Beginning Perl
Programming

From Novice to Professional

William “Bo” Rothwell

Apress’

http://www.allitebooks.org

Beginning Perl
Programming

William “Bo” Rothwell

Apress’

vww allitebooks.conl

http://www.allitebooks.org

Beginning Perl Programming: From Novice to Professional

William “Bo” Rothwell
San Diego, CA, USA

ISBN-13 (pbk): 978-1-4842-5054-9 ISBN-13 (electronic): 978-1-4842-5055-6
https://doi.org/10.1007/978-1-4842-5055-6

Copyright © 2019 by William “Bo” Rothwell of One Course Source, Inc.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484250549. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-5055-6
http://www.allitebooks.org

To all Perl Mongers, new and old.

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AULNOKcccussmmmssnnmssssnmsssnnmssssssssssnsssssnssssansssssnssssansssssnsssssnnssssnnssssnnsnsns Xv
About the Technical REVIEWETccuussemmmmmssssnnnmssssssnsmssssssssssssssnsnsssssssnsssssssnnnsssssnns Xvii
AcknOWIedgmMENtScuuuirrmmmsssssnnnnnmmmmmsssssssssssnssssessssssssnsnsnsssssssssssssnnnnnnssssssssssnnnnnns Xix
LT LT] | XXi
Chapter 1: Origin of Perlccccvnnssmnmmmnmssssnmmssssssnmmssssssssessssssssesssssssssssssssssssssssnnssnsss 1
Perl Development ENVIFONMENTS.........ccoviiininennsnnesn st 1
FNXWINAOWS ..ot e e s s e e s pene s e e nne 2

Pick Your Perl Development TOOIS........cccueriinnmncnieninsinse s s s sss e s sssssssessesnens 4
PEIrTVEISIONS ...ttt e s e e b bbb e e 4
WHat ADOUL PEIT B7 ...ttt s s bbb e e 5
Understanding Perl VEISIONSc.ccoveerernnernserenesesese s sessssessssesessesenes 5
INVOKING PO ...t sr e p e n e nnnnnnn s 7
The Command Line Method........c.coevrininnisnsn s 7

The Interactive Method (DEDUGUED)c.vcerreeerrierererere s senns 7

The SCript MEthodcociecrrr s e e e e 9

Perl DOCUMENTALIONcccceriiicirsire s bbb s 10
PEIT RBSOUICESceeiveereiressesresss e s ss e s e e s e s sr s s e e s ae e e e n e e R e e e e e nesr e e e e nnennis 15
LD EXBICISES ...viueiruiirrie sttt bbb 15
Chapter 2: Scalar Variablesccussurrrssssnnnsessssnnnssssssssssssssssnssssssssnsssssssnsssssssnnnnssss 17
NUMEHIC LITEIAIS......civeiiecirccreresir sttt s e e s e e 17
Manipulating NUMDEIS.........co e 18
Mathematical OPerations ... s 18
Predefined FUNCHIONS........cco i e 19
SEFNG LITEAIS....ccveeeereeseereserissesisese s ne e nnne e 20

A%

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Manipulating SErNQSccvvverere s e e s e e e a e e e R nnen 20
AREration OPEIAtOrScceeveeiervererererrere s s s sae s e se e sae s e e s aesr e e e e s aesae e e e naenaen 21
Predefined FUNCLIONS. ..o 21

The Importance of USING QUOLES........ccccricrnicrnerinn st 22

STriNGS VS. NUMDEIS......cociiicecr e s b e s e e b s 23

The AsSIgNMENt OPErationcocccererererernserre s 25

Single vS. DOUDIE QUOTEScccovveereeriesesesesese s s se e ses e nsenens 26
DOUDIE QUOTES ...t ne e nr s 26
SiNGIE QUOTES ... e e e p e e e 27

SCAIAr VANIADIEScovveeeerecerieerisessr et r e p e n e 29

Undefined VariabIEs ... s s 29

Auto-increment and Auto-deCIEMENT ..o s 3

Perl Magic with the Auto-increment Operatorccovcvnienrienrnsnne s 33

Reading Data from the USEr ... s s s sss s 35
ChOMP ANA CROP ... e rs 35
The chop Statement ... ——————————— 36
The chomp Statement ... ———————————— 36

1T LT T LS 37

AdditioNal RESOUICEScoveereeererseserseserresesesesesssessssesssse e se s sss e ses e sesse e ssssessssssnssasssensssssssnsssanes 38

LD EXBICISES ...vvuerrreerrierissessssesessesessssess s e sa e s s s s s s e sr s e b e e b e e e e R p e r e 38

Chapter 3: Array Variables........ccccuseemmmmsssnnnsmsssssnnmmssssssssssssssssssssssssnsssssssssssssssnsnssss 41

Array VariahIEScoceueiiiiiricnerie e s s s s s e s r e e e e nne 41

Referencing Array EIBMENTS........c.oo oo 42

SH WRAL? ... 43

Adding and Removing Elements in @n Arraycoueevenennnesnsesssesessse s sesssssssssessases 44

The SPlICE FUNCHION......ccccie ettt a e s a e b e e e nne e 46

LT (=T 0 T o 48

USing the fOreach LOOPccccereririerrie s serses s sressse s e s e e s sae s s e sae s s s sa e snesaesse s s e snesannnen 49

Be Careful of the lterator Variable...........cooooeerreeee e 49

TABLE OF CONTENTS

An Alternative to Using the for Statement...........cccvrvinin s 50
The reverse Statement...........ooer s 51
The SOIt OPEIALOrccceeec et b e s s b p e e nne s 52
Advanced SOrt TECHNMIGUEScouverierereiinsiriese s s e s e st e sbe st s e s naens 52
The qw and g0 STAEEMENTS ... ———————— 53
Arrays Used in Scalar CONTEXL........cccviiirinininnsinene s sae e s e s ssessssessesaens 54
AddItioNal RESOUITEScouiuiueierisssseesisese e s ss e sassssssnsens 55
LD EXBICISEScucerueerreeressese s se e e r e e R e e 55
Chapter 4: Associative Array Variablesccucccemmmnsssmmnmmssssssnnnssssssssssssssssssssssssnns 57
Associative Array VariabIs ..o s 57
Creating ASSOCIALIVE ATTAYScvevverrererrnseresesessesessssesessessssesessssesesssssssssssssssssssssssssnsssasssssssssssenens 59
Accessing Values with keys and foreachccccovvvnecnisninssnnesse s 60
Using Keys 0N @ REgUIAT AITAY........cccvuerrnsenmnesessse s sessssessssesssssssssssssssssssssssssssssssssessnns 61
Sorting the QUIPUL ..o e 61
Accessing Values in with “while-each” LOOPSccovrererenernsesnsesesssessssessssesessssesssssssssenens 62

Be Careful While USING BACNccvceriviriiriere st e s s ss e sse s s e saeseesssenaesaes 63
ReSEtting the Erator.........cccvevrreriene st se e sa e sr e e saesr e sa e naennes 63
USING BACH ON AITAYS .. ccvevtereriererresssseressessessssessessessssessessesssssssessessessssessessssssssssessessessssensessens 64
Returning Keys Only With aCHcccccvvvrirnrrr v sa e saesnes 64
The values SEAtEMEeNT ... e 64
Reverse Searching an ASSOCIAtIVE ArTayccoveererenerreseressesesssessssesesesessesesessesessesessssessssesenns 65
Removing Associative Array Keys and ValUues..........c.cccvvernnennenmrnsssessesssssesssesessessssssessssesenns 66
EXISTS VS. EFINEAcveeeeceecreer e 66
SPECIAl VAADIES........ccc e e 68
The Environment Variables ... s 68
The Argument Variable..........coc i 69
AditioNal RESOUICTEScoueereeerereereee e sesese e s s e s se e s se e s e s e e sessesesss e nenns 70
LD EXBICISES ...vrueerueerreerersesessesessesesessesesssesse e sessesesse e s se s e ss e ses e ssesesss e ssssssensssessssessnsssenns 70

vii

TABLE OF CONTENTS

Chapter 5: FlIow Control..........ccccvusssemnmmmsssnnnsessssssnsssssssssssssssssssssssssssssssssnsnssssssnnnsnsss 71
5o 63 4l
The if STALEMENT ..o e 4l
L] T] S 73
One-Line if Statement ... 74
The unless STAtEMENT ... ————— 75
The SWitCh STatEMENT ... ————————————— 75
The gIven STAatEMENT.........coiv v s sr e a e e e e naenne s 77
The while STatemMEeNt.........cov e —————— 78
The until STATEMENL.........co e 79
The do STATEMENL...........ooeeeee e s 80

Alternative t0 @ do Statement..........ccooecrrccrr e ———— 80

Alternative to a do Statement—Continuedcccoveerrerrnsrnns s 81
0T o B0 0] T OO 82
Breaking Qut 0f NeSted LOOPScocccvrerrnreneriernessne s se e sss e sssse s sens 83
0T o B0 0] - OO 84
Additional RESOUICESccuceriiereriiriee s e 84
LD EXBICISEScucerueereeeresenessese s e b e e s e R e 85

Chapter 6: Conditional EXPreSSIONS.......ccussssssssssssssassssssssssssssssssasssssssssssssassssnsnsansas 87
NUMEIC COMPANISONeuvvereeriertrierseseseesesessessesessessessesas e s e saesas e s e saesaess s e naesaessesessesaesaessssensesaes 87
STrNG COMPANISON ...c.veerererererrere e s e s ae e e e s e saesa e e s ae e ae R e e e e naesRe s e e e e e nnenes 88

How Can One String Be Greater Than or Less Than Another String?........ccovevvvverienniensenens 88
Difference Between String and Numeric CoOmpariSoN..........cucvvevereererserseresessessesessssessessees 89
Pattern MatChing ..o e e e e s 90
Using the Outcome of @ Statement ... ————— 91
oL L R o (o S 92
Notes Regarding FileNameEs...........ccoveeemrenmrenrenseseresese s sessssessans 93
Complex Conditional EXPreSSIONScccvveieririnsniesesissessese s sessessessessssessessesssssssessessessssessesseses 94
[T [0 LI 1o SO TSSS 94
[T [0 L SO STSS 95
[T [0 L0 SRS 95

viii

TABLE OF CONTENTS

Understand and/or VS. &&/Il.........ccceerrrminnininirinnisesesssssss s s nas 96
Understand and/or vs. &&/II——CONtINUEMcccerererernnnmseseressssse e sesssssnns 96
USING Par€ntNESEScccvvceiiienircine st e e e s e e 97
£ (o] AT 1T OSSR 98
AdditionNal RESOUICESceveerreseresseserseesssse s e s srs s sse e s s s e e sss e sessessssssessssesessesssssssssnses 99
LB (] (- N 99
Chapter 7: Basic Input and Qutput............ccovcmnimmimmnmmmnnmemmsssssessases 101
Reading INPUL.......co e 101
Record Separator VAriabIe ...t sesse s sesseseens 103
Reading Flat Databases...........cccrivininicriennsnene s sn s snes 103
Read an Entire File into a Scalar Variable.............cccovrriiennnnnssssrss e 104
The Diamond OPErator ... e e e e e e 104
Warning: Problem with RedireCtion..........c.cccevevnininininsnsns s 106
The Default Variabl@ ..o e nnee s 106
USING Par@nNNESESccccereeerinesiresise s 108
Additional RESOUITESccviiiiririsissssissss s s 108
LAD EXBICISESucucererrsssssisesesssssssess s ss s et e 109
Chapter 8: Advanced Input and Qutput...........ccccmnsmmismmmsnmmsenmssmmsssanmssas— 111
FIERANIES.......eeeit s —————— 11
The die and Warn FUNCHONS...........vi s 11
Returning an Exit Status Value with die ... 112
Using the exit Statement ... ———————— 113
Opening and Reading from FileS.........c.cuoerenrnrcnreseresersesese e 113
Different Ways of Opening Filescccoverrierreneres s neens 114
Opening and Writing 10 FIleS........cccvvernenerisrrsesne s 115
Reading a Block of @ FIlENANAIE...........ccccvvererinninienene s sese s se s s ssessssessesaens 116
Reading @ Single Characlerccvivvrrerierersnsensesessssessessessesessessessesssssssessesssssssessessesssssssesnens 117
0T 10 T < o SR 118
Sending Data to an 0S COMMANcccveerverierererrerrerierse s e sessese e ssesessessesasssssessessens 118
The format STatement ... 119

TABLE OF CONTENTS

BasiC PlaCENOIAEIS.........ccoceriierei e s 120
Demonstrating TrUNCALIONccooeiiiiirie e e 122
NUMEKIC FIBIAS ... 122
Advanced PIACEROILEIS ... s 123
REPEALING LINES.....cvceicccriririssre e s 124

Ly LT =T DT T) 126

AdditioNal RESOUITESceeeeeeereecrercrere e se e se e se e e e senre e srens 127

LD EXBICISES ...veueerucerreerreesesesesseses e sessesesse e s e sessesesse e sssseses e sensssssssessasesesssssnssnessensssnnsenns 127

Chapter 9: Pattern Matchingccccimnnmmmmmnnnssmmmnsssnmmmssssnmssssss o ——— 129

Pattern Matching vS. WIldCardscccvivvernenerinennsesnesese s sessesenns 129

Matching, Substitution, and Translation ... ——— 129
The Matching OPerator..........coeerrnns s 129
The Substitution OPErator...........cccccerrininirs e 130
The TransIation OPErator ... 130

L0013 131
L T 0 13T O 131
THE “I” MOGIfIEEecvceererersirisisr e 132

Regular Expressions: MetaCharacCiers..........ccoevvvrienerierses e serses s ses s s s sesseessessessenns 133
Bl =36 111][RR 134
Bl =2 110 TSR 134
Warning ADOUL USING “”ovvive s ss s s s sse s s se s s s s s s snesae s s 135
Bl = 1] 0] TS 136
Pattern Matching IS GrEEAYccveverrerierererrerrere e ser s s e sse e s s e s s sae e s saesaesassesaesaes 137
B =2 1110 TS 138
B S = 1] 0] TS 139
B =2 117 011 140
AN 1110 il o 1111][RR 141
B I == 11 110 TSSOSO 142
B I 3. T 11 142
N7 EXQIMPIES 1.uvruerrerererersessnsessessessessssessessesssssssessesssssssessesaessssensessesssssssesassssssssessesasssssensenses 143

TABLE OF CONTENTS

Regular EXPreSSions: CASSES ...uuveverrererrersersersssersessesssssssessessesssssssessesssssssessesssssssessessesssssnsessens 144
NS VS Dttt R 145
POSIX Character CIASSEScuucrererermssnmsesesssssssssssesesssssssssesssssssssssssssessssssssssssessssssssssssens 146

Regular Expressions: BaCKreferenCingcccoovcvvrieresnnnsesiess s s sessesesssssssessessessssessessens 148
Backreferencing EXamPpIe #1..........cooririeneririersee s rreressse e ses s s s e e snesnesneens 149
Backreferencing EXAmPIE #2..........coccvvrieveriiriensee s sessesssesessesses e sessesssessessessessssssesaessenns 150
Backreferencing EXamPpIe #3..........cocvvrieneririenree e siessessse s ses s sse e ssessee s ssesesssesnesnessenns 150

AdditioNal RESOUITEScecereeereecrercersese e s se e e e senne e nrenis 151

LD EXBICISES ...veueerueerreereeesesesessesesse e sesesesse e se e ses e e ssesesse e ses e sesse e ssssessesesesssssnssnsssansssnsssenns 152

Chapter 10: Perl Utilities........cccciunnsmmmmmmssssnmmmmssssnnnmsssssssnmsssssssnssssssssnsssssssssssssssnnnns 153

SPIIT et ————————————————————————————————— 153
LT X 153
Using Regular Expressions With SPlit ... ssesessnnes 154
Limit the Output of SPIit......ccoccviriinrrrr e ———— 154

0] 1SS SOOI 155

SUDSIT . —————— 156

13101 O 158

1110 158

0] o 159

SFANA AN FANG........covieercer e e e e e p e e e r s 160

[T o TSRS 161

Additional RESOUITESccviuiiererisssssessses s s sas s s sss s 162

LD EXBICISEScuetiuierieerise s bbb 162

Chapter 11: Filesystem and Process CONtrol........c.cccrussmsesssnsssssnsssssnssssssnssssanssssas 165

Controlling the Filesystem Within Perlco e 165
Avoid Running Operating System Commandsccccoreeerrnenmreneseseressesesese e sessesessenens 166

WOrking With Dir€CIOMIES.ccrvvererrererreseressesessesesrsse s ssesesse e s sesss e e s sessessssssessssesesssssssenens 166
LI (13 T0 1 T 167
T T DT =T (0] 1= OSSOSO 167
ReMOVING DIFECIOMIEScoveerereeerreserreeres s nns e 168

xi

TABLE OF CONTENTS

WOrKing With FilESccccueveriirirse i s s s 169
Deleting FilES......cciiiieriererircir s e 169
ReNaming Fil@S........cocvviiiiiirirsie i 169
Changing PEIMISSIONS........ccvverererersereressssessessessessssessessessssessessesssssssessesaesssssssessesssssssesaeses 169
Gathering File INfOrmation.........coovvevieriennsrsere s s s sne s s e ssesae s 170

5 T L0 1) 1] o SR 171

The system Statement ... ————————— 172

Additional RESOUITESccueereeereecrenesersese s e ses s se e ses e e sss e e sessssessssessssessenes 173

LD EXBICISES ...viueerueerreerieesessessssese e ses e sss e e sesrs e s s s e sn s se s s nss e nsa e nenssnenns 173

Chapter 12: FUNCHIONS ...cceeeeemmminnmsisssssssssnsmsssnnnnnnsnnnss 175

Creating FUNCHIONS ..ot se s sae e s e s sa e e nnes 175

INVOKING FUNCLIONScueiiiiiie e sn e st st n e s s 176

Returning Values from FUNCHIONS.........cccccviinnininc s sss e snens 177
The EXplicit MEthod ..ot s 177
The Implicit METhOU...........cocreec e 178

Passing Parameters ... s s st 179

Scope Of VANADIEScccveieir e e 181

TOCAI() VS. MY()eueruerueruereenerererseseresessesessese s e sse e s e ssesse e s e ssessese s e nsessesse e e e saessesennesnesssssnnsnnesnees 183
The 10Cal STAtEMENT.........ccceeceree e nne s 183
The My SEAtEMENT ..o e 185

AdditioNal RESOUICTESveveervierriesinessssese s ss s se s e sr s sn e ssa e srssssensasessans 187

LB (] (- 187

Chapter 13: Using Modules..........coussummsanmssassssnsssansssassssnssssnsssassssssssassssansssnsssansssans 189

What Arg MOAUIES? ... s r e e e e nne e 189

Loading ModUles With USE........c.eeoereecreecrrererescres e 189

Other FUNCHIONS OF USE......ccoveeereernsesesesesese s se s se s e s sesse e s e sessssessssssesssnenns 190
LT Te0 LT T L0 £ T 190
1T 1 PO 191

Additional RESOUICTESveueeerreerriesrsesessese s s ss s ss s s ss s e srs e srs s e e srasessssssensasessanes 193

LA EXBICISESucueerersssssiesesssssssese s s ss s s sa s sb s s e 193

xii

TABLE OF CONTENTS

Chapter 14: Debugging Perl........cccccccmrmsssnnnnmmssssnnnmsssssnsnssssssssssssssssnsssssssssssssssnnnnss 195
TR =W SWILCH ...t 195
The Perl DEDUGGET ..o s e 196
Debugger COMMANGSccorerrenerese s ne s 197
AdditioNal RESOUICTESveueerreerriessnsessssese s s s s srs e sns e s sa s srssesessssensasessans 197
LI (- N 198

1T - 199

xiii

About the Author

At the impressionable age of 14, William “Bo” Rothwell crossed paths with a TRS-80
Micro-computer System (affectionately known as a “Trash 80”). Soon after, the
adults responsible for Bo made the mistake of leaving him alone with the TRS-80. He
immediately dismantled it and held his first computer class, showing his friends what
made this “computer thing” work. Since this experience, Bo’s passion for understanding
how computers work and sharing this knowledge with others has resulted in a rewarding
career in IT training. His experience includes Linux, Unix, DevOps tools, orchestration,
security, and programming languages such as Perl, Python, Tcl, and BASH.

Bo can be contacted via LinkedIn: www. linkedin.com/in/bo-rothwell

http://www.linkedin.com/in/bo-rothwell

About the Technical Reviewer

German Gonzalez-Morris is a polyglot Software Architect/Engineer with 20+ years

in the field, with knowledge in Java(EE), Spring, Haskell, C, Python, and Javascript,
among others. He works with web distributed applications. Germén loves math
puzzles (including reading Knuth) and swimming. He has tech reviewed several books,
including an application container book (Weblogic), as well as titles covering various
programming languages (Haskell, Typescript, WebAssembly, Math for coders, and
regexp). You can find more details at his blog site (https://devwebcl.blogspot.com/)
or twitter account (@devwebcl).

Xvii

https://devwebcl.blogspot.com/

Acknowledgments

Thanks to all of the folks at Apress for helping me get this book to print:
o Steve: Thanks for getting the ball rolling.
o Matthew: Appreciate your “behind the scenes” guidance.
e Mark: Great job keeping this project on track.

o German: Excellent work finding my typos and technical oversights
and bloopers.

Xix

Introduction

In the world of programming, there are many choices when it comes to languages. Each
language has its advantages and disadvantages. No single language will fit all needs.

You may already know why you want to learn Perl 5. If that is the case, just dive right
into this content. If you are still wondering why Perl 5 is a great language, then I would
like to take a few moments to provide you with some good reasons, hopefully without
any negative comments toward other languages.

Perl 5 is a very robust language that includes a great number of features that you
would expect from a modern language. It is also easy to learn initially because there isn't
a need for so much extra syntax that you commonly find in more structured languages.

Perl 5 also has a huge following with great documentation and online support. There
are hundreds of thousands of Perl programs available, providing you with a great starting
point whenever you start a new project. Many organizations have used Perl 5 for over
two decades, making it very much embedded in the corporate IT world.

I hope you enjoy this book and that it helps you on journey of learning this fun and
powerful language.

xxi

CHAPTER 1

Origin of Perl

Perl was developed in 1987 by Larry Wall. It was created because the tools that were
available to Mr. Wall at the time (sed, C, awk, and Bourne shell) didn’t provide the sort of
functionality that he required.

Perl was initially called Pearl, but the name was quickly changed due to the fact that
there was another language called Pearl at the time. Perl is a backronym (a constructed
acronym created to fit an existing word) that stands for “Practical Extraction and
Reporting Language.” Some programmers (typically those who don’t like Perl) claim that
Perl stands for “Pathologically Eclectic Rubbish Lister.”

Perl code is mostly machine-independent. This means that you can write a Perl
program on one platform (like Linux) and then easily use the same program on another
platform (like Windows). When dealing directly with the operating system or filesystem,
you may need to make some changes to your code.

Perl has been ported to UNIX, Windows, Linux, and many others (see www.cpan.org/
ports for the complete list).

Perl Development Environments

In some cases you might not have a choice as to which platform or derivative of Perl that
you will use to develop your code. However, if you do have a choice, you should spend
some time learning the differences between your options.

© William “Bo” Rothwell of One Course Source, Inc. 2019
W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_1

http://www.cpan.org/ports
http://www.cpan.org/ports

CHAPTER 1 ORIGIN OF PERL

=NiXx/Windows

xnix refers to any UNIX-based OS (including Linux). Many developers prefer this

environment over Windows for several reasons, including the following:

o UNIX-based systems typically have more powerful features for
developers. For instance, most UNIX-based systems have a C or C++
compiler, making it easier to install CPAN modules. Windows systems
typically don’t have a C/C++ compiler by default.

e UNIX-based systems tend to be more stable than Window-based
systems.

There are other advantages (and some would argue there are advantages of Windows
over =xnix). Consider the pros and cons of each before deciding your development
platform.

In either case, if you are worried about writing portable code, you probably want to
review the following document: http://perldoc.perl.org/perlport.html.

Which Derivative for =nix?

If you decide to develop on a UNIX-based platform, you may want to consider which
derivative of Perl to install and develop on. Unless you want to create a custom build of
Perl (well beyond the scope of this book:), your choice will likely come down to two: the
standard Perl derivative (waw.perl.org) or ActiveState’s ActivePerl (www.activestate.
com/activeperl).

When you consider which derivative to use, take the following into account:

e Most xnix systems have Perl installed by default as several system
tools (especially on Linux) make use of Perl to manipulate data. In
these cases, you are likely to find the standard Perl installed (or a
custom build for that Linux distribution).

e ActivePerl comes with a tool to easily install Perl modules: ppm.
This tool is normally considered easier to use than installing CPAN
modules with the -MCPAN option.

http://perldoc.perl.org/perlport.html
http://www.perl.org
http://www.activestate.com/activeperl
http://www.activestate.com/activeperl

CHAPTER 1 ORIGIN OF PERL

ActivePerl’s ppm doesn’t install modules directly from CPAN, but
rather from another repository that ActiveState maintains. This
means you have access to a subset of the CPAN modules, not the
complete set. Note: You can choose additional repositories by
clicking “Edit” + “Preferences” and choosing the “repositories” tab.

«If you do want to create your own custom Perl derivative, you probably want to start
by looking at the following: http://search.cpan.org/dist/App-perlbrew/.

Which Derivative for Windows?

If you are working on a Windows platform, you have a few choices available, as described

on www.perl.org:

ActiveState Perl: It has binary distributions of Perl for Win32
(and Perl for Win64).

Strawberry Perl: A 100% Open Source Perl for Windows that is
exactly the same as Perl everywhere else; this includes using
modules from CPAN, without the need for binary packages
(see http://strawberryperl.com/).

DWIM Perl for Windows: A 100% Open Source Perl for Windows,
based on Strawberry Perl. It aims to include as many useful CPAN
modules as possible. It even comes with Padre, the Perl IDE

(see http://dwimperl.szabgab.com/windows.html).

A few things to consider:

ActivePerl has ppm, while Strawberry Perl does not. However,
Strawberry Perl has many CPAN modules installed by default
(both a pro and a con).

With ActivePerl you can get official support. Strawberry Perl provides
only community support.

Strawberry Perl comes with gce, a C/C++ compiler, making it easier
to install modules from CPAN.

Strawberry Perl release cycle tends to be slower than ActivePerl.

“When I'm on Windows, I use Strawberry Perl”——Larry Wall

http://search.cpan.org/dist/App-perlbrew/
http://www.perl.org
http://strawberryperl.com/
http://dwimperl.szabgab.com/windows.html

CHAPTER 1 ORIGIN OF PERL

Pick Your Perl Development Tools

There are several good tools to help you develop your Perl code. This includes
debuggers, editors, and IDEs. Some of these tools are free, while some can be very
expensive. Many of them are community support, while a few are commercially
supported.

A good place to start exploring these tools is the following web site: waw. per1monks.
org/?node_id=531175.

Perl Versions

To verify Perl is installed, and to show the version, type the command perl -v:
[student@ocs student]$ perl -v

This is perl, v5.10.1 built for MSWin32-x86-multi-thread
(with 4 registered patches, see perl -V for more detail)

Copyright 1987-2009, Larry Wall

Binary build 1008 [294165] provided by ActiveState http://www.ActiveState.com
Built Dec 9 2010 06:00:35

Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found on
this system using "man perl" or "perldoc perl". If you have access to the
Internet, point your browser at http://www.perl.orqg/, the Perl Home Page.

You will see in the preceding highlighted text that Perl 5.10.1 is used on this system.
As of the date of when this was written, this version is considered a bit “old”; however, it
is important to note that many Perl developers are still using older versions. They may
be “stuck” with an older version because of platform issues or “related” software issues.
This book isn’t written for a specific version of Perl 5; however, notes will be made when
a “newer” concept is covered.

Perl 5.10.1 is specifically used in this book in some examples because of a change
that took place in that version. Please note that all of the content in this book works on
the latest version of Perl, unless otherwise noted.

4

http://www.perlmonks.org/?node_id=531175
http://www.perlmonks.org/?node_id=531175

CHAPTER 1 ORIGIN OF PERL

What About Perl 6?

This book is based on Perl 5, which will prompt some readers to wonder about Perl 6. To
begin with, Perl 5 and Perl 6 have some major differences. It would be difficult to cover
both in the same book.

Perl 6 also has some excellent new features, many of which have been backported
into Perl 5. However, Perl 6 hasn’t been embraced by Perl developers to the extent that it
overtakes Perl 5 in popularity. There are several theories as to why, but the most likely is
the work that it would take to convert the vast number of Perl 5 scripts into Perl 6 scripts.
The benefits of Perl 6 don’t appear to outweigh the work involved to move to Perl 6
(although some would argue this isn’t the case).

In any event, there is certainly a huge amount of Perl 5 development, and based on
ongoing projects, this accounts for more development than on Perl 6. One day this will
change, but for now Perl 5 is still heavily used.

Even if you plan on learning Perl 6, knowing Perl 5 will be useful as you may be called
upon to upgrade existing Perl 5 scripts to Perl 6. As a result, consider learning more
about Perl 6 by visiting this site: http://perl6.guide/.

Understanding Perl Versions

Perl version numbers sometimes are confusing. The first version of Perl 5 (5.000) was
released in 1994. Initially, the Perl version numbers followed the numbering convention
0f 5.000, 5.001, 5.002, etc. When a minor change or “bug fix” release occurred, the
numbering included this as 5.002_001 or 5.002_002.

The last release that followed this convention was 5.005_63; the next release was
5.6.0. The primary reason for this numbering change was to fall in line with the version
numbering system that most open source projects followed.

Additionally, odd number releases (5.7, 5.9, 5.11, etc.) are considered development
releases and should not be used for “real” programming.

http://perl6.guide/

CHAPTER 1 ORIGIN OF PERL

Previous release: 5.005_63
Development releases Production releases

5.6
5.7 5.8
5.9 5.10
5.11 5.12
5.13 5.14
5.15 5.16
5.17 5.18
5.19 5.20

Note The most current release as of when this book was written is 5.28.

Which version of Perl 5 should you use? In some cases you may not have a choice as
your organization may have a specific version of Perl that you must use. However, if the
choice is yours, consider the following:

« Newer versions have more features than older versions.

e Only the latest version and the previous production release are
supported. Any older version is no longer actively maintained.

This book was specifically written to address subtle differences in different Perl 5
versions. Most of the material should work fine in Perl 5.6 and higher. When there are
differences, they will be called out.

& TRY IT!

Whenever you program in Perl, it is very helpful to know what version of Perl you are using.
Execute the following command to determine the version of Perl that you are currently using:

perl -v

CHAPTER 1 ORIGIN OF PERL

Invoking Perl

There are three methods to invoke Perl: the command line, interactive, and script methods.

The Command Line Method

Although this method is the least common way of invoking Perl, it does provide a means
of “testing” simple Perl statements. The -e option allows the user to enter the Perl
statements on the command line:

[student@ocs student]$ perl -e 'print "This is my first perl program\n";
This is my first Perl program

Notes:

o The print statement will display its arguments to STDOUT (standard
output, usually the screen).

o The “\n” character represents a newline character.
e The “;” character ends the print statement.

o The single quotes around the Perl statement are needed to “protect”
special characters from the shell.

e The double quotes are needed around the text that will be printed by
the print statement.

e Inthe Win32 environment, use double quotes around the print and
single around the text.

The Interactive Method (Debugger)

The interactive method makes use of the Perl debugger to allow you to enter a Perl
“shell” in which you can type Perl statements. This is useful not only for testing Perl
scripts but also for “interactively” testing Perl statements.

To enter the Perl debugger, use the -d option:

[student@ocs student]$ perl -d -e "1;"
DB<1>

CHAPTER 1 ORIGIN OF PERL

Notes:

e The -e option allows you to enter the Perl statement(s) on the command
line. The “1;” is a “dummy” statement that has no real meaning (but
provides Perl with valid code in order to enter the debugger).

« Instead of specifying -e “1;” you could specify a script name to debug
the script.

e Many of the examples given in this book are performed within the
debugger. This allows the instructor to demonstrate a concept or
technique without having to create a full program.

e There are a (very) few statements/features that don’t work in the Perl
debugger.

If you installed Active State’s ActivePerl, you might end up in their GUI-based
debugger. To temporarily change your system to use the built-in Perl debugger, enter the
following command(s) in your shell:

¢ Windows:

set PERL5DB=BEGIN { require 'perl5db.pl'; }
set PERLDB_OPTS=

e Linux, Unix, and macOS systems:
export PERLDB_OPTS=

To re-enable the PDK debugger, set the PERL5DB variable to an empty string.

¢ TRY IT!

Execute the following command to enter the Perl debugger environment:
perl -d -e "1;"

At the debugger prompt, execute the following Perl statement:

print 5 + 6;

Exit the debugger by executing the following Perl statement:

g

CHAPTER 1 ORIGIN OF PERL

The Script Method

This method is the most common method; it allows you to place Perl statements inside
of a file and execute them. The following line of text can be placed into a file:

#1_first.pl
print "This is my first Perl program\n ";

And then executed by using the Per]l command:

[student@ocs student]$ perl 1_first.pl
This is my first Perl program
[student@ocs student]$

Note that the # character is for commenting and lines starting with it won’t be
processed by Perl (with the exception of shbang, as we’ll see next).

Unix-based operating systems provide you another method of executing the
script. You can place a special line of code at the top of the script called “shbang”
(or “shebang”) that tells the OS which command to use to execute the script.

The first line in the following script is shbang. It must start with “#!” and then contain
the path to the command that will execute the script:

#!/usr/bin/perl
1_second.pl

print "This is my second Perl program\n ";

Now that shbang has been added, just make the script executable and run it
like a program:

[student@ocs student]$ chmod a+x 1_second.pl
[student@ocs student]$./1_second.pl

This is my second Perl program

[student@ocs student]$

CHAPTER 1 ORIGIN OF PERL

Notes:

e OnaWindows system, shbang is primarily treated as a comment
(unless you use #!perl followed by an option to Perl). The Win32
environment uses file extension association (associating the “pl”
extension with the Perl Command Line Interpreter).

e The actual location of Perl may vary from one platform to another.
The rest of the example in this book will use #!perl instead of
attempting to guess the full path to the Perl executable.

Perl Documentation

One of the great features of Perl is the quality of its documentation. This documentation
can be accessed from several different sources. One of these sources is the website
https://perldoc.perl.org. While browsing this site, there are a few things that you
want to take into consideration (see Figure 1-1).

10

https://perldoc.perl.org

General information
regarding Perl is found under
the "Manual" fection.

Perl programming d fix
=

C | [© perldoc@eriorg

erldoc.perl.or
@ reridocrertorg

1 5 versian 18.2

i you are new to the Per languat
the extensive EAQ section, whic

Site features

= Improved navigation

icking this opens a
you're reading

When you wantfto view

518

ou scroll down a p
creen, so the page name, breadcrumb trad, and other lnks are always

CHAPTER 1

ORIGIN OF PERL

Each version of Perl will have
different dogumentation. Be

in HTML and POF formats.

2, read the perdelta man

to star reading are the

age, the lop nawgation bar remains wsible at the lop

age index link in the naw

mentation pages you viewed
if you're using an offlne local

code blocks now have line numbers

ction and oveniew at periniro. and

The Perl Faundatier

Dnes again, we sre
participating in
GMOME's...

dUCUI‘I‘IEI‘ItaﬁOI"I about a
specific function, variable or
feature, look under the
Reference section.

Standard modules (which are
like libraries), have
documentation that can be
viewed under the Modules
section.

Figure 1-1. Details of perldoc.perl.org

In addition to the web-based documentation, you can access documentation on

your one system. If you are working on Unix or Linux, you can execute the command man

perl (see Figure 1-2).

11

CHAPTER 1 ORIGIN OF PERL

i bo@ttr:~ - olEl
PERL (1) Perl Programmers Reference Guide PERL(1) ~
NAME

perl - The Perl language interpreter

SYNOPSIS
perl [-sTtuUWX] [-hv] [-V[:configvar]]
[—ew 1 [-d[t][:debugger]] [-D[number/list]]
[-pna] [-Fpattern] [-l[octal]] [-0O[octal/hexadecimal]]
[=Idir 1 [-m[-lmodule] [-M[-]'module...'] [-f]
[-C [number/list]] [-5] [-x[dir]]
[-i[extension]]
[[-el-E] 'command'] [--] [programfile] [argument]...

GETTING HELP
The perldoc program gives you access to all the documentation that
comes with Perl. You can get more documentation, tutorials and
community support online at <http://www.perl.org/>.

If you're new to Perl, you should start by running "perldoc perlintro",
which is a general intro for beginners and provides some background to
help you navigate the rest of Perl's extensive documentation. Run
"perldoc perldoc" to learn more things you can do with perldoc.

(1) 1

Figure 1-2. The results of running man perl

Press the “ENTER” key to scroll down one line at a time, the “space bar” key to scroll

down one page at a time, and the “q” key to quit viewing the document.
On Windows, execute the command perldoc perl (Figure 1-3).

12

CHAPTER 1 ORIGIN OF PERL

= Command Prompt - perldoc perl - OES

NAME . A
perl - Practical Extraction and Report Language

SYNOPSIS
perl [-sTtuuwx 1 [-hv] [-v[:*configvar*]]
[-ew 1 [-d[t][:*debugger*] 1 [-D[*number/1ist*]]
[-pna] [-F*pattern®] [-T[*octal*]] [0[*octa1/hexadec1ma1*]]
[-1*dir*] [-m[-]*module*] [-M[-]*'module. *] -f
[-¢ [*number/1ist*] J [-P] [-s 1 [-x[* =i r*]] [-i[*extension*]]
[[-el-e] *'command'*] [--] [*programfile®] [*argument®]...

If you're new to Perl, you should start with perlintro, which is a
general intro for beg1nners and provides some background to help you
navigate the rest of Perl's extensive documentation.

For ease of access, the Perl manual has been split up into several

sections.

overview)))
per] Per] overview (this section)
perlintro per] introduction for beginners
perltoc per1 documentation table of contents
Activerer] Activerer] overview

Tutorials
perlreftut per] references short introduction
perldsc perl data structures intro

-- More -- v

<

Figure 1-3. perldoc perl on Windows

Note You can also execute the perldoc command on UNIX and Linux systems;
however, the man command doesn’t exist on Windows systems (unless additional
software is installed).

If you review the main documentation page (https://perldoc.perl.org), you will
discover many other useful sub-categories. The following highlights a few that you many
consider taking the time to read through.

Document Description

perlintro Perl introduction for beginners

perlrequick Perl regular expressions quick start

perlretut Perl regular expressions tutorial
perlstyle Perl style guide
pericheat Perl cheat sheet

13

https://perldoc.perl.org

CHAPTER 1 ORIGIN OF PERL

Document Description

perltrap Perl traps for the unwary
perldebtut Perl debugging tutorial

perlsyn Perl syntax

Each of these can be viewed by either using the man command or the perldoc
command. For example, to see the Perl cheat sheet, execute the perldoc perlcheat
command.

¢ TRY IT!

Execute the following command to display the “perl style guide”:

perldoc perlstyle

To see documentation on a specific built-in function, use the -f option with the
perldoc command. For example, to view the documentation for the Perl print function,
execute perldoc -f print (Figure 1-4).

14

CHAPTER 1 ORIGIN OF PERL

] Command Prompt - perldoc -f print - oIES

print FILEHANDLE LIST B

print LIST

print Prints a string or a list of strings. Returns true if
successful. FILEHANDLE may be a scalar variable name, in which
case the variable contains the name of or a reference to the
filehandle, thus introducing one level of indirection. (NOTE: If
FILEHANDLE is a variable and the next token is a term, it may be
misinterpreted as an operator unless you interpose a "+" or put
parentheses around the arguments.) If FILEHANDLE is omitted,
prints bﬁ default to standard output (or to the last selected
output channel--see "select"). If LIST is also omitted, prints
S_ to the currently selected output channel. To set the default
output channel to something other than STDOUT use the select
operation. The current value of §, (if any) is printed between
each LIST item. The current value of $\ (if any) is printed
after the entire LIST has been printed. Because print takes a
LIST, anything in the LIST is evaluated in list context, and any
subroutine that you call will have one or more of its
expressions evaluated in list context. Also be careful not to
follow the print keyword with a left parenthesis unless you want
the corresponding right parenthesis to terminate the arguments
to the print--interpose a "+" or put parentheses around all the
arguments.

Note that if you're storing FILEHANDLEs in an array, or if
you're_using any other expression more complex than a scalar
variable to retrieve it, you will have to use a block returning

the filehandle value instead:
-- More -- v

Figure 1-4. Documentation for the Perl print function

Perl Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

Lab Exercises

A note about the lab exercises in this book: creating lab exercises that will be beneficial
to everyone can be difficult. Lab exercises that focus on specific scenarios (such as
engineering test cases) can result in difficulties for learners who do not perform this
sort of programming. As a result, I focused on creating labs that will perform tasks that
are fairly generic but also assist the learner in practicing the new skills learned in each
chapter. In addition, to make the lab exercises more realistic, I attempt to build on one
script throughout rather than build many small scripts.

15

https://github.com/Apress/beginning-perl-programming

CHAPTER 1 ORIGIN OF PERL

Throughout this book, you will build on a script called cb. pl.

This script will eventually be a simple (flat) database program that will be
customized to fit simple database needs. To make it specific for the book, we will make it
a database that contains checkbook entries.

For this lab, create a file called cb1.pl and perform the following functions:

1. Create comments at the beginning of the code that indicate what
the program does (handles deposits, withdrawals, checks writing,
looks up checks by check number or date written, and prints a
statement) and other data (author, date/time, version (1.1)).

2. Using the print statement, have the program produce the
following output when it is run:

Welcome to checkbook 1.1
Please enter your name:

When you have completed your work, compare your script against the cb1.pl file
provided in the lab answers.

16

CHAPTER 2

Scalar Variables

Numeric Literals

A numeric literal is simply any kind of valid number. In Perl the following numeric types
are supported:

e Integer (ex: 111)

o Floating point (1.11)
e Hex (0x111)

e Octal (0111)

e Scientific (1.11E3)

While it’s important to know what numeric types Perl supports, it’s also important
to understand that Perl doesn’t “treat” these types differently. In fact, all numbers (and
strings) are considered to be of one type in Perl: scalar.

Also note that while you can represent scalar values as Hex, Octal, or Scientific, Perl
will really treat them as integer values:

DB<1> print oOx111
273

DB<2> print 0111
73

DB<3> print 1.11E3
1110

Scalar data is “a single value.” This could be any of the preceding numeric “formats”
or any string (strings are discussed later in the chapter).

17
© William “Bo” Rothwell of One Course Source, Inc. 2019

W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_2

CHAPTER 2 SCALAR VARIABLES

Manipulating Numbers

There are three basic types of operations you can perform on numbers: mathematical,

predefined functions, and comparison. Numeric comparison will be discussed in a later

chapter when all types of comparisons are covered.

Mathematical Operations

Perl allows the following mathematical operations:

Operation Symbol Example Result/Notes
Addition + 6+5 11
Subtraction - 10-6 4
Multiplication * 28 16
Division / 20/8 2.5
Modulus % 20%38 4
(remainder)
Exponentiation *% 2%%5 32
Auto-increment ++ See later section. Note: The auto-increment and auto-decrement
Auto-decrement —— See later section. OPerators can only be used on scalar variables
(not on constant numbers).
Examples:

DB<1> print 3 % 8
24

DB<2> print 2 %% 5
32

18

Predefined Functions

CHAPTER 2 SCALAR VARIABLES

Perl has some useful predefined functions that can be used to manipulate numbers

(more modern versions of Perl also support trigonometry functions, such as sin and cos).

Operation Function = Example Result

Absolute value abs abs(-101) 101

Convert hex to integer hex hex(“f0”) 240

Integer value int int(12.98) 12

Convert octal to integer oct oct(“0570”) 376

Generate random (floating point) ~ rand rand(10) Varies depending upon random
number seed

Square root sqrt sqrt(100) 10

Set random seed srand srand(200) N/A

Examples:

DB<1> print hex("e2")
226

DB<2> print int(101.02)
101

Note

The rand and srand functions are discussed in detail in a later chapter.

¢ TRY IT!

Execute the following command to enter the Perl debugger:

perl -d -e "1;"

Execute the following commands in the Perl debugger to practice math operations:

print 5 * 5;
print 10 / 0O;

19

CHAPTER 2 SCALAR VARIABLES
print sqrt(9);
Exit the Perl debugger by executing the following debugger command:

q

String Literals

A string literal is a set of characters that have quotes (double or single) surrounding

them. Some examples of strings are as follows:
“a is the first letter of the alphabet”
“John is late for work”
‘Perl is the best programming language in the world’
Notes:

o There is a difference between single and double quotes which will be

discussed in a later section.

» Even though strings are created by placing quotes around characters,
itis important to note that what really makes something a string is
the function or operator that is performed on the value. This will be
covered in greater detail in a later section of this chapter.

Manipulating Strings

As with numbers, there are three basic types of operations you can perform on
strings: alteration operators, predefined functions, and comparison operators. String
comparison will be discussed in a later chapter when all types of comparisons are

discussed.

20

CHAPTER 2 SCALAR VARIABLES

Alteration Operators

There are two alteration operations you can perform on strings.

Operation Symbol Example Result
Concatenate . “abc”.“def” abcdef
Repeat X “abc”x5 abcabcabcabcabc

Why use the x operator? Consider the following example:

DB<1> print "-" x 30, "\n", "Name: Bob Smith\n", "-" x 30

Predefined Functions

Here are some predefined functions:

Operation Function Example Result
Delete newline character at end of string chomp See later section of this chapter N/A
Delete last character of string chop See later section of this chapter N/A
Return index of substring index or rindex See later chapter N/A
Merge multiple strings together join See later chapter N/A
Turn all CAPS to lowercase Ic Ic(“HELLO”) hello
Turn first char to lowercase Icfirst Icfirst(“HELLO”) hELLO
Returns the length of the string length length(“abc”) 3
Break string into elements (array) split See later chapter N/A
Returns a substring of a string substr See later chapter N/A
Turn all lowercase to CAPS uc uc(“hello”) HELLO
Turn first char to CAPS ucfirst ucfirst(“hello”) Hello

21

CHAPTER 2 SCALAR VARIABLES

Notes:
e chomp and chop will be discussed in more detail in a later section of
this chapter because they are more commonly used on variables, not

string constants.

« index, rindex, join, split, and substr will be discussed in a later
chapter.

¢ TRY IT!

Execute the following command to enter the Perl debugger:

perl -d -e "1;"

Execute the following commands in the Perl debugger to practice string operations:
print "Bob" . "Smith";

print "Bob" . " " . "Smith";

print length("Bob");

Exit the Perl debugger by executing the following debugger command:

g

The Importance of Using Quotes

Perl is often referred to as a “lazy” programming language as it sometimes allows you to
omit some syntax. For example, consider the following code:

DB<1> $var=red
DB<2> print $var
red

In the previous code, the value of red should have had quotes around it. However, it
seems to have worked just fine without the quotes. Unfortunately, that won’t always be
the case.

22

CHAPTER 2 SCALAR VARIABLES

When Perl sees a value without quotes around the value, it assumes initially that this
is a function call. If there actually is a function called red, the function would be called,
and the return value of the function would be assigned to the $var variable:

DB<1> sub red {return "haha";} #creates a function called red
DB<2> $var=red
DB<3> print $var

haha

Only if red isn’t a function would it be considered a scalar value. As a result, it is
always safer to place quotes around the value:

$var="red";

Strings vs. Numbers

While numbers and strings are both scalar data to Perl, they are sometimes treated
differently (depending on how they are used).

When numbers are used in a “string context,” they are converted into strings first and
then “used.” String context includes the following:

e String operators (“.” or “x”)

o String functions (see preceding function)

e Assignment operation (the = sign)

e String comparison (described in a later chapter)

e Regular expressions (described in a later chapter)

The method Perl uses to convert numbers into strings is very simple. Essentially,
the number is treated as if there were quotes around it. The only time the number is
modified is when it contains unnecessary “0”’s after the decimal point. They are dropped
when the number is used as a string.

Examples:

DB<1> print "abc".12345
abc12345
DB<2> print "abc".123.45

23

CHAPTER 2 SCALAR VARIABLES

abc123.45
DB<3> print "abc".123.4500
abc123.45

The string to number conversion is a bit more complex. Perl will “look” at the first
character of the string and...

o ...ifitisa number (0-9) or a decimal point, then Perl will continue
to look for more numbers. Once it finds a character that is not either
a number or decimal point, it will stop looking and will convert the
string into what it has found to that point.

o ..ifitis white space (new line, space, tab, etc.), Perl will ignore it
and look at the next character to determine if it is a number, decimal
point, or non-number.

o ..ifitisn’t a number, decimal point, or white space, then the string is
treated as zero (0).

Examples:

DB<1> print "123abc"+10

133

DB<2> print " 123abc"+10
133

DB<3> print "abc123" +10
10

DB<4> print "1.45 xyz" + 10
11.45

Perl is also smart enough to know that a number can’t have two decimal points.
Once a second decimal point is discovered, Perl stops looking and treats all characters to
that point as the number:

DB<1> print "9.999.999" + 10
19.999

24

CHAPTER 2 SCALAR VARIABLES

The Assignment Operation

It is important to remember that the assignment operation is string. This may sometimes
pose problems:

DB<1> $num=120.4500000
DB<2> print $num
120.45

In the previous example, we tried to assign a very precise number to the variable
$num. However, because the assignment operation is string, the “unnecessary” zeros
were removed from the number. In most cases this isn’t a problem, but if you want to
show how precise the number really is, this is a disadvantage.

To avoid this, use quotes around the number:

DB<1> $num="120.4500000"
DB<2> print $num
120.4500000

Note that this does not make $num into a variable that holds a string. It is a scalar
variable, not a numeric or string variable. If you use a numeric operator or function on
the variable, then it will be treated as a number; if you use a string operator or function
on the variable, then it will be treated as a string.

& TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to test the difference between strings
and numbers:

print "1000 monkeys" + 5;
print length(123.45000);
print "work" / "time";

25

CHAPTER 2 SCALAR VARIABLES

Did you get the results that you expected? If not, review the last section and determine why
the output was different than you expected.

Exit the Perl debugger by executing the following debugger command:

g

Single vs. Double Quotes

Quotes are important when dealing with strings because they tell Perl how to handle
the strings.

Double Quotes

There are many “special characters” that you can have within double quotes. These
characters are called “escape characters” because the escape key (\) is used to create them:

Escape character Meaning

\t Tab

\n Newline character

\r Return

\u Makes the next character uppercase

\l Makes the next character lowercase

\U Makes all following characters uppercase
\L Makes all following characters lowercase
\E Ends the \U and \L modifications

\f Form feed

\b Backspace

\a Bell

\033 Octal character

\x1b Hex character

\" Double quote

26

CHAPTER 2 SCALAR VARIABLES
Examples:

DB<1> print "It is a good idea to learn Perl\n"
It is a good idea to learn Perl

DB<2> print "hello\t\t\tgoodbye"

hello goodbye
DB<3> print "hello\b\b\b\b\bgoodbye"
goodbye

DB<4> print "The \Usign\E said \Ustop\E\n"
The SIGN said STOP

Within double quotes, “$” and “@” are also special characters. The “$” character
is used to specify a scalar variable, while the “@” character is used to specify an array
variable. Variable dereferencing (returning the value that is assigned to the variable)
takes place within double quotes:

DB<1> $code="A127Z" #sets a scalar variable
DB<2> print "The code is $code"
The code is A1277

If you want to print double quotes within a double-quoted string, you need to put an
escape character (backslash) preceding the double quotes:

DB<1> print "The key word is \"test\""
The key word is "test"

Single Quotes

Almost all of the characters within single quotes are treated as plain characters. The
only special characters within single quotes are single quotes and (sometimes) escape
characters:

DB<1> print 'Bob's new car is broken'
Substitution replacement not terminated at (eval 4)[C:/Perl/lib/perl5db.
pl:1521] Iine 2.

DB<2> print 'The last character is \'
Can't find string terminator "'" anywhere before EOF at (eval 5)[C:/Perl/
1ib/perlsdb.pl:1521] line 2.

27

CHAPTER 2 SCALAR VARIABLES

In order to have a single quote within a single-quoted string, you must put an escape
character before it:

DB<1> print 'Bob\'s new car is broken'
Bob's new car is broken

Since an escape character before a single quote makes it into a plain character, you
need to escape the escape character in such cases:

DB<1> print 'The last character is \\'
The last character is \

Within single quotes, the escape character has no special meaning in front of other
characters, and the $ character is just a plain character:

DB<1> print 'The result is 10\n’
The result is 10\n

DB<2> print 'The total is $total’
The total is $total

*‘ynTRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice how single and double
quotes are different:

print "Hello there\tBob; how are\nyou today?";
print 'Hello there\tBob; how are\nyou today?';

Exit the Perl debugger by executing the following debugger command:

g

28

CHAPTER 2 SCALAR VARIABLES

Scalar Variables

A “scalar value” is a single item of data. This data can consist of characters that are found
in the ASCII text table. Scalar variables are used to store scalar values. The “$” character
is used to specify a variable name:

$var=value;

The variable name ($var in the preceding example) can contain alpha characters
(lower- and uppercase), numbers, and underscore characters. It must also start with
an alpha character or an underscore character. While some Perl built-in variables can
start with a numeric character, the variables that you create cannot start with a numeric
character.

To dereference the value a variable contains, specify the variable’s name:

DB<1> $test=94
DB<2> print "The result of the test is $test”
The result of the test is 94

Undefined Variables

If you attempt to reference a variable that has not been defined, Perl does not consider
this an error. The value that Perl returns depends upon how the variable is being used.
In numeric operations, Perl will return 0; in string operations, Perl will return “” (null
string):

DB<1> print "The name of the car is $name”
The name of the car is

DB<2> print "The value is: " , $total + 8
The value is: 8

Note The comma used in the second example separates the string from the
mathematical operation. This sequence of items separated by commas is called a
list in Perl.

29

CHAPTER 2 SCALAR VARIABLES

In some cases, you don’t want to perform an operation if a variable isn’t defined.
The defined function can be used to check if a variable is defined or not. If the variable
is defined, defined returns a “true” value; if the variable isn’t defined, defined returns a
“false” value.

These values can be used in conditional statements. In a later chapter, we will
discuss conditional statements in detail. The following code is just a brief example:

#!perl
#2_defined.pl

if (defined ($total)) {
print "The value is: ", $total +8, "\n";

}
else
{
print 'The variable $total is not defined', "\n";
}

Notes:

o The if statement will be discussed in detail in a later chapter. In this
example, the first print statement is executed if $total is defined. The
second print statement is executed if $total is not defined.

e The curly braces { } define a “block” of statements. Blocks are required
for conditional statements to tell Perl what statements to execute if
the condition is true (or false in the case of the else portion).

To “undefine” a variable that has been defined, use the undef function:

DB<1> $total=95

DB<2> print "The total is $total\n"
The total is 95

DB<3> undef ($total)

DB<4> if (defined ($total)) { \

cont: print "yes\n"; \
cont: } else { \
cont: print "no\n"; \
cont: }

no

30

CHAPTER 2 SCALAR VARIABLES

Notes:

¢ The outcome of the if statement will be to print “no” since $total is
not defined.

wn

e Setting a variable to “” or 0 does not “undefine” it.

o Inthe Perl debugger, the statement is automatically executed
after you press the “Enter” key. To continue the command, type a
backslash character right before the “Enter” key. This is the purpose
of the backslash characters that are use with the if statement in the
previous example.

& TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice setting and unsetting
variables:

if (defined $person) {print "yes"};
$person="Nick";
if (defined $person) {print "yes"};
undef $person;
if (defined $person) {print "yes"};

Exit the Perl debugger by executing the following debugger command:

g

Auto-increment and Auto-decrement

As mentioned previously, the “++” and “--” operators can be used to alter numeric
u ”

variables. The ++ (auto-increment) operator will add 1 to the variable. The “--” (auto-
decrement) operator will subtract 1 from the variable.

31

CHAPTER 2 SCALAR VARIABLES

Examples:

DB<1> $i=100

DB<2> $i++

DB<3> print "$i"
101

DB<4> ++$i

DB<5> print $i
102

The difference between $i++ and ++$i is when the incrementing takes place. For
example, the following will add 1 to $a and then assign that new value to $b:

DB<1> $a=10

DB<2> $b=++$a

DB<3> print $a
11

DB<4> print $b
11

If the operator occurs after the variable, then the original value is first returned (and,
in this case, assigned to the $b variable) and then the variable is incremented:

DB<1> $a=10

DB<2> $b=%a++

DB<3> print $a
11

DB<4> print $b
10

Warning Don’t use auto-increment or auto-decrement on variables that contain
strings. As mentioned previously, Perl will (normally) try to convert the string into a
number. Often this results in a “logical error”:

DB<1> $name="Bob Smith"
DB<2> $name++

DB<3> print $name

1

32

CHAPTER 2 SCALAR VARIABLES

In this example, Perl treats “Bob Smith” as the number 0, then adds 1 to 0 and
reassigns $name to the value of 1.

Perl Magic with the Auto-increment Operator

The Perl documentation on the auto-increment operator includes the following statement:
The auto-increment operator has a little extra built-in magic to it. If you increment
avariable that is numeric, or that has ever been used in a numeric context, you get a
normal increment. If, however, the variable has been used in only string contexts since
it was set, and has a value that is not the empty string and matches the pattern /A [a-zA--
Z]%[0-9]%\z/ , the increment is done as a string, preserving each character within its
range, with carry
This fancy description is meant to describe the following behavior:

DB<1> $name="Bob"

DB<2> $name++

DB<3> print $name
Boc

A simpler way of describing this behavior is that if the variable contains only
alphanumeric characters (and not just numeric characters), then the auto-increment
operator will increase the value of the “string” by one (based on the ASCII text table).

Note The point behind this isn’t to encourage you to use this feature, but rather
to make you aware of this “Perl magic” in the event you come across some code
that makes use of this feature.

To increment or decrement a variable by a different value than 1, use this technique:

DB<1> $a=100

DB<2> $a+=5

DB<3> print $a
105

DB<4> $a-=20

DB<5> print $a
85

33

CHAPTER 2 SCALAR VARIABLES
This method also allows the use of multiplication and division:

DB<1> $a=20

DB<2> $a*=3

DB<3> print $a
60

DB<4> $a/=6

DB<5> print $a
10

% Cool Trick You can append a string to an existing string variable by using the
following:

$var .= "string";

*isp'TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice variable modification with
the operators that were covered in this section:

$total=1000;

$total++;

print $total;
$result=++$total;

print "$total and $result”;
$total *=3;

print $total;

Exit the Perl debugger by executing the following debugger command:

q

34

CHAPTER 2 SCALAR VARIABLES

Reading Data from the User

There are several methods of reading input:
e The standard input filehandle
e The diamond operator (discussed in a later chapter)
o User-created filehandles (discussed in a later chapter)

The most common method of reading input is the standard input filehandle.
A filehandle is a connection between your script and a “port.” The standard input
filehandle reads data from the port connected to standard input (usually data coming
from the keyboard, but this data could also come from a file or the output of another
process).

<STDIN> represents the standard input filehandle. In the following example, the
user should be prompted to provide their age via the keyboard. Whatever the user types
is placed in the $age variable:

print "Please enter your age:";
$age=<STDIN>;

chomp and chop

When data is read from <STDIN>, the data that is stored in the variable includes all
the characters that are typed by the user. For example, consider if a user were asked for
his/her age and the user provides the data displayed in bold here:

DB<1> print "Please enter your age: "; $age=<STDIN>
Please enter your age: 35

So, in this example, $age will store the string “35\n”. Why “\n”? Because the user had
to press the Enter (or Return) key after typing “35” The Enter key, “\n’, is also stored in
the variable. Since this extra character often causes problems, it is useful to know how to
get rid of it.

35

CHAPTER 2 SCALAR VARIABLES

To verify that there actually is a newline character in the variable, consider the
following output:

DB<1> print "Please enter your age: "; $age=<STDIN»
Please enter your age: 35
DB<2> print length($age)

DB<3> print "You are $age years old"
You are 35
years old

There are two Perl statements you can use to eliminate extra character from the end
of a string: chop and chomp.

The chop Statement

The chop statement will remove (and return) the last character of a string:

$var="Now is a good time to buy stock\n";

chop $var; #ichops off new line character

print chop $var; #ichops off "k" and returns
#ivalue to print statement

$char=chop $var; #chops off "c" and returns
#value to assignment

The chomp Statement

The chomp statement will only remove newline characters at the end of a string:

$var="Now is a good time to buy stock\n";
chomp $var; #ichomps off new line character

When you know that you only want to remove a newline character, it is safer to use
the chomp statement. When you want to remove any character, then the chop statement
is better.

36

CHAPTER 2 SCALAR VARIABLES

%4 Cool Trick You can receive input and use the chomp statement at the same
time using the following syntax:

chomp ($name=<STDIN>) ;

*isp'TRYIT!

Execute the following command to enter the Perl debugger:

perl -d -e "1;"

Execute the following commands in the Perl debugger to practice dealing with user input:

$person=<STDIN>;
print $person .

chomp $person;

print $person .
chomp $person;

print $person .
chomp $person;

print $person .

. print length($person);
. print length($person);
. print length($person);

. print length($person);

Exit the Perl debugger by executing the following debugger command:

g

Curly Braces

Consider the following code:

DB<1> $name="Bob"

DB<2> print "$name would rather be called $nameby"
Bob would rather be called

The intended output of this script is

Bob would rather be called Bobby

37

CHAPTER 2 SCALAR VARIABLES

Unfortunately, this script will result in a logical error. Perl will return the value of the
$nameby variable (when what is really wanted is the value of the $name variable and “by”
to be treated as plain text). Because this variable doesn’t exist, Perl returns a null string.

To avoid this, place curly braces around the variable name:

DB<1> $name="Bob"
DB<2> print "$name would rather be called ${name}by"
Bob would rather be called Bobby

The curly braces tells Perl that the variable name is $name and that the string “by” is
just plain text.

Additional Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

Lab Exercises

Important Note If you did not finish the previous lab, either finish it before
starting this lab or use the completed cb1.pl provided in the code download.

Edit the file called cb1.pl and perform the following enhancements (save the changes
into a file called cb2.pl):

¢ Have the user’s name read into a variable called $name.

e Have the user’s current balance printed (Note: Hard code the current
balance to be “100” for now) followed by this menu:

1. Enter a deposit

2. Enter a withdrawal

38

https://github.com/Apress/beginning-perl-programming

6.

7.

CHAPTER 2

Enter a check

Lookup a check by #
Lookup a check by date
Print a statement

Exit program

Please enter your menu option:

SCALAR VARIABLES

e Have your script prompt the user for their menu choice and assign

the input to a variable called $choice (don’t forget to chomp off the

newline character).

When you have completed your work, compare your script against the cb2.pl file
provided in the lab answers.

39

CHAPTER 3

Array Variables

Array Variables

Array variables are used to store lists (groups) of scalar data. The following describes

important information about array variables:

The variable starts with a “@” symbol (not a $ symbol like scalar
variables).

The variable name rules (start with an alpha or underscore character,
use only alphanumeric & underscore chars) for scalar variables also
apply to array variable names.

Array sizes don’t have to be declared; Perl dynamically takes care of

the size of the array.
Individual scalar data within the array are referred to as “elements.”

An element can be treated as either a string or number.

To create an array, use the following syntax:

@colors=("red", "blue", "green");

Note

The value on the right-hand side of the = operator is called a list. A list is

generated by placing a series of scalar values, separated by commas, within a set
of parenthesis. This list is the data structure that an array holds.

© William “Bo” Rothwell of One Course Source, Inc. 2019
W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_3

41

CHAPTER 3 ARRAY VARIABLES

Referencing Array Elements

To reference an element in an array, use the following syntax:
print "$colors[0] is the color name in the list\n";

Array elements are indexed by integers (starting from 0). Therefore, the first element
is element “0’, the second element is element “1’, and so forth.

The most confusing aspect of referring to an element is the use of the “$” character.
Why “$” and not “@"?

Think of it this way: “@” is used to indicate array data and “$” is used to indicate
scalar data. An element of an array is scalar data (a single value); therefore, when
referring to it, use a “$” character.

If you wanted to print the entire array (or a portion of it), you would use the “@” symbol:

print "@colors";

Note Without the quotes (“”), all of the elements would be printed “Mashed
together”.

Some other referencing examples:
print "$colors[1] \n"; #prints the second element in the array.

print "@colors[1..3]\n"; #prints from the second to the fourth
element in the #array.

print "@colors[1,3]\n"; #prints from the second and the fourth
element in #the array.

print "$colors[$#colors] \n"; #prints the last element in the array
($#tarr holds the #last index number of the
array "arr").

print "$colors[-1]\n"; #prints the last element in the array
(alternative method).

print "$colors[99]\n"; #iprints the 100" element in the array. If not
#defined, prints "" (0 in numeric situations)

42

CHAPTER 3 ARRAY VARIABLES

$# what?

For each array, there is a scalar variable ($#array_name) that stores the index number of
the last element. For example, a 5 element array called “@students” has a corresponding
scalar variable called “$#students” which contains the value 4.

Warning Don’t change this scalar variable. Changing the $# variable of an array
will change the size of the array, including possibly removing elements from the
array!

Typically you should avoid changing the $# variable of an array directly. Perl will
automatically change this as more elements are added or removed from the array. If you
do make changes to this variable, you may end up losing data:

DB<1> @colors=("red", "blue", "green", "yellow", "purple")
DB<2> print "@colors"

red blue green yellow purple
DB<3> print $#colors

DB<4> $i#coloxs=2
DB<5> print "@colors"
red blue green

One situation in which you may want to modify the $# variable is if you want to
remove a bunch of elements from the end of the array. For example, the following line
would permanently delete the last 20 elements from the @colors array:

$#colors -= 20;

43

CHAPTER 3 ARRAY VARIABLES

& TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice creating and referencing
elements in an array:

@names=("Bob", "Sue", "Nick", "Fred", "Ted");
print "@names”;

print $names[0];

print $names[-1];

print $#names;

Exit the Perl debugger by executing the following debugger command:

q

Adding and Removing Elements in an Array

You can use built-in functions or a “manual method” to add and remove elements in an
array. The built-in functions are as follows.

push Add new element to end of array

unshift Add new element to beginning of array
pop Remove (and return) last element of array
shift Remove (and return) first element of array

Function examples:

@flowers=("rose", "tulip"); #creates the array flowers.

push(@flowers, "daisy"); #puts daisy at end of array.

unshift(@flowers, "carnation"); #puts carnation at beginning
#of array.

pop (@flowers); #removes last element (daisy).

44

CHAPTER 3 ARRAY VARIABLES

$plant=pop(@flowers); #removes last element (tulip) and
#fassigns it to the variable $plant.
shift(@flowers); #Removes the first element (carnation)
"¢’ TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice adding and removing
elements in an array:

@names=("Bob", "Sue", "Nick", "Fred", "Ted");
print "@names";

push (@names, "Tim");

unshift (@names, "Todd");

print "@names";

$last=pop (@names);

$first=shift (@names);

print "@names";

print $last;

print $first;

Exit the Perl debugger by executing the following debugger command:

g

To manually add elements in an array, assign the array to “itself” and the elements

you wish to add:
@flowers=(@flowers, "daisy"); #puts daisy at end of array.
@flowers=("carnation", @flowers); #puts carnation at beginning

#of array.

45

CHAPTER 3 ARRAY VARIABLES

To manually remove elements in an array, assign the array and a scalar variable (or

value) to the array itself:

($plant, @flowers)=@flowers; #Assigns @flowers to all but the
#first element which is placed
#in $plant.

The advantage of this method over statements like pop, push, unshift, and shift is
that this method allows you to add and remove elements that are not either the first or
the last element in an array:

#Following line inserts "daisy" after the fourth element of the array:
@flowers=(@flowers[0..3], "daisy", @flowers[4..7]);

#Following line removes the fourth element of the array:
@flowers=(@flowers[0..2], @flowers[4..$#flowers]);

However, for very large arrays, this method uses more memory and takes more time
than the splice statement that is described in the next section.

The splice Function

You can also use the splice function to add or remove items from an array. With this
function, the following syntax is used:

splice (ARRAY, OFFSET, LENGTH)

OFFSET is where you want to begin splicing from and LENGTH is how many
elements to splice. For example, to remove the fourth element from an array, use this
syntax:

DB<1> @colors=("red", "blue", "green", "yellow", "purple", "tan")
DB<2> splice (@colors, 3, 1)
DB<3> print "@colors"

red blue green purple tan

To replace one or more values in an array, you add the values to add at the end of the
list of arguments. For example, to replace the fourth element with “teal’; use this syntax:

46

CHAPTER 3 ARRAY VARIABLES

DB<1> @colors=("red", "blue", "green", "yellow", "purple", "tan")
DB<2> splice (@colors, 3, 1, "teal")
DB<3> print "@colors"

red blue green teal purple tan

To insert a value into an array, you add the values to add at the end of the list of
arguments. For example, to insert “teal” after the fourth element, use this syntax:

DB<1> @colors=("red", "blue", "green", "yellow", "purple", "tan")
DB<2> splice (@colors, 3, 0, "teal")
DB<3> print "@colors"

red blue green teal yellow purple tan

Note that the third argument is 0, meaning that none of the original elements will be
replaced.

Why use the manual method that was shown in the previous section rather than the
splice statement? The splice statement is quicker and takes less memory, but there are a
couple of reasons why you want to know about the manual method:

e Older versions of Perl didn’t have the splice statement, so if you are
maintaining older Perl code, the manual method may be used. So, at
the very least, you should at least be aware of this method.

o With the splice method, you can’t insert or remove in more than
one non-continuous place. With the manual method, you can do
something like the following:

@flowers=(@flowers[0..2], "daisy", @flowers[3..4], "rose",
@flowers[5..7]);

—i.gTRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following commands in the Perl debugger to practice using the splice statement:

@names=("Bob", "Sue", "Nick", "Fred", "Ted");
print "@names";
splice (@names, 2, 0, "Sally", "Steve");
47

CHAPTER 3 ARRAY VARIABLES

print "@names";
$person=splice(@names, 3, 1);
print "$person”;
print "@names";

Exit the Perl debugger by executing the following debugger command:

g

Using the for Loop

The idea behind looping through an array is to perform actions on each element on an
array. In order to do this, you can use either a for or a foreach loop.

The for loop is a generic (not specifically for arrays) statement which has the
following syntax:

for (initial statement; conditional evaluation; post statement) {
statement(s);

The initial statement is done only once (when the for loop begins) and is usually
used to assign a variable a starting value.

The conditional evaluation is done once at the beginning and each time after
the statement(s) and post statement have been executed. Conditional evaluations are
discussed in detail in the next chapter.

The post statement is executed after the statement(s) have been executed. It is usually
used to increment or decrement the variable that was set with the initial statement.

In the following example, the for loop will print a countdown from 20 to 1:

for ($i=20; $i > 0; $i--) {
print "$i\n";

In this example, the for loop will print out each element of an array on a separate line:

@arr=("north", "south", "east", "west");
for ($i=0; $i <= $#tarr; $i++) {
print "$arr[$i]\n";

48

CHAPTER 3 ARRAY VARIABLES

Using the foreach Loop

The foreach loop is really just a modified form of the for loop. The syntax for the foreach

loop is

foreach $var (@array) {
statement(s);

The $var is a scalar variable that will hold each of the elements of an array, one
element at a time. Each time through the loop, the variable $var contains the next
element in the array.

The @array is the array to loop through.

The following code will print out each element of an array (like the preceding
example) using the foreach loop:

@arr=("north", "south", "east", "west");
foreach $direction (@arr) {
print "$direction\n";

Important Note The name of the array must be within parentheses () in a
foreach loop.

Be Careful of the Iterator Variable

The variable that is used to iterate the array is a special variable called a reference
variable. Any changes that you make to this variable within the loop will result in
changes to the array elements:

DB<1> @colors=("red", "blue", "green", "yellow", "purple")
DB<2> foreach $hue (@colors) {$hue="grey";}
DB<3> print "@colors"

grey grey grey grey grey

49

CHAPTER 3 ARRAY VARIABLES

In addition, this variable is localized (it has scope), so the changes made to the
iterator variable will not affect anything outside of the foreach loop:

DB<1> $hue="PURPLE"
DB<2> @colors=("red", "blue", "green", "yellow", "purple")
DB<3> foreach $hue (@colors) {$hue="grey";}
DB<4> print $hue
PURPLE

An Alternative to Using the for Statement

Often a traditional for statement can be replaced with a foreach loop:

DB<1> for ($i=1; $i <= 5; $i++) {print "$i\n";}

Ui N W N R

DB<2> foreach $i (1..5) {print "$i\n";}

bLi N W N R

The 1..5 creates a list of integers from 1 to 5 (1, 2, 3, 4, 5). The $i variable is assigned to
these values one at a time.

50

CHAPTER 3 ARRAY VARIABLES

—i.g'TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following commands in the Perl debugger to practice using the foreach loop:

@names=("Bob", "Sue", "Nick", "Fred", "Ted");

foreach $person (@names) {print ++$count . "\t $person”};
foreach $person (@names) {$person .= " Smith";};

foreach $person (@names) {print "$person\n";};

Exit the Perl debugger by executing the following debugger command:

g

The reverse Statement

The reverse statement will assign the reverse of an array to another array:

@arr=("north", "south", "east", "west");
@revarr = reverse (@arr);
print "@revarr"; #prints west east south north

In the preceding example, the array @arr is not modified. You can have the array
itself modified by assigning the outcome of reverse to the original array:

@arr=("north", "south", "east", "west");
@arr = reverse (@arr);
print "@arr"; #prints west east south north

The reverse statement can also be used on a scalar value to return the reverse of the
scalar:

DB<1> $test="abc"
DB<2> $newtest=reverse $test
DB<3> print $newtest

cba

51

CHAPTER 3 ARRAY VARIABLES

The sort Operator

The sort operator will perform an ASCII sort on the elements of an array:

@arr=("north", "south", "east", "west");
@sortarr = sort (@arr);
print "@sortarr"; #prints "east north south west"

There are many other “types” of sorts that you can perform; for example, the

following performs a numeric sort:

@num=(10:7:99193)0);
@sortnum=sort {$a <=> $b} (@num);
print "@sortnum"; #prints 0 7 10 93 99

You must use $a and $b. Additionally, the order of $a and $b matter. If $a is first, then
an ascending sort will occur. If $b is first, then a descending sort will occur:

DB<1> @num=(10,7,99,93,0);
DB<2> @sortnum=sort {$b <=> $a} (@num)
DB<3> print "@sortnum"

99 93 107 0

Advanced sort Techniques

You can also perform operations on $a and $b before the sort takes place. A common
example is to make a case-insensitive sort by using the Ic (lowercase) function:

DB<1> @arr=("north", "south", "East", "West");

DB<2> @sortarr = sort (@arr);

DB<3> print "@sortarr";

East West north south

DB<4> @sortarr = sort { lc($a) cmp lc ($b) } (@arr);
DB<5> print "@sortarr";

East north south West

The sort is a lot more powerful than many Perl programmers realize. For example,
suppose you had a list of files in an array and you want to sort them by file size:

@by size=sort { -s $a <=> -s $b } @files;

52

CHAPTER 3 ARRAY VARIABLES

There are many additional sorting techniques; however, many of them require you to
have more knowledge about Perl. Consult the documentation for sort for more details.

"¢’ TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following commands in the Perl debugger to practice using the sort statement:

@names=("Bob", "Sue", "Nick", "Fred", "Ted");
@sorted=sort(@names);

print "@sorted";

push (@names, "ned");

@sorted=sort(@names);

print "@sorted";

@sorted=sort { 1lc($a) cmp lc ($b)} (@names);
print "@sorted";

Exit the Perl debugger by executing the following debugger command:

g

The qw and qq Statements

The qw (quote words) statement will create a comma, quoted separated list from its
arguments. It is primarily used as a short-hand method of creating lists. For example, the
following array declaration...
@directions= ('n', 's', 'e', 'w', 'ne', 'nw', 'se', 'sw');

...can be rewritten using qw like this:

@directions=gw(n s e w ne nw se sw);

53

CHAPTER 3 ARRAY VARIABLES

Itis important to keep in mind that the values passed to the qw statement will be
treated as if they were placed in single quotes. For example, if you pass variables, the
variables will not be dereferenced:

DB<1> $name1="Bob"
DB<2> $name2="Sue"
DB<3> $name3="Tim"
DB<4> @names=qu($namel $name2 $name3)
DB<5> print $names[0]
$name1

Note If you want the strings to be double quoted, instead of single quoted, use
the qq operator.

Arrays Used in Scalar Context

When you attempt to use an array when a scalar is supposed to be used, it is referred to
as using an array in “scalar context.”

The result of using an array in scalar context is that the number of elements in the
array is returned, not the elements in the array. An example of using an array in scalar
context is attempting to assign an array to a scalar variable:

DB<1> @names=("Bob", "Sue", "Ted")
DB<2> $people=@names
DB<3> print $people

While this may sometimes be beneficial, a better method of getting the number of
elements of an array is to use the scalar statement:

DB<1> @names=("Bob", "Sue", "Ted")
DB<2> $people=scalar (@names)
DB<3> print $people

While the result is the same, the intention of the statement is much clearer.

54

CHAPTER 3 ARRAY VARIABLES

Additional Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

Lab Exercises

Important Note If you did not finish the previous lab, either finish it before
starting this lab or use the completed cb2.pl provided in the lab answers folder.

Edit the file called cb2.pl and perform the following enhancements (save the changes
into a file called cb3.pl):

o Create an array called @book that has the following string as the first
element:

“DEP:12/12/1999:Beginning Balance:100”
o Each element in the array will be one record which has four fields:

Type_of_transaction:date_of_transaction:comment:amount_of_
transaction

When you have completed your work, compare your script against the cb3.pl file
provided in lab answers.

55

https://github.com/Apress/beginning-perl-programming

CHAPTER 4

Associative Array Variables

Associative Array Variables
Consider the situation in which you are keeping track of dog names in an array:
@dogs=qw(Fido Spot Teddy Rex);

You also want to keep track of the owners of these dogs. One way we can do this is to
create a second array:

@owners=qw(Bob Sue Fred Sally);

This, however, isn’t the best solution. While not impossible, this method will be
cumbersome because you will have to maintain two arrays (and carefully too!).
The problem with arrays is that the indexing system is already predefined.

@dogs @owners

Index Value Index Value
0 Fido 0 Bob
1 Spot 1 Sue
2 Teddy 2 Fred
3 Rex 3 Sally

It would be nice if you could have the index be the owner’s name and the value
associated with that index be the dogs name...

57
© William “Bo” Rothwell of One Course Source, Inc. 2019

W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_4

CHAPTER 4 ASSOCIATIVE ARRAY VARIABLES

...and that is what associative arrays are all about.

%dog_owners

Key (aka index) Value
Bob Fido
Sue Spot
Fred Teddy
Sally Rex

Notes about associative arrays:
e Associative arrays are also called “hashes.”
o Associative array variables start with a percent sign (%).

e The term index is used for regular arrays; the term “key” is used for
associative arrays.

o The key/value pair is stored in a seemingly “random” order.
Note the comment about this in the perlsec documentation
guide (http://perldoc.perl.org/perlsec.htmliAlgorithmic-
Complexity-Attacks):

...the algorithm used to “order” hash elements has been changed
several times during the development of Perl, mainly to be
reasonably fast. In Perl 5.8.1 also the security aspect was taken
into account.

In Perls before 5.8.1 one could rather easily generate data that as hash
keys would cause Perl to consume large amounts of time because
internal structure of hashes would badly degenerate. In Perl 5.8.1 the
hash function is randomly perturbed by a pseudorandom seed which
makes generating such naughty hash keys harder.

The last note causes some concern for first-time Perl programmers. It essentially
means that when you ask for the keys/values of a hash, they are not returned in the same
order that you created them in. Keep in mind that order is not the purpose of a hash, but
rather the association between the key and the value is what hashes are all about. If you
want order, use a regular array.

58

http://perldoc.perl.org/perlsec.html#Algorithmic-Complexity-Attacks
http://perldoc.perl.org/perlsec.html#Algorithmic-Complexity-Attacks

CHAPTER 4 ASSOCIATIVE ARRAY VARIABLES

Creating Associative Arrays

There are two different (syntax) methods of creating an associative array. One method is
a “quick and dirty” method that is easy to type, but difficult to read:

%dog_owners=qw(Bob Fido Sue Spot Fred Teddy Sally Rex);
The second method is more difficult to type, but easier to read:

%dog_owners=(

"Bob" => "Fido",
"Sue" => "Spot",
"Fred" => "Teddy",
"Sally" => "Rex"

)5

As far as Perl is concerned, both methods are the same. The second method, while
more difficult to create, is easier to read and understand by other programmers.

Note The => is the same as a comma in Perl. In other words, you could create a
regular array with the following syntax:

@colors=("red" => "blue" => "yellow");

The purpose of => is to provide a way to make it visually clear what value a key is
“pointing to.” So, while => can be used in place of a comma in any situation, you should
normally use them for associate arrays.

To create an individual key/value pair, use the following syntax:

$dog_owners{"Nick"}="Mikey";

This technique can also be used to modify an existing value for a specific key:
$dog_owners{"Nick"}="Fido";

To access a value of a key, use the following syntax:

print "$dog owners{Bob} is owned by Bob\n";

59

CHAPTER 4 ASSOCIATIVE ARRAY VARIABLES

Note While keys must be unique, values do not have to be unique.

¢ TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice creating hashes and
accessing hash data:

%phone=("Bob" => "555-1234", "Tim" => "555-7890");
print $phone{"Bob"};

$phone{"Bob"} = "555-9999";

print $phone{"Bob"};

$phone{"Sue"} = "555-7777";

print $phone{"Sue"};

Exit the Perl debugger by executing the following debugger command:

g

Accessing Values with keys and foreach

There are two methods of “looping” (accessing every key/value pair separately) though
associative arrays: using a foreach loop or using a “while-each” loop. Each method has
its advantage and disadvantage.

To use the foreach loop to loop through a hash, you first need to obtain all of the
keys of a hash. The keys function will return all of the keys of an associative array. These
keys are returned in a list format and can either be assigned to an array

@owners=keys (%dog_owners);
print "@owners";

60

CHAPTER 4 ASSOCIATIVE ARRAY VARIABLES
or manipulated like an array:

foreach $person (keys %dog owners) {
print "$dog owners{$person} is owned by $person\n";

Using keys on a Regular Array

As of Perl 5.12, you can use keys on an array to return the index values of an array:

DB<1> print "@INC"
C:/Perl64/site/1ib C:/Per164/1ib .
DB<2> @test=keys (@INC)
DB<3> print "@test"
012

Sorting the Output

Although the order that the keys are returned isn’t the same order as the key/value pairs
were created, it is possible to sort the values of the keys to produce an order:

DB<1> %dog_ownexrs=qu(Bob Fido Sue Spot Fred Teddy Sally Rex);
DB<2> foreach $person (sort keys %dog owners) { \
cont: print "$dog_owners{$person} is owned by $person\n”; \
cont: }

Fido is owned by Bob

Teddy is owned by Fred

Rex is owned by Sally

Spot is owned by Sue

As mentioned previously, there are many different ways to sort a list. For example,
the following will sort based on the values, rather than the keys:

DB<1> %dogs=qu(Bob Fido Sue Spot Fred Teddy Sally Rex);
DB<2> foreach $person \

cont: (sort { $dogs{$a} cmp $dogs{$b} } keys %dogs) { \
cont: print "$dogs{$pexrson} is owned by $pexrson\n"; \
cont: }

61

CHAPTER 4 ASSOCIATIVE ARRAY VARIABLES

Fido is owned by Bob
Rex is owned by Sally
Spot is owned by Sue
Teddy is owned by Fred

Accessing Values in with “while-each” Loops

The disadvantage of using a foreach loop to loop through a hash is that a list is created
when the keys statement is used. This is a disadvantage because it takes more memory
to store this list and it takes time to create the list.

A more efficient method of looping through a hash is by using a combination of the
while and each statements. The each statement will return a single key/value pair from
the hash, starting with the first one found in memory. It will continue to return key/value
pairs in “order” (based on how they are stored in memory) until there are none left. After
the last key/value pair has been returned, the next each statement will return an empty
list which is would be considered to be a value of false in a conditional statement.

A “while-each” loop doesn’t create an extra array. Instead, it extracts key/value pairs
one at a time and assigns them to scalar variables:

while (($key, $value) = each (%dog owners)) {
print "$value is owned by $key\n";

& TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following commands in the Perl debugger to practice looping through a hash:

%phone=("Bob" => "555-1234", "Tim" => "555-7890");
while (($person, $num) = each (%phone)) {print "$person = $num";};

Exit the Perl debugger by executing the following debugger command:

g

62

CHAPTER 4 ASSOCIATIVE ARRAY VARIABLES

Be Careful While Using each

The disadvantage with a “while-each” loop is what takes place when the associative

array is modified within the loop. Any modification of the associative array (adding key/
value pairs, removing key/value pairs, or changing existing key/value pairs) can cause a
“rehash.” The documentation on each describes what happens when you change a hash

and then use the each statement:

If you add or delete a hash’s elements while iterating over it, the
effect on the iterator is unspecified; for example, entries may be
skipped or duplicated--so don’t do that. Exception: It is always
safe to delete the item most recently returned by each(), so the
following code works properly:

while (($key, $value) = each %hash) {
print $key, "\n";

delete $hash{$key}; # This is safe

}

Resetting the Iterator

Each hash has a separate iterator (how Perl keeps track of where it is in the hash when
you are parsing through the elements using the while-each loop). You may want to reset
the iterator manually. To do so, just execute the keys statement on the hash:

keys %hash;

This is useful when you reach a point where you want to stop parsing through
the hash. A later while-each loop may start in the wrong location if you don’t reset the

iterator.

Note Calling the values statement on a hash will also reset the iterator.

63

CHAPTER 4 ASSOCIATIVE ARRAY VARIABLES

Using each on Arrays

As of Perl 5.12, you can use the each statement to iterate through an array:

DB<1> while (($index, $value) = each (QINC)) {\
cont: print "$index - $value\n"; \
cont: }

0 - C:/Perl64/site/1ib

1 - C:/Perl64/1ib

2 - .

Returning Keys Only with each

When used in scalar context, each only returns keys:

DB<1> %dogs=qu(Bob Fido Sue Spot Fred Teddy Sally Rex);
DB<2> while ($key=each(%dogs)) {\
cont: print "$key is a key\n"; \
cont: }
Sally is a key
Bob is a key
Sue is a key
Fred is a key

The values Statement

The values statement can be used to access just the values of the key/value pair:
@dogs=values (%dog owners);
This can be useful if you want to find out how many dogs are named “Spot”:

foreach $name (values (%dog owners)) {
if ($name eq "Spot") {
$spot++;

64

CHAPTER 4 ASSOCIATIVE ARRAY VARIABLES

¢ TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following commands in the Perl debugger to practice getting the values of a hash:

%phone=("Bob" => "555-1234", "Tim" => "555-7890");
@nums=values(%phone);
print "@nums";

Exit the Perl debugger by executing the following debugger command:

g

Reverse Searching an Associative Array

Unfortunately when you use values, there is no way to get the key associated with the
value. To search for a key when given a value you can use a while-each loop:

#4 rev.pl
%dogs=qw(Bob Fido Sue Spot Fred Teddy Sally Rex);

while (($key, $value) = each (%dog owners)) {
if ($name eq $value) {
print "$value is owned by $key\n";

Notes:

o While keys are unique, values are not. Therefore, there could be more
than one line of output in the preceding program.

e Once you find a match, you may want to stop looking. In a later
chapter, the last statement is explained; last will allow you to
prematurely exit loops.

65

CHAPTER 4 ASSOCIATIVE ARRAY VARIABLES

Removing Associative Array Keys and Values

To remove both the key and value of an associative array, use the delete statement:
delete $dog owners{Bob};
You can assign the items that are deleted to either scalar variables or to an array:

($key, $value) = delete $dog owners{Bob};
@data = delete $dog owners{Bob};

To remove the value, but keep the key, use the undef statement:

undef $dog owners{Fred};

exists vs. defined

As we saw earlier, the defined statement can be used to determine if a scalar variable has
been set:

if (defined ($total)) {
print "The value is: ", $total +8, "\n";

}
else
{
print 'The variable $total is not defined', "\n";
}

The defined statement can also be used to determine if a value of a key/value pair
has been defined:

if (defined ($dog owners{Nick})) {
print "Nick has a dog\n";

}
else
{
print "Nick doesn't have a dog\n";
}

66

CHAPTER 4 ASSOCIATIVE ARRAY VARIABLES

While the defined statement is used to determine if the value has been set, the exists

statement is used to determine if the key exists:

%dog_owners=(Bob, Fido, Sue, Spot, Fred, Teddy, Sally, Rex);

undef $dog owners{Bob};

if

(defined ($dog owners{Bob})) { #false in this case
print "Bob has a dog\n";

else {

print "Bob doesn't have a dog\n";

(exists ($dog_owners{Bob})) { #true in this case
print "Bob is a key in the array\n";
else {

print "Bob is not a key in the array\n";

“j.p'TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following commands in the Perl debugger to practice removing elements from a hash:

%phone=("Bob" => "555-1234", "Tim" => "555-7890", "Sue" => "555-9999");
while (($person, $num) = each (%phone)) {print "$person = $num";};
undef $phone{"Tim"};

while (($person, $num) = each (%phone)) {print "$person = $num";};

if (defined ($phone{"Tim"})) {print "yes";};

if (exists ($phone{"Tim"})) {print "yes";};

delete $phone{"Sue"};

while (($person, $num) = each (%phone)) {print "$person = $num";};

Exit the Perl debugger by executing the following debugger command:

g

67

CHAPTER 4 ASSOCIATIVE ARRAY VARIABLES

Special Variables

Perl has special (often pre-set) variables. These variables may either contain data for the
programmer’s use or data that modifies how Perl behaves.

As this book progresses, some of these special variables will be introduced. However,
keep in mind that while Perl has many special variables, a good deal of them require
more advanced knowledge of Perl or are fairly esoteric.

Special variables have a unique naming convention. While normally you can’t have
a variable in Perl that starts with a non-alphanumeric (or underscore) character, special
variables often start with one of these characters. As a result, you will find that many of
the Perl special variables have names like $$, $|, and $(. Keep in mind that the first dollar
sign character is used to indicate the type of variable (scalar in the case of $$, $|, and $(),
so the real names of these variables are $, |, and (.

The Environment Variables

Environment variables are stored by the operating system. They are normally used to
modify how the user’s OS environment works or to store information relating to the
user’s log in session.

Each OS has different environment variables. For example, there is an environment
variable in Linux/UNIX called USER that stores the user’s log in name. In DOS/Windows
this variable is USERNAME.

These variables are passed into your script into an associative array called %ENV.
The key is the name of the variable and the value is what the variable was set to.

Many of these variables are useless to the Perl programmer. Some, however, are very
useful. To see what variables are set on your system, just run the following Perl script:

#!perl
#4_env.pl
foreach $var (keys %ENV) {
print "Var: $var Set to: $ENV{$var}\n";

The syntax for accessing a value of an environment variable is the same as any
associative array:

print "Your log in name is $ENV{USER}\n";
68

CHAPTER 4 ASSOCIATIVE ARRAY VARIABLES

*agnTRYIT!

Execute the following command to display the environment variables on your system:

perl 4 env.pl

The Argument Variable

The @ARGYV array contains the arguments passed into the Perl script. The first argument
is stored in $ARGV/[0], the second argument is stored in $ARGV[1], etc. In addition, the
name of the Perl script that is being executed is stored in the $0 variable:

#!perl

#4_argv.pl

#This script adds up to three arguments and prints the result on the screen
$total=$ARGV[0] + $ARGV[1] + $ARGV[2];

print "$total\n";

print "This command is called $0\n";
Output example:

[student@ocs student]$./4_argv.pl 20 30 40
90
This command is called ./4 argv.pl

Notes:

o If only two arguments were passed into the script, then $ARGV/[2]
would be undefined and treated as “0” in the preceding program .

o The @ARGV array is no different than any other regular array other
than it is pre-populated; This means you can treat it like an array and
use any array statement (sort, reverse, pop, push, etc.) on @ARGV.

69

CHAPTER 4 ASSOCIATIVE ARRAY VARIABLES

Additional Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

Lab Exercises

There won’t be any need for hashes in the checkbook program that you have been
creating, so this lab exercise will be for a standalone program. For this lab, create a
menu-driven program that will allow a user to keep track of other people’s phone
numbers. This program should have the following choices:

1. Add aphone number

2. Lookup a phone number

3. Delete a phone number

4. Print all phone numbers

5. Checkif a person has a phone number
6. Exitthe program

Obviously you want this program to store this data in a permanent file.
Unfortunately, we've not covered this topic (or conditional statements). So, a “starter”
program has been created for you under the “Chapter_4-_Associate_Array_Variables”
folder. Use start.pl to create your program (note the comments in the file that indicate
where you need to place your code).

Some notes:
e Your hash should be called %phone.

e The lab answer provides some error checking. Whenever possible,
perform error checking.

When you have completed your work, compare your script against the phone.pl
script provided in the lab answers.

70

https://github.com/Apress/beginning-perl-programming

CHAPTER 5

Flow Control

Blocks

Control statements are used to handle conditional statements. A conditional statement
is something that returns a value (true or false) based upon the current data available to
your program.

For example, if the user running the program enters his/her age and this is stored in
avariable called $age, we can check to see if $age is greater than 20 and then take some
action based upon the outcome.

The following illustrates the different control statements we will cover in this chapter:

o if

e unless
e while

e until

o foreach
o for

A block is a grouping of statements that tells Perl what action(s) to take within a
conditional statement. Placing curly braces { } around the statements forms the block.

The if Statement

The if statement is used to determine if something is true or false and to take action
based upon this outcome. The syntax of the if statement is

if (condition) {
if statements;

71
© William “Bo” Rothwell of One Course Source, Inc. 2019

W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_5

CHAPTER5 FLOW CONTROL

else {
else statements;

If the outcome of the condition is true, then the if _statements will be executed.
If the outcome of the condition is false, then the else_statements will be executed.
The following program will verify that the user’s input (their age) is greater than 15:

#!perl
#5_age1.pl
print "Please input your age ";
$age=<STDIN>;
if ($age > 15) {
print "You are old enough to drive\n";

}
else {

print "You can't drive for ", 16 - $age, " more years\n";
}

Notes:

e <STDIN> is a filehandle which will read data from the keyboard and
assign it to the variable $age.
o The else part of the if statements is optional.

un

e “True” in Perl is any number besides zero or any string besides
(the empty string).

o The condition “$age > 15” is a numeric comparison. The next
Chapter details other comparisons available in Perl.

72

CHAPTER5 FLOW CONTROL

-*aprRYIT!

Execute the following command two times to demonstrate the use of the if statement:
perl 5 agel.pl

When prompted for the age the first time the program is executed, enter the following:

10

When prompted for the age the second time the program is executed, enter the following:

17

Using elsif

Suppose you want to modify the script from the previous page. If the person’s age is
greater than 15, then the output will be “You are old enough to drive”.

Otherwise, we will do a second check and see if the person is exactly 15 years old. If
they are, then the output will be “You are old enough for a permit”.

Otherwise, the output will be “You can’t drive for’, 16 - $age, “more years”.

#!perl
#5_age2.pl
print "Please input your age ";
$age=<STDIN>;
if ($age > 15) {
print "You are old enough to drive\n";
}
elsif ($age == 15) {
print "You are old enough for a permit\n";
}
else {
print "You can't drive for

, 16 - %age, " more years\n";

73

CHAPTER5 FLOW CONTROL

Notes:
o The elsif condition will only be checked if the if condition is false.

« Ifboth conditions are false, then the else block of the statement is
executed.

One-Line if Statement

In keeping with Perl’s “more than one way to do it” attitude comes the one-line if
statement. Consider the following two sentences:

o Ifthe trash is full, take it out.
o Take out the trash if it is full.

In both cases, the same message is conveyed. Perl allows the same “feature” with the
if statement:

if ($x < 16) {
print "too young to drive\n";

}
print "Too young to drive\n" if ($x < 16);

Both of the preceding examples produce the exact same result. Note that the second
statement doesn’t even need the parentheses around the conditional statement:

print "Too young to drive\n" if $x < 16;

—i.gTRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to see both regular if statements and
one-line if statements in action:

$number=100;
if ($number == 100) {print "yes";};
print "yes" if $number == 100;

74

CHAPTER5 FLOW CONTROL
Exit the Perl debugger by executing the following debugger command:

g

The unless Statement

The unless statement is the logical opposite of the if statement:

unless (condition) {
unless statements;

}
else {

else statements;
}

If the outcome of the condition is false, then the unless_statements will be executed.
If the outcome of the condition is true, then the else_statements will be executed.
Example:

print "Please input your age ";
$age=<STDIN>;
unless ($age < 16) {

print "You are old enough to drive\n";

Note:

o There are some cases where unless is easier to read, but many times
it just creates confusion. You can always use the if statement instead
of the unless statement because you can “negate” the outcome of a
conditional statement as you will see in a future Chapter.

The switch Statement

Prior to Perl 5.8, there was no switch (or case) statement available in Perl. In Perl 5.8, a
module was added to provide this functionality.

The topic of using modules will be covered in more detail in a later chapter. In
a nutshell, a module provides more functionality in your Perl scripts by importing

75

CHAPTER5 FLOW CONTROL

functions or variables into your program. In this section, we will just focus on using the
switch function that is provided by the Switch module.
The basic syntax of a switch statement is described in the following block:

switch (VAR) {
case COND {STATEMENT(S) }
case COND {STATEMENT(S) }
else {STATEMENT(S) }

In a real switch statement, VAR is replaced with a variable for evaluation. COND
is replaced with a conditional statement (something that returns true or false), and
STATEMENT(S) is/are replaced with what Perl code you wish to run if the COND is true.

Note that once a COND returns “true,” no additional conditions are reviewed. In
other words, only the first COND matches.

The else line is used in case no other lines match.

In the following example, the switch statement is used to determine if the user
responds with “yes” or “no”:

#!perl
#5_switch.pl

use Switch; #lLoads the switch module

print "Please enter 'yes' or 'no':";
$response=<STDIN>;
chomp $response;

switch ($response) {
case "yes" {print "You agree!\n"; }

case "no" {print "Bummer, you don't agree\n"; }
else {print "Maybe next time\n"; }

Note The Switch module exists in Perl 5.8-5.12. It does not exist in Perl 5.14+.
This is due to the fact that in Perl 5.10, the given statement was added to the core
functions with the intention of replacing the Switch module.

76

CHAPTER5 FLOW CONTROL

@' TRY IT!

Only if you are using Perl 5.8, 5.10, or 5.12, execute the following command to see a
demonstration of the switch module

perl 5 switch.pl

The given Statement

As of Perl 5.10, the given statement is available and designed to replace the switch
statement. It is a feature that will be available in Perl 6 and has been “backported” to Perl 5.
To make use of this Perl 6 feature in Perl 5, use the following syntax:

use feature "switch";

It is slightly confusing that asking for the “switch” feature gives you access to a
function called “given”; however, the given function acts like a switch statement:

#!perl

#5_given.pl

use feature "switch"; #Provides access to the given statement
print "Please enter 'yes' or 'no': ";

$response=<STDIN>;
chomp $response;

given ($response) {
when ("yes") {print "You agree!\n"; }
when ("no") {print "Bummer, you don't agree\n"; }
default {print "Maybe next time\n"; }

77

CHAPTER5 FLOW CONTROL

Note Depending on the version of Perl that you are using, you may receive the
following messages:

given is experimental at 5_given.pl line 10.
when is experimental at 5_given.pl line 11.

when is experimental at 5_given.pl line 12.

This is normal output as these features may change in the future.

*i.;'TRYIT!

Only if you are using Perl 5.10 or higher, execute the following command to see a
demonstration of the given statement:

perl 5 given.pl

The while Statement

The while loop will continue to execute its statement(s) as long as the condition holds
true. The syntax of while loops is

while (condition) {
statement(s)

The following program code is an example of how to verify user input. We want the
user to enter a number that is greater than 100, so we will loop via the while statement
until the user enters the correct number:

#!perl
#5_while1.pl
#Verify number entered is greater than 100

print "Please enter a number greater than 100:";
$number=<STDIN>;

78

CHAPTER5 FLOW CONTROL

while ($number <= 100) {
print "That is not greater than 100\n";

print "Please enter a number greater than 100: ";
$number=<STDIN>;

}

print "Thanks, $number is greater than 100\n";

The until Statement

The until loop is the logical opposite of the while loop. It will continue to execute its
statement(s) as long as the condition holds false. The syntax of until loops is

until (condition) {
statement(s)

The following program code performs the same function as the previous while
example:

#!perl
5_until.pl
Verify number entered is greater than 100

print "Please enter a number greater than 100: ";
$number=<STDIN>;

until ($number > 100) {
print "That is not greater than 100\n";
print "Please enter a number greater than 100: ";
$number=<STDIN>;

}

print "Thanks, $number is greater than 100\n";

79

CHAPTER5 FLOW CONTROL

The do Statement

The preceding examples could have been made a little more efficient with a do
statement. The idea behind a do statement is to execute the statements first and then
perform the conditional check:

#!perl
#5_do.pl
#Verify number entered is greater than 100

do {
print "Please enter a number greater than 100: “;
$number=<STDIN>;

} while ($number <= 100);

print "Thanks, $number is greater than 100\n";

Either while or until can be used with a do statement to perform the conditional
check.

Important Note The do statement is not a loop, even though it may act like
one. The loop control statement, like next and last (covered later in this chapter),
cannot be used with a do statement.

Alternative to a do Statement

In most cases, a do statement isn’t necessary. Consider the first example of a while loop
that was shown previously:

#!perl
#5_while1.pl
#Verify number entered is greater than 100

print "Please enter a number greater than 100:";
$number=<STDIN>;

while ($number <= 100) {
print "That is not greater than 100\n";

80

CHAPTER5 FLOW CONTROL

print "Please enter a number greater than 100: ";
$number=<STDIN>;

}

print "Thanks, $number is greater than 100\n";

In this example, the first two statements were used to get an initial value for the
$number variable. The statements were repeated within the while loop to get a new
value for $number.

Alternative to a do Statement—Continued

However, we could have also done the following:

#!perl
#5_while2.pl
#Verify number entered is greater than 100

while ($number <= 100) {
print "Please enter a number greater than 100: ";
$number=<STDIN>;

Consider what happens the first time the condition is checked. The variable
$number hasn’t been assigned a value, so in a numeric comparison operation, its return
value is 0. This value is less than 100; therefore, the condition is true and the user is
asked to enter a number. We could have also assigned $number an initial value that
would result in the condition being true as well.

Using this sort of while loop has an advantage over a do statement. While the do
statement appears to be a loop, it really isn’t a loop structure. Looping control that will
be covered in the following sections (the next and last statements) will not work on do
statements, but will work in while loops.

81

CHAPTER5 FLOW CONTROL

Loop Control: last

You can use the last statement to immediately exit from a loop. The following example
will have the user enter exam scores and exit out of the while loop if the user enters a
score of -1:

#!perl
#5_lasti.pl

while (true) {
print "Please enter a grade(enter -1 to finish): ";
chomp($score=<STDIN>);
if ($score == -1) {
last;
}
push(@grades, $score);

}
print "finished\n";
print "@grades";
print "\n";
Note:
e While “true” is true in Perl, it isn’t true because of any special Perl

feature. In the next chapter, we will talk more about what is true and
what is false in Perl.

*agnTRYIT!

Execute the following command to see a demonstration of the last statement:

perl 5 lasti.pl

82

CHAPTER5 FLOW CONTROL

Breaking Out of Nested Loops

Suppose you want to be able to break out of a loop that is not the loop that you are

directly in. For example, you want to break out of a foreach loop from a while loop that is

within the foreach loop.

In order to be able to do this, you want to use a label. A label allows you to “mark”

a line in your code. If you specify a label when you use the last statement, the last
statement will apply to the loop on the line of the label.
See the following example to see this in practice.

#!perl
#5_last2.pl
#fExample of breaking out of nested loops

@classes=qw(math science history);

#Create a label:
JUMP: foreach $subject (@classes) {
print "Enter grades for $subject (-2 to finish)\n";

while (true) {
print "Please enter a grade(enter -1 to finish): ";
chomp($score=<STDIN>);
if ($score == -1) {
last; #last to while loop
}
if ($score == -2) {
last JUMP; #last to the label's loop
}
push(@grades, "$subject:$score”);
}
}

foreach $i (@grades) {
print "$i\n";

83

CHAPTER5 FLOW CONTROL

Loop Control: next

The next statement is used to execute the next iteration of the loop. The following
example will “ignore” any input that is “less than 0” (with the exception of -1):

#!perl
#5_next.pl

while (true) {
print "Please enter a grade (enter -1 to finish): ";
chomp($score=<STDIN>);
if ($score == -1) {
last;
}
if ($score < 0) {
print "Bad input, try again\n";
next;

}
push(@grades, $score);

}

print "finished\n";
print "@grades";
print "\n";

Additional Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

84

https://github.com/Apress/beginning-perl-programming

CHAPTER5 FLOW CONTROL

Lab Exercises

Important Note If you did not finish the previous lab, either finish it before
starting this lab or use the completed cb3.pl provided in the lab answers folder.

Edit the file called cb3.pl and perform the following enhancements (save the changes
into a file called cb5.pl):

Create an “if-elsif” statement to handle the value of the user’s input
for the menu choice. At this point, just have each condition print the
value of the variable $choice.

Create the code for options 1-3 (enter a deposit, withdrawal, and
check). Remember, each transaction will be stored as an element in
the array @book. The user will provide fields 2-4 (date of transaction,
comment, amount of transaction) for deposits and withdrawals.

The first field will be DEP for deposits and WD for withdrawals. For
checks, the user will provide the check number and that number will
be the first field. Examples:

DEP:12/12/1999:Paycheck:1000
WD:12/12/1999:ATM withdrawal:80
101:12/12/1999:Vons:124.89

Put the menu into loop so the user can continue using the program
until option 7 is chosen.

Create the code of option 7 (exit program).

Note: Don’t worry about error checking at this time.

When you have completed your work, compare your script against the cb5.pl file
provided in lab answers.

85

CHAPTER 6

Conditional Expressions

Numeric Comparison

The following operators can be used to compare numbers:

Operator Meaning

== Returns “true” if two numbers are equal to each other

I= Returns “true” if two numbers are not equal to each other

> Returns “true” if the first number is greater than the second number

< Returns “true” if the first number is less than the second number

>= Returns “true” if the first number is greater or equal to the second number

<= Returns “true” if the first number is less than or equal to the second number
Examples:

DB<1> $num1=100
DB<2> $num2=99
DB<3> if ($numi == $num2) {print "yes";}
DB<4> if ($numi <= $num2) {print "yes";}
DB<5> if ($numi > $num2) {print "yes";}

yes

© William “Bo” Rothwell of One Course Source, Inc. 2019
W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_6

87

CHAPTER6 CONDITIONAL EXPRESSIONS

String Comparison

The following operators can be used to compare strings:

Operator Meaning

eq Returns true if the strings are exactly the same

ne Returns true if the strings are not equal to each other

gt Returns true if the left string is greater than the right string

It Returns true if the left string is less than the right string

ge Returns true if the left string is greater or than equal the right string

le Returns true if the left string is less than or to equal the right string
Examples:

DB<1> $namel="Bob"

DB<2> $name2="Ted"

DB<3> if ($name1 eq $name2) {print "yes";}

DB<4> if ($name1 gt $name2) {print "yes";}

DB<5> if ($name1r 1t $name2) {print "yes";}
yes

How Can One String Be Greater Than or Less Than
Another String?

When the gt, It, ge, and le operators are used to compare strings, they make use of the
order of characters provided by the ASCII text table. The first character of each string is
compared to see if one is greater than the other:

if ("Bob" gt "Ted") {print "yes";}

In this case, the outcome is “false” because “B” appears before “T” in the ASCII text
table. If the first character of each string is equal, then the next character of each string is
used:

if ("Bob" gt "Bill") {print "yes";}

88

CHAPTER 6 CONDITIONAL EXPRESSIONS

u_n

In this case, the outcome is “true” because “0” appears after “i” in the ASCII text
table.

Difference Between String and Numeric Comparison

Numeric comparisons are different than string comparison. For example, the following

is “true”:

DB<1> $var="3.000"
DB<2> if ($var == 3) {print "yes";}
yes

While the following isn’t true:

DB<1> $var="3.000"
DB<2> if ($var eq 3) {print "yes";}

This is because, numerically, 3 is the same as 3.000. Since string comparison
compares each character of the strings, 3 is not the same as the 3.000 value.

The following shows another example of the difference between numeric
comparison and string comparison:

DB<1> print "Please enter your choice"
Please enter your choice
DB<2> $choice=<STDIN>

DB<3> if ($choice == 4) {print "yes";}

yes
DB<4> if ($choice eq 4) {print "yes";}

In this case the numeric comparison returns true because of how Perl converts
strings (“4\n” in this case) into numbers when numeric comparison take place.

89

CHAPTER6 CONDITIONAL EXPRESSIONS

“¢° TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice using numeric and string
comparison operations:

$name="Bob";

$age=55;

if ($name eq "Bob") {print "yes";}
if ($age <= 65) {print "yes";}

if ($name 1t "Ted") {print "yes";}
if ($name = 15) {print "yes";}
print $name

What happened in the last two lines? By using a single equal sign, you performed an
assignment operation, not a comparison operation. The $name variable was set to the value
of 15 and the statement ($name = 15) returned “true” because the rvalue (right value) of an
assignment operation is the return value. 15 is true in Perl.

Exit the Perl debugger by executing the following debugger command:

g

Pattern Matching

Pattern matching is the process of finding “text patterns” within a string (or, more likely,
a variable that contains a string). While pattern matching is covered in detail in a later
chapter, the basics are covered here to illustrate how pattern matching can be used in
conditional statements.

To search for a pattern in a variable, use the following syntax:

if ($str =~ m/pattern/)

If the pattern exists in the $str variable, then “true” is returned.
If the pattern doesn’t exist in the $str variable, then “false” is returned.

90

CHAPTER 6 CONDITIONAL EXPRESSIONS

For example, the following will print “correct” if the word “good” appears in the
variable $stock:

$stock="This is a good time to buy stock";
if ($stock =~ m/good/) {
print "correct\n";

Using the Outcome of a Statement

You can use the “outcome” of some Perl statements in a conditional evaluation. For
example, the following code will use the outcome of the defined function:

if (defined ($total)) {
print "The value is: ", $total +8, "\n";

}

else

{

print 'The variable $total is not defined', "\n";

Important Note Not all Perl statements return “true” or “false.” Remember, false
is a value of either 0 or “”, while true is all other values. Some statements (such
as chop) return a value that isn’t meant to be used in a conditional evaluation
because it doesn’t necessary return true or false:

$var="1002";
if (chop $var) { #"true" in this case since chop returns what
was chopped(2)

print "chopped it\n";
}
if (chop $var) { #"false" in this case since chop returns
what was chopped(0)

print "chopped it again\n";

91

CHAPTER6 CONDITIONAL EXPRESSIONS

If you know what a statement returns, you can use this information to determine if
the statement succeeds or fails. For example, if the chop statement succeeds, it returns
a single character. If it fails, the chop statement returns a null string. So, by checking the
length of the return value, we can determine if the statement succeeds or fails:

$var="1002";
if (length (chop $var)) {
#istatements if chop succeeds
} else {
#statements if chop fails

File Test Conditions

File testing is the process of determining the “status” of a file. The most common file tests
are listed here.

File test Meaning

-r Returns “true” if the file is readable by the user who is running the Perl script
-w Returns “true” if the file is writeable by the user

-X Returns “true” if the file is executable by the user

-0 Returns “true” if the file is owned by the user

-e Returns “true” if the file exists

-Z Returns “true” if the file exists and is empty

-S Returns the size of the file (0 if the file is empty or doesn’t exist)
-f Returns “true” if the file is a “plain file”

-d Returns “true” if the file is a directory

-T Returns “true” if the file contains text data

-B Returns “true” if the file contains binary data

92

CHAPTER 6 CONDITIONAL EXPRESSIONS

Notes:

e There are more (not commonly used) file test operators; see the Perl
documentation (https://perldoc.perl.org/functions/-X.html)
for the complete list.

The following will prompt the user to input a name of a file and check to see if it
is a directory:

#!perl
#6_dir.pl

print "Please enter the name of a file or directory: ";
$name=<STDIN>;
chomp $name;
if (-d $name) {
print "$name is a directory\n";
} else {
print "$name is not a directory\n";

Notes Regarding Filenames

Very important: Be certain to include quotes around the filename. This isn’t just for file
testing operations, but whenever you specify a filename in Perl. Exception: When using a
variable that contains a filename, quotes are not needed.

Another concern regarding filenames is related to how different operating systems
handle directory separators. For example, on Linux and Unix systems, the following path
is valid:

/usr/share/dict/linux.words
While on Window systems, the following path is valid:
\temp\file.txt

Unfortunately, the “\” character has a special meaning in Perl (recall “\n” represents
a newline character and “\t” represents a tab character). This means if you use the
Windows directory separator character, you need to place the path in single quotes:

"\temp\file.txt'
93

https://perldoc.perl.org/functions/-X.html

CHAPTER6 CONDITIONAL EXPRESSIONS

However, you never had to use “\” when specifying pathnames. Perl is smart
enough to use the right separator, so you can always use “/” even if you are working on a
Windows system.

& TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following commands in the Perl debugger to practice using file test operations:

if (-f "6 _dir.pl") {print "yes";};
if (-T "6_dir.pl") {print "yes";};
if (-d "6_dir.pl") {print "yes";};

print "The files 6 dir.pl is ", -s "6 dir.pl", " bytes large";
Exit the Perl debugger by executing the following debugger command:

g

Complex Conditional Expressions

Suppose you wish to set up an automatic grading program, which will assign a student
a letter grade based upon a numeric score (91-100 = “A’, 81-90 = “B”). In this case, you
would want to check the students’ grade to see if it is between two scores. Complex
conditional expressions allow you to do this.

Logical and

To find if two (or more) conditional statements, use the “&&” operator:

if (($score <= 100) & ($score >90)) {
print "Your score is an 'A'\n";

94

CHAPTER6 CONDITIONAL EXPRESSIONS

Logical or

To find if one of several conditional statements is true, use the “||” operator:
if (($age > 55) || ($age < 16)) {
print "Eligible for discount\n";
}
Logical not
To reverse the outcome of a conditional statement, use the “!” operator:

if (! (-r $file)) {
print "Sorry, you can't read $file\n ";

}

Notes:

e The “!” operator will reverse the outcome of an expression, making a

“false” outcome “true” and a “true” outcome “false.”

» For program readability, use the logical not where it is, well...logical.
For example, the conditional statement (!($num < 25)) is the same as
($num >= 25). The second statement is easier to read.

X4 TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice complex conditional
expressions:

$name="Bob";

$age=25;

if ($name eq "Bob" 8& $age == 25) {print "yes";};
if ($name eq "Ted" || $age == 25) {print "yes";};

95

CHAPTER 6 CONDITIONAL EXPRESSIONS
if (! -d "6_dir.pl") {print "6 dir.pl is not a directory";};
Exit the Perl debugger by executing the following debugger command:

q

Understand and/or vs. &&/II

You may see the operators or and and used in place of || and &&. There is a subtle, but
sometimes important, difference between or vs. || (as well as and vs. &&). In many cases
they will produce the same results; however, or and and have a lower precedence than ||
and &&.

Consider the following code:

DB<1> $test="abc"
DB<2> $new = $junk or $test
DB<3> print $new

The intent was to assign $new to $junk IF the $junk variable was defined. If it was
not defined, then we wanted $new to be assigned to $test. However, since or has a lower
precedence than the assignment operation, the way this statement really executed was as
follows:

DB<2> ($new = $junk) or $test
The correct way to handle this would be to use ||:

DB<4> $new = $junk || $test
DB<5> print $new
abc

Understand and/or vs. &&/ll—Continued

Consider the following code:

DB<1> @info=stat("subi.pl”) || die
DB<2> print "@info"
1

96

CHAPTER 6 CONDITIONAL EXPRESSIONS

Our intention was to run the stat function, and if it failed to return the data needed
from the “subl.pl” file, use the die statement to exit the program. Unfortunately, we end
up with the wrong data stored in @info if the stat function succeeds.

Because of precedence, what is really happening here is this:

DB<1> @info= (stat("subi.pl") || die)

If the stat function is successful, then the resulting “rvalue” is 1 for “true” because
one of the two statements returned true, making the entire statement true. If you use or
instead of ||, you will get the correct results:

DB<3> @info=stat("subi.pl") or die
DB<4> print "@info"
2 0 33206 1 0 0 2 119 1355943060 1355943094 1355943060

Using Parentheses

You can override the default precedence of conditional operators by using parentheses.
Consider the following example:

DB<1> $name="Bob"

DB<2> $age=25

DB<3> $title="manager"

DB<4> if ($name eq "Nick" && $age == 40 || $title eq "manager") {print "yes";}

yes
DB<5> if ($name eq "Nick" && ($age =

40 || $title eq "manager")) {print "yes";}
The conditional expression on line #4 returns “true” if

$name equals “Nick” AND $age equals 40

or

$title equals manager
The conditional expression on line #5 returns “true” if

$name equals “Nick”

and

$age equals 40 OR $title equals manager

97

CHAPTER 6 CONDITIONAL EXPRESSIONS

Short Circuiting

Perl permits an alternative to the if statement called “short circuiting.” This method uses
either the “logical and” or the “logical or” operators. Consider the following code:

if ($x < 16) {
print "Too young to drive\n";

This code could be written using this syntax:
($x < 16) && print "Too young to drive\n";

This method is made possible due to the following:

1. Logical operators are not only allowed within conditional
statements (they can exist just about anywhere in a Perl script).

2. [Ifthe first part of a “logical and” statement isn’t “true,’
Perl won'’t execute the second part (because the entire
statement can’t be true).

& TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice different “if-like” conditional
statements:

$name="Ted";

if ($name eq "Ted") {print "yes";};
print "yes" if $name eq "Ted";
$name eq "Ted" && print "yes";

Exit the Perl debugger by executing the following debugger command:

g

98

CHAPTER 6 CONDITIONAL EXPRESSIONS

Additional Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

Lab Exercises

Important Note If you did not finish the previous lab, either finish it before
starting this lab or use the completed cb5.pl provided in the lab answers folder.

Edit the file called cb5.pl and perform the following enhancements (save the changes
into a file called cb6.pl):

o Perform the following error checking:
1. Check the value of $name (make sure it’s not empty).

2. Check the value of $choice (should be either 1, 2, 3, 4, 5, 6,
or7).

3. For options 1-3, check the user’s input for the amount of the
transaction (should be a number that is greater than 0).

When you have completed your work, compare your script against the cb6.pl file
provided in lab answers.

99

https://github.com/Apress/beginning-perl-programming

CHAPTER 7

Basic Input and Output

Reading Input

There are several methods of reading input that will be discussed in the next two chapters:
e The standard input filehandle
¢ The diamond operator
o User-created filehandles (discussed in a later chapter)

The most common method of reading input is the standard input filehandle.
A filehandle is a connection between your script and a “port.” The standard input
filehandle reads data from the port connected to standard input (data coming from the
keyboard by default).

The user who runs the program can “redirect” the origin of standard input to come
from a file or the output of a command rather than from the keyboard by using one of
the following syntaxes:

[student@ocs student]$ script.pl < file #standard input comes from the
"file"

[student@ocs student]$ cmd | script.pl # standard input comes from the
output of the "cmd"

<STDIN> represents the standard input filehandle:

print "Please enter your age:";
$age=<STDIN>;

101
© William “Bo” Rothwell of One Course Source, Inc. 2019

W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_7

CHAPTER 7 BASIC INPUT AND OUTPUT

Note For redirection to work correctly on Win32 systems, you must execute your
program as follows:

perl script.pl
while & until Loops

The while and until loops are useful for reading in multiple lines of text. For

example, the following will read a line of a time from standard input and print out each

line with its line number preceding it:

#!perl

#7_line.pl

while ($1ine=<STDIN>) { #reads a line at a time from standard input
print "$. $line";

Notes:

The statement $line=<STDIN> stores the line read into the variable
$line.

The while loop will “fail” when ($line=<STDIN>) returns “false.”
This will happen when either:

¢ The end of the file is reached (when a command like
“script.pl < file” is executed).

e The end of the piped command’s output is reached
(“cmd | script.pl”).

e The user terminates the input with AD (UNIX/Linux)
or AZ (Win32).

The special variable $. holds the number of the line that is currently
being read from the filehandle.

% Cool Trick You can read STDIN into an array using the following syntax:

@arr=<STDIN>;

102

CHAPTER 7 BASIC INPUT AND OUTPUT

X 4 TRY IT!

Execute the following command to test reading data via loops:
perl 7 line.pl
When prompted for input, enter the following three lines and note the output that is produced:

Line 1
Second line
Last line

After entering all these three lines, terminate the input by using one of the two methods:
On Windows-based machines: Control+z, then hit the <Enter> key

On Linux and Unix machines: Control+d

Record Separator Variable

The “record separator variable” stores the character(s) that Perl uses to “break up” the
data that is read from the filehandle. In other words, it contains the delimiter character
for input.

The record separator variable name is $/. By default, it is set to the newline character
(“\n”) and, in almost every case, should not be changed. However, there are a couple of
situations in which changing this variable can make life a little easier.

Reading Flat Databases

Suppose we had a database file which contained a completely flat database:
Ted:9930:accounting:Bob:9940:HR:Sue:9950:accounting:

In this case, we could change the $/ variable to a colon (“:”) and read the entire file
into an array with each element being a field in the array:

$/=":";
@fields=<STDIN>;
chomp (@fields);
$/="\n";

103

CHAPTER 7 BASIC INPUT AND OUTPUT

Notes:

e The chomp command actually chomps whatever the $/ variable is
set to.

o It'simportant to set the $/ variable back to a newline character as
soon as you are finished reading the file.

Read an Entire File into a Scalar Variable

When you read a file into a scalar variable, since the $/ variable is set to a newline
character, only the first line is read into the variable:

$1ine=<STDIN>;
You can read an entire file into a variable, but by default it has to be an array variable:
@file=<STDIN>;

If you undefined the record separator variable, then Perl “doesn’t know when to
stop” reading from a file. So, it reads the entire file into the scalar variable:

undef $/;
$1ine=<STDIN>; fireads entire standard input into $line
$/=Il\nll;

The Diamond Operator

The <STDIN> operator can read data from standard input. Standard input can come
from any of the following:
The keyboard:

[student@ocs student]$./script.pl
reads data from keyboard

Redirected from a file:

[student@ocs student]$./script.pl < filei

104

CHAPTER 7 BASIC INPUT AND OUTPUT

Redirected from another command:
[student@ocs student]$ emd | ./script.pl

However, the <STDIN> operator can’t read files that are given as arguments:
[student@ocs student]$./script.pl filei.txt file2.txt file3.txt

In the proceeding example, if the <STDIN> operator is used, the data will be
gathered from the keyboard.
Note:

o Remember to include “perl” before the script name in the Win32

environment.

The <> (diamond) operator can read data just like <STDIN> (from standard input),

but it can also read data from files listed as command line arguments.

#!perl
#7_count.pl
This program will count the number of lines that contain the word "echo"

$total=0; #not required, just good style

while ($line=<>) {
if ($line =~ /echo/) {
$total++;

}

print "Number of lines that contain 'echo': $total\n";

Note:

e The @ARGV variables (which contains the command line arguments)
is “emptied” as a result of reading from the <> operator.

o The statement $line =~ /echo/ is a regular expression pattern
matching that will return “true” if “echo” appears in the variable $line.

105

CHAPTER 7 BASIC INPUT AND OUTPUT

Warning: Problem with Redirection

Redirection poses a couple of problems for a programmer. Consider the following

example:
[student@ocs student]$./script.pl < example.txt

In this example, the operating system (OS) opens the file, example.txt, and sends it
into the Perl script as the script requests it. In other words, it’s the OS, not the Perl script,
that “gets the data.”

This action presents two problems for the programmer:

1. Since the programmer is just handed “data,” the programmer can’t
perform file test operators on the file. In addition, the file can’t be
reopened by the programmer later in the script. The programmer
doesn’t know anything about where the data comes from, which
greatly limits the programmer.

2. Once a user implements redirection, the OS will ALWAYS send
standard input from the redirected location. This effectively
prevents the programmer from receiving data from the user
because <STDIN> tries to read from the redirected file (or
command).

Using the diamond operator to read data from files listed as command line
arguments can eliminate this problem. Using this technique, you can use <STDIN>
to read data from the keyboard. In addition, you can only redirect one file, but the <>
operator will read from all of the files listed on the command line.

The Default Variable

The default variable is useful in situations like the last script. Instead of assigning
<STDIN> or <> to a variable, we can just specify the operator:

while (<STDIN>)

The data is stored in the special variable $_. Using this method allows you to perform
some shortcuts in your Perl script:

1. Youdon't have to create a new variable (a little less typing).

106

CHAPTER 7 BASIC INPUT AND OUTPUT

2. Many Perl statements (chomp, chop, print, regular expression
pattern matching, etc.) will assume you want to operate on the
default variable unless you specify something else.

For example, the last script could be changed to look like this:

#!perl
#7_echo.pl

This program will count the number of lines that contain the word "echo"

$total=0; #not required, just good style

while (<>) {
if (/echo/) { #Assumes to look in $ for "echo"
$total++;

}

print "Number of lines that contain 'echo': $total\n";

—isg'TRYIT!

Execute the following command to enter the Perl debugger:

perl -d -e "1;"

Execute the following commands in the Perl debugger to practice using the default variable:

$ ="hello there\n";

print;

chomp;

print;

if (m/hello/) {print "yes";};
chop; chop; chop;

print;

Exit the Perl debugger by executing the following debugger command:

q

107

CHAPTER 7 BASIC INPUT AND OUTPUT

Using Parentheses

The print statement is pretty straightforward...as long as you don’t do this:
print (5+6)*8, " is the result";

In this case we are trying to print a mathematical operation, (5+6)*8, followed by a
string. The result of this print statement isn’t what we expected:

11

Why 11? To understand this, you need to understand how parentheses are used in
Perl. Parentheses have many different meanings in Perl. For example, they are used to
create lists and to specify grouping in regular expressions.

In addition to specifying precedence in mathematical expressions, parentheses are
also used to specify the parameters that you want to pass into a statement:

print ("This is the formal way to type a print statement!");

When Perl sees print (5+6)*8 it thinks that the result of 5+6 (11) is a parameter to
be passed into the print statement. To avoid this, just make your print statement a little

more formal:

print ((5+6)*8, " is the result");

Additional Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

108

https://github.com/Apress/beginning-perl-programming

CHAPTER 7 BASIC INPUT AND OUTPUT

Lab Exercises

There won’t be any need to use the topics that were learned in this chapter in the
checkbook program that you have been creating, so this lab exercise will be for a
standalone program. For this lab, create a program that will read a sentence from a user
one line at a time.
The user should be prompted for a sentence and informed to press <ENTER>
when they have completed the sentence. To end the input, the user should type either
Control-d (for Linux or Unix systems) or Control-z + <ENTER> (for Windows systems).
Take the user input and place it all into a single scalar variable (forming a
paragraph). After all input has been received, print the user’s new paragraph on the
screen. Hint: You probably want to put some spaces between those sentences!

When you have completed your work, compare your script against the
paragraph.pl file provided in lab answers.

109

CHAPTER 8

Advanced Input and
Output

Filehandles

A filehandle is a connection between your script and a “port.” There are four standard
filehandles in Perl by default:

<STDIN> Standard input

<> Standard input or files listed on command line
STDOUT Standard output

STDERR Standard error

The <STDIN> and <> filehandles were covered in a previous chapter. The STDOUT
filehandle is the port used to send messages to the screen. When you use the print
statement, it sends the output to the STDOUT filehandle by default.

The STDERR filehandle will be discussed in the “The die and warn Functions”
section.

You can also create your own filehandles that can be used to read from files, write to
files, and pipe data to or from OS commands.

The die and warn Functions

The die function will print an error message and exit from your script:

if (!(-r $filename)) {
die "Could not read from file $filename\n";

111
© William “Bo” Rothwell of One Course Source, Inc. 2019

W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_8

CHAPTER 8 ADVANCED INPUT AND OUTPUT

Notes:

e The output of die will go to the standard error port, STDERR. This will
normally be set to the screen but can be redirected by the user who is
running the script.

o Ifanewline character (\n) appears at the end of the die message, just
the message is printed on the screen.

o Ifthereisn’t a newline character at the end of the die message, the
message and the line in the script that the die statement appeared on
is printed on the screen.

o Byitself (with no message), die will print “Died” followed by the line
number at which the script died.

die example

#!perl
#8_die.pl

if (I(-r "/etc/junkfile")) {
die "can't find file"
}
print "go on from here with more code";

Output of 8_die.pl

[student@ocs student]$./8_die.pl
can't find file at ./8 die.pl line 5.

Returning an Exit Status Value with die

All OS commands provide an exit status value when they finish executing. An exit value

of 0 means the command completed successfully. An exit value between 1 and 255

means the command failed.

Exit values are useful to the person who executed the command, as different values

can indicate why the command failed. You can have the die statement provide an exit

value by setting the value to the $! variable prior to executing the die statement:
$1=2;
die "File not found\n";

112

CHAPTER 8 ADVANCED INPUT AND OUTPUT

Using the exit Statement

If you don’t want to produce an error message to STDOUT, but you want to stop the
execution of your program, use the exit statement. To specify an exit value, specify a
numeric argument to the exit command:

exit 1

The warn statement will print an error message but continue executing the code in
your script:

if ('(-r $filename)) {
warn "Could not read from $filename\n";

}
The preceding notes about the die statement also apply to the warn statement.
Warn example:

#!perl

#8_warn.pl

if (!(-r "/etc/junkfile")) {warn "can't find file"};
if (!(-r "/etc/junkfile")) {warn "can't find file\n"};
if (!(-r "/etc/junkfile")) {print STDERR "can't find file\n"};

Output of 8_warn.pl

[student@ocs student]$./8_warn.pl
can't find file at ./8 warn.pl line 4.
can't find file

can't find file

Opening and Reading from Files

To open a file to read from, use the open statement:

open (HANDLE, "<file to open") || die "could not open file";

113

CHAPTER 8 ADVANCED INPUT AND OUTPUT

Notes:

o The “<” symbol tells Perl to open the file for reading. This symbol is
often omitted as Perl assumes the file is being opened for reading.

e Filenames must always be presented in string format (i.e., you need
to put quotes around the filename).

Once a file has been opened, you can read from it by using the filehandle like <STDIN>.
For example, to read a line from the file into the variable $line, execute the following:

$1ine=<HANDLE>;
Use the close statement to close the filehandle:

close HANDLE;

Different Ways of Opening Files

As of Perl 5.6, you can use a feature called “indirect filehandles.” This technique allows
you to store a filehandle into a variable instead of using a “hard-coded” filehandle name:

open ($read file, "<file to open") || die "could not open file";

To access the data from the file, just use the variable in place of the previously used
filehandle name:

$line=<$read file>;

As of Perl 5.6, you can use either the two argument technique or three argument
technique to the open statement:

open ($FILE, "<junk.txt") || die;
open ($FILE, "<", "junk.txt") || die;

With the three argument technique, the second argument is how you want to open
the file. By making this a separate argument, it is clearer to read and avoid the following
rare potential error:

$file=">abc.txt"; #Filename is really called ">abc.txt"
open $file, ">$file"; #will append to a file called "abc.txt",
#not overwrite it as planned

114

CHAPTER 8 ADVANCED INPUT AND OUTPUT

“agnTRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice opening and reading from
filehandles:

open ($input, "<", "8 warn.pl") || die;
$line=<$input>;

print $line;

close $input;

Exit the Perl debugger by executing the following debugger command:

q

Opening and Writing to Files
To open a file to write to, use the open statement:
open (HANDLE, ">file to open") || die "could not open file";

Notes:

u_n

e The “>” symbol tells Perl to open the file for writing. If the file already
exists, then Perl will overwrite the file contents.

o To append to the end of the file, use the append symbol: “>>"

Once a file has been opened, you can write to it by using the print statement and
specifying the filehandle to print to:

print HANDLE "First line of text\n";
print HANDLE "Second line of text\n";

The process of closing the filehandle will close the port and write all of the output to
the file:

close HANDLE;

115

CHAPTER 8 ADVANCED INPUT AND OUTPUT

¢ TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice opening and writing from
filehandles:

open ($output, ">", "data.txt") || die;
print $output "First line of output\n";
print $output "Second line\n";

close $output;

Exit the Perl debugger by executing the following debugger command:

q
View the new file that you created by executing the following command:

more data.txt

Reading a Block of a Filehandle
The read statement can be used to read a block of a filehandle. The syntax is
read (FILEHANDLE, $var to store read, # of bytes to read);
For example, to read 6 characters in a filehandle:
read (STDIN, $input, 6);
Notes:

e The filehandle can’t be in brackets (STDIN, not <STDIN>).

o Perl keeps track of how far into the file you have read. So, another
read statement would read from character 7 in the aforementioned
example.

116

CHAPTER 8 ADVANCED INPUT AND OUTPUT

*agnTRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice opening and reading from
filehandles with the read statement:

open ($input, "<", "8 warn.pl") || die;
read ($input, $data, 10);

print $data;

close $input;

Exit the Perl debugger by executing the following debugger command:

q

Reading a Single Character

The getc statement reads just one character from a filehandle. The syntax for the getc
statement is

$var = getc FILEHANDLE;
In the following example, a filehandle is opened and the first three characters are read:

open (DATA, "/tmp/data");
$first = getc DATA;
$second = getc DATA;
$third = getc DATA;

close DATA;

Notes:
e The filehandle can’t be in brackets (DATA, not <DATA>).

o Perl keeps track of how far into the file you have read. So, if you
didn’t close the filehandle, another getc statement would read from
character 4 in the aforementioned example.

117

CHAPTER 8 ADVANCED INPUT AND OUTPUT

Piping in Perl

You can open filehandles that take the output of an OS command and sends it into your
Perl script. Once again, the open statement creates the filehandle:

open (HANDLE, "ps -fe |");

Note The command “ps -fe” will run the UNIX command that lists the processes
that are running on the system. The “I” symbol after the “ps -fe” command tells
Perl to run the “ps -fe” command and then send this data into the filehandle.

Once the open statement has been executed, you can read from it by using the
filehandle like <STDIN>. For example, to read a line from the output of the command
into the variable $line, execute the following:

$1ine=<HANDLE>;
The process of closing the filehandle will close the port:

close HANDLE;

Sending Data to an 0S Command

Not only can you read the output of OS commands sent into your script, you can also
send output from your script into an OS command. For example, suppose you had a
large amount of text to display on the screen (more than a screen’s worth). You want the
user to have the features of the “more” command to control the display of the text:

open (HANDLE, "| more");

The “|” symbol before the “more” command tells Perl to send the output of the
filehandle HANDLE to the “more” command.

Once the open statement has been executed, you can write to it by using the
filehandle just like STDOUT. For example, to write the entire contents of an array to the
filehandle:

print HANDLE "@array";

118

CHAPTER 8 ADVANCED INPUT AND OUTPUT

Note The “more” command isn’t executed until the filehandle is closed. The
process of closing the filehandle will close the port and send the data to the 0S
command:

close HANDLE;

Example of sending data to an OS command

#!perl
#8_more.pl

open (MORE, "| more") || die "can't do this";

for ($i=1;$i < 100 ; $i++) {
print MORE "$i\n";
}

close MORE

*i.;'TRYIT!

Execute the following command to see a demonstration of writing data to an 0S command:

perl 8 more.pl

The format Statement

Perl provides a method of creating formatted output with the format and write
statements. The format statement is used to create a template, while the write statement
is used to send the output to a filehandle.

To create a template, use the following syntax:

format FILEHANDLE =
Plain text and placeholder: @>>>>>
$var #variable values go in placeholder

119

CHAPTER 8 ADVANCED INPUT AND OUTPUT

Notes:

The value of the variable will go in the “placeholder” @>>>>> in the
preceding example.

The FILEHANDLE can be STDOUT, STDERR, or a filehandle that you
create with an open statement.

Each filehandle can only have one format statement because the

template is created at compile time, not run time.

The . (dot) must be on a line by itself. This character indicates the end
of the format statement.

After the variables have been set and the filehandle has been opened, use the write

statement to send the output to the filehandle:

write FILEHANDLE;

Basic Placeholders

There are many different types of placeholders that can be used with the format

statement. These placeholders tell the write command how to place the contents of the

variables to the filehandle. The following describes some of the basic placeholders:

120

Placeholder type Meaning

@<<< Left justify the text

@>>> Right justify the text

@lll Center the text

@it Numeric output (lines up decimal place)

Notes:

Each placeholder character represents one character of the variable,
so @<<< means “four characters, left justified.”

If there aren’t enough placeholder characters to “fit” all of the
variable’s characters, the extra characters are truncated. For example,
if the contents of a variable is the string “abcde” and the placeholder is

)«

@<<, then only “abc” would be displayed in the placeholder’s “space.”

Example of basic placeholders:

#!perl
#8_formi.pl

format STDOUT =

O THITTTTHT]

$title

Name: @<<<<< Age: @<<

$name, $age

code: @>>>>>>>>

$code

Sale #1: @i, #i
$salel

Sale #2: @, ##
$sale2

Sale #3: @i, #
$sale3

$title="Status";
$name="bob smith";
$age=25;
$code="674AR3";

$sale1=123; $sale2=9.99;

write STDOUT;

Output of 8_form1.pl

[student@ocs student]$./8_formi.pl

Status
Name: bob sm Age: 25
code: 674AR3

Sale #1: 123.00
Sale #2: 9.99
Sale #3: 45.80

CHAPTER 8 ADVANCED INPUT AND OUTPUT

$sale3=45.8;

121

CHAPTER 8 ADVANCED INPUT AND OUTPUT

Demonstrating Truncation

[

To demonstrate that truncation has occurred, use “.” at the end of your field:

#!perl
#8_form_trunc.pl

format STDOUT =
Name: @<<<<<<<...
$name

$name="Mr. My";
write STDOUT;
$name="Mr. My Name Is Too Long";
write STDOUT;
Output of 8_form_trunc.pl

[student@ocs student]$./8_foxrm_trunc.pl
Name: Mr. My
Name: Mr. My N...

Numeric Fields

The following program demonstrates three numeric field features:
1. You can use “N0####” to pad with zeros instead of spaces.

2. When truncating is required for floating point values, rounding
up will occur.

3. An “error” will occur when the size of the variable exceeds the
allocated field size.

#!perl
#8_form_num.pl

122

CHAPTER 8 ADVANCED INPUT AND OUTPUT

format STDOUT =
Sale #1: @O#it#. #i
$salel
Sale #2: @t ##
$sale2
Sale #3: @###Ht. #i
$sale3

$sale1=123;
$sale2=9.4587;
$sale3=4444445.8;

write STDOUT;
Output of 8_form_num.pl :

[student@ocs student]$./8_form_num.pl
Sale #1: 00123.00
Sale #2: 9.46
Sale #3: H####H#HHA

Advanced Placeholders

In addition to the basic placeholders, the format statement also supports

Placeholder type Meaning

Ne<< Left justify, break up over multiple lines if needed
@* Left justify, multi-line output

Example of Advanced Placeholders
#!perl
#8_form_2.pl

format STDOUT =
Comment: @*
$comment

123

CHAPTER 8 ADVANCED INPUT AND OUTPUT

Keywords: "<<<<<«
$keywords
IR ELS
$keywords

$comment="Displays good tact\nworks hard\nsometimes is late";
$keywords="work effort";

write STDOUT;
Output of 8_form2.pl

[student@ocs student]$./8_form2.pl
Comment: Displays good tact

works hard

sometimes is late

Keywords: work

effort

Repeating Lines

As previously shown, the “A” placeholder character will break up text across multiple
lines:

format STDOUT =

Keywords: "<<<<<<
$keywords
IRETELLS
$keywords

Unfortunately, this method is cumbersome and sometimes will produce undesirable
results. For example, the variable $keywords is declared like this:

$keywords="work effort late raise";

The words “late” and “raise” would never be printed.

124

CHAPTER 8 ADVANCED INPUT AND OUTPUT

To say “repeat this line over and over until the variable is empty,” use the ~~
characters at the beginning of the line:

format STDOUT =

Keywords : "<<<<<<
$keywords

~ MK
$keywords

Note that as of Perl 5.6, the ~~ characters can appear at the end of the line.
Example of repeating lines

#!perl
#8_form_3.pl

format STDOUT =

Keywords: "<<<<<<
$keywords

~ IRETELLS
$keywords

$keywords="work effort late raise";

write STDOUT;

“i.g'TRYIT!

Execute the following command to see a demonstration of repeating lines in format statement:

perl 8 form3.pl

125

CHAPTER 8 ADVANCED INPUT AND OUTPUT

Here Document

Here documents are useful when you have a “chunk” of data that you want to print and
there is no need for fancy formatting. The syntax of the here document is

print << "EOF";
These are the lines
of text that will
be printed

EOF

All of the text from the first EOF to the second EOF will be sent to the print statement.
A simple print statement with newline characters in the string will work as well:

print "These are the lines\nof text that will\nbe printed";

However, some programmers don’t like this method because it isn’t WYSIWYG
(What You See Is What You Get). A non-here method that is WYSIWYG is

print "

These are the lines
of text that will
be printed";

Here example

#!perl
#8_here.pl

#Using a here document:

print <<'EOF';

these are the lines of text to send to bob
This service costs $0

EOF

print "\n\n";

#Using a print statement, option #1:

print "\nthese are the lines of text to send to bob\nThis service costs \$0\n";

print "\n\n";

126

CHAPTER 8 ADVANCED INPUT AND OUTPUT

#Using a print statement, option #2:
print '
these are the lines of text to send to bob

This service costs $0';
print "\n\n";
Output of 8_here.pl

+/8_here.pl
these are the lines of text to send to bob
This service costs $0

these are the lines of text to send to bob
This service costs $0

these are the lines of text to send to bob
This service costs $0

Additional Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

Lab Exercises

Important Note If you did not finish the previous lab, either finish it before
starting this lab or use the completed cb6.pl provided in the lab answers folder.

127

https://github.com/Apress/beginning-perl-programming

CHAPTER 8 ADVANCED INPUT AND OUTPUT

Edit the file called cb6.pl and perform the following enhancements (save the changes
into a file called cb8.pl):

o Change all of the error messages throughout your program to either
warn statements or print statements that print to STDERR.

o To have this database script permanently store all of the transactions,
we will need to store this data in a file. The name of the file will be
the user’s name followed by “data”. For example, if the user’s name is
“ted,” then the file will be “ted.data” Change the code in your script
so that prior to printing the menu, it checks to see if this file exists. If
it does, read each line into your array @book. If it doesn’t, create the
array @book based on user input.

o When your script exits, have it print all of the elements in the @book
array into the database file mentioned in the previous bullet item
(name.data). Suggestion: Overwrite the entire contents of the file
with the contents of the @book array (don’t append).

When you have completed your work, compare your script against the cb8.pl file
provided in lab answers.

128

CHAPTER 9

Pattern Matching

Pattern Matching vs. Wildcards

Operating systems use “wildcards” in order to make referring to filenames easier. The
idea of regular expressions (or patterns) in Perl is very much like wildcards...at least
conceptually. While wildcards are special characters that refer to filenames, regular
expressions are special characters that refer to text within a string.

While most operating systems only have a few wildcards, Perl has many regular
expressions (see the “Modifiers” section). In this manual, for brevity, a regular
expression is often referred to as “RE.

Matching, Substitution, and Translation

There are three different operators that use regular expressions: the matching,
substitution, and translation operators.

The Matching Operator

This operator is most useful in a conditional statement. It returns either a true or false
value depending on if the regular expressions we are searching for exist in the scalar

variable we specify:

if ($var =~ m/error/) {
print "ERROR\n";

Note The “m” can be dropped: (/error/).

129
© William “Bo” Rothwell of One Course Source, Inc. 2019

W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_9

CHAPTER9 PATTERN MATCHING

The Substitution Operator

This operator is useful for searching for regular expressions within a string and replacing
it with another string. For example, the following will replace the string “dog” with “cat”
in the variable $var:

$var="The dog is outside";
$var =~ s/dog/cat/;

The Translation Operator

This operator is useful for translating characters. For example, suppose you want to
translate all lowercase characters in a variable to uppercase characters:

$var="The dog is outside";
$var =~ tr/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVIWXYZ/;

Notes:

e There is a much easier way of doing the preceding example, which
will be shown later.

e The translation operation can also be done using the y operator:
y/abc/xyz/.

e Be careful... the number of characters on each “side” (abc/xyz)
should be the same. Perl won’t report an error, but the result won’t be
what you intended.

Throughout the rest of this chapter, the different types of regular expressions are
shown using the matching, substitution, and translation operators.

130

CHAPTER9 PATTERN MATCHING

“ag.TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice matching, substitution,
and translation operations (recall that the default variable, $_, is used when no variable is
specified):

$ ="Perl is a fun language";
print;

if (m/fun/) {print "yes";};
s/fun/Great/;

print;

tr/PG/pg/;

print;

Exit the Perl debugger by executing the following debugger command:

g

Modifiers

As their name implies, modifiers change how the matching, substitution, and translation
operators behave. They are placed at the end of the statement. The most common

u__n

modifiers are “g” and

wsn
1.

The “g” Modifier

When Perl looks for a pattern, it only looks for the first pattern in the string. Once found,
it doesn’t look for any other pattern matches:

$var="The dog is eating out of the dog bowl";
$var =~ s/dog/cat/;

The result is "The cat is eating out of the dog bowl"

131

CHAPTER9 PATTERN MATCHING

“

To have Perl find all the regular expressions in the string that match, use the “g
(global) modifier:

$var="The dog is eating out of the dog bowl";
$var =~ s/dog/cat/g;

The result is "The cat is eating out of the cat bowl"

Note The translation operator doesn’t ever require the “g” modifier since it looks
at the entire string by default.

The “i” Modifier

Perl treats uppercase and lowercase letters as different characters (in other words, Perl
is a case sensitive environment). To tell Perl to perform a case insensitive search, use the

usn

1" operator:

if ($var =~ /abc/i) {
print "found it!\n";

Note The translation operator doesn’t accept the “i” modifier.

¢ TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice the “i” and “g” modifiers
(recall that the default variable, $_, is used when no variable is specified):

$ ="Perl is a fun language - learn Perl!";
if (m/perl/) {print "yes";};
if (m/perl/i) {print "yes"};

132

CHAPTER9 PATTERN MATCHING

s/Perl/Linux/;

print;

$ ="Perl is a fun language - learn Perl!";
s/Perl/Linux/g;

print;

Exit the Perl debugger by executing the following debugger command:

g

Regular Expressions: Metacharacters

Metacharacters are special characters in a pattern that “represent” other strings. The

following characters are the metacharacters in Perl:

Character Meaning

* Represents the previous character repeated zero or more times.

+ Represents the previous character repeated one or more times.

{x,y} Represents the previous character repeated x to y times.

Represents exactly one character (any one character).

[Represents any single character listed within the bracket. The ~ character in the
beginning changes the meaning to represent any single character NOT listed within
the brackets.

? Represents an optional character. The character prior to “?” is optional.

A Represents the beginning of the line when it is the first character in the RE.

$ Represents the end of the line when it is the last character in the RE.

() Used to group an expression.

I Represents an “or” operator.

\ Used to “escape” the special meaning of the preceding characters.

133

CHAPTER9 PATTERN MATCHING

“x” Examples

The “x” character matches “zero or more of the previous character” Some examples are
as follows:

DB<1> $_="Code: abbbbc"

DB<2> if (/ab*c/) {print "yes";}
yes

DB<3> print
Code: abbbbc

DB<4> s/ab*c/---/

DB<5> print
Code: ---

“+” Examples

The “+” character matches “one or more of the previous character” Some examples are
as follows:

DB<1> $_="Code: abbbbc"

DB<2> if (/ab*c/) {print "yes";}
yes

DB<3> if (/ab+c/) {print "yes";}
yes

DB<4> $_="Code: ac"

DB<5> if (/ab*c/) {print "yes";}
yes

DB<6> if (/ab+c/) {print "yes";}

Notice that the conditional statement for line #5 returned true, but the conditional
statement for line #6 returned false. This is because “b*” can literally match nothing at
all, while “b+” must match at least one “b” character.

134

CHAPTER9 PATTERN MATCHING

Warning About Using “”

o on

Because the “x” character can match “zero” characters, you may run into problems
when using it:

DB<1> $_="Code: abbbbc"
DB<2> if (/x*y*z*/) {print "yes";}
yes

u_n u__n u_n

The output for line #2 may seem wrong because there are no “x’; “y’, or “z” characters
to match, but that is the point of the “x” character. In line #2 of this example, you are
matching “zero or more ‘x’ characters, followed by zero or more ‘y’ characters, followed

by zero or more ‘z’ characters.” What exactly does this match? See the following:

DB<1> $_="Code: abbbbc"
DB<2> s/x*y*z*/---/
DB<3> print

---Code: abbbbc

Asyou can see, it matched the “zero x, y, and z characters” at the beginning of the string.

Important Pattern Matching Rule By default, pattern matching is from left to
right. The first part from the left of the string that matches is the one that is used,
even if a “larger” match occurs later in the string.

u_n u__n

Even if you had a bunch of “x’; “y’, and “z” characters, they probably won’t match a
pattern like this:

DB<1> $_="Code: xxxxyyyyyzzzz"
DB<2> s/x*y*z*/---/
DB<3> print

---Code: Xxxxyyyyyzzzz

Why did the substitution not match all those “x’, “y’; and “z” characters? Because
pattern matching works from left to right in the string. Once the match is found, the
substitution is performed.

135

CHAPTER9 PATTERN MATCHING

You might think that the “g” modifier would solve the problem, but in this case it
makes it even worse:

DB<1> $_="Code: xxxxyyyyyzzzz"

DB<2> s/x*y*z*/---/g

DB<3> print
---C---0---d---e---:--- ------

Even worse! EVERY occurrence of the pattern is matched and replaced. Important
bit of advice: Use “+” is all cases unless you really mean to match “zero or more” of a
character. The “+” character is much more likely to match what you want:

DB<1> $_="Code: xxxxyyyyyzzzz"
DB<2> s/x+y+z+/---/
DB<3> print

Code: ---

“{}’ Examples

In some cases you don’t want to match “zero or more” or “one or more,” but rather a
specific number of repeating characters. This is what the curly braces are used for. Here

are some examples:

DB<1> $_="Code: abcccccc"
DB<2> s/abc{1,3}/---/ #match "ab" followed by between 1-3 "c"
DB<3> print

Code: ---ccc
DB<4> $_="Code: abcccccc"
DB<5> s/abc{3,}/---/ #match "ab" followed by 3 or more "c"
DB<6> print

Code: ---
DB<7> $_="Code: abcccccc"
DB<8> s/abc{3}/---/ #match "ab" followed exactly 3 "c"
DB<9> print

Code: ---ccc

136

CHAPTER9 PATTERN MATCHING

Important Pattern Matching Rule Extra characters in the string “don’t count.”
For example, if you try to use the pattern /c{1,3}/ and the string is “abccccec,” the
extra “c” characters at the end of the string have no impact on the match.

While it seems that the substitution of line #2 from the previous output does the
same thing as line #8, there is a difference:

DB<1> $_="Code: abcc"
DB<2> s/abc{1,3}/---/
DB<3> print

Code: ---
DB<4> $_="Code: abcc"
DB<5> s/abec{3}/---/
DB<6> print

Code: abcc

Pattern Matching Is Greedy

Consider the following more closely:

DB<1> $_="Code: abcccccc"
DB<2> s/abc{1,3}/---/ #match "ab" followed by between 1-3 "c"
DB<3> print

Code: ---ccc

In the preceding example, you may wonder “why did the pattern /abc{1,3}/ match
three ‘c’ characters and not just one?” The reason is because pattern matching is greedy.
Whenever possible, pattern matching will match the largest possible pattern, as long as it
is still the first pattern from the left side of the string.

Important Pattern Matching Rule Pattern matching is greedy by default.
When a match is made, Perl will continue to look past the match to see if more
characters can match. If so, then these other characters are included in the match.

137

CHAPTER9 PATTERN MATCHING

¢ TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice the “«”, “+”, and curly brace
metacharacters:

$ ="t#err 127 ----- #err 127----- ---ferr 127---";
s/-*#err 127-*/ERROR/;

print;

$ ="#err 127 ----- #err 127----- ---fferr 127---";
s/-+#err 127-+/ERROR/;

print;

$ ="t#err 127 ----- #err 127----- ---ferr 127---";
s/-{3}terr 127-{3}/ERROR/;

print;

Exit the Perl debugger by executing the following debugger command:

g

“” Examples

The “” character matched exactly one character. Some examples are as follows:

DB<1> $_="Code: A1272"
DB<2> if (m/A...Z/) {print "yes";}

yes
DB<3> if (m/A..Z/) {print "yes";}
DB<4> if (m/A....Z/) {print "yes";}

Each “” must match exactly one character, no more no less.

138

CHAPTER9 PATTERN MATCHING

The repeating characters (“«, “+’, and curly braces) can be used in conjunction with
the “” character. The following will match an “A’ followed by any number one or more of

“any characters,” followed by a “Z”:

DB<1> $_="Code: A127Z"
DB<2> if (m/A.+Z/) {print "yes";}

yes

Important Pattern Matching Rule The “.” character will match any single
character EXCEPT a newline character. To include matching a newline character,
use the /s modifier.

“I1” Examples

The square brackets are used to match a single character, but unlike the “.” character,
they only match a subset of characters (not any character). For example, the following

will match an “A’; followed by any three numbers, followed by a “Z”:

DB<1> $_="Code: A1272"
DB<2> if (m/A[0123456789][0123456789][0123456789]2/) {print "yes";}

yes
DB<3> if (m/A[0-9][0-9][0-9]Z/) {print "yes";}
yes
DB<4> if (m/A[0-9]{3}Z/) {print "yes";}
yes
The technique used on line #3 demonstrates using a range. This range must be in the
same order as the characters found in the ASCII text table.
You can also use square brackets to say “match all BUT these characters.” For
example, the following matches a non-numeric character, followed by three numbers,

followed by a non-numeric character:

DB<1> $_="Code: A1272"
DB<2> if (m/[~0-9][0-9]{3}[*0-9]/) {print "yes";}
yes

139

CHAPTER9 PATTERN MATCHING

The A character means “match any but these characters.” It must be the first
character within the square brackets for it to mean “not these characters.”

*j.’TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice the “«”, “+”, and curly brace
metacharacters:

$ ="#err 127 ----- #err 127----- ---f#ferr 127---";
s/-*#err 127-*/ERROR/;

print;

$ ="t#err 127 ----- #err 127----- ---fterr 127---";
s/-+#err 127-+/ERROR/;

print;

$ ="#err 127 ----- #err 127----- ---f#ferr 127---";
s/-{3}terr 127-{3}/ERROR/;

print;

Exit the Perl debugger by executing the following debugger command:

g

“?” Examples

The “?” character will make the previous character an “optional match.” The character
can either be there or not be there. For example:

DB<1> $_="In the US it is color"
DB<2> if (m/colou?x/) {print "yes";}

yes
DB<3> $_="In the UK it is colour"

DB<4> if (m/colou?r/) {print "yes";}
yes

140

CHAPTER9 PATTERN MATCHING

“A” and “$” Examples

The “A” character will allow you to specify that you want the match to occur only at the

beginning of the string, while the “$” character will allow you to specify that you want the

match to occur only at the end of the string. For example:

DB<1> $_="This is a good day to learn Perl"
DB<2> if (/~This/) {print "yes";}

yes

DB<3> if (/This$/) {print "yes";}
DB<4> if (/*Perl/) {print "yes";}
DB<5> if (/Perl$/) {print "yes";}

yes

& TRY IT!

Execute the following command to enter the Perl debugger:

perl -d -e "1;"

Execute the following commands in the Perl debugger to practice the “?”, “A”, and “$”
metacharacters:

$str1="It was in July that we won the war";
$str2="It was in Jul that we won the war";

if ($stra
if ($str2
if ($stri
if ($stra
if ($stra
if ($stra
if ($stra

~ m/July?/) {print "yes";};

m/July?/) {print "yes";};
m/won/) {print "yes";};
m/*won/) {print "yes";};
m/~It/) {print "yes";};
m/won$/) {print "yes";};
m/war$/) {print "yes";};

Exit the Perl debugger by executing the following debugger command:

q

141

CHAPTER9 PATTERN MATCHING

“()” Examples

The parenthesis characters have multiple features. The first thing they do is allow you
to group characters together in order to have the repeating patterns affect a group of
characters rather than a single character:

DB<1> $_="Code: -A1CA9CA8C-"
DB<2> if (m/-(A[0-9]C){3}-7/) {print "yes";}
yes

In the pattern on line #2, {3} repeats the previous group (A[0-9]C) three times.
Without the parentheses, {3} would only apply to the previous character.

The parentheses also affects the “or” pattern character (see the next section) and
also for a process called “backreferencing” that will be covered in a later section of this
chapter.

“I” Examples

The “|” character allows you to specify “either or”. For example, the following will match
either “A1237Z” or “B999Y”:

DB<1> $_="Code: A1272"
DB<2> if (m/A127Z|B999Y/) {print "yes";}

yes
DB<3> $_="Code: B999Y"
DB<4> if (m/A127Z|B999Y/) {print "yes";}

yes

The “|” character means “match everything on one side of the | or the other side.” So,
the following will match either “Code: A127Z” or “B999Y” or “T888G”:

DB<1> $_="Code: A1272"
DB<2> if (m/Code: A127Z|B999Y|T888G/) {print "yes";}

yes

142

CHAPTER9 PATTERN MATCHING

But, what if you wanted the “Code: ” to be matched in each case? Use parentheses to
limit the scope of the “or” pattern:

DB<1> $_="Code: A127Z"
DB<2> if (m/Code: (A127Z|B999Y|T888G)/) {print "yes";}

yes

“\” Examples

If you want to literally match any of the special pattern matching characters that have
been covered in this chapter, like “x”, “”, or

. n un ll|"
)

you need to “escape” the special character
by placing the “\” character in front of it. For example, the following attempted pattern
match will fail because of the improper combination of pattern matching characters:

DB<1> $_="Code: A+*.Z"
DB<2> if (/A+*.Z/) {print "yes";}
Nested quantifiers in regex; marked by <-- HERE in m/A+* <-- HERE .Z/ at
(eval1)[C:/Per164/1ib/per15db.pl:646] line 2. at (eval 11)[C:/Perl64/1ib/
perl5db.pl:646] line 2.
eval '($@, $!, $°E, $,, $/, $\\, $"W) = @saved;package main; $"D =
$°D | $DB::db stop;
if (/A+*.2/) {print "yes";};

;' called at C:/Perl64/1ib/perlsdb.pl line 646

DB::eval called at C:/Perl64/1ib/perlsdb.pl line 3244
DB::DB called at -e line 1

., n wmn,

The following example will correctly match “+” followed by “x’, followed by “.”:

DB<1> $_="Code: A+*.Z"
DB<2> if (/A\+*\.Z/) {print "yes";}
yes

143

CHAPTER9 PATTERN MATCHING

¢ TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice the “/”, “I”, and parentheses
metacharacters:

$stri="Name: Bob";

$str2="Person: Sue";

if ($str1 =~ m/Bob|Sue/) {print "yes";};

if ($str2 =~ m/Bob|Sue/) {print "yes";};

if ($str1 =~ m/Name: Bob|Sue/) {print "yes";};
if ($str2 =~ m/Name: Bob|Sue/) {print "yes";};
if ($str1 =~ m/Name: (Bob|Sue)/) {print "yes";};
if ($str2 =~ m/Name: (Bob|Sue)/) {print "yes";};
$ ="Enter this to disarm the system: “a+\$";

if (m/"s+$/) {print "yes";};

if (m/\"s\+\$/) {print "yes";};

Exit the Perl debugger by executing the following debugger command:

g

Regular Expressions: Classes

Perl has some other built-in regular expressions, often called classes:

Class Matches

\w Alphanumeric and underscore characters

\d Numeric

\s White space (space, tab, newline, formfeed, return)

\b Word boundary (includes “white space,” end/beginning of line, punctuation, etc.)
\W Non-alphanumeric and underscore characters

144

CHAPTER9 PATTERN MATCHING

Class Matches

\D Non-numeric characters
\S Non-white space
\B Non-word boundary

Each of these classes represents one character:
if ($var =~ /"\s\w\w\w\s$/) {print "found it\n";}

The preceding pattern means “the first character is white space, the next three are

nn

alphanumeric (or underscore), and the last character is “white space”.

\svs\b

The difference between \s and \b is sometimes difficult to “see.” To understand the
difference, we should look at why \s and \b are important to know. Take the following
examples:

DB<1> $_="This\tis a good day to learn Perl"
DB<2> print
This is a good day to learn Perl
DB<3> s/ is / was /
DB<4> print
This is a good day to learn Perl
DB<5> s/\sis\s/ was /
DB<6> print
This was a good day to learn Perl

”

Note that “is ” didn’t match. If you try to match “’} it will not match a tab character.
However, \s will match “” or a tab character (or other white space characters).

Programmers typically use \s to help them match words in a string. However, \s has
two drawbacks when used for this purpose: (1) The white space that is matched is also
replaced. (2) While white space is often the surrounding characters of a word, other
things (such as the beginning and end of the string and punctuation) can surround
words as well.

145

CHAPTER9 PATTERN MATCHING

To overcome the shortcomings of \s, use \b. For example, to keep the “word
boundary” character, you could do the following:

DB<1> $_="This\tis a good day to learn Perl"
DB<2> s/\bis\b/was/
DB<3> print

This was a good day to learn Perl

The reason why the tab character isn’t “replaced” is that \b is an assertion. An
assertion is saying “what I am looking for must be in the string, but don’t replace it.”
Anything matched with \b will not be replaced.

You can also match the beginning and end of strings with \b, as well as match other
“word boundaries,” such as punctuation characters:

DB<1> $_="is this fun?"
DB<2> s/\bis\b/was/
DB<3> print

was this fun?
DB<4> $_="This is fun."
DB<5> s/\bfun\b/great/
DB<6> print

This is great.

Keep in mind, \s is still useful to know. Sometimes you just want to match a white
space character, not a word boundary. But, if you are trying to match a word, then \b will
most likely be a better way to go.

POSIX Character Classes

Perl also supports POSIX character classes. This includes the following:

Class Meaning

[:alnum:] Alphanumeric characters
[:alpha:] Alphabetic characters
[:ascii:] ASCII characters

[:blank:] Space and tab

146

CHAPTER9 PATTERN MATCHING

Class Meaning

[:entrl:] Control characters

[digit] Digits

[:graph:] Visible characters (i.e., anything except spaces, control characters, etc.)
[:lower:] Lowercase letters

[:print:] Visible characters and spaces (i.e., anything except control characters, etc.)
[:punct] Punctuation and symbols.

[:space:] All whitespace characters, including line breaks

[:upper:] Uppercase letters

[:word:] Word characters (letters, numbers, and underscores)

[:xdigit:] Hexadecimal digits

Typically, it is easier to use the previously mentioned character classes or
traditional square bracket ranges. However, consider the advantage of using the [:punct:]
POSIX class.

To use a POSIX class by itself, use this syntax:

DB<1> $string="Hello there."
DB<2> if ($string =~ m/thexe[[:punct:]]/) {print "yes";}
yes

While the POSIX standard only requires one set of square brackets, to implement this
within Perl, a second set of square brackets are required. This provides the functionality
of being able to combine POSIX classes with other characters, such as the following:

[abc[:punct:]xyz]

u_n

In the previous example, the RE would match a single character that was either “a’

llb" U_ 0 w_n u__n u_n
, C

) “x’) “y’, “z” or a punctuation character.

147

CHAPTER9 PATTERN MATCHING

¢ TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following commands in the Perl debugger to practice using the character classes:

$ ="Code: A1277";
if (m/Code:\s[[:upper:]1]\d{3}[[:upper:]1]/) {print "yes";};
if (m/Code:\s[A-Z][[:digit:]]{3}[A-Z]/) {print "yes";};

Exit the Perl debugger by executing the following debugger command:

g

Regular Expressions: Backreferencing

As we saw earlier, grouping (parentheses) can be used to group characters. This is
primarily used to have a regular expression affect a string of characters instead of just one.

Grouping can also be used to “backreference” patterns that have been matched.
When Perl makes a match of characters within parentheses, what was matched can be
referred back to by a designator “\” followed by a numeric value:

$var =~ s/*(...)abc\1/;

\1 means “match what was matched in the first group,” and \2 would mean “match
what was matched in the second group.”

In addition to being able to backreference within the regular expression, Perl assigns
what was matched within the grouping to special variables. The first group matched is
assigned to $1, the second group matched is assigned to $2, etc.:

$var =~ m/(abc..)/;
print $1;

This will match the string “abc” followed by the next two characters and assign all
five characters to the string $1.

148

CHAPTER9 PATTERN MATCHING

Note If you attempt another regular expression pattern match, $1, $2...will be
overwritten.

Backreferencing Example #1

In the following example, the user is asked to enter their first and last name. The first
name matches the first group of parenthesis and is assigned to the $1 variable. The last
name matches the second group of parenthesis and is assigned to the $2 variable:

#!perl
#9_back1.pl

print "Please enter your first and last name: ";
$ =<STDIN>;

if (m/(.*) (.*)/) #ex: "Bob Smith"

{
print "$2, $1\n";

}

“1‘p'TRYIT!

Execute the following command to see a demonstration of backreferencing:
perl 9 backi.pl
When prompted for a name, enter the following:

Bob Smith

149

CHAPTER9 PATTERN MATCHING

Backreferencing Example #2

In this example, the group file is read one line at a time. Each line of this file contains
four fields of data separated by colons (see the following sample lines). Using the
following pattern, the first field is assigned to $1, the second field is assigned to $2, etc.

#!perl
#9 back2.pl

open (GROUP, "<group");

while (<GROUP>) {
A H S H G H G VA
$total += $3;

}

print "Total: $total\n";
First few lines of a typical group file:

root::0:ro00t
other::1:
bin::2:root,bin,daemon

"¢’ TRYIT!

Execute the following command to see a demonstration of backreferencing:
perl 9 back2.pl

Review the results and determine if they were what you expected based on what you learned
in the last section.

Backreferencing Example #3

This example illustrates two backreferencing “features.” The first is that within the
pattern itself, you can’t use the $num variables because they aren’t created until after the
match has been successfully made. You can, however, backreference within the pattern

by using \num.

150

CHAPTER9 PATTERN MATCHING

The second feature shown is that all of the $num variables are “wiped out” if another
successful pattern match occurs.

#!perl
#9_back3.pl

print "Please enter a line: ";
$_=<STDIN>;
chomp $_;

if (/7(...).*\1$/) {print "$1\n";}
$junk="whatever";
if ($junk =~ /what/) {print "yes\n";}

print "$1\n";

¢’ TRYIT!

Execute the following command to see a demonstration of backreferencing:
perl 9 back3.pl

Review the results and determine if they were what you expected based on what you learned
in the last section.

Additional Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

151

https://github.com/Apress/beginning-perl-programming

CHAPTER9 PATTERN MATCHING

Lab Exercises

Important Note If you did not finish the previous lab, either finish it before
starting this lab or use the completed cb8.pl provided in the lab answers folder.

Edit the file called cb8.pl and perform the following enhancements (save the changes
into a file called cb9.pl):

o Using regular expressions, perform error checking on the following
for options 1-3 to make sure the format of the date the user inputs is
accurate (12/01/2019).

e Write the code for option #6 (print a statement). This option should
print out all of the transactions. Use a format statement to make the
output “nice.” Also have it print out a total balance.

When you have completed your work, compare your script against the cb9.pl file
provided in lab answers.

152

CHAPTER 10

Perl Utilities

split

The split statement is useful for breaking up a scalar value based on a particular
character (or characters). It will return what is split as a list (array) of scalar values.
This list is normally assigned to an array:

DB<1> $str = "Bob:Jones:23423:manager:03"
DB<2> @fields=split(/:/, $str)
DB<3> for $item (@fields) {print $i++, " $item\n";}
0 Bob
1 Jones
2 23423
3 manager
4 03

Note /:/is actually a regular expression pattern.

Using $_

If the variable you are splitting is $_, you don’t need to specify the variable name; split
will assume you want to split $_:

DB<1> $_ = "Bob:Jones:23423:manager:03"

DB<2> @fields=split(/:/)

DB<3> for $item (@fields) {print $i++, " $item\n";}
0 Bob
1 Jones

153
© William “Bo” Rothwell of One Course Source, Inc. 2019

W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_10

CHAPTER 10 PERL UTILITIES

2 23423
3 manager
4 03

Using Regular Expressions with split

It’'s common to split a variable based on one or more occurrences of white space. If you
want to do this, you can use the \s+ regular expression:

DB<1> $_="Today is Monday"

DB<2> @fields=split(/\s+/, $_)

DB<3> for $item (@fields) {print $i++, " $item\n";}
0 Today
1 1is
2 Monday

Since splitting of “white space plus” is so common, it is the default pattern for the split

command. Which means that if you are splitting $_ on \s+, you can use the following:

DB<1> $_="Today is Monday"

DB<2> @fields=split

DB<3> for $item (@fields) {print $i++, " $item\n";}
0 Today
1 1is
2 Monday

Limit the Output of split

You can specify a third parameter to limit the number of values that split returns. For
example, to return the first three fields of the string, execute the following:

DB<1> $_ = "Bob:Jones:23423:manager:03"

DB<2> @fields=split(/:/, $_, 3)

DB<3> for $item (@fields) {print $i++, " $item\n";}
0 Bob
1 Jones
2 23423:manager :03

154

CHAPTER 10 PERL UTILITIES

h‘F.TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following commands in the Perl debugger to practice using the split statement:

$ ="Steve+Bob+Nick+Tom+Sue+Tim+Nick";
@people=split(/\+/, $);

print $people[0];

($name1, $name2)=split(/\+/);

print $namei;

print $name2;

Exit the Perl debugger by executing the following debugger command:

q

join

The join statement can be used to combine scalar values (or scalar variables, or

elements in an array) into a single scalar value (or variable):

N W N R O

DB<1> $_ = "Bob:Jones:23423:manager:03"

DB<2> @fields=split(/:/, $_)

DB<3> for $item (@fields) {print $i++, " $item\n";}
Bob

Jones

23423

manager

03

DB<4> $str=join("~", @fields)

DB<5> print $str

Bob~Jones~23423~manager~03

155

CHAPTER 10 PERL UTILITIES

Notes:
o The first parameter to the join statement is the character(s) to
join with.
e The additional parameters are what to join. If an array is specified,

all of the elements in the array are joined. Separate scalars values
(or variables) can be specified:

$St1‘ — join("N") "abC", IIXyZII’ ll123ll)

substr

The substr statement returns the character(s) in a string when given a position range.
For example, if you want the 6th-9th characters of a string, the following code will “grab”
those characters:

DB<1> $str="This is a good time to learn Perl"
DB<2> print substxr ($str, 5, 4)
is a
Notes:

o The first parameter of the substr statement is the variable to “look in”

e The second parameter is the starting point. This is always indexed
from 0.

e The third parameter is how many characters to grab.

If the third parameter is omitted, then substr will grab all of the remaining characters:

DB<1> $stxr="This is a good time to learn Perl"
DB<2> print substr ($str, 5)
is a good time to learn Perl

You can also index from the back of the string with negative numbers:

DB<1> $str="This is a good time to learn Perl"
DB<2> print substr ($str, -7, 4)
n P

156

CHAPTER 10 PERL UTILITIES
You can use substr to modify a variable as well as return characters from the variable:

DB<1> $str="This is a good time to learn Perl"
DB<2> substxr ($str, -4, 4)="how to program"
DB<3> print $str

This is a good time to learn how to program

or:

DB<1> $str="This is a good time to learn Perl"
DB<2> substr ($str, -4, 4, "how to program")
DB<3> print $str

This is a good time to learn how to program

& TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following commands in the Perl debugger to practice using the substr statement:

$ ="It was the best of times, it was the worst of times..";
print substr ($_, 7, 8);

print substr ($_, 7);

substr ($_, -21) = "a very good year!";

print;

Exit the Perl debugger by executing the following debugger command:

q

157

CHAPTER 10 PERL UTILITIES

index

The index statement will search for a sub-string within another string and return the

index position of the sub-string found:

DB<1> $str="This is a good time to learn Perl"
DB<2> print index ($str, "good")
10

Notes:
e The number returned is indexed from 0.

e The number returned is where the first character of the sub-string

was found.

You can also skip past characters and start the search later in the string:

DB<1> $str="This is a good time to learn Perl"

DB<2> print index ($str, "i", 8)
16

Notes:
o Ifthe sub-string isn’t found in the string, index returns -1.

o To search from the back of the string, use the rindex statement (next

section).

rindex

The rindex statement will search a string from the back and return the index position of

the sub-string found:

DB<1> $str="This is a good time to learn Perl"
DB<2> print rindex ($str, "i")
16

Notes:

e The number returned is indexed from 0 from the front of the string.

158

CHAPTER 10 PERL UTILITIES

& TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice using the index and rindex
statements:

$ ="It was the best of times, it was the worst of times..";
print index ($_, "the");

print index ($_, "the", 8);

$position = rindex ($_,"of");

Exit the Perl debugger by executing the following debugger command:

q

grep

While regular expressions pattern matching works well with strings, it’s a bit of a pain for
elements in an array. The grep statement will look at each element of an array and return
those that match the expression:

#!perl
#10_grep.pl

@array=qw(Bob Bobby Ted Fred Sue Nick Sally);
@b=grep (/"B/, @array);
print "@b";

*j.p'TRYIT!

Execute the following command to see a demonstration of the grep statement:
perl 10 grep.pl

Review the results and determine if they were what you expected based on what you learned
in the last section.

159

CHAPTER 10 PERL UTILITIES

srand and rand

The srand and rand statements are used to generate random numbers. Since computers
can’t generate truly random numbers, an algorithm is used to create a random number.
This algorithm uses a “seed” (a starting integer number for the algorithm). To set the
seed, use the srand statement:

srand(12345);

Of course, if the same starting seed (number) is used over and over, the “random”
number will always be the same. Since the time statement returns an integer number

that is different from one second to another, it’s output is normally used to set the seed:
srand(time);

The rand statement creates the random number using the seed. It accepts an integer
at its argument:

$num=rand(10); #generate a random number from 0 to 9.99999
To make this floating point number an integer, use the int statement:
$num=int(rand(10)); #generates a random number from 0 to 9

The int statement always rounds down; to generate a random number from 1 to 10,
just add 1 to the result:

$num = int(rand(10)) +1;

*isp'TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following command in the Perl debugger repeatedly until it is clear to you that the
output of each command is between 0 and 5 (but not including the value of 5):

print rand(5);

160

CHAPTER 10 PERL UTILITIES

Execute the following command in the Perl debugger repeatedly until it is clear to you that the
output of each command is either 0, 1, 2, 3, or 4:

print int (rand(5));

Execute the following command in the Perl debugger repeatedly until it is clear to you that the
output of each command is either 1, 2, 3, 4, or 5:

print int (rand(5)) +1;
Exit the Perl debugger by executing the following debugger command:

q

sleep

The sleep statement is useful for “pausing” your program for a set amount of time (in
seconds). For example, the following program will perform a “countdown” from 10 to 1:

#!perl
#10_sleep.pl

print "countdown!\n\n";

$|=1;

for ($i=10;%$i>0;%i--) {
print "$i \r";
sleep 1;

}

$|=0;

print "Blast off!\n";

Notes:

e You can only pass integers to the sleep statement.

e Actual “sleep time” will very due to the system clock accuracy and
system load.

o The $|=1 statement tells Perl to flush the STDOUT buffer whenever
data is sent to STDOUT. Typically, the output buffer is flushed only
when certain events take place (a newline is sent to STDOUT, and
STDIN is read from or the end of the program).

161

CHAPTER 10 PERL UTILITIES

¢ TRY IT!

Execute the following command to see a demonstration of the sleep statement:
perl 10 sleep.pl

Review the results and determine if they were what you expected based on what you learned
in the last section.

Modify the 10_sleep.pl file by commenting out the line “$I=1;”. Execute the command again.
You should not see any output on the screen besides “countdown” and “Blast off!”. Look at the
notes from the previous section to determine why this is.

Additional Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

Lab Exercises

Important Note If you did not finish the previous lab, either finish it before
starting this lab or use the completed cb9.pl provided in the lab answers folder.

162

https://github.com/Apress/beginning-perl-programming

CHAPTER 10 PERL UTILITIES

Edit the file called cb9.pl and perform the following enhancements (save the changes
into a file called cb10.pl):

e Modify the code that you created in the previous chapter lab that
computed the total balance. Use split instead of regular expressions
to manipulate the data when you open the file and read its contents.

e Write the code for option #4 (look up check by number). Perform
error checking as needed.

When you have completed your work, compare your script against the cb9.pl file
provided in lab answers.

163

CHAPTER 11

Filesystem and Process
Control

Controlling the Filesystem Within Perl

Perl provides several built-in statements that allow you to control the filesystem
(files and directories) while within Perl. With these statements, you can

e Change directories

e Listfiles

e Make directories

¢ Remove directories

¢ Remove files

e Rename files

e Make links (not covered in this chapter)
e Change permissions

e Getinformation regarding a file

Perl also allows you to run operating system (OS) commands from within your
Perl script. Most operating systems provide commands that allow you to modify the
filesystem. These commands, such as mkdir and Is, are the methods the OS user uses to
manipulate files and directories.

165
© William “Bo” Rothwell of One Course Source, Inc. 2019

W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_11

CHAPTER 11 FILESYSTEM AND PROCESS CONTROL

Avoid Running Operating System Commands

Running OS commands can result in several “problems”:

e Your Perl script may run slower. The reason for this is that Per]l must
spawn another process (e.g., a UNIX/Linux shell) to run the OS
command.

e Your script may become “platform dependant” as the OS command
that you attempt to run may not be available on another operating
system.

e Your script may become “user dependant.” A user can modify his/her
environment (such as aliases, functions, and the PATH variable) to alter
the way that OS commands execute. If they do, this may cause problems
when you run these OS commands from within your Perl script.

Working with Directories

Perl knows what directory the user was in when the script was started. To have Perl
display this information, run the OS command that lists the current working directory by
using the system statement. To move to a different directory, use the chdir statement:

DB<1> system "pwd"
/root

DB<2> chdir ("/etc")

DB<3> system "pwd"
/etc

DB<4> chdir ("..")

DB<5> system "pwd"
/

Notes:
o The directory name MUST be in quotes: “/etc/skel”.

e When your Perl script exits, the user is in the directory that he/she
started from. Your Perl script can’t change the directory in the shell
the user ran the program from.

166

CHAPTER 11 FILESYSTEM AND PROCESS CONTROL

Listing Files

To list files in a directory, use Perl’s wildcard file naming convention. By placing angled
brackets around the wildcards, Perl will return a list of all of the files that match the
wildcard pattern. This list is most often either assigned to a variable or used as a variable:

@files=(</etc/s*>); #Assigns all of the files in the /etc directory
that start with
#ithe letter "s" to the @files array

chdir("/etc");
@files=(<s*>); #Same as above using relative pathnames

foreach $file (</etc/s*>) {
print "$file\n"; #print each file a line at a time

Multiple wild card patterns are allowed:

@files=(</etc/s* /usr/bin/s*>);

Making Directories

To make a directory, use the mkdir statement:
mkdir("/tmp/data", 0755);

The first parameter passed into the mkdir statement is the name of the directory to
create. The second parameter is the permissions to set on that directory. This number
has to be given as an octal value. That is why the leading “0” exists.

UNIX and Linux provide users with a feature called umask, a method of setting
default permissions so that all new files and directories are created with the same set
of permissions each time. Unfortunately, when Perl creates a directory, the umask
setting is imposed upon Perl. Therefore, if the user has a more restrictive umask than
the permissions you are trying to create for the directory, the umask wins and the
permissions aren’t what you wanted them to be.

Set the permissions manually after the mkdir statement with the chmod statement
(see the next section) to overcome this potential problem.

167

CHAPTER 11 FILESYSTEM AND PROCESS CONTROL

Notes:
e Onnon-UNIX systems, the permission argument is ignored.

e Prior to Perl 5.6, the permission argument is required for UNIX and
Linux systems. In Perl 5.6 and higher, if no permission argument is
provided, Perl uses the umask value of 0777.

¢ The mkdir statement returns a true value if the directory is created
and a false value if the directory is not created.

Removing Directories

To delete a directory, use the rmdir statement:
rmdir ("/tmp/data");

Notes:

o Ifthe directory contains files or subdirectories, the rmdir statement
will fail (see the next section to see how to remove files).

o The rmdir statement will return a numeric value that indicates how
many directories were deleted. Therefore, it can be used naturally in
a conditional statement to determine if the command succeeded or
failed.

@' TRYIT!

Execute the following command to some files to work with:

cp /etc/*.conf.

Execute the following command to enter the Perl debugger:

perl -d -e "1;"

Execute the following commands in the Perl debugger to practice working with directories:

mkdir ("data");
chdir ("data");
system "pwd";

168

CHAPTER 11 FILESYSTEM AND PROCESS CONTROL
chdir ("..");
system "pwd";
@files=(<*>);
print ("@files");
rmdir ("data");

Exit the Perl debugger by executing the following debugger command:

g

Working with Files

Let’s see how to work with files.

Deleting Files

Use the unlink statement to remove files:

unlink("/tmp/data_1");
unlink(</tmp/data*>); #Using wildcards

Renaming Files

Perl provides the ability to rename files by using the rename statement:

rename ("/tmp/data", "/tmp/data.old");

Changing Permissions

The chmod statement will allow you to change permissions of files or directories:
chmod (0644, "/tmp/data");

Remember, the first number (0) indicates that this is an octal value.

Note The unlink, rename, and chmod statements return true if the statement is
successful and false if it fails.

169

CHAPTER 11 FILESYSTEM AND PROCESS CONTROL

Gathering File Information

The stat statement will provide an array of useful information regarding a file or
directory. According to the Perl documentation, the following describes the fields that
the stat statement returns:

Index Value returned

0 Device number of filesystem

1 Inode number
File mode (type and permissions)
Number of (hard) links to the file
Numeric user ID of file’s owner

Numeric group ID of file’s owner

2

3

4

5

6 Device identifier (special files only)
7 Total size of file, in bytes

8 Last access time in seconds since the epoch

9 Last modify time in seconds since the epoch

10 Inode change time in seconds since the epoch (*)
11 Preferred block size for filesystem 1/0

12 Actual number of blocks allocated

stat example:

DB<1> @info=stat("/etc/hosts")

DB<2> for $i (0..12) {print "$i\t$info[$i]\n";}
776

28718

33188

N oUW N W N RO
)

170

10
11
12

CHAPTER 11 FILESYSTEM AND PROCESS CONTROL

1139268755
1117559373
1117559373
4096

2

@ TRY IT!

Execute the following command to create a file to work with:

echo "hello" > hello.txt

Execute the following command to enter the Perl debugger:

perl -d -e "1;"

Execute the following commands in the Perl debugger to practice working with files:

@data=stat("hello.txt");

print "@data";

rename ("hello.txt", "newfile.txt");
@files=(<*.txt>);

unlink ("newfile.txt");
@files=(<*.txt>);

Exit the Perl debugger by executing the following debugger command:

g

Backquoting

In a previous chapter we saw how a filehandle can be opened to read the output of an OS

command. While this is useful for commands that provide a large amount of output, it’s

cumbersome for commands that only have a line or two of output. By using backquotes,

we can run an OS command and return the value to a scalar variable:

$date = “date’;

171

CHAPTER 11 FILESYSTEM AND PROCESS CONTROL

The preceding example runs the UNIX (or Linux) command date and returns the
output of the command back to the assignment. So, the scalar variable $date will contain
the output of the date command.

Other examples:

$pwd
$top
$machine = “uname -n";
$clear="clear ;

“pwd”;
“head /etc/group”;

Note:

e You can’t use back quoting with the OS command cls in the Windows

environment.

The system Statement

Another method of running OS commands, the system statement, will send the output
of the OS command to the screen (as opposed to sending the output back into your Perl
script). This is good for tasks like clearing the screen:

print "Enter your name: ";
chomp($name= <STDIN>);
system "clear";

print "Hello, $name, welcome to my script\n";

The only difference between the backquote method and using the system statement
is where the output of the OS command goes. With backquotes, the output is returned to
the command line itself before the Perl statement executes. The system statement sends
its output to STDOUT.

172

CHAPTER 11 FILESYSTEM AND PROCESS CONTROL

@ TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following commands in the Perl debugger to practice running OS commands:

system "date";
$today="date";
print $today;

Exit the Perl debugger by executing the following debugger command:

g

Additional Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

Lab Exercises

Important Note If you did not finish the previous lab, either finish it before
starting this lab or use the completed cb10.pl provided in the lab answers folder.

Edit the file called cb10.pl and perform the following enhancements (save the changes
into a file called cb11.pl):

o Make the data file have only read and write permissions for the owner
of the file (and no permissions for anyone else) (UNIX OS only).

173

https://github.com/Apress/beginning-perl-programming

CHAPTER 11 FILESYSTEM AND PROCESS CONTROL

o Use the OS command to clear the screen when displaying the menu
or whenever an option is chosen (“clear” in UNIX, “cls” in Windows).

e Write the code for option #5 (look up check by date). Perform error
checking as needed.

When you have completed your work, compare your script against the cb11.pl file
provided in lab answers.

174

CHAPTER 12

Functions

Creating Functions

To create a function, use the sub statement:

sub total {
print "The total is ", $a * $b + $c * $d, "\n";

Notes:

» Functions are most often created for either breaking up a large script
into “components” or for when code is used more than once within a
script.

e Be careful when choosing function names. Perl has many built-in
functions (see how to avoid confusion in the “Invoking Functions”

section).

o Functions cannot be “redeclared” because they are created at
compile time, not run time.

o Functions can be placed anywhere in your Perl script, even after they
are called (if they are called correctly).

e By default, variables declared in your main program can be accessed
and modified in your functions. More on this in the “Scope of
Variables” section.

© William “Bo” Rothwell of One Course Source, Inc. 2019
W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_12

175

CHAPTER 12 FUNCTIONS

Invoking Functions

To invoke (call) a function, specify the ampersand character (&) followed by the function
name:

sub total {
print "The total is ", $a * $b + $c * $d, "\n";
}

$a=10;
$b=20;
$c=5;
$d=2;

&total;

The function call doesn’t really require the ampersand character. However, it
is highly recommended that you place an “&” prior to function calls because of the
following reasons:

1. Tt makes it easier for other programmers to see that this is a
user-defined function that is being called.

2. Ifyou use the name of a Perl built-in function and you don’t use
the “&” character, then the Perl built-in function will be called. If
you do use the “&” character, then the function you created will be
called.

3. Ifyou want to put your functions after they are called in your
program, using the “&” character is one of the “proper” ways to
call the function.

176

CHAPTER 12 FUNCTIONS

@ TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice creating and invoking
functions:

sub mult {print $a * $b;};
$a=9;
$b=7;
&mult;

Exit the Perl debugger by executing the following debugger command:

g

Returning Values from Functions

All functions return a value to the calling program. Although this return value is normally
a scalar variable, it can also be an array or an associative array.

Two methods can be used to return a value to the calling program: the explicit
method and the more cryptic implied method.

The Explicit Method

With the explicit method, use the return statement to specify what value to return to the

calling program:

sub total {
$total = $a * $b + $c * $d;
return ($total);

}

177

CHAPTER 12 FUNCTIONS

You can either return the value of a variable or the outcome of a Perl statement:

sub total {
return ($a * $b + $c * $d);
}

One of the advantages of using the return statement is that it is clear to another
programmer what is being returned. Another advantage is that you can use the return
statement to “pop out” of a function prematurely:

sub test {
if ($var =~ /ERROR/) {
return (0);
}
$result = $var;
chop ($result);
$result =~ s/”.../Pattern: /;
return ($result);

}

The Implicit Method

If you don’t specify what to return with the return statement, Perl will return the
outcome of the last statement in the function:

sub total {
$a * $b + $c * $d;
}

In this example, the outcome of the mathematical equation is returned. While this
method requires less typing, it doesn’t provide any additional features and is a bit more
cryptic than simply using the return statement.

178

CHAPTER 12 FUNCTIONS

@ TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"

Execute the following commands in the Perl debugger to practice returning values from
functions:

sub mult {return ($a * $b);};
$a=9;

$b=7;

$total=&mult;

print $total;

Exit the Perl debugger by executing the following debugger command:

g

Passing Parameters

To pass parameters into a function, place the parameters within parentheses after the
function call:

8average ($a, $b);

The variables $a and $b will be passed into the function average. Within the function
you can access what was passed in by using the special array @_. The first parameter will
be stored in $_[0], and the second parameter will be stored in $_[1]...:

sub average {
foreach $num (@) {
$total += $num;

}
return ($total / ($# +1));
}
$a=10;
$b=20;
print &average ($a, $b); #prints 15

179

CHAPTER 12 FUNCTIONS

Note:
o Justlike any array, $#_holds the last index number of @_

When you pass a parameter into a function, you actually pass a reference. In a sense,
the elements in the @_ array share the same memory space as the variables that were
passed into the function from the main program. Changing elements in the @_ array will
also change the variable that is being passed in:

sub average {
$ [0]++; #Adds one to first element of _ array (and $a)
foreach $num (@) {
$total += $num;

}
return ($total / ($# +1));
}
#main program
$a=10;
$b=20;
print 8average ($a, $b), "\n"; #prints 15.5
print $a; #prints 11

To avoid this, you should reassign elements in @_ to other variables (either scalar or
another array). When variables are assigned, they are assigned by value by default, not
by reference:

sub average {
@temp=@ ;
$temp[0]++; #Adds one to first element of temp array
foreach $num (@temp) {
$total += $num;
}
return ($total / ($#temp+1));

}

180

CHAPTER 12 FUNCTIONS

#main program

$a=10;

$b=20;

print 8average ($a, $b), "\n"; #prints 15.5
print $a; #prints 10

Warning: Don’t confuse the scalar variable $_ (the default variable) with the array
variable @_; They are completely different variables.

@ TRYIT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following commands in the Perl debugger to practice passing data into functions:

sub mult {print $ [0] * $ [1];};

$a=9;

$b=7;

&mult($a, $b);

sub mult2 {$_[0]++; print § [0] * $ [1];};

&mult2($a, $b);

print "a is $a and b is $b\n";

sub mult3 {@input=@ ; $input[0]++; print $input[o] * $input[1];}
8mult3($a, $b);

print "a is $a and b is $b\n";

Exit the Perl debugger by executing the following debugger command:

q

Scope of Variables

By default, almost all variables in Perl are “global” in scope. This means that any variable
that you create in your main program can be accessed and modified by any function.
While being able to have global variables is good for some situations, it can cause

181

CHAPTER 12 FUNCTIONS

problems when you (or fellow programmers) use the same variable name for different

reasons within the same script:

#!perl
#12_scope1.pl

sub average {
@temp=@ ;
$temp[0]++;
foreach $num (@temp) {
$total += $num;
}
return ($total / ($titemp+1));

}

#main program
@temp=(10,20);
print 8average (@temp), "\n";
print "@temp";

#Adds one to first element of temp array

#prints 15.5
#prints 11, 20

Perl does provide two statements (local and my) that allow you to impose scope on

avariable. The idea of scope is it limits the “availability” of a variable to a certain portion

(typically a function) of your script.

@' TRYIT!

Execute the following command to see a demonstration of the scope of variable:

perl 12 scopel.pl

Review the results and determine if they were what you expected based on what you learned

in the last section.

182

CHAPTER 12 FUNCTIONS

local() vs. my()
The local Statement

The local statement can be used to protect the calling program’s variables from being
modified from the function:

#!perl
#12_scope2.pl

sub average {
local(@temp)=@ ; #Main program's @temp isn't touched
$temp[0]++; #Adds one to first element of local temp array
foreach $num (@temp) {
$total += $num;
}
return ($total / ($#temp+1));

}

#main program

@temp=(10,20);

print &average (@temp), "\n"; #prints 15.5
print "@temp"; #prints 10, 20

In the preceding example, the local statement makes a variable called temp. This
variable can’t modify the temp variable in the main program.

@' TRYIT!

Execute the following command to see a demonstration of the scope of variable:
perl 12 scope2.pl

Review the results and determine if they were what you expected based on what you learned
in the last section.

183

CHAPTER 12 FUNCTIONS

However, the local statement doesn'’t protect the function’s variables from being

changed by other functions:

#!perl
#12_scope3.pl

sub modify {

@temp=(40,50); #ichanges temp that was created in average function

}

sub average {

local(@temp)=@ ;

&modify;

return (($temp[o0] + $temp[1]) / 2);
}

#main program
@temp=(10,20);
print 8average (@temp), "\n";
print "@temp";

A graphical representation:

#Main program's @temp isn't touched

#returns 45, result of 40 + 50 /2

#prints 45
#prints 10, 20

#Main program #average function #modify function
@temp=(10,20); sub average { sub modify {
&average; local(@temp)=Q@~ @temp=(40,50);
&modify; }/ }
}

~N

Protection "barrier" provided by local function

No protection here

184

CHAPTER 12 FUNCTIONS

@ TRYIT!

Execute the following command to see a demonstration of the scope of variable:
perl 12 scope3.pl

Review the results and determine if they were what you expected based on what you learned
in the last section.

The my Statement

The my statement is like the local statement in that it protects the calling program from
having its variables modified by the function. However, my also protect the function
from having its variable changed by another function:

#!perl
#12_scope4q.pl

sub modify {

@temp=(40,50); #ichanges temp, but not the average function's temp
}
sub average {
my (@temp)=@_; #Main program's @temp isn't touched
&modify;
return (($temp[0] + $temp[1]) / 2); #returns 15
}

#main program

@temp=(10,20);

print 8average (@temp), "\n"; #prints 15
print "@temp"; #prints 40, 50

185

CHAPTER 12 FUNCTIONS

#Main program
@temp=(10,20)

&average;

#average function
»sub average {

#modify function
sub modify {

T @temp=(40,50);

}

Protection "barrier"

@' TRYIT!

Execute the following command to see a demonstration of the scope of variable:

perl 12 scope4.pl

Review the results and determine if they were what you expected based on what you learned

in the last section.

The bad “side affect” of this is that when the modify function assigns the temp
variable, it ends up modifying the main program (global) temp variable. To avoid this,
either use the my statement when creating the main program’s variables or use the my
statement when creating the modify function’s variables (or even better, do both!):

#!perl
#12_scope5.pl

sub modify {
my (@temp)=(40,50);
}

sub average {

my (@temp)=@_;
&modify;

return (($temp[o0] + $temp[1]) / 2);

}

186

#changes the temp var of the modify function

#Main program's @temp isn't touched

#treturns 15

CHAPTER 12 FUNCTIONS

#main program
my(@temp)=(10,20);

print 8average (@temp), "\n"; #prints 15
print "@temp"; #prints 10, 20
@’ TRYIT!

Execute the following command to see a demonstration of the scope of variable:
perl 12_scope5.pl

Review the results and determine if they were what you expected based on what you learned
in the last section.

Additional Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

Lab Exercises

Important Note If you did not finish the previous lab, either finish it before
starting this lab or use the completed cb11.pl provided in the lab answers folder.

187

https://github.com/Apress/beginning-perl-programming

CHAPTER 12 FUNCTIONS

Edit the file called cb11.pl and perform the following enhancements (save the changes
into a file called cb12.pl):

o Where logical, convert your code into functions. For example,
printing the menu could be one function, each menu option can be
separate functions, and working with the data file (reading, opening)
can be separate functions. Be sure to use my where appropriate.

When you have completed your work, compare your script against the cb12.pl file
provided in lab answers.

188

CHAPTER 13

Using Modules

What Are Modules?

Perl modules (sometimes called libraries) are files that contain reusable code. These
libraries can either be created by you, built-in to Perl, or downloaded from the Internet.

This chapter will focus on using built-in Perl modules. Creating your own modules
and using modules that you get from the Internet are discussed in a future course.

Loading Modules with use

Typically, modules declare generic functions that can be used within your script. To
make use of these functions, use the use statement to tell Perl to “import” the functions
into your script:

use File::Copy;
copy("example.txt", "newfile.txt");

The module “File::Copy” contains a package (a namespace where functions are
declared) that contains two functions: copy and move.

The “File” part of “File::Copy” indicates that the “Copy” module (really called Copy.
pm) is under a directory called “File.” The “File” directory is under one of the directories
indicated by the elements in the @INC variable:

DB<1> print "@INC"

/usr/local/lib/perl5/5.00503/sun4-solaris /usr/local/lib/perl5/5.00503 /
usr/local/lib/perl5/site perl/5.005/sun4-solaris /usr/local/lib/perl5/site_
perl/5.005 .

Perl has many built-in modules which can be used with your script. To see a list of
them, run the command “man perlmodlib” and search for “Standard Modules.”

189
© William “Bo” Rothwell of One Course Source, Inc. 2019

W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_13

CHAPTER 13 USING MODULES

@ TRY IT!

Execute the following command to enter the Perl debugger:
perl -d -e "1;"
Execute the following commands in the Perl debugger to practice loading and using modules:

use Text::Wrap;

$line="The Text::Wrap module provides a function called wrap which is
designed to provide you with a better way to display (print) output

to a filehandle (normally it is used to print to the screen. It does
'work wrapping', a feature not provided by the print statement. See the
documentation for more details.";

print $line;

print wrap("\t", "", $line);

Exit the Perl debugger by executing the following debugger command:

q

Other Functions of use

The use statement can also be used to modify the behavior of your Perl script. The
following examples are some of the common methods of using use to modify the
behavior of your script:

Command Meaning

use diagnostics Force verbose warning diagnostics

use strict Restrict unsafe constructs (see
variations and details in the following)

use diagnostics

This statement is very useful when debugging programs consider the following code:

#!perl
#13_diag.pl
190

CHAPTER 13 USING MODULES

use diagnostics;
print "this is only a test;

There is a syntax error (no ending quotes) which typically produces the following

compiler error:

Can't find string terminator ' " ' anywhere before EOF at 13 _diag.pl line 2
When run when diagnostics are “turned on,” the following error is displayed:

Can't find string terminator ' " ' anywhere before EOF at 13 _diag.pl line 2

(F) Perl strings can stretch over multiple lines. This message means
that
the closing delimiter was omitted. Because bracketed quotes count

nesting
levels, the following is missing its final parenthesis:

print q(The character '(' starts a side comment.);

Note: remaining output omitted

use strict

There are three things you can tell Perl to be strict about: reference usage, subroutine
usage, and variable usage.

use strict ‘ref’

This will cause your program to exit if a symbolic reference is used. Symbolic references
are a method of referring to variable and are typically discussed in advanced classes.

use strict ‘vars’

This will generate an error if a variable used hasn’t been either declared as a my
variable or isn’t fully qualified. A fully qualified variable is one that includes its package
namespace in the variable name. Packages are discussed in advanced Perl classes.

191

CHAPTER 13 USING MODULES

use strict ‘subs’

This pragma will generate an error message for if you attempt to use “barewords” (a
string that doesn’t have quotes around it) that attempts to call a subroutine that hasn't
been declared. For example:

#!perl
#13_subs.pl

use strict 'subs';

sub jesttest {
print "This is just a test";

}

sub hello {
print "hello\n";

}

hello; #Calls a valid subroutine, no problem
justatest; #Bareword that isn't a subroutine.

Note The statement use strict will enforce all restrictions (refs, subs, and vars).

“@'TRY IT!

Execute the following command to see a demonstration of the scope of variable:
perl 13 subs.pl

Review the results and determine if they were what you expected based on what you learned
in the last section.

192

CHAPTER 13 USING MODULES

Additional Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

Lab Exercises

Important Note If you did not finish the previous lab, either finish it before
starting this lab or use the completed cb12.pl provided in the lab answers folder.

Edit the file called cb12.pl and perform the following enhancements (save the changes
into a file called cb13.pl):

e When opening a data file, first make a backup copy of the file. The
name should be “person.data.bak” where person is the name of the
person running the program. Inform the user of this backup file.

o Implement use diagnostics.

o Implement use strict “subs”.

When you have completed your work, compare your script against the cb13.pl file
provided in lab answers.

193

https://github.com/Apress/beginning-perl-programming

CHAPTER 14

Debugging Perl

The -w Switch

The -w switch (option) will tell Perl to look for and report unusual code. This code
typically includes a logical (not syntax) error and includes (but not excluded to) the
following:

e Variable names that are mentioned only once
o Scalar variables that are set before use

¢ Redefined subroutines

o References to undefined filehandles

o References to filehandles opened read-only that the script is
attempting to write to

e Values used as a number that don’t look like numbers
e Arrays used in scalar context
e Subroutines that “recurse” more than 100 deep

Using the -w switch can avoid common (but sometimes tricky) programming errors
such as the ones demonstrated in the following program:

#!perl
#14_w.pl

if ($var == 0) {
print "yes\n";

}

195
© William “Bo” Rothwell of One Course Source, Inc. 2019

W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6_14

CHAPTER 14 DEBUGGING PERL
print GROUP "hello there\n";
$name="Bob";

if ($name == "Ted") {
print "yes\n";

“@'TRY IT!

Execute the following command to see a demonstration of the -w switch:
perl -w 14 w.pl

Review the results and determine if they were what you expected based on what you learned
in the last section.

The Perl Debugger

Perl provides a built-in debugger which can be invoked when running Perl with the -d
option:

[student@ocs student]$ perl -d example.pl
Loading DB routines from perl5db.pl version 1.0402

Enter h or 'h h' for help

main:: (use.pl:2) copy("example.txt", "newfile.txt ");
DB<1>

Some notes about the debugger:

e Perl must first be able to compile the code prior to entering the
debugger.

e main::(use.pl:2) means “Main part of script use.pl, line #2”.

196

CHAPTER 14 DEBUGGING PERL

» Atthis point, no statements have been executed.

e The command above the prompt (DB<1>) is the next command to

execute.

Debugger Commands

The debugger has many built-in commands. The most common are as follows.

Command

Meaning

lemd

H -num

Runs the command (cmd) in a separate
process (this is typically a shell command)

Interactive help

Prints last “num” commands (excludes
single character commands)

Lists the next line of code to be executed

Steps through a statement (if subroutines are
called, executes over the subroutine)

Quits the debugger

Steps through a statement (if subroutines are
called, executes one subroutine statement at
atime)

Displays all of the variables in package
(defaults to main)

In addition to the debugger commands, you can execute any Perl statement.

Additional Resources

In each chapter, resources are provided to provide the learner with a source for more

information. These resources may include downloadable source code or links to other

books or articles that will provide you more information about the topic at hand.

197

CHAPTER 14 DEBUGGING PERL
Resources for this chapter can be found here:

https://github.com/Apress/beginning-perl-programming

Lab Exercises

There is no lab for this chapter. As a challenge, consider making the following changes to

your checkbook script:
1. Modify option #6 to print statement for the following:
A. Just display checks
Just display deposits
Just display withdrawals
Display transactions for a given month

Display transactions for a given date

m @ O 0O w

Display transactions from a “start” to an “end” date

2. Add an option to allow the user to modify a transaction.

3. Allow the user to choose which directory to store the data file.
4. Add an option to allow the user to delete a transaction.

5. Perform better error checking when reading and writing from the
data file. For example:

A. Ifthe file isn’t readable by the user, but the user owns the file, change the
permissions for reading for the user.

B. The program will fail to create new files if the directory isn’t writable. If this
is the case, allow the user to choose a different directory to save the file.

6. Add a Save option.

198

https://github.com/Apress/beginning-perl-programming

Index

A C

Alteration operators, 21 chomp statement, 36
Argument variables, 69 chop statement, 36
Array variables, 41 Command line method, 7
“@” symbol, 42 Conditional expressions
built-in functions, 44-46 and/or vs. &&/||, 96
foreach loop, 49 and/or vs. &&/||—continued, 96, 97
for loop, 48 complex
scalar, 43, 44 logical and, 94
splice functions, 46, 47 logical not, 95
Assignment operation, 25, 26 logical or, 95
Associative array variables file testing, 92, 93
defined statement, 66 numeric comparison, 87
exists statement, 67 outcome of statement, 91, 92
indexing system, 57 pattern matching, 90, 91
key/value pair (See Key/value pair) short circuiting, 98
method creation, 59 string comparison, 88-90
removing key/values, 66 using parentheses, 97
returns keys, 64 Curly braces, 37, 38
reverse searching, 65
values statement, 64, 65
while-each loop variables, 63 D
Auto-increment/auto-decrement Debugger commands, 197
operators, 31, 33 Default variable, 106, 107

Diamond operator, 104-106

die and warn functions, 111, 112
B exit statement, 113
Blocks, 71 returning exit status value, 112

199
© William “Bo” Rothwell of One Course Source, Inc. 2019

W. “Bo” Rothwell, Beginning Perl Programming, https://doi.org/10.1007/978-1-4842-5055-6

https://doi.org/10.1007/978-1-4842-5055-6

INDEX

Directories
chmod statement, 167
listing files, 167
mkdir statement, 167
rmdir statement, 168, 169
do statement, 80
alternative, 80, 81
conditional check, 80
do statement—continued,
alternative, 81
Double quotes, 26, 27

E

elsif statement, 73, 74
Environment variables, 68, 69
Escape key (), 26

Explicit method, 177, 178

F

Filehandles, 111
piping in Perl, 118
placeholders, 120, 121
advanced, 123, 124
numeric field, 122, 123
repeating lines, 124, 125
truncation, 122
reading block, 116
reading single character, 117
sending data to OS
command, 118, 119
Files
chmod statement, 169

opening and reading from, 113, 114

opening and writing to, 115
rename statement, 169

200

stat statement, 170

unlink statement, 169

ways of opening, 114
File system control

backquoting, 171

directories (See Directories)

files (See Files)

system statement, 172
format statement, 119, 120
Functions

creation, 175

invoke, 176, 177

use diagnostics, 190

use strict, 191, 192

G

given statement, 77, 78
grep statement, 159

H

Here document, 126, 127

if statement, 71, 72
Implicit method, 178, 179
index statement, 158
Interactive method, 7, 8
Iterator, resetting
each statement, 64
keys statement, 63

join statement, 155, 156

K

Key/value pair, 58-60
return array, 61
sort, 61
while-each loops, 62

L

local statement, 183-185
Loop control
last statement, 82
next statement, 84

Mathematical operations, 18, 19
Modifiers
g modifier, 131
i modifier, 132
Modules loading
copy and move functions, 189
@INC variable, 189
use statement, 189
my statement, 185-187

N

Nested loop, breaking out, 83
Numeric literal, 17

O

One-line if statement, 74

P

Passing parameters, 179-181
Pattern matching, 90, 91

INDEX

matching operator, 129
modifiers (See Modifiers)
regular expressions (See Regular
expressions)

substitution operation, 130
translation operator, 130
vs. wildcards, 129

Perl 6, 5

Perl Debugger, 75, 90, 94, 196, 197

perldoc command, 14

Practical extraction and reporting

language (Perl)

command line method, 7
development tools, 4
documentation, 10-15
interactive method, 7, 8
resources, 15
script method, 9, 10
UNIX-based OS (See UNIX-based OS)
versions, 4-6

Predefined functions, 19-22

Q

Quick and dirty method, 59
gw and qq statements, 53, 54

R

Reading data, 103
Reading input, 101, 102
methods, 35
using parentheses, 108
Record separator variable
flat databases, 103, 104
read file into scalar
variable, 104
Reference variable, 49, 50

201

INDEX

Regular expressions
classes, 144
backreferencing, 148-151
POSIX character, 146-148
\s vs. \b, 145, 146
metacharacters, 133
A and $ examples, 141
+ examples, 134
| examples, 142, 143
x examples, 134
? examples, 140, 141
. examples, 138, 139
() examples, 142
[] examples, 139, 140
{} examples, 136, 137
{} examples, 136
examples, 143, 144

greedy pattern matching, 137

warning, using *, 135, 136
Reverse statement, 51
rindex statement, 158

S

Scalar context, 54
Scalar variables, 29
Script method, 9, 10
Short circuiting, 98
Single quotes, 27, 28
sleep statement, 161
Sort operator, 52, 53
Special variables, 68

202

split statement, 153

limit the output, 154

using $_, 153, 154

using regular expressions, 154
srand and rand statements, 160
String literals, 20
Strings vs. numbers, 23, 24
substr statement, 156, 157
switch statement, 75, 76

T

Text::Wrap module, 190

U

Undefined variables, 29-31
UNIX-based OS
derivative for *nix, 2, 3
derivative for Windows, 3
unless statement, 75
until statement, 79

\"

Variables, scope, 181, 182
$var variable, 23

W XY,Z
while statement, 78, 79
-w switch, 195, 196

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Origin of Perl
	Perl Development Environments
	∗nix/Windows
	Which Derivative for ∗nix?
	Which Derivative for Windows?

	Pick Your Perl Development Tools

	Perl Versions
	What About Perl 6?
	Understanding Perl Versions

	Invoking Perl
	The Command Line Method
	The Interactive Method (Debugger)
	The Script Method

	Perl Documentation
	Perl Resources
	Lab Exercises

	Chapter 2: Scalar Variables
	Numeric Literals
	Manipulating Numbers
	Mathematical Operations
	Predefined Functions

	String Literals
	Manipulating Strings
	Alteration Operators
	Predefined Functions

	The Importance of Using Quotes
	Strings vs. Numbers
	The Assignment Operation
	Single vs. Double Quotes
	Double Quotes
	Single Quotes

	Scalar Variables
	Undefined Variables
	Auto-increment and Auto-decrement
	Perl Magic with the Auto-increment Operator
	Reading Data from the User
	chomp and chop
	The chop Statement
	The chomp Statement

	Curly Braces
	Additional Resources
	Lab Exercises

	Chapter 3: Array Variables
	Array Variables
	Referencing Array Elements
	$# what?
	Adding and Removing Elements in an Array
	The splice Function
	Using the for Loop
	Using the foreach Loop
	Be Careful of the Iterator Variable
	An Alternative to Using the for Statement
	The reverse Statement
	The sort Operator
	Advanced sort Techniques
	The qw and qq Statements
	Arrays Used in Scalar Context
	Additional Resources
	Lab Exercises

	Chapter 4: Associative Array Variables
	Associative Array Variables
	Creating Associative Arrays
	Accessing Values with keys and foreach
	Using keys on a Regular Array
	Sorting the Output
	Accessing Values in with “while-each” Loops

	Be Careful While Using each
	Resetting the Iterator
	Using each on Arrays

	Returning Keys Only with each
	The values Statement
	Reverse Searching an Associative Array
	Removing Associative Array Keys and Values
	exists vs. defined
	Special Variables
	The Environment Variables
	The Argument Variable
	Additional Resources
	Lab Exercises

	Chapter 5: Flow Control
	Blocks
	The if Statement
	Using elsif
	One-Line if Statement
	The unless Statement
	The switch Statement
	The given Statement
	The while Statement
	The until Statement
	The do Statement
	Alternative to a do Statement
	Alternative to a do Statement—Continued

	Loop Control: last
	Breaking Out of Nested Loops
	Loop Control: next
	Additional Resources
	Lab Exercises

	Chapter 6: Conditional Expressions
	Numeric Comparison
	String Comparison
	How Can One String Be Greater Than or Less Than Another String?
	Difference Between String and Numeric Comparison

	Pattern Matching
	Using the Outcome of a Statement
	File Test Conditions
	Notes Regarding Filenames

	Complex Conditional Expressions
	Logical and
	Logical or
	Logical not

	Understand and/or vs. &&/||
	Understand and/or vs. &&/||—Continued
	Using Parentheses
	Short Circuiting
	Additional Resources
	Lab Exercises

	Chapter 7: Basic Input and Output
	Reading Input
	Record Separator Variable
	Reading Flat Databases
	Read an Entire File into a Scalar Variable

	The Diamond Operator
	Warning: Problem with Redirection

	The Default Variable
	Using Parentheses
	Additional Resources
	Lab Exercises

	Chapter 8: Advanced Input and Output
	Filehandles
	The die and warn Functions
	Returning an Exit Status Value with die
	Using the exit Statement

	Opening and Reading from Files
	Different Ways of Opening Files

	Opening and Writing to Files
	Reading a Block of a Filehandle
	Reading a Single Character
	Piping in Perl
	Sending Data to an OS Command

	The format Statement
	Basic Placeholders
	Demonstrating Truncation
	Numeric Fields
	Advanced Placeholders
	Repeating Lines

	Here Document
	Additional Resources
	Lab Exercises

	Chapter 9: Pattern Matching
	Pattern Matching vs. Wildcards
	Matching, Substitution, and Translation
	The Matching Operator
	The Substitution Operator
	The Translation Operator

	Modifiers
	The “g” Modifier
	The “i” Modifier

	Regular Expressions: Metacharacters
	“*” Examples
	“+” Examples
	Warning About Using “*”
	“{ }” Examples
	Pattern Matching Is Greedy
	“.” Examples
	“[]” Examples
	“?” Examples
	“^” and “$” Examples
	“()” Examples
	“|” Examples
	“\” Examples

	Regular Expressions: Classes
	\s vs \b
	POSIX Character Classes

	Regular Expressions: Backreferencing
	Backreferencing Example #1
	Backreferencing Example #2
	Backreferencing Example #3

	Additional Resources
	Lab Exercises

	Chapter 10: Perl Utilities
	split
	Using $_
	Using Regular Expressions with split
	Limit the Output of split

	join
	substr
	index
	rindex
	grep
	srand and rand
	sleep
	Additional Resources
	Lab Exercises

	Chapter 11: Filesystem and Process Control
	Controlling the Filesystem Within Perl
	Avoid Running Operating System Commands

	Working with Directories
	Listing Files
	Making Directories
	Removing Directories

	Working with Files
	Deleting Files
	Renaming Files
	Changing Permissions
	Gathering File Information

	Backquoting
	The system Statement
	Additional Resources
	Lab Exercises

	Chapter 12: Functions
	Creating Functions
	Invoking Functions
	Returning Values from Functions
	The Explicit Method
	The Implicit Method

	Passing Parameters
	Scope of Variables
	local() vs. my()
	The local Statement
	The my Statement

	Additional Resources
	Lab Exercises

	Chapter 13: Using Modules
	What Are Modules?
	Loading Modules with use
	Other Functions of use
	use diagnostics
	use strict
	use strict ‘ref’
	use strict ‘vars’
	use strict ‘subs’

	Additional Resources
	Lab Exercises

	Chapter 14: Debugging Perl
	The -w Switch
	The Perl Debugger
	Debugger Commands
	Additional Resources
	Lab Exercises

	Index

