butterfly.new;
put "Used the default color: {$without.used-default-color}";

my $with = Butterfly.new: :color('Wine');
put "Used the default color: {$with.used-default-color}";

Even though those two butterflies are the same color, you know which one specified a
color and which one didn’t:

Used the default color: True
Used the default color: False

Tweaking Objects
When you create an object you can use .TWEAK to set either the color you supplied as
a named argument or the default color:

class Insect {
 has $!default-color = 'Brown';
 has $.common-name is rw = 'Unnamed insect';
 has $.color is rw;

 submethod TWEAK (:$color) {
 self.color = $color // $!default-color;
 }
 }

class Butterfly is Insect {}

my $butterfly = Butterfly.new;
$butterfly.common-name = 'Perly Cracker';

put "{.common-name} is {.color}" with $butterfly;

The output shows that you got the default from Insect. .TWEAK ran inside Insect
and set an attribute inside Insect. The .color method is defined in Insect so it
works out:

Perly Cracker is Brown

If you specify a color, that color is actually set:

my $butterfly = Butterfly.new: :color('Purple');

You can modify Butterfly to have its own default color and .TWEAK. The .TWEAK
method is the same but you wouldn’t want to inherit it. It depends on the presence of
an attribute that it can’t know the child class has:

class Butterfly is Insect {
 has $.default-color = 'Vermillion';

Controlling Object Creation | 219

 submethod TWEAK (:$color) {
 self.color = $color // $!default-color;
 }
 }

Private Classes
You can declare classes with my to make them private to the current scope. At the file
level that class is only available in that file. If you load the file that contains it you
won’t be able to see it:

PublicClass.pm6
my class PrivateClass { # Hidden from outside the file
 method hello { put "Hello from {self.^name}" }
 }

class PublicClass {
 method hello { PrivateClass.hello }
 }

In your program you can load PublicClass and call a method on the PublicClass
type. PublicClass can see PrivateClass because it’s in the same file. From your pro‐
gram you can’t call PrivateClass directly, though. That scope doesn’t know about
that type:

use PublicClass;
PublicClass.hello; # Hello from PrivateClass
PrivateClass.hello; # Error: Undeclared name: PrivateClass

If you need a class only inside another class (and not the rest of the file), you can
declare it inside the class. This can be handy to compartmentalize and organize
behavior inside a class:

class Butterfly {
 my class PrivateHelper {}
 }

Private classes are a great tool when you want to compartmentalize some behavior
that you need but don’t want to expose to normal users. You can use them for inter‐
mediate objects that the main program never need know exist.

Exercise 12.5
Create a Butterfly class that contains a private class that tracks when the object was
created and updated. Use it to count the number of updates to the class. A method in
Butterfly should access the private class to output a summary.

220 | Chapter 12: Classes

Summary
Classes will likely be your main way of organizing information in your programs,
though you don’t see it so much in this book because you need to see mostly syntactic
topics rather than application design advice. I didn’t have the space for good coverage
of object-oriented design or analysis, but you should definitely research those on
your own. The right design will make your life so much easier.

Summary | 221

CHAPTER 13

Roles

Roles are mixins that augment your class as if their contents were defined in it. Once
defined their source is effectively forgotten (unlike a parent class). You can use roles
to change classes, make a new class from an existing one, and enhance single objects.
They are a more flexible and often a better solution than inheritance. These are for
code reuse whereas classes are for managing objects.

Adding Behavior to Classes
Construct an empty Butterfly class. You can give arguments to .new even though no
attribute receives their value:

class Butterfly {}
my $butterfly = Butterfly.new: :common-name('Perly Cracker');

Now give your butterfly a name. Should that be part of the Butterfly class? A name
isn’t the object. Hamadryas guatemalena is the name of a butterfly. So are Guatemalan
Cracker, Calicó, and Soñadora común. Those are all names for the same butterfly.

Ultimately the code you write has to operate within the framework
of the language. The syntax sometimes lets you cognitively separate
things.

A name is not a more specific version of something the class already does and it’s not
limited to butterflies or butterfly-like things. Many dissimilar things can have a com‐
mon name—animals, cars, food. Not only that, but different people, cultures, or even
sections of your office may choose different names. This fact does not define your
thingy or its behavior. It’s not something that makes a butterfly what it is.

223

Create a role that contains everything you need for a common name. Everything
about a name (and nothing else!) can show up in that role. The role doesn’t care what
sort of thingy uses it, whether that’s a butterfly, a car, or a pizza. Declare it with role
just as you would a class:

role CommonName {
 has $.common-name is rw = 'An unnamed thing';
 }

In fact, a role can act just like a class. You can make an object from a role. This puns
the role into a class:

role CommonName {
 has $.common-name is rw = 'An unnamed thing';
 }

my $name = CommonName.new: :common-name('Perly Cracker');
put $name.common-name; # Perly Cracker

Apply a role to a class with does after the class name in the same way you used is for
inheritance:

class Butterfly does CommonName {};

Every Butterfly object now has a $.common-name attribute and .new now sets
the :common-name using either the default or the name you provide:

my $unnamed-butterfly = Butterfly.new;
put $unnamed-butterfly.common-name; # An unnamed thing

my $butterfly = Butterfly.new: :common-name('Perly Cracker');
put $butterfly.common-name; # Perly Cracker

You can use the same role for something completely different. An SSL certificate has a
common name, although its semantic meaning is different:

class SSLCertificate does CommonName {}

Butterflies and SSL certificates are completely different things and it wouldn’t make
sense for them to inherit from the same thing. However, they can use the same role.

Exercise 13.1
Create a ScientificName role that adds an attribute to store a Str for the scientific
name. Apply that role to Butterfly, create an object, and output the scientific name.

Applying Multiple Roles
You can give a butterfly a scientific name as well as a common name by creating a
different role for that. This one has several attributes:

224 | Chapter 13: Roles

https://docs.perl6.org/type/Str.html

role ScientificName {
 has $.kingdom is rw;
 has $.phylum is rw;
 has $.class is rw;
 has $.order is rw;
 has $.family is rw;
 has $.genus is rw;
 has $.species is rw;
 }

You can replace the CommonName role with ScientificName and things work as before:

class Butterfly does ScientificName {};
my $butterfly = Butterfly.new: :genus('Hamadryas');
put $butterfly.genus; # Hamadryas;

Multiple does expressions apply multiple roles:

class Butterfly does ScientificName does CommonName {};
my $butterfly = Butterfly.new:
 :genus('Hamadryas'),
 :common-name('Perly Cracker')
 ;
put $butterfly.genus;
put $butterfly.common-name;

Each role inserts its code into Butterfly so it can respond to methods from either
source:

Hamadryas
Perly Cracker

Exercise 13.2
Create a role Lepidoptera to represent butterflies. Fill in everything from kingdom
Animalia, phylum Athropoda, class Insecta, and order Lepidoptera. Allow the role to
change the family, genus, and species. Use that role in your own Butterfly class.
After you get that working add the CommonName role.

Methods in Roles
You can define methods in roles too. Give the ScientificName role a .gist method
to create your own human-readable text version of the object:

role ScientificName {
 ...; # all the attributes specified earlier

 method gist {
 join ' > ', $.kingdom, $.genus;
 }

Methods in Roles | 225

 }

role CommonName {
 has $.common-name is rw;
 }

class Butterfly does ScientificName does CommonName {};

my $butterfly = Butterfly.new:
 :genus('Hamadryas'),
 :common-name('Perly Cracker')
 ;
put $butterfly.genus;
put $butterfly.common-name;
put $butterfly.gist;

Exercise 13.3
Update your Lepidoptera role to have a binomial-name method that returns a Str
that combines the genus and species of the butterfly (in biospeak that’s the “binomial
name”).

To reuse these roles you want to make them available for any code to find and load.
You can store roles by themselves in files just as you can with classes. Load them with
use and they are available in that scope.

Exercise 13.4
Separate the Lepidoptera and CommonName roles and the Butterfly class into their
own files. Load those files into your program where you create your Butterfly
object. Make this program work:

use Butterfly;

my $butterfly = Butterfly.new:
 :family('Nymphalidae'),
 :genus('Hamadryas'),
 :species('perlicus'),
 ;

put $butterfly.binomial-name;

De-Conflicting Roles
If two roles try to insert the same names you may have to do extra work. Suppose that
both ScientificName and CommonName had a .gist method:

226 | Chapter 13: Roles

https://docs.perl6.org/type/Str.html

role ScientificName {
 ...; # all the attributes specified earlier

 method gist {
 join ' > ', $.kingdom, $.genus;
 }
 }

role CommonName {
 has $.common-name is rw;

 method gist { "Common name: $.common-name" }
 }

class Butterfly does ScientificName does CommonName {};

The .gist method has an explicit signature and isn’t marked with multi. When you
try to compile this you get an error telling you that two roles tried to insert the same
method:

Method 'gist' must be resolved by class Butterfly because
it exists in multiple roles (CommonName, ScientificName)

You can add a .gist method to Butterfly. Neither role replaces a method already in
the class:

role ScientificName {
 ...; # all the attributes specified earlier

 method gist {
 join ' > ', $.kingdom, $.genus;
 }
 }

role CommonName {
 has $.common-name is rw;

 method gist { "Common name: $.common-name" }
 }

class Butterfly does ScientificName does CommonName {
 method gist {
 join "\n",
 join(' > ', $.kingdom, $.genus),
 "Common name: $.common-name";
 }
 };

Or if you want both methods from the roles you can distinguish them with different
signatures (and use multi). Their role names as a type might do:

role ScientificName {
 ...; # all the attributes specified earlier

De-Conflicting Roles | 227

 multi method gist (ScientificName) {
 "$.genus $.species";
 }
 }

role CommonName {
 has $.common-name is rw;

 multi method gist (CommonName) {
 "Common name: $.common-name";
 }
 }

class Butterfly does ScientificName does CommonName {};

my $butterfly = Butterfly.new:
 :genus('Hamadryas'),
 :species('perlicus'),
 :common-name('Perly Cracker'),
 ;

put '1. ', $butterfly.gist(CommonName);
put '2. ', $butterfly.gist(ScientificName);

This way you get both methods:

1. Common name: Perly Cracker
2. Hamadryas perlicus

You can have the same method in the Butterfly class as long as you declare it with
multi and give it a unique signature:

class Butterfly does ScientificName does CommonName {
 multi method gist {
 join "\n", map { self.gist: $_ },
 (ScientificName, CommonName);
 }
 };
my $butterfly = Butterfly.new:
 :genus('Hamadryas'),
 :species('perlicus'),
 :common-name('Perly Cracker')
 ;

put '1. ', $butterfly.gist(CommonName);
put '2. ', $butterfly.gist(ScientificName);
put '3. ', $butterfly.gist;

Your output shows all three and you can pick whichever you like:

1. Common name: Perly Cracker
2. Hamadryas perlicus

228 | Chapter 13: Roles

3. Hamadryas perlicus
Common name: Perly Cracker

Anonymous Roles
Not every role needs a name. If you want a role that you don’t expect to use again you
can add it directly with but. You can apply that directly to a class name. This actually
creates a new class with the role applied to it. The new class inherits from the original:

class Butterfly {};
my $class-role = Butterfly but role { has $.common-name };

put $class-role.^name; # Butterfly+{<anon|140470326869504>}
say $class-role.^mro; # ((...) (Butterfly) (Any) (Mu))

my $butterfly = $class-role.new:
 :common-name('Perly Cracker');

put $butterfly.common-name;

You can do the same thing with less work by removing the variables that stored the
classes:

my $butterfly2 = (Butterfly but role { has $.common-name }).new:
 :common-name('Perlicus Cracker');
put $butterfly2.^name;
put $butterfly2.common-name;

That’s still messy. You can apply it to the object directly:

my $butterfly = Butterfly.new;
my $butterfly2 = $butterfly
 but role { has $.common-name is rw };
$butterfly2.common-name = 'Perlicus Cracker';
put $butterfly2.^name;
put $butterfly2.common-name;

You can even skip the variable to store the first object. Without the variable to store
the initial object you get something a little shorter:

my $butterfly = Butterfly.new
 but role { has $.common-name is rw };
$butterfly.common-name = 'Perlicus Cracker';
put $butterfly.^name;
put $butterfly.common-name;

This has the drawback that the original object doesn’t know about the roles, so you
can’t set the common name in the constructor. Your role has to allow the object to
change the value to set a value.

Adding a role to an object is handy when you have an object that you may not have
created; perhaps it was an argument to your method or the return value from a

Anonymous Roles | 229

method you don’t control. In this example you take an argument (and make it is
copy so you can add the role). You call show-common-name once with a plain Butter
fly. The subroutine sees that the object doesn’t know about common-name, so it adds
it. In your second call to show-common-name your argument already has the common-
name attribute so it doesn’t need show-common-name to add it:

sub show-common-name ($butterfly is copy) {
 unless $butterfly.can: 'common-name' {
 put "Adding role!";
 $butterfly = $butterfly
 but role { has $.common-name is rw };
 $butterfly.common-name = 'Perlicus Cracker';
 }

 put $butterfly.common-name;
 }

an object without the role
my $butterfly = Butterfly.new;
show-common-name(Butterfly.new);

an object that already has the role
my $class-role = Butterfly but role { has $.common-name };
show-common-name($class-role.new: :common-name('Camelia'));

The output shows that you added the role in your first call but not the second:

Adding role!
Perlicus Cracker
Camelia

When should you apply your role? Whenever it makes sense for your problem.

Exercise 13.5
Take your Lepidoptera role to its logical conclusion. Start with a new Animalia role
to represent only the kingdom. Create an Arthropoda role to include the Animalia
role and represent the phylum. Do this all the way down to the Hamadryas genus.
From there, create a Hamadrayas class that inherits from Butterfly but does all the
taxonomic roles down to the genus. From the Hamadrayas class you should be able to
set a species. Make this program work:

use lib <.>;
use Hamadryas;

my $cracker = Hamadryas.new:
 :species('perlicus'),
 :common-name('Perly Cracker'),
 ;

230 | Chapter 13: Roles

put $cracker.binomial-name;
put $cracker.common-name;

Summary
You can define common code in a role and reuse it with disparate things. Since it
doesn’t create an inheritance relationship it’s perfectly suited for features that don’t
define the basic idea of the type.

Summary | 231

CHAPTER 14

Junctions and Sets

Junctions
A Junction is a combination of values that is mostly indistinguishable from a single
value. They have their roots in the math of quantum mechanics. You may have heard
of Schrödinger’s cat, who is both dead and alive at the same time—an analogy that
physicist used to show how ridiculous this all is. Well, the joke was on him.

any
The first Junction is the any. This “any” is lowercase and is not related to the type
Any. It creates a value that can act like, well, any of the ones you gave it:

my $first-junction = any(1, 3, 7);

You can make a Junction from an Array or any other Positional:

my $junction = any(@array); # Array
my $junction = any(1 .. 10); # Range
my $junction = any(1 ... 10); # Sequence

Now you have a Junction of three values. It will only ever have three values. You can’t
take one away or add one. There’s no interface to extract them or count them. You’re
not supposed to know—or even care—which values are in there. In fact, Junction is
the only builtin type that does not inherit from Any:

% perl6
To exit type 'exit' or '^D'
> my $first-junction = any(1, 3, 7);
any(1, 3, 7)
> $first-junction.^name
Junction

233

https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Any.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Any.html

> $first-junction.^mro
((Junction) (Mu))

These are quite handy in complex conditions. Consider the annoying code you’ve had
to write to test if a value is one of three possible numbers:

my $n = any(1, 3, 7);

if $n == 1 || $n == 3 || $n == 7 {
 put "n is one of those values";
 }

Being clever with a Hash doesn’t actually feel that much more clever:

my Int %hash = map { $_ => True }, (1, 3, 7);
if %hash{$n}:exists {
 put "n is one of those values";
 }

Not only does the Junction equal any of those values, but it also equals all of them.
This looks like a Block that would never execute, but it does:

if $n == 1 && $n == 3 && $n == 7 {
 put "n is all of those values";
 }

A Junction is much closer to how you’d probably describe this in speech:

if $n == any(1, 3, 7) {
 put "n is one of those values";
 }

When you operate on a Junction your code may distribute (autothread) that opera‐
tion over all of its values to produce a Junction of intermediate results. The first step
might look like this:

if any(1 == $n, 3 == $n, 7 == $n) {
 put "n is one of those values";
 }

These evaluate to their Boolean values. If $n is 3 one of the comparisons is True:

my $n = 3;
if any(False, True, False) {
 put "n is one of those values";
 }

Any True makes the entire junctive expression True:

my $n = 3;
if True {
 put "n is one of those values";
 }

234 | Chapter 14: Junctions and Sets

https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html

You don’t have to define the Junction in the condition. It might already be in a vari‐
able and ready for use:

my $any = any(1, 3, 7);
if $n == $any {
 put "n is one of those values";
 }

Here’s the beauty of Junctions—you don’t have to know that you are using one.
Here’s an Array that has some “normal” values and one that is a Junction:

my @array = 5, any(1, 7), 8, 9;
for @array -> $item {
 put "$item was odd" unless $item %% 2;
 }

The loop works with single “normal” values as well as Junctions. Notice that the
Junction creates two lines of output. The stringification happened for each value:

5 was odd
1 was odd
7 was odd
9 was odd

That multiple stringification could change in the future; it wasn’t this way when I
started the book and it might change again. The .gist on $item prevents that:

my @array = 5, any(1, 7), 8, 9;
for @array -> $item {
 put "{$item.gist} was odd" unless $item %% 2;
 }

5 was odd
any(1, 7) was odd
9 was odd

Exercise 14.1
Make an any Junction of the prime numbers between 1 and 10 (so, 2, 3, 5, and 7).
Use that Junction to note which numbers from 1 to 10 are prime.

There’s a symbolic notation for any. The | between values creates a Junction. It looks
similar to the || for the logical OR operator but is not related:

my $n = 3;
my $any = 1 | 3 | 7;
if $n == $any {
 put "n is one of those values";
 }

Junctions | 235

https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html

Perl 6 uses |, &, and ^ to create Junctions. You might be used to
these as numeric bit operators in other languages. You’ll find those
now are called +|, +^, and +&. That leading + denotes the numeric
flavor.

You can change Junctions by affecting their values. Numerically adding to a
Junction adds to every value in it:

my $junction = any(1, 3, 7);
$junction += 1;
if $junction %% 2 {
 put "{$junction.gist} is even";
 }

The output shows that you were able to add one to each of the values:

any(2, 4, 8) is even

This generally applies to all of the operations, and you can get quite creative with that.
What if you add two any Junctions? Think about this for a minute before you read
ahead to the output:

my $any-any = any(6, 7) + any(9, 11)
put "Result is $any-any";

Now figure out what this means:

Result is any(any(15, 17), any(16, 18))

That’s an any of anys! Suppose you wanted to check if that value was less than 17.
This virtual series of steps finds the answer:

$any-any < 17

any(any(15, 17), any(16, 18)) < 17

any(any(15, 17) < 17, any(16, 18) < 17)

any(any(15 < 17, 17 < 17), any(16 < 17, 18 < 17))

any(any(True,False), any(True, False))

any(True, True)

True

This has the same effect as any(15, 16, 17, 18) but with more steps involved.
That’s a warning. If you aren’t careful you could have an explosion of Junctions in
there.

236 | Chapter 14: Junctions and Sets

https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html

all
An all Junction requires that each of its values satisfy the condition or method you
apply:

my $all-of-u = all(<Danaus Bicyclus Amauris>);
if $all-of-u.contains: 'u' {
 put "Everyone has a u";
 }

Perhaps you want to check that all of the values are a particular type. In this example
there’s a Str in @mixed-types:

my @mixed-types = <1 2/3 4+8i Hello>;
if all(@mixed-types) ~~ Numeric {
 put "Every value is a numeric thingy";
 }
else {
 put "One of these things is not like the others";
 }

The Hello cannot become a number, so a smart match against Numeric fails. The
entire Junction evaluates to False because one of its values does.

The all is much easier to read than almost anything else that might accomplish the
task. Comparing the result of a .grep to the original number of elements in the
source is too much typing:

if @mixed-types.grep(* !~~ Numeric) == +@mixed-types {
 put "One of these things is not a number";
 }

You can create an all Junction with the &:

my $all-of-u = 'Danaus' & 'Bicyclus' & 'Amauris';
if $all-of-u.contains: 'u' {
 put "Everyone has a u";
 }

Exercise 14.2
Using all, test if all the numbers you specify on the command line are prime.

one
The one Junction allows only one of its values to satisfy its condition. If more than
one would make the condition True the Junction fails:

put one(1, 2, 3) %% 2 ?? # True
 "Exactly one is even"

Junctions | 237

https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Numeric.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html

 !!
 "More (or less) than one is even";

If more than one thing in the one is True, then the entire Junction is False:

one(True, True, False).so # False;

You can create a one Junction with the ^:

put (1 ^ 2 ^ 3) %% 2 ?? # True
 "Exactly one is even"
 !!
 "More (or less) than one is even";

none
The none Junction requires that all of the values cause its condition to be False. That
means that everything should evaluate to False. There’s no symbolic operator version
for this type:

put none(1, 2, 3) %% 5 ?? True
 "Exactly one is even"
 !!
 "More (or less) than one is even";

Exercise 14.3
Use none to test if no numbers you specify on the command line are prime. Once
you’ve done that, use none to test that some numbers in an Array are prime.

Some Junctive Tricks
Junctions aren’t designed for introspection and you aren’t supposed to care if the
value is in a Junction. This isn’t too hard to work around, though.

You can apply an operation to each value with a hyperoperator (Chapter 6). This one
adds one to each element:

my $junction = any(1, -3, 7);
say $junction »+« 1;

The new Junction has new values. You still aren’t supposed to know what these new
values are, but something must know what they are to add one to them:

any(2, -2, 8)

The »+« surrounds the + because that’s an infix operator and expects arguments on
either side of it. You can call a method (a postfix thing) on each item:

$junction>>.is-prime; # any((True), (False), (False))

238 | Chapter 14: Junctions and Sets

https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html

That method could be .take, which adds the value to the list that gather makes. This
means that the values can escape the Junction:

my $junction = any(1, -3, 7);
my @values = gather $junction».take;
put "Values are @values[]";

Don’t make a habit of this because it’s slightly naughty. You aren’t supposed to know
how to do this.

A Junction is handy to allow a combination of types in a type constraint. Use the
subset of the Junction of both types as the constraint:

subset IntInf where Int | Inf;
sub add (IntInf $a, IntInf $b) { $a + $b }

put add(1, 3); # 4
put add(1, Inf); # Inf

Exercise 14.4
Rewrite the number-guessing game from Chapter 2 to have three secret numbers.
This time the hints are a bit trickier. If any of the secret numbers are smaller than the
guess, tell the person that one or some of them are smaller. Do the same with larger
numbers. For a single guess, some numbers may be larger and others smaller. When
the person has guessed all of the secret numbers, end the game. Is it easier to use
given-when or if? Using all of the Junction types may make this easier.

Table 14-1 provides a summary of Junctions.

Table 14-1. Summary of Junctions

Junction Operator Description
any | Any of the values will work.
all & All of the values must work.
one ^ Exactly one of the values will work.
none None of the values can work.

Sets
Sets are another way to combine values. They aren’t like Junctions, where several
values can act like one value; they combine zero or more values as its own thingy that
you can inspect. Each value can be in the Set only once (although there are weighted
Sets I won’t write about), and once created the Set is fixed.

Sets | 239

https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html

A Set is a type of Associative, so many of the things you already
know about those work on Sets.

You can create a Set with a routine or a coercer. Each thingy in the List is a member
of the Set. These are the same:

set(1, 2, 3)
(1, 2, 3).Set

You can store any combination or mixture of thingys, including type objects:

set(<♠ ♣ ♥ ♦>)
set(Int, 3, Inf, 'Hamadryas', $(1,2,3))

A Set stores a thingy only once. It’s either in the Set or it isn’t, so it doesn’t need
duplicates:

put set(1, 2, 3).elems; # 3
put set(1, 2, 2, 3, 3, 3).elems; # 3

You can check that a value is in the Set with the (elem) operator:

my $set = <♠ ♣ ♥ ♦>.Set;
put 'Number is in the set' if '♥' (elem) $set;

There’s also the fancy Unicode ∈ operator that tests if the thingy is in the set (or is a
“member” of the set):

put 'Number is in the set' if '♥' ∈ $set;

These operators know that they need Sets, so they coerce what you give them:

put 'Number is in the set' if '♥' ∈ <♠ ♣ ♥ ♦>;

With that operator the Set is the second operand. The order of operands is reversed
for the (cont) and ∋ operators. Now you test that a Set contains an element:

put 'Number is in the set' if $set (cont) '♥';
put 'Number is in the set' if $set ∋ '♥';

You can test that a thingy is not a member of a Set by either prefacing the ASCII
operator with a ! or using the Unicode version with the line through it:

put 'Number is not in the set' if '♥' !(elem) $set;
put 'Number is not in the set' if '♥' ∉ $set;
put 'Number is not in the set' if $set !(cont) '♥';
put 'Number is not in the set' if $set ∌ '♥';

You can compare Sets to other Sets. Another Set that contains only some of the
members is a subset. A “strict” or “proper” subset is one that is smaller than the Set
and only contains elements of the Set. Another way to say that is a proper subset is

240 | Chapter 14: Junctions and Sets

https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Associative.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html

always smaller. The (<) (or ⊂) operator does that with the opening of the angle
toward the larger Set. The order of elements does not matter:

set(1, 3) (<) set(1, 3, 7); # True
set(3, 1, 7) (<) set(1, 3); # False (not smaller)
set(5, 7) ⊂ set(1, 3, 7); # False (5 not in set)

A ! in front of the ASCII operator or a line through the Unicode operator negates the
condition:

set(1, 3) !(<) set(1, 3, 7); # False
set(3, 1, 7) !(<) set(1, 3); # True
set(5, 7) ⊄ set(1, 3, 7); # True

Use the (>=) or ⊆ operators if you want to allow the Sets to be the same size:

set(1, 3) (<=) set(1, 3, 7); # True
set(1, 3, 7) (<=) set(1, 3, 7); # True
set(3, 1, 7) ⊆ set(1, 3); # False (subset has 7)

Negate those in the same way:

set(1, 3) !(<=) set(1, 3, 7); # False
set(1, 3, 7) !(<=) set(1, 3, 7); # False
set(3, 1, 7) ⊈ set(1, 3); # True

You can also have supersets. That’s just a matter of which one you allow to be the
larger Set. So far you’ve seen examples where you expected the larger Set to be to the
right of the operator. Flip those operators around so you expect the larger Set to be
on the left:

set(3, 1, 7) (>) set(1, 3); # False (not smaller)
set(3, 1, 7) ⊃ set(1, 3); # False (not smaller)

set(3, 1, 7) !(>) set(1, 3); # True
set(3, 1, 7) ⊅ set(1, 3); # True

Table 14-2 shows the rest of the Set operations.

Table 14-2. Set comparators

Operation Operator Code number Description
$a (elem) $set ∈ U+2208 $a is a member of $set
$a !(elem) $set ∉ U+2209 $a is not a member of $set
$set (cont) $a ∋ U+220B $set contains $a
$set !(cont) $a ∌ U+220C $set does not contain $a
$set-a (<) $set-b ⊂ U+2282 $set-a is a proper subset of $set-b
$set-a !(<) $set-b! ⊄ U+2284 $set-a is not a proper subset of $set-b
$set-a (<=) $set-b! ⊆ U+2286 $set-a is the same or is a subset of $set-b
$set-a !(<=) $set-b! ⊈ U+2288 $set-a is not the same and isn’t a subset of $set-b
$set-a (>) $set-b! ⊃ U+2283 $set-a is a proper superset of $set-b

Sets | 241

https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html

Operation Operator Code number Description
$set-a !(>) $set-b! ⊅ U+2285 $set-a is not a proper superset of $set-b
$set-a (>=) $set-b! ⊇ U+2287 $set-a is the same or is a superset of $set-b
$set-a !(>=) $set-b! ⊉ U+2289 $set-a is not the same and isn’t a superset of $set-b

Exercise 14.5
In Chapter 9 you used a Map to check allowed values. Do the same thing with a List.
Prompt for some starting colors (perhaps all on one line that you break up into ele‐
ments). Continue to prompt for colors and report if the color was one of the initial
colors. Can you do this ignoring case?

Set Operations
You can operate on two Sets to create new Sets. A union is a combination of two
Sets. Each element still shows up only once:

set(1,2) (|) set(3,7); # set(1 2 3 7)
set(1,2) ∪ set(3,7); # set(1 2 3 7)

The intersection makes the Set of the elements they have in common:

set(1,3) (&) set(3,7); # set(3)
set(1,2) ∩ set(3,7); # set()

The set difference creates a Set made up of the elements from the first Set that aren’t
in the second. The ∖ isn’t the ASCII backslash; it’s (U+2216 SET MINUS):

set(<a b>) (-) set(<b c>); # set(a)
set(<A b>) ∖ set(<x y>); # set(A b)

The symmetric set difference does a similar thing in both directions. It creates a Set
containing all the elements of either Set that don’t show up in the other:

set(<a b>) (^) set(<b c>); # set(a c)
set(<A b>) ⊖ set(<x y>); # set(A b x y)

These operations are summarized in Table 14-3.

Table 14-3. Set creators

Operation Operator Code number Description
(|) ∪ U+222A Union (combination)
(&) ∩ U+2229 Intersection (overlap)
(-) ∖ U+2216 Set difference
(^) ⊖ U+2296 Symmetric set difference

242 | Chapter 14: Junctions and Sets

https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html

Exercise 14.6
Create two Sets of 10 numbers between 1 and 50. Find their intersection and union.

Summary
Junctions make several values pretend to be a single value, in such a way that you
can’t tell which value it is or how many values there are. You create the Junction in a
way that makes the values all work together or separately. A Set also combines values
but lets you look inside to see what those values are. You can combine Sets in various
ways to create new ones. This is handy to tell what’s in, out, or common.

Summary | 243

https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html

CHAPTER 15

Regular Expressions

Regular expressions (or regexes) are patterns that describe a possible set of matching
texts. They are a little language of their own, and many characters have a special
meaning inside patterns. They may look cryptic at first, but after you learn them you
have quite a bit of power.

Forget what you’ve seen about patterns in other languages. The Perl 6 pattern syntax
started over. It’s less compact but also more powerful. In some cases it acts a bit differ‐
ently.

This chapter shows simple patterns that match particular characters or sets of charac‐
ters. It’s just the start. In Chapter 16 you’ll see fancier patterns and the side effects of
matching. In Chapter 17 you’ll take it all to the next level.

The Match Operator
A pattern describes a set of text values. The simple pattern abc describes all the values
that have an a next to a b next to a c. The trick then is to decide if a particular value is
in the set of matching values. There are no half or partial matches; it matches or it
doesn’t.

A pattern inside m/.../ immediately applies itself to the value in $_. If the pattern is
in the Str the match operator returns something that evaluates to True in a condi‐
tion:

$_ = 'Hamadryas';
if m/Hama/ { put 'It matched!'; }
else { put 'It missed!'; }

That’s a bit verbose. The conditional operator takes care of that:

put m/Hama/ ?? 'It matched!' !! 'It missed!';

245

https://docs.perl6.org/type/Str.html

You don’t have to match against $_. You can use the smart match to apply it to a dif‐
ferent value. That’s the target:

my $genus = 'Hamadryas';
put $genus ~~ m/Hama/ ?? 'It matched!' !! 'It missed!';

That target could be anything, including an Array or Hash. These match a single item:

$genus ~~ m/Hama/;
@animals[0] ~~ m/Hama/;
%butterfly<Hamadryas> ~~ m/perlicus/;

But you can also match against multiple items. The object on the left side of the smart
match decides how the pattern applies to the object. This matches if any of the ele‐
ments in @animals matches:

if @animals ~~ m/Hama/ {
 put "Matches at least one animal";
 }

This is the same as matching against a Junction:

if any(@animals) ~~ m/Hama/ {
 put "Matches at least one animal";
 }

The match operator is commonly used in the condition inside a .grep:

my @hama-animals = @animals.grep: /Hama/;

Match Operator Syntax
The match operator can use alternate delimiters, similar to the quoting mechanism:

m{Hama}
m!Hama!

Whitespace inside the match operator doesn’t matter. It’s not part of the pattern (until
you say so, as you’ll see later). All of these are the same, including the last example
with vertical whitespace:

m/ Hama /
m{ Hama }
m! Hama !
m/
 Hama
/

You can put spaces between alphabetic characters, but you’ll probably get a warning
because Perl 6 wants you to put those together:

m/ Ha ma /

246 | Chapter 15: Regular Expressions

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Junction.html

If you want a literal space inside the match operator you can escape it (along with
other things you’ll see later):

m/ Ha\ ma /

Quoting whitespace makes it literal too (the space around the quoted whitespace is
still insignificant), or you can quote it all together:

m/ Ha ' ' ma /
m/ 'Ha ma' /

You need to quote or escape any character that’s not alphabetic or a number, even if
those characters aren’t “special.” The other unquoted characters may be metacharac‐
ters that have special meaning in the pattern language.

Successful Matches
If the match operator succeeds it returns a Match object, which is always a True value.
If you put that object it shows you the part of the Str that matched. The say
calls .gist and the output is a bit different:

$_ = 'Hamadryas';
my $match = m/Hama/;
put $match; # Hama
say $match; # ?Hama?

The output of say gets interesting as the patterns get more complicated. That makes
it useful for the regex chapters, and you’ll see more of that here compared to the rest
of the book.

If the match does not succeed it returns Nil, which is always False:

$_ = 'Hamadryas';
my $match = m/Hama/;
put $match.^name; # Nil

It’s usually a good idea to check the result before you do anything with it:

if my $match = m/Hama/ { # matched
 say $match;
 }

You don’t need the $match variable though. The result of the last match shows up in
the special variable $/, which you’ll see more of later:

if m/Hama/ { # matched
 say $/;
 }

The Match Operator | 247

https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Nil.html

Defining a Pattern
Useful patterns can get quite long and unwieldy. Use rx// to define a pattern (a
Regex) for later use. This pattern is not immediately applied to any target. This allows
you to define a pattern somewhere that doesn’t distract from what you are doing:

my $genus = 'Hamadryas';
my $pattern = rx/ Hama /; # something much more complicated
$genus ~~ $pattern;

and reuse the pattern wherever you need it:

for lines() -> $line {
 put $line if $line ~~ $pattern;
 }

It’s possible to combine saved patterns into a larger one. This allows you to decom‐
pose complicated patterns into smaller, more tractable ones that you can reuse later
(which you’ll do extensively in Chapter 17):

my $genus = 'Hamadryas';

my $hama = rx/Hama/;
my $dryas = rx/dryas/;
my $match = $genus ~~ m/$hama$dryas/;

say $match;

Rather than storing a variable in an object, declare a lexical pattern with regex. This
looks like a subroutine because it has a Block but it’s not code inside; it’s a pattern and
uses that slang:

my regex hama { Hama }

Use this in a pattern by surrounding it with angle brackets:

my $genus = 'Hamadryas';
put $genus ~~ m/<hama>/ ?? 'It matched!' !! 'It missed!';

You can define multiple named regexes and use them together:

my regex hama { Hama }
my regex dryas { dryas }

$_ = 'Hamadryas';
say m/<hama><dryas>/;

Each named regex becomes a submatch. You can see the structure when you output it
with say. It shows the overall result and the results of the subpatterns too:

?Hamadryas?
 hama => ?Hama?
 dryas => ?dryas?

248 | Chapter 15: Regular Expressions

https://docs.perl6.org/type/Regex.html
https://docs.perl6.org/type/Block.html

Treat the Match object like a Hash (although it isn’t) to get the parts that matched the
named regexes. The name of the regex is the “key”:

$_ = 'Hamadryas';
my $result = m/<hama><dryas>/;

if $result {
 put "First: $result<hama>";
 put "Second: $result<dryas>";
 }

Predefined Patterns
Table 15-1 shows several of the predefined patterns that are ready for you to use. You
can define your patterns in a library and export them just like you could with subrou‐
tines:

Patterns.pm6
my regex hama is export { Hama }

Load the module and those named regexes are available to your patterns:

use lib <.>;
use Hama;

$_ = 'Hamadryas';
say m/ <hama> /;

Table 15-1. Named character classes

Predefined pattern What it matches
<alnum> Alphabetic and digit characters
<alpha> Alphabetic characters
<ascii> Any ASCII character
<blank> Horizontal whitespace
<cntrl> Control characters
<digit> Decimal digits
<graph> <alnum> + <punct>
<ident> A valid identifier character
<lower> Lowercase characters
<print> <graph> + <space>, but without <cntrl>
<punct> Punctuation and symbols beyond ASCII
<space> Whitespace
<upper> Uppercase characters
<|wb> Word boundary (an assertion rather than a character)
<word> <alnum> + Unicode marks + connectors, like ‘_’ (extra)
<ws> Whitespace (required between word characters, optional otherwise)

The Match Operator | 249

https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/Hash.html

Predefined pattern What it matches
<ww> Within a word (an assertion rather than a character)
<xdigit> Hexadecimal digits [0-9A-Fa-f]

Exercise 15.1
Create a program that uses a regular expression to output all of the matching lines
from the files you specify on the command line.

Matching Nonliteral Characters
You don’t have to literally type a character to match it. You might have an easier time
specifying its code point or name. You can use the same \x[CODEPOINT] or \c[NAME]
that you saw in double-quoted Strs in Chapter 4.

If you specify a name it must be all uppercase.

You could match the initial capital H by name, even though you have to type a literal
H in the name:

my $pattern = rx/
 \c[LATIN CAPITAL LETTER H] ama
 /;
$_ = "Hamadryas";

put $pattern ?? 'Matched!' !! 'Missed!';

You can do the same thing with the code point. If you specify a code point use the
hexadecimal number (with either case):

my $pattern = rx/
 \x[48] ama
 /;
$_ = "Hamadryas";

put $pattern ?? 'Matched!' !! 'Missed!';

This makes more sense if you want to match a character that’s either hard to type or
hard to read. If the Str has the 🐱 character (U+1F431 CAT FACE), you might not be
able to distinguish that from 😸 (U+1F638 GRINNING CAT FACE WITH SMILING
EYES) without looking very closely. Instead of letting another programmer mistake
your intent, you can use the name to save some eyestrain:

my $pattern = rx/
 \c[CAT FACE] # or \x[1F431]
 /;
$_ = "This is a catface: 🐱";
put $pattern ?? 'Matched!' !! 'Missed!';

250 | Chapter 15: Regular Expressions

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Matching Any Character
Patterns have metacharacters that match something other than their literal selves.
Some of these are listed in Table 15-2 (and most you won’t see in this chapter). The .
matches any character (including a newline). This pattern matches any target that has
at least one character:

m/ . /

To match a Str with an a and a c separated by a character, put the dot between them
in the pattern. This skips the lines that don’t match that pattern:

for lines() {
 next unless m/a.c/;
 .put
 }

Escaping characters
Some characters have special meaning in patterns. The colon introduces an adverb
and the # starts a comment. To match those as literal characters you need to escape
them. A backslash will do:

my $pattern = rx/ \# \: Hama \. /

This means to match a literal backslash, you need to escape that too:

my $pattern = rx/ \# \: Hama \\ /

You can do the same thing with the other pattern metacharacters. To match a literal
dot, escape it:

my $pattern = rx/ \. /

The backslash only escapes the character that comes immediately after it. You can’t
escape a literal space character, and you can’t escape a character that isn’t special.
Table 15-2 shows what you need to escape, even though I haven’t shown you most of
those features yet.

Table 15-2. Escapable pattern characters

Metacharacter Why it’s special
Starts a comment
\ Escapes the next character or a shortcut
. Matches any character
: Starts an adverb, or prevents backtracking
(and) Starts a capture
< and > Used to create higher-level thingys
[,], and ' Used for grouping
+, |, &, -, and ^ Set operations

Matching Nonliteral Characters | 251

https://docs.perl6.org/type/Str.html

Metacharacter Why it’s special
?, *, +, and % Quantifiers
| Alternation
^ and $ Anchors
$ Starts a variable or named capture
= Assigns to named captures

Characters inside quotes are always their literal selves:

my $pattern = rx/ '#:Hama' \\ /

You can’t use the single quotes to escape the backslash since a single backslash will
still try to escape the character that comes after it.

Matching literal spaces
You have a tougher time if you want to match literal spaces. You can’t escape a space
with \ because unspace isn’t allowed in a pattern. Instead, put quotes around the lit‐
eral space:

my $pattern = rx/ Hamadryas ' ' laodamia /;

Or put the entire sequence in quotes:

my $pattern = rx/ 'Hamadryas laodamia' /;

Those single quotes can quickly obscure what belongs where; it can be helpful to
spread the pattern across lines and note what you are trying to do:

my $pattern = rx/
 Hamadryas # genus
 ' ' # literal space
 laodamia # species
 /;

You can make whitespace significant with the :s adverb:

my $pattern = rx:s/ Hamadryas laodamia /;

my $pattern = rx/ :s Hamadryas laodamia /;

The :s is the short form of :sigspace:

my $pattern = rx:sigspace/ Hamadryas laodamia /;

my $pattern = rx/ :sigspace Hamadryas laodamia /;

Notice that this will match Hamadryas laodamia, even though the pattern has white‐
space at the beginning and end. The :s turns the whitespace in the pattern into a sub‐
rule <.ws>:

252 | Chapter 15: Regular Expressions

$_ = 'Hamadryas laodamia';
my $pattern = rx/ Hamadryas <.ws> laodamia /;
if m/$pattern/ {
 say $/; # ?Hamadryas laodamia?
 }

You can combine adverbs, but they each get their own colon. Order does not matter.
This pattern has significant whitespace and is case insensitive:

my $pattern = rx:s:i/ Hamadryas Laodamia /;

Matching Types of Characters
So far, you’ve matched literal characters. You typed out the characters you wanted,
and escaped them in some cases. There are some sets of characters that are so com‐
mon they get shortcuts. These start with a backslash followed by a letter that connotes
the set of characters. Table 15-3 shows the list of shortcuts.

If you want to match any digit, you can use \d. This matches anything that is a digit,
not just the Arabic digits:

/ \d /

Each of these shortcuts comes with a complement. \D matches any nondigit.

Table 15-3. Character class shortcuts

Shortcut Characters that match
\d Digits (Unicode property N)
\D Anything that isn’t a digit
\w Word characters: letters, digits, or underscores
\W Anything that isn’t a word character
\s Any kind of whitespace
\S Anything that isn’t whitespace
\h Horizontal whitespace
\H Anything that isn’t horizontal whitespace
\v Vertical whitespace
\V Anything that isn’t vertical whitespace
\t A tab character (specifically, only U+0009)
\T Anything that isn’t a tab character
\n A newline or carriage return/newline pair
\N Anything that isn’t a newline

Matching Nonliteral Characters | 253

Exercise 15.2
Write a program that outputs only those lines of input that contain three decimal dig‐
its in a row. You wrote most of this program in the previous exercise.

Unicode properties
The Unicode Character Database (UCD) defines the code points and their names and
assigns them one or more properties. Each character knows many things about itself,
and you can use some of that information to match them. Place the name of the Uni‐
code property in <:...>. That colon must come right after the opening angle bracket.
If you wanted to match something that is a letter, you could use the property Letter:

/ <:Letter> /

Instead of matching a property, you can match characters that don’t have that particu‐
lar property. Put a ! in front of the property name to negate it. This matches charac‐
ters that aren’t the title-case letters:

/ <:!TitlecaseLetter> /

Each property has a long form, like Letter, and a short form, in this case L. There are
other properties, such as Uppercase_Letter and Lu, or Number and N:

/ <:L> /
/ <:N> /

You can match the characters that belong to certain Unicode blocks or scripts:

<:Block('Basic Latin')>
<:Script<Latin>>

Even though you can abbreviate these property names I’ll use the longer names in
this book. See the documentation for the other properties.

Combining properties
One property might not be enough to describe what you want to match. To build
fancier ones, combine them with character class set operators. These aren’t the same
operators you saw in Chapter 14; they’re special to character classes.

The + creates the union of the two properties. Any character that has either property
will match:

/ <:Letter + :Number> /
/ <:Open_Punctuation + :Close_Punctuation> /

Subtract one property from another with -. Any character with the first property that
doesn’t have the second property will match this. The following example matches all

254 | Chapter 15: Regular Expressions

the identifier characters (in the UCD sense, not the Perl 6 sense). There are the char‐
acters that can start an identifier and those that can be in the other positions:

/ <:ID_Continue - :Number> /

You can shorten this to not match a character without a particular property. It looks
like you leave off the first part of the subtraction; the - comes right after the opening
angle bracket. That implies you’re subtracting from all characters. This matches all
the characters that don’t have the Letter property:

/ <-:Letter> /

Exercise 15.3
Write a program to count all of the characters that match either the Letter or Number
properties. What percentage of the code points between 1 and 0xFFFD are either let‐
ters or numbers? The .chr method may be handy here.

User-Defined Character Classes
You can define your own character classes. Put the characters that you want to match
inside <[...]>. These aren’t the same square brackets that you saw earlier for group‐
ing; these are inside the angle brackets. This character class matches either a, b, or 3:

/ <[ab3]> /

As with everything else so far, this matches one character and that one character can
be any of the characters in the character class. This character class matches either case
at a single position:

/ <[Hh]> ama / # also / [:i h] ama /

You could specify the hexadecimal value of the code point. The whitespace is insignif‐
icant:

/ <[\x[48] \x[68]]> ama /

The character name versions work too:

/ <[
 \c[LATIN CAPITAL LETTER H]
 \c[LATIN SMALL LETTER H]
]>
/

You can make a long list of characters:

/ <[abcdefghijklmnopqrstuvwxyz]> / # from a to z

Matching Nonliteral Characters | 255

Inside the character class the # is just a #. If you try to put a comment in there all of
the characters in your message become part of the character class:

/ <[
 \x[48] # uppercase
 \x[68] # lowercase
]>
/

You’ll probably get warnings about repeated characters if you try to do that.

Character class ranges

But that’s too much work. You can use .. to specify a range of characters. The literal
characters work as well as the hexadecimal values and the names. Notice you don’t
quote the literal characters in these ranges:

/ <[a..z]> /
/ <[\x[61] .. \x[7a]]> /
/ <[\c[LATIN SMALL LETTER A] .. \c[LATIN SMALL LETTER Z]]> /

The range doesn’t have to be the only thing in the square brackets:

/ <[a..z 123456789]> /

You could have two ranges:

/ <[a..z 1..9]> /

Negated character classes
Sometimes it’s easier to specify the characters that can’t match. You can create a nega‐
ted character class by adding a - between the opening angle bracket and the opening
square bracket. This example matches any character that is not a, b, or 3:

/ <-[ab3]> /

Space inside a character class is also insignificant:

/ <-[a b 3]> /

You can use a negated character class of one character. Quotes inside the character
class are literal characters because Perl 6 knows you aren’t quoting:

/ <-[']> / # not a quote character

This one matches any character that is not a newline:

/ <-[\n]> / # not a newline

The predefined character class shortcuts can be part of your character class:

/ <-[\d \s]> / # digits or whitespace

Like the Unicode properties, you can combine sets of characters:

256 | Chapter 15: Regular Expressions

/ <[abc] + [xyz]> / # but, also <[abcxyz]>

/ <[a..z] - [ijk]> / # easier than two ranges

Exercise 15.4
Create a program to output all the input lines. Skip any line that contains a letter
unless it’s a vowel. Also skip any lines that are blank (that is, only have whitespace).

Matching Adverbs
You can change how the match operator works by applying adverbs, just like you
changed how Q worked in Chapter 4. There are several, but you’ll only see the most
commonly used here.

Matching Either Case
So far a character in your pattern matches exactly the same character in the target. An
H only matches an uppercase H and not any other sort of H:

my $pattern = rx/ Hama /;
put 'Hamadryas' ~~ $pattern; # Matches

Change your pattern by one character. Instead of an uppercase H, use a lowercase one:

my $pattern = rx/ hama /;
put 'Hamadryas' ~~ $pattern; # Misses because h is not H

The pattern is case sensitive, so this doesn’t match. But you can make it case insensi‐
tive with an adverb. The :i adverb makes the literal alphabetic characters match
either case. You can put the adverb right after the rx or the m:

my $pattern = rx:i/ hama /;
put 'Hamadryas' ~~ $pattern; # Matches, :i outside

This is the reason you can’t use the colon as the delimiter!

When you use an adverb on the outside of the pattern, that adverb applies to the
entire pattern. You can also put the adverb on the inside of the pattern:

my $pattern = rx/ :i hama /;
put 'Hamadryas' ~~ $pattern; # Matches, :i inside

Isn’t that interesting? Now you start to see why whitespace isn’t counted as part of the
pattern. There’s much more going on besides literal matching of characters.

The adverb applies from the point of its insertion to the end of the pattern. In this
case it applies to the entire pattern because the :i is at the beginning. Put that adverb
later in the pattern, and it applies from there to the rest of the pattern. Here the ha

Matching Adverbs | 257

only match lowercase because the adverb shows up later. The rest of the pattern after
the :i is case insensitive:

my $pattern = rx/ ha :i ma /; # final ma case insensitive

You can group parts of patterns with square brackets. This example groups the am but
doesn’t do much else because there’s nothing else special going on:

my $pattern = rx/ h [am] a /;

An adverb inside a group applies only to that group:

my $pattern = rx/ h [:i am] a /;

The rules are the same: the adverb applies from the point of its insertion to the end of
the group:

my $pattern = rx/ h [a :i m] a /; # matches haMa or hama

At this point, you’re probably going to start mixing up what’s going on. There’s
another reason whitespace doesn’t matter—you can add comments to your pattern:

my $pattern = rx/
 h
 [# group this next part
 a
 :i # case insensitive to end of group
 m
] # end of group
 a
 /;

Everything from the # character to the end of the line is a comment. You can use
embedded comments too:

my $pattern = rx/
 :i #`(case insensitive) Hama
 /;

These aren’t particularly good comments because you’re annotating what the syntax
already denotes. As a matter of good practice, you should comment what you are try‐
ing to match rather than what the syntax does. However, the world isn’t going to end
if you leave a reminder for yourself of what a new concept does.

Exercise 15.5
Write a program that outputs only the lines of input that contain the text ei. You’ll
probably want to save this program to build on in later exercises.

258 | Chapter 15: Regular Expressions

Ignoring Marks
The :ignoremark adverb changes the pattern so that accents and other marks don’t
matter. The marks can be there or not. It works if the marks are in the target or the
pattern:

$_ = 'húdié'; # ??
put m/ hudie / ?? 'Matched' !! 'Missed'; # Missed
put m:ignoremark/ hudie / ?? 'Matched' !! 'Missed'; # Matched

$_ = 'hudie';
put m:ignoremark/ húdié / ?? 'Matched' !! 'Missed'; # Matched

It even works if both the target and the pattern have different marks in the same posi‐
tions:

$_ = 'hüdiê';
put m:ignoremark/ húdié / ?? 'Matched' !! 'Missed'; # Matched

Some adverbs can show up inside the pattern. They apply to the parts of the pattern
that come after them:

$_ = 'hüdiê';
put m/ :ignoremark hudie / ?? 'Matched' !! 'Unmatched'; # Matched

Global Matches
A pattern might be able to match several times in the same text. The :global adverb
gets all of the nonoverlapping Matches. It returns a List:

$_ = 'Hamadryas perlicus';
my $matches = m:global/ . s /;
say $matches; # (?as? ?us?)

No matches gets you an empty List:

$_ = 'Hamadryas perlicus';
my $matches = m:global/ six /;
say $matches; # ()

The match operator can find overlapping matches too. Use :overlap to return a
potentially longer list. The ?uta? and ?ani? here both match the same a:

$_ = 'Bhutanitis thaidina';

my $global = m:global/ <[aeiou]> <-[aeiou]> <[aeiou]> /;
say $global; # (?uta? ?iti? ?idi?)

my $overlap = m:overlap/ <[aeiou]> <-[aeiou]> <[aeiou]> /;
say $overlap; # (?uta? ?ani? ?iti? ?idi? ?ina?)

Matching Adverbs | 259

https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html

Things That Use Patterns
There are many features that you haven’t been able to use so far because you hadn’t
seen regexes yet. Now you’ve seen regexes, so you can see these things. There are a
couple of Str methods that work with a pattern to transform values. This section is a
taste of the features you’ll use most often.

The .words and .comb methods break up text. The .split method is the general case
of that. It takes a pattern to decide how to break up the text. Whatever it matches are
the parts that disappear. You could break up a line on tabs, for instance:

my @words = $line.split: / \t /;

.grep can use the match operator to select things. If the match operator succeeds it
returns something that’s True, and that element is part of the result:

my @words-with-e = @word.grep: /:i e/;

Or, to put it all together:

my @words-with-e = $line.split(/ \t /).grep(/:i e/);

.split can specify multiple possible separators. Not all of them need be matches.
This breaks up a line on a literal comma or whitespace:

my @words-with-e = $line
 .split([',', / \s /])
 .grep(/:i e/);

.comb does a job similar to .split, but it breaks up the text by keeping the parts that
matched. This keeps all the nonoverlapping groups of three digits and discards every‐
thing else:

my @digits = $line.comb: /\d\d\d/;

With no argument .comb uses the pattern of the single . to match any character. This
breaks up a Str into its characters without discarding anything:

my @characters = $line.comb: /./;

Substitutions
The .subst method works with a pattern to substitute the matched text with other
text:

my $line = "This is PERL 6";
put $line.subst: /PERL/, 'Perl'; # This is Perl 6

This one makes the substitution for the first match:

my $line = "PERL PERL PERL";
put $line.subst: /PERL/, 'Perl'; # Perl PERL PERL

260 | Chapter 15: Regular Expressions

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Use the :g adverb to make all possible substitutions:

my $line = "PERL PERL PERL";
put $line.subst: /PERL/, 'Perl'; # Perl Perl Perl

Each of these returns the modified Str and leaves the original alone. Use .subst-
mutate to change the original value:

my $line = "PERL PERL PERL";
$line.subst-mutate: /PERL/, 'Perl', :g;
put $line; # Perl Perl Perl

These will be much more useful with the regex features you’ll see in the next chapter.

Exercise 15.6
Using .split, output the third column of a tab-delimited file. The butterfly census
file you made at the end of Chapter 9 would do nicely here.

Summary
You haven’t seen the full power of regexes in this chapter since it was mostly about the
mechanism of applying the patterns to text. That’s not a big deal—the patterns can be
much more sophisticated, but the mechanisms are the same. In the next chapter
you’ll see most of the fancier features you’ll regularly use.

Summary | 261

https://docs.perl6.org/type/Str.html

CHAPTER 16

Fancier Regular Expressions

You won’t see all the rest of the regular expression syntax in this chapter, but you’ll see
the syntax you’ll use the most. There’s much more to patterns, but this should get you
most of the way through common problems. With grammars (Chapter 17), the power
of even simple patterns will become apparent.

Quantifiers
Quantifiers allow you to repeat a part of a pattern. Perhaps you want to match several
of the same letter in a row—an a followed by one or more b’s then another a. You
don’t care how many b’s there are as long as there’s at least one of them. The + quanti‐
fier matches the immediately preceding part of the pattern one or more times:

my @strings = < Aa Aba Abba Abbba Ababa >;
for @strings {
 put $_, ' ', m/ :i ab+ a / ?? 'Matched!' !! 'Missed!';
 }

The first Str here doesn’t match because there isn’t at least one b. All of the others
have an a followed by one or more bs and another a:

Aa Missed!
Aba Matched!
Abba Matched!
Abbba Matched!
Ababa Matched!

A quantifier only applies to the part of the pattern immediately in front of it—that’s
the b, not the ab. Group the ab and apply the quantifier to the group (which counts as
one thingy):

my @strings = < Aa Aba Abba Abbba Ababa >;
for @strings {

263

https://docs.perl6.org/type/Str.html

 put $_, ' ', m/ :i [ab]+ a / ?? 'Matched!' !! 'Missed!';
 }

Now different Strs match. The ones with repeated b’s don’t match because the quanti‐
fier applies to the [ab] group. Only two of the Strs have repeated ab’s:

Aa Missed!
Aba Matched!
Abba Missed!
Abbba Missed!
Ababa Matched!

Exercise 16.1
Using butterfly_census.txt (the file you made at the end of Chapter 9), use a regex to
count the number of distinct butterfly species whose names have two or more consec‐
utive i’s. Use the + quantifier in your pattern.

Zero or More
The * quantifier is like + but matches zero or more times. This makes that part of the
pattern optional. If it matches it can repeat as many times as it likes. Perhaps you
want to allow the letter a between b’s. The a’s can be there or not be there:

my @strings = < Aba Abba Abbba Ababa >;
for @strings {
 put $_, ' ', m/ :i ba*b / ?? 'Matched!' !! 'Missed!';
 }

The Strs with consecutive b’s match because they have zero a’s between the b’s, but
the Str with bab also matches because it has zero or more a’s between them:

Aba Missed!
Abba Matched!
Abbba Matched!
Ababa Matched!

Exercise 16.2
Adapt your solution from the previous exercise to find the butterfly species names
that have consecutive a’s that may be separated by either n or s.

264 | Chapter 16: Fancier Regular Expressions

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Greediness
The + and * quantifiers are greedy; they match as much of the text as they can. Some‐
times that’s too much. Change the earlier example to match another b after the quan‐
tifier. Now there must be at least two b’s in a row:

my @strings = < Aba Abba Abbba Ababa >;
for @strings {
 put $_, ' ', m/ :i ab+ ba / ?? 'Matched!' !! 'Missed!';
 }

The first Str doesn’t match because it doesn’t have one or more b’s followed by
another b. It’s the same for the last Str. The middle two Strs have enough b’s to sat‐
isfy both parts of the pattern:

Aba Missed!
Abba Matched!
Abbba Matched!
Ababa Missed!

But think about how this works inside the matcher. When it sees the b+ it matches as
many b’s as it can. In Abbba, the b+ starts by matching bbb. The b+ part of the pattern
is satisfied. The matcher moves on to the next part of the pattern, which is another b.
The text doesn’t have any leftover b’s to satisfy that part because the greedy quantifier
matched them all.

The match doesn’t fail because of another tactic the matcher can use: it can backtrack
on the quantifier that just matched to force it to give up some of the text. The b+
needs one or more b’s. Whether it matched two or three doesn’t matter, because either
satisfies that. Backing up one position in the text leaves a b for the next part to match.
Once it backs up it tries the next part of the pattern.

Zero or One
The ? quantifier matches zero or once only; it makes the preceding part of the pattern
optional. In this pattern you can have one or two b’s because you used ? to make one
of them optional:

my @strings = < Aba Abba Abbba Ababa >;
for @strings {
 put $_, ' ', m/ :i ab? ba / ?? 'Matched!' !! 'Missed!';
 }

Now the first Str can match because the first b can match zero times. The third Str
can’t match because there is more than one b and the ? can’t match more than one of
them:

Aba Matched!
Abba Matched!

Quantifiers | 265

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Abbba Missed!
Ababa Matched!

Minimal and Maximal
If you want to match an exact number of times use **. With a single number after it
the ** matches exactly that number of times. This matches exactly three b’s:

my @strings = < Aba Abba Abbba Ababa >;
for @strings {
 put $_, ' ', m/ :i ab**3 a / ?? 'Matched!' !! 'Missed!';
 }

There’s only one Str that matches:

Aba Missed!
Abba Missed!
Abbba Matched!
Ababa Missed!

You can use a range after the **. The quantified part must match at least the range
minimum and will only match as many repetitions as the range maximum:

my @strings = < Aba Abba Abbba Ababa Abbbba >;
for @strings {
 put $_, ' ', m/ :i a b**2..3 a / ?? 'Matched!' !! 'Missed!';
 }

Two Strs match—the ones with two or three consecutive b’s:

Aba Missed!
Abba Matched!
Abbba Matched!
Ababa Missed!
Abbbba Missed!

An exclusive range works too. Match two or three times by excluding the 1 and 4
endpoints to get the same output:

my @strings = < Aba Abba Abbba Ababa >;
for @strings {
 put $_, ' ', m/ :i ab**1^..^4 a / ?? 'Matched!' !! 'Missed!';
 }

Exercise 16.3
Output all the lines from the butterfly census file that have four vowels in a row.

266 | Chapter 16: Fancier Regular Expressions

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Exercise 16.4
Output all the lines from the butterfly census file that have exactly four repetitions of
an a followed by a nonvowel (such as in Paralasa).

Controlling Quantifiers
Adding a ? after any quantifier makes it match as little as possible—the greedy quan‐
tifiers become nongreedy. The modified quantifier stops matching when the next part
of the pattern can match.

These two patterns look for an H, some stuff, and then an s. The first one is greedy
and matches all the way to the final s. The second one is nongreedy and stops at the
first s it encounters. The greedy case matches the entire text but the nongreedy case
matches only the first word:

$_ = 'Hamadryas perlicus';

say "Greedy: ", m/ H .* s /; # Greedy: ｢Hamadryas perlicus｣
say "Nongreedy: ", m/ H .*? s /; # Nongreedy: ｢Hamadryas｣

You’ll probably find that you often want to make the quantifiers nongreedy.

Exercise 16.5
Output all the text in the input that appears between underscores. The Butter‐
flies_and_Moths.txt file has some interesting nongreedy matches.

Turning Off Backtracking
The : modifier lets you turn off backtracking by preventing a quantifier from
unmatching what it has already matched. In both of these patterns the .+ can match
everything to the end of the Str. The first one has to unmatch some of that to allow
the rest of the pattern to match. The second one uses .+:, which means it can’t give
back any of the text to allow the first s to match, so that match fails:

$_ = 'Hamadryas perlicus';
say "Backtracking: ",
 m/ H .+ s \s perlicus/; # Backtracking: ｢Hamadryas perlicus｣
say "Nonbacktracking: ",
 m/ H .+: s \s perlicus/; # Nonbacktracking: Nil

The : can go immediately after the **. Each tries to match groups of three characters
with a def at the end. The first one matches the entire Str because it’s greedy, but then

Controlling Quantifiers | 267

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

backs up enough to allow def to match. The second one uses **:, so it refuses to
unmatch the def and the pattern fails:

$_ = 'abcabcabcdef';
say "Backtracking: ",
 m/ [...] ** 3..4 def /; # ｢abcabcabcdef｣
say "Nonbacktracking: ",
 m/ [...] **: 3..4 def /; # Nil

Table 16-1 summarizes the behavior of the different types of quantifiers.

Table 16-1. Summary of regex quantifiers

Quantifier Example Meaning
? b? Zero or one b
* b* Zero or more b’s
+ b+ One or more b’s
** N b ** 4 Exactly four b’s
** M..N b ** 2..4 Between two and four b’s
** M^..^N b ** 1^..^5 Between two and four b’s with an exclusive range
?? b?? Zero b’s (a trivial case)
? b? Zero or more b’s nongreedily
+? b+? One or more b’s nongreedily
?: b?: Zero or more b’s without backtracking
: b? Zero or more b’s greedily without backtracking
+: b+? One or more b’s greedily without backtracking
**: M..N b ** 2..4 Between two and four b’s greedily without backtracking

Captures
When you group with parentheses instead of square brackets you capture parts of the
text:

say 'Hamadryas perlicus' ~~ / (\w+) \s+ (\w+) /;

In the .gist output you see the captures labeled with whole numbers starting from
zero. The captures are numbered by their position in their subpattern from left to
right:

｢Hamadryas perlicus｣
 0 => ｢Hamadryas｣
 1 => ｢perlicus｣

You can access the captures with postcircumfix indices (but only if the match suc‐
ceeds). This looks like a Positional but isn’t, but that’s a distinction you don’t need to
worry about here. The output shows the same captures you saw before:

268 | Chapter 16: Fancier Regular Expressions

https://docs.perl6.org/type/Positional.html

my $match = 'Hamadryas perlicus' ~~ / (\w+) \s+ (\w+) /;

if $match {
 put "Genus: $match[0]"; # Genus: Hamadryas
 put "Species: $match[1]"; # Species: perlicus
 }

The special variable $/ already stores the result of the last successful match. You can
access elements in it directly:

$_ = 'Hamadryas perlicus';
if / (\w+) \s+ (\w+) / {
 put "Genus: $/[0]"; # Genus: Hamadryas
 put "Species: $/[1]"; # Species: perlicus
 };

It gets better. There’s a shorthand to access the captures in $/. The number variables
$0 and $1 are actually $/[0] and $/[1] (and this is true for as many captures as you
create):

$_ = 'Hamadryas perlicus';
if / (\w+) \s+ (\w+) / {
 put "Genus: $0"; # Genus: Hamadryas
 put "Species: $1"; # Species: perlicus
 };

If a previous match fails then $/ is empty and you don’t see the values from the previ‐
ous successful match. An unsuccessful match resets to $/ to nothing:

my $string = 'Hamadryas perlicus';

my $first-match = $string ~~ m/(perl)(.*)/;
put "0: $0 | 1: $1"; # 0: perl | 1: icus

my $second-match = $string ~~ m/(ruby)(.*)/;
put "0: $0 | 1: $1"; # 0: | 1: -- nothing in these variables

Named Captures
Instead of relying on the numbered captures, you can give them names. These
become keys in a Hash in the Match object. Label a capture with a $<LABEL>= in front
of the capturing parentheses:

$_ = 'Hamadryas perlicus';
if / $<genus>=(\w+) \s+ $<species>=(\w+) / {
 put "Genus: $/<genus>"; # Genus: Hamadryas
 put "Species: $/<species>"; # Species: perlicus
 };

The output is often much easier to understand when you label the captures. It’s also
easier to modify the pattern without disrupting later code, since the positions of
labels don’t matter.

Captures | 269

https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Match.html

As before, you can leave off the slash in $/ but only if you use the angle brackets. This
looks like Associative indexing even though the Match isn’t an Associative type:

$_ = 'Hamadryas perlicus';
if / $<genus>=(\w+) \s+ $<species>=(\w+) / {
 put "Genus: $<genus>"; # Genus: Hamadryas
 put "Species: $<species>"; # Species: perlicus
 };

A label name in a variable works, but in that case you can’t leave off the /:

$_ = 'Hamadryas perlicus';
my $genus-key = 'genus';
my $species-key = 'species';
if / $<genus>=(\w+) \s+ $<species>=(\w+) / {
 put "Genus: $/{$genus-key}"; # Genus: Hamadryas
 put "Species: $/{$species-key}"; # Species: perlicus
 };

If you save the result the names are in your Match in the same way they show up in
$/:

my $string = 'Hamadryas perlicus';
my $match = $string ~~ m/ $<genus>=(\w+) \s+ $<species>=(\w+) /;

if $match {
 put "Genus: $match<genus>"; # Genus: Hamadryas
 put "Species: $match<species>"; # Species: perlicus
 };

You don’t even need to know the names because you can get those from the Match.
Calling .pairs returns all the names:

my $string = 'Hamadryas perlicus';
my $match = $string ~~ m/ $<genus>=(\w+) \s+ $<species>=(\w+) /;

put "Keys are:\n\t",
 $match
 .pairs
 .map({ "{.key}: {.value}" })
 .join("\n\t");

The put shows everything without knowing the names in advance:

Keys are:
 species: perlicus
 genus: Hamadryas

When patterns get too complex (say, something that you have to spread over multiple
lines) the numbered Match variables will probably proliferate beyond your ability to
track them. Names do a much better job of reminding you which capture contains
what.

270 | Chapter 16: Fancier Regular Expressions

https://docs.perl6.org/type/Associative.html
https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/Associative.html
https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/Match.html

A Capture Tree
Inside capture parentheses you can have additional capture parentheses. Each group
gets its own numbering inside the group that contains it:

my $string = 'Hamadryas perlicus';
say $string ~~ m/(perl (<[a..z]>+))/;

The output shows that there are two $0s and one of them is subordinate to the other.
The captures are nested so the results are nested:

｢perlicus｣
 0 => ｢perlicus｣
 0 => ｢icus｣

To access the top-level match, use $/[0] or $0. To get the nested matches you access
the next level with the appropriate subscript:

my $string = 'Hamadryas perlicus';
$string ~~ m/(perl (<[a..z]>+))/;

explicit $/
say "Top match: $/[0]"; # Top match: perlicus
say "Inner match: $/[0][0]"; # Inner match: icus

or skip the $/
say "Top match: $0"; # Top match: perlicus
say "Inner match: $0[0]"; # Inner match: icus

This works for named captures in the same way. The outer captures include the inner
text as well as the inner captures:

my $string = 'Hamadryas perlicus';
$string ~~ m/
 $<top> = (perl
 $<inner> = (<[a..z]>+)
)
 /;

explicit $/
say "Top match: $/<top>"; # Top match: perlicus
say "Inner match: $/<top><inner>"; # Inner match: icus

or skip the $/
say "Top match: $<top>"; # Top match: perlicus
say "Inner match: $<top><inner>"; # Inner match: icus

It’s not one or the other. You can mix number variables and labels if that makes sense:

my $string = 'Hamadryas perlicus';
$string ~~ m/
 (perl $<inner> = (<[a..z]>+))
 /;

Captures | 271

explicit $/
say "Top match: $/[0]"; # Top match: perlicus
say "Inner match: $/[0]<inner>"; # Inner match: icus

or skip the $/
say "Top match: $0"; # Top match: perlicus
say "Inner match: $0<inner>"; # Inner match: icus

This nesting makes it very easy to construct your pattern. The numbering is localized
to the level you are in. If you add other captures to the pattern they only disturb their
level.

Exercise 16.6
Extract from the Butterflies_and_Moths.txt file all the scientific names between
underscores (such as _Crocallis elinguaria_). Capture the genus and species sepa‐
rately. Which genus has the most species?

Backreferences
The result of a capture is available inside your patterns. You can use that to match
something else in the same pattern. Use the Match variables to refer to the part that
you want:

my $line = 'abba';
say $line ~~ / a (.) $0 a /;

The output shows the entire match and the capture:

｢abba｣
 0 => ｢b｣

Refer to captures at the same level with the number variables. The $0 and $1 are back‐
references to parts of the pattern that have already matched:

my $line = 'abccba';
say $line ~~ / a (.)(.) $1 $0 a /;

There are only two captures in the output:

｢abccba｣
 0 => ｢b｣
 1 => ｢c｣

If the capture is nested you have to do a bit more work. You might think you can sub‐
script the capture variable, but can you see why it fails silently?

my $line = 'abcca';
say $line ~~ / a (.(.)) $0[0] a /; # does not match!

272 | Chapter 16: Fancier Regular Expressions

https://docs.perl6.org/type/Match.html

Those square brackets are pattern metacharacters and not postcircumfix indexers!
You think that you have an element in $0, but it’s really $0 stringified followed by a
group that is the literal text 0.

To get around this parsing problem surround the subscript access in $() so the pat‐
tern sees it as one thing. There’s one more trick to make it work out. Backreferences
are only valid at a sequence point where the match operator has filled in all the
details. An empty code block can force that:

my $line = 'abcca';
say $line ~~ / a (.(.)) {} $($0[0]) a /; # matches

Now the $0[0] can match the c:

｢abcca｣
 0 => ｢bc｣
 0 => ｢c｣

Surrounders and Separators
To match something that has prefix and suffix characters, you could type out the pat‐
tern in the order it appears in the Str. Here’s an example that matches a word in lit‐
eral parentheses:

my $line = 'outside (pupa) outside';
say $line ~~ / '(' \w+ ')' /; # ｢(pupa)｣

That’s not the best way to communicate that you want to match something in paren‐
theses, though. The start and end characters aren’t next to each other in the pattern;
you have to read ahead then surmise that the parentheses are circumfix parts of the
same idea.

Instead, connect the beginning and end patterns with ~, then put the interior pattern
after that. This describes something surrounded by parentheses subordinate to the
structure:

my $line = 'outside (pupa) outside';
say $line ~~ / '(' ~ ')' \w+ /;

This is automatically nongreedy; it does not grab everything until the last closing
parenthesis:

my $line = 'outside (pupa) space (pupa) outside';
say $line ~~ m/ '(' ~ ')' \w+ /; # ｢(pupa)｣

A global match will still find all the instances:

my $line = 'outside (pupa) space (pupa) outside';
say $line ~~ m:global/ '(' ~ ')' \w+ /; # (｢(pupa)｣ ｢(pupa)｣)

Surrounders and Separators | 273

https://docs.perl6.org/type/Str.html

Going the other way, suppose that you want to match a series of things that are sepa‐
rated by other characters. A line of comma-separated values is such a thing:

my $line = 'Hamadryas,Leptophobia,Vanessa,Gargina';

To match the letters separated by commas, you could match the first group of letters
then every subsequent occurrence of a comma and another group of letters:

say $line ~~ / (\w+) [',' (\w+)]+ /;

That works, but it’s annoying because you have to use \w+ twice even though it’s
describing the same thing. The % modifies a quantifier so that the pattern on the right
comes between each group:

say $line ~~ / (\w+)+ % ',' /;

The output shows that you matched each group of letters:

｢Hamadryas,Leptophobia,Vanessa,Gargina｣
 0 => ｢Hamadryas｣
 0 => ｢Leptophobia｣
 0 => ｢Vanessa｣
 0 => ｢Gargina｣

A double percent allows a trailing separator in the overall match:

my $line = 'Hamadryas,Leptophobia,Vanessa,';
say $line ~~ / (\w+)+ %% ',' /;

Notice that it matches that comma that follows Vanessa but does not create an empty
capture after it:

｢Hamadryas,Leptophobia,Vanessa,｣
 0 => ｢Hamadryas｣
 0 => ｢Leptophobia｣
 0 => ｢Vanessa｣

Although you’d think that CSV files should be simple, they aren’t.
In the wild all sorts of weird things happen. The Text::CSV module
handles all of those tricky bits. Use that instead of doing it yourself.

Assertions
Assertions don’t match text; they require that a certain condition be true at the current
position in the text. They match a context instead of characters. Specify these in your
pattern to allow the matcher to fail faster. You don’t need to scan the entire text if the
pattern should only work at the beginning of the text.

274 | Chapter 16: Fancier Regular Expressions

https://modules.perl6.org/dist/Text::CSV:cpan:HMBRAND

Anchors
An anchor prevents the pattern from floating over the text to find a place where it can
start matching. It requires that a pattern match at a particular position. If the pattern
doesn’t match at that position the match can immediately fail and save itself the work
of scanning the text.

The ^ forces your pattern to match at the absolute beginning of the text. This matches
because the Hama comes at the beginning of the text:

say 'Hamadryas perlicus' ~~ / ^ Hama /; # ｢Hama｣

Trying to match perl after ^ fails because that pattern is not at the beginning of the
text:

say 'Hamadryas perlicus' ~~ / ^ perl /; # Nil (fails)

Without the anchor the match would drift over the text looking at each position to
check for perl. That’s extra work (and probably incorrect) if you know that you want
to match at the beginning. Once the match fails at the beginning it’s immediately
done.

The $ is the end-of-string anchor and does something similar at the end of the text:

say 'Hamadryas perlicus' ~~ / icus $ /; # ｢icus｣

This one doesn’t match because there’s more text after icus:
say 'Hamadryas perlicus navitas' ~~ / icus $ /; # Nil (fails)

There are anchors for the beginning and end of a line; that could be different from
the beginning and end of the text. A line ends with a newline and that newline might
be in the middle of your multiline text, like in this one (remember that the here doc
strips the indention):

$_ = chomp q:to/END/; # chomp removes last newline
 Chorinea amazon
 Hamadryas perlicus
 Melanis electron
 END

The beginning-of-line anchor, ^^, matches after the absolute beginning of the text or
immediately after any newline. These both work because Chorinea is at the start of
the text and the start of the first line:

say m/ ^ Chorinea /; # ｢Chorinea｣
say m/ ^^ Chorinea /; # ｢Chorinea｣

Likewise, the end-of-line anchor, $$, matches before any newline or at the absolute
end of the text. These also both work because electron is at the end of the text and the
end of the last line:

Assertions | 275

say m/ electron $ /; # ｢electron｣
say m/ electron $$ /; # ｢electron｣

Hamadryas can’t match at the absolute beginning of the text but it can match at the
beginning of a line:

say m/ ^ Hamadryas /; # Nil
say m/ ^^ Hamadryas /; # ｢Hamadryas｣

Similarly, perlicus can’t match at the absolute end of the text but it can match at the
end of a line:

say m/ perlicus $ /; # Nil
say m/ perlicus $$ /; # ｢perlicus｣

Conditions
Word boundaries exist when a non-“word” character is next to a “word” character (in
either order). Those terms are a bit fuzzy, since you likely think of word characters as
the alphabetic characters. They are, however, the ones that match \w, which includes
numbers and other things. The beginning and the end of the Str count as nonword
characters.

Exercise 16.7
Output all the “word” characters that are not alphabetic characters. How many of
them are there? The Range 0 .. 0xFFFF and the .chr method should be helpful.

Assert a word boundary with <|w>. Suppose that you want to match the name
Hamad. Without a word boundary that would match in Hamadryas, but that’s not
what you want. The word boundary keeps it from showing up in the middle of
another word:

$_ = 'Hamadryas';
say m/ Hamad /; # ｢Hamad｣
say m/ Hamad <|w> /; # Nil

That second pattern can’t match because Hamadryas has a word character (a letter)
following Hamad. The next example matches because a space follows Hamad:

my $name = 'Ali Hamad bin Perliana';
say $name ~~ / Hamad <|w> /; # ｢Hamad｣

Word boundaries on each side isolate a word. These matches look for dry as its own
word because it has word boundaries on each side. The first one fails because it’s in
the middle of a bigger word:

$_ = 'Hamadryas';
say m/ <|w> dry <|w> /; # Nil

276 | Chapter 16: Fancier Regular Expressions

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Range.html

$_ = 'The flower is dry';
say m/ <|w> dry <|w> /; # ｢dry｣

Instead of <|w> you can use the << or >> to point to where the nonword characters
should be:

$_ = 'The flower is dry';
say m/ << dry >> /; # ｢dry｣

The arrows can point either way, but always toward the nonword characters:

$_ = 'a!bang';
say m/ << .+ >> /; # ｢a!bang｣ - greedy
say m/ << .+? >> /; # ｢a｣ - nongreedy
say m/ >> .+ >> /; # ｢!bang｣
say m/ >> .+ << /; # ｢!｣

The opposite of a word boundary assertion is <!|w>. That means that both sides of
the assertion must be the same type of character—either both word characters or
both nonword characters. Now the results are flipped:

$_ = 'Hamadryas';
say m/ <!|w> dry <!|w> /; # ｢dry｣

$_ = 'The flower is dry';
say m/ <!|w> dry <!|w> /; # Nil

Code Assertions
Code assertions are perhaps the most amazing and powerful part of regular expres‐
sions. You can inspect what’s happened so far and use arbitrarily complex code to
decide if you accept that. If your code evaluates to True you satisfy the assertion and
the pattern can keep matching. Otherwise, your pattern fails.

Your code for the assertion shows up in <?{}>. You can put almost anything you like
in there:

'Hamadryas' ~~ m/ <?{ put 'Hello!' }> /; # Hello!

This matches no characters in Hamadryas but is also not the null pattern (which is
not valid). From inside the assertion you get Hello! as output:

put
 'Hamadryas' ~~ m/ <?{ put 'Hello!' }> /
 ?? 'Worked' !! 'Failed';

This first outputs from inside the assertion:

Hello!
Worked!

Change the assertion so that False is the last expression:

Assertions | 277

put
 'Hamadryas' ~~ m/ <?{ put 'Hello!'; False }> /
 ?? 'Worked' !! 'Failed';

You get much more output. As the code assertion fails the match cursor moves along
the text and tries again. Each time the code assertion returns False it tries again. It
keeps doing that until it gets to the end of the Str:

Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Hello!
Failed

Here’s something more complex. Suppose you want to match even numbers only. You
could create a pattern that looks for an even digit at an end of a Str:

say '538' ~~ m/ ^ \d* <[24680]> $ /; # ｢538｣

With a code assertion you don’t care which digits you match as long as they are even.
This makes the pattern a bit simpler by showing the complexity as code. Your intent
may be clearer this way:

say '538' ~~ m/ ^ (\d+) <?{ $0 %% 2 }> /;

There’s a capture and that text also is divisible by two, so that match succeeds:

｢538｣
 0 => ｢538｣

It stills works if the characters aren’t the ASCII decimal digits:

say '١٣٨' ~~ m/ ^ (\d+) <?{ $0 %% 2 }> /;

Or even:

say '١٣٨' ~~ m/ ^ (\d+) <?{ $0 %% ٢ }> /;

Matching an IPv4 address
Consider a pattern to match a dotted-decimal IP address. There are four decimal
numbers from 0 to 255, such as 127.0.0.1 (the loopback address). You could write a
pattern without an assertion, but you have to figure out how to restrict the range of
the number:

my $dotted-decimal = rx/ ^
 [
 || [<[0 1]> <[0 .. 9]> ** 0..2] # 0 to 199

278 | Chapter 16: Fancier Regular Expressions

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

 || [
 2
 [
 || <[0 .. 4]> <[0 .. 9]> # 200 to 499
 || 5 <[0 .. 5]> # 250 to 255
]
]
] ** 4 % '.'
 $
 /;

say '127.0.0.1' ~~ $dotted-decimal; # ｢127.0.0.1｣

Matching on text to suss out numerical values means careful handling of each charac‐
ter position. That’s a lot of work and uses a feature you haven’t seen yet (alternations
are coming up). You could reduce that to almost nothing with a code assertion that
looks at the text you just matched and tells the pattern if you want to accept it:

my $easier = rx/
 ^
 (<[0..9]>+: <?{ 0 <= $/ <= 255 }>) ** 4 % '.'
 $
 /;

The assertion is <?{ 0 <= $/ <= 255 }>. That $/ is the Match for only that level of
parentheses. This allows you to be sloppy in the pattern for matching digits. You don’t
care if you match 4, 5, or 20 digits because the code assertion will check that.

If that code assertion fails after matching digits, you don’t want to give back some of
the digits to try again. You know the next thing must be the . between groups of dig‐
its. To prevent any backtracking you use the : on that + quantifier. You don’t need this
to get the right match but it creates less work to ultimately fail.

The % modifies the ** 4 quantifier so a literal . shows up between each of the four
groups of digits.

Alternations
Sometimes there are several distinct patterns that might match at the same position.
An alternation is a way to specify that. There are two ways to do this: it can match the
first alternative that succeeds or it can match the longest one.

First Match
If you’ve used regexes in other languages you’re probably used to alternations where
the leftmost alternative that can match is the one that wins. Set up this type of alter‐
nation with a || between the possibilities:

my $pattern = rx/ abc || xyz || 1234 /;

Alternations | 279

https://docs.perl6.org/type/Match.html

Either abc, xyz, or 1234 can match:

my @strings = < 1234 xyz abc 789 >;
for @strings {
 put "$_ matches" if $_ ~~ $pattern;
 }

The first three Strs match because they have at least one of the alternatives:

1234 matches
xyz matches
abc matches

The alternation has an interesting feature: you can start it with a || with nothing
before it. This is the same pattern and does not create an empty alternative at the
beginning:

my $pattern = rx/ || abc || xyz || 1234 /;

This looks better spread out so each alternation gets its own line. The reformatted
pattern starts with || and has a more pleasing parallel structure that allows you to
remove lines without disturbing the other alternatives:

my $pattern = rx/
 || abc
 || xyz
 || 1234
 /;

Instead of placing a || between each alternative, you can put it before a bunch of
alternatives. Do that with an Array directly in your pattern:

my $pattern = rx/ || @(<abc xyz 1234>) /;

An existing variable after the || does the same thing:

my @variable = <abc xyz 1234>;
my $pattern = rx/ || @variable /;

You aren’t interpolating that Array. The pattern uses the current value of the Array
when it matches. In this example the Array has 1234 as the last element when you
define the pattern. Before you use the pattern you change that last element:

my @strings = < 1234 xyz abc 56789 >;
my @variable = <abc xyz 1234>;
my $pattern = rx/ || @variable /;

put "Before:";
for @strings {
 put "\t$_ matches" if $_ ~~ $pattern;
 }

change the array after making the pattern
@variable[*-1] = 789;

280 | Chapter 16: Fancier Regular Expressions

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html

put "After:";
for @strings {
 put "\t$_ matches" if $_ ~~ $pattern;
 }

The output shows that you matched with the current value of the variable instead of
its value when you created the pattern. Different values match after you change the
Array:

Before:
 1234 matches
 xyz matches
 abc matches
After:
 xyz matches
 abc matches
 56789 matches

Exercise 16.8
Output all the lines from the butterfly census file that have the genus Lycaena, Zizee‐
ria, or Hamadryas. How many different species did you find?

Longest Token Matching
Some alternations might have “better” possibilities that could match. Rather than
choosing the first specified possibility you can tell the match operator to try all of
them, then choose the “best” one. This is generally called longest token matching
(LTM), but it finds the best, not longest, match.

LTM alternation uses a single |. In this pattern all of the alternatives can match. The
first possibility it could match is the single a. The “best” match is abcd, though. That’s
the match you see in the output:

my $pattern = rx/
 | a
 | ab
 | abcd
 /;

say 'abcd' ~~ $pattern; # ｢abcd｣

An Array variable works just like it did in the || examples:

my @variable = <a ab abcd>;
my $pattern = rx/ | @variable /;

say 'abcd' ~~ $pattern; # ｢abcd｣

Alternations | 281

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html

What makes one possibility better than another? There are some rules that decide
this. Better patterns have longer tokens, and that’s where the confusion comes in. It’s
not actually about how much text it matches; it’s about the pattern.

This next part will probably be more than you’ll ever want to know. A pattern can
have both declarative and procedural elements. In short, some parts of the pattern
merely describe some text and other parts force the match operator to do something.
The abc is declarative. The {} inline code is an action.

Consider this example. The longest text that might match is Hamadry. That alterna‐
tive has the {True} inline code block in it, though. The second alternative is simply
Hamad, and that is the one that matches:

say 'Hamadryas perlicus sixus' ~~ m/
 | Hama{True}dry
 | Hamad
 /; # ｢Hamad｣

When the match operator is deciding which one has priority it looks for the pattern
that has the longest declarative part. The first one has Hama; the second one has Hamad.
That makes the second one the longer token. It’s about the pattern, not the target text.
(Ignore that you haven’t read a definition of a token yet.)

Sometimes the two patterns can have the same size tokens, like these two alternatives.
One has a character class and the other a literal d. The more specific one (the literal)
wins:

$_ = 'Hamadryas perlicus sixus';

say 'Hamadryas perlicus sixus' ~~ m/
 | Hama<[def]>{put "first"}
 | Hamad {put "second"}
 /; # ｢Hamad｣

The code Blocks are only there to show which alternative was “best”:

second
｢Hamad｣

Change that around to see it still choose the more specific one:

$_ = 'Hamadryas perlicus sixus';

say 'Hamadryas perlicus sixus' ~~ m/
 | Hamad {put "first"}
 | Hama<[def]>{put "second"}
 /; # ｢Hamad｣

Now the first alternative is more specific and it is “best”:

first
｢Hamad｣

282 | Chapter 16: Fancier Regular Expressions

https://docs.perl6.org/type/Block.html

So what counts as a token? It’s the longest stretch of things that aren’t procedural. As I
write this, however, the documentation avoids defining that. It requires deep knowl‐
edge of what happens in the guts of the language. It’s a big ugly topic that I’ll now
ignore, although the book Mastering Regular Expressions by Jeffrey E.F. Friedl
(O’Reilly) will tell you most of what you need to know. Perhaps the confusion will
sort itself out by the time you read this.

All of that is to say that the match operator looks at each | alternative and can choose
to do the one it thinks provides the best match. The match operator does not have to
do them in the order that you typed them.

Summary
In this chapter you saw the common regex features that will solve most of your pat‐
tern problems. You can repeat parts of a pattern, capture and extract parts of the text,
define alternate patterns that can match, and specify conditions within the pattern.
There is much more that patterns can do for you. Practice what you’ve read here and
delve into the documentation to discover more.

Summary | 283

http://my.safaribooksonline.com/book/programming/regular-expressions/0596528124

CHAPTER 17

Grammars

Grammars are patterns on a higher plane of existence. They integrate and reuse pat‐
tern fragments to parse and react to complicated formats. This feature is at the core of
Perl 6 in a very literal sense; the language itself is implemented as a grammar. Once
you start using it you’ll probably prefer it to regexes for all but the most simple prob‐
lems.

A Simple Grammar
A grammar is a special sort of package. It can have methods and subroutines but
mostly comprises special pattern methods called regex, token, and rule. Each of
these define a pattern and apply different modifiers.

Perl 6 tends to refer to regex, token, and rule declarations as
“rules,” which can be a bit imprecise at times. In this book, you can
tell the difference between the language keyword and the general
term by the typesetting. I’ll try to not present an ambiguous situa‐
tion.

Start with something simple (too simple for grammars). Define a TOP pattern that
matches digits as the starting point. That name is special because .parse uses it by
default. In this example, you declare that with regex:

grammar Number {
 regex TOP { \d }
 }

my $result = Number.parse('7'); # works

put $result ?? 'Parsed!' !! 'Failed!'; # Parsed!

285

This succeeds. .parse applies the grammar to the entire value of 7. It starts with the
parts that TOP describes. It can match a digit, and the value you pass to .parse is a
digit.

When .parse succeeds, it returns a Match object (it returns Nil when it fails). Try it
with a different value. Instead of a single digit, try several digits:

my $result = Number.parse('137'); # fails (extra digits)

put $result ?? 'Parsed!' !! 'Failed!'; # Failed!

This time .parse doesn’t succeed. It starts matching with the first character and ends
matching on the last character. It asserts that the text starts, there is a single digit, and
the text ends. If .parse sees that there are some characters before or after its match, it
fails. It matches everything or not at all. It’s almost the same thing as explicitly using
anchors:

grammar Number {
 regex TOP { ^ \d+ $ } # explicitly anchored
 }

But TOP is only the default starting point for a grammar. You can tell .parse where
you’d like to start. This version defines the same pattern but calls it digits instead of
TOP:

grammar Number {
 regex digits { \d+ }
 }

Tell .parse where to start with the :rule named argument:

my @strings = '137', '137 ', ' 137 ';

for @strings -> $string {
 my $result = Number.parse($string, :rule<digits>);
 put "｢$string｣ ", $result ?? 'Parsed!' !! 'Failed!';
 }

The first element of @strings parses because it is only digits. The other ones fail
because they have extra characters:

｢137｣ parsed!
｢137 ｣ failed!
｢ 137 ｣ failed!

Declare digits with rule instead of regex. This implicitly allows whitespace after
any part of your pattern:

grammar Number {
 rule digits { \d+ } # not anchored, and works
 }

286 | Chapter 17: Grammars

https://docs.perl6.org/type/Match.html

Now the second Str matches too because the implicit whitespace can match the space
at the end (but not the beginning):

｢137｣ parsed!
｢137 ｣ parsed!
｢ 137 ｣ failed!

The rule applies :sigspace to its pattern. It’s the same thing as adding that adverb to
the pattern:

grammar Number {
 regex digits { :sigspace \d+ }
 }

:sigspace inserts the predefined <.ws> after pattern tokens. Since there’s a dot before
the name ws, the <.ws> does not create a capture. It’s the same as adding optional
whitespace explicitly:

grammar Number {
 regex digits { \d+ <.ws> }
 }

Instead of showing Parsed!, you can on success output the Match object you stored
in $result:

grammar Number {
 regex digits { \d+ <.ws> }
 }

my @strings = '137', '137 ', ' 137 ';

for @strings -> $string {
 my $result = Number.parse($string, :rule<digits>);
 put $result ?? $result !! 'Failed!';
 }

The output isn’t that different, but instead of its success status you see the text that
matched:

｢137｣
｢137 ｣
Failed!

Modify the grammar to remove that dot from <.ws> so it captures whitespace and try
again:

grammar Number {
 regex digits { \d+ <ws> }
 }

Now the output shows the nested levels of named captures:

｢137｣
 ws => ｢｣

A Simple Grammar | 287

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Match.html

｢137 ｣
 ws => ｢ ｣
Failed!

This still doesn’t match the Str with leading whitespace. The parser couldn’t match
that since rule only inserts <.ws> after explicit parts of the pattern. To match leading
whitespace you need to add something to the front of the pattern. The beginning-of-
string anchor does that, and now there’s something that <.ws> can come after:

grammar Number {
 rule digits { ^ \d+ } # ^ <.ws> \d+ <.ws>
 }

There’s also the zero-width always-matches token, <?>:

grammar Number {
 rule digits { <?> \d+ } # <?> <.ws> \d+ <.ws>
 }

Most of the time you don’t want to play these games. If you want leading whitespace,
you can note that explicitly (and you probably don’t want to capture it):

grammar Number {
 rule digits { <.ws> \d+ } # <.ws> \d+ <.ws>
 }

Use token instead of rule if you don’t want any implicit whitespace:

grammar Number {
 token digits { \d+ } # just the digits
 }

You’ll see another feature of rule and token later in this chapter.

Exercise 17.1
Write a grammer to match octal digits, with or without a leading 0 or 0o. Your gram‐
mar should parse numbers such as 123, 0123, and 0o456, but not 8, 129, or o345.

Multiple Rules
Grammars wouldn’t be useful if you were limited to one rule. You can define addi‐
tional rules and use them inside other rules. In the first exercise you had only the TOP
rule but you could separate the pattern into parts. Break up the pattern in TOP into
rules for prefix and digits. It’s this decomposability that makes it so easy to solve
hard parsing problems:

grammar OctalNumber {
 regex TOP { <prefix>? <digits> }
 regex prefix { [0o?] }

288 | Chapter 17: Grammars

https://docs.perl6.org/type/Str.html

 regex digits { <[0..7]>+ }
 }

my $number = '0o177';
my $result = OctalNumber.parse($number);
say $result // "failed";

The stringified Match object shows the overall match and the named subcaptures:

｢0o177｣
 prefix => ｢0o｣
 digits => ｢177｣

You can access the pieces:

put "Prefix: $result<prefix>";
put "Digits: $result<digits>";

Exercise 17.2
Create a grammar to match a Perl 6 variable name with a sigil (ignore sigilless vari‐
ables, because that’s too easy). Use separate rules to match the sigil and the identifier.
Here is a list of candidates to check if you don’t come up with your own:

my @candidates = qw/
 sigilless $scalar @array %hash
 $123abc $abc'123 $ab'c123
 $two-words $two- $-dash
 /;

You can suppress some of those named captures by prefixing the rule with a dot. You
probably don’t care about the prefix, so don’t save it:

grammar OctalNumber {
 regex TOP { <.prefix>? <digits> }
 regex prefix { [0o?] }
 regex digits { <[0..7]>+ }
 }

my $number = '0o177';
my $result = OctalNumber.parse($number);
say $result // "failed";

The output doesn’t include the prefix information:

｢0o177｣
 digits => ｢177｣

This doesn’t make much of a difference in this small example, but imagine a compli‐
cated grammar with many, many rules. That brings you to the next big feature of

Multiple Rules | 289

https://docs.perl6.org/type/Match.html

grammars. Besides the grammar itself, you can specify an action class that processes
the rules as the grammar successfully parses them.

Debugging Grammars
There are two modules that can help you figure out what’s going on in your grammar.
Both are much more impressive in your terminal.

Grammar::Tracer
The Grammar::Tracer module shows you the path through a grammar (and applies
to any grammar in its scope). Merely loading the module is enough to activate it:

use Grammar::Tracer;

grammar OctalNumber {
 regex TOP { <prefix>? <digits> }
 regex prefix { [0o?] }
 regex digits { <[0..7]>+ }
 }

my $number = '0o177';
$/ = OctalNumber.parse($number);
say $/ // "failed";

The first part of the output is the trace. It shows which rule it’s in and the result. In
this example each one matches:

TOP
| prefix
| * MATCH "0o"
| digits
| * MATCH "177"
* MATCH "0o177"
｢0o177｣
 prefix => ｢0o｣
 digits => ｢177｣

Changing the data to include invalid digits, such as 0o178, means the grammar will
fail. In the trace you can see it matches up to 0o17 but can’t continue, so you know
where in your Str things went wrong. It could be that the grammar should not match
the text or the grammar is not as accommodating as it should be:

TOP
| prefix
| * MATCH "0o"
| digits
| * MATCH "17"
* MATCH "0o17"
digits

290 | Chapter 17: Grammars

https://docs.perl6.org/type/Str.html

* FAIL
digits
* MATCH "0"
failed

Instead of adding Grammar::Tracer to your program you can load it from the com‐
mand line with the -M switch. You probably don’t mean to leave it in anyway:

% perl6 -MGrammar::Tracer program.p6

Grammar::Debugger
The Grammar::Debugger module does the same thing as Grammar::Tracer (they
come together in the same distribution) but allows you to proceed one step at a time.
When you start it you get a prompt; type h to get a list of commands:

% perl6 -MGrammar::Debugger test.p6
TOP
> h
 r run (until breakpoint, if any)
 <enter> single step
 rf run until a match fails
 r <name> run until rule <name> is reached
 bp add <name> add a rule name breakpoint
 bp list list all active rule name breakpoints
 bp rm <name> remove a rule name breakpoint
 bp rm removes all breakpoints
 q quit

Typing Enter with no command single-steps through the parse process and gives you
a chance to inspect the text and the state of the parser. The rf command will get you
to the next failing rule:

> rf
| prefix
| * MATCH "0o"
| digits
| * MATCH "17"
* MATCH "0o17"
digits
* FAIL
>

A Simple Action Class
A grammar does its work by descending into its rules to take apart text. You can go
the opposite way by processing each part of the parsed text to build a new Str (or
data structure, or whatever you like). You can tell .parse to use an action class to do
this.

A Simple Action Class | 291

https://docs.perl6.org/type/Str.html

Here’s a simple action class, OctalActions. It doesn’t need to have the same name as
the grammar, but the method names are the same as the rule names. Each method
takes a Match object argument. In this example, the signature uses $/, which is a vari‐
able with a few advantages that you’ll see in a moment:

class OctalActions {
 method digits ($/) { put "Action class got $/" }
 }

grammar OctalNumber {
 regex TOP { <.prefix>? <digits> }
 regex prefix { [0o?] }
 regex digits { <[0..7]>+ }
 }

Tell .parse which class to use with the :actions named parameter. The name does
not need to correspond to the grammar:

my $number = '0o177';
my $result = OctalNumber.parse(
 $number, :actions(OctalActions)
);
say $result // "failed";

This action class doesn’t do much. When the digits rule successfully matches it trig‐
gers the rule of the same name in the action class. That method merely outputs the
argument:

Action class got 177
｢0o177｣
 digits => ｢177｣

Exercise 17.3
Implement your own action class for the OctalNumber grammar. When the digits
method matches, output the decimal version of the number. The parse-base routine
from Str may be useful. For extra credit, take one number per line from standard
input and turn them into decimal numbers.

Creating an Abstract Syntax Tree
Actions shouldn’t output information directly. Instead, they can add values to the
Match object. Calling make in the action method sets a value in the abstract syntax tree
(or .ast) slot of the Match. You can access that with .made:

class OctalActions {
 method digits ($/) {
 make parse-base(~$/, 8) # must stringify $/
 }

292 | Chapter 17: Grammars

https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/Match.html

 }

grammar OctalNumber {
 regex TOP { <.prefix>? <digits> }
 regex prefix { [0o?] }
 regex digits { <[0..7]>+ }
 }

my $number = '0o177';
my $result = OctalNumber.parse(
 $number, :actions(OctalActions)
);
put $result ??
 "Turned ｢{$result<digits>}｣ into ｢{$result<digits>.made}｣"
 !! 'Failed!';

The make puts something into the .ast slot of the Match and .made gets it back out.
You can make any value that you like, including containers, objects, and most other
things you can imagine. You still get the original, literal match.

In the previous example, the digits action method handled the value. A TOP action
method could do it, but it has to reach one level below the Match object:

class OctalActions {
 method digits ($/) {
 make parse-base(~$/, 8) # must stringify $/
 }
 }

grammar OctalNumber {
 regex TOP { <.prefix>? <digits> }
 regex prefix { [0o?] }
 regex digits { <[0..7]>+ }
 }

my $number = '0o177';
my $result = OctalNumber.parse(
 $number, :actions(OctalActions)
);
put $result.so ??
 "Turned ｢{$number}｣ into ｢{$result.made}｣"
 !! 'Failed!';

You don’t have to use $/ in the signature; it’s a convenience. There’s nothing particu‐
larly magical about it. You could use some other variable if you are paid by the char‐
acter:

class OctalActions {
 method TOP ($match) { make parse-base(~$match<digits>, 8) }
 }

A Simple Action Class | 293

https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/Match.html

Exercise 17.4
Create a grammar to parse a four-part, dotted-decimal IP address, such as
192.168.1.137. Create an action class that turns the parse results into a 32-bit num‐
ber. Output that 32-bit number in hexadecimal.

Ratcheting
The rule and token declarators have a feature that regex doesn’t; they both prevent
backtracking by implicitly setting the :ratchet adverb. Once one of those rules
matches they don’t backtrack to try again if there’s a failure later in the grammar.

Here’s a nonsense grammar that includes a rule <some-stuff> that matches one or
more of any character. The TOP token wants to match digits surrounded by unspeci‐
fied stuff:

grammar Stuff {
 token TOP { <some-stuff> <digits> <some-stuff> }
 token digits { \d+ }
 token some-stuff { .+ }
 }

This Str could satisfy that pattern. It has stuff, some digits, and more stuff:

my $string = 'abcdef123xyx456';

But, Stuff fails to parse it:

my $result = Stuff.parse($string);
put "｢$string｣ ", $result ?? 'Parsed!' !! 'Failed!'; # Failed!

It’s the :ratchet that makes it fail. Work out its path to see why. TOP has to first match
<some-stuff>. That matches any character one or more times, greedily—it matches
the entire text. TOP next needs to match <digits>, but there is nothing left to match
because of that greediness. Without :ratchet the pattern might roll back some of the
characters it already consumed. With :ratchet it doesn’t do that. The grammar can’t
match the rest of TOP and it fails.

Without :ratchet the situation is different. If you use regex instead of token, you
allow the grammar to give back characters it has already matched:

grammar Stuff {
 # regex does not turn on ratcheting
 regex TOP { <some-stuff> <digits> <some-stuff> }
 token digits { \d+ }
 regex some-stuff { .+ }
 }

294 | Chapter 17: Grammars

https://docs.perl6.org/type/Str.html

That could match. The TOP matches <some-stuff> but realizes it’s run out of text and
starts backtracking. All parts of the grammar that want to allow backtracking have to
use regex. It’s not good enough for TOP to backtrack but not <some-stuff>.

Parsing JSON
In Mastering Perl I presented a JSON parser that Randal Schwartz created using some
advanced features of Perl 5 regular expressions. In many ways his implementation
was a grammar, but he was forced to inseparably combine the parsing and the
actions. That made the regular expression almost impenetrable. It’s much cleaner and
more accessible to write it as a Perl 6 grammar.

JSON is actually quite simple with only a few weird things to handle, but it gives you
the opportunity to see how proto rules can simplify actions:

grammar Grammar::JSON {
 rule TOP { <.ws> <value> <.ws> }

 rule object { '{' ~ '}' <string-value-list> }
 rule string-value-list { <string-value> * % ',' }
 token string-value { <string> <.ws> ':' <.ws> <value> }

 rule array { '[' ~ ']' <list> }
 rule list { <value> * % ',' }

 token value {
 <string> | <number> | <object> | <array> |
 <true> | <false> | <null>
 }

 token true { 'true' }
 token false { 'false' }
 token null { 'null' }

 token string {
 (:ignoremark \") ~ \"
 [
 <u_char> |
 ['\\' <[\\/bfnrt"]>] |
 <-[\\\"\n\t]>+
]*
 }

 token u_char {
 '\\u' <code_point>
 }

 token code_point { <[0..9a..fA..F]>**4 }

 token number {

Parsing JSON | 295

http://my.safaribooksonline.com/book/programming/perl/9781449364946

 '-' ?
 [0 | <[1..9]><[0..9]>*]
 ['.' <[0..9]>+]?
 [<[eE]> <[+-]>? <[0..9]>+]?
 }
 }

You may be surprised at how easy and short that grammar is. It’s almost a straight
translation of the grammar from RFC 8259. Now, create an action class for that:

class JSON::Actions {
 method TOP ($/) { make $<value>.made }
 method object ($/) {
 make $<string-value-list>.made.hash.item;
 }
 method array ($/) {
 make $<list>.made.item;
 }

 method true ($/) { make True }
 method False ($/) { make False }
 method null ($/) { make Nil }

 method value ($/) { make (
 $<true> || $<false> || $<null> || $<object> ||
 $<array> || $<string> || $<number>).made
 }

 method string-value-list ($/) {
 make $<string-value>>>.made.flat;
 }

 method string-value ($/) {
 make $<string> => $<value>
 }

 method list ($/) { make ~$/ }
 method string ($/) { make $<uchar>.made || ~$/ }

 method u_char ($/) { make $<code_point>.made }
 method code_point ($/) { make chr((~$/).parse-base(16)) }
 method number ($/) { make +$/ }
 }

Look at the clunky handling of value. Almost anything can be a value, so the action
method does some ham-handed work to figure out which thing just matched. It looks
into the possible submatches to find one with a defined value. Well, that’s pretty stu‐
pid even if it’s a quick way to get started (although there is some value in the immedi‐
ate stupid versus the far-off smart).

296 | Chapter 17: Grammars

https://trac.tools.ietf.org/html/rfc8259

A proto rule gets around this by making it easy for you to give different subrules the
same name but different patterns. Instead of an alternation you have one token for
each:

proto token value { * }
token value:sym<string> { <string> }
token value:sym<number> { <number> }
token value:sym<object> { <object> }
token value:sym<array> { <array> }
token value:sym<true> { <sym> }
token value:sym<false> { <sym> }
token value:sym<null> { <sym> }

The first proto rule matches *, which really means it dispatches to another rule in
that group. It can dispatch to all of them and find the one that works.

Some of these use the special <sym> subrule in their pattern. This means that the
name of the rule is the literal text to match. The proto rule <true> matches the literal
text true. You don’t have to type that out in the name and the pattern.

It doesn’t matter which of those matches; the grammar calls each of them $<value>.
The superrule only knows that something that is a value matched and that the subrule
handled it appropriately. The action class makes the right value and stores it in the
Match:

class JSON::Actions {
 method TOP ($/) { make $<value>.made }
 method object ($/) { make $<string-value-list>.made.hash.item }

 method string-value-list ($/) { make $<string-value>>>.made.flat }
 method string-value ($/) {
 make $<string>.made => $<value>.made
 }

 method array ($/) { make $<list>.made.item }
 method list ($/) { make [$<value>.map: *.made] }

 method string ($/) { make $<uchar>.made || ~$/ }

 method value:sym<number> ($/) { make +$/.Str }
 method value:sym<string> ($/) { make $<string>.made }
 method value:sym<true> ($/) { make Bool::True }
 method value:sym<false> ($/) { make Bool::False }
 method value:sym<null> ($/) { make Any }
 method value:sym<object> ($/) { make $<object>.made }
 method value:sym<array> ($/) { make $<array>.made }

 method u_char ($/) { make $<code_point>.made }
 method code_point ($/) { make chr((~$/).parse-base(16)) }
 }

Parsing JSON | 297

https://docs.perl6.org/type/Match.html

Exercise 17.5
Implement your own JSON parser (steal all the code you like). Test it against some
JSON files to see how well it works. You might like to try the JSON files at https://
github.com/briandfoy/json-acceptance-tests.

Parsing CSV
Let’s parse some comma-separated values (CSV) files. These are tricky because there’s
no actual standard (despite RFC 4180). Microsoft Excel does it one way but some
other producers do it slightly differently.

People often initially go wrong thinking they can merely split the data on a comma
character—but that might be part of the literal data in a quoted field. The quote char‐
acter may also be part of the literal data, but one producer might escape internal
quote marks by doubling them, "", while another might use the backslash, \". People
often assume they are line-oriented, but some producers allow unescaped (but
quoted!) vertical whitespace. If all of that wasn’t bad enough, what do you do if one
line has fewer (or more) fields than the other lines?

Don’t parse CSV files like this. The Text::CSV module not only
parses the format but also tries to correct problems as it goes.

Still willing to give it a try? You should find that grammars make most of these con‐
cerns tractable:

• The ratcheting behavior keeps things simple.
• You can easily handle balanced openers and closers (i.e., the quoting stuff).
• A grammar can inherit other grammars, so you can adjust a grammar based on

the data instead of writing one grammar that handles all the data.
• You’ve seen action classes, but you can also have action instances that remember

extra non-Match data.
• There’s a .subparse method that lets you parse chunks so you can handle one

record at a time.

Here’s a simple CSV grammar based off the rules in RFC 4180. It allows for quoted
fields and uses "" to escape a literal quote. If a comma, quote, or vertical whitespace
appears in the literal data, it must be quoted:

298 | Chapter 17: Grammars

https://github.com/briandfoy/json-acceptance-tests
https://github.com/briandfoy/json-acceptance-tests
https://tools.ietf.org/html/rfc4180
https://docs.perl6.org/type/Match.html
https://tools.ietf.org/html/rfc4180

grammar Grammar::CSV {
 token TOP { <record>+ }
 token record { <value>+ % <.separator> \R }
 token separator { <.ws> ',' <.ws> }
 token value {
 '"' # quoted
 <([<-["]> | <.escaped-quote>]*)>
 '"'
 |
 <-[",\n\f\r]>+ # non-quoted (no vertical ws)
 |
 '' # empty
 }

 token escaped-quote { '""' }
 }

class CSV::Actions {
 method record ($/) { make $<value>».made.flat }
 method value ($/) {
 # undo the double double quote
 make $/.subst(rx/ '""' /, '"', :g)
 }
 }

Try this on entire files. The entire file either satisfies this grammar or doesn’t:

my $data = $filename.IO.slurp;
my $result = Grammar::CSV.parse($data);

You typically don’t want to parse entire files, though. Let’s fix the first part of that
problem. You want to process records as you run into them. Instead of using .parse,
which anchors to the end of the text, you can use .subparse, which doesn’t. This
means you can parse part of the text then stop.

You can deal with one record at a time. Using .subparse with the record rule gets
you the first record and only the first record. The .subparse method always returns a
Match, unlike .parse, which only returns a Match when it succeeds. You can’t rely on
the type of the object as an indication of success:

my $data = $filename.IO.slurp;
my $first_result = Grammar::CSV.subparse(
 $data, :rule('record'), :action(CSV::Actions)
);
if $first-result { ... }

That works for the first line. Use :c(N) to tell these methods where to start in the Str.
You have to know where you want to start. The Match knows how far it got; look in
the .from slot:

my $data = $filename.IO.slurp;

Parsing CSV | 299

https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/Match.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Match.html

loop {
 state $from = 0;
 my $match = Grammar::CSV.subparse(
 $data,
 :rule('record'),
 :actions(CSV::Actions),
 :c($from)
);
 last unless $match;

 put "Matched from {$match.from} to {$match.to}";
 $from = $match.to;
 say $match;
 }

This is most of the way to a solution—it fails to go through the entire file if .sub
parse fails on one record. With some boring monkey work you could fix this to find
the start of the next record and restart the parsing, but that’s more than I want to fit in
this book.

Adjusting the Grammar
You thought the problem was solved. Then, someone sent you a file with a slightly
different format. Instead of escaping a " by doubling it, the new format uses the back‐
slash.

Now your existing grammar fails to parse. You don’t have a rule that satisfies that type
of escape because you didn’t need it for your grammar. As a matter of practice in both
patterns and grammars, only match what you should match. Be liberal in what you
accept in other ways, such as making a subgrammar to handle the new case:

grammar Grammar::CSV::Backslashed is Grammar::CSV {
 token escaped-quote { '\\"' }
 }

class CSV::Actions::Backslashed is CSV::Actions {
 method value ($/) { make $/.subst(rx/ '\\"' /, '"', :g) }
 }

With two grammars, how do you get the one that you need to use? The name inter‐
polation ::($name) comes in handy here:

my %formats;
%formats<doubled> = {
 'file' => $*SPEC.catfile(<corpus test.csv>),
 'grammar' => 'Grammar::CSV',
 };
%formats<backslashed> = {
 'file' => $*SPEC.catfile(<corpus test-backslash.csv>),
 'grammar' => 'Grammar::CSV::Backslashed',
 };

300 | Chapter 17: Grammars

for %formats.values -> $hash {
 $hash<data> = $hash<file>.IO.slurp;
 my $class = (require ::($hash<grammar>));
 my $match = $class.parse($hash<data>);
 say "{$hash<file>} with {$hash<grammar>} ",
 $match ?? 'parsed' !! 'failed';
 }

The %formats Hash of Hashes stores the filenames and the grammars for them. You
can load a grammar and use it to parse the data without the explicit grammar name:

corpus/test.csv with Grammar::CSV parsed
corpus/test-backslash.csv with Grammar::CSV::Backslashed parsed

That mostly solves the problem, although there are plenty of special cases that this
doesn’t cover.

Using Roles in Grammars
Roles can supply rules and methods that grammars can use. In the previous section
you handled different sorts of double-quote escaping through inheritance, where you
overrode the rule. You can do the same thing with roles.

A grammar can have methods and subroutines. The way you declare a name with
sub, method, or rule tells the language parser (not your grammar!) how to parse the
stuff in the Block.

First, adjust the main grammar to have a stub method for <escaped-quote>. This
forces something else to define it:

grammar Grammar::CSV {
 token TOP { <record>+ }
 token record { <value>+ % <.separator> \R }
 token separator { <.ws> ',' <.ws> }
 token value {
 '"' # quoted
 <([<-["]> | <.escaped-quote>]*)>
 '"'
 |
 <-[",\n\f\r]>+ # non-quoted (no vertical ws)
 |
 '' # empty
 }

 # stub that you must define in a role
 method escaped-quote { !!! }
 }

A role will fill in that stub method. There’s one role for each way to escape the double
quote:

Parsing CSV | 301

https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Block.html

role DoubledQuote { token escaped-quote { '""' } }
role BackslashedQuote { token escaped-quote { '\\"' } }

When it’s time to parse a file you can choose which role you want to use. You can
create a new object for Grammar::CSV and apply the appropriate role to it:

my $filename = ...;
my $csv-data = $filename.IO.slurp;
my $csv-parser = Grammar::CSV.new but DoubledQuote;

Use that object to parse your data:

my $match = $csv-parser.parse: $csv-data;
say $match // 'Failed!';

Doing this doesn’t fix the double quotes in the data—a "" stays as a ""—but you can
fix that in an action class.

Exercise 17.6
Adjust the CSV example to use roles instead of inheritance. Create an action class to
adjust the escaped double quotes as you run into them. You can start with Grammars/
test.csv from the downloads section of the book’s website if you like.

Summary
Grammars are one of the killer features of the language. You can define complex rela‐
tionships between patterns and use action classes to run arbitrarily complex code
when something matches. You might find that your entire program ends up being
one big grammar.

302 | Chapter 17: Grammars

https://www.learningperl6.com/

CHAPTER 18

Supplies, Channels, and Promises

Supplies and channels provide ways to send data from one part of a program to
another. A Supply is a direct line of communication from a source of data to possibly
many consumers. A Channel allows any part of your program to add data to a queue
that any part of your program can read.

A Promise allows code to run asynchronously (concurrently)—different bits of code
can run in overlapping time frames. This is quite handy while employing either
Supplys or Channels (or both).

Supplies
A Supplier emits a message to every Supply that has asked to receive its messages.
This happens asynchronously; they do their work as your program does other things.
You can process things in the background and handle the results as they come in
rather than stopping the entire program to wait for all of the data. Other languages
may call this “Publish–Subscribe” (or “PubSub”).

Here’s a useless example. Set up a Supplier and call .emit to send a message. Since
you didn’t define any Supplys that message goes nowhere; it’s gone forever:

my $supplier = Supplier.new;
$supplier.emit: 3;

To receive that message ask the Supplier for a Supply (yes, the terminology is a bit
thick) by calling .tap with a Block:

my $supplier = Supplier.new;
my $supply = $supplier.Supply;
my $tap = $supply.tap: { put "$^a * $^a = ", $^a**2 };
$supplier.emit: 3;

303

https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Supplier.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supplier.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supplier.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Block.html

The Supply receives the 3 and passes that as the argument to the Block, which then
outputs the message:

3 + 3 = 9

There are some useful builtin Supplys available. The .interval Supply factory auto‐
matically emits the next ordinal number at the number of seconds (possibly frac‐
tional) you specify. You don’t specify the Supplier because that’s handled for you:

my $fifth-second = Supply.interval: 0.2;
$fifth-second.tap: { say "First: $^a" };

sleep 1;

The output shows five lines. Why only five? There are five-fifths of a second until the
program ends once the sleep finishes:

First: 0
First: 1
First: 2
First: 3
First: 4

Once you start the tap it continues to handle values asynchronously until the pro‐
gram ends (or you turn off the tap). Two things happen once your program reaches
the sleep statement. First, the program waits the amount of time that you specified.
Second, the Supplier emits values that the tap handles. Those two things happen
concurrently. As you sleep the Supplier is still working. All that in a couple of lines
of code!

Concurrency isn’t parallelism. Concurrency allows two different
things to progress during overlapping time frames. Parallelism
means that two different things happen at the exact same time.
People tend to be fuzzy with their definitions, though.

If you took out the sleep statement you wouldn’t get any output—the program would
end right away. The Supplier doesn’t keep the program going. If you increase the
sleep time to make the program run longer you get more output.

Here’s a counter that will loop forever but only makes one line. The carriage return
goes back to the beginning of the line but doesn’t advance the line (terminal buffering
might interfere though):

my $fifth-second = Supply.interval: 0.2;
$fifth-second.tap: { print "\x[D]$^a" };

loop { }

304 | Chapter 18: Supplies, Channels, and Promises

https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supplier.html
https://docs.perl6.org/type/Supplier.html
https://docs.perl6.org/type/Supplier.html
https://docs.perl6.org/type/Supplier.html

Multiple Taps
You aren’t limited to one tap; you can have as many as you like on the same Supply.
This program will take two seconds to finish. The first tap will run for two seconds
and the second tap will run for the last second:

my $supply = Supply.interval: 0.5;

$supply.tap: { say "First: $^a" };
sleep 1;

$supply.tap: { say "Second: $^a" };
sleep 1;

Each tap labels its output:

First: 0
First: 1
Second: 0
First: 2
First: 3
Second: 1

Notice anything strange here? The second tap started at 0 again instead of getting the
same number as the first tap got at the same time. The .interval method creates an
on-demand supply. It starts to produce values when a tap asks for them and it gener‐
ates the interval fresh for each new tap. Each time a tap wants a value it gets the next
one in line, independently of any other taps.

The code in a tap must completely finish before that code runs again with another
value. This ensures that your code doesn’t get confused when it has persistent vari‐
ables. If this Block ran again before the first run finished then the value of $n would
increment a couple of times before the first run could output its message:

$supply.tap: {
 state $n = 0; $n++;
 sleep 1; # misses a couple of emitted values!
 say "$n: $^a"
 };

Exercise 18.1
Create a Supplier that emits lines of input. Tap that so that you output only the
names you have not seen previously. You might use the butterfly census file from the
Downloads section of the website.

Supplies | 305

https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Supplier.html
https://www.learningperl6.com/

Live Supplies
A live supply is different from the on-demand ones you’ve encountered so far. It emits
a single stream of values that all taps share. When a new value is available the old one
is discarded even if no tap has read it. Each new tap starts with the current value from
that single stream. Turn an on-demand supply into a live supply with .share:

my $supply = Supply.interval(0.5).share;

$supply.tap: { say "First: $^a" };
sleep 1;

$supply.tap: { say "Second: $^a" };
sleep 1;

The output is different in two ways. First, the 0 value is missing. The Supply emitted
that before the first tap had a chance to see it. After one second the second tap starts
and the Supply emits 2; both taps see 2. After that both taps continue to see the same
values until the end of the program:

First: 1
First: 2
Second: 2
First: 3
Second: 3
First: 4
Second: 4

When you no longer need a tap you can close it; it will no longer receive values:

my $supply = Supply.interval(0.4).share;

my $tap1 = $supply.tap: { say "1. $^a" };
sleep 1;

my $tap2 = $supply.tap: { say "2. $^a" };
sleep 1;

$tap2.close;

sleep 1;

At the start the first tap is handling everything. The second tap starts after the first
sleep finishes. Then both taps handle things for a second, then the first tap closes
and it’s only the second tap still working:

First: 1
First: 2
First: 3
Second: 3
First: 4
Second: 4

306 | Chapter 18: Supplies, Channels, and Promises

https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supply.html

Second: 5
Second: 6
Second: 7

So far this section has dealt with only Supplys that you created. Many other objects
can provide a Supply. The .lines method returns a Seq which can turn into a
Supply:

my $supply = $*ARGFILES.lines.Supply; # IO::ArgFiles
$supply.tap: { put $++ ~ ": $^a" };

$supply.tap: {
 state %Seen;
 END { put "{%Seen.keys.elems} unique lines" }
 %Seen{$^a}++;
 };

Most things that are Lists (or can turn into Lists) can do this:

my $list = List.new: 1, 4, 9, 16;
my $supply = $list.Supply;
$supply.tap: { put "Got $^a" }

Even an infinite sequence will work:

my $seq := 1, 2, * + 1 ... *;
my $supply2 = $seq.Supply;
$supply2.tap: { put "Got $^a" }

Notice that these examples don’t need a sleep to delay the end of the program. They
aren’t “on the clock” like .interval; they go through each of their values.

Exercise 18.2
Create a live Supply that emits a number every second. After three seconds, tap it and
output the number it emitted. After another three seconds, tap it again to output the
same thing. Wait three more seconds, then close the second tap. Finally, after another
three seconds close the first tap.

Channels
Channels are first-come, first-served queues. They ensure that something is processed
exactly once. Anything can put thingys into the channel and anything can take thin‐
gys off the channel. The code on either side of the Channel doesn’t need to know
about the other. Several threads can share a Channel, but once something asks for the
next thingy that thingy disappears from the Channel and can’t be processed by other
code.

Channels | 307

https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Channel.html

Create a Channel. Add to it with .send and take a thingy with .receive. When you
are done with the Channel, .close it:

my $channel = Channel.new;
$channel.send: 'Hamadryas';
put 'Received: ', $channel.receive;
$channel.close;

The output shows the value you added:

Received: Hamadryas

After the .close you can’t send more values to the Channel. Anything you’ve already
added is still in the Channel and available to process. You can .receive until the
Channel is empty:

my $channel = Channel.new;
$channel.send: $_ for <Hamadryas Rhamma Melanis>;
put 'Received: ', $channel.receive;
$channel.close; # no more sending

while $channel.poll -> $thingy {
 put "while received $thingy";
 }

The while uses .poll instead of .receive. If there is a thingy, .poll returns it. If
there are no more thingys currently available it returns Nil (ending the looping):

Received: Hamadryas
while received Rhamma
while received Melanis

When .poll returns Nil you don’t know if there will ever be more thingys available.
If the Channel is still open something can add more thingys; if the Channel is closed
there will never be anything more to .receive. Calling .fail closes the Channel,
and .receive will throw an error if you call it again. You can CATCH the Exception to
end the loop:

my $channel = Channel.new;
$channel.send: $_ for <Hamadryas Rhamma Melanis>;
put 'Received: ', $channel.receive;
$channel.fail('End of items'); # X::AdHoc

loop {
 CATCH {
 default { put "Channel is closed"; last }
 }
 put "loop received: ", $channel.receive;
 }

Instead of a loop you can tap the Channel; it calls .receive for you:

308 | Chapter 18: Supplies, Channels, and Promises

https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Channel.html

my $channel = Channel.new;
$channel.send: $_ for <Hamadryas Rhamma Melanis>;
put 'Received: ', $channel.receive;
$channel.fail('End of items');

$channel.Supply.tap: { put "Received $_" }
CATCH { default { put "Channel is closed" } }

The output is the same either way:

Received: Hamadryas
loop received: Rhamma
loop received: Melanis
Channel is closed

Exercise 18.3
Create a Channel and tap it. Send lines of input to the Channel but only print the ones
with prime line numbers.

Promises
A Promise is a bit of code that will produce a result sometime later, and that later
might not be soon. It schedules work to happen in another thread while the rest of
your program moves on. These are the underpinnings of Perl 6’s concurrency and
they do most of the hard work for you.

Every Promise has a status. It might be waiting to run, currently running, or finished.
How it finishes decides its status: a Promise is Kept when it succeeds or Broken when
it fails. While it’s working it’s Planned.

A simple Promise is a timer. The .in method makes a Promise that will be kept after
the number of seconds you specify:

my $five-seconds-from-now = Promise.in: 5;

loop {
 sleep 1;
 put "Promise status is: ", $five-seconds-from-now.status;
 }

At first the Promise is Planned. After five seconds (roughly) the Promise converts to
Kept. At that point you know that five seconds have passed:

Promise status is: Planned
Promise status is: Planned
Promise status is: Planned
Promise status is: Planned
Promise status is: Kept

Promises | 309

https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html

Promise status is: Kept
...

You don’t need to continually check the Promise. Use .then to set up code to run
when it is kept:

my $five-seconds-from-now = Promise.in: 5;
$five-seconds-from-now.then: { put "It's been 5 seconds" };

Nothing happens when you run this program; the Promise isn’t kept before the pro‐
gram ends. Planned Promises don’t prevent the program from ending.

You could give your program enough time for five seconds to elapse. A sleep extends
the program time:

my $five-seconds-from-now = Promise.in: 5;
$five-seconds-from-now.then: { put "It's been 5 seconds" };

sleep 7;

Now you see the output from the code in .then:

It's been 5 seconds

Waiting for Promises
Instead of sleeping (and guessing the time you need to be idle), you can use await,
which blocks your program until the Promise is either kept or broken:

my $five-seconds-from-now = Promise.in: 5;
$five-seconds-from-now.then: { put "It's been 5 seconds" };

await $five-seconds-from-now;

These examples use await because you need the program to keep running. In some‐
thing more interesting your program is likely doing a lot of other work, so you might
not need to keep the program alive.

Instead of a relative time you can use .at with an absolute time. That could be an
Instant value or something that you can coerce to an Instant (or a Numeric value
that represents an Instant):

my $later = Promise.at: now + 7;
$later.then: { put "It's now $datetime" };

await $later;

The start keyword creates a Promise. When the code completes the Promise is fin‐
ished:

my $pause = start {
 put "Promise starting at ", now;
 sleep 5;

310 | Chapter 18: Supplies, Channels, and Promises

https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Instant.html
https://docs.perl6.org/type/Instant.html
https://docs.perl6.org/type/Numeric.html
https://docs.perl6.org/type/Instant.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html

 put "Promise ending at ", now;
 };
await $pause;

The output shows the start and end of the Promise:

Promise starting at Instant:1507924913.012565
Promise ending at Instant:1507924918.018444

A Promise is broken if it throws an Exception. You can return all the False values
you like, but until you fail or throw an Exception with an error your Promise will
be kept. This succeeds even though it returns False:

my $return-false = start {
 put "Promise starting at ", now;
 sleep 5;
 put "Promise ending at ", now;
 return False; # still kept
 };
await $return-false;

This example breaks the Promise because you explicitly fail:

my $five-seconds-from-now = start {
 put "Promise starting at ", now;
 sleep 5;
 fail;
 put "Promise ending at ", now;
 };
await $five-seconds-from-now;

You get part of the output, but the fail stops that Block before you get the rest of the
output:

Promise starting at Instant:1522698239.054087
An operation first awaited:
 in block <unit> at ...

Died with the exception:
 Failed
 in block at ...

Waiting for Multiple Promises
The Await can take a list of Promises:

put "Starting at {now}";
my @promises =
 Promise.in(5).then({ put '5 finished' }),
 Promise.in(3).then({ put '3 finished' }),
 Promise.in(7).then({ put '7 finished' }),
 ;

await @promises;

Promises | 311

https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Promise.html

put "Ending at {now}";

The program doesn’t end until all of the Promises are kept:

Starting at Instant:1524856233.733533
3 finished
5 finished
7 finished
Ending at Instant:1524856240.745510

If any of the Promises are broken then the entire await is done and the planned
Promises are abandoned:

put "Starting at {now}";
my @promises =
 start { sleep 5; fail "5 failed" },
 Promise.in(3).then({ put '3 finished' }),
 Promise.in(7).then({ put '7 finished' }),
 ;

await @promises;

put "Ending at {now}";

If the .in(3) Promise is kept then the one with start fails:

Starting at Instant:1524856385.367019
3 finished
An operation first awaited:
 in block <unit> at await-list.p6 line 9

Died with the exception:
 5 failed
 in block at await-list.p6 line 4

Managing Your Own Promises
In the previous examples there was something else managing the Promises for you.
You can do that all yourself. Start by making a bare Promise:

my $promise = Promise.new;

Check its status by smart matching against the constants from PromiseStatus (which
you get for free):

put do given $promise.status {
 when Planned { "Still working on it" }
 when Kept { "Everything worked out" }
 when Broken { "Oh no! Something didn't work" }
 }

At this point $promise is planned and will stay that way. This will loop forever:

312 | Chapter 18: Supplies, Channels, and Promises

https://docs.perl6.org/type/Promises.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/PromiseStatus.html

loop {
 put do given $promise.status {
 when Planned { "Still working on it" }
 when Kept { "Everything worked out" }
 when Broken { "Oh no! Something didn't work" }
 }

 last unless $promise.status ~~ Planned;
 sleep 1;
 }

You can use now to note the start time and to check that if it’s five seconds later to
make your own .at or .in. Some time after five seconds you call .keep to change the
status:

my $promise = Promise.new;

my $start = now;
loop {
 $promise.keep if now > $start + 5;
 given $promise.status {
 when Planned { put "Still working on it" }
 when Kept { put "Everything worked out" }
 when Broken { put "Oh no! Something didn't work" }
 }

 last unless $promise.status ~~ Planned;
 sleep 1;
 }

Now the loop stops after five seconds:

Still working on it
Still working on it
Still working on it
Still working on it
Still working on it
Everything worked out

This Promise can still call code with .then:

my $promise = Promise.new;
$promise.then: { put "Huzzah! I'm kept" }

my $start = now;
loop { ... } # same as before

The output shows the output from the .then code:

Still working on it
Still working on it
Still working on it
Still working on it
Still working on it

Promises | 313

https://docs.perl6.org/type/Promise.html

Everything worked out
Huzzah! I'm kept

Or you might break the Promise. Either way your .then code runs, and you need to
distinguish between those cases. The .then code has one argument; that’s the Promise
itself. If you don’t name the argument it’s in $_:

my $promise = Promise.new;
$promise.then: {
 put do given .status {
 when Kept { 'Huzzah!' }
 when Broken { 'Darn!' }
 }
 }

my $start = now;
loop {
 $promise.break if now > $start + 5;
 last unless $promise.status ~~ Planned;
 sleep 1;
 }

Promise Junctions
You can use Junctions to create an über-Promise. The .allof method creates a
Promise that is kept if all of its included Promises are kept:

my $all-must-pass = await Promise.allof:
 Promise.in(5).then({ put 'Five seconds later' }),
 start { sleep 3; put 'Three seconds later'; },
 Promise.at(now + 1).then({ put 'One second later' });
put $all-must-pass;

The .anyof Promise is kept if any of its included Promises are kept. All except one of
them can be broken and the larger Promise is still kept:

my $any-can-pass = await Promise.anyof:
 Promise.in(5).then({ put 'Five seconds later' }),
 start { sleep 3; put 'Three seconds later'; fail },
 Promise.at(now + 1).then({ put 'One second later' });
put $any-can-pass;

Both of these succeed. In the .allof case you see the output from all three Promises.
Then you see the output from one of the Promises from .anyof. Not all of those
Promises need to finish because the overall Promise already knows it can succeed:

One second later
Three seconds later
Five seconds later
True
One second later
True

314 | Chapter 18: Supplies, Channels, and Promises

https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Junction
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html

Reactive Programming
A react Block allows you to run some code when new values are available. It keeps
running until it runs out of values to handle. It’s similar to an event loop. Here’s a very
simple example:

react {
 whenever True { put 'Got something that was true' }
 }

END put "End of the program";

You use whenever to supply values to the Block of code. In this case you have the sin‐
gle value True. This isn’t a conditional expression or a test, as in if or while. The
Block reacts to that single value and runs the whenever code. After that there are no
more values and the Block exits:

Got something that was true
End of the program

You might be tempted to think of this as a looping construct, but it’s not quite the
same thing. It’s not doing everything in the react Block then starting the Block
again. The whenever for True only runs once, instead of running forever as you’d
expect with a loop:

loop {
 if True { put 'Got something that was true' }
 }

Change the whenever from True to a Supply.interval and you never see the end-of-
program message:

my $supply = Supply.interval: 1;

react {
 whenever $supply { put "Got $^a" }
 }

END put "End of the program";

As long as the Supply has values for whenever, the react Block keeps going:

Got 0
Got 1
Got 2
...

You could have both the Supply and the True at the same time:

my $supply = Supply.interval: 1;

react {

Reactive Programming | 315

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Supply.html

 whenever $supply { put "Got $^a" }
 whenever True { put 'Got something that was true' }
 }

END put "End of the program";

The whenever with the Supply reacts immediately and outputs the first value in the
Supply. The whenever with the True reacts next and exhausts its values (the single
True). After that the Supply continues until you give up and interrupt the program:

Got 0
Got something that was true
Got 1
Got 2
...

If you reverse the whenevers the True will probably react first:

my $supply = Supply.interval: 1;

react {
 whenever True { put 'Got something that was true' }
 whenever $supply { put "Got $^a" }
 }

END put "End of the program";

The output is slightly different, but there’s nothing that says this has to be the case.
Perhaps future implementations will choose differently. This is concurrency; you can’t
depend on strict order of happenings:

Got something that was true
Got 0
Got 1
Got 2
...

Instead of interrupting the program to get the react to stop, you can do it from
within the Block with done. You can use a Promise with .in to provide a value after
some interval:

my $supply = Supply.interval: 1;

react {
 whenever $supply { put "Got $^a" }
 whenever True { put 'Got something that was true' }
 whenever Promise.in(5) { put 'Timeout!'; done }
 }

END put "End of the program";

After five seconds the Promise is kept and the whenever kicks in. It outputs the time‐
out message and uses done to end the react:

316 | Chapter 18: Supplies, Channels, and Promises

https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html

Got 0
Got something that was true
Got 1
Got 2
Got 3
Got 4
Got 5
Timeout!
End of the program

Add another react and the process starts over with a fresh Supply:

my $supply = Supply.interval: 1;

react {
 whenever $supply { put "Got $^a" }
 whenever True { put 'Got something that was true' }
 whenever Promise.in(5) { put 'Timeout!'; done }
 }

put "React again";

react {
 whenever $supply { put "Got $^a" }
 }

END put "End of the program";

The output for the Supply starts again, but at the beginning of the interval:

Got 0
Got something that was true
Got 1
Got 2
Got 3
Got 4
Timeout!
React again
Got 0
Got 1

Exercise 18.4
Modify the double react example to use a live Supply instead of an on-demand one.
How does the output change?

Reactive Programming | 317

https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supply.html

Reacting in the Background
The react is a way that you can respond to values when they are available. So far
you’ve seen the react as a top-level Block. It keeps running—and holds up the rest of
the program—until it’s done.

Instead, you most likely want your react to do its work in the background as your
program does other things. You can wrap the react in a Promise with a start. That
allows the react to work in a thread as the rest of the program continues:

my $supply = Supply.interval: 1;

my $promise = start {
 react {
 whenever $supply { put "Got $^a" }
 whenever True { put 'Got something that was true' }
 whenever Promise.in(5) { put 'Timeout!'; done }
 }
 }

put 'After the react loop';

await $promise;
put 'After the await';

END put "End of the program";

The first line of the output is from the put after the start block. The react is starting
its work, but it’s not blocking the rest of the program:

After the react loop
Got 0
Got something that was true
Got 1
Got 2
Got 3
Got 4
Timeout!
After the await
End of the program

Take it up a notch. Add a Channel into it. Move the Supply inside the whenever.
When that Supply has a value it executes the Block to output the same thing it did
before. It also sends the value to the Channel if it is a multiple of 2.

318 | Chapter 18: Supplies, Channels, and Promises

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Channel.html

Add a second whenever to read the values available on the Channel. You need to con‐
vert the Channel to a Supply; that’s easy because there’s a .Supply method. The when
ever taps that Supply:

my $channel = Channel.new;

my $promise = start {
 react {
 whenever Supply.interval: 1
 { put "Got $^a"; $channel.send: $^a if $^a %% 2 }
 whenever $channel.Supply
 { put "Channel got $^a" }
 whenever True
 { put 'Got something that was true' }
 whenever Promise.in(5)
 { put 'Timeout!'; done }
 }
 }

put 'After the react loop';

await $promise;
put 'After the await';

END put "End of the program";

The output is mostly the same as before with the Channel output inserted:

After the react loop
Got 0
Got something that was true
Channel got 0
Got 1
Got 2
Channel got 2
Got 3
Got 4
Channel got 4
Timeout!
After the await
End of the program

Exercise 18.5
Use IO::Notification to output a message every time there’s a change to a file you
specify on the command line.

Reactive Programming | 319

https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/IO::Notification.html

Summary
Promises are the basis of concurrency, and there are various ways that you can create
them to get what you what. Decompose your problem into independent bits and run
them as Promises, which can run in separate threads (or maybe even on different
cores). With those, Supplys and Channels provide a way to pass data between discon‐
nected parts of your program. To get the most out of all of these you need to think
differently from the procedural stuff you’ve seen so far. You’ll get that with practice.

320 | Chapter 18: Supplies, Channels, and Promises

https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Channel.html

CHAPTER 19

Controlling Other Programs

Sometimes you need to ask other programs to do some work for you. The Perl family
of languages has been known as the “duct tape of the internet.” Kicking off a well-
known, stable, existing program can be easier and faster than reimplementing it
yourself. This chapter shows many ways to start and control external programs to
bend them to your will.

Quick and Easy
The shell routine is a quick way to run an external command or program. It takes
the argument and runs it in the shell as if you had typed it out yourself. This example
uses a Unix-like shell command to list all of the files:

shell('ls -l');

If you were on Windows you’d use a different command. There’s an implicit cmd /c
in front of your command:

shell('dir'); # actually cmd /c dir

The output from this command will go to the same place that your program’s output
will go (as long as you haven’t lexically redirected standard output or error to some‐
thing else).

You can choose between the commands by inspecting the $*DISTRO variable. The
Distro object has an .is-win method that returns True if it thinks your program is
running on that platform:

my $command = $*DISTRO.is-win ?? 'dir' !! 'ls -l';
shell($command);

321

Be careful with variables as the argument to shell! Be sure you
know what’s in them. If a character is special in the shell then it’s
special in that value. More on that in a moment.

shell returns a Proc object. When you use that in sink context (where you do noth‐
ing with the result) and the command fails the Proc object throws an exception:

shell('/usr/bin/false'); # throws X::Proc::Unsuccessful

A command “fails” when it exits with something other than 0. That’s a Unix conven‐
tion where the nonzero numbers indicate various error conditions. Not all programs
follow that convention, and where they don’t you’ll have to do more work.

You can save the result to avoid the exception. You can inspect the Proc object to see
what happened:

my $proc = shell('/usr/bin/false');
unless $proc.so {
 put "{$proc.command} failed with exit code: {$proc.exitcode}";
 }

This still might not be what you want. If you expect it to return a nonzero value you
might have to handle part of the process yourself:

my $proc = shell('/usr/bin/true');
given $proc {
 unless .exitcode == 1 {
 put "{.command} returned: {.exitcode}";
 X::Proc::Unsuccessful.new.throw;
 }
 }

If you don’t care if the command fails you can call .so on the returned object. This
“handles” the object and prevents the Proc from throwing the exception:

shell('/usr/bin/false').so

Quoted Commands
Sometimes you want to capture the output of a command or save it in a variable. You
can use quoting with the :x adverb to create a Str from the output of the command:

my $output = Q:x{ls -1};
my $output = q:x{ls -1};
my $output = qq:x{$command};

These have slightly shorter versions that do the same thing:

my $output = Qx{dir};
my $output = qx{dir};
my $output = qqx{$command};

322 | Chapter 19: Controlling Other Programs

https://docs.perl6.org/type/Proc.html
https://docs.perl6.org/type/Proc.html
https://docs.perl6.org/type/Proc.html
https://docs.perl6.org/type/Proc.html
https://docs.perl6.org/type/Str.html

These capture standard output only. If you want to merge standard error you need to
handle that in the shell. This works in both Unix and Windows by using 2>&1. That
merges the handles before they get to your program:

my $output = qq:x{$command 2>&1};

Safer Commands
The run routine allows you to represent your command as a list. The first item in the
list is the command name, which Perl 6 executes directly without shell interaction.
This command isn’t as nasty as it looks because none of the characters are special to
the shell. Those semicolons don’t end a command and start another:

don't do this, just in case
run('/bin/echo', '-n', ';;;; rm -rf /');

If you’d entered this as a single Str in shell you would have started a recursive oper‐
ation to remove all files. Don’t try this even in jest (or use a virtual machine with a
saved snapshot!).

run returns a Proc object; handle it in the same way you saw for shell:

unless run(...) {
 put "Command failed";
 }

You might be tempted to use a bare command name with no path information:

run('echo', '-n', 'Hello');

That’s not particularly safe either. run will look for a matching file in the PATH envi‐
ronment variable. That’s something people can set outside your program. Someone
might be able to trick your program into running something else called echo.

You could clean out the PATH, forcing the program to always specify the full path to
the command:

%*ENV{PATH} = ''; # won't find anything
run('/bin/echo', '-n', 'Hello');

Setting the PATH to the directories that you trust and will allow might be easier:

%*ENV{PATH} = '/bin:/sbin:/usr/bin:/usr/sbin'
run('echo', '-n', 'Hello');

This doesn’t mean that the command you find is the right one; someone might have
tampered with that. No approach provides perfect security—but you don’t have to
make it too easy. Think about this whenever you interact with something outside
your program.

Like shell, run returns a Proc object. The :out parameter captures standard output
and makes it available through the Proc object. Use .slurp to extract it:

Quick and Easy | 323

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Proc.html
https://docs.perl6.org/type/Proc.html
https://docs.perl6.org/type/Proc.html

my $proc = run(
 '/bin/some_command', '-n', '-t', $filename
 :out,
);
put "Output is ｢{ $proc.out.slurp }｣";

The :err parameter does the same thing for error output:

my $proc = run(
 '/bin/some_command', '-n', '-t', $filename
 :out, :err,
);
put "Output is ｢{ $proc.out.slurp }｣";
put "Error is ｢{ $proc.err.slurp }｣";

If you don’t want them as separate streams you can merge them:

my $proc = run(
 '/bin/some_command', '-n', '-t', $filename
 :out, :err, :merge
);
put "Output is ｢{ $proc.out.slurp }｣";

You can also give it named arguments to control the encoding, environment, and cur‐
rent working directory (among other things).

Exercise 19.1
Use run to get a file listing of the current directory sorted by file size. Output that long
file listing. The Unix command is ls -lrS and the Windows command is cmd /c
dir /OS. Once you get that working, filter the lines to output only those with a 7.
Finally, can you make one program work on both platforms?

Writing to a Proc
A process can receive data from your program. Including :in allows you to write to
the process:

my $string = 'Hamadryas perlicus';

my $hex = run 'hexdump', '-C', :in, :out;

$hex.in.print: $string;
$hex.in.close;

$hex.out.slurp.put;

In this example you call .print once then close the output. That’s fine for hexdump,
but other programs may behave differently. Some may expect some input, give you

324 | Chapter 19: Controlling Other Programs

some output, then expect more input after you’ve read it. How this works depends on
the particular program and can be maddening at times:

my $string = 'Hamadryas perlicus';

my $hex = run 'fictional-program', :in, :out;
$hex.in.print: $string;
$hex.out.slurp;
$hex.in.print: $string;
...;

You can redirect the output from one external program into the input for another
one. This example takes the output of perl6 -v and makes it the input of the next
Proc:

my $proc1 = run('perl6', '-v', :out);
my $proc2 = run(
 'tr', '-s', Q/[:lower:]/, Q/[:upper:]/,
 :in($proc1.out)
);

That second run uses the external tr command to turn all the lowercase letters into
uppercase letters:

THIS IS RAKUDO STAR VERSION 2018.04 BUILT ON MOARVM VERSION 2018.04
IMPLEMENTING PERL 6.C.

Procs
A Proc object handles both shell and run. Construct the object yourself to get more
control. This happens in two steps; the Proc sets up something that will later run a
command:

my $proc = Proc.new: ...;

Set up a general Proc that captures and merges the standard output and error
streams:

my $proc = Proc.new: :err, :out, :merge;

When you’re ready to run the command, .spawn it. Your spawned process uses the
setup that you’ve already established. The result is a Boolean based on the exit status
of the program:

unless $proc.spawn: 'echo', '-n', 'Hello' {
 ... # handle the error
 }

Specify the current working directory and environment when you call .spawn if you
want different settings:

Procs | 325

https://docs.perl6.org/type/Proc.html
https://docs.perl6.org/type/Proc.html
https://docs.perl6.org/type/Proc.html
https://docs.perl6.org/type/Proc.html

my $worked = $proc.spawn: :cwd($some-dir), :env(%hash);
unless $worked {
 ... # handle the error
 }

Exercise 19.2
Create a Proc that captures the standard output and error. Spawn a command to get a
directory listing.

Asynchronous Control
Executing a command through Proc (and shell and run) makes your program wait
until the external program finishes its work. Using Proc::Async allows those pro‐
grams to run in their own Promise while the rest of your program continues.

Running the external find and waiting for it to go through all of the filesystem could
take virtually forever (at least it feels like it):

my $proc = Proc.new: :out;
$proc.spawn: 'find', '/', '-name', '*.txt';

for $proc.out.lines -> $line {
 put $++, ': ', $line;
 }

put 'Finished';

When you run this program you see all the lines of output from find. When that fin‐
ishes, which might take a long time, you’ll then see the Finished message. You can do
this asynchronously instead.

You see the Unix find in these examples, but you also created a similar directory list‐
ing program in Chapter 8 that you can use as the external program to practice using
Proc:

my $proc = Proc.new: :out;
$proc.spawn: 'perl6', 'dir-listing.p6';

for $proc.out.lines -> $line {
 put $++, ': ', $line;
 }

put 'Finished';

The interface to Proc::Async is a bit different than Proc’s. Once you have the object
you can use the Supply and Promise features you saw in Chapter 18. This example

326 | Chapter 19: Controlling Other Programs

https://docs.perl6.org/type/Proc.html
https://docs.perl6.org/type/Proc.html
https://docs.perl6.org/type/Proc::Async.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Proc.html
https://docs.perl6.org/type/Proc::Async.html
https://docs.perl6.org/type/Proc.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Promise.html

uses .lines to break the output into lines (instead of chunks of the buffer), then taps
that Supply to process lines as they come in:

my $proc = Proc::Async.new: 'find', '/', '-name', '*.txt';

$proc.stdout.lines.Supply.tap: { put $++, ': <', $^line, '>' };
my $promise = $proc.start;

put 'Moving on';

await $promise;

This is a simple use of Proc::Async, but you can combine it with the concurrency
features that you’ve already seen. Calling .stdout gets you the lines of output, but
only after you call .start. Do both of those in a Block:

my $proc = Proc::Async.new: 'find', '/', '-name', '*.txt';

react {
 whenever $proc.stdout.lines { put $_; }
 whenever $proc.start { put "Finished"; done }
 };

That .start returns a Promise that isn’t kept until the external program completes.
Even though that whenever runs at the beginning of the program the Promise isn’t
kept until the end, and it’s then that the Block does its work.

Exercise 19.3
Implement the asynchronous find program. Modify it so it stops after finding the
number of files that you specify on the command line. Report the number of files it
finds.

Summary
You can run programs and wait for their output or fire them off in the background
and handle their output as it comes in. Expand this to handle several programs and
your program becomes a fine handler of external resources. You’ve seen the mechan‐
ics of how it works, but it’s up to you to design bigger and better things with it.

Summary | 327

https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Proc::Async.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Block.html

CHAPTER 20

Advanced Topics

In such a short book I don’t have enough pages to show you everything that you can
do. This chapter is a brief survey of some of the features I would have liked to explain
in more detail. You now know these exist and you can investigate them further on
your own.

One-Liners
You can run perl6 one-liners. These are programs that you compose completely on the
command line. The -e switch takes an argument that is the program:

% perl6 -e 'put "Hello Perl 6"'
Hello Perl 6

The -n switch runs the program once for each line of input. The current line is in $_.
This one uppercases and outputs the line:

% perl6 -n -e '.uc.put' *.pod

You can load a module with -M:

% perl6 -MMath::Constants -e 'put α'
0.0072973525664

Declarator Block Comments
The parser doesn’t discard all comments. It remembers special comments and
attaches them to the subroutine. #| comments attach themselves to the subroutine
after them and #= comments attach themselves to the subroutine before them. These
comments are available through the .WHY meta-method:

#| Hamadryas is a sort of butterfly
class Hamadryas {

329

 #| Flap makes the butterfly go
 method flap () {

 }
 }

Hamadryas.WHY.put;
Hamadryas.^find_method('flap').WHY.put;

The output is the combination of all the comments attached to that subroutine:

Hamadryas is a sort of butterfly
Flap makes the butterfly go

This is the sort of thing that’s handy in an integrated development environment to
grab a description of the thing you are trying to use. It’s also useful when you are
debugging something—that is, it’s useful if the developer documented their code.

Feed Operators
The feed operators decide which way information flows. Here’s a list-processing pipe‐
line that has a .grep, a .sort, and finally a .map. What they do doesn’t matter as
much as their order:

my @array = @some-array
 .grep(*.chars > 5)
 .sort(*.fc)
 .map(*.uc)
 ;

The final step is farthest away from the assignment. You might not like that. The left‐
ward feed operator allows you to write this in a way where the data flows in one
direction. This flows bottom to top into the new variable:

my @array <==
 map(*.uc) <==
 sort(*.fc) <==
 grep(*.chars > 5) <==
 @some-array
 ;

Notice that the assignment operator disappeared because the feed operator took care
of that.

The rightward feed operator goes the other way. The new variable is at the end this
time. This is the same thing in the other direction:

@some-array
 ==> grep(*.chars > 5)
 ==> sort(*.fc)

330 | Chapter 20: Advanced Topics

 ==> map(*.uc)
 ==> my @array;

Destructuring Signatures
You can group parameters with square brackets to create a subsignature. Inside the []
you can break down the aggregate into a smaller signature:

sub show-the-arguments ($i, [$j, *@args]) { # slurpy
 put "The arguments are i: $i j: $j and @args[]";
 }

my @a = (3, 7, 5);
show-the-arguments(1, @a);

With that, $i gets the first parameter and the [] gets the rest. The [] destructures the
remaining arguments into $j and @args.

Defining Your Own Operators
You can create new operators. Almost all of the things that we call “operators” are
methods.

The ↑ and ↑↑ represent Knuth arrows. These are higher levels of exponentiation:

multi infix:<↑> (Int:D \n, Int:D \m --> Int:D)
 is equiv(&infix:<**>)
 is assoc<right>
 { n ** m }

proto infix:<↑↑> (Int:D \n, Int:D \m --> Int:D)
 is tighter(&infix:<↑>)
 is assoc<right>
 { * }
multi infix:<↑↑> (\n, 0) { 1 }
multi infix:<↑↑> (\n, 1) { n }
multi infix:<↑↑> (\n, \m) { [↑] n xx m }

put 2↑3; # 2 ** 3 = 8
put 2↑↑3; # 2 ** 2 ** 2 = 2 ** 4 = 16

Notice that the definitions allow you to set traits for precedence and associativity. As
with other subroutines these are lexically scoped, so they won’t affect other parts of
your program.

Destructuring Signatures | 331

Perl 5 Patterns
If you like Perl 5 patterns better, or already have some good ones that you’d like to
reuse, you can do that. The :Perl5 adverb tells the match operator to interpret the
pattern as a Perl 5 regular expression:

my $file = ...;
for $file.IO.lines {
 next unless m:Perl5/\A\s+#/; # no quoting the # in Perl 5
 .put;
 }

Shaped Arrays
Want a multidimensional matrix? You can create a shaped array that knows how wide
it is in any dimension. Use the ; to separate the dimensions:

my @array[2;2];
say @array; # [[(Any) (Any)] [(Any) (Any)]]

@array[1;0] = 'Hamadryas';
say @array; # [[(Any) (Any)] [Hamadryas (Any)]]

my $n = 0;
my $m = 1;

@array[$n;$m] = 'Borbo';
say @array; # [[(Any) Borbo] [Hamadryas (Any)]]

You can extend this to higher dimensions:

my @array[2;2;3];

The :shape adverb can describe the size in each dimension:

my @array = Array.new: :shape(3,3);

Once you set the limits in each dimension the size is fixed. This means that you can
create fixed-size one-dimensional arrays. You won’t be able to use operaters that
increase or decrease the number of elements:

my @array[5];

Typed Containers
The container types (List, Array, Hash, and so on) can limit their elements to a par‐
ticular type. There are a few ways that you can constrain these. Consider this
example:

my Int @array = 1, 2, 3;
@array.push: 'Hamadryas';

332 | Chapter 20: Advanced Topics

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Hash.html

Since a Str is not an Int the .push fails:

Type check failed in assignment to @array

That form types the @array variable. The type is actually Array[Int]. You can also
bind to the object you construct directly:

my @array := Array[Int].new: 1, 3, 7;

You can create Hashes with objects for keys and many other interesting constraints.

NativeCall
There’s a builtin foreign function interface named NativeCall. You use the is
native trait to specify the external library. This one connects your program to the
argumentless flap routine in libbutterfly:

use NativeCall;
sub flap() is native('butterfly') { * }

There are ways to tell NativeCall how to translate data structures to “native” types
and the other way around.

The with Topicalizer
The with keyword sets the topic. In the postfix form you can use it so you don’t have
to repeat a long variable name:

put "$_ has {.chars}" with $some-very-long-name;

There’s a Block form that’s similar to if-elsif-else but sets the topic to the result of
the condition. Instead of looking for True or False it tests for definedness. In each of
these the topic inside the Block is the result of the respective .index:

my $s = 'Hamadryas';

 with $s.index: 'a' { $s.substr($_, 2).put }
orwith $s.index: 'm' { put 'Found m' }
orwith $s.index: 'H' { fail "Why is there an H at $_?" }

NativeCall | 333

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Block.html

CHAPTER 21

Conclusion

Congratulations. You’ve made it to the end of the book. Some people estimate that
only one-third of the readers of a technical book accomplish that feat. This book was
only supposed to be 300 pages long, but I couldn’t decide how to leave out anything
still included. Sorry about that. The 80 pages of exercise answers really sent me over
the limit. If you’re reading this, send me an email noting your rarified status as a
completist reader!

I wasn’t able to teach you how to be a programmer. I only had the one book. I’ve been
at it for several decades and I’m still learning. This book specifically avoided that goal,
and I think I’ve succeeded there. Remember that what you’ve seen here to demon‐
strate and isolate concepts and syntax is not a prescription for good programming
practices.

I hope you learned the basics of the language and that you can get simple programs to
run. If you’re at the start of your programming career, don’t feel bad if you think you
are taking longer than you should to get programs working. Writing programs is
always the easy part. It’s the debugging work that’s hard. That takes practice. Every
time you encounter a new problem you’re adding to the list of things you’ve encoun‐
tered. Eventually you encounter a problem often enough that you start to subcon‐
sciously avoid it. That merely makes space for new sorts of mistakes.

You aren’t done learning the language. There’s much more in the documentation. I
noted some favorite excluded topics in Chapter 20, but even that was limited. I really
wanted to talk more about those, but I couldn’t go past that 500-page barrier. That list
isn’t nearly complete. There are so many other things I don’t even mention. Explore
those new topics as you become comfortable with what you’ve seen here.

Consider going back to the beginning and reading through the book again. Some of
the things will make more sense now that you have a better overview of the major

335

topics. You have more context for the design decisions you dealt with in the first few
chapters.

Finally, read other books. Don’t limit yourself to one author. I have a particular opin‐
ion about some things, and other people have their opinions. Sometimes those are at
odds. You don’t have to choose sides. As I write more extensively in Mastering Perl,
your role is to take the best and most useful ideas from as many people as you can.
Synthesize those into something that works in your world and for your tasks. Tell the
world what decisions you made and what influenced them. Feed your ideas back into
the milieu.

336 | Chapter 21: Conclusion

http://my.safaribooksonline.com/book/programming/perl/9781449364946

Glossary

When I italicize a word or phrase in this book it usually means you can find it defined
in the glossary. Think of them as hyperlinks. You’ll get used to these words the more
you practice, but until then I provide this guide.
abstract method

A method that is defined but not imple‐
mented.

abstract syntax tree
A data structure a parser uses to translate
its input into a usable form.

accessor method
A method that directly gets or sets a prop‐
erty of an object.

action class
A class used to generate side effects while
a parser goes through a grammar.

adverb
A setting the modifies the action of a
thingy. An adverb is often a colon pair
like :out.

allomorph
A type that combines other types and can
act as any of them. For example, an
IntStr can act like an Int or a Str.

alternation
A pattern feature that allows different sub‐
patterns to possibly match at the same
position.

Any
The base class for all types. Some things
return Any on failure.

argument
The concrete value that fills in a parame‐
ter.

arity
The number of parameters a signature
defines.

assertion
A pattern feature that matches a condition
rather than a character.

assign
Store a value, typically in some sort of
new container. This is different from
binding.

Associative
A role that indexes its elements by strings.

associativity
The order in which operators of the same
precedence decide which goes first.

asynchronous
Concurrent tasks can progress independ‐
ently in overlapping time frames.

337

https://docs.perl6.org/type/IntStr.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Any.html

attribute
The label for data an object tracks.

autochomp
Automatically remove the line endings
from input.

autothread
A feature that allows your program to
apply the same operation to multiple thin‐
gys concurrently.

backreference
A reference to a previously captured value
in a pattern.

backtrack
Part of a pattern can unmatch characters
to allow a later part of the pattern to
match.

bare block
A Block with no control keyword, such as
loop or while.

binary assignment
The shortcut for a binary operator where
the left operand is assigned back to itself.
For example, $s += 1.

binary number
A base-2 number—a number represented
by only the digits 0 and 1.

binary operator
An operator that takes two operands.

bind
Give a value a label without storing it in a
new container. This is different from
assignment.

block
Code contained in braces that has its own
scope.

Boolean value
A value that is one of True or False. This
is implemented as an enum of Ints.

branch
One path that code can follow. An if-
else structure presents at least two
branches.

callable
A thingy that can be called, possibly with
arguments. Subroutines and things that
act like them are callable.

camel case
The pattern of using capital letters to
denote the start of words in an identifier.

Camelia
The name of the butterfly mascot of Perl
6. The Perl 5 camel is “Amelia.”

candidate
A multi whose signature is compatible
with the argument list.

capture
The remembered parts of the pattern
match. The number variables $0 and so
on are captures.

case insensitive
In comparisons or patterns, treat the
uppercase and lowercase letters as the
same thing.

case sensitive
In comparisons or patterns, treat the
uppercase and lowercase letters as differ‐
ent things. This is the usual behavior.

catch
Intercept an Exception before it stops
your program.

cat ears
A fanciful name for the exclusive Range
operators, such as ^..^.

channel
A first-in, first out (FIFO) queue.

child class
A class based on (or that inherits from)
another class (the parent).

attribute

338 | Glossary

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Range.html

circumfix
A bit of syntax that surrounds something
else.

circumfix infix operator
An operator that surrounds something
but also comes between other things. The
hyperoperators like <<+>> are an example.

circumfix operator
An operator that surrounds its arguments,
such as <...>.

class
The template that defines and creates
objects. A class defines the attributes and
methods for an object.

class method
A method available to the type object but
not its objects. Constructors are typically
class methods.

code (character)
A particular character in the Unicode
Character Database (UCD). One or more
codes make up a grapheme.

code point
An entry in the Unicode Character Data‐
base (UCD).

coercer
A method that turns a thingy into a differ‐
ent (and usually compatible) type.
The .Str and .Bool methods are coercer
methods. The ~ and ? operators do the
same thing.

comment
A note that you include in your program
but the compiler ignores.

comment out
Use commenting syntax to prevent code
from being compiled. You can leave the
code in the file and uncomment it later.

comparator
An operator that returns True or False
based on the relationship of two thingys.
The less-than operator < is a comparator
for two numbers.

compile time
The phase of program operation where
the code is being parsed and converted to
something that can execute.

compile-time variables
Special variables that contain information
about the operation of the compiler. The
$?FILE variable, for instance.

complex number
The combination of a Real number and an
imaginary number.

compunit
A loadable or compilable chunk of code.
A module has zero or more compunits.
The Perl 6 repository stores the compu‐
nits.

concatenation
The process of joining two things. Typi‐
cally this is used to note the creation of a
larger string from two distinct strings.

concurrency
Different parts of the program can be pro‐
cessed in any order without necessarily
finishing them in order.

condition
An expression that must be satisfied
before an operation can proceed.

conditional
One of the programming constructs that
executes only if some assertion evaluates
to True. The if and while constructs
evaluate a condition to decide if they will
execute their blocks.

constructor
A method that creates an object of the
same type. Perl 6 typically uses .new for
this but doesn’t demand it.

container
Something that can hold a value. A con‐
tainer allows you to change the value.

control structure
A structure that decides the path of a pro‐
gram. Loop keywords such as while and

control structure

Glossary | 339

https://docs.perl6.org/type/Real.html

conditionals such as if are control struc‐
tures.

CURI
CompUnit::Repository::Installation

—a thingy that knows how to install mod‐
ules locally.

current working directory
The directory that a program uses to
resolve relative paths. This is not necessar‐
ily the directory that contains the pro‐
gram. You can find this in the $*CWD
variable.

CWD
The current working directory.

decimal number
A number represented with the digits 0 to
9 (or their equivalents in other languages).
Sometimes this means a number with a
decimal point, but computer people tend
to use floating point in that case.

declarative (regex)
The part of a pattern that describes a
string rather than instructing the opera‐
tion to do something. The literal sequence
of characters is declarative.

declare
Denote that you intend to use a variable
name. The my keyword declares a variable.

decontainerize
Extract the values from a container.

directive (printf)
A placeholder in a sprintf template that
describes how to format data.

double-quoted strings
Strings delimited by " (or its equivalent)
that can interpolate special sequences,
variables, or other things.

dual value
An object that can act like one of two
other objects, such as IntStr, which can
be an Int or a Str. This is also known as
an allomorph.

DWIM
Do What I Mean. This is a design princi‐
ple where the default behavior of some‐
thing should be its most common use.

dynamic variable
A variable defined by its temporal (rather
than lexical) scope. This definition is quite
different from many other languages.

eager assignment
Assignment that forces a Seq to create all
of its elements.

embedded comment
A comment made with #`(). These can
appear in the middle of a statement.

empty list
A List with no elements.

empty string
A string that has no characters. It’s defined
but False.

escape
Note that the next character should be
treated as special or literal depending on
its unescaped interpretation.

escape character
The \ is the escape character. In some
string contexts it signals that the next
character is literal (\') or special (\n).

escaped string
A quoted string that allows some charac‐
ters to represent something other than
their literal selves (for instance, \n).

export
Define names and subroutines in the call‐
er’s scope. Normally these are defined in
their own lexical scope.

extend
Define a method in a child class that calls
the same method in the parent class but
does additional work.

factory
A method that creates an object of a dif‐
ferent type.

CURI

340 | Glossary

https://docs.perl6.org/type/IntStr.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/List.html

False
A builtin Boolean value that does not sat‐
isfy a conditional. Many values can reduce
to a Boolean value with the .so method.

fat arrow
The =>. This constructs a Pair.

filehandle
An object that connects your program to
something that can accept input or give
output.

flatten
Treat a combination of values (like a List)
that’s normally a single thing as multiple
things.

floating-point number
A number that can have a fractional com‐
ponent. To the wider world that’s often the
same as a decimal number.

French quotes
The fancier quotes « and ».

generalized quoting
Creating a string with Q or one of its many
forms.

gist
The “human-readable” representation of
an object. The .say method automatically
calls .gist on its arguments.

gradual typing
Enforcing the optional runtime type sys‐
tem only where you decide to use it.

grammar
A special sort of package that has special
syntax to create a parser.

grapheme
A grapheme comprises one or more code
points to represent a concept.

greedy
A part of a regex that tries to consume as
many characters as possible.

group
Set apart some of an expression with
parentheses or other delimiters.

Hamadryas
The genus of the butterfly on the cover of
this book.

Hamadryas perlicus
The fictional species of butterfly used in
the examples.

here doc
A quoting mechanism for multiline
strings.

hexadecimal number
A base-16 number—a number repre‐
sented by only the digits 0 to 9 and A to F
(of either case).

hyperoperator
An operator that applies another operator
to corresponding elements of two
Positionals.

identifier
The name portion of the variable. An
identifier can use letters, digits, under‐
scores, hyphens, and apostrophes.

imaginary number
A number that’s a multiple of the imagi‐
nary unit.

imaginary unit
The square root of –1. A complex number
has a real and an imaginary part.

immutable
A value that you can’t change. Some types,
such as List and Map, hold data that is
fixed once created. A sigilless variable is
immutable.

implicit parameter
A parameter that is automatically
included in the signature.

import
Include in the current scope code or other
features from other modules or libraries.

import

Glossary | 341

https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Map.html

infinite loop
A loop that never exits. loop {} is such a
beast.

infix
A bit of syntax that is between two other
thingys.

infix operator
An operator that comes between its argu‐
ments, such as the + in $i + $j.

inherit
Use another class or object as the basis for
a new class or object.

inheritance
The specialization of a class by basing a
new class on it.

initialize
Give a variable its starting value.

instance
Another term for object.

integer
A whole number, positive or negative, and
zero. The Int class represents these.

interpolated string
A quoting construct that interprets certain
sequences as special. For example, an
interpolated string may replace a variable
with its value.

intersection
The new Set of elements that are in both
Sets.

invocant
The thingy on which you call a method.

item assignment
Assignment into an item container. This
sort of assignment has a different prece‐
dence than list assignment.

itemize
Interpret something as a single unit even
though it may comprise multiple thingys.

iteration
The repetition of a set of operations for
each element of a collection.

kebab case
The pattern of separating words in an
identifier with hyphens. The -s appear to
skewer the words.

key
A label for a value stored in an
Associative type.

lazy
A Positional that doesn’t generate its val‐
ues until you need them.

Lazy (capital L)
One of the principle virtues of a program‐
mer that causes them to do more work
now in order to do less work later.

left associative
The leftmost operator goes first when two
operators have the same precedence.

lexical scope
Scope that is defined by its position in the
code rather than its order of execution. A
Block defines a lexical scope.

lexicographic comparison
A character-by-character ordering or
comparison of two strings. For the most
part Perl 6 orders by the code number in
the Unicode Character Database (UCD),
although there are experiments in more
sophisticated collation.

library
A file that comprises a collection of sub‐
routines, classes, and other resources.

link
The connection between a filename and
the data on the disk.

lisp case
The same as kebab case.

list
An immutable series of zero or more
items.

infinite loop

342 | Glossary

https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Associative.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Block.html

literal value
A value that is exactly what is typed rather
than a computed value. The values 137
and 'Hamadryas' are literal.

live supply
A Supply that provides only the current
or future values. This is different from an
on-demand supply.

logical operator
A bit of syntax that works on Boolean val‐
ues (True and False).

longest declarative prefix
The part of a regular expression that is
fixed when the pattern is compiled. This
excludes procedural elements that aren’t
known until the pattern is applied.

longest token matching
The | in a match selects the “best” alterna‐
tive of all possibilities by trying the one
with the longest declarative part or most
specificity.

loop
A Block of code that can run more than
one time before the program moves on.

looser
The relative precedence of an operation is
lower than another. The looser operation
happens after the tighter operation.

LTM
Longest token matching. This applies to
grammars and to the | regex alteration.

member
An element of a Set.

metacharacter
A character that has a meaning beyond its
literal self. The * in a pattern is a meta‐
character.

metadata
Additional data apart from the contents of
a file. For example, file permissions are
metadata.

method
Code that defines the behavior of an
object.

method resolution order
The path through the inheritance tree to
find a method. This matters in multiple
inheritance.

mixin
Another name for a role.

module
A reusable code unit. Many modules pro‐
vide classes, but they don’t need to.

multiple inheritance
The process of basing one class on more
than one other class. Perl 6 supports this,
but think carefully before using it.

mutable
A value that you can change.

named parameter
A parameter with a label. These can
appear anywhere in the parameter list,
unlike positional parameters which must
be specified in order.

negate
Make True into False and the other way
around so you can specify that something
is not something else.

NFG
Normal Form Grapheme. This is the spe‐
cial form Perl 6 uses to expose string data
to the program.

Nil
The absence of value.

Normal Form Grapheme
The internal Perl representation of strings
in its own normal form based on
graphemes.

object
A concrete version of the class.

octal number
A base-8 number—a number represented
by only the digits 0 to 7.

octal number

Glossary | 343

https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Set.html

octet
The cool new name for byte. A sequence
of 8 bits.

on-demand supply
A Supply that gives you the entire
sequence of values. This is in opposition
to a live supply.

one-liner
A program written and executed on the
command line.

operand
A value used by an operator. It’s the noun.

operator
Something that creates a new value from
other values.

outer scope
The scope a level above the one you are in.

Pair
The grouping of a single key and value.
Pair is a particular data type, but also
forms the basis of other Associative data
types. Adverbs and named arguments are
also pairs.

paired delimiter
A delimiter with an opening and closing
version, such as parentheses and braces.

parameter
The description of an expected argument
to a callable.

parent class
The class another class bases itself on.
This is sometimes called a base or super‐
class.

phaser
A special subroutine that runs at certain
points during the program. The END

phaser runs at the end of the program and
the LAST phaser runs after the last itera‐
tion of a loop.

placeholder variable
An implicit parameter variable defined in
the block. These have the ^ twigil, such as
$^a.

positional parameter
A parameter defined by its position in the
signature (as opposed to named parame‐
ters).

postcircumfix
Something that comes after one thing and
surrounds another. The [] for a single-
element array access (@array[$index])
comes after the array name and surrounds
the index.

postcircumfix operator
An operator that surrounds something
and comes before other things. The
Positional index operator is an example.

postfix operator
An operator that comes after its argu‐
ment, such as the ++ in $x++.

postfix rule
If an operator can be either infix or post‐
fix, the infix version requires space
around it. The postfix operators never
have space before them.

precedence
The order of operations when several are
involved in the same expression. Each
operator knows its precedence.

precircumfix operator
An operator that surrounds something
and comes before other things. The
reduction operator is an example.

prefix operator
An operator that comes before the thing it
works on.

private method
A method that is only visible inside the
lexical scope of the class. It is not available
to objects.

octet

344 | Glossary

https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Associative.html
https://docs.perl6.org/type/Positional.html

procedural (regex)
Part of a pattern that instructs the opera‐
tion to do something instead of just match
something. A Block in a pattern is a pro‐
cedural element.

public attribute
An attribute available through the inter‐
face of the class rather than only within
the class itself.

pun
Use a role as a class.

quantifier
A pattern feature that allows part of a pat‐
tern to repeat.

Rakudo Star
A distribution of Rakudo that includes
documentation, extra modules, and tools.
See http://rakudo.org/how-to-get-rakudo/.

recursion
Calling the same subroutine that is cur‐
rently executing.

regex
A method that performs pattern match‐
ing.

regular expression
A pattern that describes a set of matching
strings.

reify
Compute an actual value for a lazy con‐
struct. For example, to get the next posi‐
tion in a lazy list, Perl reifies it with the
code that decides the next value.

REPL
The Read-Evaluate-Print-Loop interface.
If you run the perl6 command with no
arguments, it starts its REPL and prompts
you for a statement.

repository
A store for code units such as modules
and libraries. Perl 6 can store these in files,
databases, network stores, and so on.

return
Send a value to the thingy that called you.

return value
The result of a Routine available in the
scope where it was called.

right associative
The rightmost operator goes first when
two operators have the same precedence.

role
A class that provides features without
using inheritance.

rule
A nonbacktracking regex.

satisfied
A conditional expression operator that
evaluates to True.

scalar
A single thingy. That might be a literal
value or an object.

scalar variable
A variable that holds a single thing.

set difference
The Set of elements in the second Set
that aren’t in the first.

shaped array
An Array that has multiple dimensions,
such as my @array[3;2].

shebang
The #! line at the top of a program that
specifies the interpreter that can interpret
the program.

short-circuit operators
The &&, ||, and // (or equivalent) opera‐
tors that evaluate to the last expression the
operator examined.

sigil
A prefix on an identifier that denotes
something about the variable.

sigil

Glossary | 345

https://docs.perl6.org/type/Block.html
http://rakudo.org/how-to-get-rakudo/
https://docs.perl6.org/type/Routine.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Array

sigilless variable
A variable without a sigil which doesn’t
automatically store its value in a con‐
tainer. These are useful for constants.

signature
Taken together, all of the parameters of a
callable.

simple list
A flat List with no additional structure.

single argument rule
A single Iterable argument will fill a
slurpy argument rather become one ele‐
ment of that slurpy.

single-quoted strings
Strings constructed with ' delimiters that
are mostly literal.

sink context
The context where the evaluated value is
not saved or used in any way. Typically
this means the work is wasted.

slang
Slang for sublanguage.

slice
Multielement access to a Positional.

slurpy parameter
A part of the signature that takes the rest
of the arguments.

smart match operator
The ~~. It decides how to compare items
based on its operands.

snake case
The pattern of separating words in an
identifier with underscores. The _s appear
to crawl along the ground.

soft failure
An Exception that delays its action.

string
A series of characters taken as a single
thingy.

structured list
A List that contains other Lists.

stub method
An unimplemented but defined method.
These typically use ... or !!! to fail when
run.

submethod
A noninheritable method or subroutine
acting as a method.

subroutine
A noninheritable routine with a parame‐
ter list.

subset
A Set that is made up of elements in
another Set.

subsignature
A part of a signature that further breaks
down the structure of a parameter.

substring
A string contained inside another string.
For example, Hamad is a substring of
Hamadryas.

superset
A Set that is made up of all the elements
of another Set, and possibly more.

supply
A receiver of values through a Supplier.
A Supply can process and react to new
values.

symbolic link
A file that stores a string that points to
another file.

symmetric set difference
The Set of elements that aren’t in both
Sets.

syntax check
A way to compile the program without
running it. If it compiles successfully there
isn’t a syntax error (although that does not
mean the program is correct).

syntax error
A problem in a program because the code
doesn’t follow the rules of the language.

sigilless variable

346 | Glossary

https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Iterable.html
https://docs.perl6.org/type/Positional.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Supplier.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html

task distribution
A distribution that typically provides no
code but uses the module installation pro‐
cess to install collections of modules. For
example, the Task::Star module claims
the Rakudo Star extras as dependencies.

term
The smallest unit of code. Literal values
and variable names are examples of terms.

ternary operator
A disfavored but common name for the
conditional operator ?? !!, because that
operator has three parts.

thingy
A general term for something when you
don’t want to be particularly precise about
its identity, behavior, or value.

throw
Cause an Exception to assert itself.

thunk
A piece of code that doesn’t execute
immediately. A thunk does not define a
scope.

tighter
The relative precedence of an operation is
higher than another one. A tighter opera‐
tor does its work before a looser one.

token
A low-level, nonbacktracking regex.

topic
Another name for the default variable, $_.
Methods without an explicit object use the
one in $_, which leads to shorter code.

topicalization
The act of temporarily putting the value of
a variable into $_. For example, given
does this. This allows you to use the topic
as the implicit object for method calls.

topical method
A method called on the implicit topic, $_.

True
A builtin Boolean value that satisfies a
conditional. Many values can reduce to a
Boolean value with the .so method.

twigil
A character added to a sigil to denote its
scope. For example, the * in $*HOME.

type
The classification of a thingy that decides
its behavior.

type object
An object that represents a type. This
object knows its type but has no concrete
value. It is always undefined.

UCD
The Unicode Character Database, some‐
times (incorrectly) called just “Unicode.”

unary
A thingy that takes one operand or argu‐
ment.

unary operator
An operator that takes one operand. The
operator can come before or after the
operand.

union
The combination of two Sets into a
potentially larger Set that contains all the
elements of both sets.

unspace
Space inserted where it normally isn’t
allowed by prefixing it with \. You often
use this to separate terms without using
whitespace or to line up code.

UTF-8
A Unicode Tranformation Format using
8-bit code units. A UTF is a mapping of
code points to byte sequences. Perl 6
assumes UTF-8 as the default encoding
for input and output.

variable
A named value. These are not strictly
“variable” because some are immutable.

variable

Glossary | 347

https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html

Whatever
The token * that stands in for something
decided by context, such as * - 1. This is
shorthand for a closure, in this example
{ $^x - 1}.

yada yada
A placeholder operator (...) that com‐
piles but is an error if it ever runs.

Whatever

348 | Glossary

APPENDIX A

Exercise Answers

This appendix contains the answers to the exercises that appear throughout the book.

Answers to Preface Exercises
1. I don’t really have an answer for you here other than what you read immediately

before the exercise. The installation of Perl 6 is the hardest part of the problem.
Once you have perl6, you can ask it for help. The -h and --help command-line
switches tend to show you a list of the things you can do with a program. Here’s
an extract of the output:

% perl6 -h
perl6 [switches] [--] [programfile] [arguments]

 With no arguments, enters a REPL. With a "[programfile]" or
 the "-e" option, compiles the given program and, by default,
 also executes the compiled code.

 -c check syntax only (runs BEGIN and CHECK blocks)
 --doc extract documentation and print it as text
 -e program one line of program, strict is enabled by default
 -h, --help display this help text
 ...
 -v, --version display version information
 ...

You see that perl6 has -v and --version switches:
% perl6 -v
This is Rakudo version 2018.04 built on MoarVM version 2018.04
implementing Perl 6.c.

349

At the top of that help message was a note about invoking perl6 with no argu‐
ments. It drops into the REPL, where you can do the same things I showed you.
At the prompt you type out a variable name and the REPL shows you its value:

% perl6
To exit type 'exit' or '^D'
> $*VM
moar (2018.04)
> $*PERL
Perl 6 (6.c)

There! You’ve completed your first exercise! You know that you have Perl 6 and
that it works. You also know how to get some of the details you may need to
report a problem.

2. There isn’t much to say about this exercise. Most of the job is interacting with the
Learning Perl 6 website. Now that you know it’s there, look around to see what
else I’ve left there.

Answers to Chapter 1 Exercises
1. I haven’t told you about these methods, but you know to look at the Int class to

find out what you can do. I tend to go right to the online documentation.
If you didn’t know the value was an Int you could use the .^name method to find
out:

% perl6
> 137.^name
Int

Looking through the Int documentation, you should discover the .sqrt
and .is-prime methods. Call those on the value:

> 137.sqrt
11.7046999107196
> 137.is-prime
True

You could also put these in a program file. You have to output the values yourself
though:

put 137.^name;
put 137.sqrt;
put 137.is-prime;

Now I’ll expect that you can find the documentation for a class and discover
methods you can use for that class.

350 | Appendix A: Exercise Answers

http://my.safaribooksonline.com/book/programming/perl/999
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Int.html
https://docs.perl6.org/type/Int.html

2. This variable isn’t important for this exercise. The point is to know where to find
out what it is. Look in the documentation for variables. $*CWD is the current
working directory. That’s the default directory when you read or write files with a
relative path (Chapter 8). You can try it in the REPL:

% perl6
> $*CWD
"/Users/hamadryas".IO

If you started perl6 in a different directory you should get a different value:
% cd work/perl6-files/ch-01
% perl6
> $*CWD
"/Users/hamadryas/work/perl6-files/ch-01".IO

3. There’s not much of an answer for this. Steal the program from the chapter and
put it in a file:

#!/usr/local/bin/perl6
put 'Hello World!';

Run the program:
% perl6 hello-world.p6

Now the rest of the book is easy; it’s merely different text in the file!

Answers to Chapter 2 Exercises
1. The programs are the same ones that you’ve seen in the chapter. Here’s the one-

line version:
put 'Hello Perl 6!';

The MAIN program is the same with a little extra:
sub MAIN {
 put 'Hello Perl 6!'
 }

2. This exercise is more about getting a program to run than understanding every‐
thing in it. The answer is a slight extension of the two-parameter program:

sub MAIN ($thingy1, $thingy2 = 'perlicus', $thingy3 = 'sixus') {
 put '1: ', $thingy1;
 put '2: ', $thingy2;
 put '2: ', $thingy3;
 }

Here are several runs with different numbers of arguments. With no arguments
you get a help message that shows you need to specify at least one argument:

Exercise Answers | 351

https://docs.perl6.org/language/variables

% perl6 three-args.p6
Usage:
 three-args.p6 <thingy1> [<thingy2>] [<thingy3>]

% perl6 three-args.p6 Hamadryas
1: Hamadryas
2: perlicus
2: sixus

% perl6 three-args.p6 Hamadryas amphinome
1: Hamadryas
2: amphinome
2: sixus

% perl6 three-args.p6 Hamadryas amphinome fumosa
1: Hamadryas
2: amphinome
2: fumosa

3. This program is a variation on the favorite number example in the chapter:
my $name = prompt 'What is your name? ';
put 'Hello ', $name;

Inside the description for MAIN you can use prompt to set the default value:
sub MAIN ($name = prompt('What is your name> ')) {
 put 'Hello ', $name;
 }

Now you can run the program in two ways:
% perl6 name.pl
What is your name> Gilligan
Hello Gilligan

% perl6 name.pl Roger
Hello Roger

4. All of the examples in different bases are the same number. The base is merely a
different representation of the same idea. The REPL echoes its results in base 10
though:

% perl6
> 137
137
> 0b10001001
137
> 0o211
137
> 0x89
137

352 | Appendix A: Exercise Answers

5. Simply type the examples into the REPL to see their decimal representation:
% perl6
> :7<254>
137
> :19<IG88>
129398
> :26<HAL9000>
5380136632
> :36<THX1138>
64210088132

6. You can create a MAIN subroutine that has a single parameter. Each line in the
routine outputs the same number in a different base. You could add a prefix to
some of the bases:

sub MAIN ($number) {
 put '0b', $number.base: 2;
 put '0o', $number.base: 8;
 put $number;
 put '0x', $number.base: 16;
 }

When you run the program with a decimal number you should see that number
in four representations:

% perl6 formats.p6 343
0b101010111
0o527
343
0x157

If you specify something other than a decimal number you get an error from
the .fmt method. Don’t worry about the meaning of that error right now:

% perl6 formats.p6 BEEF
Directive b not applicable for type Str

With Eastern Arabic digits it still works:
% perl6 formats.p6 ١٣٧
0b10001001
0o211
137
0x89

7. Add one more step at the top of the block. Turn the argument into a number
with .parse-base, then format that into the different bases:

sub MAIN ($thingy) {
 my $number = $thingy.parse-base: 16;

 put '0b', $number.base: 2;
 put '0o', $number.base: 8;

Exercise Answers | 353

 put $number;
 put '0x', $number.base: 16;
 }

8. When you use the postfix ++ you output the original value, then update it. Your
output starts at 0 because that’s the current value when you enter the loop:

0
1
2
...

When you use the prefix ++ you first update the value and then output the new
value. The first time through the loop the value starts at 0. You update it to 1,
then output that:

1
2
3
...

9. You only need to replace the expression that you output. Add three to it each
time:

loop {
 state $sum = 0;
 put $sum += 3;
 }

This is the same as using $sum on each side of the assignment operator:
loop {
 state $sum = 0;
 put $sum = $sum + 3;
 }

Make this program slightly better by moving the interval out of the loop. Use a
variable to hold the number that you want to add each time:

my $interval = 3;
loop {
 state $sum = 0;
 put $sum += $interval;
 }

Later in this chapter you’ll read how to take it to the next step with a MAIN
routine:

sub MAIN ($interval = 3) {
 loop {
 state $sum = 0;
 put $sum += $interval;
 }
 }

354 | Appendix A: Exercise Answers

You still don’t know how to stop the loop, though. Keep reading!
10. You evaluate the last when $sum is 5. Since you are using the postfix autoincre‐

ment, you updated $sum after you used the value. When you outputted 4 you also
updated the value to 5. When you test $sum after you output 4 the current value is
5. The == evaluates to True, and the last stops the loop. The output stops at 4:

0
1
2
3
4

11. There are many ways that you could solve this problem, although not many of
them are limited to what you’ve already seen in this book. Here’s one possible sol‐
ution:

loop {
 state $n = 1;
 put do if $n %% 3 and $n %% 5 { 'FizzBuzz' }
 elsif $n %% 3 { 'Fizz' }
 elsif $n %% 5 { 'Buzz' }
 else { $n }

 $n += 1;
 last if $n > 100;
 }

It might look like a tangled mess, but break it down. First there’s the stuff to go
through the numbers. That’s easy enough. That state declaration defines a per‐
sistent variable in the scope of loop. At the end of the loop you add one to that
number:

loop {
 state $n = 1;
 ...
 $n += 1;
 last if $n > 100;
 }

Then the middle part outputs some value. That’s just put:
loop {
 state $n = 1;
 put ...;
 $n += 1;
 last if $n > 100;
 }

Exercise Answers | 355

Finally, the meat of the problem is deciding the text to output. The %% is True if
the first number is evenly divisible by the second one. Use that (and combina‐
tions of that) to choose the value:

if $n %% 3 and $n %% 5 { 'FizzBuzz' }
 elsif $n %% 3 { 'Fizz' }
 elsif $n %% 5 { 'Buzz' }
 else { $n }

The do in front of the if makes the chosen value available to the put:
put do if ...;

This may seem overwhelming now, but by the end of the book it should seem
simple. The more code you read the easier a time you’ll have picking it apart.

12. Instead of hardcoding 100 you can use the variable $highest. Set that to 100
unless there’s a command-line argument:

sub MAIN ($highest = 100) {
 my $number = $highest.rand.Int;
 put 'Number is ', $number;

 if $number > 50 {
 put 'The number is greater than 50';
 }
 elsif $number < 50 {
 put 'The number is less than 50';
 }
 else {
 put 'The number is 50';
 }
 }

Add a second parameter, $pivot, and give it a default value. Use $pivot wherever
you saw the literal 50 in the program:

sub MAIN ($highest = 100, $pivot = 50) {
 my $number = $highest.rand.Int;
 put 'Number is ', $number;

 if $number > $pivot {
 put 'The number is greater than ', $pivot;
 }
 elsif $number < $pivot {
 put 'The number is less than ', $pivot;
 }
 else {
 put 'The number is exactly ', $pivot;
 }
 }

356 | Appendix A: Exercise Answers

This still has a problem. What if the first argument is less than 50? No number
would be greater than the pivot in that case. You’ll fix that in a moment.

13. You can steal the line from the chapter to set the pivot to half the highest number:
sub MAIN ($highest = 100, $pivot = $highest / 2) {
 my $number = $highest.rand.Int;
 put 'Number is ', $number;

 if $number > $pivot {
 put 'The number is greater than ', $pivot;
 }
 elsif $number < $pivot {
 put 'The number is less than ', $pivot;
 }
 else {
 put 'The number is exactly ', $pivot;
 }
 }

14. I’ll take extra care to go through this answer step by step. It’s easier to build up
programs incrementally than to try to get everything working at the same time.
First, you need to take a command-line argument and set a default. Start with
that part of the program:

sub MAIN ($maximum = 100) {
 put 'Maximum is ', $maximum;
 }

You know how to make the secret number. Add that step next:
sub MAIN ($maximum = 100) {
 my $secret-number = $maximum.rand.Int;
 put 'Secret number is ', $secret-number;
 }

Get a guess with prompt. You don’t have to do anything with it other than check
that you assigned what you answered:

sub MAIN ($maximum = 100) {
 my $secret-number = $maximum.rand.Int;
 put 'Secret number is ', $secret-number;

 my $guess = prompt 'Enter a guess: ';
 put 'Your guess was ', $guess;
 }

Now give the person a hint based on their guess. Use if and elsif to compare
the guess to the secret number. This only works for one pass and then it’s done;
there’s no chance for a second guess:

sub MAIN ($maximum = 100) {
 my $secret-number = $maximum.rand.Int;

Exercise Answers | 357

 put 'Secret number is ', $secret-number;

 my $guess = prompt 'Enter a guess: ';

 if $guess == $secret-number {
 put 'You guessed it!';
 }
 elsif $guess < $secret-number {
 put 'Guess higher!';
 }
 elsif $guess > $secret-number {
 put 'Guess lower!';
 }
 }

Add a loop around the prompt and the hints. Use last in the branch where the
person guesses the number correctly. That ends the loop and there’s nothing left
to do in the program:

sub MAIN ($maximum = 100) {
 my $secret-number = $maximum.rand.Int;
 put 'Secret number is ', $secret-number;

 loop {
 my $guess = prompt 'Enter a guess: ';

 if $guess == $secret-number {
 put 'You guessed it!';
 last;
 }
 elsif $guess < $secret-number {
 put 'Guess higher!';
 }
 elsif $guess > $secret-number {
 put 'Guess lower!';
 }
 }
 }

I took the time to go through this process so you can see what real programming
looks like. Often you’ll start without knowing what the entire program will look
like. Even then, you can start by getting the outer parts in place and then work
your way toward the middle.

Answers to Chapter 3 Exercises
1. Here are the values from Table 3-1 so the .^name applies to the entire thing. Most

are straightforward:

358 | Appendix A: Exercise Answers

% perl6
> 137.^name
Int
> (-17).^name
Int
> 3.1415926.^name
Rat
> 6.026e34.^name
Num
> (0+i).^name
Complex
> i.^name
Complex

In these examples the complex numbers and negative integers need grouping
parentheses. The - and the + have lower precedence than the method call dot, so
they need grouping parentheses too.

2. Writing a program that takes two command-line arguments is easy:
sub MAIN ($one, $two) {
 put $one.^name;
 put $two.^name;
 }

When you enter one number and one text argument you get two different types:
% perl6 args-types.p6 1 two
IntStr
Str

If you make the second argument a fractional number you’ll see a different type,
RatStr:

% perl6 args-types.p6 4 3.5
IntStr
RatStr

There’s also ComplexStr, which you’ll see when you specify text that looks like a
complex number:

% perl6 args-types.p6 4 1+3i
IntStr
ComplexStr

Each of the number type names you see here ends in Str. You’ll read more about
these after the exercise.

3. Wrap a MAIN around the given example but don’t specify a type for the argument:
sub MAIN ($arg) {
 put 'Saw ', do given $arg {
 when Int { 'an integer' }
 when Complex { 'a complex number' }

Exercise Answers | 359

https://docs.perl6.org/type/RatStr.html
https://docs.perl6.org/type/ComplexStr.html

 when Rat { 'a rat! Eek!' }
 default { 'something' }
 }
 }

Run it with different types of arguments:
% perl6 what-is-it.p6 17
Saw an integer
% perl6 what-is-it.pl 17.0
Saw a rat! Eek!
% perl6 what-is-it.pl 17i
Saw a complex number
% perl6 what-is-it.pl Hamadryas
Saw something

4. The program is simple. Perl 6 automatically creates the fraction for you. Take a
number from the command line and output the fraction using the .numerator
and .denominator methods:

sub MAIN ($number) {
 put $number.numerator, ' / ', $number.denominator;
 }

It’s a little cleaner with a postfix given:
sub MAIN ($number) {
 put .numerator, ' / ', .denominator given $number;
 }

When you try it on a few numbers you’ll see the fractions:
% perl6 fraction.p6 3.1415926
15707963 / 5000000

% perl6 fraction.p6 2.71828182845905
54365636569181 / 20000000000000

5. You can adjust the example to create a new series. This time you have to start
with $n at 1. Get rid of the power of two and you have it:

my $n = 1;
my $sum = 0.FatRat;
loop {
 $sum += FatRat.new: 1, $n++;
 put .numerator, '/', .denominator, ' = ', $_ given $sum;
 last if $n > 100;
 }

The sum slowly diverges:
1/1 = 1
3/2 = 1.5
11/6 = 1.833333

360 | Appendix A: Exercise Answers

25/12 = 2.083333
137/60 = 2.283333
49/20 = 2.45
...

6. Use .Rat. For the reciprocal, you swap the numerator and denominator:
my $number = 7.297351e-3;
put 'Number is a ', $number.^name;

my $rat = $number.Rat;
put 'Fraction is ', $rat.perl;

my $reciprocal = Rat.new: $rat.denominator, $rat.numerator;
put 'Reciprocal is ', $reciprocal;
put 'Reciprocal fraction is ', $reciprocal.perl;

The output shows a number close to one you have already seen in this book:
Number is a Num
Fraction is <27/3700>
Reciprocal is 137.037037
Reciprocal fraction is <3700/27>

7. This like your basic number-guessing program, but you have to make two sets of
comparisons. It seems like you’d have to make twice as many guesses but you can
home in on both parts at the same time:

sub MAIN ($maximum = 100) {
 my $secret = Complex.new:
 $maximum.rand.Int,
 $maximum.rand.Int;

 put 'Secret number is ', $secret;

 my $re = $secret.re;
 my $im = $secret.im;

 loop {
 my $guess =
 prompt('Enter your guess (n+mi): ').Complex;

 if $guess == $secret {
 put 'You guessed it!';
 last;
 }

 given $guess {
 put "Real part is ",
 do if $re > .re { 'too small' }
 elsif $re < .re { 'too large' }
 else { 'just right' }

Exercise Answers | 361

 put "Imaginary part is ",
 do if $im > .im { 'too small' }
 elsif $im < .im { 'too large' }
 else { 'just right' }
 }
 }
 }

Note a few features in this solution. First, you create $re and $im so you can
make the comparison lines shorter. That’s the only reason for that.
You convert the result of prompt to a complex number. If it’s not a value you’ll get
an error. You’ll see how to handle that in Chapter 7.
The given puts the guess in $_ so you can use it as the topic. That’s the default
object for method calls. You can type .im instead of $guess.im.

Answers to Chapter 4 Exercises
1. Prompt for some text and get the count with .chars:

my $string = prompt 'Enter a string: ';
put 'There are ', $string.chars, ' characters';

Run it a couple of times with different answers:
% perl6 char-count.p6
Enter a string: Hamadryas perlicus sixus
There are 24 characters

% perl6 char-count.p6

Enter a string: éåü
There are 6 characters

2. Add a loop and use last to break out of it if there are no characters:
loop {
 my $string = prompt 'Enter a string: ';
 last if $string.chars == 0;
 put 'There are ', $string.chars, ' characters';
 }

This continues to run until you have an empty answer:
% perl6 char-count-loop.p6
Enter a string: Hello
There are 5 characters
Enter a string: Perl 6
There are 6 characters
Enter a string:

362 | Appendix A: Exercise Answers

3. This answer is much like the character-counting answer but looking at a different
aspect of the Str:

loop {
 my $string = prompt 'Enter a string: ';
 last if $string.chars == 0;
 put 'Found Hamad!' if $string.contains: 'Hamad';
 }

You only get more output when the substring is present and has the same capital‐
ization:

% perl6 test.p6
Enter a string: Hamadryas
Found Hamad!
Enter a string: Hamad is in the house
Found Hamad!
Enter a string: hamad
Enter a string: Koko likes Kool-Aid
Enter a string:

To make this work regardless of the capitalization you can lowercase the starting
Str and substring with .lc (or use .fc, which you’ll see later):

loop {
 my $string = prompt('Enter a string: ').lc;
 last if $string.chars == 0;
 put 'Found Hamad!' if $string.contains: 'Hamad'.lc;
 }

Now the capitalization doesn’t matter:
% perl6 test.p6
Enter a string: Hamadryas
Found Hamad!
Enter a string: hamadryas
Found Hamad!
Enter a string:

4. Here’s a simple program. The $first and $second variables start off as Str
objects. You don’t need to convert them yourself because the numeric operations
do that for you implicitly and without warnings:

my $first = prompt('First number: ');
my $second = prompt('Second number: ');

put 'Sum is ', $first + $second;
put 'Difference is ', $first - $second;
put 'Product is ', $first * $second;
put 'Quotient is ', $first / $second;

Exercise Answers | 363

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Run this and reply with two numbers and it works out nicely:
% perl6 two-numbers.p6
First number: 12
Second number: 34
Sum is 46
Difference is -22
Product is 408
Quotient is 0.352941

When you enter something that is not a number you get a conversion error:
% perl6 two-numbers.p6
First number: Two
Second number: Three
Cannot convert string to number: base-10 number must
begin with valid digits or '.'

I haven’t shown you how to avoid that just yet. You’ll have to wait until Chapter 7.
5. You can modify the previous exercise answer into two paths. In the if condition,

use val to check that each Str can convert to a number. If each successfully smart
matches against the Numeric role, the math operations should work. If one of
them fails you note that:

my $first = prompt('First number: ');
my $second = prompt('Second number: ');

if val($first) ~~ Numeric and val($second) ~~ Numeric {
 put 'Sum is ', $first + $second;
 put 'Difference is ', $first - $second;
 put 'Product is ', $first * $second;
 put 'Quotient is ', $first / $second;
 }
else {
 put 'One of the values isn\'t numeric.';
 }

That isn’t a very Perly way to write this, though. You have to type the smart match
operator and the role twice. You don’t know this yet, but with a Junction (Chap‐
ter 14) you can use all to denote that every thingy should satisfy the match:

if all(val($first), val($second)) ~~ Numeric {

Another possibility is a program with three paths. You can check each Str to
show which one is the problem:

my $first = prompt('First number: ');
my $second = prompt('Second number: ');

if val($first) !~~ Numeric {
 put 'The first string is not numeric.'
 }

364 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Numeric.html
https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Str.html

elsif val($second) !~~ Numeric {
 put 'The second string is not numeric.'
 }
else {
 put 'Sum is ', $first + $second;
 put 'Difference is ', $first - $second;
 put 'Product is ', $first * $second;
 put 'Quotient is ', $first / $second;
 }

6. Instead of giving multiple things to put you do it all inside the interpolated Str to
handle the input and the number of characters:

loop {
 my $string = prompt('Enter a string: ').lc;
 last if $string.chars == 0;
 put "'$string' has {$string.chars} characters";
 }

Now you see the text and its count on the same line:
% perl6 interpolate.p6
Enter a string: Hamadryas
'hamadryas' has 9 characters
Enter a string: hamad
'hamad' has 5 characters
Enter a string: perl6
'perl6' has 5 characters

7. You can use the conditional operator to select the command based on the operat‐
ing system and then interpolate that into the qqx:

my $command =
 $*DISTRO.is-win
 ??
 'C:\Windows\System32\hostname.exe'
 !!
 '/bin/hostname';

print qqx/$command/;

Instead of interpolation you can run the shell Strs directly:
print do
 if $*DISTRO.is-win { qx/C:\Windows\System32\hostname.exe/ }
 else { qx|/bin/hostname| }

Exercise Answers | 365

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

Answers to Chapter 5 Exercises
1. Define a variable with state and assign it the starting value. Use last to stop the

loop if the value is over 75. Otherwise, output the current value, then add three to
it:

loop {
 FIRST { put 'Starting' }
 state $n = 12;
 last if $n > 75;
 put $n;
 $n += 3;
 }

The C-style loop looks a little more organized:
loop (my $n = 12; $n <= 75; $n += 3) {
 FIRST { put 'Starting' }
 put $n;
 }

In either style use the FIRST phaser to output the starting message the first time
(and only the first time) through the loop.

2. The most obvious way to use while probably declares the variable outside of the
Block. Otherwise it looks similar to the answers with loop:

my $n = 12;
while $n <= 75 {
 FIRST { put 'Starting' }
 LAST { put 'Stopping' }
 put $n;
 $n += 3;
 }

A more clever (or Lazy) approach could replace loop with while True without
changing anything else. The condition is always satisfied, and you use the last to
end the loop:

while True {
 FIRST { put 'Starting' }
 LAST { put 'Stopping' }
 state $n = 12;
 last if $n > 75;
 put $n;
 $n += 3;
 }

3. The $trim-and-lower code uses $_, so it expects a single argument. Call .trim
and assign it back to $_, then do the same with .lc:

366 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Block.html

my $trim-and-lower := {
 $_ = $_.trim;
 $_ = $_.lc;
 };

my $string = ' HaMaDrYaS ';
$trim-and-lower($string);
put "[$string]";

Notice that the output surrounds $string with brackets. This way you can see
any leading or trailing whitespace:

[hamadryas]

That $trim-and-lower isn’t very Perly. Since $_ is the default object you can omit
it in the method call:

my $trim-and-lower := {
 $_ = .trim;
 $_ = .lc;
 };

You could also use the . operator with binary assignment. This does the same
thing (with the same amount of typing):

my $trim-and-lower := {
 $_ .= trim;
 $_ .= lc;
 };

But you can also chain methods and assign back to $_:
my $trim-and-lower := {
 $_ = .trim.lc;
 };

For this to work the argument must be a container so you can change it. If you
give it a Str directly you’ll get an error:

$trim-and-lower('Perlicus ');

The error tells you that it’s immutable:
Cannot assign to an immutable value

You don’t need to worry about that for now.
4. The max subroutine takes multiple thingys and evaluates what it thinks the big‐

gest one is. With all numbers or Strs that’s easy to figure out. With a mix of types
max compares them all as Strs:

my $block := { max $^a, $^b, $^c };

put $block(1, 2, 19); # 19
put $block('a', 'b', 'c'); # c

Exercise Answers | 367

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html

put $block(9, 'Hamadryas', 'perlicus'); # perlicus
put $block('a', 'b'); # Error! Too few parameters

5. Use a where and a thunk to limit the denominator variable to anything that’s not
zero:

subset NotZero of Int where * != 0;
sub divide ($num, NotZero $dem) { $num / $dem }

put divide 1, 137; # 0.007299
put divide 5, 0; # Error: Constraint type check failed

You can do that directly inside the signature too:
sub divide ($num, $dem where * != 0) { $num / $dem }

put divide 1, 137; # 0.007299
put divide 5, 0; # Error: Constraint type check failed

Answers to Chapter 6 Exercises
1. This MAIN routine takes a Str and a number, and uses the xx to replicate that Str

into a List of $n items. The parentheses group that so you can call .join to con‐
nect them all with a newline:

sub MAIN (Str $s, Int $n) {
 my $list = $s xx $n;
 put $list.join: "\n";
 }

The output has five copies of the Str:
B<% perl6 repeat.p6 'Hello' 5
Hello
Hello
Hello
Hello
Hello

You could skip the $list variable:
sub MAIN (Str $s, Int $n) {
 put ($s xx $n).join: "\n";
 }

2. The answer is very similar to the code you saw in this same section. lines() pro‐
vides the input line by line. Output a count and the line as you process each
element:

for lines() {
 put $++, ": $_";
 }

368 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Str.html

The anonymous scalar $ is useful there because you need it in one place. It’s auto‐
matically a persistent variable. You can do that explicitly:

for lines() {
 state $line-number = 1;
 put $line-number++, ": $_";
 }

Use .words to break up the line then .elems to count the number of things you
got:

for lines() {
 put $++, ": $_ ({ .words.elems })";
 }

3. Outputting the lines is easy. Use next to skip any that don’t have the substring—
the .contains method you saw in Chapter 4 is handy for this (although the
regexes you’ll see in Chapter 15 are useful too):

for lines() {
 next unless .contains('Pyrrhogyra');
 .put;
 }

Counting them is a little more work. Create a persistent variable to count each
time you make it past the next. The LAST phaser outputs its message at the end of
the last time through the loop:

for lines() {
 state $count = 0;
 next unless .contains('Pyrrhogyra');
 .put;
 $count++;
 LAST { put "Found $count lines" }
 }

4. Try these in the REPL:
% perl6
> ('aa'..'zz').elems
676
> ('a'..'zz').elems
702

The alphabetic ranges get to the end of the English alphabet and start again. After
'z' comes 'aa' (like a spreadsheet).

5. Try it in the REPL. A Range magically works here:
> ('b5'..'f9').List
(b5 b6 b7 b8 b9 c5 c6 c7 c8 c9 d5 d6 d7 d8 d9
e5 e6 e7 e8 e9 f5 f6 f7 f8 f9)

Exercise Answers | 369

https://docs.perl6.org/type/Range.html

You can flip the number and letter columns:
> ('5b'..'9f').List
(5b 5c 5d 5e 5f 6b 6c 6d 6e 6f 7b 7c 7d 7e 7f
8b 8c 8d 8e 8f 9b 9c 9d 9e 9f)

Can you envision some easy matrix math with this?
6. This will cycle through a Seq of colors. Each time through the loop the take gets

the next element in the Array. It increments the anonymous scalar $ and divides
by the number of elements in the Array to keep the computed index in the right
range:

my @colors = lazy gather {
 state @array = <red green blue>;
 loop { take @array[$++ % *] }
 }

put @colors[$++] for ^10

The output shows the first 10 colors:
red
green
blue
red
green
blue
red
green
blue
red

That uses gather, which was the point of the exercise. There’s another idiom I
didn’t expect you to know: using xx with the Whatevers list infinitely replicates
the thing you give it. It’s lazy so it doesn’t exist all at once:

my @colors = |<red green blue> xx *;
put @colors[$++] for ^10;

7. Using 0 as the first square number at position 0, the next square is 0 + 2(1) – 1.
That’s 1. The pattern continues like that. Once you define the Seq you can ask for
any position that you want. The persistent variable $n stores the position and $^a
is the previous value in the Seq:

my $squares := 0, { state $n; $^a + 2*(++$n) - 1 } ... *;
say $squares[25]; # 625

8. The program is simple and similar to what you’ve done in previous exercises:
for @*ARGS {
 put $_;
 }

370 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Whatever.html
https://docs.perl6.org/type/Seq.html
https://docs.perl6.org/type/Seq.html

When you run this program you get each argument on a separate line:
% perl6 args.p6 Hamadryas perlicus sixus
Hamadryas
perlicus
sixus

You can number the command-line arguments:
for @*ARGS {
 put ++$, ': ', $_;
 }

Now each line shows the position in the arguments:
% perl6 args.p6 Hamadryas perlicus sixus
1: Hamadryas
2: perlicus
3: sixus

You can also assign to @*ARGS. For MAIN to be able to work with it the thingys
need to be Strs:

BEGIN @*ARGS = <4 5>; # allomorphs
say @*ARGS;

sub MAIN (Int $n, Int $m) {
 put "Got $n and $m";
 }

9. Since .shift takes an element off the front of an Array and .unshift puts an
element on the front of one, using those together means that the first element of
the first Array ends up being the last element of the new Array:

my @array = @('a' .. 'f');
my @new-array = Empty;

while @array.shift {
 @new-array.unshift: $^a;
 }

say @new-array; # [f e d c b a]

The .pop and .push operators do the same thing from the opposite sides of the
Array:

my @array = @('a' .. 'f');
my @new-array = Empty;

while @array.pop {
 @new-array.push: $^a;
 }

say @new-array; # [f e d c b a]

Exercise Answers | 371

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html

Either of these are possible with .splice. There’s a slight change because .splice
doesn’t simply fail on an empty Array—you need to avoid the error. You won’t
see try until Chapter 7, but otherwise this one works like .pop and .push:

my @array = @('a' .. 'f');
my @new-array = Empty;

try {
 while @array.splice: *-1, 1, Empty {
 put $^a;
 @new-array.splice: @new-array.end + 1, 0, $^a;
 }
 }

say @new-array; # f e d c b a

You needn’t do any of this work, though. Use .reverse, then clean out the origi‐
nal Array:

my @new-array = @array.reverse;
@array = Empty;

10. You can mimic the .shift, .unshift, .pop, and .push methods with .splice if
you get the starting index and the length right. The *-1 stands in for the last
index of the object:

my @letters = 'a' .. 'f';
put @letters.elems;

shift - start at beginning and replace one with nothing
put 'shift ', '-' x 10;
my $first-element = @letters.splice: 0, 1;
say $first-element;
say @letters; # [b c d e f]

pop - start at end and replace one with nothing
put 'pop ', '-' x 10;
my $last-element = @letters.splice: * - 1, 1;
say $last-element;
say @letters; # [b c d e]

unshift - start at beginning and replace none
put 'unshift ', '-' x 10;
@letters.splice: 0, 0, 'A';
say @letters; # [A b c d e]

push - start at end and replace none
put 'push ', '-' x 10;
@letters.splice: *, 0, 'F';
say @letters; # [A b c d e F]

372 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html

Notice that in the .push version the starting index is one greater than the last
index. The * is the number of elements in the array, but there’s not an index with
that number yet.

11. Apply .rotor to lines to get chunks of lines from the files you specify on the
command line or from standard input. The value in the Block is a List and you
can extract any element you like from it:

for lines.rotor(3) {
 put $^a.[2];
 }

A slightly more general form gets the middle index from the chunk size. If it’s an
odd number .Int truncates it (selecting on the side closer to zero):

my $chunk-size = 5;
my $index = ($chunk-size / 2).Int;

for lines.rotor($chunk-size) {
 say $^a.^name;
 say $^a.[$index];
 }

12. Create two Arrays for the letters and positions. Zip those with Z:
my @letters = 'a' ..'z';
my @positions = 1 .. 26;
my @tuples = @letters Z @positions;
say @tuples;

The output shows you the Array and its sublists:
[(a 1) (b 2) (c 3) (d 4) (e 5) (f 6) (g 7) (h 8) (i 9) (j 10)
(k 11) (l 12) (m 13) (n 14) (o 15) (p 16) (q 17) (r 18) (s 19)
(t 20) (u 21) (v 22) (w 23) (x 24) (y 25) (z 26)]

You can make that a bit shorter by getting the length of the alphabet by looking at
@letters:

my @letters = 'a' ..'z';
my @tuples = @letters Z 1 .. @letters.end;
say @tuples;

13. It’s easy to cross the two Lists:
my $ranks = (2, 3, 4, 5, 6, 7, 8, 9, 10, 'J', 'Q', 'K', 'A');
my $suits = < ♣ ♡ ♠ ♢ >;

my $cards = (@$ranks X @$suits);
say $cards;
put "There are {$cards.elems} cards";

Putting the ranks first means that the same ranks in different suits show up next
to each other:

Exercise Answers | 373

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/List.html

((2 ♣) (2 ♡) (2 ♠) (2 ♢) (3 ♣) (3 ♡) (3 ♠) (3 ♢)
(4 ♣) (4 ♡) (4 ♠) (4 ♢) (5 ♣) (5 ♡) (5 ♠) (5 ♢)
(6 ♣) (6 ♡) (6 ♠) (6 ♢) (7 ♣) (7 ♡) (7 ♠) (7 ♢)
(8 ♣) (8 ♡) (8 ♠) (8 ♢) (9 ♣) (9 ♡) (9 ♠) (9 ♢)
(10 ♣) (10 ♡) (10 ♠) (10 ♢) (J ♣) (J ♡) (J ♠) (J ♢)
(Q ♣) (Q ♡) (Q ♠) (Q ♢) (K ♣) (K ♡) (K ♠) (K ♢)
(A ♣) (A ♡) (A ♠) (A ♢))
There are 52 cards

If you reversed the ranks and suits in the code all the cards from the same suit
would show up next to each other. To print all the cards of the same suit on one
line go through each suit and cross it with the ranks. Since you’re using the $ sigil
you need to turn it into its elements so for can iterate through them. The @
coercer will work:

my $ranks = (2, 3, 4, 5, 6, 7, 8, 9, 10, 'J', 'Q', 'K', 'A');
my $suits = < ♣ ♡ ♠ ♢>;

for @$suits {
 say $_ X @$ranks;
 }

Each suit is now on one line (with some output hidden to fit it on the page):
((♣ 2) (♣ 3) (♣ 4) ... (♣ 10) (♣ J) (♣ Q) (♣ K) (♣ A))
((♡ 2) (♡ 3) (♡ 4) ... (♡ 10) (♡ J) (♡ Q) (♡ K) (♡ A))
((♠ 2) (♠ 3) (♠ 4) ... (♠ 10) (♠ J) (♠ Q) (♠ K) (♠ A))
((♢ 2) (♢ 3) (♢ 4) ... (♢ 10) (♢ J) (♢ Q) (♢ K) (♢ A))

This version is slightly trickier. Cross all the suits with the entire weights list as a
single item. Notice the lack of the @ in front of $ranks:

for @$suits X $ranks {
 say [X] @$_
 }

The value in $_ is a list of two elements. The first is a Str representing the suit
and the second is a list of all the ranks:

(♣ (2 3 4 5 6 7 8 9 10 J Q K A))

The reduction operator does a cross of all the sublists:
[X] @$_;

That cross give the List of Lists for that suit (slightly modified here to fit the
page):

((♣ 2) (♣ 3) (♣ 4) ... (♣ 10) (♣ J) (♣ Q) (♣ K) (♣ A))

14. A MAIN subroutine that lets you pick the number of hands and their size will
work. Once you make the cards use .pick to choose as many of them as you
need. The .rotor method divides them into hands:

374 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/List.html

sub MAIN (Int $hands = 5, Int $hand-size = 5) {
 my @ranks = <2 3 4 5 6 7 8 9 T J Q K A>;
 my @suits = <♣ ♡ ♠ ♢>;
 my $ranks-str = @ranks.join: '';

 my @cards = @ranks X @suits;

 for @cards.pick($hands * $hand-size).rotor: 5 {
 .sort({ $ranks-str.index: $^a.[0] }).say
 }
 }

The .sort Block is a bit clever. It uses the position in the Str of all the ranks
concatenated. This sorts the numbered cards, the face cards, and the ace appro‐
priately:

((4 ♡) (5 ♠) (J ♠) (Q ♠) (A ♠))
((6 ♡) (T ♠) (Q ♡) (Q ♢) (Q ♣))
((2 ♣) (2 ♡) (5 ♡) (6 ♢) (A ♣))
((3 ♢) (5 ♢) (7 ♣) (9 ♠) (J ♣))
((8 ♠) (9 ♡) (T ♢) (K ♠) (A ♡))

You may have come up with other ways that work.
15. The crux of this approach is the sorting technique. From the Lists of the ranks

and suits the Block creates two Strs. The position in those Strs from .index is
the sort order of the elements. This is handy to sort the ace, 10, and face cards
along with the numbered cards. It also works for the nominal data of the ranks
where you can choose any order you like.
The next part of the program creates the hands as in the previous exercise. Then
you go back to the middle of the code, which has the Block to do the .sort.
That’s the same as the last name/first name sorting:

sub MAIN (Int $hands = 5, Int $hand-size = 5) {
 my @ranks = <2 3 4 5 6 7 8 9 T J Q K A>;
 my @suits = <♣ ♡ ♠ ♢>;
 my $block = {
 state $r = @ranks.join;
 state $s = @ranks.join;

 $r.index($^a.[0]) <=> $r.index($^b.[0])
 or
 $s.index($^a.[0]) <=> $s.index($^b.[0])
 };

 my @cards = @ranks X @suits;

 for @cards.pick($hands * $hand-size).rotor: $hand-size {
 .sort($block).say

Exercise Answers | 375

https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Block.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Block.html

 }
 }

The output shows five sorted hands:
((2 ♡) (9 ♢) (T ♠) (K ♢) (A ♣))
((4 ♣) (9 ♣) (9 ♠) (Q ♡) (A ♡))
((5 ♣) (5 ♡) (5 ♠) (Q ♠) (K ♠))
((7 ♣) (8 ♠) (9 ♡) (T ♢) (Q ♣))
((5 ♢) (6 ♣) (8 ♢) (J ♡) (A ♢))

Answers to Chapter 7 Exercises
1. Use the try block you’ve already seen, but change the problematic code:

try {
 CATCH {
 default { put "Caught {.^name} with ｢{.message}｣" }
 }
 say 137 / 0;
 }

put "Got to the end.";

You get this error:
Caught X::Numeric::DivideByZero with
 ｢Attempt to divide 137 by zero using div｣
Got to the end.

2. The first program doesn’t handle the error:
sub top { stubby() }
sub stubby { ... } # the yada yada operator

top();

The error output shows the Backtrace:
Stub code executed
 in sub stubby at /Users/brian/Desktop/test.p6 line 4
 in sub top at /Users/brian/Desktop/test.p6 line 3
 in block <unit> at /Users/brian/Desktop/test.p6 line 6

You can catch the error by wrapping the problem code with try:
sub top { stubby() }
sub stubby { ... } # the yada yada operator

try {
 CATCH {
 default { put "Uncaught exception {.^name}" }
 }

376 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Backtrace.html

 top();
 }

The output tells you the Exception type:
Uncaught exception X::StubCode

You can have it both ways by outputting the Backtrace too. The Exception type
has a .backtrace method that extracts that:

sub top { stubby() }
sub stubby { ... }

try {
 CATCH {
 default { put "Uncaught exception {.^name}\n{.backtrace}" }
 }
 top();
 }

3. From the previous exercise, replace the ... with die:
sub top { stubby() }
sub stubby { die "This method isn't implemented" }

try {
 CATCH {
 default { put "Uncaught exception {.^name}" }
 }
 top();
 }

Now the error type is different. The X::AdHoc stands in for everything that
doesn’t have a more specific type:

Uncaught exception X::AdHoc

You can choose another type. Construct that object and use it as the argument to
die. Change your stubby implementation:

sub stubby {
 die X::StubCode.new(payload => "This method isn't implemented");
 }

The error isn’t X::AdHoc this time:
Uncaught exception X::StubCode

You don’t need the die because you can throw the Exception directly:
sub stubby {
 X::StubCode
 .new(payload => "This method isn't implemented")
 .throw;
 }

Exercise Answers | 377

https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Backtrace.html
https://docs.perl6.org/type/Exception.html
https://docs.perl6.org/type/Exception.html

4. One way to handle a nonnumeric addition is to attempt it then catch it. Inside
the CATCH you can use fail:

sub add-two-things ($first, $second) {
 CATCH {
 when X::Str::Numeric {
 fail q/One of the arguments wasn't a number/
 }
 }

 return $first + $second;
 }

my @items = < 2 2 3 two nine ten 1 37 0 0 >;

for @items -> $first, $second {
 my $sum = add-two-things($first, $second);

 put $sum.defined ??
 "$first + $second = $sum" !!
 "You can't add $first and $second";
 }

You can test that $sum is defined to handle the case where it is zero:
2 + 2 = 4
You can't add 3 and two
You can't add nine and ten
1 + 37 = 38
0 + 0 = 0

If you wanted to work harder you could test each argument individually to report
which one wasn’t a number.

5. Check each argument with val and a smart match against Numeric. If that doesn’t
work out, use warn to complain about it:

sub add-two-things ($first, $second) {
 CATCH {
 when X::Str::Numeric {
 fail q/One of the arguments wasn't a number/
 }
 }

 for $first, $second {
 warn "'$_' is not numeric" unless val($_) ~~ Numeric;
 }

 return $first + $second;
 }

my @items = < 2 2 3 two nine ten 1 37 0 0 >;

378 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Numeric.html

for @items -> $first, $second {
 my $sum = add-two-things($first, $second);

 put $sum.defined ??
 "$first + $second = $sum" !!
 "You can't add $first and $second";
 }

The quietly will ignore any errors:
my $sum = quietly add-two-things($first, $second);

Answers to Chapter 8 Exercises
1. Go through the command-line arguments and test each one individually:

for @*ARGS {
 unless .IO.e {
 put "'$_' does not exist";
 next;
 }

 .put;
 put "\treadable" if .IO.r;
 put "\twritable" if .IO.w;
 put "\texecutable" if .IO.x;
 }

Using given gets rid of the multiple .IO calls but complicates the code in other
ways:

for @*ARGS -> $file {
 given $file.IO {
 unless .e {
 put "'$file' does not exist";
 next;
 }

 put $file;
 put "\treadable" if .r;
 put "\twritable" if .w;
 put "\texecutable" if .x;
 }
 }

The output reports different things depending on the file:
% perl6-latest file-test.p6 hamadryas /etc/hosts /usr/bin/true
'hamadryas' does not exist
/etc/hosts

Exercise Answers | 379

 readable
/usr/bin/true
 readable
 executable

2. Here’s a start:
put "Home dir is $*HOME";

unless chdir $*HOME.IO.add: @*ARGS[0] {
 die "Could not change directories: $!"
 }

put "Current working dir is now $*CWD";

The surrounding put statements are easy. They output the values of the special
variables. But what about that hardcoded subdirectory? Part of the exercise was
to try it with a directory that does not exist. You could grab the first command-
line argument instead:

put "Home dir is $*HOME";

unless chdir $*HOME.IO.add: @*ARGS[0] {
 die "Could not change directories: $!"
 }

put "Current working dir is now $*CWD";

You could also wrap all this in a MAIN subroutine:
sub MAIN (Str $subdir) {
 put "Home dir is ", $*HOME;

 unless chdir $*HOME.IO.add: @*ARGS[0] {
 die "Could not change directories: $!"
 }

 put "Current working dir is now $*CWD";
 }

3. Here’s a short program. This one uses CATCH to handle the Failure that might be
in $file. The program simply exits if there’s a problem, but you could do some‐
thing fancier:

sub MAIN ($subdir = '/etc') {
 state $count = 1;
 CATCH { default { exit } }
 for dir($subdir).sort -> $file {
 put "{$count++}: $file";
 }
 }

380 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Failure.html

The output counts the files:
1: /etc/afpovertcp.cfg
2: /etc/afpovertcp.cfg~orig
3: /etc/aliases
4: /etc/aliases.db
5: /etc/apache2
...

4. Here’s an iterative (nonrecursive) solution. Use @queue to maintain the list of
directories to process. Output the name of each file. If it’s a symbolic link skip the
rest of the block—this is important because symlinks can take you back to parts
of the filesystem that are above where you started. You’ll only make that mistake
several times in your career. If you get past all of that add the file to the queue if
it’s a readable directory:

sub MAIN (Str:D $dir where *.IO.d = '/') {
 my @queue = $dir;

 while @queue.elems > 0 {
 for dir(@queue.shift) {
 next if ($_ eq '.' or $_ eq '..'); # virtual dirs
 # next if $_ ~~ any(<. ..>) # junction
 .put;
 next if .IO.l; # do not follow symlinks
 @queue.unshift($_) if .IO.d and .IO.r;
 }
 }
 }

Here’s a recursive solution. It’s less typing but it also creates many layers of sub‐
routine calls:

sub MAIN (Str:D $dir where *.IO.d = '/') {
 show-dir($dir.IO);
 }

sub show-dir (IO::Path:D $dir where *.IO.d) {
 for dir($dir) {
 next if ($_ eq '.' or $_ eq '..'); # virtual dirs
 .put;
 next if .IO.l; # do not follow symlinks
 &?ROUTINE($_) if .IO.d and .IO.r;
 }
 }

Even though the default :test argument excludes the . and .. directories, you still
might like to skip them explicitly. If someone changes the filter you still want to
avoid those. It’s like wearing a belt and suspenders.

Exercise Answers | 381

There are some other examples in the documentation for dir, including a
gather-take if you don’t want to output the files as you go.

5. Here’s a program to simply make a directory:
sub MAIN ($subdir) {
 CATCH {
 when X::IO::Mkdir
 { put "Failed to make directory $subdir" }
 }

 mkdir $subdir.IO.mkdir;
 }

Your argument can be an absolute or relative path:
% perl6 mkdir.p6 Butterflies
% perl6 mkdir.p6 Butterflies/hamadryas

If you specify a directory that you aren’t allowed to make you catch the error:
% perl6 mkdir.p6 /Butterflies
Failed to make directory /Butterflies

You might try it with a directory that you can’t create but that already exists. In
that case you get no error:

% perl mkdir.p6 /etc

6. The trick to this program is to treat the template like any other Str. You can
interpolate the width into it:

sub MAIN (Int $width, Str $s) {
 put '123456789.' x ($width + 10) / 10;
 printf "%{$width}s", $s;
 }

% perl6 right.p6 18 Hamadryas
123456789.123456789.
 Hamadryas

7. The %f directive handles floating-point numbers. Use .3 to specify that you want
only three decimal places. Double up the % to get a literal percent sign. Don’t limit
yourself to directives in your template:

sub MAIN (Int $n, Int $m) {
 printf "$n/$m = %.3f%%", 100 * $n / $m;
 }

The output shows your formatted percentage:
% perl6 percentages.p6 15 76
15/76 = 19.737%

382 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Str.html

8. Create a template that has 12 directives and make each one wide enough for the
largest number you’ll encounter (144) along with some space to separate the
numbers:

my $template = [~] '% 4d' x 12, "\n";
for 1 .. 12 -> $row {
 printf $template, (1..12) <<*>> $row;
 }

Here’s the formatted table:
% perl6 multiplication-table.p6
 1 2 3 4 5 6 7 8 9 10 11 12
 2 4 6 8 10 12 14 16 18 20 22 24
 3 6 9 12 15 18 21 24 27 30 33 36
 4 8 12 16 20 24 28 32 36 40 44 48
 5 10 15 20 25 30 35 40 45 50 55 60
 6 12 18 24 30 36 42 48 54 60 66 72
 7 14 21 28 35 42 49 56 63 70 77 84
 8 16 24 32 40 48 56 64 72 80 88 96
 9 18 27 36 45 54 63 72 81 90 99 108
 10 20 30 40 50 60 70 80 90 100 110 120
 11 22 33 44 55 66 77 88 99 110 121 132
 12 24 36 48 60 72 84 96 108 120 132 144

9. The program can be simple:
put 'Hello Perl 6';

Run the program normally. You should see the output in the terminal:
% perl6 hello.p6
Hello Perl 6

Run it again and redirect the output to a file. The same message should show up
in the file:

% perl6 hello.p6 > output.txt

Redirecting to the null device completely ignores the output:
% perl6 program.p6 > /dev/null
C:\ perl6 program.p6 > NUL

10. Here’s a short program that outputs to both filehandles. The message isn’t impor‐
tant:

put 'This is standard output';
note 'This is standard error';

On the command line you can redirect either one of the filehandles. When you
send that output to the null device you don’t see any of it:

 % perl6 out-err.p6 2> /dev/null
This is standard output

Exercise Answers | 383

 % perl6 out-err.p6 > /dev/null
This is standard error

11. Here’s the first program. Take the first element off @*ARGS to use as the substring
you want to find. Use the rest of the thingys in @*ARGS as the filenames to read:

my $string = @*ARGS.shift;

for lines() {
 next unless .contains: $string;
 .put;
 }

Try it to ensure it does what you want:
% perl6 put.p6 for *.p6
for @*ARGS -> $file {
 for lines() {
for 1 .. 12 -> $row {
for lines() {
for lines() { .uc.put }

Here’s the second. It reads the lines and uppercases each one. You can run this
one on a file to ensure it does what it should, but I’ll skip that here:

for lines() { .uc.put }

Now pipe the output of one program into the input of another:
% perl6 put.p6 for *.p6 | perl6 uc.p6
FOR @*ARGS -> $FILE {
 FOR LINES() {
FOR 1 .. 12 -> $ROW {
FOR LINES() {
FOR LINES() { .UC.PUT }

And that’s Unix in a nutshell: a collection of small utilities that each do their job
very well and that you join together like pieces of garden hose. Research the his‐
tory of Doug McIlroy’s contributions to the world to learn more.

12. Use a FIRST phaser to tell .on-switch to print a file banner at the start of each
file. That only works when you switch files, so you’ll need to do it separately for
the initial file:

for lines() {
 FIRST {
 my $code = { put join("\n", '=' x 50, $^a, "-" x 50) };
 $code($*ARGFILES);

 $*ARGFILES.on-switch = -> $handle {
 $code($*ARGFILES) if $handle.is-open;
 };
 }

384 | Appendix A: Exercise Answers

 .put;
 }

You get output like this, but it has an extra banner after the last file. The filehan‐
dle switches from the last one to nothing (although that’s a bit annoying):

==
line-banner.p6
--
#!/Users/brian/bin/perl6s/perl6-latest

 for lines() {
 FIRST {
 my $code = { put join("\n", '=' x 50, $^a, "-" x 50) };
 $code($*ARGFILES);

 $*ARGFILES.on-switch = {
 $code($*ARGFILES);
 };
 }

 .put;
 }
==
<closed IO::CatHandle>
--

To suppress that you can test if the handle is open (and not closed as it says in
that filename). The .is-open method returns False in that case, so you can use
that to skip the banner code:

$*ARGFILES.on-switch = -> $handle {
 $code($*ARGFILES) if $handle.is-open;
 };

13. Here’s a simpleminded solution (which is completely adequate for what you are
practicing here).
Go through @*ARGS one item at a time. Try to open that file. Output a warning if
you can’t and move on to the next one. Get the lazy list from .lines. Output the
line in index 0 and the one in index *-1. Use .elems to figure out how many lines
you left out:

for @*ARGS {
 my $fh = .IO.open;
 put '=' x 20, ' ', $_;
 unless $fh {
 warn "Could not open $_: {$fh.exception.message}";
 next;

Exercise Answers | 385

 }
 my $lines = $fh.lines;
 put $lines.[0];
 put "... { $lines.elems - 2 } lines hidden ...";
 put $lines.[*-1];
 }

There are a few cases that cause problems here. If the file has two or fewer lines
you want to do something else. In those cases you’ll hide no lines:

for @*ARGS {
 my $fh = .IO.open;
 put '=' x 20, ' ', $_;
 unless $fh {
 warn "Could not open $_: {$fh.exception.message}";
 next;
 }
 my $lines = $fh.lines;

 given $lines.elems {
 when 0 { next }
 when 1 { put $lines.[0] }
 when 2 { .put for @$lines }
 default {
 put $lines.[0];
 put "... { $lines.elems - 2 } lines hidden ...";
 put $lines.[*-1];
 }
 }
 }

That given might be a bit too much. You can change the first example to condi‐
tionally output some of the lines based on the number of elements:

for @*ARGS {
 my $fh = .IO.open;
 put '=' x 20, ' ', $_;
 unless $fh {
 warn "Could not open $_: {$fh.exception.message}";
 next;
 }
 my $lines = $fh.lines;

 next if $lines.elems == 0;

 put $lines.[0];
 put "... { $lines.elems - 2 } lines hidden ..." if $lines.elems > 2;
 put $lines.[*-1] if $lines.elems > 1;
 }

14. The first part of the problem isn’t that difficult:

386 | Appendix A: Exercise Answers

my $file = 'primes.txt';
sub MAIN (Int:D $low, Int:D $high where * >= $low) {
 unless my $fh = open $file, :w {
 die "Could not open '$file': {$fh.exception}";
 }

 for $low .. $high {
 $fh.put: $_ if .is-prime;
 }
 }

The second part deals with a file that already exists. There are various things that
you can do. One approach is to refuse to keep going. Use the :exclusive adverb
to only open the file if it doesn’t exist:

my $file = 'primes.txt';
sub MAIN (Int:D $low, Int:D $high where * >= $low) {
 unless my $fh = open $file, :w, :exclusive {
 die "Could not open '$file': {$fh.exception}";
 }

 for $low .. $high {
 $fh.put: $_ if .is-prime;
 }
 }

This is slightly better than checking if the file exists before you do something.
Here, there’s a little bit of time between your check and the open when something
else might create that file (a “race condition”):

my $file = 'primes.txt';
sub MAIN (Int:D $low, Int:D $high where * >= $low) {
 die "File exists" if $file.IO.e;
 ...
 }

Another option is to append to the existing file:
my $file = 'primes.txt';
sub MAIN (Int:D $low, Int:D $high where * >= $low) {
 unless my $fh = open $file, :a {
 die "Could not open '$file': {$fh.exception}";
 }

 for $low .. $high {
 $fh.put: $_ if .is-prime;
 }
 }

15. Here’s a simple hex dump program that shows the numeric octet values. First try
to open the file, and if you can’t do that catch the exception and exit immediately.
If you can, you loop until you can’t read any more from the file.

Exercise Answers | 387

For each buffer that you read, use .map to format it into a two-digit hexadecimal
number and join these with a space. That goes to the output. If you’re at the end
of the file, break out of the loop and close the filehandle:

sub MAIN ($file) {
 # values that may be configurable later
 my $octets-per-line = 16;
 my $column-separator = ' ';

 my $fh = try {
 CATCH {
 when X::AdHoc { put "Could not open $file"; exit }
 default { put .^name; exit }
 }
 open $file, :bin;
 }

 loop {
 my Buf $buffer = $fh.read: $octets-per-line;

 put $buffer
 .map(*.fmt: '%02x')
 .join($column-separator)
 ;

 last if $fh.eof;
 }

 $fh.close;
 }

16. Here’s the program taken from the chapter:
my $path = 'buf.txt';
unless my $fh = open $path, :w, :bin {
 die "Could not open file";
 }

my $buf = Buf.new: <52 61 6b 75 64 6f 0a>.map: *.parse-base: 16;
$fh.write: $buf;

Once you run it, look in the file; you should find the text “Rakudo\n”.

Answers to Chapter 9 Exercises
1. Here’s a way that you can do it. The value-to-ordinal subroutine uses if

branches to transform the numbers to Pairs. There’s the special case of the num‐

388 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Pair.html

bers ending in 11 to 19. All of those get th. In the remaining cases, numbers end‐
ing in 1, 2, and 3 get st, nd, and rd. The default block gives everything else th:

for 1 .. 120 {
 my $ordinal = value-to-ordinal($_);
 put $ordinal.value ~ $ordinal.key;
 }

sub value-to-ordinal (Int $n where * > 0) {
 if $n % 100 ~~ 11..19 { 'th' => $n }
 elsif $n % 10 == 1 { 'st' => $n }
 elsif $n % 10 == 2 { 'nd' => $n }
 elsif $n % 10 == 3 { 'rd' => $n }
 else { :th($n) }
 }

Remember that the subroutine returns the last evaluated expression, so you get
the value from the block for whichever branch you followed.

2. The first part of this solution is the same as that for the previous exercise:
for 1 .. 10 {
 my $ordinal = value-to-ordinal($_);
 put $ordinal.value ~ $ordinal.key;
 }

The value-to-ordinal subroutine is different, though. The Map stores the pre‐
computed values, but only for the key of the Pair that you will return. You can
see why by looking at the if block. You can check the numbers that end in 11 to
19 mod 100 to look up the ordinal suffix. If that isn’t a key in $ordinals try the
same thing mod 10. This way you can handle 1 and 101 with the same rule to get
st as well as 11 and 111 to get th:

sub value-to-ordinal (Int $n where * > 0) {
 state $ordinals = Map.new:
 '1' => 'st',
 '2' => 'nd',
 '3' => 'rd',
 map { $_ => 'th' }, 11 .. 19;

 if $ordinals{$n % 100}:exists { $ordinals{$n % 100} => $n }
 elsif $ordinals{$n % 10}:exists { $ordinals{$n % 10} => $n }
 else { :th($n) }
 }

Isn’t that simpler? Instead of several branches of checks, it’s either in $ordinals
or it isn’t.

Exercise Answers | 389

https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Pair.html

When you finish that program, someone throws a new rule at you. If it ends in 5
(but not 15), you should use the suffix ty. Since you are using a Map, simply add
another key:

sub value-to-ordinal (Int $n where * > 0) {
 state $ordinals = Map.new:
 '1' => 'st',
 '2' => 'nd',
 '3' => 'rd',
 '5' => 'ty',
 map { $_ => 'th' }, 11 .. 19;

 if $ordinals{$n % 100}:exists { $ordinals{$n % 100} => $n }
 elsif $ordinals{$n % 10}:exists { $ordinals{$n % 10} => $n }
 else { :th($n) }
 }

Had you done this with Pairs you would have had to add another branch to your
if statement.

3. You can call .map on a Range. Since the key and the value both need to use the
current value, you can’t use a thunk here. You can create a block that returns a
Pair:

my $squares =
 Map.new: (1..10).map: { $^a => $^a ** 2 };

loop {
 my $number = prompt 'Enter a number: ';
 last unless $number;

 if $squares{$number}:exists {
 put "$number squared is $squares{$number}";
 }
 else {
 put "$number is an invalid number";
 }
 }

4. This first part of the problem is simple. Change the object from a Map to a Hash.
Everything else works the same because a Hash works the same:

for 1 .. 120 {
 my $ordinal = value-to-ordinal($_);
 put $ordinal.value ~ $ordinal.key;
 }

sub value-to-ordinal (Int $n where * > 0) {
 state $ordinals = Hash.new:
 '1' => 'st',
 '2' => 'nd',

390 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Hash.html

 '3' => 'rd',
 '5' => 'ty',
 map { $_ => 'th' }, 11 .. 19;

 if $ordinals{$n % 100}:exists { $ordinals{$n % 100} => $n }
 elsif $ordinals{$n % 10}:exists { $ordinals{$n % 10} => $n }
 else { :th($n) }
 }

The second part of the problem is a bit trickier. First, check the $ordinals
with :exists. If the key is not there, figure out what the suffix should be and add
it to $ordinals. At the end of the subroutine, create the Pair from the values in
the Hash:

for 1 .. 10 {
 my $ordinal = value-to-ordinal($_);
 put $ordinal.value ~ $ordinal.key;
 }

for 10 .. 15 {
 my $ordinal = value-to-ordinal($_);
 put $ordinal.value ~ $ordinal.key;
 }

sub value-to-ordinal (Int $n where * > 0) {
 state $ordinals = Hash.new:
 '1' => 'st',
 '2' => 'nd',
 '3' => 'rd',
 map { $_ => 'th' }, 11 .. 19;

 unless $ordinals{$n}:exists {
 # only see this message once
 put "Trying new suffix for $n";
 $ordinals{$n} = do
 if $ordinals{$n % 100}:exists { $ordinals{$n % 100} }
 elsif $ordinals{$n % 10}:exists { $ordinals{$n % 10} }
 else { 'th' }
 }

 return $ordinals{$n} => $n;
 }

There’s another way you can create that Pair in the return statement. The :p
adverb returns the key-value as a Pair:

return $ordinals{$n}:p; # almost

But you’ve stored the number as the key and the suffix as the value, which is the
opposite of what you want to return. You can turn that around with .antipair:

Exercise Answers | 391

https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Pair.html
https://docs.perl6.org/type/Pair.html

return $ordinals{$n}:p.antipair;

Perhaps by the time you read this answer, a certain experimental feature won’t be
experimental. You can set a trait on your subroutine so it caches return values. If
your subroutine is a function, which means that it always returns the same thing
for the same input, you don’t have to cache it yourself.
The is cached trait handles it all for you, although you need to declare you want
to use an experimental feature. This one doesn’t have to use :exists because it
doesn’t care about adding new entries:

use experimental :cached;

for 1 .. 10 {
 my $ordinal = value-to-ordinal($_);
 put $ordinal.value ~ $ordinal.key;
 }

for 10 .. 25 {
 my $ordinal = value-to-ordinal($_);
 put $ordinal.value ~ $ordinal.key;
 }

sub value-to-ordinal (Int $n where * > 0) is cached {
 state $ordinals = Hash.new:
 '1' => 'st',
 '2' => 'nd',
 '3' => 'rd',
 map { $_ => 'th' }, 11 .. 19;

 # take the first one that's defined
 my $suffix =
 $ordinals{$n} //
 $ordinals{$n % 100} //
 $ordinals{$n % 10} //
 'th';

 return $suffix => $n;
 }

If you don’t cache it your program still works, and it’s a bit simpler than the pre‐
vious solution. It might seem silly to cache such a simple result. Looking up
something in a Hash is very quick (that’s the point), but when you do some real
work you might have something meaty. When that happens, you don’t want to
compute it again if it doesn’t change.

5. This program is actually much simpler than its description. There are two for
loops. The first gets the input and counts the words. The second outputs the keys
and values in descending order by value. That’s the basic structure of many accu‐
mulation tasks:

392 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Hash.html

my %Words;
for lines.words { %Words{ .lc }++ }

for %Words.keys.sort({ %Words{$^k} }).reverse {
 put "$^key: %Words{$^key}";
 }

In the first loop the current word is the topic. Inside the Hash index, call .lc on
the word to normalize it. That way you don’t get separate entries that differ only
in capitalization.
The second loop is a pipeline. Get the keys but sort them by their value. By
default the lower values are closer to the front of the List, but a .reverse takes
care of that.
Using the Butterflies_and_Moths.txt file gets you these counts:

% perl6 count-words.p6 Butterflies_and_Moths.txt
the: 9434
of: 4991
and: 3828
a: 2952
in: 2327
is: 2253
to: 2162
are: 1547
it: 1326
with: 1261
on: 1168
be: 1056
that: 1007
or: 892
this: 853
as: 747
for: 697
by: 676
may: 659

But what if two words have the same count? You can sort those on the word as a
secondary sort like you saw in Chapter 6:

my $block := {
 %Words{$^a} <=> %Words{$^b} # count
 or
 $^a leg $^b # word
 };

for %Words.keys.sort($block).reverse {
 put "$^key: %Words{$^key}";
 }

Exercise Answers | 393

https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/List.html

Many of the words in that list are not that interesting. You could filter those out
by keeping a list of stopwords and skipping those. Creating a Hash from a List
then checking with :exists works nicely:

my %Stop-Words = map { $_ => 1 } <
 a an the this that ...
 >;

my %Words;
for lines.words { %Words{ .lc }++ }

for %Words.keys.sort({ %Words{$^k} }).reverse {
 next if %Stop-Words{ .lc }:exists;
 put "$^key: %Words{$^key}";
 }

That’s a bit more than you needed to do for this exercise though.
6. You can easily read lines from a file with $file.IO.lines, and you can

use .words to break up the lines based on whitespace. After that, you use those
words as the keys for the Hash. You don’t have to create the structure beforehand
—just specify the keys and levels you want:

my $file = @*ARGS[0] // 'butterfly_census.txt';

my %census;
for $file.IO.lines -> $line {
 my ($genus, $species) = $line.words;

 %census{$genus}{$species}++;
 }

for %census.keys.sort({%census{$_}.elems}).reverse -> $genus {
 put $genus;
 my $seq := %census{$genus}.keys.sort({%census{$genus}{$_}});
 for $seq.reverse -> $species {
 ("\t", $species, %census{$genus}{$species})
 .join(' ').put
 }
 }

That long list of methods in the for loop might look tricky. You go through
the list of keys and sort them by the number of second-level keys,
%census{$_}.elems. That returns the list sorted in ascending order.
The .reverse turns that around so the first key has the most second-level keys.
Instead of iterating over the keys yourself, you can use something like Pretty
Dump to do it for you:

394 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/List.html
https://docs.perl6.org/type/Hash.html

my $file = @*ARGS[0] // die 'Specify a butterfly list file';

my %census;
for $file.IO.lines -> $line {
 my ($genus, $species) = $line.words;

 %census{$genus}{$species}++
 }

use PrettyDump;
say PrettyDump.new.dump: %census;

7. This solution is similar to the previous exercise, but it writes its output to a file:
my $file = 'census-tabs.txt';

for lines() {
 state %Animals;
 LAST {
 my $fh = try open $file, :w;
 die "Could not open file: $!" if $!;
 for %Animals.keys -> $genus {
 for %Animals{$genus}.keys -> $species {
 $fh.put: join "\t",
 $genus, $species, %Animals{$genus}{$species};
 }
 }
 }
 my ($genus, $species) = .words;

 %Animals{$genus}{$species}++;
 }

You could have gone a different direction with this by outputting to standard
output and redirecting that on the command line. That might be a better solution
for real work, but then you don’t get to practice making a file inside your pro‐
gram.

Answers to Chapter 10 Exercises
1. These answers aren’t that tough as long as the modules don’t develop errors or

bad tests that don’t let them install. By name it’s quite simple:
% zef install Inline::Perl5

Installing Grammar::Debugger by its repository URL is a bit trickier since you
need to discover that. You could start by searching GitHub, but you could also
look at https://modules.perl6.org. Follow the link to its GitHub page, then find the
clone URL:

Exercise Answers | 395

https://modules.perl6.org

% zef install https://github.com/jnthn/grammar-debugger.git

2. It’s easy to see the repository locations for the environment and command-line
switch options. The program is the same as the one in the chapter:

for $*REPO.repo-chain -> $item {
 say $item;
 }

Run this on its own to see what’s there. Some are paths and some are
CompUnit::Repository objects:

% perl6 repo.p6
inst#/Users/hamadryas/.perl6
inst#/Applications/Rakudo/share/perl6/site
inst#/Applications/Rakudo/share/perl6/vendor
inst#/Applications/Rakudo/share/perl6
CompUnit::Repository::AbsolutePath.new(...)
CompUnit::Repository::NQP.new(...)
CompUnit::Repository::Perl5.new(...)

When you add libraries you should see them show up in the list:
% perl6 -I/usr/local/lib show-repo.p6
file#/usr/local/lib
inst#/Users/hamadryas/.perl6
inst#/Applications/Rakudo/share/perl6/site
inst#/Applications/Rakudo/share/perl6/vendor
inst#/Applications/Rakudo/share/perl6

% export PERL6LIB=/opt/lib
% perl6 show-repo.p6
file#/opt/lib
inst#/Users/hamadryas/.perl6
inst#/Applications/Rakudo/share/perl6/site
inst#/Applications/Rakudo/share/perl6/vendor
inst#/Applications/Rakudo/share/perl6

On Windows:
C:\ set PERL6LIB=C:\MyPerl6
C:\ perl6 show-repo.p6
inst#C:\MyPerl6
inst#C:\Users\hamadryas\.perl6
inst#C:\rakudo\share\perl6\site
inst#C:\rakudo\share\perl6\vendor
inst#C:\rakudo\share\perl6
CompUnit::Repository::AbsolutePath.new(...)
CompUnit::Repository::NQP.new(...)
CompUnit::Repository::Perl5.new(...)

396 | Appendix A: Exercise Answers

3. To check that a module is installed, create the dependency specification and pass
that to $*REPO.resolve. If that returns something that is True, then the module
is installed:

sub MAIN (Str $module-name) {
 my $ds = CompUnit::DependencySpecification.new:
 :short-name($module-name);

 put "$module-name is{
 $*REPO.resolve($ds) ?? '' !! ' not'
 } installed";
 }

Running it shows what’s installed and what’s not:
% perl6 module-installed.p6 Number::Bytes::Human
Number::Bytes::Human is installed

% perl6 module-installed.p6 Does::Not::Exist
Does::Not::Exist is not installed

You don’t need to do this from inside a program. zef can list all the available
modules:

% zef list

Using the info command tells you about a particular module:
% zef info Does::Not::Exist
!!!> Found no candidates matching identity: Does::Not::Exist

% zef info Number::Bytes::Human
- Info for: Number::Bytes::Human
- Identity: Number::Bytes::Human:ver<0.0.3>
- Recommended By: /Applications/Rakudo/share/perl6/site
- Installed: Yes
Description: Converts byte count into an easy to read format.
License: MIT
Source-url: git://github.com/dugword/Number-Bytes-Human.git
Provides: 1 modules
Depends: 0 items

4. This answer combines two programs from the chapter. Create a subroutine that
takes a list of candidate modules and yields the ones that are installed. In MAIN,
use gather to collect those and use the first one that you find:

my %dumper-adapters = %(
 'Data::Dump::Tree' => 'ddt',
 'PrettyDump' => 'dump',
 'Pretty::Printer' => 'pp',
);

sub installed-modules (*@candidates) {

Exercise Answers | 397

 for @candidates -> $module {
 my $ds = CompUnit::DependencySpecification.new:
 :short-name($module);
 if $*REPO.resolve: $ds {
 take $module;
 }
 }
 }

sub MAIN (
 Str $class = (
 gather installed-modules(%dumper-adapters.keys)
).[0]
) {
 put "Dumping with $class";
 CATCH {
 when X::CompUnit::UnsatisfiedDependency {
 note "Could not load $class";
 exit 1;
 }
 }
 require ::($class);

 my $method = %dumper-adapters{$class};
 unless $method {
 note "Do not know how to dump with $class";
 exit 2;
 }

 put ::($class).new."$method"(%dumper-adapters);
 }

5. Most of this answer is the same code you saw in the chapter, but with a MAIN
wrapped around it. At the end you output the $data. If you fetch an image file or
other sort of binary data this might mess up your terminal. You could inspect the
content type and decide to do something differently, but that’s not the point of
this exercise:

sub MAIN ($url) {
 use HTTP::UserAgent;

 my $ua = HTTP::UserAgent.new;
 $ua.timeout = 10;

 my $response = $ua.get($url);

 my $data = do with $response {
 .is-success ?? .content !! die .status-line
 }

398 | Appendix A: Exercise Answers

 put $data;
 }

6. You might have to install these modules first. Since you want to use a Perl 5 mod‐
ule you must have that installed.
This program does it in a MAIN sub that uses the program name itself as the
default filename. It slurps the data and stores that so it passes the same thing to
each version of Digest::MD5. You’ll read more about slurp in Chapter 10.
The code inside the dos is taken from the documentation examples for each of
the modules:

sub MAIN ($file = $*PROGRAM) {
 my $data = slurp $*PROGRAM;
 unless $data {
 note "Could not read $file";
 exit;
 }

 my $digest-p5 = do {
 use Digest::MD5:from<Perl5>;
 my $ctx = Digest::MD5.new.add($data);
 put $ctx.hexdigest;
 }

 my $digest-p6 = do {
 use Digest::MD5;
 my $d = Digest::MD5.new;
 put $d.md5_hex($data);
 }

 put join "\n", "p5: $digest-p5", "p6: $digest-p6";
 die "Digests do not match!"
 unless $digest-p5 eq $digest-p6;
 }

The particular form of the program isn’t important as long as you were able to
use both modules.

Answers to Chapter 11 Exercises
1. MAIN takes the arguments, passes them to the subroutine, and saves the result.

That path of the data is the entire point of this exercise. Once you know how to
structure it you can put anything you like in the subroutine:

sub MAIN (Int $n, Int $m) {
 my $lcm = least-common-multiple($n, $m);
 put "The least common multiple of $n and $m is $lcm";

Exercise Answers | 399

 }

sub least-common-multiple (Int $n, Int $m) {
 return $n lcm $m
 }

You can also define the subroutine inside MAIN (although why would you in this
case?). Only the code inside MAIN can see this subroutine:

sub MAIN ($n, $m) {
 sub least-common-multiple ($n, $m) {
 $n lcm $m
 }
 my $lcm = least-common-multiple($n, $m);
 put "The least common multiple of $n and $m is $lcm";
 }

2. Here’s a simple recursive implementation. If the argument is 1 it returns 1 right
away. Otherwise it returns the argument multiplied by the factorial of the next
smaller positive number:

sub factorial ($n) {
 return 1 if $n == 1;
 $n * &?ROUTINE($n - 1);
 }

put factorial(5); # 120

If you want to write this as a command-line program you can wrap it in MAIN:
sub MAIN ($n) { put factorial($n) }

sub factorial ($n) {
 return 1 if $n == 1;
 $n * &?ROUTINE($n - 1);
 }

The easy Perl 6 way uses the reduction operator with * on the inside. It’s so sim‐
ple you probably don’t even want to define a subroutine:

sub MAIN ($n) { put factorial($n) }

sub factorial ($n) { [*] 1..$n }

How big a number did you get? With arbitrary precision you can get as big a
number as you care to wait for. I was able to generate results with tens of thou‐
sands of digits in less than a tenth of a second (although outputting them takes
time, so I skip that part):

sub factorial ($n) { [*] 1..$n }

sub MAIN ($max-duration = 2) {
 loop {

400 | Appendix A: Exercise Answers

 state $n = 0;
 my $start = now;
 my $f = factorial(++$n);
 my $duration = now - $start;
 put "$n: {$f.chars} ($duration)";
 last if $duration > $max-duration;
 }
 }

I used .chars because .log10 started failing at the factorial of 171 (just where 64
bits would give up).

3. One way to check random-between is to run it repeatedly and see if you get all the
values that you expect. In this case, a for running 100,000 times should do the
job:

sub random-between ($i, $j) {
 ($j - $i).rand.Int + $i;
 }

my %results;
for ^100_000 {
 %results{ random-between(5, 14) }++;
 }

say %results.keys.sort({$^a <=> $^b}).join: " ";

When you output the results, you see that 14 doesn’t show up. The subroutine
doesn’t actually do its job if you expect both endpoints to be in the results.
Without testing the subroutine you may have never noticed this:

5 6 7 8 9 10 11 12 13

4. The answer has a little new code. You can add the MAIN subroutine to the
random-between.p6 code. That handles the command-line arguments:

random-between.p6
use lib $*PROGRAM.IO.parent;

use MyRandLibrary;

sub MAIN ($i, $j) {
 say random-between($i, $j);
 }

MyRandLibrary.pm6 stays the same:
MyRandLibrary.pm6
sub random-between ($i, $j) is export {
 ($j - $i).rand.Int + $i;
 }

Exercise Answers | 401

No matter which order you give it arguments you get an answer in the range
between the smallest and largest numbers:

% perl6 random-main.p6 99 4
55
% perl6 random-main.p6 4 99
33

You get an error if you give it something other than a decimal number:
% perl6 random-main.p6 4 Hamadryas
Cannot convert string to number: base-10 number must begin
with valid digits or '.' in '⏏Hamadryas' (indicated by ⏏)

You’ll fix that in a moment.
5. Implement your subroutine and pass it the arguments from the exercise. The

idea is to see how a basic subroutine treats them differently:
count-and-show(1, 3, 7);
count-and-show(1, 3, (7, 6, 5));
count-and-show(1, 3, (7, $(6, 5)));
count-and-show([1, 3, (7, $(6, 5))]);

sub count-and-show {
 put "There are ", @_.elems, " arguments";
 for @_ -> $thing {
 print "\t";
 say $thing;
 }
 }

The output shows different ways that the subroutines see these arguments:
There are 3 arguments
 1
 3
 7
There are 5 arguments
 1
 3
 7
 6
 5
There are 4 arguments
 1
 3
 7
 (6 5)
There are 3 arguments
 1
 3
 (7 (6 5))

402 | Appendix A: Exercise Answers

6. You already know how to make a library that exports subroutines. For these
functions you need to use a slurpy parameter to flatten the arguments. The head
returns the first thing and the tail returns everything else. The signature is the
same for both subroutines and both use the is export trait to define them in the
scope that loaded the library:

HeadsTails.pm
sub head (*@args) is export { return @args[0] }
sub tail (*@args) is export { return @args[1..*-1] }

You may have discovered that you don’t need to do this. There are already .head
and .tail methods.

Answers to Chapter 12 Exercises
1. Define the classes before you use them. You don’t need anything in the braces.

You should be able to create objects from them even though they look empty:
class Butterfly {}
class Moth {}
class Lobster {}

my $number = Butterfly.new;
my $str = Moth.new;
my $set = Lobster.new;

2. Your program is similar to the one from previous exercise. Instead of defining
the classes you load them with use:

use Butterfly;
use Moth;
use Lobster;

my $number = Butterfly.new;
my $str = Moth.new;
my $set = Lobster.new;

Create separate Butterfly.pm6, Moth.pm6, and Lobster.pm6 classes in the same
directory as your program:

Butterfly.pm6
class Butterfly {};

You can use unit instead since the entire file is devoted to that class:
Butterfly.pm6
unit Butterfly;

When you run your program you can add the current directory to the module
search path with -I:

Exercise Answers | 403

$ perl6 -I. butterfly.pm6

3. Steal the basic Butterfly class from the text, then add a $!color attribute that
follows the pattern:

class Butterfly {
 has $!common-name = 'Unnamed butterfly';
 has $!color = 'White';

 method common-name is rw { $!common-name }
 method color is rw { $!color }
 }

my $butterfly = Butterfly.new;
$butterfly.common-name = 'Perly Cracker';
$butterfly.color = 'Vermillion';

put "{.common-name} is {.color}" with $butterfly;

4. You can do most of this problem with just the details from the chain of inheri‐
tance. The class names already have the information about the animal’s classifica‐
tion. To generate the full names you simply use the class names (except for Any
and Mu, hence the [0..*-3]):

class Animalia { }
class Arthropodia is Animalia { }
class Insecta is Arthropodia { }
class Lepidoptera is Insecta { }
class Nymphalidae is Lepidoptera { }
class Hamadryas is Nymphalidae {
 has $.genus = 'Hamadryas';
 has $.species;
 method full-name {
 my @classes = map { .^name }, (self.^mro)[0..*-3].reverse;
 say @classes;
 join ' ', @classes, $.species
 }
 method Str { "$.genus $.species" }
 }

my $butterfly = Hamadryas.new: :species('perlicus');
put $butterfly.full-name;

If you were actually representing species in your program this probably wouldn’t
be a good way to do it. But maybe it is. It depends on your task. With the names
as classes you could use smart matching to distinguish things:

given $thingy {
 when Monera { ... }
 when Protista { ... }
 when Fungi { ... }

404 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Any.html
https://docs.perl6.org/type/Mu.html

 when Plantae { ... }
 when Animalia { ... }
 }

5. Create a Meta class inside Butterfly. Declare it with my class to make it private.
Inside Meta track when the object was created and modified. Also keep a counter
of the number of updates. None of this is available outside of Butterfly. It’s con‐
venient to wrap it in its own class because none of this has anything to do with
something being a butterfly. If you were interested in doing this for your objects
you’d probably have this as a separate class available to everyone, but then you
wouldn’t be able to try private classes for this exercise:

class Butterfly {
 has $!meta;
 my class Meta {
 has $.created = now;
 has $.modified;
 has $.update-count;
 method update {
 $!modified = now;
 $!update-count++;
 }
 }

 submethod TWEAK { $!meta = Meta.new }

 method update { $!meta.update }
 method show-meta {
 put $!meta.update-count, ': ', $!meta.modified;
 }
 }

my $b = Butterfly.new;

for ^4 {
 $b.update;
 sleep 1;
 $b.show-meta;
 }

To set up the Meta object, use the TWEAK submethod to initialize it. At that point
the object has been completely constructed and you can initialize it without wor‐
rying about arguments and so on.
The particular output from show-meta isn’t as important as your ability to store
and retrieve data from it:

1: Instant:1528856314.611059
2: Instant:1528856315.616867

Exercise Answers | 405

3: Instant:1528856316.623853
4: Instant:1528856317.625833

Answers to Chapter 13 Exercises
1. The code for ScientificName is the same as for CommonName. Both of them store

a Str:
role ScientificName {
 has $.scientific-name is rw = 'Thingus anonymous';
 }

class Butterfly does ScientificName {}

my $name = Butterfly.new: :scientific-name('Hamadryas perlicus');
put $name.scientific-name; # Hamadryas perlicus

2. Here’s a role that fills in the taxonomy for butterflies. It’s the same as Scientific
Name but with fixed values for some of the levels:

role Lepidoptera {
 # these are fixed
 has $.kingdom = 'Animalia';
 has $.phylum = 'Arthropoda';
 has $.class = 'Insecta';
 has $.order = 'Lepidoptera';

 # these are changeable
 has $.family is rw;
 has $.genus is rw;
 has $.species is rw;
 }

class Butterfly does Lepidoptera {}

my $butterfly = Butterfly.new:
 :family('Nymphalidae'),
 :genus('Hamadryas'),
 :species('perlicus'),
 ;

say $butterfly;

The output shows that all the levels in the taxonomy show up in the object:
Butterfly.new(kingdom => "Animalia", phylum => "Arthropoda",
class => "Insecta", order => "Lepidoptera",
family => "Nymphalidae", genus => "Hamadryas",
species => "perlicus")

406 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Str.html

From there you can add CommonName:
class Butterfly does Lepidoptera does CommonName {}

my $butterfly = Butterfly.new:
 :family('Nymphalidae'),
 :genus('Hamadryas'),
 :species('perlicus'),
 :common-name('Perly Cracker')
 ;

say $butterfly;

The output includes the common name:
Butterfly.new(common-name => "Perly Cracker",
kingdom => "Animalia", phylum => "Arthropoda",
class => "Insecta", order => "Lepidoptera",
family => "Nymphalidae", genus => "Hamadryas",
species => "perlicus")

3. The Lepidoptera role is the same except for a method that constructs a Str
based on the genus and species. The class Butterfly then has that method and
you can call it on objects of that class:

role Lepidoptera {
 # these are fixed
 has $.kingdom = 'Animalia';
 has $.phylum = 'Arthropoda';
 has $.class = 'Insecta';
 has $.order = 'Lepidoptera';

 # these are changeable
 has $.family is rw;
 has $.genus is rw;
 has $.species is rw;

 # this is the difference in this exercise
 method binomial-name () { "$.genus $.species" }
 }

role CommonName {
 has $.common-name is rw;
 }

class Butterfly does Lepidoptera does CommonName {}

my $butterfly = Butterfly.new:
 :family('Nymphalidae'),
 :genus('Hamadryas'),
 :species('perlicus'),
 ;

Exercise Answers | 407

https://docs.perl6.org/type/Str.html

put $butterfly.binomial-name;

The output is the two-part name:
Hamadryas perlicus

4. You aren’t writing much new code to satisfy this exercise. You need to create four
files: two for the roles, one for the class, and one for your program. The roles
each get their own files. The Lepidoptera role goes into Lepidoptera.pm6:

role Lepidoptera {
 # these are fixed
 has $.kingdom = 'Animalia';
 has $.phylum = 'Arthropoda';
 has $.class = 'Insecta';
 has $.order = 'Lepidoptera';

 # these are changeable
 has $.family is rw;
 has $.genus is rw;
 has $.species is rw;

 # this is the difference in this exercise
 method binomial-name () { "$.genus $.species" }
 }

The CommonName role goes into CommonName.pm6:
role CommonName {
 has $.common-name is rw;
 }

The Butterfly class goes into a file named Butterfly.pm6. The code is short. You
load the two roles, then use them when you define the empty class:

use Lepidoptera;
use CommonName;

class Butterfly does Lepidoptera does CommonName {}

You might have to adjust your library search path to find your modules. You
already know the rest of the program file:

use lib <.>; # The current working directory
use Butterfly;

my $butterfly = Butterfly.new:
 :family('Nymphalidae'),
 :genus('Hamadryas'),
 :species('perlicus'),
 ;

408 | Appendix A: Exercise Answers

put $butterfly.binomial-name;

5. In Chapter 12 you did a similar exercise with inheritance. That’s probably the
better way to approach a taxonomy like this since each level is a more specific
thingy, but in this chapter you’re practicing your use of roles. This exercise isn’t a
demonstration of how you should organize real-world complexity.
Here’s the program you want to work. You need to create the infrastructure to
support it:

use lib <.>;
use Hamadryas;

my $cracker = Hamadryas.new:
 :species('perlicus'),
 :common-name('Perly Cracker'),
 ;

put $cracker.binomial-name;
put $cracker.common-name;

Create the Hamadryas class that will be a more specific Butterfly (so, inheri‐
tance). You can pull in roles for CommonName and BinomialName. The next higher
taxonomic order is the family Nymphalidae, which gets its own role. Each level
only knows the level above it. The Hamadryas class knows the genus and adds a
species attribute that you can set yourself:

use Nymphalidae;
use CommonName;
use BinomialName;

class Hamadryas
 does Nymphalidae
 does CommonName
 does BinomialName
 {
 has $.genus = 'Hamadryas';
 has $.species is rw;
 }

You might as well start with a role for the binomial name. Previously you’d put
that in the Lepidoptera class. It’s more appropriate for its own role:

role BinomialName {
 method binomial-name { join ' ', $.genus, $.species }
 }

The Nymphalidae role is in its own file named Nymphalidae.pm6. This role sets
the family attribute and does the next taxonomic role above it—the order Lepi‐
doptera:

Exercise Answers | 409

use Lepidoptera;
role Nymphalidae does Lepidoptera { has $.family = 'Nymphalidae' }

The Lepidoptera role is similar and lives in Lepidoptera.pm6:
use Insecta;
role Lepidoptera does Insecta { has $.order = 'Lepidoptera' }

This continues through Insecta in Insecta.pm6:
use Arthropodia;
role Insecta does Arthropodia { has $.class = 'Insecta' }

And Arthropodia in Arthropodia.pm6:
use Animalia;
role Arthropodia does Animalia { has $.phylum = 'Arthropodia' }

And ultimately Animalia in Animalia.pm6:
role Animalia { has $.kingdom = 'Animalia' }

If you included methods in any of these roles they would be in your Hamadryas
class, but not through inheritance. After you’ve set up your roles and classes the
initial program should output the binomial name.

Answers to Chapter 14 Exercises
1. For what it’s worth, the fastest way to tell if something is a prime is to already

know the answer (and you already know a lot of primes). Here’s a simple solu‐
tion:

my $primes = any(2, 3, 5, 7);

for 1 .. 10 {
 put "$_ is { $_ == $primes ?? '' !! 'not' } prime";
 }

This outputs:
1 is not prime
2 is prime
3 is prime
4 is not prime
5 is prime
6 is not prime
7 is prime
8 is not prime
9 is not prime
10 is not prime

410 | Appendix A: Exercise Answers

Perl 6 mostly has this built in. You could have easily done this without the
Junction:

for 1 .. 10 {
 put "$_ is { $_.is-prime ?? '' !! 'not' } prime";
 }

This has to decide if a number is prime. For really big numbers, that might be
quite the task. But storing all those primes is a big task too.
You may have done something slightly different. You might have created your
Junction without knowing which numbers are prime. You can let .is-prime and
grep figure that out:

my $primes = any(grep { $_.is-prime }, 1 .. 100);

for 1 .. 100 {
 put "$_ is { $_ == $primes ?? '' !! 'not' } prime";
 }

2. Here it is with a MAIN subroutine and a slurpy parameter. It requires at least one
argument:

sub MAIN (*@args where @args.elems > 0) {
 put all(@args).is-prime ??
 "All of <@args[]> are prime"
 !!
 "Some of <@args[]> are not prime";
 }

3. The first part is straightforward and much like the answers to the previous exer‐
cises:

sub MAIN (*@args where @args.elems > 0) {
 put none(@args).is-prime ??
 "None of <@args[]> are prime"
 !!
 "Some of <@args[]> are prime";
 }

The second part of the problem seems tricky at first, but that’s just the second
branch of the ?? !!. If the none is False then you know that one of the numbers
must be prime.

4. Here’s how you might have done it. Start with a way to create the secret numbers
then show yourself them so you don’t drive yourself crazy guessing while you
debug your program:

my @secret-numbers = map { 100.rand.Int }, 1 .. 3;
put "The secret numbers are @secret-numbers[]";
my @guessed;

Exercise Answers | 411

https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html

Create the various Junctions all at once. This simplifies the conditions later:
my $any = any @secret-numbers;
my $all = all @secret-numbers;
my $one = one @secret-numbers;
my $none = none @secret-numbers;

Inside a loop, use given-when to figure out what to do. Get a guess, but give up if
the user didn’t enter anything. Check their guess to see if it is not an integer or if
they’ve already guessed it. In those cases, use next to skip the rest and get
another guess.
Use the any Junction to see if they guessed another number. You’ve already skip‐
ped previous correct guesses, so this should be a new number. Add that to
@guesses. End the game if @guesses has the same number of elements as
@secret-numbers. The proceed at the end of the block lets the given try more of
the whens.
If the guess is larger than any of the secret numbers, decide how much more
information you want to give. If the guess is larger than all of them, say so. If it’s
larger than only one of them or some (i.e., two) of them, tell them that. That way
they have more hints. Do the same if the guess is smaller than all, one, or some of
the numbers. Finally, tell them if their guess is larger or smaller than none of the
numbers (although you can leave that off since larger than all is also smaller than
none):

loop {
 last if @guessed.elems == @secret-numbers.elems;

 my $guess = prompt "=== (@guessed[]) Guess> ";
 last unless $guess;

 given $guess {
 when .Numeric !~~ Int {
 put "You didn't guess a number!"; next }
 when @guessed.grep: $guess {
 put "You already guessed $_!"; next }
 when $_ == $any {
 put "$_ was one!";
 @guessed.push: $_;
 put "So far you have guessed @guessed[]!";
 last if @guessed.elems == @secret-numbers.elems;
 proceed;
 }

 when $_ > $any {
 if $_ > $all { put "$_ is larger than all" }
 elsif $_ > $one { put "$_ is larger than one" }
 else { put "$_ is larger than some" }

412 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Junction.html
https://docs.perl6.org/type/Junction.html

 proceed;
 }
 when $_ < $any {
 if $_ < $all { put "$_ is smaller than all" }
 elsif $_ < $one { put "$_ is smaller than one" }
 else { put "$_ is smaller than some" }
 proceed;
 }
 when $_ > $none {
 put "$_ is larger than none";
 proceed;
 }
 when $_ < $none {
 put "$_ is smaller than none";
 proceed;
 }
 }
 }

If you did this without the given you might think it’s a bit cleaner (I do). You
could have used $_ instead of $guess (or a shorter variable name). With a series
of ifs you don’t need the proceeds to move on to the next when:

my @secret-numbers = map { 100.rand.Int }, 1 .. 3;
put "The secret numbers are @secret-numbers[]";
my @guessed;

my $any = any @secret-numbers;
my $all = all @secret-numbers;
my $one = one @secret-numbers;
my $none = none @secret-numbers;

loop {
 last if @guessed.elems == @secret-numbers.elems;

 my $guess = prompt "=== (@guessed[]) Guess> ";
 last unless $guess;

 if $guess.Numeric !~~ Int {
 put "You didn't guess a number!"; next }
 if @guessed.grep: $guess {
 put "You already guessed $_!"; next }
 if $guess == any(@secret-numbers) {
 put "$guess was one!";
 @guessed.push: $guess;
 put "So far you have guessed @guessed[]!";
 last if @guessed.elems == @secret-numbers.elems;
 }

 if $guess > $any {

Exercise Answers | 413

 if $guess > $all { put "$guess is larger than all" }
 elsif $guess > $one { put "$guess is larger than one" }
 else { put "$guess is larger than some" }
 }
 if $guess < $any {
 if $guess < $all { put "$guess is smaller than all" }
 elsif $guess < $one { put "$guess is smaller than one" }
 else { put "$guess is smaller than some" }
 }
 if $guess > $none { put "$guess is larger than none" }
 if $guess < $none { put "$guess is smaller than none" }
 }

5. Get the answer from the prompt routine, lowercase it with .lc, break it up
with .words, and coerce it into a Set. With a Map you used :exists to check that
a color is a key. With a Set use ∈ to check if an element is a member:

my $colors = prompt "Enter some colors on one line: ";
my $color-set = $colors.lc.words.Set;

loop {
 my $color = prompt("Try a color: ").trim.lc;
 last unless $color;
 put $color ∈ $color-set ??
 "\t$color is in the set"
 !!
 "\t$color is not in the set"
 ;
 }

When you input some colors the spacing and capitalization don’t matter:
% perl6 color-set.p6
Enter some colors on one line: red green blue
Try a color: blue
 blue is in the set
Try a color: Blue
 blue is in the set
Try a color: Blue
 blue is in the set
Try a color: green
 green is in the set
Try a color: gray
 gray is not in the set

6. The hardest part of this problem is probably constructing the Sets. There are
many ways that you could have done this. This solution uses a subroutine that
creates a Range, picks 10 elements from it, and turns it into a Set. After that it’s a
matter of using the right operators:

414 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Map.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/Range.html
https://docs.perl6.org/type/Set.html

sub make-set (Int:D $a, Int:D $b where $a < $b) {
 ($a .. $b).pick(10).Set
 }

my $set-a = make-set(1, 50);
my $set-b = make-set(1, 50);

my $union = $set-a ∪ $set-b;
my $intersection = $set-a ∩ $set-b;

put qq:to/END/;
set A: $set-a
set B: $set-b

union: $union
intersection: $intersection
END

To check that it’s actually working you can output the two starting Sets:
% perl6 set-operations.p6
set A: 12 18 41 32 5 46 3 35 25 22
set B: 30 18 11 40 21 10 49 2 24 8

union: 30 41 18 12 11 40 32 21 46 5 10 3 49 22 25 35 8 24 2
intersection: 18

If you wanted to improve this you could get a List of their keys and sort those:
my $set-a = make-set(1, 50);
my $set-b = make-set(1, 50);

my $union = $set-a ∪ $set-b;
my $intersection = $set-a ∩ $set-b;

put qq:to/END/;
set A: {$set-a.keys.sort}
set B: {$set-b.keys.sort}

union: {$union.keys.sort}
intersection: {$intersection.keys.sort}
END

sub make-set (Int:D $a, Int:D $b where $a < $b) {
 ($a .. $b).pick(10).Set
 }

This output might be easier to read:
% perl6 set-operations-sorted.p6
set A: 1 3 4 9 15 21 22 35 45 50
set B: 2 3 13 14 21 31 34 38 42 44

Exercise Answers | 415

https://docs.perl6.org/type/Set.html
https://docs.perl6.org/type/List.html

union: 1 2 3 4 9 13 14 15 21 22 31 34 35 38 42 44 45 50
intersection: 3 21

Answers to Chapter 15 Exercises
1. An easy solution is a for that skips the nonmatching lines:

for lines() {
 next unless /Hamadryas/;
 .put
 }

For a simple pattern like this you might have also used .contains.
2. This answer is like the one for the first exercise, but with a different pattern:

my $pattern = rx/ \d\d\d /;

for lines() {
 next unless $pattern;
 .put;
 }

This is a bit longer than it needs to be because I haven’t shown you quantifiers
yet.

3. Here’s one way to do it. The tricky part of the program is the pattern, but you’ve
already seen it:

/ <:Letter + :Number> /

The .chr method turns a number into the code point it represents. Once you
have the character you can match against it. If it doesn’t match, skip the rest of
the block. Accumulate the count for anything you didn’t skip.
The LAST phaser outputs a message after the last time the block executes. This is a
nice construct for keeping all of the variables and values inside the same block.
Otherwise you’d need to define everything outside the block so you could access
it after the for loop finished:

my ($lower, $upper) = (0x0001, 0xFFFD);

for $lower .. $upper {
 state $count = 0;
 next unless .chr ~~ / <:Letter + :Number> /;
 $count++;
 LAST {
 printf "There are %d characters that are letters or numbers\n" ~
 "That's %.1f%% of the characters between %#x and %#x\n",
 $count, 100*$count / ($upper - $lower), $lower, $upper;

416 | Appendix A: Exercise Answers

 }
 }

This outputs:
There are 49483 characters that are letters or numbers
That's 75.5% of the characters between 0x1 and 0XFFFD

4. Use a character class that matches all the letters but knocks out the vowels. If that
pattern matches, skip the line. Output what makes it past that. You might find
that many blank lines match this, so skipping lines that don’t have something
other than whitespace might be useful:

for lines() {
 next if / <:Letter - [aeiou]> /;
 next unless / \S /;
 .put;
 # a e i
 }

Adding a line that only has letter characters that are vowels can help your testing.
5. Here’s one way to do it:

my $pattern = rx/ ei /;

for lines() {
 next unless $pattern;
 .put;
 }

You can also use an explicit variable:
my $pattern = rx/ ei /;

for lines() -> $line {
 next unless $line ~~ $pattern;
 $line.put;
 }

You might have used m// instead:
for lines() -> $line {
 next unless $line ~~ m/ ei /;
 $line.put;
 }

You can run this by specifying files as arguments:
% perl6 matching_lines.p6 file1 file2

You can redirect input:
 % perl6 matching_lines.p6 < file1

Or pipe input:

Exercise Answers | 417

% ls | perl6 matching_lines.p6

If you don’t have your own file to search, you can use one of the files in the
Downloads section of this book’s website.

6. The answer is simpler than the exercise makes it out to be. Take each line of input
and break it up by tabs. Select the column that you want:

for lines() {
 put .split(/\t/).[2]
 }

A more sophisticated solution lets you pick the column from the command line.
This one loses the feature of multiple files (not hard to fix but left up to you):

sub MAIN (Str:D $file, Int:D $column = 2) {
 for $file.IO.lines() {
 put .split(/\t/).[$column]
 }
 }

But what happens when a line doesn’t have the column number that you request?
Break the line into parts and check how many parts you got before you try to
extract the column. If you track the line number you can give the person a hint
about where the file has a problem:

sub MAIN (Str:D $file, Int:D $column = 2) {
 for $file.IO.lines() {
 state $line = 0;
 $line++;
 my @parts = .split(/\t/);
 if $column > @parts.end {
 $*ERR.put: "Column out of range at line $line";
 next;
 }
 put .split(/\t/).[$column]
 }
 }

Previously you did this exercise and used .words to break up the line. That would
accidentally work for this exercise because the data doesn’t have significant spaces
in it. If a species was perlicus sixus, for instance, .words would make two ele‐
ments out of that.

Answers to Chapter 16 Exercises
1. The butterfly_census.txt file is in the Downloads section of the book’s website

(Preface). This file has a long list of species names with repetitions. Your task is to
find the ones that have a repeated ii and output the number of distinct names.

418 | Appendix A: Exercise Answers

https://www.learningperl6.com/
https://www.learningperl6.com/

Use a for loop to read a file line by line and add the lines with one or more con‐
secutive i’s to a Hash. The Hash acculumator can use the keys to create a distinct
list, then output that list:

my $file = 'butterfly_census.txt';
my %ii-census;

for $file.IO.lines -> $line {
 if $line ~~ /ii+/ {
 %ii-census{$line}++
 }
 }

%ii-census.keys.sort.join("\n").put;

This doesn’t count them, but it allows you to see what it will count. When you
know you have it right you can output the number of keys:

%ii-census.keys.elems.put;

Wrapping that in a MAIN subroutine allows you to specify a file on the command
line:

sub MAIN ($file = 'butterfly_census.txt') {
 my %ii-census;

 for $file.IO.lines -> $line {
 %ii-census{$line}++ if $line ~~ /ii+/;
 }

 %ii-census.keys.elems.put;
 }

Perhaps you went for the count directly but you still need a way to discard previ‐
ously encountered names:

sub MAIN ($file = 'butterfly_census.txt') {
 my %ii-census;
 my $count;

 for $file.IO.lines -> $line {
 $count++ if ($line ~~ /ii+/ and %ii-census{$line}++ == 0);
 }

 put $count;
 }

You could forget about for and use .grep with your pattern to find the ones that
match, then use .unique to make a list of distinct values:

Exercise Answers | 419

https://docs.perl6.org/type/Hash.html
https://docs.perl6.org/type/Hash.html

sub MAIN ($file = 'butterfly_census.txt') {
 put $file.IO.lines.grep(/i+/).unique.elems
 }

2. This answer is much like any of the answers for the previous exercise, but with a
different pattern:

sub MAIN ($file = 'butterfly_census.txt') {
 put $file.IO.lines.grep(/a <[n s]>* a/).unique.join: "\n";
 }

Your pattern has two a’s with some stuff in the middle. That’s a character class
that will match an n or an s.

3. Here’s a basic counting program. The pattern part is the line with next; you’ll
skip everything that doesn’t match. After that you use the line as the key for the
Hash. The LAST phaser outputs a summary at the end:

for lines() {
 state %Count;
 next unless / <[aeiou]> ** 4 /;
 %Count{$_}++;
 LAST {
 for %Count.keys.sort({ %Count{$^a} }).reverse {
 printf "%4d %s\n", %Count{$_}, $_;
 }
 }
 }

There are two species that have four vowels in a row:
923 Chorinea octauius
235 Diaeus variegata

4. The program is almost the same as the one from the previous exercise:
for lines() {
 state %Count;
 next unless / [a <-[aeiou]>] ** 4 /;
 %Count{$_}++;
 LAST {
 for %Count.keys.sort({ %Count{$^a} }).reverse {
 printf "%4d %s\n", %Count{$_}, $_;
 }
 }
 }

The pattern groups two things. There’s the literal a, then a character class that
subtracts the vowels:

[a <-[aeiou]>]

Repeat that exactly four times:
[a <-[aeiou]>] ** 4

420 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Hash.html

Using the butterfly census file as input finds some interesting matches. Some‐
times a space is the character that comes after the a:

892 Vanessa atalanta
682 Potamanaxas laoma
623 Paralasa jordana
552 Matapa aria
378 Protogoniomorpha anacardii
359 Potamanaxas effusa
334 Potamanaxas paralus
247 Potamanaxas andraemon
166 Potamanaxas melicertes

5. Use this pattern to find the text between underscores. The .+? won’t go past the
next underscore:

/ '_' .+? '_' /

The rest of the program goes through each line. To get all the matches on a line
use the :global adverb:

for lines() {
 my @matches = m:global/ '_' .+? '_' /;
 say @matches if @matches.elems > 0;
 }

Here are a few lines at the end of the output:
(｢_Pieris_｣)
(｢_Mamestra_｣)
(｢_Bombyx_｣)
(｢_Thecla_｣)
(｢_The Small Copper_｣ ｢_Polyommatas Phlaeas_｣)
(｢_Brunneata_｣)

Try this without the ? to see how the output changes.
6. Use a global match to extract all the text between underscores. Capture the entire

text, but also define subcaptures for the genus and species. There’s some extra
data between underscores (italicized words), but you know a little more about
scientific names: the genus is capitalized and the species isn’t. For the input data
they are also limited to the Latin alphabet:

for lines() {
 my $matches =
 m:global/
 _
 (
 $<genus>=(<[A..Z]><[a..z]>+)
 \s
 $<species>=(<[a..z]>+)
)
 _

Exercise Answers | 421

 /;
 next unless $matches.elems > 0;
 say $matches;
 }

You’ll see another way to write this in a couple of sections. You can keep the start‐
ing and ending text together and specify the middle part at the end:

my $matches =
 m:global/ _ ~ _
 (
 $<genus>=(<[A..Z]><[a..z]>+)
 \s
 $<species>=(<[a..z]>+)
)
 /;

It’s often a good idea to start small to make sure the meat of your program is
doing what you think it is. After that you can solve the other parts. The rest of the
program is counting and outputting things:

for lines() {
 state %Found;
 my $matches =
 m:global/
 _
 (
 $<genus>=(<[A..Z]><[a..z]>+)
 \s
 $<species>=(<[a..z]>+)
)
 _
 /;
 next unless $matches.elems > 0;
 for @$matches -> $m {
 put ~$m[0];
 %Found{$m[0]<genus>}{$m[0]<species>}++;
 }

 LAST {
 my @species-count =
 %Found
 .keys
 .map({$^k => %Found{$^k}.keys.elems})
 .sort(*.value)
 .reverse;
 for @species-count {
 last if $++ > 5;
 printf "%2d %s\n", $^p.kv.reverse;
 }

422 | Appendix A: Exercise Answers

 }
 }

The end of the output looks something like this:
4 Populus
3 Eupithecia
3 Salix
3 Crambus
3 Trifolium
3 Melanippe

7. Go through all of the characters to match. This answer only goes up through
those with ordinal values between 0 and 0xFFFF. Turn each number into a char‐
acter with .chr then match against that:

for 0 .. 0xFFFF -> $ord {
 my $char = $ord.chr;
 next unless $char ~~ /\w/;
 next if $char ~~ / <:Alpha> /;
 put "[$ord] $char";
 }

When I ran this exercise I found 371 “word” characters that are not letters.
Almost all of them are numbers, but there is also the underscore character.
Everything else is a nonword character, with the inclusion of the beginning and
the end of a Str.

8. Here’s a quick way to do it. Put the names in an Array and combine those with
||:

my @genus = < Lycaena Zizeeria Hamadryas >;
for lines() {
 state %Species;
 LAST { put "Found {%Species.keys.elems} species" }
 next unless m/ || @genus /;
 %Species{$_}++;
 .put;
 }

You could have put those directly in the pattern:
next unless m/
 || < Lycaena Zizeeria Hamadryas >
 /;

Or even spread out the options:
next unless m/
 || Lycaena
 || Zizeeria

Exercise Answers | 423

https://docs.perl6.org/type/Str.html
https://docs.perl6.org/type/Array.html

 || Hamadryas
 /;

Answers to Chapter 17 Exercises
1. Here’s a first stab at this. This one uses regex for TOP so there’s no significant

whitespace:
grammar OctalNumber {
 regex TOP { [0o?]? <[0..7]>+ }
 }

my @numbers = qw/
 123 0 0123
 8 129
 0o456 o345
 /;

for @numbers -> $number {
 put "｢$number｣ ",
 OctalNumber.parse($number) ?? "matched" !! "failed";
 }

The output is:
｢123｣ matched
｢0｣ matched
｢0123｣ matched
｢8｣ failed
｢129｣ failed
｢0o456｣ matched
｢o345｣ failed

2. Here’s a simple grammar. The tricky part is the inclusion of the ' and -
characters; in an identifier those have to come before an alphabetic character:

grammar Variable {
 token TOP { <sigil> <identifier> }
 token alpha { <:Letter> }
 token number { <:Number> }
 token other { <['-]> }

 token sigil { <[$@%]> }
 token identifier {
 <alpha> [<alpha> | <number> | <other><alpha>]*
 }
 }

my @candidates = qw/
 sigilless $scalar @array %hash

424 | Appendix A: Exercise Answers

 $123abc $abc'123 $ab'c123
 $two-words $two- $-dash
 /;

for @candidates -> $candidate {
 my $result = Variable.parse($candidate,);
 say "｢$candidate｣ ", $result ?? 'Parsed!' !! 'Failed!';
 }

Here’s the output:
｢sigilless｣ Failed!
｢$scalar｣ Parsed!
｢@array｣ Parsed!
｢%hash｣ Parsed!
｢$123abc｣ Failed!
｢$abc'123｣ Failed!
｢$ab'c123｣ Parsed!
｢$two-words｣ Parsed!
｢$two-｣ Failed!
｢$two'｣ Failed!
｢$-dash｣ Failed!

3. Here’s a simple way to turn an octal number into its decimal representation. It’s
mostly the same as the code in the chapter:

class OctalActions {
 method digits ($/) {
 put "｢$/｣ is ｢{ parse-base(~$/, 8) }｣"; # or $/.Str
 }
 }

grammar OctalNumber {
 regex TOP { <.prefix>? <digits> }
 regex prefix { [0o?] }
 regex digits { <[0..7]>+ }
 }

my $number = '0o177';
my $result = OctalNumber.parse(
 $number, :actions(OctalActions)
);

The output shows the decimal version of 0177:
｢177｣ is ｢127｣

If you did the extra credit work, you might have done it like this:
class OctalActions {
 method digits ($/) {
 put "｢$/｣ is ｢{ parse-base(~$/, 8) }｣"
 }

Exercise Answers | 425

 }

grammar OctalNumber {
 regex TOP { <.prefix>? <digits> }
 regex prefix { [0o?] }
 regex digits { <[0..7]>+ }
 }

loop {
 my $number = prompt("octal number> ");
 last unless try $number.chars;
 my $result = OctalNumber.parse(
 $number, :actions(OctalActions)
);
 put "Failed on ｢$number｣" unless $result.so;
 }

The output shows that it handles octal numbers, fails on nonoctal numbers, and
quietly exits when there’s no number:

octal number> 177
｢177｣ is ｢127｣
octal number> 0177
｢177｣ is ｢127｣
octal number> 0o177
｢177｣ is ｢127｣
octal number> 198
｢1｣ is ｢1｣
Failed on ｢198｣
octal number> 777
｢777｣ is ｢511｣
octal number> 377
｢377｣ is ｢255｣
octal number>

The prompt routine was quite handy there.
4. Here’s a possible grammar for a dotted-decimal IP address. It uses the <?{}> to

look at the matched digits and assert something about the number:
grammar DottedDecimal {
 token TOP { <digits> ** 4 % '.' }
 regex digits { (<[0..9]> ** 3) <?{ 0 <= $0 <= 255 }> }
 }

The action class isn’t that hard. Each digits capture shows up in an Array. The
high octet is the first element, so shift up those bits 24 places, and shift the next
two elements in the Array 16 and 8 places (leave the last one alone, although you
could shift it 0 places). Add all of those results with the [+] reduction operator.
That sum is the value you make:

426 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Array.html
https://docs.perl6.org/type/Array.html

class DottedDecimal::SimpleActions {
 method TOP ($/) {
 # get the list of digits and shift each octet over the
 # right number of bits
 make [+] (
 $<digits>.[0] +< 24,
 $<digits>.[1] +< 16,
 $<digits>.[2] +< 8,
 $<digits>.[3]
);
 }
 }

my $string = '192.168.1.137';
my $match = DottedDecimal.parse(
 $string,
 :actions(DottedDecimal::SimpleActions)
);
say $match;
say $match.made.fmt('%X');

If you like the hyper- and cross operators, you might have done something more
like this:

class DottedDecimal::Actions {
 method TOP ($/) {
 # get the list of digits and shift each octet over the
 # right number of bits
 make [+] (
 $<digits> # the octets, as an Array
 »+<« # hyper bit shift +<
 ((0 .. $<digits>.end) X* 8).reverse
);
 }
 }

5. I won’t reproduce the code here because it would be the same as in the chapter.
6. The first part of the solution fetches the file over the web, but you could save it

locally and slurp its contents instead:
use HTTP::UserAgent;

my $ua = HTTP::UserAgent.new;
$ua.timeout = 10;

my $url = 'https://goo.gl/sPUwjp'; # or go to GitHub directly
my $response = $ua.get($url);

my $data = do with $response {
 .is-success ?? .content !! die .status-line
 }

Exercise Answers | 427

The grammar and the roles are the same examples from the chapter:
grammar Grammar::CSV {
 token TOP { <record>+ }
 token record { <value>+ % <.separator> \R }
 token separator { <.ws> ',' <.ws> }
 token value {
 '"' # quoted
 <([<-["]> | <.escaped-quote>]*)>
 '"'
 |
 <-[",\n\f\r]>+ # non-quoted (no vertical ws)
 |
 '' # empty
 }

 token escaped-quote { '""' }
 }

role DoubledQuote { token escaped-quote { '""' } }
role BackslashedQuote { token escaped-quote { '\\"' } }

It’s the action class that’s new. To handle the double-quote escaping you can pro‐
cess the value to substitute a single double quote for any form of the escaped
version:

class UnescapeDoubleQuote {
 method TOP ($/) { make $<record>».made.flat }
 method record ($/) { make [$<value>».made.flat] }
 method value ($/) {
 make $/.Str.subst: / ['\\' || '"'] '"' /, '"', :g;
 }
 }

my $csv-parser = Grammar::CSV.new but DoubledQuote;

my $match = $csv-parser.parse:
 $data,
 :actions(UnescapeDoubleQuote);

say $match.made // 'Failed!';

Answers to Chapter 18 Exercises
1. You need two things to make this work, a Supplier to emit the values and a tap

to read them:
my $supplier = Supplier.new;
my $tap = $supplier.Supply.tap:

428 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Supplier.html

 { state %Seen; ! %Seen{$^a}++ ?? put $^a !! False };
$supplier.emit($_) for lines();

This solution uses lines() to read input from the files on the command line:
% perl6 emitter.p6 butterfly_census.txt

You’ve reimplemented the uniq program!
2. This program is a series of steps where you wait three seconds between each. The

first tap runs during most of the program and the second tap runs for a short
period in the middle:

my $interval = 3;
my $supply = Supply.interval(1).share;

sleep $interval;
my $first-tap = $supply.tap: { put "First got $^a" };

sleep $interval;
my $second-tap = $supply.tap: { put "Second got $^a" };

sleep $interval;
$second-tap.close;

sleep $interval;
$first-tap.close;

put 'Done';

The output shows that the first tap starts at 3 because the live Supply has already
emitted some numbers. When the second tap runs, it gets the same number as
the first tap:

First got 3
First got 4
First got 5
First got 6
Second got 6
First got 7
Second got 7
First got 8
Second got 8
First got 9
First got 10
First got 11
Done

3. Here’s a simple Channel. Each time through the loop it gets a Pair of line number
and text. It checks if the line number is a prime number. If so it outputs that line:

my $channel = Channel.new;
$channel.Supply.tap: -> Pair:D $p {

Exercise Answers | 429

https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Channel.html
https://docs.perl6.org/type/Pair.html

 put "{$p.key}: {$p.value}" if $p.key.is-prime
 };

for lines() { $channel.send: $++ => $_ }

Using the program file as its own input gives this result:
2: put "{$p.key}: {$p.value}" if $p.key.is-prime
3: };
5: for lines() { $channel.send: $++ => $_ }

4. The change is slight in typing and large in effect. By calling .share you turn the
Supply into a live one. Additional taps start at the current value instead of start‐
ing over:

my $supply = Supply.interval(1).share;

react {
 whenever $supply { put "Got $^a" }
 whenever True { put 'Got something that was true' }
 whenever Promise.in(5) { put 'Timeout!'; done }
 }

put "React again";

react {
 whenever $supply { put "Got $^a" }
 }

END put "End of the program";

The output changes in two ways. There’s no Got 0 because the Supply is already
running and has supplied its first value by the time a whenever can tap it. The
second react taps the Supply again and picks up where the interval left off:

Got something that was true
Got 1
Got 2
Got 3
Got 4
Got 5
Timeout!
React again
Got 6
Got 7
...

If you inserted a sleep between the two reacts you’d skip values in the interval.
5. You don’t need to install anything because IO::Notification is part of the lan‐

guage. .watch-path returns a Supply which you can use in a react. This pro‐
gram runs forever:

430 | Appendix A: Exercise Answers

https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/Supply.html
https://docs.perl6.org/type/IO::Notification.html
https://docs.perl6.org/type/Supply.html

sub MAIN (Str:D $s where *.IO.e, $timeout = 10) {
 my $supply = IO::Notification.watch-path($s);

 react {
 whenever $supply { put "{.path}: {.event}" }
 }
 }

If you give this a file it watches only that file. If you give it a directory it checks
the directory and anything in it (but it doesn’t look inside subdirectories—install
IO::Notification::Recursive) for that.
There are various things you could do to stop the program. You might want it to
run for a certain time and then stop. An .in Promise would work for that:

sub MAIN (Str:D $s where *.IO.e, $timeout = 10) {
 my $supply = IO::Notification.watch-path($s);

 react {
 whenever $supply { put "{.path}: {.event}" }
 whenever Promise.in($timeout) { put "Stopping"; done; }
 }
 }

Or you could use an interval to periodically check if enough changes have been
made:

sub MAIN (Str:D $s where *.IO.e) {
 my $supply = IO::Notification.watch-path($s);
 my $changes = 0;

 react {
 whenever $supply { put "{.path}: {.event}"; $changes++ }
 whenever Supply.interval(1) {
 if $changes > 10 {
 put 'Stopping';
 done;
 }
 }
 }
 }

Finally, you can create a Supply that handles a signal (although you did not see
that in the chapter). SIGINT is the signal that Control-C sends. Intercept that so
you can run your code to clean up and exit the program:

sub MAIN (Str:D $s where *.IO.e) {
 put "PID is $*PID";
 my $supply = IO::Notification.watch-path($s);
 my $changes = 0;

 react {

Exercise Answers | 431

https://docs.perl6.org/type/Promise.html
https://docs.perl6.org/type/Supply.html

 whenever $supply { put "{.path}: {.event}"; $changes++ }
 whenever signal(SIGINT) {
 put 'Stopping';
 done;
 }
 }
 }

Answers to Chapter 19 Exercises
1. Here’s a simple program that chooses a list of strings based on the current operat‐

ing system. Whatever ends up in @command becomes the argument to run:
my @command = $*DISTRO.is-win ??
 < cmd /c dir /OS >
 !!
 < ls -lrS >
 ;

my $proc = run @command, :out;

To filter those use .grep:
for $proc.out.lines.grep(rx/7/) -> $line {
 put $++, ': ', $line;
 }

Here’s the output on a Unix machine (with some columns elided for space):
% perl6 ls-exercise.p6
0: -rwxrwxr-x@ 72 Jan 6 19:36 shell-perl6-exit1.p6
1: -rw-r--r--@ 162 Apr 25 20:27 find.p6
2: -rw-rw-r--@ 177 Apr 26 13:35 ls-exercise.p6
3: -rw-r--r--@ 217 Apr 25 21:42 write-to-proc.p6
4: -rwxrwxr-x@ 277 Jan 6 19:36 channels.p6
5: -rw-rw-r--@ 667 Jan 6 19:36 respawn.p6

And the same on Windows:
C:\ perl6 ls-exercise.p6
> perl6 ls-exercise.p6
0: 01/20/2018 10:22 AM 75 shell-perl6-exit1.p6
1: 01/20/2018 10:22 AM 687 respawn.p6
2: 01/20/2018 10:22 AM 700 search.p6
3: 2 Dir(s) 37,557,620,736 bytes free

2. This answer is similar to what you’ve already done with run but with an
extra .spawn step involved:

my $is-win = $*DISTRO.is-win;
my @command = $is-win ?? < cmd /c dir> !! < ls >;

432 | Appendix A: Exercise Answers

my $proc = Proc.new: :out;
$proc.spawn: @command;
$proc.out.slurp.put;

3. Start with the program from the chapter. Wrap a MAIN around it to accept the
command-line argument.
In the react Block, intercept the output and count the lines. Call done when
you’ve seen enough input. You can add a signal handler and a timeout too:

sub MAIN (Int:D $max-files = 100) {
 my $proc = Proc::Async.new: 'find', '/', '-name', '*.txt';

 react {
 my $count;
 whenever $proc.stdout.lines {
 done if ++$count > $max-files;
 put "$count: $_";
 }
 whenever signal(SIGINT) {
 put "\nInterrupted! $count files"; done
 }
 whenever $proc.start {
 put "Finished: $count files"; done
 }
 whenever Promise.in(60) {
 put "Timeout: $count files"; done
 }
 }
 }

Exercise Answers | 433

https://docs.perl6.org/type/Block.html

Index

Symbols
! (exclamation point)

adverbs and, 198
pattern matching with, 254
private methods and, 205
unary operators and, 28

!= (numeric inequality operator), 30
" (double quote), 63
(hashtag), 9, 148
#! (shebang), 345
$ (end-of-string anchor), 275
$ sigil, 12, 18
$! variable, 124
$$ (end-of-line anchor), 275
$/ variable, 247, 269
$_ variable (topic), 42, 79, 245, 347
% (percent sign), 146, 274
% sigil, 12, 166
%% operator, 31
%() variable, 165
%_ variable, 198
& (all junction operator), 237
& sigil, 12, 78, 192
&& (logical AND operator), 27
() (parentheses)

allomorphic quoting and, 160
as grouping operator, 78, 89
changing precedence with, 7
literal quoting and, 52
program arguments and, 19
whitespace and, 34

* prefixing array parameter, 188
* quantifier, 264
* twigil, 14

** quantifier, 266
+ (plus sign)

hyperoperators and, 115
pattern matching using, 254
unary operators and, 61

+ quantifier, 263
+& (bitwise AND operator), 139
+> (bitwise right shift operator), 139
, (comma), 20
- (minus sign)

pattern matching using, 254
unary operators and, 39

-> (pointy arrow), 81
-I switch, 175
. (dot), 251
.. (range operator), 96
... (triple-dot sequence operator), 100-102
// (defined-or operator), 29
: (colon)

in adverb syntax, 53, 160, 337
in method arguments, 11
in named parameters, 197
quantifiers and, 267
representing numbers and, 23
searching substrings, 56

::() (interpolated module names), 177
:= (binding operator), 17, 78
; (semicolon), 8, 84, 111, 332
< (less than), 31
<<>> (double angle brackets), 91, 115, 277
<> (angle brackets), 91, 118, 160, 248
= (item assignment operator), 17
=> (fat arrow notation), 159, 162, 341
> (greater than)

435

comparing things, 31
redirection with, 149

? (question mark), 129, 191
? quantifier, 265
? twigil, 14
@ sigil, 12, 93, 97, 192
@_ variable, 80, 181, 187
[] (square brackets), 116, 331
\ (backslash)

as escape character, 53-54, 340
as unspace, 10
naming terms, 205

^ (caret)
anchors and, 275
as one junction operator, 238
as placeholder variable, 80
range operator and, 96

^^ (beginning-of-line anchor), 275
_ (underscore), 40, 346
{} (curly braces)

empty, 71
hashes and, 166
in blocks, 8
in strings, 64

| (any junction operator), 235
|| (logical OR operator), 27
~ (tilde)

as concatenation operator, 54, 115
as unary prefix operator, 61
in pattern matching, 273

~#! (shebang), 15
~~ (smart match operator), 42-43, 246, 346
∈ operator, 240
∋ operator, 240

A
:a adverb, 70, 161
\a escape sequence, 65
absolute method, 136
abstract methods, 214, 337
abstract syntax tree, 292-293, 337
accessed method, 140
accessor methods, 208, 337
action classes, 291-293, 337
:actions adverb, 292
add method, 135
adverbs

about, 53, 337
exclamation point and, 198

key/value pairs and, 160
matching, 257
pattern matching and, 252

all junction type, 237
allof method, 314
allomorph, 41, 160, 337, 340
<alnum> pattern, 249
<alpha> pattern, 249
alternations

about, 279, 337
first match, 279-281

anchors, 275
angle brackets <>, 91, 118, 160, 248
anonymous containers, 18
anonymous roles, 229-230
Any base class

about, 3, 40, 337
junctions and, 233
prompting for input and, 60

any junction type, 233-236
anyof method, 314
:append adverb, 154
$*ARGFILES filehandle, 152
@*ARGS variable, 152
arguments

about, 337
implicit parameters and, 80
methods and, 11
positional parameters and, 191
programs and, 19-21
signatures and, 195
subroutines and, 182

arity, 79, 195, 337
arrays

about, 93, 106
constructing, 107
flattening lists, 111-112
interesting sublists, 112
interpolated, 108
lists of lists, 110
operations supported, 109-110
shaped, 332

<ascii> pattern, 249
assertions

about, 274, 337
anchors, 275
code assertions, 277-279

assigning values, 17-18, 337
associatives

436 | Index

about, 159, 337
exercise answers, 388-395
hashes and, 165-170
key/value pairs, 159-161
maps and, 162-165
sigil associated with, 12

associativity, 7, 337
asynchronous execution, 303, 326, 337
at method, 310, 313
attributes

about, 203, 338
private, 207-209
public, 209-210

autochomp, 94, 338
autothread, 234, 338

B
%b directive, 146
:b adverb, 70
\b escape sequence, 65
backreferences, 272-273, 338
backslash (\)

as escape character, 53-54, 340
as unspace, 10
naming terms, 205

backtracing exceptions, 126
backtracking, 265, 267-268, 294, 338
bare block, 71, 338
base method, 23
basename method, 136
beginning-of-line anchor (^^), 275
behavior, adding to classes, 223-225
:bin adverb, 155-156
binary assignment, 26, 338
binary files

about, 155
moving around, 156
writing, 156

binary numbers, 22, 338
binary operators, 5, 117, 338
binding operator (:=), 17, 78
binding values, 17-18, 161, 338
bitwise AND operator (+&), 139
bitwise right shift operator (+>), 139
<blank> pattern, 249
bless method, 215
blocks

about, 8, 71-72, 338
bare, 71, 338

control structures, 73-75
exercise answers, 366-368
gathering values with, 102-103
lexical scope, 9, 72, 342
named subroutines, 84-84
phasers, 75-77
simple subroutines, 82-83
special rule for, 72
storing, 78-79
Whatever code, 85-86
with parameters, 79-82

Bool method, 32
Boolean values, 27-30, 338
branches

about, 34, 338
conditional, 33-35

BUILD method, 207, 209, 215-219
BUILDALL method, 215

C
:c adverb, 69-70, 161, 299
\c escape sequence, 64-65
cache method, 99, 102
callables

about, 338
sigils associated with, 12, 78

callsame routine, 213
camel case, 12, 338
candidate, 193, 338
captures

about, 268, 338
backreferences to, 272-273
capture tree, 271-272
named, 269-270

caret (^)
anchors and, 275
as one junction operator, 238
as placeholder variable, 80
range operator and, 96

case insensitivity, 56, 338
case sensitivity, 56, 58, 257, 338
cat ears, 96, 338
CATCH block, 125-130, 133
catching exceptions, 124-126, 338
chained comparison operators, 32
changed method, 140
channels

about, 303, 307-309, 338
exercise answers, 428-431

Index | 437

character classes
named, 249
negated, 256
shortcuts supported, 253
user-defined, 255-256

characters (graphemes)
about, 339, 341
matching any, 251-253
matching types of characters, 253-255
Normal Form Grapheme, 57-58, 343

chars method, 54, 58
chdir subroutine, 143
child classes, 212, 338
chmod subroutine, 139
:chomp adverb, 153
chomp method, 67
chr method, 276
circumfix, 339
circumfix infix operator, 6, 339
circumfix operator, 6, 339
class method, 339
classes

about, 3, 10-11, 203, 339
action, 337
adding behavior to, 223-225
child, 212, 338
declaring, 203-204
defining methods, 204-206
defining subroutines, 206
exercise answers, 403-405
inheriting types, 212-215
multi methods and, 210-211
objects and, 206-210, 215-219
parent, 212, 344
private, 220

close method, 155, 308
cmp infix operator, 119
<cntrl> pattern, 249
code (UCD), 57, 339
code assertions, 277-279
code examples, usage, xviii
code points (UCD)

about, 57, 339
assigning properties, 254
matching nonliteral characters and, 250

coercer method, 42, 339
collate method, 119
colon (:)

in adverb syntax, 53, 160, 337

in method arguments, 11
in named parameters, 197
quantifiers and, 267
representing numbers and, 23
searching substrings, 56

comb method, 95, 260
comma (,), 20
comma-separated values (CSV) files, 298-302
commands

capturing output of, 322
representing as lists, 323

commenting out code, 10, 339
comments, 9-10, 258, 329, 339-340
:common-name adverb, 208
comparators, 30-33, 339
comparison operators, 32, 58
compile time, 16, 339
compile-time variables, 14, 339
:completely adverb, 137
Complex numbers, 40
complex numbers, 46-47, 49, 339
Comprehensive Perl Archive Network (CPAN),

179
CompUnit::Repository modules, 396
CompUnit::Repository::Installation module,

340
compunits, 173, 339
concatenation (string addition), 54, 339
concatenation operator (~), 54, 115
concurrency, 2, 304, 339
conditional execution

about, 27, 339
Boolean values, 27-30
comparing things, 30-33
conditional branching, 33-35
empty strings and, 55
of statements, 32

conditional operator, 35, 245
conditions

about, 32, 339
negated, 28, 34, 343
satisfied, 32, 345
word boundaries, 276

constructor, 11, 339
(cont) operator, 240
containers

about, 12, 339
anonymous, 18
as list elements, 90

438 | Index

decontainerizing values from, 112, 340
types supported, 332
variable assignment and, 18

contains method, 56
context operators, 98
control structures

about, 339
blocks, 73-75
conditional branching, 33-35

conversions
number to string, 61
string to number, 61-63

Cool (Convenient Object-Oriented Loop), 3
copy method, 142-143
copying files, 142
counters, resetting, 152
CPAN (Comprehensive Perl Archive Network),

179
:create-only adverb, 142
cross operator (X), 114
CSV (comma-separated values) files, 298-302
CURI, 340
curly braces {}

empty, 71
hashes and, 166
in blocks, 8
in strings, 64

current working directory (CWD), 143, 172,
174, 340

CWD (current working directory), 143, 172,
174, 340

$*CWD variable, 143

D
\d character class shortcut, 253
\D character class shortcut, 253
%d directive, 147
d method, 137
:D type constraint, 82
DateTime method, 140
de-conflicting roles, 226-228
debugging grammars, 290-291
decimal numbers

about, 340
string to number conversions, 62

declarative element (regex), 282, 340
declarator block comments, 329
declaring

classes, 203-204

variables, 12, 340
decontainerizing values, 112, 340
default statement, 42
default value for parameters, 20
defined method, 206
defined-or operator (//), 29
DEFINITE method, 55, 206
:delete adverb, 166
delimiters

interpolated strings, 63
match operator, 246
paired, 51, 344

destructuring signatures, 331
die subroutine, 130, 150
Digest::MD5 class, 399
<digit> pattern, 249
dir subroutine, 144
directives, 146-147, 340
directories

adding as repositories, 173
creating, 145
directory listings, 144
exercise answers, 379-388
removing, 145

$*DISTRO variable, 321
do statement, 34, 183
documentation for Perl 6, 4
does method, 118
dot (.), 251
:double adverb, 65
double angle brackets <<>>, 91, 115, 277
double quote ("), 63
double-quoted strings, 63-65, 340
dual value, 340
DWIM (Do What I Mean), 1, 340
dynamic variables, 14, 340

E
e method, 137
-e switch, 175, 329
eager assignment, 99, 340
eager method, 99
(elem) operator, 240
elements

accessing multiple, 106
changing a single, 105
combining, 114
iterating all, 92-95
lists of lists, 110

Index | 439

single-element access, 103-105
elems method, 89
else statement, 34
elsif statement, 35
embedded comments, 9, 258, 340
emit method, 303
emojis, 57
empty braces, 71
empty lists, 89, 340
Empty object, 90
empty string, 55, 340
:enc adverb, 153
end method, 104
END phaser, 344
end-of-line anchor ($$), 275
end-of-string anchor ($), 275
ends-with method, 56
eq operator, 58
:err adverb, 324
$*ERR filehandle, 150
error mechanisms

about, 123
exceptions, 123-131, 133
exercise answers, 376-379
failures, 131-132
warnings, 132-133

escape
about, 53, 340
interpolated strings and, 63
match operator and, 247

escape characters, 53-54, 251-252, 340
escaped (single-quoted) strings, 52-54, 340, 346
exception method, 132
exceptions

about, 123
backtracing, 126
catching, 124-126, 338
rethrowing errors, 129
throwing, 124, 130, 347
wisdom of, 133

exclamation point (!)
adverbs and, 198
pattern matching with, 254
private methods and, 205
unary operators and, 28

:exclusive adverb, 154
:exec adverb, 67
:exists adverb, 163
explicit returns in subroutines, 182

explicit signatures, 81
exponential notation, 48
export, 172, 186, 340
expressions

about, 5
blocks as, 72
comparing things, 31

extend, 212, 340

F
:f adverb, 70
%f directive, 147-148
\f escape sequence, 65, 155
f method, 137
factorial function, 184
factory, 304, 340
fail subroutine, 132, 150, 311
failures, 124, 131-132
False value, 341
fat arrow notation (=>), 159, 162, 341
FatRat class, 45, 49
fc method, 56, 59, 120
feed operators, 330
Fibonacci numbers, 184
file management

binary files, 155-157
copying files, 142
exercise answers, 379-388
file handles, 341
file metadata, 139-140, 343
file paths, 135-138
filehandles, 15, 149-151
formatted output, 146-148
linking files, 140-141, 342
manipulating directories, 143-146
opening files for writing, 154
reading input, 151-154
renaming files, 142
unlinking files, 140-141
writing output, 154-155

file paths, 135-138
file test operators, 137-138
$?FILE variable, 174
File::Directory::Tree module, 146
filehandles

about, 15, 149, 341
standard error, 15, 150
standard input, 15, 151
standard output, 15, 149

440 | Index

filtering lists, 117
finding modules

-I switch and, 175
about, 173
lib pragma, 173
PERL6LIB environment variable and, 174

first method, 165
FIRST phaser, 75
flat method, 111
flatten, 188, 341
flatten lists, 111-112
floating-point numbers, 44, 341
fmt method, 146
for statement, 114
formatted output, 146-148
formatting numbers, 23
freeze method, 161
French quotes, 91, 341
Friedl, Jeffrey E.F., 283
:from adverb, 180

G
:g adverb, 261
gather statement, 102-103
ge operator, 58
generalized quoting, 52, 341
gist method, 13, 81, 98, 101, 227, 341
given statement, 42, 125
:global adverb, 259
gradual typing, 1, 11, 341
Grammar::CSV module, 302
Grammar::Debugger module, 172, 291, 395
Grammar::Tracer module, 172, 290
grammars

about, 1, 285-288, 341
action classes, 291-293
adjusting, 300
debugging, 290-291
exercise answers, 424-428
multiple rules, 288-290
parsing CSV, 298-302
parsing JSON, 295-297
roles and, 301

<graph> pattern, 249
graphemes (characters)

about, 339, 341
matching any, 251-253
matching types of characters, 253-255
Normal Form Grapheme, 57-58, 343

greater than (>)
comparing things, 31
redirection with, 149

greediness, 265, 341
grep method, 117, 246, 260
group, 258, 341
grouping operator (), 78, 89
gt operator, 58

H
\h character class shortcut, 253
\H character class shortcut, 253
hashes

about, 165-166
accumulating with, 167-168
multilevel, 169

hashtag (#), 9, 148
here docs, 66, 341
:heredoc adverb, 66
hexadecimal numbers, 22, 341
Hietaniemi, Jarkko, xiv
HOME environment variable, 143
$*HOME variable, 143
HOMEPATH environment variable, 143
HTTP::UserAgent module, 179
hyperoperators, 6, 115-116, 238, 341

I
:i adverb, 257
<ident> pattern, 249
identifiers, 12, 341
if statement

conditional branching, 33-35
conditionally running, 32-33
do statement and, 183

:ignoremark adverb, 259
im method, 47
imaginary numbers, 46-47, 339, 341
imaginary unit, 46, 341
immutable value, 11, 17, 341
implicit parameters, 80, 341
import, 172, 176, 186, 341
import routine, 172
:in adverb, 324
$*IN filehandle, 15, 151
in method, 313
index method, 57, 333
indir subroutine, 143
Inf class, 48, 200

Index | 441

infinite lists, 2, 100-102
infinite loops, 8, 73, 342
infinities, 48
infix operator, 6, 238, 342
infixed, 5, 342
inheritance

about, 3, 11, 342
checking, 214
multiple, 214, 343
stub methods and, 214
types and, 212-213

initializing variables, 13, 342
Inline::Perl5 module, 172, 180
Input/Output

binary files, 155-157
exercise answers, 379-388
file metadata, 139-140
file paths, 135-138
filehandles, 15, 149-151, 341
formatted output, 146-148
linking and unlinking files, 140-141
manipulating directories, 143-146
opening files for writing, 154
reading input, 151-154
renaming and copying files, 142
writing output, 154-155

installing modules, 171
instances, 206, 342
Instant class, 78, 140
Int method, 36, 185
integers

about, 22, 39-40, 49, 342
smart matching, 42-43
type constraints, 40-42

interpolated arrays, 108
interpolated module names, 177
interpolated strings, 63-65, 342
interpreter, 15
intersection (sets), 242, 342
interval method, 304-305
invocant, 205, 342
IO method, 135, 145, 174
IO::Handle class, 15
IO::Notification class, 319, 430
IO::Notification::Recursive module, 431
IO::Path class, 135, 144, 174
IPv4 addresses, matching, 278
is copy trait, 192, 230
is export trait, 186

is rw trait, 192, 208-209
is trait, 212
is-lazy method, 104
is-win method, 321
isa method, 214
item assignment, 17, 342
item assignment operator (=), 17
itemize, 111, 342
iteration, 92-95, 184, 342

J
join method, 92
join routine, 54
JSON parser, 295-297
junctions

about, 233
any junction type, 233-236
exercise answers, 410-415
none junction type, 238
one junction type, 237
promises and, 314
tips and tricks, 238-239

K
:k adverb, 118
kebab case, 12, 342
keep method, 313
key method, 160
key/value pairs (see pairs (key/value))
keys

about, 159, 342
checking, 163
mapping to values, 162-165

keys method, 163
Knuth arrows, 331
:kv adverb, 118
kv method, 160, 163

L
l method, 137
-I switch, 175
last command, 32, 74
LAST phaser, 75, 344
Lazy (programmer virtue), 342, 366
lazy lists, 2, 98, 100-102
lazy positionals, 342
lc method, 55, 59
le operator, 59

442 | Index

left associative operators, 7, 342
leg infix operator, 120
less than (<), 31
lexical scope

about, 9, 72, 342
loading modules, 175-176
subroutines and, 182
variables and, 13, 72

lexicographic comparison, 58, 342
lib pragma, 173-174, 176
libraries

about, 342
defining patterns in, 249
storing subroutines in, 185-186

lines method, 151, 153, 307
lines routine, 94-95, 151-153
link method, 141
linking files, 140-141, 342
lisp case, 12, 342
list assignment, 93
List method, 98
list replication operator (xx), 91
lists

about, 89, 342
as elements of lists, 110
combining, 113-117
constructing, 89-95
empty, 89, 340
filtering, 117
flattening, 111-112
infinite, 2, 100-102
interesting sublists, 112
iterating all elements, 92-95
lazy, 2, 98, 100-102
ranges and, 96-98
representing commands as, 323
sequences and, 98-103
simple, 111, 346
single-element access and, 103-105
sorting, 119-122
structured, 346
transforming, 118

literal characters, 251
literal numbers, 22-24
literal spaces, 252
literal values, 22, 193-194, 343
live supply, 306-307, 343
loading modules

about, 172

finding the module, 173-175
lexical effect, 175-176
loading at runtime, 176-178

logical AND operator (&&), 27
logical operators, 27, 343
logical OR operator (||), 27
longest declarative prefix, 343
longest token matching (LTM), 281-283, 343
loops

about, 343
conditionally running statements, 32
in control structures, 73-75
infinite, 8, 73
infnite, 342
phasers in, 75-77

looser precedence, 7, 343
<lower> pattern, 249
lt operator, 59
LTM (longest token matching), 281-283, 343

M
-M switch, 329
m/.../ operator (see match operator)
made method, 292
MAIN subroutine, 18-21
map method, 118, 163
map routine, 118
maps

about, 162
checking allowed values, 164-165
checking keys, 163
creating from positionals, 163-164

match operator
about, 245-246
defining patterns, 248
Perl 5 patterns and, 332
predefined patterns, 249
successful matches, 247
syntax for, 246

max binary operator, 117
member (sets), 240, 343
META6.json file, 172
metacharacters, 247, 251, 273, 343
metadata, 139-140, 343
method resolution order, 3, 214, 343
methods

about, 3, 203, 343
abstract, 214, 337
accessor, 208, 337

Index | 443

calling, 205
defining, 204-206
file test, 137
in roles, 225
method call dot, 3, 43, 129
multi, 210-211
operators and, 7, 331
private, 205, 344
string-supported, 52, 54-55
stub, 214

^methods method, 3
minus sign (-)

pattern matching using, 254
unary operators and, 39

mixed parameters, 199
mixins (see roles)
mkdir subroutine, 145
mode method, 139
modified method, 140
modules

about, 171, 343
exercise answers, 395-399
fetching data from the web, 179
installing, 171
loading, 172-178
running Perl 5 in Perl 6, 179

move method, 142
^mro method, 3, 214
Mu class, 3, 215
multi keyword, 193-197
multi methods, 210-211
multilevel hashes, 169
multiline comments, 9
multiple inheritance, 214, 343
multiple roles, 224
mutable value, 11, 161, 343
my keyword, 12, 340

N
\n character class shortcut, 253
\N character class shortcut, 253
\n escape sequence, 64-65
-n switch, 329
^name method, 4, 39, 62
named captures, 269-270
named character classes, 249
named parameters, 81, 197-199, 343
named subroutines, 84
named values, 11

NaN value, 127
narrow method, 49
NativeCall interface, 333
need routine, 172
negated condition, 28, 34, 343
new method, 159, 162-163, 206, 215
next command, 33, 74
NEXT phaser, 76
NFG (Normal Form Grapheme), 57-58, 343
Nil value, 57, 104, 200, 343
:nl-in adverb, 153
none junction type, 238
nonliteral characters, matching, 250-256
Normal Form Grapheme (NFG), 57-58, 343
note subroutine, 150
now term, 72, 78
Number::Bytes::Human module, 173, 177
numbers

about, 40, 49
converting from strings, 61-63
converting to strings, 61
exercise answers, 358-362
formatting, 23
large and small, 48
literal, 22-24
types supported, 39-50

numeric hierarchy, 49
numeric inequality operator (!=), 30
numeric operators, 24-27

O
%o directive, 146
objects

about, 3, 10-11, 206, 343
building, 216-219
controlling creating, 215-216
private attributes and, 207-209
public attributes and, 209-210
tweaking, 216, 219
type, 3, 11, 347

octal numbers, 22, 343
octet, 40, 344
on-demand supply, 305, 344
on-switch method, 152
one junction type, 237
one-liners, 329, 344
open method, 153
opening files for writing, 154
operands, 5, 344

444 | Index

operators, 29
(see also specific operators)
about, 5-7, 344
associativity and, 337
binary, 5, 117, 338
comparison, 32, 58
context, 98
defining, 331
feed, 330
file test, 137-138
hyperoperators, 6, 115-116, 238, 341
junction, 235-239
logical, 27, 343
methods and, 7, 331
numeric, 24-27
precedence and, 7, 27, 58, 344
short-circuit, 29, 345
string-supported, 54-55

ords method, 58
Orwant, Jon, xiv
:out adverb, 323
$*ERR filehandle, 15
$*OUT filehandle, 15, 149
outer scope, 14, 72, 344
output (see Input/Output)
:overlap adverb, 259

P
paired delimiters, 51, 344
pairs (key/value)

about, 344
adverbs and, 160
creating, 130, 159
mapping, 162-165
modifying, 161

pairs method, 270
panda installation tool, 172
parallelism, 304
parameters

about, 79, 344
default value for, 20
explicit signatures and, 81
implicit, 80, 341
literal value, 193-194
mixed, 199
named, 81, 197-199, 343
parentheses defining, 19
positional, 81, 187-193, 344
signature supported, 195-197

slurpy, 188, 190, 346
type constraints, 82

parent classes, 212, 344
parent method, 136, 174
parentheses ()

allomorphic quoting and, 160
as grouping operator, 78
as grouping operator (), 89
changing precedence with, 7
literal quoting and, 52
program arguments and, 19
whitespace and, 34

parse method, 285
parse-base method, 24, 63, 292
parsing

CSV, 298-302
JSON, 295-297

:partial adverb, 113
PATH environment variable, 68, 323
path method, 152
patterns and pattern matching (see regular

expressions)
percent sign (%), 146, 274
period (.), 251
Perl 5

reusing patterns from, 332
running in Perl 6, 179

Perl 6
additional resources, 336
attractive features of, 1
backstory of, xiii-xiv
basic syntax, 4-11
documentation for, 4
exercise answers, 349-351
making and running programs, 15-16
running Perl 5 in, 179

perl method, 44
:Perl5 adverb, 332
PERL6LIB environment variable, 174
permutations method, 110
phasers, 75-77, 344
pick method, 99, 120
placeholder variables, 80, 344
plus sign (+)

hyperoperators and, 115
pattern matching using, 254
unary operators and, 61

.pm file extension, 173

.pm6 file extension, 173

Index | 445

poll method, 308
pop method, 109
positional parameters

about, 81, 344
arguments and, 191
named parameters and, 199
parameter constraints, 192
parameter traits, 191
single argument rule, 189
slurpy parameters and, 188, 190

positionals
about, 89
arrays and, 106-113
combining lists, 113-117
constructing lists, 89-95
creating maps from, 163-164
exercise answers, 368-376
filtering lists, 117
lazy, 342
ranges and, 96-98
sequences and, 98-103
sigil associated with, 12
single-element access, 103-106
sorting lists, 119-122
transforming lists, 118

postcircumfix, 344
postcircumfix operator, 6, 103, 344
postfix operator, 6, 344
postfix rule, 344
precedence

about, 344
evaluating expressions, 7
logical operators and, 27
string comparisons, 58

precircumfix operator, 6, 344
predefined variables, 14
prefix operator, 6, 344
PrettyDump module, 394
<print> pattern, 249
print routine, 13, 67
printf subroutine, 147
private attributes, 207-209
private classes, 220
private methods, 205, 344
Proc::Async class, 326
procedural element (regex), 282, 345
processes, writing to, 324-325
$*PROGRAM variable, 174
programs

asynchronous control and, 326
capturing command output, 322
controlling other, 321-327
exercise answers, 351-358, 432
interrupting, 73
MAIN subroutine, 18-21
making and running, 15-16
number-guessing, 17-37
representing commands as lists, 323
running external, 321-325
writing to processes, 324-325

promises
about, 303, 309-310
exercise answers, 428-431
junctions and, 314
managing, 312-314
waiting for, 310-311
waiting for multiple, 311

prompt routine, 21, 59, 151
public attributes, 209-210, 345
<punct> pattern, 249
puns, 224, 345
push method, 109
put routine, 13

Q
:q adverb, 53, 70, 161
\q escape sequence, 65
Q quoting form

about, 52, 70
adverbs modifying, 53, 160
interpolated strings and, 65

:qq adverb, 65, 69-70
\qq escape sequence, 65
qqx construct, 67
quantifiers

about, 263, 345
backtracking and, 265, 267-268
controlling, 267
greediness and, 265
minimal and maximal, 266
summarized list of, 268
zero or more, 264
zero or one, 265

question mark (?), 129, 191
quoting in strings

fancier quoting, 69
generalized quoting, 52, 341
literal quoting, 51-52

446 | Index

literal spaces and, 252
match operator and, 247

qw construct, 91, 119
qx construct, 67

R
\r escape sequence, 65
r method, 137
Rakudo, xv
Rakudo Star, 171, 345
rand method, 35, 185
range operator (..), 96
ranges

about, 96-98
character class, 256
precedence and, 7
single-element access and, 103-105

:ratchet adverb, 294
rational numbers, 40, 44-46, 49
re method, 47
react statement, 315-319
reactive programming, 315-319
read method, 156
reading input

about, 151
reading files, 153
reading lines, 152

real numbers, 339
receive method, 308
recursion, 184, 345
redirection (>), 149
redo command, 75
reduction operator [], 116
regex declarator, 285, 294, 345
regular expressions

about, 245, 345
additional information, 260
alternations and, 279-283, 337
assertions and, 274-279, 337
captures and, 268-273, 338
defining patterns, 248
exercise answers, 416-423
match operator, 245-249
matching adverbs, 257
matching nonliteral characters, 250-256
Perl 5 patterns and, 332
predefined patterns, 249
quantifiers and, 263-268, 345
surrounds and separators, 273-274

reify, 345
rename method, 142
renaming files, 142
repeat statement, 77
REPL (Read-Evaluate-Print-Loop) interface

about, 345
first steps with, 2-4
Raduko and, xvi

replication operator (x), 54
$*REPO variable, 175, 177
repositories, 172-173, 345
require routine, 176
resetting persistent counters, 152
resolve method, 137, 177
rethrow method, 129
return, 83, 182, 345
return value, 83, 181, 199-200, 345
reverse method, 99
rf command, 291
RFC 4180, 298
RFC 8259, 296
right associative operators, 7, 345
rmdir subroutine, 145
rmtree subroutine, 146
roles

about, 11, 223, 345
adding behavior to classes, 223-225
anonymous, 229-230
applying multiple, 224
de-conflicting, 226-228
exercise answers, 406-410
grammars and, 301
methods in, 225

roll method, 167
rotor method, 112
&?ROUTINE variable, 184
:rule adverb, 286
rule declarator, 285, 288, 294, 345
run routine, 323
runtime, loading modules at, 176-178
rw method, 137
rwx method, 138
rx// operator, 248

S
:s adverb, 69-70, 252
\s character class shortcut, 253
\S character class shortcut, 253
%s directive, 147-148

Index | 447

s method, 137
Salzenberg, Chip, xiii
satisfied condition, 32, 345
say method, 13, 341
scalar, 12, 345
scalar variables

about, 12, 345
binding and assignment, 18
persistent, 74

scan-array subroutine, 165
Schrödinger’s cat, 233
Schwartz, Randal, 295
Schwartzian Transform, 120
seek method, 156
SeekFromBeginning argument, 156
SeekFromCurrent argument, 156
semicolon (;), 8, 84, 111, 332
send method, 308
sequences

about, 98
gathering values, 102-103
infinite lazy lists and, 100-102
single-element access and, 103-105

set difference, 242, 345
sets

about, 239
checking values in, 240
comparators for, 240-242
creating, 240
exercise answers, 410-415
members of, 240, 343
set operations, 242
storing thingys in, 240
subsets of, 85-86, 240, 346
supersets of, 241, 346
testing for members in, 240

:shape adverb, 332
shaped arrays, 332, 345
share method, 306
shebang (#!), 15, 345
shell routine, 321
shell strings, 67-68
shift method, 109
short-circuit operators, 29, 345
sigilless variables, 14, 346
sigils

about, 5, 12, 345
types supported, 12, 78

signature method, 81

signatures
about, 193, 346
blocks with parameters and, 79
defining, 19
destructuring, 331
explicit, 81
literal value parameters, 193-194
number of arguments and, 195
parameter types, 195-197
subsignatures, 346

:sigspace adverb, 252
simple list, 111, 346
:single adverb, 54
single argument rule, 189, 346
single-element access, 103-106
single-quoted (escaped) strings, 52-54, 340, 346
sink context, 71, 346
slangs (sublanguages), 52, 346
sleep statement, 304
slice, 106, 346
Slip method, 112
slip subroutine, 164
slurp method, 154, 323
slurp routine, 153
slurpy parameters, 188, 190, 346
smart match operator (~~), 42-43, 246, 346
snake case, 12, 346
so method, 28, 117, 322
so routine, 28
soft failure, 124, 346
sort method, 119-122
sorting lists, 119-122
<space> pattern, 249
splice method, 109
split method, 260
sprintf subroutine, 147
spurt routine, 154
square brackets [], 116, 331
SSL certificates, 224
standard error (filehandle), 15, 150
standard input (filehandle), 15, 151
standard output (filehandle), 15, 149
star, 105
start keyword, 310
starts-with method, 56
state declaration, 74, 76
statements, 8, 32
stdout method, 327
storing

448 | Index

blocks, 78-79
subroutines in libraries, 185-186
thingys in sets, 240

string addition (concatenation), 54, 339
strings

about, 51, 346
adverbs for quoting, 53
comparing, 58
converting from numbers, 61
converting to numbers, 61-63
empty, 55, 340
escaped (single-quoted), 52-54, 340, 346
exercise answers, 362-365
fancier quoting, 69
here docs, 66, 341
inspecting, 56
interpolated, 63-65, 342
literal quoting, 51-52
methods supported, 52, 54-55
Normal Form Grapheme, 57-58
operators supported, 54-55
prompting for input, 59
shell strings, 67-68
substrings, 56, 346

structured lists, 346
stub methods, 214, 346
sub declaration, 82
sublanguages (slangs), 52, 346
sublists, 112
submethod, 346
subparse method, 298
subroutines

about, 82-83, 346
annotating, 1
basic, 181-183
defining, 206
exercise answers, 399-403
explicit returns and, 182
exporting, 186
extra arguments, 182
iterative, 184
lexical scope, 182
MAIN, 18-21
named, 84
named parameters, 197-199
phasers, 75-77, 344
positional parameters and, 187-193
recursing, 184
return types, 199-200

signatures and, 193-197
spaces and, 10
storing in libraries, 185-186

Subset::Common module, 86
subsets, 85-86, 240, 346
subsignatures, 331, 346
subst method, 260
substituting matched text, 260
substr method, 57
substrings, 56, 346
supersets, 241, 346
supplies

about, 303-304, 346
exercise answers, 428-431
live supply, 306-307, 343
multiple tags, 305
on-demand supply, 305, 344

symbolic link, 137, 141, 346
symlink method, 141
symmetric set difference, 242, 346
syntax check, 16, 346
syntax errors, 16, 34, 346

T
\t character class shortcut, 253
\T character class shortcut, 253
\t escape sequence, 64-65
take method, 239
take statement, 102-103
Tang, Audrey, xiv
task distribution, 347
Task::Popular module, 171
Task::Star module, 347
tclc method, 55
terms, 5, 205, 347
ternary operator, 5, 347
testing for members in sets, 240
Text::CSV module, 274, 298
then method, 310, 313
thingys

about, 3, 347
modules defining, 172
storing in sets, 240

throw method, 130
throwing exceptions, 124, 130, 347
thunk, 85, 347
tighter precedence, 7, 347
tilde (~)

as concatenation operator, 54, 115

Index | 449

as unary prefix operator, 61
in pattern matching, 273

title case, 55
:to adverb, 66, 70
token declarator, 285, 288, 294, 347
topic ($_ variable), 42, 79, 245, 347
topical method, 347
topicalization, 211, 333, 347
tr command, 325
transforming lists, 118
trim method, 60
trim-leading method, 61
trim-trailing method, 61
triple-dot sequence operator (...), 100-102
True value, 347
try block, 124-130, 133
TWEAK method, 216, 219
twigil, 14, 347
type objects, 3, 11, 347
types

about, 3, 347
container-supported, 332
inheriting, 212-215
integer constraints, 40-42
junction, 233-239
number, 39-50
parameter constraints, 82

U
%u directive, 147
UCD (Unicode Character Database)

about, 23, 254, 347
code point properties, 254
graphemes and, 57, 339
set comparators, 240-242

UCS (Universal Character Set), 119
unary operators

about, 5, 347
exclamation point, 28
minus sign and, 39
plus sign and, 61
tilde and, 61

underscore (_), 40, 346
Unicode Character Database (UCD)

about, 23, 254, 347
code point properties, 254
graphemes and, 57, 339
set comparators, 240-242

union

of character class properties, 254
of sets, 242, 347

Universal Character Set (UCS), 119
unless statement, 34
unlink method, 141, 143
unlinking files, 140-141
unshift method, 109
unspace, 10, 47, 252, 347
<upper> pattern, 249
use routine, 172
user-defined character classes, 255-256
UTF-8, 16, 347

V
:v adverb, 70, 118
\v character class shortcut, 253
\V character class shortcut, 253
value method, 160
values

assigning, 17-18, 337
binding, 17-18, 161, 338
Boolean, 27-30, 338
checking allowed for maps, 164-165
checking in sets, 240
decontainerizing, 112, 340
literal, 22, 193-194
mapping keys to, 162-165
prompting for, 21
simple output of, 13

variables
about, 11, 347
declaring, 12, 340
initializing, 13, 342
lexical scope, 13, 72
output values of, 13
placeholder, 80, 344
predefined, 14

W
:w adverb, 91
\w character class shortcut, 253
\W character class shortcut, 253
w method, 137
Wall, Larry, xiv, 179
warn subroutine, 132, 150
warnings, 132-133
<|w> pattern, 276
<|wb> pattern, 249
Whatever class, 85-86, 348

450 | Index

WhateverCode class, 85
when statement, 42
whenever statement, 315-319
where clause, 85-86
while statement, 77
whitespace

match operator and, 246
parentheses and, 34
pattern matching and, 252
prompt routine accepting, 60
statement considerations, 8
syntax considerations, 10

WHY meta-method, 329
with keyword, 333
word boundaries, 276
<word> pattern, 249
words method, 260
writing binary files, 156
writing output, 154-155
writing to processes, 324-325
<ws> pattern, 249
<ww> pattern, 250

X
X (cross) operator, 114
%x directive, 146
x (replication operator), 54
:h adverb, 70

:x adverb, 67, 70, 322
%X directive, 147
\x escape sequence, 64, 66
x method, 138
X::AdHoc class, 130, 377
X::IO::Chdir class, 143
X::IO::Copy class, 142
X::IO::Link class, 141
X::IO::Mkdir class, 145
X::IO::Rename class, 142
X::IO::Rmdir class, 146
X::IO::Unlink class, 141
X::Method::NotFound class, 129
X::NYI class, 131
X::Str::Numeric class, 125
X::StubCode class, 131
<xdigit> pattern, 250
xx (list replication operator), 91

Y
yada yada, 9, 348

Z
Z (zip operator), 113
z method, 138
zef module manager, 171, 173
zip routine, 114

Index | 451

About the Author
brian d foy is a prolific Perl trainer and writer, and runs The Perl Review to help peo‐
ple use and understand Perl through education, consulting, code review, and more.
He’s a frequent speaker at Perl conferences. brian is the coauthor of Learning Perl,
Intermediate Perl, and Effective Perl Programming (Addison-Wesley), and the author
of Mastering Perl. He was an instructor and author for Stonehenge Consulting Serv‐
ices from 1998 to 2009 and has been a Perl user since he was a physics graduate stu‐
dent and a die-hard Mac user since he first owned a computer. He founded the first
Perl user group, the New York Perl Mongers, as well as the Perl advocacy nonprofit
Perl Mongers, Inc., which helped form more than 200 Perl user groups across the
globe. He maintains the perlfaq portions of the core Perl documentation, several
modules on CPAN, and some standalone scripts.

Colophon
The animal on the cover of Learning Perl 6 is a Hamadryas butterfly. Hamadryas is a
genus that includes several related species of butterfly. Hamadryas butterflies live
throughout South and Central America, with some species found as far north as Ari‐
zona. Nine different species can be found in Costa Rica alone.

Hamadryas butterflies are commonly known as cracker butterflies for the distinctive
noise made by males during territorial displays. Males wait in plant and tree branches
for females to arrive, and emit clicking sounds to ward off predators and rival males.

Hamadryas butterflies usually feature coloring that allows them to blend in with their
surroundings. Unlike other types of butterflies, they do not feed on nectar. Rather,
they feed on rotting fruit, sap, and animal dung.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Insects Abroad. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://www.theperlreview.com/
http://oreilly.com/catalog/9781449303587/
http://oreilly.com/catalog/9780596102067/
http://oreilly.com/catalog/9780596527242/
http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	The Backstory of Perl 6
	What You Should Already Know
	Getting Rakudo
	How to Use This Book
	How to Get Help
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	Why Perl 6?
	First Steps with the REPL
	Reading the Documentation
	Basic Syntax
	Terms
	Operators and Expressions
	Statements
	Blocks
	Comments
	Unspace
	Objects and Classes

	Variables
	Simple Output
	Lexical Scope
	Predefined Variables

	Making and Running a Program
	Summary

	Chapter 2. Number Guessing
	Binding and Assignment
	A MAIN Program
	Program Arguments
	Prompting for Values

	Literal Numbers
	Formatting Numbers

	Numeric Operations
	Conditional Execution
	Boolean Values
	Comparing Things
	Conditional Branching

	Putting It All Together
	Summary

	Chapter 3. Numbers
	Number Types
	Integers
	Type Constraints
	Smart Matching

	Rational Numbers
	Imaginary and Complex Numbers
	Numbers Small and Large
	The Numeric Hierarchy
	Summary

	Chapter 4. Strings
	Literal Quoting
	Escaped Strings
	Adverbs for Quoting
	String Operators and Methods
	Looking Inside Strings
	Normal Form Grapheme
	String Comparisons
	Prompting for Input
	Number to String Conversions
	String to Number Conversions

	Interpolated Strings
	Here Docs
	Shell Strings
	Shell Safety

	Fancier Quoting
	Summary

	Chapter 5. Building Blocks
	Blocks
	Lexical Scope
	Control Structures
	Phasers
	Storing Blocks
	Blocks with Parameters

	Simple Subroutines
	Named Subroutines

	Whatever Code
	Subsets

	Summary

	Chapter 6. Positionals
	Constructing a List
	Iterating All the Elements

	Ranges
	The @ Coercer

	Sequences
	Infinite Lazy Lists
	Gathering Values

	Single-Element Access
	Changing a Single Element
	Multiple-Element Access

	Arrays
	Constructing an Array
	Interpolating Arrays
	Array Operations
	Lists of Lists
	Flattening Lists
	Interesting Sublists

	Combining Lists
	The Zip Operator, Z
	The Cross Operator, X
	The Hyperoperators
	The Reduction Operator

	Filtering Lists
	Transforming a List
	Sorting Lists
	Sorting on Multiple Comparisons
	Summary

	Chapter 7. When Things Go Wrong
	Exceptions
	Catching Exceptions
	Backtraces
	Rethrowing Errors
	Throwing Your Own Exceptions
	Defining Your Own Exception Types

	Failures
	Warnings
	The Wisdom of Exceptions
	Summary

	Chapter 8. Files and Directories, Input and Output
	File Paths
	File Test Operators
	File Metadata
	Linking and Unlinking Files
	Renaming and Copying Files

	Manipulating Directories
	Directory Listings
	Creating Directories
	Removing Directories

	Formatted Output
	Common Formatting Tasks

	The Standard Filehandles
	Standard Output
	Standard Error
	Standard Input

	Reading Input
	Reading Lines
	Reading a File

	Writing Output
	Opening a File for Writing

	Binary Files
	Moving Around
	Writing Binary Files

	Summary

	Chapter 9. Associatives
	Pairs
	Adverbs
	Modifying a Pair

	Maps
	Checking Keys
	Creating from a Positional
	Checking Allowed Values

	Hashes
	Accumulating with a Hash

	Multilevel Hashes
	Summary

	Chapter 10. Using Modules
	Installing Modules
	Loading Modules
	Finding the Module
	Lexical Effect
	Loading a Module at Runtime

	Fetching Data from the Web
	Running Perl 5 in Perl 6
	Summary

	Chapter 11. Subroutines
	A Basic Subroutine
	Extra Arguments
	Explicit Returns

	Recursing
	Iterating Instead of Recursing

	Storing Subroutines in Libraries
	Exporting Subroutines

	Positional Parameters
	Slurpy Parameters
	Have It Both Ways
	Combining Slurpies
	Optional and Default Arguments
	Parameter Traits
	Parameter Constraints

	Same Name, Different Signature
	Literal Value Parameters
	Number of Arguments
	Parameter Types

	Named Parameters
	Required Named Parameters
	Named Parameters for Free
	Mixed Parameters

	Return Types
	Summary

	Chapter 12. Classes
	Your First Class
	Defining Methods
	Private Methods
	Defining Subroutines

	Objects
	Private Attributes
	Public Attributes

	multi Methods
	Inheriting Types
	Checking Inheritance
	Stub Methods

	Controlling Object Creation
	Building Objects
	Tweaking Objects

	Private Classes
	Summary

	Chapter 13. Roles
	Adding Behavior to Classes
	Applying Multiple Roles

	Methods in Roles
	De-Conflicting Roles
	Anonymous Roles
	Summary

	Chapter 14. Junctions and Sets
	Junctions
	any
	all
	one
	none
	Some Junctive Tricks

	Sets
	Set Operations

	Summary

	Chapter 15. Regular Expressions
	The Match Operator
	Match Operator Syntax
	Successful Matches
	Defining a Pattern
	Predefined Patterns

	Matching Nonliteral Characters
	Matching Any Character
	Matching Types of Characters
	User-Defined Character Classes

	Matching Adverbs
	Matching Either Case
	Ignoring Marks
	Global Matches

	Things That Use Patterns
	Substitutions

	Summary

	Chapter 16. Fancier Regular Expressions
	Quantifiers
	Zero or More
	Greediness
	Zero or One
	Minimal and Maximal

	Controlling Quantifiers
	Turning Off Backtracking

	Captures
	Named Captures
	A Capture Tree
	Backreferences

	Surrounders and Separators
	Assertions
	Anchors
	Conditions
	Code Assertions

	Alternations
	First Match
	Longest Token Matching

	Summary

	Chapter 17. Grammars
	A Simple Grammar
	Multiple Rules
	Debugging Grammars
	Grammar::Tracer
	Grammar::Debugger

	A Simple Action Class
	Creating an Abstract Syntax Tree

	Ratcheting
	Parsing JSON
	Parsing CSV
	Adjusting the Grammar
	Using Roles in Grammars

	Summary

	Chapter 18. Supplies, Channels, and Promises
	Supplies
	Multiple Taps
	Live Supplies

	Channels
	Promises
	Waiting for Promises
	Waiting for Multiple Promises
	Managing Your Own Promises
	Promise Junctions

	Reactive Programming
	Reacting in the Background

	Summary

	Chapter 19. Controlling Other Programs
	Quick and Easy
	Quoted Commands
	Safer Commands
	Writing to a Proc

	Procs
	Asynchronous Control
	Summary

	Chapter 20. Advanced Topics
	One-Liners
	Declarator Block Comments
	Feed Operators
	Destructuring Signatures
	Defining Your Own Operators
	Perl 5 Patterns
	Shaped Arrays
	Typed Containers
	NativeCall
	The with Topicalizer

	Chapter 21. Conclusion
	Glossary
	Appendix A. Exercise Answers
	Answers to Preface Exercises
	Answers to Chapter 1 Exercises
	Answers to Chapter 2 Exercises
	Answers to Chapter 3 Exercises
	Answers to Chapter 4 Exercises
	Answers to Chapter 5 Exercises
	Answers to Chapter 6 Exercises
	Answers to Chapter 7 Exercises
	Answers to Chapter 8 Exercises
	Answers to Chapter 9 Exercises
	Answers to Chapter 10 Exercises
	Answers to Chapter 11 Exercises
	Answers to Chapter 12 Exercises
	Answers to Chapter 13 Exercises
	Answers to Chapter 14 Exercises
	Answers to Chapter 15 Exercises
	Answers to Chapter 16 Exercises
	Answers to Chapter 17 Exercises
	Answers to Chapter 18 Exercises
	Answers to Chapter 19 Exercises

	Index
	About the Author
	Colophon

