

React Material-UI Cookbook

Build captivating user experiences using React and Material-UI

Adam Boduch

BIRMINGHAM - MUMBAI

React Material-UI Cookbook
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the
information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or
its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this
book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this
book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Content Development Editor: Pranay Fereira
Technical Editor: Aishwarya More
Copy Editor: Safis Editing
Project Coordinator: Pragati Shukla
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Alishon Mendonsa
Production Coordinator: Jisha Chirayil

First published: March 2019

Production reference: 1290319

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-522-7

www.packtpub.com

http://www.packtpub.com

For anyone whose lives have been touched by autism. Never give up.
– Adam Boduch

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

https://mapt.io/

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.pa
ckt.com and as a print book customer, you are entitled to a discount on the
eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers
on Packt books and eBooks.

http://www.packt.com
http://www.packt.com

Contributors

About the author
Adam Boduch has been involved with large-scale JavaScript development
for nearly 10 years. Before moving to the frontend, he worked on several
large-scale cloud computing products using Python and Linux. No stranger to
complexity, Adam has practical experience with real-world software systems
and the scaling challenges they pose. He is the author of several JavaScript
books, including React and React Native, by Packt Publishing and is
passionate about innovative user experiences and high performance.

About the reviewers
Michel Engelen started off as a web designer and soon began to realize that
frontend development is the course he wants to take. So, he started self-
learning for the skills he would need for that. Nearly 8 years later, he is now a
full-fledged JavaScript React/Redux developer and software architect with
one additional year of experience in DevOps as well.

Jonatan Ezequiel Salas is a highly skilled developer and a passionate
entrepreneur. He is the founder and CTO of BlackBox Vision, a software
agency focusing mainly on high-quality products and user experience, and
also working at Ingenia as a Software Architect. He is currently focusing on
growing his company, and has been working with some major firms from
Argentina. In his spare time, he loves contributing to open source software
related to DevOps, Kubernetes, JavaScript, Node.js, and React. Find him on
GitHub, Medium, or Twitter.

I would like to thank my family, my girlfriend, and my friends for their never-ending support. Without
them, I could have never reached where I am today. I am also thankful to Packt Publishing and their
amazing books. I'd especially like to thank the author of the book, as well as Pragati Shukla for giving
me the opportunity to review this book.

Olivier Tassinari is a curious and persevering person who has always loved
solving problems. His passion for building things started at a very young age,
and he began to launch websites 10 years ago while studying math, physics,
and computer science. He is a big fan of open source. He has been working
on Material-UI since its inception.

I would like to thank all Material-UI's contributors for their devotion to the project.

Packt is searching for authors like
you
If you're interested in becoming an author for Packt, please visit authors.packtp
ub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a
specific hot topic that we are recruiting an author for, or submit your own
idea.

http://authors.packtpub.com

Table of Contents
Title Page

Copyright and Credits

React Material-UI Cookbook

Dedication

About Packt

Why subscribe?

Packt.com

Contributors

About the author

About the reviewers

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Download the color images

Conventions used

Sections

Getting ready

How to do it…

How it works…

There's more…

See also

Get in touch

Reviews

1. Grids - Placing Components on the Page

Introduction

Applying breakpoints

How to do it...

How it works...

There's more...

See also

Filling space

How to do it...

How it works...

There's more...

See also

Abstracting containers and items

How to do it...

How it works...

There's more...

See also

Fixed column layout

How to do it...

How it works...

There's more...

See also

Changing column direction

How to do it...

How it works...

There's more...

See also

2. App Bars - The Top Level of Every Page

Introduction

Fixed position

How to do it...

How it works...

There's more...

See also

Hide on scroll

How to do it...

How it works...

There's more...

See also

Toolbar abstraction

How to do it...

How it works...

There's more...

See also

With navigation

How to do it...

How it works...

There's more...

See also

3. Drawers - A Place for Navigation Controls

Introduction

Drawer types

How to do it...

How it works...

There's more...

See also

Drawer item state

How to do it...

How it works...

There's more...

See also

Drawer item navigation

How to do it...

How it works...

There's more...

See also

Drawer sections

How to do it...

How it works...

There's more...

See also

AppBar interaction

How to do it...

How it works...

There's more...

See also

4. Tabs - Grouping Content into Tab Sections

Introduction

AppBar integration

How to do it...

How it works...

There's more...

See also

Tab alignment

How to do it...

How it works...

There's more...

See also

Rendering tabs based on state

How to do it...

How it works...

There's more...

See also

Abstracting tab content

How to do it...

How it works...

There's more...

See also

Tab navigation with routes

How to do it...

How it works...

There's more...

See also

5. Expansion Panels - Group Content into Panel Sections

Introduction

Stateful expansion panels

How to do it...

How it works...

There's more...

See also

Formatting panel headers

How to do it...

How it works...

There's more...

See also

Scrollable panel content

How to do it...

How it works...

See also

Lazy loading panel content

How to do it...

How it works...

There's more...

See also

6. Lists - Display Simple Collection Data

Introduction

Using state to render list items

How to do it...

How it works...

There's more...

See also

List icons

How to do it...

How it works...

There's more...

See also

List avatars and text

How to do it...

How it works...

There's more...

See also

List sections

How to do it...

How it works...

There's more...

See also

Nested lists

How to do it...

How it works...

There's more...

See also

List controls

How to do it...

How it works...

There's more...

See also

Scrolling lists

How to do it...

How it works...

See also

7. Tables - Display Complex Collection Data

Introduction

Stateful tables

How to do it...

How it works...

There's more...

See also

Sortable columns

How to do it...

How it works...

There's more...

See also

Filtering rows

How to do it...

How it works...

See also

Selecting rows

How to do it...

How it works...

See also

Row actions

How to do it...

How it works...

See also

8. Cards - Display Detailed Information

Introduction

Main content

How to do it...

How it works...

See also

Card header

How to do it...

How it works...

There's more...

See also

Performing actions

How to do it...

How it works...

There's more...

See also

Presenting media

How to do it...

How it works...

There's more...

See also

Expandable cards

How to do it...

How it works...

See also

9. Snackbars - Temporary Messages

Introduction

Snackbar content

How to do it...

How it works...

There's more...

See also

Controlling visibility with state

How to do it...

How it works...

There's more...

See also

Snackbar transitions

How to do it...

How it works...

See also

Positioning snackbars

How to do it...

How it works...

There's more...

See also

Error boundaries and error snackbars

How to do it...

How it works...

There's more...

See also

Snackbars with actions

How to do it...

How it works...

There's more...

See also

Queuing snackbars

How to do it...

How it works...

See also

10. Buttons - Initiating Actions

Introduction

Button variants

How to do it...

How it works...

See also

Button emphasis

How to do it...

How it works...

There's more...

See also

Link buttons

How to do it...

How it works...

There's more...

See also

Floating actions

How to do it...

How it works...

There's more...

See also

Icon buttons

How to do it...

How it works...

See also

Button sizes

How to do it...

How it works...

There's more...

See also

11. Text - Collecting Text Input

Introduction

Controlling input with state

How to do it...

How it works...

There's more...

See also

Placeholder and helper text

How to do it...

How it works...

See also

Validation and error display

How to do it...

How it works...

There's more...

See also

Password fields

How to do it...

How it works...

There's more...

See also

Multiline input

How to do it...

How it works...

There's more...

See also

Input adornments

How to do it...

How it works...

There's more...

See also

Input masking

How to do it...

How it works...

See also

12. Autocomplete and Chips - Text Input Suggestions for Multiple Items

Introduction

Building an Autocomplete component

How to do it...

How it works...

Text input control

Options menu

No options available

Individual option

Placeholder text

SingleValue

ValueContainer

IndicatorSeparator

Clear option indicator

Show menu indicator

Styles

The Autocomplete

See also

Selecting autocomplete suggestions

How to do it...

How it works...

See also

API-driven Autocomplete

How to do it...

How it works...

See also

Highlighting search results

How to do it...

How it works...

See also

Standalone chip input

How to do it...

How it works...

See also

13. Selection - Make Selections from Choices

Introduction

Abstracting checkbox groups

How to do it...

How it works...

There's more...

See also

Customizing checkbox items

How to do it...

How it works...

There's more...

See also

Abstracting radio button groups

How it works...

How it works...

There's more...

See also

Radio button types

How to do it...

How it works...

See also

Replacing checkboxes with switches

How to do it...

How it works...

There's more...

See also

Controlling selects with state

How to do it...

How it works...

See Also

Selecting multiple items

How to do it...

How it works...

There's more...

See also

14. Pickers - Selecting Dates and Times

Introduction

Using date pickers

How to do it...

How it works...

There's more...

See also

Using time pickers

How to do it...

How it works...

See also

Setting initial date and time values

How to do it...

How it works...

See also

Combining date and time components

How to do it...

How it works...

See also

Integrating other date and time packages

How to do it...

How it works...

See also

15. Dialogs - Modal Screens for User Interactions

Introduction

Collecting form input

How to do it...

How it works...

See also

Confirming actions

How to do it...

How it works...

See also

Displaying alerts

How to do it...

How it works...

There's more...

See also

API integration

How to do it...

How it works...

See also

Creating fullscreen dialogs

How to do it...

How it works...

See also

Scrolling dialog content

How to do it...

How it works...

See also

16. Menus - Display Actions That Pop Out

Introduction

Composing menus with state

How to do it...

How it works...

There's more...

See also

Menu scrolling options

How to do it...

How it works...

See also

Using menu transitions

How to do it...

How it works...

See also

Customizing menu items

How to do it...

How it works...

See also

17. Typography - Control Font Look and Feel

Introduction

Types of typography

How to do it...

How it works...

There's more...

See also

Using theme colors

How to do it...

How it works...

See also

Aligning text

How to do it...

How it works...

See also

Wrapping text

How to do it...

How it works...

There's more...

See also

18. Icons - Enhance Icons to Match Your Look and Feel

Introduction

Coloring icons

How to do it...

How it works...

See also

Scaling icons

How to do it...

How it works...

Default

Inherit

Small

Large

See also

Dynamically loading icons

How to do it...

How it works...

See also

Themed icons

How to do it...

How it works...

See also

Installing more icons

How to do it...

How it works...

See also

19. Themes - Centralize the Look and Feel of Your App

Introduction

Understanding the palette

How to do it...

How it works...

See also

Comparing light and dark themes

How to do it...

How it works...

See also

Customizing typography

How to do it...

How it works...

See also

Nesting themes

How to do it...

How it works...

See also

Understanding component theme settings

How to do it

How it works...

See also

20. Styles - Applying Styles to Components

Introduction

Basic component styles

How to do it...

How it works...

There's more...

See also

Scoped component styles

How to do it...

How it works...

There's more...

See also

Extending component styles

How to do it...

How it works...

See also

Moving styles to themes

How to do it...

How it works...

See also

Other styling options

How to do it...

How it works...

See also

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface
Material-UI is the world's most popular React UI framework. It should come
as no surprise that Material-UI skills are a valuable asset to have. There are
countless projects in the open source space and in the commercial space that
rely on this framework. So, what makes Material-UI so popular?

First and foremost, Material-UI does an excellent job of bringing together
two of the best frontend technologies out there. In a nutshell, Material-UI
exposes Google's Material Design as components in Facebook's React. Many
developers know enough React to build something that works. Many
designers know enough about Material Design to design an experience that
looks incredible. Material-UI is the bridge between these two worlds,
simplifying the task of shipping production applications that delight
customers.

At a high level, this sales pitch is enough to intrigue developers at every level
and of every specialization. What keeps developers engaged with Material-UI
is the breadth of functionality and the depth of resources available to help you
tackle any scenario. My hope is that this book serves as a valuable
contribution to those resources.

Who this book is for
This book is for any developer who thinks that Material-UI could potentially
help them produce a better user experience for their application. From
seasoned professionals to the junior developers of the world, this book has
something to teach you about Material-UI.

No Material Design knowledge is assumed. To get the most out of this book,
you should have at least a working knowledge of React and modern
JavaScript. While this book isn't meant to teach you React, I do try to explain
the React-specific mechanism at work in cases where it might help illuminate
the example as a whole.

What this book covers
Chapter 1, Grids – Placing Components on the Page, uses the grid system to
place components on the page.

Chapter 2, App Bars – The Top Level of Every Page, adds App Bars to the top
of your UI.

Chapter 3, Drawers – A Place for Navigation Controls, uses drawers as a place
to display your main navigation.

Chapter 4, Tabs – Group Content into Tab Sections, organizes your content
into tabs.

Chapter 5, Expansion Panels – Group Content into Panel Sections, organizes
your content into panels.

Chapter 6, Lists – Display Simple Collection Data, renders lists of items that
the user can read and interact with.

Chapter 7, Tables – Display Complex Collection Data, shows in-depth details
about a data collection.

Chapter 8, Cards – Display Detailed Information, uses cards to display details
about a specific entity/thing/object.

Chapter 9, Snackbars – Temporary Messages, notifies the user about what's
going on in your application.

Chapter 10, Buttons – Initiating Actions, explains how pressing buttons is the
most common way for users to do something.

Chapter 11, Text – Collecting Text Input, allows users to input information.

Chapter 12, Autocomplete and Chips – Text Input Suggestions for Multiple

Items, gives the user choices to select from as they type.

Chapter 13, Selection – Make Selections from Choices, allows the user to select
from a predefined set of options.

Chapter 14, Pickers – Selecting Dates and Times, chooses date and time values
using easy-to-read formats.

Chapter 15, Dialogs – Modal Screens for User Interactions, displays modal
screens to collect input or show information.

Chapter 16, Menus – Display Actions that Pop Out, saves space on the screen
by putting actions in menus.

Chapter 17, Typography – Control Font Look and Feel, controls the font of
your UI in a systematic way.

Chapter 18, Icons – Enhance Icons to Match Your Look and Feel, customizes
Material-UI icons and adds new ones.

Chapter 19, Themes – Centralize the Look and Feel of Your App, uses themes
to change the look and feel of components.

Chapter 20, Styles – Applying Styles to Components, uses one of many styling
solutions to design your UI.

To get the most out of this book
1. Make sure you understand the fundamentals of React. The tutorial is a

good starting point: https://reactjs.org/tutorial/tutorial.html.
2. Clone the repository for this book: https://github.com/PacktPublishing/Materia

l-UI-Cookbook.
3. Install the package by changing into the Material-UI-Cookbook directory and

running npm install.
4. Start Storybook by running npm run storybook. You can now navigate

through each of the examples as you read through the book. Some
examples have property editor controls in the Storybook UI, but feel free
to tweak the code as you learn!

https://reactjs.org/tutorial/tutorial.html
https://github.com/PacktPublishing/Material-UI-Cookbook

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit www.packt.com/
support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/Pac
ktPublishing/React-Material-UI-Cookbook. In case there's an update to the code, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://www.packtpub.com/sites/defau
lt/files/downloads/9781789615227_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. Here is an example: "Mount the downloaded WebStorm-10*.dmg disk
image file as another disk in your system."

A block of code is set as follows:

const styles = theme => ({

 root: {

 flexGrow: 1

 },

Bold: Indicates a new term, an important word, or words that you see on
screen. For example, words in menus or dialog boxes appear in the text like
this. Here is an example: "Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting
ready, How to do it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as
follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up
any software or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in
the previous section.

There's more…
This section consists of additional information about the recipe in order to
make you more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
mention the book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit www.packt.com/submi
t-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a link to
the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in, and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions, we at Packt can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

Grids - Placing Components on the
Page
In this chapter, we'll cover the following recipes:

Understanding breakpoints
Filling space
Abstracting containers and items
Fixed column layout
Column direction

Introduction
Material-UI grids are used to control the layout of screens in your app. Rather
then implement your own styles to manage the layout of your Material-UI
components, you can leverage the Grid component. Behind the scenes, it uses
CSS flexbox properties to handle flexible layouts.

Applying breakpoints
A breakpoint is used by Material-UI to determine at what point to break the
flow of content on the screen and continue it on the next line. Understanding
how to apply breakpoints with Grid components is fundamental to
implementing layouts in Material-UI applications.

How to do it...
Let's say that you have four elements that you want to lay out on the screen
so that they're evenly spaced and occupy all available horizontal space. The
code for this is as follows:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import Paper from '@material-ui/core/Paper';

import Grid from '@material-ui/core/Grid';

const styles = theme => ({

 root: {

 flexGrow: 1

 },

 paper: {

 padding: theme.spacing(2),

 textAlign: 'center',

 color: theme.palette.text.secondary

 }

});

const UnderstandingBreakpoints = withStyles(styles)(({ classes }) => (

 <div className={classes.root}>

 <Grid container spacing={4}>

 <Grid item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>

 </Grid>

 <Grid item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>

 </Grid>

 <Grid item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>

 </Grid>

 <Grid item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>

 </Grid>

 </Grid>

 </div>

));

export default UnderstandingBreakpoints;

This renders four Paper components. The labels indicate the values used for
the xs, sm, and md properties. Here's what the result looks like:

How it works...
Each of the breakpoint properties that you can pass to Grid components
correspond to screen widths, as follows:

xs >= 0px

sm >= 600px

md >= 960px

lg >= 1280px

xl >= 1920px

The screen shown previously had a pixel width of 725, which means that the
Grid components used the sm breakpoint. The value passed to this property was
6. This can be a number from 1 to 12 and defines how many items will fit into
the grid. This can be confusing, so it's helpful to think of these numbers in
terms of percentages. For example, 6 would be 50% and, as the preceding
screenshot shows, the Grid items take up 50% of the width.

For example, let's say that you want the width of each Grid item to take up
75% of the screen width when the small breakpoint is active. You could set
the sm value to 9 (9/12 = 0.75), as follows:

<div className={classes.root}>

 <Grid container spacing={4}>

 <Grid item xs={12} sm={9} md={3}>

 <Paper className={classes.paper}>xs=12 sm=9 md=3</Paper>

 </Grid>

 <Grid item xs={12} sm={9} md={3}>

 <Paper className={classes.paper}>xs=12 sm=9 md=3</Paper>

 </Grid>

 <Grid item xs={12} sm={9} md={3}>

 <Paper className={classes.paper}>xs=12 sm=9 md=3</Paper>

 </Grid>

 <Grid item xs={12} sm={9} md={3}>

 <Paper className={classes.paper}>xs=12 sm=9 md=3</Paper>

 </Grid>

 </Grid>

</div>

Here's the result when the screen width is still at 725 pixels:

This combination of screen width and breakpoint value isn't optimal – there's
a lot of wasted space to the right. By experimenting, you could make the sm
value greater so that there's less wasted space, or you could make the value
smaller so that more items fit on the row. For example, 6 looked better
because exactly 2 items fit on the screen.

Let's take the screen width down to 575 pixels. This will activate the xs
breakpoint with a value of 12 (100%):

This layout works on smaller screens, because it doesn't try to fit too many

grid items on one row.

There's more...
You can use the auto value for every breakpoint value if you're unsure of
which value to use:

<div className={classes.root}>

 <Grid container spacing={4}>

 <Grid item xs="auto" sm="auto" md="auto">

 <Paper className={classes.paper}>

 xs=auto sm=auto md=auto

 </Paper>

 </Grid>

 <Grid item xs="auto" sm="auto" md="auto">

 <Paper className={classes.paper}>

 xs=auto sm=auto md=auto

 </Paper>

 </Grid>

 <Grid item xs="auto" sm="auto" md="auto">

 <Paper className={classes.paper}>

 xs=auto sm=auto md=auto

 </Paper>

 </Grid>

 <Grid item xs="auto" sm="auto" md="auto">

 <Paper className={classes.paper}>

 xs=auto sm=auto md=auto

 </Paper>

 </Grid>

 </Grid>

</div>

This will try to fit as many items as possible on each row. As the screen size
changes, items are rearranged so that they fit on the screen accordingly.
Here's what this looks like at a screen width of 725 pixels:

I would recommend replacing auto with a value from 1–12 at some point. The
auto value is good enough that you can get started on other things without
worrying too much about layout, but it's far from perfect for your production

app. At least by setting up auto this way, you have all of your Grid components
and breakpoint properties in place. You just need to play with the numbers
until everything looks good.

See also
Grid API documentation: https://material-ui.com/api/grid/
Grid demos: https://material-ui.com/layout/grid/
Breakpoint documentation: https://material-ui.com/layout/breakpoints/

https://material-ui.com/api/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/breakpoints/

Filling space
With some layouts, it is impossible to have your grid items occupy the entire
width of the screen. Using the justify property, you can control how grid
items fill the available space in the row.

How to do it...
Let's say that you have four Paper components to render in a grid. Inside each
of these Paper components, you have three Chip components, which are nested
grid items.

Here's what the code looks like:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import Paper from '@material-ui/core/Paper';

import Grid from '@material-ui/core/Grid';

import Chip from '@material-ui/core/Chip';

const styles = theme => ({

 root: {

 flexGrow: 1

 },

 paper: {

 padding: theme.spacing(2),

 textAlign: 'center',

 color: theme.palette.text.secondary

 }

});

const FillingSpace = withStyles(styles)(({ classes, justify }) => (

 <div className={classes.root}>

 <Grid container spacing={4}>

 <Grid item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>

 <Grid container justify={justify}>

 <Grid item>

 <Chip label="xs=12" />

 </Grid>

 <Grid item>

 <Chip label="sm=6" />

 </Grid>

 <Grid item>

 <Chip label="md=3" />

 </Grid>

 </Grid>

 </Paper>

 </Grid>

 <Grid item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>

 <Grid container justify={justify}>

 <Grid item>

 <Chip label="xs=12" />

 </Grid>

 <Grid item>

 <Chip label="sm=6" />

 </Grid>

 <Grid item>

 <Chip label="md=3" />

 </Grid>

 </Grid>

 </Paper>

 </Grid>

 <Grid item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>

 <Grid container justify={justify}>

 <Grid item>

 <Chip label="xs=12" />

 </Grid>

 <Grid item>

 <Chip label="sm=6" />

 </Grid>

 <Grid item>

 <Chip label="md=3" />

 </Grid>

 </Grid>

 </Paper>

 </Grid>

 <Grid item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>

 <Grid container justify={justify}>

 <Grid item>

 <Chip label="xs=12" />

 </Grid>

 <Grid item>

 <Chip label="sm=6" />

 </Grid>

 <Grid item>

 <Chip label="md=3" />

 </Grid>

 </Grid>

 </Paper>

 </Grid>

 </Grid>

 </div>

));

export default FillingSpace;

The justify property is specified on container Grid components. In this
example, it's the container that contains the Chip components as items. Each
container is using the flex-start value, which will align the Grid items at the
start of the container. The result is as follows:

How it works...
The flex-start value of the justify property aligns all of the Grid items at the
start of the container. In this case, the three Chip components in each of the four
containers are all crammed to the left of the row. None of the space to the left
of the items is filled. Instead of changing the breakpoint property values of
these items, which results in changed widths, you can change the justify
property value to tell the Grid container how to fill empty spaces.

For example, you could use the center value to align Grid items in the center of
the container as follows:

<div className={classes.root}>

 <Grid container spacing={4}>

 <Grid item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>

 <Grid container justify="center">

 <Grid item>

 <Chip label="xs=12" />

 </Grid>

 <Grid item>

 <Chip label="sm=6" />

 </Grid>

 <Grid item>

 <Chip label="md=3" />

 </Grid>

 </Grid>

 </Paper>

 </Grid>

 <Grid item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>

 <Grid container justify="center">

 <Grid item>

 <Chip label="xs=12" />

 </Grid>

 <Grid item>

 <Chip label="sm=6" />

 </Grid>

 <Grid item>

 <Chip label="md=3" />

 </Grid>

 </Grid>

 </Paper>

 </Grid>

 <Grid item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>

 <Grid container justify="center">

 <Grid item>

 <Chip label="xs=12" />

 </Grid>

 <Grid item>

 <Chip label="sm=6" />

 </Grid>

 <Grid item>

 <Chip label="md=3" />

 </Grid>

 </Grid>

 </Paper>

 </Grid>

 <Grid item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>

 <Grid container justify="center">

 <Grid item>

 <Chip label="xs=12" />

 </Grid>

 <Grid item>

 <Chip label="sm=6" />

 </Grid>

 <Grid item>

 <Chip label="md=3" />

 </Grid>

 </Grid>

 </Paper>

 </Grid>

 </Grid>

</div>

The following screenshot shows what this change to the justify property value
results in:

This does a good job of evenly distributing the empty space to the left and
right of the Grid items. But the items still feel crowded because there's no
space in between them. Here's what it looks like if you use the space-around
value of the justify property:

This value does the best job of filling all the available space in the Grid
container, without having to change the width of the Grid items.

There's more...
A variation on the space-around value is the space-between value. The two are
similar in that they're effective at filling all of the space in the row. Here's
what the example in the preceding section looks like using space-between:

All of the excess space in the row goes in between the Grid items instead of
around them. In other words, use this value when you want to make sure that
there's no empty space to the left and right of each row.

See also
Grid demos: https://material-ui.com/layout/grid/
Grid API documentation: https://material-ui.com/api/grid/

https://material-ui.com/layout/grid/
https://material-ui.com/api/grid/

Abstracting containers and items
You have lots of screens in your app, each with lots of Grid components, used
to create complex layouts. Trying to read source code that has a ton of <Grid>
elements in it can be daunting. Especially when a Grid component is used for
both containers and for items.

How to do it...
The container or the item property of Grid components determines the role of
the element. You can create two components that use these properties and
create an element name that's easier to read when you have lots of layout
components:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import Paper from '@material-ui/core/Paper';

import Grid from '@material-ui/core/Grid';

const styles = theme => ({

 root: {

 flexGrow: 1

 },

 paper: {

 padding: theme.spacing(2),

 textAlign: 'center',

 color: theme.palette.text.secondary

 }

});

const Container = props => <Grid container {...props} />;

const Item = props => <Grid item {...props} />;

const AbstractingContainersAndItems = withStyles(styles)(

 ({ classes }) => (

 <div className={classes.root}>

 <Container spacing={4}>

 <Item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>

 </Item>

 <Item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>

 </Item>

 <Item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>

 </Item>

 <Item xs={12} sm={6} md={3}>

 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>

 </Item>

 </Container>

 </div>

)

);

export default AbstractingContainersAndItems;

Here's what the resulting layout looks like:

How it works...
Let's take a closer look at the Container and Item components:

const Container = props => <Grid container {...props} />;

const Item = props => <Grid item {...props} />;

The Container component renders a Grid component with the container property
set to true, and the Item component does the same, except with the item
property set to true. Each component passes any additional properties to the
Grid component, such as xs and sm breakpoints.

When you have lots of Grid containers and items that make up your layout,
being able to see the difference between <Container> and <Item> elements makes
your code that much easier to read. Contrast this with having <Grid> elements
everywhere.

There's more...
If you find that you're using the same breakpoints over and over in your
layouts, you can include them in in your higher-order Item component. Let's
rewrite the example so that, in addition to the Item property, the xs, sm, and md
properties are included as well:

const Container = props => <Grid container {...props} />;

const Item = props => <Grid item xs={12} sm={6} md={3} {...props} />;

const AbstractingContainersAndItems = withStyles(styles)(

 ({ classes }) => (

 <div className={classes.root}>

 <Container spacing={4}>

 <Item>

 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>

 </Item>

 <Item>

 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>

 </Item>

 <Item>

 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>

 </Item>

 <Item>

 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>

 </Item>

 </Container>

 </div>

)

);

Now, instead of four instances of <Item xs={12} sm={6} md={3}>, you have four
instances of <Item>. Component abstractions are a great tool for removing
excess syntax from your JavaScript XML (JSX) markup.

Any time you need to override any of the breakpoint properties that you've set in the Item
component, you just need to pass the property to Item. For example, if you have a specific
case where you need md to be 6, you can just write <Item md={6}>. This works because, in the
Item component, {...props} is passed after the default values, meaning that they override
any properties with the same name.

See also
Grid demos: https://material-ui.com/layout/grid/
Grid API documentation: https://material-ui.com/api/grid/

https://material-ui.com/layout/grid/
https://material-ui.com/api/grid/

Fixed column layout
When you use Grid components to build your layout, they often result in
changes to your layout, depending on your breakpoint settings and the width
of the screen. For example, if the user makes the browser window smaller,
your layout might change from two columns to three. There might be times,
however, when you would prefer a fixed number of columns, and that the
width of each column changes in response to the screen size.

How to do it...
Let's say that you have eight Paper components that you want to render, but
you also want to make sure that there are no more than four columns. Use the
following code to do this:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import Paper from '@material-ui/core/Paper';

import Grid from '@material-ui/core/Grid';

const styles = theme => ({

 root: {

 flexGrow: 1

 },

 paper: {

 padding: theme.spacing(2),

 textAlign: 'center',

 color: theme.palette.text.secondary

 }

});

const FixedColumnLayout = withStyles(styles)(({ classes, width }) => (

 <div className={classes.root}>

 <Grid container spacing={4}>

 <Grid item xs={width}>

 <Paper className={classes.paper}>xs={width}</Paper>

 </Grid>

 <Grid item xs={width}>

 <Paper className={classes.paper}>xs={width}</Paper>

 </Grid>

 <Grid item xs={width}>

 <Paper className={classes.paper}>xs={width}</Paper>

 </Grid>

 <Grid item xs={width}>

 <Paper className={classes.paper}>xs={width}</Paper>

 </Grid>

 <Grid item xs={width}>

 <Paper className={classes.paper}>xs={width}</Paper>

 </Grid>

 <Grid item xs={width}>

 <Paper className={classes.paper}>xs={width}</Paper>

 </Grid>

 <Grid item xs={width}>

 <Paper className={classes.paper}>xs={width}</Paper>

 </Grid>

 <Grid item xs={width}>

 <Paper className={classes.paper}>xs={width}</Paper>

 </Grid>

 </Grid>

 </div>

));

export default FixedColumnLayout;

Here's what the result looks like with a pixel width of 725:

Here's what the result looks like with a pixel width of 350:

How it works...
If you want a fixed number of columns, you should only specify the xs
breakpoint property. In this example, 3 is 25% of the screen width – or 4
columns. This will never change because xs is the smallest breakpoint there
is. Anything larger is applied to xs as well, unless you specify a larger
breakpoint.

Let's say that you want two columns. You can set the xs value to 6 as follows:

<div className={classes.root}>

 <Grid container spacing={4}>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 </Grid>

</div>

Here's what the result looks like at a pixel screen width of 960:

Because you've set the xs value to 6 (50%), these Grid items will only ever use
two columns. The items themselves will change their width to accommodate
the screen width, rather than changing the number of items per row.

There's more...
You can combine different widths in a fixed way. For example, you could
have header and footer Grid items that use a full-width layout, while the Grid
items in between use two columns:

<div className={classes.root}>

 <Grid container spacing={4}>

 <Grid item xs={12}>

 <Paper className={classes.paper}>xs=12</Paper>

 </Grid>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 <Grid item xs={6}>

 <Paper className={classes.paper}>xs=6</Paper>

 </Grid>

 <Grid item xs={12}>

 <Paper className={classes.paper}>xs=12</Paper>

 </Grid>

 </Grid>

</div>

The first and last Grid components have an xs value of 12 (100%), while the
other Grid items have xs values of 6 (50%) for a two-column layout. Here's
what the result looks like at a pixel width of 725:

See also
Grid demos: https://material-ui.com/layout/grid/
Grid API documentation: https://material-ui.com/api/grid/

https://material-ui.com/layout/grid/
https://material-ui.com/api/grid/

Changing column direction
When using a fixed number of columns for your layout, content flows from
left to right. The first grid item goes in the first column, the second item in
the second column, and so on. There could be times when you need better
control over which grid items go into which columns.

How to do it...
Let's say that you have a four-column layout, but you want the first and
second items to go in the first column, the third and fourth items in the
second, and so on. This involves using nested Grid containers, and changing
the direction property, as follows:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import Paper from '@material-ui/core/Paper';

import Grid from '@material-ui/core/Grid';

import Hidden from '@material-ui/core/Hidden';

import Typography from '@material-ui/core/Typography';

const styles = theme => ({

 root: {

 flexGrow: 1

 },

 paper: {

 padding: theme.spacing(2),

 textAlign: 'center',

 color: theme.palette.text.secondary

 }

});

const ColumnDirection = withStyles(styles)(({ classes }) => (

 <div className={classes.root}>

 <Grid container justify="space-around" spacing={4}>

 <Grid item xs={3}>

 <Grid container direction="column" spacing={2}>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>One</Typography>

 </Paper>

 </Grid>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>Two</Typography>

 </Paper>

 </Grid>

 </Grid>

 </Grid>

 <Grid item xs={3}>

 <Grid container direction="column" spacing={2}>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>Three</Typography>

 </Paper>

 </Grid>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>Four</Typography>

 </Paper>

 </Grid>

 </Grid>

 </Grid>

 <Grid item xs={3}>

 <Grid container direction="column" spacing={2}>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>Five</Typography>

 </Paper>

 </Grid>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>Six</Typography>

 </Paper>

 </Grid>

 </Grid>

 </Grid>

 <Grid item xs={3}>

 <Grid container direction="column" spacing={2}>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>Seven</Typography>

 </Paper>

 </Grid>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>Eight</Typography>

 </Paper>

 </Grid>

 </Grid>

 </Grid>

 </Grid>

 </div>

));

export default ColumnDirection;

Here's what the result looks like at a pixel width of 725:

Instead of values flowing from left to right, you have complete control over
which column the item is placed in.

You might have noticed that the font looks different, compared to other examples in this
chapter. This is because of the Typography component used to style the text and apply
Material-UI theme styles. Most Material-UI components that display text don't require

you to use Typography, but Paper does.

How it works...
There's a lot going on with this example, so let's start by taking a look at just
the first item in the Grid code:

<Grid item xs={3}>

 <Grid container direction="column" spacing={2}>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>One</Typography>

 </Paper>

 </Grid>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>Two</Typography>

 </Paper>

 </Grid>

 </Grid>

</Grid>

The Grid item is using an xs value of 4, to create the four-column layout.
Essentially, these items are columns. Next, you have a nested Grid container.
This container has a direction property value of column. This is where you can
place the Grid items that belong in this column, and they'll flow from top to
bottom, instead of from left to right. Each column in this grid follows this
pattern.

There's more...
There might be times when hiding the rightmost column makes more sense
than trying to accommodate it with the screen width. You can use the Hidden
component for this. It's already imported in the example, as follows:

import Hidden from '@material-ui/core/Hidden';

To use it, you wrap the last column with it. For example, here's what the last
column looks like now:

<Grid item xs={3}>

 <Grid container direction="column" spacing={2}>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>Seven</Typography>

 </Paper>

 </Grid>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>Eight</Typography>

 </Paper>

 </Grid>

 </Grid>

</Grid>

If you want to hide this column at a certain breakpoint, you can wrap the column
with Hidden, like this:

<Hidden smDown>

 <Grid item xs={3}>

 <Grid container direction="column" spacing={2}>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>Seven</Typography>

 </Paper>

 </Grid>

 <Grid item>

 <Paper className={classes.paper}>

 <Typography>Eight</Typography>

 </Paper>

 </Grid>

 </Grid>

 </Grid>

</Hidden>

The smDown property tells the Hidden component to hide its children when the sm

breakpoint or lower is reached. Here's what the result looks like at a pixel
width of 1000:

The last column is displayed because the sm breakpoint is smaller than the
screen size. Here's the result at a pixel screen width of 550, without the last
column displayed:

See also
Grid demos: https://material-ui.com/layout/grid/
Grid API documentation: https://material-ui.com/api/grid/
Hidden API documentation: https://material-ui.com/api/hidden/

https://material-ui.com/layout/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/hidden/

App Bars - The Top Level of Every
Page
In this chapter, you'll learn about the following recipes:

Fixed position
Hide on scroll
Toolbar abstraction
With navigation

Introduction
App Bars are the anchor point of any Material-UI application. They provide
context and are usually always visible as the user navigates around the
application.

Fixed position
You probably want your AppBar component to stay visible at all times. By
using fixed positioning, AppBar components remain visible even as the user
scrolls down the page.

How to do it...
You can use the fixed value of the position property. Here's how you do it:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import AppBar from '@material-ui/core/AppBar';

import Toolbar from '@material-ui/core/Toolbar';

import Typography from '@material-ui/core/Typography';

import Button from '@material-ui/core/Button';

import IconButton from '@material-ui/core/IconButton';

import MenuIcon from '@material-ui/icons/Menu';

const styles = theme => ({

 root: {

 flexGrow: 1

 },

 flex: {

 flex: 1

 },

 menuButton: {

 marginLeft: -12,

 marginRight: 20

 }

});

const FixedPosition = withStyles(styles)(({ classes }) => (

 <div className={classes.root}>

 <AppBar position="fixed">

 <Toolbar>

 <IconButton

 className={classes.menuButton}

 color="inherit"

 aria-label="Menu"

 >

 <MenuIcon />

 </IconButton>

 <Typography

 variant="title"

 color="inherit"

 className={classes.flex}

 >

 Title

 </Typography>

 <Button color="inherit">Login</Button>

 </Toolbar>

 </AppBar>

 {new Array(500).fill(null).map((v, i) => (

 <li key={i}>{i}

))}

 </div>

));

export default FixedPosition;

Here's what the resulting AppBar component looks like:

How it works...
If you scroll down, you'll see how the AppBar component stays fixed, and the
content scrolls behind it. Here's what it looks like if you scroll to the bottom
of the page in this example:

The position property defaults to fixed. However, explicitly setting this
property can help readers better understand your code.

There's more...
When the screen in this example first loads, some of the content is hidden
behind the AppBar component. This is because the position is fixed and it has a
higher z-index value than the regular content. This is expected, so that when
you scroll, the regular content goes behind the AppBar component. The solution
is to add a top margin to your content. The problem is that you don't
necessarily know the height of the AppBar.

You could just set a value that looks good. A better solution is to use the
toolbar mixin styles. You can access this mixin object by making styles a
function that returns an object. Then, you'll have access to the theme
argument, which has a toolbar mixin object.

Here's what styles should be changed to:

const styles = theme => ({

 root: {

 flexGrow: 1

 },

 flex: {

 flex: 1

 },

 menuButton: {

 marginLeft: -12,

 marginRight: 20

 },

 toolbarMargin: theme.mixins.toolbar

});

The new style that's added is toolbarMargin. Notice that this is using the value
from theme.mixins.toolbar, which is why you're using a function now – so that
you can access theme. Here's what the theme.mixins.toolbar value looks like:

{

 "minHeight": 56,

 "@media (min-width:0px) and (orientation: landscape)": {

 "minHeight": 48

 },

 "@media (min-width:600px)": {

 "minHeight": 64

 }

}

The last step is to add a <div> element to the content underneath the
AppBar component where this new toolbarMargin style can be applied:

<div className={classes.root}>

 <AppBar position="fixed">

 <Toolbar>

 <IconButton

 className={classes.menuButton}

 color="inherit"

 aria-label="Menu"

 >

 <MenuIcon />

 </IconButton>

 <Typography

 variant="title"

 color="inherit"

 className={classes.flex}

 >

 Title

 </Typography>

 <Button color="inherit">Login</Button>

 </Toolbar>

 </AppBar>

 <div className={classes.toolbarMargin} />

 {new Array(500).fill(null).map((v, i) => <li key={i}>{i})}

</div>

Now, the beginning of the content is no longer hidden by the
AppBar component when the screen first loads:

See also
Guide to CSS positioning: https://developer.mozilla.org/en-US/docs/Learn/CSS/
CSS_layout/Positioning

AppBar demos: https://material-ui.com/demos/app-bar/
AppBar API documentation: https://material-ui.com/api/app-bar/
Toolbar API documentation: https://material-ui.com/api/toolbar/

https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://material-ui.com/demos/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/toolbar/

Hide on scroll
If you have a lot of content on your screen that requires the user to scroll
vertically, the App Bar could be a distraction. One solution is to hide the
AppBar component while the user is scrolling down.

How to do it...
To hide the AppBar component while the user is scrolling down, you have to
know when the user is scrolling. This requires listening to the scroll event on
the window object. You can implement a component that listens to this event
and hides the AppBar component while scrolling. Here's how it's done:

import React, { Component } from 'react';

import { withStyles } from '@material-ui/core/styles';

import AppBar from '@material-ui/core/AppBar';

import Toolbar from '@material-ui/core/Toolbar';

import Typography from '@material-ui/core/Typography';

import Button from '@material-ui/core/Button';

import IconButton from '@material-ui/core/IconButton';

import MenuIcon from '@material-ui/icons/Menu';

import Fade from '@material-ui/core/Fade';

const styles = theme => ({

 root: {

 flexGrow: 1

 },

 flex: {

 flex: 1

 },

 menuButton: {

 marginLeft: -12,

 marginRight: 20

 },

 toolbarMargin: theme.mixins.toolbar

});

const ScrolledAppBar = withStyles(styles)(

 class extends Component {

 state = {

 scrolling: false,

 scrollTop: 0

 };

 onScroll = e => {

 this.setState(state => ({

 scrollTop: e.target.documentElement.scrollTop,

 scrolling:

 e.target.documentElement.scrollTop > state.scrollTop

 }));

 };

 shouldComponentUpdate(props, state) {

 return this.state.scrolling !== state.scrolling;

 }

 componentDidMount() {

 window.addEventListener('scroll', this.onScroll);

 }

 componentWillUnmount() {

 window.removeEventListener('scroll', this.onScroll);

 }

 render() {

 const { classes } = this.props;

 return (

 <Fade in={!this.state.scrolling}>

 <AppBar>

 <Toolbar>

 <IconButton

 className={classes.menuButton}

 color="inherit"

 aria-label="Menu"

 >

 <MenuIcon />

 </IconButton>

 <Typography

 variant="h6"

 color="inherit"

 className={classes.flex}

 >

 My Title

 </Typography>

 <Button color="inherit">Login</Button>

 </Toolbar>

 </AppBar>

 </Fade>

);

 }

 }

);

const AppBarWithButtons = withStyles(styles)(

 ({ classes, title, buttonText }) => (

 <div className={classes.root}>

 <ScrolledAppBar />

 <div className={classes.toolbarMargin} />

 {new Array(500).fill(null).map((v, i) => (

 <li key={i}>{i}

))}

 </div>

)

);

export default AppBarWithButtons;

When you first load the screen, the toolbar and content appear as usual:

When you scroll down, the AppBar component disappears, allowing more space
for the content to be viewed. Here's what the screen looks like when you
scroll to the very bottom:

The AppBar component will reappear as soon as you start scrolling back up.

How it works...
Let's take a look at the state method and the onScroll() method of the
ScrolledAppBar component:

state = {

 scrolling: false,

 scrollTop: 0

};

onScroll = e => {

 this.setState(state => ({

 scrollTop: e.target.documentElement.scrollTop,

 scrolling:

 e.target.documentElement.scrollTop > state.scrollTop

 }));

};

componentDidMount() {

 window.addEventListener('scroll', this.onScroll);

}

componentWillUnmount() {

 window.removeEventListener('scroll', this.onScroll);

}

When the component mounts, the onScroll() method is added as a listener to
the scroll event on the window object. The scrolling state is a Boolean value that
hides the AppBar component when true. The scrollTop state is the position of the
previous scroll event. The onScroll() method figures out whether the user is
scrolling by checking if the new scroll position is greater than the last scroll
position.

Next, let's take a look at the Fade component that's used to hide the
AppBar component when scrolling, as follows:

<Fade in={!this.state.scrolling}>

 <AppBar>

 <Toolbar>

 <IconButton

 className={classes.menuButton}

 color="inherit"

 aria-label="Menu"

 >

 <MenuIcon />

 </IconButton>

 <Typography

 variant="title"

 color="inherit"

 className={classes.flex}

 >

 My Title

 </Typography>

 <Button color="inherit">Login</Button>

 </Toolbar>

 </AppBar>

</Fade>

The in property tells the Fade component to fade its children, in, when the
value is true. In this example, the condition is true when the scrolling state is
false.

There's more...
Instead of fading the AppBar component in and out when the user scrolls, you
can use a different effect. For example, the following code block
demonstrates what it would look like if you wanted to use the Grow effect:

<Grow in={!this.state.scrolling}>

 <AppBar>

 <Toolbar>

 <IconButton

 className={classes.menuButton}

 color="inherit"

 aria-label="Menu"

 >

 <MenuIcon />

 </IconButton>

 <Typography

 variant="title"

 color="inherit"

 className={classes.flex}

 >

 My Title

 </Typography>

 <Button color="inherit">Login</Button>

 </Toolbar>

 </AppBar>

</Grow>

See also
Fade API documentation: https://material-ui.com/api/fade/
Grow API documentation: https://material-ui.com/api/grow/
Slide API documentation: https://material-ui.com/api/slide/

https://material-ui.com/api/fade/
https://material-ui.com/api/grow/
https://material-ui.com/api/slide/

Toolbar abstraction
Toolbar code can get verbose if you have to render toolbars in several places.
To address this, you can create your own Toolbar component that encapsulates
the content patterns of toolbars, making it easier to render AppBar components
in several places.

How to do it...
Let's assume that your app renders AppBar components on several screens.
Each AppBar component also renders Menu and title to the left, as well as Button
to the right. Here's how you can implement your own AppBar component so
that it's easier to use on several screens:

import React, { Fragment, Component } from 'react';

import { withStyles } from '@material-ui/core/styles';

import AppBar from '@material-ui/core/AppBar';

import Toolbar from '@material-ui/core/Toolbar';

import Typography from '@material-ui/core/Typography';

import Button from '@material-ui/core/Button';

import IconButton from '@material-ui/core/IconButton';

import MenuIcon from '@material-ui/icons/Menu';

import Menu from '@material-ui/core/Menu';

import MenuItem from '@material-ui/core/MenuItem';

const styles = theme => ({

 root: {

 flexGrow: 1

 },

 flex: {

 flex: 1

 },

 menuButton: {

 marginLeft: -12,

 marginRight: 20

 },

 toolbarMargin: theme.mixins.toolbar

});

const MyToolbar = withStyles(styles)(

 class extends Component {

 static defaultProps = {

 MenuItems: ({ closeMenu }) => (

 <Fragment>

 <MenuItem onClick={closeMenu}>Profile</MenuItem>

 <MenuItem onClick={closeMenu}>My account</MenuItem>

 <MenuItem onClick={closeMenu}>Logout</MenuItem>

 </Fragment>

),

 RightButton: () => <Button color="inherit">Login</Button>

 };

 state = { anchor: null };

 closeMenu = () => this.setState({ anchor: null });

 render() {

 const { classes, title, MenuItems, RightButton } = this.props;

 return (

 <Fragment>

 <AppBar>

 <Toolbar>

 <IconButton

 className={classes.menuButton}

 color="inherit"

 aria-label="Menu"

 onClick={e =>

 this.setState({ anchor: e.currentTarget })

 }

 >

 <MenuIcon />

 </IconButton>

 <Menu

 anchorEl={this.state.anchor}

 open={Boolean(this.state.anchor)}

 onClose={this.closeMenu}

 >

 <MenuItems closeMenu={this.closeMenu} />

 </Menu>

 <Typography

 variant="title"

 color="inherit"

 className={classes.flex}

 >

 {title}

 </Typography>

 <RightButton />

 </Toolbar>

 </AppBar>

 <div className={classes.toolbarMargin} />

 </Fragment>

);

 }

 }

);

const ToolbarAbstraction = withStyles(styles)(

 ({ classes, ...props }) => (

 <div className={classes.root}>

 <MyToolbar {...props} />

 </div>

)

);

export default ToolbarAbstraction;

Here's what the resulting toolbar looks like:

And here's what the menu looks like when the user clicks on the menu button

beside the title:

How it works...
Let's start by looking at the render() method of the MyToolbar component, as
follows:

render() {

 const { classes, title, MenuItems, RightButton } = this.props;

 return (

 <Fragment>

 <AppBar>

 <Toolbar>

 <IconButton

 className={classes.menuButton}

 color="inherit"

 aria-label="Menu"

 onClick={e =>

 this.setState({ anchor: e.currentTarget })

 }

 >

 <MenuIcon />

 </IconButton>

 <Menu

 anchorEl={this.state.anchor}

 open={Boolean(this.state.anchor)}

 onClose={this.closeMenu}

 >

 <MenuItems closeMenu={this.closeMenu} />

 </Menu>

 <Typography

 variant="title"

 color="inherit"

 className={classes.flex}

 >

 {title}

 </Typography>

 <RightButton />

 </Toolbar>

 </AppBar>

 <div className={classes.toolbarMargin} />

 </Fragment>

);

}

This is where the AppBar component and the Toolbar components from Material-
UI are rendered. A Fragment component is used because two elements are
returned: the AppBar component and the <div> element that sets the top margin
for the page content. Within the toolbar, you have the following:

The menu button that displays the menu when clicked

The menu itself
The title
The right-side button

From the MyToolbar properties, there are two components that render() uses:
MenuItems and RightButton. In addition to the title prop, these are the parts of the
AppBar component that you want to customize. The approach here is to define
default values for these properties so that the AppBar component can be
rendered:

static defaultProps = {

 MenuItems: ({ closeMenu }) => (

 <Fragment>

 <MenuItem onClick={closeMenu}>Profile</MenuItem>

 <MenuItem onClick={closeMenu}>My account</MenuItem>

 <MenuItem onClick={closeMenu}>Logout</MenuItem>

 </Fragment>

),

 RightButton: () => <Button color="inherit">Login</Button>

};

You can pass custom values to these properties when you render MyToolbar.
The defaults used here could be the values used for the home screen, for
example.

You don't actually have to provide default values for these properties. But if you do, for
the home screen, say, then it's easier for other developers to look at your code and
understand how it works.

There's more...
Let's try setting some custom menu items and right-side buttons, using the
MenuItems and RightButton properties respectively:

const ToolbarAbstraction = withStyles(styles)(

 ({ classes, ...props }) => (

 <div className={classes.root}>

 <MyToolbar

 MenuItems={({ closeMenu }) => (

 <Fragment>

 <MenuItem onClick={closeMenu}>Page 1</MenuItem>

 <MenuItem onClick={closeMenu}>Page 2</MenuItem>

 <MenuItem onClick={closeMenu}>Page 3</MenuItem>

 </Fragment>

)}

 RightButton={() => (

 <Button color="secondary" variant="contained">

 Logout

 </Button>

)}

 {...props}

 />

 </div>

)

);

Here is what the toolbar looks like when rendered:

Here is what the menu looks like with the custom menu options:

The values that you're passing to MenuItems and RightButton are functions that return React
elements. These functions are actually functional components that you're creating on the
fly.

See also
AppBar demos: https://material-ui.com/demos/app-bar/
AppBar API documentation: https://material-ui.com/api/app-bar/
Toolbar API documentation: https://material-ui.com/api/toolbar/

https://material-ui.com/demos/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/toolbar/

With navigation
Material-UI apps are typically made up of several pages that are linked
together using a router, such as react-router. Each page renders an App Bar
that has information specific to that page. This is one example of when the
abstraction that you created in the Toolbar abstraction recipe comes in
handy.

How to do it...
Let's say that you're building an app that has three pages. On each page, you
want to render an App Bar with the title prop of the page. Furthermore, the
menu in the App Bar should contain links to the three pages. Here's how to
do it:

import React, { Fragment, Component } from 'react';

import {

 BrowserRouter as Router,

 Route,

 Link

} from 'react-router-dom';

import { withStyles } from '@material-ui/core/styles';

import AppBar from '@material-ui/core/AppBar';

import Toolbar from '@material-ui/core/Toolbar';

import Typography from '@material-ui/core/Typography';

import Button from '@material-ui/core/Button';

import IconButton from '@material-ui/core/IconButton';

import MenuIcon from '@material-ui/icons/Menu';

import Menu from '@material-ui/core/Menu';

import MenuItem from '@material-ui/core/MenuItem';

const styles = theme => ({

 root: {

 flexGrow: 1

 },

 flex: {

 flex: 1

 },

 menuButton: {

 marginLeft: -12,

 marginRight: 20

 },

 toolbarMargin: theme.mixins.toolbar

});

const MyToolbar = withStyles(styles)(

 class extends Component {

 static defaultProps = {

 MenuItems: () => (

 <Fragment>

 <MenuItem component={Link} to="/">

 Home

 </MenuItem>

 <MenuItem component={Link} to="/page2">

 Page 2

 </MenuItem>

 <MenuItem component={Link} to="/page3">

 Page 3

 </MenuItem>

 </Fragment>

),

 RightButton: () => <Button color="inherit">Login</Button>

 };

 state = { anchor: null };

 closeMenu = () => this.setState({ anchor: null });

 render() {

 const { classes, title, MenuItems, RightButton } = this.props;

 return (

 <Fragment>

 <AppBar>

 <Toolbar>

 <IconButton

 className={classes.menuButton}

 color="inherit"

 aria-label="Menu"

 onClick={e =>

 this.setState({ anchor: e.currentTarget })

 }

 >

 <MenuIcon />

 </IconButton>

 <Menu

 anchorEl={this.state.anchor}

 open={Boolean(this.state.anchor)}

 onClose={this.closeMenu}

 >

 <MenuItems />

 </Menu>

 <Typography

 variant="title"

 color="inherit"

 className={classes.flex}

 >

 {title}

 </Typography>

 <RightButton />

 </Toolbar>

 </AppBar>

 <div className={classes.toolbarMargin} />

 </Fragment>

);

 }

 }

);

const WithNavigation = withStyles(styles)(({ classes }) => (

 <div className={classes.root}>

 <Route

 exact

 path="/"

 render={() => (

 <Fragment>

 <MyToolbar title="Home" />

 <Typography>Home</Typography>

 </Fragment>

)}

 />

 <Route

 exact

 path="/page2"

 render={() => (

 <Fragment>

 <MyToolbar title="Page 2" />

 <Typography>Page 2</Typography>

 </Fragment>

)}

 />

 <Route

 exact

 path="/page3"

 render={() => (

 <Fragment>

 <MyToolbar title="Page 3" />

 <Typography>Page 3</Typography>

 </Fragment>

)}

 />

 </div>

));

export default WithNavigation;

Here's what you'll see when you first load the app:

Here's what the menu in the App Bar looks like when it's opened:

Try clicking on Page 2; here's what you should see:

The title of the App Bar has changed to reflect the title of the page, and the
content of the page has also changed.

How it works...
Let's start by taking a look at the Routes component that define the pages in
your app, as follows:

const WithNavigation = withStyles(styles)(({ classes }) => (

 <div className={classes.root}>

 <Route

 exact

 path="/"

 render={() => (

 <Fragment>

 <MyToolbar title="Home" />

 <Typography>Home</Typography>

 </Fragment>

)}

 />

 <Route

 exact

 path="/page2"

 render={() => (

 <Fragment>

 <MyToolbar title="Page 2" />

 <Typography>Page 2</Typography>

 </Fragment>

)}

 />

 <Route

 exact

 path="/page3"

 render={() => (

 <Fragment>

 <MyToolbar title="Page 3" />

 <Typography>Page 3</Typography>

 </Fragment>

)}

 />

 </div>

));

Each Route component (from the react-router package) corresponds to a page in
your app. They have a path property that matches the path in the browser
address bar. When there's a match, this Routes component' content is
rendered. For example, when the path is /page3, the content for the
Route component where path="/page3" is rendered.

Each Route component also defines a render() function. This is called when its
path is matched and the returned content is rendered. The Routes component

in your app each render MyToolbar with a different value for the title prop.

Next, let's take a look at the menu items that make up the MenuItems default
property value, as follows:

static defaultProps = {

 MenuItems: () => (

 <Fragment>

 <MenuItem component={Link} to="/">

 Home

 </MenuItem>

 <MenuItem component={Link} to="/page2">

 Page 2

 </MenuItem>

 <MenuItem component={Link} to="/page3">

 Page 3

 </MenuItem>

 </Fragment>

),

 RightButton: () => <Button color="inherit">Login</Button>

};

Each of these MenuItems properties is a link that points to each of the Routes
component declared by your app. The MenuItem component accepts a component
property that is used to render the link. In this example, you're passing it the
Link component from the react-router-dom package. The MenuItem component will
forward any additional properties to the Link component, which means that
you can can pass the to property to the MenuItem component and it's as though
you're passing it to the Link component.

There's more...
Most of the time, the screens that make up your app will follow the same
pattern. Rather than have repetitive code in the render property of your routes,
you can create a higher-order function that accepts arguments for the unique
parts of the screen and returns a new component that can be used by the render
prop.

In this example, the only two pieces of data that are unique to each screen are
the title and the content text. Here's a generic function that builds a new
functional component that can be used with every Route component in the app:

const screen = (title, content) => () => (

 <Fragment>

 <MyToolbar title={title} />

 <Typography>{content}</Typography>

 </Fragment>

);

To use this function, call it in the render property, such as in the following
code block:

export default withStyles(styles)(({ classes }) => (

 <div className={classes.root}>

 <Route exact path="/" render={screen('Home', 'Home')} />

 <Route exact path="/page2" render={screen('Page 2', 'Page 2')} />

 <Route exact path="/page3" render={screen('Page 3', 'Page 3')} />

 </div>

));

Now you have a clear separation of the static screen structure that stays the
same for every screen in the app, and the pieces that are unique to each screen
that passed as arguments to the screen() function.

See also
React Router documentation: https://reacttraining.com/react-router/
AppBar demos: https://material-ui.com/demos/app-bar/
AppBar API documentation: https://material-ui.com/api/app-bar/

https://reacttraining.com/react-router/
https://material-ui.com/demos/app-bar/
https://material-ui.com/api/app-bar/

Drawers - A Place for Navigation
Controls
 In this chapter, you'll learn about the following recipes:

Drawer types
Drawer item state
Drawer item navigation
Drawer sections
AppBar interaction

Introduction
Material-UI uses drawers to present the user with the main navigation of the
app. The Drawer component acts like a physical drawer that can move out of
view when it is not being used.

Drawer types
There are three types of Drawer components that you'll use in your app, as
follows:

Temporary: A transient drawer that closes when an action is taken.
Persistent: A drawer that can be opened and stays open until explicitly
closed.
Permanent: A drawer that is always visible.

How to do it...
Let's say that you want to support different types of drawers in your app. You
can control the Drawer component type using the variant property. Here's the
code:

import React, { useState } from 'react';

import Drawer from '@material-ui/core/Drawer';

import Grid from '@material-ui/core/Grid';

import Button from '@material-ui/core/Button';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemIcon from '@material-ui/core/ListItemIcon';

import ListItemText from '@material-ui/core/ListItemText';

export default function DrawerTypes({ classes, variant }) {

 const [open, setOpen] = useState(false);

 return (

 <Grid container justify="space-between">

 <Grid item>

 <Drawer

 variant={variant}

 open={open}

 onClose={() => setOpen(false)}

 >

 <List>

 <ListItem

 button

 onClick={() => setOpen(false)}

 >

 <ListItemText>Home</ListItemText>

 </ListItem>

 <ListItem

 button

 onClick={() => setOpen(false)}

 >

 <ListItemText>Page 2</ListItemText>

 </ListItem>

 <ListItem

 button

 onClick={() => setOpen(false)}

 >

 <ListItemText>Page 3</ListItemText>

 </ListItem>

 </List>

 </Drawer>

 </Grid>

 <Grid item>

 <Button onClick={() => setOpen(!open)}>

 {open ? 'Hide' : 'Show'} Drawer

 </Button>

 </Grid>

 </Grid>

);

}

The variant property defaults to temporary. When you first load this screen,
you'll only see the button to toggle the drawer display:

When you click on this button, you'll see a temporary drawer:

How it works...
Before you start changing the variant property, let's walk through the code in
this example, starting with the Drawer markup, as follows:

<Drawer

 variant={variant}

 open={open}

 onClose={() => setOpen(false)}

>

 <List>

 <ListItem

 button

 onClick={() => setOpen(false)}

 >

 <ListItemText>Home</ListItemText>

 </ListItem>

 <ListItem

 button

 onClick={() => setOpen(false)}

 >

 <ListItemText>Page 2</ListItemText>

 </ListItem>

 <ListItem

 button

 onClick={() => setOpen(false)}

 >

 <ListItemText>Page 3</ListItemText>

 </ListItem>

 </List>

</Drawer>

The Drawer component takes an open property, which displays the drawer when
true. The variant property determines the type of drawer to render. The
screenshot shown previously is a temporary drawer, the default variant value.
The Drawer component has List as its child, where each of the items displayed
in the drawer are rendered.

Next, let's take a look at the Button component that toggles the display of the
Drawer component:

<Button onClick={() => setOpen(!open)}>

 {open ? 'Hide' : 'Show'} Drawer

</Button>

When this button is clicked, the open state of your component is toggled.

Likewise, the text of the button is toggled depending on the value of the open
state.

Now let's try changing the value of the variant property to permanent. Here's
what the drawer looks like when rendered:

A permanent drawer, as the name suggests, is always visible and is always in
the same place on the screen. If you click on the SHOW DRAWER button,
the open state of your component is toggled to true. You'll see the text of the
button change, but since the Drawer component is using the permanent variant,
the open property has no effect:

Next, let's try the persistent variant. Persistent drawers are similar to
permanent drawers in that they stay visible on the screen while the user
interacts with the app, and they're similar to temporary drawers in that they
can be hidden by changing the open property.

Let's change the variant property to persistent. When the screen first loads, the
drawer isn't visible because the open state of your component is false. Try
clicking on the SHOW DRAWER button. The drawer is displayed, and it
looks like the permanent drawer. If you click the HIDE DRAWER button,
the open state of your component is toggled to false and the drawer is hidden.

Persistent drawers should be used when you want the user to be able to
control the visibility of the drawer. For example, with temporary drawers the
user can close the drawer by clicking on the overlay or by hitting the Esc key.
Permanent drawers are useful when you want to use the left-hand navigation
as an integral part of the page layout—they are always visible and other items
are laid out around them.

There's more...
When you click on any of the items in the drawer, the event handlers set the
open state of your component to false. This might not be what you want and
could potentially confuse your users. For example, if you're using a persistent
drawer, your app probably has a button outside of the drawer that controls the
visibility of the drawer. If the user clicks on a drawer item, they're probably
not expecting the drawer to close.

To address this issue, your event handlers can take into consideration a
variant of the Drawer component:

<List>

 <ListItem

 button

 onClick={() => setOpen(variant !== 'temporary')}

 >

 <ListItemText>Home</ListItemText>

 </ListItem>

 <ListItem

 button

 onClick={() => setOpen(variant !== 'temporary')}

 >

 <ListItemText>Page 2</ListItemText>

 </ListItem>

 <ListItem

 button

 onClick={() => setOpen(variant !== 'temporary')}

 >

 <ListItemText>Page 3</ListItemText>

 </ListItem>

</List>

Now, when you click on any of these items, the open state is only changed to
false if the variant property is temporary.

See also
Drawer demos: https://material-ui.com/demos/drawers/
Drawer API documentation: https://material-ui.com/api/drawer/

https://material-ui.com/demos/drawers/
https://material-ui.com/api/drawer/

Drawer item state
The items that are rendered in Drawer components are rarely static. Instead, the
drawer items are rendered based on the state of your component, allowing for
more control over how items are displayed.

How to do it...
Let's say that you have a component that renders drawer navigation using the
Drawer component. Instead of writing the items state directly in the component
markup, you want to have the items state stored in the state of the component.
For example, in response to permission checks on the user, items might be
disabled or completely hidden.

Here's an example that uses an array of item objects from the component state:

import React, { useState } from 'react';

import Drawer from '@material-ui/core/Drawer';

import Grid from '@material-ui/core/Grid';

import Button from '@material-ui/core/Button';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemIcon from '@material-ui/core/ListItemIcon';

import ListItemText from '@material-ui/core/ListItemText';

import Typography from '@material-ui/core/Typography';

import HomeIcon from '@material-ui/icons/Home';

import WebIcon from '@material-ui/icons/Web';

export default function DrawerItemState() {

 const [open, setOpen] = useState(false);

 const [content, setContent] = useState('Home');

 const [items] = useState([

 { label: 'Home', Icon: HomeIcon },

 { label: 'Page 2', Icon: WebIcon },

 { label: 'Page 3', Icon: WebIcon, disabled: true },

 { label: 'Page 4', Icon: WebIcon },

 { label: 'Page 5', Icon: WebIcon, hidden: true }

]);

 const onClick = content => () => {

 setOpen(false);

 setContent(content);

 };

 return (

 <Grid container justify="space-between">

 <Grid item>

 <Typography>{content}</Typography>

 </Grid>

 <Grid item>

 <Drawer open={open} onClose={() => setOpen(false)}>

 <List>

 {items

 .filter(({ hidden }) => !hidden)

 .map(({ label, disabled, Icon }, i) => (

 <ListItem

 button

 key={i}

 disabled={disabled}

 onClick={onClick(label)}

 >

 <ListItemIcon>

 <Icon />

 </ListItemIcon>

 <ListItemText>{label}</ListItemText>

 </ListItem>

))}

 </List>

 </Drawer>

 </Grid>

 <Grid item>

 <Button onClick={() => setOpen(!open)}>

 {open ? 'Hide' : 'Show'} Drawer

 </Button>

 </Grid>

 </Grid>

);

}

This is what the drawer looks like when you click on the SHOW
DRAWER button:

If you select one of these items, the drawer will close and the content of the
screen will be updated; for example, after clicking on Page 2, you should see
something similar to the following screenshot:

How it works...
Let's start by looking at the state of your component:

const [open, setOpen] = useState(false);

const [content, setContent] = useState('Home');

const [items] = useState([

 { label: 'Home', Icon: HomeIcon },

 { label: 'Page 2', Icon: WebIcon },

 { label: 'Page 3', Icon: WebIcon, disabled: true },

 { label: 'Page 4', Icon: WebIcon },

 { label: 'Page 5', Icon: WebIcon, hidden: true }

]);

The open state controls the visibility of the Drawer component, and the content
state is the text that's displayed on the screen depending on which drawer
item is clicked on. The items state is an array of objects that is used to render
the drawer items. Every object has a label property and an Icon property that
are used to render the item text and icon respectively.

The Icon property is capitalized in order to maintain the React convention of capitalizing
components. This makes it easier to differentiate React components from other data when
reading the code.

The disabled property is used to render the item as disabled; for example, Page
3 is marked as disabled by setting this property to true:

This could be due to permission restrictions for the user on this particular
page, or some other reason. Because this is controlled through the component
state instead of rendered statically, you could update the disabled state for any
menu item at any time using any mechanism that you like, such as an API
call. The hidden property uses the same principle, except when this value is
true, the item isn't rendered at all. In this example, Page 5 isn't rendered
because it's marked as hidden.

Next, let's look at how the List items are rendered based on the items state, as
follows:

<List>

 {items

 .filter(({ hidden }) => !hidden)

 .map(({ label, disabled, Icon }, i) => (

 <ListItem

 button

 key={i}

 disabled={disabled}

 onClick={onClick(label)}

 >

 <ListItemIcon>

 <Icon />

 </ListItemIcon>

 <ListItemText>{label}</ListItemText>

 </ListItem>

))}

</List>

First, the items array is filtered to remove hidden items. Then, map() is used to
render each ListItem component. The disabled property is passed to ListItem and
it will be visibly disabled when rendered. The Icon component also comes
from the list item state. The onClick() event handler hides the drawer and
updates the content label.

The onClick() handler isn't executed when disabled list items are clicked on.

There's more...
You might want to separate the rendering of list items into its own
component. This way, you can use the list items in other places. For example,
you might want to use the same rendering logic to render a list of buttons
elsewhere in your app. Here's an example of how you can extract the
ListItems component into its own component:

const ListItems = ({ items, onClick }) =>

 items

 .filter(({ hidden }) => !hidden)

 .map(({ label, disabled, Icon }, i) => (

 <ListItem

 button

 key={i}

 disabled={disabled}

 onClick={onClick(label)}

 >

 <ListItemIcon>

 <Icon />

 </ListItemIcon>

 <ListItemText>{label}</ListItemText>

 </ListItem>

));

The ListItems component will return an array of ListItem components. It takes
the items state to render as an array property. It also takes an onClick() function
property. This is a higher-order function that takes the label component to
display as an argument and returns a new function that will update the
content when the item is clicked on.

Here's what the new JSX markup looks like, updated to use the new ListItems
component:

<Grid container justify="space-between">

 <Grid item>

 <Typography>{content}</Typography>

 </Grid>

 <Grid item>

 <Drawer open={open} onClose={() => setOpen(false)}>

 <List>

 <ListItems items={items} onClick={onClick} />

 </List>

 </Drawer>

 </Grid>

 <Grid item>

 <Button onClick={() => setOpen(!open)}>

 {open ? 'Hide' : 'Show'} Drawer

 </Button>

 </Grid>

</Grid>

There is no more list item rendering code in this component. Instead, ListItems
is rendered as the child of List. You pass it the items to render and
the onClick() handler. You now have a generic ListItems component that can be
used anywhere that you show lists in your app. It will consistently handle the
Icon, disabled, and display logic wherever it is used.

See also
Drawer demos: https://material-ui.com/demos/drawers/
Drawer API documentation: https://material-ui.com/api/drawer/

https://material-ui.com/demos/drawers/
https://material-ui.com/api/drawer/

Drawer item navigation
If your Material-UI app uses a router such as react-router to navigate from
page to page, you'll probably want links as your Drawer items. To do so, you
have to integrate components from the react-router-dom package.

How to do it...
Let's say that your app is composed of three pages. To navigate from page to
page, you want to provide your users with links in the Drawer component.
Here's what the code looks like:

import React, { useState } from 'react';

import { Route, Link } from 'react-router-dom';

import { withStyles } from '@material-ui/core/styles';

import Drawer from '@material-ui/core/Drawer';

import Grid from '@material-ui/core/Grid';

import Button from '@material-ui/core/Button';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemIcon from '@material-ui/core/ListItemIcon';

import ListItemText from '@material-ui/core/ListItemText';

import Typography from '@material-ui/core/Typography';

import HomeIcon from '@material-ui/icons/Home';

import WebIcon from '@material-ui/icons/Web';

const styles = theme => ({

 alignContent: {

 alignSelf: 'center'

 }

});

function DrawerItemNavigation({ classes }) {

 const [open, setOpen] = useState(false);

 return (

 <Grid container justify="space-between">

 <Grid item className={classes.alignContent}>

 <Route

 exact

 path="/"

 render={() => <Typography>Home</Typography>}

 />

 <Route

 exact

 path="/page2"

 render={() => <Typography>Page 2</Typography>}

 />

 <Route

 exact

 path="/page3"

 render={() => <Typography>Page 3</Typography>}

 />

 </Grid>

 <Grid item>

 <Drawer

 className={classes.drawerWidth}

 open={open}

 onClose={() => setOpen(false)}

 >

 <List>

 <ListItem

 component={Link}

 to="/"

 onClick={() => setOpen(false)}

 >

 <ListItemIcon>

 <HomeIcon />

 </ListItemIcon>

 <ListItemText>Home</ListItemText>

 </ListItem>

 <ListItem

 component={Link}

 to="/page2"

 onClick={() => setOpen(false)}

 >

 <ListItemIcon>

 <WebIcon />

 </ListItemIcon>

 <ListItemText>Page 2</ListItemText>

 </ListItem>

 <ListItem

 component={Link}

 to="/page3"

 onClick={() => setOpen(false)}

 >

 <ListItemIcon>

 <WebIcon />

 </ListItemIcon>

 <ListItemText>Page 3</ListItemText>

 </ListItem>

 </List>

 </Drawer>

 </Grid>

 <Grid item>

 <Button onClick={() => setOpen(!open)}>

 {open ? 'Hide' : 'Show'} Drawer

 </Button>

 </Grid>

 </Grid>

);

}

export default withStyles(styles)(DrawerItemNavigation);

When you first load the screen, you'll see the SHOW DRAWER button and
the home screen content:

Here's what the drawer looks like when it's opened:

If you click on Page 2, which points to /page2, the drawer should close and
you should be taken to the second page. Here's what it looks like:

You should see something similar if you click on Page 3 or on Home. The
content on the left side of the screen is updated.

How it works...
Let's start by looking at the Route components that render content based on the
active the Route components:

<Grid item className={classes.alignContent}>

 <Route

 exact

 path="/"

 render={() => <Typography>Home</Typography>}

 />

 <Route

 exact

 path="/page2"

 render={() => <Typography>Page 2</Typography>}

 />

 <Route

 exact

 path="/page3"

 render={() => <Typography>Page 3</Typography>}

 />

</Grid>

There's a Route component used for each path in your app. The render() function
returns the content that should be rendered within this Grid item when the path
property matches the current URL.

Next, let's look at one of the ListItem components within the Drawer component,
as follows:

<ListItem

 component={Link}

 to="/"

 onClick={() => setOpen(false)}

>

 <ListItemIcon>

 <HomeIcon />

 </ListItemIcon>

 <ListItemText>Home</ListItemText>

</ListItem>

By default, the ListItem component will render a div element. It accepts a button
property that when true, will render a button element. You don't want either of
these. Instead, you want the list items to be links that react-router will process.
The component property accepts a custom component to use; in this example,

you want to use the Link component from the react-router-dom package. This
will render the appropriate link while maintaining the proper styles.

The properties that you pass to ListItem are also passed to your custom
component, which, in this case, is Link. This means that the required to
property is passed to Link, pointing the link to /. Likewise, the onClick handler
is also passed to the Link component, which is important because you want to
close the temporary drawer whenever a link is clicked.

There's more...
When the items in your drawer are links, you probably want a visual
indication for the active link. The challenge is that you want to style the
active link using Material-UI theme styles. Here's what the modified example
looks like:

import React, { useState } from 'react';

import clsx from 'clsx';

import { Switch, Route, Link, NavLink } from 'react-router-dom';

import { withStyles } from '@material-ui/core/styles';

import Drawer from '@material-ui/core/Drawer';

import Grid from '@material-ui/core/Grid';

import Button from '@material-ui/core/Button';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemIcon from '@material-ui/core/ListItemIcon';

import ListItemText from '@material-ui/core/ListItemText';

import Typography from '@material-ui/core/Typography';

import HomeIcon from '@material-ui/icons/Home';

import WebIcon from '@material-ui/icons/Web';

const styles = theme => ({

 alignContent: {

 alignSelf: 'center'

 },

 activeListItem: {

 color: theme.palette.primary.main

 }

});

const NavListItem = withStyles(styles)(

 ({ classes, Icon, text, active, ...other }) => (

 <ListItem component={NavLink} {...other}>

 <ListItemIcon

 classes={{

 root: clsx({ [classes.activeListItem]: active })

 }}

 >

 <Icon />

 </ListItemIcon>

 <ListItemText

 classes={{

 primary: clsx({

 [classes.activeListItem]: active

 })

 }}

 >

 {text}

 </ListItemText>

 </ListItem>

)

);

const NavItem = props => (

 <Switch>

 <Route

 exact

 path={props.to}

 render={() => <NavListItem active={true} {...props} />}

 />

 <Route path="/" render={() => <NavListItem {...props} />} />

 </Switch>

);

function DrawerItemNavigation({ classes }) {

 const [open, setOpen] = useState(false);

 return (

 <Grid container justify="space-between">

 <Grid item className={classes.alignContent}>

 <Route

 exact

 path="/"

 render={() => <Typography>Home</Typography>}

 />

 <Route

 exact

 path="/page2"

 render={() => <Typography>Page 2</Typography>}

 />

 <Route

 exact

 path="/page3"

 render={() => <Typography>Page 3</Typography>}

 />

 </Grid>

 <Grid item>

 <Drawer

 className={classes.drawerWidth}

 open={open}

 onClose={() => setOpen(false)}

 >

 <List>

 <NavItem

 to="/"

 text="Home"

 Icon={HomeIcon}

 onClick={() => setOpen(false)}

 />

 <NavItem

 to="/page2"

 text="Page 2"

 Icon={WebIcon}

 onClick={() => setOpen(false)}

 />

 <NavItem

 to="/page3"

 text="Page 3"

 Icon={WebIcon}

 onClick={() => setOpen(false)}

 />

 </List>

 </Drawer>

 </Grid>

 <Grid item>

 <Button onClick={() => setOpen(!open)}>

 {open ? 'Hide' : 'Show'} Drawer

 </Button>

 </Grid>

 </Grid>

);

}

export default withStyles(styles)(DrawerItemNavigation);

Now, when the screen first loads and you open the drawer, it should look
similar to the following screenshot:

Since the Home link is active, it's styled using the primary color from the
Material-UI theme. If you click on the Page 2 link and then open the drawer
again, it should look similar to the following screenshot:

Let's take a look at the two new components that you've added, starting with
NavItem:

const NavItem = props => (

 <Switch>

 <Route

 exact

 path={props.to}

 render={() => <NavListItem active={true} {...props} />}

 />

 <Route path="/" render={() => <NavListItem {...props} />} />

 </Switch>

);

This component is used to determine whether or not the item is active, based
on the current URL. It uses the Switch component from react-router-dom. Instead
of just rendering Route components, Switch will only render the first route
whose path matches the current URL. The first Route component in NavItem is
the specific path (as it uses the exact property). If this Route component
matches, it renders a NavListItem component with the active property set to true.
Because it's in a Switch component, the second Route component will not be
rendered.

If, on the other hand, the first Route component doesn't match, the second
Route component will always match. This will render a NavListItem component
without the active property. Now, let's take a look at the NavListItem
component, as follows:

const NavListItem = withStyles(styles)(

 ({ classes, Icon, text, active, ...other }) => (

 <ListItem component={NavLink} {...other}>

 <ListItemIcon

 classes={{

 root: clsx({ [classes.activeListItem]: active })

 }}

 >

 <Icon />

 </ListItemIcon>

 <ListItemText

 classes={{

 primary: clsx({

 [classes.activeListItem]: active

 })

 }}

 >

 {text}

 </ListItemText>

 </ListItem>

)

);

The NavListItem component is now responsible for rendering the ListItem
components in the Drawer component. It takes a text property and an Icon
property to render the label and the icon respectively, just like before your
enhancements. The active property is used to determine the class that gets

applied to the ListItemIcon and ListItemText components. The activeListItem CSS
class is applied to both of these components if active is true. This is how
you're able to style the active item based on the Material-UI theme.

The clsx() function is used extensively by Material-UI–this isn't an extra dependency. It
allows you to dynamically change the class of an element without introducing custom
logic into your markup. For example, the clsx({ [classes.activeListItem]: active }) syntax
will only apply the activeListItem class if active is true. The alternative will involve
introducing more logic into your component.

Lastly, let's take a look at the activeListItem class, as follows:

const styles = theme => ({

 alignContent: {

 alignSelf: 'center'

 },

 activeListItem: {

 color: theme.palette.primary.main

 }

});

The activeListItem class sets the color CSS property by using the
theme.palette.primary.main value. This means that if the theme changes, your
active link in the drawer will be styled accordingly.

See also
React Router documentation: https://reacttraining.com/react-router/
Drawer demos: https://material-ui.com/demos/drawers/
Drawer API documentation: https://material-ui.com/api/drawer/

https://reacttraining.com/react-router/
https://material-ui.com/demos/drawers/
https://material-ui.com/api/drawer/

Drawer sections
When you have lots of items in your Drawer, you might want to divide your
drawer into sections. When you have lots of drawer items and no sections,
you end up having to put section names into the items themselves, which
leads to messy and awkward drawer item labels.

How to do it...
Let's say that you're working on an app that has screens for managing
different aspects of the CPU, memory, storage, and network. Instead of
having a flat list of drawer items, you could display drawer items in their
relevant sections, making it easier to navigate. Here's the code to do it:

import React, { useState } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Drawer from '@material-ui/core/Drawer';

import Grid from '@material-ui/core/Grid';

import Button from '@material-ui/core/Button';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemIcon from '@material-ui/core/ListItemIcon';

import ListItemText from '@material-ui/core/ListItemText';

import ListSubheader from '@material-ui/core/ListSubheader';

import Typography from '@material-ui/core/Typography';

import AddIcon from '@material-ui/icons/Add';

import RemoveIcon from '@material-ui/icons/Remove';

import ShowChartIcon from '@material-ui/icons/ShowChart';

const styles = theme => ({

 alignContent: {

 alignSelf: 'center'

 }

});

const ListItems = ({ items, onClick }) =>

 items

 .filter(({ hidden }) => !hidden)

 .map(({ label, disabled, Icon }, i) => (

 <ListItem

 button

 key={i}

 disabled={disabled}

 onClick={onClick(label)}

 >

 <ListItemIcon>

 <Icon />

 </ListItemIcon>

 <ListItemText>{label}</ListItemText>

 </ListItem>

));

const DrawerSections = withStyles(styles)(({ classes }) => {

 const [open, setOpen] = useState(false);

 const [content, setContent] = useState('Home');

 const [items] = useState({

 cpu: [

 { label: 'Add CPU', Icon: AddIcon },

 { label: 'Remove CPU', Icon: RemoveIcon },

 { label: 'Usage', Icon: ShowChartIcon }

],

 memory: [

 { label: 'Add Memory', Icon: AddIcon },

 { label: 'Usage', Icon: ShowChartIcon }

],

 storage: [

 { label: 'Add Storage', Icon: AddIcon },

 { label: 'Usage', Icon: ShowChartIcon }

],

 network: [

 { label: 'Add Network', Icon: AddIcon, disabled: true },

 { label: 'Usage', Icon: ShowChartIcon }

]

 });

 const onClick = content => () => {

 setOpen(false);

 setContent(content);

 };

 return (

 <Grid container justify="space-between">

 <Grid item className={classes.alignContent}>

 <Typography>{content}</Typography>

 </Grid>

 <Grid item>

 <Drawer open={open} onClose={() => setOpen(false)}>

 <List>

 <ListSubheader>CPU</ListSubheader>

 <ListItems items={items.cpu} onClick={onClick} />

 <ListSubheader>Memory</ListSubheader>

 <ListItems items={items.memory} onClick={onClick} />

 <ListSubheader>Storage</ListSubheader>

 <ListItems items={items.storage} onClick={onClick} />

 <ListSubheader>Network</ListSubheader>

 <ListItems items={items.network} onClick={onClick} />

 </List>

 </Drawer>

 </Grid>

 <Grid item>

 <Button onClick={() => setOpen(!open)}>

 {open ? 'Hide' : 'Show'} Drawer

 </Button>

 </Grid>

 </Grid>

);

});

export default DrawerSections;

When you click on the SHOW DRAWER button, your drawer should look
like this:

There are lots of add and usage items in this drawer. The sections make the
items easier for your users to scan.

How it works...
Let's start by taking a look at the state of your component, as follows:

const [open, setOpen] = useState(false);

const [content, setContent] = useState('Home');

const [items] = useState({

 cpu: [

 { label: 'Add CPU', Icon: AddIcon },

 { label: 'Remove CPU', Icon: RemoveIcon },

 { label: 'Usage', Icon: ShowChartIcon }

],

 memory: [

 { label: 'Add Memory', Icon: AddIcon },

 { label: 'Usage', Icon: ShowChartIcon }

],

 storage: [

 { label: 'Add Storage', Icon: AddIcon },

 { label: 'Usage', Icon: ShowChartIcon }

],

 network: [

 { label: 'Add Network', Icon: AddIcon, disabled: true },

 { label: 'Usage', Icon: ShowChartIcon }

]

});

Instead of the items state being a flat array of items, it's now an object with
arrays grouped by category. These are the drawer sections that you want to
render. Next, let's look at the List markup for rendering the items state and the
section headers:

<List>

 <ListSubheader>CPU</ListSubheader>

 <ListItems items={items.cpu} onClick={onClick} />

 <ListSubheader>Memory</ListSubheader>

 <ListItems items={items.memory} onClick={onClick} />

 <ListSubheader>Storage</ListSubheader>

 <ListItems items={items.storage} onClick={onClick} />

 <ListSubheader>Network</ListSubheader>

 <ListItems items={items.network} onClick={onClick} />

</List>

The ListSubheader component is used when you need a label above the list
items. For example, underneath the Storage header, you have the ListItems
component that renders items from the items.storage state.

There's more...
When you have a lot of drawer items and sections, you can still overwhelm
your users with the amount of information to parse. One solution is to have
collapsible sections. For this, you can add a Button component to the
ListSubheader component so that it's clickable.

Here's what the code looks like:

<ListSubheader>

 <Button

 disableRipple

 classes={{ root: classes.listSubheader }}

 onClick={toggleSection('cpu')}

 >

 CPU

 </Button>

</ListSubheader>

The ripple effect that would normally happen when you click on a button is
disabled here because you want the header text to still look like header text.
This also requires a little bit of CSS customization in the listSubheader class:

const styles = theme => ({

 alignContent: {

 alignSelf: 'center'

 },

 listSubheader: {

 padding: 0,

 minWidth: 0,

 color: 'inherit',

 '&:hover': {

 background: 'inherit'

 }

 }

});

When the section header button is clicked, it toggles the state of the section,
which in turn, toggles the visibility of the section items. Here's the
toggleSection() function:

const toggleSection = name => () => {

 setSections({ ...sections, [name]: !sections[name] });

};

This is a higher-order function that returns a new function as the onClick
handler for the button. The name argument is the name of the section state to
toggle.

Here's the new state that was added to support toggling sections:

const [sections, setSections] = useState({

 cpu: true,

 memory: false,

 storage: false,

 network: false

});

When the screen first loads, the CPU section will be the only section with
visible items since it's the only state that's true. Next, let's look at how the
ListItems are actually collapsed when their corresponding section state is false:

const ListItems = ({ items, visible, onClick }) => (

 <Collapse in={visible}>

 {items

 .filter(({ hidden }) => !hidden)

 .map(({ label, disabled, Icon }, i) => (

 <ListItem

 button

 key={i}

 disabled={disabled}

 onClick={onClick(label)}

 >

 <ListItemIcon>

 <Icon />

 </ListItemIcon>

 <ListItemText>{label}</ListItemText>

 </ListItem>

))}

 </Collapse>

);

The ListItems component now accepts a visible property. This is used by the
Collapse component, which will hide its children using a collapsing animation
when hiding components. Finally, here's how the new ListItems component is
used:

<ListItems

 visible={sections.cpu}

 items={items.cpu}

 onClick={onClick}

/>

When the screen first loads, and you click on the SHOW DRAWER button,

you should see something similar to this:

There's way less information for the user to parse now. They can click on the
section headers to see the list items, and they can click again to collapse the
section; for example, they could collapse the CPU section and expand the
MEMORY section:

See also
Drawer demos: https://material-ui.com/demos/drawers/
Drawer API documentation: https://material-ui.com/api/drawer/

https://material-ui.com/demos/drawers/
https://material-ui.com/api/drawer/

AppBar interaction
A common place to put a button that toggles the visibility of Drawer
components is the AppBar component at the top of every page in your app.
Furthermore, by selecting items in a drawer, the title of the AppBar component
needs to change to reflect this selection. Drawer and AppBar components often
need to interact with one another.

How to do it...
Let's say that you have a Drawer component with a few items in it. You also
have an AppBar component with a menu button and a title. The menu button
should toggle the visibility of the drawer, and clicking on a drawer item
should update the title in the AppBar. Here's the code to do it:

import React, { useState, Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import AppBar from '@material-ui/core/AppBar';

import Toolbar from '@material-ui/core/Toolbar';

import Typography from '@material-ui/core/Typography';

import Button from '@material-ui/core/Button';

import Drawer from '@material-ui/core/Drawer';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemIcon from '@material-ui/core/ListItemIcon';

import ListItemText from '@material-ui/core/ListItemText';

import IconButton from '@material-ui/core/IconButton';

import MenuIcon from '@material-ui/icons/Menu';

const styles = theme => ({

 root: {

 flexGrow: 1

 },

 flex: {

 flex: 1

 },

 menuButton: {

 marginLeft: -12,

 marginRight: 20

 },

 toolbarMargin: theme.mixins.toolbar

});

const MyToolbar = withStyles(styles)(

 ({ classes, title, onMenuClick }) => (

 <Fragment>

 <AppBar>

 <Toolbar>

 <IconButton

 className={classes.menuButton}

 color="inherit"

 aria-label="Menu"

 onClick={onMenuClick}

 >

 <MenuIcon />

 </IconButton>

 <Typography

 variant="title"

 color="inherit"

 className={classes.flex}

 >

 {title}

 </Typography>

 </Toolbar>

 </AppBar>

 <div className={classes.toolbarMargin} />

 </Fragment>

)

);

const MyDrawer = withStyles(styles)(

 ({ classes, variant, open, onClose, setTitle }) => (

 <Drawer variant={variant} open={open} onClose={onClose}>

 <List>

 <ListItem

 button

 onClick={() => {

 setTitle('Home');

 onClose();

 }}

 >

 <ListItemText>Home</ListItemText>

 </ListItem>

 <ListItem

 button

 onClick={() => {

 setTitle('Page 2');

 onClose();

 }}

 >

 <ListItemText>Page 2</ListItemText>

 </ListItem>

 <ListItem

 button

 onClick={() => {

 setTitle('Page 3');

 onClose();

 }}

 >

 <ListItemText>Page 3</ListItemText>

 </ListItem>

 </List>

 </Drawer>

)

);

function AppBarInteraction({ classes }) {

 const [drawer, setDrawer] = useState(false);

 const [title, setTitle] = useState('Home');

 const toggleDrawer = () => {

 setDrawer(!drawer);

 };

 return (

 <div className={classes.root}>

 <MyToolbar title={title} onMenuClick={toggleDrawer} />

 <MyDrawer

 open={drawer}

 onClose={toggleDrawer}

 setTitle={setTitle}

 />

 </div>

);

}

export default withStyles(styles)(AppBarInteraction);

Here's what the screen looks like when it first loads:

When you click on the menu icon button to the left of the title, you'll see the
drawer:

If you click on the Page 2 item, the drawer will close and the title of the AppBar
will change:

How it works...
This example defines three components, as follows:

The MyToolbar component
The MyDrawer component
The main app component

Let's walk through each of these individually, starting with MyToolbar:

const MyToolbar = withStyles(styles)(

 ({ classes, title, onMenuClick }) => (

 <Fragment>

 <AppBar>

 <Toolbar>

 <IconButton

 className={classes.menuButton}

 color="inherit"

 aria-label="Menu"

 onClick={onMenuClick}

 >

 <MenuIcon />

 </IconButton>

 <Typography

 variant="title"

 color="inherit"

 className={classes.flex}

 >

 {title}

 </Typography>

 </Toolbar>

 </AppBar>

 <div className={classes.toolbarMargin} />

 </Fragment>

)

);

The MyToolbar component renders an AppBar component that accepts a title
property and a onMenuClick() property. Both of these properties are used to
interact with the MyDrawer component. The title property changes when a
drawer item selection is made. The onMenuClick() function changes state in your
main app component, causing the drawer to display. Next, let's take a look at
MyDrawer:

const MyDrawer = withStyles(styles)(

 ({ classes, variant, open, onClose, setTitle }) => (

 <Drawer variant={variant} open={open} onClose={onClose}>

 <List>

 <ListItem

 button

 onClick={() => {

 setTitle('Home');

 onClose();

 }}

 >

 <ListItemText>Home</ListItemText>

 </ListItem>

 <ListItem

 button

 onClick={() => {

 setTitle('Page 2');

 onClose();

 }}

 >

 <ListItemText>Page 2</ListItemText>

 </ListItem>

 <ListItem

 button

 onClick={() => {

 setTitle('Page 3');

 onClose();

 }}

 >

 <ListItemText>Page 3</ListItemText>

 </ListItem>

 </List>

 </Drawer>

)

);

The MyDrawer component is functional like MyToolbar. It accepts properties
instead of maintaining its own state. For example, the open property is how the
visibility of the drawer is controlled. The onClose() and setTitle() properties are
functions that are called when drawer items are clicked on.

Finally, let's look at the app component where all of the state lives:

function AppBarInteraction({ classes }) {

 const [drawer, setDrawer] = useState(false);

 const [title, setTitle] = useState('Home');

 const toggleDrawer = () => {

 setDrawer(!drawer);

 };

 return (

 <div className={classes.root}>

 <MyToolbar title={title} onMenuClick={toggleDrawer} />

 <MyDrawer

 open={drawer}

 onClose={toggleDrawer}

 setTitle={setTitle}

 />

 </div>

);

}

The title state is passed to the MyDrawer component, along with the
toggleDrawer() function. The MyDrawer component is passed the drawer state to
control visibility, the toggleDrawer() function to change visibility, and the
setTitle() function to update the title in MyToolbar.

There's more...
What if you want the flexibility of having a persistent drawer that can be
toggled using the same menu button in the App bar? Let's add a variant
property to the AppBarInteraction component that is passed to MyDrawer. This can
be changed from temporary to persistent and the menu button will still work as
expected.

Here's what a persistent drawer looks like when you click on the menu
button:

The drawer overlaps the App bar. Another problem is that if you click on any
of the drawer items, the drawer is closed, which isn't ideal for a persistent
drawer. Let's fix both of these issues.

First, let's address the z-index issue that's causing the drawer to appear on top
of the App bar. You can create a CSS class that looks like this:

aboveDrawer: {

 zIndex: theme.zIndex.drawer + 1

}

You can apply this class to the AppBar component in MyToolbar, as follows:

<AppBar className={classes.aboveDrawer}>

Now when you open the drawer, it appears underneath the AppBar, as expected:

Now you just have to fix the margin. When the drawer uses the persistent
variant, you can add the toolbarMargin class to a <div> element as the first
element in the Drawer component:

<div

 className={clsx({

 [classes.toolbarMargin]: variant === 'persistent'

 })}

/>

With the help of the clsx() function, the toolbarMargin class is only added when
needed – that is, when the drawer is persistent. Here's what it looks like now:

Lastly, let's fix the issue where the drawer closes when a drawer item is
clicked on. In the main app component, you can add a new method that looks
like the following code block:

const onItemClick = title => () => {

 setTitle(title);

 setDrawer(variant === 'temporary' ? false : drawer);

};

The onItemClick() function takes care of setting the text in the App bar, as well

as closing the drawer if it's temporary. To use this new function, you can
replace the setTitle property in MyDrawer with an onItemClick property. You can
then use it in your list items, as follows:

<List>

 <ListItem button onClick={onItemClick('Home')}>

 <ListItemText>Home</ListItemText>

 </ListItem>

 <ListItem button onClick={onItemClick('Page 2')}>

 <ListItemText>Page 2</ListItemText>

 </ListItem>

 <ListItem button onClick={onItemClick('Page 3')}>

 <ListItemText>Page 3</ListItemText>

 </ListItem>

</List>

Now when you click on items in the drawer when it's persistent, the drawer
will stay open. The only way to close it is by clicking on the menu button
beside the title in the App bar.

See also
Drawer demos: https://material-ui.com/demos/drawers/
AppBar demos: https://material-ui.com/demos/app-bar/
Drawer API documentation: https://material-ui.com/api/drawer/
AppBar API documentation: https://material-ui.com/api/app-bar/

https://material-ui.com/demos/drawers/
https://material-ui.com/demos/app-bar/
https://material-ui.com/api/drawer/
https://material-ui.com/api/app-bar/

Tabs - Grouping Content into Tab
Sections
In this chapter, you'll learn about the following recipes:

AppBar integration
Tab alignment
Rendering tabs based on state
Abstracting tab content
Tab navigation with routes

Introduction
The Tabs Material-UI component is used to organize content on your screen.
The tabs are organized in a horizontal fashion and they should feel natural for
your users. You can use tabs any time your screen has lots of content that
could be split into different category sections.

AppBar integration
AppBar components can be used with the Tabs component. You can do this so
that the tab buttons are rendered within an App Bar. This provides a container
for your tab buttons—by default, there is nothing surrounding them.

How to do it...
Let's say that you have a Tabs component with three Tab buttons. Instead of
rendering the tabs so that they look as though they're floating on the screen,
you can wrap them in an AppBar component to give them a contained look and
feel. Here's the code:

import React, { useState } from 'react';

import { withStyles } from '@material-ui/core/styles';

import AppBar from '@material-ui/core/AppBar';

import Tabs from '@material-ui/core/Tabs';

import Tab from '@material-ui/core/Tab';

import Typography from '@material-ui/core/Typography';

const styles = theme => ({

 root: {

 flexGrow: 1,

 backgroundColor: theme.palette.background.paper

 },

 tabContent: {

 padding: theme.spacing.unit * 2

 }

});

function AppBarIntegration({ classes }) {

 const [value, setValue] = useState(0);

 const onChange = (e, value) => {

 setValue(value);

 };

 return (

 <div className={classes.root}>

 <AppBar position="static">

 <Tabs value={value} onChange={onChange}>

 <Tab label="Item One" />

 <Tab label="Item Two" />

 <Tab label="Item Three" />

 </Tabs>

 </AppBar>

 {value === 0 && (

 <Typography component="div" className={classes.tabContent}>

 Item One

 </Typography>

)}

 {value === 1 && (

 <Typography component="div" className={classes.tabContent}>

 Item Two

 </Typography>

)}

 {value === 2 && (

 <Typography component="div" className={classes.tabContent}>

 Item Three

 </Typography>

)}

 </div>

);

}

export default withStyles(styles)(AppBarIntegration);

When the screen first loads, you'll see the following:

When you click on one of the tab buttons, the selected tab changes, along
with the content underneath the tabs. For example, clicking on the ITEM
THREE tab results in this:

How it works...
The Tabs and Tab components are rendered inside the AppBar component.
Usually, AppBar has a Toolbar component as its child, but Tab can work too:

<AppBar position="static">

 <Tabs value={value} onChange={onChange}>

 <Tab label="Item One" />

 <Tab label="Item Two" />

 <Tab label="Item Three" />

 </Tabs>

</AppBar>

Your component has a value state that is used to keep track of the selected tab.
The onChange() handler is used to update this state; it gets set to the current
index of the selected tab. Then, you can use the value state to determine which
content to render below the AppBar component:

{value === 0 && (

 <Typography

 component="div"

 className={classes.tabContent}

 >

 Item One

 </Typography>

)}

{value === 1 && (

 <Typography

 component="div"

 className={classes.tabContent}

 >

 Item Two

 </Typography>

)}

{value === 2 && (

 <Typography

 component="div"

 className={classes.tabContent}

 >

 Item Three

 </Typography>

)}

If the first tab is selected, then the value is 0 and the Item One text is rendered.
The same logic follows for the other two tabs.

There's more...
If you want tabs but you don't want the indicator that's rendered underneath
the text, you can set it to be the same color as the AppBar component. This is
done using the indicatorColor property, as follows:

<Tabs

 value={value}

 onChange={this.onChange}

 indicatorColor="primary"

>

 <Tab label="Item One" />

 <Tab label="Item Two" />

 <Tab label="Item Three" />

</Tabs>

By setting the indicatorColor value to primary, the indicator should now be the
same color as the AppBar component:

See also
Tabs API documentation: https://material-ui.com/api/tabs/
Tabs demos: https://material-ui.com/demos/tabs/

https://material-ui.com/api/tabs/
https://material-ui.com/demos/tabs/

Tab alignment
The Tabs component has two properties to help you align your tab buttons.
The centered property centers the tabs, while the fullWidth property spreads out
the tabs.

How to do it...
Let's say that you have three basic tabs using the following code:

import React, { useState } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Tabs from '@material-ui/core/Tabs';

import Tab from '@material-ui/core/Tab';

const styles = theme => ({

 root: {

 flexGrow: 1,

 backgroundColor: theme.palette.background.paper

 }

});

function TabAlignment({ classes }) {

 const [value, setValue] = useState(0);

 const onChange = (e, value) => {

 setValue(value);

 };

 return (

 <div className={classes.root}>

 <Tabs value={value} onChange={onChange}>

 <Tab label="Item One" />

 <Tab label="Item Two" />

 <Tab label="Item Three" />

 </Tabs>

 </div>

);

}

export default withStyles(styles)(TabAlignment);

Here's what you should see when the screen first loads:

By default, tabs are aligned to the left. You can center your tabs by setting the
centered property, as follows:

<Tabs value={value} onChange={onChange} centered>

 <Tab label="Item One" />

 <Tab label="Item Two" />

 <Tab label="Item Three" />

</Tabs>

Here's what centered tabs look like:

When your tabs are centered, all of the empty space goes to the left and right
of the tabs. The alternative is setting the variant property to fullWidth:

<Tabs value={value} onChange={onChange} variant="fullWidth">

 <Tab label="Item One" />

 <Tab label="Item Two" />

 <Tab label="Item Three" />

</Tabs>

Here's what full width tabs look like:

The tabs are centered, but they're spaced evenly to cover the width of the
screen.

How it works...
The centered property is just a convenient way of specifying the justifyContent
style on the Tabs component. Whenever there is a property to style Material-
UI components in a specific way, you should use it instead of applying your
own styles. Future versions of the library could include fixes that rely on the
property that you'll miss out on.

Another reason to style components using the property is that Material-UI
might behave differently depending on how other properties are set. For
example, with the Tabs component, you can't set the centered property while the
scrollable property is set to true; Material-UI checks for this and handles it.

The fullWidth value of the variant property is actually passed to the Tab
component, which alters the styles it uses based on this value. The result is
the even spacing of tabs within the container element.

You can set the centered and variant properties at the same time. However, centered isn't
necessary if variant has a value of fullWidth. Using both is harmless though.

There's more...
The centered layout for tabs works well on smaller screens, while the full
width layout looks good on larger screens. You can use Material-UI utilities
that tell you about breakpoint changes. You can then use this information to
change the alignment of your tabs.

Here's a modified version of this example:

import React, { useState } from 'react';

import compose from 'recompose/compose';

import { withStyles } from '@material-ui/core/styles';

import withWidth from '@material-ui/core/withWidth';

import Tabs from '@material-ui/core/Tabs';

import Tab from '@material-ui/core/Tab';

const styles = theme => ({

 root: {

 flexGrow: 1,

 backgroundColor: theme.palette.background.paper

 }

});

function TabAlignment({ classes, width }) {

 const [value, setValue] = useState(0);

 const onChange = (e, value) => {

 setValue(value);

 };

 return (

 <div className={classes.root}>

 <Tabs

 value={value}

 onChange={onChange}

 variant={['xs', 'sm'].includes(width) ? null : 'fullWidth'}

 centered

 >

 <Tab label="Item One" />

 <Tab label="Item Two" />

 <Tab label="Item Three" />

 </Tabs>

 </div>

);

}

export default compose(

 withWidth(),

 withStyles(styles)

)(TabAlignment);

Now when you resize your screen, the alignment properties of the grid can
change in response to breakpoint changes. Let's break down these changes
from the bottom up, starting with the variant property value:

variant={['xs', 'sm'].includes(width) ? null : 'fullWidth'}

The value will be fullWidth if the width property is anything but the xs or sm
breakpoint. In other words, if it's a larger screen, the value will be fullWidth.

Next, you need the width property to be passed to your component somehow.
You can use the withWidth() utility from Material-UI. It works like withStyles()
in that it returns a new component with new properties assigned to it. The
component returned by withWidth() will update its width prop any time the
breakpoint changes. For example, if the user resizes their screen from sm to md,
this will trigger a width change and fullWidth will change from false to true.

To use the withWidth() component—along with the withStyles() component—
you can use the compose() function from recompose. This function makes your
code more readable when you're applying several higher-order functions that
decorate your component:

export default compose(

 withWidth(),

 withStyles(styles)

)(TabAlignment);

You could call withWidth(withStyles(styles))(TabAlignment) if you really don't want
to use recompose, but as a general rule, I like to use it any time more than one
higher-order function is involved.

See also
Tabs demos: https://material-ui.com/demos/tabs/
Tabs API documentation: https://material-ui.com/api/tabs/
Tools for composing React components: https://github.com/acdlite/recompos
e/

https://material-ui.com/demos/tabs/
https://material-ui.com/api/tabs/
https://github.com/acdlite/recompose/

Rendering tabs based on state
Tabs in your React application might be driven by data. If so, you can set tab
data in the state of your component to have them render initially and update if
anything changes.

How to do it...
Let's say that you have some data that determines the tabs to render in your
app. You can set this data in the state of your component and use it to render
the Tab components, as well as the tab content when tab selections are made.
Here's the code:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Tabs from '@material-ui/core/Tabs';

import Tab from '@material-ui/core/Tab';

import Typography from '@material-ui/core/Typography';

const useStyles = makeStyles(theme => ({

 root: {

 flexGrow: 1,

 backgroundColor: theme.palette.background.paper

 },

 tabContent: {

 padding: theme.spacing(2)

 }

}));

export default function RenderingTabsBasedOnState() {

 const classes = useStyles();

 const [tabs, setTabs] = useState([

 {

 active: true,

 label: 'Item One',

 content: 'Item One Content'

 },

 {

 active: false,

 label: 'Item Two',

 content: 'Item Two Content'

 },

 {

 active: false,

 label: 'Item Three',

 content: 'Item Three Content'

 }

]);

 const onChange = (e, value) => {

 setTabs(

 tabs

 .map(tab => ({ ...tab, active: false }))

 .map((tab, index) => ({

 ...tab,

 active: index === value

 }))

);

 };

 const active = tabs.findIndex(tab => tab.active);

 const content = tabs[active].content;

 return (

 <div className={classes.root}>

 <Tabs value={active} onChange={onChange}>

 {tabs

 .map(tab => (

 <Tab

 key={tab.label}

 label={tab.label}

 />

))}

 </Tabs>

 <Typography component="div" className={classes.tabContent}>

 {content}

 </Typography>

 </div>

);

}

When you first load the screen, you'll see the following:

If you click on the ITEM TWO tab, here's what you'll see:

How it works...
Let's start by looking at the state of your component that drives the tabs that
are rendered:

const [tabs, setTabs] = useState([

 {

 active: true,

 label: 'Item One',

 content: 'Item One Content'

 },

 {

 active: false,

 label: 'Item Two',

 content: 'Item Two Content'

 },

 {

 active: false,

 label: 'Item Three',

 content: 'Item Three Content'

 }

]);

The tabs state is an array, and each object within it represents a tab to be
rendered. The active Boolean property determines which tab is active. The
label property is what is rendered as the actual tab button and the content is
rendered below the tabs when the tab is clicked on.

Next, let's take a look at the markup used to render the tabs and the content:

<Tabs value={active} onChange={onChange}>

 {tabs.map(tab => <Tab label={tab.label} />)}

</Tabs>

<Typography component="div" className={classes.tabContent}>

 {content}

</Typography>

Instead of manually rendering Tab components, you're iterating over the tabs
state to render each tab. For the selected content, you now only have to
render one Typography component that references content.

Let's take a look at the two active and content values, as follows:

const active = tabs.findIndex(tab => tab.active);

const content = tabs[active].content;

The active constant is the index of the active tab. This value is passed to the
value property of the Tabs component. It's also used by the content value—the
content of the active tab. Both of these constants simplify the markup that
your component needs to render.

There's more...
Now that you're controlling your tabs with state, you can control more
aspects of your rendered tabs. For instance, you could add disabled and hidden
states to each tab. You could also place an icon property to render in your tab
state. Here's a new version of the tabs state:

const [tabs, setTabs] = useState([

 {

 active: true,

 label: 'Home',

 content: 'Home Content',

 icon: <HomeIcon />

 },

 {

 active: false,

 label: 'Settings',

 content: 'Settings Content',

 icon: <SettingsIcon />

 },

 {

 active: false,

 disabled: true,

 label: 'Search',

 content: 'Search Content',

 icon: <SearchIcon />

 },

 {

 active: false,

 hidden: true,

 label: 'Add',

 content: 'AddContent',

 icon: <AddIcon />

 }

]);

Now you have the ability to render disabled tabs that cannot be clicked on—as
is the case with the SEARCH tab. You can also hide tabs completely by
setting hidden to true—as is the case with the Add tab. Every tab now has an
icon as well. Let's see what this looks like when you load the screen:

The icons for every tab are rendered as expected, even for the SEARCH tab,
which has been marked as disabled. There's no Add tab because it was marked
as hidden. Let's take a look at the changes to the Tabs markup that were
necessary to accommodate these new state values:

<Tabs value={active} onChange={onChange}>

 {tabs

 .filter(tab => !tab.hidden)

 .map(tab => (

 <Tab

 key={tab.label}

 disabled={tab.disabled}

 icon={tab.icon}

 label={tab.label}

 />

))}

</Tabs>

The disabled and icon properties of Tab are passed directly from the tab in your
component state. The filter() call was added to remove tabs that are marked
as hidden.

See also
Tabs API documentation: https://material-ui.com/api/tabs/

Tabs demos: https://material-ui.com/demos/tabs/

https://material-ui.com/api/tabs/
https://material-ui.com/demos/tabs/

Abstracting tab content
If your application uses tabs in several places, you can create abstractions that
simplify the markup involved with rendering tabs and tab content. Instead of
having tab content defined outside of the tabs component, why not have
everything be self-contained and easier to read?

How to do it...
Let's say that your app uses tabs in several places throughout your app, and
you want to simplify the markup used to create the tabs and the tab content.
In the places where you use tabs, you just want to be able to render the
content and not have to worry about handing state for the active tab. Here's
some code that creates two new components that simplify the JavaScript
XML (JSX) required for rendering tab content:

import React, { Fragment, Children, useState } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Tabs from '@material-ui/core/Tabs';

import Tab from '@material-ui/core/Tab';

import Typography from '@material-ui/core/Typography';

const styles = theme => ({

 root: {

 flexGrow: 1,

 backgroundColor: theme.palette.background.paper

 },

 tabContent: {

 padding: theme.spacing(2)

 }

});

function TabContainer({ children }) {

 const [value, setValue] = useState(0);

 const onChange = (e, value) => {

 setValue(value);

 };

 return (

 <Fragment>

 <Tabs value={value} onChange={onChange}>

 {Children.map(children, child => (

 <Tab label={child.props.label} />

))}

 </Tabs>

 {Children.map(children, (child, index) =>

 index === value ? child : null

)}

 </Fragment>

);

}

const TabContent = withStyles(styles)(({ classes, children }) => (

 <Typography component="div" className={classes.tabContent}>

 {children}

 </Typography>

));

const AbstractingTabContent = withStyles(styles)(({ classes }) => (

 <div className={classes.root}>

 <TabContainer>

 <TabContent label="Item One">Item One Content</TabContent>

 <TabContent label="Item Two">Item Two Content</TabContent>

 <TabContent label="Item Three">Item Three Content</TabContent>

 </TabContainer>

 </div>

));

export default AbstractingTabContent;

When you load the screen, you'll see three tabs rendered with the first tab
selected by default. The content of the first tab is also visible. The following
screenshot shows what it looks like:

How it works...
Let's start by looking at the markup used to render the tabs in this following
example:

<TabContainer>

 <TabContent label="Item One">Item One Content</TabContent>

 <TabContent label="Item Two">Item Two Content</TabContent>

 <TabContent label="Item Three">Item Three Content</TabContent>

</TabContainer>

This markup is much more concise than using the Tab and Tabs components
directly. This approach also handles rendering the content of the selected tab.
Everything is self-contained with this approach.

Next, let's take a look at the TabContainer component:

function TabContainer({ children }) {

 const [value, setValue] = useState(0);

 const onChange = (e, value) => {

 setValue(value);

 };

 return (

 <Fragment>

 <Tabs value={value} onChange={onChange}>

 {Children.map(children, child => (

 <Tab label={child.props.label} />

))}

 </Tabs>

 {Children.map(children, (child, index) =>

 index === value ? child : null

)}

 </Fragment>

);

}

The TabContainer component handles the state of the selected tab and changing
the state when a different tab is selected. This component renders a Fragment
component so that it can place the selected tab content after the Tabs
component. It's using Children.map() to render the individual Tab components.
The label of the tab comes from the label property of the child. In this
example, there are three children (TabContent). The next call to Children.map()
renders the content of the selected tab. This is based on the value state—if the

child index matches, it's the active content. Otherwise, it gets mapped to null
and nothing is rendered.

Lastly, let's take a look at the TabContent component:

const TabContent = withStyles(styles)(({ classes, children }) => (

 <Typography component="div" className={classes.tabContent}>

 {children}

 </Typography>

));

TabContent takes care of styling the Typography component and renders the child
text within. Although the label property is passed to TabContent, it doesn't
actually use it; instead, it's used by TabContainer when rendering tabs.

There's more...
You can add a value property to the TabsContainer component so that you can set
whichever tab to activate initially. For example, you might want the second
tab to be active instead of the first tab when the screen first loads. To do this,
you'll have to add a default property value for value, call setValue() if the value
state hasn't been set yet, and remove value from the initial state:

function TabContainer({ children, value: valueProp }) {

 const [value, setValue] = useState();

 const onChange = (e, value) => {

 setValue(value);

 };

 if (value === undefined) {

 setValue(valueProp);

 }

 return (

 <Fragment>

 <Tabs value={value} onChange={onChange}>

 {Children.map(children, child => (

 <Tab label={child.props.label} />

))}

 </Tabs>

 {Children.map(children, (child, index) =>

 index === value ? child : null

)}

 </Fragment>

);

}

TabContainer.defaultProps = {

 value: 0

};

The default property is necessary because the value state is now undefined by
default. The setValue() method is called if the value state is undefined. If it is,
then you can set it by passing it the value property value.

Now, you can pass this property to your component to change the initially-
active tab:

<TabContainer value={1}>

 <TabContent label="Item One">Item One Content</TabContent>

 <TabContent label="Item Two">Item Two Content</TabContent>

 <TabContent label="Item Three">Item Three Content</TabContent>

</TabContainer>

The value property is set to 1. It's a zero-based index, which means that the
second tab will be active by default:

When the user starts clicking on other tabs, the value state updates as expected
—only the initially-active tab is impacted by this change.

See also
Tabs API documentation: https://material-ui.com/api/tabs/
Tabs demos: https://material-ui.com/demos/tab/
Working with React child components: https://reactjs.org/docs/react-api.h
tml#reactchildren

https://material-ui.com/api/tabs/
https://material-ui.com/demos/tab/
https://reactjs.org/docs/react-api.html#reactchildren

Tab navigation with routes
You can base your tab content on routes in a routing solution, such as react-
router. To do this, you have to make your tab buttons into links, and you need
to have Route components below the Tabs component to render the current
URL.

How to do it...
Let's say that your app has three URLs and you want tabs as the navigation
mechanism to navigate between the routes. The first step is turning the Tab
buttons into links. The second step is having Route components render the
appropriate tab content, based on which one was clicked on. Here's the code:

import React, { useState } from 'react';

import { Route, Link } from 'react-router-dom';

import { withStyles } from '@material-ui/core/styles';

import AppBar from '@material-ui/core/AppBar';

import Tabs from '@material-ui/core/Tabs';

import Tab from '@material-ui/core/Tab';

import Typography from '@material-ui/core/Typography';

const styles = theme => ({

 root: {

 flexGrow: 1,

 backgroundColor: theme.palette.background.paper

 },

 tabContent: {

 padding: theme.spacing(2)

 }

});

function TabNavigationWithRoutes({ classes }) {

 const [value, setValue] = useState(0);

 const onChange = (e, value) => {

 setValue(value);

 };

 return (

 <div className={classes.root}>

 <AppBar position="static">

 <Tabs value={value} onChange={onChange}>

 <Tab label="Item One" component={Link} to="/" />

 <Tab label="Item Two" component={Link} to="/page2" />

 <Tab label="Item Three" component={Link} to="/page3" />

 </Tabs>

 </AppBar>

 <Route

 exact

 path="/"

 render={() => (

 <Typography component="div" className={classes.tabContent}>

 Item One

 </Typography>

)}

 />

 <Route

 exact

 path="/page2"

 render={() => (

 <Typography component="div" className={classes.tabContent}>

 Item Two

 </Typography>

)}

 />

 <Route

 exact

 path="/page3"

 render={() => (

 <Typography component="div" className={classes.tabContent}>

 Item Three

 </Typography>

)}

 />

 </div>

);

}

export default withStyles(styles)(TabNavigationWithRoutes);

When you load the screen, the first tab should be selected and the first tab
content should be rendered:

If you click on the ITEM TWO tab, you'll be taken to the /page2 URL. This
results in the active Route component changing the tab content, and the
changed tab state changes the selected tab:

How it works...
The state portion of your component remains the same as any other
component that uses the Tabs component. The onChange event changes the value
state, which is passed to Tabs as a property to mark the selected tab.

Let's take a closer look at the Tab components:

<Tabs value={value} onChange={onChange}>

 <Tab label="Item One" component={Link} to="/" />

 <Tab label="Item Two" component={Link} to="/page2" />

 <Tab label="Item Three" component={Link} to="/page3" />

</Tabs>

A major difference with this implementation compared to something more
standard is that you're using Link as the component property value. The Link
component, from react-router-dom, is used to make the tab button into a link
that the router will process. The to property is actually passed to Link, which is
how it knows where the link should take the user.

Below the Tabs component are the routes that render the tab content, based on
the tab that the user has clicked on. Let's take a look at one of these Routes:

<Route

 exact

 path="/"

 render={() => (

 <Typography

 component="div"

 className={classes.tabContent}

 >

 Item One

 </Typography>

)}

/>

The content that is rendered below the tab is based on the current URL, not
the value state of your component. The value state is only used to control the
state of the selected tab.

There's more...
Given that the active tab depends on the active route, you could completely
remove any tab-related state. First, you create a TabContainer component to
render the Tabs component:

const TabContainer = ({ value }) => (

 <AppBar position="static">

 <Tabs value={value}>

 <Tab label="Item One" component={Link} to="/" />

 <Tab label="Item Two" component={Link} to="/page2" />

 <Tab label="Item Three" component={Link} to="/page3" />

 </Tabs>

 </AppBar>

);

Instead of supplying an onChange() handler to the Tabs component, the value
property is passed from TabContainer. Now, you can render this component in
each Route component, passing the appropriate value property:

const TabNavigationWithRoutes = withStyles(styles)(({ classes }) => (

 <div className={classes.root}>

 <Route

 exact

 path="/"

 render={() => (

 <Fragment>

 <TabContainer value={0} />

 <Typography component="div" className={classes.tabContent}>

 Item One

 </Typography>

 </Fragment>

)}

 />

 <Route

 exact

 path="/page2"

 render={() => (

 <Fragment>

 <TabContainer value={1} />

 <Typography component="div" className={classes.tabContent}>

 Item Two

 </Typography>

 </Fragment>

)}

 />

 <Route

 exact

 path="/page3"

 render={() => (

 <Fragment>

 <TabContainer value={2} />

 <Typography component="div" className={classes.tabContent}>

 Item Three

 </Typography>

 </Fragment>

)}

 />

 </div>

));

export default TabNavigationWithRoutes;

There's no more confusing the component state with the current Route and how
the two interact. Everything is handled by the route.

See also
Tabs API documentation: https://material-ui.com/api/tabs/
Tabs demos: https://material-ui.com/demos/tabs/
React Router documentation: https://reacttraining.com/react-router/

https://material-ui.com/api/tabs/
https://material-ui.com/demos/tabs/
https://reacttraining.com/react-router/

Expansion Panels - Group Content
into Panel Sections
In this chapter, you'll learn about the following:

Stateful expansion panels
Formatting panel headers
Scrollable panel content
Lazy loading panel content

Introduction
Expansion panels are containers for your content. Usually, screens in your
Material-UI applications are divided into sections so that users can mentally
organize the information that they're looking at. The ExpansionPanel component
is one way that you can create these sections. You can even combine
expansion panels with other organizational components, such as tabs, to
provide a consistent organizational layout for your users.

Stateful expansion panels
You can use component the state to control every aspect of your expansion
panels. For example, each panel could be represented as an object in an array,
where each object has panel title and panel content properties. There are other
aspects you can control, such as visibility and disabled panels.

How to do it...
Let's say that your component has a state for rendering expansion panels. The
panels themselves are objects in an array. Here's the code to do this:

import React, { useState, Fragment } from 'react';

import ExpansionPanel from '@material-ui/core/ExpansionPanel';

import ExpansionPanelSummary from '@material-ui/core/ExpansionPanelSummary';

import ExpansionPanelDetails from '@material-ui/core/ExpansionPanelDetails';

import Typography from '@material-ui/core/Typography';

import ExpandMoreIcon from '@material-ui/icons/ExpandMore';

export default function StatefulExpansionPanels() {

 const [panels] = useState([

 {

 title: 'First Panel Title',

 content: 'First panel content...'

 },

 {

 title: 'Second Panel Title',

 content: 'Second panel content...'

 },

 {

 title: 'Third Panel Title',

 content: 'Third panel content...'

 },

 {

 title: 'Fourth Panel Title',

 content: 'Fourth panel content...'

 }

]);

 return (

 <Fragment>

 {panels

 .filter(panel => !panel.hidden)

 .map((panel, index) => (

 <ExpansionPanel

 key={index}

 disabled={panel.disabled}

 >

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

 <Typography>{panel.title}</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails>

 <Typography>{panel.content}</Typography>

 </ExpansionPanelDetails>

 </ExpansionPanel>

))}

 </Fragment>

);

}

When you load the screen, here's what you'll see:

Here's what the first two panels look like when they're expanded:

The third panel cannot be expanded because it's disabled.

How it works...
The state defines everything about expansion panels. This includes the panel
title, the panel content that's displayed when the panel is expanded, the
disabled property, and whether or not the panel is hidden:

const [panels] = useState([

 {

 title: 'First Panel Title',

 content: 'First panel content...'

 },

 {

 title: 'Second Panel Title',

 content: 'Second panel content...'

 },

 {

 title: 'Third Panel Title',

 content: 'Third panel content...'

 },

 {

 title: 'Fourth Panel Title',

 content: 'Fourth panel content...'

 }

]);

The disabled property marks the panel as disabled. This means that the user
can see the panel title, but it cannot be expanded. It's also visually marked as
not being expandable. The hidden property ensures that the panel isn't rendered
at all. This is useful for cases when you don't want the user to know about it
at all.

Next, let's look at the code that renders each panel based on the component
state:

{panels

 .filter(panel => !panel.hidden)

 .map((panel, index) => (

 }>

 {panel.title}

 {panel.content}

))}

The filter() call removes panels from the array that have the hidden property
set to true.

An alternative to using a hidden property to hide panels is removing them
completely from the array. It really depends on personal preference—
toggling a property value versus adding and removing values from an array.

Each panel is mapped to ExpansionPanel components using map(). The expansion
panel uses an ExpansionPanelSummary component for the title and the content goes
into the ExpansionPanelDetails component.

There's more...
You can also use state to control whether or not a panel is expanded. For
example, you can use ExpansionPanel components to create an accordion widget
—there's always one panel open, and opening another panel closes anything
that's open.

The first step is to add an expanded state to determine which panel is open at
any given time:

const [expanded, setExpanded] = useState(0);

const [panels] = useState([

 {

 title: 'First Panel Title',

 content: 'First panel content...'

 },

 {

 title: 'Second Panel Title',

 content: 'Second panel content...'

 },

 {

 title: 'Third Panel Title',

 content: 'Third panel content...'

 },

 {

 title: 'Fourth Panel Title',

 content: 'Fourth panel content...'

 }

]);

The expanded state defaults to 0, meaning that the first panel is expanded by
default. As the expanded panels change, the expanded state changes to reflect
the index of the expanded panel. Next, you'll add an onChange handler for the
ExpansionPanel component:

const onChange = expanded => () => {

 setExpanded(expanded);

};

This is a higher-order function—it takes the index of the panel you want to
expand and returns a function that sets the expanded state when the given
panel is clicked on. Finally, you can add the new expanded state and the onChange
handler to the ExpansionPanel component:

<ExpansionPanel

 key={index}

 expanded={index === expanded}

 disabled={panel.disabled}

 onChange={onChange(index)}

>

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

 <Typography>{panel.title}</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails>

 <Typography>{panel.content}</Typography>

 </ExpansionPanelDetails>

</ExpansionPanel>

The expanded property is based on the index of the current panel, equaling the
expanded state of your component. If they're equal, the panel is expanded.
The onChange handler is also assigned to ExpansionPanel, which changes the
expanded state when the panel is clicked on.

See also
ExpansionPanel demos: https://material-ui.com/demos/expansion-panels/
ExpansionPanel API documentation: https://material-ui.com/api/expansion-panel
/

ExpansionPanelSummary API documentation: https://material-ui.com/api/expansio
n-panel-summary/

ExpansionPanelDetails API documentation: https://material-ui.com/api/expansio
n-panel-details/

https://material-ui.com/demos/expansion-panels/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-details/

Formatting panel headers
Headers in ExpansionPanel components can be formatted. Typically, the
Typography component is used to render text within an expansion panel header.
This means that you can use properties of Typography to customize the way that
your expansion panel headers appear.

How to do it...
Let's say that you want the text within your ExpansionPanel headers to stand out
relative to the text in the content section of each panel. You can change the
variant property of the Typography component in the ExpansionPanelSummary
component. Here's the code to do it:

import React, { Fragment } from 'react';

import ExpansionPanel from '@material-ui/core/ExpansionPanel';

import ExpansionPanelSummary from '@material-ui/core/ExpansionPanelSummary';

import ExpansionPanelDetails from '@material-ui/core/ExpansionPanelDetails';

import Typography from '@material-ui/core/Typography';

import ExpandMoreIcon from '@material-ui/icons/ExpandMore';

const FormattingPanelHeaders = () => (

 <Fragment>

 <ExpansionPanel>

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

 <Typography variant="subtitle1">Devices</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails>

 <Typography>Devices content...</Typography>

 </ExpansionPanelDetails>

 </ExpansionPanel>

 <ExpansionPanel>

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

 <Typography variant="subtitle1">Networks</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails>

 <Typography>Networks content...</Typography>

 </ExpansionPanelDetails>

 </ExpansionPanel>

 <ExpansionPanel>

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

 <Typography variant="subtitle1">Storage</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails>

 <Typography>Storage content...</Typography>

 </ExpansionPanelDetails>

 </ExpansionPanel>

 </Fragment>

);

export default FormattingPanelHeaders;

Here's what the panels look like when the screen loads:

Here's what the panels look like when they're expanded:

How it works...
To make the heading text stand out relative to the text in the
ExpansionPanelDetails component, you only had to change the variant property of
the Typography component used in the header. In this case, you're using the
subtitle1 variant, but there are a number of other variants that you can use
here.

There's more...
In addition to formatting header text, you can add other components, such as
icons. Let's modify the example to include icons for each panel header. First,
you'll import the icons that you need:

import DevicesIcon from 'material-ui/icons/Devices';

import NetworkWifiIcon from 'material-ui/icons/NetworkWifi';

import StorageIcon from '@material-ui/icons/Storage';

Then, you'll add a new icon style that adds space between the icon and text in
the panel header:

const styles = theme => ({

 icon: {

 marginRight: theme.spacing(1)

 }

});

Lastly, here's the markup to include the icons that you've imported in the
appropriate panel header:

<Fragment>

 <ExpansionPanel>

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

 <DevicesIcon className={classes.icon} />

 <Typography variant="subtitle1">Devices</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails>

 <Typography>Devices content...</Typography>

 </ExpansionPanelDetails>

 </ExpansionPanel>

 <ExpansionPanel>

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

 <NetworkWifiIcon className={classes.icon} />

 <Typography variant="subtitle1">Networks</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails>

 <Typography>Networks content...</Typography>

 </ExpansionPanelDetails>

 </ExpansionPanel>

 <ExpansionPanel>

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

 <StorageIcon className={classes.icon} />

 <Typography variant="subtitle1">Storage</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails>

 <Typography>Storage content...</Typography>

 </ExpansionPanelDetails>

 </ExpansionPanel>

</Fragment>

The icon comes before the Typography component in the ExpansionPanelSummary
component. Here's what the panels look like now:

Here's what they look like when they're expanded:

By combining iconography and typography, you can make the headers of
your expansion panels stand out, making your content easier to navigate.

See also
ExpansionPanel demos: https://material-ui.com/demos/expansion-panels/
ExpansionPanel API documentation: https://material-ui.com/api/expansion-panel
/

ExpansionPanelSummary API documentation: https://material-ui.com/api/expansio
n-panel-summary/

ExpansionPanelDetails API documentation: https://material-ui.com/api/expansio
n-panel-details/

https://material-ui.com/demos/expansion-panels/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-details/

Scrollable panel content
The height of an ExpansionPanel component, when expanded, changes so that all
of the content is visible on the screen. In cases where you have a lot of
content in your panels, this isn't ideal because the panel headers aren't visible
to the user. Instead of having to scroll down the entire page, you can make
the content within the panel scrollable.

How to do it...
Let's say that you have three panels, each with several paragraphs of text.
Rather than having each panel adjust its height to accommodate the content,
you can make the panels a fixed height and scrollable. Here's the code:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import ExpansionPanel from '@material-ui/core/ExpansionPanel';

import ExpansionPanelSummary from '@material-ui/core/ExpansionPanelSummary';

import ExpansionPanelDetails from '@material-ui/core/ExpansionPanelDetails';

import Typography from '@material-ui/core/Typography';

import ExpandMoreIcon from '@material-ui/icons/ExpandMore';

const styles = theme => ({

 panelDetails: {

 flexDirection: 'column',

 height: 150,

 overflow: 'auto'

 }

});

const IpsumContent = () => (

 <Fragment>

 <Typography paragraph>

 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer

 ultricies nibh ut ipsum placerat, eget egestas leo imperdiet.

 Etiam consectetur mollis ultrices. Fusce eu eros a dui maximus

 rutrum. Aenean at dolor eu nunc ultricies placerat. Sed finibus

 porta sapien eget euismod. Donec eget tortor non turpis

 hendrerit euismod. Phasellus at commodo augue. Maecenas

 scelerisque augue at mattis pharetra. Aenean fermentum sed neque

 id feugiat.

 </Typography>

 <Typography paragraph>

 Aliquam erat volutpat. Donec sit amet venenatis leo. Nullam

 tincidunt diam in nisi pretium, sit amet tincidunt nisi aliquet.

 Proin quis justo consectetur, congue nisi nec, pharetra erat. Ut

 volutpat pulvinar neque vitae vestibulum. Phasellus nisl risus,

 dapibus at sapien in, aliquam tempus tellus. Integer accumsan

 tortor id dolor lacinia, et pulvinar est porttitor. Mauris a est

 vitae arcu iaculis dictum. Sed posuere suscipit ultricies.

 Vivamus a lacus in dui vehicula tincidunt.

 </Typography>

 <Typography paragraph>

 In ut velit laoreet, blandit nisi id, tempus mi. Mauris interdum

 in turpis vel tempor. Vivamus tincidunt turpis vitae porta

 dignissim. Quisque condimentum augue arcu, quis tincidunt erat

 luctus sit amet. Sed quis ligula malesuada, sollicitudin nisl

 nec, molestie tellus. Donec commodo consequat gravida. Mauris in

 rhoncus tellus, eget posuere risus. Pellentesque eget lectus

 lorem. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

 Integer condimentum, sapien varius vulputate lobortis, urna elit

 vestibulum ligula, sit amet interdum lectus augue ac eros.

 Vestibulum lorem ante, tincidunt eget faucibus id, placerat non

 est. Vivamus pretium consectetur nunc at imperdiet. Nullam eu

 elit dui. In imperdiet magna ac dui aliquam gravida. Aenean

 ipsum ex, fermentum eu pretium quis, posuere et velit.

 </Typography>

 </Fragment>

);

const ScrollablePanelContent = withStyles(styles)(({ classes }) => (

 <Fragment>

 <ExpansionPanel>

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

 <Typography>First</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails className={classes.panelDetails}>

 <IpsumContent />

 </ExpansionPanelDetails>

 </ExpansionPanel>

 <ExpansionPanel>

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

 <Typography>Second</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails className={classes.panelDetails}>

 <IpsumContent />

 </ExpansionPanelDetails>

 </ExpansionPanel>

 <ExpansionPanel>

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

 <Typography>Third</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails className={classes.panelDetails}>

 <IpsumContent />

 </ExpansionPanelDetails>

 </ExpansionPanel>

 </Fragment>

));

export default ScrollablePanelContent;

The paragraph content in the Typography components has been truncated for
brevity—you can view the full text in the GitHub repository for this book.

Here's what it looks like when the first panel is expanded:

If you move your mouse pointer over the content of the expanded panel, you
can now scroll the content to the bottom of the paragraph, within the panel.
Here's what it looks like when the content has been scrolled to the bottom:

How it works...
The IpsumContent component is just a convenience component that holds
paragraphs of content so that you don't have to repeat it in every panel. Let's
start by looking at the styles used in this example:

const styles = theme => ({

 panelDetails: {

 flexDirection: 'column',

 height: 150,

 overflow: 'auto'

 }

});

Panel content uses flex box styles to lay out its content. It flows according to
row direction by default, so you have to set the flexDirection style to column if
you want the content to flow in a top-down direction. Next, you can set a
fixed height for your panel content—in this case, it's 150px. Finally, the overflow
style set to auto will enable vertical scrolling for the panel content.

You can then apply the panelDetails class to each of your ExpansionPanelContent
components:

<ExpansionPanelDetails className={classes.panelDetails}>

 <IpsumContent />

</ExpansionPanelDetails>

See also
ExpansionPanel demos: https://material-ui.com/demos/expansion-panels/
ExpansionPanel API documentation: https://material-ui.com/api/expansion-panel
/

ExpansionPanelSummary API documentation: https://material-ui.com/api/expansio
n-panel-summary/

ExpansionPanelDetails API documentation: https://material-ui.com/api/expansio
n-panel-details/

https://material-ui.com/demos/expansion-panels/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-details/

Lazy loading panel content
If you're rendering expansion panels that are all collapsed by default, you
don't have to populate the ExpansionPanelDetails component up front. Instead,
you can wait for the user to expand the panel—then you can make whatever
API calls you need in order to render the content.

How to do it...
Let's say that you have an API function that fetches content based on an
index value. For example, if the first panel is expanded, the index value will be
0. You need to be able to call this function when the panel is expanded,
supplying the corresponding index value. Here's what the code looks like:

import React, { useState, Fragment } from 'react';

import ExpansionPanel from '@material-ui/core/ExpansionPanel';

import ExpansionPanelSummary from '@material-ui/core/ExpansionPanelSummary';

import ExpansionPanelDetails from '@material-ui/core/ExpansionPanelDetails';

import Typography from '@material-ui/core/Typography';

import ExpandMoreIcon from '@material-ui/icons/ExpandMore';

const fetchPanelContent = index =>

 new Promise(resolve =>

 setTimeout(

 () =>

 resolve(

 [

 'First panel content...',

 'Second panel content...',

 'Third panel content...',

 'Fourth panel content...'

][index]

),

 1000

)

);

export default function LazyLoadingPanelContent() {

 const [panels, setPanels] = useState([

 { title: 'First Panel Title' },

 { title: 'Second Panel Title' },

 { title: 'Third Panel Title' },

 { title: 'Fourth Panel Title' }

]);

 const onChange = index => e => {

 if (!panels[index].content) {

 fetchPanelContent(index).then(content => {

 const newPanels = [...panels];

 newPanels[index] = { ...newPanels[index], content };

 setPanels(newPanels);

 });

 }

 };

 return (

 <Fragment>

 {panels.map((panel, index) => (

 <ExpansionPanel key={index} onChange={onChange(index)}>

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

 <Typography>{panel.title}</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails>

 <Typography>{panel.content}</Typography>

 </ExpansionPanelDetails>

 </ExpansionPanel>

))}

 </Fragment>

);

}

Here's what the four panels look like when the screen first loads:

Try expanding the first panel. It expands right away but, for about one
second, there's nothing there. Then the content appears:

How it works...
Let's start with the fetchPanelContent() API function:

const fetchPanelContent = index =>

 new Promise(resolve =>

 setTimeout(

 () =>

 resolve(

 [

 'First panel content...',

 'Second panel content...',

 'Third panel content...',

 'Fourth panel content...'

][index]

),

 1000

)

);

Since this is just a mock, it returns a promise directly. It uses setTimeout() to
simulate latency, similar to what you would experience using a real API. The
promise resolves with the string value that's looked up from an array, based
on the index argument.

Next, let's look at the onChange handler function that's called when ExpansionPanel
expands:

const onChange = index => (e) => {

 if (!panels[index].content) {

 fetchPanelContent(index).then(content => {

 const newPanels = [...panels];

 newPanels[index] = { ...newPanels[index], content };

 setPanels(newPanels);

 });

 }

};

First, this function checks if the panel that's expanded has any content in its
state. If not, you know that you have to fetch it by calling fetchPanelContent().
When the returned promise resolves, you can call setPanels() to update the
panels array and set the content at the appropriate index.

The rest of your component just renders the ExpansionPanel components based

on the panels array, using the content state as the panel content. When content
is updated, it is reflected in the rendered content.

There's more...
There are a couple of improvements that you could make with this example.
First, you could show a progress indicator within the panel while the content
is loading so that the user knows that something is happening. The second
improvement can be made both when the panel expands and when it
collapses—this should be avoided.

Let's start with the progress indicator. For this, you'll need a utility
component and a style for the ExpansionPanelDetails component:

const MaybeProgress = ({ loading }) =>

 loading ? <LinearProgress /> : null;

const useStyles = makeStyles(theme => ({

 panelDetails: { flexDirection: 'column' }

}));

The MaybeProgress component takes a loading property that, when true, results in
a LinearProgress component. Otherwise, nothing is rendered. The flexDirection
style is set to column; otherwise, the LinearProgress component won't display.
Now let's modify the markup rendered by LazyLoadingPanelContent so it uses
these two additions:

return (

 <Fragment>

 {panels.map((panel, index) => (

 <ExpansionPanel key={index} onChange={onChange(index)}>

 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

 <Typography>{panel.title}</Typography>

 </ExpansionPanelSummary>

 <ExpansionPanelDetails className={classes.panelDetails}>

 <MaybeProgress loading={!panel.content} />

 <Typography>{panel.content}</Typography>

 </ExpansionPanelDetails>

 </ExpansionPanel>

))}

 </Fragment>

);

The panelDetails class is now used by the ExpansionPanelDetails component. The
first child of this component is now MaybeProgress. The loading property is true
until the API call populates the content state for the given panel. This means

that the progress indicator will be visible until the content loads.

Here's what the first panel looks like when expanded, before the content has
loaded:

Once loaded, the content is rendered in place of the progress indicator.
Finally, let's make sure that the API call to load content isn't made when the
panel is collapsing. This requires an adjustment to the onChange() handler:

const onChange = index => (e, expanded) => {

 if (!panels[index].content && expanded) {

 fetchPanelContent(index).then(content => {

 const newPanels = [...panels];

 newPanels[index] = { ...newPanels[index], content };

 setPanels(newPanels);

 });

 }

};

The second argument passed to this function, expanded, tells you whether or not
the panel is expanding. If this value is false, you know that the panel is
collapsed and that the API call shouldn't be made. This condition has been
added to look for content that has already been loaded for the panel.

See also
ExpansionPanel demos: https://material-ui.com/demos/expansion-panels/
ExpansionPanel API documentation: https://material-ui.com/api/expansion-panel
/

ExpansionPanelSummary API documentation: https://material-ui.com/api/expansio
n-panel-summary/

ExpansionPanelDetails API documentation: https://material-ui.com/api/expansio
n-panel-details/

https://material-ui.com/demos/expansion-panels/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-details/

Lists - Display Simple Collection
Data
In this chapter, you'll cover the following recipes:

Using state to render list items
List icons
List avatars and text
List sections
Nested lists
List controls
Scrolling lists

Introduction
The List component in Material-UI is used to render data collections. Lists
are like tables, only simpler. If you need to display an array of users, for
example, you can render them in a list, showing only the most relevant data,
instead of several properties in a tabular format. Material-UI lists are generic
and provide a lot of flexibility.

Using state to render list items
The data source used to render List components often comes from the state of
your component. A collection—usually an array of objects—is mapped to
ListItem components. As the objects in this array change, the Material-UI list
items change on the screen.

How to do it...
Let's say that you have an array of three objects that you need to display as a
list on one of your screens. You can add this array to the state of your
component, then map each array item to a ListItem component. Here's the
code:

import React, { useState } from 'react';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemText from '@material-ui/core/ListItemText';

export default function UsingStatetoRenderListItems() {

 const [items, setItems] = useState([

 { name: 'First Item', timestamp: new Date() },

 { name: 'Second Item', timestamp: new Date() },

 { name: 'Third Item', timestamp: new Date() }

]);

 return (

 <List>

 {items.map((item, index) => (

 <ListItem key={index} button dense>

 <ListItemText

 primary={item.name}

 secondary={item.timestamp.toLocaleString()}

 />

 </ListItem>

))}

 </List>

);

}

Here's what you'll see when you first load the screen:

How it works...
Let's start by looking at the items state:

const [items, setItems] = useState([

 { name: 'First Item', timestamp: new Date() },

 { name: 'Second Item', timestamp: new Date() },

 { name: 'Third Item', timestamp: new Date() }

]);

The name property is the primary text, and the timestamp property is the secondary
text for each list item. Next, let's look at the List markup that transforms this
state into rendered list items:

<List>

 {items.map((item, index) => (

 <ListItem key={index} button dense>

 <ListItemText

 primary={item.name}

 secondary={item.timestamp.toLocaleString()}

 />

 </ListItem>

))}

</List>

The ListItem component has two Boolean properties passed to it – button and
dense. The button property makes the list item behave like a button. For
example, if you move your mouse pointer over an item in the list, you'll see
the hover styles applied to it. The dense property removes extra padding from
the list item. Without this property, the list takes up more space on the screen.

The ListItemText component uses the primary and secondary properties to render
the name and timestamp properties respectively. The primary text is meant to stand
out relative to the secondary information displayed in the item – in this case,
the timestamp.

There's more...
This example could have used props instead of state, because the items never
changed. Let's modify it so that the user can select items from the list. Here's
what the new List markup looks like:

<List>

 {items.map((item, index) => (

 <ListItem

 key={index}

 button

 dense

 selected={item.selected}

 onClick={onClick(index)}

 >

 <ListItemText

 primary={item.name}

 secondary={item.timestamp.toLocaleString()}

 primaryTypographyProps={{

 color: item.selected ? 'primary' : undefined

 }}

 />

 </ListItem>

))}

</List>

The selected property passed to the ListItem component will apply selected
styles to the item when true. This value comes from the item.selected state,
which is false by default for every item (nothing is selected). Next, the
ListItem component has an onClick handler.

The ListItemText component also has styles applied to it based on the selected
state of the item. Behind the scenes, item text is rendered using the Typography
component. You can use the primaryTypographyProps property to pass properties
to the Typography component. In this case, you're changing the color of the text
to primary when it's selected.

Let's look at the onClick() handler as follows:

const onClick = index => () => {

 const item = items[index];

 const newItems = [...items];

 newItems[index] = { ...item, selected: !item.selected };

 setItems(newItems);

};

This is a higher-order function, which returns an event handler function based
on the index argument. It toggles the selected state for the item at the given
index.

The onClick property isn't a ListItem property. It's a button property. Since you've set the
button property to true, ListItem uses a button property and passes it to your onClick property.

Here's what the list looks like when First Item is selected:

The change to the background color is caused by the selected property of
ListItem. The change to the text color is caused by the primaryTypographyProps
property of ListItemText.

See also
List demos: https://material-ui.com/demos/lists/
Typography API documentation: https://material-ui.com/api/typography/

https://material-ui.com/demos/lists/
https://material-ui.com/api/typography/

List icons
ListItem components have first-class support for icons. By rendering icons in
each list item, you can make it clear to the user what types of objects are
displayed in the list.

How to do it...
Let's say that you have an array of user objects that you want to render in a
List. You could render each item with a user icon to make it clear what each
item in the list is. The code for this is as follows:

import React, { useState } from 'react';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemText from '@material-ui/core/ListItemText';

import ListItemIcon from '@material-ui/core/ListItemIcon';

import AccountCircleIcon from '@material-ui/icons/AccountCircle';

export default function ListIcons() {

 const [items, setItems] = useState([

 { name: 'First User' },

 { name: 'Second User' },

 { name: 'Third User' }

]);

 return (

 <List>

 {items.map((item, index) => (

 <ListItem key={index} button>

 <ListItemIcon>

 <AccountCircleIcon />

 </ListItemIcon>

 <ListItemText primary={item.name} />

 </ListItem>

))}

 </List>

);

}

When you load the screen, this is what the list should look like:

How it works...
The ListItemIcon component can be used as a child of ListItem components. In
the previous example, it comes before the text, so it ends up to the left of the
item text:

<ListItem button key={index}>

 <ListItemIcon>

 <AccountCircleIcon />

 </ListItemIcon>

 <ListItemText primary={item.name} />

</ListItem>

You could place the icon after the text as well:

<ListItem button key={index}>

 <ListItemText primary={item.name} />

 <ListItemIcon>

 <AccountCircleIcon />

 </ListItemIcon>

</ListItem>

Here's how it looks:

There's more...
You can mark ListItem components as selected by setting the selected property
to true. You can also change the icon to give a better visual indication that an
item has been selected. Here's the updated code:

import React, { useState } from 'react';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemText from '@material-ui/core/ListItemText';

import ListItemIcon from '@material-ui/core/ListItemIcon';

import AccountCircleIcon from '@material-ui/icons/AccountCircle';

import CheckCircleOutlineIcon from '@material-ui/icons/CheckCircleOutline';

const MaybeSelectedIcon = ({ selected, Icon }) =>

 selected ? <CheckCircleOutlineIcon /> : <Icon />;

export default function ListIcons() {

 const [items, setItems] = useState([

 { name: 'First User' },

 { name: 'Second User' },

 { name: 'Third User' }

]);

 const onClick = index => () => {

 const item = items[index];

 const newItems = [...items];

 newItems[index] = { ...item, selected: !item.selected };

 setItems(newItems);

 };

 return (

 <List>

 {items.map((item, index) => (

 <ListItem

 key={index}

 button

 selected={item.selected}

 onClick={onClick(index)}

 >

 <ListItemText primary={item.name} />

 <ListItemIcon>

 <MaybeSelectedIcon

 selected={item.selected}

 Icon={AccountCircleIcon}

 />

 </ListItemIcon>

 </ListItem>

))}

 </List>

);

}

Here's what the list looks like with First User selected:

The icon for the selected items changes into a circled checkmark. Let's break
down the changes that were introduced to make this happen, starting with the
MaybeSelectedIcon component:

const MaybeSelectedIcon = ({ selected, Icon }) =>

 selected ? <CheckCircleOutlineIcon /> : <Icon />;

This component will render either CheckCircleOutlineIcon or the Icon component
that is passed in as a property. This depends on the selected property. Next,
let's look at how this component is used inside ListItemIcon:

<ListItemIcon>

 <MaybeSelectedIcon

 selected={item.selected}

 Icon={AccountCircleIcon}

 />

</ListItemIcon>

When a list item is clicked on, the selected state for that item is toggled. Then,
the selected state is passed to MaybeSelectedIcon. The AccountCircleIcon component
is the icon that's rendered when the list item isn't selected, because it's passed
to the Icon property.

See also
List demos: https://material-ui.com/demos/lists/
ListItemIcon API documentation: https://material-ui.com/api/list-item-icon/

https://material-ui.com/demos/lists/
https://material-ui.com/api/list-item-icon/

List avatars and text
If your list items have primary and secondary text, using an icon on its own can
be less visually appealing than with an avatar surrounding the icon. It fills the
space within the list item better.

How to do it...
Let's say that you have four categories of messages that can be displayed by
your app. To access a given category, the user clicks on one of the list items.
To help the user understand the categories, you'll use icons. And to make the
icons stand out against the primary and secondary text of the list item, you'll
wrap it with an Avatar component. Here's the code:

import React, { useState } from 'react';

import clsx from 'clsx';

import Avatar from '@material-ui/core/Avatar';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemText from '@material-ui/core/ListItemText';

import ListItemIcon from '@material-ui/core/ListItemIcon';

import MarkunreadIcon from '@material-ui/icons/Markunread';

import PriorityHighIcon from '@material-ui/icons/PriorityHigh';

import LowPriorityIcon from '@material-ui/icons/LowPriority';

import DeleteIcon from '@material-ui/icons/Delete';

export default function ListAvatarsAndText({ classes }) {

 const [items] = useState([

 {

 name: 'Unread',

 updated: '2 minutes ago',

 Icon: MarkunreadIcon,

 notifications: 1

 },

 {

 name: 'High Priority',

 updated: '30 minutes ago',

 Icon: PriorityHighIcon

 },

 {

 name: 'Low Priority',

 updated: '3 hours ago',

 Icon: LowPriorityIcon

 },

 { name: 'Junk', updated: '6 days ago', Icon: DeleteIcon }

]);

 return (

 <List>

 {items.map(({ Icon, ...item }, index) => (

 <ListItem button>

 <ListItemIcon>

 <Avatar>

 <Icon />

 </Avatar>

 </ListItemIcon>

 <ListItemText

 primary={item.name}

 secondary={item.updated}

 />

 </ListItem>

))}

 </List>

);

}

Here's what the list looks like when rendered:

The circle that surrounds the icon is the Avatar component, and it helps the
icon stand out. Here's what this list looks like without avatars:

It's the same content and the same icons, but because of the height of the list
item text, there's a lot of excess space surrounding the icon. The Avatar
component helps fill this space while drawing attention to the icon.

How it works...
The Avatar component is used on icons with a circular shape. The color of the
circle comes from the theme palette – the shade of grey used depends on
whether the theme is light or dark. The icon itself is passed as the child
element:

<ListItemIcon>

 <Avatar>

 <Icon />

 </Avatar>

</ListItemIcon>

There's more...
If you use an Avatar with the icons in your list items, you can change the color
of the Avatar and you can apply a badge to indicate unacknowledged actions to
be taken. Let's modify the example so that each item in the items state can
have a notifications property; that is, a number representing the number of
unread messages for the category. If this number is greater than 0, you can
change the Avatar color and display number of notifications in a badge. Here's
what the result looks like:

The first item in the list has an Avatar that's using the primary theme color and a
badge showing the number of notifications. The rest of the items don't have
any notifications, so the Avatar color uses the default, and the badge isn't
displayed.

Let's see how this is done, starting with the styles:

const styles = theme => ({

 activeAvatar: {

 backgroundColor: theme.palette.primary[theme.palette.type]

 }

});

The activeAvatar style is applied to the Avatar component when the notifications
state is a number greater than 0. It looks up the primary theme color based on
the theme type (light or dark). Next, let's look at the state of the first item in
the items array:

{

 name: 'Unread',

 updated: '2 minutes ago',

 Icon: MarkunreadIcon,

 notifications: 1

}

Because the notifications value is 1, the color of the avatar changes, and the
badge is displayed. Lastly, let's see how all of this comes together in the
component markup using the Badge and Avatar components:

<Badge

 color={item.notifications ? 'secondary' : undefined}

 badgeContent={

 item.notifications ? item.notifications : null

 }

>

 <Avatar

 className={clsx({

 [classes.activeAvatar]: item.notifications

 })}

 >

 <Icon />

 </Avatar>

</Badge>

The color property of Badge is based on the notifications state of the item being
greater than 0. If it is, the primary color is used. If it isn't, undefined is passed
to Badge. In this case, this is necessary so that an empty badge circle doesn't
show up when there aren't any notifications.

Passing undefined as a property value is equivalent to not setting the property at all.

Next, the badgeContent property is set based on the notifications state of the
item. If it's not greater than 0, then you don't want any value set. Finally,
setting the color of the Avatar component uses clsx() to apply the activeAvatar
class if the notifications state for the item is greater than 0.

See also
Badge demos: https://material-ui.com/demos/badges/
Avatar demos: https://material-ui.com/demos/avatars/
List demos: https://material-ui.com/demos/lists/

https://material-ui.com/demos/badges/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/lists/

List sections
Once your lists have more than just a few items in them, you might want to
consider organizing the items into sections. To do this, you split your lists
into several smaller lists, which are stacked on top of one another with a
divider in between them.

How to do it...
Let's say that you have several list items that can be divided into three
sections. You can use three List components to group your items into their
respective sections, and use a Divider component to visually indicate the
section boundary for the user. Here's what the code looks like:

import React, { Fragment } from 'react';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemText from '@material-ui/core/ListItemText';

import Divider from '@material-ui/core/Divider';

const ListSections = () => (

 <Fragment>

 <List>

 <ListItem>

 <ListItemText primary="First" />

 </ListItem>

 <ListItem>

 <ListItemText primary="Second" />

 </ListItem>

 </List>

 <Divider />

 <List>

 <ListItem>

 <ListItemText primary="Third" />

 </ListItem>

 <ListItem>

 <ListItemText primary="Fourth" />

 </ListItem>

 </List>

 <Divider />

 <List>

 <ListItem>

 <ListItemText primary="Fifth" />

 </ListItem>

 <ListItem>

 <ListItemText primary="Sixth" />

 </ListItem>

 </List>

 </Fragment>

));

export default ListSections;

Here's what the rendered list looks like:

How it works...
Each section is its own List component, with its own ListItem components.
The Divider component separates the lists. For example, the first section looks
like this:

<List>

 <ListItem>

 <ListItemText primary="First" />

 </ListItem>

 <ListItem>

 <ListItemText primary="Second" />

 </ListItem>

</List>

There's more...
Instead of having a Divider component separate your list sections, you can use
Typography to label your sections. This could help your users make sense of the
items in each section:

<Fragment>

 <Typography variant="title">First Section</Typography>

 <List>

 <ListItem>

 <ListItemText primary="First" />

 </ListItem>

 <ListItem>

 <ListItemText primary="Second" />

 </ListItem>

 </List>

 <Typography variant="title">Second Section</Typography>

 <List>

 <ListItem>

 <ListItemText primary="Third" />

 </ListItem>

 <ListItem>

 <ListItemText primary="Fourth" />

 </ListItem>

 </List>

 <Typography variant="title">Third Section</Typography>

 <List>

 <ListItem>

 <ListItemText primary="Fifth" />

 </ListItem>

 <ListItem>

 <ListItemText primary="Sixth" />

 </ListItem>

 </List>

</Fragment>

Here's what the list looks like now:

See also
List demos: https://material-ui.com/demos/lists/
Typography API documentation: https://material-ui.com/api/typography/

https://material-ui.com/demos/lists/
https://material-ui.com/api/typography/

Nested lists
Lists can be nested. This is useful when you have a large number of items to
render. Instead of showing everything all at once, you can only display those
item categories. Then the user can click on these categories to display the
items.

How to do it...
Let's say that you have two item categories. When the user clicks on a
category, the items in that category should be displayed. Here's the code to do
this, by using the List component:

import React, { useState, Fragment } from 'react';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemText from '@material-ui/core/ListItemText';

import ListItemIcon from '@material-ui/core/ListItemIcon';

import Collapse from '@material-ui/core/Collapse';

import ExpandLessIcon from '@material-ui/icons/ExpandLess';

import ExpandMoreIcon from '@material-ui/icons/ExpandMore';

import InboxIcon from '@material-ui/icons/Inbox';

import MailIcon from '@material-ui/icons/Mail';

import ContactsIcon from '@material-ui/icons/Contacts';

import ContactMailIcon from '@material-ui/icons/ContactMail';

const ExpandIcon = ({ expanded }) =>

 expanded ? <ExpandLessIcon /> : <ExpandMoreIcon />;

export default function NestedLists() {

 const [items, setItems] = useState([

 {

 name: 'Messages',

 Icon: InboxIcon,

 expanded: false,

 children: [

 { name: 'First Message', Icon: MailIcon },

 { name: 'Second Message', Icon: MailIcon }

]

 },

 {

 name: 'Contacts',

 Icon: ContactsIcon,

 expanded: false,

 children: [

 { name: 'First Contact', Icon: ContactMailIcon },

 { name: 'Second Contact', Icon: ContactMailIcon }

]

 }

]);

 const onClick = index => () => {

 const newItems = [...items];

 const item = items[index];

 newItems[index] = { ...item, expanded: !item.expanded };

 setItems(newItems);

 };

 return (

 <List>

 {items.map(({ Icon, ...item }, index) => (

 <Fragment key={index}>

 <ListItem button onClick={onClick(index)}>

 <ListItemIcon>

 <Icon />

 </ListItemIcon>

 <ListItemText primary={item.name} />

 <ExpandIcon expanded={item.expanded} />

 </ListItem>

 <Collapse in={item.expanded}>

 {item.children.map(child => (

 <ListItem key={child.name} button dense>

 <ListItemIcon>

 <child.Icon />

 </ListItemIcon>

 <ListItemText primary={child.name} />

 </ListItem>

))}

 </Collapse>

 </Fragment>

))}

 </List>

);

}

When you first load the screen, you'll see the following:

If you click on each of these categories, you'll see the following:

How it works...
When you click on a category, the down arrow icon changes to an up arrow.
Beneath the category, the list items belonging to that category are displayed.
Let's break down what's happening in this code, starting with the component
state:

const [items, setItems] = useState([

 {

 name: 'Messages',

 Icon: InboxIcon,

 expanded: false,

 children: [

 { name: 'First Message', Icon: MailIcon },

 { name: 'Second Message', Icon: MailIcon }

]

 },

 {

 name: 'Contacts',

 Icon: ContactsIcon,

 expanded: false,

 children: [

 { name: 'First Contact', Icon: ContactMailIcon },

 { name: 'Second Contact', Icon: ContactMailIcon }

]

 }

]);

Each object in the items array represents a list category. In this case, the
categories are Messages and Contacts. The Icon property is the icon component to
render for the category. The expanded property determines the state of the
expand arrow icon, and whether or not the items in the category should be
displayed.

The children array contains the items that belong to the category. They have a
name and an Icon property just like the category items, because they're all
rendered using ListItem components.

Next, let's look at the markup used to render each category and its child
items:

<Fragment key={index}>

 <ListItem button onClick={onClick(index)}>

 <ListItemIcon>

 <Icon />

 </ListItemIcon>

 <ListItemText primary={item.name} />

 <ExpandIcon expanded={item.expanded} />

 </ListItem>

 <Collapse in={item.expanded}>

 {item.children.map(child => (

 <ListItem key={child.name} button dense>

 <ListItemIcon>

 <child.Icon />

 </ListItemIcon>

 <ListItemText primary={child.name} />

 </ListItem>

))}

 </Collapse>

</Fragment>

The category ListItem component has an onClick handler that toggles the
expanded state of the category. Next, the Collapse component is used to control
the visibility of the child items of the category, based on the value of expanded.

There's more...
You can improve on the appearance of your nested list by differentiating the
appearance of the sub-items. Right now, the only difference between the
category items and subitems is that the category items have expand and
collapse arrows.

Typically, list items are indented to indicate that they're part of another item
in the hierarchy. Let's create a style that will allow you to indent subitems:

const useStyles = makeStyles(theme => ({

 subItem: { paddingLeft: theme.spacing(3) }

}));

The paddingLeft style property will shift everything in the list item to the right.
Now, let's apply this class to subItem while also making the item smaller than
the category items:

<ListItem

 key={child.name}

 className={classes.subItem}

 button

 dense

>

 <ListItemIcon>

 <child.Icon />

 </ListItemIcon>

 <ListItemText primary={child.name} />

</ListItem>

By adding the dense and the className properties to ListItem, your users should
be more easily able to differentiate between the category and its subitems:

See also
List demos: https://material-ui.com/demos/lists/
Collapse API documentation: https://material-ui.com/api/collapse/

https://material-ui.com/demos/lists/
https://material-ui.com/api/collapse/

List controls
List items can be clickable, resulting in a change in state, or a link being
followed, or something else entirely. This is the primary action of the item.
You can have secondary actions on lists called controls. These are common
actions that you might perform, depending on the type of item.

How to do it...
Let's say that you have a list of devices. When you click on a list item, it
might take you to a details page for the device. Each device has Bluetooth
connectivity that can be toggled on or off. This is a good candidate secondary
action to render in the item. Here's the code to do this:

import React, { useState } from 'react';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemText from '@material-ui/core/ListItemText';

import ListItemIcon from '@material-ui/core/ListItemIcon';

import ListItemSecondaryAction from '@material-ui/core/ListItemSecondaryAction';

import IconButton from '@material-ui/core/IconButton';

import BluetoothIcon from '@material-ui/icons/Bluetooth';

import BluetoothDisabledIcon from '@material-ui/icons/BluetoothDisabled';

import DevicesIcon from '@material-ui/icons/Devices';

const MaybeBluetoothIcon = ({ bluetooth }) =>

 bluetooth ? <BluetoothIcon /> : <BluetoothDisabledIcon />;

export default function ListControls() {

 const [items, setItems] = useState([

 {

 name: 'Device 1',

 bluetooth: true,

 Icon: DevicesIcon

 },

 {

 name: 'Device 2',

 bluetooth: true,

 Icon: DevicesIcon

 },

 {

 name: 'Device 3',

 bluetooth: true,

 Icon: DevicesIcon

 }

]);

 const onBluetoothClick = index => () => {

 const newItems = [...items];

 const item = items[index];

 newItems[index] = { ...item, bluetooth: !item.bluetooth };

 setItems(newItems);

 };

 return (

 <List>

 {items.map(({ Icon, ...item }, index) => (

 <ListItem key={index} button>

 <ListItemIcon>

 <Icon />

 </ListItemIcon>

 <ListItemText primary={item.name} />

 <ListItemSecondaryAction>

 <IconButton

 onClick={onBluetoothClick(index, 'bluetooth')}

 >

 <MaybeBluetoothIcon bluetooth={item.bluetooth} />

 </IconButton>

 </ListItemSecondaryAction>

 </ListItem>

))}

 </List>

);

}

Here's what the screen looks like when it first loads:

You can toggle the Bluetooth state of one of the items by clicking on the icon
buttons. Here's what it looks like after toggling the Bluetooth state of the first
item:

The Bluetooth icon has changed to indicate the disabled state. Clicking on the
icon again will enable Bluetooth.

How it works...
Let's look at the markup that's used to render each list item:

<ListItem key={index} button>

 <ListItemIcon>

 <Icon />

 </ListItemIcon>

 <ListItemText primary={item.name} />

 <ListItemSecondaryAction>

 <IconButton

 onClick={onBluetoothClick(index, 'bluetooth')}

 >

 <MaybeBluetoothIcon bluetooth={item.bluetooth} />

 </IconButton>

 </ListItemSecondaryAction>

</ListItem>

The ListItemSecondaryAction component is used as a container for any controls in
your list item. In this example, an IconButton is used as the control. It shows a
different icon depending on the state of the item, using the MaybeBluetoothIcon
component. The onBluetoothClick() function is used to return the event handler
function for the item. Let's take a look at this function:

const onBluetoothClick = index => () => {

 const newItems = [...items];

 const item = items[index];

 newItems[index] = { ...item, bluetooth: !item.bluetooth };

 setItems(newItems);

};

The device item is looked up in the items array. Then, the Bluetooth state is
toggled, and the new items array is returned to set as the new state. This
results in the updated icon in the list item control.

There's more...
You can have more than one control in your list item. For example, let's say
that in addition to toggling the Bluetooth state of a device, another common
action for your users is toggling the power state of the device. When the device
is powered off, the list item and the Bluetooth control should be displayed.

Avoid having too many controls as secondary actions in your list items.
Doing so detracts from the convenience of having one or two common
actions easily accessible by your users.

Let's start by adding a new power state to each item in your component state:

const [items, setItems] = useState([

 {

 name: 'Device 1',

 bluetooth: true,

 power: true,

 Icon: DevicesIcon

 },

 {

 name: 'Device 2',

 bluetooth: true,

 power: true,

 Icon: DevicesIcon

 },

 {

 name: 'Device 3',

 bluetooth: true,

 power: true,

 Icon: DevicesIcon

 }

]);

Next, let's create a toggle click handler that can handle updating both the
Bluetooth and the power state of items:

const onToggleClick = (index, prop) => () => {

 const newItems = [...items];

 const item = items[index];

 newItems[index] = { ...item, [prop]: !item[prop] };

 setItems(newItems);

};

This is very similar to the onBluetoothClick() handler. Now, it accepts an
additional prop argument. This is used to tell the function which property to
update – bluetooth or power. Finally, let's look at the updated ListItem markup:

<ListItem key={index} disabled={!item.power} button>

 <ListItemIcon>

 <Icon />

 </ListItemIcon>

 <ListItemText primary={item.name} />

 <ListItemSecondaryAction>

 <IconButton

 onClick={onToggleClick(index, 'bluetooth')}

 disabled={!item.power}

 >

 <MaybeBluetoothIcon bluetooth={item.bluetooth} />

 </IconButton>

 <IconButton onClick={onToggleClick(index, 'power')}>

 <PowerSettingsNewIcon />

 </IconButton>

 </ListItemSecondaryAction>

</ListItem>

The changes can be summarized as follows:

The disabled property of ListItem depends on the power state of the item.
There's another IconButton control for toggling the power state of the item.
The onToggleClick() function is used by both controls to toggle the state of
the item.

Here's how the screen looks now, when first loaded:

When you click on the power icon, the list item and the Bluetooth button
become disabled. Here's what it looks like when the first item is powered off:

See also
ListItemSecondaryAction API documentation: https://material-ui.com/api/list-i
tem-secondary-action/

IconButton API documentation: https://material-ui.com/api/icon-button/

https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/icon-button/

Scrolling lists
When your lists contain a limited number of items in them, you're safe to just
iterate over the item data, and render ListItem components. This becomes a
problem when you have the potential for lists with over 1,000 items in them.
You can render these items fast enough, but having this many items in
the Document Object Model (DOM) eats a lot of browser resources, and
can lead to unpredictable performance challenges for the user. The solution is
to virtualize your Material-UI lists using react-virtualized.

How to do it...
Let's say that you have a list of 1,000 items in it. You want to render these
items inside a list with a fixed height. In order to provide predictable
performance characteristics for your users, you only want to render items that
are actually visible to the user as they scroll through the list. Here's the code:

import React, { useState } from 'react';

import { List as VirtualList, AutoSizer } from 'react-virtualized';

import { makeStyles } from '@material-ui/styles';

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemText from '@material-ui/core/ListItemText';

import Paper from '@material-ui/core/Paper';

const useStyles = makeStyles(theme => ({

 list: {

 height: 300

 },

 paper: {

 margin: theme.spacing(3)

 }

}));

function* genItems() {

 for (let i = 1; i <= 1000; i++) {

 yield `Item ${i}`;

 }

}

export default function ScrollingLists() {

 const classes = useStyles();

 const [items] = useState([...genItems()]);

 const rowRenderer = ({ index, isScrolling, key, style }) => {

 const item = items[index];

 return (

 <ListItem button key={key} style={style}>

 <ListItemText primary={isScrolling ? '...' : item} />

 </ListItem>

);

 };

 return (

 <Paper className={classes.paper}>

 <List className={classes.list}>

 <AutoSizer disableHeight>

 {({ width }) => (

 <VirtualList

 width={width}

 height={300}

 rowHeight={50}

 rowCount={items.length}

 rowRenderer={rowRenderer}

 />

)}

 </AutoSizer>

 </List>

 </Paper>

);

}

When you first load the screen, you'll see the following:

As you scroll through the list, here's what you'll see:

Lastly, here's what the bottom of the list looks like:

How it works...
First, let's take a look at how the items state is generated. First, there's a
genItems() generator function:

function* genItems() {

 for (let i = 1; i <= 1000; i++) {

 yield `Item ${i}`;

 }

}

Then, the spread operator is used to turn the generated items into an array for
the component state:

const [items] = useState([...genItems()]);

Next, let's look at the rowRenderer() function:

const rowRenderer = ({ index, isScrolling, key, style }) => {

 const item = items[index];

 return (

 <ListItem button key={key} style={style}>

 <ListItemText primary={isScrolling ? '...' : item} />

 </ListItem>

);

};

This function returns the ListItem component that should be rendered at the
given index. Instead of manually mapping this component to items, the List
component from react-virtualized orchestrates when to call it for you, based on
how the user scrolls through the list.

The key and the style values that are passed to this function are required by
react-virtualized in order to work correctly. For example, the style value is
used to control the visibility of the item as scrolling happens. The isScrolling
value is used to render different data while the list is actively being scrolled.
For example, imagine that instead of just a text label within the list item, you
also had an icon, along with other controls that are all based on state. Trying
to render these things while scrolling is going on is expensive and wasteful.
Instead, you can render something that's less resource intensive, such as a

placeholder string: '...'.

Finally, let's examine the markup used to render this list:

<List className={classes.list}>

 <AutoSizer disableHeight>

 {({ width }) => (

 <VirtualList

 width={width}

 height={300}

 rowHeight={50}

 rowCount={items.length}

 rowRenderer={rowRenderer}

 />

)}

 </AutoSizer>

</List>

The List component is the container for everything else. Next, the AutoSizer
component from react-virtualized figures out the width of the list, which is
needed as a VirtualList property.

List is imported from react-virtualized using the alias VirtualList. This is to avoid the
naming conflict with List from material-ui. You could import List from material-ui as an
alias instead, if you prefer.

The List component from react-virtualized also takes the height of the list, the
height of each row, and the row count, in order to determine which rows to
render. With this in place, you never have to worry about the performance of
your application because of a list component with too many items.

See also
React Virtualized documentation: https://bvaughn.github.io/react-virtualized
/

List demos: https://material-ui.com/demos/lists/

https://bvaughn.github.io/react-virtualized/

Tables - Display Complex Collection
Data
In this chapter, you'll learn about the following topics:

Stateful tables
Sortable columns
Filtering rows
Selecting rows
Row actions

Introduction
If your application needs to display tabular data, you can use the Material-
UI Table component, along with all of its supporting components. Unlike grid
components, which you might have seen or used in other React libraries, the
Material-UI component is unopinionated. This means that you have to write
your own code to control table data. On the plus side, the Table component
stays out of your way and lets you implement things your own way.

Stateful tables
With Table components, it's rare that you'll have static markup that defines the
row data of the table. Instead, component state will map to the rows that
make up your table data. For example, you might have a component that
fetches API data that you want displayed in a table.

How to do it...
Let's say that you have a component that fetches data from an API endpoint.
When the data loads, you want to display the tabular data in a Material-UI
Table component. Here's what the code looks like:

import React, { useState, useEffect } from 'react';

import { makeStyles } from '@material-ui/styles';

import Table from '@material-ui/core/Table';

import TableBody from '@material-ui/core/TableBody';

import TableCell from '@material-ui/core/TableCell';

import TableHead from '@material-ui/core/TableHead';

import TableRow from '@material-ui/core/TableRow';

import Paper from '@material-ui/core/Paper';

const fetchData = () =>

 new Promise(resolve => {

 const items = [

 {

 id: 1,

 name: 'First Item',

 created: new Date(),

 high: 2935,

 low: 1924,

 average: 2429.5

 },

 {

 id: 2,

 name: 'Second Item',

 created: new Date(),

 high: 439,

 low: 231,

 average: 335

 },

 {

 id: 3,

 name: 'Third Item',

 created: new Date(),

 high: 8239,

 low: 5629,

 average: 6934

 },

 {

 id: 4,

 name: 'Fourth Item',

 created: new Date(),

 high: 3203,

 low: 3127,

 average: 3165

 },

 {

 id: 5,

 name: 'Fifth Item',

 created: new Date(),

 high: 981,

 low: 879,

 average: 930

 }

];

 setTimeout(() => resolve(items), 1000);

 });

const usePaperStyles = makeStyles(theme => ({

 root: { margin: theme.spacing(2) }

}));

export default function StatefulTables() {

 const classes = usePaperStyles();

 const [items, setItems] = useState([]);

 useEffect(() => {

 fetchData().then(items => {

 setItems(items);

 });

 }, []);

 return (

 <Paper className={classes.root}>

 <Table>

 <TableHead>

 <TableRow>

 <TableCell>Name</TableCell>

 <TableCell>Created</TableCell>

 <TableCell align="right">High</TableCell>

 <TableCell align="right">Low</TableCell>

 <TableCell align="right">Average</TableCell>

 </TableRow>

 </TableHead>

 <TableBody>

 {items.map(item => {

 return (

 <TableRow key={item.id}>

 <TableCell component="th" scope="row">

 {item.name}

 </TableCell>

 <TableCell>{item.created.toLocaleString()}</TableCell>

 <TableCell align="right">{item.high}</TableCell>

 <TableCell align="right">{item.low}</TableCell>

 <TableCell align="right">{item.average}</TableCell>

 </TableRow>

);

 })}

 </TableBody>

 </Table>

 </Paper>

);

}

When you load the screen, you'll see a table populated with data after one

second:

How it works...
Let's start by looking at the fetchData() function, which resolves the data that is
eventually set as the component state:

const fetchData = () =>

 new Promise(resolve => {

 const items = [

 {

 id: 1,

 name: 'First Item',

 created: new Date(),

 high: 2935,

 low: 1924,

 average: 2429.5

 },

 {

 id: 2,

 name: 'Second Item',

 created: new Date(),

 high: 439,

 low: 231,

 average: 335

 },

 ...

];

 setTimeout(() => resolve(items), 1000);

 });

This function returns a Promise that resolves an array of objects after one
second. The idea is to simulate a function that calls a real API using fetch().

The objects shown in the array are truncated for brevity.

Next, let's look at the initial component state and what happens when your
component is mounted:

const [items, setItems] = useState([]);

useEffect(() => {

 fetchData().then(items => {

 setItems(items);

 });

}, []);

The items state represents the table rows that are to be rendered within the

Table component. When your component is mounted, the fetchData() call is
made, and when the Promise resolves, the items state is set. Lastly, let's look at
the markup that's responsible for rendering the table rows:

<Table>

 <TableHead>

 <TableRow>

 <TableCell>Name</TableCell>

 <TableCell>Created</TableCell>

 <TableCell align="right">High</TableCell>

 <TableCell align="right">Low</TableCell>

 <TableCell align="right">Average</TableCell>

 </TableRow>

 </TableHead>

 <TableBody>

 {items.map(item => {

 return (

 <TableRow key={item.id}>

 <TableCell component="th" scope="row">

 {item.name}

 </TableCell>

 <TableCell>{item.created.toLocaleString()}</TableCell>

 <TableCell align="right">{item.high}</TableCell>

 <TableCell align="right">{item.low}</TableCell>

 <TableCell align="right">{item.average}</TableCell>

 </TableRow>

);

 })}

 </TableBody>

</Table>

Table components typically have two children—a TableHead and a TableBody
component. Inside TableHead, you'll find a TableRow component with several
TableCell components. These are the table column headings. Inside TableBody,
you'll see that the items state is mapped to TableRow and TableCell components.
When the items state changes, the rows are changed too. You can already see
this in action, because the items state defaults to an empty array. After the API
data resolves, the items state changes and the rows are visible on the screen.

There's more...
One suboptimal aspect of this example is the user's experience while they
wait for table data to load. Showing the column headers upfront is fine, since
you know what they are ahead of time and the user might too. What's needed
is some sort of indicator that the actual row data is, in fact, loading.

One way to fix this issue is to add a circular progress indicator underneath the
column headers. This should help the user understand that not only are they
waiting for data to load, but that it's the table row data specifically, thanks to
the position of the progress indicator.

First, let's introduce a new component for displaying a CircularProgress
component along with some new styles:

const usePaperStyles = makeStyles(theme => ({

 root: { margin: theme.spacing(2), textAlign: 'center' }

}));

const useProgressStyles = makeStyles(theme => ({

 progress: { margin: theme.spacing(2) }

}));

function MaybeLoading({ loading }) {

 const classes = useProgressStyles();

 return loading ? (

 <CircularProgress className={classes.progress} />

) : null;

}

There's a new progress style that's applied to the CircularProgress component.
This adds margin to the progress indicator. The textAlign property has been
added to the root style so that the progress indicator is horizontally centered
within the Paper component. The MaybeLoading component renders the
CircularProgress component if the loading property is true.

This means that you now have to keep track of the loading state of the API
call. Here's the new state, which defaults to true:

const [loading, setLoading] = useState(true);

When the API call returns, you can set the loading state to false:

useEffect(() => {

 fetchData().then(items => {

 setItems(items);

 setLoading(false);

 });

}, []);

Lastly, you need to render the MaybeLoading component after the Table
component:

<Paper className={classes.root}>

 <Table>

 ...

 </Table>

 <MaybeLoading loading={loading} />

</Paper>

Here's what your users will see while waiting for the table data to load:

See also
Table API documentation: https://material-ui.com/api/table/

https://material-ui.com/api/table/

Sortable columns
Material-UI tables have tools that help you implement sortable columns. If
you're rendering a Table component in your application, your users will likely
expect to be able to sort the table data by column.

How to do it...
When the users clicks on a column header, there should be a visual indication
that table rows are now sorted by this column and the row order should
change. When clicked on again, the column should appear in reverse order.
Here's the code:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Table from '@material-ui/core/Table';

import TableBody from '@material-ui/core/TableBody';

import TableCell from '@material-ui/core/TableCell';

import TableHead from '@material-ui/core/TableHead';

import TableRow from '@material-ui/core/TableRow';

import TableSortLabel from '@material-ui/core/TableSortLabel';

import Paper from '@material-ui/core/Paper';

const comparator = (prop, desc = true) => (a, b) => {

 const order = desc ? -1 : 1;

 if (a[prop] < b[prop]) {

 return -1 * order;

 }

 if (a[prop] > b[prop]) {

 return 1 * order;

 }

 return 0 * order;

};

const useStyles = makeStyles(theme => ({

 root: { margin: theme.spacing(2), textAlign: 'center' }

}));

export default function SortableColumns() {

 const classes = useStyles();

 const [columns, setColumns] = useState([

 { name: 'Name', active: false },

 { name: 'Created', active: false },

 { name: 'High', active: false, numeric: true },

 { name: 'Low', active: false, numeric: true },

 { name: 'Average', active: false, numeric: true }

]);

 const [rows, setRows] = useState([

 {

 id: 1,

 name: 'First Item',

 created: new Date(),

 high: 2935,

 low: 1924,

 average: 2429.5

 },

 {

 id: 2,

 name: 'Second Item',

 created: new Date(),

 high: 439,

 low: 231,

 average: 335

 },

 {

 id: 3,

 name: 'Third Item',

 created: new Date(),

 high: 8239,

 low: 5629,

 average: 6934

 },

 {

 id: 4,

 name: 'Fourth Item',

 created: new Date(),

 high: 3203,

 low: 3127,

 average: 3165

 },

 {

 id: 5,

 name: 'Fifth Item',

 created: new Date(),

 high: 981,

 low: 879,

 average: 930

 }

]);

 const onSortClick = index => () => {

 setColumns(

 columns.map((column, i) => ({

 ...column,

 active: index === i,

 order:

 (index === i &&

 (column.order === 'desc' ? 'asc' : 'desc')) ||

 undefined

 }))

);

 setRows(

 rows

 .slice()

 .sort(

 comparator(

 columns[index].name.toLowerCase(),

 columns[index].order === 'desc'

)

)

);

 };

 return (

 <Paper className={classes.root}>

 <Table>

 <TableHead>

 <TableRow>

 {columns.map((column, index) => (

 <TableCell

 key={column.name}

 align={column.numeric ? 'right' : 'inherit'}

 >

 <TableSortLabel

 active={column.active}

 direction={column.order}

 onClick={onSortClick(index)}

 >

 {column.name}

 </TableSortLabel>

 </TableCell>

))}

 </TableRow>

 </TableHead>

 <TableBody>

 {rows.map(row => (

 <TableRow key={row.id}>

 <TableCell component="th" scope="row">

 {row.name}

 </TableCell>

 <TableCell>{row.created.toLocaleString()}</TableCell>

 <TableCell align="right">{row.high}</TableCell>

 <TableCell align="right">{row.low}</TableCell>

 <TableCell align="right">{row.average}</TableCell>

 </TableRow>

))}

 </TableBody>

 </Table>

 </Paper>

);

}

If you click on the Name column header, here's what you'll see:

The column changes to indicate the sort order. If you click on the name

column again, the sort order will reverse:

How it works...
Let's break down the code used to render this table, starting with the markup
used to render the column headers:

<TableHead>

 <TableRow>

 {columns.map((column, index) => (

 <TableCell

 key={column.name}

 align={column.numeric ? 'right' : 'inherit'}

 >

 <TableSortLabel

 active={column.active}

 direction={column.order}

 onClick={onSortClick(index)}

 >

 {column.name}

 </TableSortLabel>

 </TableCell>

))}

 </TableRow>

</TableHead>

Each column in the table is defined in the columns state. This array is mapped
to TableCell components. Inside each TableCell, there's a TableSortLabel
component. This component makes the column header text bold when it's the
active column for sorting. It also adds the sort arrow to the right of the text.
TableSortLabel takes active, direction, and onClick properties. The active property
is based on the active state of the column, which changes when the column is
clicked on. The direction property determines whether the rows are sorted in
ascending or descending order for the given column. The onClick property
takes an event handler that makes the necessary state changes when the
column is clicked on. Here's the onSortClick() handler:

const onSortClick = index => () => {

 setColumns(

 columns.map((column, i) => ({

 ...column,

 active: index === i,

 order:

 (index === i &&

 (column.order === 'desc' ? 'asc' : 'desc')) ||

 undefined

 }))

);

 setRows(

 rows

 .slice()

 .sort(

 comparator(

 columns[index].name.toLowerCase(),

 columns[index].order === 'desc'

)

)

);

};

This function takes an index argument—the column index—and returns a new
function for the column. The returned function has two purposes:

1. To update the column state so that the correct column is marked as
active and that it has the correct sort direction

2. To update the row state so that the table rows are in the correct order

Once these state changes have been made, the active column and the table
rows will reflect them. The last piece of code to look at is the comparator()
function. This is another higher-order function that takes the name of a
column, and returns a new function that can be passed to Array.sort() to sort
an array of objects by the given column:

const comparator = (prop, desc = true) => (a, b) => {

 const order = desc ? -1 : 1;

 if (a[prop] < b[prop]) {

 return -1 * order;

 }

 if (a[prop] > b[prop]) {

 return 1 * order;

 }

 return 0 * order;

};

This function is generic enough that you can use it with any tables in your
app. In this case, the column name and order are passed to comparator() from
the component state. As the state of the component changes, so too does the
sorting behavior in comparator().

There's more...
What if your data is already sorted by a particular column when it arrives
from the API? If this is the case, you'll probably want to indicate which
columns the rows are sorted by and in what direction, before the user starts
interacting with the table.

To do so, you just need to change the default column state. For example, let's
say that the Average column is sorted in descending order by default. Here's
what your initial column state would look like:

const [columns, setColumns] = useState([

 { name: 'Name', active: false },

 { name: 'Created', active: false },

 { name: 'High', active: false, numeric: true },

 { name: 'Low', active: false, numeric: true },

 { name: 'Average', active: true, numeric: true }

]);

The Average column is now active by default. You didn't need to specify the
order since the default is ascending. Here's what the table looks like when the
screen first loads:

See also
Table demos: https://material-ui.com/demos/tables/

https://material-ui.com/demos/tables/

Filtering rows
Where there are tables, there's potential for too much information. This is
why adding a search feature to your tables is a good idea. It allows the user to
remove irrelevant rows from the table as they type.

How to do it...
Let's say that you have a table with lots of rows in it, meaning that the user is
going to have a tough time scrolling through the entire table. To make things
easier for them, you decide to add a search feature to your table that filters
rows by checking whether the search text exists within the name column.
Here's the code:

import React, { useState, useEffect, Fragment } from 'react';

import { makeStyles } from '@material-ui/styles';

import { withStyles } from '@material-ui/core/styles';

import Table from '@material-ui/core/Table';

import TableBody from '@material-ui/core/TableBody';

import TableCell from '@material-ui/core/TableCell';

import TableHead from '@material-ui/core/TableHead';

import TableRow from '@material-ui/core/TableRow';

import Paper from '@material-ui/core/Paper';

import CircularProgress from '@material-ui/core/CircularProgress';

import Input from '@material-ui/core/Input';

import InputLabel from '@material-ui/core/InputLabel';

import InputAdornment from '@material-ui/core/InputAdornment';

import FormControl from '@material-ui/core/FormControl';

import TextField from '@material-ui/core/TextField';

import SearchIcon from '@material-ui/icons/Search';

const fetchData = () =>

 new Promise(resolve => {

 const items = [

 {

 id: 1,

 name: 'First Item',

 created: new Date(),

 high: 2935,

 low: 1924,

 average: 2429.5

 },

 {

 id: 2,

 name: 'Second Item',

 created: new Date(),

 high: 439,

 low: 231,

 average: 335

 },

 {

 id: 3,

 name: 'Third Item',

 created: new Date(),

 high: 8239,

 low: 5629,

 average: 6934

 },

 {

 id: 4,

 name: 'Fourth Item',

 created: new Date(),

 high: 3203,

 low: 3127,

 average: 3165

 },

 {

 id: 5,

 name: 'Fifth Item',

 created: new Date(),

 high: 981,

 low: 879,

 average: 930

 }

];

 setTimeout(() => resolve(items), 1000);

 });

const styles = theme => ({

 root: { margin: theme.spacing(2), textAlign: 'center' },

 progress: { margin: theme.spacing(2) },

 search: { marginLeft: theme.spacing(2) }

});

const useStyles = makeStyles(styles);

const MaybeLoading = withStyles(styles)(({ classes, loading }) =>

 loading ? <CircularProgress className={classes.progress} /> : null

);

export default function FilteringRows() {

 const classes = useStyles();

 const [search, setSearch] = useState('');

 const [items, setItems] = useState([]);

 const [loading, setLoading] = useState(true);

 useEffect(() => {

 fetchData().then(items => {

 setItems(items);

 setLoading(false);

 });

 }, []);

 const onSearchChange = e => {

 setSearch(e.target.value);

 };

 return (

 <Fragment>

 <TextField

 value={search}

 onChange={onSearchChange}

 className={classes.search}

 id="input-search"

 InputProps={{

 startAdornment: (

 <InputAdornment position="start">

 <SearchIcon />

 </InputAdornment>

)

 }}

 />

 <Paper className={classes.root}>

 <Table>

 <TableHead>

 <TableRow>

 <TableCell>Name</TableCell>

 <TableCell>Created</TableCell>

 <TableCell align="right">High</TableCell>

 <TableCell align="right">Low</TableCell>

 <TableCell align="right">Average</TableCell>

 </TableRow>

 </TableHead>

 <TableBody>

 {items

 .filter(item => !search || item.name.includes(search))

 .map(item => {

 return (

 <TableRow key={item.id}>

 <TableCell component="th" scope="row">

 {item.name}

 </TableCell>

 <TableCell>

 {item.created.toLocaleString()}

 </TableCell>

 <TableCell align="right">{item.high}</TableCell>

 <TableCell align="right">{item.low}</TableCell>

 <TableCell align="right">

 {item.average}

 </TableCell>

 </TableRow>

);

 })}

 </TableBody>

 </Table>

 <MaybeLoading loading={loading} />

 </Paper>

 </Fragment>

);

}

Here's what the table and search input fields look like when the screen first
loads:

The search input is just above the table. Try typing in a filter string, such
as Fourth—you should see the following:

If you delete the filter text from the search input, all rows in the table data
will be rendered again.

How it works...
Let's start by looking at the state of the FilteringRows component:

const [search, setSearch] = useState('');

const [items, setItems] = useState([]);

const [loading, setLoading] = useState(true);

The search string is the actual filter that changes the rows that are rendered
within the Table element. Next, let's look at the TextField component that
renders the search input:

<TextField

 value={search}

 onChange={onSearchChange}

 className={classes.search}

 id="input-search"

 InputProps={{

 startAdornment: (

 <InputAdornment position="start">

 <SearchIcon />

 </InputAdornment>

)

 }}

/>

The onSearchChange() function is responsible for maintaining the search state as
the user types. You should render the search input component close to the
table that it filters. In this example, the position of the search input feels like
it belongs to the table.

Lastly, let's look at how the table rows are filtered and rendered:

<TableBody>

 {items

 .filter(item => !search || item.name.includes(search))

 .map(item => {

 return (

 <TableRow key={item.id}>

 <TableCell component="th" scope="row">

 {item.name}

 </TableCell>

 <TableCell>

 {item.created.toLocaleString()}

 </TableCell>

 <TableCell align="right">{item.high}</TableCell>

 <TableCell align="right">{item.low}</TableCell>

 <TableCell align="right">

 {item.average}

 </TableCell>

 </TableRow>

);

 })}

</TableBody>

Instead of calling map() directly on the item's state, filter() is used to produce
an array of items that match the search criteria. As the search state changes,
the filter() call is repeated. The condition that checks whether the item
matches what the user has typed checks to see whether the name property of
the item contains the search string. But first, you have to make sure that the
user is actually filtering. For example, if the search string is empty, every
item should be returned. How the item is searched is specific to your
application—you could search every item property if you wanted to.

See also
Table demos: https://material-ui.com/demos/tables/

https://material-ui.com/demos/tables/

Selecting rows
Users often need to interact with specific rows in a table. For example, they
might select a row and then perform an action that uses data from the selected
row. Or, the user selects multiple rows, which produces new data related to
their selection. With Material-UI tables, you can mark rows as selected using
a single TableRow property.

How to do it...
In this example, let's assume that the user needs to be able to select multiple
rows in your table. As rows are selected, another section on the screen is
updated with data that reflects the selected rows. Let's start by looking at the
Card component, which displays data from the selected table rows:

<Card className={classes.card}>

 <CardHeader title={`(${selections()}) rows selected`} />

 <CardContent>

 <Grid container direction="column">

 <Grid item>

 <Grid container justify="space-between">

 <Grid item>

 <Typography>Low</Typography>

 </Grid>

 <Grid item>

 <Typography>{selectedLow()}</Typography>

 </Grid>

 </Grid>

 </Grid>

 <Grid item>

 <Grid container justify="space-between">

 <Grid item>

 <Typography>High</Typography>

 </Grid>

 <Grid item>

 <Typography>{selectedHigh()}</Typography>

 </Grid>

 </Grid>

 </Grid>

 <Grid item>

 <Grid container justify="space-between">

 <Grid item>

 <Typography>Average</Typography>

 </Grid>

 <Grid item>

 <Typography>{selectedAverage()}</Typography>

 </Grid>

 </Grid>

 </Grid>

 </Grid>

 </CardContent>

</Card>

 Let's take a look at the rest of the components now:

import React, { useState, Fragment } from 'react';

import { makeStyles } from '@material-ui/styles';

import Typography from '@material-ui/core/Typography';

import Grid from '@material-ui/core/Grid';

import Table from '@material-ui/core/Table';

import TableBody from '@material-ui/core/TableBody';

import TableCell from '@material-ui/core/TableCell';

import TableHead from '@material-ui/core/TableHead';

import TableRow from '@material-ui/core/TableRow';

import Paper from '@material-ui/core/Paper';

import Card from '@material-ui/core/Card';

import CardContent from '@material-ui/core/CardContent';

import CardHeader from '@material-ui/core/CardHeader';

const useStyles = makeStyles(theme => ({

 root: { margin: theme.spacing.unit * 2, textAlign: 'center' },

 card: { margin: theme.spacing.unit * 2, maxWidth: 300 }

}));

export default function SelectingRows() {

 const classes = useStyles();

 const [columns, setColumns] = useState([

 { name: 'Name', active: false },

 { name: 'Created', active: false },

 { name: 'High', active: false, numeric: true },

 { name: 'Low', active: false, numeric: true },

 { name: 'Average', active: true, numeric: true }

]);

 const [rows, setRows] = useState([

 {

 id: 1,

 name: 'First Item',

 created: new Date(),

 high: 2935,

 low: 1924,

 average: 2429.5

 },

 {

 id: 2,

 name: 'Second Item',

 created: new Date(),

 high: 439,

 low: 231,

 average: 335

 },

 {

 id: 3,

 name: 'Third Item',

 created: new Date(),

 high: 8239,

 low: 5629,

 average: 6934

 },

 {

 id: 4,

 name: 'Fourth Item',

 created: new Date(),

 high: 3203,

 low: 3127,

 average: 3165

 },

 {

 id: 5,

 name: 'Fifth Item',

 created: new Date(),

 high: 981,

 low: 879,

 average: 930

 }

]);

 const onRowClick = id => () => {

 const newRows = [...rows];

 const index = rows.findIndex(row => row.id === id);

 const row = rows[index];

 newRows[index] = { ...row, selected: !row.selected };

 setRows(newRows);

 };

 const selections = () => rows.filter(row => row.selected).length;

 const selectedLow = () =>

 rows

 .filter(row => row.selected)

 .reduce((total, row) => total + row.low, 0);

 const selectedHigh = () =>

 rows

 .filter(row => row.selected)

 .reduce((total, row) => total + row.high, 0);

 const selectedAverage = () => (selectedLow() + selectedHigh()) / 2;

 return (

 <Fragment>

 <Card className={classes.card}>

 ...

 </Card>

 <Paper className={classes.root}>

 <Table>

 <TableHead>

 <TableRow>

 {columns.map(column => (

 <TableCell

 key={column.name}

 align={column.numeric ? 'right' : 'inherit'}

 >

 {column.name}

 </TableCell>

))}

 </TableRow>

 </TableHead>

 <TableBody>

 {rows.map(row => (

 <TableRow

 key={row.id}

 onClick={onRowClick(row.id)}

 selected={row.selected}

 >

 <TableCell component="th" scope="row">

 {row.name}

 </TableCell>

 <TableCell>{row.created.toLocaleString()}</TableCell>

 <TableCell align="right">{row.high}</TableCell>

 <TableCell align="right">{row.low}</TableCell>

 <TableCell align="right">{row.average}</TableCell>

 </TableRow>

))}

 </TableBody>

 </Table>

 </Paper>

 </Fragment>

);

}

Here's what the screen looks like when it first loads:

Now, you can try making some row selections. Here's what you'll see if you
select the second and fourth rows:

When you click on a table row, it changes visually so that the user can see
that it is selected. Also note that the Card component contents change to reflect
the selected rows. It also tells you how many rows are selected.

How it works...
The Card component relies on a few helper functions:

selectedLow

selectedHigh

selectedAverage

The return values of these functions change when the table row selection
changes. Let's take a closer look at how these values are computed:

const selectedLow = () =>

 rows

 .filter(row => row.selected)

 .reduce((total, row) => total + row.low, 0);

const selectedHigh = () =>

 rows

 .filter(row => row.selected)

 .reduce((total, row) => total + row.high, 0);

const selectedAverage = () => (selectedLow() + selectedHigh()) / 2;

The selectedLow() and selectedHigh() functions work the same way—they just
operate on the low and high fields respectively. The filter() call is used to
make sure that you're only working with selected rows. The reduce() call adds
the values of the given field for the selected rows and returns the result as the
property value. The selectedAverage() function uses the selectedLow() and
selectedHigh() functions to compute a new average for the row selections.

Next, let's look at the handler that's called when a row is selected:

const onRowClick = id => () => {

 const newRows = [...rows];

 const index = rows.findIndex(row => row.id === id);

 const row = rows[index];

 newRows[index] = { ...row, selected: !row.selected };

 setRows(newRows);

};

The onRowClick() function finds the selected row in the rows state based on the id

argument. Then, it toggles the selected state of the row. As a result, the
computed properties that you just looked at are updated, and so is the
appearance of the row itself:

<TableRow

 key={row.id}

 onClick={onRowClick(row.id)}

 selected={row.selected}

>

The TableRow component has a selected property, which changes the style of the
row to mark it as selected.

See also
Table demos: https://material-ui.com/demos/tables/

https://material-ui.com/demos/tables/

Row actions
Table rows often represent an object that you can perform actions on. For
example, you might have a table of servers where each row represents a
server that can be turned on or off. Instead of making your users click a link
that takes them away from the table to perform an action, you can include
common actions directly in each table row.

How to do it...
Let's say that you have a table with rows that have servers that can be turned
on or off, depending on their current state. You want to include both of these
actions as part of each table row, so that the user can more easily control their
servers without spending lots of time navigating. The buttons also need to
change their color and disabled state based on the state of the row.

Here's the code to do this:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Table from '@material-ui/core/Table';

import TableBody from '@material-ui/core/TableBody';

import TableCell from '@material-ui/core/TableCell';

import TableHead from '@material-ui/core/TableHead';

import TableRow from '@material-ui/core/TableRow';

import Paper from '@material-ui/core/Paper';

import IconButton from '@material-ui/core/IconButton';

import PlayArrowIcon from '@material-ui/icons/PlayArrow';

import StopIcon from '@material-ui/icons/Stop';

const useStyles = makeStyles(theme => ({

 root: { margin: theme.spacing(2), textAlign: 'center' },

 button: {}

}));

const StartButton = ({ row, onClick }) => (

 <IconButton

 onClick={onClick}

 color={row.status === 'off' ? 'primary' : 'default'}

 disabled={row.status === 'running'}

 >

 <PlayArrowIcon fontSize="small" />

 </IconButton>

);

const StopButton = ({ row, onClick }) => (

 <IconButton

 onClick={onClick}

 color={row.status === 'running' ? 'primary' : 'default'}

 disabled={row.status === 'off'}

 >

 <StopIcon fontSize="small" />

 </IconButton>

);

export default function RowActions() {

 const classes = useStyles();

 const [rows, setRows] = useState([

 {

 id: 1,

 name: 'First Item',

 status: 'running'

 },

 {

 id: 2,

 name: 'Second Item',

 status: 'off'

 },

 {

 id: 3,

 name: 'Third Item',

 status: 'off'

 },

 {

 id: 4,

 name: 'Fourth Item',

 status: 'running'

 },

 {

 id: 5,

 name: 'Fifth Item',

 status: 'off'

 }

]);

 const toggleStatus = id => () => {

 const newRows = [...rows];

 const index = rows.findIndex(row => row.id === id);

 const row = rows[index];

 newRows[index] = {

 ...row,

 status: row.status === 'running' ? 'off' : 'running'

 };

 setRows(newRows);

 };

 return (

 <Paper className={classes.root}>

 <Table>

 <TableHead>

 <TableRow>

 <TableCell>Name</TableCell>

 <TableCell>Status</TableCell>

 <TableCell>Actions</TableCell>

 </TableRow>

 </TableHead>

 <TableBody>

 {rows.map(row => {

 return (

 <TableRow key={row.id}>

 <TableCell component="th" scope="row">

 {row.name}

 </TableCell>

 <TableCell>{row.status}</TableCell>

 <TableCell>

 <StartButton

 row={row}

 onClick={toggleStatus(row.id)}

 />

 <StopButton

 row={row}

 onClick={toggleStatus(row.id)}

 />

 </TableCell>

 </TableRow>

);

 })}

 </TableBody>

 </Table>

 </Paper>

);

}

Here's what the screen looks like when it first loads:

Depending on the status of the row data, the action buttons will show
differently. For example, in the first row, the start button is disabled
because status is running. The second row has a disabled stop button because
the status is off. Let's try clicking on the stop button in the first row and the
start button in the second row. Here's how the UI changes once this is done:

How it works...
Let's start by looking at the two components that are used as the row actions:

const StartButton = ({ row, onClick }) => (

 <IconButton

 onClick={onClick}

 color={row.status === 'off' ? 'primary' : 'default'}

 disabled={row.status === 'running'}

 >

 <PlayArrowIcon fontSize="small" />

 </IconButton>

);

const StopButton = ({ row, onClick }) => (

 <IconButton

 onClick={onClick}

 color={row.status === 'running' ? 'primary' : 'default'}

 disabled={row.status === 'off'}

 >

 <StopIcon fontSize="small" />

 </IconButton>

);

The StartButton and StopButton components are very similar. Both of these
components are rendered in every row of the table. There's the onClick
property, a function that changes the state of the row data when clicked. The
color of the icon changes based on the status of the row. Likewise, the disabled
property changes based on the status of the row.

Next, let's look at the toggleStatus() handler, which changes the status state of
the row when an action button is clicked:

const toggleStatus = id => () => {

 const newRows = [...rows];

 const index = rows.findIndex(row => row.id === id);

 const row = rows[index];

 newRows[index] = {

 ...row,

 status: row.status === 'running' ? 'off' : 'running'

 };

 setRows(newRows);

};

The StartButton and StopButton components both use the same handler function
—it toggles the status value between running and off. Finally, let's look at the

TableCell component where these row actions are rendered:

<TableCell>

 <StartButton

 row={row}

 onClick={toggleStatus(row.id)}

 />

 <StopButton

 row={row}

 onClick={toggleStatus(row.id)}

 />

</TableCell>

The row data is passed as the row property. The toggleStatus() function takes a
row id argument and returns a new handler function that acts on this row.

See also
Table demos: https://material-ui.com/demos/tables/

https://material-ui.com/demos/tables/

Cards - Display Detailed
Information
 In this chapter, you'll learn the following about Cards:

Main content
Card header
Performing actions
Presenting media
Expandable cards

Introduction
Cards are a Material Design concept used to display specific information on
a given subject. For example, the subject could be an object returned by an
API endpoint. Or, the subject could just be part of a complex object—in
this case, you can use multiple cards to organize information in a way that
helps the user understand what they're looking at.

Main content
The main content of a Card component is where information concerning the
subject is placed. The CardContent component is a child of Card, and you can use
it to render other Material UI components, such as Typography.

How to do it...
Let's say that you're working on a detail screen for some type of entity, such
as a blog post. You've decided to use a Card component to render some of the
entity details since the entity is the subject under consideration. Here's the
code that will render a Card component with information about a particular
subject:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import Card from '@material-ui/core/Card';

import CardContent from '@material-ui/core/CardContent';

import Typography from '@material-ui/core/Typography';

const styles = theme => ({

 card: {

 maxWidth: 400

 },

 content: {

 marginTop: theme.spacing(1)

 }

});

const MainContent = withStyles(styles)(({ classes }) => (

 <Card className={classes.card}>

 <CardContent>

 <Typography variant="h4">Subject Title</Typography>

 <Typography variant="subtitle1">

 A little more about subject

 </Typography>

 <Typography className={classes.content}>

 Even more information on the subject, contained within the

 card. You can fit a lot of information here, but don't try to

 overdo it.

 </Typography>

 </CardContent>

 </Card>

));

export default MainContent;

When you first load the screen, here's what you'll see:

The card's content is divided into three sections:

Subject Title: Tells the user what they're looking at
Subtitle: Gives the user a little more context
Content: The main content of the subject

How it works...
This example uses the CardContent component as the key organizational unit
within Card. Everything else is up to you. For example, the card in this
example uses three Typography components to render three different styles of
text as the card's content.

The first Typography component uses the h4 variant and serves as the card's title.
The second Typography component serves as the subtitle of the card and uses
the subtitle1 variant. Lastly, there's the main content of the card, which uses
the Typography default font. There is a marginTop style set on this text so that it's
not pushed up against the subtitle.

See also
Card reference: https://material-ui.com/demos/cards/

https://material-ui.com/demos/cards/

Card header
The CardHeader component is used to render the header of a card. This includes
the title text, as well as some other potential elements. The reason you might
want to use a CardHeader component is so that you can let it handle the layout
styles of the header and to keep the markup within your Card semantic.

How to do it...
Let's say that you're building a card component for users of your application.
As the card header, you want to display the user's name. Instead of using a
Typography component to render the title using a text variant, you could use a
CardHeader component, placed adjacent to the CardContent component. Here's
how the code appears:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import Card from '@material-ui/core/Card';

import CardHeader from '@material-ui/core/CardHeader';

import CardContent from '@material-ui/core/CardContent';

import Typography from '@material-ui/core/Typography';

import Avatar from '@material-ui/core/Avatar';

import PersonIcon from '@material-ui/icons/Person';

const styles = theme => ({

 card: {

 maxWidth: 400

 }

});

const CardHeader = withStyles(styles)(({ classes }) => (

 <Card className={classes.card}>

 <CardHeader

 title="Ron Swanson"

 subheader="Legend"

 avatar={

 <Avatar>

 <PersonIcon />

 </Avatar>

 }

 />

 <CardContent>

 <Typography variant="caption">Joined 2009</Typography>

 <Typography>

 Some filler text about the user. There doesn't have to be a

 lot - just enough so that the text spans at least two lines.

 </Typography>

 </CardContent>

 </Card>

));

export default CardHeader;

Here's what the screen looks like:

How it works...
Let's take a look at the markup used to render this card:

<Card className={classes.card}>

 <CardHeader title="Ron Swanson" />

 <CardContent>

 <Typography variant="caption">Joined 2009</Typography>

 <Typography>

 Some filler text about the user. There doesn't have to be a

 lot - just enough so that the text spans at least two lines.

 </Typography>

 </CardContent>

The CardHeader component is a sibling of CardContent. This makes the Card
markup semantic, as opposed to having to declare the card header within
CardContent. The CardHeader component takes a title string property, which is
how the title of the card is rendered.

There's more...
You can add more than just a string to CardHeader components. You can also
pass a sub-header string and an avatar to help users identify the subject in the
card. Let's modify this example to add both of these things. First, here are the
new component imports that you'll need to add:

import Avatar from '@material-ui/core/Avatar';

import PersonIcon from '@material-ui/icons/Person';

Next, here's the updated CardHeader markup:

<CardHeader

 title="Ron Swanson"

 subheader="Legend"

 avatar={

 <Avatar>

 <PersonIcon />

 </Avatar>

 }

/>

And here's what the result looks like:

The CardHeader component handles alignment of the three header components
—the avatar, the title, and the sub-header.

See also
Card demos: https://material-ui.com/demos/cards/

https://material-ui.com/demos/cards/

Performing actions
Cards are used to display specific actions about a subject. Often, users take
action on subjects, such as sending a contact a message or deleting a contact.
CardActions components can be used by Card components to display actions that
users can take on the subject.

How to do it...
Let's say that you're using a Card component to display a contact. In addition
to showing information about the contact, you would like for your users to be
able to take actions on contacts from within the card. For example, you could
provide two actions—one to message the contact, and one to phone the
contact. Here's the code to do this:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import Card from '@material-ui/core/Card';

import CardHeader from '@material-ui/core/CardHeader';

import CardContent from '@material-ui/core/CardContent';

import CardActions from '@material-ui/core/CardActions';

import Typography from '@material-ui/core/Typography';

import Avatar from '@material-ui/core/Avatar';

import IconButton from '@material-ui/core/IconButton';

import PersonIcon from '@material-ui/icons/Person';

import ContactMailIcon from '@material-ui/icons/ContactMail';

import ContactPhoneIcon from '@material-ui/icons/ContactPhone';

const styles = theme => ({

 card: {

 maxWidth: 400

 }

});

const PerformingActions = withStyles(styles)(({ classes }) => (

 <Card className={classes.card}>

 <CardHeader

 title="Ron Swanson"

 subheader="Legend"

 avatar={

 <Avatar>

 <PersonIcon />

 </Avatar>

 }

 />

 <CardContent>

 <Typography variant="caption">Joined 2009</Typography>

 <Typography>

 Some filler text about the user. There doesn't have to be a

 lot - just enough so that the text spans at least two lines.

 </Typography>

 </CardContent>

 <CardActions disableActionSpacing>

 <IconButton>

 <ContactMailIcon />

 </IconButton>

 <IconButton>

 <ContactPhoneIcon />

 </IconButton>

 </CardActions>

 </Card>

));

export default PerformingActions;

Here's what the card looks like when the screen first loads:

The two actions that users can take on the subject are rendered as icon
buttons at the bottom of the card.

How it works...
The CardActions component handles aligning the button items inside of it, both
horizontally, and making sure they're placed at the bottom of the card. The
disableActionSpacing property removes the extra margin added by CardActions.
Typically, you'll use this property any time you're using an
IconButton component for your actions.

Let's take a closer look at the markup:

<CardActions disableActionSpacing>

 <IconButton>

 <ContactMailIcon />

 </IconButton>

 <IconButton>

 <ContactPhoneIcon />

 </IconButton>

</CardActions>

Like the other child components of Card, the CardActions component makes the
overall card structure semantic, as it is a sibling of related card functionality.
The items placed within CardActions can be anything you want, but common
practice is to use icon buttons.

There's more...
You can change the alignment of the items in the CardActions component.
Since it uses flexbox as its display, you can use any of the justify-content
values. Here's an updated version that aligns the action buttons to the right of
the card:

const styles = theme => ({

 card: {

 maxWidth: 400

 },

 actions: {

 justifyContent: 'flex-end'

 }

});

const PerformingActions = withStyles(styles)(({ classes }) => (

 <Card className={classes.card}>

 <CardHeader

 title="Ron Swanson"

 subheader="Legend"

 avatar={

 <Avatar>

 <PersonIcon />

 </Avatar>

 }

 />

 <CardContent>

 <Typography variant="caption">Joined 2009</Typography>

 <Typography>

 Some filler text about the user. There doesn't have to be a

 lot - just enough so that the text spans at least two lines.

 </Typography>

 </CardContent>

 <CardActions disableActionSpacing className={classes.actions}>

 <IconButton>

 <ContactMailIcon />

 </IconButton>

 <IconButton>

 <ContactPhoneIcon />

 </IconButton>

 </CardActions>

 </Card>

));

export default PerformingActions;

The justify-content property is part of the actions style, which is then applied to
the CardActions component. Here's what the result looks like:

Here's another version showing center as the justify-content value:

See also
Card demos: https://material-ui.com/demos/cards/

https://material-ui.com/demos/cards/

Presenting media
Cards have built-in capabilities for displaying media. This includes things
such as images and videos that become the focal point of the card.

How to do it...
Let's say that you have an image of the subject that the Card component is
displaying. You can use the CardMedia component to render the image. You
should use this component instead of something like because it will
handle a number of styling issues for you. Here's the code:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import Card from '@material-ui/core/Card';

import CardHeader from '@material-ui/core/CardHeader';

import CardContent from '@material-ui/core/CardContent';

import CardMedia from '@material-ui/core/CardMedia';

import CardActions from '@material-ui/core/CardActions';

import Button from '@material-ui/core/Button';

import Typography from '@material-ui/core/Typography';

const styles = theme => ({

 card: {

 maxWidth: 322

 },

 media: {

 width: 322,

 height: 322

 }

});

const PresentingMedia = withStyles(styles)(({ classes }) => (

 <Card className={classes.card}>

 <CardHeader title="Grapefruit" subheader="Red" />

 <CardMedia

 className={classes.media}

 image="grapefruit-slice-332-332.jpg"

 title="Grapefruit"

 />

 <CardContent>

 <Typography>Mmmm. Grapefruit.</Typography>

 </CardContent>

 </Card>

));

export default PresentingMedia;

Here's what the card looks like when it's rendered:

How it works...
The CardMedia component is just like other components that make up cards –
just another part. In this example, CardMedia is placed below CardHeader and
above CardContent. But it doesn't have to be this way. You can rearrange the
order of these components.

There's more...
You can rearrange your card items in a way that makes the most sense for
your app. For example, your card with media might not have any content and
you might want to display the header text at the bottom of the card, below the
media, and with the text centered. Here's the modified code:

const styles = theme => ({

 card: {

 maxWidth: 322

 },

 media: {

 width: 322,

 height: 322

 },

 header: {

 textAlign: 'center'

 }

});

const PresentingMedia = withStyles(styles)(({ classes }) => (

 <Card className={classes.card}>

 <CardMedia

 className={classes.media}

 image="https://interactive-grapefruit-slice-332-332.jpg"

 title="Grapefruit"

 />

 <CardHeader

 className={classes.header}

 title="Grapefruit"

 subheader="Red"

 />

 </Card>

));

export default PresentingMedia;

Here's what the resulting card looks like:

See also
The img HTML tag reference: https://developer.mozilla.org/en-US/docs/Web/HTM
L/Element/img

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img

Expandable cards
Sometimes, you can't fit everything into a card that you might want to. To
accommodate, you can make your cards expandable, meaning that the user
can click on an expand button to reveal additional content.

If you're trying to fit too much content into a Card, making the card expandable just masks
the problem. Instead, consider a different approach to displaying information about the
subject in question. For example, maybe, instead of a card, the subject is worthy of its
own page.

How to do it...
Let's see that there's additional content about a subject within a card that does
the following:

Takes up a little too much vertical space
Isn't very important and doesn't need to be shown by default

You can deal with both of these challenges by putting the content into an
expandable region of the card. Then, the vertical space isn't an issue and the
user can look at the content if they deem it relevant. Here's an example that
builds on an earlier example from this chapter to make part of the card
content hidden by default:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Card from '@material-ui/core/Card';

import CardHeader from '@material-ui/core/CardHeader';

import CardContent from '@material-ui/core/CardContent';

import CardActions from '@material-ui/core/CardActions';

import Typography from '@material-ui/core/Typography';

import Avatar from '@material-ui/core/Avatar';

import IconButton from '@material-ui/core/IconButton';

import Collapse from '@material-ui/core/Collapse';

import PersonIcon from '@material-ui/icons/Person';

import ContactMailIcon from '@material-ui/icons/ContactMail';

import ContactPhoneIcon from '@material-ui/icons/ContactPhone';

import ExpandLessIcon from '@material-ui/icons/ExpandLess';

import ExpandMoreIcon from '@material-ui/icons/ExpandMore';

const useStyles = makeStyles(theme => ({

 card: {

 maxWidth: 400

 },

 expand: {

 marginLeft: 'auto'

 }

}));

const ExpandIcon = ({ expanded }) =>

 expanded ? <ExpandLessIcon /> : <ExpandMoreIcon />;

export default function ExpandableCards() {

 const classes = useStyles();

 const [expanded, setExpanded] = useState(false);

 const toggleExpanded = () => {

 setExpanded(!expanded);

 };

 return (

 <Card className={classes.card}>

 <CardHeader

 title="Ron Swanson"

 subheader="Legend"

 avatar={

 <Avatar>

 <PersonIcon />

 </Avatar>

 }

 />

 <CardContent>

 <Typography variant="caption">Joined 2009</Typography>

 <Typography>

 Some filler text about the user. There doesn't have to be a

 lot - just enough so that the text spans at least two lines.

 </Typography>

 </CardContent>

 <CardActions disableActionSpacing>

 <IconButton>

 <ContactMailIcon />

 </IconButton>

 <IconButton>

 <ContactPhoneIcon />

 </IconButton>

 <IconButton

 className={classes.expand}

 onClick={toggleExpanded}

 >

 <ExpandIcon expanded={expanded} />

 </IconButton>

 </CardActions>

 <Collapse in={expanded}>

 <CardContent>

 <Typography>

 Even more filler text about the user. It doesn't fit in

 the main content area of the card, so this is what the

 user will see when they click the expand button.

 </Typography>

 </CardContent>

 </Collapse>

 </Card>

);

}

When you first load the screen, here's what the card looks like:

To the right of the action buttons in the card, there is now an expand button
with a down arrow. If you click on the expand button, here's what the card
looks like when it's expanded:

The expand icon has now changed to a collapse icon—clicking on it will
collapse the card into its original state.

How it works...
Let's break down the additions in this example that added the expandable
card region. First, there's the expand style:

expand: {

 marginLeft: 'auto'

}

This is used to align the expand/collapse icon button to the left of the other
actions. Next, let's look at the ExpandIcon component:

const ExpandIcon = ({ expanded }) =>

 expanded ? <ExpandLessIcon /> : <ExpandMoreIcon />;

This utility component is used to render either the correct icon component,
depending on the expanded state of the component. Next, let's take a look at
the toggleExpanded() function:

const toggleExpanded = () => {

 setExpanded(!expanded);

};

This handler, when called, will toggle the expanded state. This state is then
passed to the ExpandIcon component, which will render the appropriate icon.
Next, let's take a closer look at the actions markup for this card:

<CardActions disableActionSpacing>

 <IconButton>

 <ContactMailIcon />

 </IconButton>

 <IconButton>

 <ContactPhoneIcon />

 </IconButton>

 <IconButton

 className={classes.expand}

 onClick={toggleExpanded}

 >

 <ExpandIcon expanded={expanded} />

 </IconButton>

</CardActions>

The expand/collapse button is the last IconButton component shown here. It's
using the expand style, the toggleExpanded() click handler, and the expanded

state. Finally, let's take a look at the card content that can be expanded and
collapsed when the button is clicked on:

<Collapse in={expanded}>

 <CardContent>

 <Typography>

 Even more filler text about the user. It doesn't fit

 in the main content area of the card, so this is what

 the user will see when they click the expand button.

 </Typography>

 </CardContent>

</Collapse>

The Collapse component is used to show or hide the additional card content
based on the expanded state. Note that the CardContent component is used here
so that once the additional content is shown, it is styled consistently with the
rest of the card content.

See also
Card demos: https://material-ui.com/demos/cards/
Card API documentation: https://material-ui.com/api/card/
CardHeader API documentation: https://material-ui.com/api/card-header/
CardContent API documentation: https://material-ui.com/api/card-content/
CardActions API documentation: https://material-ui.com/api/card-actions/
IconButton API documentation: https://material-ui.com/api/icon-button/
Collapse API documentation: https://material-ui.com/api/collapse/

https://material-ui.com/demos/cards/
https://material-ui.com/api/card/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/collapse/

Snackbars - Temporary Messages
In this chapter, you'll learn about the following:

Snackbar content
Controlling visibility with state
Snackbar transitions
Positioning Snackbars
Error boundaries and error Snackbars
Snackbars with actions
Queuing Snackbars

Introduction
Material-UI comes with a Snackbar component that's used to display messages
for users. These messages are brief, short-lived, and don't interfere with the
main application components.

Snackbar content
Text is the most common form of Snackbar message content that you'll display
for your users. Because of this, the Snackbar component makes it
straightforward to set message content and display the snackbar.

How to do it...
The message property of the Snackbar component accepts a string value, or any
other valid React element. Here's the code that shows you how to set the
content of the Snackbar component and display it:

import React from 'react';

import Snackbar from '@material-ui/core/Snackbar';

const MySnackbarContent = () => <Snackbar open={true} message="Test" />;

export default MySnackbarContent;

When the page first loads, you'll see a snackbar that looks like this:

How it works...
By default, a snackbar is nothing fancy, but it renders your text content as
specified in the message property. The open property is set to true because any
other value hides the snackbar.

There's more...
The Snackbar components use SnackbackContent components to render the actual
content that's displayed. In turn, SnackbarContent uses Paper, which uses
Typography. It's kind of tricky to navigate through all of this indirection, but,
thankfully, you don't have to. Instead, you can pass properties all the way to
the Typography component from Snackbar via the ContentProps property.

Let's say that you wanted to use the h6 typography variant. Here's how you
could do this:

import React from 'react';

import Snackbar from '@material-ui/core/Snackbar';

const MySnackbarContent () => (

 <Snackbar

 open={true}

 message="Test"

 ContentProps={{ variant: 'h6' }}

 />

);

export default MySnackbarContent;

Any properties that you want to pass to the component used by Paper can be
set by ContentProps. Here, you're passing the variant property—which results in
the following visual change:

The end result is larger text and a wider margin. The aim of this example isn't
this particular typography change, but rather the idea that you can customize
Snackbar text in the exact same way as you would Typography components.

You can put as many or as few components as you want into your snackbar content. For
example, you can pass child components to Snackbar instead of in the message property.
However, I would advise keeping your snackbar content as simple as possible. The last
place where you want to go down a design rabbit hole is in a component that's already

been designed to handle simple text.

See also
Snackbar demos: https://material-ui.com/demos/snackbars/
Snackbar API documentation: https://material-ui.com/api/snackbar/

https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/

Controlling visibility with state
Snackbars are displayed in response to something. For example, if a new
resource in your application is created, then using a Snackbar component to
relay this information to the user is a good choice. If you need to control the
state of your snackbars, then you need to add a state that controls the
visibility of the snackbar.

How to do it...
The open property is used to control the visibility of the snackbar. All you
need in order to control this property value is a state value that's passed to it.
Then, when this state changes, so does the visibility of the snackbar. Here's
some code that illustrates the basic idea of state-controlling snackbars:

import React, { Fragment, useState } from 'react';

import Button from '@material-ui/core/Button';

import Snackbar from '@material-ui/core/Snackbar';

export default function ControllingVisibilityWithState() {

 const [open, setOpen] = useState(false);

 const showSnackbar = () => {

 setOpen(true);

 };

 return (

 <Fragment>

 <Button variant="contained" onClick={showSnackbar}>

 Show Snackbar

 </Button>

 <Snackbar open={open} message="Visible Snackbar!" />

 </Fragment>

);

}

When you first load the screen, all you'll see is a SHOW SNACKBAR
button:

Clicking on this button shows the snackbar:

How it works...
The component has an open state that determines the visibility of the snackbar.
The value of open is passed to the open property of Snackbar. When the user
clicks on the SHOW SNACKBAR button, the showSnackbar() function sets the
open state to true. As a result, the true value is passed to the open property of
Snackbar.

There's more...
Once you've displayed a snackbar, you're going to need to be able to close it
somehow. Once again, the open state can hide the snackbar. But how do you
change the open state back to false? The typical pattern with snackbar
messages is to have them appear only briefly, after which they're
automatically hidden.

By passing two more properties to Snackbar, you can enhance this example so
that the snackbar automatically hides itself after a certain time. Here's the
updated code:

import React, { Fragment, useState } from 'react';

import Button from '@material-ui/core/Button';

import Snackbar from '@material-ui/core/Snackbar';

export default function ControllingVisibilityWithState() {

 const [open, setOpen] = useState(false);

 const showSnackbar = () => {

 setOpen(true);

 };

 const hideSnackbar = () => {

 setOpen(false);

 };

 return (

 <Fragment>

 <Button variant="contained" onClick={showSnackbar}>

 Show Snackbar

 </Button>

 <Snackbar

 open={open}

 onClose={hideSnackbar}

 autoHideDuration={5000}

 message="Visible Snackbar!"

 />

 </Fragment>

);

}

A new function—hideSnackbar()—was added to the component. This is passed
to the onClose property of Snackbar. The autoHideDuration component is the

number of milliseconds that you want the snackbar to stay visible. In this
example, after five seconds, the Snackbar component will call the function
passed to its onClose property. This sets the open state to false, which is in turn
passed to the open property of Snackbar.

See also
Snackbar demos: https://material-ui.com/demos/snackbars/
Snackbar API documentation: https://material-ui.com/api/snackbar/
Button API documentation: https://material-ui.com/api/button/

https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/button/

Snackbar transitions
You can control the transitions used by Snackbar components when it is
displayed and hidden. The Snackbar component directly supports transition
customization through properties, so you don't have to spend too much time
thinking about how to implement your snackbar transitions.

How to do it...
Let's say that you want to make it easier to change the transition used by
snackbars throughout your application. You could create a thin wrapper
component around Snackbar that takes care of setting the appropriate
properties. Here's what the code looks like:

import React, { Fragment, useState } from 'react';

import Grid from '@material-ui/core/Grid';

import Button from '@material-ui/core/Button';

import Snackbar from '@material-ui/core/Snackbar';

import Slide from '@material-ui/core/Slide';

import Grow from '@material-ui/core/Grow';

import Fade from '@material-ui/core/Fade';

const MySnackbar = ({ transition, direction, ...rest }) => (

 <Snackbar

 TransitionComponent={

 { slide: Slide, grow: Grow, fade: Fade }[transition]

 }

 TransitionProps={{ direction }}

 {...rest}

 />

);

export default function SnackbarTransitions() {

 const [first, setFirst] = useState(false);

 const [second, setSecond] = useState(false);

 const [third, setThird] = useState(false);

 const [fourth, setFourth] = useState(false);

 return (

 <Fragment>

 <Grid container spacing={8}>

 <Grid item>

 <Button variant="contained" onClick={() => setFirst(true)}>

 Slide Down

 </Button>

 </Grid>

 <Grid item>

 <Button variant="contained" onClick={() => setSecond(true)}>

 Slide Up

 </Button>

 </Grid>

 <Grid item>

 <Button variant="contained" onClick={() => setThird(true)}>

 Grow

 </Button>

 </Grid>

 <Grid item>

 <Button variant="contained" onClick={() => setFourth(true)}>

 Fade

 </Button>

 </Grid>

 </Grid>

 <MySnackbar

 open={first}

 onClose={() => setFirst(false)}

 autoHideDuration={5000}

 message="Slide Down"

 transition="slide"

 direction="down"

 />

 <MySnackbar

 open={second}

 onClose={() => setSecond(false)}

 autoHideDuration={5000}

 message="Slide Up"

 transition="slide"

 direction="up"

 />

 <MySnackbar

 open={third}

 onClose={() => setThird(false)}

 autoHideDuration={5000}

 message="Grow"

 transition="grow"

 />

 <MySnackbar

 open={fourth}

 onClose={() => setFourth(false)}

 autoHideDuration={5000}

 message="Fade"

 transition="fade"

 />

 </Fragment>

);

}

This code renders four buttons and four snackbars. When you first load the
screen, you'll only see buttons:

Clicking on each of these buttons will display their corresponding Snackbar
component at the bottom of the screen. If you pay attention to the transitions
used when each of the snackbars is displayed, you'll notice the difference
depending on the buttons you press. For example, clicking on the Fade button
will use the fade transition, resulting in the following snackbar:

How it works...
Let's start by looking at the MySnackbar component that was created in this
example:

const MySnackbar = ({ transition, direction, ...rest }) => (

 <Snackbar

 TransitionComponent={

 { slide: Slide, grow: Grow, fade: Fade }[transition]

 }

 TransitionProps={{ direction }}

 {...rest}

 />

);

There are two properties of interest here. The first is the transition string. This
is used to look up the transition component to use. For example, the string
slide will use the Slide component. The resulting component is used by the
TransitionComponent property. The Snackbar components will use this component
internally to apply the desired transition to your snackbars. The direction
property is used with the Slide transition, which is why this property is passed
to TransitionProps. These property values are passed directly to the component
that's passed to TransitionComponent.

The alternative to using TransitionProps is to create a higher-order component
that wraps its own property customization values. But since Snackbar is already
set up to help you pass properties, there's no need to create yet another
component if you want to avoid doing so.

Next, let's look at the component state and the functions that change it:

const [first, setFirst] = useState(false);

const [second, setSecond] = useState(false);

const [third, setThird] = useState(false);

const [fourth, setFourth] = useState(false);

The first, second, third, and fourth states correspond to their own Snackbar
components. These state values control the visibility of each function, and
their corresponding setter functions show or hide the snackbars.

Finally, let's look at two of the MySnackbar components being rendered:

<MySnackbar

 open={first}

 onClose={() => setFirst(false)}

 autoHideDuration={5000}

 message="Slide Down"

 transition="slide"

 direction="down"

/>

<MySnackbar

 open={second}

 onClose={() => setSecond(false)}

 autoHideDuration={5000}

 message="Slide Up"

 transition="slide"

 direction="up"

/>

Both of these instances use the slide transition. However, the direction
property is different for each. The MySnackbar abstraction makes it a little
simpler for you to specify transitions and transition arguments.

See also
Snackbar demos: https://material-ui.com/demos/snackbars/
Snackbar API documentation: https://material-ui.com/api/snackbar/
Slide API documentation: https://material-ui.com/api/slide/
Grow API documentation: https://material-ui.com/api/grow/
Fade API documentation: https://material-ui.com/api/fade/

https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/slide/
https://material-ui.com/api/grow/
https://material-ui.com/api/fade/

Positioning snackbars
Material-UI Snackbar components have an anchorOrigin property that allows
you to change the position of the snackbar when it's displayed. You might be
fine using the default positioning of snackbars, but sometimes you'll need this
level of customization to stay consistent with other parts of your application.

How to do it...
While you can't arbitrarily position snackbars on the screen, there are a
number of options that allow you to change the position of the snackbar.
Here's some code that allows you to play around with the anchorOrigin property
values:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Snackbar from '@material-ui/core/Snackbar';

import Radio from '@material-ui/core/Radio';

import RadioGroup from '@material-ui/core/RadioGroup';

import FormControlLabel from '@material-ui/core/FormControlLabel';

import FormControl from '@material-ui/core/FormControl';

import FormLabel from '@material-ui/core/FormLabel';

const useStyles = makeStyles(theme => ({

 formControl: {

 margin: theme.spacing(3)

 }

}));

export default function PositioningSnackbars() {

 const classes = useStyles();

 const [vertical, setVertical] = useState('bottom');

 const [horizontal, setHorizontal] = useState('left');

 const onVerticalChange = event => {

 setVertical(event.target.value);

 };

 const onHorizontalChange = event => {

 setHorizontal(event.target.value);

 };

 return (

 <Fragment>

 <FormControl

 component="fieldset"

 className={classes.formControl}

 >

 <FormLabel component="legend">Vertical</FormLabel>

 <RadioGroup

 name="vertical"

 className={classes.group}

 value={vertical}

 onChange={onVerticalChange}

 >

 <FormControlLabel

 value="top"

 control={<Radio />}

 label="Top"

 />

 <FormControlLabel

 value="bottom"

 control={<Radio />}

 label="Bottom"

 />

 </RadioGroup>

 </FormControl>

 <FormControl

 component="fieldset"

 className={classes.formControl}

 >

 <FormLabel component="legend">Horizontal</FormLabel>

 <RadioGroup

 name="horizontal"

 className={classes.group}

 value={horizontal}

 onChange={onHorizontalChange}

 >

 <FormControlLabel

 value="left"

 control={<Radio />}

 label="Left"

 />

 <FormControlLabel

 value="center"

 control={<Radio />}

 label="Center"

 />

 <FormControlLabel

 value="right"

 control={<Radio />}

 label="Right"

 />

 </RadioGroup>

 </FormControl>

 <Snackbar

 anchorOrigin={{

 vertical,

 horizontal

 }}

 open={true}

 message="Positioned Snackbar"

 />

 </Fragment>

);

}

When the screen first loads, you'll see controls for changing the position of
the snackbar, and the Snackbar component in its default position:

If you change any of the position control values, the snackbar will move to
the new position. For example, if you changed the vertical anchor to top and
the horizontal anchor to the right, here's what you'd see:

How it works...
The two radio button groups in this example are only used to illustrate the
different position value combinations that are available. In a real application
where you show snackbars, you wouldn't have the configurable state to
change the positioning of your snackbars. Instead, you should think of a
value passed to the anchorOrigin property as a configuration value that is set
once during startup.

It isn't good to rely on state values, as is the case in this example:

<Snackbar

 anchorOrigin={{

 vertical,

 horizontal

 }}

 open={true}

 message="Positioned Snackbar"

/>

Instead, you would set the anchorOrigin values statically:

<Snackbar

 anchorOrigin={{

 vertical: 'top'

 horizontal: 'right'

 }}

 open={true}

 message="Positioned Snackbar"

/>

There's more...
Once you know where you want to position your snackbars, you can create
your own Snackbar component that has the anchorOrigin values defined. Here's
an example:

const MySnackbar = props => (

 <Snackbar

 anchorOrigin={{

 vertical: 'top',

 horizontal: 'right'

 }}

 {...props}

 />

);

Anywhere in your app that MySnackbar is used, the snackbars will be displayed
in the top-right corner of the screen. Otherwise, MySnackbar is just like a regular
Snackbar component.

See also
Snackbar demos: https://material-ui.com/demos/snackbars/
Snackbar API documentation: https://material-ui.com/api/snackbar/

https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/

Error boundaries and error
snackbars
Error boundaries in React enable you to capture errors that happen when
your components attempt to render. You can use the Snackbar components in
your error boundaries to display captured errors. Furthermore, you can style
snackbars so that errors are visually distinctive from normal messages.

How to do it...
Let's say that you have an error boundary at the top level of your application
and you want to use the Snackbar component to display error messages to
users. Here's an example that shows how you can do this:

import React, { Fragment, Component } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Snackbar from '@material-ui/core/Snackbar';

import Button from '@material-ui/core/Button';

const styles = theme => ({

 error: {

 backgroundColor: theme.palette.error.main,

 color: theme.palette.error.contrastText

 }

});

const ErrorBoundary = withStyles(styles)(

 class extends Component {

 state = { error: null };

 onClose = () => {

 this.setState({ error: null });

 };

 componentDidCatch(error) {

 this.setState({ error });

 }

 render() {

 const { classes } = this.props;

 return (

 <Fragment>

 {this.state.error === null && this.props.children}

 <Snackbar

 open={Boolean(this.state.error)}

 message={

 this.state.error !== null && this.state.error.toString()

 }

 ContentProps={{ classes: { root: classes.error } }}

 />

 </Fragment>

);

 }

 }

);

const MyButton = () => {

 throw new Error('Random error');

};

export default () => (

 <ErrorBoundary>

 <MyButton />

 </ErrorBoundary>

);

When you load this screen, the MyButton component throws an error when it is
rendered. Here's what you'll see:

It explicitly throws an error so that you can see the error boundary mechanism in action.
In a real application, the error could be triggered by any function that's called during the
rendering process.

How it works...
Let's start by taking a closer look at the ErrorBoundary component. It has an
error state that is initially null. The componentDidCatch() life cycle method
changes this state when an error happens:

componentDidCatch(error) {

 this.setState({ error });

}

Next, let's take a closer look at the render() method:

render() {

 const { classes } = this.props;

 return (

 <Fragment>

 {this.state.error === null && this.props.children}

 <Snackbar

 open={Boolean(this.state.error)}

 message={

 this.state.error !== null && this.state.error.toString()

 }

 ContentProps={{ classes: { root: classes.error } }}

 />

 </Fragment>

);

}

It uses the error state to determine whether children should be rendered. When
the error state is non-null, it doesn't make sense to render child components
because you'll be stuck in an infinite loop of error being thrown and handled.
The error state is also used as the open property to determine whether the
snackbar should be displayed, and as the message text.

The ContentProps property is used to style the snackbar so that it looks like an
error. The error class uses theme values to change the background and text
color:

const styles = theme => ({

 error: {

 backgroundColor: theme.palette.error.main,

 color: theme.palette.error.contrastText

 }

});

There's more...
The error boundary used in this example covered the entire application. This
is good in the sense that you can blanket the entire application with error
handling in one shot. But this is also bad, because the entire user interface
vanishes, as the error boundary has no idea which component failed.

Because error boundaries are components, you can place as many of them as
you like at any level of your component tree. This way, you can show
Material-UI error snackbars while keeping the parts of the UI that haven't
failed visible on the screen.

Let's change the scope of the error boundary used in the example. First, you
can change the MyButton implementation so that it only throws an error when a
Boolean property is true:

const MyButton = ({ label, throwError }) => {

 if (throwError) {

 throw new Error('Random error');

 }

 return <Button>{label}</Button>;

};

Now you can render a button with a given label. If throwError is true, then
nothing is rendering due to the error. Next, let's change the markup of the
example to include multiple buttons and multiple error boundaries:

export default () => (

 <Fragment>

 <ErrorBoundary>

 <MyButton label="First Button" />

 </ErrorBoundary>

 <ErrorBoundary>

 <MyButton label="Second Button" throwError />

 </ErrorBoundary>

 </Fragment>

);

The first button renders without any issues. However, if the error boundary
were all-encompassing as was the case earlier, then this button wouldn't be
displayed. The second button throws an error because the throwError property

is true. Because this button has its own error boundary, it doesn't prevent
other parts of the UI that are working fine from rendering. Here's what you'll
see when you run the example now:

See also
React error boundaries: https://reactjs.org/docs/error-boundaries.html
Snackbar demos: https://material-ui.com/demos/snackbars/
Snackbar API documentation: https://material-ui.com/api/snackbar/

https://reactjs.org/docs/error-boundaries.html
https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/

Snackbars with actions
The purpose of Material-UI snackbars is to display brief messages for the
user. Additionally, you can embed the next course of action for the user in the
snackbar.

How to do it...
Let's say that you want a simple button in your snackbar that closes the
snackbar. This could be useful for closing the snackbar before it
automatically closes. Alternatively, you might want to require the user to
explicitly acknowledge the message by having to close it manually. Here's
the code to add a close button to a Snackbar component:

import React, { Fragment, useState } from 'react';

import { Route, Link } from 'react-router-dom';

import Snackbar from '@material-ui/core/Snackbar';

import Button from '@material-ui/core/Button';

import IconButton from '@material-ui/core/IconButton';

import Typography from '@material-ui/core/Typography';

import CloseIcon from '@material-ui/icons/Close';

export default function Snackbars() {

 const [open, setOpen] = useState(false);

 return (

 <Fragment>

 <Button onClick={() => setOpen(true)}>Do Something</Button>

 <Snackbar

 open={open}

 onClose={() => setOpen(false)}

 message="All done doing the thing"

 action={[

 <IconButton color="inherit" onClick={() => setOpen(false)}>

 <CloseIcon />

 </IconButton>

]}

 />

 </Fragment>

);

}

When the screen first loads, you'll only see a button:

Clicking on this button will display the snackbar:

The close icon button on the right side of the snackbar, when clicked on,
closes the snackbar.

How it works...
The close button is added to the Snackbar component via the action property,
which accepts either a node or an array of nodes. The SnackbarContent
component takes care of applying styles to align the actions within the
snackbar.

There's more...
When users create new resources in your application, you probably want to
let them know when the resource is created successfully. Snackbars are a
good tool for this because they don't force the user away from anything that
they might be in the middle of. What would be nice is if you included an
action button in the snackbar that linked to the newly created resource.

Let's modify this example so that, when the user clicks on the CREATE
button, they'll see a snackbar with the following:

A brief message
A close action
A link to the new resource

Let's add routes from react-router-dom and then add the link to the snackbar.
Here's the new markup:

<Fragment>

 <Route

 exact

 path="/"

 render={() => (

 <Button onClick={() => setOpen(true)}>create thing</Button>

)}

 />

 <Route

 exact

 path="/thing"

 render={() => <Typography>The Thing</Typography>}

 />

 <Snackbar

 open={open}

 onClose={() => setOpen(false)}

 message="Finished creating thing"

 action={[

 <Button

 color="secondary"

 component={Link}

 to="/thing"

 onClick={() => setOpen(false)}

 >

 The Thing

 </Button>,

 <IconButton color="inherit" onClick={() => setOpen(false)}>

 <CloseIcon />

 </IconButton>

]}

 />

</Fragment>

The first route is for the index page, so, when the screen first loads, the user
will see the button that's rendered by this route:

When you click on this button, you'll see the snackbar that includes a link to
the newly-created resource:

Now you've given the user an easy way to navigate to the resource without
disrupting what they're currently doing.

See also
React router guide: https://reacttraining.com/react-router/web/guides/quick-sta
rt

Snackbar demos: https://material-ui.com/demos/snackbars/
Snackbar API documentation: https://material-ui.com/api/snackbar/
Button API documentation: https://material-ui.com/api/button/
IconButton API documentation: https://material-ui.com/api/icon-button/

https://reacttraining.com/react-router/web/guides/quick-start
https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/button/
https://material-ui.com/api/icon-button/

Queuing snackbars
With larger Material-UI applications, you're likely to find yourself in a
situation where more than one snackbar message is sent in a very short period
of time. To deal with this, you can create a queue for all snackbar messages
so that only the most recent notification is displayed, and so that the
transitions are handled properly.

How to do it...
Let's say that you have several components throughout your application that
need to send snackbar messages to your users. Having to manually render
Snackbar components everywhere would be cumbersome—especially if all
you're trying to do is display simple text snackbars.

One alternative approach is to implement a higher-order component that
wraps your components with the ability to display messages by calling a
function and then passing the text as the argument. Then, you can wrap any
components that need the snackbar capability. Here's what the code looks
like:

import React, { Fragment, useState } from 'react';

import Snackbar from '@material-ui/core/Snackbar';

import Button from '@material-ui/core/Button';

import IconButton from '@material-ui/core/IconButton';

import CloseIcon from '@material-ui/icons/Close';

const withMessage = Wrapped =>

 function WithMessage(props) {

 const [queue, setQueue] = useState([]);

 const [open, setOpen] = useState(false);

 const [message, setMessage] = useState('');

 const sendMessage = msg => {

 const newQueue = [...queue, msg];

 if (newQueue.length === 1) {

 setOpen(true);

 setMessage(msg);

 }

 };

 const onClose = () => {

 setOpen(false);

 };

 const onExit = () => {

 const [msg, ...rest] = queue;

 if (msg) {

 setQueue(rest);

 setOpen(true);

 setMessage(msg);

 }

 };

 return (

 <Fragment>

 <Wrapped message={sendMessage} {...props} />

 <Snackbar

 key={message}

 open={open}

 message={message}

 autoHideDuration={4000}

 onClose={onClose}

 onExit={onExit}

 />

 </Fragment>

);

 };

const QueuingSnackbars = withMessage(({ message }) => {

 const [counter, setCounter] = useState(0);

 const onClick = () => {

 const newCounter = counter + 1;

 setCounter(newCounter);

 message(`Message ${newCounter}`);

 };

 return <Button onClick={onClick}>Message</Button>;

});

export default QueuingSnackbars;

When the screen first loads, you'll see a message button. Clicking on it will
display a snackbar message that looks like this:

Clicking on the message button again will clear the current snackbar by
visually transitioning it off of the screen before transitioning the new
snackbar onto the screen. Even if you click the button several times in rapid
succession, everything works smoothly and you'll always see the latest
message:

How it works...
Let's start by looking at the QueuingSnackbars component that renders the button
that sends messages when clicked:

const QueuingSnackbars = withMessage(({ message }) => {

 const [counter, setCounter] = useState(0);

 const onClick = () => {

 const newCounter = counter + 1;

 setCounter(newCounter);

 message(`Message ${newCounter}`);

 };

 return <Button onClick={onClick}>Message</Button>;

});

The withMessage() wrapper provides the component with a message() function as
a property. If you look at the onClick() handler, you can see the message()
function in action.

Next, let's break down the withMessage() higher-order component. We'll start
with the markup and work our way downward:

<Fragment>

 <Wrapped message={sendMessage} {...props} />

 <Snackbar

 key={message}

 open={open}

 message={message}

 autoHideDuration={4000}

 onClose={onClose}

 onExit={onExit}

 />

</Fragment>

The Wrapped component is the component that withMessage() was called on. It's
passed the normal props that it would be called with normally, plus the
message() function. Adjacent to this is the Snackbar component. There are two
interesting properties that are worth pointing out here:

key: This value is used internally by Snackbar to determine whether a new
message is being displayed. It should be a unique value.
onExit: This is called when the transition of a snackbar that is closing

completes.

Next, let's look at the sendMessage() function:

const sendMessage = msg => {

 const newQueue = [...queue, msg];

 if (newQueue.length === 1) {

 setOpen(true);

 setMessage(msg);

 }

};

This function is called whenever a component wants to display a snackbar
message. It puts the message string into the queue. If the message is the only
item in the queue, then the open and message states are updated right away.

Next, let's look at the onClose() function. This is called when the snackbar is
closed:

const onClose = () => {

 setOpen(false);

};

The only job of this function is to make sure that the open state is false.

Lastly, let's look at the onExit() function that's called when a snackbar has
completed its exit transition:

const onExit = () => {

 const [msg, ...rest] = queue;

 if (msg) {

 setQueue(rest);

 setOpen(true);

 setMessage(msg);

 }

};

The fist message in the queue is assigned to the message constant. If there's a
message, it becomes the active message state and the next snackbar is
opened. The item is also removed from the queue at this point.

See also
Snackbar demos: https://material-ui.com/demos/snackbars/
Snackbar API documentation: https://material-ui.com/api/snackbar/
Button API documentation: https://material-ui.com/api/button/
IconButton API documentation: https://material-ui.com/api/icon-button/

https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/button/
https://material-ui.com/api/icon-button/

Buttons - Initiating Actions
 In this chapter, you'll learn about the following topics:

Button variants
Button emphasis
Link buttons
Floating actions
Icon buttons
Button sizes

Introduction
Buttons in Material-UI applications are used to initiate actions. The user
clicks on a button and something happens. What happens when a button is
activated is entirely up to you. Material-UI buttons range in complexity from
simple text buttons to floating action buttons.

Button variants
The Material-UI Button component exists as one of three variants. These are as
follows:

Text

Outlined

Contained

How to do it...
Here's some code that renders three Button components, each explicitly setting
their variant property:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import Button from '@material-ui/core/Button';

import Grid from '@material-ui/core/Grid';

const styles = theme => ({

 container: {

 margin: theme.spacing(1)

 }

});

const ButtonVariants = withStyles(styles)(({ classes }) => (

 <Grid

 container

 direction="column"

 spacing={2}

 className={classes.container}

 >

 <Grid item>

 <Button variant="text">Text</Button>

 </Grid>

 <Grid item>

 <Button variant="outlined">Outlined</Button>

 </Grid>

 <Grid item>

 <Button variant="contained">Contained</Button>

 </Grid>

 </Grid>

));

export default ButtonVariants;

When you load the screen, here's what you'll see:

How it works...
The variant property controls the type of button that's rendered. The three
variants can be used in different scenarios or contexts as you see fit. For
example, TEXT buttons draw less attention if this is what you need.
Conversely, CONTAINED buttons try to stand out as an obvious interaction
point for the user.

The default variant is text. I find Button markup easier to read when you explicitly include
the variant. This way, you or anyone else reading the code don't have to remember what
the default variant is.

See also
Button demos: https://material-ui.com/demos/buttons/
Button API documentation: https://material-ui.com/api/button/

https://material-ui.com/demos/buttons/
https://material-ui.com/api/button/

Button emphasis
The color and disabled properties of Button let you control the emphasis of a
button relative to its surroundings. For example, you can specify that a button
should use the primary color value. The emphasis of a button is the cumulative
result of the variant and color properties. You can adjust both until the button
has the appropriate emphasis.

There is no right level of emphasis. Use what makes sense in the context of your
application.

How to do it...
Here's some code that shows the different color values that you can apply to
Button components:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import Button from '@material-ui/core/Button';

import Grid from '@material-ui/core/Grid';

import Typography from '@material-ui/core/Typography';

const styles = theme => ({

 container: {

 margin: theme.spacing(1)

 }

});

const ButtonEmphasis = withStyles(styles)(({ classes, disabled }) => (

 <Grid

 container

 direction="column"

 spacing={16}

 className={classes.container}

 >

 <Grid item>

 <Typography variant="h6">Default</Typography>

 </Grid>

 <Grid item>

 <Grid container spacing={16}>

 <Grid item>

 <Button variant="text" disabled={disabled}>

 Text

 </Button>

 </Grid>

 <Grid item>

 <Button variant="outlined" disabled={disabled}>

 Outlined

 </Button>

 </Grid>

 <Grid item>

 <Button variant="contained" disabled={disabled}>

 Contained

 </Button>

 </Grid>

 </Grid>

 </Grid>

 <Grid item>

 <Typography variant="h6">Primary</Typography>

 </Grid>

 <Grid item>

 <Grid container spacing={16}>

 <Grid item>

 <Button variant="text" color="primary" disabled={disabled}>

 Text

 </Button>

 </Grid>

 <Grid item>

 <Button

 variant="outlined"

 color="primary"

 disabled={disabled}

 >

 Outlined

 </Button>

 </Grid>

 <Grid item>

 <Button

 variant="contained"

 color="primary"

 disabled={disabled}

 >

 Contained

 </Button>

 </Grid>

 </Grid>

 </Grid>

 <Grid item>

 <Typography variant="h6">Secondary</Typography>

 </Grid>

 <Grid item>

 <Grid container spacing={16}>

 <Grid item>

 <Button

 variant="text"

 color="secondary"

 disabled={disabled}

 >

 Text

 </Button>

 </Grid>

 <Grid item>

 <Button

 variant="outlined"

 color="secondary"

 disabled={disabled}

 >

 Outlined

 </Button>

 </Grid>

 <Grid item>

 <Button

 variant="contained"

 color="secondary"

 disabled={disabled}

 >

 Contained

 </Button>

 </Grid>

 </Grid>

 </Grid>

 </Grid>

));

export default ButtonEmphasis;

Here's what you'll see when the screen first loads:

And if the disabled property is true, here's what you'll see:

How it works...
This example serves to illustrate the combinatorial result of the variant and
color properties. Alternatively, you can completely disable buttons and yet
still control the variant aspect of their emphasis (the color property has no
effect on disabled buttons).

The order of most to least emphatic variant values is as follows:

1. contained

2. outlined

3. text

The order of most to least emphatic color values is as follows:

1. primary

2. secondary

3. default

By combining these two property values, you can control the emphasis of
your buttons. Sometimes, you really need a button to stand out, so you can
combine contained and primary:

If you want your button to not stand out at all, you can combine the text
variant with default color:

There's more...
If your button is placed in another Material-UI component, it can be difficult
to ensure the correct color choice. For example, let's say that you have some
buttons in an AppBar component, as follows:

<AppBar color={appBarColor}>

 <Toolbar>

 <Grid container spacing={16}>

 <Grid item>

 <Button variant="text" disabled={disabled}>

 Text

 </Button>

 </Grid>

 <Grid item>

 <Button variant="outlined" disabled={disabled}>

 Outlined

 </Button>

 </Grid>

 <Grid item>

 <Button variant="contained" disabled={disabled}>

 Contained

 </Button>

 </Grid>

 </Grid>

 </Toolbar>

</AppBar>

If the AppBar color value is default, here's what you'll see:

This doesn't actually look too bad because the buttons themselves are using
the default color. But what happens if you change the AppBar color to primary:

The contained variant is the only button that even comes close to looking like it
belongs in the App Bar. Let's modify the buttons so that they all use the

inherit color property value, as follows:

<AppBar color={appBarColor}>

 <Toolbar>

 <Grid container spacing={16}>

 <Grid item>

 <Button

 variant="text"

 disabled={disabled}

 color="inherit"

 >

 Text

 </Button>

 </Grid>

 <Grid item>

 <Button

 variant="outlined"

 disabled={disabled}

 color="inherit"

 >

 Outlined

 </Button>

 </Grid>

 <Grid item>

 <Button

 variant="contained"

 disabled={disabled}

 color="inherit"

 >

 Contained

 </Button>

 </Grid>

 </Grid>

 </Toolbar>

</AppBar>

Now, your App Bar and buttons look like this:

The TEXT and OUTLINE buttons look much better now. They've inherited
the theme font color from their parent component. The CONTAINED button
actually looks worse, now that it's using inherited as its font color. This is
because the background color of CONTAINED buttons doesn't change when
inheriting colors. So instead, you have to change the color of CONTAINED
buttons yourself.

Let's see whether we can automatically set the color of a CONTAINED

button based on the color of its parent by implementing a function that
returns the color to use:

function buttonColor(parentColor) {

 if (parentColor === 'primary') {

 return 'secondary';

 }

 if (parentColor === 'secondary') {

 return 'primary';

 }

 return 'default';

}

Now, you can use this function when you're setting the color of your contained
buttons. Just make sure that you pass it the color of the parent as an argument,
as follows:

<Button

 variant="contained"

 disabled={disabled}

 color={buttonColor(appBarColor)}

>

 Contained

</Button>

Now, if you change your App Bar color to primary, here's what your buttons
look like:

Here's what your buttons look like if you change the App Bar color to
secondary:

To quickly recap: TEXT and OUTLINED buttons can safely use inherit as a
color. If you're working with CONTAINED buttons, you need to take extra

steps to use the correct color, like you did with the buttonColor() function.

See also
Button demos: https://material-ui.com/demos/buttons/
Button API documentation: https://material-ui.com/api/button/
AppBar API documentation: https://material-ui.com/api/app-bar/
Toolbar API documentation: https://material-ui.com/api/toolbar/

https://material-ui.com/demos/buttons/
https://material-ui.com/api/button/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/toolbar/

Link buttons
Material-UI Button components can also be used as links to other locations in
your app. The most common example is using a button as a link to a route
declared using react-router.

How to do it...
Let's say that your application has three pages, and you need three buttons
that link to each of them. You'll probably need buttons to link to them from
arbitrary places too, as the application grows. Here's the code to do it:

import React from 'react';

import { Switch, Route, Link } from 'react-router-dom';

import { withStyles } from '@material-ui/core/styles';

import Grid from '@material-ui/core/Grid';

import Button from '@material-ui/core/Button';

import Typography from '@material-ui/core/Typography';

const styles = theme => ({

 content: {

 margin: theme.spacing(2)

 }

});

const LinkButtons = withStyles(styles)(({ classes }) => (

 <Grid container direction="column" className={classes.container}>

 <Grid item>

 <Grid container>

 <Grid item>

 <Button component={Link} to="/">

 Home

 </Button>

 </Grid>

 <Grid item>

 <Button component={Link} to="/page1">

 Page 1

 </Button>

 </Grid>

 <Grid item>

 <Button component={Link} to="/page2">

 Page 2

 </Button>

 </Grid>

 </Grid>

 </Grid>

 <Grid item className={classes.content}>

 <Switch>

 <Route

 exact

 path="/"

 render={() => <Typography>home content</Typography>}

 />

 <Route

 path="/page1"

 render={() => <Typography>page 1 content</Typography>}

 />

 <Route

 path="/page2"

 render={() => <Typography>page 2 content</Typography>}

 />

 </Switch>

 </Grid>

 </Grid>

));

export default LinkButtons;

The Storybook code that sets up this example to run includes a BrowserRouter component. In
your code, you'll need to include this component as a parent of any of your Route
components.

When the screen first loads, you'll see the following:

If you click on the Page 2 button, you'll be taken to /page2, and the content
will update accordingly:

How it works...
When you use react-router as the router for your application, you can render
links using the Link component from react-router-dom. Since you want to render
Material-UI buttons in order to get the consistent Material-UI theme and user
interaction behavior, you can't render Link components directly. Instead, you
can make the underlying Button component a Link component, as follows:

<Button component={Link} to="/">

 Home

</Button>

By using the component property, you can tell the Button component to apply
styles and event handling logic to this component instead of the default.
Then, any additional properties that you would normally pass to Link are set
on the Button component—which forwards them to Link. For example, the to
property isn't a Button property, so it gets passed to Link, which requires it in
order to work.

There's more...
One problem with this example is that there's no visual indication that a
button links to the current URL. For example, when the app first loads the /
URL, the Home button should stand out from the other buttons. One way to
do this would be to change the color property to primary if the button is
considered active.

You could use the NavLink component from react-router-dom. This component
lets you set styles or class names that are only applied when the link is active.
The challenge with doing this is that you only need to change a simple Button
property when it is active. Having to maintain styles for active buttons seems
like a bit much, especially if you want to make your UI easy to theme.

Instead, you can create a button abstraction that uses react-router tools to
render the appropriate Button property when it's active, as follows:

const NavButton = ({ color, ...props }) => (

 <Switch>

 <Route

 exact

 path={props.to}

 render={() => (

 <Button color="primary" component={Link} {...props} />

)}

 />

 <Route

 path="/"

 render={() => <Button component={Link} {...props} />}

 />

 </Switch>

);

The NavButton component uses Switch and Route components to determine the
active route. It does this by comparing the to property passed to NavButton
against the current URL. If a match is found, the Button component is rendered
with the color property set to primary. Otherwise, no color is specified (if the
first Route in Switch doesn't match, the second Route matches everything). Here's
what the new component looks like in action:

<Grid container>

 <Grid item>

 <NavButton to="/">Home</NavButton>

 </Grid>

 <Grid item>

 <NavButton to="/page1">Page 1</NavButton>

 </Grid>

 <Grid item>

 <NavButton to="/page2">Page 2</NavButton>

 </Grid>

</Grid>

Here's what the screen looks like when it first loads:

Because the initial URL is /, and the first NavButton component has a to
property of /, the Home button color is marked as primary.

See also
Button demos: https://material-ui.com/demos/buttons/
Button API documentation: https://material-ui.com/api/button/
React Router Guide: https://reacttraining.com/react-router/web/guides/quick-s
tart

https://material-ui.com/demos/buttons/
https://material-ui.com/api/button/
https://reacttraining.com/react-router/web/guides/quick-start

Floating actions
Some screens in your application will have one primary action. For example,
if you're on a screen that lists items, the primary action might be to add a new
item. If you're on an item details page, the primary action might be to edit the
item. Material-UI provides a Fab component (floating action button) to show
primary screen actions in a prominent way.

How to do it...
The common case for floating action buttons is to show the user a round
button with an icon representing the action to perform, positioned in the
bottom right of the screen. Also, the position of floating action buttons is
fixed, meaning that as the user scrolls down the page, the primary action is
always visible.

Let's write some code to position a floating action button at the bottom right of
the screen that indicates an add action, as follows:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Fab from '@material-ui/core/Fab';

import AddIcon from '@material-ui/icons/Add';

const styles = theme => ({

 fab: {

 margin: 0,

 top: 'auto',

 left: 'auto',

 bottom: 20,

 right: 20,

 position: 'fixed'

 }

});

const FloatingActions = withStyles(styles)(({ classes, fabColor }) => (

 <Fragment>

 <Fab className={classes.fab} color={fabColor}>

 <AddIcon />

 </Fab>

 </Fragment>

));

export default FloatingActions;

When you load the screen, you'll see the following in the bottom right-hand
corner:

The component for this screen has a fabColor property that is used to set the
color of the Fab component. Here's what the primary color looks like:

Lastly, here's what the floating action button looks like with secondary as the
color:

How it works...
The Fab component is very similar to a Button component. In fact, you used to
use Button to render floating action buttons, using the fab variant. The rounded
styling of the button is handled by Fab. You just need to support the icon and
any other button properties, such as onClick handlers. Additionally, you can
include text in your floating action buttons. If you do, you should use the
extended variant so that the shape of the button is styled correctly (flat top and
bottom instead of rounded).

There's more...
Let's create a small abstraction for Fab components that applies the fab style
and uses the correct variant. Since the extended variant is only useful when
there's text in the button, you shouldn't have to remember to set it every time
you want to use it. This can be especially confusing if your application has
both icon and icon plus text floating action buttons.

Here's the code to implement the new Fab component:

const ExtendedFab = withStyles(styles)(({ classes, ...props }) => {

 const isExtended = React.Children.toArray(props.children).find(

 child => typeof child === 'string'

);

 return (

 <Fab

 className={classes.fab}

 variant={isExtended && 'extended'}

 {...props}

 />

);

});

The className property is set in the same way as before. The variant property is
set to extended when isExtended is true. To figure this out, it uses the
React.Children.toArray() function to convert the children property into a plain
array. Then, the find() method looks for any text elements. If one is found,
isExtended will be true and the extended variant is used.

Here's how the new ExtendedFab button can be used:

export default ({ fabColor }) => (

 <ExtendedFab color={fabColor}>

 Add

 <AddIcon />

 </ExtendedFab>

);

The Add text is placed before the AddIcon component. This
ExtendedFab component has two children, and one of them is text, which means
that the extended variant will be used. Here's what it looks like:

See also
Button demos: https://material-ui.com/demos/buttons/
Fab API documentation: https://material-ui.com/api/fab/

https://material-ui.com/demos/buttons/
https://material-ui.com/api/fab/

Icon buttons
Sometimes, you need a button that's just an icon. This is where the IconButton
component comes in handy. You can pass it any icon component as a child,
and then you have an icon button.

How to do it...
Icon buttons are especially useful when you're working with restricted screen
real estate or when you want to visually show the toggled state of something.
For example, it might be easier for a user to toggle the state of a microphone
if the enabled/disabled state indicates the actual microphone.

Let's build on this idea and implement toggle controls for the microphone and
volume in an app, using icon buttons. Here's the code:

import React, { useState } from 'react';

import IconButton from '@material-ui/core/IconButton';

import Grid from '@material-ui/core/Grid';

import MicIcon from '@material-ui/icons/Mic';

import MicOffIcon from '@material-ui/icons/MicOff';

import VolumeUpIcon from '@material-ui/icons/VolumeUp';

import VolumeOffIcon from '@material-ui/icons/VolumeOff';

export default function IconButtons({ iconColor }) {

 const [mic, setMic] = useState(true);

 const [volume, setVolume] = useState(true);

 return (

 <Grid container>

 <Grid item>

 <IconButton color={iconColor} onClick={() => setMic(!mic)}>

 {mic ? <MicIcon /> : <MicOffIcon />}

 </IconButton>

 </Grid>

 <Grid item>

 <IconButton

 color={iconColor}

 onClick={() => setVolume(!volume)}

 >

 {volume ? <VolumeUpIcon /> : <VolumeOffIcon />}

 </IconButton>

 </Grid>

 </Grid>

);

}

When you first load the screen, here's what you'll see:

If you click on both icon buttons, here's what you'll see:

No matter the state of the microphone or volume, the user can still have a
visual indication of the item and its state.

How it works...
The component for this screen maintains two pieces of state: mic and volume.
Both of these are Booleans that control the icon that's displayed in the
IconButton component:

const [mic, setMic] = useState(true);

const [volume, setVolume] = useState(true);

Then, based on these states, the icon is swapped as the state changes, giving
useful visual feedback to the user:

<Grid item>

 <IconButton color={iconColor} onClick={() => setMic(!mic)}>

 {mic ? <MicIcon /> : <MicOffIcon />}

 </IconButton>

</Grid>

<Grid item>

 <IconButton

 color={iconColor}

 onClick={() => setVolume(!volume)}

 >

 {volume ? <VolumeUpIcon /> : <VolumeOffIcon />}

 </IconButton>

</Grid>

Additionally, the component for this screen takes an iconColor property, which
can be either default, primary, or secondary. Here's what the primary color looks
like:

See also
Button demos: https://material-ui.com/demos/buttons/
IconButton API documentation: https://material-ui.com/api/icon-button/

https://material-ui.com/demos/buttons/
https://material-ui.com/api/icon-button/

Button sizes
Material-UI buttons support tee shirt-style sizing. Rather than try to find the
perfect size for your buttons, you can use one of the predefined sizes that
comes closest to what you need.

How to do it...
If you need to adjust the size of your buttons, you can use small, medium (the
default), or large. Here's an example of how to set the size of a Button
component:

import React from 'react';

import Button from '@material-ui/core/Button';

export default function ButtonSizes({ size, color }) {

 return (

 <Button variant="contained" size={size} color={color}>

 Add

 </Button>

);

}

Here's what the various sizes look like:

How it works...
The distinction between sizes is greatest between medium and large. Using a
large button, in conjunction with other Button properties, such
as color and Icons, can really make a button stand out.

There's more...
The one downside to using tee shirt sizes with buttons is when you combine
text and icon images. The icon doesn't scale the same as the text, so the
button never looks quite right, unless the medium default size is used.

Let's implement a button abstraction that makes it easier to use text buttons or
icon buttons that can be resized consistently. Here's the code:

import React from 'react';

import Grid from '@material-ui/core/Grid';

import Button from '@material-ui/core/Button';

import IconButton from '@material-ui/core/IconButton';

import Fab from '@material-ui/core/Fab';

import AddIcon from '@material-ui/icons/Add';

const MyButton = ({ fab, ...props }) => {

 const [child] = React.Children.toArray(props.children);

 let ButtonComponent;

 if (React.isValidElement(child) && fab) {

 ButtonComponent = Fab;

 } else if (React.isValidElement(child)) {

 ButtonComponent = IconButton;

 } else {

 ButtonComponent = Button;

 }

 return <ButtonComponent {...props} />;

};

export default function ButtonSizes({ size, color }) {

 return (

 <Grid container spacing={16} alignItems="center">

 <Grid item>

 <MyButton variant="contained" size={size} color={color}>

 Add

 </MyButton>

 </Grid>

 <Grid item>

 <MyButton size={size} color={color}>

 <AddIcon />

 </MyButton>

 </Grid>

 <Grid item>

 <MyButton fab size={size} color={color}>

 <AddIcon />

 </MyButton>

 </Grid>

 </Grid>

);

}

Here's what the three buttons on the screen look like when the size property is
set to small:

And here's the large size:

Let's break down what's going on in the MyButton component. It expects a
single child node, which it gets by turning the children property into an array
and assigning the first element to the child constant:

const [child] = React.Children.toArray(props.children);

The idea is to render the appropriate Button element, depending on the child
element and the fab property. Here's how the correct component is assigned to
ButtonComponent:

if (React.isValidElement(child) && fab) {

 ButtonComponent = Fab;

} else if (React.isValidElement(child)) {

 ButtonComponent = IconButton;

} else {

 ButtonComponent = Button;

}

If the child is an element and the fab property is true, then the Fab component is
used. If the child is an element and fab is false, IconButton is used. Otherwise,
Button is used. This means that you can pass either a valid icon element or text
as a child to MyButton. Setting the size on any buttons rendered with this
component will be consistent.

See also
Button demos: https://material-ui.com/demos/buttons/
Button API documentation: https://material-ui.com/api/button/
IconButton API documentation: https://material-ui.com/api/icon-button/
Fab API documentation: https://material-ui.com/api/fab/

https://material-ui.com/demos/buttons/
https://material-ui.com/api/button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/fab/

Text - Collecting Text Input
In this chapter, you'll learn about the following topics:

Controlling input with state
Placeholder and helper text
Validation and error display
Password fields
Multiline input
Input adornments
Input masking

Introduction
Material-UI has a flexible text input component that can be used in a variety
of ways to collect user input. Its usages range from collecting simple one-
liner text input to masked input adorned with icons.

Controlling input with state
The TextField component can be controlled by the React component, state, just
like regular HTML text input elements. As with other types of form controls,
the actual value is often the starting point—the state for each form control
grows more complex as more functionality is added.

How to do it...
Just like any other text input element, you need to provide the TextField
component with an onChange event handler that updates the state for the input.
Without this handler, the value of the input won't change as the user types.
Let's look at an example where three text fields are rendered and they're each
controlled by their own piece of state:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import TextField from '@material-ui/core/TextField';

import Grid from '@material-ui/core/Grid';

const useStyles = makeStyles(theme => ({

 container: { margin: theme.spacing.unit * 2 }

}));

export default function ControllingInputWithState() {

 const classes = useStyles();

 const [first, setFirst] = useState('');

 const [second, setSecond] = useState('');

 const [third, setThird] = useState('');

 return (

 <Grid container spacing={4} className={classes.container}>

 <Grid item>

 <TextField

 id="first"

 label="First"

 value={first}

 onChange={e => setFirst(e.target.value)}

 />

 </Grid>

 <Grid item>

 <TextField

 id="second"

 label="Second"

 value={second}

 onChange={e => setSecond(e.target.value)}

 />

 </Grid>

 <Grid item>

 <TextField

 id="third"

 label="Third"

 value={third}

 onChange={e => setThird(e.target.value)}

 />

 </Grid>

 </Grid>

);

}

When you first load the screen, here's what you'll see:

If you type in each of the text fields, you'll update the state of the component
for the screen:

How it works...
The setter functions that are created with useState(): setFirst(), setSecond(), and
setThird(), change the value of the TextField component by changing the state
that's used by the component in the onChange event.

The TextField component is a convenient abstraction that builds on other Material-UI
components, such as FormControl and Input. You could achieve the exact same result by
replacing TextField with each of these components. But all you would get is more code to
maintain.

There's more...
What if, instead of only keeping the TextField value in the component state,
you also kept the id and label information as well? It might seem confusing to
store values that never change as a state, but the trade-off is that you can have
the state data drive what's rendered by the component instead of having to
repeat the same TextField components over and over.

First, let's change the shape of the component state, as follows:

const [inputs, setInputs] = useState([

 { id: 'first', label: 'First', value: '' },

 { id: 'second', label: 'Second', value: '' },

 { id: 'third', label: 'Third', value: '' }

]);

Instead of an object with string properties to hold the text field values, the
inputs state is an array of objects. It's an array so that the component can
iterate over the values while maintaining their order. Each object has
everything necessary to render TextField. Let's look at the updated markup
next:

<Grid container spacing={4} className={classes.container}>

 {inputs.map(input => (

 <Grid item key={input.id}>

 <TextField

 id={input.id}

 label={input.label}

 value={input.value}

 onChange={onChange}

 />

 </Grid>

))}

</Grid>

Each Grid item now maps to an element from the inputs array. If you need to
add, remove, or change something about one of these text fields, you can do
so by updating the state. Finally, let's see what the onChange() implementation
looks like:

const onChange = ({ target: { id, value } }) => {

 const newInputs = [...inputs];

 const index = inputs.findIndex(input => input.id === id);

 newInputs[index] = { ...inputs[index], value };

 setInputs(newInputs);

};

The onChange() function updates an item in an array, the inputs array. First, it
finds the index of the item to update, based on the text field id. Then, it
updates the value property with the value of the text field.

The functionality is the exact same as before, with a different approach that
requires less JSX markup.

See also
TextField demos: https://material-ui.com/demos/text-fields/
TextField API documentation: https://material-ui.com/api/text-field/

https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/

Placeholder and helper text
At a minimum, text fields should have a label so that the user knows what to
type. But a label on its own can be downright confusing—especially if you
have several text fields on the same screen. To help the user understand what
to type, you can utilize placeholder and helperText in addition to label.

How to do it...
Let's write some code that showcases various label, placeholder, and helperText
configurations you can use with the TextField component:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import Grid from '@material-ui/core/Grid';

import TextField from '@material-ui/core/TextField';

const styles = theme => ({

 container: { margin: theme.spacing(2) }

});

const PlaceholderAndHelperText = withStyles(styles)(({ classes }) => (

 <Grid container spacing={4} className={classes.container}>

 <Grid item>

 <TextField label="The Value" />

 </Grid>

 <Grid item>

 <TextField placeholder="Example Value" />

 </Grid>

 <Grid item>

 <TextField helperText="Brief explanation of the value" />

 </Grid>

 <Grid item>

 <TextField

 label="The Value"

 placeholder="Example Value"

 helperText="Brief explanation of the value"

 />

 </Grid>

 </Grid>

));

export default PlaceholderAndHelperText;

Here's what the four text fields look like:

How it works...
Let's take a look at each of these text fields and break down their strengths
and weaknesses.

First, there's a text field with a label component only:

<TextField label="The Value" />

When you only have label, it is displayed where the user would enter text:

When the user navigates to the text field and it receives focus, the label
shrinks and moves out of the way:

The next text field specifies placeholder text using the placeholder property:

<TextField placeholder="Example Value" />

The placeholder text should provide the user with an example of a valid value
if possible:

When the user starts entering text, the placeholder value goes away:

The next text field provides the helperText property with a value:

The helper text of a text field is static in the sense that it's always visible and
doesn't move, even after the user starts typing. Lastly, text fields can have all
three properties that help the user figure out what value to provide:

A label that tells the user what the value is
Placeholder text that provides an example value
Helper text that gives more of an explanation of why the value is needed

When you combine these three properties, you're increasing the likelihood
that the user will understand what to type. When the text field is unfocused,
the label and the helper text are visible:

When the text field receives focus, the label shrinks and the placeholder value
is revealed:

See also
TextField demos: https://material-ui.com/demos/text-fields/
TextField API documentation: https://material-ui.com/api/text-field/

https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/

Validation and error display
Even with helper text, placeholders, and labels, users will inevitably enter
something that's not quite right. It's not that they are trying to mess things up
(some are, to be fair); it's that mistakes happen. When mistakes are made, text
input fields need to be marked as being in an error state.

How to do it...
Let's say that you have two inputs: a phone number and an email address, and
you want to make sure that the values provided by the user are correct.

Please note: Validation isn't perfect. Thankfully, this piece can work, however, you need
it to and you'll still get all of the Material-UI pieces.

Here's the code to do it:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Grid from '@material-ui/core/Grid';

import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({

 container: { margin: theme.spacing(2) }

}));

export default function ValidationAndErrorDisplay() {

 const classes = useStyles();

 const [inputs, setInputs] = useState([

 {

 id: 'phone',

 label: 'Phone',

 placeholder: '999-999-9999',

 value: '',

 error: false,

 helperText: 'Any valid phone number will do',

 getHelperText: error =>

 error

 ? 'Woops. Not a valid phone number'

 : 'Any valid phone number will do',

 isValid: value =>

 /^[\+]?[(]?[0-9]{3}[)]?[-\s\.]?[0-9]{3}[-\s\.]?[0-9]{4,6}$/.test(

 value

)

 },

 {

 id: 'email',

 label: 'Email',

 placeholder: 'john@acme.com',

 value: '',

 error: false,

 helperText: 'Any valid email address will do',

 getHelperText: error =>

 error

 ? 'Woops. Not a valid email address'

 : 'Any valid email address will do',

 isValid: value => /\S+@\S+\.\S+/.test(value)

 }

]);

 const onChange = ({ target: { id, value } }) => {

 const newInputs = [...inputs];

 const index = inputs.findIndex(input => input.id === id);

 const input = inputs[index];

 const isValid = input.isValid(value);

 newInputs[index] = {

 ...input,

 value: value,

 error: !isValid,

 helperText: input.getHelperText(!isValid)

 };

 setInputs(newInputs);

 };

 return (

 <Grid container spacing={4} className={classes.container}>

 {inputs.map(input => (

 <Grid item key={input.id}>

 <TextField

 id={input.id}

 label={input.label}

 placeholder={input.placeholder}

 helperText={input.helperText}

 value={input.value}

 onChange={onChange}

 error={input.error}

 />

 </Grid>

))}

 </Grid>

);

}

The ValidationAndErrorDisplay component will render two TextField components
on the screen. This is what they look like when the screen first loads:

The Phone and Email text fields are just regular text fields with labels, helper
text, and placeholders. For example, when the Phone field receives focus, it
looks like this:

As you start typing, the value of the text field is validated against a phone
format regular expression. Here's what the field looks like when it has an
invalid phone number value:

Then, once you have a valid phone number value, the state of the text field
goes back to normal:

The Email field works the same way—the only difference is the regular
expression used to validate the format of the value.

How it works...
Let's start by taking a look at the state of the ValidationAndErrorDisplay
component:

const [inputs, setInputs] = useState([

 {

 id: 'phone',

 label: 'Phone',

 placeholder: '999-999-9999',

 value: '',

 error: false,

 helperText: 'Any valid phone number will do',

 getHelperText: error =>

 error

 ? 'Woops. Not a valid phone number'

 : 'Any valid phone number will do',

 isValid: value =>

 /^[\+]?[(]?[0-9]{3}[)]?[-\s\.]?[0-9]{3}[-\s\.]?[0-9]{4,6}$/.test(

 value

)

 },

 {

 id: 'email',

 label: 'Email',

 placeholder: 'john@acme.com',

 value: '',

 error: false,

 helperText: 'Any valid email address will do',

 getHelperText: error =>

 error

 ? 'Woops. Not a valid email address'

 : 'Any valid email address will do',

 isValid: value => /\S+@\S+\.\S+/.test(value)

 }

]);

The inputs array is mapped to TextField components by the render() method.
Each object in this array has properties that map directly to the TextField
component. For instance, id, label, placeholder—these are all TextField
properties. The objects each have two functions that help with validating the
text field values. First, getHelperText() returns either the default helper text, or
error text that replaces the helper text if the error argument is true. The
isValid() function validates the value argument against a regular expression
and returns true if it matches.

Next, let's look at the onChange() handler:

const onChange = ({ target: { id, value } }) => {

 const newInputs = [...inputs];

 const index = inputs.findIndex(input => input.id === id);

 const input = inputs[index];

 const isValid = input.isValid(value);

 newInputs[index] = {

 ...input,

 value: value,

 error: !isValid,

 helperText: input.getHelperText(!isValid)

 };

 setInputs(newInputs);

};

As the user types, this function updates the value state of the given text field.
It also calls the isValid() function, passing it the updated value. The error state
is set to true if the value is invalid. The helperText state is also updated using
getHelperText(), which also depends on the validity of the value.

There's more...
What if this example could be modified so that you didn't have to store error
messages as a state, or have a function to change the helper text of the text
field? To do this, you could introduce a new TextField abstraction that handles
setting the error property and changes the helperText component when the
value is invalid. Here's the new component:

const MyTextField = ({ isInvalid, ...props }) => {

 const invalid = isInvalid(props.value);

 return (

 <TextField

 {...props}

 error={invalid}

 helperText={invalid || props.helperText}

 />

);

};

Instead of having a function that returns true if the data is valid, the MyTextField
component expects an isInvalid() property that returns false if the data is valid
and an error message when it's invalid. Then, the error property can use this
value, which changes the color of the text field to indicate that it's in an error
state and the helperText property can use either the string that is returned by the
isInvalid() function, or the helperText property that was passed to the
component.

Next, let's look at the state that the ValidationAndErrorDisplay component uses
now:

const [inputs, setInputs] = useState([

 {

 id: 'phone',

 label: 'Phone',

 placeholder: '999-999-9999',

 value: '',

 helperText: 'Any valid phone number will do',

 isInvalid: value =>

 value === '' ||

 /^[\+]?[(]?[0-9]{3}[)]?[-\s\.]?[0-9]{3}[-\s\.]?[0-9]{4,6}$/.test(

 value

)

 ? false

 : 'Woops. Not a valid phone number'

 },

 {

 id: 'email',

 label: 'Email',

 placeholder: 'john@acme.com',

 value: '',

 helperText: 'Any valid email address will do',

 isInvalid: value =>

 value === '' || /\S+@\S+\.\S+/.test(value)

 ? false

 : 'Woops. Not a valid email address'

 }

]);

The inputs no longer need the getHelperText() function or the error state. The
isInvalid() function returns the error helper text when the value is invalid.
Next, let's look at the onChange() handler:

const onChange = ({ target: { id, value } }) => {

 const newInputs = [...inputs];

 const index = inputs.findIndex(input => input.id === id);

 newInputs[index] = {

 ...inputs[index],

 value: value

 };

 setInputs(newInputs);

};

Now, it doesn't have to touch the error state, or worry about updating the
helper text, or about calling any validation functions—this is all handled by
MyTextField now.

See also
TextField demos: https://material-ui.com/demos/text-fields/
TextField API documentation: https://material-ui.com/api/text-field/

https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/

Password fields
Password fields are a special type of text input that hides the individual
characters on the screen as they are typed. Material-UI TextField components
support this type of field by changing the value of the type property.

How to do it...
Here's a simple example that changes a regular text input into a password input
that prevents the value from displaying on the screen:

import React, { useState } from 'react';

import TextField from '@material-ui/core/TextField';

export default function PasswordFields() {

 const [password, setPassword] = useState('12345');

 const onChange = e => {

 setPassword(e.target.value);

 };

 return (

 <TextField

 type="password"

 label="Password"

 value={password}

 onChange={onChange}

 />

);

}

Here's what the screen looks like when it first loads:

If you change the value of the Password field, any new characters remain
hidden, even though the actual value typed is stored in the password state of the
PasswordFields component.

How it works...
The type property tells the TextField component to use a password HTML input
element. This is how the value remains hidden as the user types it, or if the
field is pre-populated with a password value. Sometimes, Password fields can
be autofilled.

There's more...
You can use the autoComplete property to control how password values are
automatically filled by the browser. A common case for this value is to have
the Password field automatically filled on a login screen once the Username
field is filled. Here's an example of how you can use this property when you
have Username and Password fields on the screen:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Grid from '@material-ui/core/Grid';

import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({

 container: { margin: theme.spacing(2) }

}));

export default function PasswordFields() {

 const classes = useStyles();

 const [username, setUsername] = useState('');

 const [password, setPassword] = useState('');

 return (

 <Grid container spacing={4} className={classes.container}>

 <Grid item>

 <TextField

 id="username"

 label="Username"

 autoComplete="username"

 InputProps={{ name: 'username' }}

 value={username}

 onChange={e => setUsername(e.target.value)}

 />

 </Grid>

 <Grid item>

 <TextField

 id="password"

 type="password"

 label="Password"

 autoComplete="current-password"

 value={password}

 onChange={e => setPassword(e.target.value)}

 />

 </Grid>

 </Grid>

);

}

The first TextField component uses the autoComplete value of username. It also

passes { name: 'username' } to InputProps so that the name property is set on the
<input> element. The reason you need to do this is so that, in the second
TextField component, the autoComplete value of current-password tells the browser
to look up the password based on the username field value.

Not all browsers implement this functionality the same. In order for any credentials to be
automatically filled in text fields, they have to be saved using the native browser
credential remembering tool.

See also
TextField demos: https://material-ui.com/demos/text-fields/
TextField API documentation: https://material-ui.com/api/text-field/

https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/

Multiline input
For some fields, users need the ability to provide text values that span
multiple lines. The multiline property helps accomplish this goal.

How to do it...
Let's say that you have a field that could require multiple lines of text,
provided by the user. You can specify the multiline property to allow for this:

import React, { useState } from 'react';

import TextField from '@material-ui/core/TextField';

export default function MultilineInput() {

 const [multiline, setMultiline] = useState('');

 return (

 <TextField

 multiline

 value={multiline}

 onChange={e => setMultiline(e.target.value)}

 />

);

}

The text field looks like a normal field when the screen first loads, because it
has one row by default:

You can enter as many lines as you need to in this text field. New lines are
started by pressing Enter:

How it works...
The multiline Boolean property is used to indicate to the TextField component
that multiline support is needed for the field. With the preceding example, you
might run into a couple of issues if you're planning on using the multiline
input in a crowded space, such as a screen with many other fields on it or in a
dialog:

The height of the field changes as the user presses Enter, adding more
rows to the component. This might cause layout problems as other
elements are moved around.

If the field starts with one row and looks like a regular single-line text
input, then the user might not realize that they can enter multiple lines of
text in the field.

There's more...
To help prevent scenarios where a dynamically-sized multiline text field might
cause problems, you can specify the number of rows used by a multiline text
field. Here's an example of how to use the rows property:

<TextField

 multiline

 rows={5}

 label="Address"

 value={multiline}

 onChange={e => setMultiline(e.target.value)}

/>

Now, the text field will have exactly five rows:

If the user enters more than five lines of text, a vertical scrollbar will be
displayed—the height of the text doesn't change and can't impact the layout
of other surrounding components. You can impose the same type of height
restriction on the TextField component by using the rowsMax property instead of
rows. The difference is that the text field will start out with one row and will
grow as the user adds new lines. But if you set rowsMax to 5, the text field will
not exceed five rows.

See also
TextField demos: https://material-ui.com/demos/text-fields/
TextField API documentation: https://material-ui.com/api/text-field/

https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/

Input adornments
Material-UI Input components have properties that allow you to customize the
way that they look and behave. The idea is that you can adorn inputs with
other Material-UI components to extend the functionality of basic text inputs
in a way that makes sense for the users of your application.

How to do it...
Let's say that your app has several screens that have password inputs. The
users of your app like the ability to see passwords as they're typed. By
default, values will be hidden, but if the input component itself had a button
that toggles the visibility of the value, that would make your users happy.

Here's an example of a generic component that will adorn password fields
with a visibility toggle button:

import React, { useState } from 'react';

import TextField from '@material-ui/core/TextField';

import IconButton from '@material-ui/core/IconButton';

import InputAdornment from '@material-ui/core/InputAdornment';

import VisibilityIcon from '@material-ui/icons/Visibility';

import VisibilityOffIcon from '@material-ui/icons/VisibilityOff';

function PasswordField() {

 const [visible, setVisible] = useState(false);

 const toggleVisibility = () => {

 setVisible(!visible);

 };

 return (

 <TextField

 type={visible ? 'text' : 'password'}

 InputProps={{

 endAdornment: (

 <InputAdornment position="end">

 <IconButton onClick={toggleVisibility}>

 {visible ? <VisibilityIcon /> : <VisibilityOffIcon />}

 </IconButton>

 </InputAdornment>

)

 }}

 />

);

}

export default function InputAdornments() {

 const [password, setPassword] = useState('');

 return (

 <PasswordField

 value={password}

 onChange={e => setPassword(e.target.value)}

 />

);

}

Here is what you'll see if you start typing without clicking on the toggle
visibility button:

Here's what the Password field looks like if we click on the toggle visibility
button:

How it works...
Let's take a closer look at the PasswordField component:

function PasswordField() {

 const [visible, setVisible] = useState(false);

 const toggleVisibility = () => {

 setVisible(!visible);

 };

 return (

 <TextField

 type={visible ? 'text' : 'password'}

 InputProps={{

 endAdornment: (

 <InputAdornment position="end">

 <IconButton onClick={toggleVisibility}>

 {visible ? <VisibilityIcon /> : <VisibilityOffIcon />}

 </IconButton>

 </InputAdornment>

)

 }}

 />

);

}

This component maintains a piece of state called visible. The reason that
PasswordField maintains this state instead of the parent component is because of
the separation of concerns principle. The parent component, for example,
probably needs access to the value of the password field. This value gets
passed into PasswordField as a property. However, only PasswordField cares about
the visibility state. So, by keeping it encapsulated within this component,
you've simplified any code that uses PasswordField.

The other valuable aspect of this abstraction is the adornment itself. The type
property changes as the visible state changes—this is the mechanism that
reveals or hides the password value. The endAdornment property is passed to the
Input component that TextField renders, passed via InputProps. This is how you
can add components to the field. In this example, you're adding an icon
button to the right-hand side (end) of the input. The icon here changes based
on the visible state and, when clicked, the toggleVisible() method is called to
actually change the visible state.

There's more...
You can use input adornments for more than buttons that reveal the value of a
password field. For example, in a field that is validated, you can use input
adornments to help visualize the validation state of the field. Let's say that
you need to validate an email field as the user types. You could create an
abstraction in the form of a component that changes the color and the
adornment of the component based on the result of validating what the user
has provided. Here's what that component looks like:

const ValidationField = props => {

 const { isValid, ...rest } = props;

 const empty = props.value === '';

 const valid = isValid(props.value);

 let startAdornment;

 if (empty) {

 startAdornment = null;

 } else if (valid) {

 startAdornment = (

 <InputAdornment position="start">

 <CheckCircleIcon color="primary" />

 </InputAdornment>

);

 } else {

 startAdornment = (

 <InputAdornment position="start">

 <ErrorIcon color="error" />

 </InputAdornment>

);

 }

 return (

 <TextField

 {...rest}

 error={!empty && !valid}

 InputProps={{ startAdornment }}

 />

);

};

The idea with ValidationField is to take an isValid() function property and use it
to test the value property. If it returns true, then startAdornment is a checkmark.
If isValid() returns false, then startAdornment is a red x. Here's how the
component is used:

<ValidationField

 label="Email"

 value={this.state.email}

 onChange={this.onEmailChange}

 isValid={v => /\S+@\S+\.\S+/.test(v)}

/>

The ValidationField component can be used almost identically to TextField. The
one addition is the isValid property. Any state is handled outside of
ValidationField, which means that isValid() is called any time the value
changes, and will update the appearance of the component to reflect the
validity of the data. By way of an added bonus: you don't actually have to
store any kind of error state anywhere, because ValidationField derives
everything that it needs from the value and isValid properties.

Here's what the field looks like with an invalid email address:

Here's what the field looks like with a valid email address:

See also
TextField demos: https://material-ui.com/demos/text-fields/
TextField API documentation: https://material-ui.com/api/text-field/
IconButton API documentation: https://material-ui.com/api/icon-button/
InputAdornment API documentation: https://material-ui.com/api/input-adornment
/

https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/input-adornment/

Input masking
Some text inputs require values with a specific format. With Material-UI
TextField components, you can add masking capabilities that help guide the
user toward providing the correct format.

How to do it...
Let's say that you have phone number and email fields and you want to
provide an input mask for each. Here's how you can use the MaskedInput
component from react-text-mask with TextField components to add masking
abilities:

import React, { Fragment, useState } from 'react';

import MaskedInput from 'react-text-mask';

import emailMask from 'text-mask-addons/dist/emailMask';

import { makeStyles } from '@material-ui/styles';

import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({

 input: { margin: theme.spacing.unit * 3 }

}));

const PhoneInput = ({ inputRef, ...props }) => (

 <MaskedInput

 {...props}

 ref={ref => {

 inputRef(ref ? ref.inputElement : null);

 }}

 mask={[

 '(',

 /[1-9]/,

 /\d/,

 /\d/,

 ')',

 ' ',

 /\d/,

 /\d/,

 /\d/,

 '-',

 /\d/,

 /\d/,

 /\d/,

 /\d/

]}

 placeholderChar={'\u2000'}

 />

);

const EmailInput = ({ inputRef, ...props }) => (

 <MaskedInput

 {...props}

 ref={ref => {

 inputRef(ref ? ref.inputElement : null);

 }}

 mask={emailMask}

 placeholderChar={'\u2000'}

 />

);

export default function InputMasking() {

 const classes = useStyles();

 const [phone, setPhone] = useState('');

 const [email, setEmail] = useState('');

 return (

 <Fragment>

 <TextField

 label="Phone"

 className={classes.input}

 value={phone}

 onChange={e => setPhone(e.target.value)}

 InputProps={{ inputComponent: PhoneInput }}

 />

 <TextField

 label="Email"

 className={classes.input}

 value={email}

 onChange={e => setEmail(e.target.value)}

 InputProps={{ inputComponent: EmailInput }}

 />

 </Fragment>

);

}

Here's what the screen looks like when it first loads:

Once you start typing a value into the Phone field, the format mask appears:

Here's what the completed value looks like—the user never has to type (,), or
-:

Here's what the completed Email value looks like:

With the email input, the user will actually have to type @ and . because the
mask doesn't know how many characters are in any part of the email address.
It does, however, prevent the user from putting either of these characters in
the wrong place.

How it works...
To make this work, you created a PhoneInput component and an EmailInput
component. The idea of each is to provide a basic abstraction around the
MaskedInput component. Let's take a closer look at each, starting with PhoneInput:

const PhoneInput = ({ inputRef, ...props }) => (

 <MaskedInput

 {...props}

 ref={ref => {

 inputRef(ref ? ref.inputElement : null);

 }}

 mask={[

 '(',

 /[1-9]/,

 /\d/,

 /\d/,

 ')',

 ' ',

 /\d/,

 /\d/,

 /\d/,

 '-',

 /\d/,

 /\d/,

 /\d/,

 /\d/

]}

 placeholderChar={'\u2000'}

 />

);

The properties that are passed to PhoneInput are forwarded to MaskedInput for the
most part. The ref property needs to be set explicitly because it's named
differently. The placeholder property is set to be whitespace. The mask property
is the most important—this is what determines the pattern that the user sees
as they start typing. The value passed to mask is an array with regular
expressions and string characters. The string characters are what show up
when the user starts typing—in the case of phone number, these are the (,),
and - characters. The regular expressions are the dynamic pieces that match
against what the user types. With a phone number, any digit will do, but
symbols and letters aren't allowed.

Let's look at the EmailInput component now:

const EmailInput = ({ inputRef, ...props }) => (

 <MaskedInput

 {...props}

 ref={ref => {

 inputRef(ref ? ref.inputElement : null);

 }}

 mask={emailMask}

 placeholderChar={'\u2000'}

 />

);

This follows the same approach as PhoneInput. The main difference is that,
instead of passing an array of strings and regular expressions, the emailMask
function (imported from react-text-mask) is used.

Now that you have these two masked inputs, you use them by passing them
to the inputComponent property:

<TextField

 label="Phone"

 className={classes.input}

 value={phone}

 onChange={e => setPhone(e.target.value)}

 InputProps={{ inputComponent: PhoneInput }}

/>

<TextField

 label="Email"

 className={classes.input}

 value={email}

 onChange={e => setEmail(e.target.value)}

 InputProps={{ inputComponent: EmailInput }}

/>

See also
TextField demos: https://material-ui.com/demos/text-fields/
TextField API documentation: https://material-ui.com/api/text-field/
React text mask: https://github.com/text-mask/text-mask

https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/
https://github.com/text-mask/text-mask

Autocomplete and Chips - Text
Input Suggestions for Multiple
Items
In this chapter, you will learn the following topics:

Building an Autocomplete component
Selecting Autocomplete suggestions
API-driven Autocomplete
Highlighting search results
Standalone chip input

Introduction
Web applications typically provide autocomplete input fields when there are
too many choices to select from. Autocomplete fields are like text input fields
—as users starts typing, they are given a smaller list of choices based on what
they've typed. Once the user is ready to make a selection, the actual input is
filled with components called Chips—especially relevant when the user needs
to be able to make multiple selections.

Building an Autocomplete
component
Material-UI doesn't actually come with an Autocomplete component. The reason
is that, since there are so many different implementations of autocomplete
selection components in the React ecosystem already, it doesn't make sense
to provide another one. Instead, you can pick an existing implementation and
augment it with Material-UI components so that it can integrate nicely with
your Material-UI application.

How to do it...
Let's say that you have a selector for a hockey team. But there are too many
teams to reasonably fit in a simple select component—you need
autocomplete capabilities. You can use the Select component from the react-
select package to provide the autocomplete functionality that you need. You
can use Select properties to replace key autocomplete components with
Material-UI components so that the autocomplete matches the look and feel
of the rest of your app.

Let's make a reusable Autocomplete component. The Select component allows
you to replace certain aspects of the autocomplete experience. In
particular, following are the components that you'll be replacing:

Control: The text input component to use
Menu: A menu with suggestions, displayed when the user starts typing
NoOptionsMessage: The message that's displayed when there aren't any
suggestions to display
Option: The component used for each suggestion in Menu
Placeholder: The placeholder text component for the text input
SingleValue: The component for showing a value once it's selected
ValueContainer: The component that wraps SingleValue
IndicatorSeparator: Separates buttons on the right side of the autocomplete
ClearIndicator: The component used for the button that clears the current
value
DropdownIndicator: The component used for the button that shows Menu

Each of these components is replaced with Material-UI components that
change the look and feel of the autocomplete. Moreover, you'll have all of
this as new Autocomplete components that you can reuse throughout your app.

Let's look at the result before diving into the implementation of each
replacement component. Following is what you'll see when the screen first
loads:

If you click on the down arrow, you'll see a menu with all the values, as
follows:

Try typing tor into the autocomplete text field, as follows:

If you make a selection, the menu is closed and the text field is populated
with the selected value, as follows:

You can change your selection by opening the menu and selecting another
value, or you can clear the selection by clicking on the clear button to the
right of the text.

How it works...
Let's break down the source by looking at the individual components that
make up the Autocomplete component and replacing pieces of the Select
component. Then, we'll look at the final Autocomplete component.

Text input control
Here's the source for the Control component:

const inputComponent = ({ inputRef, ...props }) => (

 <div ref={inputRef} {...props} />

);

const Control = props => (

 <TextField

 fullWidth

 InputProps={{

 inputComponent,

 inputProps: {

 className: props.selectProps.classes.input,

 inputRef: props.innerRef,

 children: props.children,

 ...props.innerProps

 }

 }}

 {...props.selectProps.textFieldProps}

 />

);

The inputComponent() function is a component that passes the inputRef value—a
reference to the underlying input element—to the ref prop. Then,
inputComponent is passed to InputProps to set the input component used by
TextField. This component is a little bit confusing because it's passing
references around and it uses a helper component for this purpose. The
important thing to remember is that the job of Control is to set up the Select
component to use a Material-UITextField component.

Options menu
Here's the component that displays the autocomplete options when the user
starts typing or clicks on the down arrow:

const Menu = props => (

 <Paper

 square

 className={props.selectProps.classes.paper}

 {...props.innerProps}

 >

 {props.children}

 </Paper>

);

The Menu component renders a Material-UI Paper component so that the
element surrounding the options is themed accordingly.

No options available
Here's the NoOptionsMessage component. It is rendered when there aren't any
autocomplete options to display, as follows:

const NoOptionsMessage = props => (

 <Typography

 color="textSecondary"

 className={props.selectProps.classes.noOptionsMessage}

 {...props.innerProps}

 >

 {props.children}

 </Typography>

);

This renders a Typography component with textSecondary as the color property
value.

Individual option
Individual options that are displayed in the autocomplete menu are rendered
using the MenuItem component, as follows:

const Option = props => (

 <MenuItem

 buttonRef={props.innerRef}

 selected={props.isFocused}

 component="div"

 style={{

 fontWeight: props.isSelected ? 500 : 400

 }}

 {...props.innerProps}

 >

 {props.children}

 </MenuItem>

);

The selected and style properties alter the way that the item is displayed, based
on the isSelected and isFocused properties. The children property sets the value
of the item.

Placeholder text
The Placeholder text of the Autocomplete component is shown before the user
types anything or makes a selection, as follows:

const Placeholder = props => (

 <Typography

 color="textSecondary"

 className={props.selectProps.classes.placeholder}

 {...props.innerProps}

 >

 {props.children}

 </Typography>

);

The Material-UI Typography component is used to theme the Placeholder text.

SingleValue
Once again, the Material-UI Typography component is used to render the
selected value from the menu within the autocomplete input, as follows:

const SingleValue = props => (

 <Typography

 className={props.selectProps.classes.singleValue}

 {...props.innerProps}

 >

 {props.children}

 </Typography>

);

ValueContainer
The ValueContainer component is used to wrap the SingleValue component with a
div and the valueContainer CSS class, as follows:

const ValueContainer = props => (

 <div className={props.selectProps.classes.valueContainer}>

 {props.children}

 </div>

);

IndicatorSeparator
By default, the Select component uses a pipe character as a separator between
the buttons on the right side of the autocomplete menu. Since they're going to
be replaced by Material-UI button components, this separator is no longer
necessary, as follows:

const IndicatorSeparator = () => null;

By having the component return null, nothing is rendered.

Clear option indicator
This button is used to clear any selection made previously by the user, as
follows:

const ClearIndicator = props => (

 <IconButton {...props.innerProps}>

 <CancelIcon />

 </IconButton>

);

The purpose of this component is to use the Material-UI IconButton component
and to render a Material-UI icon. The click handler is passed in through
innerProps.

Show menu indicator
Just like the ClearIndicator component, the DropdownIndicator component replaces
the button used to show the autocomplete menu with an icon from Material-
UI, as follows:

const DropdownIndicator = props => (

 <IconButton {...props.innerProps}>

 <ArrowDropDownIcon />

 </IconButton>

);

Styles
Here are the styles used by the various sub-components of the autocomplete:

const useStyles = makeStyles(theme => ({

 root: {

 flexGrow: 1,

 height: 250

 },

 input: {

 display: 'flex',

 padding: 0

 },

 valueContainer: {

 display: 'flex',

 flexWrap: 'wrap',

 flex: 1,

 alignItems: 'center',

 overflow: 'hidden'

 },

 noOptionsMessage: {

 padding: `${theme.spacing(1)}px ${theme.spacing(2)}px`

 },

 singleValue: {

 fontSize: 16

 },

 placeholder: {

 position: 'absolute',

 left: 2,

 fontSize: 16

 },

 paper: {

 position: 'absolute',

 zIndex: 1,

 marginTop: theme.spacing(1),

 left: 0,

 right: 0

 }

}));

The Autocomplete
Finally, following is the Autocomplete component that you can reuse throughout
your application:

export default function Autocomplete(props) {

 const classes = useStyles();

 const [value, setValue] = useState(null);

 return (

 <div className={classes.root}>

 <Select

 value={value}

 onChange={v => setValue(v)}

 textFieldProps={{

 label: 'Team',

 InputLabelProps: {

 shrink: true

 }

 }}

 {...{ ...props, classes }}

 />

 </div>

);

}

Autocomplete.defaultProps = {

 isClearable: true,

 components: {

 Control,

 Menu,

 NoOptionsMessage,

 Option,

 Placeholder,

 SingleValue,

 ValueContainer,

 IndicatorSeparator,

 ClearIndicator,

 DropdownIndicator

 },

 options: [

 { label: 'Boston Bruins', value: 'BOS' },

 { label: 'Buffalo Sabres', value: 'BUF' },

 { label: 'Detroit Red Wings', value: 'DET' },

 { label: 'Florida Panthers', value: 'FLA' },

 { label: 'Montreal Canadiens', value: 'MTL' },

 { label: 'Ottawa Senators', value: 'OTT' },

 { label: 'Tampa Bay Lightning', value: 'TBL' },

 { label: 'Toronto Maple Leafs', value: 'TOR' },

 { label: 'Carolina Hurricanes', value: 'CAR' },

 { label: 'Columbus Blue Jackets', value: 'CBJ' },

 { label: 'New Jersey Devils', value: 'NJD' },

 { label: 'New York Islanders', value: 'NYI' },

 { label: 'New York Rangers', value: 'NYR' },

 { label: 'Philadelphia Flyers', value: 'PHI' },

 { label: 'Pittsburgh Penguins', value: 'PIT' },

 { label: 'Washington Capitals', value: 'WSH' },

 { label: 'Chicago Blackhawks', value: 'CHI' },

 { label: 'Colorado Avalanche', value: 'COL' },

 { label: 'Dallas Stars', value: 'DAL' },

 { label: 'Minnesota Wild', value: 'MIN' },

 { label: 'Nashville Predators', value: 'NSH' },

 { label: 'St. Louis Blues', value: 'STL' },

 { label: 'Winnipeg Jets', value: 'WPG' },

 { label: 'Anaheim Ducks', value: 'ANA' },

 { label: 'Arizona Coyotes', value: 'ARI' },

 { label: 'Calgary Flames', value: 'CGY' },

 { label: 'Edmonton Oilers', value: 'EDM' },

 { label: 'Los Angeles Kings', value: 'LAK' },

 { label: 'San Jose Sharks', value: 'SJS' },

 { label: 'Vancouver Canucks', value: 'VAN' },

 { label: 'Vegas Golden Knights', value: 'VGK' }

]

};

The piece that ties all of the previous components together is the components
property that's passed to Select. This is actually set as a default property in
Autocomplete, so it can be further overridden. The value passed to components is a
simple object that maps the component name to its implementation.

See also
Select components for React: https://react-select.com/
Autocomplete demos: https://material-ui.com/demos/autocomplete/
TextField API documentation: https://material-ui.com/api/text-field/
Typography API documentation: https://material-ui.com/api/typography/
Paper API documentation: https://material-ui.com/api/paper/
MenuItem API documentation: https://material-ui.com/api/menu-item/
IconButton API documentation: https://material-ui.com/api/icon-button/

https://react-select.com/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/api/text-field/
https://material-ui.com/api/typography/
https://material-ui.com/api/paper/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/icon-button/

Selecting autocomplete suggestions
In the previous section, you built an Autocomplete component capable of
selecting a single value. Sometimes, you need the ability to select multiple
values from an Autocomplete component. The good news is that, with a few
small additions, the component that you created in the previous section
already does most of the work.

How to do it...
Let's walk through the additions that need to be made in order to support
multi-value selection in the Autocomplete component, starting with the new
MultiValue component, as follows:

const MultiValue = props => (

 <Chip

 tabIndex={-1}

 label={props.children}

 className={clsx(props.selectProps.classes.chip, {

 [props.selectProps.classes.chipFocused]: props.isFocused

 })}

 onDelete={props.removeProps.onClick}

 deleteIcon={<CancelIcon {...props.removeProps} />}

 />

);

The MultiValue component uses the Material-UI Chip component to render a
selected value. In order to pass MultiValue to Select, add it to the components
object that's passed to Select:

components: {

 Control,

 Menu,

 NoOptionsMessage,

 Option,

 Placeholder,

 SingleValue,

 MultiValue,

 ValueContainer,

 IndicatorSeparator,

 ClearIndicator,

 DropdownIndicator

},

Now you can use your Autocomplete component for single value selection, or
for multi-value selection. You can add the isMulti property with a default
value of true to defaultProps, as follows:

isMulti: true,

Now, you should be able to select multiple values from the autocomplete.

How it works...
Nothing looks different about the autocomplete when it's first rendered, or
when you show the menu. When you make a selection, the Chip component is
used to display the value. Chips are ideal for displaying small pieces of
information like this. Furthermore, the close button integrates nicely with it,
making it easy for the user to remove individual selections after they've been
made.

Here's what the autocomplete looks like after multiple selections have been
made:

Values that have been selected are removed from the menu.

See also
Select components for React: https://react-select.com/
Autocomplete demos: https://material-ui.com/demos/autocomplete/
TextField API documentation: https://material-ui.com/api/text-field/
Typography API documentation: https://material-ui.com/api/typography/
Paper API documentation: https://material-ui.com/api/paper/
MenuItem API documentation: https://material-ui.com/api/menu-item/
IconButton API documentation: https://material-ui.com/api/icon-button/
Chip API documentation: https://material-ui.com/api/chip/

https://react-select.com/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/api/text-field/
https://material-ui.com/api/typography/
https://material-ui.com/api/paper/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/chip/

API-driven Autocomplete
You can't always have your autocomplete data ready to render on the initial
page load. Imagine trying to load hundreds or thousands of items before the
user can interact with anything. The better approach is to keep the data on the
server and supply an API endpoint with the autocomplete text as the user
types. Then you only need to load a smaller set of data returned by the API.

How to do it...
Let's rework the example from the previous section. We'll keep all of the
same autocomplete functionality, except that, instead of passing an array to
the options property, we'll pass in an API function that returns a Promise. Here's
the API function that mocks an API call that resolves a Promise:

const someAPI = searchText =>

 new Promise(resolve => {

 setTimeout(() => {

 const teams = [

 { label: 'Boston Bruins', value: 'BOS' },

 { label: 'Buffalo Sabres', value: 'BUF' },

 { label: 'Detroit Red Wings', value: 'DET' },

 ...

];

 resolve(

 teams.filter(

 team =>

 searchText &&

 team.label

 .toLowerCase()

 .includes(searchText.toLowerCase())

)

);

 }, 1000);

 });

This function takes a search string argument and returns a Promise. The same
data that would otherwise be passed to the Select component in the options
property is filtered here instead. Think of anything that happens in this
function as happening behind an API in a real app. The returned Promise is
then resolved with an array of matching items following a simulated latency
of one second.

You also need to add a couple of components to the composition of the Select
component (we're up to 13 now!), as follows:

const LoadingIndicator = () => <CircularProgress size={20} />;

const LoadingMessage = props => (

 <Typography

 color="textSecondary"

 className={props.selectProps.classes.noOptionsMessage}

 {...props.innerProps}

 >

 {props.children}

 </Typography>

);

The LoadingIndicator component is shown on the right the autocomplete text
input. It's using the CircularProgress component from Material-UI to indicate
that the autocomplete is doing something. The LoadingMessage component
follows the same pattern as the other text replacement components used with
Select in this example. The loading text is displayed when the menu is shown,
but the Promise that resolves the options is still pending.

Lastly, there's the Select component. Instead of using Select, you need to use
the AsyncSelect version, as follows:

import AsyncSelect from 'react-select/lib/Async';

Otherwise, AsyncSelect works the same as Select, as follows:

<AsyncSelect

 value={value}

 onChange={value => setValue(value)}

 textFieldProps={{

 label: 'Team',

 InputLabelProps: {

 shrink: true

 }

 }}

 {...{ ...props, classes }}

/>

How it works...
The only difference between a Select autocomplete and an AsyncSelect
autocomplete is what happens while the request to the API is pending. Here
is what the autocomplete looks like while this is happening:

As the user types the CircularProgress component is rendered to the right, while
the loading message is rendered in the menu using a Typography component.

See also
Select components for React: https://react-select.com/
Autocomplete demos: https://material-ui.com/demos/autocomplete/
TextField API documentation: https://material-ui.com/api/text-field/

Typography API documentation: https://material-ui.com/api/typography/
Paper API documentation: https://material-ui.com/api/paper/
MenuItem API documentation: https://material-ui.com/api/menu-item/
IconButton API documentation: https://material-ui.com/api/icon-button/
Chip API documentation: https://material-ui.com/api/chip/

https://react-select.com/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/api/text-field/
https://material-ui.com/api/typography/
https://material-ui.com/api/paper/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/chip/

Highlighting search results
When the user starts typing in an autocomplete and the results are displayed
in the dropdown, it isn't always obvious how a given item matches the search
criteria. You can help your users better understand the results by highlighting
the matched portion of the string value.

How to do it...
You'll want to use two functions from the autosuggest-highlight package to help
highlight the text presented in the autocomplete dropdown, as follows:

import match from 'autosuggest-highlight/match';

import parse from 'autosuggest-highlight/parse';

Now, you can build a new component that will render the item text,
highlighting as and when necessary, as follows:

const ValueLabel = ({ label, search }) => {

 const matches = match(label, search);

 const parts = parse(label, matches);

 return parts.map((part, index) =>

 part.highlight ? (

 {part.text}

) : (

 {part.text}

)

);

};

The end result is that ValueLabel renders an array of span elements, determined
by the parse() and match() functions. One of the spans will be bolded if
part.highlight is true. Now, you can use ValueLabel in the Option component, as
follows:

const Option = props => (

 <MenuItem

 buttonRef={props.innerRef}

 selected={props.isFocused}

 component="div"

 style={{

 fontWeight: props.isSelected ? 500 : 400

 }}

 {...props.innerProps}

 >

 <ValueLabel

 label={props.children}

 search={props.selectProps.inputValue}

 />

 </MenuItem>

);

How it works...
Now, when you search for values in the autocomplete text input, the results
will highlight the search criteria in each item, as follows:

See also
Autosuggest for React: https://github.com/moroshko/autosuggest-highlight
Select components for React: https://react-select.com/
Autocomplete demos: https://material-ui.com/demos/autocomplete/
TextField API documentation: https://material-ui.com/api/text-field/

Typography API documentation: https://material-ui.com/api/typography/
Paper API documentation: https://material-ui.com/api/paper/
MenuItem API documentation: https://material-ui.com/api/menu-item/
IconButton API documentation: https://material-ui.com/api/icon-button/
Chip API documentation: https://material-ui.com/api/chip/

https://github.com/moroshko/autosuggest-highlight
https://react-select.com/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/api/text-field/
https://material-ui.com/api/typography/
https://material-ui.com/api/paper/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/chip/

Standalone chip input
Some applications require multi-value inputs but don't have a predefined list
for the user to choose from. This rules out the possibility of using an
autocomplete or a select component, for example, if you're asking the user for
a list of names.

How to do it...
You can install the material-ui-chip-input package and use the ChipInput
component, which brings together the Chip and TextInput components from
Material-UI. The code is as follows:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import ChipInput from 'material-ui-chip-input';

const useStyles = makeStyles(theme => ({

 chipInput: { minWidth: 300 }

}));

export default function StandaloneChipInput() {

 const classes = useStyles();

 const [values, setValues] = useState([]);

 const onAdd = chip => {

 setValues([...values, chip]);

 };

 const onDelete = (chip, index) => {

 setValues(values.slice(0, index).concat(values.slice(index + 1)));

 };

 return (

 <ChipInput

 className={classes.chipInput}

 helperText="Type name, hit enter to type another"

 value={values}

 onAdd={onAdd}

 onDelete={onDelete}

 />

);

}

When the screen first loads, the field looks like a regular text field that you
can type in, as follows:

As the helper text indicates, you can hit Enter to add the item and enter more
text, as follows:

You can keep adding items to the field as you please, as follows:

It's important that the helper text mentions the enter key. Otherwise, the user might not be
able to figure out that they can enter multiple values.

How it works...
The state that holds the value of the chip input field is an array—because there
are multiple values. The two actions involved with the chip input state are
adding and removing strings from this array. Let's take a closer look at the
onAdd() and onDelete() functions, as follows:

const onAdd = chip => {

 setValues([...values, chip]);

};

const onDelete = (chip, index) => {

 setValues(values.slice(0, index).concat(values.slice(index + 1)));

};

The onAdd() function adds the chip to the array, while the onDelete() function
deletes the chip at the given index. The chips are deleted when the Delete icon
in the chip is clicked on by the user. Lastly, let's look at the ChipInput
component itself, as follows:

<ChipInput

 className={classes.chipInput}

 helperText="Type name, hit enter to type another"

 value={values}

 onAdd={onAdd}

 onDelete={onDelete}

/>

It's very similar to a TextInput component. It actually takes the same
properties, such as helperText. It also takes additional properties not found in
TextInput, such as onAdd and onDelete.

See also
A Material-UI ChipInput component: https://www.npmjs.com/package/material-u
i-chip-input

https://www.npmjs.com/package/material-ui-chip-input

Selection - Make Selections from
Choices
In this chapter, you'll learn about the following:

Abstracting checkbox groups
Customizing checkbox items
Abstracting radio button groups
Using radio button types
Replacing checkboxes with switches
Controlling selects with state
Selecting multiple items

Introduction
Any application that includes user interactions involves user making
selections. This could range from a simple on/off switch to selection with
several items that allow more than one item to be selected. Material-UI has
different selection components that best fit a given user scenario.

Abstracting checkbox groups
Checkboxes often provide the user with a group of related options that can be
checked or unchecked. The Material-UI Checkbox component provides the base
functionality, but you might want something a little more high level that can
be reused throughout your application.

How to do it...
Let's create an abstraction for groups of checkbox options. Here's the code for
a CheckboxGroup component:

import React, { useState } from 'react';

import FormLabel from '@material-ui/core/FormLabel';

import FormControl from '@material-ui/core/FormControl';

import FormGroup from '@material-ui/core/FormGroup';

import FormControlLabel from '@material-ui/core/FormControlLabel';

import FormHelperText from '@material-ui/core/FormHelperText';

import Checkbox from '@material-ui/core/Checkbox';

const CheckboxGroup = ({ values, label, onChange }) => (

 <FormControl component="fieldset">

 <FormLabel component="legend">{label}</FormLabel>

 <FormGroup>

 {values.map((value, index) => (

 <FormControlLabel

 key={index}

 control={

 <Checkbox

 checked={value.checked}

 onChange={onChange(index)}

 />

 }

 label={value.label}

 />

))}

 </FormGroup>

 </FormControl>

);

export default function AbstractingCheckboxGroups() {

 const [values, setValues] = useState([

 { label: 'First', checked: false },

 { label: 'Second', checked: false },

 { label: 'Third', checked: false }

]);

 const onChange = index => ({ target: { checked } }) => {

 const newValues = [...values];

 const value = values[index];

 newValues[index] = { ...value, checked };

 setValues(newValues);

 };

 return (

 <CheckboxGroup

 label="Choices"

 values={values}

 onChange={onChange}

 />

);

}

When you first load the screen, here's what you'll see:

Here's what it looks like when you select the first two choices:

How it works...
Let's take a closer look at the CheckboxGroup component:

const CheckboxGroup = ({ values, label, onChange }) => (

 <FormControl component="fieldset">

 <FormLabel component="legend">{label}</FormLabel>

 <FormGroup>

 {values.map((value, index) => (

 <FormControlLabel

 key={index}

 control={

 <Checkbox

 checked={value.checked}

 onChange={onChange(index)}

 />

 }

 label={value.label}

 />

))}

 </FormGroup>

 </FormControl>

);

This is the abstraction that allows you to render groups of checkbox options
on the various screens throughout your app. There are several Material-UI
components involved with rendering a group of checkboxes—CheckboxGroup

takes care of this for you so that you just need to worry about passing it an
array of values, label, and an onChange handler.

Next, let's look at how CheckboxGroup is rendered by your application
component:

<CheckboxGroup

 label="Choices"

 values={values}

 onChange={onChange}

/>

You only need to worry about structuring the values array and passing it to
the CheckboxGroup component whenever your application needs to render a
group of related checkbox options. Lastly, let's look at state and the onChange()
handler used to toggle the checked state of the value:

const [values, setValues] = useState([

 { label: 'First', checked: false },

 { label: 'Second', checked: false },

 { label: 'Third', checked: false }

]);

const onChange = index => ({ target: { checked } }) => {

 const newValues = [...values];

 const value = values[index];

 newValues[index] = { ...value, checked };

 setValues(newValues);

};

The checked property is changed based on the index argument and the
target.checked value.

There's more...
Let's add a List component to this example so that you can better visualize the
state changes that happen when checkboxes are checked/unchecked. Here's
the additional Material-UI components that you'll need to import:

import List from '@material-ui/core/List';

import ListItem from '@material-ui/core/ListItem';

import ListItemIcon from '@material-ui/core/ListItemIcon';

import ListItemText from '@material-ui/core/ListItemText';

import Typography from '@material-ui/core/Typography';

The idea is to have this list render the labels of checked items. Let's render
this list right below the CheckboxGroup component:

<Fragment>

 <CheckboxGroup

 label="Choices"

 values={values}

 onChange={onChange}

 />

 <Typography variant="h6">Selection</Typography>

 <List>

 {values

 .filter(value => value.checked)

 .map((value, index) => (

 <ListItem key={index}>

 <ListItemText>{value.label}</ListItemText>

 </ListItem>

))}

 </List>

</Fragment>

The filter() call on values will only include values where the checked property
is true. When the screen first loads, you'll see an empty list because nothing is
checked by default:

As you start making selections, you'll see the selection list change as a
reflection of the application state changes:

See also
Selection demos: https://material-ui.com/demos/selection-controls/
Checkbox API documentation: https://material-ui.com/api/checkbox/
FormHelperText API documentation: https://material-ui.com/api/form-helper-tex
t/

FormControlLabel API documentation: https://material-ui.com/api/form-control-
label/

FormGroup API documentation: https://material-ui.com/api/form-group/
FormControl API documentation: https://material-ui.com/api/form-control/
FormLabel API documentation: https://material-ui.com/api/form-label/

https://material-ui.com/demos/selection-controls/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-label/

Customizing checkbox items
The default appearance of Material-UI Checkbox components tries to resemble
the native browser checkbox input element. You can change the icon that's
used for both the checked and the unchecked state of the component. Even
after you change the icons used by Checkbox, any color changes are still
honored.

How to do it...
Here's some code that imports several Material-UI icons and uses them to
configure the icons used by the Checkbox components:

import React, { useState, useEffect } from 'react';

import FormGroup from '@material-ui/core/FormGroup';

import FormControlLabel from '@material-ui/core/FormControlLabel';

import Checkbox from '@material-ui/core/Checkbox';

import AccountBalance from '@material-ui/icons/AccountBalance';

import AccountBalanceOutlined from '@material-ui/icons/AccountBalanceOutlined';

import Backup from '@material-ui/icons/Backup';

import BackupOutlined from '@material-ui/icons/BackupOutlined';

import Build from '@material-ui/icons/Build';

import BuildOutlined from '@material-ui/icons/BuildOutlined';

const initialItems = [

 {

 name: 'AccountBalance',

 Icon: AccountBalanceOutlined,

 CheckedIcon: AccountBalance

 },

 {

 name: 'Backup',

 Icon: BackupOutlined,

 CheckedIcon: Backup

 },

 {

 name: 'Build',

 Icon: BuildOutlined,

 CheckedIcon: Build

 }

];

export default function CustomizingCheckboxItems() {

 const [items, setItems] = useState({});

 useEffect(() => {

 setItems(

 initialItems.reduce(

 (state, item) => ({ ...state, [item.name]: false }),

 {}

)

);

 }, []);

 const onChange = e => {

 setItems({ [e.target.name]: e.target.checked });

 };

 return (

 <FormGroup>

 {initialItems.map(({ name, Icon, CheckedIcon }, index) => (

 <FormControlLabel

 key={index}

 control={

 <Checkbox

 checked={items[name]}

 onChange={onChange}

 inputProps={{ name }}

 icon={<Icon fontSize="small" />}

 checkedIcon={<CheckedIcon fontSize="small" />}

 />

 }

 label={name}

 />

))}

 </FormGroup>

);

}

Here's what the checkboxes look like when the screen first loads:

These checkboxes are unchecked. Here's what they look like when they're
checked:

How it works...
Let's walk through what's happening here. The initialItems array is the starting
point for the construction of the checkboxes:

const initialItems = [

 {

 name: 'AccountBalance',

 Icon: AccountBalanceOutlined,

 CheckedIcon: AccountBalance

 },

 {

 name: 'Backup',

 Icon: BackupOutlined,

 CheckedIcon: Backup

 },

 {

 name: 'Build',

 Icon: BuildOutlined,

 CheckedIcon: Build

 }

];

Each item has a name component to identify the checkbox, as well as
checked/unchecked Icon components. Next, let's take a look at how the state
of the CustomizingCheckboxItems component is initialized:

const [items, setItems] = useState({});

useEffect(() => {

 setItems(

 initialItems.reduce(

 (state, item) => ({ ...state, [item.name]: false }),

 {}

)

);

}, []);

The state is initialized to an object by reducing the initialItems array. For each
item in the array, the state of this component will have a property that's
initialized to false. The name of the property is based on the name property of
the item. So, for example, the component state will look something like this
after it's reduced:

{

 AccountBalance: false,

 Backup: false,

 Build: false

}

These properties are used to store the checked state of each checkbox. Next,
let's look at how each Checkbox component is rendered based on the initialItems
array:

<FormGroup>

 {initialItems.map(({ name, Icon, CheckedIcon }, index) => (

 <FormControlLabel

 key={index}

 control={

 <Checkbox

 checked={items[name]}

 onChange={onChange}

 inputProps={{ name }}

 icon={<Icon fontSize="small" />}

 checkedIcon={<CheckedIcon fontSize="small" />}

 />

 }

 label={name}

 />

))}

</FormGroup>

The key properties that customize each of the checkboxes are icon and
checkedIcon. These properties use the Icon and CheckIcon properties from the
items array, respectively.

There's more...
Because the icons that you're using to customize the Checkbox component are
Material-UI components, you can change the color of the checkbox and have
it work the same as would without custom icons. For example, you could set
the color of the checkboxes in this example to default:

<Checkbox

 color="default"

 checked={items[name]}

 onChange={onChange}

 inputProps={{ name }}

 icon={<Icon fontSize="small" />}

 checkedIcon={<CheckedIcon fontSize="small" />}

/>

Here's how this would look with every checkbox checked:

With the color set to the default, the color doesn't change when a checkbox
goes from unchecked to checked. This doesn't matter much, though, because
the icons go from an outline theme to a filled theme. Just the shape change is
enough to indicate that the item is checked.

Let's try it out with primary, just for fun:

<Checkbox

 color="primary"

 checked={items[name]}

 onChange={onChange}

 inputProps={{ name }}

 icon={<Icon fontSize="small" />}

 checkedIcon={<CheckedIcon fontSize="small" />}

/>

Here's how this looks with everything checked:

See also
Selection demos: https://material-ui.com/demos/selection-controls/
Checkbox API documentation: https://material-ui.com/api/checkbox/
FormControlLabel API documentation: https://material-ui.com/api/form-control-
label/

FormGroup API documentation: https://material-ui.com/api/form-group/

https://material-ui.com/demos/selection-controls/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-group/

Abstracting radio button groups
Radio button groups are similar to checkbox groups. The key difference is
that radios are used when only one value should be selected. Also, like
checkbox groups, radio button groups require several Material-UI
components that can be encapsulated and reused throughout an application.

How it works...
Here's some code that captures all of the pieces required to put together a
radio button group into a single component:

import React, { useState } from 'react';

import Radio from '@material-ui/core/Radio';

import { default as MaterialRadioGroup } from '@material-ui/core/RadioGroup';

import FormControlLabel from '@material-ui/core/FormControlLabel';

import FormControl from '@material-ui/core/FormControl';

import FormLabel from '@material-ui/core/FormLabel';

const options = [

 { label: 'First', value: 'first' },

 { label: 'Second', value: 'second' },

 { label: 'Third', value: 'third' }

];

const RadioGroup = ({ value, options, name, label, onChange }) => (

 <FormControl component="fieldset">

 <FormLabel component="legend">{label}</FormLabel>

 <MaterialRadioGroup

 name={name}

 value={value}

 onChange={onChange}

 disabled

 >

 {options.map((option, index) => (

 <FormControlLabel

 key={index}

 control={<Radio />}

 value={option.value}

 label={option.label}

 />

))}

 </MaterialRadioGroup>

 </FormControl>

);

export default function AbstractingRadioButtonGroups() {

 const [value, setValue] = useState('first');

 const onChange = e => {

 setValue(e.target.value);

 };

 return (

 <RadioGroup

 value={value}

 options={options}

 name="radio1"

 label="Pick One"

 onChange={onChange}

 />

);

}

Here's what you'll see when you first load the screen:

Here's what the component looks like if you were to click on the third option:

Because these options all belong to the same radio group, only one option can
be checked at a time.

How it works...
Let's take a closer look at the RadioGroup component in this example:

const RadioGroup = ({ value, options, name, label, onChange }) => (

 <FormControl component="fieldset">

 <FormLabel component="legend">{label}</FormLabel>

 <MaterialRadioGroup name={name} value={value} onChange={onChange}>

 {options.map((option, index) => (

 <FormControlLabel

 key={index}

 control={<Radio />}

 value={option.value}

 label={option.label}

 />

))}

 </MaterialRadioGroup>

 </FormControl>

);

The options property should have an array value, which is then mapped to
the FormControlLabel components. The control property uses the Radio component
to render each radio control. Unlike checkbox groups, the onChange property is
on the MaterialRadioGroup component instead of on each individual Radio. This is
because there's only ever a single active value, which is managed by
MaterialRadioGroup.

The Material-UI RadioGroup component is imported with the MaterialRadioGroup alias because
we're creating a component of the same name. This is fine, as long as you're clear about
which packages own which components.

Next, let's see how the RadioGroup component is rendered:

<RadioGroup

 value={value}

 options={options}

 name="radio1"

 label="Pick One"

 onChange={onChange}

/>

The name property is what ties everything together. It's important that radio
buttons that are part of the same group have the same name. This abstraction
takes care of this for you by only requiring the name in one place. Here's

what the options array looks like:

const options = [

 { label: 'First', value: 'first' },

 { label: 'Second', value: 'second' },

 { label: 'Third', value: 'third' }

];

The idea with radio groups is that they only ever have one value. The value
properties in the options array are the allowed values—but only one is active.
The last thing worth looking at with this example is the onChange handler and
the state structure of the application component:

const [value, setValue] = useState('first');

const onChange = e => {

 setValue(e.target.value);

};

This is how the initial radio selection is set. When it changes, the value state
is updated to the value of the selected radio.

There's more...
You can disable the entire radio button group by setting the disabled property
on the FormControl component:

<FormControl component="fieldset" disabled>

 ...

</FormControl>

When you disable the control, you can't interact with it at all. Here's what this
looks like:

In other scenarios, you will only want to disable one of the options. You can
support this in the RadioGroup component by checking for a disabled property in
the options array:

<FormControlLabel

 key={index}

 control={<Radio disabled={option.disabled} />}

 value={option.value}

 label={option.label}

/>

Here is how you would disable an option in the options array:

const options = [

 { label: 'First', value: 'first' },

 { label: 'Second', value: 'second', disabled: true },

 { label: 'Third', value: 'third' }

];

Here's how the radio group looks with the Second option disabled:

While the Second option is disabled, there's no way to activate it because the
user cannot interact with it.

Be careful about disabling the option that's active by default. There's no way for this to
not cause confusion for the user. You can activate another option in the group, but then
you can't activate the option that was active to begin with.

See also
Selection demos: https://material-ui.com/demos/selection-controls/
Radio API documentation: https://material-ui.com/api/radio/
RadioGroup API documentation: https://material-ui.com/api/radio-group/
FormControlLabel API documentation: https://material-ui.com/api/form-control-
label/

FormControl API documentation: https://material-ui.com/api/form-control/
FormLabel API documentation: https://material-ui.com/api/form-label/

https://material-ui.com/demos/selection-controls/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-label/

Radio button types
There are a number of radio button aspects that you can customize to create
your own type of radio button group. While the underlying principle of
selecting a single value from several options doesn't change, you can make
the radio button group design fit any application.

How to do it...
Let's say that, based on the layout of your screen, and in order to stay
consistent with other screens in your app, you need to create a radio group
with the following design traits:

A single row is used to present options
There are icons and text for each option
The primary theme color is used for selected options

Here's some code that does this:

import React, { Fragment, useState } from 'react';

import Radio from '@material-ui/core/Radio';

import RadioGroup from '@material-ui/core/RadioGroup';

import FormControlLabel from '@material-ui/core/FormControlLabel';

import FormControl from '@material-ui/core/FormControl';

import FormLabel from '@material-ui/core/FormLabel';

import Car from '@material-ui/icons/DirectionsCar';

import CarOutlined from '@material-ui/icons/DirectionsCarOutlined';

import Bus from '@material-ui/icons/DirectionsBus';

import BusOutlined from '@material-ui/icons/DirectionsBusOutlined';

import Train from '@material-ui/icons/Train';

import TrainOutlined from '@material-ui/icons/TrainOutlined';

export default function RadioButtonTypes() {

 const [value, setValue] = useState('train');

 const onChange = e => {

 setValue(e.target.value);

 };

 return (

 <FormControl component="fieldset">

 <FormLabel component="legend">Travel Mode</FormLabel>

 <RadioGroup name="travel" value={value} onChange={onChange} row>

 <FormControlLabel

 value="car"

 control={

 <Radio

 color="primary"

 icon={<CarOutlined />}

 checkedIcon={<Car />}

 />

 }

 label="Car"

 labelPlacement="bottom"

 />

 <FormControlLabel

 value="bus"

 control={

 <Radio

 color="primary"

 icon={<BusOutlined />}

 checkedIcon={<Bus />}

 />

 }

 label="Bus"

 labelPlacement="bottom"

 />

 <FormControlLabel

 value="train"

 control={

 <Radio

 color="primary"

 icon={<TrainOutlined />}

 checkedIcon={<Train />}

 />

 }

 label="Train"

 labelPlacement="bottom"

 />

 </RadioGroup>

 </FormControl>

);

}

Here's what the radio group looks like when the screen first loads:

You can change the default selection by clicking on any of the other icons or
labels. The icon state is updated to reflect the change:

How it works...
It seems that we were able to meet the criteria set forth for the radio button
group. Let's walk through the code to see how each requirement was met.
First, the group is rendered horizontally with each radio button on the same
row. This is done by passing the row property to the RadioGroup component:

<RadioGroup

 name="travel"

 value={value}

 onChange={onChange}

 row

>

The label of each radio is displayed underneath each radio button because
this works better with the row layout of the group. This is done by setting the
labelPlacement property value of FormControlLabel. The radio color uses the
primary color from the Material-UI theme when selected. It's also using
custom icons for checked and unchecked states:

<Radio

 color="primary"

 icon={<BusOutlined />}

 checkedIcon={<Bus />}

/>

Both of these enhancements are handled by the Radio component.

See also
Selection demos: https://material-ui.com/demos/selection-controls/
Radio API documentation: https://material-ui.com/api/radio/
RadioGroup API documentation: https://material-ui.com/api/radio-group/
FormControlLabel API documentation: https://material-ui.com/api/form-control-
label/

FormControl API documentation: https://material-ui.com/api/form-control/
FormLabel API documentation: https://material-ui.com/api/form-label/

https://material-ui.com/demos/selection-controls/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-label/

Replacing checkboxes with switches
Material-UI has a control which is very similar to a checkbox, called a
switch. The main visual distinction between the two components is that a
switch has more emphasis on the toggling on/off action. In a mobile
environment, users might feel more accustomed to the Switch component. In
any other environment, you're probably best sticking with regular Checkbox
components.

How to do it...
Let's say that, instead of creating a component that abstracts a group of
Checkbox components, you you want want to do the same thing with the Switch
components. Here's the code:

import React, { Fragment, useState } from 'react';

import FormLabel from '@material-ui/core/FormLabel';

import FormControl from '@material-ui/core/FormControl';

import FormGroup from '@material-ui/core/FormGroup';

import FormControlLabel from '@material-ui/core/FormControlLabel';

import FormHelperText from '@material-ui/core/FormHelperText';

import Switch from '@material-ui/core/Switch';

const SwitchGroup = ({ values, label, onChange }) => (

 <FormControl component="fieldset">

 <FormLabel component="legend">{label}</FormLabel>

 <FormGroup>

 {values.map((value, index) => (

 <FormControlLabel

 key={index}

 control={

 <Switch

 checked={value.checked}

 onChange={onChange(index)}

 />

 }

 label={value.label}

 />

))}

 </FormGroup>

 </FormControl>

);

export default function ReplacingCheckboxesWithSwitches() {

 const [values, setValues] = useState([

 { label: 'First', checked: false },

 { label: 'Second', checked: false },

 { label: 'Third', checked: false }

]);

 const onChange = index => ({ target: { checked } }) => {

 const newValues = [...values];

 const value = values[index];

 newValues[index] = { ...value, checked };

 setValues(newValues);

 };

 return (

 <SwitchGroup

 label="Choices"

 values={values}

 onChange={onChange}

 />

);

}

Here's what the switch group looks like when the screen first loads:

Here's what the switch group looks like with every switch turned on:

How it works...
Anywhere that you can use a Checkbox component, you can also use a Switch
component. This code was taken from the Abstracting checkbox groups
section from earlier in this chapter. The Checkbox components were replaced
with Switch components.

There's more...
Rather than having divergent code paths for handling Checkbox versus Switch
components, you could enhance the SwitchGroup component to accept a checkbox
Boolean property that, when true, uses Checkbox as the control instead of Switch.
Here's what the new SwitchGroup looks like:

const SwitchGroup = ({ values, label, onChange }) => (

 <FormControl component="fieldset">

 <FormLabel component="legend">{label}</FormLabel>

 <FormGroup>

 {values.map((value, index) => (

 <FormControlLabel

 key={index}

 control={

 <Switch

 checked={value.checked}

 onChange={onChange(index)}

 />

 }

 label={value.label}

 />

))}

 </FormGroup>

 </FormControl>

);

And here's an example that shows both versions of the control being rendered
side by side:

<Fragment>

 <SwitchGroup

 label="Switch Choices"

 values={values}

 onChange={this.onChange}

 />

 <SwitchGroup

 label="Switch Choices"

 values={values}

 onChange={onChange}

 checkbox

 />

</Fragment>

The second SwitchGroup component uses the checkbox property to render
the Checkbox components instead of the Switch components. Here's what the
result looks like:

Here's what you'll see if you select the first option in either the switch choices
or the checkbox choices group:

They are both updated because both fields share the same application state.

See also
Selection demos: https://material-ui.com/demos/selection-controls/

https://material-ui.com/demos/selection-controls/

Controlling selects with state
Some forms involve making selections from a list of values. This is kind of
like choosing a radio button option from a radio button group. With the
Material-UI Select component, you get something that looks more like a
traditional HTML select element. Often, web application forms have several
selects that depend on one another. In React/Material-UI applications, these
selects are controlled through the state component.

How to do it...
Let's say that your screen has two selects—a category select and a product
select. Initially, only the category select is populated and enabled. The
product select depends on the category select—once a category is selected,
the product select is enabled and populated with the appropriate products.
Here's the code to do this:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import InputLabel from '@material-ui/core/InputLabel';

import MenuItem from '@material-ui/core/MenuItem';

import FormHelperText from '@material-ui/core/FormHelperText';

import FormControl from '@material-ui/core/FormControl';

import Select from '@material-ui/core/Select';

const useStyles = makeStyles(theme => ({

 control: { margin: theme.spacing(2), minWidth: 200 }

}));

export default function ControllingSelectsWithState() {

 const classes = useStyles();

 const [categories, setCategories] = useState([

 { label: 'Category 1', id: 1 },

 { label: 'Category 2', id: 2 },

 { label: 'Category 3', id: 3 }

]);

 const [products, setProducts] = useState([

 { label: 'Product 1', id: 1, category: 1 },

 { label: 'Product 2', id: 2, category: 1 },

 { label: 'Product 3', id: 3, category: 1 },

 { label: 'Product 4', id: 4, category: 2 },

 { label: 'Product 5', id: 5, category: 2 },

 { label: 'Product 6', id: 6, category: 2 },

 { label: 'Product 7', id: 7, category: 3 },

 { label: 'Product 8', id: 8, category: 3 },

 { label: 'Product 9', id: 9, category: 3 }

]);

 const setters = {

 categories: setCategories,

 products: setProducts

 };

 const collections = { categories, products };

 const onChange = e => {

 const setCollection = setters[e.target.name];

 const collection = collections[e.target.name].map(item => ({

 ...item,

 selected: false

 }));

 const index = collection.findIndex(

 item => item.id === e.target.value

);

 collection[index] = { ...collection[index], selected: true };

 setCollection(collection);

 };

 const category = categories.find(category => category.selected) || {

 id: ''

 };

 const product = products.find(product => product.selected) || {

 id: ''

 };

 return (

 <Fragment>

 <FormControl className={classes.control}>

 <InputLabel htmlFor="categories">Category</InputLabel>

 <Select

 value={category.id}

 onChange={onChange}

 inputProps={{

 name: 'categories',

 id: 'categories'

 }}

 >

 <MenuItem value="">

 None

 </MenuItem>

 {categories.map(category => (

 <MenuItem key={category.id} value={category.id}>

 {category.label}

 </MenuItem>

))}

 </Select>

 </FormControl>

 <FormControl

 className={classes.control}

 disabled={category.id === ''}

 >

 <InputLabel htmlFor="Products">Product</InputLabel>

 <Select

 value={product.id}

 onChange={onChange}

 inputProps={{

 name: 'products',

 id: 'values'

 }}

 >

 <MenuItem value="">

 None

 </MenuItem>

 {products

 .filter(product => product.category === category.id)

 .map(product => (

 <MenuItem key={product.id} value={product.id}>

 {product.label}

 </MenuItem>

))}

 </Select>

 </FormControl>

 </Fragment>

);

}

Here's what you'll see when the screen first loads:

The category select is populated with options for you to choose from. The
product select is disabled because no category has been selected. Here's what
the category select looks like when it's open:

Once you select a category, you should be able to open the product select and
make a product selection:

How it works...
The two Select components in this example have state dependencies. That is,
the state of the product select depends on the state of the category select. This
is because the options displayed in the product select are filtered based on the
chosen category. Let's take a closer look at the state:

const [categories, setCategories] = useState([

 { label: 'Category 1', id: 1 },

 { label: 'Category 2', id: 2 },

 { label: 'Category 3', id: 3 }

]);

const [products, setProducts] = useState([

 { label: 'Product 1', id: 1, category: 1 },

 { label: 'Product 2', id: 2, category: 1 },

 { label: 'Product 3', id: 3, category: 1 },

 { label: 'Product 4', id: 4, category: 2 },

 { label: 'Product 5', id: 5, category: 2 },

 { label: 'Product 6', id: 6, category: 2 },

 { label: 'Product 7', id: 7, category: 3 },

 { label: 'Product 8', id: 8, category: 3 },

 { label: 'Product 9', id: 9, category: 3 }

]);

The categories and products arrays represent the options of the two selects on
the screen. The selected option is marked with a selected Boolean property
value of true. No options are selected by default. Both selects use the same
onChange() handler:

const setters = {

 categories: setCategories,

 products: setProducts

};

const collections = { categories, products };

const onChange = e => {

 const setCollection = setters[e.target.name];

 const collection = collections[e.target.name].map(item => ({

 ...item,

 selected: false

 }));

 const index = collection.findIndex(

 item => item.id === e.target.value

);

 collection[index] = { ...collection[index], selected: true };

 setCollection(collection);

};

The array to use depends on the value of e.target.name—which will be either
categories or products. Once the collection value is initialized with the
appropriate array, the selected property is set to false for every value. Then,
the selected value is looked up based on e.target.value, and the selected
property is set to true for this value.

Next, let's break down what's happening in the rest of the
ControllingSelectsWithState component. First, the category and product selections
are looked up from the component state:

const category = categories.find(category => category.selected) || {

 id: ''

};

const product = products.find(product => product.selected) || {

 id: ''

};

You have to make sure that an object with an id property is always assigned
to these constants, because this is expected later on. The empty string will
match the empty value option, so that it is selected by default. Next, let's see
how the category options are rendered:

{categories.map(category => (

 <MenuItem key={category.id} value={category.id}>

 {category.label}

 </MenuItem>

))}

This is a straightforward mapping of values in the categories array to
the MenuItem components. The options in the select category never change; in
other words, the product options change based on the selected category—let's
see how this is done:

{products

 .filter(product => product.category === category.id)

 .map(product => (

 <MenuItem key={product.id} value={product.id}>

 {product.label}

 </MenuItem>

))}

Before each product is mapped to a MenuItem component, the products array is
filtered based on the selected category using filter().

See Also
Selection demos: https://material-ui.com/demos/selects/
InputLabel API documentation: https://material-ui.com/api/input-label/
MenuItem API documentation: https://material-ui.com/api/menu-item/
FormHelperText API documentation: https://material-ui.com/api/form-helper-tex
t/

FormControl API documentation: https://material-ui.com/api/form-control/
Select API documentation: https://material-ui.com/api/select/

https://material-ui.com/demos/selects/
https://material-ui.com/api/input-label/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-control/
https://material-ui.com/api/select/

Selecting multiple items
Users can select multiple values from the Select components. This involves
using an array as the selected value state.

How to do it...
Here's some code that renders Select with several values. You can select as
many values as you like:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Select from '@material-ui/core/Select';

import Input from '@material-ui/core/Input';

import InputLabel from '@material-ui/core/InputLabel';

import MenuItem from '@material-ui/core/MenuItem';

import FormControl from '@material-ui/core/FormControl';

const options = [

 { id: 1, label: 'First' },

 { id: 2, label: 'Second' },

 { id: 3, label: 'Third' },

 { id: 4, label: 'Fourth' },

 { id: 5, label: 'Fifth' }

];

const useStyles = makeStyles(theme => ({

 formControl: {

 margin: theme.spacing(1),

 minWidth: 100,

 maxWidth: 280

 }

}));

export default function SelectingMultipleItems() {

 const classes = useStyles();

 const [selected, setSelected] = useState([]);

 const onChange = e => {

 setSelected(e.target.value);

 };

 return (

 <FormControl className={classes.formControl}>

 <InputLabel htmlFor="multi">Value</InputLabel>

 <Select

 multiple

 value={selected}

 onChange={onChange}

 input={<Input id="multi" />}

 >

 {options.map(option => (

 <MenuItem key={option.id} value={option.id}>

 {option.label}

 </MenuItem>

))}

 </Select>

 </FormControl>

);

}

Here's what the selection looks like when it's first opened:

Here's what the select looks like with the first, third, and fifth options
selected:

Now that you've made your selections, you can click somewhere on the
screen outside the menu to close it, or you can hit the Esc key. You'll be able
to see your selections in the text input:

How it works...
Let's start by taking a look at how the Select component is rendered:

<Select

 multiple

 value={selected}

 onChange={onChange}

 input={<Input id="multi" />}

>

 {options.map(option => (

 <MenuItem key={option.id} value={option.id}>

 {option.label}

 </MenuItem>

))}

</Select>

The options array values are mapped to MenuItem components, just like any
other Select. The multiple property tells the component to allow the user to
make multiple selections. The selected state of the SelectingMultipleItems
component is an array, which holds the selected values. This array is
populated by the onChange handler:

const onChange = e => {

 setSelected(e.target.value);

};

Because the multiple property was used, e.target.value is an array of selected
values—you can just update the selected state using this value as is.

There's more...
Rather than having the selected items show up as a comma-separated list of
test, you can make the items stand out by mapping the selected values to Chip
components. Let's make a component that will handle this:

function Selected({ selected }) {

 const classes = useStyles();

 return selected.map(value => (

 <Chip

 key={value}

 label={options.find(option => option.id === value).label}

 className={classes.chip}

 />

));

}

This code block shows how you can use this component in the renderValue
property of the Select component:

<Select

 multiple

 value={selected}

 onChange={onChange}

 input={<Input id="multi" />}

 renderValue={selected => <Selected selected={selected} />}

>

 {options.map(option => (

 <MenuItem key={option.id} value={option.id}>

 {option.label}

 </MenuItem>

))}

</Select>

Now, when you make multiple selections, they'll render as Chip components:

See also
Selection demos: https://material-ui.com/demos/selects/
Select API documentation: https://material-ui.com/api/select/
Input API documentation: https://material-ui.com/api/input/
InputLabel API documentation: https://material-ui.com/api/input-label/
MenuItem API documentation: https://material-ui.com/api/menu-item/
FormControl API documentation: https://material-ui.com/api/form-control/
Chip API documentation: https://material-ui.com/api/chip/

https://material-ui.com/demos/selects/
https://material-ui.com/api/select/
https://material-ui.com/api/input/
https://material-ui.com/api/input-label/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/form-control/
https://material-ui.com/api/chip/

Pickers - Selecting Dates and Times
In this chapter, we will cover the following topics:

Using date pickers
Using time pickers
Setting initial date and time values
Combining date and time components
Integrating other date and time packages

Introduction
Most applications need to allow the user to select date and time values. For
example, if a form includes a scheduling piece, the user needs an intuitive
way to select date and time values. With Material-UI applications, you can
use the date and time picker components that ship with the library.

Using date pickers
To use a date picker in Material-UI applications, you can leverage the
TextField component. It accepts a type property that you can set to date.
However, you have to take care of a few other things in addition to changing
the text field type.

How to do it...
Here's some code that renders a date picker text field for the user, and another
text field that displays the date in another format as the date selection
changes:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({

 textField: { margin: theme.spacing(1) }

}));

export default function UsingDatePickers() {

 const classes = useStyles();

 const [date, setDate] = useState('');

 const onChange = e => {

 setDate(e.target.value);

 };

 const dateFormatted = date

 ? new Date(`${date}T00:00:00`).toLocaleDateString()

 : null;

 return (

 <Fragment>

 <TextField

 value={date}

 onChange={onChange}

 label="My Date"

 type="date"

 className={classes.textField}

 InputLabelProps={{

 shrink: true

 }}

 />

 <TextField

 value={dateFormatted}

 label="Updated Date Value"

 className={classes.textField}

 InputLabelProps={{

 shrink: true

 }}

 InputProps={{ readOnly: true }}

 />

 </Fragment>

);

}

Here's what you'll see when the page first loads:

The My Date field to the left is the date picker. The Updated Date Value field
to the right shows the selected date in a different format. Here's what the date
picker looks like when it receives focus:

The year portion of the date is highlighted. You can type the year, or you can
use the up/down arrow button to change the selected value. You change to
the month or day portion of the date by hitting the Tab key or by using your
mouse pointer. The drop-down arrow to the far right will display the
following native browser date picker when clicked:

Once you've made a date selection, here's what the My Date and Updated
Date Value fields look like:

How it works...
Let's start by taking a look at the date picker TextField component:

<TextField

 value={date}

 onChange={onChange}

 label="My Date"

 type="date"

 className={classes.textField}

 InputLabelProps={{

 shrink: true

 }}

/>

Most of the date picker functionality comes from the type property that is set
to date. This applies the input mask and the native browser date picker
control. Because of the input mask value, the shrink input property needs to be
true to avoid overlap. The value property comes from the state of the
UsingDatePickers component. This value defaults to an empty string, but it needs
to be in a specific format. The date picker text field will put the date value in
the correct format, so the onChange() handler doesn't actually have to do
anything other than set the date state.

The Updated Date Value field uses a different format for the date. Let's take a
look at how this is done:

const dateFormatted = date

 ? new Date(`${date}T00:00:00`).toLocaleDateString()

 : null;

First, you have to take the date string from the component state and use it to
construct a new Date instance. To do this, you need to append the time string
to the date string. This makes it a valid ISO string, and enables the date to be
constructed without any surprises. Now you can use any of the date
formatting functions available to date instances, such as toLocaleDateString().

Now you can pass dateFormatted to the second text field, which is read-only
since it's only used to display values:

<TextField

 value={dateFormatted}

 label="Updated Date Value"

 className={classes.textField}

 InputLabelProps={{

 shrink: true

 }}

 InputProps={{ readOnly: true }}

/>

There's more...
There are a couple of improvements that could be made to the preceding
example. For starters, you could have a DatePicker component that hides some
of the details about turning a TextField component into something that picks
dates. Further, it would be nice if the new DatePicker component supported
actual Date instances as values.

First, you'll need a utility function that can format Date instances into the
string format expected by the TextField component when it's being used as a
date picker:

function formatDate(date) {

 const year = date.getFullYear();

 const month = date.getMonth() + 1;

 const day = date.getDate();

 return [

 year,

 month < 10 ? `0${month}` : month,

 day < 10 ? `0${day}` : day

].join('-');

}

The formatDate() function takes a Date instance and returns a string in the
format of YYYY-MM-dd. Now, you're ready to build the DatePicker component:

const DatePicker = ({ date, ...props }) => (

 <TextField

 value={date instanceof Date ? formatDate(date) : date}

 type="date"

 InputLabelProps={{

 shrink: true

 }}

 {...props}

 />

);

The DatePicker component renders a TextField component. It has the type
property value set to date and the shrink input property set to true. It also sets
the value – first it checks whether the date property is a Date instance, and if it
is, calls formatDate(). Otherwise, the date argument is used as is.

Now, let's replace the TextField component in the previous example with the
DatePicker component:

<Fragment>

 <DatePicker

 date={date}

 onChange={onChange}

 label="My Date"

 className={classes.textField}

 />

 <TextField

 value={dateFormatted}

 label="Updated Date Value"

 className={classes.textField}

 InputLabelProps={{

 shrink: true

 }}

 InputProps={{ readOnly: true }}

 />

</Fragment>

The onChange, label, and className properties are passed to the
TextField component as they were before. The big difference with the DatePicker
component is that you don't need to pass type or InputProps, and that date is used
instead of value.

See also
Picker demos: https://material-ui.com/demos/pickers/
TextField API documentation: https://material-ui.com/api/text-field/

https://material-ui.com/demos/pickers/
https://material-ui.com/api/text-field/

Using time pickers
Like date pickers, time pickers help users input time values. Also like date
pickers, time pickers in Material-UI applications are derived from
the TextInput components.

How to do it...
Let's create the same abstraction that's used in the Using date pickers section,
only this time, it's meant for the time pickers:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({

 textField: { margin: theme.spacing(1) }

}));

const TimePicker = ({ time, ...props }) => (

 <TextField

 value={time}

 type="time"

 InputLabelProps={{

 shrink: true

 }}

 inputProps={{

 step: 300

 }}

 {...props}

 />

);

export default function UsingTimePickers() {

 const classes = useStyles();

 const [time, setTime] = useState('');

 const onChange = e => {

 setTime(e.target.value);

 };

 return (

 <Fragment>

 <TimePicker

 time={time}

 onChange={onChange}

 label="My Time"

 className={classes.textField}

 />

 <TextField

 value={time}

 label="Updated Time Value"

 className={classes.textField}

 InputLabelProps={{

 shrink: true

 }}

 InputProps={{ readOnly: true }}

 />

 </Fragment>

);

}

Here's what you'll see when the page first loads:

Once the My Time field receives focus, you can change the individual time
pieces using the up/down arrow keys or the up/down arrow buttons that are
displayed to the right of the time value:

The Updated Time Value field doesn't get updated until the full time is
selected in the My Time field, because there's no time value until this
happens:

How it works...
The structure of the TimePicker component is very similar to the DatePicker
component from the previous recipe. The main difference is that TimePicker
doesn't support the Date instances because it only deals with time. Because
there's no date piece, using the Date instances to express only time is a lot
more difficult than expressing only the date:

const TimePicker = ({ time, ...props }) => (

 <TextField

 value={time}

 type="time"

 InputLabelProps={{

 shrink: true

 }}

 inputProps={{

 step: 300

 }}

 {...props}

 />

);

The TimePicker component sets the same properties on TextField as the DatePicker
component. Additionally, the step value of 300 makes the minute portion of
the time move by five minutes at a time.

See also
Picker demos: https://material-ui.com/demos/pickers/
TextField API documentation: https://material-ui.com/api/text-field/

https://material-ui.com/demos/pickers/
https://material-ui.com/api/text-field/

Setting initial date and time values
Date and time pickers can have default date and time values, respectively. For
example, a common scenario is to have these inputs default to the current
date and time.

How to do it...
Let's say that you have a date picker and a time picker on a screen in your
app. You want the date field to default to the current date and the time field to
default to the current time. To do this, it's best to rely on the Date instances to
set the initial Date/Time value. However, a little work is involved, since you
can't natively pass the Date instances to the TextField components. Here's an
example that shows how this can work:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({

 textField: { margin: theme.spacing.unit }

}));

function formatDate(date) {

 const year = date.getFullYear();

 const month = date.getMonth() + 1;

 const day = date.getDate();

 return [

 year,

 month < 10 ? `0${month}` : month,

 day < 10 ? `0${day}` : day

].join('-');

}

function formatTime(date) {

 const hours = date.getHours();

 const minutes = date.getMinutes();

 return [

 hours < 10 ? `0${hours}` : hours,

 minutes < 10 ? `0${minutes}` : minutes

].join(':');

}

const DatePicker = ({ date, ...props }) => (

 <TextField

 value={date instanceof Date ? formatDate(date) : date}

 type="date"

 InputLabelProps={{

 shrink: true

 }}

 {...props}

 />

);

const TimePicker = ({ time, ...props }) => (

 <TextField

 value={time instanceof Date ? formatTime(time) : time}

 type="time"

 InputLabelProps={{

 shrink: true

 }}

 inputProps={{

 step: 300

 }}

 {...props}

 />

);

export default function SettingInitialDateAndTimeValues() {

 const classes = useStyles();

 const [datetime, setDatetime] = useState(new Date());

 const onChangeDate = e => {

 if (!e.target.value) {

 return;

 }

 const [year, month, day] = e.target.value

 .split('-')

 .map(n => Number(n));

 const newDatetime = new Date(datetime);

 newDatetime.setYear(year);

 newDatetime.setMonth(month - 1);

 newDatetime.setDate(day);

 setDatetime(newDatetime);

 };

 const onChangeTime = e => {

 const [hours, minutes] = e.target.value

 .split(':')

 .map(n => Number(n));

 const newDatetime = new Date(datetime);

 newDatetime.setHours(hours);

 newDatetime.setMinutes(minutes);

 setDatetime(newDatetime);

 };

 return (

 <Fragment>

 <DatePicker

 date={datetime}

 onChange={onChangeDate}

 label="My Date"

 className={classes.textField}

 />

 <TimePicker

 time={datetime}

 onChange={onChangeTime}

 label="My Time"

 className={classes.textField}

 />

 </Fragment>

);

}

Here's what you'll see when the screen first loads:

The date and time that you see will depend on when you load the screen. You
can then change the date and time values.

How it works...
What's nice about this approach is that you only have one piece of state to
work with, datetime, which is a Date instance. Let's step through the code to see
how this is made possible, starting with the initial state of the UsingDatePickers
component:

const [datetime, setDatetime] = useState(new Date());

The current date and time is assigned to the datetime state. Next, let's look at
the two formatting functions that enable the Date instances to work with
the TextField components:

function formatDate(date) {

 const year = date.getFullYear();

 const month = date.getMonth() + 1;

 const day = date.getDate();

 return [

 year,

 month < 10 ? `0${month}` : month,

 day < 10 ? `0${day}` : day

].join('-');

}

function formatTime(date) {

 const hours = date.getHours();

 const minutes = date.getMinutes();

 return [

 hours < 10 ? `0${hours}` : hours,

 minutes < 10 ? `0${minutes}` : minutes

].join(':');

}

Both of these functions, formatDate() and formatTime(), take a Date instance as an
argument, and return a string-formatted value that works with the TextField
component. Next, let's look at the onChangeDate() handler:

const onChangeDate = e => {

 if (!e.target.value) {

 return;

 }

 const [year, month, day] = e.target.value

 .split('-')

 .map(n => Number(n));

 const newDatetime = new Date(datetime);

 newDatetime.setYear(year);

 newDatetime.setMonth(month - 1);

 newDatetime.setDate(day);

 setDatetime(newDatetime);

};

The first check that happens in onChangeDate() is for the value property. The
reason this check needs to happen is so that the date picker can actually allow
the user to select an invalid date, such as Feb 31. By not changing the state
when this invalid date is selected, you're actually preventing invalid dates
from being selected.

Next, the year, month, and day values are split and mapped to numbers. Then,
the new newDatetime value is initialized by creating a new Date instance using
datetime as the value. This is done to preserve the time selection. Finally,
setYear(), setMonth(), and setDate() are used to update the Date instance without
changing the time.

Lastly, let's go over the onChangeTime() handler:

const onChangeTime = e => {

 const [hours, minutes] = e.target.value

 .split(':')

 .map(n => Number(n));

 const newDatetime = new Date(datetime);

 newDatetime.setHours(hours);

 newDatetime.setMinutes(minutes);

 setDatetime(newDatetime);

};

The onChangeTime() handler follows the same general pattern as onChangeDate().
It's simpler because there are fewer values and no need to check for invalid
times – every day has 24 hours.

See also
Picker demos: https://material-ui.com/demos/pickers/
TextField API documentation: https://material-ui.com/api/text-field/

https://material-ui.com/demos/pickers/
https://material-ui.com/api/text-field/

Combining date and time
components
If your application needs to collect the date and time from the user, you don't
necessarily need two TextField components. Instead, you can combine them
both into a single field.

How to do it...
You can use a single TextInput component to collect date and time input from
the user by setting the type property to datetime-local:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({

 textField: { margin: theme.spacing(1) }

}));

const formatDate = date =>

 date

 .toISOString()

 .split(':')

 .slice(0, 2)

 .join(':');

const DateTimePicker = ({ date, ...props }) => (

 <TextField

 value={

 date instanceof Date

 ? date.toISOString().replace('Z', '')

 : date

 }

 type="datetime-local"

 InputLabelProps={{

 shrink: true

 }}

 {...props}

 />

);

export default function CombiningDateAndTimeComponents() {

 const classes = useStyles();

 const [datetime, setDatetime] = useState(new Date());

 const onChangeDate = e => {

 setDatetime(new Date(`${e.target.value}Z`));

 };

 return (

 <DateTimePicker

 date={formatDate(datetime)}

 onChange={onChangeDate}

 label="My Date/Time"

 className={classes.textField}

 />

);

}

Here's what you'll see when the screen first loads:

This is how the field looks when the field has focus and the controls for
changing the Date/Time are shown:

How it works...
When you use the datetime-local type of input, it simplifies working with
the Date instances. Let's take a look at the onChangeDate() handler:

const onChangeDate = e => {

 setDatetime(new Date(`${e.target.value}Z`));

};

You can pass e.target.value as the argument to a new Date instance, which then
becomes the new datetime state value. Finally, let's take a look at the
formatDate() function that's used to pass the correct value to the value property
of TextField:

const formatDate = date =>

 date

 .toISOString()

 .split(':')

 .slice(0, 2)

 .join(':');

The reason to use this function is to remove the seconds and milliseconds
from the value property. Otherwise, these will show up as values in the input
field that the user can then select. It's very uncommon to have the user select
seconds or milliseconds when choosing a time.

See also
Picker demos: https://material-ui.com/demos/pickers/
TextField API documentation: https://material-ui.com/api/text-field/

https://material-ui.com/demos/pickers/
https://material-ui.com/api/text-field/

Integrating other date and time
packages
You aren't stuck with only using TextField components for Date/Time selection
in your Material-UI application. There are packages available that make the
Date/Time selection experience feel more like traditional Material Design
components.

How to do it...
The material-ui-pickers package has a DatePicker component and a TimePicker
component. Here's some code that shows you how to use both components:

import React, { useState } from 'react';

import 'date-fns';

import DateFnsUtils from '@date-io/date-fns';

import { makeStyles } from '@material-ui/styles';

import Grid from '@material-ui/core/Grid';

import {

 MuiPickersUtilsProvider,

 TimePicker,

 DatePicker

} from 'material-ui-pickers';

const useStyles = makeStyles(theme => ({

 grid: {

 width: '65%'

 }

}));

export default function IntegratingWithOtherDateAndTimePackages() {

 const classes = useStyles();

 const [datetime, setDatetime] = useState(new Date());

 const onChange = datetime => {

 setDatetime(datetime);

 };

 return (

 <MuiPickersUtilsProvider utils={DateFnsUtils}>

 <Grid container className={classes.grid} justify="space-around">

 <DatePicker

 margin="normal"

 label="Date picker"

 value={datetime}

 onChange={onChange}

 />

 <TimePicker

 margin="normal"

 label="Time picker"

 value={datetime}

 onChange={onChange}

 />

 </Grid>

 </MuiPickersUtilsProvider>

);

}

Here's what you'll see when the screen first loads:

Here's what you'll see when you click on the Date picker field:

You can use this dialog to make your date selection, then click on OK to

change it. Here's what you'll see when you click on the Time picker field:

How it works...
The DatePicker and TimePicker components from the material-ui-pickers package
display dialogs that render other Material-UI components, which makes
selecting a date/time easier. Rather than having to interact with text inputs
directly, you can show your users dialogs such as these that are themed to
look like the rest of your application and provide a visual interaction for
selecting dates/times.

See also
Picker demos: https://material-ui.com/demos/pickers/
Material-UI pickers: https://github.com/chingyawhao/material-ui-next-pickers

https://material-ui.com/demos/pickers/
https://github.com/chingyawhao/material-ui-next-pickers

Dialogs - Modal Screens for User
Interactions
In this chapter, we will cover the following topics:

Collecting form input
Confirming actions
Displaying alerts
API integration
Creating fullscreen dialogs
Scrolling dialog content

Introduction
At some point during interactions with your application, the user is going to
have to supply some information to the application, make a yes/no decision,
or acknowledge important information. Material-UI has a dialog component
that is ideally suited for these types of scenarios—when you need a modal
display that doesn't disrupt the current screen content.

Collecting form input
Dialogs can come in handy when you need to collect input from the user, but
you don't want to lose the current screen. For example, the user is looking at a
screen that shows a list of items and wants to create a new item. A dialog
could display the necessary form fields and, once the new item is created, the
dialog closes and the user is right back at their item list.

How to do it...
Let's say that your application allows for the creation of new users. For
example, from the screen that shows a list of users, the user clicks on a button
that shows a dialog containing the fields for creating a new user. Here's an
example of how to do this:

import React, { Fragment, useState } from 'react';

import Button from '@material-ui/core/Button';

import TextField from '@material-ui/core/TextField';

import Dialog from '@material-ui/core/Dialog';

import DialogActions from '@material-ui/core/DialogActions';

import DialogContent from '@material-ui/core/DialogContent';

import DialogContentText from '@material-ui/core/DialogContentText';

import DialogTitle from '@material-ui/core/DialogTitle';

import Snackbar from '@material-ui/core/Snackbar';

export default function CollectingFormInput() {

 const [dialogOpen, setDialogOpen] = useState(false);

 const [snackbarOpen, setSnackbarOpen] = useState(false);

 const [snackbarMessage, setSnackbarMessage] = useState('');

 const [first, setFirst] = useState('');

 const [last, setLast] = useState('');

 const [email, setEmail] = useState('');

 const onDialogOpen = () => {

 setDialogOpen(true);

 };

 const onDialogClose = () => {

 setDialogOpen(false);

 setFirst('');

 setLast('');

 setEmail('');

 };

 const onSnackbarClose = (e, reason) => {

 if (reason === 'clickaway') {

 return;

 }

 setSnackbarOpen(false);

 setSnackbarMessage('');

 };

 const onCreate = () => {

 setSnackbarOpen(true);

 setSnackbarMessage(`${first} ${last} created`);

 onDialogClose();

 };

 return (

 <Fragment>

 <Button color="primary" onClick={onDialogOpen}>

 New User

 </Button>

 <Dialog open={dialogOpen} onClose={onDialogClose}>

 <DialogTitle>New User</DialogTitle>

 <DialogContent>

 <TextField

 autoFocus

 margin="normal"

 label="First Name"

 InputProps={{ name: 'first' }}

 onChange={e => setFirst(e.target.value)}

 value={first}

 fullWidth

 />

 <TextField

 margin="normal"

 label="Last Name"

 InputProps={{ name: 'last' }}

 onChange={e => setLast(e.target.value)}

 value={last}

 fullWidth

 />

 <TextField

 margin="normal"

 label="Email Address"

 type="email"

 InputProps={{ name: 'email' }}

 onChange={e => setEmail(e.target.value)}

 value={email}

 fullWidth

 />

 </DialogContent>

 <DialogActions>

 <Button onClick={onDialogClose} color="primary">

 Cancel

 </Button>

 <Button

 variant="contained"

 onClick={onCreate}

 color="primary"

 >

 Create

 </Button>

 </DialogActions>

 </Dialog>

 <Snackbar

 open={snackbarOpen}

 message={snackbarMessage}

 onClose={onSnackbarClose}

 autoHideDuration={4000}

 />

 </Fragment>

);

}

Here's the button you'll see when the screen first loads:

Here's the dialog that you'll see when you click on the NEW USER button:

You can then fill out the three fields for creating a new user and click the
CREATE button. The dialog will close, and you'll see the following Snackbar
component displayed:

How it works...
The visibility of the dialog and the snackbar are controlled by Boolean state
values, dialogOpen and snackbarOpen, respectively. The values of the fields within
the dialog component are also stored in the state of the CollectingFormInput
component. Let's take a closer look at the dialog markup:

<Dialog open={dialogOpen} onClose={onDialogClose}>

 <DialogTitle>New User</DialogTitle>

 <DialogContent>

 <TextField

 autoFocus

 margin="normal"

 label="First Name"

 InputProps={{ name: 'first' }}

 onChange={e => setFirst(e.target.value)}

 value={first}

 fullWidth

 />

 <TextField

 margin="normal"

 label="Last Name"

 InputProps={{ name: 'last' }}

 onChange={e => setLast(e.target.value)}

 value={last}

 fullWidth

 />

 <TextField

 margin="normal"

 label="Email Address"

 type="email"

 InputProps={{ name: 'email' }}

 onChange={e => setEmail(e.target.value)}

 value={email}

 fullWidth

 />

 </DialogContent>

 <DialogActions>

 <Button onClick={onDialogClose} color="primary">

 Cancel

 </Button>

 <Button

 variant="contained"

 onClick={onCreate}

 color="primary"

 >

 Create

 </Button>

 </DialogActions>

</Dialog>

The Dialog component is the parent for several other components that make up

the various pieces of dialog. The DialogTitle component renders the dialog title,
while the DialogActions component is used to render action buttons at the
bottom of the dialog. The DialogContent component is used to render the main
content of the dialog—the three text fields for creating a new user.

There are two properties for each of these TextField components that are
relevant for rendering inside of a dialog. First, the fullWidth property extends
the field horizontally so that it's the same width as the dialog. This generally
works well with forms that only have a few fields. Second, the margin property
is set to normal, which provides the appropriate vertical spacing between fields
in the dialog.

Next, let's walk through the event handlers of this component, starting with
onDialogOpen():

const onDialogOpen = () => {

 setDialogOpen(true);

};

This will show the dialog by changing the dialogOpen state to true. Next, let's
look at onDialogClose():

const onDialogClose = () => {

 setDialogOpen(false);

 setFirst('');

 setLast('');

 setEmail('');

};

This will close the dialog by setting the dialogOpen state to false. It also resets
the form field values to empty strings so that they're empty the next time the
dialog is displayed. Up next, we have onSnackbarClose():

const onSnackbarClose = (e, reason) => {

 if (reason === 'clickaway') {

 return;

 }

 setSnackbarOpen(false);

 setSnackbarMessage('');

};

If the reason argument is clickaway, then there's nothing to do. Otherwise, the
snackbarOpen state changes to false, which will hide the snackbar. The

snackbarMessage state is set to an empty string so that the message doesn't
display again in case the snackbar is opened without setting a new message
first. Finally, we have the onCreate() handler:

const onCreate = () => {

 setSnackbarOpen(true);

 setSnackbarMessage(`${first} ${last} created`);

 onDialogClose();

};

This will show the snackbar by setting snackbarOpen to true. It also sets the
snackbarMessage value that includes accessing the first and last state values.
Then, onDialogClose() is called to hide the dialog and reset the form fields. The
snackbar is closed after four seconds because the autoHideDuration value was set
to 4000.

See also
Dialog demos: https://material-ui.com/demos/dialogs/
Dialog API documentation: https://material-ui.com/api/dialog/
DialogActions API documentation: https://material-ui.com/api/dialog-actions/
DialogContent API documentation: https://material-ui.com/api/dialog-content/
DialogContentText API documentation: https://material-ui.com/api/dialog-conte
nt-text/

Snackbar API documentation: https://material-ui.com/api/snackbar/
TextField API documentation: https://material-ui.com/api/text-field/
Button API documentation: https://material-ui.com/api/button/

https://material-ui.com/demos/dialogs/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/text-field/
https://material-ui.com/api/button/

Confirming actions
Confirmation dialogs act as a safety net for your users. They're useful when
the user is about to perform something that could potentially be dangerous,
but not for every conceivable action in the app. An action can be considered
dangerous if, once performed, it cannot be reverted. An example of a
dangerous action would be deleting an account or processing a payment. In
these cases, you should always use a confirmation dialog.

How to do it...
Confirmation dialogs should be straightforward so that the user can easily
read what is about to happen and can decide whether to cancel the action or
to continue. Here's some code that shows a confirmation dialog before
executing an action:

import React, { Fragment, useState } from 'react';

import Button from '@material-ui/core/Button';

import DialogTitle from '@material-ui/core/DialogTitle';

import DialogContent from '@material-ui/core/DialogContent';

import DialogContentText from '@material-ui/core/DialogContentText';

import DialogActions from '@material-ui/core/DialogActions';

import Dialog from '@material-ui/core/Dialog';

export default function ConfirmingActions() {

 const [open, setOpen] = useState(false);

 const onShowConfirm = () => {

 setOpen(true);

 };

 const onConfirm = () => {

 setOpen(false);

 };

 return (

 <Fragment>

 <Button color="primary" onClick={onShowConfirm}>

 Confirm Action

 </Button>

 <Dialog

 disableBackdropClick

 disableEscapeKeyDown

 maxWidth="xs"

 open={open}

 >

 <DialogTitle>Confirm Delete Asset</DialogTitle>

 <DialogContent>

 <DialogContentText>

 Are you sure you want to delete the asset? This action

 cannot be undone.

 </DialogContentText>

 </DialogContent>

 <DialogActions>

 <Button onClick={onDialogClose} color="primary">

 Cancel

 </Button>

 <Button

 variant="contained"

 onClick={onConfirm}

 color="primary"

 >

 Confirm

 </Button>

 </DialogActions>

 </Dialog>

 </Fragment>

);

}

Here's what the confirmation dialog looks like when it's displayed by clicking
on the CONFIRM button:

You can either click on the CANCEL dialog action to close the dialog
without doing anything, or you can click on the CONFIRM dialog action that
will actually execute the action before closing the dialog.

How it works...
The DialogContentText component is used to render the confirmation message in
the dialog. It's really just a thin wrapper around a Typography component. The
two interesting properties passed to the dialog component are
disableBackdropClick and disableEscapeKeyDown, which prevent the confirmation
dialog from being closed by clicking somewhere on the screen outside of the
dialog or by hitting the Esc key, respectively.

The idea with these two properties is to get the user to explicitly acknowledge
that they're performing an action that requires their close attention, or that
they're opting out of performing it.

See also
Dialog demos: https://material-ui.com/demos/dialogs/
Dialog API documentation: https://material-ui.com/api/dialog/
DialogActions API documentation: https://material-ui.com/api/dialog-actions/
DialogContent API documentation: https://material-ui.com/api/dialog-content/
DialogContentText API documentation: https://material-ui.com/api/dialog-conte
nt-text/

Button API documentation: https://material-ui.com/api/button/

https://material-ui.com/demos/dialogs/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/button/

Displaying alerts
Alert dialogs are similar to confirmation dialogs. You can think of alerts as
really important snackbars that cannot be ignored. Like confirmations, alerts
cause interruption and have to be explicitly acknowledged to get rid of them.
Furthermore, alert dialogs might not be displayed as the direct result of an
action taken by the user. Alerts can be displayed as the result of changes to
the environment the user is interacting with.

How to do it...
Let's say that your application needs to be able to alert users when their
allotted disk space is running low. Here's an example that shows what the
alert might look like:

import React, { Fragment, useState } from 'react';

import Button from '@material-ui/core/Button';

import DialogContent from '@material-ui/core/DialogContent';

import DialogContentText from '@material-ui/core/DialogContentText';

import DialogActions from '@material-ui/core/DialogActions';

import Dialog from '@material-ui/core/Dialog';

export default function ConfirmingActions() {

 const [open, setOpen] = useState(false);

 return (

 <Fragment>

 <Button color="primary" onClick={() => setOpen(true)}>

 Show Alert

 </Button>

 <Dialog open={open}>

 <DialogContent>

 <DialogContentText>

 Disk space critically low. You won't be able to perform

 any actions until you free up some space by deleting

 assets.

 </DialogContentText>

 </DialogContent>

 <DialogActions>

 <Button

 variant="contained"

 onClick={() => setOpen(false)}

 color="primary"

 >

 Got It

 </Button>

 </DialogActions>

 </Dialog>

 </Fragment>

);

}

And here's what the alert dialog looks like when it's displayed by clicking on
the show alert button:

How it works...
Alerts aren't much different from regular dialogs in that you use them to
collect input from the user. The principle with alerts is to keep them short and
to the point. For example, this alert dialog doesn't have a title. It's able to get
the point across without a title – if the user doesn't start deleting stuff, they're
not going to be able to do anything.

There's more...
You can make your alerts a little more eye-catching by adding an icon to the
alert message and the button that dismisses the alert. Here's the modified
example:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Button from '@material-ui/core/Button';

import DialogContent from '@material-ui/core/DialogContent';

import DialogContentText from '@material-ui/core/DialogContentText';

import DialogActions from '@material-ui/core/DialogActions';

import Dialog from '@material-ui/core/Dialog';

import Grid from '@material-ui/core/Grid';

import WarningIcon from '@material-ui/icons/Warning';

import CheckIcon from '@material-ui/icons/Check';

const useStyles = makeStyles(theme => ({

 rightIcon: {

 marginLeft: theme.spacing(1)

 }

}));

export default function ConfirmingActions() {

 const classes = useStyles();

 const [open, setOpen] = useState(false);

 return (

 <Fragment>

 <Button color="primary" onClick={() => setOpen(true)}>

 Show Alert

 </Button>

 <Dialog open={open}>

 <DialogContent>

 <Grid container>

 <Grid item xs={2}>

 <WarningIcon fontSize="large" color="secondary" />

 </Grid>

 <Grid item xs={10}>

 <DialogContentText>

 Disk space critically low. You won't be able to

 perform any actions until you free up some space by

 deleting assets.

 </DialogContentText>

 </Grid>

 </Grid>

 </DialogContent>

 <DialogActions>

 <Button

 variant="contained"

 onClick={() => setOpen(false)}

 color="primary"

 >

 Got It

 <CheckIcon className={classes.rightIcon} />

 </Button>

 </DialogActions>

 </Dialog>

 </Fragment>

);

}

Here's what the new alert looks like:

See also
Dialog demos: https://material-ui.com/demos/dialogs/
Dialog API documentation: https://material-ui.com/api/dialog/
DialogActions API documentation: https://material-ui.com/api/dialog-actions/

DialogContent API documentation: https://material-ui.com/api/dialog-content/
DialogContentText API documentation: https://material-ui.com/api/dialog-conte
nt-text/

Button API documentation: https://material-ui.com/api/button/

https://material-ui.com/demos/dialogs/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/button/

API integration
Dialogs often need data supplied to it from an API endpoint. The challenge is
displaying the dialog in a loading state while the user waits for the API data
to load behind the scenes.

How to do it...
Let's say that your application needs to display a dialog with a Select
component for selecting an item. The options for the select are populated
from an API endpoint, so you need to handle the latency between the user
opening the dialog and the API data arriving. Here's an example that shows
one way to do this:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Button from '@material-ui/core/Button';

import DialogTitle from '@material-ui/core/DialogTitle';

import DialogContent from '@material-ui/core/DialogContent';

import DialogContentText from '@material-ui/core/DialogContentText';

import DialogActions from '@material-ui/core/DialogActions';

import Dialog from '@material-ui/core/Dialog';

import LinearProgress from '@material-ui/core/LinearProgress';

import MenuItem from '@material-ui/core/MenuItem';

import Select from '@material-ui/core/Select';

const useStyles = makeStyles(theme => ({

 dialog: { minHeight: 200 },

 select: { width: '100%' }

}));

const fetchItems = () =>

 new Promise(resolve => {

 setTimeout(() => {

 resolve([

 { id: 1, name: 'Item 1' },

 { id: 2, name: 'Item 2' },

 { id: 3, name: 'Item 3' }

]);

 }, 3000);

 });

const MaybeLinearProgress = ({ loading, ...props }) =>

 loading ? <LinearProgress {...props} /> : null;

const MaybeSelect = ({ loading, ...props }) =>

 loading ? null : <Select {...props} />;

export default function APIIntegration() {

 const classes = useStyles();

 const [open, setOpen] = useState(false);

 const [loading, setLoading] = useState(false);

 const [items, setItems] = useState([]);

 const [selected, setSelected] = useState('');

 const onShowItems = () => {

 setOpen(true);

 setLoading(true);

 fetchItems().then(items => {

 setLoading(false);

 setItems(items);

 });

 };

 const onClose = () => {

 setOpen(false);

 };

 const onSelect = e => {

 setSelected(e.target.value);

 };

 return (

 <Fragment>

 <Button color="primary" onClick={onShowItems}>

 Select Item

 </Button>

 <Dialog

 open={open}

 classes={{ paper: classes.dialog }}

 maxWidth="xs"

 fullWidth

 >

 <DialogTitle>Select Item</DialogTitle>

 <DialogContent>

 <MaybeLinearProgress loading={loading} />

 <MaybeSelect

 value={selected}

 onChange={onSelect}

 className={classes.select}

 loading={loading}

 >

 <MenuItem value="">

 None

 </MenuItem>

 {items.map(item => (

 <MenuItem key={item.id} index={item.id} value={item.id}>

 {item.name}

 </MenuItem>

))}

 </MaybeSelect>

 </DialogContent>

 <DialogActions>

 <Button

 disabled={loading}

 onClick={onClose}

 color="primary"

 >

 Cancel

 </Button>

 <Button

 disabled={loading}

 variant="contained"

 onClick={onClose}

 color="primary"

 >

 Select

 </Button>

 </DialogActions>

 </Dialog>

 </Fragment>

);

}

Here's what the dialog looks like when it's first opened:

The dialog displays a LinearProgress component and disables the dialog action
buttons while the API data is loading. Once the response arrives, here's what
the dialog looks like:

The linear progress bar is gone, the dialog action buttons are enabled, and
there's a Select Item field visible for the user to select an item. Here's the
Select Item showing the items that are loading from the API:

How it works...
Let's walk through the major parts of this code, starting with the mock API
function:

const fetchItems = () =>

 new Promise(resolve => {

 setTimeout(() => {

 resolve([

 { id: 1, name: 'Item 1' },

 { id: 2, name: 'Item 2' },

 { id: 3, name: 'Item 3' }

]);

 }, 3000);

 });

The fetchItems() function simulates an API function by returning a promise
that resolves an array of data after three seconds. This allows you to see what
users will see while waiting for an actual API endpoint to respond. Next, let's
look at the two utility components that help with rendering or hiding the
select and the progress indicators:

const MaybeLinearProgress = ({ loading, ...props }) =>

 loading ? <LinearProgress {...props} /> : null;

const MaybeSelect = ({ loading, ...props }) =>

 loading ? null : <Select {...props} />;

The idea is that you don't want to render the LinearProgress component while
loading is false. Conversely, you don't want to render the Select component
while loading is true. Let's take a look at onShowItems() next:

const onShowItems = () => {

 setOpen(true);

 setLoading(true);

 fetchItems().then(items => {

 setLoading(false);

 setItems(items);

 });

};

First, the dialog is opened by setting open to true and the progress indicator is
displayed by setting loading to true. Then, the API fetchItems() function is

called, and when the Promise it returns is resolved, loading is set to false and the
items array is updated. This hides the progress indicator and shows the select
that is now populated with items.

See also
Dialog demos: https://material-ui.com/demos/dialogs/
Dialog API documentation: https://material-ui.com/api/dialog/
DialogActions API documentation: https://material-ui.com/api/dialog-actions/
DialogContent API documentation: https://material-ui.com/api/dialog-content/
DialogContentText API documentation: https://material-ui.com/api/dialog-conte
nt-text/

Button API documentation: https://material-ui.com/api/button/
LinearProgress API documentation: https://material-ui.com/api/linear-progress
/

MenuItem API documentation: https://material-ui.com/api/menu-item/
Select API documentation: https://material-ui.com/api/select/

https://material-ui.com/demos/dialogs/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/button/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/select/

Creating fullscreen dialogs
With fullscreen dialogs, you have more space to render information. Most of
the time, you won't need full screen dialogs. In less common cases, your
dialog needs as much space as possible to render information.

How to do it...
Let's say that, from some screen in your application, there's a button that
exports data for the user. When clicked, you want to give the user a preview
of the data that's about to be exported before they confirm. Here's what the
code looks like:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Button from '@material-ui/core/Button';

import Dialog from '@material-ui/core/Dialog';

import AppBar from '@material-ui/core/AppBar';

import Toolbar from '@material-ui/core/Toolbar';

import IconButton from '@material-ui/core/IconButton';

import Typography from '@material-ui/core/Typography';

import Slide from '@material-ui/core/Slide';

import Table from '@material-ui/core/Table';

import TableBody from '@material-ui/core/TableBody';

import TableCell from '@material-ui/core/TableCell';

import TableHead from '@material-ui/core/TableHead';

import TableRow from '@material-ui/core/TableRow';

import CloseIcon from '@material-ui/icons/Close';

const useStyles = makeStyles(theme => ({

 appBar: {

 position: 'relative'

 },

 flex: {

 flex: 1

 }

}));

const Transition = props => <Slide direction="up" {...props} />;

const id = (function*() {

 let id = 0;

 while (true) {

 id += 1;

 yield id;

 }

})();

const rowData = (name, calories, fat, carbs, protein) => ({

 id: id.next().value,

 name,

 calories,

 fat,

 carbs,

 protein

});

const rows = [

 rowData('Frozen yoghurt', 159, 6.0, 24, 4.0),

 rowData('Ice cream sandwich', 237, 9.0, 37, 4.3),

 rowData('Eclair', 262, 16.0, 24, 6.0),

 rowData('Cupcake', 305, 3.7, 67, 4.3),

 rowData('Gingerbread', 356, 16.0, 49, 3.9)

];

export default function FullScreenDialogs() {

 const classes = useStyles();

 const [open, setOpen] = useState(false);

 const onOpen = () => {

 setOpen(true);

 };

 const onClose = () => {

 setOpen(false);

 };

 return (

 <Fragment>

 <Button variant="outlined" color="primary" onClick={onOpen}>

 Export Data

 </Button>

 <Dialog

 fullScreen

 open={open}

 onClose={onClose}

 TransitionComponent={Transition}

 >

 <AppBar className={classes.appBar}>

 <Toolbar>

 <IconButton

 color="inherit"

 onClick={onClose}

 aria-label="Close"

 >

 <CloseIcon />

 </IconButton>

 <Typography

 variant="h6"

 color="inherit"

 className={classes.flex}

 >

 Export Data

 </Typography>

 <Button color="inherit" onClick={onClose}>

 Export

 </Button>

 </Toolbar>

 </AppBar>

 <Table className={classes.table}>

 <TableHead>

 <TableRow>

 <TableCell>Dessert (100g serving)</TableCell>

 <TableCell align="right">Calories</TableCell>

 <TableCell align="right">Fat (g)</TableCell>

 <TableCell align="right">Carbs (g)</TableCell>

 <TableCell align="right">Protein (g)</TableCell>

 </TableRow>

 </TableHead>

 <TableBody>

 {rows.map(row => (

 <TableRow key={row.id}>

 <TableCell component="th" scope="row">

 {row.name}

 </TableCell>

 <TableCell align="right">{row.calories}</TableCell>

 <TableCell align="right">{row.fat}</TableCell>

 <TableCell align="right">{row.carbs}</TableCell>

 <TableCell align="right">{row.protein}</TableCell>

 </TableRow>

))}

 </TableBody>

 </Table>

 </Dialog>

 </Fragment>

);

}

Here is what the dialog looks like when it's opened:

You can click on the X button beside the dialog title to close the dialog, or
you can click on the EXPORT button to the right.

How it works...
Let's look at the properties that are passed to the Dialog component:

<Dialog

 fullScreen

 open={open}

 onClose={onClose}

 TransitionComponent={Transition}

>

The fullScreen Boolean property is how the dialog is rendered in fullscreen
mode. The TransitionComponent property changes the way that dialog is
transitioned onto the screen.

Because the dialog is displayed in fullscreen mode, you might want to change
the way that the title and actions are displayed to the user, as is shown in this
example. Instead of using the DialogTitle and DialogAction components, you can
use the AppBar and Toolbar components:

<AppBar className={classes.appBar}>

 <Toolbar>

 <IconButton

 color="inherit"

 onClick={onClose}

 aria-label="Close"

 >

 <CloseIcon />

 </IconButton>

 <Typography

 variant="h6"

 color="inherit"

 className={classes.flex}

 >

 Export Data

 </Typography>

 <Button color="inherit" onClick={onClose}>

 Export

 </Button>

 </Toolbar>

</AppBar>

This makes the title, close action, and main action more visible to the user.

See also
Dialog demos: https://material-ui.com/demos/dialogs/
Dialog API documentation: https://material-ui.com/api/dialog/
AppBar API documentation: https://material-ui.com/api/app-bar/
Toolbar API documentation: https://material-ui.com/api/toolbar/
Table API documentation: https://material-ui.com/api/table/

https://material-ui.com/demos/dialogs/
https://material-ui.com/api/dialog/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/table/

Scrolling dialog content
It can be hard to find enough vertical space to fit all of your content into a
dialog. When the dialog runs out of space, a vertical scrollbar is added.

How to do it...
Let's say that you have a long table of data that you need to display in a
dialog for the user before exporting to another format. The user will need the
ability to scroll through the table rows. Here's an example:

import React, { Fragment, useState } from 'react';

import Button from '@material-ui/core/Button';

import Dialog from '@material-ui/core/Dialog';

import DialogTitle from '@material-ui/core/DialogTitle';

import DialogContent from '@material-ui/core/DialogContent';

import DialogActions from '@material-ui/core/DialogActions';

import Table from '@material-ui/core/Table';

import TableBody from '@material-ui/core/TableBody';

import TableCell from '@material-ui/core/TableCell';

import TableHead from '@material-ui/core/TableHead';

import TableRow from '@material-ui/core/TableRow';

const id = (function*() {

 let id = 0;

 while (true) {

 id += 1;

 yield id;

 }

})();

const rowData = (name, calories, fat, carbs, protein) => ({

 id: id.next().value,

 name,

 calories,

 fat,

 carbs,

 protein

});

const rows = new Array(50)

 .fill(null)

 .reduce(

 result =>

 result.concat([

 rowData('Frozen yoghurt', 159, 6.0, 24, 4.0),

 rowData('Ice cream sandwich', 237, 9.0, 37, 4.3),

 rowData('Eclair', 262, 16.0, 24, 6.0),

 rowData('Cupcake', 305, 3.7, 67, 4.3),

 rowData('Gingerbread', 356, 16.0, 49, 3.9)

]),

 []

);

export default function FullScreenDialogs() {

 const [open, setOpen] = useState(false);

 const onOpen = () => {

 setOpen(true);

 };

 const onClose = () => {

 setOpen(false);

 };

 return (

 <Fragment>

 <Button variant="outlined" color="primary" onClick={onOpen}>

 Export Data

 </Button>

 <Dialog open={open} onClose={onClose}>

 <DialogTitle>Desserts</DialogTitle>

 <DialogContent>

 <Table>

 <TableHead>

 <TableRow>

 <TableCell>Dessert (100g serving)</TableCell>

 <TableCell align="right">Calories</TableCell>

 <TableCell align="right">Fat (g)</TableCell>

 <TableCell align="right">Carbs (g)</TableCell>

 <TableCell align="right">Protein (g)</TableCell>

 </TableRow>

 </TableHead>

 <TableBody>

 {rows.map(row => (

 <TableRow key={row.id}>

 <TableCell component="th" scope="row">

 {row.name}

 </TableCell>

 <TableCell align="right">{row.calories}</TableCell>

 <TableCell align="right">{row.fat}</TableCell>

 <TableCell align="right">{row.carbs}</TableCell>

 <TableCell align="right">{row.protein}</TableCell>

 </TableRow>

))}

 </TableBody>

 </Table>

 </DialogContent>

 <DialogActions>

 <Button onClick={onClose} color="primary">

 Cancel

 </Button>

 <Button

 variant="contained"

 onClick={onClose}

 color="primary"

 >

 Export

 </Button>

 </DialogActions>

 </Dialog>

 </Fragment>

);

}

Here's what the dialog looks like when it's opened:

If you move your mouse pointer over the table rows and start scrolling, the
table rows scroll up and down in between the dialog title and the dialog
action buttons.

How it works...
By default, dialog content will scroll within the Paper component of the dialog
(the DialogContent component), so there's no need to specify a property.
However, you can pass the body value to the scroll property of the Dialog
component. This will make the height of the dialog change to accommodate
the content.

See also
Dialog demos: https://material-ui.com/demos/dialogs/
Dialog API documentation: https://material-ui.com/api/dialog/
Table API documentation: https://material-ui.com/api/table/

https://material-ui.com/demos/dialogs/
https://material-ui.com/api/dialog/
https://material-ui.com/api/table/

Menus - Display Actions That Pop
Out
In this chapter, we will cover the following topics:

Composing menus with state
Menu scrolling options
Using menu transitions
Customizing menu items

Introduction
Menus are used to organize a set of commands that can be executed by
the user. Typically, a menu has some context, such as a details screen for
some resource in the application. Material-UI comes with a Menu component
that enables you to organize commands for a given screen.

Composing menus with state
The Menu components are used to perform some actions. Think of menus as a
combination of lists and buttons. Menus are best suited for scenarios when
you only want to show the menu items temporarily. The visibility of the
menu and the menu items can be controlled via the component state.

How to do it...
Let's say that a component in your application has a menu button that, when
clicked, displays a menu with several options in it. The options could change
based on other pieces of state in the application, such as permissions, or the
state of another resource. Here's the source to build this component:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Button from '@material-ui/core/Button';

import Menu from '@material-ui/core/Menu';

import MenuItem from '@material-ui/core/MenuItem';

import MenuIcon from '@material-ui/icons/Menu';

const useStyles = makeStyles(theme => ({

 rightIcon: {

 marginLeft: theme.spacing(1)

 }

}));

export default function ComposingMenusWithState() {

 const onOpen = e => {

 setAnchorEl(e.currentTarget);

 };

 const onClose = () => {

 setAnchorEl(null);

 };

 const classes = useStyles();

 const [anchorEl, setAnchorEl] = useState(null);

 const [items, setItems] = useState([

 { name: 'First', onClick: onClose },

 { name: 'Second', onClick: onClose },

 { name: 'Third', onClick: onClose },

 { name: 'Fourth', onClick: onClose, disabled: true }

]);

 return (

 <Fragment>

 <Button onClick={onOpen}>

 Menu

 <MenuIcon className={classes.rightIcon} />

 </Button>

 <Menu

 anchorEl={anchorEl}

 open={Boolean(anchorEl)}

 onClose={onClose}

 >

 {items.map((item, index) => (

 <MenuItem

 key={index}

 onClick={item.onClick}

 disabled={item.disabled}

 >

 {item.name}

 </MenuItem>

))}

 </Menu>

 </Fragment>

);

}

Here's what you'll see when the screen first loads:

When you click on the MENU button, the menu is displayed as follows:

How it works...
Let's start by looking at the state of the ComposingMenusWithState component:

const [anchorEl, setAnchorEl] = useState(null);

const [items, setItems] = useState([

 { name: 'First', onClick: onClose },

 { name: 'Second', onClick: onClose },

 { name: 'Third', onClick: onClose },

 { name: 'Fourth', onClick: onClose, disabled: true }

]);

The anchorEl state references the element that the menu is anchored to when
the menu is open. When it's null, the menu are closed. The items array
contains the menu items. The name property is rendered as the menu item text.
The onClick function is called when the menu item is selected. The disabled
property disables the item when true. Next, let's look at the onOpen() and
onClose() handlers:

 const onOpen = e => {

 setAnchorEl(e.currentTarget);

 };

 const onClose = () => {

 setAnchorEl(null);

 };

When the user clicks on the menu button, the anchorEl state is set to
e.currentTarget—this is the button that was clicked and is how the menu knows
where to render itself. When the menu is closed, this is set to null and results
in the menu being hidden. Finally, let's look at the Menu markup:

<Menu

 anchorEl={anchorEl}

 open={Boolean(anchorEl)}

 onClose={onClose}

>

 {items.map((item, index) => (

 <MenuItem

 key={index}

 onClick={item.onClick}

 disabled={item.disabled}

 >

 {item.name}

 </MenuItem>

))}

</Menu>

The open property expects a Boolean, which is why changing the anchorEl state
results in Boolean(anchorEL) either opening or closing the menu as the user
interacts with it. The items state is then mapped to the MenuItem components.

There's more...
If your application has several screens you could make your own Menu
component that takes care of mapping items to the MenuItem components. Let's
modify this example to build a menu abstraction and to further illustrate how
menu items can change state as the application data changes over time. Here's
the modified example:

import React, { Fragment, useState, useEffect } from 'react';

import { makeStyles } from '@material-ui/styles';

import Button from '@material-ui/core/Button';

import Menu from '@material-ui/core/Menu';

import MenuItem from '@material-ui/core/MenuItem';

import MenuIcon from '@material-ui/icons/Menu';

const useStyles = makeStyles(theme => ({

 rightIcon: {

 marginLeft: theme.spacing.unit

 }

}));

const MyMenu = ({ items, onClose, anchorEl }) => (

 <Menu

 anchorEl={anchorEl}

 open={Boolean(anchorEl)}

 onClose={onClose}

 >

 {items.map((item, index) => (

 <MenuItem

 key={index}

 onClick={item.onClick}

 disabled={item.disabled}

 >

 {item.name}

 </MenuItem>

))}

 </Menu>

);

export default function ComposingMenusWithState() {

 const classes = useStyles();

 const [anchorEl, setAnchorEl] = useState(null);

 const [items, setItems] = useState([

 { name: 'Enable Fourth' },

 { name: 'Second', onClick: onClose },

 { name: 'Third', onClick: onClose },

 { name: 'Fourth', onClick: onClose, disabled: true }

]);

 useEffect(() => {

 const toggleFourth = () => {

 let newItems = [...items];

 newItems[3] = { ...items[3], disabled: !items[3].disabled };

 newItems[0] = {

 ...items[0],

 name: newItems[3].disabled

 ? 'Enable Fourth'

 : 'Disable Fourth'

 };

 setItems(newItems);

 };

 const newItems = [...items];

 newItems[0] = { ...items[0], onClick: toggleFourth };

 setItems(newItems);

 });

 const onOpen = e => {

 setAnchorEl(e.currentTarget);

 };

 const onClose = () => {

 setAnchorEl(null);

 };

 return (

 <Fragment>

 <Button onClick={onOpen}>

 Menu

 <MenuIcon className={classes.rightIcon} />

 </Button>

 <MyMenu items={items} onClose={onClose} anchorEl={anchorEl} />

 </Fragment>

);

}

The MyMenu component takes the onClose handler, the anchorEl state, and the items
array as properties. To show how you can update the menu item state and
have them render (even while the menu is open), there's a new toggleFourth()
handler that's applied to the onClick property of the first menu item. It's applied
inside of useEffect(), because this is the only way for toggleFourth() to get the
new items value; when it changes, we have to redefine the function and then
reassign it to onClick. This will toggle the text of the first menu item and the
disabled state of the Fourth item. Here's what the menu looks when it's first
opened:

Here's what the menu looks like after clicking on the first menu item:

The text of the first item has been toggled, and the fourth item is now
enabled. You can keep clicking on the first item to keep toggling the states of
these two items.

See also
Menu demos: https://material-ui.com/demos/menus/
Menu API documentation: https://material-ui.com/api/menu/
MenuItem API documentation: https://material-ui.com/api/menu-item/

https://material-ui.com/demos/menus/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu-item/

Menu scrolling options
Sometimes menus have lots of options. This can pose a problem with regard
to the height of the menu. Instead of having really long menus displayed, you
can place a maximum height on the menu and have it scroll vertically.

How to do it...
Let's say that you need to render a menu with more options than can
reasonably be rendered at once on the screen. Also, one of the menu items
can be in a selected state. Here's some code that shows how to deal with this
situation:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import IconButton from '@material-ui/core/IconButton';

import Menu from '@material-ui/core/Menu';

import MenuItem from '@material-ui/core/MenuItem';

import MenuIcon from '@material-ui/icons/Menu';

const items = [

 'None',

 'Atria',

 'Callisto',

 'Dione',

 'Ganymede',

 'Hangouts Call',

 'Luna',

 'Oberon',

 'Phobos',

 'Pyxis',

 'Sedna',

 'Titania',

 'Triton',

 'Umbriel'

];

const ITEM_HEIGHT = 48;

const useStyles = makeStyles(theme => ({

 menuPaper: { maxHeight: ITEM_HEIGHT * 4.5, width: 200 }

}));

export default function MenuScrollingOptions() {

 const classes = useStyles();

 const [anchorEl, setAnchorEl] = useState(null);

 const [selected, setSelected] = useState('');

 const onOpen = e => {

 setAnchorEl(e.currentTarget);

 };

 const onClose = () => {

 setAnchorEl(null);

 };

 const onSelect = selected => () => {

 setSelected(selected);

 setAnchorEl(null);

 };

 return (

 <Fragment>

 <IconButton onClick={onOpen}>

 <MenuIcon />

 </IconButton>

 <Menu

 anchorEl={anchorEl}

 open={Boolean(anchorEl)}

 onClose={onClose}

 PaperProps={{

 classes: { elevation8: classes.menuPaper }

 }}

 >

 {items.map((item, index) => (

 <MenuItem

 key={index}

 selected={index === selected}

 onClick={onSelect(index)}

 >

 {item}

 </MenuItem>

))}

 </Menu>

 </Fragment>

);

}

Initially, no item is selected. Here's what the menu looks like when it's
opened for the first time:

You can scroll through the menu items. Here's what the bottom of the menu
looks like:

You can make a selection that closes the menu. The selection is preserved, so
that the next time you open the menu, you'll see the selected item:

When the menu has a selected item, the Menu component will scroll to the
selected item automatically. You can test this by scrolling the selected item
out of view before closing the menu then reopening it. You'll see the selected
item in the middle of the menu.

How it works...
Let's start by looking at the menuPaper style used in this example:

const ITEM_HEIGHT = 48;

const useStyles = makeStyles(theme => ({

 menuPaper: { maxHeight: ITEM_HEIGHT * 4.5, width: 200 }

}));

The ITEM_HEIGHT value is an approximation of the height of each menu item.
The multiplier (4.5) is an approximation of how many menu items should fit
on the screen. Now, let's jump into the Menu component markup:

<Menu

 anchorEl={anchorEl}

 open={Boolean(anchorEl)}

 onClose={onClose}

 PaperProps={{

 classes: { elevation8: classes.menuPaper }

 }}

>

 {items.map((item, index) => (

 <MenuItem

 key={index}

 selected={index === selected}

 onClick={onSelect(index)}

 >

 {item}

 </MenuItem>

))}

</Menu>

The selected property of each MenuItem component is set to true if the selected
state matches the index of the current item. The menuPaper class is applied via
the PaperProps property, but there's an elevation8 property inside where the class
is actually applied. This is because if you just assign the class via className,
the Menu component will just override the maxHeight style. To get around this,
you have to use a more specific CSS API. The Paper component has several
elevation points—the higher the number, the more shadow that is applied
(giving the element the appearance of being higher).

The default elevation of Paper is 2. But the Menu component uses a Popover
component to render Paper that changes the elevation to 8. Long story short,

the elevation8 CSS API enabled you to apply styles from a class that override
the defaults. This is how you get a scrollable menu.

See also
Menu demos: https://material-ui.com/demos/menus/
Menu API documentation: https://material-ui.com/api/menu/
MenuItem API documentation: https://material-ui.com/api/menu-item/

https://material-ui.com/demos/menus/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu-item/

Using menu transitions
You can change the transition that's used by the Menu component. By default,
Menu uses the Grow transition component.

How to do it...
To demonstrate how to apply different transitions to the Menu component, we'll
add some transition options to Storybook for this example. You can change
the transition component that's used, as well as the duration of the transition
using the following code:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Button from '@material-ui/core/Button';

import Menu from '@material-ui/core/Menu';

import MenuItem from '@material-ui/core/MenuItem';

import Collapse from '@material-ui/core/Collapse';

import Fade from '@material-ui/core/Fade';

import Grow from '@material-ui/core/Grow';

import Slide from '@material-ui/core/Slide';

import MenuIcon from '@material-ui/icons/Menu';

const useStyles = makeStyles(theme => ({

 rightIcon: {

 marginLeft: theme.spacing.unit

 }

}));

export default function UsingMenuTransitions({

 transition,

 duration

}) {

 const classes = useStyles();

 const [anchorEl, setAnchorEl] = useState(null);

 const onOpen = e => {

 setAnchorEl(e.currentTarget);

 };

 const onClose = () => {

 setAnchorEl(null);

 };

 return (

 <Fragment>

 <Button onClick={onOpen}>

 Menu

 <MenuIcon className={classes.rightIcon} />

 </Button>

 <Menu

 anchorEl={anchorEl}

 open={Boolean(anchorEl)}

 onClose={onClose}

 transitionDuration={duration}

 TransitionComponent={

 {

 collapse: Collapse,

 fade: Fade,

 grow: Grow,

 slide: Slide

 }[transition]

 }

 >

 <MenuItem onClick={onClose}>Profile</MenuItem>

 <MenuItem onClick={onClose}>My account</MenuItem>

 <MenuItem onClick={onClose}>Logout</MenuItem>

 </Menu>

 </Fragment>

);

}

You'll see the different transition options in the Storybook Knobs panel.
When you change the transition, you'll notice the difference when you open
and close the menu. Unfortunately, I can't capture a screenshot of these
transitions.

How it works...
The transition property passed to the UsingMenuTransitions component comes
from Storybook and is used to determine the transition used. Let's take a
closer look at the TransitionComponent property that's used by Menu to determine
which transition to use:

TransitionComponent={

 {

 collapse: Collapse,

 fade: Fade,

 grow: Grow,

 slide: Slide

 }[transition]

}

The transition string maps to a Material-UI transition component that you can
pass to Menu.

See also
Menu demos: https://material-ui.com/demos/menus/
Menu API documentation: https://material-ui.com/api/menu/
MenuItem API documentation: https://material-ui.com/api/menu-item/
Collapse API documentation: https://material-ui.com/api/collapse/
Fade API documentation: https://material-ui.com/api/collapse/
Grow API documentation: https://material-ui.com/api/grow/
Slide API documentation: https://material-ui.com/api/slide/

https://material-ui.com/demos/menus/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/grow/
https://material-ui.com/api/slide/

Customizing menu items
You can change regular menu items that have onClick handlers into something
more elaborate. For example, you might want a menu with links to other
screens in your app.

How to do it...
Let's say that you're using react-router in your application to control the
navigation from one screen to another, and you would like to use a Menu
component to render links. Here's an example that shows how to do this:

import React, { Fragment, useState } from 'react';

import { Switch, Route, Link } from 'react-router-dom';

import { makeStyles } from '@material-ui/styles';

import Button from '@material-ui/core/Button';

import Menu from '@material-ui/core/Menu';

import MenuItem from '@material-ui/core/MenuItem';

import Typography from '@material-ui/core/Typography';

import MenuIcon from '@material-ui/icons/Menu';

const NavMenuItem = ({ color, ...props }) => (

 <Switch>

 <Route

 exact

 path={props.to}

 render={() => <MenuItem selected component={Link} {...props} />}

 />

 <Route

 path="/"

 render={() => <MenuItem component={Link} {...props} />}

 />

 </Switch>

);

const useStyles = makeStyles(theme => ({

 rightIcon: {

 marginLeft: theme.spacing(1)

 }

}));

export default function CustomizingMenuItems() {

 const classes = useStyles();

 const [anchorEl, setAnchorEl] = useState(null);

 const onOpen = e => {

 setAnchorEl(e.currentTarget);

 };

 const onClose = () => {

 setAnchorEl(null);

 };

 return (

 <Fragment>

 <Button onClick={onOpen}>

 Menu

 <MenuIcon className={classes.rightIcon} />

 </Button>

 <Menu

 anchorEl={anchorEl}

 open={Boolean(anchorEl)}

 onClose={onClose}

 >

 <NavMenuItem to="/" onClick={onClose}>

 Home

 </NavMenuItem>

 <NavMenuItem to="/page1" onClick={onClose}>

 Page 1

 </NavMenuItem>

 <NavMenuItem to="/page2" onClick={onClose}>

 Page 2

 </NavMenuItem>

 </Menu>

 <Switch>

 <Route

 exact

 path="/"

 render={() => <Typography>home content</Typography>}

 />

 <Route

 path="/page1"

 render={() => <Typography>page 1 content</Typography>}

 />

 <Route

 path="/page2"

 render={() => <Typography>page 2 content</Typography>}

 />

 </Switch>

 </Fragment>

);

}

Here's what you'll see when the screen first loads:

Here's what the MENU looks like when it's opened:

Try clicking on Page 1. This should close the MENU and change the content
rendered below the MENU, because you just navigated to another screen, as
shown in the following screenshot:

The active link is reflected in the menu. Here's what the menu looks like if
you open it from Page 1:

How it works...
Let's start by looking at the NavMenuItem component:

const NavMenuItem = ({ color, ...props }) => (

 <Switch>

 <Route

 exact

 path={props.to}

 render={() => <MenuItem selected component={Link} {...props} />}

 />

 <Route

 path="/"

 render={() => <MenuItem component={Link} {...props} />}

 />

 </Switch>

);

This will render a MenuItem component based on the current route. If the to
property value matches the current route, then the selected property will be
true—this is how the menu item appears to be selected when you open the
menu. Next, let's look at the Menu markup:

<Menu

 anchorEl={anchorEl}

 open={Boolean(anchorEl)}

 onClose={onClose}

>

 <NavMenuItem to="/" onClick={onClose}>

 Home

 </NavMenuItem>

 <NavMenuItem to="/page1" onClick={onClose}>

 Page 1

 </NavMenuItem>

 <NavMenuItem to="/page2" onClick={onClose}>

 Page 2

 </NavMenuItem>

</Menu>

Instead of rendering the MenuItem components, you can render the NavMenuItem
components. These result in links being rendered with the selected property
set to true for the current route. Note that the to property is required here in
order to link to another page, and the onClick handler is necessary in order to
close the menu as the page transition happens.

See also
Menu demos: https://material-ui.com/demos/menus/
Menu API documentation: https://material-ui.com/api/menu/
MenuItem API documentation: https://material-ui.com/api/menu-item/

https://material-ui.com/demos/menus/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu-item/

Typography - Control Font Look
and Feel
In this chapter, we will cover the following topics:

Types of typography
Using theme colors
Aligning text
Wrapping text

Introduction
The Typography component is used by Material-UI to render text on the screen.
You can use Typography on its own, but it is also used internally by other
Material-UI components that render text. Instead of using other HTML
elements to render your text, using Typography components allows Material-UI
to handle the application of theme styles using consistent font types, and also
handle font behavior in a uniform way.

Types of typography
The Typography component is used any time you want to render text in a
Material-UI application. The type of text, or variant, is specified as a string
value that's passed to the variant property.

How to do it...
Here's an example that shows how to render all of the available Typography
variants:

import React, { Fragment } from 'react';

import Typography from '@material-ui/core/Typography';

const MyTypography = ({ variant, ...props }) => (

 <Typography variant={variant || 'inherit'} {...props} />

);

const TypesOfTypography = () => (

 <Fragment>

 <Typography variant="h1">h1 variant</Typography>

 <Typography variant="h2">h2 variant</Typography>

 <Typography variant="h3">h3 variant</Typography>

 <Typography variant="h4">h4 variant</Typography>

 <Typography variant="h5">h5 variant</Typography>

 <Typography variant="h6">h6 variant</Typography>

 <Typography variant="subtitle1">subtitle1 variant</Typography>

 <Typography variant="subtitle2">subtitle2 variant</Typography>

 <Typography variant="body1">body1 variant</Typography>

 <Typography variant="body2">body2 variant</Typography>

 <Typography variant="subtitle1">subtitle1 variant</Typography>

 <Typography variant="caption">caption variant</Typography>

 <Typography variant="button">button variant</Typography>

 <Typography variant="overline">overline variant</Typography>

 <Typography variant="title" component="div">

 <Typography variant="inherit">

 inherited title variant

 </Typography>

 <Typography variant="inherit">

 another inherited title variant

 </Typography>

 <Typography variant="caption">

 overridden caption variant

 </Typography>

 </Typography>

 <MyTypography variant="title" component="div">

 <MyTypography>inherited title variant</MyTypography>

 <MyTypography>another inherited title variant</MyTypography>

 <MyTypography variant="caption">

 overridden caption variant

 </MyTypography>

 </MyTypography>

 </Fragment>

);

export default TypesOfTypography;

Here's what the heading variants look like:

Finally, here are what the remaining variants look like:

How it works...
The value that you pass to the variant property determines the styles that are
applied to the text. The styles for each of these variants are defined by the
theme, and can be customized from theme to theme.

It can be tempting to add your own variant names, or to add font styles outside of the
typography variants. I would advise against this, because doing so breaks the common
font vocabulary based on Material Design. If you stray from the typography variant
conventions, you'll end up with variant names that only make sense to you, or worse,
variants that don't work because of font styles applied to text from outside of the
typography system.

There's more...
If you want your Typography component to inherit the variant styles from its
parent, you can use the inherit variant value, as shown in the following
example:

<Typography variant="title" component="div">

 <Typography variant="inherit">

 inherited title variant

 </Typography>

 <Typography variant="inherit">

 another inherited title variant

 </Typography>

 <Typography variant="caption">

 overridden caption variant

 </Typography>

</Typography>

The parent Typography component uses the title variant. It also changes its
component to be a div element, because it's not actually rendering text as
direct children—think of it as a container for font styles. Inside, there are
three child Typography components. The first two have inherit as the variant
property value, so they'll actually get the title variant. The third Typography
child uses caption as its variant, so it will not inherit title.

Here's what the result looks like:

One adjustment to this approach that you might consider is to have inherit as
the default variant. This way, you don't have to keep typing variant="inherit" if
you have lots of child Typography components that need to inherit font styles.
Here's a component that does this:

const MyTypography = ({ variant, ...props }) => (

 <Typography variant={variant || 'inherit'} {...props} />

);

The MyTypography component will render a Typography component with a variant
value of inherit, but only if the variant property wasn't passed. Let's change the
preceding code to use this new component:

<MyTypography variant="title" component="div">

 <MyTypography>inherited title variant</MyTypography>

 <MyTypography>another inherited title variant</MyTypography>

 <MyTypography variant="caption">

 overridden caption variant

 </MyTypography>

</MyTypography>

The result is exactly the same. The only difference is that now you don't need
to provide the variant property for variants that you want to inherit.

See also
Typography demos: https://material-ui.com/style/typography/
Typography API documentation: https://material-ui.com/api/typography/

https://material-ui.com/style/typography/
https://material-ui.com/api/typography/

Using theme colors
Text that is rendered using the Typography component can use colors from the
Material-UI theme used by the app.

How to do it...
For this example, you'll find a Storybook control that allows you to change
the color of the text using predefined Color names from the theme, as shown
in the following screenshot:

Here's the source for the example that uses the selected color by passing it to
the color property of each Typography component:

import React, { Fragment } from 'react';

import Typography from '@material-ui/core/Typography';

const UsingThemeColors = ({ color }) => (

 <Fragment>

 <Typography variant="h1" color={color}>

 h1 variant

 </Typography>

 <Typography variant="h2" color={color}>

 h2 variant

 </Typography>

 <Typography variant="h3" color={color}>

 h3 variant

 </Typography>

 <Typography variant="h4" color={color}>

 h4 variant

 </Typography>

 <Typography variant="h5" color={color}>

 h5 variant

 </Typography>

 <Typography variant="h6" color={color}>

 h6 variant

 </Typography>

 <Typography variant="subtitle1" color={color}>

 subtitle1 variant

 </Typography>

 <Typography variant="subtitle2" color={color}>

 subtitle2 variant

 </Typography>

 <Typography variant="body1" color={color}>

 body1 variant

 </Typography>

 <Typography variant="body2" color={color}>

 body2 variant

 </Typography>

 <Typography variant="caption" color={color}>

 caption variant

 </Typography>

 <Typography variant="button" color={color}>

 button variant

 </Typography>

 <Typography variant="overline" color={color}>

 overline variant

 </Typography>

 </Fragment>

);

export default UsingThemeColors;

How it works...
Let's walk through how each of these colors change the appearance of the
different Typography variants:

Default

The default color uses
whatever color is defined in
the styles for
the Typography variant in
question

Error
The error color applies
the palette.error.main theme
color to the text

Inherit
The Typography component will
inherit the font color of its
parent component

Primary
The primary color applies
the palette.primary.main theme
color to the text

Secondary
The secondary color applies
the palette.secondary.main theme
color to the text

Text
Primary

The textPrimary color applies
the palette.text.primary theme
color to the text

Text
Secondary

The textSecondary color applies
the palette.text.secondary theme
color to the text

See also
Typography demos: https://material-ui.com/style/typography/
Typography API documentation: https://material-ui.com/api/typography/

https://material-ui.com/style/typography/
https://material-ui.com/api/typography/

Aligning text
Aligning text in user interfaces is common. Unfortunately, it isn't easy. With
Material-UI grids and typography, you can create abstractions that make it a
little easier to align text.

How to do it...
If you're trying to align your text horizontally to the left, right, or center, then
you can use the align property of your Typography component, as demonstrated
in the following code:

<Typography align="center">My Centered Text</Typography>

This is shorthand for using the text-align style, so that you don't have to keep
adding CSS to your components for the more common alignment scenarios.
However, sometimes you need the ability to align your text both horizontally
and vertically.

For example, let's say that you have a 200x200 Paper element, and you need
the ability to render text in the bottom-right corner. Let's illustrate this
example with some code:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';

import Typography from '@material-ui/core/Typography';

import Paper from '@material-ui/core/Paper';

import Grid from '@material-ui/core/Grid';

const styles = theme => ({

 paper: {

 width: 200,

 height: 200,

 padding: theme.spacing(1)

 }

});

const MyPaper = withStyles(styles)(

 ({ horizontalAlign, verticalAlign, classes, ...props }) => (

 <Grid

 container

 component={Paper}

 className={classes.paper}

 alignContent={verticalAlign}

 justify={horizontalAlign}

 {...props}

 />

)

);

const MyTypography = ({ ...props }) => (

 <Grid item component={Typography} {...props} />

);

const AligningText = ({ ...props }) => (

 <MyPaper {...props}>

 <MyTypography {...props}>Text</MyTypography>

 </MyPaper>

);

export default AligningText;

Here's what you'll see when the screen first loads:

How it works...
There are two Storybook controls for aligning the text, as follows:

The horizontal alignment control changes the horizontalAlign property that is
passed to the MyPaper component. Likewise, the vertical alignment control
changes the verticalAlign property value. The horizontalAlign value is passed to
the justify property of the Grid component, while the verticalAlign property
goes to the alignContent property.

What's neat about the Grid components is that you can pass them a component
property and this will be rendered instead of the div element that's rendered
by default. In other words, you can make the Paper component a grid container
and the Typography component that you're trying to align a grid item. You don't
have to render the Grid components and then your actual content as children.
You can make your content the grid.

Here's what the grid looks like when you set justify="center" and
alignContent="flex-end":

And here's what it looks like what you set justify="flex-end" and
alignContent="flex-start":

See also
Typography demos: https://material-ui.com/style/typography/
Typography API documentation: https://material-ui.com/api/typography/

https://material-ui.com/style/typography/
https://material-ui.com/api/typography/

Wrapping text
The Typography components that you use to render text in your application need
to be aware of scenarios where text wraps. This means that, when there isn't
enough horizontal space to render a line of text, it continues onto the next
line. This can have undesirable layout consequences if you don't anticipate
how text might wrap.

How to do it...
Let's look at an example where you have two Paper components that render
text using Typography components:

import React, { Fragment } from 'react';

import clsx from 'clsx';

import { withStyles } from '@material-ui/core/styles';

import Typography from '@material-ui/core/Typography';

import Paper from '@material-ui/core/Paper';

const styles = theme => ({

 paper: {

 minWidth: 300,

 padding: theme.spacing(2),

 margin: theme.spacing(3)

 },

 fixedHeight: { height: 100 },

 responsive: {

 [theme.breakpoints.down('xs')]: {

 overflow: 'hidden',

 textOverflow: 'ellipsis',

 whiteSpace: 'nowrap'

 }

 }

});

const WrappingText = withStyles(styles)(({ classes }) => (

 <Fragment>

 <Paper className={classes.paper}>

 <Typography noWrap>

 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

 do eiusmod tempor incididunt ut labore

 </Typography>

 </Paper>

 <Paper className={clsx(classes.paper, classes.fixedHeight)}>

 <Typography className={classes.responsive}>

 Sed ut perspiciatis unde omnis iste natus error sit voluptatem

 accusantium doloremque laudantium, totam rem aperiam, eaque

 ipsa quae ab illo inventore veritatis et quasi architecto

 beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem

 quia voluptas sit aspernatur aut odit aut fugit, sed quia

 consequuntur magni dolores eos qui ratione voluptatem sequi

 nesciunt.

 </Typography>

 </Paper>

 </Fragment>

));

export default WrappingText;

Here's what you'll see when the screen first loads:

The first Paper component doesn't have a set the height component, and has a
single line of text that fits within the current screen width. The second Paper
component does have a set height, and the text in the second Paper component
is wrapped so that it fits on the screen.

How it works...
Now, let's try changing the screen resolution, making the available width in
which to render text smaller. Here's what you'll see:

There are wrapping issues in both Paper components. In the first, the wrapped
text causes the the height of the component to change because it doesn't have
a fixed height. This has a domino effect with regard to layout that may or
may not be problematic, depending on your design. In the second Paper
component, height is fixed, which means that the wrapped text overflows out
of the component, which looks terrible.

There's more...
Let's fix the text wrapping in both of the Paper components in this example.
The following is a modified version:

import React, { Fragment } from 'react';

import clsx from 'clsx';

import { withStyles } from '@material-ui/core/styles';

import Typography from '@material-ui/core/Typography';

import Paper from '@material-ui/core/Paper';

const styles = theme => ({

 paper: {

 minWidth: 300,

 padding: theme.spacing(2),

 margin: theme.spacing(3)

 },

 fixedHeight: { height: 100 },

 responsive: {

 [theme.breakpoints.down('xs')]: {

 overflow: 'hidden',

 textOverflow: 'ellipsis',

 whiteSpace: 'nowrap'

 }

 }

});

const WrappingText = withStyles(styles)(({ classes }) => (

 <Fragment>

 <Paper className={classes.paper}>

 <Typography noWrap>

 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed

 do eiusmod tempor incididunt ut labore

 </Typography>

 </Paper>

 <Paper className={clsx(classes.paper, classes.fixedHeight)}>

 <Typography className={classes.responsive}>

 Sed ut perspiciatis unde omnis iste natus error sit voluptatem

 accusantium doloremque laudantium, totam rem aperiam, eaque

 ipsa quae ab illo inventore veritatis et quasi architecto

 beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem

 quia voluptas sit aspernatur aut odit aut fugit, sed quia

 consequuntur magni dolores eos qui ratione voluptatem sequi

 nesciunt.

 </Typography>

 </Paper>

 </Fragment>

));

export default WrappingText;

Now, when you shrink the width of the screen, this is what the two

components look like:

The first Paper component was fixed by adding the noWrap property to the
Typography component. This will ensure that the height component of the
component never changes, by hiding text overflow and adding an ellipsis to
indicate that the text has been truncated. This works because you know ahead
of time that this is just a single line of text that will never need to wrap when
shown on wider displays. The second Paper component, on the other hand,
needs a different approach, because it does need the ability to wrap.

The solution was to use the Material-UI media query functionality. The call
to theme.breakpoints.down('xs') results in a class name that's prefixed by a media
query for the specified breakpoint, in this case, xs. Now, when the screen
width shrinks to the xs breakpoint, the same styles used for the noWrap property
are applied to the component.

See also
Typography demos: https://material-ui.com/style/typography/
Typography API documentation: https://material-ui.com/api/typography/

https://material-ui.com/style/typography/
https://material-ui.com/api/typography/

Icons - Enhance Icons to Match
Your Look and Feel
In this chapter, you'll learn about the following:

Coloring icons
Scaling icons
Dynamically loading icons
Themed icons
Installing more icons

Introduction
Icons play a big part in any Material-UI application. Even if you don't set out
to explicitly use them, icons are used by many components by default. If a
Material-UI component doesn't use icons by default, you can often find direct
support for integrating Material-UI icons. Icons play an important role in the
usability of your application—they provide a means to quickly scan the
screen for meaning, instead of having to parse text all of the time.

Coloring icons
Material-UI icon components accept a color property that takes a named
theme color and applies it to the icon.

How to do it...
This example uses a Storybook control to change the color property of the
icons that are rendered:

Here's some code that renders several icons that use the selected color value:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Cast from '@material-ui/icons/Cast';

import CastConnected from '@material-ui/icons/CastConnected';

import CastForEducation from '@material-ui/icons/CastForEducation';

import Computer from '@material-ui/icons/Computer';

import DesktopMac from '@material-ui/icons/DesktopMac';

import DesktopWindows from '@material-ui/icons/DesktopWindows';

import DeveloperBoard from '@material-ui/icons/DeveloperBoard';

import DeviceHub from '@material-ui/icons/DeviceHub';

import DeviceUnknown from '@material-ui/icons/DeviceUnknown';

import DevicesOther from '@material-ui/icons/DevicesOther';

import Dock from '@material-ui/icons/Dock';

import Gamepad from '@material-ui/icons/Gamepad';

const styles = theme => ({

 icon: { margin: theme.spacing(3) }

});

const IconColorAndState = withStyles(styles)(({ color, classes }) => (

 <Fragment>

 <Cast className={classes.icon} color={color} />

 <CastConnected className={classes.icon} color={color} />

 <CastForEducation className={classes.icon} color={color} />

 <Computer className={classes.icon} color={color} />

 <DesktopMac className={classes.icon} color={color} />

 <DesktopWindows className={classes.icon} color={color} />

 <DeveloperBoard className={classes.icon} color={color} />

 <DeviceHub className={classes.icon} color={color} />

 <DeviceUnknown className={classes.icon} color={color} />

 <DevicesOther className={classes.icon} color={color} />

 <Dock className={classes.icon} color={color} />

 <Gamepad className={classes.icon} color={color} />

 </Fragment>

));

export default IconColorAndState;

How it works...
The color property defaults to inherit, which means that icons will be the same
color as their parent components. Let's walk through the different color
values and see what these icons from the example look like:

Inherit
The inherit color value will use
the color value from the parent
component style:

Primary
The primary color applies
the palette.primary.main theme
color to the icon:

Secondary
The secondary color applies
the palette.secondary.main theme
color to the icon:

Action
The action color applies
the palette.action.active theme
color to the icon:

Error
The error color applies
the palette.error.main theme
color to the icon:

Disabled
The disabled color applies
the palette.action.disabled theme
color to the icon:

See also
Icon demos: https://material-ui.com/style/icons/
Icon API documentation: https://material-ui.com/api/icon/

https://material-ui.com/style/icons/
https://material-ui.com/api/icon/

Scaling icons
The fontSize property of the Material-UI icon components accepts a string
value that represents a predetermined icon size. The reason the property is
called fontSize instead of size is because the fontSize CSS property is what
determines the size of an icon. The default is 24px.

How to do it...
This example uses a Storybook control to change the fontSize property of the
icons that are rendered:

Here's some code that renders several icons that use the selected fontSize
value:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Cast from '@material-ui/icons/Cast';

import CastConnected from '@material-ui/icons/CastConnected';

import CastForEducation from '@material-ui/icons/CastForEducation';

import Computer from '@material-ui/icons/Computer';

import DesktopMac from '@material-ui/icons/DesktopMac';

import DesktopWindows from '@material-ui/icons/DesktopWindows';

import DeveloperBoard from '@material-ui/icons/DeveloperBoard';

import DeviceHub from '@material-ui/icons/DeviceHub';

import DeviceUnknown from '@material-ui/icons/DeviceUnknown';

import DevicesOther from '@material-ui/icons/DevicesOther';

import Dock from '@material-ui/icons/Dock';

import Gamepad from '@material-ui/icons/Gamepad';

const styles = theme => ({

 icon: { margin: theme.spacing(3) }

});

const ScalingIcons = withStyles(styles)(({ fontSize, classes }) => (

 <Fragment>

 <Cast className={classes.icon} fontSize={fontSize} />

 <CastConnected className={classes.icon} fontSize={fontSize} />

 <CastForEducation className={classes.icon} fontSize={fontSize} />

 <Computer className={classes.icon} fontSize={fontSize} />

 <DesktopMac className={classes.icon} fontSize={fontSize} />

 <DesktopWindows className={classes.icon} fontSize={fontSize} />

 <DeveloperBoard className={classes.icon} fontSize={fontSize} />

 <DeviceHub className={classes.icon} fontSize={fontSize} />

 <DeviceUnknown className={classes.icon} fontSize={fontSize} />

 <DevicesOther className={classes.icon} fontSize={fontSize} />

 <Dock className={classes.icon} fontSize={fontSize} />

 <Gamepad className={classes.icon} fontSize={fontSize} />

 </Fragment>

));

export default ScalingIcons;

How it works...
The default value of fontSize is default. Let's walk through the different size
options of Material-UI icons and see how they look.

Default
The default value sets the icon size to 24 pixels:

Inherit
The inherit value sets the icon to whatever fontSize its parent component is set
to. In this example, the icons inherit 16 pixels as the fontSize:

Small
The small value sets the icon size to 20 pixels:

Large
The large value sets the icon size to 36 pixels:

See also
Icon demos: https://material-ui.com/style/icons/
Icon API documentation: https://material-ui.com/api/icon/

https://material-ui.com/style/icons/
https://material-ui.com/api/icon/

Dynamically loading icons
On screens that only have a handful of icons on them, you can directly import
them as components without any issues. This can be challenging if you have
a screen with many icons or if your application as a whole uses lots of icons
(the latter case increases the bundle size). The answer, in both cases, is to
load Material-UI icons lazily/dynamically.

How to do it...
You can leverage the lazy() higher-order component from React. Also from
React, the Suspense component provides placeholders in your UI while your
lazy components are fetched and rendered. This overall approach is how code-
splitting is handled in React—Material-UI icons happen to be a good use
case.

This example uses a Storybook control to select the icon category to load:

Here's the code to create lazy icon components that load dynamically:

import React, { lazy, Suspense, Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import CircularProgress from '@material-ui/core/CircularProgress';

const categories = {

 Action: [

 lazy(() => import('@material-ui/icons/ThreeDRotation')),

 lazy(() => import('@material-ui/icons/Accessibility')),

 lazy(() => import('@material-ui/icons/AccessibilityNew')),

 lazy(() => import('@material-ui/icons/Accessible')),

 lazy(() => import('@material-ui/icons/AccessibleForward')),

 lazy(() => import('@material-ui/icons/AccountBalance')),

 lazy(() => import('@material-ui/icons/AccountBalanceWallet')),

 lazy(() => import('@material-ui/icons/AccountBox')),

 lazy(() => import('@material-ui/icons/AccountCircle'))

],

 Alert: [

 lazy(() => import('@material-ui/icons/AddAlert')),

 lazy(() => import('@material-ui/icons/Error')),

 lazy(() => import('@material-ui/icons/ErrorOutline')),

 lazy(() => import('@material-ui/icons/NotificationImportant')),

 lazy(() => import('@material-ui/icons/Warning'))

],

 Av: [

 lazy(() => import('@material-ui/icons/FourK')),

 lazy(() => import('@material-ui/icons/AddToQueue')),

 lazy(() => import('@material-ui/icons/Airplay')),

 lazy(() => import('@material-ui/icons/Album')),

 lazy(() => import('@material-ui/icons/ArtTrack')),

 lazy(() => import('@material-ui/icons/AvTimer')),

 lazy(() => import('@material-ui/icons/BrandingWatermark')),

 lazy(() => import('@material-ui/icons/CallToAction')),

 lazy(() => import('@material-ui/icons/ClosedCaption'))

],

 Communication: [

 lazy(() => import('@material-ui/icons/AlternateEmail')),

 lazy(() => import('@material-ui/icons/Business')),

 lazy(() => import('@material-ui/icons/Call')),

 lazy(() => import('@material-ui/icons/CallEnd')),

 lazy(() => import('@material-ui/icons/CallMade')),

 lazy(() => import('@material-ui/icons/CallMerge')),

 lazy(() => import('@material-ui/icons/CallMissed')),

 lazy(() => import('@material-ui/icons/CallMissedOutgoing')),

 lazy(() => import('@material-ui/icons/CallReceived'))

]

};

const styles = theme => ({

 icon: { margin: theme.spacing(3) }

});

const DynamicallyLoadingIcons = withStyles(styles)(

 ({ category, classes }) => (

 <Suspense fallback={<CircularProgress />}>

 {categories[category].map((Icon, index) => (

 <Icon key={index} className={classes.icon} />

))}

 </Suspense>

)

);

export default DynamicallyLoadingIcons;

Here's what you'll see when the screen first loads:

Here's what you'll see if you select the Av category:

How it works...
The lazy() function takes a function that returns a call to import(). It returns a
lazy component:

const LazyIcon = lazy(() => import('@material-ui/icons/ThreeDRotation'))

This code doesn't actually import the ThreeDRotation icon. It builds a new
component that imports the icon when it's rendered. For example, the
following will cause the icon to be imported:

<LazyIcon />

You can actually see this for yourself if you look at the Network tab in dev
tools while running this example. The Action category is selected by default,
so you can see the network requests to load the lazy components that are
being rendered:

Then, if you change the selected category to Communication, you'll see several
more network requests to load the lazy icons in this category that are now
being rendered:

See also
Icon demos: https://material-ui.com/style/icons/
Icon API documentation: https://material-ui.com/api/icon/

https://material-ui.com/style/icons/
https://material-ui.com/api/icon/

Themed icons
Material-UI icons have themes that can be applied to them. They are not to be
confused with Material-UI themes that apply styles to every Material-UI
component that you use; icon themes are specifically for icons. To use a
themed icon, you have to import a different version of it.

How to do it...
To help explore the different icon themes, this example uses a Storybook
control that allows you to change the icon theme:

Here's the source:

import React, { lazy, Suspense, Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import CircularProgress from '@material-ui/core/CircularProgress';

const themes = {

 Filled: [

 lazy(() => import('@material-ui/icons/Attachment')),

 lazy(() => import('@material-ui/icons/Cloud')),

 lazy(() => import('@material-ui/icons/CloudCircle')),

 lazy(() => import('@material-ui/icons/CloudDone')),

 lazy(() => import('@material-ui/icons/CloudDownload')),

 lazy(() => import('@material-ui/icons/CloudOff')),

 lazy(() => import('@material-ui/icons/CloudQueue')),

 lazy(() => import('@material-ui/icons/CloudUpload')),

 lazy(() => import('@material-ui/icons/CreateNewFolder')),

 lazy(() => import('@material-ui/icons/Folder')),

 lazy(() => import('@material-ui/icons/FolderOpen')),

 lazy(() => import('@material-ui/icons/FolderShared'))

],

 Outlined: [

 lazy(() => import('@material-ui/icons/AttachmentOutlined')),

 lazy(() => import('@material-ui/icons/CloudOutlined')),

 lazy(() => import('@material-ui/icons/CloudCircleOutlined')),

 lazy(() => import('@material-ui/icons/CloudDoneOutlined')),

 lazy(() => import('@material-ui/icons/CloudDownloadOutlined')),

 lazy(() => import('@material-ui/icons/CloudOffOutlined')),

 lazy(() => import('@material-ui/icons/CloudQueueOutlined')),

 lazy(() => import('@material-ui/icons/CloudUploadOutlined')),

 lazy(() => import('@material-ui/icons/CreateNewFolderOutlined')),

 lazy(() => import('@material-ui/icons/FolderOutlined')),

 lazy(() => import('@material-ui/icons/FolderOpenOutlined')),

 lazy(() => import('@material-ui/icons/FolderSharedOutlined'))

],

 Rounded: [

 lazy(() => import('@material-ui/icons/AttachmentRounded')),

 lazy(() => import('@material-ui/icons/CloudRounded')),

 lazy(() => import('@material-ui/icons/CloudCircleRounded')),

 lazy(() => import('@material-ui/icons/CloudDoneRounded')),

 lazy(() => import('@material-ui/icons/CloudDownloadRounded')),

 lazy(() => import('@material-ui/icons/CloudOffRounded')),

 lazy(() => import('@material-ui/icons/CloudQueueRounded')),

 lazy(() => import('@material-ui/icons/CloudUploadRounded')),

 lazy(() => import('@material-ui/icons/CreateNewFolderRounded')),

 lazy(() => import('@material-ui/icons/FolderRounded')),

 lazy(() => import('@material-ui/icons/FolderOpenRounded')),

 lazy(() => import('@material-ui/icons/FolderSharedRounded'))

],

 TwoTone: [

 lazy(() => import('@material-ui/icons/AttachmentTwoTone')),

 lazy(() => import('@material-ui/icons/CloudTwoTone')),

 lazy(() => import('@material-ui/icons/CloudCircleTwoTone')),

 lazy(() => import('@material-ui/icons/CloudDoneTwoTone')),

 lazy(() => import('@material-ui/icons/CloudDownloadTwoTone')),

 lazy(() => import('@material-ui/icons/CloudOffTwoTone')),

 lazy(() => import('@material-ui/icons/CloudQueueTwoTone')),

 lazy(() => import('@material-ui/icons/CloudUploadTwoTone')),

 lazy(() => import('@material-ui/icons/CreateNewFolderTwoTone')),

 lazy(() => import('@material-ui/icons/FolderTwoTone')),

 lazy(() => import('@material-ui/icons/FolderOpenTwoTone')),

 lazy(() => import('@material-ui/icons/FolderSharedTwoTone'))

],

 Sharp: [

 lazy(() => import('@material-ui/icons/AttachmentSharp')),

 lazy(() => import('@material-ui/icons/CloudSharp')),

 lazy(() => import('@material-ui/icons/CloudCircleSharp')),

 lazy(() => import('@material-ui/icons/CloudDoneSharp')),

 lazy(() => import('@material-ui/icons/CloudDownloadSharp')),

 lazy(() => import('@material-ui/icons/CloudOffSharp')),

 lazy(() => import('@material-ui/icons/CloudQueueSharp')),

 lazy(() => import('@material-ui/icons/CloudUploadSharp')),

 lazy(() => import('@material-ui/icons/CreateNewFolderSharp')),

 lazy(() => import('@material-ui/icons/FolderSharp')),

 lazy(() => import('@material-ui/icons/FolderOpenSharp')),

 lazy(() => import('@material-ui/icons/FolderSharedSharp'))

]

};

const styles = theme => ({

 icon: { margin: theme.spacing(3) }

});

const ThemedIcons = withStyles(styles)(({ theme, classes }) => (

 <Suspense fallback={<CircularProgress />}>

 {themes[theme].map((Icon, index) => (

 <Icon fontSize="large" key={index} className={classes.icon} />

))}

 </Suspense>

));

export default ThemedIcons;

How it works...
If you take a look at the themes object, you can see that each theme has the
same icons in it, but their import paths are slightly different. For example, the
Attachment icon is imported by the Filled theme, as follows:

import('@material-ui/icons/Attachment')

In the Rounded theme, here's how the same icon is imported:

import('@material-ui/icons/AttachmentOutlined')

You append the theme name to the icon name to change the theme of the
icon. The same pattern follows for each of them.

Not every icon changes when the theme changes. It really just depends on the icon shape
and whether it makes sense to, with the given theme. The import will still work, but there
isn't always a visual change.

Let's explore them now:

Filled

The Filled theme is the
default. Here's what it
looks like when
applied to the
example:

Outlined

Take a look at the
preceding Filled theme
—notice that some
icons are actually
outlined by default.

Here's what
the Outlined theme
looks like when
applied to the
example:

Rounded

Here's what
the Rounded theme
looks like when
applied to the
example:

Two
tone

Here's what
the TwoTone theme
looks like when
applied to the
example:

Sharp

Here's what
the Sharp theme looks
like when applied to
the example:

See also
Icon demos: https://material-ui.com/style/icons/
Icon API documentation: https://material-ui.com/api/icon/

https://material-ui.com/style/icons/
https://material-ui.com/api/icon/

Installing more icons
The mdi-material-ui package provides a staggering number of icons, available
for you to use in your Material-UI applications in the same way as you would
use the built-in icons.

How to do it...
The first step is to install the package and make it available in your project:

npm install --save mdi-material-ui

Now you're ready to import icons from this package and use them:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Apple from 'mdi-material-ui/Apple';

import Facebook from 'mdi-material-ui/Facebook';

import Google from 'mdi-material-ui/Google';

import Hulu from 'mdi-material-ui/Hulu';

import Linkedin from 'mdi-material-ui/Linkedin';

import Lyft from 'mdi-material-ui/Lyft';

import Microsoft from 'mdi-material-ui/Microsoft';

import Netflix from 'mdi-material-ui/Netflix';

import Npm from 'mdi-material-ui/Npm';

import Reddit from 'mdi-material-ui/Reddit';

import Twitter from 'mdi-material-ui/Twitter';

import Uber from 'mdi-material-ui/Uber';

const styles = theme => ({

 icon: { margin: theme.spacing(3) }

});

const InstallingMoreIcons = withStyles(styles)(({ classes }) => (

 <Fragment>

 <Apple className={classes.icon} />

 <Facebook className={classes.icon} />

 <Google className={classes.icon} />

 <Hulu className={classes.icon} />

 <Linkedin className={classes.icon} />

 <Lyft className={classes.icon} />

 <Microsoft className={classes.icon} />

 <Netflix className={classes.icon} />

 <Npm className={classes.icon} />

 <Reddit className={classes.icon} />

 <Twitter className={classes.icon} />

 <Uber className={classes.icon} />

 </Fragment>

));

export default InstallingMoreIcons;

Here's what the icons look like when you load the screen:

How it works...
The icons from mdi-material-design are just like the icons from @material-ui/icons.
They're imported and rendered as React components. You find the name of
the icon that you need by looking it up on https://materialdesignicons.com/.
Anywhere you can use the official Material-UI icons, such as in buttons, you
can also use icons from mdi-material-ui.

https://materialdesignicons.com/

See also
The Material Design icons package: https://materialdesignicons.com/
Icon demos: https://material-ui.com/style/icons/
Icon API documentation: https://material-ui.com/api/icon/

https://materialdesignicons.com/
https://material-ui.com/style/icons/
https://material-ui.com/api/icon/

Themes - Centralize the Look and
Feel of Your App
Here's what you'll learn in this chapter:

Understanding the palette
Comparing light and dark themes
Customizing typography
Nesting themes
Understanding component theme settings

Introduction
Material-UI applications all share a common look and feel—to an extent.
This doesn't mean that your banking application is going to look and feel the
same as my music library application just because we're both using the same
library. The common aspect is that both apps follow Material Design
principles. I'm not going to go into depth on Material Design here, because
there are ample resources out there that do a much better job than I could ever
hope to do. Instead, I want to focus on the fact that Material-UI applications
can be themed with a high degree of flexibility, and without the need to
sacrifice the principles of Material Design.

Understanding the palette
The first place most people start when building a new Material-UI theme is
with the color palette. Color palettes can be very complex with a lot of
moving parts: Material-UI themes are no exception, but Material-UI hides a
lot of the complexity. Your focus is on the color intentions of the theme while
Material-UI uses these color intentions to compute other colors where
necessary. Taken straight from the Material-UI theme documentation, the
intentions are as follows:

Primary: Used to represent primary interface elements
Secondary: Used to represent secondary interface elements
Error: Used to represent interface elements that the user should be made
aware of

How to do it...
Let's build a new theme that sets color intentions using the built-in color
objects of Material-UI. To help tweak your theme, this example uses Hue and
Shade Storybook controls:

The three color intentions are represented as tabs across the top. The
PRIMARY intention is currently selected and it has a Hue selector and a
Shade number range. Each intention has the same controls. The Hue selector
is populated with the same colors available to import from Material-UI:

Here's the source that uses these Storybook controls to build a new theme and
render some Button and Typography components:

import React, { Fragment } from 'react';

import {

 withStyles,

 createMuiTheme,

 MuiThemeProvider

} from '@material-ui/core/styles';

import Button from '@material-ui/core/Button';

import Typography from '@material-ui/core/Typography';

import red from '@material-ui/core/colors/red';

import pink from '@material-ui/core/colors/pink';

import purple from '@material-ui/core/colors/purple';

import deepPurple from '@material-ui/core/colors/deepPurple';

import indigo from '@material-ui/core/colors/indigo';

import blue from '@material-ui/core/colors/blue';

import lightBlue from '@material-ui/core/colors/lightBlue';

import cyan from '@material-ui/core/colors/cyan';

import teal from '@material-ui/core/colors/teal';

import green from '@material-ui/core/colors/green';

import lightGreen from '@material-ui/core/colors/lightGreen';

import lime from '@material-ui/core/colors/lime';

import yellow from '@material-ui/core/colors/yellow';

import amber from '@material-ui/core/colors/amber';

import orange from '@material-ui/core/colors/orange';

import deepOrange from '@material-ui/core/colors/deepOrange';

import brown from '@material-ui/core/colors/brown';

import grey from '@material-ui/core/colors/grey';

import blueGrey from '@material-ui/core/colors/blueGrey';

const styles = theme => ({

 button: { margin: theme.spacing(2) }

});

const hues = {

 red,

 pink,

 purple,

 deepPurple,

 indigo,

 blue,

 lightBlue,

 cyan,

 teal,

 green,

 lightGreen,

 lime,

 yellow,

 amber,

 orange,

 deepOrange,

 brown,

 grey,

 blueGrey

};

const UnderstandingThePallette = withStyles(styles)(

 ({

 primaryHue,

 primaryShade,

 secondaryHue,

 secondaryShade,

 errorHue,

 errorShade,

 classes

 }) => {

 const theme = createMuiTheme({

 palette: {

 primary: { main: hues[primaryHue][primaryShade] },

 secondary: { main: hues[secondaryHue][secondaryShade] },

 error: { main: hues[errorHue][errorShade] }

 }

 });

 return (

 <MuiThemeProvider theme={theme}>

 <Button className={classes.button} variant="contained">

 Default

 </Button>

 <Button

 className={classes.button}

 variant="contained"

 color="primary"

 >

 Primary

 </Button>

 <Button

 className={classes.button}

 variant="contained"

 color="secondary"

 >

 Secondary

 </Button>

 <Typography className={classes.button} color="error">

 Error

 </Typography>

 </MuiThemeProvider>

);

 }

);

export default UnderstandingThePallette;

Here's what you'll see when you first load the screen with the DEFAULT
theme values selected:

Now, let's change the DEFAULT theme color intentions, starting with
PRIMARY:

The Primary Hue is now Cyan with a shade value of 300. Next, we'll change
the SECONDARY intention:

The Secondary Hue is now Teal with a shade value of 100. Lastly, we'll
change the ERROR intention:

The Error Hue is still Red for this theme, but slightly lighter with a shade

value of 400. Here's what the end result looks like:

How it works...
Material-UI has core hues that can be imported and can help you with building
your theme:

import red from '@material-ui/core/colors/red';

import pink from '@material-ui/core/colors/pink';

import purple from '@material-ui/core/colors/purple';

import deepPurple from '@material-ui/core/colors/deepPurple';

import indigo from '@material-ui/core/colors/indigo';

import blue from '@material-ui/core/colors/blue';

import lightBlue from '@material-ui/core/colors/lightBlue';

import cyan from '@material-ui/core/colors/cyan';

import teal from '@material-ui/core/colors/teal';

import green from '@material-ui/core/colors/green';

import lightGreen from '@material-ui/core/colors/lightGreen';

import lime from '@material-ui/core/colors/lime';

import yellow from '@material-ui/core/colors/yellow';

import amber from '@material-ui/core/colors/amber';

import orange from '@material-ui/core/colors/orange';

import deepOrange from '@material-ui/core/colors/deepOrange';

import brown from '@material-ui/core/colors/brown';

import grey from '@material-ui/core/colors/grey';

import blueGrey from '@material-ui/core/colors/blueGrey';

You don't have to import every hue—this is done here because of the
Storybook controls that dynamically change the color palette values. Each
color value that is imported is an object indexed by the shade value, such as
500, for example. The values are colors expressed in hex, such as #fffffff, for
example. When using a color expressed in hex, you have to pass it to the main
property when creating your theme:

const theme = createMuiTheme({

 palette: {

 primary: { main: hues[primaryHue][primaryShade] },

 secondary: { main: hues[secondaryHue][secondaryShade] },

 error: { main: hues[errorHue][errorShade] }

 }

});

The properties primaryHue, primaryShade, and so on, are the values set by the
Storybook controls. The MuiThemeProvider component is how the theme is actually
applied to your Material-UI components. It doesn't have to be the root
component of your app, but any Material-UI components that depend on
theme styles (Button, Typography, and so on) need to be children of this

component.

The createMuiTheme() function is called every time the main application component in this
example is rendered. In practice, this shouldn't happen. Instead, the theme is created
once and passed to the MuiThemeProvider component. The reason this is happening here, is
so that the theme updates when you change the color values using the Storybook controls.

See also
Material-UI theme documentation: https://material-ui.com/customization/theme
s/

Material-UI color documentation: https://material-ui.com/style/color/

https://material-ui.com/customization/themes/
https://material-ui.com/style/color/

Comparing light and dark themes
The color palette of a theme takes a type property value that can be either light
or dark. By default, themes are light. Changing the theme to dark does not
change the other palette values of your theme (primary, secondary, error).

How to do it...
Let's create a dark theme and a light theme. Both themes will use the same
color values for the intentions (primary, secondary, error). The example will use a
Storybook control to change themes:

Here's the source that uses this value to choose between a light and dark theme
and apply it to the Material-UI components:

import React, { Fragment } from 'react';

import {

 withStyles,

 createMuiTheme,

 MuiThemeProvider

} from '@material-ui/core/styles';

import Button from '@material-ui/core/Button';

import Dialog from '@material-ui/core/Dialog';

import DialogActions from '@material-ui/core/DialogActions';

import DialogContent from '@material-ui/core/DialogContent';

import DialogContentText from '@material-ui/core/DialogContentText';

import DialogTitle from '@material-ui/core/DialogTitle';

import red from '@material-ui/core/colors/red';

import pink from '@material-ui/core/colors/pink';

import blue from '@material-ui/core/colors/blue';

const styles = theme => ({

 button: { margin: theme.spacing(2) }

});

const light = createMuiTheme({

 palette: {

 type: 'light',

 primary: blue,

 secondary: pink,

 error: { main: red[600] }

 }

});

const dark = createMuiTheme({

 palette: {

 type: 'dark',

 primary: blue,

 secondary: pink,

 error: { main: red[600] }

 }

});

const LightVersusDarkThemes = withStyles(styles)(

 ({ themeType, classes }) => {

 return (

 <MuiThemeProvider theme={{ dark, light }[themeType]}>

 <Dialog open={true}>

 <DialogTitle>Use Google's location service?</DialogTitle>

 <DialogContent>

 <DialogContentText id="alert-dialog-description">

 Let Google help apps determine location. This means

 sending anonymous location data to Google, even when no

 apps are running.

 </DialogContentText>

 </DialogContent>

 <DialogActions>

 <Button color="secondary">Disagree</Button>

 <Button variant="contained" color="primary" autoFocus>

 Agree

 </Button>

 </DialogActions>

 </Dialog>

 </MuiThemeProvider>

);

 }

);

export default LightVersusDarkThemes;

Here's the dialog that you'll see when the screen first loads:

Here's the same dialog with the theme type changed to dark:

How it works...
When the palette.type theme value changes from light to dark, the following
palette values change:

palette.text

palette.divider

palette.background

palette.action

Let's take a look at the two themes used in this example:

const light = createMuiTheme({

 palette: {

 type: 'light',

 primary: blue,

 secondary: pink,

 error: { main: red[600] }

 }

});

const dark = createMuiTheme({

 palette: {

 type: 'dark',

 primary: blue,

 secondary: pink,

 error: { main: red[600] }

 }

});

These two themes are the same except for the palette.type value. Whenever
you change this value, new color values are computed for the theme. For
example, the new text color that you see in the dialog isn't static—it's a color
that's computed by Material-UI in order to provide the optimal contrast
between the text color and the background color.

See also
Material-UI theme documentation: https://material-ui.com/customization/theme
s/

https://material-ui.com/customization/themes/

Customizing typography
The preferred typeface for Material-UI themes is Roboto. This is by no means
the only option, and, indeed, you can install new typefaces and use them in
your custom Material-UI theme.

How to do it...
Let's install a couple of new typeface packages so that they're available for use
in your application:

npm install --save typeface-exo typeface-ubuntu

Next, you can add a Storybook control for the example that allows you to
switch themes, and, as a result, switch fonts:

Here's what the Dialog component looks like when you first load the screen:

Here's what the Dialog component looks like when you change the font type to

Exo:

Lastly, here's what the Dialog component looks like when you change the font
type to Ubuntu:

How it works...
The two typefaces that are used in this example are imported:

import 'typeface-exo';

import 'typeface-ubuntu';

In practice, you'll only import the font that your active theme uses, to reduce
the size of your build. The roboto font that's used all throughout the examples
in this book is imported by the Storybook index file, since this font is the
default theme font and used in every example in this book.

Now that you've imported the typefaces, you've made the font family names
available to the theme:

const roboto = createMuiTheme({

 typography: {

 fontFamily: '"Roboto", "Helvetica", "Arial", sans-serif'

 }

});

const exo = createMuiTheme({

 typography: {

 fontFamily: '"Exo", "Roboto", "Helvetica", "Arial", sans-serif'

 }

});

const ubuntu = createMuiTheme({

 typography: {

 fontFamily: '"Ubuntu", "Roboto", "Helvetica", "Arial", sans-serif'

 }

});

Note that, in the exo and ubuntu themes, roboto is still used as part of the font
family, since it's the preferred font for Material-UI; it makes a good fallback.

See also
Material-UI theme documentation: https://material-ui.com/customization/theme
s/

https://material-ui.com/customization/themes/

Nesting themes
By nesting MuiThemeProvider components, you can compose multiple themes
that handle different aspects of a theme into a single theme that's suitable for
use in your application.

How to do it...
Let's say that you have a theme that sets the color palette and another theme
that changes the border radius. You can merge both themes by nesting
the MuiThemeProvider components. Here's an example:

import React from 'react';

import {

 createMuiTheme,

 MuiThemeProvider

} from '@material-ui/core/styles';

import Button from '@material-ui/core/Button';

import Dialog from '@material-ui/core/Dialog';

import DialogActions from '@material-ui/core/DialogActions';

import DialogContent from '@material-ui/core/DialogContent';

import DialogContentText from '@material-ui/core/DialogContentText';

import DialogTitle from '@material-ui/core/DialogTitle';

import red from '@material-ui/core/colors/red';

import pink from '@material-ui/core/colors/pink';

import blue from '@material-ui/core/colors/blue';

const Blue = createMuiTheme({

 palette: {

 type: 'light',

 primary: blue,

 secondary: pink,

 error: { main: red[600] }

 }

});

const Rounded = theme =>

 createMuiTheme({

 ...theme,

 shape: {

 borderRadius: 8

 }

 });

const NestingThemes = () => (

 <MuiThemeProvider theme={Blue}>

 <MuiThemeProvider theme={Rounded}>

 <Dialog open={true}>

 <DialogTitle>Use Google's location service?</DialogTitle>

 <DialogContent>

 <DialogContentText>

 Let Google help apps determine location. This means

 sending anonymous location data to Google, even when no

 apps are running.

 </DialogContentText>

 </DialogContent>

 <DialogActions>

 <Button color="secondary">Disagree</Button>

 <Button variant="contained" color="primary" autoFocus>

 Agree

 </Button>

 </DialogActions>

 </Dialog>

 </MuiThemeProvider>

 </MuiThemeProvider>

);

export default NestingThemes;

Here's what you'll see when the screen loads:

How it works...
The Blue theme applies the color palette theme settings, while the Rounded theme
changes the borderRadius settings. Both themes are applied to the Dialog
component—you can see the blue primary button, and the round corners are
even more round. Let's take a closer look at the Rounded theme:

const Rounded = theme =>

 createMuiTheme({

 ...theme,

 shape: {

 borderRadius: 8

 }

 });

Instead of being an object, Rounded is a function that returns a theme object.
When you pass a function to the theme property of MuiThemeProvider, a theme
argument is passed. This is the outer theme, or, in this example, the Blue theme.
The theme is extended by applying the spread operator to the theme argument,
and then passing additional theme values to createMuiTheme().

See also
Material-UI theme documentation: https://material-ui.com/customization/theme
s/

https://material-ui.com/customization/themes/

Understanding component theme
settings
Themes can override styles that are specific to component types, such as
buttons or drawers. This is useful when you need to apply a style change to
every instance of the component in the app. In other words, the style is part of
the overall theme, but it applies to just one type of component instead of the
color palette for example, which applies to almost every Material-UI
component.

How to do it
Let's say that you want the title and the actions of Dialog components centered.
Since you want the same style applied for every Dialog component in your
app, the theme is the right place to override this setting. Here's how to do it:

import React from 'react';

import {

 createMuiTheme,

 MuiThemeProvider

} from '@material-ui/core/styles';

import Button from '@material-ui/core/Button';

import Dialog from '@material-ui/core/Dialog';

import DialogActions from '@material-ui/core/DialogActions';

import DialogContent from '@material-ui/core/DialogContent';

import DialogContentText from '@material-ui/core/DialogContentText';

import DialogTitle from '@material-ui/core/DialogTitle';

const theme = createMuiTheme({

 overrides: {

 MuiDialogTitle: { root: { textAlign: 'center' } },

 MuiDialogActions: { root: { justifyContent: 'center' } }

 }

});

const ComponentThemeSettings = () => (

 <MuiThemeProvider theme={theme}>

 <Dialog open={true}>

 <DialogTitle>Use Google's location service?</DialogTitle>

 <DialogContent>

 <DialogContentText>

 Let Google help apps determine location. This means sending

 anonymous location data to Google, even when no apps are

 running.

 </DialogContentText>

 </DialogContent>

 <DialogActions>

 <Button color="secondary">Disagree</Button>

 <Button color="primary" autoFocus>

 Agree

 </Button>

 </DialogActions>

 </Dialog>

 </MuiThemeProvider>

);

export default ComponentThemeSettings;

Here's what the custom dialog looks like:

How it works...
Let's take a closer look at the overrides section of the theme:

overrides: {

 MuiDialogTitle: { root: { textAlign: 'center' } },

 MuiDialogActions: { root: { justifyContent: 'center' } }

},

The MuiDialogTitle key corresponds to the DialogTitle component, while the
MuiDialogActions key corresponds to the DialogActions component. The root key
used in both objects is the name of the rule. In more complex components,
you can use these keys to target specific parts of the component. The API
documentation for each component spells out each of these style rule names
that you can target. Then, it's a matter of overriding or providing new styles.
The textAlign property isn't set by default on the DialogTitle component, so
you're adding it. The justifyContent is set to the right of the DialogActions
component, which means that you're overriding an existing value.

See also
Theme override documentation: https://material-ui.com/customization/overri
des/

https://material-ui.com/customization/overrides/

Styles - Applying Styles to
Components
In this chapter, you'll learn about the following topics:

Basic component styles
Scoped component styles
Extending component styles
Moving styles to themes
Other styling options

Introduction
The majority of styles that are applied to Material-UI components are part of
the theme styles. In some cases, you need the ability to style individual
components without changing the theme. For example, a button in one
feature might need a specific style applied to it that shouldn't change every
other button in the app. Material-UI provides several ways to apply custom
styles to components as a whole, or to specific parts of components.

Basic component styles
Material uses JavaScript Style Sheets (JSS) to style its components. You
can apply your own JSS using the utilities provided by Material-UI.

How to do it...
The withStyles() function is a higher-order function that takes a style object as
an argument. The function that it returns takes the component to style as an
argument. Here's an example:

import React, { useState } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Card from '@material-ui/core/Card';

import CardActions from '@material-ui/core/CardActions';

import CardContent from '@material-ui/core/CardContent';

import Button from '@material-ui/core/Button';

import Typography from '@material-ui/core/Typography';

const styles = theme => ({

 card: {

 width: 135,

 height: 135,

 textAlign: 'center'

 },

 cardActions: {

 justifyContent: 'center'

 }

});

const BasicComponentStyles = withStyles(styles)(({ classes }) => {

 const [count, setCount] = useState(0);

 const onIncrement = () => {

 setCount(count + 1);

 };

 return (

 <Card className={classes.card}>

 <CardContent>

 <Typography variant="h2">{count}</Typography>

 </CardContent>

 <CardActions className={classes.cardActions}>

 <Button size="small" onClick={onIncrement}>

 Increment

 </Button>

 </CardActions>

 </Card>

);

});

export default BasicComponentStyles;

Here's what this component looks like:

How it works...
Let's take a closer look at the styles defined by this example:

const styles = theme => ({

 card: {

 width: 135,

 height: 135,

 textAlign: 'center'

 },

 cardActions: {

 justifyContent: 'center'

 }

});

The styles that you pass to withStyles() can be either a plain object or a
function that returns a plain object, as is the case with this example. The
benefit of using a function is that the theme values are passed to the function as
an argument, in case your styles need access to the theme values. There are two
styles defined in this example: card and cardActions. You can think of these
as Cascading Style Sheets (CSS) classes. Here's what these two styles would
look like as CSS:

.card {

 width: 135

 height: 135

 text-align: center

}

.cardActions {

 justify-content: center

}

By calling withStyles(styles)(MyComponent), you're returning a new component
that has a classes property. This object has all of the classes that you can apply
to components now. You can't just do something such as this:

<Card className="card" />

When you define your styles, they have their own build process and every
class ends up getting its own generated name. This generated name is what
you'll find in the classes object, so this is why you would want to use it.

There's more...
Instead of working with higher-order functions that return new components,
you can leverage Material-UI style hooks. This example already relies on the
useState() hook from React, so using another hook in the component feels like
a natural extension of the same pattern that is already in place. Here's what
the example looks like when refactored to take advantage of the makeStyles()
function:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';

import Card from '@material-ui/core/Card';

import CardActions from '@material-ui/core/CardActions';

import CardContent from '@material-ui/core/CardContent';

import Button from '@material-ui/core/Button';

import Typography from '@material-ui/core/Typography';

const useStyles = makeStyles(theme => ({

 card: {

 width: 135,

 height: 135,

 textAlign: 'center'

 },

 cardActions: {

 justifyContent: 'center'

 }

}));

export default function BasicComponentStyles() {

 const classes = useStyles();

 const [count, setCount] = useState(0);

 const onIncrement = () => {

 setCount(count + 1);

 };

 return (

 <Card className={classes.card}>

 <CardContent>

 <Typography variant="h2">{count}</Typography>

 </CardContent>

 <CardActions className={classes.cardActions}>

 <Button size="small" onClick={onIncrement}>

 Increment

 </Button>

 </CardActions>

 </Card>

);

}

The useStyles() hook is built using the makeStyles() function—which takes the
exact same styles argument as withStyles(). By calling useStyles() within the
component, you have your classes object. Another important thing to point
out is that makeStyles is imported from @material-ui/styles, not @material-
ui/core/styles.

See also
Material-UI CSS in JS documentation: https://material-ui.com/css-in-js/bas
ics/.

https://material-ui.com/css-in-js/basics/

Scoped component styles
Most Material-UI components have a CSS API that is specific to the
component. This means that instead of having to assign a class name to the
className property for every component that you need to customize, you can
target specific aspects of the component that you want to change. Material-UI
has laid the foundation for scoping component styles; you just need to
leverage the APIs.

How to do it...
Let's say that you have the following style customizations that you want to
apply to the Button components used throughout your application:

Every button needs a margin by default.
Every button that uses the contained variant should have additional top
and bottom padding.
Every button that uses the contained variant and the primary color should
have additional top and bottom padding, as well as additional left and
right padding.

Here's an example that shows how to use the Button CSS API to target these
three different Button types with styles:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Button from '@material-ui/core/Button';

const styles = theme => ({

 root: {

 margin: theme.spacing(2)

 },

 contained: {

 paddingTop: theme.spacing(2),

 paddingBottom: theme.spacing(2)

 },

 containedPrimary: {

 paddingLeft: theme.spacing(4),

 paddingRight: theme.spacing(4)

 }

});

const ScopedComponentStyles = withStyles(styles)(

 ({ classes: { root, contained, containedPrimary } }) => (

 <Fragment>

 <Button classes={{ root }}>My Default Button</Button>

 <Button classes={{ root, contained }} variant="contained">

 My Contained Button

 </Button>

 <Button

 classes={{ root, contained, containedPrimary }}

 variant="contained"

 color="primary"

 >

 My Contained Primary Button

 </Button>

 </Fragment>

)

);

export default ScopedComponentStyles;

Here's what the three rendered buttons look like:

How it works...
The Button CSS API takes named styles and applies them to the component.
These same names are used in the styles in this code. For example, root
applies to every Button component, whereas contained only applies the styles to
the Button components that use the contained variant and the containedPrimary
style only applies to Button components that use the contained variant and the
primary color.

There's more...
Each style is destructured from the classes property, then applied to the
appropriate Button component. However, you don't actually need to do all of
this work. Since the Material-UI CSS API takes care of applying styles to
components in a way that matches what you're actually targeting, you can just
pass the classes directly to the buttons and get the same result. Here's a
simplified version of this example:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Button from '@material-ui/core/Button';

const styles = theme => ({

 root: {

 margin: theme.spacing(2)

 },

 contained: {

 paddingTop: theme.spacing(2),

 paddingBottom: theme.spacing(2)

 },

 containedPrimary: {

 paddingLeft: theme.spacing(4),

 paddingRight: theme.spacing(4)

 }

});

const ScopedComponentStyles = withStyles(styles)(({ classes }) => (

 <Fragment>

 <Button classes={classes}>My Default Button</Button>

 <Button classes={classes} variant="contained">

 My Contained Button

 </Button>

 <Button classes={classes} variant="contained" color="primary">

 My Contained Primary Button

 </Button>

 </Fragment>

));

export default ScopedComponentStyles;

The output looks the same because only buttons that match the constraints of
the CSS API get the styles applied to them. For example, the first Button has
the root, contained, and containedPrimary styles passed to the classes property, but
only root is applied because it isn't using the contained variant of the primary
color. The second Button also has all three styles passed to it, but only root and

contained are applied. The third Button has all three styles applied to it because
it meets the criteria of each style.

See also
Material-UI style override documentation: https://material-ui.com/customiza
tion/overrides/.

https://material-ui.com/customization/overrides/

Extending component styles
You can extend styles that you apply to one component with styles that you
apply to another component. Since your styles are JavaScript objects, one
option is to extend one style object with another. The only problem with this
approach is that you end up with a lot of duplicate styles properties in the
CSS output. A better alternative is to use the jss extend plugin.

How to do it...
Let's say that you want to render three buttons and share some of the styles
among them. One approach is to extend generic styles with more specific
styles using the jss extend plugin. Here's how to do it:

import React, { Fragment } from 'react';

import { JssProvider, jss } from 'react-jss';

import {

 withStyles,

 createGenerateClassName

} from '@material-ui/styles';

import {

 createMuiTheme,

 MuiThemeProvider

} from '@material-ui/core/styles';

import Button from '@material-ui/core/Button';

const styles = theme => ({

 root: {

 margin: theme.spacing(2)

 },

 contained: {

 extend: 'root',

 paddingTop: theme.spacing(2),

 paddingBottom: theme.spacing(2)

 },

 containedPrimary: {

 extend: 'contained',

 paddingLeft: theme.spacing(4),

 paddingRight: theme.spacing(4)

 }

});

const App = ({ children }) => (

 <JssProvider

 jss={jss}

 generateClassName={createGenerateClassName()}

 >

 <MuiThemeProvider theme={createMuiTheme()}>

 {children}

 </MuiThemeProvider>

 </JssProvider>

);

const Buttons = withStyles(styles)(({ classes }) => (

 <Fragment>

 <Button className={classes.root}>My Default Button</Button>

 <Button className={classes.contained} variant="contained">

 My Contained Button

 </Button>

 <Button

 className={classes.containedPrimary}

 variant="contained"

 color="primary"

 >

 My Contained Primary Button

 </Button>

 </Fragment>

));

const ExtendingComponentStyles = () => (

 <App>

 <Buttons />

 </App>

);

export default ExtendingComponentStyles;

Here's what the rendered buttons look like:

How it works...
The easiest way to use the jss extend plugin in your Material-UI application
is to use the default JSS plugin presets, which includes jss extend. Material-
UI has several JSS plugins installed by default, but jss extend isn't one of
them. Let's take a look at the App component in this example to see how this
JSS plugin is made available:

const App = ({ children }) => (

 <JssProvider

 jss={jss}

 generateClassName={createGenerateClassName()}

 >

 <MuiThemeProvider theme={createMuiTheme()}>

 {children}

 </MuiThemeProvider>

 </JssProvider>

);

The JssProvider component is how JSS is enabled in Material-UI applications.
Normally, you wouldn't have to interface with it directly, but this is necessary
when adding a new JSS plugin. The jss property takes the JSS preset object
that includes the jss extend plugin. The generateClassName property takes a
function from Material-UI that helps generate class names that are specific to
Material-UI.

Next, let's take a closer look at some styles:

const styles = theme => ({

 root: {

 margin: theme.spacing(2)

 },

 contained: {

 extend: 'root',

 paddingTop: theme.spacing(2),

 paddingBottom: theme.spacing(2)

 },

 containedPrimary: {

 extend: 'contained',

 paddingLeft: theme.spacing(4),

 paddingRight: theme.spacing(4)

 }

});

The extend property takes the name of a style that you want to extend. In this

case, the contained style extends root. The containedPrimary extends contained and
root. Now let's take a look at how this translates into CSS. Here's what the root
style looks like:

.Component-root-1 {

 margin: 16px;

}

Next, here's the contained style:

.Component-contained-2 {

 margin: 16px;

 padding-top: 16px;

 padding-bottom: 16px;

}

Finally, here's the containedPrimary style:

.Component-containedPrimary-3 {

 margin: 16px;

 padding-top: 16px;

 padding-left: 32px;

 padding-right: 32px;

 padding-bottom: 16px;

}

Note that the properties from the more-generic properties are included in the
more-specific styles. There are some properties duplicated, but this is in CSS,
instead of having to duplicate JavaScript object properties. Furthermore, you
could put these extended styles in a more central location in your code base,
so that multiple components could use them.

See also
Material-UI JSS documentation: https://material-ui.com/customization/css-in
-js/.

https://material-ui.com/customization/css-in-js/

Moving styles to themes
As you develop your Material-UI application, you'll start to notice style
patterns that repeat themselves. In particular, styles that apply to one type of
component, such as buttons, evolve into a theme.

How to do it...
Let's revisit the example from the Scoped component styles section:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Button from '@material-ui/core/Button';

const styles = theme => ({

 root: {

 margin: theme.spacing(2)

 },

 contained: {

 paddingTop: theme.spacing(2),

 paddingBottom: theme.spacing(2)

 },

 containedPrimary: {

 paddingLeft: theme.spacing(4),

 paddingRight: theme.spacing(4)

 }

});

const ScopedComponentStyles = withStyles(styles)(({ classes }) => (

 <Fragment>

 <Button classes={classes}>My Default Button</Button>

 <Button classes={classes} variant="contained">

 My Contained Button

 </Button>

 <Button classes={classes} variant="contained" color="primary">

 My Contained Primary Button

 </Button>

 </Fragment>

));

export default ScopedComponentStyles;

Here's what these buttons look like after they have these styles applied to
them:

Now, let's say you've implemented these same styles in several places
throughout your app because this is how you want your buttons to look. At
this point, you've evolved a simple component customization into a theme.
When this happens, you shouldn't have to keep implementing the same styles
over and over again. Instead, the styles should be applied automatically by
using the correct component and the correct property values. Let's move these
styles into theme:

import React from 'react';

import {

 createMuiTheme,

 MuiThemeProvider

} from '@material-ui/core/styles';

import Button from '@material-ui/core/Button';

const defaultTheme = createMuiTheme();

const theme = createMuiTheme({

 overrides: {

 MuiButton: {

 root: {

 margin: 16

 },

 contained: {

 paddingTop: defaultTheme.spacing(2),

 paddingBottom: defaultTheme.spacing(2)

 },

 containedPrimary: {

 paddingLeft: defaultTheme.spacing(4),

 paddingRight: defaultTheme.spacing(4)

 }

 }

 }

});

const MovingStylesToThemes = ({ classes }) => (

 <MuiThemeProvider theme={theme}>

 <Button>My Default Button</Button>

 <Button variant="contained">My Contained Button</Button>

 <Button variant="contained" color="primary">

 My Contained Primary Button

 </Button>

 </MuiThemeProvider>

);

export default MovingStylesToThemes;

Now, you can use Button components without having to apply the same styles
every time.

How it works...
Let's take a closer look at how your styles fit into a Material-UI theme:

overrides: {

 MuiButton: {

 root: {

 margin: 16

 },

 contained: {

 paddingTop: defaultTheme.spacing(2),

 paddingBottom: defaultTheme.spacing(2)

 },

 containedPrimary: {

 paddingLeft: defaultTheme.spacing(4),

 paddingRight: defaultTheme.spacing(4)

 }

 }

}

The overrides property is an object that allows you to override component-
specific properties of the theme. In this case, it's the MuiButton component
styles that you want to override. Within MuiButton, you have the same CSS API
that is used to target specific aspects of components. This makes moving your
styles into the theme straightforward, because there isn't much to change.

One thing that did have to change in this example is the way spacing works.
In normal styles that are applied via withStyles(), you have access to the
current theme because it's passed in as an argument. You still need access to
the spacing data, but there's no theme argument because you're not in a
function. Since you're just extending the default theme, you can access it by
calling createMuiTheme() without any arguments, as this example shows.

See also
Material-UI style overrides documentation: https://material-ui.com/customiz
ation/overrides/.

https://material-ui.com/customization/overrides/

Other styling options
There are other styling options available to your Material-UI app beyond
withStyles(). There's the styled() higher-order component function that
emulates styled components. You can also jump outside the Material-UI style
system and use inline CSS styles or import CSS modules and apply those
styles.

How to do it...
Here's a modified version of the Scoped component styles example that
showcases a few of the alternative style mechanisms available to you in your
Material-UI applications:

import React, { Fragment } from 'react';

import { styled } from '@material-ui/styles';

import Button from '@material-ui/core/Button';

import styles from './OtherStylingOptions.module.css';

const MyStyledButton = styled(Button)({

 margin: 16,

 paddingTop: 16,

 paddingBottom: 16

});

const OtherStylingOptions = () => (

 <Fragment>

 <Button style={{ margin: 16 }}>My Default Button</Button>

 <MyStyledButton variant="contained">

 My Contained Button

 </MyStyledButton>

 <Button

 className={styles.primaryContained}

 variant="contained"

 color="primary"

 >

 My Contained Primary Button

 </Button>

 </Fragment>

);

export default OtherStylingOptions;

How it works...
The first button uses inline CSS properties, expressed as a plain JavaScript
object and passed to the style property of the Button component. The second
Button uses the styled() function to build a MyStyledButton component. This
function works in much the same way as withStyles, the main difference being
that its signature is geared toward people used to the styled-component's
approach to styling components.

The third button uses a style from an imported CSS module. Here's what the
module looks like:

button.primaryContained {

 margin: 16px;

 padding: 16px 32px;

}

Be careful with CSS modules and inline styles. These approaches work fine,
but since they're not tightly integrated with the Material-UI styling and
theming mechanisms, they require more work to ensure that your styles fit
with the rest of the Material-UI components.

See also
Material-UI style overrides documentation: https://material-ui.com/customiz
ation/overrides/.
Material-UI JSS documentation: https://material-ui.com/css-in-js/api/.

https://material-ui.com/customization/overrides/
https://material-ui.com/css-in-js/api/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

React Cookbook
Carlos Santana Roldan

ISBN: 9781783980727

Gain the ability to wield complex topics such as Webpack and server-
side rendering
Implement an API using Node.js, Firebase, and GraphQL
Learn to maximize the performance of React applications
Create a mobile application using React Native
Deploy a React application on Digital Ocean
Get to know the best practices when organizing and testing a large React
application

https://www.packtpub.com/web-development/react-cookbook
https://www.packtpub.com/web-development/react-and-react-native

React and React Native
Adam Boduch

ISBN: 9781786465658

Craft reusable React components
Control navigation using the React Router to help keep your UI in sync
with URLs
Build isomorphic web applications using Node.js
Use the Flexbox layout model to create responsive mobile designs
Leverage the native APIs of Android and iOS to build engaging
applications with React Native
Respond to gestures in a way that’s intuitive for the user
Use Relay to build a unified data architecture for your React UIs

Leave a review - let other readers
know what you think
Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital so
that other potential readers can see and use your unbiased opinion to make
purchasing decisions, we can understand what our customers think about our
products, and our authors can see your feedback on the title that they have
worked with Packt to create. It will only take a few minutes of your time, but
is valuable to other potential customers, our authors, and Packt. Thank you!

	Title Page
	Copyright and Credits
	React Material-UI Cookbook

	Dedication
	About Packt
	Why subscribe?
	Packt.com

	Contributors
	About the author
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Get in touch
	Reviews

	Grids - Placing Components on the Page
	Introduction
	Applying breakpoints
	How to do it...
	How it works...
	There's more...
	See also

	Filling space
	How to do it...
	How it works...
	There's more...
	See also

	Abstracting containers and items
	How to do it...
	How it works...
	There's more...
	See also

	Fixed column layout
	How to do it...
	How it works...
	There's more...
	See also

	Changing column direction
	How to do it...
	How it works...
	There's more...
	See also

	App Bars - The Top Level of Every Page
	Introduction
	Fixed position
	How to do it...
	How it works...
	There's more...
	See also

	Hide on scroll
	How to do it...
	How it works...
	There's more...
	See also

	Toolbar abstraction
	How to do it...
	How it works...
	There's more...
	See also

	With navigation
	How to do it...
	How it works...
	There's more...
	See also

	Drawers - A Place for Navigation Controls
	Introduction
	Drawer types
	How to do it...
	How it works...
	There's more...
	See also

	Drawer item state
	How to do it...
	How it works...
	There's more...
	See also

	Drawer item navigation
	How to do it...
	How it works...
	There's more...
	See also

	Drawer sections
	How to do it...
	How it works...
	There's more...
	See also

	AppBar interaction
	How to do it...
	How it works...
	There's more...
	See also

	Tabs - Grouping Content into Tab Sections
	Introduction
	AppBar integration
	How to do it...
	How it works...
	There's more...
	See also

	Tab alignment
	How to do it...
	How it works...
	There's more...
	See also

	Rendering tabs based on state
	How to do it...
	How it works...
	There's more...
	See also

	Abstracting tab content
	How to do it...
	How it works...
	There's more...
	See also

	Tab navigation with routes
	How to do it...
	How it works...
	There's more...
	See also

	Expansion Panels - Group Content into Panel Sections
	Introduction
	Stateful expansion panels
	How to do it...
	How it works...
	There's more...
	See also

	Formatting panel headers
	How to do it...
	How it works...
	There's more...
	See also

	Scrollable panel content
	How to do it...
	How it works...
	See also

	Lazy loading panel content
	How to do it...
	How it works...
	There's more...
	See also

	Lists - Display Simple Collection Data
	Introduction
	Using state to render list items
	How to do it...
	How it works...
	There's more...
	See also

	List icons
	How to do it...
	How it works...
	There's more...
	See also

	List avatars and text
	How to do it...
	How it works...
	There's more...
	See also

	List sections
	How to do it...
	How it works...
	There's more...
	See also

	Nested lists
	How to do it...
	How it works...
	There's more...
	See also

	List controls
	How to do it...
	How it works...
	There's more...
	See also

	Scrolling lists
	How to do it...
	How it works...
	See also

	Tables - Display Complex Collection Data
	Introduction
	Stateful tables
	How to do it...
	How it works...
	There's more...
	See also

	Sortable columns
	How to do it...
	How it works...
	There's more...
	See also

	Filtering rows
	How to do it...
	How it works...
	See also

	Selecting rows
	How to do it...
	How it works...
	See also

	Row actions
	How to do it...
	How it works...
	See also

	Cards - Display Detailed Information
	Introduction
	Main content
	How to do it...
	How it works...
	See also

	Card header
	How to do it...
	How it works...
	There's more...
	See also

	Performing actions
	How to do it...
	How it works...
	There's more...
	See also

	Presenting media
	How to do it...
	How it works...
	There's more...
	See also

	Expandable cards
	How to do it...
	How it works...
	See also

	Snackbars - Temporary Messages
	Introduction
	Snackbar content
	How to do it...
	How it works...
	There's more...
	See also

	Controlling visibility with state
	How to do it...
	How it works...
	There's more...
	See also

	Snackbar transitions
	How to do it...
	How it works...
	See also

	Positioning snackbars
	How to do it...
	How it works...
	There's more...
	See also

	Error boundaries and error snackbars
	How to do it...
	How it works...
	There's more...
	See also

	Snackbars with actions
	How to do it...
	How it works...
	There's more...
	See also

	Queuing snackbars
	How to do it...
	How it works...
	See also

	Buttons - Initiating Actions
	Introduction
	Button variants
	How to do it...
	How it works...
	See also

	Button emphasis
	How to do it...
	How it works...
	There's more...
	See also

	Link buttons
	How to do it...
	How it works...
	There's more...
	See also

	Floating actions
	How to do it...
	How it works...
	There's more...
	See also

	Icon buttons
	How to do it...
	How it works...
	See also

	Button sizes
	How to do it...
	How it works...
	There's more...
	See also

	Text - Collecting Text Input
	Introduction
	Controlling input with state
	How to do it...
	How it works...
	There's more...
	See also

	Placeholder and helper text
	How to do it...
	How it works...
	See also

	Validation and error display
	How to do it...
	How it works...
	There's more...
	See also

	Password fields
	How to do it...
	How it works...
	There's more...
	See also

	Multiline input
	How to do it...
	How it works...
	There's more...
	See also

	Input adornments
	How to do it...
	How it works...
	There's more...
	See also

	Input masking
	How to do it...
	How it works...
	See also

	Autocomplete and Chips - Text Input Suggestions for Multiple Items
	Introduction
	Building an Autocomplete component
	How to do it...
	How it works...
	Text input control
	Options menu
	No options available
	Individual option
	Placeholder text
	SingleValue
	ValueContainer
	IndicatorSeparator
	Clear option indicator
	Show menu indicator
	Styles
	The Autocomplete

	See also

	Selecting autocomplete suggestions
	How to do it...
	How it works...
	See also

	API-driven Autocomplete
	How to do it...
	How it works...
	See also

	Highlighting search results
	How to do it...
	How it works...
	See also

	Standalone chip input
	How to do it...
	How it works...
	See also

	Selection - Make Selections from Choices
	Introduction
	Abstracting checkbox groups
	How to do it...
	How it works...
	There's more...
	See also

	Customizing checkbox items
	How to do it...
	How it works...
	There's more...
	See also

	Abstracting radio button groups
	How it works...
	How it works...
	There's more...
	See also

	Radio button types
	How to do it...
	How it works...
	See also

	Replacing checkboxes with switches
	How to do it...
	How it works...
	There's more...
	See also

	Controlling selects with state
	How to do it...
	How it works...
	See Also

	Selecting multiple items
	How to do it...
	How it works...
	There's more...
	See also

	Pickers - Selecting Dates and Times
	Introduction
	Using date pickers
	How to do it...
	How it works...
	There's more...
	See also

	Using time pickers
	How to do it...
	How it works...
	See also

	Setting initial date and time values
	How to do it...
	How it works...
	See also

	Combining date and time components
	How to do it...
	How it works...
	See also

	Integrating other date and time packages
	How to do it...
	How it works...
	See also

	Dialogs - Modal Screens for User Interactions
	Introduction
	Collecting form input
	How to do it...
	How it works...
	See also

	Confirming actions
	How to do it...
	How it works...
	See also

	Displaying alerts
	How to do it...
	How it works...
	There's more...
	See also

	API integration
	How to do it...
	How it works...
	See also

	Creating fullscreen dialogs
	How to do it...
	How it works...
	See also

	Scrolling dialog content
	How to do it...
	How it works...
	See also

	Menus - Display Actions That Pop Out
	Introduction
	Composing menus with state
	How to do it...
	How it works...
	There's more...
	See also

	Menu scrolling options
	How to do it...
	How it works...
	See also

	Using menu transitions
	How to do it...
	How it works...
	See also

	Customizing menu items
	How to do it...
	How it works...
	See also

	Typography - Control Font Look and Feel
	Introduction
	Types of typography
	How to do it...
	How it works...
	There's more...
	See also

	Using theme colors
	How to do it...
	How it works...
	See also

	Aligning text
	How to do it...
	How it works...
	See also

	Wrapping text
	How to do it...
	How it works...
	There's more...
	See also

	Icons - Enhance Icons to Match Your Look and Feel
	Introduction
	Coloring icons
	How to do it...
	How it works...
	See also

	Scaling icons
	How to do it...
	How it works...
	Default
	Inherit
	Small
	Large

	See also

	Dynamically loading icons
	How to do it...
	How it works...
	See also

	Themed icons
	How to do it...
	How it works...
	See also

	Installing more icons
	How to do it...
	How it works...
	See also

	Themes - Centralize the Look and Feel of Your App
	Introduction
	Understanding the palette
	How to do it...
	How it works...
	See also

	Comparing light and dark themes
	How to do it...
	How it works...
	See also

	Customizing typography
	How to do it...
	How it works...
	See also

	Nesting themes
	How to do it...
	How it works...
	See also

	Understanding component theme settings
	How to do it
	How it works...
	See also

	Styles - Applying Styles to Components
	Introduction
	Basic component styles
	How to do it...
	How it works...
	There's more...
	See also

	Scoped component styles
	How to do it...
	How it works...
	There's more...
	See also

	Extending component styles
	How to do it...
	How it works...
	See also

	Moving styles to themes
	How to do it...
	How it works...
	See also

	Other styling options
	How to do it...
	How it works...
	See also

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

